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Abstract 

Working memory and decision-making are two building blocks of human cogni-

tion that are involved in most goal-directed behaviors. Exposing the neural un-

derpinnings of these mental functions has been a central goal of cognitive and 

systems neuroscience. Critically, most models and theories have emerged from 

empirical findings in the visual domain, leaving open the question of whether they 

hold for other sensory domains. 

In this dissertation, I aimed at studying the neural correlates of working memory 

and decision-making during tactile information processing. In particular, I con-

ducted four fMRI studies to address the question of which brain regions represent 

the contents of working memory and perceptual choices. We found parametric 

working memory representation of vibrotactile frequencies distributed across sen-

sory, posterior parietal, and frontal cortices. This finding was also replicated in 

the visual and auditory modalities. Perceptual choices are represented in the pre-

frontal and oculomotor regions, even when decoupled from saccade plans. 

These results support the view that the loci of mental representations depend 

critically on task requirements and content types.  



 

 

Zusammenfassung 

Arbeitsgedächtnis und Entscheidungsfindung sind zwei Bausteine der mensch-

lichen Kognition, die für zielgerichtetes Handeln von Bedeutung sind. Die 

Erforschung der neuroalen Grundlagen dieser mentalen Funktionen ist ein 

zentrales Ziel der kognitiven und systemischen Neurowissenschaften. Allerdings 

ist die überwiegende Mehrheit aktueller Modelle und Theorien aus empirischen 

Befunden von visuellen Experimenten hervorgegangen. Dies lässt die Frage 

offen, ob sie auch für andere sensorische Modalitäten gelten. 

In dieser Dissertation untersuchte ich die neuronalen Korrelate von Arbeits-

gedächtnis und Entscheidungsfindung während der taktilen Informations-

verarbeitung. Ich führte vier fMRT-Studien durch, um die Frage zu beantworten, 

welche Hirnregionen den Inhalt des Arbeitsgedächtnisses und das Treffen von 

Entscheidungen repräsentieren. Im Ergebnis zeigte sich, dass eine Speicherung 

von Information über vibrotaktile Frequenzen im Arbeitsgedächtnis auf parame-

trische Weise stattfand und dieser Code über sensorische, posterior-parietale 

und frontale Kortex verteilt ist. Dieser Befund wurde auch in der visuellen und 

auditiven Modalität repliziert. Wir fanden außerdem, dass die vom Arbeits-

gedächtnis informierten Entscheidungen in präfrontalen und okulomotorischen 

Regionen repräsentiert sind, auch wenn sie von Sakkadenplänen unabhängig 

sind. 

Diese Ergebnisse unterstützen die Ansicht, dass die Loci mentaler Repräsen-

tationen kritisch von Aufgabenanforderungen und Inhaltstypen abhängen.  
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1 

 

 Introduction 

 

A defining feature of intelligence is the ability to flexibly coordinate thoughts and 

behaviors to achieve internal goals. That is, humans and animals do not just re-

flexively react to information from the environment, but carry out a sequence of 

mental operations to process the received information in order to initiate behav-

iors most beneficial for an internal goal (Miller and Cohen, 2000; Miller, 2001). 

Among a range of mental operations, working memory (WM) and decision-mak-

ing are two fundamental cognitive functions involved in most goal-directed be-

haviors. Working memory refers to the ability to mentally maintain and manipulate 

information that is not present in the immediate environment (Baddeley, 2012). 

This ability is a prerequisite for performing complex behaviors based on time-

extended goals and contextual contingencies (Wolff et al., 2015). Decision-mak-

ing, on the other hand, is a deliberative process in which a categorical judgement 

based on the available information (either in the physical environment or WM) is 

made toward a course of actions in accord with an internal goal (Gold and Shad-

len, 2007). Given their paramount importance for flexible, intelligent behavior, un-

derstanding the neural underpinnings of WM and decision-making has been a 

central goal of cognitive and systems neuroscience. 

In this dissertation, I investigate the neural correlates of WM and decision-making 

in the context of tactile information processing. Using fMRI and well-established 
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memory-guided decision-making paradigms (Romo and Salinas, 2001; 2003), I 

ask how the human brain represents the contents of WM and perceptual choices 

in particular behavioral contexts. 

In the following section of the introduction, I give an overview on some of the most 

influential concepts and key findings that have shaped our current understanding 

of WM and decision-making. In particular, I place emphasis on reviewing empiri-

cal evidence and implications derived from extracellular recordings in nonhuman 

primates (NHP) using vibrotactile frequency discrimination tasks (Romo and de 

Lafuente, 2013). This NHP work has initiated some of the greatest progress in 

elucidating the neurobiology of tactile information processing and inspired the re-

search questions of this dissertation. After the introduction I report the main re-

sults from four experiments, in which I investigated WM and perceptual choice 

representations by means of multivariate pattern analysis (MVPA) of human fMRI 

data and summarize the implications drawn from each experiment individually. In 

the last part of the dissertation I provide a broader discussion of the insights 

gained from the experiments and finish with future perspectives.  

 

1.1 The study of working memory 

The modern conceptualization of WM has been significantly influenced by two 

independent developments that date back to the 1970s. The first one was the 

landmark findings of two independent research groups (Fuster and Alexander, 

1971; Kubota and Niki, 1971) using single-unit recordings in NHPs. They identi-
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fied individual neurons in the prefrontal cortex (PFC) as exhibiting sustained ac-

tivity throughout the retention interval of a delayed response task, bridging the 

temporal gap between stimulus presentation and the subsequent contingent re-

sponse. This discovery led to the view that prefrontal sustained delay activity is 

the neural basis of WM and has made the PFC to the most investigated cortical 

region in the context of WM (Postle, 2006). The second development came from 

cognitive psychology with the introduction of the multicomponent model by Bad-

deley and Hitch in 1974. In their initial version of the model, Baddeley and Hitch 

(1974) proposed that WM is constituted by three components: a phonological 

loop and a visuospatial sketchpad as two independent storage buffers for verbal 

and visuospatial information; and a central executive, which exerts attentional 

control over individual storage systems. The idea that WM is processed by a cen-

tral executive and multiple specialized storage compartments was seminal and 

has significantly guided neuroscientists’ efforts to dissociate the neural mecha-

nisms and brain structures implementing each of these functions. 

 

1.1.1 Debate on the locus of working memory storage storage 

Converging evidence from studies using a variety of methodologies in the last 

decades has reached the consensus that the PFC is crucially involved in WM 

processes (Curtis and D’Esposito, 2003). There is, however, still a lively debate 

about its role in the maintenance function (Sreenivasan et al., 2014; D’Esposito 

and Postler, 2015; Riley and Constantinidis, 2016; Leavitt et al., 2017; Xu, 2017). 
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Corroborated by findings from her own lab that prefrontal sustained delay spiking 

activity in NHPs is selective to spatial information without being contaminated by 

sensory and motor processes (Funahashi et al., 1989), Goldman-Rakic (1991) 

posited that prefrontal sustained delay spiking activity is the physiological mani-

festation of the storage buffer in the multicomponent model (Baddeley and Hitch, 

1974; Baddeley, 2012). This proposal has proven to be enormously influential, in 

part because of the innovative idea of integrating concepts from psychological 

and neurophysiological research, which up until then, had taken place on two 

largely independent paths (Postle, 2006); and in part because the selective prop-

erty of prefrontal sustained delay spiking activity generalizes across a variety of 

information, such as color (Buschman et al., 2011); numerosity (Nieder et al., 

2002); objects and natural images (Miller et al, 1996; Meyer et al., 2011), spatial 

location (Funahashi et al., 1993; Rainer et al., 1998), tactile vibration (Romo, 

1999; Hernandez, 2010), and visual motion (Zaksas and Pasternak, 2006; Men-

doza-Halliday et al., 2014). Supported by a large body of evidence, Goldman-

Rakic’s proposal became the most prominent model of WM at that time (Postle, 

2006). 

However, there are multiple sources of empirical evidence in favor of the so-

called sensory recruitment models (Pasternak and Greenlee, 2001), which em-

phasize regions engaged in perception as the primary locus of WM storage, and 

PFC as a source of top-down executive control to support memory storage 

(Postle, 2006; Sreenivasan et al., 2014; D’Esposito and Postler, 2015). First, 

stimulus-selective sustained delay activity observed in NHPs is not a specific pre-

frontal property. In fact, it has been reported across a widely distributed brain 
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network, including the auditory (Gottlieb et al., 1989), posterior parietal (Constan-

tinidis and Steinmetz, 1996), somatosensory (Zhou and Fuster, 1996; Hernández 

et al., 2010), and visual cortices (Super et al. 2001, Van Kerkoerle et al., 2017). 

Second, prefrontal sustained activity is well-known for reflecting a variety of 

higher-order task information, such as abstract categories (Freedman, 2001) and 

task rules (Warden and Miller, 2010), which is thought to be crucial for any con-

texts requiring flexible behavior (Fuster, 1990; Miller and Cohen, 2001). This has 

given rise to the question of whether prefrontal sustained activity primarily sub-

serves a general support mechanism rather than WM storage itself. Third and 

probably the strongest argument for sensory recruitment models, human fMRI 

studies using MVPA have succeeded in decoding a variety of sensory features 

such as color (Serences, 2009), orientation (Harrison and Tong, 2009), color pat-

tern (Christophel et al., 2012), motion (Riggall and Postle, 2012), and tactile lay-

out (Schmidt et al., 2018) from activity patterns in the visual or posterior parietal 

cortices in the absence of sustained, elevated activation. However, most of the 

studies using this technique failed to extract memorized information from the PFC, 

even in the presence of an elevated activity level (Christophel et al., 2012; Riggall 

and Postle, 2012; Emrich et al., 2013). Moreover, results from two fMRI studies 

using MVPA suggest that the precision of the neuronal representation in visual 

cortex reflects the fidelity of the mental representation. In one study, Ester and 

colleagues (2013) showed that the precision of the tuning curve of fMRI voxel 

populations was predictive to the behavioral performance. In another study by 
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Emrich and colleagues (2013), a load-dependent modulation in decoding accu-

racy was highly correlated with the load-dependent modulation in behavioral per-

formance. 

Taken together, there is a great body of evidence for both Goldman-Rakic’s 

model and sensory recruitment models. Support for Goldman-Rakic’s model 

mainly originates from extracellular recordings in NHPs (reviewed in Leavitt et al., 

2017), while arguments for sensory recruitment models build primarily on evi-

dence coming from human fMRI studies using MVPA (reviewed in Lee and Baker, 

2013; Christophel et al., 2017). One should, however, be cautious in evaluating 

the evidence used to argue for one or the other view for several reasons. First, 

there might be a sampling bias regarding the recording sites in NHP studies, as 

it is not uncommon that researchers focus on neurons known for exhibiting spe-

cific response properties (Leavitt et al., 2017). Second, arguments against Gold-

Rakic’s model often rely on interpretations of negative findings in fMRI-MVPA 

studies. And lastly, because extracellular recordings and fMRI measure two to-

tally different types of signals, interpretation of contrasting findings between these 

two recording modalities may be difficult (Riley and Constantinidis, 2016; Leavitt 

et al., 2017). 

Recently, suggestions for a reconciliation of opposing findings favoring specific 

models have been made (Lee and Baker, 2013; D’Esposito and Postle, 2015; 

Christophel et al., 2017). In particular, Christophel and colleagues posit that the 

location of the stored information depends on the level of abstraction required for 
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the task or the strategies used. For instance, Lee et al. (2013) reported in a hu-

man fMRI study that object identity could be decoded from visual, but not PFC if 

subjects were asked to memorize visual properties of the objects, while a re-

versed pattern is found when subjects have to memorize the categories of the 

objects. These findings suggest that WM storage sites for the same stimulus may 

vary as a function of the required level of abstractness. When low-level sensory 

details are required, information tends to be represented in the hierarchically 

lower regions in the posterior area. When the stimulus need to be memorized as 

an abstract feature, it tends to be represented in higher association areas. 

 

1.1.2 Empirical evidence for vibrotactile working memory 

WM in the tactile domain has been extensively studied with the vibrotactile dis-

crimination task, which was first introduced by Mountcastle and colleagues (1972, 

1990). In the standard version of this task, the subject receives two vibratory stim-

ulation, separated by a short retention interval, on their fingertip and indicates 

whether the frequency of the second vibration (f2) is higher or lower than the 

frequency of the first vibration (f1). This task is extremely versatile as it allows 

investigators to examine multiple cognitive operations: 1) encoding the first stim-

ulus and extracting the relevant feature, 2) maintaining the feature in WM, 3) en-

coding the second stimulus and extracting the relevant feature, 4) comparing the 

feature of the second stimulus with the memory trace left by the first, and 5) com-

municating the outcome of comparison to the motor apparatus in order to produce 

an appropriate behavior (Romo and Salinas, 2001; Fassihi et al., 2013). This task 
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is often referred to as the parametric WM task as it requires the maintenance of 

a scalar analog value (frequency of the vibration) and an ordinal comparison with 

a second scalar analog value (Romo et al., 1999). This section mainly focuses 

on reviewing findings related to the WM component of this task, while a more 

detailed review of other components of the task can be found in section 1.2.3. 

 

Extracellular recordings in nonhuman primates   

The starting point of vibrotactile WM research dates back to 1999 with seminal 

work by Romo and colleagues, which showed that the firing rates of individual 

right PFC neurons in NHPs were parametrically modulated by the memorized 

frequencies throughout the entire retention interval, with different neuron popula-

tions either positively or negatively tuned to the frequencies maintained in WM. 

This work is remarkable because in addition to the finding of stimulus-specific 

modulation of prefrontal neurons, it also characterizes the parametric nature of 

the WM representation, which is directly linked to the stimulus attributes. This 

finding was subsequently replicated in a series of studies (Brody et al., 2003; 

Machens et al., 2005; 2010; Barak et al; 2010; Hernandez et al., 2010; Jun et al., 

2010). The PFC was not the only brain structure showing such parametric repre-

sentations of frequencies. As revealed by multiple studies, neurons in the premo-

tor structures, including the dorsal premotor cortex (PMd), the ventral premotor 

cortex (PMv), and the supplementary motor area (SMA), as well as neurons in 

the secondary somatosensory cortex (S2) responded in a similar manner (Sa-
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linas et al., 2000; Romo et al., 2002). However, about 60% of the premotor neu-

rons exhibited frequency-selective responses only at the late stage of the reten-

tion interval (Romo and de Lafuente, 2013). 

