HARTMUT RITTER, KIRSTEN TERFLOTH, GEORG WITTENBURG, JOCHEN SCHILLER (HRSG.)

7. GI/ITG KUVS FACHGESPRACH

DRAHTLOSE SENSORNETZE

FREIE UNIVERSITAT BERLIN
INSTITUT FUR INFORMATIK
TAKUSTR. 9
14195 BERLIN

TECHNICAL REPORT B 08-12
FREIE UNIVERSITAT BERLIN,
FACHBEREICH MATHEMATIK UND INFORMATIK

7. GI/ITG KUVS FACHGESPRACH
DRAHTLOSE SENSORNETZE

AM 25. UND 26. SEPTEMBER 2008
IN BERLIN

HARTMUT RITTER, KIRSTEN TERFLOTH, GEORG WITTENBURG,
JOCHEN SCHILLER (HRSG.)

INHALT

VO RWORT ..ttt ettt ettt ettt ettt e st e s e st e s et et e s e st et en e e s e s es e s es e e s enses e s eneesene et enseseeseneesensesenseseaseneesensns S

BUG HUNTING IN SENSOR NETWORK APPLICATIONS ...coooviieieeeteeeeeeeeeeeeeeteeeee et 7
R. Sasnauskas, J. A. Bitsch Link, M. H. Alizai, K. Wehrle

OVER-THE-AIR PROGRAMMING OF WIRELESS SENSOR NODES ...ccooeiiieieriietiieeeeeeeeeeveeeieaa 11
M. Stemick, A. Boah, H. Rohling

DEADLOCK-FREE RESOURCE ARBITRATION FOR SENSOR NODES ...coooioiiieeeeeeeeeeeeeeeeeeeena 15
M. Baar, H. Will, J. Schiller, A. Dunkels

AN APPROACH TOWARDS ADAPTIVE PAYLOAD COMPRESSION IN
WIRELESS SENSOR NETWORKSoouiitiieieeeiteeeeeee ettt ettt ettt ese ettt eneeneeneeneeneeneeneeneensenseneeneensenens 19
A. Reinhardt, M. Hollick, R. Steinmetz

CONNECTIVITY-AWARE NEIGHBORHOOD MANAGEMENT PROTOCOL IN
WIRELESS SENSOR NETWORKS ...ttt ettt ettt ent et seeneenseneeneenseneenseneeneeneenseneaneas 23
Ch. Weyer, S. Unterschiitz, V. Turau

CHALLENGES IN SHORT-TERM WIRELESS LINK QUALITY ESTIMATIONccecvvieveviiiireiiieiereeeenes 27
M. H. Alizai, O. Landsiedel, K. Wehrle, A. Becher

SOMSED: AN INTERDISCIPLINARY APPROACH FOR DEVELOPING

WIRELESS SENSOR NETWORKS ...ttt ettt ettt eet et enseeseatenseaseneeaeeneeneaneas 29
S. Georgi, Ch. Weyer, M. Stemick, Ch. Renner, F. Hackbarth, U. Pilz, J. Eichmann, T. Pilsak,

H. Sauff, L. Torres, K. Dembowski, F. Wagner

MULTI CLIENT SYSTEMS IN WIRELESS SENSOR NETWORKS ...oooiiiiieeieeeeeeeeeeeeeeeeee e 31
L. Thiem, K. Scholl, M. Schuster, Th. Luckenbach

IMPLICIT SLEEP MODE DETERMINATION IN POWER MANAGEMENT OF
EVENT-DRIVEN DEEPLY EMBEDDED SYSTEMS ..ottt 37
A. Sieber, K. Walther, R. Karnapke, A. Lagemann, J. Nolte

TAB WONS: CALIBRATION APPROACH FOR WSN BASED ULTRASOUND
LOCALIZATION SYSTEMS ..ottt ettt ettt ettt ettt ess ettt et se et et et e e ess et essetesseteneeseeseasesens 41
C. Miihlberger, M. Baunach

IMPROVING RESPONSE TIME OF SENSOR NETWORKS BY SCHEDULING
LONGEST FLOWS FIRST oottt ettt ettt ettt ettt ettt et ent et e et e veentesaseneeereenns 45
N. Gollan, J. B. Schmitt

DESIGN CONCEPTS OF A PERSISTENT WIRELESS SENSOR TESTBED ...ooveuiiviieeieeeeeeeeeeeeeeeeen 49
B. Blywis, F. Juraschek, M. Giines, J. Schiller

KLASSIFIKATION VON SICHERHEITSRELEVANTEN EINSATZSZENARIOS FUR
DRAHTLOSE SENSORNETZE ..ooovioeieeieeeeee ettt ettt ettt ettt ettt ettt et eaeeaeeneeaeeneeteenseneenseneeaeeneenseneeneeneanean 53
Ch. Wieschebrink, M. Ullmann

REAL-TIME, BANDWIDTH, AND ENERGY EFFICIENT IEEE 802.15.4 FOR
MEDICAL APPLICATIONS ..ottt ettt ettt ettt ettt et ettt et e eteenaseaseaeenteeasentsensenseenseeseeneeanean S7
P. Kumar, M. Gilines, A. Al Basset Al Mamou, J. Schiller

A CLOSER LOOK AT THE ASSOCIATION PROCEDURE IN LOW POWER 802.15.4
MULTIHOP SENSOR NETWORIKS ...ttt e e e et e e e e et e e et e e e e e e e e e e e e e e e eeeaaaaas 61
B. Staehle

A NOVEL APPROACH FOR A LIGHTWEIGHT, CRYPTO-FREE MESSAGE
AUTHENTICATION IN WIRELESS SENSOR NETWORKS ...oooviieiitieeeeeieeeeeeeeeeeeeeeeeeeee e 65
1. Martinovic, J. B. Schmitt

RELIABLE MULTICAST IN WIRELESS SENSOR NETWORKScoooviiiiiiierieeeceeeeeeteeeeeeeeeee e 69
G. Wagenknecht, M. Anwander, M. Brogle, T. Braun

FIRST RESULTS OF A PERFORMANCE COMPARISON OF DYNAMIC SOURCE ROUTING
VERSUS GREEDY ROUTING IN REAL-WORLD SENSOR NETWORK DEPLOYMENTSccceuemennnen. 73

H. Frey, K. Pind

HOW TO TAKE ADVANTAGE FROM CORRELATED NODE MOVEMENT IN
MOBILE SENSOR INETWORIKS ... et eeeee et e et e e et e e e e e e e e e et e e e et e e e e e e e e e e eeeeaaaaas 77
A. Klein

GHOST: SOFTWARE AND CONFIGURATION DISTRIBUTION FOR

WIRELESS SENSOR/ACTOR NETWORKS ..ottt ettt e e e e et eeeeeeeeeeeeeeseeeaeeseeeeereeseaeeaa 81
M. Baunach
POSITIONIERUNG UND SENSOR WEB ENABLEMENT IN GEOSENSORNETZWERKEN......cccvvueeenn. 85

K. Walter, A. Born

SELF-ADAPTIVE LOAD BALANCING FOR MANY-TO-MANY
COMMUNICATION IN WIRELESS SENSOR NETWORKS......ceoveietieeeeeeereceeeeeeeeeeeveeeee e, 89
M. Gonzalo, K. Herrmann, K. Rothermel

FROM ACADEMIA TO THE FIELD: WIRELESS SENSOR NETWORKS FOR INDUSTRIAL USE......... 93
R. Falk, H.-J. Hof, U. Meyer, Ch. Niedermeier, R. Sollacher, N. Vicari

VERGLEICHBARKEIT VON ANSATZEN ZUR NETZWERKANALYSE IN
DRAHTLOSEN SENSORNETZENooiiiiieiieeeeeeeeee ettt ettt ettt eaeeteeteeveeneeteeaeeseeseaseesseneesessseseeseeseeseanens 97
J. Wilke, F. Werner, M. Bestehorn, Z. Benenson, S. Kellner, E.-O. Blaf

FRONTS - FOUNDATIONS OF ADAPTIVE NETWORKED SOCIETIES OF TINY ARTEFACTS 101
T. Baumgartner, A. Kréller, S. P. Fekete, C. Becker, D. Pfisterer

VORWORT

In dem vorliegenden Tagungsband sind die Beitrage des Fachgesprachs Drahtlose Sensornetze

2008 zusammengefasst. Ziel dieses Fachgesprichs ist es, Wissenschaftlerinnen und Wissenschaftler
aus diesem Gebiet die Mdglichkeit zu einem informellen Austausch zu geben — wobei immer auch
Teilnehmer aus der Industrieforschung willkommen sind, die auch in diesem Jahr wieder teilnehmen.

Das Fachgesprich ist eine betont informelle Veranstaltung der GI/ITG-Fachgruppe ,,Kommunikation
und Verteilte Systeme* (www.kuvs.de). Es ist ausdriicklich keine weitere Konferenz mit ihrem
groBBen Overhead und der Anforderung, fertige und moglichst ,,wasserdichte® Ergebnisse zu
présentieren, sondern es dient auch ganz explizit dazu, mit Neueinsteigern auf der Suche nach ihrem
Thema zu diskutieren und herauszufinden, wo die Herausforderungen an die zukiinftige Forschung
tiberhaupt liegen.

Das Fachgespréach Drahtlose Sensornetze 2008 findet in Berlin statt, in den Rdumen der Freien
Universitét Berlin, aber in Kooperation mit der ScatterWeb GmbH. Auch dies ein Novum, es zeigt,
dass das Fachgespriach doch deutlich mehr als nur ein nettes Beisammensein unter einem Motto ist.

Fiir die Organisation des Rahmens und der Abendveranstaltung gebiihrt Dank den beiden
Mitgliedern im Organisationskomitee, Kirsten Terfloth und Georg Wittenburg, aber auch Stefanie
Bahe, welche die redaktionelle Betreuung des Tagungsbands iibernommen hat, vielen anderen
Mitgliedern der AG Technische Informatik der FU Berlin und natiirlich auch ihrem Leiter, Prof.
Jochen Schiller.

Berlin, im September 2008 Hartmut Ritter

Bug Hunting in Sensor Network Applications

Raimondas Sasnauskas, J6 Agila Bitsch Link,
Muhammad Hamad Alizai, and Klaus Wehrle
Distributed Systems Group
RWTH Aachen University, Germany
{lasthame}@cs.rwth-aachen.de

ABSTRACT

Testing sensor network applications is an essential and a dif-
ficult task. Due to their distributed and faulty nature, severe
resource constraints, unobservable interactions, and limited
human interaction, sensor networks, make monitoring and
debugging of applications strenuous and more challenging.

In this paper we present KleeNet — a Klee based platform
independent bug hunting tool for sensor network applica-
tions before deployment — which can automatically test ap-
plications for all possible inputs, and hence, ensures memory
safety for TinyOS based applications. Upon finding a bug,
KleeNet generates a concrete test case with real input values
identifying a specific error path in a program. Additionally,
we show that KleeNet integrates well into TinyOS appli-
cation development life cycle with minimum manual effort,
making it easy for developers to test their applications.

1. INTRODUCTION

As with any software, testing of wireless sensor network ap-
plications is an essential part of development life cycle. The
main goal of this engineering task remains the same: finding
and fixing program bugs as early as possible.

Currently, sensor network application developers are con-
fronted with a number of domain specific complications. The
constrained memory and CPU resources on sensor nodes re-
sult in using low-level, type-unsafe languages without dy-
namic type checking and memory protection. Similarly, be-
cause the applications are highly data-flow oriented, the cor-
rect exception handling at full coverage is a challenging task.
Moreover, due to highly distributed and faulty nature of sen-
sor nodes, some of the program bugs are detected only after
the software is deployed.

C language has been the main choice for developing sensor
network applications. It provides great flexibility, expres-
siveness, and in particular, the required low resource foot-
print. However, the absence of dynamic type checking neces-
sitates very careful programming because many sensor OS’s
do not support memory protection. We argue that, besides
the particular sensor application semantic, the majority of
bugs comes from general programming flaws such as mem-
ory out-of-bounds references, null pointer dereferences, or
wrong type conversions. Especially, the widely used casting
between pointers to structures may lead to well-hidden type
errors. But in most cases, the given language features are
simply misused by novice programmers.

Starting with lint [8] tool nearly three decades ago, there has
been enormous effort spent on the error removal in C pro-
grams. Many techniques have been developed ranging from
static code analysis, formal verification, to full state model
checking. Numerous tools exist and are freely available to
use [4, 5, 7, 15]. Hence, our first step was to employ them
for testing sensor network software written in widely spread
TinyOS platform [12]. We encountered the following prob-
lems due to which the available tools are mostly not used at
all, and the developers fall back on manual code debugging
techniques:

e Sensor network applications are tightly integrated with
the whole operating system leading to time-consuming
manual code modification in order to perform the ac-
tual testing.

e Most of the tools perform only static code analysis
with limited support for C semantics. Since sensor
network applications mainly process data from the en-
vironment, possible runtime errors might stay unde-
tected.

e None of the tested tools can offer a push-button bug
finding technology and the usage learning curve is mostly
too steep for a typical developer.

We have discovered that recent research efforts in the area
of C code checking are now targeting the usability and full
automation as primary design goals [1, 2]. The philosophy is
to detect only definite errors, but automatically, at full ex-
ecution path coverage, and with minimum manual effort by
employing symbolic checking techniques [9]. We think that
these efforts could finally achieve the integration of sound
testing tools into the application development process.

2. RELATED WORK

To the best of our knowledge, currently there are no frame-
works for automatic bug detection in sensor network appli-
cations before deployment at bit-accurate C semantics. For
bringing memory safe executions of applications at runtime,
we only know of the related efforts [6, 10], where the sole
representative with fined-grained memory safety at C level
is Safe TinyOS.

Safe TinyOS adds dynamic memory checks during compila-
tion which allows to catch unsafe pointer and array opera-
tions without corrupting the RAM. Overall, this results in

Safe TOS | KleeNet
Automatic code instrumentation —

Features

Target platform independence —
Assembly level bug detection +
Off-line bug detection .
All possible input values checked —
Automatic test case generation —
Runtime safety enforcement +
No additional resource usage —

o+t

Table 1: Comparison: Safe TinyOS and KleeNet

13% increase in the code size and 5.2% increase in CPU us-
age. As with any dynamic assertion checking, Safe TinyOS
can detect program bugs only eventually after the software is
deployed. Therefore, still many corner-case bugs circumvent
this testing technique. KleeNet, on the other hand offers
offline bug detection with automatic code instrumentation.
In doing so, it doesn’t consume any system resources and
ensures memory safety by treating the inputs symbolically
i.e. checks any program variable for its all possible input
values. As the core engine of KleeNet interprets a virtual
instruction set, it cannot detect hardware platform depen-
dent assembly level bugs nor enforce runtime memory safety.
Thus, KleeNet complements the beneficial features of Safe
TinyOS allowing altogether even more rigorous application
testing (see Table 1).

Overall, we make following contributions: First, we integrate
an effective bug finding tool into the event-driven TinyOS
programming model with usability as a primary goal. Sec-
ond, we show that, apart from the general checks already
available, Klee can easily be extended to incorporate further
checks useful for testing sensor network applications. And
third, we practically demonstrate that sound testing tech-
niques can be used throughout the application development
process with minimum manual effort.

3. SYSTEM OVERVIEW

In this section, we present an overview of our system. First,
we introduce Klee, which we use for symbolically executing
C applications. We continue by discussing how we automat-
ically instrument source code without the help of applica-
tion developers. We conclude this section by presenting our
extension of Klee to enable struct type checking in sensor
network applications.

3.1 Klee

Klee is a symbolic execution tool for C programs based on
LLVM [11]. In contrast to common runtime testing where
the program input is (manually) generated, Klee runs the
code on symbolic input initially allowed to be “anything”.
The programmer only needs to specify which memory loca-
tions in his code are input-derived, e.g. an incoming network
packet. During code execution, all paths and operations on
symbolic variables are tracked. If a bug is detected, Klee au-
tomatically generates a test case with concrete values caus-
ing the bug. For example, consider a simple application code
in listing 1 and the associated KleeNet output in listing 2.

At the current state of its implementation, Klee reports only
memory reference and division by zero errors. It has been

developed to be scalable and to support all sorts of unsafe
type operations including pointer casts and pointer arith-
metics.

call Timerl.startPeriodic(500);
int a[10];
unsigned 1i;

klee_make_symbolic_name(&i, sizeof(i), 7i”);

event void Timerl. fired ()

{
call Leds.led1Toggle ();
// here we violate memory safety
// on the 11th signal of this event
if (i < 11)
ali++ = 1;

Listing 1: Array index out of bounds bug

$ make kleenet test

KLEE: ERROR: memory error: out of bound pointer
$ make kleenet display

BlinkFailC$i: 10’

Listing 2: KleeNet detects the memory error and
generates a concrete test case

3.2 Automatic Code Instrumentation

As discussed earlier, one of the major limitations associated
with most software testing tools is the lack of user friendly
interfaces. Most of the available tools are either not properly
integrated into software development process, or they even
require manual code modifications for testing the code.

One of our major design objectives is to provide an easy to
use bug finding tool for sensor network applications which
is strongly integrated in the software development life cycle.
For this purpose, we use grammar based automatic code
instrumentation. We extend ANTLR [13] based GNU C
grammar to automatically insert symbolic annotations (i.e.
to mark the memory locations to be checked by Klee) in
the C source code. The user only needs to provide a high
level configuration stating the variable names that has to
be checked inside the code. However, providing a configura-
tion to insert annotations in the code to perform additional
checks is optional, as our solution performs some built-in
checks to detect common bugs in sensor network applica-
tions. For example, struct type cast checking (discussed in
section 3.3) and memory checks on received packet buffers.

3.3 Struct type checking

Type conversions in C using type casts is a very common
practice, and, definitely not an error. But since type safety
is not guaranteed, programmers can interpret each memory
region to be of any type. Especially, the casts between point-
ers to different structure types make the code maintenance
difficult [3, 14].

One of the main objective of sensor network applications is
to collect and process data from the sensors. The received
data is at first available only as an untyped bit stream. Af-
terwards the pointer to this data is casted to a known struc-
ture type based on particular bit fields. During code execu-
tion further casts on this memory location are executed. We
have extended the functionality of Klee to check the struct
type equality during casting operations. This check is op-
tional, but nevertheless the warnings as shown in listing 4
are useful and facilitate program comprehension.

NewRoutex msg = (NewRoutex) payload;
// message processing
call Queue.enqueue(msg);

RouteUpdatex msg =
(RouteUpdatex) call Queue.dequeue();
// further message processing

Listing 3: Casting between pointers to different
structure types

$ make kleenet test struct
KLEE: WARNING: Struct types don’t match
KLEE: %struct.NewRoutex —> %struct . RouteUpdatex

Listing 4: KleeNet warnings

4. INTEGRATION INTO TINYOS

We decided to integrate Klee into TinyOS by adding a vir-
tual KleeNet platform based on the TinyOS null platform.
This approach allows us to easily add different modules to a
platform, that automatically marks sensor value input and
incoming packets as symbolic.

Since TinyOS applications are event-driven, parts of the
code are executed only eventually after particular events are
fired. In order to cover all possible program control flow
paths during testing, we have extended our virtual platform
with an automatic event signaling mechanism. Once an ap-
plication is booted, all implemented events are signaled and
processed. Finally, after processing the last event TinyOS
scheduler is stopped.

Figure 1 shows an overview of KleeNet’s build process. First,
a user can optionally specify in a configuration file which
variables in his code should be marked as symbolic. For this
purpose we parse the C-code after NesC compilation and
insert calls to klee_make_symbolic function. Second, all
incoming packet buffers are also marked symbolic automat-
ically. Third, the instrumented code is then passed to Klee
which builds the C-object file. Finally, Klee interprets this
object file and terminates when no bug is detected. Other-
wise a test case with real input values is automatically gen-
erated. Running this concrete test case with the unmodified
version of the code will cause the deployed sensor network
application follow the same path and hit the same bug.

Please note that, as we apply code instrumentation to C
source-code, therefore, this process is neither bound to a
certain hardware platform nor to TinyOS and NesC. Hence,

nescC files
-

Virtual
platform
C code
;Opﬁonal :
{ annotations by user | =— $ make kleenet
Annotaded
C Code
Compilation
J—
Object file
Termination Bug detected } $ make kleenet test
| exit | | test case |

Figure 1: Integration of KleeNet into TinyOS plat-
form

our approach can easily be integrated into any other sensor
network development platform and operating system.

5. EVALUATION

We first checked the BlinkFail application from the TinyOS
source repository. It is used to test if the Safe TinyOS
toolchain installation is working properly. After marking
the array index variable as symbolic we immediately de-
tected the known out of bound pointer error.

int ratio;

event message_t* Receive.receive(message_t* bufPtr,
void* payload, uint8_t len) {
if (len!=sizeof(receive_fail_msg_t)){return bufPtr;}
else{
receive_fail_msg_t* rcm=
(receive_fail_msg_t*)payload;
// possible division by zero here,
// depending on received message
ratio = rem—>good / rem—>total;
return bufPtr;
}
}

Listing 5: Possible division by zero error

$ make kleenet test
KILEE: ERROR: divide by zero

Listing 6: KleeNet detects the div by zero error

In listing 5, we demonstrate the usability of KleeNet for
finding possible bugs without annotating application source
code any further. A received message is processed without
sanitizing the received message which is a typical fault of
students new to programming. KleeNet rapidly detects this
mistake and warns the developer (Lst. 6).

Overall, after our initial tests, we have confirmed the follow-
ing key benefits of KleeNet:

Usability: A programmer can test the code with minimum
manual effort and without any previous knowledge about
the checking tool.

Coverage: KleeNet covers all possible execution paths and
checks all possible data values before application deploy-
ment.

Integration: KleeNet is invoked by simply adding an extra
build flag enabling the permanent code checking during the
application development process.

Efficiency: It is fast for everyday use.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented our technique and prototype
implementation for automatic testing of sensor network ap-
plications before deployment. It is important to fully test
(taking all possible inputs into account) embedded appli-
cations, such as sensor networks, where the cost of occur-
ring undetected errors after deployment could be fatal. We
have demonstrated that it is possible to close the gap be-
tween the testing and development community by providing
a user-friendly, automated bug finding tool which is strongly
integrated in the system development life cycle. We gave an
overview of our system design and of the preliminary evalu-
ation results achieved.

Strenuous deployment requirements and resource constrained
nature of sensor hardware, e.g. inadequate power supply and
limited computational power, demand even more rigorous
testing of sensor network applications. Incorporating fur-
ther useful checks in Klee, such as runtime monitoring of
long loops and computationally intensive tasks by adding
time annotations, is future work. Similarly, verifying the dis-
tributed behavior of sensor network protocols — such as cor-
rect state transitions — remains to be addressed. Moreover,
apart from TinyOS, we will apply our solution to other sen-
sor network operating systems and development platforms.

7. REFERENCES
[1] D. Babic and A. J. Hu. Calysto: scalable and precise
extended static checking. In ICSE ’08: Proc. of the
30th international conference on Software engineering,
2008.
[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: automatically generating

10

B8l

[5

(6]

[7]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

inputs of death. In C'CS ’06: Proc. of 13th ACM conf.
on Computer and communications security, 2006.

S. Chandra and T. Reps. Physical type checking for C.
SIGSOFT Softw. Eng. Notes, 1999.

H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In CCS "02:
Proc. of the 9th ACM conference on Computer and
communications security.

E. Clarke, D. Kroening, and F. Lerda. A Tool for
Checking ANSI-C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS
2004), 2004.

N. Cooprider, W. Archer, E. Eide, D. Gay, and

J. Regehr. Efficient memory safety for TinyOS. In
SenSys '07: Proc. of the 5th international conference
on Embedded networked sensor systems, 2007.

T. A. Henzinger, R. Jhala, R. Majumdar, G. C.
Necula, G. Sutre, and W. Weimer. Temporal-Safety
Proofs for Systems Code. In CAV ’02: Proc. of the
14th International Conference on Computer Aided
Verification, 2002.

S. Johnson. Lint, a C program checker. Computer
science technical report 65, Bell Laboratories, 1977.

J. C. King. Symbolic execution and program testing.
Commun. ACM, 1976.

R. Kumar, E. Kohler, and M. Srivastava. Harbor:
software-based memory protection for sensor nodes. In
IPSN °07: Proc. of the 6th international conference on
Information processing in sensor networks, 2007.

C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In CGO ’04: Proc. of the
international symposium on Code generation and
optimization, 2004.

P. Levis, S. Madden, J. Polastre, R. Szewczyk,

K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,

E. Brewer, and D. Culler. TinyOS: An Operating
System for Sensor Networks. In Ambient Intelligence.
2005.

T. J. Parr and R. W. Quong. Antlr: a predicated-11(k)
parser generator. Software: Practice and Ezperience,
July 1995.

H. Shen, J. Wang, L. Ping, and K. Sun. Securing C
Programs by Dynamic Type Checking. In ISPEC,
2006.

N. Volanschi. A Portable Compiler-Integrated
Approach to Permanent Checking. In ASE ’06: Proc.
of the 21st IEEE/ACM International Conference on
Automated Software Engineering, 2006.

Over-the-Air Programming of Wireless Sensor Nodes

Martin Stemick
m.stemick@tuhh.de

Anthony Boah
anthony.boah@tuhh.de

Hermann Rohling
rohling@tuhh.de

Hamburg University of Technology
Eissendorfer Str. 40
21073 Hamburg

ABSTRACT

Self-organizing Wireless Sensor Networks (WSNs) have gained
much attention in recent research and industrial activities. Such
WSNs enable measurements and information dissemination over
large areas. A common node in a WSN is usually equipped with a
microcontroller and a radio transceiver. A challenge in large
networks is to keep the firmware of the nodes up to date. Once the
network is deployed, it is hardly possible to access every node
physically and to upload a new firmware. Therefore, this paper
describes a technical solution for this problem using the radio
transceiver for the upload procedure. The presented solution
focuses on heterogeneous WSNs that contain several groups of
nodes and where each group fulfills a different task.

Keywords
WSN, OTAP, Network Reprogramming, AirFlash.

1. INTRODUCTION

WSN technology is a promising candidate to provide monitoring
over large areas and for long time periods. The network consists
of a large number of small and inexpensive nodes. Each node
contains a sensing-, computation- and communication unit. The
WSN technology will be applied in dangerous areas where human
beings have no access. Therefore, network maintenance or even
firmware updates cannot be accomplished based on a physical
access to the nodes and to the network. But the nodes can be
accessed over a wireless connection. Thus, in order to update the
firmware on a single node or in the entire network, a procedure
based on wireless access will be used.

In this paper, an Over-the-Air-Programming (OTAP) technique
will be used, which is based on the wireless access and
transmission scheme. In this case an image of the node firmware
will be transmitted via the wireless link. The image information
will be stored inside the node. The node will then load this new
image and execute it. These tasks already imply the main
challenges in designing an OTAP application. The OTAP
application presented in this paper is called AirFlash and is
especially designed to maintain experimental networks. These are
networks, which vary very much in size and are reprogrammed
quite often. Additionally, such networks are mostly
heterogeneous, i.e. the nodes inside the network run different
applications.

The next section introduces the concept and features of the
AirFlash application. This includes also a comparison with
already known OTAP applications. After that, the used node
platform is introduced and important implementation aspects are
addressed.

2. AIRFLASH CONCEPT

In a lab environment a node is reprogrammed by connecting it via
cable to a PC that directly uploads the new firmware into the
node’s memory.

Instead of a cable, AirFlash uses a wireless connection to the node
to upload the firmware. This connection is established by a so
called Gateway node, which is connected to the PC via a serial
port. The Gateway then sends out the firmware image to an
addressed node. The node will receive the image, load it into its
memory and execute it. These are the main functions of the
AirFlash application. These functions are controlled by a host
software running on the PC. (see Figure 1).

Host
Software

Gateway Node

Figure 1. Overview of AirFlash

For experimental WSNs a few more features are needed, which
will be listed below:

1. Several images on a node

ID of image names and versions

Check AirFlash-compatibility of an image
Golden Image

Easy setup of nodes for AirFlash

A

Support heterogeneous networks
7. Background Execution

The first feature describes the storage of multiple firmware
images on a node, where each image may contain a different
application. This allows selecting which application to run by a
simple wireless command. The second feature is necessary to
trace the versions of images stored on a node. This is especially
useful during development, when a node contains different
versions of the same image. The features three and four avoid
malfunctions while using AirFlash. Before a node is programmed
with an image, AirFlash must check the image for compliance
with the current AirFlash version, such that no incompatible
images will be loaded. A Golden Image [1] is an application that
resides in a predefined part of the node’s memory and provides
basic AirFlash functionality. If something goes wrong during
wireless reprogramming, the Golden Image is automatically
executed on the node. Thus, the node will stay accessible. The
fifth feature is the one-step preparation of the node for AirFlash.
This includes formatting of the nodes memory and installation of
the Golden Image. Also, as feature six points out, an image should
not be flooded to all nodes in the network. It should be possible to
address nodes individually, so that various applications can be

11

present inside the WSN. And finally, since AirFlash is only used
for reprogramming, while the node normally executes its usual
measurement application, AirFlash should stay in the background
if not used and claim as few resources as possible.

All these features named above are highly useful for running and
maintaining a WSN. They are all included in the AirFlash
application discussed in this paper. This feature combination is
unique to the presented AirFlash and is not found in other OTAP
implementations like Crossbow OTAP [2] or Deluge T2 [3]. For
example neither Crossbow nor Deluge support feature three and
five. Deluge additionally does not support feature six. And
Crossbow has the disadvantage that it consists of proprietary
code.

These are some of the reasons why AirFlash was created. The
implementation of all the listed features into AirFlash will be
introduced in the following sections.

3. PLATFORM

AirFlash is realized and tested for the IRIS node [4] as an
example. This is a wireless node with a 2.4 GHz radio transceiver
and an ATmegal281 microcontroller that contains 128kB of
internal program memory (Flash) and 4kB of internal EEPROM
[5]. Additionally, the IRIS node provides 512kB of external flash
memory, which will be used to store multiple firmware images.
AirFlash partitions the external memory into three so called slots
of 120kB for firmware images and a fourth slot of 20kB for the
Golden Image. The remaining 132kB can be used by data logging
applications. For programming of the node the open-source
framework TinyOS 2.x is used [6]. The choice for TinyOS was
made, since it provides powerful high-level interfaces to access
the node’s hardware.

4. AIRFLASH IMPLEMENTATION

At the node’s location, there are three basic tasks, which must be
performed by AirFlash:

- Receive image via wireless transfer
- Store image in external slot
- Load image from slot to program memory

For the last task, the microcontroller’s internal and external
memory must be accessed. For this purpose, usually a so called
bootloader application is used. This bootloader resides in a
dedicated partition (8kB) of the program memory of the
ATmegal281 and is able to access the remaining 120kB of
memory and execute applications therein. The bootloader is also
able to access the external memory (see Figure 2). Since the
partition dedicated for the bootloader is too small to contain the
complete AirFlash functionality, task one and two of the above
list must be performed by an additional software module. Such an
AirFlash module that controls the wireless image transfer must be
included into the node’s main application. There it stays in the
background and is only activated when awoken by a wireless
command. If the AirFlash module is woken up, it can receive an
image via radio and store it into a memory slot. By another
command, the module can afterwards invoke the bootloader that
loads the image from the slot, overwrites the old application
(including module) in the program memory and starts the new
application contained inside the image (see Figure 2).

12

Node
Ext. Memory
AirFlash _
T module | " loilD
Slot 2
Bootloader [«
Goldenimg

Figure 2. AirFlash components inside node

The implementation of the bootloader and the AirFlash module
will be discussed in the following.

4.1 Bootloader

The bootloader has the main purpose to read an image from the
external memory, process an error check and then write the image
file into the upper part of the microcontroller’s program memory.

The bootloader is invoked from the main application by setting
the program counter to the bootloader’s start address. The
information from which slot to load an image from the external
memory is passed to the bootloader via a command flag in the
microcontroller’s EEPROM. These flags are also used to signal
the application if the image was successfully loaded. This
information has to be passed through the EEPROM since the
RAM of the microcontroller will be reinitialized when changing
between main application and bootloader. Before starting to write
the image into the internal program memory, the bootloader
checks a flag in the EEPROM, if a previous write operation
failed. Additionally, all CRCs of the image are verified. To this
end, an image slot inside the external memory is organized in
pages of 256 bytes where each page contains a 2 byte CRC. A slot
also contains an additional 2 byte CRC, which is used to verify
the CRCs of all pages. Thus, the integrity of an image can be
guaranteed. If everything is correct, the selected image is written
to the program memory. The bootloader then sets the status flags
and resets command flags in the EEPROM and the program
counter is set to the start address of the transferred image. The
application inside the image is then executed.

If an error is detected in the image to load, the bootloader will not
write it to the program memory and sets the respective error flags
in the EEPROM. Then the control is given back to the main
application.

There is still the possibility that an undetected error occurs while
writing to the program memory. If this happens and the program
counter is reset to the application, it will skip these illegal code
parts and return to the bootloader. There, the exceptional
invocation is detected, since the command flags are not properly
set. Then the bootloader loads the Golden Image. The fourth slot
in the external memory is reserved for this. The Golden Image
contains the main AirFlash functionality and provides a fall-back
solution, if something fails during reprogramming.

Still, it has to be discussed, how the image packets are received at
the node and how they are written into the slots of the external
memory. This is the task of the AirFlash module, which is
described in the following.

4.2 AirFlash Module

The AirFlash module is implemented as a TinyOS component and
therefore can be integrated into any TinyOS application. The
integration of this module needs less then 6kB of additional
program memory. It uses the node’s radio to receive image data
from the host PC and to transmit status information. The radio
device is shared between the AirFlash module and the main
TinyOS application. The main application possesses the master
control over the radio. The request and release of the radio by
AirFlash is signaled to the main application by events. The
AirFlash module can assume three main states (see Figure 3): In
order to save resources, the AirFlash module works in the
background of the main application and is mostly in the sleep

state.

timer event

Sleeping

sleep packet
or timeout

AirFlash
packets

Figure 3. Sleep-wake cycle of AirFlash module

The module periodically enters the peeking state to listen for
AirFlash-related packets. If nothing is received, the module goes
to sleep after a while. If a so called enumeration packet is
received, the module sends a status message back to the host. If a
wakeup packet is received, the module steps into the “Wide
awake” state. Inside this state it is ready to receive image data and
to write it into the external memory. The module goes to sleep
again if the host sends a sleep packet or if a timeout occurs.

In the following, the AirFlash protocol that handles the image
transfer between host and node will be explained. First, the host
transmits a wakeup packet, in order to put the node into the “Wide
awake” state. The awoken node answers to the host. Then the
transmission of the image file can start. This process is depicted
in Figure 4. Since the image is up to 120kB in size, it must be
fragmented. Each fragment contains 256 Bytes, which is also the
size of a page in the memory. Each AirFlash packet (see Figure 5)
contains 16 bytes of image data, a so called subfragment. Thus, to
transmit one fragment of 256 bytes, 17 AirFlash packets are
necessary, where the last packet contains a CRC checksum to
verify the fragment.

Page
complete

Write page
buffer to
external
memory

Receive
Packet

Write packet
to page buffer

Success

Page
incomplete

Figure 4. Image transfer from the node’s perspective

AirFlash ID

Packet ID

Command

Storage page

Storage page bias

Data size

Data

CRC16

Figure 5. AirFlash packet format

All received subfragments are buffered in the RAM of the node.
The CRC from the 17™ packet is then used to verify the whole
fragment. If verification fails, a NACK packet is sent to the host
and the whole fragment is retransmitted. If verification is
successful, the fragment is written to the respective page of the
external memory and an ACK packet is sent to the host. This
buffering of whole fragments of the image has two benefits: First,
only a few ACKs are needed, which improves transfer speed. And
second, most data corrections take place inside the RAM which
extends the lifetime of the external memory.

When the image transfer is finished, the host can invoke the
bootloader by sending a special command. This command also
contains the number of the slot to be loaded. This information is
stored in the EEPROM to preserve it for the bootloader.

After the description of the transfer process, a closer look at the
AirFlash packet is taken:

The first field contains the AirFlash ID that distinguishes between
up- and downlink of an AirFlash connection. Thus, other nodes
with AirFlash connections are not disturbed by packets from other
nodes.

13

The Packet ID is a simple counter, which is used for packet
ordering. The Command field contains commands to the AirFlash
module. The Storage page identifies the current page to write and
the offset points to the actual subfragment of this page. It follows
the data size and the data field, which can contain up to 16 bytes.
The last field is a CRC checksum to detect packet errors.

Summarizing, the main features of the AirFlash module are listed
below:

- Implementation as component, thus easy integration in
TinyOS applications

- Runs as background process

- Writes received images to external memory

- Can jump to bootloader after successful image reception
- Provides AirFlash status for host

This leads us to the last part of the AirFlash application, namely
the host software. This software runs on a PC and controls the
image transfers to all nodes.

