
PHYSICAL REVIEW E 98, 032804 (2018)

Generalized line tension of water nanodroplets
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We compare all-atom simulations of nanoscale water droplets of spherical and cylindrical morphologies on flat
surfaces with tunable polarities. We find that for both morphologies, the contact angle depends, albeit differently,
on the droplet size, which can be well described by the modified Young equation with an apparent line tension
as a fitting parameter. In order to quantify the origin of the apparent line tension, we invoke a continuum-level
description of the droplets for both morphologies. This enables us to decompose the apparent line tension into
individual components that stem from a contact-angle dependent line tension and the Tolman correction to the
surface tension.
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I. INTRODUCTION

Wetting phenomena on solid surfaces are of high scien-
tific and technological relevance with applications ranging
from microfluidics and nanofluidics to nanomaterial engineer-
ing [1–4]. Water is of particular interest in wetting studies, as
it represents a common liquid in many industrial processes
such as dyeing, coating, painting, lubrication, oil recovery,
and deposition of pesticides [5]. When a water drop is de-
posited on a solid surface, two distinct behaviors are possible:
partial wetting, where the drop forms a finite contact angle θ

with the surface, or complete wetting, with vanishing contact
angle (θ = 0) [6]. In the former case, the contact angle θ0

that a macroscopic water drop (i.e., large compared with
the range of intermolecular forces, surface asperities, and
chemical heterogeneities) forms with the surface is given by
the well-known Young equation

cos θ0 = γsv − γsw

γ
, (1)

and we will refer to it as a macroscopic contact angle. Here,
γsv, γsw, and γ stand, respectively, for the surface-vapor,
surface-water, and water-vapor surface tensions.

When droplets are of nanoscopic size, effects at the
nanometer scale notably contribute to their form, and their
contact angle θ can considerably differ from θ0. Commonly,
the contact angle dependence on the droplet size can be well
described by the modified Young equation [7,8]

cos θ = cos θ0 − τapp

γ a
. (2)

Here, a is the base radius of the droplet (Fig. 1) and τapp

stands for the apparent line tension. Note that the modified
Young equation is originally based on the concept of line

*matej.kanduc@helmholtz-berlin.de

tension τ as the free energy correction produced by the contact
line where the three phases meet [9]. The assumption that
τ is independent of the droplet’s geometry (e.g., the contact
angle) and that it is the sole correction contribution at the
nanoscopic scale, leads to the original version of the modified
Young equation where τ replaces τapp in Eq. (2) [9]. But due to
additional effects that in many cases contribute to the contact
angle, the parameter τapp obtained from a fit of Eq. (2) to
experimental [10–14] or simulation [15–18] data cannot be
considered as the line tension τ in terms of the excess free
energy of the contact line. Instead, the apparent line tension
τapp is an effective parameter that clumps together all the
contributions of the size dependence of the contact angle.
In this paper, we therefore strictly distinguish between the
line tension, defined within a continuum description as the
excess free energy (dW ) per unit length of a contact line (dL),
τ = dW/dL, and the apparent line tension τapp, which is the
fitting parameter defined in Eq. (2).

The contact line is a key player in the stability of droplets,
liquid deposits of various morphologies, and also of films,
foams, and nanobubbles, because it decisively contributes
to the free energy of nanoscopic wetting scenarios [19–24].
Thus, distinguishing between τ and τapp, along with the
knowledge on additional contributions to the free energy, are
crucial for understanding wetting processes.

In this study, we compare results from atomistic simula-
tions of spherical and cylindrical water droplets on flat and
chemically uniform surfaces of different polarities. We com-
pare our simulation results with a continuum approach based
on free energy minimization that enables us to decompose the
apparent line tension in to three contributions: the line tension,
the line tension stiffness, and the Tolman contribution.

II. METHODS

We perform molecular dynamics (MD) simulations of
spherical droplets [Fig. 1(a)] on flat surfaces and compare

2470-0045/2018/98(3)/032804(6) 032804-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.032804&domain=pdf&date_stamp=2018-09-28
https://doi.org/10.1103/PhysRevE.98.032804
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FIG. 1. Snapshots of the simulation setups: (a) a spherical and (b) a cylindrical water droplet (simulation data from Ref. [25]) on the surface
with polarity α = 0.6. (c) A surface molecule is composed of an aliphatic chain terminated by a modified hydroxyl group whose polarity is
rescaled by a factor α. (d) A cross section of the droplet with a radius of curvature R and a base radius a forming a contact angle θ with the
surface.