Notably, modulatory effects of frequencies were already observable during the 

stimulus presentation period in all the reported regions. This indicates that pre-

frontal and premotor cortices are, along with somatosensory cortices, involved in 

sensory processing. However, it is not clear what functions these frontal sensory 

representations might take. In contrast, frequency-selective responses of neu-

rons in the primary somatosensory cortex (S1) were only evident during the stim-

ulus presentation, but absent in the retention interval (Salinas et al., 2000; Romo 

et al., 2004; Hernández et al., 2010; Lemus et al., 2010). 

Taken together, extracellular recordings in NHPs showed that frequencies held 

in WM are represented throughout the cortical hierarchy. Frequency-selective de-

lay activity in S2 was only observable at the early stage of the retention interval, 

while prefrontal frequency-selective delay activity persisted across the entire re-

tention interval. Finally, frequency-selective delay activity in premotor structures 

was most conspicuous at the late stage of the retention. These findings generally 

support the notion proposed by Goldman-Rakic (1991) that PFC is the primary 

WM storage. However, they do not necessarily undermine sensory recruitment 

models (Pasternak and Greenlee, 2001) as several regions involved in sensory 

processing were also found to carry information during the retention interval.  
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Non-invasive studies in humans 

The initial vibrotactile WM study in humans was carried out with TMS, in which 

impulses were delivered to S1 at different stages of the retention interval of a 

vibrotactile discrimination task (Harris et al., 2002). These authors showed that 

behavioral performance decreases significantly when TMS is applied to S1 con-

tralateral to the stimulus in the early part of the retention interval, and concluded 

from this finding that the memory trace resides in the contralateral S1. They ar-

gued that the disagreement with the findings referenced above of S1 neurons not 

engaged in WM maintenance might arise from the difference in the amount of 

training between NHP and human subjects. Note, however, that this TMS study 

did not investigate any cortical regions outside S1. 

The first evidence for parametric WM coding of vibrotactile frequencies in humans 

comes from EEG experiments (Spitzer et al., 2010; Spitzer and Blankenburg, 

2011). Analogous to the extracellular recordings referenced above, these authors 

observed parametric modulation of upper beta band power (20-25 Hz) as a func-

tion of the memorized frequency. Moreover, the right inferior frontal gyrus (IFG) 

in the PFC has consistently been identified as the most likely source of such a 

content-specific modulation, even with increased spatial acuity using MEG (von 

Lautz et al., 2017). However, prefrontal beta band power modulation does not 

persist throughout the entire retention interval and might reflect short beta bursts 

rather sustained activity (Stokes, 2015; Lundqvist et al., 2016). Moreover, beta 

band temporal dynamics seem to depend on task demands (Spitzer and Haegens, 

2017). That is, prefrontal beta power modulations tend to occur at a relatively late 
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stage of the retention interval when the memorized information needs only to be 

(re)activated for the preparation of an upcoming comparison (Spitzer et al., 2010). 

On the other hand, when subjects need to prioritize one of the many previously 

presented frequencies for further maintenance, prefrontal beta activity modula-

tions tend to take place at the early stage of the retention interval (Spitzer and 

Blankenburg, 2011). Thus, the parametric modulation of beta power oscillations 

might subserve a different function than that of the sustained parametric WM 

codes observed in NHPs (see Spitzer and Haegens, 2017 for a review of beta 

oscillation functions). 

There are only few fMRI studies focusing on the exploration of brain regions in-

volved in vibrotactile WM processes (Preuschhof et al., 2006; Kostopoulos et al., 

2007; Li Hegner et al., 2010; Spitzer et al., 2014). In line with neurophysiological 

data derived from NHPs, these studies consistently found sustained, elevated 

BOLD delay activity in the ventrolateral PFC (vlPFC), premotor cortices, or S2, 

suggesting the engagement of a similar cortical network between NHPs and hu-

mans. In addition, results of human fMRI studies also indicate intraparietal lobule 

(IPL) and intraparietal sulcus (IPS), as a part of the vibrotactile WM network 

(Preuschhof et al., 2006; Kostopoulos et al., 2007; Li Hegner et al., 2010). Note, 

however, that all the fMRI studies referenced above used univariate activation-

based analyses and, therefore do not provide information on whether the sus-

tained delay activity in the identified regions is content-specific. Thus, it is not 

clear whether the contrasting results between species typically observed in other 

domains will also apply in the vibrotactile domain. 
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Domain-general parametric WM coding 

Evidence from NHP and human studies broadly suggest that vibrotactile fre-

quency information held in WM is primarily reflected by the parametric modulation 

of prefrontal neuronal firing rates. However, it is also conceivable that such a 

parametric WM code is not specific to vibrotactile information, but is a general 

mechanism for the maintenance of scalar quantity information from a range of 

sensory modalities. To test this idea, Spitzer and Blankenburg (2012) asked par-

ticipants to perform a discrimination task which required the maintenance of fre-

quencies of auditory, tactile, or visual flutter during EEG recordings. As well as 

replicating of previous findings of parametric modulations of prefrontal beta activ-

ity as a function of the vibrotactile frequencies, they were also able to show similar 

effects across sensory modalities. Likewise, Vergara et al. (2015) demonstrated 

that pre-SMA neurons use analogous parametric code in firing rates to represent 

memorized frequencies, regardless of whether they were extracted from touch or 

audition. These results indicate that at least some aspects of parametric WM are 

represented in an abstract, supramodal scalar format (Spitzer and Haegens, 

2017), providing important empirical support for the notion that emphasizes levels 

of abstraction as one of the fundamental principles for the topographic organiza-

tion of WM storage (Christophel et al., 2017). 
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1.2 The study of perceptual decision-making 

Perceptual decision-making is a process in which sensory information is gathered 

and used to make a categorical judgement. To understand the neural underpin-

ning of this process, neuroscientific research on perceptual decision-making has 

typically focused on questions like how choice-relevant sensory information is 

represented or how decisions are computed from these representations (Gold 

and Heekeren, 2014). Much of the progress has been achieved by the application 

of approaches from statistical decision theory, such as signal detection theory or 

sequential sampling models, to neural data (Gold and Shadlen, 2007; O’Connell 

et al., 2017). These approaches have provided a set of methodological and the-

oretical principles for many studies and are seminal in shaping the current under-

standing of perceptual decision-making. Below I illustrate briefly how these 

frameworks are used to identify neural signals that support the generation of per-

ceptual choices. 

 

1.2.1 Signal detection theory 

Signal detection theory (SDT) was developed to provide a mechanistic account 

of the detection of weak sensory signals (Green and Swets, 1966; Macmillan and 

Creelman, 2004). The basic idea is that perceptual performance not only depends 

on the sensitivity of the decision-maker but also on how the decision-maker uses 

the perceived information to reach a decision. 
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In SDT, the decision-maker infers the identity of a stimulus (h1 vs h2) from sensory 

information, which is represented by the neural responses elicited by experi-

mental manipulations (typically measured in quantities like the spike count of a 

single neuron or a pool of neurons). These neural responses constitute a sample 

of evidence, which is corrupted by internal and external noises. Thus, the evi-

dence can be described as a random variable from a distribution with parameters 

(e.g. the mean, dispersion) set by h1 or h2. To solve this inference problem, the 

decision-maker evaluates the likelihood of the evidence being drawn from distri-

butions underlying h1 and h2, and computes the ratio of the two likelihoods: p(ev-

idence | h1) / p(evidence | h2). The decision-maker then applies a criterion to the 

likelihood ratio to reach a choice, such as choose h1, if the likelihood ratio is ≥ 1. 

Using this framework, it is possible to determine whether and to which extent 

responses of individual neurons are sensitive to stimulus identities. More im-

portantly, it also enables investigators to infer quantitative relationships between 

responses of individual neurons and the subject’s choice behavior (Parker and 

Newsome, 1998). 

Successful applications of SDT can, for instance, be found in a number of exper-

iments in which the extent to which motion-selective neurons in the medial tem-

poral area (MT) support NHPs’ percept in a random dot-motion (RDM) task was 

investigated (Newsome et al., 1989; Salzman et al., 1990; Britten et al., 1992; 

1996). In this task, the subject observes a cloud of moving dots, with a certain 

proportion of dots moving coherently in one of two opposite directions, while the 

remaining dots meander randomly. The subject judges the direction of the coher-

ently moving dots by making a saccade to one of two targets. The amount of 
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sensory evidence favoring a particular motion direction is controlled by the exper-

imenters by varying the proportion of dots moving coherently. 

Strikingly, the sensitivity of optimally tuned MT neurons is on average as high as 

that of the NHPs themselves (Newsome et al., 1989; 1992). This has been inter-

preted as supporting MT neurons’ contribution to perceptual discrimination. This 

view is further strengthened by a study demonstrating that microstimulation of 

neurons tuned to a given motion direction systematically increased the probability 

that NHPs will choose that same direction (Salzman et al., 1990), indicating that 

the choice behavior may be causally linked to the responses of individual MT 

neurons. Moreover, Britten et al. (1996) showed that the trial-by-trial variability in 

the firing rates of individual MT neurons was subtly but reliably correlated with 

NHPs’ choices. These results suggest that MT activity represents sensory infor-

mation used by the NHPs to perform the task. However, the relatively low corre-

lation between the activity of single neurons and NHPs’ choices also indicates 

that a direct read-out of information from single neurons might not be sufficient to 

account for NHPs’ performance. This led to the proposal that perceptual deci-

sions might be based on information integrated from neuron populations with op-

posite tuned properties for motion directions (Shadlen et al., 1996; Shadlen and 

Newsome, 1998; Gold and Shadlen, 2001). 

Taken together, using analytical tools based on the SDT framework, Newsome 

and colleagues have established the link between the activity of MT neurons and 

behavioral choice, and significantly facilitated our understanding of perceptual 

decision-making. As I will elaborate later, SDT-based approaches have also been 
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successful in describing the relationship between behavioral choice and the ac-

tivity of sensory neurons in the somatosensory system (Romo and Salinas, 2003). 

 

1.2.2 Sequential-sampling models 

Sequential sampling models can be regarded as a dynamic extension of SDT, 

which also takes into account a key variable in many decision-making situations, 

time (Ratcliff, 1978; Wagenmakers et al., 2007). In contrast to SDT, which typi-

cally assumes that decisions are formed based on a single sample of evidence, 

the essence of sequential sampling models is that decisions are formed by re-

peatedly sampling, accumulating evidence, and withholding commitment over 

time until a criterion amount of evidence favoring one of the choices is obtained 

(Ratcliff and Smith, 2004; O’Connell et al, 2017). The main component of sequen-

tial sampling models for a decision process are the rate of accumulation and the 

decision criterion (Ratcliff et al., 2016). A low accumulation rate indicates poor 

quality of information and results in longer response latencies and more errors 

than if the accumulation rate is high. A low decision criterion, on the other hand, 

implies that the decision is made based on little accumulated evidence, facilitating 

fast decisions at the cost of a higher error rate. Sequential-sampling models were 

developed under the premise that accumulating multiple samples of evidence will 

improve the reliability and minimize the effects of noises (Smith and Ratcliff, 

2004). This concept is closely related to the sequential probability ratio test 

(SPRT), a mathematical procedure for obtaining a given rate of accuracy with 

minimum amount of evidence (Wald, 1945). In fact, if samples are independent, 
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some sequential sampling models are statistically equivalent to SPRT and can 

be viewed as models that accumulate a log likelihood ratio derived from every 

sample of evidence in time until a stopping point (Gold and Shadlen, 2001; 2007; 

Radcliff et al., 2016). 

Models within this framework may differ in their assumptions about how evidence 

is accumulated (cf. Smith and Ratcliff, 2004; Ratcliff et al., 2016). For instance, 

random walk or diffusion models employ relative evidence criteria, meaning that 

evidence in favor of one choice alternative is evidence against the other alterna-

tive. In contrast, accumulator models use absolute evidence criteria. That is, ev-

idence favoring each of the two alternatives is accumulated separately. The de-

cision is determined by the first accumulator to reach it is respective bound (Usher 

and McClelland, 2001).  

Sequential-sampling models have become extremely popular in various research 

fields because they provide a straightforward, quantitatively precise way to ac-

count for speed and accuracy in behavioral tasks in various contexts (Smith and 

Ratcliff, 2004). Furthermore, there is also a great body of evidence concerning 

how and where evidence accumulation is implemented in the brain. 

The earliest evidence comes from studies using RDM tasks: After having estab-

lished MT neurons role as the “sensors” for visual motion directions, Newsome 

and colleagues shifted their focus to identifying brain regions that integrate infor-

mation over space and time (Shadlen et al., 1998). Given that decisions in their 

task were conceptualized as a problem of action selection (choice favoring a 

rightward motion direction is the same as choosing a rightward saccade and vice 
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versa), they focused on regions implicated in the selection and preparation of eye 

movements, such as the lateral intraparietal area (LIP), frontal eye fields (FEF), 

and superior colliculus (SC). 

This approach has turned out to be very successful. Schadlen and Newsome 

(1998; 2001) observed a gradual increase in LIP firing rates during the stimulus 

presentation, when sensory evidence favored a saccade toward the target inside 

a neuron’s receptive field. When the target outside the receptive field was pre-

ferred, they observed a leveling-off or a slight decrease in the neuron’s activity. 

Importantly, this ramp-like activity is thought to reflect more than the usual motor 

build-up signals during saccade preparation (Wurtz et al., 2001), because it pos-

sesses unique characteristics which are consistent with what one would expect 

from evidence accumulation. First, the rate of the ramp activity scales with the 

coherence level of the moving dots (Shadlen and Newsome, 1996; 2001). Sec-

ond, when allowing subjects to report their decisions as soon as possible, the 

ramp activity reaches a common peak level shortly before saccade initiation in-

dependently of the degree of motion coherence (Roitman and Shadlen, 2002), 

supporting the idea that evidence accumulation terminates after reaching a crite-

rion. Third, quantitative models suggest that the average firing rate in LIP approx-

imates the temporal integral of differential activities of MT neurons with distinct 

motion direction preferences (Mazurek, 2003), corroborating the idea that sen-

sory evidence is integrated across different pools of MT neurons (Shadlen and 

Newsome, 1996; Shadlen et al., 1998). Similar findings have also been reported 

in other oculomotor regions, such as the FEF (e.g., Hanes and Schall, 1996; Kim 
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and Shadlen, 1999; Ding and Gold, 2012) and the SC (e.g., Horwitz and New-

some, 1999; Ratcliff et al., 2003). 