4.3 Host Software

The implementation of the host software can be divided into three
main parts: The first part is an interface to the serial port of the
PC that transmits packets to the radio Gateway. The second
component processes the AirFlash protocol. The last component
realizes a user interface. In this paper, only the basic functionality
of this application is presented. For further details please refer to
[7]. In order to transfer an image to a node, the image file is
loaded from the PC’s hard drive into the application. The integrity
of the image is verified by checksums. It is also checked, if the
image would fit into a slot. In a further check, the so called
AirFlash signature (10 bytes) is read from the image file which is
only present in AirFlash-capable images. If this signature is
missing, the image will not be transferred, since the node will not
be reachable via AirFlash after being reprogrammed with a non-
AirFlash image. A second signature contains information about
the AirFlash version the image was compiled with. This ensures
that also the host software is compatible to the image.
Additionally, the AirFlash version of the image must be the same
as the version of the Golden Image on the node. The only
possibility to upgrade the AirFlash version on the node is to
exchange its Golden Image via AirFlash.

Before starting the image transfer, the necessary number of pages
inside the node’s memory is calculated as well as CRC checksums
for each page. Then a command to erase the selected slot on the
node is sent. After an ACK is received the image transfer starts.
This process is analogous to the one described in chapter 4.2. If
an error occurs that cannot be handled by the protocol, the process
is aborted and must be restarted via the user interface.

5. PERFORMANCE

Finally, the transfer performance of AirFlash is evaluated. To test
the upload speed, images of 16kB, 32kB, 64kB and 120kB were
transferred multiple times to a node. The elapsed times were
collected and averaged. If the radio channel is not frequently used
by other applications, the transfer durations are almost constant

14

for a fixed image size. In average, a transfer rate of 1,1 kB is
achieved.

Image size (kB)

Image transfer time (sec)

Figure 6. Transfer times for various image sizes

6. CONCLUSION

The discussed AirFlash application is well suited for experimental
networks, since it allows the programming of heterogeneous
networks. The use of a Golden Image makes the application very
reliable if used in the field. An additional advantage is that the
AirFlash module can be easily integrated into any TinyOS
application. There, it stays in the background when not needed
and thus keeps the main application running smoothly.
Furthermore, additional features can be easily implemented, since
the TinyOS part is completely open source. A feature that is going
to be added is the capability to disseminate an image to a whole
WSN at once.

7. REFERENCES
[1] Hui, J., et al. 2008. TOSBootM.nc.
URL=http://tinyos.cvs.sourceforge.net

[2] Crossbow Technology. 2008. XMesh User’s Manual.
(Retrieved June 05, 2008). URL=http://www.xbow.com/
Products/productdetails.aspx?sid=154

[3] Chlipala, A. 2003. Deluge: Data Dissemination for Network
Reprogramming at Scale. Technical Report. UC Berkeley

[4] Crossbow Technology. 2008. IRIS data sheet. (Retrieved
June 02, 2008). URL=http://www.xbow.com/Products/
productdetails.aspx?sid=264

[S] Atmel Corporation. 2007. ATmegal281 data sheet.
(Retrieved June 05, 2008) URL=http://www.atmel.com/dyn/
resources/prod_documents/doc2549.pdf

[6] UC Berkeley. 2004. TinyOS Community Forum. (Retrieved
June 05, 2008). URL=http://www.tinyos.net

[71 Boah, A. 2008. Over-the-Air-Programming of Wireless
Sensor Nodes. Project Thesis. Hamburg University of
Technology.

Deadlock-free Resource Arbitration for Sensor Nodes

Heiko Will

Freie Universitat Berlin
Berlin, Germany

{baar,hwill,schiller}@inf.fu-berlin.de

Michael Baar Jochen Schiller

Abstract

Sensor network hardware designs consist of a central micro-
controller, to which sensors and communication peripherals
are connected. Resource arbitration and concurrency man-
agement must be implemented in software. Existing hardware
arbitration mechanisms use explicit locking to protect against
resource conflicts. Explicit locking may lead to deadlock,
which must be avoided for long-term sensor network deploy-
ments. We present a power-saving resource arbitration archi-
tecture that is deadlock-free, portable, and resource-efficient.
The architecture explicitly manages inter-device dependencies
to know what devices to power down.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design - Real-
time systems and embedded systems

Keywords
hardware abstraction, resource arbitration, fault-tolerance,
operating systems, wireless sensor networks

1 INTRODUCTION

Sensor network hardware designs consist of a central mi-
crocontroller to which sensors and communication peripher-
als, such as radio transceivers, are connected. Because peri-
pherals are used both by applications and by the operating
system, access to the peripherals must be controlled with an
arbitration mechanism.

We present a power saving resource arbitration architec-
ture and hardware abstraction layer (HAL) that provides
portability of applications and drivers between different
hardware platforms. Unlike existing resource arbitration
architectures [3] [7], our architecture is deadlock-free by
design.

As illustrated in Figure 1, introduction of a hardware ab-
straction layer (HAL) increases portability of operating system
and application code through common, well-defined device
interfaces. High-level device drivers can reuse low-level driv-
ers and do not need to provide their own implementation. To
further reduce operating system complexity, we integrate
resource arbitration and power management into the HAL as
part of the operating system. Most operating systems for wire-
less sensor nodes provide no hardware abstraction at all. Even
those who do, require cooperative interaction of user applica-
tions, which need to take care of resource arbitration. This
increases development overhead and vulnerability to uncoo-
perative or erroneous applications.

Energy is a scarce resource on wireless devices. To reduce
the energy consumption, every circuit and peripheral has to
be powered off when they are not used. An optimal power
saving strategy can only be implemented when the dependen-

Adam Dunkels

Swedish Institute of Computer Science
Box 1263, SE-164 29 Kista, Sweden

adam@sics.se

cies between devices are known; to switch off a shared bus, all
devices that use the bus must be switched off first. Our archi-
tecture explicitly encodes device dependencies to determine
when to switch off devices and shared busses.

2 A DEADLOCK-FREE RESOURCE ARBITRATION

ARCHITECTURE

The purpose of our resource arbitration architecture is
both to provide a hardware abstraction layer on top of the
underlying hardware, and to make it possible to switch off
hardware peripherals when they are not used to conserve
energy. The operating system and its applications can run on
different platforms using platform-specific implementations of
the HAL.

Stackable hardware platforms like the ScatterWeb
MSB-430 [1], that allow run-time addition of new boards and
hardware devices, present a novel challenge for the resource
arbitration architecture and HAL. The architecture must be
able to dynamically adapt to new device drivers being added
at run-time, potentially stored in on-board memory of the
additional hardware. Our architecture supports this by using
one-way dependencies and allows for run-time extension.

Our resource arbitration architecture is deadlock-free by
design. Existing approaches to resource arbitration for sensor
nodes [7] rely on explicit locking to determine when a peri-
pheral should be switched off. Explicit locking can, however,
lead to deadlock. In contrast, our architecture uses atomic

System Design without Hardware Abstraction

| Operating System and Applications

Q ©__ 9

Radio Driver SD-Card Driver Corrlmass Timer
Driver
SPI Driver SPI Driver SPI Driver [_UART Driver |
J
USARTO USART1
sPl P12 MHz[SPI UART) 56 kb/s
. Compass Terminal
| Radio | | SD-Card | | Circuit | | Circuit | Clock System ‘

System Design with Hardware Abstraction

Operating System and Applications

R A R S

N St C . .
Radio orage o ompass Terminal Timer
Driver Driver

L L [J J

Q

| HAL (Low-level Drivers, Resource Arbitration, Power Management) ‘

0

| Hardware Platform ‘

Figure 1. System architecture without and with hardware
abstraction layer

15

operations to ensure deadlock-free operation. Every access to
a hardware resource, such as reading a sensor or sending a
packet over the radio, is atomic and cannot be interrupted by
another operation.

The resource arbitration architecture does power man-
agement of all hardware peripherals by switching off peri-
pherals when they are not used. The architecture has know-
ledge of when devices can be powered off because it keeps
track of device dependencies and all access to peripherals
goes through the resource arbitration architecture.

2.1 Hardware Devices versus Virtual

Devices

Our hardware abstraction layer can implement device
drivers for devices that do not have a hardware equivalent.
This is useful for simulation or application development with-
out access to the target hardware. We refer to all software
devices that may or may not have their representation in
hardware as virtual devices.

Virtual devices can be implemented using four techniques:
emulation, virtualization, or layering. Emulation is used when
no device of the desired class exists. The device functionality is
either emulated with an existing hardware device or simu-
lated in software. Virtualization is used to increase the num-
ber of devices of a specific type. A larger number can be pro-
vided by software multiplexing. Multiplexing is done transpa-
rently to the application. Layering is used when one or more
hardware devices provide functionality that can be combined
or extended to a more powerful high-level device.

211 Structural Design Elements

Hardware devices are shared resources that usually cor-
respond to physical devices. Each hardware device is
represented by a unique device entity in software. Different
method implementations are used to access a hardware de-
vice. This is useful for devices that can handle more than one
protocol. Each implementation can be used by multiple virtual
devices to minimize platform specific code.

We use device entities to model inter-device dependencies
and to provide per-device power control. Dependencies are
modeled as trees. Each device entity keeps a list of devices it
depends on. The owner marks device entities when the device
entities are in use. Root entities are owned by virtual device
entities and descendants are owned by their root.

We use virtual device hubs to implement device sharing.
Different virtual devices may operate on the same shared

extends

device. Each virtual device may require a different configura-
tion of the shared resource such as data rate or protocol. Vir-
tual device hubs contain all state information necessary for
multiplexing a shared device entity between an arbitrary
number of virtual devices. A single virtual device can be se-
lected as default and will be active, whenever no other device
is active. The device selection is also used to forward inter-
rupts to the right virtual device. A hub does not have a list of
connected devices, which allows introducing new virtual
devices dynamically at runtime.

A virtual device entity is an abstract software device. It is
specialized by virtual device classes and is not intended to be
used stand-alone. It extends the device entity. In this way the
virtual device becomes a unique device entity itself, can refer-
ence its dependencies and provide its own power and configu-
ration management. It can be connected to a virtual device
hub, which then functions as a switching facility for all virtual
devices operating on the same shared device.

Avirtual device class represents a set of virtual device enti-
ties with a common interface. Usually a common functionality
is also assumed. Typical classes found on embedded devices
would be serial byte 1/0 (e.g. communication ports, peripheral
connections) or memory (e.g. EEPROM, external flash card).
Depending on the implementation, access to the underlying
hardware can be shared, exclusive, virtualized or emulated.

To create a virtual device class the virtual device entity is
extended to a virtual device class with its own class specific
set of methods, callbacks, configuration and state. Callbacks
will usually be triggered by interrupts and are directly for-
warded to a consumer. State is dynamic information, while
configuration is static. A virtual device class has a well known
set of methods which is implemented platform dependently.
From outside driver code, virtual devices are strictly to be
accessed only by the APL

2.1.2 Using Virtual Devices

The structures we discussed so far can be kept slim to be
implemented on a resource limited device without much im-
pact on usability. However, defining an adequate interface
specification for virtual device classes that fulfils our require-
ments, uses only a small amount of memory and still can be
implemented in the C programming language is a challenge.

For each device class a minimum and maximum set of op-
erations can be found. The minimum set contains all atomic
operations which are absolutely necessary and found on every
hardware device. The maximum set will also contain more

Virtual Device Class

Methods active device

Events
Virtual

Device

Device State
0.1 default device

\ 0.1 connected to 0..n

Device Config.

uses

depends on

Device Entity

Control Interface
0.1

in use by

Hardware
Device

corresponds tQ

y 0.n

(owner) 1n
/P

latform Specific
Method

Y

Implementation

Figure 2. Simplified entity relationship diagram of the compositional architecture; multiplicity in Chen notation, omitted for 1:1 relations

16

high-level operations that may only be supported by some
devices. Functionality not supported by the hardware needs to
be emulated in software. A selection of these sets needs to be
defined as methods of the virtual device. Implementations for
all these functions need to be polymorphic and implemented
for each hardware platform. Multiple virtual devices can use
the same implementation. Upon this interface a second set, the
API functions, which is independent of the hardware platform
can be defined. This API can explicitly export virtual device
methods or define high-level functionality upon these.

2.2 Behavioral Design

We have shown the structural composition of our hard-
ware abstraction layer architecture. To bring these structures
to life and enforce the requirements, implicitly given by the
structural design, we introduce a central actor for device
management. This actor takes part in all API calls to ensure
proper device configuration and power management com-
pletely transparent to the application. Fault-tolerance is given
by the fact that layers above the HAL do not need to care
about switching power, configuring busses and devices, but
can simply use them. Using them in an unstructured way will
generate more overhead, but the HAL core will ensure that all
virtual device operations are possible.

Based on our experience with numerous hardware plat-
forms and several operating systems for wireless sensor net-
works we designed the HAL core for non-preemptive systems
although the structural architecture can support these as well.
Small energy efficient microcontrollers used in sensor net-
works do not provide virtual memory controllers for true
preemption. The overhead necessary for fault-tolerant dead-
lock handling and device access scheduling can be saved. For
energy efficiency operating systems are built event-based and
driven by hardware interrupts. Data processing can be syn-
chronized by means of a processing loop. Interrupt code is
executable from lower-power modes and kept short to allow
for other interrupts. A processing loop is running in full-power
mode and switches the system to low-power when processing
is done. In this programming model interrupts are used for
notification (e.g. timers, completion of an operation) or for
receiving data (serial connection) and to trigger actions which
are executed outside the interrupt. Only for strict real-time
requirements it may be necessary to perform actions inside of
interrupts. Our architecture can handle all processing transpa-
rently when used from outside interrupts. Some extra care is
needed, for special cases where interrupt code must access
virtual devices.

2.2.1 Defining Atomic Operations

We implement the basic set of operations on a virtual de-
vice as atomic. Most of them directly access the underlying
hardware. Depending on the specific hardware and its proto-
col, interrupting an atomic operation and reconfiguration of a
shared resource may cause errors or leave the hardware de-
vice in an undefined state.

To ensure uninterrupted function each atomic operation
has to indicate this condition to the system kernel. The system
kernel needs to deactivate interrupt handling and preemptive
scheduling accordingly. When developing the device driver
the developer has to decide which measures are appropriate
for each operation.

222 Managing the State of Virtual Devices

This management of virtual devices and the state of their
associated device entities provides fault-tolerant resource
arbitration and allows the application developer to use a com-
plex hardware platform without caring about shared resource
or individual power management. The HAL core functionality
is completely hidden behind the virtual device API and thus
transparent to the application.

We define the HAL core device management upon a state-
machine graph (see Figure 3) of a virtual device with the fol-
lowing states and transitions.

. Active: the device is powered on, configured and
ready to use.

! Inactive: The device is still powered on and confi-
gured. It is no longer in use and can be powered off
or reactivated instantly.

. Powered off: The device hardware is powered off, if
supported.

Before a virtual device method is accessed by the AP], the
device must be activated. If it is inactive, it can be reactivated
immediately. Otherwise the HAL ensures that all requirements
are met and activates the device. After the API operation has
finished, the device is deactivated. It is left to the power man-
agement to power down inactive devices later. During both
activation and power down the optional control functions of
involved devices are called.

Activation of virtual devices from powered off state is a
key operation. It is based on the fact that API operations are
synchronous and no other API operations are to be invoked
from within interrupts. For few operations it can be necessary
to access virtual device methods from interrupts (e.g. timers).
At this point it is up to the developer to manually activate
another device and switch back to the previous one after-
wards. Special care has to be applied to verify that any device,
which might be preempted during an operation, is able to
pause and continue.

223 Multiplexing Virtual Devices

Using hubs, virtual devices are multiplexed on a shared re-
source. Only a single virtual device can be selected at a hub at
any time. This addition is necessary, when interrupt events
need to be forwarded to the device which currently uses the
associated device and to provide a mechanism for default
configuration. Hubs also help to reduce overhead for device
deactivation, because usually all virtual devices on a hub de-

device access :
activate

powered
off

device access :
reactivate

access finished :

power management >
deactivate

V other virtual device on
same hub becomes active’
V dependency needed by
other device to become active
: power down

! only applicable, if a hub is used

Figure 3. Virtual device State-Machine diagram

17

pend on the same device entities. Virtual devices may be used
without hub.

Interrupt handlers shall use hubs to forward any event or
data to the associated handler of the currently active device on
the hub.

2.2.4 Power Management

We propose a fine grained multi-layer power manage-
ment. Each layer uses the same power down API such that the
virtual device state (compare Figure 3) remains consistent at
all times.

. Device Implementation: Devices can deactivate them-
selves immediately after an operation transparent to
the HAL core. This is especially reasonable for devic-
es that consume a lot of power and complete in a
single operation. Examples are AD converters or
some temperature sensors.

. Virtual Device Hub: The HAL core powers down a vir-
tual device if another device becomes activate on the
same hub or a device has to be deactivated due to
conflicting dependencies.

. Operating System: The system kernel powers down
inactive devices, before the microcontroller is set to
low-power mode.

Virtual devices that are selected as default on a hub will
never be inactive and thus are not powered down by the ker-
nel. For kernel power management the HAL needs to keep
track of inactive devices. Depending on the microcontroller
architecture it can be effective to disable all unused circuits to
safe power.

3 RELATED WORK

A fully grown operation system as Linux already provides
broad set of services including device identification, enumera-
tion and hot-plugging [3]. It needs to use explicit locking to
support hardware multi-tasking and preemption and still has
to be tolerant against faulty applications. Its hardware ab-
straction and driver model is too large to focus on the energy
and efficiency aspects that are crucial to small embedded
devices.

The TinyOS 2.0 operating system provides both resource
arbitration and hardware abstraction suitable for sensor
nodes [4] [5]. The combination of both roughly covers the
same endpoints as our solution. Using the nesC language, two
layers of device interfaces are defined [6]. A Hardware Presen-
tation Layer (HPL) provides a device specific set of functions
that encapsulates the immediate hardware access such as
register names. On top of the HPL, a HAL is defined as a device
specific abstraction. Finally, a high-level Hardware Interface
Layer (HIL) provides a device independent interface. The
abstraction level of the HIL corresponds to our virtual device
methods abstraction.

While defining interfaces using nesC, which cannot be ex-
pressed in ANSI C helps structuring the API by adding seman-
tics, it does not provide additional functionality. The addition-
al coding layer with its compiler allows semantic checks dur-

18

ing compilation that are not performed without. However, this
so-called wiring is completely static. It is not possible to
change callbacks or load new functionality at run-time, whe-
reas we also support dynamic modification loading of new
virtual devices at run-time.

The Integrated Concurrency and Energy Management
(ICEM) proposed by Klues et al. in [7] shifts responsibility
from the application to the core which reduces application
complexity. In ICEM, shared resources are explicitly acquired
and released by clients, which cooperatively use locked re-
sources. For reliable operation a deadlock recovery strategy
needs to be added to this approach. Power management is
done by special devices which are selected as default devices.
I/0 request queues are used to optimize switching. Our archi-
tecture has a very small overhead between consecutive opera-
tions on the same shared (virtual) device, so we can do with-
out the additional complexity and administrative overhead
introduced by queuing requests. Completely transparent use
of our HAL removes complexity from applications, while still
being efficient.

4 CONCLUSIONS

We present a novel deadlock-free resource arbitration for
sensor nodes that integrates configuration and power man-
agement completely transparent to the application. By design-
ing a deadlock-free architecture, we remove a hazard for sys-
tem failure. We are currently implementing this HAL on the
Contiki operating system [8] for the ScatterWeb MSB-Av2
platform.

REFERENCES

[1] M.Baar, E.Koéppe and]J.Schiller. “The ScatterWeb MSB-430
Platform for Wireless Sensor Networks”. Poster and Abstract.
Contiki Hands-On Workshop 2007, Kista, Sweden, 03/2006.

[2] Texas Instruments. MSP430F1612 datasheet (slas368e), user’s
guide (slau049f); Texas Instruments Inc.; Dallas US-TX 2006 .

[3] J.Corbet, A.Rubini, G.Kroah-Hartman. ,Linux Device Drivers".
Third Edition, O’'Reilly Media Inc., Sebastopol, USA, 02/2005.

[4] V.Handziski,]. Polastre,].-H. Hauer, C. Sharp, A. Wolisz, D. Culler,
D. Gay. “TinyOS TEP 2 - Hardware Abstraction Architecture”,
Draft 1.6 (2007-02-28) for TinyOS 2.0, published on TinyOS
Website http://www.tinyos.com .

[51 K. Klues, K, P. Levis, D. Gay, D. Culler and V. Handziski. “TinyOS
TEP 108 - Resource Arbitration®, final version for TinyOS 2.x,
TinyOS, published on TinyOS Website at
http://www.tinyos.com .

[6] D.Gay, P.Levis, D.Culler, E.Brewer. “nesC 1.1 Language
Reference Manual“, published on nesC Website, 05/2003
http://nescc.sourceforge.net .

[7] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, P. Levis.
“Integrating Concurrency Control and Energy Management in
Device Drivers” in Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP 2007), Washington, USA,
10/2007.

[8] A.Dunkels, B. Gronvall and T. Voigt. “Contiki - a lightweight and
flexible operating system for tiny networked sensors”. In
Proceedings of the First IEEE Workshop on Embedded
Networked Sensors, Tampa, Florida, USA, 11/2004.

An Approach towards Adaptive Payload
Compression in Wireless Sensor Networks

[Extended Abstract]

Andreas Reinhardt, Matthias Hollick, Ralf Steinmetz
Multimedia Communications Lab
Technische Universitat Darmstadt, Merckstr. 25, 64283 Darmstadt
Andreas.Reinhardt@kom.tu-darmstadt.de

ABSTRACT

Most nodes in current wireless sensor networks are battery-
powered and hence strongly constrained in their energy bud-
get. While a variety of energy-efficient MAC protocols specif-
ically tailored to sensor networks has been developed, the
data rate limitation of the underlying hardware still repre-
sents a lower bound for the time required to transfer pack-
ets, and thus directly contributes to the energy requirement
for transmissions. Further energy savings for given plat-
forms can only be achieved by downsizing the packet, e.g. by
means of in-network processing or data compression. In this
paper, we present our approach towards an adaptive packet
compression framework for sensor network applications that
compresses sensor data with the locally optimal energy effi-
ciency ratio.

1. INTRODUCTION

Wireless Sensor Network (WSN) deployments commonly
comprise sensor nodes which distributedly take measure-
ments, process the data, and subsequently forward the re-
sults to other nodes or external sinks [1]. Most existing
platforms are powered by batteries, and hence inherently
limited in their energy budgets. Once the entire battery
charge has been consumed, the nodes stop operating and
need to be replaced. Assuming a constant battery charge,
there is a linear relation between power consumption and
node lifetime, wherein the lifetime decreases with rising cur-
rent consumption. Even solar powered nodes, such as the
Trio platform [4], cannot completely tackle this challenge, as
they rely on deployment in areas regularly exposed to direct
sunlight.

It follows from the correlation between current consumption
and node lifetime that maximizing a node’s lifetime can only
be achieved by minimizing its overall energy requirements.
As available sensor node platforms commonly employ dedi-
cated radio transceivers, sensors and peripherals, selectively
disabling these components allows to measure the node’s en-
ergy consumption in different configurations. Exemplarily,
the current consumption figures for the widely used tmote
sky platform have been taken from the datasheet [9] and
were plotted against each other in Figure 1. It is clearly
visible that the radio transceiver exhibits a power consump-
tion that is about one order of magnitude higher than the
corresponding values for the used microcontroller.

As the employed CC2420 radio transceiver does not pro-
vide low-power modes, a common solution to the problem
of its comparably high energy consumption is limiting the
time of its operation and putting it into sleep mode for the
remaining period. Energy-efficient MAC protocols specifi-
cally tailored to sensor networks, such as [7, 11, 3, 6], make
use of such schedules and thus allow for significant energy
savings. We anticipate that combining such MAC proto-
cols with supplementary extensions to minimize the number
of packet transmissions and the corresponding payload sizes
can lead to even higher savings and an extended node life-
time.

251

20

Current [mA]
>

=)
T

RX/on TX/on off / on off / idle off/standby

Configuration [Radio/CPU]

Figure 1: Power consumption of tmote sky nodes
(numbers taken from [9])

This paper compares two methods to reduce traffic in sensor
networks (see Section 2) and outlines their mode of opera-
tion. Special emphasis is put on their applicability in WSNs,
as resource-constrained devices generally exhibit character-
istics that differ from common desktop computers. Subse-
quently, we present our approach towards an adaptive packet
compression framework for sensor network applications in
Section 3. By compressing sensor data with the locally opti-
mal energy efficiency ratio, energy can be preserved and thus
the node lifetime extended. The description of our vision is
followed by an analysis of related work. Finally, conclusions
and an outlook will be presented in Section 4.

19

2. REDUCING TRAFFIC IN THE WSN

Although several methods of reducing the size or number
of packets in WSNs exist, we introduce two common so-
lutions in this section. Data aggregation tries to optimize
the number of transmissions throughout the sensor network,
while data compression strives for a local optimization of the
amount of transmissions and their payload size.

2.1 Data Aggregation

If incoming packets and locally generated data are addressed
to the same destination, combining these data sets into a
single packet can effectively reduce the number of transmis-
sions required [5]. For example, consider the linear topology
depicted in Figure 2. The rightmost node (S) acts as a sink
to sensor readings from the remaining nodes (A4, B, C).

Multi-Hop Forwarding
Data (A

Data (A) %%)—» Data (B)
— Daw(®) Data (C)

® 06 0 6

Data (A) Data (AB)

Data (AB.C)
Data Aggregation

Figure 2: A linear sensor network topology

If only one-hop connectivity is given, a total of six trans-
missions are required to forward all measured data to the
sink (depicted as the multi-hop forwarding case). Another
downside of this issue is that node C, located next to the
sink, must forward a higher count of packets than A or B
and will thus most likely deplete its energy budget first.

Aggregating the incoming sensor data with local readings
and forwarding these results to the sink can reduce the re-
quired number of transmissions from six to three in this basic
scenario, hence achieving savings of 50% in the number of
transmissions. This is indicated in the lower part of Figure 2,
where only a single aggregated data packet is forwarded by
each node.

Although node distributions in real deployments might con-
siderably differ from this example, it should be remarked
that the number of packets cannot increase by applying data
aggregation.

2.2 Data Compression

Opposed to the previously described mechanisms of data
aggregation, data compression targets to locally reduce the
packet payload size by increasing the information density
within a packet. In general, compression algorithms can be
classified as either lossless or lossy. While some applications
(such as software updates) require a bitwise correct trans-
mission of data, intrinsic offsets in sensor hardware might
reduce the achievable accuracy and thus provide an applica-
tion area for lossy compression.

A variety of different approaches exist, and will be briefly
introduced in Section 3.1. While generic compression al-

20

gorithms often achieve good average compression ratios on
various types of input data, algorithms adapted to specific
applications often provide better performance, however at
the cost of being limited to a narrow application area.

A common metric to evaluate the savings achieved by data
compression is the energy cost per bit. Data compression
is only feasible in terms of energy efficiency if the computa-
tional efforts to reduce the payload size by one bit are lower
than the energy required for transmitting this additional
bit. Depending on the used components, current sensor node
platforms can perform 4.000 to 2.000.000 CPU cycles [8] in-
stead of transmitting a single byte, while still maintaining a
positive energy balance.

3. VISION

The vision of our research is to develop a modular compres-
sion framework, which can be deployed on nodes in a WSN.
It comprises a set of different compression and decompres-
sion algorithms, which can be adaptively selected, and even
combined to achieve additional savings. By compiling the
algorithms into packages, different compression methods can
be dynamically selected, exchanged and updated during run-
time.

As many current sensor network applications follow pre-
defined structure definitions in their output data format-
ting, different compression algorithms will typically produce
differently sized output. The framework can either rely on
application-defined preferences regarding the preferred com-
pression engine, or compress an exemplary set of sensor data
with its available compressors prior to selecting the algo-
rithm with the highest energy efficiency. While this analysis
might consume more energy before regular operation, it only
needs to be performed once and will subsequently use the
locally optimal compression algorithm.

Additionally, applications can also specify delay bounds for
the compression of their packets. This mechanism ensures
that lengthy algorithms are avoided when low latency trans-
missions are required. The framework is targeted to al-
low dynamic updates and modifications of the compressors
and/or compressor parameters during runtime. This allows
to exchange slow implementations of algorithms with opti-
mized ones and tune parameters to fulfill the application’s
needs.

3.1 Related Work

A variety of data compression (and decompression, respec-
tively) algorithms are well-known, although only few of them
were specifically tailored to fit the needs of sensor networks.
The emerging field of sensor networks however poses differ-
ent constraints on resulting algorithms than common desk-
top computers do. Both processing power and available
memory are tightly limited in sensor nodes, and their tight
energy budget must additionally be considered. For these
reasons, heavyweight compressors, such as partial predic-
tive matching (PPM), or similar algorithms that require big
dictionaries to be stored in RAM, cannot be run on the
nodes. The even more sophisticated PAQ compressor quotes
a minimum RAM consumption of 35 megabytes, although

values range up to 1712MB!. Barr and Asanovié¢ performed
an analysis of several compression algorithms on a Compaq
Personal Server handheld device in [2]. The platform fea-
tured a 233MHz CPU with 32 megabytes of RAM, render-
ing a direct mapping of the results to sensor node platforms
equipped with low-power CPUs and a few kilobytes of RAM
impossible.

Other authors have noticed this discrepancy between highly
demanding but efficient compression algorithms and sensor
node capabilites, and have thus designed algorithms specif-
ically adapted to sensor networks, such as S-LZW [8] and
SBZIP [10]. However, Tsiftes et al. have mainly regarded
software updates that were compressed before deployment
in [10]. Software updates are deployed less frequently than
data packets, and even when a higher number of packets are
required to transmit an application image, the necessity to
compress packet payloads still persists.

4. CONCLUSION

Limited energy budgets of sensor network nodes make data
compression a necessity when energy savings are required.
However, it is very likely that there is no universally optimal
compression algorithm for sensor network data. Instead,
the need to adapt to the payload contents and dynamically
choose the appropriate compression algorithm that yields
best compression rates whilst preserving energy is arising
to keep the energy consumption low and thus enhance node
lifetime.

Compression algorithms implemented for desktop computers
are generally not suited for sensor nodes, as they have high
requirements towards CPU and memory size. However, a
lot of existing approaches and concepts can be applied in
sensors networks in modified forms. We propose the use of
a modular compression framework that can be dynamically
updated during runtime, while automatically detecting the
locally optimal compression scheme for application-specific
data.

When data from different sources is present in sensor nodes,
generic compression algorithms will not always yield opti-
mum results. In such application scenarios, we expect our
compression framework to outperform solutions that rely on
a single static compressor and thus achieve high energy sav-
ings.

5. REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A Survey on Sensor Networks. IEEE
Communications Magazine, 40:102-114, 2002.

[2] K. Barr and K. Asanovié¢. Energy Aware Lossless Data
Compression. In Proceedings of the First International
Conference on Mobile Systems, Applications, and
Services (MobiSys), 2003.

[3] M. Buettner, G. Yee, E. Anderson, and R. Han.
X-MAC: A Short Preamble MAC Protocol For
Duty-Cycled Wireless Sensor Networks. In Proceedings
of the 4th International Conference on Embedded
Networked Sensor Systems (SenSys), 2006.

! According to the developer homepage at http://www.cs.
fit.edu/ mmahoney/compression/

[4] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp,

J. Taneja, G. Tolle, K. Whitehouse, and D. Culler.
Trio: Enabling Sustainable and Scalable Outdoor
Wireless Sensor Network Deployments. In Proceedings
of the Fifth International Conference on Information
Processing in Sensor Networks (IPSN), 2006.

[5] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks.
Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking
(MobiCom), 2000.

[6] B. H. Liu, N. Bulusu, H. Pham, and S. Jha. CSMAC:
A Novel DS-CDMA Based MAC Protocol for Wireless
Sensor Networks. In Proceedings of the 2004 IEEE
Global Telecommunications Conference Workshops
(GLOBECOM), 2004.

[7] J. Polastre, J. Hill, and D. Culler. Versatile Low
Power Media Access for Wireless Sensor Networks. In
Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems (SenSys), 2004.

[8] C. M. Sadler and M. Martonosi. Data Compression
Algorithms for Energy-Constrained Devices in Delay
Tolerant Networks. In Proceedings of the 4th
International Conference on Embedded Networked
Sensor Systems (SenSys), 2006.

[9] Sentilla Corp. Tmote Sky Datasheet. Online:
http://wuw.sentilla.com/moteiv-endoflife.html,
2007.

[10] N. Tsiftes, A. Dunkels, and T. Voigt. Efficient Sensor
Network Reprogramming through Compression of
Executable Modules. In Proceedings of the 5th Annual
IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks
(SECON), 2008.

[11] W. Ye, J. Heidemann, and D. Estrin. An
Energy-Efficient MAC protocol for Wireless Sensor
Networks. Technical Report ISI-TR-543, Information
Science Institute (ISI) / University of Southern
California (USC), 2001.

21

Connectivity-aware Neighborhood Management Protocol
in Wireless Sensor Networks

Christoph Weyer, Stefan Unterschiitz, and Volker Turau
Institute of Telematics
Hamburg University of Technology, Germany
c.weyer@tu-harburg.de

ABSTRACT

Neighborhood relations are changing over time in wireless
sensor networks due to different hardware or environmental
effects. These effects and memory limitations require a bal-
anced neighborhood management to ensure agility, stability,
symmetry, and connectivity. The proposed neighborhood
management protocol Mahalle is optimized with regard to
these four criteria. Agility and stability are achieved by
ALE, a new adaptive link estimator.

1. INTRODUCTION

Many applications or algorithms for wireless sensor networks
depend on a priori knowledge of neighborhood information.
This encompasses information about neighborhood relations,
i.e., which nodes can communicate with each other, and
information about the link quality and reliability between
those nodes. Self-stabilizing algorithms are a prominent ex-
ample of algorithms that highly depend on neighborhood
information [3]. The quality of neighborhood information
can be described by four criteria: agility, stability, symme-
try, and connectivity.

Before accounting a node as a neighbor the quality and relia-
bility of the communication link between the nodes must be
assessed. Many parameters of the environment, e.g., multi-
path effects, lead to a variation of these link properties over
time. Due to the characteristics of the wireless channel,
neighborhood relations are not known a priori and can only
be gathered after the deployment when the network is in
operation.

The local view upon the neighborhood of a node forms the
topology of the network at the global scope. Variations in
hardware, changes in the environment, or node failures lead
to dynamic changes of the topology. Therefore, neighbor-
hood relations are not fixed during the whole lifetime of the
network. Frequent topology changes lead to a degradation of
the algorithms or applications running on top of the formed
topology. This aspect of the quality of a neighborhood pro-
tocol is captured by the concepts of agility and stability.
Agility measures the speed of adapting to desirable events,
such as failure of a node respectively a link or deployment
of a new nodes. Stability is the ability to ignore transient
failures.

Despite variation over time the neighborhood relations must
be consistent between nodes. This requirement is expressed

by the symmetry property. In particular, if node A is in the
neighborhood of B, then node B must also be part of the
neighborhood of node A. Otherwise the resulting topology
is not useable in most cases. Reason for such an asymmet-
rical neighborhood relation is the existence of different link
qualities caused by different noise levels due to fluctuations
in hardware accuracy. Another reason lays in the memory
restriction of sensor nodes. Memory restrictions are an im-
portant topic in regard to ensuring connectivity. If the den-
sity of the network is higher than the number of neighbors
that a node can store, a simple neighborhood protocol can
lead to disconnected network.

Therefore, a neighborhood management must ensure these
four quality criteria. This paper presents Mahalle, a new
neighbor management protocol based on adaptive link es-
timator. Mahalle optimizes the neighborhood relations ac-
cording to agility, stability, symmetry, and connectivity.

2. RELATED WORK

Research has mainly focused on link estimation so far. Link
quality can be assessed by the physical or logical proper-
ties. Currently available hardware is providing these phys-
ical properties with a high accuracy [2]. The link quality
indicator (LQI) or received signal strength indicator (RSSI)
are determined by the radio transceiver. However, the val-
ues of these metrics are highly hardware specific and must
be calibrated for each hardware setting.

Packet reception rate (PRR) is a widely used logical prop-
erty indicating the link reliability [5]. PRR is calculated
from the rate of successfully received periodical broadcast
packets. Periodic sending is done by discretizing time into
rounds. In each round every node send its broadcast packet.
Besides an identifier of the sender these packets contain a
sequence number that is used to determine packet loss. In
contrast to the physical properties, PRR is the link relia-
bility experienced by applications, but comes at the extra
effort of periodical broadcasts. The main drawback of all
metrics representing the link behavior is that they exclu-
sively describe a snapshot of the state involving only the
recent past. They can not be used as a reliable estimate of
the near future, which is needed to provide stability.