them with the results of cylindrical droplets [Fig. 1(b)] on
the same surfaces from our previous study [25]. In order to
do this, we use the same simulation model and closely follow
the methods of Ref. [25], which we now briefly recap. The
planar surface is composed of anchored hexagonally arranged
aliphatic chains terminated by hydroxyl (OH) head groups
[Fig. 1(c)] with an area density of 4.3 nm−2. The surface
polarity, and by that the water adhesion strength, is tuned by
scaling the partial charges of the head groups by a polarity
parameter α in the range between 0 and 0.83. The simulation
box of lateral dimensions 18 nm × 21 nm and height 10 nm
is replicated in all three directions via periodic boundary con-
ditions. The water droplets deposited on the surface consist of
800 to 4600 water molecules, initially in the form of a cuboid,
which rapidly equilibrate to a spherical form [Fig. 1(a)].

We utilize the united-atom GROMOS force field [26] for
the surface molecules and the simple point charge/extended
(SPC/E) water model [27]. The MD simulations were per-
formed with the GROMACS simulation package [28] in the
canonical (NVT) ensemble. The system temperature is main-
tained at 300 K by the velocity-rescaling thermostat [29] with
a time constant of 0.1 ps [30]. Electrostatics is treated using
particle-mesh-Ewald methods [31,32] with a real-space cutoff
of 0.9 nm. The LJ potentials are cut off at 0.9 nm.

The simulation times span from 250 to 500 ns. The limiting
factor in the equilibration is the formation of a sub-monolayer
water film, which evolves by the diffusion of water molecules
from the droplet to the rest of the surface. The thickness
and other characteristics of this water film were analyzed
elsewhere [33]. On hydrophobic surfaces, where the thickness
of the water film is negligible, the droplets equilibrate in less
than 1 ns. On the other hand, the formation of equilibrium
water films on hydrophilic surfaces can take up to 100 ns.
Contact-line pinning and contact-angle hysteresis have neg-
ligible effects on the equilibrium shape of the droplet in this
model [25]. After equilibration, the radial density profile of
water is used to identify an effective water-vapor interface
(defined as the Gibbs dividing surface) as outlined in similar
studies [15,25,34–38]. Likewise, the effective water-surface
interface is defined as the Gibbs dividing surface of the water
phase from independent simulations of the surface in contact
with a bulk water slab [25]. The effective interfacial shape
of the droplet is then fitted with a spherical cap, from which

the base radius a and the contact angle θ with the surface
[Fig. 1(d)] are obtained.

III. RESULTS AND DISCUSSION

A. Spherical vs cylindrical droplets

Plotting the cosine of the measured contact angles cos θ

versus the inverse base radius 1/a [Fig. 2(a)] reveals a clear
linear relationship for all surface polarities. The data have
been shifted by the extrapolated values of cos θ0, such that
the linear fits (see below) merge at 1/a = 0 (except for α =
0.6 and 0.7, which are shifted vertically by 0.05 and 0.1,
respectively, for better clarity). The MD data points can be
well fitted with the modified Young equation, Eq. (2), as
indicated by solid lines in Fig. 2(a). The obtained macroscopic
contact angle θ0 on the completely non-polar surface (α = 0)
is 134◦ [Fig. 2(b)], it monotonically decreases with surface
polarity, and above around α = 0.85 the surface enters the
regime of complete wetting, where θ0 = 0.

The relation between the measured apparent line tension
τapp [as defined in Eq. (2)] and cos θ0 for the spherical droplets
is shown in Fig. 2(c) by orange circles. For hydrophobic and
weakly hydrophilic surfaces τapp is negative, but becomes pos-
itive for very hydrophilic surfaces (for cos θ0 > 0.8 or θ0 <

35◦). This means that except for very hydrophilic surfaces,
small droplets have a smaller contact angle than macroscopic
drops, as is also evident from the scaling plot in Fig. 2(a).

In Fig. 2(c), we additionally present the results of cylindri-
cal droplets [Fig. 1(b)] by blue square symbols on identical
surfaces from Ref. [25]. Note that in that study, the scaling of
the contact angle with the droplet size was expressed in terms
of the droplet’s curvature 1/R as cos θ = cos θ0 + C/R. In
order to compare this relation to Eq. (2), we associate the coef-
ficient C with the apparent line tension as τ