In sum, the results referenced above make a strong case for oculomotor regions’ 

involvement in representing evidence accumulation underlying perceptual deci-

sions. These findings have given rise to the view that decisions are formed in an 

intentional framework, that is, directly in effector-specific motor planning signals 

(Gold and Shadlen, 2007; Cisek and Kalaska, 2010). Moreover, these findings 

have paved the way for an extremely fruitful marriage between neurophysiology 

and quantitative modeling in decision-making research and made sequential-

sampling models the most important theoretical framework for generating and 

testing tractable hypotheses about the neural computation for a variety of types 

of decisions across species (Hanks and Summerfield, 2016). 

However, some recent findings have cast doubts on LIP and other oculomotor 

regions’ role in decision formation in tasks with saccadic responses. These stud-

ies showed that LIP activity during the decision phase was multiplexed with infor-

mation of a range of sensory, task, and motor-related variables (Bennur and Gold, 

2011; Meister et al., 2013; Park et al., 2014), leading to the hypothesis that LIP 

may only exhibit ramp-like activity mirroring evidence accumulation when heter-

ogeneous responses are averaged together (Meister et al., 2013; Park et al., 

2014; see also Hanks and Summerfield, 2015). Moreover, the idea that decisions 

are directly formed in the effector-specific circuit may only apply to contexts in 

which the perceptual choice is rigidly mapped to a particular action. Results from 
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human neuroimaging suggest the presence of a domain-general evidence accu-

mulation mechanism in prefrontal and parietal regions (e.g. Heekeren et al., 2006; 

Ho et al., 2009; O’Connell et al., 2012; see Heekeren et al., 2008; Kelly and 

O’Connell, 2015 for comprehensive reviews). In addition, evidence accumulation 

over time is likely only one of many ways to account for the neural signals ob-

served during the decision phase. Likewise, it is well conceivable that there are 

situations, in which evidence accumulation over time is not required for reaching 

a choice. 

 

1.2.3 Empirical evidence from vibrotactile frequency discriminations 

Aside from the RDM tasks which require subjects to make perceptual judgements 

of a single visual stimulus, another very popular approach to studying decision 

processes is the vibrotactile frequency discrimination task (Mountcastle et al. 

1972). As introduced in the previous section, this task requires subjects to com-

pare the frequencies of two sequentially presented vibrotactile stimuli and indi-

cate whether the frequency of the second stimulus (f2) is higher or lower than the 

frequency of the first (f1), typically with a manual response. In other words, sub-

jects decide between f2 < f1 or f2 > f1. One intriguing feature of this task is that 

the decision is based on the evaluation of a stimulus in comparison to a percept 

held in WM. In the previous section I reviewed empirical evidence for brain activity 

representing frequency-specific information held in WM. Here I continue with find-

ings from NHP and human studies that have shed light on how such memory-

guided decisions may be implemented in the brain. 
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Extracellular recordings in nonhuman primates 

Single-unit recordings in the S1 contralateral to the stimulus have shown that 

vibrotactile frequencies during the discrimination task are encoded by the rapidly 

adapting neurons in Brodmann area 3b and 1 with two different coding schemes 

(Mountcastle, 1990; Salinas et al., 2000; Hernández, 2002; 2010; Lemus et al., 

2010). One sub-population of S1 neurons responds periodically, phase-locked to 

stimulus frequencies (temporal code), whereas a second sub-population encodes 

stimulus frequencies by means of a rate code, meaning that the average firing 

rates increases monotonically with increasing frequency. Results from SDT-

based analyses indicate that NHPs’ behavioral performance is better explained 

by S1 neurons exhibiting a rate code (Hernández et al., 2000; Salinas et al., 2000). 

For instance, the discriminability of neurons employing a rate code closely 

matched behavioral sensitivity. Neurons employing a temporal code, on the other 

hand, discriminated vibrotactile frequencies significantly better than the NHPs 

themselves did, suggesting that NHPs do not exploit the temporal information to 

solve the task. Likewise, behavioral choice could be better predicted by the aver-

age firing rates than the periodic spike activities. These findings have led to the 

conclusion that the average firing rates represent the sensory evidence used to 

perform this task (Romo and Salinas, 2003; Romo and de Lafuente, 2013). 

Neurons in a number of downstream regions to S1, including S2, PFC, PMv, PMd, 

and SMA, have also been observed to represent stimulus frequencies with a rate 

code (Romo et al., 1999; 2004; Hernández, 2002; 2010; Barak et al., 2010; Jun 

et al., 2010), with the shortest response latency in S1, followed by S2, then by 
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PFC and PMv, and finally by PMd and SMA (Hernández et al., 2010). In contrast, 

the temporal code is absent in these downstream regions. In addition, firing rates 

of about a half of the S2 and frontal neurons (PFC, PMv, PMd, and SMA) are 

positively modulated by the stimulus frequency, whilst the other half show an op-

posite preference and are negatively modulated by the stimulus frequency. f1 

appears to be encoded by such a dual code in S2 and frontal neurons at multiple 

stages of the task, including the f1 presentation, during the retention interval, in 

which NHPs had to maintain their percept of f1 in WM (please see section 1.1.2 

for more details), and f2 presentation. Neurons in S1, on the other hand, encodes 

f1 exclusively with a positive rate code during f1 presentation (e.g. Hernández et 

al., 2000; 2010; Lemus et al., 2010). 

The core of the discrimination task – the comparison between f1 and f2 – takes 

place during the presentation of f2. At the early stage of this period, the activity 

of individual neurons in S2, PFC, PMv, PMd, and SMA are either modulated by 

f2 or by f1, presented few seconds before (Romo et al., 2002; 2004; Hernández 

et al., 2002; 2010; Jun et al., 2010). Over the course of f2 presentation, however, 

the activity of these neurons starts to reflect the choice made by the subjects, 

namely f2 < f1 or f2 > f1. Moreover, Romo and colleagues (Romo et al., 2002; 

2003; 2004; Hernández et al., 2002; 2010) showed that firing rates to choices 

scale with the difference between the activities of neuron populations that encode 

f1 and f2 with opposite tuning properties (positive vs negative), with premotor 

cortices exhibiting the strongest effect. This indicates that decisions are formed 

by a subtraction operation of f2 – f1 in these regions and the sign resulting from 
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this subtraction operation reflects the choice (Romo and de Lafuente, 2013). In-

terestingly, in the context of RDM tasks, a similar mechanism has also been sug-

gested to read out activities from different neuron populations (Gold and Shadlen, 

2002), hinting at a general principle for neural coding. 

Contrary to other regions, S1 neurons have only been reported to encode f1 and 

f2 during stimulus periods. Thus, it is unlikely that S1 is involved in the decision 

formation. Notably, choice signals are also found in the primary motor cortex (M1) 

during f2 presentation (Romo et al., 2002), however, with a longer response la-

tency than all other regions. This has led to the suggestion that M1 may be in-

volved in converting of the result of the comparison process elaborated in other 

brain regions into the final motor response (Salinas and Romo, 1998). 

Premotor cortices’ involvement in the comparison process is further corroborated 

by a recent study investigating oscillatory dynamics of local field potentials in 

NHPs. Haegens and colleagues (2011) revealed that the beta band power in the 

LFPs recorded from PMd and SMA are categorically modulated by the choices, 

suggesting that the comparison process is also supported by neural dynamics at 

a larger scale. 

The findings of premotor structures exhibiting signals that reflect the comparison 

between f1 and f2 aligns well with the idea of an intentional framework from the 

RDM context, positing that decisions are formed in regions involved in action se-

lection. However, because perceptual choice in these studies was directly 

mapped to a particular manual response, there remains the question of whether 
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the observed decision signal was rather related to the motor preparation than to 

decision formation per se. 

 

Non-invasive human studies 

The number of human studies of the vibrotactile decision-making is rather small. 

The initial attempts to elucidate the mechanisms of human vibrotactile decisions 

were carried out with fMRI. Preuschhof et al. (2006) reported a broad brain net-

work including prefrontal, posterior parietal and sensorimotor regions showing 

elevated BOLD activity during the comparison period. Moreover, Pleger et al 

(2006) revealed that BOLD signals in the left dorsal lateral PFC (dlPFC), anterior 

cingulate gyrus, and insula scale with task difficulties. These findings are broadly 

consistent with fMRI findings from the visual domain which implicate the left 

dlPFC (Heekeren et al., 2004; 2006), IFG (Liu and Pleskac, 2011; Filimon et al., 

2013) and insula (Ho et al., 2009; Liu and Pleskac, 2011) in the temporal integra-

tion of sensory evidence, irrespective of the response modality. However, due to 

the sluggish nature of the BOLD signal, it can be difficult to interpret what com-

ponents of decision formation the observed elevated activities reflect (see Mulder 

et al., 2014).  

Only recently, the field has started to study human vibrotactile decisions by 

means of EEG. In line with the study focusing on LFP oscillatory activities in NHPs 

(Haegens et al., 2011), Herding and colleagues revealed that the differential 

power of upper beta band oscillation reflects subjects’ perceptual choices, with 

the SMA as the most likely source for manual responses (2016) and the FEF for 
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saccadic responses (2017). Note, however, analogous to the above-mentioned 

studies using NHPs, the perceptual choice in these EEG studies was also imple-

mented as a choice between two alternative manual responses. Thus, it remains 

unclear whether the effector-specific premotor regions would still encode percep-

tual choice under conditions in which choice and action selection are dissociated 

from each other.  

1.3 Aims of the thesis 

To date, a large part of our knowledge of the neural mechanisms underlying work-

ing memory and decision-making in the tactile domain comes from the extraordi-

nary body of NHP research by Romo and colleagues (reviewed in Romo and de 

Lafuente, 2013). In spite of a steady growth in the number of human studies re-

cently, the body of human literature is still sparse. Hence, the primary goal of this 

thesis is to investigate the neural correlates of tactile WM and decision-making in 

the human brain. 

In particular, together with my colleagues, I used fMRI and MVPA to address two 

current questions in the literature: First, motivated by the recent controversy over 

the primary storage location of WM, we sought to directly test for brain regions 

that represent the frequency of vibrotactile stimulation held in WM. To get more 

in-depth insights into the nature of the WM representation, we also probed for 

brain regions showing selective activity to the frequencies of visual and auditory 

stimulation during the retention interval. Second, I aimed to investigate the rep-

resentation of perceptual choices when choices are independent of action selec-

tion. 
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Compared to extracellular recordings in NHPs and human EEG, methods fre-

quently used in earlier related studies, the fMRI MVPA approach has the crucial 

advantage of providing a system-level perspective over the entire network en-

gaged in the representation of information. Thus, the use of this approach will not 

only bridge the gap between human and NHP research, but also complement 

and extend previous findings. 
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 Summary of the experiments 

 

In the following I summarize the four empirical studies presented in this disserta-

tion. For each of them, we employed a frequency discrimination task that was 

specifically adapted to the particular research questions in the given study. The 

essence of the task remains the same across all four studies. Moreover, all stim-

ulus frequencies used in these studies lay well within the flutter range between 5 

and 50 Hz (Romo and Salinas, 2003). Three published papers and one manu-

script under review are attached. 

 

2.1 Study 1: Parametric vibrotactile working memory representation 

in frontal regions 

As reviewed in the introduction, evidence from single-unit recordings in NHPs 

and human EEG suggests that vibrotactile frequencies held in WM are repre-

sented by a parametric code in the right lateral PFC (Romo et al., 1999; Spitzer 

et al., 2010). These findings are well in line with a large body of NHP work across 

different sensory domains and corroborate an influential WM framework propos-

ing a leading role of PFC in the coding of memorized contents (Goldman-Rakic, 

1991). Recently, this view has been seriously challenged by findings from multi-

ple human fMRI studies using MVPA, predominantly from the visual domain, 

showing that memorized sensory features could be decoded from the activity in 
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sensory cortices, but not from the PFC (reviewed in Sreenvasan et al., 2014). 

These fMRI-MVPA findings in humans conflict with a large body of evidence from 

NHP research and favor the idea that WM contents are represented in the sen-

sory cortices. In the vibrotactile domain however, existing fMRI studies using uni-

variate analysis were restricted to investigating which brain regions are activated 

during the retention interval. Direct evidence from human fMRI data for brain re-

gions representing the memorized vibrotactile frequencies was still missing. 

In this study, we sought to bridge the gap between NHP and human research. To 

this end, we recorded fMRI data from 24 participants while they performed a var-

iant of the vibrotactile frequency discrimination task. In this version of the task, 

two sample frequencies were presented in a random order to subjects, followed 

by a visual retro-cue instructing which of the two frequencies had to be memo-

rized. After a 12 s retention interval, subjects performed a two-alternative forced 

choice task to indicate which of the two probe frequencies was identical to the 

memorized sample. The use of the retro-cue enabled the dissociation of WM-

related activity from stimulus-driven signals (Harrison and Tong, 2009). 

We used multivariate decoding techniques to identify brain regions that exhibit 

frequency-selective activity patterns during the 12 s retention interval. While most 

existing MVPA studies employed classification algorithms such as linear discri-

minants or a support vector machine, we applied support vector regression (SVR) 

to decode the memorized frequencies. It was of particular relevance because it 

treated the memorized frequencies as a continuous rather than a categorical var-

iable, and thus allowed us to assess whether locally distributed activity patterns 
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reflect the parametric change in the memorized frequencies (Kahnt et al., 2011). 

Moreover, we employed a searchlight protocol, which enabled the detection of 

parametric WM representations across the whole brain without a priori assump-

tions about where to expect them (Kriegeskorte et al., 2006). 