Taking the considerations above into account estimating the
PRR by evaluating the packet reception rate of periodical
broadcasts is the most appropriate way for a solution inde-
pendent from hardware and environment. In [4] several link

23

estimation methods are evaluated and compared. The ex-
ponentially weighted moving average (EWMA) is one of the
most appropriate methods related to fast response, mean
error and memory usage. PRR is estimated by PRR <
PRR - a+ (1 — «) if a packet was successfully received, and
PRR < PRR - « if a packet loss occurs. A single or consec-
utive packet loss is detected by a timeout or on the basis of
sequence numbers.

The behavior of EWMA is controlled by the parameter o
ranging from 0 to 1. For a = 0.99 EWMA is called stable
and has a high accuracy with a low mean square error but
with a high crossing time. The metric crossing time is de-
fined by the time the estimator needs after detecting a new
link to come up with a PRR value having an error of at most
€. In the following € is assumed to be 0.05. For = 0.915
EWMA is called agile. This value leads to a much shorter
crossing time and a smaller reaction time to link changes,
but suffers from a high variation with a high mean square
error. In [4] the stable EWMA is preferred to the agile in
order to produce more stable link estimations over time. On
top of such a link estimator in [5] a neighborhood protocol
that is aware of asymmetrical links is described. The real-
ization of this, especially with a neighbor table size of 40
entries, is not further explained.

TinyOS 2.x uses the Link Estimation Exchange Protocol
(LEEP) to estimate link reliability and manage neighbor-
hood information [1]. The Extra Expected number of Trans-
missions (EETX) is used as a link-quality metric. EETX is
the expected value of a geometrically distribution with the
probability PRR not counting the successful transmission.
Therefore, EETX is defined as EETX = (1/PRR) — 1. The
bidirectional EETX value is based on the product of inbound
and outbound packet reception rate that are discrete recur-
sively estimated. Inbound PRR is estimated as the reception
rate at node A by receiving packets from node B. The re-
ception rate from node A at node B is the outbound PRR of
node A. The neighborhood table size is limited to 10 neigh-
bors in TinyOS. To share the outbound quality information
the complete neighborhood table must be exchanged. If the
complete link information does not fit into one packet, a
round-robin schedule is established. If the neighborhood ta-
ble is full and a new node is detected, the neighbor with a
low EETX value if existent is evicted. This policy is simple,
but can lead to disconnected topologies in dense networks.

3. ADAPTIVE LINK ESTIMATOR

Since the proposed adaptive link reliability estimator can
be used independently from the neighborhood management
protocol, it is specified separately in this section. As de-
scribed in [4] the PRR is estimated by observing the success-
ful delivery of periodical broadcast packets. If application-
specific packet rate is sufficient, the estimator information
can be sent piggybacked in the data packets in order to re-
duce the periodical broadcast packets. EWMA in agile mode
is a fast responding link estimator while in stable mode a low
mean square error is achieved. The main goal of the adap-
tive link estimator proposed in this paper is to combine the
strength of both modes.

The adaptive link estimator (ALE) uses EWMA as a basis.
It has the capability to adjust the parameter o depending on

24

300 T Agile EWMA

---- Stable EWMA
250 { — ALE

200 -
150 1

100 4

crossing time [rounds]

a1
(=]

Figure 1: Crossing Time

the current estimated link quality. To improve the crossing
time the initial PRR is set to the threshold value PRRyqq,
whenever the first packet is received from a node. In this pa-
per PRRyqq is set to 0.5. Additionally, when the PRR is be-
low PRR4qd or a new link must be estimated the agile mode
is used in order to estimate quickly the real link quality.
ALE switches from agile into stable mode after 30 rounds
in case that the PRR is greater than PRRyqq during this
period for a more accurate estimation. This mechanism is
called raising mechanism, which improves the crossing time
of ALE compared to EWMA. In Figure 1 the crossing time
of the different estimators is compared. The crossing time of
the stable EWMA is very high compared to the agile mode.
Due to the threshold PRR4qq and the raising mechanism the
crossing time of ALE is even faster than the agile EWMA,
especially for good links. Observe that the crossing time
of ALE is smaller than 30 for all high values of PRR. This
justifies the choice made above for the number of rounds to
switch from the agile to stable mode.

Another mechanism that improves ALE is the so called drop-
ping mechanism. With this mechanism a good link is trusted
even if currently no communication is possible. Doing so
the stability of the resulting network topology is increased.
Whenever a good link, with PRR > PRRyo0q suffers from
consecutive packet loss, the PRR is kept constant for 60
rounds. This number is a parameter of ALE and specifies
the time that is conceded to a node to recover from a tran-
sient failure.

In Figure 2 the behavior of EWMA and ALE is compared
over time. As shown in both figures, ALE outperforms the
agile mode of EWMA in terms of mean square error. Fig-
ure 2 (a) shows a link with a fixed real PRR of 0.89 and
a short link interruption of 50 packets in round 1000. This
figure depicts the improvements during startup of ALE and
especially during the short interruption compared to stable
EWMA. Figure 2 (b) shows a link with a PRR of 0.89, which
is dropping during round 600 and 900 to a PRR of 0.4 and is
interrupted during round 1200 and 1500. Here the improve-
ments introduced by the dropping mechanism are depicted.
If the PRR is dropping below PRRyea the estimation mode
of ALE switches back to the agile mode in order to react
faster on link changes.

'\r/”
£ 051/ |
~
04 | ’
03 ‘ \‘
]! |
027 Agile ENMA \
0.1 1 ---- Stable EWMA x
0 | — ALE \
0 200 400 600 800 1000 1200 1400 1600 1800 2000

round

(a) Real PRR = 0.89 and short message lost

1 Aot o I

0.9 IV T
i

0.8
0.7 1
0.6 |
059 |
04}
031!
0279 Agile ENMA
0.1 { - Stable EWNMA
| ALE

0 200 400 600 800 1000 1200 1400 1600 1800 2000
round

(b) Variation of PRR over time

PRR

Figure 2: Comparison between EWMA and ALE

Normally a link is considered as a neighbor if the link quality
is above a given threshold, here defined by PRRj0q and
is often set to 0.8. In contrast, a neighbor is disregarded
if its quality drops below PRRgo0q. Doing so oscillation
effects can occur. Therefore, a hysteresis is used to decrease
oscillation effects as much as possible. Several simulations
revealed that a range of £0.06 is a good choice between
oscillation and size of the hysteresis. This leads to PRR, =
0.86 and PRR,: = 0.74.

4. NEIGHBORHOOD MANAGEMENT

The neighborhood management protocol Mahalle uses the
information about link qualities between nodes provided by
the adaptive link estimator described in the previous sec-
tion. ALE delivers only information about one direction of
a communication link. If node A receives packets from node
B it can calculate the PRR of node B at node A by using
ALE. But this information is of no significance for the PRR
of node A at node B. To ensure symmetry of the commu-
nication links between neighbors the PRR values of both
directions of the link must be exchanged.

The PRR is normally exchanged between nearby nodes by
using periodical broadcasts. In general, three different ap-
proaches exist. The simplest way is to put the estimated
PRR values of all known nodes in each packet. The main
drawback of this approach is the required size of such a
packet. Due to the high bit error rate, the probability of
packet loss is increased, which influences the PRR estima-
tion. The second approach is to send only the PRR values
that have changed lately. This decreases the amount of in-
formation sent in one packet, but the size varies. If a packet
gets lost, the information must be resent even if the PRR
is unchanged. The complexity of this approach is thereby
increased. Another approach is to send only fractions of the
PRR values in a round-robin schedule. Doing so, all packets
are equally sized and every PRR value is broadcasted with a
fixed schedule. Mahalle uses the last approach to exchange
link information between neighboring nodes. One additional
benefit of this is that additional information can be included
into the broadcast packets, e.g., the node state needed by
self-stabilizing algorithms [3].

The node table consists of entries to store the neighbor list
and the preparation list. The neighbor list contains the
nodes that are treated as neighbors. All other entries in
the node table are used by the preparation list, where po-
tential neighbors are stored in order to be able to estimate
their link quality. At startup the whole node table is occu-
pied by the preparation list. If a node is evicted from the
node table, it is inserted into a blacklist for some time in
order to prevent them to reenter immediately. The num-
ber of entries in the node table (N¢) and the ratio between
the maximum number of entries in the neighbor list (Ny)
and the preparation list (Np) are compile-time parameters
of Mahalle and correlate to the expected average network
density.

In every round each node broadcasts a neighborhood packet.
This packet contains the identifier of the node, a sequence
number, and one entry of the node table. This information
contains of the identifier of the neighbor and the estimated
PRR. The round-robin schedule consists of N; rounds, so
that each entry of the node table is rebroadcasted in every
N;’th round. This information is used by the nodes that are
receiving the packets.

Node table entries contain of the following information: a
flag that indicates if the node is in the neighbor list, esti-
mated inbound PRR, the received outbound PRR, the num-
ber of neighbors and overlapping neighbors, a flag indicating
symmetry, and the age of the entry. Whenever a node re-
ceives a broadcast from a node that is contained in its node
table, the corresponding entry is updated. Each packet is
used to estimate the inbound PRR. When the packet con-
tains the identifier of the receiving node, the outbound PRR
in the packet is stored in the table. From all packets during
N; rounds the node can also identify the number of neigh-
bors of the sending node and the number of overlapping
neighbors, the nodes that are common for both.

When a packet is received by an unknown node and the node
table has a free entry, the node is inserted into the prepara-
tion list (if the node table is full the packet is ignored). If
the estimated PRR of the inserted node is above PRR;,, the

25

node is a candidate to be placed into the neighbor list. If
the node stays longer than 50 rounds in the preparation list
without entering the neighbor list, the node is deleted from
the preparation list and added to the blacklist. If a node is
in the neighbor list and its PRR is below PRR,.+ the node
is removed from the list and added to the blacklist.

If the neighbor list is full and in the preparation list a link
with PRR > 0.86 exists an entry from the neighbor list must
be evicted to provide space for the new potential neighbor.
Therefore, a screening process exists to choose the most ap-
propriate neighbor that is evicted from the neighbor list.
The following rules are applied to the list containing all
neighbors and the candidates from the preparation list. The
rules are processed one-by-one until a single node remains.
If the new potential neighbor is selected the neighbor list is
kept unchanged and the node is inserted in the blacklist and
removed from the preparation list.

Rule 1: Select asymmetry links

Rule 2: Select nodes with neighbors
Rule 3: Select highest overlapping
Rule 4: Select less unknown neighbors
Rule 5: Select lowest bidirectional PRR

Rule 6: Select newest neighbors

The first rule tries to evict nodes that are asymmetric from
the list. If several nodes are found or none of the entries
are asymmetrical, the next rule is applied. This rule pro-
tects those nodes from being removed that have no other
neighbor. The next rule selects those nodes that have the
highest number of overlapping neighbors, since those nodes
are connected via one of the common neighbors with a high
probability. If there are still several nodes having the same
properties those nodes are selected, which provide the small-
est number of unknown neighbors. Those nodes are not that
important for insuring connectivity. These last two rules are
protected by a hysteresis in order to prevent an oscillation ef-
fect. In rule 5 the nodes with the lowest bidirectional PRR
are selected to be removed from the neighbor table. This
PRR is the product of the estimated inbound and received
outbound PRR. If still more than one node is selected the
newest neighbors are preferred, since the older neighbors in-
sure more stability. If still several nodes are in the list after
applying the last rule, a node is picked randomly.

The ns-2 simulator is used for validating Mahalle. To com-
pare the connectivity awareness of Mahalle a simple neigh-
borhood management protocol is also implemented, which
uses only the inbound and outbound PRR values provided
by ALE. Additional the LEEP [1] protocol integrated in
TinyOS 2.x (see Section 2) is ported to ns-2. Several dif-
ferent densities with 200 randomly placed nodes are inves-
tigated. For each density 50 different topologies are used.
The used propagation model provides around 15% of asym-
metrical links, which means that the inbound and outbound
PRR differs more than 0.15. In Figure 3 the results for a
density of 24 is shown. 180 Nodes are started at round 0 and
20 nodes where added after 1750 rounds. The connectivity

26

N
&

100 | — Mahalle [

N

75 1

50 |

connectivity [%]
-
o
number of link changes

25

o
o

L Ku\mmum o " 0

500 1000 1500 2000 2500 3000 3500 4000
time [rounds]

Figure 3: Comparison with network density 24

and the number of link changes are shown over time. Ma-
halle provides very fast neighborhood detection and reaches
100% connectivity. Due to the large density of 24 poten-
tial neighbors, LEEP and the basic protocol are providing
only a slow convergence. Connectivity is not fully reached
by these two approaches after adding nodes. The number
of link changes during the stable phases is also decreased in
Mabhalle.

5. CONCLUSION

The presented neighborhood management protocol Mahalle
and the underlying adaptive link estimator have shown good
results in terms of agility, stability, symmetry, and stability.
Mahalle outperforms in terms of stabilization speed. The
next steps will be porting Mahalle to TinyOS and using it
in a real long-term deployment at our campus.

6. ACKNOWLEDGEMENT
We would like to thank Ting-Fu Chen for his help in devel-
oping a preliminary version of Mahalle.

7. REFERENCES

[1] O. Gnawali. TinyOS Extension Proposal (TEP) 124:
The Link Estimation Ezchange Protocol (LEEP), Feb.
2007.
http://www.tinyos.net/tinyos-2.x/doc/pdf/tep124.pdf.

[2] K. Srinivasan and P. Levis. RSSI is Under Appreciated.
In Proceedings of the Third Workshop on Embedded
Networked Sensors (EmNets’06), Harvard University
Cambridge, MA, USA, May 2006.

[3] V. Turau and C. Weyer. Randomized Self-stabilizing
Algorithms for Wireless Sensor. In Proceedings of the
International Workshop on Self-Organizing Systems
(IWS0S°06), Passau, Germany, Sept. 2006.

[4] A. Woo and D. Culler. Evaluation of Efficient Link
Reliability Estimators for Low-Power Wireless
Networks. Technical Report UCB/CSD-03-1270, U.C.
Berkeley Computer Science Division, Sept. 2003.

[5] A. Woo, T. Tong, and D. Culler. Taming the
Underlying Challenges of Reliable Multihop Routing in
Sensor Networks. In Proceedings of the First ACM
Conference on Embedded Networked Sensor Systems
(SenSys’03), Los Angeles, CA, USA, Nov. 2003.

Challenges in Short-term Wireless Link Quality Estimation

Muhammad Hamad Alizai, Olaf Landsiedel,
Klaus Wehrle
Distributed Systems Group
RWTH Aachen University, Germany

firstname.lastname @rwth-aachen.de

Abstract

Identifying reliable low-power wireless links for packet
forwarding in sensor networks is a challenging task. Cur-
rently, link estimators mainly focus on identifying high-
quality stable links, leaving out a potentially large set of
intermediate quality links capable of enhancing routing
progress in a multihop network.

In this paper we present our ongoing work on short-term
link estimation that captures link dynamics at high resolu-
tion in time. A short-term link quality is calculated based on
the recent transmission characteristics of a link. This short-
term quality of a link, combined with its long term reliability
enables to determine if an intermediate quality link is tem-
porarily available for transmission. Consequently adapting
the neighbor table of a node and offering more forwarding
choices to routing protocols.

1 Introduction

Instability in low-power wireless sensor networks (WSN)
connectivity has so far been regarded as a difficult problem
that existing routing algorithms try their utmost to avoid. In
doing so, they forego a large class of potentially valuable
communication links. An understanding of the patterns un-
derlying the seemingly irregular variations of the wireless
channel would enable algorithms to make use of this previ-
ously disregarded class of links.

To achieve better connectivity and reliable packet com-
munication, today’s link estimators restrict communications
only to the neighbors with constantly high-quality links.
These high quality links are identified based on the long
term success rate of a link, typically collected over a time
frame on the order of minutes. However, this approach has
certain pitfalls. First, neighbors with intermittent connectiv-
ity might reach farther into the network. Their use would
therefore reduce the number of hops, reduce energy usage
in the network, and increase its lifetime. Second, in a sparse
network with a low density of nodes, a node might have no
high-quality neighbor in its communication range, requiring
a mechanism to deal with unstable connectivity.

In this paper we present our on going work on short-term
link estimation (STLE) [2] that takes fine-grained link dy-
namics - in the order of milliseconds - into account and in-
creases the prediction quality for successful packet transmis-
sions, especially, for highly dynamic links. STLE integrates
into routing protocols by adapting neighbor tables to accu-

Alexander Becher
sd&m AG
Disseldorf, Germany

alexander.becher@sdm.de

rately reflect the current situation of a dynamic link. Overall,
short-term link estimation has three key contributions: (1) to
predict the probability of successful packet transmission of
any link type by taking short-term dynamics into account,
(2) to suggest links of low to intermediate quality for rout-
ing when they have become temporarily reliable, and (3) to
integrate easily with today’s long-term link estimators and
routing protocols.

2 Related Work

The identification of reliable links in WSN has received
much attention in the recent years. However, to the best of
our knowledge, there is no thorough analysis of short-term
dynamics in link quality. This paper aims to fill this gap by
quantifying their extent and characteristics.

While investigating several approaches for online link
estimation, Woo et al. [20] identified window mean es-
timator with an exponentially weighted moving average
(WMEWMA) to be an optimal choice to aggregate packet
reception rate as an indicator of link quality. Four-bit link
estimation [6] extends this WMEWMA estimator into a hy-
brid link estimator that accumulates information from all
layers of the sensor node networking stack. However, es-
timation techniques based on WMEWMA performs poorly
on medium quality links. These links often offer the high-
est routing progress [3] suggesting the need for more precise
estimation methods for medium quality links.

The assumption underlying the majority of existing link
estimation concepts is that packet losses inside one measure-
ment period occur independently of each other (i. e., they fol-
low a Bernoulli distribution). This assumption has been chal-
lenged before in research [4, 14]. The analysis of our data in
Section 4 supports the hypothesis that the assumption of in-
dependent packet losses is not appropriate at the fine-grained
time-scales dealt with in this paper.

In addition to online link estimators, there has been signif-
icant research in link modelling and link measurements for
WSN[1,13,15-17,21-23]. For example, Koksal et al. [9] de-
velop metrics to model long-term link quality and short-term
link dynamics. Additionally, Cerpa et al. [3] provide statisti-
cal models of radio links in WSN, including short-term and
long-term temporal characteristics.In contrast to these ap-
proaches, STLE does not aim to provide link models, but to
identify phases of reliable or unreliable connectivity at run-
time.

27

08 Good links (quality > 0.9) | 08 F \

0.6 - Intermediate links q 0.6

(0.1 < quality < 0.9)

04 ?/ 1

Bad links (quality < 0.1)

CDF

Probability

0.4

0 L L L L L L L L L 0 L L L

T T T T
quality > 0.9 —— K
quality > 0.1 - 04 - X q

Temporal Standard Deviation

LN ey L L L

0 01 02 03 04 05 06 07 08 09 1 2 4 6 8
Long-Term Link Quality

(a) Empirical distribution of long-term link qual-

ity in our testbed. Intermediate quality links com- medium-to-high-quality neighbor depending on
physical distance in our testbed.

prise roughly one third of all useful links.

10

Distance (metres)

I I I I
01 02 03 04 05 06 07 08 09 1
Long-Term Link Quality

1
12 14 16 18 20 0

(b) Probability of finding a high-quality or (c) Temporal variation of link quality. Each point

represents a (directional) node pair.

Figure 1. Low-power radio links in sensor networks exhibit inevitable fluctuations in their quality.

Approaches such as Solicitation-based forwarding (SOFA
[10]) remove the need for long-term link estimation and test
link availability by sending a short hand-shake packet as a
probe before sending any data packets. However, our evalua-
tion of STLE in Section 4 shows that a successful hand-shake
should not be taken as a success guarantee for subsequent
data transmissions and indicate a need for more sophisticated
models.

3 Short-term Link Estimation

In this section we introduce short-term link estimation in
detail, putting a special focus on its integration into long-
term link estimators and routing protocols. We present our
approaches on the identification of temporarily available and
unavailable links and evaluate these in Section 4. Our inter-
est in short-term link estimation is motivated by two key ob-
servations indicated by research [3,13,21] and our own mea-
surements: (1) Links of intermediate quality amount to about
half the number of high-quality stable links (see Figure 1(a))
and (2) this percentage grows with the physical distance (see
Figure 1(b)).

Although links of intermediate quality offer further
choices for routing and often promise long distance con-
nectivity, Figure 1(c) shows that this class of links is sub-
ject to large and frequent temporal variations. Their dynamic
connectivity poses a special challenge to any link estimator.
Long-term link estimators are not designed to identify short-
term link dynamics. As a result, they adapt slowly to chang-
ing link conditions, limiting their use to the identification of
long-term stable links.

3.1 Deriving a Short-term Link Estimator

Commonly, links in a wireless network can be classified
into three categories: good links that are reliable in the long
term; intermediate, unreliable links often with frequently
changing quality; and bad links that very seldom transmit a
packet successfully. Figure 1(a) shows that the ratio between
good links and intermediate links is 2:1 in our testbed mea-
surements. Furthermore, our measurements indicate that any
link — no matter of what long-term quality — can temporarily
change its characteristics and thereby temporarily become a
reliable link for routing or become an unreliable one.

We consider an intermediate or broken link temporarily
available when it successfully transmits a number of pack-

28

ets over a short interval. We define a corresponding thresh-
old based on the link’s long-term reliability: for example,
a link of intermediate quality needs to transmit less pack-
ets before being considered temporarily available than a link
of bad quality. Similarly, a number of successfully transmit-
ted packets indicate that a reliable link is currently available,
while failed ones indicate that a link is currently not avail-
able. Overall, we expect that a single successful transmission
indicates that a long-term reliable link is currently available.

Furthermore, short-term link estimator does not send
probe packets to test for link availability, it bases on packet
overhearing. Hence, a node overhears packets sent by neigh-
boring nodes and collects statistics on the current reachabil-
ity. When a node considers the incoming direction of an un-
reliable link temporarily stable and concludes that it offers a
routing improvement, it sends a message to the link neighbor
to inform it about a short-term link availability. The neigh-
boring node may then consider routing subsequent packets
over the newly available link. If the node is selected as next
hop, link-layer acknowledgments continuously provide in-
formation about link availability.

We expect that the probability of a successful packet
transmission depends on the success rate of any recently sent
packets, i.e. the more packets were transmitted successfully
in the recent history, the higher the probability is that an up-
coming packet is transmitted successfully, too.

3.2 Integration with Long-Term Link Estima-
tors and Routing Protocols

STLE is designed to embed deeply into the routing proto-
col and to cooperate with long-term link estimators. Modern
sensor network routing protocols such as BVR [7] use the
number of expected transmissions to a destination as rout-
ing metric, computed by combining the distance (in hops)
and the number of expected retransmissions. Both long-term
and short-term link estimation aim to predict the number of
necessary retransmissions on a link, each on their respective
temporal granularity. Consequently, when no short-term es-
timation for a link is available, the routing protocol will use
the long-term prediction as fallback, probably resulting in
conservative link selection.

As explained above, neighboring nodes overhear ongo-
ing data flows and may suggest themselves to the forward-

Short-Term Link Quality R / e g?

I

08 k7

0.6

[e o R LR =)

0.4

cooooocoooon

0.2

0

0.6 s
0.4 5 3/4 /5)

o 1 Success History
Long-Term Link Quality 0

0.8
0.6
0.4

cooccoooooor
HNWR IO ~100©

0.2

0.4
Long-Term Link Quality

(a) Influence of recent transmission success rate on short-term link quality. (b) Influence of recent transmission failure rate on short-term link quality.
A label of k/h stands for k successes during the last / transmissions, and 2 A label of k/h stands for k failures during the last / transmissions, and / is

is a shorthand for i/h.

a shorthand for i/ h.

Figure 2. Influence of success and failure of recent transmissions events on short-term link quality.

ing node as next hop alternatives, when they (1) identify the
link from the forwarding node as short-term reliable and (2)
conclude that they offer a better routing choice for the ongo-
ing flow. As a result, the forwarding node has an increased
number of choices for routing. Apart from the number of ex-
pected transmissions to a destination as used in BVR, other
routing metrics such as link load, queue length or battery lev-
els can be integrated similarly.

3.3 Use Case for STLE

Packet overhearing technique employed in STLE can ben-
efit from the bursty traffic patterns observed in WSN. Typical
applications [8, 11,18, 19] of WSN involve monitoring envi-
ronment for events that are of interest to the users. Although
these events occur rarely, but their occurrence results in large
bursts of packets that represent major fraction of the overall
network traffic. In such situations, STLE, after overhearing
first few packets, can identify intermediate quality links tem-
porarily available for transmission.

For example, consider a sensor network based fence mon-
itoring system [19]. During normal conditions, i.e. when
there is no intruder breaking into the fence, the network will
generate very limited or no traffic. However, as soon as an in-
truder is detected by the system, large bursts of packets will
be generated by the distributed event detection algorithm.
In this situation, STLE recognizes intermediate quality links
currently stable for transmission, and informs routing algo-
rithm of the availability of such links by online adaptation of
neighbor tables. We believe that this technique will signifi-
cantly reduce the hop count a packet has to traverse from its
source to destination. Thereby minimizing the energy con-
sumption and increasing network life time.

4 Evaluation

To evaluate the concept of short-term link estimation, we
executed a number of experiments in our indoor testbed. The
testbed consists of a regular 6 x 6 grid of Telos B motes [12]
with a spacing of approximately 2.80 m inside a 20m x 20m

indoor auditorium. Every node transmitted a burst of 20 se-
quentially numbered packets with a length of 15 bytes at -
25 dBm. We ran this experiment for 5,500 seconds.

To calibrate STLE we need to identify a threshold when
an intermediate or bad link should be considered temporary
reliable. Figure 2(a) depicts the probability of a success-
ful packet transmission based on the average long-term link
quality and a short-term history of consecutively transmitted
packets. The figure indicates that e. g. for a link with 10 %
long-term link quality, the transmission success probability
for the next packet exceeds 80% when the four preceding
packets were transmitted successfully. We consider links of
such instantaneous quality useful for routing, thus STLE sug-
gests such a 10 %-quality link for routing. In the same way,
STLE considers a 60 %-quality link to be short-term reliable
after just one successful transmission.

Figure 2(b) depicts the probability of a successful packet
transmission based on the average long-term link quality and
a short-term history of consecutively failed packet transmis-
sions. It indicates that for two or more consecutive losses
any link should be temporarily considered broken and be re-
moved from the routing table.

S Future Work and Challenges

Although our evaluation shows that STLE can reliably
identify when unstable links have become temporary stable
and vice versa, only an integration can fully evaluate the ben-
efits of STLE. Thus, we are currently implementing STLE
extensions to the link estimator in the Beacon Vector Rout-
ing (BVR) protocol to analyze performance improvements
of STLE.

Cerpa et al. [5] discuss the impact of packet size on packet
reception rate. In our experiment, all packets sent were of the
same length. The effect of different packet sizes on packet
reception rate remains to be investigated.

In practice, nodes do not transmit at the same short in-
tervals used during our measurements. We have yet to in-
vestigate whether the correlations derived in section 4 hold

29

for longer intervals between reception events. Devising other
mechanisms, such as sending probe packets to evaluate link
quality, could also be used but it will raise the communica-
tion overhead significantly.

6 Conclusion

Intermediate quality links constitute a significant frac-
tion of wireless links in low-power WSN. STLE captures
short-term link dynamics of these links at a high resolution
in time and predicts their temporary availability or unavail-
ability. Our measurements indicate that these intermittent
links, if utilized, can significantly improve the performance
of routing algorithms by offering further choices for forward-
ing packets. Moreover, STLE is more suitable for networks
showing bursty traffic patterns such as in typical applications
of WSN.

7 References
[1] G. Anastasi, M. Conti, E. Gregori, A. Falchi, and A. Passarella. Perfor-
mance Measurements of Mote Sensor Networks. In 7th ACM Interna-
tional Symposium on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), Venice, Italy, October 2004.

[2] A. Becher, O. Landsiedel, G. Kunz, and K. Wehrle. Towards short-
term link quality estimation. In Proc. of The Fith workshop on Em-
bedded Networked Sensors (Emnets 2008), June 2008.

[3] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Sta-
tistical model of lossy links in wireless sensor networks. In Proc. of
the 4th International Symposium on Information processing in Sensor
Networks (IPSN), April 2005.

[4] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin. Temporal proper-
ties of low power wireless links: Modeling and implications on multi-
hop routing. In Proc. of the 6th ACM Interational Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc), May 2005.

[5] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin. Temporal proper-
ties of low power wireless links: modeling and implications on multi-
hop routing. In MobiHoc ’05: Proceedings of the 6th ACM interna-
tional symposium on Mobile ad hoc networking and computing, 2005.

[6] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Four-bit wire-
less link estimation. In Proc. of the Sixth Workshop on Hot Topics in
Networks (HotNets), November 2007.

[71 R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. E. Culler, S. Shenker,
and I. Stoica. Beacon vector routing: Scalable point-to-point routing in
wireless sensornets. In 2nd Symposium on Networked Systems Design
and Implementation (NSDI), May 2005.

[8] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo,
R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. Energy-efficient
surveillance system using wireless sensor networks. In MobiSys '04:
Proc. of the 2nd international conference on Mobile systems, applica-
tions, and services, 2004.

[9] C.E. Koksal and H. Balakrishnan. Quality-aware routing metrics for
time-varying wireless mesh networks. IEEE Journal on Selected Ar-
eas in Communications, 24(11):1984-1994, November 2006.

30

[10] S.-B. Lee, K. J. Kwak, and A. T. Campbell. Solicitation-based for-
warding for sensor networks. In Proc. of the Conference on Sensor and
Ad Hoc Communications and Networks (SECON), September 2006.

[11] K. Lorincz and M. Welsh. A robust, decentralized approach to rf-based
location tracking. Technical report, Harvard University, 2004.

[12] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low
power wireless research. In Proc. of the Fourth International Sympo-
sium on Information Processing in Sensor Networks (IPSN), 2003.

[13] N. Reijers, G. Halkes, and K. Langendoen. Link layer measurements
in sensor networks. In Ist IEEE Int. Conf. on Mobile Ad-hoc and
Sensor Systems, October 2004.

[14] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Understanding the
causes of packet delivery success and failure in dense wireless sen-
sor networks. In Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems (SenSys), November 2006.

[15] P. von Rickenbach, S. Schmid, R. Wattenhofer, and A. Zollinger. A
robust interference model for wireless ad-hoc networks. In 5th Inter-
national Workshop on Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks (WMAN), April 2005.

[16] P. Wang and T. Wang. Adaptive routing for sensor networks using
reinforcement learning. In Proc. of the Sixth IEEE International Con-
ference on Computer and Information Technology (CIT), 2006.

[17] Y. Wang, M. Martonosi, and L.-S. Peh. A supervised learning ap-
proach for routing optimizations in wireless sensor networks. In Proc.
of the 2nd International Workshop on Multi-hop Ad-hoc Networks:
from Theory to Reality (REALMAN), 2006.

[18] M. Welsh, G. Werner-Allen, K. Lorincz, O. Marcillo, J. Johnson,
M. Ruiz, and J. Lees. Sensor networks for high-resolution monitor-
ing of volcanic activity. In SOSP ’05: Proc. of the twentieth ACM
symposium on Operating systems principles, 2005.

[19] G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Ritter,
and J. H. Schiller. Fence monitoring - experimental evaluation of a
use case for wireless sensor networks. In In Proc. of 4th European
Conference on Wirless Sensor Networks EWSN, 2007.

[20] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In Proc. of the Ist Inter-
national Conference on Embedded Networked Sensor Systems (Sen-
Sys), November 2003.

[21] J. Zhao and R. Govindan. Understanding packet delivery perfor-
mance in dense wireless sensor networks. In Proc. of the Ist Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys),
November 2003.

[22] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of
radio irregularity on wireless sensor networks. In Proc. of the Sec-
ond International Conference on Mobile Systems, Applications, and
Services (MobiSys 2004), June 2004.

[23] M. Zuniga and B. Krishnamachari. Analyzing the transitional region
in low power wireless links. In Proc. of the Conference on Sensor and
Ad Hoc Communications and Networks (SECON), 2004.

SomSeD: An Interdisciplinary Approach for Developing
Wireless Sensor Networks

1 2 1 2
Sebastian Georgi , Christoph Weyer , Martin Stemick , Christian Renner ,
Felix Hackbarth’ , UIf Pilz , Jens Eichmann’, Tobias Pilsak_, Harald Sauff ,
Luis Torres7 , Klaus Dembowski8 , Fabian Wagner9

Hamburg University of Technology
georgi@tu-harburg.de, c.weyer@tu-harburg.de

ABSTRACT

The research field ”Self organized mobile Sensor and Data-
networks” (SomSeD) is introduced. Its purpose is the in-
vestigation of Wireless Sensor Networks (WSN). It benefits
from interdisciplinary exchange between various institutes
of the Hamburg University of Technology (TUHH). Due to
different design constraints (such as energy-efficiency and
package size) compared to well known classical computer
networks, all aspects of the development of WSNs must be
reconsidered. This paper describes the advantage of having
experts of various faculties both in computer science and
electrical engineering in a single research field. In addition
to the introduction of the participating institutes, the de-
ployment of a WSN on the TUHH campus will be outlined.

1. SOMSED

Since the foundation of the Hamburg University of Technol-
ogy a unique organization structure has been applied. On
the one hand teaching is distinguished in classical deaneries.
Research on the other hand is performed over boundaries
of faculties in distinct research fields. Thus, teaching and
research are related to each other in a matrix organization
structure.

One of these research fields is ”Self organized mobile Sensor
and Data networks” (SomSeD). Its benefits, goals and chal-
lenges will be described in this paper. Besides the coordina-
tion on the level of the university teachers, the cooperation
of undergraduate and Ph.D students is encouraged. Within
SomSeD the so called ”Junior” group has been created, in
which Ph.D candidates design and develop a WSN. The de-
gree of freedom is high, all decisions regarding the system
design are made by the participants themselves. Thus the

1Institute of Telecommunications
Institute of Telematics

3nstitute of Automation

Ynstitute of Control Systems

5Institute of Measurement Technology

Onstitute for Security in Distributed Applications
Tnstitute of Communication Networks

8Institute of Microsystem Technology

glnstitute of Nanoelectronics

launch of SomSeD-Junior leads to a great motivation and
an appreciable progress.

Deploying a WSN for long-term measurements is one objec-
tive of SomSeD. This network is intended to be a platform
to integrate all results from research. The TUHH campus
is well suited to sustain a WSN due to its continuous area.
A permanent installation will support practical demonstra-
tions for various applications and technological concepts of
WSNs. This encourages the interest in SomSeD.

2. INSTITUTE COOPERATION

Developing WSNs demands contributions from all experts
in the field of electrical engineering and computer science,
because all components in both hardware and software have
to be aligned to each other. While Quality of Service cri-
teria such as goodput and latency of classical networks can
be loosened, energy-efficiency, reliability in adverse condi-
tions, low complexity and the size of single sensor nodes are
the most important challenges. Classical models such as
the OSI-reference model are given up to allow a crosslayer
design: The application has a very strong influence on all
layers of abstraction, e.g., routing and media access control
(MAC) must be considered together when energy-efficiency
shall be achieved [2].

To fulfill these demands, a strong cooperation between dif-
ferent faculties is necessary to define interfaces and redesign
all components. Although the individual nodes are very
small, the overall complexity of WSNs and the bandwidth of
research topics is still high; beginning with hardware aspects
such as sensor design and autonomous energy supply and
reaching to software methods like data-gathering and visu-
alization. The following institutes participating in SomSeD
represent a unique aggregation of competence in WSN de-
velopment.

The Institute of Telematics has been active in research of
WSNs since 2004 [3]. It is obvious, that Telematics is the
best choice to supervise the research field and to build the
bridge between communication and information engineers.

The Institute of Telecommunications has its traditional re-

search activities in radar development and broadband com-
munications. While the radar technique already performed

31

Security

—)CVisualization)(—

Automation

!

f

|

C Routing)(—

Telematics

—)C Application)

!

!

!

Communication

CMedium Accesa

Control Systems

I

Telecom-
munication

Networks
C Power)(— —)C Radio)

Microsystems g Measurement
Technology ensors Technology

,
Integration <<— Nanoelectronics
Institute

Figure 1: Hardware Overview

the transformation from large rotating antennas with huge
transmit power into small and cheap automotive equipment,
the communications section is also gaining more and more
interest in wireless sensor networks.

Sensors are a major component of WSNs. Hence, it is natu-
ral to include the Institute of Measurement Technology into
the research field. Besides a profound knowledge about var-
ious sensors, the Institute offers a great experience in field
testing.

Another crucial point is Networking. The Institute of Com-
munication Networks plays an important role in developing
suitable routing and networking algorithms. Careful design
of these algorithms helps to decrease protocol overhead and
retransmissions and thus improves energy-efficiency.

Cheap and small sensor nodes can only be realized, if a high
integration can be achieved. The Institute of Nanoelectron-
ics offers the complete competence in the design of integrated
circuits in up-to-date process technology.