cyl
app = −Cγ sin θ0,

where we used the geometric relation sin θ0 = a/R. The
values of τ

cyl
app for the cylindrical droplets are significantly

smaller in magnitude than τapp for the spherical droplets.
This means that the contact angles of cylindrical droplets are
much less sensitive to the droplet size than spherical droplets.
Yet, the qualitative behavior is similar: Negative apparent line
tension on hydrophobic and weakly hydrophilic surfaces, and
positive on very hydrophilic surfaces. This result partially
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FIG. 2. (a) The cosine of the measured droplet contact angles (shifted by cos θ0) versus the inverse base radius 1/a of the spherical droplet.
The data for α = 0.6 and 0.7 are shifted vertically by 0.05 and 0.1, respectively, for better visibility. The solid lines are fits of Eq. (2) to the
MD data points. (b) Macroscopic contact angle (left scale) and its cosine (right scale) obtained from the fits of Eq. (2) to the data points in
(a). The error bars are around δθ ∼ 1◦ and thus smaller than the symbols. (c) Evaluated apparent line tension from the spherical droplets, τapp,
(a) and cylindrical droplets, τ

cyl
app, (adopted from Ref. [25]).

supports the common practice to use the cylindrical mor-
phology in computer simulations to reduce the effect of line
tension [33,36,39–41]. Even though the size-scaling effects
on the droplets are weaker in the cylindrical morphology, they
do not entirely vanish. Similar conclusions were reported also
for graphene layers by Scocchi et al. [42]. On the other hand,
simulations of cylindrical droplets composed of a Lennard-
Jones fluid did not demonstrate significant size-dependent
contact angles [35,43,44]. So, we conclude that even cylin-
drical droplets show finite-size effects, which depend on the
type of the liquid.

B. Decomposition of the apparent line tension

In order to interpret the simulation results in Fig. 2(c)
from a theoretical point of view, we invoke a continuum-level
description of the droplet based on the minimization of its free
energy.

An important effect that has to be taken into account stems
from the curved water-vapor interface of the droplet. The
curvature correction to the surface tension γ (R) is to lowest
order expressed as [45]

γ (R) = γ

(
1 − 2δT

R

)
, (3)

where γ is the surface tension of the flat interface, R the radius
of curvature, and δT the Tolman length [46].

At the same time, the contribution of the three-phase
contact line is taken into account by introducing the line
tension as the excess free energy per unit length of the
contact line. As it turns out, the assumption of a constant line
tension that is independent of the geometry of the contact
line cannot describe our results. Therefore, we postulate a
“generalized” line tension τ (θ ) that is an explicit function of
the contact angle θ at fixed thermodynamic conditions. This
concept has been introduced in various theoretical studies,
since the molecular interactions at the three-phase contact line
obviously depend on the local geometry, that is, also on the
contact angle [7,47–51].

So far, no consensus exists regarding the functional depen-
dence of τ (θ ). For this reason, we express τ (θ ) in the form of
a Taylor expansion around the macroscopic limit

τ (θ ) = τ0 + τ1(θ − θ0) + . . . . (4)

Here, τ0 is the line tension of the macroscopic drop (i.e., with
θ = θ0), which we refer to as the macroscopic line tension.
The second term represents the first-order correction to the
line tension due to the deviation of the contact angle θ from
the macroscopic value θ0. The coefficient τ1 = dτ (θ )/dθ has
been termed line tension stiffness [51] as it can be inter-
preted as a “stiffness” of the line tension against contact
angle variation at fixed thermodynamic conditions. In this
manner, τ1 is an additional parameter that, together with τ0,
characterizes the generalized line tension τ (θ ). Both τ0 and
τ1 in general depend on the surface polarity (thus on θ0) but
are by construction independent of θ . Higher-order terms in
Eq. (4) will be neglected in our analysis.

As suggested in the literature [51], the generalized line
tension can also depend on the curvature of the contact
line, hence τ (a, θ ). Analogously to the Tolman correction
in Eq. (3) for the surface tension, we expect an asymptotic
correction of the order of ∼1/a for the line tension. However,
such a correction would yield a size-independent term in the
free energy [see below, Eq. (5)] and would not contribute to
the size scaling. Only the next-leading term ∼1/a2 in τ (a, θ )
would contribute, but that already corresponds to a correction
in the free energy two orders higher than we consider in our
analysis.

Using the above assumptions, we now express the free
energy of the spherical droplet as

W = Acapγ (R) − Abase(γsv − γsw) + 2πaτ (θ ). (5)

The first term corresponds to the free energy of the water-
vapor interface, which has the shape of a spherical cap with
the surface area Acap = 2πR2(1 − cos θ ). The second term
is the free energy of the interface between the droplet’s base
and the surface, with the area Abase = πa2. The last term is
the excess free energy of the circular three-phase contact line
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of length 2πa, characterized by the line tension τ (θ ) given by
Eq. (4).