Our findings suggest that frontal regions including the bilateral premotor cortices, 

SMA and, the right IFG represent the memorized frequencies in a parametric 

fashion. Strikingly, these regions overlap highly with those reported in the single-

cell recordings in NHPs reviewed above (e.g. Romo et al., 1999, Hernández et 

al., 2010). Thus, our results establish a direct link between the parametric WM 

codes found in NHPs and humans and highlight the pivotal role of the human 

PFC in information storage during WM. Contrary to many previous fMRI-MVPA 

studies, we did not find content-specific information in the sensory cortical region 

(e.g. Christophel et al., 2012; Riggall and Postle, 2012; Emrich et al., 2013; 

Schmidt et al., 2018). The difference in results is likely due to the different re-

quirements across tasks: while most of the previous studies required the mainte-

nance of low-level sensory information, our study emphasized the retention of 

scalar quantity information rather than the sensory details of the to-be-memorized 

stimuli. This interpretation is well in line with a recent account of topographic or-

ganization of WM storage (Christophel et al., 2017), proposing that sensory cor-

tices encode the memorized information in a low-level sensory format, while 

higher association cortices encode it in a more abstract format. 
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2.2 Study 2: Overlapping frontoparietal networks for tactile and visual 

parametric working memory 

In study 1 we showed that parametric WM representations in the PFC reflect the 

maintenance of scalar quantity rather than the sensory qualities of vibrotactile 

stimulation. One way to further test and extend this finding is to investigate 

whether the PFC represents memorized frequencies regardless of the sensory 

modality used for the stimulus presentation and the generalizability of such a WM 

representation across sensory modalities. 

We asked 20 subjects to perform a cross-modal retro-cue discrimination task with 

vibrotactile and visual flicker stimulation, while lying in an fMRI scanner. At the 

start of each trial, tactile and visual samples with different frequencies were pre-

sented simultaneously. A retro-cue instructed subjects to either maintain the tac-

tile or the visual frequency, followed by a visuo-tactile mask. After a 6 s retention 

interval, either a visual or a tactile probe frequency was delivered and participants 

had to judge whether its frequency was lower or higher than the memorized one. 

The sensory modality of the probes was independent of the sample stimulus, so 

that subjects could not anticipate whether the impending comparison would be 

within or across sensory modalities. We applied the analogous searchlight proto-

col with SVR as used in study 1 to explore (i) which brain regions represent mem-

orized frequencies of both the vibrotactile and the visual flicker and (ii) whether 

mnemonic representations of tactile and visual frequencies rely on a supramodal 

WM code. Based on the findings from study 1 and previous electrophysiological 

recordings in humans and NHPs (Spitzer and Blankenburg, 2012; Vergara et al., 
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2015), we expected to observe such a supramodal WM code in the right IFG 

and/or preSMA.  

We were able to replicate our previous findings from study 1 of vibrotactile para-

metric WM representations in the PFC and premotor cortices (Schmidt et al., 

2017). Moreover, parametric WM representations were evident in several poste-

rior parietal regions including IPL and IPS. When applying the same analysis to 

visual WM conditions, we observed a highly similar pattern of informative brain 

regions in frontoparietal cortices with overlaps in the right IFG, preSMA, and IPL, 

suggesting that the parametric WM coding property of the frontoparietal regions 

goes beyond a specific sensory modality. Interestingly, contrary to the first study, 

we also found that somatosensory and visual cortices carried information about 

the memorized frequencies from their principal sensory modalities. The additional 

recruitment of sensory cortices may result from the higher demand of a cross-

modal task compared to a unimodal task. In a further step, we used cross-classi-

fication to test whether tactile and visual WM representations rely on a su-

pramodal code. That is, SVRs were trained with data from one sensory modality 

and tested on how well they were able to predict the data from the other modality. 

An above-chance prediction accuracy at a given brain region would indicate that 

this region used a similar multivariate code to represent tactile and visual memo-

randa. However, we did not find empirical support for such a modality-independ-

ent WM code. This was somewhat surprising as the overlapping frontal regions 

comprised exactly those regions which have been implicated in processing mem-

orized frequencies in a supramodal fashion (Spitzer and Blankenburg, 2012; Ver-
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gara et al., 2015). One possible reason for the absence of evidence for a su-

pramodal multivariate code may be the limited sensitivity of fMRI to information 

that is represented at a high level of granularity (Dubois et al., 2015).  

In sum, the results suggest that tactile and visual parametric WM representations 

are distributed throughout the cortical hierarchy. We identified a common fron-

toparietal network that represents memorized frequencies regardless of whether 

the information is derived from touch or vision, while sensory cortices carry only 

information that is provided by their principal sensory modalities. Despite the lack 

of evidence for a supramodal multivariate code, our findings underpin the general 

role of frontoparietal cortex in maintaining quantitative information across sensory 

modalities. 

 

2.3 Study 3: Parametric working memory representation for auditory 

flutter stimulation  

To further elucidate the modality-independent and modality-specific aspects of 

the mnemonic representation of frequencies, we extended our investigations to 

the auditory domain. Except the auditory flutter stimulation, we kept the experi-

mental design, analysis strategies, and sample size in this study identical to those 

in study 1 in order to make a valid comparison between the results from both 

studies. 

Similar to study 2, we reported multiple frontoparietal regions as carrying fre-

quency-specific information during the retention interval. Furthermore, we also 
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observed frequency-selective activity patterns in the bilateral posterior superior 

temporal gyrus, which constitutes the auditory belt areas. A conjunction analysis 

including the data of study 1 revealed overlapping regions in premotor structures 

and the right IFG. The finding of the right IFG and the premotor structures as 

exhibiting frequency-selective activity patterns is not only consistent across stud-

ies 1 – 3, but also in remarkable agreement with the previous related NHP work, 

underscoring the key contributions of these regions in representing frequencies 

held in WM. 

 

2.4 Study 4: Decoding vibrotactile choice independent of sensory 

and motor task components   

In study 4, we shifted our focus from the representation of parametric WM to the 

representation of perceptual choice in the context of frequency discrimination 

tasks. Converging evidence from previous extracellular recordings in NHPs and 

EEG in humans suggest that perceptual choice is encoded a sensorimotor net-

work including S2, PFC and premotor structures (Haegens, 2011; Herding et al., 

2016; 2017; see Romo and de Lafuente, 2013 for a review). However, these stud-

ies used experimental settings in which perceptual choices were correlated with 

the sensory and motor components of the task. That is, the first frequency (f1) 

was typically set as the reference against which the second frequency (f2) was 

compared. Thus, subjects typically decided “higher” if frequencies were pre-

sented in an increasing order (f1 < f2) and “lower” if they are presented in a de-
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creasing order (f1 > f2). Furthermore, perceptual choice in these studies was di-

rectly mapped to a movement toward a specific spatial target. These correlations 

preclude a clear dissociation between choice-related signals and signals involved 

in sensory and motor processing, thus complicating the interpretation of the find-

ings.  

To overcome this limitation, we devised a specific version of the vibrotactile fre-

quency discrimination task: A visual cue at the beginning of each trial instructed 

subjects to use either f1 as the comparison stimulus (compare f1 against f2) or f2 

as the comparison stimulus (compare f2 against f1), thereby decoupling the 

choice from the stimulus order. This visual cue was followed by two vibrotactile 

stimuli with different frequencies separated by a 1 s retention period. To disen-

tangle choice from the saccade response direction, a visual matching cue indi-

cating either a higher or a lower comparison frequency was presented 2 s after 

the f2 offset. Subjects compared their choice (f1 > f2 vs f1 < f2) with the visual 

matching cue and reported a match or mismatch with a saccade to one of the two 

color-coded targets presented after the matching cue offset. The matching cues 

and the locations of the color-coded target were orthogonal to each other and 

pseudo-randomly presented so that subjects could neither anticipate the target 

color nor the saccade direction. Notably, in this study we combined the vibrotac-

tile frequency discrimination task with saccade responses, a commonly used re-

sponse modality in the RDM task. This yielded a more direct comparison between 

findings from vibrotactile frequency discrimination task and the RDM task 
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We applied the searchlight protocol with support vector machines to distinguish 

locally distributed activity patterns that were associated either with the choice “f1 

> f2” or “f1 < f2”. As the result, we identified the left inferior prefrontal cortex and 

the oculomotor system, including the bilateral frontal eye fields (FEF) and intra-

parietal sulci, as representing perceptual choices. Moreover, we showed that the 

decoding accuracy of choice information in the right FEF is strongly linked to sub-

jects’ behavioral performance. Not only are these findings in remarkable agree-

ment with evidence from previous NHP studies (see Gold and Shadlen, 2007; 

Romo and de Lafuente, 2013), they also provide novel fMRI evidence for choice 

coding properties in human oculomotor regions, which are not limited to saccadic 

decisions, but pertain to conditions where choices are taken from an more ab-

stract context. 
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 General discussion 

 

The goal of my empirical work in the present dissertation was to investigate how 

the human brain represents the contents of WM and perceptual choices during 

tactile information processing. To this end, together with colleagues, I conducted 

four fMRI MVPA studies with the well-established frequency discrimination para-

digm (Mountcastle et al., 1990; Romo and de Lafuente, 2013). In study 1, we 

addressed the question of which human brain regions carry information about the 

frequencies of vibratory stimuli held in WM (Schmidt et al., 2017). To get insights 

into the modality-specific and modality-independent aspects of the frequency-

specific representations, we tested for brain regions that exhibit WM representa-

tions for frequencies induced by the visual or auditory stimulation in study 2 and 

3 (Uluc et al., 2018; Wu et al., 2018a). Finally, in study 4 we aimed to find repre-

sentations of perceptual choices that are not contaminated by sensory and motor 

processing (Wu et al., under review). Here, I discuss the most important findings 

and implications from our empirical work in a broader context.  
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3.1 Parametric working memory distributed throughout the cortical 

hierarchy 

3.1.1 Working memory representation in frontoparietal cortices 

One of the major findings from WM studies presented here is that a network of 

frontal regions, including the right IFG and bilateral premotor structures, exhibits 

a multivariate parametric WM representation of vibrotactile frequencies (Schmidt 

et al., 2017; Wu et al., 2018a). The identified frontal network closely resembles 

the network reported in NHP studies (Romo and de Lafuente, 2013), as well as 

encompasses regions reported in human M/EEG studies (Spitzer et al., 2010; 

Spitzer and Blankenburg, 2011; 2012; von Lautz et al., 2017). The results thereby 

extend for the first time this parametric WM code in the vibrotactile domain to 

multivariate fMRI activity patterns. Interestingly, and yet to be explored in the NHP 

and human EEG literature, we also identified posterior parietal regions including 

the IPL and IPS as exhibiting parametric WM representation of vibrotactile fre-

quencies (Wu et al., 2018a). Finally, we found that the parametric coding property 

of these frontoparietal regions is not limited to the retention of vibratory stimuli, 

but generalizes to memorizing frequencies of visual flicker and acoustic flutter 

(Uluc et al., 2018; Wu et al., 2018a). 

Our finding of frontal content-specific WM codes is in contrast to several recent 

fMRI MVPA studies in which sensory features could be reliably decoded from 

activity patterns in sensory cortex, but not from frontal cortices (e.g. Christophel 

et al., 2012; Riggall and Postle, 2012; Emrich et al, 2013). This discrepancy can 

be reconciled with a recent WM account proposed by Christophel and colleagues 
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(2017). They suggest a gradient of abstractness of the mental representations as 

the organizational principle of WM contents, which spans sensory cortices en-

coding low-level sensory information and prefrontal regions representing more 

abstract, categorical WM contents. In contrast to previous MVPA studies requir-

ing subjects to memorize sensory details, subjects in our studies were asked to 

memorize scalar quantity information derived from tactile/visual/acoustic sensa-

tion (Romo et al., 1999). This type of information is inherently more abstract in 

the sense that the same information can be conveyed by different sensory mo-

dalities. Thus, frequencies are likely stored in a more abstract, quantitative format 

in higher associative cortices (Christophel et al., 2017; see also Spitzer and 

Blankenburg, 2011; 2012; Spitzer Blankenburg et al., 2013). In line with this in-

terpretation, we have shown that the SVR performance depends critically on the 

linear ordering of the stimulus frequencies, supporting the quantitative nature of 

the frequency representation. 

In addition to the prefrontal and premotor regions, we also found intraprietal 

regions to carry frequency-specific information during the retention interval (Uluc 

et al., 2018; Wu et al., 2018a). Among a variety of cognitive functions ascribed to 

intraparietal regions, their crucial involvement in number cognition appears to be 

closely related to frequency discrimination performance. This is because both 

numbers and frequencies can be viewed as quantitative features that are ordered 

along a continuum (Nieder, 2017, see also Jacob et al., 2012; Nieder 2016 for 

comprehensive reviews). The putative link between these two concepts is 

supported by some parallel findings. For instance, results from human fMRI 

studies indicate that both number (Arsalidou and Taylor, 2011) and frequency 
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discrmination (Kostopoulos et al., 2007) activate a frontoparietal network 

constituted by the vlPFC, SMA, and intraparietal regions. These findings are 

corroborated by NHP studies showing that numerical and frequency-specific 

information is encoded by the above-mentioned frontal areas, with individual 

neurons representing numerical or frequency information in a supramodal fashion 

(Nieder, 2012; Vergara et al., 2015). Here, we draw another parallel between 

frequency and number cognition by reporting intraparietal regions as 

representing the memorized frequencies (Uluc et al., 2018; Wu et al., 2018a). 

Given the close link between number and frequency coding and the high 

correspondence between the frontoparietal network found in our studies and the 

well-established number network including the lPFC, SMA, and intraparietal 

regions (Nieder, 2016), it is conceivable that these common regions may play a 

general role in the coding of quantitative information.  

 

3.1.2 Working memory representation in sensory cortices 

Apart from the above-mentioned regions in frontoparietal cortices, we also found 

that somatosensory, visual, and auditory cortices carry information about the fre-

quencies held in WM (Uluc et al., 2018; Wu et al., 2018a). The crucial difference 

to frontoparietal regions is, however, that these sensory regions only show selec-

tivity to memorized frequencies from their principal sensory modality. This indi-

cates that these memory representations may be closer related to sensory prop-

erties of the input stimuli than those found in the frontal and parietal cortices.  
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Notably, the observation that sensory cortices carry frequency-specific infor-

mation held in WM contradicts the typical null findings reported in studies using 

NHP subjects (e.g. Romo et al., 2004; Lemus et al., 2009; Lemus et al., 2010). 