The Institute of Microsystem Technology is capable of build-
ing very complex and sensitive sensors with small size. A fo-
cus lies on the design of medical sensors that are distributed
all over the human body. An obvious application for a WSN.

The robustness against malicious network influences is in-
vestigated by the Institute for Security in Distributed Ap-
plications. Operating mostly in ISM frequency bands and
using only low transmission power, WSNs are sensitive to all
kinds of interferers, but a wilful disturbance of the network
must also be inhibited.

Many decisions depend on the chosen network application.
Long-term stability, autonomous operation of the network,
and maximum tolerable delays to establish stable control
loops are necessary investigations performed by the Institute
of Automation and the Institute of Control Systems.

32

3. CAMPUS NETWORK

One important goal of the research field SomSeD is the de-
ployment of a WSN on the TUHH campus. An entire net-
work of sensor nodes will be installed permanently at the
buildings to cover the whole main campus. The density will
be chosen to guarantee a connected network, even if some
nodes experience permanent failure. The well known IRIS
platform is utilized and TinyOS 2.x [1] forms the basis for
the software development. This demonstration system gives
the opportunity to gather long-term measurements of the
behavior of WSNs. It will fulfill two major tasks:

Collecting status information of the network itself, such as
neighborhood link quality, successful packet transmission
rates, and power-supply monitoring. Running for several
months, a good estimation on stability and reliability of such
a WSN can be achieved.

Besides status monitoring, convenient applications will be
demonstrated. All nodes are regularly measuring the tem-
perature, which is graphically displayed. The network will
also be able to forward position information of mobile nodes
that are equipped with GPS-receivers.

The architecture is based on a routing tree with one distinct
data sink. All acquired data is stored inside a database and
visualized using Google Maps. In a first version most nodes
are battery-equipped, and a few nodes are powered by an
autonomous supply unit developed at the TUHH. This unit
uses a solar cell that is dimensioned to guarantee a stable
power supply of the backbone routing network even under
unfavorable weather conditions.

3.1 Applications

Hardware and software development for WSNs will be vali-
dated by performing long-term tests on the campus network.
Gathering statistics about the network topology, link qual-
ities, and power consumption is an important application
of the experimental system. Once a stable network is es-
tablished, the WSN can support the facility management
of the TUHH by automatically forwarding meter readings
and monitoring temperature, humidity, and carbon dioxide
in lecture rooms. Thus, a green campus will be realized.

For a university of technology it is extremely important to
fascinate visitors for technical study paths. The GPS ap-
plication offers a convincing show case which will encourage
pupils to choose the career of an engineer.

4. REFERENCES

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. SIGOPS Oper. Syst. Rev., 34(5):93-104, 2000.

[2] C. Renner. Energy-efficient tdma schedules for
data-gathering in wireless sensor networks, June 2008.

[3] V. Turau and C. Weyer. Location-aware in-network
monitoring in wireless sensor networks. In Proceedings
of the Sensor Networks Workshop at Informatik 2004,
Ulm, Germany, Sept. 2004.

Multi Client Systems in Wireless Sensor Networks

Lasse Thiem, Klaus Scholl, Mario Schuster, Dr. Thomas Luckenbach
Fraunhofer Institute for Open Communication Systems (FOKUS)
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
+49-30-3463-7297

[lasse.thiem, klaus.scholl, mario.schuster, thomas.luckenbach@fokus.fraunhofer.de

ABSTRACT

In this paper, parts of ongoing work of visualization and
maintaining tools for wireless sensor networks (WSN) are briefly
described. An initial graphical user interface (GUI) will be
introduced as well as the foreseen backbone architecture. The
current implemented GUI can be used to modify rules stored on
individual nodes. This rule editor can be displayed on several user
displays of different client systems and the related concept is
therefore called Multi Client Systems (MCS).

Categories and Subject Descriptors
H.4.3 Communications Applications

General Terms
Management, Measurement, Design,
Experimentation, Human Factors, Languages

Reliability,

Keywords
Wireless Sensor Networks, Visualization, Management, Rule
Management, IEEE 802.15.4, Networks

1. INTRODUCTION

In the recent years, the networking of home appliances like
PCs, smart phones, or multimedia devices and thus the access to
WSN or home automation systems for instance climate or lighting
control is evolving rapidly. The data exchange between various
devices of different vendors is not a problem nowadays. Several
standards have been published in the past years like IEEE
802.15.4 [1], ZigBee [2], or ZWave [3]. However, the rich
quantity of proprietary and standard protocols, which cannot
communicate to each other, can decrease acceptance of potential
users of WSN systems. Especially users of a new system need
often to study a user manual first. Therefore, a more or less
autonomous architecture for the networking of different WSN and
other networking components in the home area is required. For
this purpose, the German project Autonomous Home Networking
(AutHoNe') has been established and is funded by the German
Ministry of Education and Research (BMBF). One of the goals of
AutHoNe is to provide users a consistent and transparent
approach to access data sources and services in the home range in
an easy way including functions for the definition of rules and
constraints to influence the autonomous behavior of the network
elements. A suitable graphical user interface for these functions
will be one result of the project and it is introduced in this paper.
This kind of user interface will help normal users to use and

! BMBF AutHoNe label 01BN0702

manage their home networks, even in the complex network
environments of the future.

The remainder of this paper is structured as follows: Chapter 2
presents related work. Chapter 3 describes the developed
graphical user interface with its functionality. Section 4
introduces the foreseen backbone architecture for the Multi Client
System. Chapter 5 will give an outlook for further
implementations and will conclude this paper.

2. RELATED WORK

The project e.home [4] contains a home network on the basis of
Local Operating Networks (LON). This technology allows an
information exchange between single devices and the creation of
scenarios for single actuators. In [5] a home automation system is
presented. This system allows to get information of surrounded
sensors and to put actuator states at a central place. As a central
user control unit a device with the name "Funk-Haus-Zentrale
FHZ 1300" was developed.

3. MULTI CLIENT SYSTEMS

Usually, networks in a home environment should work
autonomous without the intervention of users. Nevertheless, it is
also necessary for users to have the possibility to access the
communication infrastructure and attached components.
Sometimes it could be interesting to have knowledge about the
network state or to control individual devices manually.
Therefore, a development has been started to implement Multi
Client Systems.

PC
Local/lRemote Access i
(LAN, WLAN, DSL) * _
ey K

Mobile Devices . A
) —‘_(¥ r

NI = ()
JQ “(IPNetwork)
Remote Access |

(3G, WLAN, Bluetooth) k ‘__J)J
P

Figure 1: Multi-Client User interfaces

~

3.1 Client Systems

Different end devices respectively clients with different
capabilities are planned for the MCS. At a first choice mobile end
devices like mobile phones, smart phones, or pocket PCs are good
candidates because of their mobile handset characteristics. These
devices should have access to the gateways over a local WiFi or
Bluetooth connection or over a 3G (GPRS, UMTS) link. Other

33

possible MCS devices are standard personal computer
environments like desktop PC, notebooks, ultra mobile PCs or at
least PC based appliances for instance TVs or touch screens.

3.2 Graphical User Interface

]
b O

utHoNe - Rule Editor
he

Pr €< 14:58 D

J

e
v
v

3]) 0| 0

Figure 2: Graphical User Interface for rule edition

The MCS user interface in the upcoming approach will have
several modes of usage reflecting the different roles a user can
have while interacting with the home network environment in an
intuitive way via the MCS. Therefore the following user modes
are defined:

> 4< 10:00 (D

AutHoNe - Mainmenu

Connected to "MyAutHoNe"
Logged in as "ADMIN"

o«

Options Logout

Figure 3: Main menu of the user interface

In the General-Mode users are allowed to do their registration at
the gateway and to get an overview of the whole system. The
handling of the own profile is also permitted. In the second mode,
called Standard-Mode (easy, as autonomous as possible, less
impact through the user), users are allowed to get a report of all
existing networks and network elements such as devices, sensor,
and actuators. Furthermore, the configuration of rules, thresholds
and events can also be done in the Standard-Mode. Finally, the
Profi-Mode (complex, less autonomous, strong impact of the user)
is suitable for the advanced users like network administrators.
This mode is the same as the General-Mode plus the following
additional functions — will be developed: Configuration of the
devices, the whole network and its parameters, setup of the data
gathering behavior as well as the configuration of the actuator
behavior. The administration of the user profiles is included in

34

this mode too. The current state of the graphical user interface
implementation of a MCS is shown in Figure 2 with the rule
editor interface.

4. BACKBONE ARCHITECTURE

This section describes the envisioned backbone architecture of the
AutHoNe project. The backbone architecture design follows a
two-tier approach. On the lowest level (the first tier) several
wireless technologies can exists using different kinds of
communication technologies. These technologies are connected
through a second full meshed WiFi/WLAN network to bring them
into the IP world. This IP infrastructure is the second tier.

To build up a WLAN backbone for the WSN technologies, the
routers WL500gP from ASUS are used (266MHz, 8MB flash).
The routers are able to perform ad-hoc networking including
mesh networking based on OLSR [6]. This system is running on a
Linux operating system based on OpenWRT [7]. In the prototype
evaluation of the system the routers has been equipped with the
Integration CompXS USB IEEE 802.15.4 dongle. This dongle is
fully compliant to the ZigBee 2006 specification [8] and allows a
full speed USB 2.0 communication. It has an integrated antenna
and the typical transmission range is above 30m. An Xbee module
is included for a second revised version of the gateways. This
provides an USB port and gives the opportunity to use antennas
for enlarging the observing area. To enlarge the covered area a
seven dBi omnidirectional rod antenna has been used. For testing
purposes a RFID reader, a Bluetooth device and an UMTS/GPRS
modem for 3G connections has been included and tetsted.

Gateways

Figure 4 Backbone architecture

4.1 OLSR Mesh based on IEEE 802.11

The system uses a WLAN mesh protocol based on the optimized
link state routing protocol (OLSR) implemented by the olsr.org
community [9]. This routing protocol is part of the used
OpenWRT distribution called kamikaze. To visualize the mesh
backbone network, the system uses an add-on provided by [10].
This add-on allows a user to analyze the link quality between
several meshed Wifi nodes. This can be used to build up a stable
working backbone network.

4.2 OLSR on Multi Client Systems

It is possible that every MCS can be become part of the WiFi
meshed network. At least for two aspects, attention has to be paid.
On the one hand, the end device needs of course an interface for
IEEE 802.11(a/b/g) [11] and on the other hand an implementation
of the OLSR routing protocol is required. Several devices are
being tested with the implementation of the olsr.org community.

A development for Windows mobile clients from [12] is also
tested. For testing purposes, a network was installed with over 15
Asus routers, several Notebooks running Windows XP™ and also
one mobile pocket pc client. It was shown that all clients were
able to communicate to each other also in the multi-hop manner.

5. CONCLUSION & OUTLOOK

In this paper an approach for Multi Client Systems (MCS) for
management of wireless sensor networks has been presented. The
first MCS implementation for a mobile device running on a
Windows Mobile operating system was introduced as well as the
foreseen backbone architecture. The wireless backbone on the
second level is build up on full meshed WLAN router based on
OLSR. It is shown that also the MCS can be part of this network.

Future work will contain further development of the Multi Client
System including user right management (for e.g. guest, habitant,
and administrator). Topology visualization in form of a typical
tree view or similar graphical representations on top of a bitmap
like a floorplan is planned too. Studies of user acceptance are
planned as well to get feedback for the enhancement of the GUI
in the wireless sensor networking domain.

6. ACKNOWLEDGEMENT

The presented work will be part of the AutHoNe project results.
AutHoNe is a BMBF (German Federal Ministry of Education and
Research) funded project. In the German part of the project the
Partners are Fraunhofer FOKUS, Hirschmann Automation and
Control GmbH, Siemens CT, and TU Munich. The project is
being carried out as part of a CELTIC cluster within a EUREKA
initiative.

7. REFERENCES
[1] IEEE 802.15.4.4 — Homepage, The Institute of Electrical and
Electronics Engineers, Inc., February 2007,

http://www.ieee802.0rg/15/pub/TG4.html IEEE 802.15.2
Standard

[2] ZigBee Alliance - The Official ZigBee Alliance Site, WWW,
ZigBee Alliance, http://www.zigbee.org/, 2008.

[3] ZWave — Homepage, Zensys Inc., http://www.zen-sys.com/
July 2007

[4] E.home Webpage Spelsberg Gebidudeautomation GmbH,
http://www.ehome-online.de, July 2008

[5] Automation System FS20, Conrad Electronic SE,
http://www1.conrad.de/fs20/, July 2008

[6] Optimized Link State Routing Protocol (OLSR), The Internet
Society, http://www.rfc.net/rfc3626.txt, RFC, October 2003

[71 OpenWrt - Wireless Freedom,
http://www.openwrt.org/, WWW, 2008

OpenWrt.org,

[8] ZigBee Alliance: ZigBee Specification, ZigBee Document
053474r13, Version 1.0, http://www.zigbee.org/en/index.asp,
December 1, 2006

[9] OLSR.org, Homepage the ad hoc wireless mesh routing
daemon, http://www,olsr.org, WWW, April 2007

[10] Olaf Koglin, Homepage Freifunk, http://www.freifunk.de,
WWW, April 2008

[11] IEEE 802.11TM WIRELESS LOCAL AREA NETWORKS
Homepage, Institute of Electrical and Electronics Engineers,
Inc., http://grouper.ieee.org/groups/802/11/, 2007

[12] Denis Martin Homepage, Implementation Download of
OLSR daemon for PPC, http://www.delta-my.de/devel/olsrd-
0.5.0-wince.tar.gz, July 2008

35

Implicit Sleep Mode Determination in Power Management of
Event-driven Deeply Embedded Systems

André Sieber, Karsten Walther, Reinhardt Karnapke, Andreas Lagemann, Jorg Nolte
Distributed Systems/Operating Systems group, BTU Cottbus
Cottbus, Germany

{as, kwalther, karnapke, ae, jon}@informatik.tu-cottbus.de

Abstract

Energy consumption is a crucial factor for the lifetime
of many embedded systems, especially wireless sensor net-
works. In this paper we present an approach for power man-
agement in embedded systems, based on the event-driven
operating system REFLEX. In contrast to other systems
the implicit power management is mostly hardware inde-
pendent and efficiently chooses the optimal power saving
mode of the microprocessor automatically. First experi-
ments yield promising results comparable to existing implicit
power management concepts.

1 Introduction

Typical sensor net applications such as environmental
monitoring mostly demand that nodes should work for years
with a single battery. Thus, saving energy is essential to
attain this goal. Even in embedded systems with external
power supply, saved energy helps to reduce costs. For min-
imal power consumption the appropriate hardware must be
chosen. But the hardware must be appropriately utilized, too.
This is a complex task that should not be the application pro-
grammer’s burden. There is a wide range of low-power mi-
crocontrollers available, for example the Texas Instruments
MSP 430 series[1]. These processors provide the program-
mer with fine grained control over components and sleep
modes. To utilize these features the operating system should
at least be able to provide the application with power saving
mechanisms. It would be even better to do this implicitly
without any need of control from the programmer. Event-
driven operating systems can potentially go into sleep mode
if no event is pending and the hardware can wakeup the rest
of the system upon the occurrence of an event. Since most
microcontrollers support a variety of sleep modes with dif-
ferent energy footprints, the selection of the mode can have
a perceptible effect on the lifetime of battery powered de-
vices. If the decision was wrong, the energy savings could
be marginal or, even worse, events can get lost.

The rest of the paper is structured as follows. In sec-
tion 2 the related work is presented. Section 3 gives a short
overview over the REFLEX operating system. In section 4 the
power management mechanisms of REFLEX are described.
Early evaluation results are presented in section 5. Finally, a
conclusion is given in section 6.

2 Related Work

The most common operating system for wireless sensor
nodes is TinyOS[2], which is event based. The power man-
agement sends the controller to sleep if the task-queue is
empty. To determinate the deepest possible sleep mode,
the scheduler evaluates a dirty-bit, which is set by ev-
ery driver-module by calling the McuPowerState.update ()
function. This results in a re-computation of the lowest pos-
sible sleep mode by reading all device registers. The update
operation is executed atomically and thus can produce a sig-
nificant overhead [3]. Additionally the function is hardware
depended and must be implemented for every platform.

Other event-driven sensor node operating systems like
SOS[4] and Retos[5] leave the power management to the
programmer and do not implement any deepest sleep mode
computation. Contiki[6] can not take advantages from any
sleep mode because of its polling methodology for interrupt
handlers.

3 Reflex

REFLEX (Real-time Event FLow EXecutive) is an oper-
ating system implemented in C++, targeting deeply embed-
ded systems and wireless sensor nodes. It is based on the so
called event flow model presented in [7]. Activities are the
schedulable entities, which are triggered if something was
posted to their associated event buffers. Initial source of all
activity in the system are interrupts.

Figure 1 shows a simple example containing the elements
of a common REFLEX application. The interrupt handler
in the timer component writes data into the event buffer of
the AD Converter component using an event channel, which
forces the activity of the converter to sample a value. When
the value is available the ADC interrupt arises and is han-
dled by writing the value to the event buffer of the applica-
tion logic component. The associated activity implements
the threshold logic which sends the data over the serial inter-
face component if necessary.

4 Power Management in Reflex

The power management in REFLEX has two views, a
user view and a system view. The user view allows the
programmer do define modes of operation utilizing differ-
ent parts of the hardware and even software components.
This makes it possible to divide the execution of an appli-
cation into different phases. The system provides the class
EnergyManageAble from which every part of the system

37

AD Converter Timer
handle P

Application logic
(" interrupt handler

activity
J\ (] component

{

Packet

threshold
reception

control

«—Q—

Serial interface, O event buffer
@ modul output
tx
_<» interrupt

w start

—>» event channel

association

%;

Figure 1. REFLEX application example

that should be included into power management must be de-
rived. Manageable objects can be interrupt handlers as well
as event channels. The programmer is responsible for chang-
ing the modes. E.g. a timer driven module can be used for
mode changes.

At startup, each manageable object is registered with the
power management and assigned to one or more groups.
During operation groups can be independently activated and
deactivated. If a manageable object is member of multiple
groups it is only deactivated when all of these groups are
deactivated.

The system view is used for the determination of the deep-
est possible sleep mode. Every instance of a component has a
variable which specifies the deepest possible sleep mode that
may be used when it is active. This value is assigned during
initialization for non hardware specific objects or hard coded
for hardware specific objects. The power manager contains
a table with counters for every available sleep mode of the
microcontroller used. If a component is enabled it signals
its deepest possible sleep mode to the power manager by in-
creasing the corresponding counter in the sleep mode table.
If a component is disabled, the counter of its sleep mode is
decreased.

If no event is pending, the power manager iterates the
sleep mode table starting at the lightest mode. The first value
different from zero is the deepest possible sleep mode. To
guarantee this, the table is initialized with zero for all coun-
ters except the deepest mode which is initialized with one.

In contrast to TinyOS, it is not necessary to evaluate the
complete machine state, which makes the changing of the
lowest possible sleep mode very lightweight.

A state override is possible to prevent the system to go
below a certain sleep mode or to sleep at all. This is possible
by using an energy manageable object which increments the
counter in the power management table for a certain wanted
mode. This may be useful for reducing wakeup times.

The sleep mode counter table is the only hardware spe-
cific part of the power manager, since it can have different
sizes depending on the used microcontroller.

38

5 Evaluation

To show the efficiency and compatibility of the presented
power management scheme, we devised a simple experi-
ment. In the next section we first explain the experimental
setup. After that the results will be discussed.

5.1 Experimental Setup

The measurement setup is shown in figure 2. Besides the
device under measurement, the setup contains a shunt, an
adjustable power supply unit, an oscilloscope and a PC. The
PC is used to control the oscilloscope and the power supply
unit. The energy consumption P is calculated by the voltage
and current which flows into the board (formula 1). Because
direct measurement of the current is not possible it is deter-
mined by using formula 2.

P= Uboard * Iboarddl (l)
Ipoard = —Ushum / Rpunt (2)

The start of a measurement can be accurately determined
by using a trigger signal generated by the application running
on the microcontroller itself.

It must be pointed out that the region of the measured
values leads to a certain amount of noise. Thus there could
be an error of about 10%, but the values are suitable to show
trends.

Sense+

Adjustable Power

. . Supply
Microcontrollerboard Uboara Shunt L (Hameg HM8143)

ond V-

= —

Iboard RS232

Trigger

A+ A B+ B-| RS232

Oscilloscope usB usB
(PicoScope 5204)

Figure 2. Measurement Setup

The measurements where done using a TMoteSky[8]
equipped with a Texas Instruments MSP 430 series mi-
crocontroller, which has special hardware support for low-
power applications e.g. detailed sleep modes and fast
wakeup times.

We used a simple experimental application, which sends
data over the serial connection every second. This applica-
tion was chosen because it shows the characteristics of a typ-
ical sensor net application, such as a low duty cycle and pe-
riodically sending data over an interface.

5.2 Results

In figure 3 and table 1 the power consumption for different
versions of the power management schemes in REFLEX are
compared. With deactivated power management, there is no
difference in power consumption regardless of whether the
serial port is active or not. In contrast, deactivating the idle
core (the highest possible sleep mode called Ipm0) makes
the send activity clearly identifiable and shows a significant
amount of energy savings. This simple power management

reduces the energy consumption to about 16% of the unman-
aged version. Using the power management approach pre-
sented in section 4 consequently to utilize the deepest possi-
ble sleep mode reduces the energy consumption to 7%.

Reflex
w/o lpmO full
TMoteSky 2,2V @ IMHz | 2.825 | 0.451 | 0.195
TMoteSky 3V @ IMHz 7.445 | 1.053 | 0.258

Table 1. Average power consumption of Reflex

Due to the quadratic influence of voltage, the overall
power consumption at 3V is higher, but as table 1 shows,
the effect reduces with better power management, which was
not expected. Reasons for this could be, that the percental
influence of the analog parts to the power consumption rises
with deeper sleep modes. These do not fall under the CMOS
power consumption formula (P ~ Py + aC V2 /) and thus
can behave different. At last, the formula is idealized.

T T

no power management
simple power management (Imp0)
3 full power management -------- -

i TTURT PRIE TR RIE o | " Bl
IR

IVl Ao N T
Vi) e et e

power consumption in mW

Figure 3. Power consumpti(l)mrelln:)f Reflex power manage-
ment schemes for at IMHz and 2.2V

For comparison purposes TinyOS 2.0.2 was used. The
same application was implemented and utilized only implicit
power management. The results are shown in figure 4 and
table 2.

Tiny(SS power manademem
Reflex power management

power consumption in mW

0 1 2 3 4 5 6
time in s

Figure 4. Power consumption of TinyOS and Reflex at
1MHz and 2.2V

For the given application the results show that the power
management of REFLEX is more effective than the one from

Reflex | TinyOS
TMoteSky 2,2V @ IMHz | 0.195 0.324
TMoteSky 3V @ 1MHz 0.258 0.588

Table 2. Average power consumption of TinyOS and Re-
flex

TinyOS. The REFLEX power management consumes about
41% respectively 56% less energy, depending on the volt-
age. The main reason is that the power consumption during
sleep is higher in TinyOS than in REFLEX. Due to the driver
module for the serial connection it is not possible to deter-
mine if the receiving direction is used, so an automatic de-
activation of receiving is not possible. In contrast, the driver
module in REFLEX knows that it is used because it is part of
the event flow. Additionally the receiving driver module is
managed by the underlying group management and, thus is
only active when implicitly activated.

6 Conclusion

We presented an efficient way of determining the deepest
possible sleep mode in event driven systems and its imple-
mentation in the REFLEX operation system. The presented
power management is lightweight and hardware indepen-
dent. Measurements show that this approach seams to per-
form around 50% better than the one of TinyOS for the given
application and regardless the noise of the measurements.

Further examination of additional applications is needed
to confirm the results.

7 References
[1] Texas Instruments, MSP430 series Webpage http://www.msp430.com.

[2] J.Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System Archi-
tecture Directions for Networked Sensors. In the 9t/ International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), 2000.

[3] TinyOS Microcontroller Power Management Documentation TEP112, Web-
page http://www.tinyos.net/tinyos-2.x/doc/html/tep112.html

[4] C.-C.Han, R. S. Ram Kumar, E. Kohler, and M. Srivastava. A dynamic oper-
atingsystem for sensor nodes. In Proc. of the 3rd international conference on
Mobile systems, applications, and services MobiSys, 2005.

[5] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon. Retos:
resilient,expandable, and threaded operating system for wireless sensor net-
works. In Proc. of the 6th intl. conf.on Information processing in sensor net-
works (IPSN '07), 2007.

[6] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and exible
operating system for tiny networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, 2004.

[7]1 K. Walther and J. Nolte. A flexible scheduling framework for deeply embed-
ded systems. In In Proc. of 4th IEEE International Symposium on Embedded
Computing, 2007.

[8] TMote Sky Datasheet,
Moteiv Corperation, http://www.sentilla.com/moteivtransition.html, 2006.

39

Tab WoNS: Calibration Approach for WSN based
Ultrasound Localization Systems

Extended Abstract

Clemens Muhlberger
Chair of Computer Science V
Am Hubland
Wirzburg, Germany
muehlberger@informatik.uni-
wuerzburg.de

ABSTRACT

Accurate localization of objects is often very important,
thus various methods and systems exist. Unfortunately,
some support easy deployment but are less accurate while
others are more accurate but require a complex and time-
consuming deployment stage. When the localization system
meets some demands, a widely self-organizing deployment
becomes possible. This paper describes which pre-conditions
and abilities are required, how self-configuration could be
realized for such a system and which minimal number of
calibration steps are required during deployment.

1. INTRODUCTION

Lots of application scenarios for wireless sensor networks
(WSNs) are in need of accurate knowledge about current
positions of several objects. Because this can be such an im-
portant basic requirement for the system’s successful opera-
tion, not only different approaches were proposed, but also
based on these solutions various localization systems were
built and successfully proven (c.f. [1, 4, 5, 6, 7, 10, 11, 12]).
Indeed, the sometimes costly deployment process of such
a WSN was hardly analyzed so far. Yet, deployment can
be very time-consuming and cost-intensive, especially when
numerous beacons have to be mounted and calibrated quite
precisely. That’s why this paper presents a self-deployment
strategy for beacon-based localization systems to save time
and costs. Therefore section 2 defines some basic require-
ments for the self-deployment procedure, whereas section 3
introduces the localization system SNoW Bat [4] to form
the basis of our further research. Section 4 specifies our de-
ployment approach Tab WoNS, which is quite similar to the
localization stage of SNoW Bat. Our thoughts and results
for the calibration during deployment stage are presented
in section 5 and finally a conclusion in section 6 closes this

paper.

2. SYSTEM REQUIREMENTS

The self-deployment strategy presented in this paper re-
quires the desired localization system to comply with the
following requirements. First of all, the sensor nodes of
the localization system are classified as beacons (i.e. anchor
nodes with known and constant position) and clients (i.e.
mobile nodes with unknown and variable position). To de-
rive basic conditions for efficient calibration during the self-
deployment stage, our approach presumes that the beacons

Marcel Baunach
Chair of Computer Science V
Am Hubland
Wirzburg, Germany
baunach@informatik.uni-
wuerzburg.de

are aligned in a regular pattern. For this paper a roughly
grid-like! layout is analyzed.

The underlying localization system uses ultrasound signals
(so called chirps) for distance measurement. But it is suffi-
cient — even for deployment stage — if beacons are just able
to receive ultrasound signals whereas only clients are ca-
pable of transmitting ultrasound for distance measurement.
There will be no need for the anchors to generate ultrasound
signals, which saves energy and reduces environmental pol-
lution by ultrasound emitted from the quite large number of
beacons in such systems. Besides we are just interested in
three-dimensional localization, the two-dimensional equiva-
lent would be much easier but less realistic. However, for
simplification we will assume that the anchors are fixed at
the common ceiling plane and a mobile client moves freely
thereunder within a certain distance range (cf. Fig. 1). Ad-
ditionally the distance between ceiling and mobile client is
not necessarily known.

3. LOCALIZATION SYSTEM

This section introduces the underlying localization system
SNoW Bat. It operates based on the thunderstorm principle,
where radio packets correspond to lightning and ultrasound
signals to thunder. According to the requirements from sec-
tion 2, all sensor nodes are divided into beacons and clients.
After deployment each beacon knows its position and is able
to detect ultrasound signals, whereas no client knows any co-
ordinates a priori. However, each client is able to generate
ultrasound signals and to initiate the following localization
procedure:

1. If a client wants to know its current position, it broad-
casts a radio packet containing its ID and the time
difference between this radio message and the subse-
quent ultrasound chirp.

2. Each anchor receiving this synchronizing radio packet
activates its ultrasound receiver and thus expects the
client’s ultrasound signal after the specified waiting
time.

If the anchors are adjusted to an exact grid, each anchor
can already determine its position if only one single anchor
knows its position and if the anchors have additional knowl-
edge about their placement, orientation, etc.

41

L
Z /o_. ° .o .o .o y .o .o .o Zmax

min /e e
L] L] o O o o
[] [] e e o o
aNChOTS /ee Jo svers o e s "o ' -
X ER & D =
C wq)
£ £
ke 5
own
% S
£
o
ref. poinis”

Figure 1: Schematic system design: anchors are at
the ceiling along a grid-pattern with grid constant
L, clients are thereunder. The ultrasound signal is
emitted as spherical sector, which defines a coverage
zone Z with radius r.

3. The mobile client transmits the ultrasound chirp as
denoted in the previous radio broadcast.

4. Each beacon which detects this ultrasound signal cal-
culates its distance towards the mobile client from the
time difference of arrival between the radio and ultra-
sound signal. If an anchor just receives the initiating
radio message but no chirp, it aborts measurement and
waits again for further clients to be localized.

5. Each beacon, which successfully completed its distance
measurement, passes this result together with its known
position to the requesting client as unicast. This is
done by the self-organizing communication protocol
HashSlot [2, 3].

6. By using for example multilateration, the client can
estimate its three-dimensional position autonomously
from at least four such distance measurements.

4. DEPLOYMENT STRATEGY

Inspired by the localization procedure, we head for the de-
ployment stage. The main idea of our deployment approach
is reversing the roles of anchors and clients during deploy-
ment. That is, just during deployment a reference client
below the anchor plane knows its position, whereas every
beacon doesn’t yet know its coordinates. The remaining re-
quirements from section 2 are retained: only the (reference)
client generates ultrasound signals, which can be detected
by the grid-aligned beacons at the anchor plane. The de-
ployment procedure will than be as follows:

1. The reference client is situated at a known position (so-
called reference point) and broadcasts a radio packet
containing its ID, its current position and the time dif-
ference between this radio message and the subsequent
ultrasound chirp.

2. Each beacon with yet unknown position receiving this
synchronizing radio packet activates its ultrasound re-
ceiver and thus expects the client’s ultrasound signal
after the specified waiting time.

42

3. The reference client transmits the ultrasound chirp as
denoted in the previous radio broadcast.

4. Each beacon which detects this ultrasound signal cal-
culates its distance towards the mobile client from the
time difference of arrival between the radio and ultra-
sound signals. If an anchor just receives the initiating
radio message but no chirp, it aborts measurement and
waits again for radio packets of the reference client.

5. If a beacon successfully completed at least four dis-
tance measurements to non-collinear reference points,
it estimates its fixed position, e.g. by using multilat-
eration. From now on, this beacon knows its position
and is available for locating mobile clients with un-
known position as described in section 3.

Obviously, deployment (this section) and regular operation
(section 3) are very similar. Their only differences are the
knowledge of the nodes’ position and the handling of the
distance information. In comparison to the procedure dur-
ing the localization stage, no replies from beacons to clients
are required anymore. This way, the hardware for clients
and beacons remains the same for deployment and local-
ization. Still, this deployment procedure implies two open
issues which need a closer examination:

1. First, the reference client needs exact knowledge about
its own position now. For example, this can be done
manually, but an inaccuracy of a couple of millimeters
already produces drastic errors during localization.

2. Next, the number of required known positions of the
reference client during deployment should be kept as
small as possible to save energy, time and costs, mainly
manpower.

Because the first item depends on the craftsmanship of the
calibrating persons as well as the accuracy of the used mea-
suring instruments, we will initially focus on the second item
in the next section.

5. CALIBRATION

In this section we address the localization system calibra-
tion after installation of the static beacons at the anchor
plane. The goal is to determine accurate anchor positions
while achieving a short duration for this exceptionally im-
portant process. As already described in section 4, we use
certain carefully selected reference points at well known po-
sitions to allow each anchor-to-be to measure at least four
distances in a three-dimensional space. Of course, increas-
ing this number yields higher precision but also consumes
more time and power. Thus, the number of reference points
shall be minimized but must still allow proper and complete
operation. Therefore we define the ratio
|anchors-to-be]
Q= o O
|reference points|
as central metric for the solution’s quality and try to maxi-
mize Q.

Since we consider a grid-like pattern for the anchors, we also
expect a regular pattern for the optimum reference point

legend: () coverage zone [JJj ECA

C@ee

Figure 2: Some basic layouts, each consists of four
overlapping circles of equal radii forming an explicit
coverage area (solid black).

alignment. SNoW Bat uses a regular grid for several rea-
sons. It is easy to install, contributes to the performance
of the self-organizing HashSlot [2, 3] wireless communica-
tion protocol, and allows easy adaption to the environmental
conditions. The last point allows to easily provide complete
localization service coverage throughout the entire opera-
tional area. As figure 1 shows, the selected grid constant
L depends on the minimum distance dm:n of the mobile
objects from the anchor plane and the resulting minimum
ultrasound coverage zone Z,,. According to [3], L is com-
puted to always guarantee a minimum number of four nodes
within an ultrasound coverage zone Z independent from its
overlay position within the grid. Thus L stays fixed after
system installation and obeys to the spatial geometry and
hardware constraints during system design. On the other
hand, dmaz limits the maximum number of anchors within
the largest possible ultrasound coverage zone Z,q,. Unfor-
tunately, no analytical solution for the exact number of grid
points within a circle is yet known. However, approxima-
tions for the so called lattice point problem are presented in
e.g. [8, 9. Anyway, the reference points must obviously
be placed at distance dmqz from the anchor plane. Then,
their final number decreases along with increasing difference
dmaz — dmin. Still, the optimal alignment remains to be
found.

The idea so far is to initially place four non-collinear ref-
erence points in a way to maximize the intersection area
of all resulting coverage zones, Fig. 2d shows an exam-
ple. This intersection produces the so called explicit cov-
erage area (ECA). Then, the just created basic layout is re-
peated with a certain distance to implicitly cover the anchors
in-between the explicit areas (implicit coverage area, ICA),
too. Fig. 3d shows a corresponding alignment of reference
points. Indeed, this special basic layout is rather adverse,
since several reference points are close to each other and
the implicitly covered areas are very small. If we increase
the space between the basic layouts to enlarge the implicit
coverage areas, we might require some additional reference
points to keep fourfold coverage (e.g. the bold circle in Fig.
3a).

During our analysis we found that the proportion between
explicitly and implicitly covered areas should be roughly bal-
anced to omit extra reference points. Then, implicitly and
explicitly covered anchor sets with about the same size al-
ternate. Fig. 3a-c shows some more basic patterns with
balanced proportion.

Regarding the metric describe above, table 1 shows that the

legend: O coverage zone O add. coverage zone . ECA ICA

Figure 3: Slightly different alignment strategies
when using basic layouts a, b and d from Fig. 2.

Table 1: Quality Q of various alignment strategies
for rmae: = 9L

Strategy Q

Fig. 3a | 42.44
Fig. 3b | 41.17
Fig. 3¢ | 39.06
Fig. 3d | 39.59

quality @ is exceptionally good for these balanced align-
ments since few reference points are required for calibrating
many anchors. Hence, pattern 3a offers the best quality
of the analyzed strategies, although it requires additionally
reference points.

Still, the achievable precision for each anchor’s position esti-
mation needs careful consideration. Indeed, the calibration
accounts significantly to the accuracy of the localization sys-
tem’s regular operation. Thus, we recommend the following
method for checking the anchors and to perform partial re-
calibration of the anchors by additional measurements where
necessary:

1. Calibrate the system as described above.

2. Operate the system to localize objects at some addi-
tional well-known test points by using each anchor at
least once.

3. Compare the correct, known position to the estimated
one and recalibrate these anchors which were involved
in deviations larger than an acceptable threshold.

6. CONCLUSION AND FUTURE WORK

In this paper we presented an efficient strategy for the de-
ployment of an ultrasound based localization system. There-
fore some basic system requirements were defined. E.g. the
static anchor nodes must be mounted along a grid-like pat-
tern above the observed mobile clients. One benefit of our
strategy is the usage of identical hardware for calibration
during deployment as well as for localization during regular
operation. Just the roles of anchors and mobile clients will
be reversed.

Since the anchors initially do not know their coordinates, the
basic idea of our approach is to use a reference node at well
known positions for measuring some distances to these an-
chors, which then calculate their static position. The prob-
lem is to find a minimal set of reference points and to still

43

provide a sufficient number of distances for complete anchor
coverage. We showed, that this problem is not trivial and
does not only depend on the system accuracy and param-
eters (grid constant, etc.) but also on the reference node’s
positions during the calibration process.