The equilibrium contact angle θ and the base radius a of
the droplet follow from the minimization of the free energy
W at fixed volume of the droplet, which is given by

V = π

3
R3(2 − 3 cos θ + cos3 θ ). (6)

The problem can be solved by using the method of Lagrange
multipliers. This requires the minimization of the function

w = W − λV (7)

with respect to θ and a, which yields the equations ∂w/∂θ =
0 and ∂w/∂a = 0. After eliminating the Lagrange multiplier
λ from both equations, we obtain the expression that relates θ

and a,

cos θ = cos θ0 − τ0

γ a
+ (2 + cos θ ) sin θ

γ a
τ1

− (θ − θ0)τ1

γ a
− 2δT

a
sin θ. (8)

Here, we have expressed γsv − γsw by the macroscopic contact
angle θ0 given by Eq. (1).

Equation (8) can be further simplified by replacing θ by θ0

in all correction terms on the right-hand side that scale as 1/a.
With this, we recover the generic form of the modified Young
equation [Eq. (2)] by defining the apparent line tension as

τapp = τ0 − τ1(2 + cos θ0) sin θ0 + 2γ δT sin θ0. (9)

This result shows that the apparent line tension is an outcome
of several effects, in particular the line tension that depends
on the contact angle [Eq. (4)]. A similar decomposition of the
apparent line tension was suggested by Schimmele et al. [51]
but based on slightly different definitions of the line tension
and its components.

Going back to Eq. (5), we see that the first two terms, which
scale with the droplet surface area (∼a2) and thus represent
the dominant contributions to the free energy, contribute to
the value of cos θ0. On the other hand, the line tension as
well as the Tolman correction [the latter being characterized
by γ (R)] contribute only linearly (∼a) and hence represent
next-to-leading contributions, which are manifested in τapp

[Eq. (9)]. Postulating even higher-order corrections to the free
energy (not included in our analysis) would result in an a-
dependent τapp. However, the MD data in Fig. 2(a) can be well
fitted by Eq. (2) with an a-independent τapp, thus we conclude
that for our droplet sizes a > 2–3 nm (1/a < 0.3–0.5 nm−1)
higher-order corrections to Eq. (5) are negligible.

Clearly, only by measuring the contact-angle dependence
on the droplet size, one cannot access the individual compo-
nents in Eq. (9), but only their sum, τapp.

Likewise, for the cylindrical morphology, the same theo-
retical framework as used in Eq. (5) (see Ref. [25] for details)
yields the following expression for the apparent line tension:

τ cyl
app = (τ1 − γ δT)

(
θ0 − sin θ0 cos θ0

θ0 cos θ0 − sin θ0

)
sin θ0. (10)

Note that τ0 does not enter this relation, since the length of the
contact line in a cylindrical droplet does not change with θ .

We now analyze the MD simulation results of both spher-
ical and cylindrical water droplets [Fig. 2(c)] in terms of
Eqs. (9) and (10), which allows us to determine the parameters
γ , δT, τ0, and τ1. As opposed to τ0 and τ1, the parameters
γ and δT depend only on the water model and not on the
surface parameters. The flat water-vapor surface tension of
the SPC/E water γ = 55 mN/m is easily accessible from a
simulation of a water slab in a vapor phase from the diagonal
pressure tensor components [25,52]. On the other hand, the
value of the Tolman length for water was debated in the
literature [53–55]. In this study, we adopt the value δT =
−0.05 nm that we obtained for the SPC/E water model in our
previous study [25]. There, δT was computed from the tensile
force of a water cylinder spanning across the simulation box
with periodic boundary conditions. This value also agrees
well with recent experimental [56] and theoretical [25,57–59]
studies. A negative Tolman length favors water cavities over
droplets, tends to flatten the droplet, and thus yields a negative
contribution to τapp in Eq. (9).

Once γ and δT are resolved, we use τ
cyl
app data for cylindrical

droplets [Fig. 2(c)] to obtain τ1 from Eq. (10). The evaluated
values of τ1 are shown by triangles in Fig. 3(a). Finally,
the remaining parameter τ0 can now be calculated from τapp

values for the spherical droplets via Eq. (9) [shown by square
symbols in Fig. 3(a)].