As outlined in the introduction, this is a common contradiction between human 

fMRI and NHP extracellular recordings in the literature (Leavitt et al., 2017; Xu, 

2017). One issue that may have contributed to this differential recruitment of sen-

sory regions is that NHP studies usually employ relatively coarse discrimination, 

while human subjects have most often to perform more fine-grained discrimina-

tions. Also, the considerably longer training time of NHPs compared with humans 

is likely to play a role. Both the more coarse discrimination and the longer training 

are believed to lead to subjects memorizing stimuli in a more categorical fashion 

(Serences, 2016) so that a recruitment of high-fidelity memory representation in 

the sensory cortices may become dispensable. 

An alternative, but less discussed possibility is that the content-specific BOLD 

activities observed in human sensory cortices may be mainly driven by non-spik-

ing feedback signals from downstream regions, while most null findings reported 

in the NHP literature are based on the lack of content-selective spiking activity 

reflecting the feedforward signal. Evidence for this alternative explanation has 

been given by a recent study in which NHPs performed a delayed motion dis-

crimination task (Mendoza-Halliday et al., 2014). The authors failed to find con-

tent-selective spiking activity in MT during the retention interval, but did find it in 

the lateral PFC. Strikingly, they found content-specific modulation of LFPs in MT 

that was most likely induced by top-down inputs from the lateral PFC. Given that 
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the BOLD signal has been shown to be primarily associated with LFPs (Logo-

thetis et al., 2001; Bartolo et al., 2011), this finding has been used as evidence to 

argue that content-specific BOLD activity observed in human sensory cortices 

may reflect in large part the feedback-driven LFPs and consequently accounts 

for the varying results between NHP and human studies. Although this account 

has yet to be substantiated by further evidence, it has provided an important per-

spective for the interpretation of varying data from different recording modalities. 

In sum, we found parametric WM representations of stimulus frequencies distrib-

uted throughout the cortical hierarchy. In particular, the identified frontal regions, 

including the right IFG and premotor structures, overlap with those reported in the 

previous related NHP studies (Romo and de Lafuente, 2013). This cross-species 

accordance provides compelling evidence that the PFC does not merely exert 

cognitive control over hierarchically lower regions, but also engages in the 

maintenance of WM contents. Our data clearly speak against a privileged role of 

either the PFC or the sensory cortices in the maintenance of WM contents. In-

stead, they support the idea of a distributed storage of memoranda across cortical 

areas (Lee and Baker, 2016; Christophel et al., 2017). The distributed represen-

tation also implicates a recurrent flow of task-relevant information across all cor-

tical regions involved in the task (Klein-Flugge and Bestmann, 2012; Selen et al., 

2012; Siegel et al., 2015). In view of these findings, WM may be better described 

as an integrated process of multiple brain regions with graded functional special-

izations rather than the simple interactions between a central executive and a 

specialized information storage (D’Esposito and Postle, 2015; Christophel et al., 

2017). 
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3.2 Abstract choice representation in effector-specific regions 

In study 4 (Wu et al., under review), my colleagues and I sought to identify neural 

correlates of vibrotactile choice that are neither confounded by the stimulus order 

nor by the preparation of saccadic movement. With a modified version of the vi-

brotactile frequency discrimination task, we identified the left prefrontal and ocu-

lomotor regions including the FEF and intraparietal structures as carrying infor-

mation about vibrotactile choices made in a more abstract context. Furthermore, 

we found that the fidelity of the abstract choice representation in the right FEF is 

linked to subjects’ choice behavior. That is, the higher the decoding accuracy, the 

better the discrimination performance. 

The identification of oculomotor regions as carrying choice information is com-

patible with a vast amount of evidence from oculomotor decision tasks (e.g., RDM 

task) which suggests a major involvement of oculomotor regions in the temporal 

integration of sensory evidence (Gold and Shadlen, 2007). With this result, we 

have established a link between two major paradigms in perceptual decision-

making (oculomotor decision-making vs. vibrotactile comparisons). 

The finding of a behaviorally relevant abstract choice code in FEF, a region pri-

marily associated with saccade movement selection is particularly intriguing. It 

indicates that the FEF is actively involved in the decision-making process even in 

situations when a saccade movement cannot be prepared. An important question 

that emerged from the results is what functional role the correlation between FEF 

decoding accuracy and choice behavior may reflect. In this respect, a recent 
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study by Hanks and colleagues (2015) is particularly revealing. These authors 

found evidence for behavioral performance in a decision task to be causally re-

lated to premotor structures’ ability to categorize accumulated sensory evidence 

into discrete choices. Accordingly, one possible interpretation is that decoding 

accuracies in the FEF index the quality of such categorization processes and are 

therefore predictive of the behavioral performance.  

One limitation of study 4 is that its design does not allow the testing of where 

abstract decisions are formed as such. We do not know whether the observed 

abstract choice information is directly computed in any of the identified regions or 

merely reflects feedback from a decision computation elsewhere in the brain. 

From the point of view of an intentional framework of decision making, abstract 

decisions are unlikely to be directly formed in brain structures involved in action 

selection, such as the FEF or intraparietal regions. This is because abstract 

choices reflect commitments to apply particular rules rather than actions and 

should therefore be formed in regions associated with abstract concept pro-

cessing, such as the lateral PFC (Shadlen et al., 2008; Kiani and Shadlen, 2013). 

One should, however, take in to consideration that FEF and intraparietal neurons 

have been shown to be selective for a range of information types, such as sen-

sory, abstract categorical, and motor information (e.g. Meister et al., 2013; Rigotti 

et al., 2013; Siegel et al., 2015). Therefore, they should not be excluded as po-

tential candidate regions. In fact, I believe that intraparietal regions are a particu-

larly promising candidate for the coding of abstract choice formation in vibrotactile 

frequency discrimination tasks. This is because, apart from their well-established 
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role in number coding (Nieder, 2016), intraparietal regions have also been indi-

cated to play a key role in the coding of the relation between scalar quantities 

(Jacob et al., 2012). Unfortunately, our current understanding of intraparietal 

functions in frequency discrimination tasks is relatively limited compared to that 

of sensory and frontal regions. Future studies in NHPs and humans using differ-

ent methods will complement our findings and provide more insights into the role 

of intraparietal regions in frequency discrimination. 

Finally, as referenced in the introduction, there is a growing body of human neu-

roimaging studies focusing on the neural processes underlying the formation of 

abstract decisions (Heekeren et al., 2008; Kelly and O’Connell, 2015). However, 

one should consider that most of these studies were designed to trace neural 

responses reflecting evidence accumulation over time, which to date has only 

rarely been associated with decisions based on comparison between two se-

quentially presented stimuli. Thus, the extent to which sensory accumulation pro-

cesses account for decisions based on sequential comparisons remains largely 

unknown. In this respect, there are on-going efforts, for example from our group, 

to link the presumed sensory accumulation process with sequential discrimination 

tasks, which may provide more insights into this question. 

 

3.3 Outlook 

The empirical work presented in this dissertation were designed to investigate the 

neural signature of either WM or decision-making. Results of these studies moti-

vate further investigations of the link between these two fundamental functions of 
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human cognition. For instance, there is a high degree of local integration between 

WM and choice information (study 2 and 4) in the bilateral intraparietal and pre-

motor regions. This observation aligns well with previous results in the NHP liter-

ature showing that neurons of multiple regions are capable of encoding WM con-

tent and choice across multiple task stages (Romo and de Lafuente, 2013). It 

further indicates that WM and decision-making might be supported by more inte-

grated neural mechanisms within the brain network involved in the task (Singer, 

2013).  

Future research will benefit from a focus on the relationship between WM and 

decision-related representations, especially the transformation processes of how 

WM representations are used to accumulate evidence for a decision. This could, 

for example, be achieved by explicitly testing the covariation between WM and 

decision-related representations. In this context, it would also be important to ad-

dress questions related to the interregional differences in information coding, 

such as: How do WM contents stored in the premotor cortex differ from those in 

intraparietal regions? Or what is the unique contribution of choice information in 

each individual brain region? Another important issue is the question of how mul-

tiple regions coordinate WM and decision-making. To address this topic, it would 

be crucial to explore the temporal dynamics of information across different re-

gions. One possible way to do this is to use representational similarity analysis to 

combine measurements of independent fMRI and M/EEG datasets (Cichy et al., 

2014). In this context, the application of laminar fMRI may provide deeper insights 

into how feedforward and feedback responses within a recurrent network give 

rise to mental representations and consecutive decisions (Lawrence et al., 2017).   
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Abstract 9 

Decision-making in the somatosensory domain has been intensively studied using vibrotactile 10 

frequency discrimination tasks. Results from human and monkey electrophysiological studies 11 

from this line of research suggest that perceptual choices are encoded within a sensorimotor 12 

network. These findings, however, rely on experimental settings in which perceptual choices 13 

are inextricably linked to sensory and motor components of the task. Here, we devised a novel 14 

version of the vibrotactile frequency discrimination task with saccade responses which has the 15 

crucial advantage of decoupling perceptual choices from sensory and motor processes. We 16 

recorded human fMRI data from 32 participants while they performed the task. Using an 17 

assumption-free, whole-brain searchlight multivariate classification technique, we identify the 18 

left inferior prefrontal cortex and the oculomotor system, including the bilateral frontal eye 19 

fields (FEF) and intraparietal sulci, as representing vibrotactile choices. Moreover, we show 20 

that the decoding accuracy of choice information in the right FEF is strongly linked to the 21 

behavioral performance. Not only are these findings in remarkable agreement with previous 22 

work, they also provide novel fMRI evidence for choice coding property in human 23 

oculomotor regions, which is not limited to saccadic decisions, but pertains to contexts where 24 

choices are made in a more abstract form. 25 

 26 

Keywords 27 

decision-making, perceptual choice, vibrotactile frequency, fMRI, multivariate pattern 28 

analysis  29 
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Introduction 30 

A perceptual decision comprises multiple stages converting sensory inputs via a categorical 31 

judgement about the perceived information into an appropriate behavior. One of the main 32 

aims of perceptual decision making research has been to identify, characterize, and dissociate 33 

brain activities directly linked to the decision from other signals that accompany this chain of 34 

processes. 35 

In the somatosensory domain, neural mechanisms underlying perceptual choices have been 36 

extensively studied with electrophysiology in monkeys using vibrotactile frequency 37 

discrimination tasks (Romo and de Lafuente, 2013). In these studies, monkeys compare two 38 

sequentially presented vibrotactile stimuli and indicate whether the frequency of the second 39 

stimulus (f2) is higher or lower than the first (f1) with a manual response. The findings 40 

suggest that the comparison process and the resulting perceptual choice are encoded within a 41 

sensorimotor network, including prefrontal, premotor, motor and sensory cortices (Haegens et 42 

al., 2011; Hernández, Zainos, & Romo, 2002; Hernández et al., 2010; Romo, Hernández, & 43 

Zainos, 2004). 44 

In humans, the initial attempt to identify neural correlates of vibrotactile decision making was 45 

conducted with fMRI (Pleger et al. 2006; Preuschhof, Heekeren, Taskin, Schubert, & 46 

Villringer, 2006). These authors revealed that multiple regions, particularly the dorsolateral 47 

prefrontal cortex and the insula are involved in decision-making (see also Kelly & O’Connell 48 

(2015) for a review of fMRI studies in the broader field of visual decision making). However, 49 

due to the sluggish nature of BOLD signal, the question of how the observed changes in 50 

BOLD amplitude are related to different decision processes, such as sensory evidence 51 

accumulation, remains a matter of debate (Mulder, van Maanen, & Forstmann, 2014), 52 

rendering it difficult to ground these studies within a greater context. Further evidence from 53 
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human data has been recently reported in EEG studies. In line with research focusing on the 54 

oscillatory activity in monkeys (Haegens et al., 2011), Herding and colleagues found that 55 

choices are encoded by differential power of upper beta band oscillations in premotor 56 

structures. Notably, the most likely source of the beta band modulation moved according to 57 

the response effector: the medial premotor cortex for manual responses (Herding, Spitzer, & 58 

Blankenburg, 2016) and the frontal eye field for saccades (Herding, Ludwig, & Blankenburg, 59 

2017). Taken together, the electrophysiological findings across species suggest a pivotal role 60 

of sensorimotor regions in computing and representing vibrotactile choice. Moreover, the 61 

findings align well with results from monkey studies in the visual domain, which suggest that 62 

perceptual decisions are mainly formed in brain regions involved in guiding motor responses 63 

(Cisek & Kalaska, 2010; Gold & Shadlen, 2007). 64 

The vibrotactile frequency discrimination task has been a powerful tool for exploring the 65 

neural underpinnings of somatosensory decision-making. However, in the standard versions 66 

of this task, perceptual choices are inextricably linked to the sensory and motor components 67 

of the task. That is, f1 is typically set as the reference frequency against which f2 is compared. 68 

Thus, participants will typically decide “higher” if frequencies are presented in an increasing 69 

order (f1 < f2), and “lower” if they are in a decreasing order (f1 > f2). Furthermore, each 70 

perceptual choice is most often directly mapped to a movement toward a specific spatial 71 

target. The resulting correlations preclude a clear dissociation between choice-related signals 72 

and signals involved in sensory and motor processing (Huk, Katz, & Yates, 2017). 73 

Additionally, there is a growing body of evidence suggesting that abstract, motor-independent 74 

choices are represented by brain regions beyond the sensorimotor system (Hebart, Donner, & 75 

Haynes, 2012; Filimon, Philiastides, Nelson, Kloosterman, & Heekeren, 2013). 76 

With the present fMRI study, we aimed to identify human brain regions that represent 77 

vibrotactile choice independent of the sensory and motor components of the task. We 78 
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modified the vibrotactile frequency discrimination task so that the choice is disentangled from 79 

the preceding stimulus order and the succeeding saccade movement direction. Importantly, 80 

we employed a searchlight multivariate pattern analysis (Kriegeskorte, Goebel, & Bandettini, 81 

2006) which allowed the identification of choice-selective activity patterns across the whole 82 

brain without a priori assumptions about where to expect such a representational code. 83 

 84 

Materials and Methods 85 

Participants 86 

32 healthy, right-handed volunteers with normal or corrected-to-normal vision participated in 87 

the experiment (22 female, mean age = 27 years, range = 22 – 39). All participants gave 88 

written informed consent prior to the experiment. The experimental protocols were approved 89 

by the local ethics committee of the Freie Universität Berlin. Data from two participants were 90 

discarded due to excessive head motion (> 8 mm), leaving 30 participants for further analyses. 91 