So far, we just analyzed a few different reference point lay-
outs and strategies. The next step is to integrate the deploy-
ment procedure as described above into the existing localiza-
tion system SNoW Bat. Analyzing systems with arbitrarily
aligned anchors is another interesting issue. Hence, we want
to proof some upper or lower bounds for the number of re-
quired reference points within such systems.

7. REFERENCES

[1] P. Bahl and V. N. Padmanabhan. RADAR: An
In-Building RF-Based User Location and Tracking
System. In INFOCOM (2), pages 775-784, 2000.

[2] M. Baunach. Speed, Reliability and Energy Efficiency
of HashSlot Communication in WSN Based
Localization Systems. In R. Verdone, editor, EWSN,
volume 4913 of Lecture Notes in Computer Science,
pages 74-89. Springer, 2008.

[3] M. Baunach, R. Kolla, and C. Miihlberger. A Method
for Self-Organizing Communication in WSN Based
Localization Systems: HashSlot. In LCN, pages
825-832. IEEE Computer Society, 2007.

[4] M. Baunach, R. Kolla, and C. Miihlberger. SNoW
Bat: A high precise WSN based location system.
Technical Report 424, Institut fiir Informatik,
Universitat Wiirzburg, May 2007.

[5] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less
low-cost outdoor localization for very small devices.

44

[7

(10]

(11]

(12]

Personal Communications, IEEFE [see also IEEE
Wireless Communications], 7(5):28-34, 2000.

Y. Fukuju, M. Minami, H. Morikawa, and T. Aoyama.
DOLPHIN: An Autonomous Indoor Positioning
System in Ubiquitous Computing Environment. In
WSTFES ’03: Proceedings of the IEEE Workshop on
Software Technologies for Future Embedded Systems,
page 53. IEEE Computer Society, 2003.

A. Giinther and C. Hoene. Measuring Round Trip
Times to Determine the Distance Between WLAN
Nodes. In R. Boutaba, K. C. Almeroth, R. Puigjaner,
S. X. Shen, and J. P. Black, editors, NETWORKING,
volume 3462 of Lecture Notes in Computer Science,
pages 768—779. Springer, 2005.

M. N. Huxley. Corrigenda: Exponential Sums and
Lattice Points II. Proc. London Math. Soc.,
$3-68(2):264—, 1994.

H. Keller. Numerical Studies of the Gauss Lattice
Problem. Technical Report CRPC-TR97699, Center
for Research on Parallel Computation, Houston, Jan.
1997.

R. Prasad and M. Ruggieri, editors. Applied Satellite
Navigation Using GPS, GALILEO, and
AugmentationSystems. Artech House, 2005.

N. B. Priyantha. The Cricket Indoor Location System.
PhD Thesis, Massachusetts Institute of Technology,
June 2005.

A. Savvides, C.-C. Han, and M. B. Strivastava.
Dynamic fine-grained localization in Ad-Hoc networks
of sensors. In MobiCom ’01: Proceedings of the Tth
annual international conference on Mobile computing
and networking, pages 166-179, New York, NY, USA,
2001. ACM Press.

Improving Response Time of Sensor Networks by
Scheduling Longest Flows First

Nicos Gollan and Jens B. Schmitt
TU Kaiserslautern
Distributed Computer Systems Lab
p.o. box 3049
67653 Kaiserslautern, Germany

{gollan, schmitti@informatik.uni-kl.de

ABSTRACT

When deploying (wireless) sensor networks, sink-trees are a
natural topology choice. However, those networks have an
intuitive drawback: the deeper down in the tree a network
node is, the higher its delay becomes, due to the data be-
ing multiplexed with flows from other nodes higher up in
the tree, and because of forwarding delays. This leads to a
very uneven distribution of experienced delays, both worst-
and average-case; however, this is rarely necessary or de-
sirable behavior. Often, all data from a network is equally
important, and a high penalty for “outliers” endangers the
network’s utility.

To remedy this, and to provide a worst-case behavior
closer to the average case, we propose a multiplexing scheme
giving flows with a longer traveled distance priority over
flows that have passed fewer hops. We will show that this
scheme improves fairness in sensor networks, while adding
little complexity to their analysis.

1. INTRODUCTION

When looking at a sink-tree from the perspective of a sin-
gle flow of interest, the resulting characteristics are as shown
in Figure 1. As can be seen, the flow is multiplexed with
more and more flows as it gets closer to the sink. Under
multiplexing schemes like FIFO, or when using arbitrary
multiplexing, this results in potentially high delays favoring
flows with a shorter route to the sink. However, in most sen-
sor network applications where all data is equally important,
that kind of behavior opposes the requirements.

This becomes even more of an issue when dimensioning
a network based on its worst-case behavior, e.g. by using
(Sensor) Network Calculus [1, 2] (a short introduction can
be found in the appendix). In that case, the whole network
design depends on the nodes experiencing the worst service,
which may lead to a vastly overdimensioned network. As
was shown in earlier work [3], the worst-case behavior of a
network may deteriorate rapidly with the network’s diame-
ter.

This can be avoided by giving priority to certain flows
in a way that balances delay times for all nodes, reducing
the variance of that metric. However, this requires keeping
and analyzing the state of all flows. In environments with
restricted resources like sensor networks, this may impose
a significant additional load to the network nodes, reducing
the network’s lifetime and utility; thus, a balancing scheme
needs to be as simple as possible. Simplicity is especially

a1 Qo o (077
SRR Q=

interest

Figure 1: Typical characteristics of a sink-tree net-
work with feed-forward characteristics. As a flow of
interest traverses servers on the way to the sink, it
gets multiplexed with other flows, and remains so
until reaching the sink.

called for when trying to improve a worst-case bound, since
especially with low network load, that bound may be en-
countered only rarely, if ever. So spending a large amount
of resources would be a waste in the average case.

2. LONGEST FLOW FIRST SCHEDULING

The proposed multiplexing scheme is very simple: When
flows are multiplexed, the flow that has passed more hops at
the multiplexing node gets priority over the “younger” flow.
This has the advantage of being very easy to implement with
little overhead, since all that is required is a “hop counter”
in each data frame, which gets incremented by each server
that forwards the frame. The scheduler can then be a simple
priority queue. Since data packets usually carry a header,
adding that counter should be trivial in most cases.

Another common scheme would be to prioritize flows that
have the most hops left until their destination. However,
that fails in sink-tree networks, since at any given node,
each passing flow will have the same distance left to travel
to a given sink.

2.1 LFF in Network Calculus

Multiplexing in Network Calculus is handled by reducing
the minimum service curve offered by a network node by
the sum of all maximum arrival curves that can possibly be
scheduled before the flow of interest. In the following, let
o, 5 be the input bound of flow f at node n, and Fi, s be
the set of flows interfering with f at node n according to
the rules of the analysis method. The effective service curve
offered to a flow of interest f* at node n can then be given
as:

Bress = [Bn— Y ang

fEanf*

45

O
(1) Sink]
~~(3)

~_~: Sensed input
Figure 2: Simple feed-forward network.

To implement LFF, it is only necessary to filter F; so
that only flows that have passed at least the same number
of hops as the flow of interest. To that end, we define the
function h,(f) as the number of hops passed by flow f at
node n. Define the set F, ; = {f" € Fn 5 : ha(f') > ha(f)}.
The effective service curve offered to a flow of interest then
becomes:

+

Bn,eff =

Bn — Z Qn, f

FEF) L.

The expected results of that scheme are improved delay
bounds for longer flows, while the bounds for the shortest
flows show no significant change. This can be intuitively
explained by LFF only removing potential interference from
the longer flows, while still considering all cross-traffic for
the shortest ones. No flow exeriences a penalty.

For illustration, we look at a small network which is shown
in Figure 2, and calculate the delay bounds for the flows
originating at the nodes 1, 2, and 3, which will be called
d; with ¢ € {1,2,3}. Each node generates input limited
by a token-bucket arrival curve o = 71,1 and exhibits a for-
warding behavior lower-bounded by a rate-latency minimum
service curve 3 = [34,1. The PMOO analysis under arbitrary
multiplexing yields:

di = h(an[B— (a2 @ B2) + (a3 @ B3))])
dy = h(a2,B8B —a—(az08)") =
ds = h(as,B0[0—a1— (20 B)]")=

Under LFF, flows 2 and 3 get priority over flow 1, and the
term for d> and d3 becomes:

da
ds

h (a2, B2 ® [B1 — (a3 @ Bs)]7) = 4
h(as, s ® [B1 — (a2 @ B2)]T) = 4

We see an improvement for the longer flows. There is
no improvement for the whole network owing to the sim-
plistic example. To demonstrate the potential for overall
improvement, we will now show results from larger network
topologies.

3. RESULTS

We compared the results of LFF vs. arbitrary multi-
plexing by implementing the scheduling discipline in the
DISCO Network Calculator tool [4, 5], using the concepts
from above.

For scenario generation, we used the generator as used for
[6] to generate random sink-tree networks with a single sink,
a tree depth of 5 levels, with each node having one to five
child nodes. Arrival- and service curves for each node are
o =Y.015B/s,1kB and 3 = BiskB/s,0.5:- We then calculate

46

60
|

O Arbitrary
o LFF

Frequency
40 50
1 1

30
L

20
L

0 10
L L

\

\

7.8 8.2 8.8 9.2 9.8 10 " 1 12

Delay bound [s]

Figure 3: Frequency of delay bounds in an example
network.

Maximum delay [s]
6
1

O Arbitrary
o o LFF

Number of hops

Figure 4: Comparison of the maximum delay bounds
per flow length in an example network.

the delay bound for each flow using the Pay Multiplexing
Only Once Analysis (PMOOA, [7, 8]), both under arbitrary
and LFF multiplexing.

An example of the change in the delay bounds result-
ing from LFF scheduling is shown in Figure 3. Many flows
have an upper delay bound of over 11s, with a maximum of
11.52s, while LFF scheduling results in a maximum delay
bound of 10.42s. This makes for a 9.5% lower delay bound
under LFF. It is interesting to notice the large amount of
flows that got a significant improvement. More detailed
analysis shows that especially the longest flows get a boost.
Figure 4 shows a comparison between the worst-case bounds
per flow length. The topology had data flows that passed 1
to 4 hops. Under arbitrary multiplexing, the maximum de-
lay bound for a given hop count increases with the number
of hops. Under LFF however, the longest flows have a very
low bound. This is clearly overcompensation for the origi-
nal penalty incurred by longer flows. This will be further
discussed below.

Calculating the overall upper response time bounds for
100 randomly generated networks with over 15000 flows in
total, and with a topology as described above resulted in
improvements ranging from 0% (no improvement at all) to

40

30
I

Frequency
20

0.00 0.05 0.10 0.15

Relative improvement of the delay bound

Figure 5: Improvement of the delay bound by LFF
over arbitrary multiplexing.

15.7%, with a mean of 9%. The distribution of the improve-
ments is shown in Figure 5.

4. DISCUSSION

We have shown that scheduling long flows before shorter
flows often yields an improvement of the worst-case response
time, at the cost of minimal data and processing overhead.
The observed improvement with an average of 9% may seem
small, but earlier results showed benefits of over 30% in some
cases when scaling was taken into account [6]. The results
are also taken from a limited set of topologies. It is evident
that even small changes in parameters can have a large in-
fluence on the results of a Network Calculus analysis. This
calls for a closer examination of the conditions under which
LFF has a significant advantage over arbitrary multiplex-
ing. It would of course also be interesting to analyze the
impact of LFF on a real network, where the worst case is
usually rarely encountered. We hope to present results of
the average-case impact in the near future.

Overall, the exhibited behavior is overcompensation. The
longest flows benefit the most, while the shortest flows do
not show any improvement. This is of course different from
the intended result, which is to balance the delay bounds for
all network participants as well as possible. A few strategies
to reach the goal could be:

e Data scaling [6]. By taking data transformations like
compression or aggregation into account, the nodes
close to the sink may experience a vastly lower load
than in a model that just forwards data unaltered.

e Topology adaptation. If a node becomes backlogged for
too long, it may decide to skip a hop in the original
network topology, e.g. by using a higher transmission
power. This may serve to avoid bottlenecks, but of
course there may be issues with medium access due to
larger collision domains.

o Priority Injection. When a node is backlogged with
upstream data for a certain time, it inserts local data
instead of strictly following the LFF definition. This
tries to avoid the worst case by introducing a guaran-
teed service for data entering the network, based on

the assumption that bottlenecks only occur very close
to the sink, where a lot of flows with high priority exist.

We want to investigate te last point in a little more detail.

4.1 Impact of Priority Injection

To model the impact of a minimum service guarantee
to data entering the network, we introduce the notion of
a backdoor service curve. Intuitively, we want to achieve
that after an amount of time 7', an original data packet is
scheduled, even if there are other packets from other (higher
priority) flows scheduled. With M as the maximum packet
size, and C' as the link capacity, this can be modelled as
a rate-latency curve Bysc = ﬁ¥¢+%. A node i following
that scheme and with an input «; then offers a minimum
service curve B; eff V Bipsc to its own traffic, while offering
Bi — (i V Bipsc) to forwarded flows.

If we now model the simple network from Figure 2 with
Brsc = (1,2 at each node, we get:

di

h(v1,1,B23V B12) =3
+
do=ds = h{m,u, [ﬂ4,1 Aﬂg,% - 71,2] =4

which means an improvement for the whole network, since
it allows node 1 to forward its own data even though it is
experiencing heavy load from nodes 2 and 3. At the same
time, overcompensation is avoided.

Further study of priority injection is the subject of future
work.

S. REFERENCES

[1] R.L. Cruz. A Calculus for Network Delay, Part I+II.
IEEE Transactions on Information Theory,
37(1):114-141, 1991.

[2] Jens Schmitt and Utz Roedig. Sensor Network
Calculus - A Framework for Worst Case Analysis. In
Proceedings of IEEE/ACM International Conference
on Distributed Computing in Sensor Systems
(DCOSS’05), Marina del Rey, USA, pages 141-154.
Springer, LNCS 3560, June 2005. ISBN 3-540-26422-1.

[3] Jens B. Schmitt, Frank A. Zdarsky, and Markus
Fidler. Delay bounds under arbitrary multiplexing:
When network calculus leaves you in the lurch ... In
27th IEEE International Conference on Computer
Communications (INFOCOM 2008), Phoenix, AZ,
USA, April 2008.

[4] Jens B. Schmitt and Frank A. Zdarsky. The DISCO
Network Calculator - A Toolbox for Worst Case
Analysis. In Proceedings of the First International
Conference on Performance Fvaluation Methodologies
and Tools (VALUETOOLS’06), Pisa, Italy. ACM,
November 2006.

[5] Nicos Gollan, Frank A. Zdarsky, Ivan Martinovic, and
Jens B. Schmitt. The disco network calculator
(demonstration). In 14th GI/ITG Conference on
Measurement, Modeling, and Evaluation of Computer
and Communication Systems (MMB 2008),
Dortmund, Germany, March 2008. GI/ITG.

[6] Jens B. Schmitt, Frank A. Zdarsky, and Lothar
Thiele. A Comprehensive Worst-Case Calculus for
Wireless Sensor Networks with In-Network Processing.

47

In IEEE Real-Time Systems Symposium (RTSS’07),
Tucson, AZ, USA, December 2007.

[7] Jens B. Schmitt, Frank A. Zdarsky, and Markus
Fidler. Delay Bounds under Arbitrary Multiplexing.
Technical Report 360/07, University of Kaiserslautern,
Germany, July 2007.

[8] Jens B. Schmitt, Frank A. Zdarsky, and Ivan
Martinovic. Improving performance bounds in
feed-forward networks by paying multiplexing only
once. In 14th GI/ITG Conference on Measurement,
Modeling, and FEvaluation of Computer and
Communication Systems (MMB 2008), Dortmund,
Germany, March 2008. GI/ITG.

[9] Jean-Yves Le Boudec and P. Thiran. Network
Calculus: A Theory of Deterministic Quewing Systems
for the Internet, volume 2050 of Lecture Notes in
Computer Science. Springer, 2001.

[10] Anis Koubaa, Mario Alves, and Eduardo Tovar.
Modeling and Worst-Case Dimensioning of
Cluster-Tree Wireless Sensor Networks. In 27th IEEE
International Real-Time Systems Symposium
(RTSS’06), pages 412-421, Rio de Janeiro, Brazil,
2006. IEEE Computer Society.

[11] Huimin She, Zhonghai Lu, Axel Jantsch, Li-Rong
Zheng, and Dian Zhou. Traffic splitting with network
calculus for mesh sensor networks. In FGCN 07:
Proceedings of the Future Generation Communication
and Networking (FGCN 2007), pages 368-373,
Washington, DC, USA, 2007. IEEE Computer Society.

[12] Petcharat Suriyachai, Utz Roedig, and Andrew Scott.
Implementation of a Deterministic Wireless Sensor
Network. In Proceedings of the 5th IEEE European
Workshop on Wireless Sensor Networks (EWSN2008),
Bologna, Italy, January 2008. (Poster Presentation).

[13] Jens B. Schmitt, Frank A. Zdarsky, and Ivan
Martinovic. Performance Bounds in Feed-Forward
Networks under Blind Multiplexing. Technical Report
349/06, University of Kaiserslautern, Germany, April
2006.

APPENDIX
A. BASICSENSORNETWORK CALCULUS

This is a very basic overview of the Sensor Network Cal-
culus (SNC). Detailed explanation of the SNC can be found
in [2].

To apply the SNC, the network topology has to be known
to some degree. For example, a tree-structured network
topology with a sink at the root and m; sensor nodes can
be used. Next, the network traffic has to be described in
terms of so-called arrival curves for each node. An arrival
curve defines an upper bound for the input traffic of a node.
Leaf nodes in the network have to handle traffic according
to the sensing function they perform; for example, a node
might sense an event and create a data packet at a maximum
rate of one packet every second. This sensing pattern can
be expressed as an arrival curve a;. Non-leaf nodes handle
traffic according to their own sensing pattern and the traffic
they receive from other nodes .

To calculate the output, the so-called service curve j3; is
used. The service curve specifies the worst-case forwarding
capabilities of a node. The necessary forwarding latencies

48

are defined by the nodes’ forwarding characteristics.

From the arrival and service curves, it is possible to cal-
culate output bounds for each node. Using those bounds, it
is possible to compute the effective input a; for each node.
Thereafter, the local per-node delay bounds D; for each sen-
sor node i can be calculated according to a basic network
calculus result given in [9]:

D; = h(ay, Bi) = sup{inf{7 > 0: ai(s) < Bi(s+7)}}
s>0
To compute the total information transfer delay D; for a

given sensor node i, the per node delay bounds on the path
P(i) to the sink need to be added:

D;= > Dy
JEP(d)

Clearly, the maximum information transfer delay in the
sensor network can then be calculated as D = max;—1,... N D;.
The whole procedure is called total flow analysis (TFA) be-
cause all of the traffic arriving at a given node is treated in
an aggregate fashion.

Examples for the use of this calculus can be found e.g. in
[10, 11, 12].

A.1 Advanced Sensor Network Calculus

While the TFA is a straightforward method for applying
network calculus in the domain of wireless sensor networks,
there is room for improvement with respect to the quality of
the calculated performance bounds. This is due to the fact
that the concatenation result for consecutive nodes offering
service curves is not exploited by the TFA. In particular,
we can exploit and even extend the concatenation result
towards a so-called Pay Multiplexing Only Once analysis
(PMOOA) described in [13], to compute an end-to-end ser-
vice curve for a specific flow of interest from one sensor node
to the sink. Due to the sink-tree structure of the network,
all flows that join a flow of interest remain multiplexed until
the sink, making it possible to calculate the total informa-
tion transfer delay D; for a given sensor node i by using
a flow-specific end-to-end service curve. PMOOA can be
shown to deliver a tight bound for sink-trees [7] of homoge-
neous nodes. When compared to the addition of the nodal
delay bounds as done by the TFA, this results in consider-
ably less pessimistic bounds as each interfering flow’s burst
has to be taken into consideration only once.

Desigh Concepts of a persistent Wireless Sensor Testbed

Bastian Blywis Felix Juraschek

Mesut Glnes Jochen Schiller

Freie Universitat Berlin
TakustraRe 9
14195 Berlin, Germany

{blywis, jurasch, guenes, schiller}@inf.fu-berlin.de

ABSTRACT

In this paper we introduce our work-in-progress wireless
testbed. The testbed consists of hybrid nodes. Each node
contains a sensor node and a mesh router. We present con-
cepts which exploit the features of an existing wireless mesh
network for the wireless sensor network. The concepts in-
clude the wireless sensor testbed integration (WSTI) which
simplifies the management and provides a basic infrastruc-
ture for the sensor network and experiments. The integra-
tion into the Linux kernel is realized by the wireless sen-
sor kernel interface (WSKI). Network check points (NCPs)
enable long-term experiments that may span several weeks
although they cannot be done in one continuous session.

1. MOTIVATION

Wireless sensor networks (WSN) have been in the focus of
research in the last decade and are deemed mature for many
application areas for which they were intended to. Several
fundamental problems have been identified, e.g. routing, ad-
dressing, transport layer issues, and middleware, various ap-
proaches are consequentially proposed. Unfortunately, most
knowledge and understanding is based either on simulation
studies or small deployments of wireless sensor networks.

Few real world WSN deployments resemble the envisioned
kind of networks where vast numbers of nodes solving a col-
lective task have to rely on limited energy resources. While
these setups are existing, e.g. wild life monitoring [13], many
installations are in urban environments. The sensors mon-
itor decrepit bridges and buildings, support elderly in as-
sisted living facilities, or are part of home automation sys-
tems. These kind of applications demand WSNs to integrate
into existing network infrastructures like a wireless mesh
network (WMN). New challenges emerge since the applica-
tion specific devices are often performance limited and use
feature reduced operation systems. They were not devel-
oped with integration and support of common often heavy-
weight protocols in mind. We discuss the integration aspect
twofold. On one hand the WSN can be part of the overall
architecture provided by an existing infrastructure. On the
other hand the WSN hardware can also be beneficial for the
WMN.

Furthermore, there is a lack of long-term experience with
wireless sensor network applications, since many studies are
limited in time or use small setups only. Few reports about
long-term performance studies, reliability, and maintenance
of wireless sensor networks have been published. Though,

Testbed @
Server @

Wired Backbone

Backbone
mesh routers

K K R J O Ve G
! ’ ! / A
/ / h / S
N : Q : ! s Routing
Routing SN - Non-routing 4 !
mesh clients / O ; E\Tesh clients ‘_O\-- /Q\ sensor nodes
N TN SN
) S

-------- Wireless Connection

O I:l Mesh Routers

Wired Connection

A Extensions

(O Sensor Nodes

Figure 1: Architecture of the hybrid testbed con-
sisting of mesh routers, mesh clients, sensor nodes,
and the testbed server hosting management com-
ponents including databases. Sensor nodes may be
connected with wired extensions.

there are many real world applications with an intended run-
time of several years. Life cycles of up to 10 years are a
common demand in facility or animal monitoring. But how
can we execute experiments of adequate time span? We
present an approach to save and restore the network state
at particular times.

The remainder of the paper is organized as follows. In Sec-
tion 2, the architecture of the Distributed Embedded Systems
(DES) testbed is introduced. Subsequently, in Section 3 we
discuss our design concepts for integration. We compare
our architecture and approach to other testbed setups in
Section 4. The paper ends with a conclusion in Section 5.

2. HYBRID TESTBED ARCHITECTURE

At the time of this writing we are in the process to set up
a hybrid testbed [9] at the Freie Universitit Berlin. The
testbed consists of hybrid nodes containing a wireless mesh
router and a wireless sensor node in one shared enclosure. So
far we installed 35 of these hybrid nodes in our office rooms
spanning three floors with the goal to deploy 100 nodes in
total. The WSN is our contribution to the European Union

49

WISEBED |[3] project. This multi-level infrastructure of in-
terconnected testbeds pursues the integration of heteroge-
neous small-scale devices for research on large scale. The
European Union OPNEX [1] project in contrast is focused
on the design of architectures and protocols for multi-hop
wireless mesh networks based on IEEE 802.11 technology.
The corresponding mesh routers are used as foundation of
the hybrid testbed.

Figure 1 depicts our general system setup which is based
on a three tier architecture. Mesh routers and sensor nodes
are deployed in our institute in a planned but not uniform
manner. As part of future extensions adjacent buildings will
be comprised. The stationary mesh routers build the core
backbone network representing tier 1. Tier 2 comprises the
clients connected to a backbone router which may or may
not provide a routing service themselves depending on the
test run configuration. The usual mesh client is regarded
as mobile. Tier 3 encompasses the sensor nodes which are
connected by wire to a mesh router or client. A subset of
sensor nodes may be operated independently of the mesh
network infrastructure with alternative power supply, creat-
ing an even more dynamic topology.

2.1 Testbed Server and Network Management
The testbed server is connected by ethernet to the mesh
routers and provides their root filesystem over the network
using NFS. Log files and evaluation data for mesh and sen-
sor network test runs are stored on the testbed server in
a PostgreSQL database. The testbed server hosts a man-
agement console implemented in the Java programming lan-
guage which provides the user interface to both networks.
The management console enables the configuration and main-
tenance of the network components, realized with a combi-
nation of SSH remote command execution and the SNMP
service. SNMP agents running on the mesh routers offer a
convenient way to configure and debug the network state.
The testbed server is also responsible of the task to sched-
ule experiments and their execution. In order to have a
uniform and easy-to-read way of defining reproducible ex-
periments, we started to develop a domain specific language
(DSL) based on XML. The DSL comprises meta information
and experiment specific settings both for sensor and mesh
network in an uniform structure.

2.2 Wireless Mesh Router

The mesh router component of the hybrid nodes is based on
an Alix2c2 mainboard, featuring a 500 MHz AMD Geode
LX800 CPU and 256 MB RAM. A customized Debian Linux
is used as operation system. A minimum of three IEEE 802.11
based NICs are attached to a mesh router over a powered
USB hub. Due to experimental results and driver availabil-
ity [7] for Linux we chose Logilink WL0025 adapters based
on the RT2501U [2] chipset.

2.3 Wireless Sensor Network Node

Our current generation of sensor nodes is called MSB-A2
and was developed at the Freie Universitdt Berlin as part
of the ScatterWeb [5] working group. The sensor nodes are
connected to each hybrid node via USB. The ARMT7 based
devices can be configured dynamically at runtime up to
60 MHz depending on the sensor network application and

50

energy requirements. The Chipcon CC1100 transceiver in
our configuration uses the ISM band at 868 to 870 MHz
with a maximum data rate of 500 kbps. The WSN nodes can
be equipped with a multitude of sensors using either simple
general purpose input/output pins (GPIO) or an on-board
mini USB port. Additional peripheral devices can also be
connected to the mesh routers. We aspire full integration of
WPANSs, TETRA and cellular networks (GSM). Our current
research projects have taught us that convergence of WSNs
and other technologies is crucial for industrial adoption and
to solve real world problems.

3. TESTBED DESIGN CONCEPTS

In this section we discuss the integration of the sensor nodes
into our existing wireless hybrid testbed. We elaborate the
possibilities in regard of configuration and management.

3.1 Exploiting the Infrastructure

The mesh routers connected by ethernet to the testbed server
constitute the backbone infrastructure for the wireless sen-
sor network. The core part of our wireless sensor testbed in-
tegration (WSTI) approach consists of the USB connection
between sensor node and mesh router which provides a serial
terminal and flash interface. The latter is utilized to repro-
gram all sensor nodes with an updated firmware image or
additional software, since experimentation with sensor net-
works requires frequent reprogramming with additional and
bug-fixed software. Additionally approaches to distribute
binary images in a sensor network do already exist [11]. We
intend to use them as a foundation to implement an over-
the-air flashing feature. In case such an over-the-air flashing
process fails, we fall back to the wired infrastructure and
make use of the described flash interface provided by the
USB connection, therefore minimizing the need of manually
handling the sensor nodes. This will be achieved by placing a
firmware image on the testbed server. The mesh routers ac-
cess the firmware image and flash it on their locally mounted
sensor node.

The serial terminal interface, also provided by the USB con-
nection, will be used to monitor the state of the wireless
sensor network. The hosting mesh router sends commands
to the sensor node in order to trigger a desired behavior
in the context of an ongoing experiment or to retrieve the
current information about its state. As mentioned in sec-
tion 2.1 we implement these features with a combination of
SSH remote command execution and the SNMP service. An
SNMP agent responsible for the sensor node will enable real
time configuration and debugging. Information regarding
the sensor network state will be gathered periodically, while
additional requests can be issued on demand. These sen-
sor node log files will be stored locally on the mesh routers.
The logged data is then transferred to the testbed server
periodically as well as after the completion of experiments.
Therefore the testbed server functions as a central data stor-
age point for the sensor node log files.

With our management console hosted at the testbed server
we will have a powerful tool to maintain and configure the
locally distributed sensor nodes centrally in a very conve-
nient way minimizing the need of physical access. Sensor
nodes can be selected and configured on demand to satisfy
the means of a given experiment. Therefore, it will also be

possible to run concurrent experiments with a subset of sen-
sor nodes. Further we extend the management console with
the feature to monitor the sensor network state in real time
and interact with the sensor networks behavior by sending
commands to sensor nodes.

3.2 Long-term Experiments

Safety and security critical applications require long-term
experiments and studies that seldom are possible in a con-
tinuous manner. Due to several reasons it might be neces-
sary to interrupt and continue test runs at arbitrary times.
Often we need to have a comparable environment during
the whole experiment without much variance in interference
and fading. These kind of experiments usually have to be
done at night shift when no link interruptions due to crowds
of people exist or interfering radio devices are operated. To
expand the time span over the duration of a night we have
to make a snapshot of the whole network state that can
be restored later on. The continuation after hardware fail-
ures and software updates are similar scenarios to be consid-
ered. These issues are addressed by our concept under the
name of network check points (NCPs). The restoration of
the latest consistent network state also avoids repetition of
interrupted experiments. In many cases only selected time
intervals containing particular events of experiments are of
interest. Using NCPs it will be possible to observe and eval-
uate how different implementations perform under the same
given circumstances, e.g. an update of a routing protocol.
This event-oriented experimentation is usually only achiev-
able by configuring all nodes of the network manually and
defining their states one after another. With our approach
we will be able to record a successful experiment run and
make use of the gathered information for future application
scenarios.

To provide such a feature our system has to be able to save
each node’s state at arbitrary times. That includes global
variables, stack content, CPU and transceiver status. One
of the arising challenges is to do this operations in the short-
est time possible. The sensor nodes have to continue to be
an active part of the network with minor downtime. In con-
trast, the restoration of the state is not time critical but
requires a network wide switch to signal all nodes to con-
tinue their tasks. NCPs rely on a shared timebase for all
sensor nodes which can be provided by the mesh network.

We are still undecided whether such a feature will interfere
with the WSN and introduce short but unwarranted down-
times of nodes. An initial evaluation will examine if peri-
odical NCPs in discrete time intervals are feasible or just
infrequent ones are tolerable.

3.3 Interfacing the Sensor Nodes

One of our more ambitious concepts focuses on the integra-
tion of the used radio transceiver into the Linux kernel as a
driver module. The sensor node shall be provided as an addi-
tional network interface card. In the context of the ISO/OSI
reference model the sensor node represents the lower two
layers (physical and data link). This feature will offer us
additional channels in the ISM frequency band that are or-
thogonal to IEEE 802.11. Recent reports [6] and our own
measurements [8] have identified this aspect as one of major
concerns for multi-transceiver based research. Interference

does exist even between orthogonal channels. Some opera-
tion system related changes and extentions are required both
on the sensor node as well as the mesh router side.

We will use a stripped down version of our ScatterWeb OS.
Most interrupts have to be switched off for low latency ex-
cept the ones used for transceiver and serial line handling.
One USART interface of the microcontroller is connected to
a USB to serial converter chip. Data sent from the host to
the sensor node has to be relayed with minimal handling to
the transceiver and vice versa. Media access and queuing
of frames shall remain in the firmware, but everything else
has to be handled by the Linux kernel. We call this integra-
tion wireless sensor kernel interface (WSKI). There are two
ways to implement the WSKI. Right now the sensor node is
represented as a type writer device (e.g. ttyUSB0). With a
custom-tailored serial communication protocol we send ar-
bitrary data via the transceiver. This solution is simple and
requires no code changes, but complicates a seamless in-
tegration. While sending data between sensor nodes each
packet has to be extracted from the Linux kernel protocol
stack and channeled into the type writer device. After trans-
mitting packets as payload of frames the process has to be
done in reverse order at the destination host. Each received
frame has to be injected into the stack. In contrast, our pre-
ferred solution aims at the integration of the sensor node into
the Linux kernel as a common network device. By provid-
ing a new networking interface no kernel modifications are
required and route discovery and packet forwarding features
can be exploited. Furthermore, this approach is on par with
kernel modules that drive USB host-to-host network cables
or USB ethernet converters.

Adaptation of the Address Resolution Protocol (ARP) to
our host-to-network layer and the deviant Maximum Trans-
mission Unit (MTU) of frames using the sensor node as net-
work device are remaining problems. In addition, we need
to provide configuration programs alike the wireless-tools in
up-to-date Linux distributions. These shall enable users e.g.
to switch channels, configure power settings, set the data
rate, and scan for networks using a unified, well-known in-
terface.

In the long-term the integration also offers the potential to
run the upper layer sensor network protocol implementa-
tions via emulation or as native compiled binaries on the
mesh router on top of WSKI. This will simplify debugging
and monitoring of the entire WSN. As an outlook a port of
the ScatterWeb OS as kernel module might even be possible.

3.4 Tracing and Simulation

The ethernet backbone connection provides virtually unlim-
ited storage capacity, which enables to trace network traffic
over long periods of time. As one of the important aspects
of the WISEBED project the collected data will be used as
input for simulative experiments and as comparative results.
Data gathered from real world experiments is vital to evalu-
ate and improve simulation models. The testbed server runs
the data gathering and management (DGM) service and will
be responsible to configure the granularity of traces and data
logging. The mentioned DSL in section 2.1 supports the
specification of desired trace data.

51

4. RELATED WORK

The Deployment Support Network (DSN) [4] developed at
the ETH Ziirich consists of an additional wirless backbone
network formed by DSN-Nodes and allows monitoring and
managing of a deployed WSN. The wireless setup provides
the possibility to attach a DSN to sensor networks in lo-
cations which lack a wired infrastructure. A DSN-Server
provides a client interface to communicate with the DSN.
Each DSN-Node has exactly one wired connection to one
sensor node of the attached WSN. The wired connection
is realized using a hardware UART interface mounted on
the DSN-Nodes. To avoid interference with the monitored
WSN, backbone traffic uses Bluetooth radios. Since the
DSN-Nodes are battery powered and considering the high
power consumption of Bluetooth radios, long-term observa-
tion may be limited. Experiments revealed that the limited
memory of the DSN-Nodes restricts backbone traffic because
only a small amount of packets can be buffered on each node
at a time. To avoid debug message loss at backbone level,
in a setup with 25 DNS-Nodes, each DNS-Node could send
no more than one packet every two seconds. Thus scalabil-
ity problems might arise. The TKN Wireless Indoor Sen-
sor network Testbed (TWIST) at the TU Berlin [10] pro-
vides a large scale testbed for wireless sensor devices. So
far about 90 sensor nodes have been deployed. Network
Attached Storage (NAS) devices called super nodes form
the backbone of the sensor network by providing a power
source and functioning as gateway to wired infrastructure.
Multiple xeyesIFX and Telos off-the-shelf sensor nodes are
attached to a super node via USB hubs and cables. An
important feature is the power supply control, which ac-
cording to the USB Hub Specification 2.0 enables software
side port power switching. With this feature the simulation
of dynamic topologies common in sensor networks caused
by unresponsive, moving, or newly deployed nodes becomes
very convenient. While the super nodes run a customized
Linux, TinyOS is in use for the sensor nodes with extensions
to offer remote procedure function calls (RPC). The Korea
Advanced Institute of Science and Technology (KAIST) [12]
reports that their wireless mesh network called WiSEMesh
is used as backhaul network for a WSN but no publiction
with further information does exist.

5. CONCLUSION

In this paper we described the integration of our wireless
sensor network into an existing IEEE 802.11 mesh network
infrastructure. The work-in-progress hybrid testbed offers
advanced features once the initial setup phase has been fin-
ished. We presented the concept of architectural integra-
tion of the wireless sensor networks with our wireless sensor
testbed integration (WSTI) approach. We discussed the ben-
efits for the mesh network gained through the kernel inter-
face WSKI. Our concept of network check points (NPCs) will
simplify long-termed and disrupted experiments and help
to understand and evaluate networks and protocols. The
extensive data gathered by our testbed shall provide more
realistic simulation input. Finally, an XML-based domain
specific language to specify, execute, and evaluate experi-
ments in both parts of the testbed is being developed.

6. ACKNOWLEDGEMENT

This work presented has been partially sponsored and sup-
ported by the European Union OPNEX project.