After all the parameters have been determined, we can now
decompose the measured τapp of the spherical droplet into the
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FIG. 3. (a) The macroscopic line tension τ0 and the line tension
stiffness τ1 [as defined in Eq. (4)]. (b) Decomposition of the apparent
line tension τapp of the spherical droplet to the three components ac-
cording to Eq. (9): the Tolman term (2γ δT sin θ0), the angle-stiffness
term [−τ1(2 + cos θ0 ) sin θ0], and the macroscopic line tension τ0.
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components defined in Eq. (9), as shown in Fig. 3(b). The
Tolman contribution [the third term in Eq. (9)] scales as
∼ sin θ0 and is therefore vanishing for very hydrophilic
and very hydrophobic surfaces. The stiffness coefficient τ1

[Fig. 3(a)] is negligible for hydrophobic surfaces, but becomes
significant on hydrophilic surfaces. The resulting stiffness
contribution to τapp [the second term in Eq. (9)] correspond-
ingly is negligible for hydrophobic surfaces, but represents
a dominant contribution for hydrophilic surfaces [triangle
symbols in Fig. 3(b)]. Finally, the macroscopic line tension,
τ0, (shown by red squares) is negative on the entire range of
surface polarities.

This analysis demonstrates that all three terms in Eq. (9)
are comparable in magnitude, which is of the order of 10 pN.
This order of magnitude has been reported also in various ex-
perimental and theoretical works [12,15,16,51,60–62] for flat
and chemically homogeneous surfaces. In fact, it corresponds
to the typical strength of intermolecular forces in water, which
can be estimated as γ d ≈ 20 pN (with d ≈ 0.3 nm being the
size of the water molecule).

The contact angles of the droplets in our simulations for
a given surface polarity differ among each other by less than
|θ − θ0| < 4◦ [cf. Fig. 2(a)]. This means that the line tension
τ (θ ) [Eq. (4)] is governed by the leading-order term, τ (θ ) �
τ0, and does not differ significantly among the droplets of
different sizes. But interestingly, the contact angle dependence
of τ (θ ), characterized by the stiffness coefficient τ1, generates
a significant contribution to the apparent line tension τapp. For
very polar surfaces (α = 0.83), the contribution due to the
stiffness becomes dominant and even engenders a positive ap-
parent line tension τapp > 0, while the line tension is negative
τ (θ ) � τ0 < 0.

IV. CONCLUSIONS

We compare all-atom simulations of nano-scale water
droplets of spherical and cylindrical morphologies on various
polar flat surfaces. In both morphologies, the contact angle
depends significantly on the droplet size and can be well
described by the modified Young equation with the apparent
line tension τapp as a fitting parameter. In order to interpret
the simulation results, we use a continuum-level description
of the droplets where we assume the contributions to the free
energy from the Tolman correction of the curved water-vapor

interface and a generalized line tension τ (θ ) that is a function
of the contact angle. The latter functional dependence we
describe by the stiffness coefficient τ1 that corresponds to the
derivative of the line tension with respect to the contact angle.

The simulation results from both morphologies enable us
to evaluate the line tension and its stiffness contribution for the
given atomistic model. We find a strictly negative line tension,
τ (θ ) ≈ τ0 < 0, for all surface polarities [Fig. 3(c)]. However,
the apparent line tension τapp can significantly deviate from
the line tension τ (θ ) and it even becomes positive on very hy-
drophilic surfaces due to a considerable stiffness component.

An important conclusion that transpires from our analysis
is that the nature of the line tension considerably influences
the contact angle and probably other wetting phenomena as
well. However, most theoretical studies do not consider the
dependence of the (generalized) line tension on the droplet
geometry, even though we demonstrate it to be crucial for
understanding of nanoscale phenomena. The concept of the
generalized line tension is expected to be particularly rele-
vant for hydrophilic surfaces, where we find a large stiffness
coefficient. On the other hand, the phenomena on non-polar
surfaces, such as the stability of air nanobubbles [62], are
expected to be less affected. The details of the line tension are
determined by surface-liquid molecular interactions, which
can be expressed also in terms of an interface potential (or
its negative derivative, the disjoining pressure) [63]. In fact,
the interface potential contains all necessary information for
evaluating the line tension of the system [64,65], which is an
interesting matter to be verified with atomistic models.

Note that in general also other effects can contribute
to the apparent line tension, stemming for instance from
surface roughness, chemical heterogeneities, and impuri-
ties [24,47,50,51,60,66,67]. The subtle nature of the line ten-
sion and ambiguities in its exact definition are a source of wide
discrepancies in its measured values, spanning over several
orders of magnitude [24,51,68]. For a proper understanding
of numerous wetting processes, it is thus of vital importance
to identify and to understand the individual components that
contribute to the nature of the three-phase contact line.
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