 92 

Experimental procedure and stimuli 93 

Participants compared frequencies of two vibrotactile stimuli sequentially administered to 94 

their left index finger and decided whether the comparison frequency was higher or lower 95 

than the reference frequency by making a saccade toward a color-coded target (Figure 1). To 96 

decouple perceptual choice (higher vs lower) from stimulus order (f1 < f2 vs f1 > f2), f1 and 97 

f2 alternately served as the comparison frequency based on the rule presented at the beginning 98 

of each trial. In half of the trials, participants indicated whether f1 was higher or lower than f2 99 

(rule 1) and in the other half, they indicated whether f2 was higher or lower than f1 (rule 2). 100 
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Furthermore, instead of pre-assigning a choice to a specific spatial target or target color, 101 

participants reported a match or mismatch between their perceptual choice and the proposition 102 

indicated by a matching cue. Importantly, the matching cue and the following target screen 103 

were presented after the decision phase so that participants could neither anticipate the target 104 

color nor prepare a motor response towards the spatial target. 105 

Each trial began with a fixation period of variable duration (3, 4, 5, or 6 s). A rule cue (square 106 

or diamond) was shown at the center of the presentation screen for 500 ms and instructed 107 

participants which of the subsequently presented vibrotactile stimuli served as the comparison 108 

stimulus. The specific association between cue symbols and rules was counterbalanced across 109 

participants. The rule cue was followed by two vibrotactile stimuli with different frequencies 110 

(each 500 ms), which were separated by a 1 s retention period. After a decision phase of 2 s, 111 

an equilateral triangle, serving as a visual matching cue, was centrally presented for 500 ms. 112 

An upward-pointing triangle indicated a comparison stimulus of higher frequency, whereas a 113 

downward-pointing triangle indicated a comparison stimulus of lower frequency. The 114 

matching cues were pseudo-randomly interleaved across trials. Participants compared their 115 

perceptual choice with the matching cue and reported a match or mismatch by making a 116 

saccade to one of the two color-coded targets (blue vs yellow dot) presented in the periphery 117 

along the horizontal meridian after the matching cue offset. The color code was 118 

counterbalanced across participants and the location of the blue and yellow dots on the target 119 

screen alternated pseudo-randomly across trials. Participants were instructed to respond as 120 

fast as possible. A response later than 1.5 s after the target screen onset was considered a 121 

missed trial. 122 

Vibrotactile stimuli were delivered to participants’ left index fingers by a piezoelectric Braille 123 

display with 16 pins (4 x 4 quadratic matrix, 2.5 mm spacing), controlled by a programmable 124 

stimulator (QuaeroSys Medical Devices, Schotten, Germany). The frequency of the first 125 
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stimulus (f1) varied between 16, 20, 24, and 28 Hz. Each f1 was paired with an f2 that was 126 

either 4 Hz higher or lower, resulting in a total of eight stimulus pairs (16 vs 12 Hz, 16 vs 20 127 

Hz, 20 vs 16 Hz, 20 vs 24 Hz, 24 vs 20 Hz, 24 vs 28 Hz, 28 vs 24 Hz, and 28 vs 32 Hz). All 128 

stimuli lay well within the flutter range (~5 – 50 Hz; Romo & Salinas, 2003).  129 

A functional run consisted of 64 trials. Each of the stimulus pairs was presented eight times, 130 

each time with a different combination of rule cues (square vs diamond), matching cues 131 

(upward-pointing vs downward-pointing), and target screens (blue-left, yellow-right vs blue-132 

right, yellow-left, Figure 1). The variable durations of the fixation period were balanced 133 

across rules and stimulus pairs. Trials lasted 11.5 s on average and were presented in a 134 

randomized order. The duration of a functional run was ~12.5 min. Participants were 135 

instructed to fixate throughout the entire duration of the run except for when they made 136 

saccadic responses.  137 

Prior to the fMRI session, participants completed a training session to become familiar with 138 

the experimental procedure. The training session consisted of 64 to 128 trials and lasted a 139 

maximum of 45 min. 140 

Importantly, the use of such a balanced design enabled the decoupling of choice-related 141 

signals from those related to stimulus order and preparation for a specific saccade response 142 

direction without requiring the temporal jittering of event onsets. This is because, due to the 143 

balanced design, each specific choice was expected to have approximately the same number 144 

of trials associated with each stimulus order and each saccade direction respectively (Hebart 145 

et al., 2012). This further ensured an equal estimability of all conditions of interest and 146 

minimized the possibility of classifying choices using the difference in the variability of the 147 

beta weight estimates (Hebart & Baker, 2017). 148 

 149 
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Data acquisition. 150 

Saccadic eye movements were recorded using an MRI-compatible eye-tracker with a 151 

sampling rate of 500 Hz (Eyelink 1000, SR Research Ltd, Mississauga, Ontario, Canada). 152 

MRI data were recorded with a 3 T Tim Trio scanner (Siemens, Erlangen) equipped with a 153 

12-channel head coil at the Center for Cognitive Neuroscience Berlin. For each participant, 154 

we collected 378 functional volumes per run (T2*-weighted gradient-echo echo-planar 155 

images, TE: 30 ms, TR: 2000 ms, flip angle: 90°, FOV: 192 mm, matrix size: 64x64, 156 

3x3x3mm
3
, 0.6mm gap, 37 slices, ascending sequence). In addition, anatomical images (T1 157 

weighted MPRAGE, TE: 2.52 ms, TR: 1900 ms, flip angle: 9°, FOV: 256 mm, matrix size: 158 

256x256, 176 slices, 1x1x1 mm
3
) were collected for co-registration and spatial normalization 159 

purposes. Of the 30 participants whose data was analyzed, 28 completed six functional runs, 160 

while the remaining two completed five functional runs. 161 

 162 

Data analyses.  163 

Preprocessing. fMRI data preprocessing and analyses based on general linear models (GLM) 164 

were performed using SPM12 (Wellcome Trust Centre for Neuroimaging, 165 

www.fil.ion.ucl.ac.uk/spm). Possible artifacts in individual slices of the functional volumes 166 

were corrected via an interpolation approach as implemented in the SPM ArtRepair toolbox 167 

(Mazaika, Hoeft, Glover, & Reiss, 2009). Preprocessing steps prior to multivariate pattern 168 

analysis (MVPA) included slice-time correction and spatial realignment to the mean 169 

functional image. MVPA was performed using The Decoding Toolbox (Hebart, Goergen, & 170 

Haynes, 2015). We used the SPM Anatomy toolbox (Eickhoff et al. 2005) for 171 

cytoarchitectonic reference. In addition, we used probabilistic maps of visual topography in 172 
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human cortex as reference to identify brain regions that can be classified as the frontal eye 173 

fields (FEF, Wang, Mruczek, Arcaro, & Kastner, 2014; www.princeton.edu/~napl/vtpm.htm). 174 

Decoding perceptual choices. We used a searchlight decoding analysis to identify brain 175 

regions that carry information about the perceptual choice during decision phases. Prior to the 176 

decoding analysis, we fit a GLM (192 s high pass filtered) to each participant’s preprocessed 177 

data to obtain run-wise beta weights for each voxel. Each perceptual choice (higher vs lower) 178 

was modelled as a stick regressor at the onsets of decision phases in correct trials and 179 

convolved with the canonical hemodynamic response function. Incorrect and missed trials 180 

were modelled with a separate regressor of no-interest. Additionally, ten principal 181 

components accounting for the variance in the white matter (WM) and cerebrospinal fluid 182 

(CSF) signal time courses (Behzadi, Restom, Liau, & Liu, 2007) were included in the GLM 183 

alongside six head motion parameters as nuisance regressors. Finally, constant terms were 184 

included to account for run-specific effect, resulting in 20 regressors per run. Note that we 185 

only included data from correct trials in the subsequent decoding analysis based on the 186 

reasoning that incorrect trials were likely accompanied by indecisions during the time window 187 

of interest and would diminish the decodability of choice information. 188 

For each participant, we employed a searchlight decoding analysis with linear support vector 189 

machine classifiers (SVM) in the implementation of LIBSVM (c = 1; Chang & Lin, 2011) and 190 

a leave-one-run-out cross-validation scheme. Beta weights for the choice regressors from each 191 

functional run were used as samples, yielding a total of twelve samples for participants who 192 

completed six runs and ten samples for participants who completed five runs. Beta weights of 193 

each voxel were normalized across samples before they were forwarded to the classification. 194 

In each searchlight step, we extracted beta weights from all voxels within a 4-voxel radius 195 

sphere (maximal 251 voxels) at a given location of the brain to create pattern vectors. An 196 
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SVM classifier was trained to distinguish between the pattern vectors of different choices 197 

with the data from all but one run and tested for its generalizability on the data from the 198 

remaining run. The performance of the classifier was indicated by the decoding accuracy on 199 

the test run, that is, the percentage of correctly classified samples. This training-testing 200 

procedure was iterated so that every run had been used as the test data once. We averaged 201 

decoding accuracies across all iterations and assigned the mean decoding accuracy to the 202 

center voxel of the searchlight. The described searchlight procedure was repeated for every 203 

voxel in the brain, yielding a continuous brain map of mean decoding accuracies which was 204 

considered to reflect the amount of information about a participant’s choice across the whole 205 

brain.  206 

For the group inference, the decoding accuracy map of each participant was normalized to 207 

MNI space, resliced to 2 mm
3
 voxel size, and smoothed with a full width at half maximum 208 

Gaussian kernel of 5 mm. We computed a one-tailed one-sample t-test to assess whether the 209 

observed decoding accuracies were significantly higher than chance level (50%) across the 210 

whole brain. Voxels showing significant decoding accuracies indicated that the local activity 211 

patterns carried information about perceptual choices. We further assessed whether there was 212 

a correlation between decoding accuracies in the identified regions and the behavioral 213 

performance using a one-tailed one-sample t-test with the behavioral performance as a 214 

covariate. 215 

Decoding task rule. We were also interested in whether any brain regions represent 216 

information about the task rule during the decision phases. To test this, we used a GLM with 217 

regressors modelling the task rules at the onsets of decision phases. Again, we modelled 218 

correct and incorrect/missed trials in separate regressors and included the WM/CSF signal and 219 

motion parameters as nuisance regressors. Furthermore, the analogous procedure for the 220 

searchlight decoding analysis and the group inference was applied to the resulting beta 221 

Page 11 of 33

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

weights, with the difference that the pattern vectors corresponded to activity patterns evoked 222 

by the different task rules. 223 

 224 

Control analyses 225 

To ensure the thoroughness of the present study, we conducted further analyses to verify that 226 

the informative brain regions detected in the choice decoding analysis were indeed driven by 227 

choice representation and not confounded by stimulus order or saccade direction. To this end, 228 

we performed two sets of decoding analyses. For the first set, we employed a GLM with 229 

regressors modelling participants’ perceptual choices (higher vs lower) for trials of each 230 

stimulus order (f1 < f2 vs f1 > f2) separately. Beta weights corresponding to the resulting four 231 

regressors were subjected to two searchlight decoding analyses, one for each stimulus order, 232 

using the identical parameters as in the main analysis. This way, local activity patterns 233 

associated with “higher” and “lower” choices were ensured to be independent of stimulus 234 

order. The resulting decoding accuracy maps from the two analyses were then averaged, 235 

resulting in an averaged decoding accuracy map for choices controlling for stimulus order. 236 

Using the analogous procedure, we further obtained an averaged decoding accuracy map in 237 

which choice-related activity patterns were classified separately for each of the saccade 238 

directions. Finally, participants’ averaged decoding accuracy maps from these two sets of 239 

decoding analyses were forwarded to group inferences in order to identify regions carrying 240 

choice information. These analyses fully controlled for confounds related to the stimulus 241 

order or the saccade direction at cost of a significantly reduced (50%) number of trials for the 242 

decoding analyses and accordingly, reduced power. Nonetheless, if the informative activity 243 

patterns identified by the main choice decoding analysis were indeed driven by perceptual 244 

choice, we would expect to observe similar results in the control analyses. 245 
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We further tested whether the observed choice-selective regions could be accounted for by 246 

overall changes in the BOLD activation in single voxels. For this purpose, we ran an 247 

analogous searchlight decoding analysis, but reduced the number of voxels within the local 248 

searchlight to one. If the observed choice information was mainly represented in a 249 

multivariate code, this analysis based on a single voxel should not be able to detect choice-250 

related information. 251 

 252 

Results 253 

Behavioral results 254 

The average proportion of correct responses across 30 participants was 0.877 (SD: ±0.057, 255 

range: 0.726 – 0.966). To assess effects of different task components on behavioral 256 

performance, we computed a three-way ANOVA with task rule (rule 1 vs rule 2), stimulus 257 

order (f1 > f2 vs f1 < f2), and magnitude of f1 (16, 20, 24, and 28 Hz) as within-subject 258 

factors. This analysis did not reveal main effects of task rule (F(1, 29) = 0.256, p = 0.617) or 259 

stimulus order (F(1,29) = 0.585, p = 0.451), indicating that the cognitive demands were 260 

approximately equal across these factors. Furthermore, the analysis revealed a significant 261 

interaction between the stimulus order and the magnitude of f1 (F(3,87) = 17.046, p < 0.001). 262 

For trials with f1 in the lower range, participants performed better when f2 was comparatively 263 

low (f1 > f2) than when f2 was comparatively high (f1 < f2). Conversely, the performance for 264 

trials with f1 in the higher range was better when f2 was higher than f1 compared to those 265 

with lower f2 (Figure 2). Such a behavioral pattern is a frequently observed phenomenon in 266 

studies using comparison tasks and is referred to as the time-order effect or contraction bias 267 