52

7. REFERENCES

[1] OPNEX - Optimization driven Multi-Hop Network
Design and Experimentation. http://www.opnex.eu/.

[2] Ralink technology, Ralink RT2501U chipset product
specification.

[3] WISEBED - Wireless Sensor Network Testbeds.
http://wisebed.eu/.

[4] M. Dyer, J. Beutel, L. Thiele, T. Kalt, P. Oehen,

K. Martin, and P. Blum. Deployment support network
- a toolkit for the development of wsns. In Proceedings
of the 4th Furopean Conference on Wireless Sensor
Networks (EWSN’07), pages 195-211, January 2007.

[5] Freie Universitéit Berlin. Scatterweb project.

[6] P. Fuxjager, D. Valerio, and F. Ricciato. The myth of
non-overlapping channels: interference measurements
in ieee 802.11. In Proc. Fourth Annual Conference on
Wireless on Demand Network Systems and Services
WONS 07, pages 1-8, 2007.

[7] M. Giines, B. Blywis, F. Juraschek, and P. Schmidt.
Concept and design of the hybrid distributed
embedded systems testbed. Technical report, Freie
Universitét Berlin, 2008.

[8] M. Giines, B. Blywis, F. Juraschek, and P. Schmidt.
Practical issues of implementing a hybrid multi-nic
wireless mesh-network. Technical report, Freie
Universitit Berlin, 2008.

[9] M. Giines, B. Blywis, and J. Schiller. A hybrid testbed
for long-term wireless sensor network studies. In Int.
Workshop on Sensor Network Engineering (IWSNE),
2008.

[10] V. Handziski, A. Kopke, A. Willig, and A. Wolisz.
Twist: a scalable and reconfigurable testbed for
wireless indoor experiments with sensor networks. In
REALMAN ’06: Proceedings of the 2nd international
workshop on Multi-hop ad hoc networks: from theory
to reality, pages 63-70, New York, NY, USA, 2006.
ACM.

[11] P. J. Marrén, M. Gauger, A. Lachenmann, D. Minder,
O. Saukh, and K. Rothermel. Flexcup: A flexible and
efficient code update mechanism for sensor networks.
In Proceedings of the Third European Workshop on
Wireless Sensor Networks (EWSN 2006), pages
212-227, February 2006.

[12] S. L. Shrestha, J. Lee, A. Lee, K. Lee, J. Lee, and
S. Chong. An open wireless mesh testbed architecture
with data collection and software distribution
platform. In J. Lee, editor, Proc. 8rd International
Conference on Testbeds and Research Infrastructure
for the Development of Networks and Communities
TridentCom 2007, pages 1-10, 2007.

[13] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi.
Hardware design experiences in zebranet. In SenSys
’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages
227-238, New York, NY, USA, 2004. ACM.

Klassifikation von sicherheitsrelevanten Einsatzszenarios
fur drahtlose Sensornetze

Christian Wieschebrink
Bundesamt flr Sicherheit in der
~_ Informationstechnik, Bonn
christian.wieschebrink@bsi.bund.de

ABSTRACT

Mit der wachsenden Bedeutung von drahtlosen Sensornet-
zen in der Praxis wird auch das Thema Sicherheit in Sen-
sornetzen wichtiger. In der Vergangenheit wurden eine Fiille
von Sicherheitsmechanismen fiir drahtlose Sensornetze vor-
geschlagen. Die Umsetzung von solchen Sicherheitsmecha-
nismen in der Praxis ist aufgrund abweichender technischer
Voraussetzungen hiufig mit Schwierigkeiten verbunden. Ein
geplantes BSI-Projekt soll wesentliche Einsatzszenarios fiir
Sensornetze identifizieren und Sicherheitsmechanismen auf
Eignung in diesen Szenarios priifen. Der Ansatz dieses Pro-
jekts soll hier préasentiert und zur Diskussion gestellt wer-
den.

1. EINFUHRUNG

Das Thema “drahtlose Sensornetze” erlebt seit einigen Jah-
ren einen rasant wachsendes Interesse in der Informatik. Ur-
spriinglich wurden Sensornetze fiir militérische Zwecke kon-
zipiert, heute werden Sie auch und vor allem fiir zivile Ein-
satzzwecke betrachtet. In der Vergangenheit waren tatséch-
lich realisierte Sensornetz-Systeme eher prototypischer Na-
tur, was darauf hindeutet, dass noch viele praktische Proble-
me fiir einen robusten Einsatz von solchen Netzen zu l6sen
sind. Es ist jedoch abzusehen, dass drahtlose Sensornetze in
der Praxis zunehmend an Bedeutung gewinnen werden. Thre
Flexibilitdt macht sie attraktiv fiir eine Vielzahl von FEin-
satzszenarios, insbesondere dort, wo Umgebungsdaten auf
unkomplizierte und kostengiinstige Art und Weise erhoben
werden miissen.

Mit der zunehmenden Verbreitung von Sensornetz-Appli-
kationen, gewinnt das Thema Sicherheit in Sensornetzen an
Bedeutung. Das Stichwort “Sicherheit” umfasst zwei Aus-
pragungen. Zum einen ist damit die Ausfallsicherheit, d.h.
die Verfiigbarkeit gemeint, zum anderen die Informationssi-
cherheit (also die Gewihrleistung von Integritéit, Authenti-
zitdt und Vertraulichkeit von iibermittelten Informationen
bzw. der Schutz vor bosartigen Angriffen). Die Umsetzung
von Sicherheit ist in Sensornetzen mit besonderen Herausfor-
derungen verbunden. Die aus Kostengriinden vergleichwei-
se leistungsschwache Hardware und der begrenzte Energie-
vorrat auf Sensorknoten machen die Umsetzung von Sicher-
heitsmechanismen (neben der eigentlichen Funktionalitiit)
relativ schwierig.

Es existiert zwar eine Vielzahl von Publikationen zu Sicher-
heitsmechanismen in Sensornetzen, haufig wird jedoch nicht
klar, fiir welchen Einsatzzweck die vorgeschlagenen Mecha-

Markus Ullmann
Bundesamt fiir Sicherheit in der
Informationstechnik, Bonn
markus.ullmann@bsi.bund.de

nismen konzipiert sind oder ob sich die technischen Voraus-
setzungen fiir einen Mechanismus erfiillen lassen. Dies gilt
umso mehr angesichts der Tatsache, dass die unterschiedli-
chen Einsatzszenarios fiir Sensornetze zu ganz unterschiedli-
chen technischen Lésungen /Realisierungen fithren. Konkrete
technische Merkmale kénnen jedoch dazu fiithren, dass be-
stimmte vorgeschlagene Sicherheitsmechanismen nicht mehr
anwendbar sind.

Ziel eines geplanten Projekts des Bundesamts fiir Sicherheit
in der Informationstechnik ist es, eine Bestandsaufnahme
iiber praxisrelevante Einsatzszenarios von drahtlosen Sen-
sornetzen zu gewinnen, diese geeignet zu klassifizieren, den
Schutzbedarf fiir unterschiedliche Anwendungsklassen fest-
zustellen und schliefllich geeignete Mafilnahmen zur Umset-
zung der Sicherheitsziele zu empfehlen. Im Januar 2008 hat
das BSI hierzu ein Workshop organisiert, an dem einige In-
stitutionen teilgenommen haben, die im Bereich Sensornetze
tatig sind, und auf dem erste Ideen zum Vorgehen zusam-
mengetragen und diskutiert wurden. In diesem Abstract sol-
len die dort diskutierten Ideen und das geplante Vorgehen
im o.g. Projekt vorgestellt werden. Im folgenden Abschnitt
2 sollen kurz beispielhaft einige Einsatzszenarios fiir Sensor-
netze und mogliche technische Merkmale diskutiert werden.
In Abschnitt 3 soll ein Uberblick iiber unterschiedliche Si-
cherheitsmafinahmen verschafft werden. Schliellich wird in
Abschnitt 4 das Vorgehen im Projekt erldutert.

2. EINSATZSZENARIOS FUR DRAHTLO-
SE SENSORNETZE

Drahtlose Sensornetze werden unter anderem fiir den Ein-
satz in der Umweltbeobachtung, im Katastrophenschutz, in
der Infrastruktur- und Gebiudeiiberwachung, im Gesund-
heitwesen in der Logistik oder fiir die Grenziiberwachung
vorgeschlagen. Im folgenden sollen beispielhaft einige dieser
Szenarios konkretisiert werden.

2.1 Stabilititspriifungen

Ein Einsatzszenario, das intensiv untersucht wird, ist die
Stabilitatspriifung von Bauwerken, insbesondere Briicken.
Bauwerke sind in vielen Féllen starken mechanischen Bela-
stungen ausgesetzt, sei es durch Benutzung (schwere Fahr-
zeuge, die iiber Briicken fahren) oder ungiinstige Umwelt-
einfliisse (Erdbeben, Stiirme etc). Dies macht eine sténdige
Priifung der Integritét solcher Bauwerke erforderlich. Hau-
fig werden solche Priifungen mit Hilfe fest verbauter kabel-
gebundener Sensorsysteme realisiert. Hier bieten sich draht-
lose Sensornetze als kostengiinstige und flexible Alternative

53

an. In [6] wird ein Uberblick iiber die zahlreichen protoypi-
schen Systeme dieser Art gegeben. Messungen werden hier-
bei in den meisten Féllen mit Hilfe von Beschleunigungs-
bzw. Erschiitterungssensoren oder Dehnungsmessstreifen er-
hoben. Im ersten Fall miissen die Messungen (zumindest
zeitweise) mit einer relativ hohen Samplingrate durchge-
fiihrt werden. Viele Systeme kénnen Messungen direkt auf
den Knoten verarbeiten (dazu sind z.B. FFT oder Wavelet-
Transformationen notwendig), was Energievorteile gegeniiber
einer direkten Ubertragung der MeBwerte an eine Basissta-
tion hat. Haufig wird auch eine zweischichtige Gesamtarchi-
tektur der Systeme vorgeschlagen. Auf der unteren Schicht
befinden sich die eigentlichen Sensorknoten, die die Mef3-
werte erheben. Einer Gruppe solcher Knoten wird jeweils
ein Zentralknoten auf der oberen Schicht zugeordnet. Dieser
sammelt und verarbeitet die Mefwerte der Sensorknoten.
Die Zentralknoten verfiigen iiber leistungsfihigere Hardwa-
re und kénnen auch untereinander (iiber grofere Distanzen)
kommunizieren.

2.2 Patienteniiberwachung

Die Verfiigbarkeit von konstengiinstigen und nicht-invasiven
medizinischen Sensoren macht den Einsatz von Sensornet-
zen zur Patientenkontrolle in Kliniken interessant. Solche
Systeme lassen sich dazu nutzen, Patienten (oder Kranken-
hauspersonal) schnell zu lokalisieren, Notfille rechtzeitig zu
erkennen und dadurch die Versorgung von Kranken und Ver-
letzten zu verbessern. Systeme zur Patientenlokalisierung
sind bereits kommerziell verfiigbar [1]. In [7] wird eine kon-

krete Architektur fiir ein derartiges System vorgestellt. MICA2-

Sensorknoten werden dort mit einem Pulsmesser und Oxi-
meter ausgestattet. Die Vitaldaten werden entweder per Ad-
Hoc-Routing an eine Basis oder direkt an PDAs, die Arzte
mit sich fiithren, tibertragen. Fest installierte Lokalisierungs-
knoten erlauben die ungefihre Ortung eines Knotens. Das
Routingprotokoll muss den hohen Grad der Mobilitdt der
Knoten beriicksichtigen.

2.3 Grenziiberwachung

Die Eignung von drahtlosen Sensornetzen fiir Grenziiber-
wachungsszenarios wurde in unterschiedlichen Projekten un-
tersucht. Im Rahmen des Projekts ExScal [2] wird ein ent-
sprechender Protoyp beschrieben, der aus mehr als 1200 Sen-
sorknoten besteht. Das System soll Personen und Fahrzeuge
in einem 1.260 x 288 m groflen Areal zuverlissig detektieren,
klassifizieren und nachverfolgen. Zu diesem Zweck sind die
Sensorknoten mit Passiv-Infrarot-Sensoren, Magnetometern
und Mikrofonen ausgestattet. Die Gesamtarchitektur ent-
spricht einer dreischichtigen Hierarchie und besteht aus den
eigentlichen Sensorknoten (Schicht 1), Aggregationsknoten
(Schicht 2) und der Basisstation (Schicht 3). Die Knoten
werden per Hand in einem Raster in besagtem Areal an-
geordnet. Mefldaten der Sensoren auf Schicht 1 werden auf
den Knoten vorverarbeitet, um Fehlalarme moglichst auszu-
schlieBen. Die Daten werden iiber Schicht-2-Knoten an die
Basisstation weitergeleitet, wo eine entsprechende Aggrega-
tion und Klassifikation der Daten stattfindet. Uber die Ba-
sisstation kann das Verhalten sémtlicher Knoten konfiguriert
werden.

2.4 Designmerkmale

Betrachtet man obige und weitere Einsatzszenarios genauer,
stellt sich heraus, dass sich die dort realisierten Systeme in

54

vielen Designmerkmalen unterscheiden [3, 9]. Nachfolgend
sind einige der wesentlichen technischen Merkmale aufge-
fiihrt.

o Kommunikationstopologie

Die Kommunikationstopologie beschreibt, welche Kno-
ten mit welchen anderen Knoten direkte Funkverbin-
dungen aufbauen und auf welchen Pfaden Nachrichten-
pakete zu anderen Knoten gelangen. Mogliche Topolo-
gien sind z.B. die Sterntopologie (Samtliche Sensor-
knoten kommunizieren direkt mit einer Basisstation)
oder die Baumtopologie (Pakete werden iiber mehrere
Zwischenknoten an eine Basis geleitet).

e Heterogenitit der Knotenhardware
Eine Applikation kann aus gleichférmigen Sensorkno-
ten bestehen, oder es existieren Knoten mit unter-
schiedlicher Hardware, die verschiedene Aufgaben wahr-
nehmen.

o Kommunikationsrichtung
Werden Nachrichtenpakete stets von den Sensorknoten
an die Basis geschickt oder auch in anderer Richtung
von der Basis zu den Knoten?

o Aktivitatszyklus

Anwendungen koénnen hochst unterschiedliche Anfor-
derungen an den Aktivitdtszyklus eines Knoten stel-
len. Anwendungen zur Klimabeobachtung z.B. erfor-
dern i.d.R. Messungen im Stunden- oder Minutenab-
stand, die Stabilitdtspriifung von Bauwerken benétigt
mehrere hundert Messungen pro Sekunde (iiber einen
begrenzten Zeitraum). Knoten kénnen dariiber hinaus
ausschliefllich zeitgesteuert oder durch duflere Einfliis-
se aktiviert werden.

o Grofle des Netzes
Die Anzahl der eigesetzten Sensorknoten kann zwi-
schen einigen wenigen und mehreren Hundert schwan-
ken.

e Vorhandene Infrastruktur
Sensornetze verfiigen in der Regel iiber ein oder meh-
rere Datensenken, an die letztlich die erhobenen Da-
ten iibermittelt werden. Es ist dariiberhinaus denkbar,
dass dezidierte Router oder Zwischensenken existieren.

e Mobilitdt der Knoten
Knoten koénnen iiber die gesamte Betriebszeit entweder
ortsfest sein oder sich (aktiv oder passiv) bewegen.

e Vorhandene Aktorik
Sensornetze kénnen (ohne menschliches Eingreifen) ak-
tive Regelungsfunktionen iibernehmen und z.B. Venti-
le, Klimaanlagen oder Alarmeinrichtungen ansteuern.

e Datenaggregation

Mefldaten konnen entweder direkt an eine zentrale Ba-
sisstation iibermittelt werden, wo sie dann ausgewer-
tet werden, oder sie kénnen (lokal) auf bestimmten
Knoten vorverarbeitet werden (z.B. Berechnung des
Durchschnitts, Minimums oder Maximums unterschied-
licher Meiwerte), um das Kommunikationsaufkommen
Zu verringern.

e Netzdynamik
Die Menge der eingesetzten Knoten wird gewohnlich
schon zu Beginn festgelegt. Ein System kann aber auch
so eingerichtet sein, dass wihrend des Betriebs ohne
groflen Aufwand zusitzliche Knoten hinzugefiigt wer-
den kénnen.

e Zeitmessung
Sensorknoten kénnen entweder iiber lokale (synchroni-
sierte) Uhren verfiigen, oder siamtliche Zeitmessungen
werden (wenn notig) zentral vorgenommen.

e [okalisierung

In den allermeisten Einsatzszenarios ist man an der
geographischen Position der Sensorknoten interessiert.
Diese kann z.B. durch dezidierte Hardware auf den
Knoten ermittelt werden (GPS-Receiver). Andere Mog-
lichkeiten sind verteilte Lokalisierungsverfahren (die
auf Signalstdrke oder -laufzeiten beruhen) oder eine
manuelle Positionszuordnung.

e Rekonfigurierbarkeit

Das Ausmaf, in dem Knoten wihrend des Betriebs
rekonfigurierbar sind, kann unterschiedlich grofl sein.
Knoten kénnen in ihrem Verhalten festgelegt sein, oder
es kann gedndert werden. Die Spannbreite reicht dabei
von einzelnen Parametern, die geéndert werden kon-
nen (z.B. Lange der MeBintervalle), bis zu einem (fast)
vollstandigen Austausch des Programms (OTAP).

Es soll bemerkt werden, dass zwei unterschiedliche Imple-
mentierungen innerhalb desselben Einsatzszenarios auch zu
unterschiedlichen Auspriagungen der genannten technischen
Merkmale fithren kénnen. Dennoch hat in der Regel das je-
weilige Szenario einen entscheidenden Einfluss auf das De-
sign des Systems und legt dieses in weiten Teilen fest, weswe-
gen man von den Desginmerkmalen eines Einsatzszenarios
sprechen kann. Sollten die oben genannten Szenarios tat-
séchlich breit in der Praxis umgesetzt werden, spielen auto-
matisch Sicherheitsfragestellungen eine Rolle. Dies betrifft
sowohl die Informationssicherheit als auch die Ausfallsicher-
heit. Die Ausprigung der technischen Merkmale hat bedeu-
tenden Einfluss auf die Auswahl geeigneter Sicherheitsme-
chanismen.

3. SICHERHEITSMECHANISMEN

Die oben genannten Einsatzszenarios werfen eine Reihe von
Sicherheitsfragestellungen auf. Im Fall der Patientenloka-
lisierung diirfen Unbefugte z.B. nicht beliebig auf sensible
Patientendaten zugreifen kénnen. Das Grenziiberwachungs-
system darf durch einen Angreifer, der das Gebiet passie-
ren will, nicht aufler Betrieb gesetzt werden, und bei der
Gebéudeiiberwachung sollten absichtliche Fehlalarme nach
Moglichkeit verhindert werden. Die Sicherheitsanforderun-
gen, die in Sensornetzen von Belang sind, lassen sich in den
allermeisten Fallen auf die abstrakten Anforderungen Inte-
gritdt, Authentizitdt, Vertraulichkeit von Nachrichten und
Verfiigbarkeit zuriickfiihren. Die ersten drei Anforderungen
werden in IT-Systemen durch kryptographische Verfahren
realisiert, die vierte in der Regel durch Infrastrukturmaf-
nahmen. Im Falle von Sensornetzen mufl bei Sicherheits-
mechanismen insbesondere die Ressourcenbeschréankung der
Hardware beriicksichtigt werden.

In der wissenschaftlichen Literatur wurden in den letzten
Jahren zahlreiche Sicherheitsmechanismen und -protokolle
fiir drahtlose Sensornetze vorgeschlagen. Hierzu gehéren Ver-
fahren zur Schliisselvereinbarung und -verteilung, zum au-
thentischem Broadcast, zum sicherem Routing und zur si-
cheren Aggregation, zur sicheren Lokalisierung, zur Erken-
nung von DoS-Angriffen und zur Detektion von geklonten
Knoten. Diese werden meistens jedoch unabhéngig von ei-
nem konkreten Einsatzszenario vorgeschlagen. Ebenso wie
sich die technischen Merkmale in obigen Applikationen un-
terscheiden, gehen die vorgeschlagenen Sicherheitsmechanis-
men von ganz unterschiedlichen technischen Voraussetzun-
gen aus. Einige Beispiele:

e 4TESLA [8], ein Verfahren zur Authentisierung von
Broadcasts, setzt synchronisierte Uhren auf den Sen-
sorknoten und einer Basisstation voraus.

e Das in [5] vorgeschlagene Verfahren zum sicheren Rou-
ting und zur Sperrung kompromittierter Knoten setzt
unverédnderliche Nachbarschaftsbeziehungen der Kno-
ten voraus, d.h. Knoten miissen statisch sein, und es
konnen keine Knoten in spiteren Phasen hinzugefiigt
werden.

e Verfahren wie [4], die auf gegenseitiger Kontrolle der
Sensorknoten beruhen, setzen fiir ein akzeptables Si-
cherheitsniveau voraus, dass das Netz iiber eine grofie
Anzahl an Knoten und jeder einzelne Knoten iiber hin-
reichend viele Nachbarn in Funkreichweite verfiigt, also
dass die Topologie ausreichend dicht ist.

e Einige Schliisselvereinbarungsverfahren wie etwa [10]
benttigen einzelne leistungfihige Knoten als Cluster-
heads, was zu heterogener Hardware im Netz fiihrt.

Damit ist hdufig nicht klar, fiir welches Einsatzszenario sich
ein konkreter Sicherheitsmechanismus tatséchlich eignet (oder
ob so ein Einsatzszenario iiberhaupt existiert). Zudem bauen
einige Verfahren auf anderen auf, z.B. wird fiir viele abgesi-
cherte Routingverfahren eine anféngliche Schliisselvereinba-
rung zwischen benachbarten Knoten angenommen, so dass
diese hoherwertigen Verfahren wiederum auf solche Szena-
rios einschrankt sind, die das zugrundeliegende Verfahren
erlauben.

4. KLASSIFIZIERUNG VON EINSATZSZE-

NARIOS

Aus den oben beschrieben Griinden plant das BSI das ge-
nannte Projekt zur Klassifizierung von Einsatzszenarios fiir
Sensornetze, in dem dariiber hinaus Einsatzempfehlungen
fiir konkrete Sicherheitsmechanismen in den einzelnen Sze-
narios entwickelt werden sollen. Diese Klassifizierung soll ei-
nerseits Hilfestellung bei der Auswahl von Sicherheitsmecha-
nismen in der Praxis bieten und andererseits noch zu lésende
Forschungsfragen hinsichtlich Sicherheit in drahtlosen Sen-
sornetzen offenlegen. Dariiber hinaus soll die Klassifizierung
eine Vergleichbarkeit unterschiedlicher Mechanismen erlau-
ben. Das Projekt gliedert sich in zwei Teile.

Zunichst soll eine systematische Ubersicht iiber Einsatzsze-
narios fiir Sensornetze, die schon umgesetzt wurden oder von

55

Sicherheits—
mechanismen

[techn. Voraussetzungen]

Bewertung

Einsatzszenarios

Designmerkmale
Schutzbedarf

|

| Klassifikation

E Zuordnung]

Abbildung 1: Vorgehen zur Klassifikation von Ein-
satzszenarios

denen dies in naher Zukunft zu erwarten ist, erstellt werden.
Dabei soll versucht werden, die technischen Designmerkma-
le (Abschnitt 2.4), die durch das Szenario festgelegt werden,
zu bestimmen. Fiir ein konkretes Einsatzszenario kann auch
eine gewisse Bandbreite bei einem Merkmal vorliegen, d.h.
unterschiedliche Implementierungen fithren zu unterschied-
lichen technischen Merkmalen. Gleichzeitig soll moglicher
Schutzbedarf in den einzelnen Szenarios ermittelt werden,
d.h. es soll gepriift werden, welche Gefihrdungen im jewei-
ligen Einsatzszenario auftreten kénnen und wie gravierend
diese Gefihrdungen sind (Beispielsweise hat ein System zur
Grenziiberwachung einen hohen Schutzbedarf, ein System
zur Umweltiiberwachung ein eher niedriges).

Anhand der gefundenen Merkmalsauspriagungen soll anschlies-

send eine Klassifikation der Einsatzszenarios stattfinden. Ei-
ne Klasse soll dabei aus Szenarios bestehen, die dhnliche
oder die gleiche Auspriagungen der Designmerkmale bei ei-
ner Implementierung erfordern. Die Klassifizierung soll die
Grundlage der in den folgenden Phasen zu findenden Hand-
lungsempfehlungen fiir Sicherheitsmechanismen bilden.

In der zweiten Projektphase sollen moglichst umfassend ver-
offentlichte Sicherheitsmechanismen und -protokolle, die fiir
den Einsatz in drahtlosen Sensornetzen konzipiert wurden,
zusammengestellt und hinsichtlich ihrer Anforderungen un-
tersucht werden. Falls moglich, soll jeweils eine Einschit-
zung tiber das durch den Sicherheitsmechanismus bereitge-
stellte Schutzniveau geliefert werden. Anschlieend soll un-
tersucht werden, ob sich ein Sicherheitsmechanismus einer
(oder mehrerer) der gefundenen Klassen von Einsatzszena-
rios zuordnen 148t. Notwendig hierfiir ist natiirlich, dass die
technischen Merkmale der Szenarios einer Klasse die Vor-
aussetzungen der Sicherheitsmechanismen erfiillen. Zu be-
riicksichtigen ist auch, ob ein Mechanismus den gewiinsch-
ten Schutzbedarf in einem Szenario erfiillen kann. Auf die-
se Weise entsteht ein Katalog von Einsatzempfehlungen fiir
konkrete Einsatzszenarios, und es lassen sich leicht noch of-
fene Forschungsfragen ableiten, etwa, wenn fiir eine Klasse
keine geeigneten Sicherheitsmechanismen gefunden wurden.

56

Im Rahmen des Projekts sollen ausdriicklich nicht vollstén-
dige Sicherheitsarchitekturen fiir einzelne Einsatzszenarios
entworfen werden. Zunéchst soll nur festgestellt werden, wel-
che einzelnen Mechanismen fiir verschiedene Klassen iiber-
haupt zur Verfiigung stehen. Diese sollen dem Anwender
beim Entwurf einer konkreten Sicherheitsarchitektur unter-
stiitzen.

5. ZUSAMMENFASSUNG

In drahtlosen Sensornetzen kann eine grofle Spannbreite an
unterschiedlichen Techniken und Architekturen zum Einsatz
kommen. Bei der Auswahl und dem Entwurf von Sicherheits-
mechanismen ist dies zu beriicksichtigen. Mit dem vorgestell-
ten Klassifikationsansatz hoffen die Autoren, Informations-
sicherheit in Sensornetzen beherrschbar zu machen.

6. LITERATUR

[1] Radiasense, Inc. http://www.radiasense.com.

[2] A. Arora, R. Ramnath, E. Ertin, and et al. ExScal:
Elements of an extreme scale wireless sensor network.
In 11th IEEE International Conferenceon Embedded
and Real-Time Computing Systems and Applications,
pages 102-108. IEEE, 2005.

[3] M. Hinkelmann, R. Reischuk, D. Pfisterer, and
S. Ransom. Ein weiterer Vorschlag zur Einteilung der
Merkmale von Sensornetzen, 2008. Internes Dokument.

[4] C. KrauB, M. Schneider, and C. Eckert. Defending
against false-endorsement-based DoS attacks in
wireless sensor networks. In First ACM Conference on
Wireless Security (WiSec 2008), pages 13-23, 2008.

[5] S. Lee and Y. Choi. A secure alternate path routing.
Computer Communications, 30(1):153-165, 2006.

[6] J. Lynch and K. Loh. A summary review of wireless
sensors and sensor networks for structural health
monitoring. The Shock and Vibration Digest,
38(2):91-128, 2006.

[7] D. Malan, T. Fulford-Jones, M. Welsh, and
S. Moulton. CodeBlue: An ad hoc sensor network
infrastructure for emergency medical care. In MobiSys
2004. Workshop on Applications of Mobile Embedded
Systems, 2004.

[8] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
J. Tygar. Spins: Security protocols for sensor
networks. In Proceedings of the Seventh Annual ACM
International Conference on Mobile Computing and
Networks (MobiCom 2001), pages 189-199, 2001.

[9] K. Roémer and F. Mattern. The design space of
wireless sensor networks. IEEE Wireless
Communication, 11(6):54-61, 2004.

[10] Y.Cheng and D. Agrawal. An improved key
distribution mechanism for large-scale hierarchical
wireless sensor networks. Ad Hoc Networks, 5:35-48,
2007.

Real-time, Bandwidth, and Energy Efficient IEEE 802.15.4
for Medical Applications

Pardeep Kumar, Mesut Glines, Abd Al Basset Al Mamou, Jochen Schiller
Institute of Computer Science
Freie Universitat Berlin
Berlin, Germany

{pkumar, guenes, almamou, schiller}@inf.fu-berlin.de

ABSTRACT

The recently standardized IEEE 802.15.4 protocol provides
many appealing features, such as low power, low cost, low
data-rate, simplicity, and timeliness guarantee for delay-
bound, energy, and bandwidth critical applications. How-
ever, when treating applications with such requirements as
in the medical field, several problems arise, triggering the
need of an efficient enhancement of the IEEE 802.15.4 pro-
tocol including the fine tuning of its parameters. In this
paper, we discuss the suitability of the protocol and explore
its limitations for health care applications. We propose a
solution to overcome those limitations and derive the most
efficient IEEE 802.15.4-based network parameters setting for
urgent medical services.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, performance, standardization

Keywords
IEEE 802.15.4, real-time, bandwidth, energy efficiency, med-
ical applications.

1. INTRODUCTION AND MOTIVATION

Recent trend towards achieving communications between
short range devices has laid down the foundation of a simple,
low cost, low power, low QoS, and low data-rate communi-
cation network called as low-rate wireless personal area net-
work (LR-WPAN). IEEE 802.15.4 [1], which deals with the
PHY and MAC layers for such networks, is an emerging pro-
tocol for multidimensional applications, such as surveillance
and security, home automation, flood, fire, seismic detec-
tion, and health-care scenarios. Though, its pertinency and
usage to many application areas has already been witnessed,
many open questions are there to be answered, before IEEE
802.15.4-based networks can be efficiently utilized on a large
scale, especially for the environments where timeliness is vi-
tal. For example; a sensor node embedded in an e-textile
worn by patients should automatically, but timely alert doc-
tors or emergency services when the patient suffers from se-
vere disease; and nodes must lively inform the security and
emergency services about the persons, wounded by a ter-
rorist bomb blast. In such applications, usually many short-
range and battery-operated devices are deployed. Hence, the

= —_—_——_—————r
E E
A A
c GTS1 EERAE GTS7 INACTIVE A
o o
N — — — — — — N
<—T7<:AP—T70F
[«———————Superframe Duration (SD)
Beacon Interval (Bl) |
Acti >le Inacti 1

Figure 1: The MAC superframe is divided into 16
equally sized slots. Optionally, it can have an ac-
tive and an inactive part. The active part is further
divided into the CAP and the (optional) CFP part.

bandwidth and energy efficiency also demand special atten-
tion, so that many devices can communicate at a time and
can survive longer without any human interaction.

In clinical diagnostics, traditional paper based patient mon-
itoring is difficult, complex, and expensive. The increase
in the world population, diseases, and the natural and non-
natural incidents, and with the inadequate number of doc-
tors and clinicians available around, especially in the third
world countries, highlights the need of an automatic system.
Such system should efficiently but timely alert medical staff
for any mishap or remind them for their scheduled check-
ups, regardless to the personal’s physical location. It can
also be used to store patient records for the future research
and automatic medication purposes.

In this paper, we discuss the suitability of an emerging IEEE
802.15.4 protocol in the medical field, especially its timeli-
ness and bandwidth related features. We explore the limita-
tions of the protocol and conclude that the standard compli-
ant IEEE 802.15.4 protocol needs enhancements, before it
can be applied to urgent medical applications. We propose
an efficient solution to overcome those limitations and derive
optimal parameter settings to enhance the IEEE 802.15.4
network performance in the medical field.

The remainder of the paper is organized as follows. In Sec-
tion 2, we discuss IEEE 802.15.4 with its suitability to med-
ical applications and limitations concerning latency, band-
width, and energy issues. Afterwards in Section 3, we elabo-
rate the state of the art related to our work. Subsequently in
Section 4, we define our system model and propose solution
to those limitations. We discuss performance evaluation in
Section 5 and finally conclude the paper in Section 6.

57

2. 1EEE 802.15.4 OVERVIEW

The IEEE 8021.5.4 protocol defines the PHY and MAC lay-
ers for LR-WPAN. It supports data rates of 20, 40, 100, and
250 Kbps within the range of around 10 meters and uses
16 channels in the 2.4 GHz band, 30 channels in the 915
MHz band, and 3 channels in the 868 MHz band. It sup-
ports both star and peer-to-peer operation with fully and
reduced function devices (FFDs and RFDs). Handling the
radio transceiver and physical medium, energy detection,
link quality, channel selection, clear channel assessment are
the main features of the PHY layer. Whereas, the MAC
layer features include the beacon management, channel ac-
cess, guaranteed time slots (GTS) management, frame val-
idation, acknowledgments, association, disassociation, and
the security mechanisms. The MAC protocol supports two
operational modes selected by the coordinator. The non
beacon-enabled mode, in which MAC is simply ruled by non-
slotted CSMA/CA and the beacon-enabled mode, in which
beacons are periodically broadcast by the coordinator in the
MAC superframe.

The MAC superframe structure is defined in Figure 1. The
beacon is always transmitted in the first slot and is used to
synchronize the attached devices and to describe the su-
perframe structure. During the contention access period
(CAP), the devices compete with each other using a slotted
CSMA /CA mechanism. For the applications having latency
and specific bandwidth requirements, the coordinator may
dedicate portions of the active superframe to that applica-
tion. These portions are called guaranteed time slots (GTSs)
and they form the contention-free period (CFP), which ap-
pears at the end of the active part following the CAP. The
coordinator may allocate up to seven of these GTSs, and a
GTS may occupy more than one slot period. The structure
of the superframe is described by the two variables, beacon
order (BO) and superframe order (SO). BO describes the
interval at which the coordinator transmits its beacons, i.e.
Beacon Interval (BI) and is given by (1). SO describes the
length of the active portion, i.e. Superframe Duration (SD)
and is given by (2). The parameter aBaseSuperframeDura-
tion depends on the frequency range. SD and BI are the
decisive parameters to define the duty cycle of the network.

BI = aBaseSuper FrameDuration * 2809

(1)
0<BO<14

SD = aBaseSuper FrameDuration 250

(2)
0<SO<BOX< 14

2.1 IEEE 802.15.4 Suitability and Limitations
for Medical Applications

Figure 2 shows an health-care scenario, where different pa-
tients are to be treated in a room. The traffic generated by
the nodes deployed in the room can be classified in two types:
periodic and aperiodic. Periodic traffic contains the routine
check-up values for the patients and physical status of the
room. Usually, these values don’t have strict timeliness re-
quirements. Therefore, normal contention access method
(CSMA/CA) is used for such traffic. However, the aperi-

58

@ Body sensor * Environment sensor

A Pressure sensor @ Coordinator

Figure 2: An health-care scenario, where some
nodes are attached to the patient body to mea-
sure different biological parameters, such as heart
and pulse rate, blood pressure, blood oxygen sat-
uration, electrocardiogram (ECG), and electroen-
cephalograph (EEG) values. Other nodes are de-
ployed inside the room to measure the physical pa-
rameters, such as temperature, air pressure, humid-
ity, and the light values. The pressure sensors, de-
ployed under/near the patient bed, timely alert the
medical staff for an unexpected downfall of the pa-
tient. The coordinator is responsible to collect and
forward the traffic generated by these nodes.

odic traffic, which is generated on the basis of some unex-
pected event occurred with the patients or within the room,
is very critical and needs guaranteed access to the channel
and bandwidth as they must report before a worse case sit-
uation happens. The examples for such traffic are dramat-
ically increase/decrease in the blood-pressure or an heart-
attack to the patient, and unexpected temperature change
in the room and the GTS services are used for such traffic. It
looks straight forward to implement IEEE 802.15.4 in such
scenarios, but following limitations of the protocol must be
figured out before attempting this.

The first and foremost problem with the current GTS allo-
cation is the bandwidth under-utilization. Most of the time,
device uses only a small portion of the allocated GTS slots,
the major portion remains unused resulting in an empty hole
in the CFP. Moreover, the protocol explicitly supports only
seven GTS allocations. In the medical field, where one ill-
ness usually boost-ups other illnesses, many devices should
be able to reach the coordinator via such guaranteed ser-
vices. Also, the current protocol only supports first come
first serve based GTS allocation and does not take into ac-
count the traffic specification, delay requirements, and the
energy resources. In medical scenario, many critical events
may occur at a time, and some of them are more critical
and need most urgent response. With the current proto-
col, the device can request for all seven GTS slots, even if
it is not really needed. Such unbalanced slot distribution
can block other needful devices to take such timeliness ad-
vantages. Moreover, the protocol uses GTS expiration on

the basis of some constant factors and the assigned GTS
slots are broadcast for the constant number of times in the
superframes. Such restrictions also cause unnecessary en-
ergy consumption and CFP slots blockage for longer time.
Even if CFP is not present in the superframe, the beacons
transmitted by the coordinator always use unnecessarily one
byte of the CFP, resulting in energy inefficiency. Last but
not least, the current superframe structure contains at least
aMinCAPLength (a constant) size CAP. For most urgent
scenarios, we may need flexible size CAP rather than the
fixed one.