(Ashourian & Loewenstein, 2011; Fassihi, Akrami, Esmaeili, & Diamond, 2014; Herding et 268 

al., 2016; Preuschhof, Schubert, Villringer, & Heekeren. 2009). This effect suggests a biased 269 
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perception or memory trace of f1 toward the mean of the stimulus set. Importantly, this effect 270 

remains stable across the different task rules, as indicated by a non-significant three-way 271 

interaction (F(3,87) = 1.049, p = 0.375). 272 

To address the concern that the exclusion of incorrect and missed trials from fMRI analyses 273 

may result in a biased distribution of stimulus orders (f1 > f2 vs f1 < f2) and saccade 274 

directions (right vs left) across choices and thereby confound the fMRI choice decoding 275 

results, we computed two Pearson chi-square tests for each participants respectively. No 276 

systematic associations between the choice behavior and these two variables were revealed in 277 

any of the participants (stimulus order: all p > 0.1; saccade direction: all p > 0.1). We further 278 

explored whether participants’ eye position during decision phases varied systematically 279 

across choices. Due to technical problems during data collection, we were only able to acquire 280 

eye movements along both the x- and y-axis for 20 participants’, while the data of the 281 

remaining 10 participants consisted of only eye movements along the x-axis. For each 282 

participant, we extracted the average eye position along the x- and, when possible, y-axis 283 

across the two second decision phase of each trial. Next, we computed a two-tailed two-284 

sample t-test to scrutinize systematic deviations between eye positions corresponding to 285 

different choices for the x- and y-axis respectively. No systematic relationship with choice 286 

was revealed in any of the participants (all p > 0.05, Holm-Bonferroni corrected across axes 287 

for each participant). 288 

Collectively, the behavioral results suggest that participants’ choice behavior was neither 289 

modulated by the stimulus order, nor by the eye movements during and after the decision 290 

phase. Thus, it is rather unlikely that these factors influenced the choice decoding results 291 

reported below. 292 

 293 
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Neuroimaging results 294 

Choice-selective brain regions. To identify brain regions that carry choice information 295 

independent of stimulus order and saccade selection during the decision phase, we applied an 296 

assumption-free, searchlight MVPA across the whole brain. The results are shown in Figure 297 

3A and Table 1 (p < 0.05, false discovery rate (FDR) corrected for multiple comparisons at 298 

the cluster level with a cluster-defining voxel-wise threshold of p < 0.001). As indicated by 299 

the significant above-chance decoding accuracies, this analysis revealed multiple clusters with 300 

distinguishable activity patterns for different choices. These clusters were located within the 301 

bilateral posterior parietal cortices (PPC) including the intraparietal sulci (IPS) and the 302 

inferior parietal lobules (IPL), the left lateral prefrontal cortex (lPFC), including the inferior 303 

and middle frontal gyrus (IFG, MFG), as well as the bilateral precentral gyri (PreCG) 304 

encroaching into the caudal-most part of the superior frontal sulci (SFS) which are known as 305 

the FEF (identified with probabilistic maps by Wang et al. 2014; cf. also Amiez, Kostopoulos, 306 

Champod, & Petrides, 2006; Kastner et al., 2004). 307 

Furthermore, an additional t-contrast with the percentage of correct responses included as a 308 

covariate, revealed that, amid the identified regions, the behavioral performance was 309 

significantly correlated with the decoding accuracy in the right FEF (Figure 3B: x = 34, y = 0, 310 

z = 52, t(28) = 5.73, p < 0.05, peak-level family wise error (FWE) corrected for small volume 311 

within the detected choice-selective regions). The decoding accuracy at the peak voxel and 312 

the behavioral performance across participants were positively correlated with a Pearson 313 

correlation coefficient of r = 0.736 (R
2
 = 0.542, df = 29, p < 0.001). To preclude that the 314 

correlation was primarily driven by the participant with the lowest values in both variables 315 

(see Figure 3B), we repeated the correlation coefficient estimation without that participant’s 316 

data. The correlation coefficient of the reduced sample size decreased slightly to r = 0.683, 317 

however, it remained statistically significant (R
2
 = 0.467, df = 28, p < 0.001). 318 
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Rule-selective brain regions. Next, we investigated whether information about the task rule 319 

was represented during the decision phase. Rule-selective activity patterns were observed in 320 

the prefrontal regions of both hemispheres including the left MFG and bilateral IFG, PPC 321 

including the bilateral superior parietal lobules (SPL), and the left supramarginal gyrus (SMG) 322 

in the IPL. We further computed a “null” conjunction of the choice and the rule contrasts and 323 

found that a cluster centered around the left inferior frontal sulcus (IFS) was the only brain 324 

region to code both choice and rule (p < 0.001, cluster corrected at pFDR < 0.05; Figure 3C, D 325 

and Table 1). 326 

 327 

Control analyses 328 

To further ensure that the results from the choice decoding analysis were mainly driven by 329 

choice-related BOLD signals, we conducted two additional sets of decoding analyses. These 330 

analyses controlled for effects related to stimulus order and saccade direction. The results are 331 

displayed in Figure 4 (p < 0.001, uncorrected at voxel level due to significantly reduced 332 

amount of data). As expected, both sets of analyses yielded highly similar decoding results to 333 

the main results, with overlapping clusters in bilateral IPS, FEF, and the left lPFC. This result 334 

demonstrates that our paradigm has effectively disentangled choice representation from 335 

stimulus order and saccade selection and confirms that the results derived from the main 336 

analysis are choice-specific. 337 

Finally, to assess whether overall changes in the activity level of single voxels within a cluster 338 

could account for the observed choice information, we ran a decoding analysis with a single 339 

voxel searchlight. The analysis did not reveal any significantly informative brain regions (p < 340 

0.001, cluster corrected at pFDR < 0.05), indicating that choice-related information was indeed 341 

represented by patterns of local activity rather than a univariate code. 342 
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 343 

Discussion 344 

In the present study we employed a modified version of the vibrotactile frequency 345 

discrimination task to explore brain regions that carry information about perceptual choice 346 

independent of stimulus order and saccade selection. Using MVPA on human fMRI data, we 347 

found vibrotactile choice-selective brain activity patterns in oculomotor regions including 348 

bilateral FEF and intraparietal regions, as well as the left lPFC. We thereby provide novel 349 

fMRI evidence for brain regions representing abstract choice in somatosensory decision-350 

making. 351 

The identification of choice information distributed across effector-specific premotor (FEF) 352 

and lateral prefrontal structures aligns well with previous electrophysiological studies in 353 

monkeys using the vibrotactile frequency discrimination task (Haegens et al., 2011; 354 

Hernandez et al., 2002; 2010; Romo et al., 2004). Most interestingly, and yet to be explored in 355 

the monkey literature, we also observed vibrotactile choice-selective activity patterns in 356 

intraparietal regions (IPS and IPL), which constitute, alongside the FEF and subcortical 357 

structures, the oculomotor system. This finding is compatible with a vast amount of evidence 358 

from monkey research using saccade responses in visual random-dot motion (RDM) tasks 359 

suggesting a major involvement of monkey FEF and LIP (homologous to human IPS) in 360 

sensory evidence accumulation toward a decision (Ding & Gold, 2012; Kim & Shadlen, 1996; 361 

Roitman & Shadlen, 2002; Shadlen & Newsome 2001). With these results, we establish an 362 

important link between researches from two influential perceptual decision-making paradigms 363 

and thereby promote the notion of supramodal decision making mechanisms. 364 

Note however, that previously reported decision-related signals in the FEF and LIP were 365 

mainly observed in studies in which perceptual choice was directly mapped to a specific, 366 
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predictable saccade direction. A significant portion of decision-related signals in the FEF or 367 

LIP disappeared when saccade directions were decorrelated from perceptual choices (Bennur 368 

& Gold, 2011; Gold & Shadlen, 2003; reviewed in Huk et al. 2017). Similarly, recent human 369 

fMRI studies also failed to capture decision-related signals in the FEF or IPS when there was 370 

no fixed mapping between choice and saccade direction (Filimon et al. 2013; Herbart et al. 371 

2012; Li Hegner, Lindner, & Braun, 2015). From these results one might conclude that 372 

oculomotor regions may merely represent the motor decisions. Crucially, there are several 373 

aspects of our study which render this interpretation unlikely: The current experiment was 374 

designed so that choice-related signals could be separated from sensory and motor 375 

components of the task. Moreover, we further validated the effectiveness of this experimental 376 

protocol with control analyses on behavioral and fMRI data. Thus, we are confident that the 377 

distinctive activity patterns observed in oculomotor regions were mainly driven by the choice 378 

information. In this light, our data provide novel evidence for choice selectivity in human 379 

oculomotor regions, which is not confined to saccadic decisions, but pertains to contexts 380 

where choices are made in a more abstract form. 381 

One question emerged from our findings is why oculomotor regions represent perceptual 382 

choice despite its independence from the ensuing saccade direction? In fact, there is an 383 

increasing body of monkey literature showing that LIP and FEF are selective for various 384 

kinds of task-relevant information during a decision process (reviewed Huk et al. 2017; 385 

Stokes Buschman, & Miller, 2017). For instance, the intraparietal choice selectivity in our 386 

study is consistent with the well-established role of the PPC in representing abstract 387 

categorical information (Freedman & Assad, 2011; 2016). Indeed, these authors have 388 

proposed a common neural mechanism underlying abstract decision-making and 389 

categorization. Likewise, in line with our findings in the FEF, several studies have 390 

demonstrated that the functionality of premotor structures goes beyond the coding of motor-391 
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related information and extends to sensory and task information (Ferrera, Yanike, &, 392 

Cassanello, 2009; Mante, Sussillo, Shenoy, & Newsome, 2013; Nakayama, Yamagata, Tanji, 393 

& Hoshi, 2008; Siegel, Buschman, & Miller, 2015; Yamagata, Nakayama, Tanji, & Hoshi,. 394 

2009; 2012). Intriguingly, we show that the differentiability of choice representations in the 395 

right FEF is linked to participants’ choice behavior. That is, the higher the decoding accuracy, 396 

the better participants performed the task. It is not immediately apparent from our data what 397 

functional role this observed correlation may reflect. Nevertheless, there is compatible 398 

evidence from recent studies in rats suggesting that the behavioral performance in a decision 399 

task is causally related to premotor structures’ ability to categorize accumulated evidence into 400 

discrete choices (Erlich, Brunton, Duan, Hanks, & Body, 2015; Hanks et al., 2015). 401 

Accordingly, one possible interpretation is that decoding accuracies in the FEF index the 402 

quality of such categorization processes and are, hence, predictive of the behavioral 403 

performance. In concert with the implicated role of premotor structures in the transformation 404 

of abstract concepts into concrete motor commands (Nakayama et al., 2008; Yamagata et al., 405 

2009; 2012), it is possible that choice information in the FEF reflects a temporary storage, 406 

waiting for additional information in order to be transformed into an appropriate saccade 407 

movement. This interpretation agrees with the growing body of evidence for a continuous 408 

flow of all task relevant information across a distributed brain network (Siegel et al., 2015). 409 

While this interpretation is appealing, future experiments may enable a temporal 410 

characterization of the information transformation from sensory processing to abstract choice 411 

and finally motor output. 412 

In addition to the FEF and IPS, we found choice information in the left lPFC. This is 413 

consistent with previous monkey research using the vibrotactile frequency discrimination task, 414 

which shows that the lPFC computes perceptual choices (Hernandez et al., 2010; Jun et al 415 

2010). Moreover, an involvement of lPFC is also compatible with previous human fMRI 416 
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studies suggesting lPFC’s role in accumulating sensory evidence (Filimon et al., 2013; 417 

Heekeren, Marrett, Bandettini, & Ungerleider, 2004; Heekeren, Marrett, Ruff, Bandettini, & 418 

Ungerleider, 2006; Liu & Pleskac, 2011; Pleger et al., 2006). Notably, although choice-419 

selective regions detected in the current study are compatible with those reported in previous 420 

studies, the fMRI-MVPA approach used here does not allow inference regarding the origin of 421 

choice information or where the sensory evidence is accumulated. With respect to this 422 

question, Shadlen and colleagues (Shadlen, Kiani, Hanks, & Churchland, 2008) suggest that 423 

abstract decisions are evolved by evidence accumulation toward the implementation of 424 

particular rules and that prefrontal regions are, due to their central role in the rule 425 

representation (Sakai, 2008), the most likely regions to host such a process. Considering that 426 

the left IFS has been identified to carry both the rule and choice information, it appears to be a 427 

promising candidate region for future studies to scrutinize the evolution of abstract 428 

vibrotactile decisions in humans. Indeed, there is evidence from a previous fMRI study in the 429 

visual domain highlighting left IFS’ role in sensory evidence accumulation when choices are 430 

decoupled from specific motor commands (Filimon et al., 2013). 431 

In addition to the left IFS, we suggest that intraparietal regions are, given their well-432 

established role in magnitude processing (Jakob, Vallentin, & Nieder, 2012; Nieder, 2016), 433 

another potential candidate structure for deliberating decisions on the relation between two 434 

analog quantities, such as the vibrotactile frequencies. A shift to focusing on intraparietal 435 

regions and their interaction with other areas in monkey electrophysiology may provide 436 

substantial complementary insights into the neural mechanisms underlying vibrotactile 437 

decisions. 438 

In conclusion, our results suggest that the human lPFC and oculomotor regions represent 439 

vibrotactile choice independent of stimulus order and saccade selection. These results are 440 

highly consistent with previous results from monkey electrophysiology and provide empirical 441 
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support for a pivotal role of human oculomotor regions in decision-making beyond the mere 442 

processing of saccadic movements.  443 
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Tables 614 

Table 1 Brain regions identified as containing information related to choice, task rule, and 615 

both.  616 

Anatomical regions Cluster size MNI (x,y,z) t-value 
Mean 

accuracy  

Choice       

R. IPL (PFm), IPS (hIP2, 

hIP3), SPL 
953 32 -64 50 5.28 59.28 

L. IFG, MFG, PreCG, SFS 

(FEF) 
1137 -58 18 32 5.28 53.52 

L. IPL (PF, PFm), IPS 

(hIP1, hIP2) 
661 -52 -42 36 4.66 56.92 

R. PreCG, SFS (FEF) 249 34 4 52 4.58 57.95 

       

Task rule       

L. MFG, PreCG 1001 -52 8 38 5.25 58.97 

R. IFG, PreCG 512 58 12 32 5.21 58.24 

L. SPL 567 -4 -70 48 4.99 59.84 

L. IPL/supramarginal gyrus 

(PFm, PF, PGa, PGp) 
422 -60 -50 34 4.97 57.88 

R. SPL 249 20 -74 64 4.65 52.43 

       

Conjunction       

L. IFG, IFS, MFG, PreCG 377 -56 16 34 4.54  

All results are reported at a cluster corrected statistical level of pFDR < 0.05 with an initial 617 

voxel-wise threshold of p < 0.001. MNI coordinates, t-values and the mean accuracies refer to 618 

the peak voxel within each cluster.  619 
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Figure legends 620 

Figure 1. Experimental paradigm. A rule cue informed which of the two rules applied 621 

(pseudo-randomized across trials and counterbalanced across participants). Rule 1 indicated 622 

that participants had to compare f1 against f2, while rule 2 indicated a comparison in the 623 

reversed direction. This was followed by f1 and f2 presented to the participants’ left index 624 

finger. After the decision phase, participants compared their perceptual choice with a visual 625 

matching cue (an upward-pointing triangle indicated “higher”, while a downward-pointing 626 

triangle indicated “lower”) and reported a match or mismatch with a saccade to either the blue 627 

or the yellow dots on the target screen. The spatial locations of the colored dots switched 628 

across target screens and the color code were counterbalanced across participants. The 629 

matching cues and target screens were orthogonal to each other and pseudo-randomly 630 

interleaved across trials so that participants were not able to anticipate the appropriate saccade 631 

directions during the decision phase. 632 

Figure 2. The average behavioral performance across participants. The performance was 633 

modulated by the contraction bias (see text), irrespective of what rule was applied. Error bars 634 

represent SEM of the mean. 635 

Figure 3.  Neuroimaging results. (A) Brain regions carrying choice information independent 636 

of the stimulus order and the direction of the ensuing saccade (cluster corrected at pFDR < 637 

0.05). (B) A significant correlation between participants’ behavioral performance and choice 638 

decoding accuracy was observed in the right FEF (pFWE < 0.05, small volume corrected within 639 

the brain regions shown in A). (C) Brain regions containing information about the task rule. 640 

(D) Results from the conjunction analysis showing brain regions that represent both the 641 

choice and the rule information (C and D cluster corrected at pFDR < 0.05). The unthresholded 642 

statistical maps are available at https://neurovault.org/collections/PTJKPIWY/ 643 
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Figure 4. Comparisons between choice-selective regions identified in the main analysis with 644 

regions detected in the additional analyses controlled for effects related to the stimulus order 645 

(A, B) and the saccade selection (C, D). Results of the main analysis are displayed in green, 646 

while results from the control analyses are depicted in magenta. (A) Except the right FEF, all 647 

other clusters found in the main analysis (the bilateral intraparietal regions, the left lPFC, and 648 

the left FEF) overlap partially with those from the analysis controlled for the stimulus order. 649 

(B) Detail of the left prefrontal regions (cf. A) showing partial overlaps. (C) In addition to the 650 

overlapping regions shown in A, an overlap in the right FEF is also evident between the main 651 

analysis and the analysis controlled for saccade selection. (D) The left panel depicts the detail 652 

of overlaps in the left frontal regions, while a detailed view of the right FEF is displayed in 653 

the right panel (cf. C). Results are shown at a cluster corrected threshold of pFDR < 0.05 for the 654 

main analysis and at uncorrected voxel-wise threshold of p < 0.001 for the control analyses. 655 

The unthresholded statistical maps are available at 656 

https://neurovault.org/collections/PTJKPIWY/ 657 
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Figure 1. Experimental paradigm. A rule cue informed which of the two rules applied (pseudo-randomized 
across trials and counterbalanced across participants). Rule 1 indicated that participants had to compare f1 

against f2, while rule 2 indicated a comparison in the reversed direction. This was followed by f1 and f2 
presented to the participants’ left index finger. After the decision phase, participants compared their 
perceptual choice with a visual matching cue (an upward-pointing triangle indicated “higher”, while a 

downward-pointing triangle indicated “lower”) and reported a match or mismatch with a saccade to either 
the blue or the yellow dots on the target screen. The spatial locations of the colored dots switched across 

target screens and the color code were counterbalanced across participants. The matching cues and target 
screens were orthogonal to each other and pseudo-randomly interleaved across trials so that participants 

were not able to anticipate the appropriate saccade directions during the decision phase. 
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Figure 2. The average behavioral performance across participants. The performance was modulated by the 
contraction bias (see text), irrespective of what rule was applied. Error bars represent SEM of the mean. 
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Figure 3.  Neuroimaging results. (A) Brain regions carrying choice information independent of the stimulus 
order and the direction of the ensuing saccade (cluster corrected at pFDR < 0.05). (B) A significant 

correlation between participants’ behavioral performance and choice decoding accuracy was observed in the 
right FEF (pFWE < 0.05, small volume corrected within the brain regions shown in A). (C) Brain regions 

containing information about the task rule. (D) Results from the conjunction analysis showing brain regions 
that represent both the choice and the rule information (C and D cluster corrected at pFDR < 0.05). The 

unthresholded statistical maps are available at https://neurovault.org/collections/PTJKPIWY/ 
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Figure 4. Comparisons between choice-selective regions identified in the main analysis with regions detected 
in the additional analyses controlled for effects related to the stimulus order (A, B) and the saccade selection 

(C, D). Results of the main analysis are displayed in green, while results from the control analyses are 
depicted in magenta. (A) Except the right FEF, all other clusters found in the main analysis (the bilateral 

intraparietal regions, the left lPFC, and the left FEF) overlap partially with those from the analysis controlled 
for the stimulus order. (B) Detail of the left prefrontal regions (cf. A) showing partial overlaps. (C) In 

addition to the overlapping regions shown in A, an overlap in the right FEF is also evident between the main 
analysis and the analysis controlled for saccade selection. (D) The left panel depicts the detail of overlaps in 
the left frontal regions, while a detailed view of the right FEF is displayed in the right panel (cf. C). Results 
are shown at a cluster corrected threshold of pFDR < 0.05 for the main analysis and at uncorrected voxel-
wise threshold of p < 0.001 for the control analyses. The unthresholded statistical maps are available at 

https://neurovault.org/collections/PTJKPIWY/ 

86x109mm (300 x 300 DPI) 

Page 33 of 33

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Page 34 of 33

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

133 

B. Supplement 

Eidesstattliche Erklärung 

Hiermit erkläre ich an Eides statt, 

 dass ich die vorliegende Arbeit eigenständig und ohne unerlaubte Hilfe 
verfasst habe, 

 dass Ideen und Gedanken aus Arbeiten anderer entsprechend 
gekennzeichnet wurden, 

 dass ich mich nicht bereits anderwärtig um einen Doktorgrad beworben 
habe und keinen Doktorgrad in dem Promotionsfach Psychologie 
besitze, sowie 

 dass ich die zugrundeliegende Promotionsordnung vom 08.08.2016 
anerkenne. 

 

 

 

Ort, Datum     Unterschrift 

 

  



 

134 

Erklärung gemäß § 7 Abs. 3 Satz 4 der Promotionsordnung über den 
Eigenanteil an den veröffentlichten oder zur Veröffentlichung vorgesehenen 
eingereichten wissenschaftlichen Schriften im Rahmen meiner 
publikationsbasierten Arbeit 
 
 

I. Name, Vorname: Wu Yuan-hao 

Institut:   Arbeitsbereich Neurocomputation and Neuroimaging 

Promotionsfach: Psychologie 

Titel:   Master of Science (MSc) 

 

 

II. Nummerierte Aufstellung der eingereichten Schriften (Titel, Autoren, 
wo und wann veröffentlicht bzw. eingereicht): 

 
1. Schmidt TT, Wu Y-h, Blankenburg F (2017) Content-specific codes of 

parametric vibrotactile working memory in humans. Journal of Neurosci-
ence, 37(40):9771-9777. 

 
2. Wu Y-h*, Uluç I*, Schmidt TT, Tertel K, Kirilina E, Blankenburg F (2017) 

Overlapping frontoparietal networks for tactile and visual parametric 
working memory representations. NeuroImage 166:325-334. 

 
3. Uluç I, Schmidt TT, Wu Y-h, Blankenburg F (2018) Content-specific 

codes of parametric auditory working memory in humans. NeuroImage 
183:254-262. 

 
4. Wu Y-h, Velenosi LA, Schröder P, Ludwig S, Blankenburg F (submitted 

September 2018) Decoding vibrotactile choice independent of stimulus 
order and saccade selection during sequential comparisons. Human 
Brain Mapping. 

 

*shared authorship 

 

III. Darlegung des eigenen Anteils der Schriften: 

Die Bewertung des Eigenanteils richtet sich nach der Skala: “vollständig – 
überwiegend – mehrheitlich – in Teilen” und enthält nur für den jeweiligen 
Artikel relevante Arbeitsbereiche. 
 

 



 

135 

Zu II.1.: Konzeption (in Teilen), Versuchsdesign (mehrheitlich), 
Programmierung (überwiegend), Datenerhebung (mehrheitlich), 
Datenauswertung (überwiegend), Ergebnisdiskussion (mehrheitlich), 
Erstellen des Manuskriptes (in Teilen). 

Zu II.2.: Konzeption (überwiegend), Versuchsdesign (überwiegend), 
Programmierung (überwiegend), Datenerhebung (überwiegend), 
Datenauswertung (überwiegend), Ergebnisdiskussion (überwiegend), 
Erstellen des Manuskriptes (überwiegend). 

Zu II.3.: Konzeption (in Teilen), Versuchsdesign (in Teilen), Programmierung 
(in Teilen), Datenerhebung (in Teilen), Datenauswertung (in Teilen), 
Ergebnisdiskussion (in Teilen), Erstellen des Manuskriptes (in Teilen). 

Zu II.4.: Konzeption (überwiegend), Versuchsdesign (überwiegend), 
Programmierung (vollständig), Datenerhebung (überwiegend), 
Datenauswertung (vollständig), Ergebnisdiskussion (überwiegend), Erstellen 
des Manuskriptes (vollständig). 

 

IV. Die Namen und Anschriften nebst E-Mail oder Fax der jeweiligen 
Mitautorinnen oder Mitautoren: 

zu II.1.: Timo Torsten Schmidt, Arbeitsbereich Neurocomputation and 
Neuroimaging, Fachbereich für Erziehungswissenschaft und 
Psychologie, Freie Universität Berlin, Habelschwerdter Allee 45, 
14195 Berlin. 

 E-Mail: titoschmi@zedat.fu-berlin.de  
 

Felix Blankenburg, Arbeitsbereich Neurocomputation and 
Neuroimaging, Fachbereich für Erziehungswissenschaft und 
Psychologie, Freie Universität Berlin, Habelschwerdter Allee 45, 
14195 Berlin. 
E-Mail: felix.blankenburg@fu-berlin.de  
 

zu II.2.: Isil Uluc, Arbeitsbereich Neurocomputation and Neuroimaging, 
Fachbereich für Erziehungswissenschaft und Psychologie, Freie 
Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin. 
E-Mail: isil.uluc@gmail.com 
  

 Timo Torsten Schmidt, s.o. 
  

 Kathrin Tertel, Arbeitsbereich Neurocomputation and Neuroimaging, 
Fachbereich für Erziehungswissenschaft und Psychologie, Freie 
Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin. 
E-Mail: kathrintertel@gmail.com 

 

 Evgeniya Kirilina, Arbeitsbereich Neurocomputation and 
Neuroimaging, Fachbereich für Erziehungswissenschaft und 

mailto:titoschmi@zedat.fu-berlin.de
mailto:felix.blankenburg@fu-berlin.de
mailto:isil.uluc@gmail.com
mailto:kathrintertel@gmail.com


 

136 

Psychologie, Freie Universität Berlin, Habelschwerdter Allee 45, 
14195 Berlin. 
E-Mail: evgeniya.kirilina@fu-berlin.de 

 

 Felix Blankenburg, s.o. 
 
zu II.3.: Isil Uluc, s.o. 
  

 Timo Torsten Schmidt, s.o. 
  

 Felix Blankenburg, s.o. 
 
zu II.4.: Lisa Velenosi, Arbeitsbereich Neurocomputation and Neuroimaging, 

Fachbereich für Erziehungswissenschaft und Psychologie, Freie 
Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin. 
E-Mail: lisa.velenosi@fu-berlin.de  
 

Pia Schröder, Arbeitsbereich Neurocomputation and Neuroimaging, 
Fachbereich für Erziehungswissenschaft und Psychologie, Freie 
Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin. 
E-Mail: pia.schroeder@fu-berlin.de  
 

Simon Ludwig, Arbeitsbereich Neurocomputation and Neuroimaging, 
Fachbereich für Erziehungswissenschaft und Psychologie, Freie 
Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin. 
E-Mail: simonludwig@gmail.com  
 

 Felix Blankenburg, s.o. 

 

Datum, Unterschrift der Doktorandin/des Doktorand 

 

Ich bestätige die von Yuan-hao Wu unter III. angegebene Erklärung: 

 

Name: Felix Blankenburg   Unterschrift: ____________________ 

Name: Evgeniya Kirilina   Unterschrift: ____________________ 

Name: Simon Ludwig   Unterschrift: ____________________ 

Name: Pia Schröder   Unterschrift: ____________________ 

mailto:evgeniya.kirilina@fu-berlin.de
mailto:lisa.velenosi@fu-berlin.de
mailto:pia.schroeder@fu-berlin.de


 

137 

Name: Kathrin Tertel   Unterschrift: ____________________ 

Name: Isil Uluc    Unterschrift: ____________________ 

Name: Lisa Velenosi   Unterschrift: ____________________ 

 


	1. Introduction
	1.1 The study of working memory
	1.1.1 Debate on the locus of working memory storage storage
	1.1.2 Empirical evidence for vibrotactile working memory

	1.2 The study of perceptual decision-making
	1.2.1 Signal detection theory
	1.2.2 Sequential-sampling models
	1.2.3 Empirical evidence from vibrotactile frequency discriminations

	1.3 Aims of the thesis

	2. Summary of the experiments
	2.1 Study 1: Parametric vibrotactile working memory representation in frontal regions
	2.2 Study 2: Overlapping frontoparietal networks for tactile and visual parametric working memory
	2.3 Study 3: Parametric working memory representation for auditory flutter stimulation
	2.4 Study 4: Decoding vibrotactile choice independent of sensory and motor task components

	3. General discussion
	3.1 Parametric working memory distributed throughout the cortical hierarchy
	3.1.1 Working memory representation in frontoparietal cortices
	3.1.2 Working memory representation in sensory cortices

	3.2 Abstract choice representation in effector-specific regions
	3.3 Outlook

	References
	A. Original research articles
	Study 1
	Study 2
	Study 3
	Study 4

	B. Supplement