3. RELATED WORK

Most of the IEEE 802.15.4 related research has been sub-
jected to the CSMA/CA, and general performance evalu-
ation. Only a small amount of the literature deals with
the timeliness and bandwidth issues. An implicit GTS al-
location scheme (i-GAME) for the time-sensitive WSN is
proposed in [6], where the coordinator uses an admission
control algorithm to decide whether to accept a new GTS
request or not, based on the traffic specification of the flows,
and their delay requirements. Using Network Calculus for-
malism in [7], two accurate models for the service curve are
proposed and the delay bounds guaranteed for GTS allo-
cation is provided. An expression of the duty cycle as a
function of the delay is also presented. Based on those
results, the impact of the BO and SO on the maximum
throughput and delay bound is analyzed. In [4] adaptive
GTS allocation (AGA) scheme is proposed, which consid-
ers low-latency and fairness. There are two phases for the
proposed scheme. In the classification phase, devices are
assigned priorities in a dynamic fashion based on recent
GTS usage feedbacks. Devices, that need more attention
from the coordinator, are given higher priorities. In the
GTS scheduling phase, GTSs are given to devices in a non-
decreasing order of their priorities. A starvation-avoidance
mechanism is presented to regain service attention for lower-
priority devices that need more GT'Ss for data transmissions.
A simulation model and an analytical model are developed
to investigate the performance of AGA scheme. The work
in [5], suggests a multi-beacon superframe (MBS) structure
with multiple sub-beacon intervals for different slot sizes in
a superframe and a greedy GTS allocation (GGA) algo-
rithm, where device determines the most appropriate slot
sizes based on their traffic characteristics. They claim to
have significant improve in the bandwidth utilization at the
expense of only a very small increase of the device’s active
periods. A distance-based, real-time off line periodic mes-
sage scheduling algorithm is proposed in [9], which generates
BO, SO, and GTS information to schedule the given message
set.

4. SYSTEM DESCRIPTION

We consider an IEEE 802.15.4-based network, which works
in star topology with beacon-enabled mode and uses 2.4 GHz
frequency band with O-QPSK modulation [8]. The coordi-
nator collects data from its CFP regarding the devices, that
need GTS slots, assembles the beacon, and transmits it. Af-
ter that CAP starts which follows the optional CFP. On the
other hand, the device first synchronizes itself with the coor-
dinator, makes its receiver on just before the beacon arrival
time, and receives the beacon. That follows CAP and then
CFP, where the device first checks for its GTS slots and if

C N) N/ S —
> s °
2 £ 28 52 2
o = 9 < 3}
o a o2 = i
[a]
00 <= 25 bytes 00 = Low - : 00 = 1 period
01 <= 50 bytes 01 = Medium Rx = Allcation o1 5 periods
10 <i 75 bytes 10 i Critical B TX Deallocation 10 i 3 per!ods
11 <= 118 bytes 11 = Most critical 11 = 4 periods

Figure 3: Revised GTS characteristics field, where
first two bits specify the length of a data packet and
the next two bits define the delay condition of the
packet. Bits four and five, taken from the original
standard, define the GTS direction and GTS request
type. The last two bits are used for periodic appli-
cations.

it finds its GTS entry, it can utilize it by sending/receiving
data. After using its GTS slots, the device makes its ra-
dio off again. The device can send new GTS request via its
CAP to the coordinator and if the request is accepted, its
GTS entry will be added to the upcoming beacon. The node
requests for GTS slot by specifying its data, delay, and en-
ergy conditions and the coordinator, who runs an admission
control (AC), decides the fate of the request.

In order to cope with the aforementioned limitations of the
protocol, we change the bit structure of 8-bit GTS charac-
teristic field, where the device, rather than sending fixed slot
length, sends its data and delay specification to the coordi-
nator, as shown in Figure 3. The coordinator, who runs an
AC, decides the slot length for the device. AC works on the
basis of total cluster load, remaining CAP size, device’s data
and delay specifications, and device’s recent CFP usage. In
this way, bandwidth under-utilization and the restriction of
entertaining at most seven GT'S requests are avoided. To an-
nul the constant GTS expiration, the coordinator uses the
period bits of the GTS characteristics field and performs
GTS expiration dynamically. Rather than using one whole
byte in the superframe to indicate the presence of the CFP
part, we use one available reserve bit in the superframe.

5. PERFORMANCE EVALUATION

We have implemented the IEEE 802.15.4 protocol on the
Tinyos 2.x [3] platform based on our system model. Moteiv
Tmote [2] nodes with Chipcon CC2420 transceivers are used
for the implementation. Now we will discuss our analysis
for the application-specific optimal parameters setting. The
values of BO and SO vary between 0 and 14, whereas, the
values of BI and SD lie between 15.36 ms and 251.6 s. We
can decide for an application-specific value of BI. For exam-
ple, the value of BI can be 12 for the periodic application,
where nodes send their data at an interval of 60 seconds. The
maximum number of CFP slots for the different values of SD
can be calculated by Equation (3). In order to calculate the
number of slots actually needed to the device, we first calcu-
late the total length of data packets, which are generated by
the device. The upper layers of the device generate the data
frame of at most 118 bytes long, which is passed to the MAC
as a MSDU (MAC Service Data Unit). The MAC layer adds
its header (MHR) of 9 bytes, converts it into MPDU (MAC

59

1 of CFP Slots

Number of CFP Slots

Number

CFP STofs needet
t

CFP Slols requested -

q
.

Number of CFP Slots

60 100 120 o 20 40
Length of Data Packets (Bytes)

(a)

100 120 1 15 2 25 3 35 4 45 5

60
Length of Data Packets (Bytes) GTS Devices

Figure 4: The number of CFP slots actually needed for the length of given data packets with acknowledgment
request is shown in (a), whereas (b) depicts the same for unacknowledgment request. The comparison for
the bandwidth-underutilization problem of the original standard with our approach is shown in (c), which
highlights the major improvement given by our approach.

Protocol Data Unit), and passes it to the PHY layer, which
also adds the header (PHR) of 6 bytes. Further 11 bytes are
required for an (optional) acknowledgement request. To re-
ceive acknowledgment, device needs aTurnaroundTime (12
symbols) to change its radio from the TX to RX mode (or
vice-versa).

Additionally, we have to consider the interframe spacing
(IFS), which separates two successive frames sent by the
device. Its value is 12 symbols for the MPDU < 18, oth-
erwise it is 40 symbols. The number of CFP slots required
for the device is shown in Equation (4). For an application,
where the devices generate data frames having length of 10,
25, 50, 100 or 118 bytes, we calculate the required CFP
slots with the acknowledgment transmission in Figure 4(a).
We calculate same for the unacknowledgment transmission
in Figure 4(b). In both figures, we consider the value of
SO as 0, 1, and 2. It is clear that, even for the maximum
size of data packet, we need only one GTS slot, if we use
SO of 2. For SO of 1, we need at most three GTS slots.
Now, to validate the improvement given by our approach
for bandwidth under-utilization problem, consider an exam-
ple, where five devices are generating data packets, each of
100, 75, 50, 100 and 25 bytes and request for 3, 2, 1, 2 and 2
GTS slots respectively. Figure 4(c) confirms that our tech-
nique outperforms the original protocol in terms of band-
width utilization and thus more devices can take benefit of
the guaranteed services.

15 — aMinC AP Length/60

MaxCFP,yaii = -
ar ! aBaseSlot Duration * 250

®3)

2% Data + IFS + aTurnaroundTime
aBaseSlot Duration * 259

CFPreq =
(4)
where Data = MSDU + MHR+ PHR + ACK

6. CONCLUSION

In this paper, we have elaborated the suitability and limita-
tions of the IEEE 802.15.4 for low-latency, bandwidth, and
energy related critical medical applications. The protocol
needs definite enhancements before it could be applied to

60

the medical field and our simple approach deals with almost
all of those limitations. Application-specific optimal param-
eters setting for the health-care scenario is also discussed,
where we have found that the GTS slots length requested
by the devices mostly causes bandwidth under-utilization
problem. The coordinator should assign GTS slots depend-
ing on the traffic, delay, and energy constraints to the device.
Even for the maximum data packet length, the device needs
only one CFP slot for the SO value of 2.

7. REFERENCES

[1] IEEE 802.15.4-2006: MAC and PHY specifications for
LR-WPANS. http://ieee802.0rg/15/pub/TG4 . html.

[2] Moteiv Tmote. http://www.sentilla.com/pdf/eol/
tmote-sky-brochure.pdf.

[3] Tinyos 2.x. http://www.tinyos.net/tinyos-2.x.

[4] Y.-K. Huang, A.-C. Pang, and H.-N. Hung. An
adaptive GTS allocation scheme for IEEE 802.15.4.
IEEFE transactions on parallel and distributed systems,
August 2007.

[5] L.-C. Ko and Z.-T. Chou. A novel multi-beacon
superframe structure with greedy GTS allocation for
IEEE 802.15.4 wireless pans. IEEE Communication
Society WCNC, 2007.

[6] A. Koubaa, M. Alves, and E. Tovar. i-game: An
implicit GTS allocation mechanism in IEEE 802.15.4
for time-sensitive wireless sensor networks. in Proc. of
18th Euromicro Conference on Real-Time Systems.

[7] A. Koubaa, M. Alves, and E. Tovar. GTS allocation
analysis in IEEE 802.15.4 for real-time wireless sensor
networks. in Proc. of the 14th International Workshop
on Parallel and Distributed Real-Time Systems
(WPDRTS), Apr. 2006.

[8] N. Salles, N. Krommenacker, and V. Lecuire.
Performance analysis of IEEE 802.15.4 contention free
period through real-time industrial maintenance
applications.

[9] S. Yoo, D. Kim, M. Phan, Y. Doh, E. Choi, and
J. Huh. Scheduling support for guaranteed time
services in IEEE 802.15.4 low rate WPAN. 11th
international conference on Embedded and Real-Time
Computing Systems and Applications IEEE, 2005.

A Closer Look at the Association Procedure in Low Power
802.15.4 Multihop Sensor Networks

Barbara Staehle
University of Wirzburg
Institute of Computer Science
bstaehle@informatik.uni-wuerzburg.de

ABSTRACT

IEEE 802.15.4 proposes the advantage of a standardized low
power low data rate communication stack and is therefore
also an option for deploying low power wireless sensor net-
works (WSNs). Most studies of 802.15.4 based WSNs con-
centrate on the operational phase and neglected the initial
startup phase. This bears however also potentials for energy
savings, as the 802.15.4 association procedure has to be exe-
cuted to make the network operational and is not optimized
for low power networks. In this study, we point out direc-
tions how to perform the association in a self organizing and
energy saving way.

1. INTRODUCTION

Among the existing standardized wireless communication
solutions, the IEEE 802.15.4 standard [5] seems to be the
most suitable for WSN purposes, as it is targeted at low
power, low bandwidth networks, characteristics which match
most sensor network applications. For home automation and
industrial control purposes, the ZigBee Alliance [2] and the
HART Communication Foundation [1] respectively specified
higher layer protocols based on the 802.15.4 PHY and MAC.
These protocols enhanced 802.15.4 and made it very popu-
lar for commerical applications with limited battery power
and small throughput requirements.

In the academic community, the interest for 802.15.4 has
also grown and numerous studies focused on the perfor-
mance evaluation of the WPAN standard made its benefits
and deficiencies well known. If, however, 802.15.4 WNS run-
ning on batteries shall become reality, one major problem re-
sides. If the network is running in the beacon mode, a central
coordinator broadcasts beacons, i.e. special command mes-
sages for synchronization purposes to all nodes in the net-
work. This enables all devices to operate with superframes
consisting of an active and a passive phase, where devices
can be put to sleep mode. In the absence of a central coor-
dinator, this fixed structure is not existing in the nonbeacon
mode, which enables larger and more flexible topologies and
is hence a good choice for 802.15.4 WSNs. If the network
shall enable a distributed routing solution, no energy saving
options for the nonbeacon mode are given in [5]. In earlier
works we therefore investigated the effects of a simple sleep
scheduling solution, where the sensor nodes duty cycle at a
regular schedule and loosely synchronize with their neigh-
bors. Allowing the sensor nodes to sleep a fraction 1 — p,,
of a fixed epoch length T', this algorithm operates between
the 802.15.4 MAC and a ZigBee routing layer and promises
acceptable packet delivery ratios even at low duty cycle for

the price of an increased end-to-end delay [7].

The question how such a duty cycle network can success-
fully start up both autonomously and efficiently, has not
yet been considered. Each sensor node wanting to join a
802.15.4 network (also called personal area network (PAN)),
has to associate, i.e. exchange a sequence of organizational
messages with the PAN coordinator or with an other node
which already has associated with the PAN. This procedure
is mandatory for 802.15.4 networks and has not been de-
signed under consideration of duty cycled or lossy networks.
A closer look on the energy optimization potentials of the
association procedure will therefore be presented in the fol-
lowing: In Section 2 we review related work. In Section 3,
we formalize the association procedure using an analytical
framework. In Section 4 we present some early simulation
results, before we conclude in Section 5 and outline our fu-
ture research.

2. RELATED WORK

One of the first performance evaluations of 802.15.4 in
ns-2 [9] is reported in [11]. This code is still the base of
the actual 802.15.4 WPAN ns-2.33 simulation framework we
adapted for our purposes. Among other mechanisms, the as-
sociation procedure was also studied in [11]. The association
process as outlined in the standard is not optimized for the
case of large, duty cycled or lossy networks with only one
coordinator: It does e.g. not handle the situation, that a
node wanting to join a PAN does not receive a beacon upon
its active channel scan. To solve this issue, [11] proposes
each device which is unable to associate at first attempt to
retry to associate after an associationRetrylnterval a = 1 sec
later. As the authors focus on beaconed networks, and the
sensor nodes do never go to sleep state, those results are of
limited use for the case of non-beaconed low power networks.

In [6], the authors establish analytical models for comput-
ing the time and energy consumptions for 802.15.4 specific
mechanisms. Furthermore, typical power consumptions and
goodput for devices and coordinators are derived and ver-
ified by simulation. The reassociation procedure, i.e. the
case where a node loses the contact to the coordinator it as-
sociated with, is handled, the initial association procedure is
not covered. Furthermore duty cycling nodes are not consid-
ered, the analysis is thus difficult to apply to our problem.

The authors of [4] exploit the hierarchical dependency re-
sulting from the 802.15.4 association procedure for a estab-
lishing a hierarchical routing scheme. HERA, as this algo-
rithm is called, outperforms AODV, which is proposed by
the ZigBee Alliance for self organizing 802.15.4 networks,

61

in simulations in terms of packet loss, delay and energy
consumptions. This is mainly due to routing overhead, as
HERA gets the initial routes for free by exploiting the associ-
ation messages. The authors do not mention whether HERA
can be extended to duty cycling networks and do also not
analyze the association procedure. Their interest is just on
the operational phase of the network lifetime, demonstrat-
ing the benefits of the association procedure. Together with
an optimized energy efficient association procedure, HERA
could be a promising approach for low power networks.

3. ANALYTICAL FRAMEWORK
3.1 Problem Description

In the last section, we presented some examples out of the
numerous energy efficiency studies of 802.15.4 algorithms.
They are good example for all studies we know of, as they
mainly concentrate on the operational phase of the network.
For this purpose, the network is in general assumed to be
associated and routes stable. A reasonable approach, if e.g.
the average delay of a packet routed in a WSN is of inter-
est. As the association procedure of 802.15.4 networks is a
vital MAC layer functionality [5], we will concentrate on the
initial phase of a 802.15.4 WSN in the following.

A good description of the association procedure can e.g.
be found in [11], we only recall the most important facts:
Sensor node n activated in a nonbeacon-enabled multihop
PAN will start an active channel scan, i.e. it broadcasts a
beacon request command and waits for a response for an ap-
plication specific time. This procedure will be repeated on
all or some of the available channels. The PAN coordinator
or a device which has already associated, will send a bea-
con, containing information about the PAN it belongs to, in
response to this request. After having scanned all channels,
n chooses a PAN for associating among the PANs it got to
know of and exchanges a sequence of command messages
with the sender of the corresponding response.

As mentioned earlier, [11] proposes each device which is
unable to associate at first attempt to retry to associate
after an associationRetrylnterval a = 1 sec later. For the
case of a self organizing duty cycled network which may be
not synchronized at the beginning, this solution is not al-
ways successful. Especially in sparse and low duty cycled
networks, a node may have physical neighbors, i.e. nodes
within its range, but may be temporally isolated, as it does
not share waketime with the nodes in its radio range. Us-
ing a fixed a will thus very likely not result in a successful
association.

In this initial work we will point out directions for en-
abling a low power association procedure, investigating the
following strategies:

1. choose a at random, but dependent on the duty cycle,
e.g. a =U(0,zpy)T, where 0 < z < 1,

2. choose a at random, but independent from the duty
cycle, e.g. a =U(0,2)T, where 0 < z <1,

3. choose a = = , where x is an arbitrary constant.

Above, U(a,b) stands for a random variable, uniformly dis-
tributed in the interval [a, b]. Those simple choices already
result in a vast parameter space, we postpone the investiga-
tion of advanced options, like deriving from the fixed duty
cycling schedule therfore to future works.

62

3.2 Evaluation

To compare the benefits and trade-offs of the different
solutions, we will use the following metrics for all nodes n
of a WSN topology. Numerical values for the metrics are
obtained as averages from p simulation runs.

- sa(n) € {0,1} indicates if n was able to associate dur-
ing a target time A. Averaging sa(n) over p runs
clearly leads to 0 < sa(n) < 1.

- ta(n), gives the time when n is associated.

- E4(n) denotes the energy n consumes until it is asso-
ciated.

Obviously, these metrics vary heavily between nodes of
the same topology. But the influence of the duty cycle, the
starting order of the nodes, the used transmission output
power, the network density and more factors make it hard
to obtain a general closed form analytical expression. Before
we evaluate the different association strategies in topologies
with varying characteristics in a simulation, we have a closer
look at the different metrics.

3.2.1 Association Success sa(n)

The most straightforward metric of our model is the asso-
ciation success or percentage: Given a typical initial toler-
ance interval A, with which probability are the nodes able
to associate? In the optimal case, sa(n) = 1 for all nodes,
but in some scenarios it could happen, that not all nodes
are able to associate to the network resulting in sa(n) < 1.

3.2.2 Association Time ta(n)

The association time is obtained from simulations, but it
may be broken down analytically, too:

ta(n) =to(n) + na(n)tscan(c) + (na(n) — Da+ta. (1)

The first component of ta(n), to(n) denotes the randomly
distributed time, node n waits between the deployment of
the network and its first attempt to associate. The num-
ber of association attempts na(n) is greater or equal than
1. Node n will thus scan na(n) times the channel, need-
ing a time tscqn(c) which is application specific [5] depends
additionally on the number of channels to scan, ¢, which
we adopt to be equal to 3 [11]. Upon an unsuccessful as-
sociation attempt, n will wait for a before retrying, until it
requires finally a timespan t, for exchanging the association
command messages [5].

3.2.3 Association Power Consumptions E 4

Our interest is on layer 3 and below, we therefore ne-
glect power consumptions for data acquisition, handling etc.
and focus on estimating the energy consumptions of the
transceiver. For this purpose, we abstract the sensor node
radio unit to a state machine and use the periods, a sen-
sor node spends in each state to estimate the transceiver
power consumptions. For 802.15.4 performance evaluations,
this approach which has been introduced by [3]. We extend
upon this model by including the results of [10]. The authors
propose to use a simplified radio control state machine ex-
tracting values for current consumptions and times required
in states or for state transitions from transceiver data sheets
and using a typical voltage of U = 1.8V. By measurements,
they showed that that this so called Communication Subsys-
tem Energy Consumption Model (CSESM) is exact enough

for an analysis. In Fig. 1 we show the corresponding simpli-
fied state machine for Texas Instruments’ CC2420 [8], which
is a widely used 802.15.4-compliant transceiver module. The
durations and power consumptions of states and transitions
are taken from [8] or estimated as the average of the two
initial and final state for the transition [10].

Power Off (PO)
1=0.001 mA

turr] Voltage Regulator on
(t=¢2.76 msec, I = 0.62 mA)

Power Down
(PO)
1=0.02mA

crystal oscillator on

(.96 msec, | = 0.426 mA)

Idle (1)
1=0.426 mA

Receive (RX) Transmit (TX)
1=19.7 mA 1=85-17.4 mA

(t=0.192 msec, | =14.1 - 18.55 mA;

Figure 1: Simplified state machine of CC2420

For analyzing Ea(n), we focus on node n and neglect the
costs the node which with n associates has for sending the
association beacons to n. As CSESM is not yet implemented
in our simulation framework, an estimation for Fa(n) is
obtained using Eq. (1):

Ea(i) = Estart + na(i)Escan(c) + (na(i) —1)Er + Ea, (2)

where Fsiqrt denotes the energy required for the transition
from “Power Off” to “Receive” state. In our simulation,
nodes always transmit at maximum power, we therefore
overestimate Escqn and E, by multiplying tscan and t, re-
spectively by U and Irx > Irx [8]. The energy consumed
during the period where the node waits for a retry to as-
sociate is obtained by adding the energy consumptions for
transitions from and to “Power Save” state to the energy
consumptions in “Power Save” for the remaining time of a.

4. SIMULATION RESULTS

For analyze the performance the 802.15.4 association pro-
cedure under varying conditions, we simulate it in ns-2.33.
To reduce side-effects, we concentrate on a very simple topol-
ogy: 9 sensor nodes and one sink node, taking the role of
the PAN coordinator, are situated on a line, separated by
either 4 or 5 m. We use node IDs from 0 to 9, for the sink
node and the sensor nodes in increasing distance from the
sink. The node with ID 9, has thus the greatest distance to
the PAN coordinator. Using the default loss-less ns-2 two
ray ground channel model with the radio characteristics of
C(C2420, and considering varying transmission output pow-
ers, each node can communicate with 1 to 4 neighbors per
direction. Furthermore, we chose A =5 min for 7' = 1 sec.
To obtain repeatable results, we use the seeds from 1 to 20
for 20 simulation runs which were found enough to result
in satisfying confidence intervals for all considered mean of
the considered metrics. For sakes of clearness, confidence
intervals are thus not shown.

0.61 v

2
= P
2
<
®

v —*—g=4m,x=0
s -*x-g=5m,x=0
S —e—g=4m,x=0.5

02r :',’ -e-g=5m,x=0.5

I —4—g=4m,x=1
, -A-g=5m,x=1

P [dB]

Figure 2: t4(9) for strategy 3

A self organizing PAN initialization is simulated as fol-
lows: The nodes 1-9 are activated in a random order, with
a time of U(0,1) - 60 sec between the start times. After
having started, each node tries to associate to a PAN us-
ing the procedure described in Section 3.1. During most
of our simulation runs, A was found to be enough for all
nodes to associate. Only for p,, < 5%, a transmission out-
put power resulting in the smallest connectivity degree, and
nodes close to the sink starting last, it occured, that the
outmost nodes were not able to associate. The association
success of node 9, s4(9) for the extreme scenario p, = 1%
is thus a good metric for the quality of an association strat-
egy. In Fig. 2, we illustrate the percentage of simulation
runs, node 9 was able to associate under varying transmis-
sion powers, inter node spacings and parameters for setting
a according to strategy 3, i.e. a = x. Different colors and
markers show different values for z. Sparser topologies, i.e.
with the inter grid spacing g = 5 m are shown by dashed
lines, solid lines are used for ¢ = 4 m. The monotonic in-
crease of the curves and the fact that the association success
for g =4 m and the same value of x is always greater or
equal then for the same x and g = 5 m, illustrates, that the
association success is increasing with the connectivity of the
network. While this is an obvious result, another observa-
tion is more surprising: The highest association success is
guaranteed for a = 0, i.e. if node 9 immediately retries to
associate after an association failure. Our studies showed,
that in denser topologies, this behavior leads to unnecessary
channel contentions, choosing a larger, but randomized a is
more advantageous in these scenarios.

Fig. 3 illustrates how the time required for successful asso-
ciation varies with the relative position of the node and the
duty cycle in a topology where all nodes can only communi-
cate with their direct neighbors and under strategy 1, with
xz = 0.1, i.e. a = U(0,0.1py,)T = 1 sec. We use a surface
plot and study the influence of very small duty cycles more
closely. Observe, that ta(n) is increasing strongly with the
distance from the sink and the sleep time (1 — p,,)T. This
increase was observed for all chosen parameterizations of a
and all topologies, but differs in magnitude for varying ra-
dio range and parametrizations of a. Keep in mind, that the
surface plot shows mean values obtained from 20 simulation
runs: the results obtained from the individual runs varied
more strongly, as t4 depends strongly on the startup time
of the different nodes.

Eq. (2) makes clear, that the energy a node consumes

63

200

150

100

t A(n) [sec]

50

©o

100
80

5 55

30
Node ID n 11 (%]

Figure 3: t4 for varying activity and strategy 1

associating to the network is proportional to the number
of association attempts na(n) it has to make. Our studies
showed, that in most cases, node 9 has to make the most
association attempts, the energy consumptions of node 9 are
thus suitable as benchmark metric. We illustrate the asso-
ciation energy consumptions of node 9, E4(9) for a trans-
mission output power of -15 dBm which corresponds to a
node being able to communicate with its next hop neighbor
in Fig. 4. Estimations for the energy consumptions were
obtained from Eq. (2) under strategy 2, i.e. a = U(0,2)T
are presented. The most straightforward observation is that
energy consumptions obtained for g = 4 m are smaller than
for g = 5 m. This is in accordance with Fig. 2, as an in-
creased network density reduces na(n). Next, the curves
representing results for the same g intersect indicating, that
the optimal length of a depends on the activity ratio p,.
Moreover, the curves increase strongly for p, < 5%, lead-
ing to association energy consumptions in the range of 10 J
and make it hard to identify the most advantageous strat-
egy. This illustrates, that more studies for very low duty
cycles and more sophisticated algorithms for the association
procedure are necessary.

R —e-
—-—g = -
N g=4m,x=1
A‘B‘ -A-g=5m,x=1
*A N
= A o-6,
= x< X oo
(=) \ o
2 \\&* o
w1 D SPRUR
i DN
AL wa
RN \b.,t_

Figure 4: E4(9) for strategy 2

S. CONCLUSION

In this paper, we examined possibilities for enabling the
association process in a self organizing low power 802.15.4
nonbeaconed sensor network. To our knowledge, this prob-
lem has not been studied before. We pointed out directions
for an efficient solution, by examining three different simple

64

strategies for proceeding after the initial association attempt
fails. To compare the benefits and trade-offs of the individ-
ual solutions on the performance of the WSN startup phase,
we used three metrics suitable for characterizing the quali-
tative and quantitative performance of a specific association
solution.

Our results illustrate the inherent energy saving poten-
tials of the often neglected start up phase of a 802.15.4 sen-
sor network. In dependence of the strategy and the network
connectivity, the association retry interval has to be cho-
sen with care in order to avoid wasting energy: We found,
that, under some conditions, too short retry intervals lead to
unnecessary channel scans and beacon collision, thereby de-
teriorating the association performance. Under other condi-
tions in contrast, shorter retry intervals are speeding up the
association procedure significantly. Our results thus demon-
strated, that extensive studies on a wide range of parame-
ters are necessary, as many interacting factors influence the
performance of the association process and that an opti-
mal strategy has to consider a huge range of aspects. An
extensive factor screening for comparing the benefits and
trade-offs of different association mechanism will therefore
be the topic of future works.

6. REFERENCES

(1] HART Communication Foundation.
http://www.hartcomm?2.org.
[2] ZigBee Alliance. http://www.zigbee.org.

[3] B. Bougard, F. Catthoor, D. C. Daly,

A. Chandrakasan, and W. Dehaene. Energy Efficiency
of the IEEE 802.15.4 Standard in Dense Wireless
Microsensor Networks: Modeling and Improvement
Perspectives. In DATE ’05, Munich, Germany, March
2005.

[4] F. Cuomo, S. D. Luna, U. Monaco, and T. Melodia.
Routing in ZigBee: benefits from exploiting the
IEEE802.15.4 association tree. In IEEE ICC 2007,
Glasgow, Scotland, June 2007.

[5] IEEE Computer Society. IEEE Standard 802.15.4:
MAC and PHY Specifications for Low-Rate Wireless
Personal Area Networks, September 2006.

[6] M. Kohvakka, M. Kuorilehto, M. Hnnikinen, and
T. D. Hmlinen. Performance analysis of IEEE 802.15.4
and ZigBee for large-scale wireless sensor network
applications. In PE-WASUN ’06, Terromolinos, Spain,
October 2006.

[7] B. Staehle, T. HoBfeld, N. Vicari, and M. Kuhnert. A
Cross-Layer Approach for Enabling Low Duty Cycled
ZigBee Mesh Sensor Networks. In ISWPC’08,
Santorini, Greece, May 2008.

[8] Texas Instruments. 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver. Texas Instruments,
2006.

[9] USC Information Sciences Institute. The Network
Simulator - ns-2. http://www.isi.edu/nsnam/ns.

[10] Q. Wang and W. Yang. Energy Consumption Model
for Power Management in Wireless Sensor Networks.
In SECON’07, San Diego, CA, USA, June 2007.

[11] J. Zheng and M. J.Lee. A Comprehensive Performance
Study of IEEE 802.15.4, chapter Sensor Network
Operations, pages 218-237. IEEE Press, 2004.

A Novel Approach for a Lightweight, Crypto-free
Message Authentication in Wireless Sensor Networks

Ivan Martinovic and Jens B. Schmitt
TU Kaiserslautern
Distributed Computer Systems Lab
p.o. box 3049
67653 Kaiserslautern, Germany

{martinovic,jschmitt}@informatik.uni-kl.de

ABSTRACT

In this paper, we propose a system leveraging the peculiarities of
the wireless medium, such as the broadcast nature of wireless com-
munication and the unpredictability of indoor signal propagation to
achieve effective protection against attacks based on the injection
of fake data in wireless sensor networks (WSNs). Using a real-
world WSN deployment and a realistic implementation of an at-
tacker, we analyze this protection scheme and demonstrate that nei-
ther position change, transmission power manipulation, nor com-
plete knowledge of wireless parameters can help an attacker to
successfully attack the network. As a result, this work demon-
strates how the chaotic nature of radio communication, which is
often considered a disadvantage in regard to security objectives,
can be exploited to enhance protection and support implementation
of lightweight security mechanisms.

Keywords
Security, Wireless sensor networks, Radio propagation, Authenti-
cation, Implementation

1. INTRODUCTION

Consisting of sensors for measuring temperature, pressure, air hu-
midity and other environmental conditions, wireless sensor net-
works (WSN) provide means for various applications to increase
comfort and security within private and public residences. By ac-
cumulating data of many sensors, a sophisticated system capable
of triggering complex application-specific tasks can promptly re-
act to environmental changes, for example, fire spreading, water
or gas leakage, and other origins of catastrophes can be detected
and countermeasures promptly initiated (e.g., the room airing if
gas leakage is detected, closing the water valve to prevent further
flooding, or calling emergency in case of human injuries). Hence,
residential monitoring is among the most important emerging ap-
plications for WSN. However, shifting such critical decisions to an
automated system increases the importance of its security. By abus-
ing the broadcast nature of wireless communication, an attacker
could easily impersonate sensor nodes and inject fake sensor data
into a WSN without even being physically present inside the res-
idence. Continuous aggregation of fake data may lead the system
to wrong decisions and provide vectors for more sophisticated at-
tacks, e.g., sending fake packets to emulate gas leakage and initiate
room airing may be exploited for physical intrusion.

Traditionally, security in computer networks has multiple objec-
tives and attempts to equally satisfy authentication, confidentiality,
and integrity goals of transmitted data. When following such “one
size fits all” approach, the cost of key exchange, identity verifica-

Reflection

o s

.-~ LY &
//I:liff ction u A\
- “’-—" “"-..__“__ N \

" “Direct | ;
attenuated

Receiver

Figure 1: Indoor radio propagation and different propagation
phenomena: reflection, diffraction and scattering result in un-
predictability of signal propagation within real-world environ-
ments.

tion, and data encryption puts high demands on protocol complex-
ity, its implementation, and computational power. While such re-
quirements can usually be met by the relatively high-performance
devices in common computer networks, in a WSN the security
costs become more tangible through decreased battery life and var-
ious vulnerabilities from depletion of computation or memory re-
sources.

Operating within an indoor environment, a WSN may take advan-
tage of access control offered by the “physical world”, where walls,
locked doors or other barriers for preventing physical intrusion es-
tablish the border between an outdoor attacker and the legitimate
sensors. Although radio signals are able to trespass such barriers,
the radio signal received from outside is strongly biased by various
propagation effects such as reflection, absorption, diffusion, and
scattering and therefore tainted with a significant amount of ran-
domness (see Figure 1). Other than the attacker, legitimate senders
and receivers within the WSN are positioned in an indoor area and
their radio transmission has to penetrate fewer obstructions. By
a planned placement, it is even possible to achieve line-of-sight
(LOS) between legitimate WSN nodes. Consequently, signal prop-
agation within an indoor WSN is more controllable and predictable
than a signal arriving from outside.

2. SECURITY BY WIRELESS

In this section, we deploy a real-world indoor WSN network in
order to empirically evaluate the diversity of signal propagation.
Our testbed is a network installed in our university lab using 8

65

o>

(a) WSN scenario

Received Signal Strength (dBm)

-90

M]
e w, {

0 1 2 3 4 5 6

1 (5\

=100
o

Distance(m)

(b) Measured RSS on indoor sensors

Figure 2: Residential monitoring scenario (Fig. 2(a)): a WSN with 8 sensors is deployed within a residence (indoor), while an
attacker A attempts to inject fake data from outside. RSS unpredictability (Fig. 2(b)): signal strengths measured from an outdoor
transmission on indoor sensors (refer to topology shown in (a)). The order of measured RSS is dominated by physical characteristics

of environment and signal propagation effects.

-50

-55

N
%

—60

NN GG
ROROaSNBSSZ

-70

-75

output power
Sooaooaaaon

-85

-90

T T T T T T T T T T T T T T T -95
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

channel

(a) Position 1

output power

1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
channel

(b) Position 2

Figure 3: Results of sampling RSS on all available wireless
channels on two different physical positions (both receivers are
< 2m from the sender). The darker area shows lower signal
strength (right vertical scale depicts measured dBm values),
while lack of coloring implies 100% frame loss.

66

wireless sensor sensors and an attacker placed outside the room,
as shown in Figure 2. The wireless senors are based on a MicaZ
platform with CC2420 radios, allowing for 32 different transmis-
sion power settings and 8-bit resolution of received signal strength.
The power measurements are reported in RSSI (Received Signal
Strength Indicator), yet the conversion to dBm is easily computed
by Pyp = RSSIlyar + RSSIorrseT, where RSSIorrser =~ —45.

2.1 Unpredictability of Signal Propagation

A real-world radio propagation will be subject to any combination
of the aforementioned phenomena, resulting in a transfer function
depending on many variables. By traveling along several paths,
over different distances and consequently arriving with different
phases, a signal exhibits multipath propagation properties, result-
ing in constructive or destructive interferences; the received signal
strength may be weakened or amplified compared to LOS propa-
gation. Considering the topology of the testbed depicted in Fig-
ure 2, an idealistic free-space model would provide the strongest
RSS for the sensor which is in the attacker’s closest proximity
(M), while the most distant sensor (M5) would measure the weak-
est RSS from the attacker’s transmission. However, when look-
ing at real-world measurements, the results are significantly dif-
ferent. The outdoor transmission which passes through different
obstacles and is altered by various signal effects arrives highly ran-
domized in an indoor environment. Hence, the order of RSS re-
ceived at indoor sensors is completely shuffled. Figure 2 (b) shows
measured RSS on every sensor using the topology from Figure 2
(a) averaged over 100 transmission. The sensor with the strongest
RSS is M3 (= —55dBm) and the one with the weakest RSS is Mg
(= —75dBm). In a free-space model, Mg would have measured
the second strongest RSS; moreover, this RSS relationship between
sensors and attacker is changed with any alteration of sender’s con-
figuration of antenna orientation, physical position, or even a trans-
mission frequency. To demonstrate the impact of frequency changes
on RSS, we sampled transmissions on every wireless channel with-
out changing the positions of the sensors. The results measured at
two different receivers are depicted in Figure 3(a) and (b). So for
example, if the transmission is changed from channel 13 to chan-
nel 19 (i.e, 2405 MHz to 2445 MHz), one receiver experiences an
RSS decrease of ~ 20dBm (Figure 3(a)). Yet, if the transmission
is changed from channel 13 to channel 22, another receiver mea-

o5 1 7 B 18 2 21z

EIEF R

channel

w18 w2 = o2 W B 1

Receiver

10.78%

Verifier 3

H0%

Sensor 4

Verifier 2

r10%

Verifier 1

[10%

Rejected

110.78%

400 500 600 700

Sequence number

Figure 4: Time-line of legitimate transmissions verified by 3 sensors and 1 receiver. The figure shows acceptance intervals at each
node (gray area) and received frames (black dots as accepted frames, crosses as rejected). Using the same PRNG seed each sensor
periodically changes the transmission frequency and thus it dynamically changes its acceptance intervals. The amount of false
positives, i.e., legitimate frames discarded due to signal variation is low at 0.78 %.

sures an RSS increase of ~ 10dBm (Figure 3(b)). Consequently, a
single frequency change may cause RSS to increase or decrease on
different indoor receivers at the same time and the same position
of the sender. This finding has important implication in a security
context, it allows us to shuffle the order of sensors’ RSS merely
by switching between different transmission frequencies without
changing the placement of the sensors. For example, if both indoor
sensors transmit on channel 11, the order of their RSS is approxi-
mately equal, i.e., M| = M,. However, changing the transmission
frequency, e.g., using channel 19, results in M| > M;. This prop-
erty we exploit to establish a dynamic configuration feature in our
protection mechanism.

3. COUNTERACTING INJECTION ATTACK
BY WIRELESS

Leveraging the unpredictable and chaotic nature of signal propaga-
tion, our protection method is based on a single assumption — fwo
wireless transmissions from different physical positions cannot pro-
duce exactly the same signal propagation properties. To facilitate
this wireless peculiarity, we propose and implement two mecha-
nisms for crypto-free authentication of frames exchanged within
an indoor WSN: (i) acceptance intervals, and (ii) dynamic config-
uration. The acceptance intervals are used to detect frames whose
transmission properties are significantly different from those of le-
gitimate sensors, while the dynamic configuration of transmission
properties within a WSN increases the unpredictability of signal
propagation. Similar to Figure 2 the legitimate sensors were de-
ployed on the ceiling of our university lab and the experiment was
divided in two phases:

1. Deployment phase: Installation of sensors and configuration
of transmission parameters, including initial measurements
using different power levels and transmission frequencies for
defining acceptance intervals.

2. Monitoring phase: The network is in regular operation while
being subject to an injection attack executed from various
physical positions outside the deployment area.

The acceptance intervals are defined as [t — ko, U + ko] and based
on empirical data measured during the deployment phase, where u
is the sample median, ¢ the standard deviation of a sample, and
k > 1 is an environment-dependent constant defining the width of
the interval, i.e., it describes within how many standard deviations
the RSS is still considered to be legitimate. During the deployment
phase, each sensor uses initial transmissions to create acceptance
intervals on every other sensor (i.e., similar to signalprints used in
[3] and a more advanced approach discussed in [1]). To success-
fully inject fake frames into the network, an attacker must find an
appropriate configuration of wireless parameters, such as physical
position, transmission frequency (wireless channel), and a trans-
mission power level to produce the received signal strength which
satisfies the acceptance interval on all sensors. If any of legitimate
sensors detects the impersonation (i.e., it measures an RSS of a
frame not included in acceptance interval), the receiver is notified
by a warning frame disclosing a sequence number of the injected
frame.

Dynamic configuration is used to hinder an attacker in its brute-
force search for a successful configuration. All WSN sensors are
instantiated with the same PRNG seed which allows them to per-
mute different transmission parameters defined during the deploy-
ment phase. So for example, one configuration would be to transmit
on channel 15 with a transmission level 10, another to transmit on
channel 22 with a transmission level 15. As a result, different con-
figurations are assigned with different acceptance intervals. Even
if an attacker is able to inject frames with a certain configuration,
the attack is only successful during the same acceptance intervals.

To allow periodic change of acceptance intervals the WSN uses a
simple synchronization method where a basis station periodically
broadcasts a beacon to signal the change of the transmission pa-
rameters (e.g., every 2 minutes). An example can be seen in Figure
4 which shows a time-line of monitoring phase without the pres-
ence of an attacker. The sender’s transmissions are verified on four
sensors (three sensors and a base station). Although the acceptance
intervals dynamically change (gray areas), the legitimate sender has

67

Scenario 1 Scenario 2 Scenario 3
Interval width Interval width interval width
No.ofsensors || 2 | 4 | 6 |10] 2|4] 6]10)|2]4]|6]10
1 5 2 2 0 7 2 1 0 5 2 0 0
2 12 | 8 6 2 14 | 6 1 0 9 4 2 0
3 15|14 |10 | 8 16 | 13 | 13 | 5 13 | 8 7 6
4 15115 (15|12 |16 [15| 15| 14 || 16 | 14 | 12 | 11

Table 1: Number of secure channels, i.e., channels immune to injection attacks if one channel is ‘“broken” .

no problem of correctly changing its transmission properties to ful-
fill acceptance intervals on other four sensors.

3.1 Attack Scenario

To analyze the impact of dynamic configuration change during an
injection attack the PRNG seed, the transmission frequencies, and
the attacker’s RSS on legitimate sensors is made public, hence this
protection method does not depend on any secret. The single as-
sumption is that an attacker cannot gain a physical access to the
indoor WSN and cannot transmit from the same physical position
as an impersonated sensor. To increase the efficiency of injections
we manually searched for an appropriate configuration of physical
position, antenna orientation, and power level until we were able to
use at least one frequency to successfully inject fake frames at the
receiver. We were interested in the number of acceptance intervals
on other verifying sensors which are successfully “broken”.

The results of a thorough empirical sampling of various physical
positions used to attack the WSN network with different number of
verifying sensors are presented in Table 1 as the number of secure
wireless channels, i.e., the frequencies which did not result in an ac-
ceptance of any fake frames. So for example, a WSN with only two
verifying sensors (one sender, one receiver), and an interval width
of 4dBm, enables an injection of fake frames on eight channels,
while the other eight are not possible to attack using the same con-
figuration of transmission properties. Similarly, using three sensors
to verify the transmission, and the width of acceptance intervals set
to 2dBm, the attacker could use only three wireless channels for
successful injection, while its attack is not effective on the other 13
channels. Hence, there is a simple tradoff provided by this scheme;
by increasing the number of sensors we can increase the number
of secure channels even in environments with a high variance of
RSS (which results in larger o and wider intervals). In the de-
ployed WSN network, using five or more sensors we could not find
any position that resulted in a single successful injection even if
acceptance intervals were set to 10dBm allowing very high RSS
variations (for more implementation results see [4]).

4. CONCLUSION

The main purpose of this paper was to briefly demonstrate how
the chaotic nature of wireless communication can be used as an
advantage and how it can assist in increasing security of WSNs.
Rather than implementing additional protocols necessary for tradi-
tional security mechanisms, we designed practical and lightweight
protection without requiring more features than the communication
itself provides. To successfully inject fake frames, the attacker is
forced to search for an appropriate configuration of a physical po-
sition, antenna orientation, and transmission power. However, even
if the configuration for a successful attack is found, it is promptly
invalidated by a dynamic change of acceptance intervals. Addition-

68

ally, the design allows for a simple, yet effective tradeoff depending
on the security objectives of a particular scenario — increasing the

number of sensors, results in increasing the security of a WSN and
its resilience against injection attacks.

Our solution neither requires specialized hardware, nor introduces
complex message exchange. Probably, the closest research to our
work is tackled by Demirbas et al. in [2]. While in their work,
the authors attempt to minimize the randomness of signal strength
by comparing the ratios of RSSI values, in this work we take a
different approach and show that protection can be based on sup-
porting the randomness and using it against an attacker. Further
instantiations of the paradigm security by wireless, as we call it, is
demonstrated in [6] and [5], in which properties of wireless com-
munication are used to assist in providing various security objec-
tives adapted to the peculiarities of wireless networks.

5. REFERENCES

[1] Y. Chen, W. Trappe, and R. Martin. Detecting and localizing
wireless spoofing attacks. In Proceedings of the Fourth
Annual IEEE Communications Society Conference on Sensor,
Mesh, and Ad Hoc Communications and Networks, pages
193-202, 2007.

[2] M. Demirbas and Y. Song. An RSSI-based Scheme for Sybil
Attack Detection in Wireless Sensor Networks. In WOWMOM
’06: Proceedings of the 2006 International Symposium on
World of Wireless, Mobile and Multimedia Networks, pages

564-570, June 2006.

[3] D.B. Faria and D. R. Cheriton. Detecting Identity-based
Attacks in Wireless Networks using Signalprints. In WiSe '06:
Proceedings of the 5th ACM workshop on Wireless Security,

pages 43-52, September 2006.
[4

—

I. Martinovic, L. Cappellaro, and J. B. Schmitt. Lightweight,
Crypto-free Authentication Against Injection Attacks in
Wireless Sensor Networks. Technical Report 369/08,
University of Kaiserslautern, Germany, July 2008.

[5

—_

I. Martinovic, N. Gollan, and J. B. Schmitt. Firewalling
Wireless Sensor Networks: Security by Wireless. In 3rd IEEE
International Workshop on Practical Issues in Building
Sensor Network Applications (SenseApp 2008), Montreal,
Canada, October 2008. IEEE. Accepted for publication.

[6

[

I. Martinovic, F. Zdarsky, M. Wilhelm, C. Wegmann, and J. B.
Schmitt. Wireless Client Puzzles in IEEE 802.11 Networks:
Security by Wireless. In Proceedings of ACM Conference on
Wireless Network Security (WiSec 2008), pages 43-52,
Alexandria, VA, USA, March 2008.

Reliable Multicast in Wireless Sensor Networks’

Gerald Wagenknecht, Markus Anwander, Marc Brogle, and Torsten Braun
Institute of Computer Science and Applied Mathematics, University of Bern
Neubrueckstrasse 10, 3012 Bern, Switzerland
{wagen|anwander|brogle|braun}@iam.unibe.ch

ABSTRACT

Multicasting in Wireless Sensor Networks (WSNs) is an effi-
cient way to disseminate the same data to multiple receivers.
For critical tasks such as code updates, reliability would be
a desirable feature, in order to use multicasting for such
scenarios. Due to the nature of WSNs; several problems
exist that make realizing an efficient, reliable and energy
consumption friendly implementation a challenging task. In
this paper we describe the challenges of such an implementa-
tion and propose a solution for designing a reliable multicast
solution based on IP Multicast and Overlay Multicast. We
discuss several scenarios and depict the different advantages
and limitations of the solutions proposed.

1. INTRODUCTION

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of a number of
sensor nodes, which are limited in terms of energy, CPU
power, and memory. On the sensor nodes may run differ-
ent applications for different tasks such as event detection,
localization, tracking, and monitoring. Such applications
should be configured and updated during the life-time of
the sensor nodes and over the network [1]. An update with
many unicast connections to the nodes is very inefficient and
consumes resources such as bandwidth and energy. Thus it
is obvious that multicast communication the management
of WSNs may benefit by reducing the number of transmit-
ted packets and by saving energy. To access WSNs via the
Internet, a IP-based communication is required [2]. Thus
multicast communication should be IP-based as well.

1.2 Multicast

Multicast is an efficient way to disseminate data to a group
of receivers that are interested in the same content. Con-
trary to unicast, where the sender has to transmit the data

*This work has been supported by the Hasler Foundation
under grant number ManCom 2060

for each receiver individually, multicast requires the sender
to transmit the data only once. Thereafter, the network
or other hosts interested in the data will replicate when re-
quired and forward the data to the receiving group members.
In the Internet, the multicast paradigm has been implement
in the form of IP Multicast. Interested receivers send an
IGMP group join message, the routers process these mes-
sages according the IP Multicast protocol used (RSVP, PIM,
etc.) and build the distribution tree among them. A sender
now only sends a UDP Multicast packet to the group’s ad-
dress and the routers in the network then distribute the data
according to the multicast tree that has been setup before.
Although IP Multicast has been available for a while, it has
not been widely deployed in the Internet today due to dif-
ferent reasons (configuration, ISP agreements, etc). To offer
multicast functionality to the end-user, the concept of Appli-
cation Level Multicast[3] (ALM), often also called Overlay
Multicast, has been introduced. With ALM, which is based
on the Peer-to-Peer[4] (P2P) paradigm, end-systems build
the multicast tree among themselves, rather than relying on
routers to handle multicasting on their behalf.

Numerous research has been done about multicast in WSNs.
In [5] a multicast protocol called BAM (Branch Aggrega-
tion Multicast) is presented, which supports single hop link
layer multicast and multi-hop multicast via branch aggre-
gation. VLM? (Very Lightweight Mobile Multicast) [6] is a
multicast routing protocol for sensor nodes, which is imple-
mented on-top of the MAC protocol. It provides multicast
from a base station to any sensor node, unicast connections
from a sensor node to the base station, and supports mobil-
ity. In [7] the authors present an effective all-in-one solution
for unicasting, anycasting and multicasting in wireless sen-
sor networks and wireless mesh networks. The authors of
[8] adapt ADMR (Adaptive Demand-driven Multicast Rout-
ing), a multicast protocol for MANETS, on a real wireless
sensor node (MICAz). They show that the adaption is not
a trivial task and a number of problems have to be solved.
The authors of [9] analyze IP Multicast and show that it is
possible to use it in WSNs. Further there are several multi-
cast solutions for WSNs which are based on the geographical
position of the sensor nodes in the network [10, 11].

1.3 Structure of the Paper

The remainder of the paper is structured as follows. In
the next Section multicasting in WSNs is described showing
the challenges, different designs of multicast, and a protocol
stack for IP-based communication is proposed. Section 3

69

discusses the advantages and limitations of our proposed
solutions. An outlook in Section 4 closes this paper.

2. MULTICAST IN WIRELESS SENSOR
NETWORKS

2.1 Challenges

Due to the nature of WSNs, the IP Multicast implementa-
tion can not be simply ported from existing solutions for
wired networks. In WSNs energy, memory and CPU power
are limited. This implies the following challenges for mul-
ticast in such environments. In wired networks, routers
are handling packet replication and forwarding, clients just
send and receive simple IP UDP datagrams. On the other
hand, WSNs would need to introduce the router function-
ality for IP Multicast management into each sensor node.
Group management is normally concentrated on the routers
that communicate with each other to handle multicast trees.
The management for multiple groups and multicast trees
requires memory and processing power, which is limited on
sensor nodes. Also the default implementations of IP Mul-
ticast are designed to scale on large network groups with
multiple receivers and senders. In practical WSNs typically
the amount of nodes is rather low. Also the amount of ac-
tive trees and general management communication should
be kept to a minimum. Existing Overlay Multicast [3] so-
lutions (such as Scribe/Pastry, CHORD, Bayeux) are nor-
mally not taking the wireless nature and limited capabilities
of sensor nodes into account. In general it is also a bad idea
to have overlay connections established all the time, which
would lead to higher energy consumption and therefore re-
duces the lifetime of WSNs. Several other issues concerning
liveliness, wireless communication and collisions exist. Also
reliability for a WSN multicast solution would also be de-
sirable, because code updates and other critical tasks could
then be solved efficiently using multicast.

2.2 Designing Multicast in WSNs

Multicasting in WSNs can be designed in different ways. We
will look at two approaches, reliable IP Multicast and Over-
lay Multicast. For both approaches we will look at source-
driven and receiver-driven designs, both centrally managed
as well as de-centrally organized. Generally we will dis-
tinguish between two node types. Branching nodes have
to duplicate packets and store state information about re-
ceivers and/or about other branching nodes. Forwarding
nodes have less or no information about the multicast state
and just forward the multicast data to one neighbor. We will
also limit our discussion to core-based trees, where only the
dedicated root node will disseminate the data, while other
senders would need to transmit the data to the root node
first for dissemination. An example topology with some
branching nodes, forwarding nodes and three group mem-
bers is shown in Figure 1.

2.2.1 Overlay Multicast

For the source driven scenario we can use a de-centralized
as well as a centralized approach. Generally we distinguish
between active and inactive multicast trees. While data is
transmitted to a multicast group, the tree is in the active
state with all required TCP connections for the overlay links
established. New nodes are not allowed to join the group

70

branching fowarding group
node node member

Figure 1: Example topology showing branching
nodes, forwarding nodes and group members

while its tree is active, though the joins are cached and pro-
cessed later. When no data needs to be transmitted, the
tree is inactive and all required TCP connections to build
the distribution overlay are closed. Nodes can only join to
a multicast group while its tree is inactive. This limitation
ensures, that subscribed members get all data for a dissem-
ination session, because late joins are avoided.

In the de-centralized and source-driven approach, the source
sends the list of all receivers of the multicast data to its one-
hop neighbors. The neighbor nodes then check if all receivers
in the list can be reached through a single of their next-hop
neighbors. In this case, such a node just forwards the list to
its next hop and remembers that it acts as a forwarder for
that multicast group. If nodes from the list can be reached
via different neighbors, the list is split accordingly and the
partial lists (with the node’s own address as source of the
message) are forwarded to the respective neighbors. The
node splitting the list becomes a branching node and opens
a TCP connection for the overlay link to the sender of the
original list, when the corresponding tree is activated. Fi-
nally, if such a list message arrives at the receiver (group
member), then that node prepares the overlay link to the
source of the message (normally the last branching point).
Therefore, TCP connections for the overlay network links
are only established between the source, branching nodes
and the receivers (see also Figure 1) when the correspond-
ing multicast tree becomes active. New nodes are added to
the multicast tree by sending a list message including the
new nodes as described before. Only when a tree is inac-
tive, new nodes can be added, Therefore, no connections
are established directly, but potential new overlay links are
just prepared and only established upon activation of the
tree. If a branching node now receives a list message with
new nodes, it changes the source address of the list message,
splits the list if required, and forwards it/them further. If
a forwarding node has to become a branching node, it pre-
pares the overlay link to the source of the list message, splits
the message and forwards the new list messages further as
described before. This new branching node tells the source
of the original list message which receivers it handles in the
future. Therefore, the previous branching node removes the
overlay link that previously was using this new branching
node as forwarder. Upon reactivation of the modified tree,
the overlay link connections are opened from the source, via

branching nodes to the the receivers. New and old receivers
then become aware of their new group membership or of
the change of branching nodes for existing group member-
ships. Nodes can also be removed using remove list messages
accordingly and the forwarding and branching nodes have
enough information (as with adding new nodes) to modify
the resulting tree.

In the source-driven centralized approach, the source node
determines all required branching nodes ahead. Therefore,
the source also creates the complete distribution tree that
is required for a multicast group. The branching nodes are
then notified, process the information and further forward
these notifications. If new receivers need to be added to a
tree while it is inactive, the source calculates the new and/or
modified branching nodes. Only these nodes are notified
about the changes in the tree, branching nodes that do not
need to be changed require no notification. Removing re-
ceivers from the tree is done similarly, branching nodes that
need to be modified or removed are notified accordingly.
For the centralized receiver-driven approach, the join mes-
sages from the receivers are forwarded to the source, which
manages the tree as described for the source-driven central-
ized approach.

In the receiver-driven de-centralized approach, receivers
send the join message to their neighbor responsible for the
default route. If this node is not a forwarder or branch-
ing node for that group it becomes a forwarding node (only
knowing that it is on the path of an overlay link when the
tree would become active) and forwards the join message
further. Intermediate nodes, which are already branching
nodes of the requested group drop the join message and pre-
pare the overlay link to the new receiver. Forwarding nodes
receiving join messages, become new branching nodes, pre-
pare the new overlay link and send this information (about
becoming a branching node) towards the source, dropping
the original join message. A branching node receiving such
a message modifies its overlay link in that direction. There-
fore, the overlay link of which the new branching node has
been acting just a forwarder before, is removed and replaced
by an overlay link to this new branching node. Receivers
that want to leave a group send a leave message towards the
source. Forwarders on the path update their status for that
group and forward the leave message further. Branching
nodes receiving a leave message update their status, remove
the overlay link to the leaving node, and discard the leave
message. If the branching node has just one overlay link left,
it has to change its status to a simple forwarding node for
the remaining receiver and removes the affected overlay link.
Further, it sends a notification towards the source and all
intermediate nodes update their states accordingly. They
forwarding the message until it reaches a branching node,
which then establishes the overlay link to the remaining re-
ceiver.

To support end-to-end reliability in overlay multicast, the
receivers have to acknowledge the receipt of each multicast
message or acknowledge the receipt accumulated after a se-
ries of messages. Branching nodes aggregate and forward
the acknowledgments. In case of missing acknowledgments,
they send negative acknowledgments further towards the
source. Branching nodes also take care of retransmission of
lost packets and therefore need to cache the multicast data
up to a certain degree. Hop-to-hop reliability is supported
by underlaying protocols as described in Section 2.2.3.

2.2.2 Reliable IP-based Multicast

Contrary to Overlay Multicast (which uses TCP) we do not
have a reliable end-to-end transport protocol. Instead we are
using UDP. End-to-end reliability is realized using acknowl-
edgment messages as described above. Branching nodes
know only that their one-hop neighbors are forwarding the
packets on their behalf. Acknowledgments be handled on
one-neighbor basis (hop-to-hop), and not between branch-
ing nodes as for Overlay Multicast.

For the source-driven de-centralized approach the source
sends the join list to its direct neighbors that should act as
forwarders. The next forwarder is determined on a hop-to-
hop basis. If a node has to become a branching node, it re-
members from which neighbors it expects acknowledgments.
Joins and leaves are handled by appropriate messages that
could cause forwarders to become branching nodes (and vice
versa) triggering a modification of the expected acknowledg-
ments state for a node.

In the centralized source-driven approach the source sends
the list of all branching nodes to the closest branching node,
which processes and forwards them further to the nearest
branching nodes on the path. Intermediate nodes become
forwarders and store the status for the involved multicast
group. Acknowledgments are handled directly between the
branching nodes. Additional joining nodes trigger an update
of the affected branching nodes all initiated directly by the
source. Leaves are handled accordingly triggering updates
of the branching and forwarding nodes involved.

In the receiver-driven centralized approach joins are sent
to the source, which then acts as in the source-driven cen-
tralized approach. In the de-centralized receiver-driven ap-
proach, joins cause intermediate nodes to react as in the
Overlay Multicast case. They either become forwarding
nodes for that group if they are not handling that group
yet or become branching nodes if applicable. Acknowledg-
ments are handled the same way as described above in the
de-centralized source-driven approach.

2.2.3 Protocol Stack

Figure 2 shows a possible protocol stack for reliable multi-
cast in WSNs. End-to-end reliability for reliable IP-based
Multicast is ensured by REMC (Reliable Multicast) and
for Overlay Multicast by SNOMC (Sensor Network Overlay
Multicast). To avoid unnecessary end-to-end retransmis-
sion or caching in branching, we use a hop-to-hop reliable
network protocol realized by H2HR, (Hop-To-Hop Reliabil-
ity) in combination with the MAC protocol. This allows
to directly delete cached packets after successful transmis-
sion to the next hop. To optimize the mentioned protocols,
information is exchanged across different layers using the
cross layer interface. For example, the MAC layer informs
H2HR about the successful (or unsuccessful) transmission
of a packet. H2HR is caching the packet until it has been
transmitted successfully. Additional neighborhood informa-
tion for deciding how to forward multicast packets and the
involved paths is also requested from the cross layer inter-
face by REMC and SNOMC. TSS (TCP Support for Sensor
Nodes) [2] supports optimizations of TCP-specific mecha-
nisms, such as intermediate caching, local retransmission
and acknowledgment recovery and regeneration. Additional
energy-saving is achieved by disabling the radio interface by
the MAC layer when no transmission is required.

71

SNOMC |«
A—>
TCP 3
) 3
1TSS Je»| &
< =
<> qh_)
< >
]
|
< ()]
(7))
MAC -« 2
O
<P

Figure 2: Protocol stack of a wireless sensor node
using reliable unicast and multicast communication

3. DISCUSSION & CONCLUSION

We have shown several possible design concepts for reliable
multicast in WSNs. Each approach its own advantages and
limitations, depending on the scenario in which it is used.
For small scale WSNs, the centralized approach helps to
save energy and resources on the sensor nodes because the
source (generally the base-station) is handling the tree man-
agement. The sensor nodes do not need to store a lot of
status information.

The de-centralized approach is useful in large scale environ-
ments, where robustness and easier tree construction can be
achieved by letting the sensor nodes manage the tree con-
struction and group handling themselves.

The Overlay Multicast approach is easy to implement but
triggers more control messages in the underlaying layers as
well as in the overlay management layer. By distinguishing
between active and inactive trees, we can reduce the energy
consumption due to the fact that we only establish TCP
connections when data has to be transmitted. This results
in an Overlay Network established on demand.

On the other hand, reliable IP-based multicast using
UDP could be even more efficient and energy-consumption
friendly, but requires more cross layer interactions and
higher implementation effort.

4. OUTLOOK

There are still many open questions regarding the design of
multicast support in WSNs. When using reliability on end-
to-end basis, problems such as acknowledgment implosion,
handling of negative acknowledgments, etc. have to be ana-
lyzed in more detail. Generally also congestion control and
the resulting limitations have to be considered. Multicast-
ing on the link-layer could also improve the performance in
combination with our presented approaches. To determine
efficiency, energy consumption and overall performance, we
plan to simulate the different scenarios and solutions in the
OMNET++ simulator [12]. Both approaches should be im-
plemented on real sensor nodes using Contiki [13] as oper-
ating system.

72

5. REFERENCES

[1] G. Wagenknecht, M. Anwander, T. Braun, T. Staub,
J. Matheka, S. Morgenthaler: MARWIS: A Management
Architecture for Heterogeneous Wireless Sensor
Networks. International Conference on Wired/Wireless
Internet Communications (WWIC’08), Tampere,
Finland, May 2008.

[2] M. Anwander, G. Wagenknecht, T. Braun:
Management of Wireless Sensor Networks using TCP/IP.
International Workshop on Sensor Network Engineering
(IWSNE’08), Santorini Island, Greece, Jun 2008.

[3] M. Hosseini, D. T. Ahmed, S. Shirmohammadi,

N. D. Georganas A Survey of Application-Layer
Multicast Protocols Communications Surveys &
Tutorials, 9(8), 58-74, 2007

[4] K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim A
survey and comparison of peer-to-peer overlay network
schemes Communications Surveys & Tutorials, 7(2),
72-93, 2005

[5] A. Okura, T. Ihara, and A. Miura: BAM: Branch
Aggregation Multicast for Wireless Sensor Networks.
IEEE International Conference on Mobile Adhoc and
Sensor Systems Conference (MASS’05), Washington,
DC, USA, Nov 2005.

[6] A. Sheth, B. Shucker, and R. Han: VLM2: A Very
Lightweight Mobile Multicast System For Wireless
Sensor Networks. IEEE Wireless Communications and
Networking Conference (WCNC’03), New Orleans, LA,
USA, Mar 2003.

[7] R. Flury, and R. Wattenhofer: Routing, Anycast, and
Multicast for Mesh and Sensor Networks. IEEE
International Conference on Computer Communications
(INFOCOM’07), Anchorage, Alaska, USA, May 2007.

[8] B. Chen, K. Muniswamy-Reddy, and M. Welsh:
Ad-Hoc Multicast Routing on Resource-Limited Sensor
Nodes. International Workshop on Multi-hop Ad-Hoc
Networks (REALMAN’06), Florence, Italy, May 2006.

[9] J. S. Silva, T. Camilo, P. Pinto, R. Ruivo,

A. Rodrigues, F. Gaudncio, F. Boavida: Multicast and
IP Multicast Support in Wireless Sensor Networks.
Journal of Networks, 3(3), 19-26, Mar 2008.

[10] D. Koutsonikolas, S. Das, Y. C. Hu, and
I. Stojmenovic: Hierarchical Geographic Multicast
Routing for Wireless Sensor Networks. International
Conference on Sensor Technologies and Applications
(SENSORCOMM’07), Valencia, Spain, Oct 2007.

[11] J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic: Energy
Efficient Geographic Multicast Routing for Sensor and
Actuator Networks. Computer Communications, 30(13),
2519-2531, Jun 2007.

[12] OMNeT++: Discrete Event Simulation System.
Website: http://www.omnetpp.org.

[13] A. Dunkels, B. Gronvall, T. Voigt: Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors. EmNetS’04, Tampa, FL, USA, Nov
200/,

First Results of a Performance Comparison of Dynamic
Source Routing versus Greedy Routing in Real-World
Sensor Network Deployments

[Extended Abstract]

Hannes Frey
University of Paderborn
Pohlweg 47-49
33098 Paderborn, Germany
hannes.frey@uni-paderborn.de

ABSTRACT

This work covers our first results of an empirical perfor-
mance comparison between dynamic source routing and
greedy routing in a real-world wireless sensor network de-
ployment. The test environment is based on a 7 x 7 grid
of 49 battery operated Tmote Sky sensor nodes. We briefly
sketch the protocol implementations and the experimental
setup used in this work, and present our findings from the
measurement data we have gathered so far.

1. INTRODUCTION

This work describes our recent advances in providing real
world measurements of basic wireless data communication
primitives in wireless sensor networks. At the time of writ-
ing we have been focusing on end-to-end communication be-
tween a source and destination node. We believe that a basic
understanding of such basic primitives will as well provide
insights in more advanced sensor network specific data col-
lection primitives. Moreover, sensor networks are not only
about data collection trees. For instance, a data sink issu-
ing a sensor request into a specific geographic region, a data
sink issuing a request to a certain area identified by a spe-
cific node, or a data source trying to connect to a specific
actuator are just a few examples which show that sensor
networks require basic unicast communication primitives as
well.

Data communication protocols can be classified in topology
based and geographic ones. Surveys can be found in [9] and
[3], respectively. Topology based communication requires
either proactive or reactive exchange of global information
before message forwarding from source to destination can
take place. Geographic message communication in contrast
does not require such global message exchange. In such
routing mechanism it is assumed that each node knows its
current physical location. Based on this additional informa-
tion a routing decision can be performed in a pure localized
manner, i.e., a forwarding decision requires only informa-
tion about the position of the current node, its immediate
neighbors, and the message destination. It is believed that
such localized protocols provide scalable solutions, that is,
solutions for wireless networks with an arbitrary number of
nodes. Future sensor networks, for instance, might consist
of thousands or ten thousands of nodes.

Kristen Pind
Universtity of Southern Denmark
Campusvej 55
DK-5230 Odense M, Denmark
kristen@imada.sdu.dk

Research on localized algorithms has focused mainly on the-
oretical investigations and simulation. While both form an
important aspect in getting a thorough understanding on
what is going on, a critical part has widely been neglected
so far. It is of paramount importance to evaluate such pro-
tocols in the domain where they are supposed to be applied.
Localized algorithms are not supposed to run in Ns2, Om-
net, or Qualnet. They are supposed to run on real hardware
platforms like MicaZ, or Tmote Sky nodes.

What follows is just a drop in a bucket, to provide some
numbers of real-world measurement for comparing the do-
main of localized versus topology based data communica-
tion. We focused at first on two protocols, greedy routing
and dynamic source routing. The protocols and how we im-
plemented them are described briefly in Section 2. Then we
describe our experimental setup in Section 3. The results are
presented in Section 4. We conclude our work in Section 5.

2. PROTOCOL IMPLEMENTATIONS

We implemented dynamic source routing and greedy rout-
ing in nesC [4] under the TinyOS 2.0 execution environment
[6]. Wireless communication between immediate neighbor-
ing sensor nodes and wired serial communication between
sensor node and host computer is implemented on the ba-
sis of Active Messaging [1]. The maximum allowed message
size was fixed to 64 bytes payload. The following provides a
brief outline on both implemented protocols and motivates
the rationale behind our implementation decisions.

2.1 Dynamic Source Routing
2.1.1 The Algorithm Principle

Dynamic source routing [7], DSR in short, basically works as
follows. The source node sends out a route request message
RREQ which is repeated by all intermediate nodes once they
receive it for the first time. Additional RREQ receptions are
just ignored. Every RREQ message copy stores the sequence
of nodes it has visited so far. In this way several copies of the
RREQ message will eventually reach the destination node
which can then pick up one of these messages to send a route
reply RREP back along the reverse of the path stored in the
RREQ messages. To achieve this, the RREP message just
stores the sequence of nodes which have to be visited from
source to destination. Once the message arrives at the source

73

node, the reverse of the path stored in the RREQ message
can finally be used to send data towards the destination
node.

2.1.2 Implementation

Route setup in DSR requires some time. In order to allow
immediate service of DSR, we provided the source node with
a slightly increased message buffer size. We set the buffer
size to 8. Our implementation buffers the messages com-
ing from upper layers until the first RREP message arrives.
From there on messages are immediately sent out to the next
hop node until the route gets invalidated.

Our DSR implementation provides a timeout which can be
used to invalidate the current route from source to desti-
nation. This means when using this timeout a new route
discovery will be initiated periodically. However, this is just
an optional feature which is useful to adapt proactively to a
dynamically changing network topology; due to mobility or
any kind of fading effects.

So far we were interested in performing measurements in
a single source single destination traffic pattern. Thus, we
have not implemented DSR route caching strategies so far.

2.2 Greedy Routing

2.2.1 The Algorithm Principle

The greedy routing principle [10, 2, 8] works as follows. Each
node is supposed to know its own location in terms of some
given coordinate system. Messages store the location of the
destination node as well. A current forwarding node has
to acquire the position of its one hop neighbors and then
choose the next hop as the neighbor whose location is the
best one with respect to the current node’s location, the
final destination’s location, and the localized metric being
applied. If the current node is the best one, the message
will be dropped.

2.2.2 Implementation

In greedy routing each node is supposed to know the loca-
tions of the nodes in its vicinity. In this work we focused on
the so called beacon less greedy routing variant [5]. However,
we implemented the following active neighbor selection vari-
ant. As long as a node has not to forward anything, it is not
supposed to know its neighbors. As soon as a message gets
in, the neighbors have to be determined first. The node will
broadcast a neighbor discovery message NDSC first. Any
neighbor node receiving an NDSC message will send a uni-
cast reply message NREP which includes the node’s ID and
location. To avoid collision at the receiver, an NREP will be
sent out after a short random period between 0 and 16 msec.

In a static topology, neighbor discovery needs to be per-
formed only once. As soon as the first message was handled,
the other messages coming in can use the already determined
set of one hop neighbor nodes. In a highly dynamic scenario,
however, this set will be outdated and a new neighbor dis-
covery gets necessary. To support any topology properties
between those two extreme cases we implemented a timeout
based scheme where the neighbor set is invalidated period-
ically. Thus, message handling within one period requires

74

neighbor discovery only once. The timeout period can be
set as a protocol parameter.

The behavior of a greedy routing scheme is highly affected
by the implemented routing metric. A variety of different
metrics aiming on different aspects like success rate, latency,
or energy efficiency have been considered in the literature.
In this work we focus on the basic metric from [2]: send the
message to the node which minimizes the distance to the
destination. However, here we suspect main improvement
potential in future experimental studies and anticipate in-
corporating other metrics in future performance studies as
well.

Location information is an important ingredient of any lo-
calized data communication protocol. Here we focused on
the data communication aspects only. We implemented a
TinyOS module which provides an interface to request a
node’s position. The current implementation just returns
a preconfigured location value which is set in the phase of
mote flashing.

3. EXPERIMENTAL SETUP

The following described experiments were performed on a
regular 7 x 7 grid of 49 battery operated Tmote Sky sensor
nodes (see www.sentilla.com). The network was deployed
indoors in a single room. Nodes were located on the ground.
No obstacles have been placed in between them.

Greedy routing does not require absolute node positions.
Any virtual coordinate system which supports computing
distances between nodes is sufficient. We have set the node
positions according to increasing integer values for x- and
y-coordinates in the 7 x 7 grid.

The distance between two neighbors on the grid nodes was
set to 25cm. To have a reasonable multi-hop experiential
scenario, transmission power of each node was set to 2 (out
of a range between 0 and 31). We investigated that a trans-
mission power 1 rendered many message losses due to weak
signal strength. A signal strength above 2 kept too many
nodes connected thus rendering the topology almost fully
connected.

To control the experiment, the node at the top left and the
node at the bottom right of the 7x 7 grid have been attached
via USB to a notebook computer. We implemented a Java
application to generate the traffic, and collect measurement
data from the final destination node. The Java application
tells the attached source node at the top left corner to send
a data packet periodically to the destination node at the
bottom right corner. The time interval between two message
transmissions was set to 2 seconds.

4. RESULTS

The graphs depicted in Fig. 1 compare the performance of
DSR and greedy routing in terms of message delay, success
rate and hop count. The measurements are plotted against
different invalidation times for DSR route caches and greedy
neighborhood tables. Each point in the graph is the average
of 1000 measurements.

Figure 1a shows the average delay from source to destination

we observed for varying cache invalidation times. Clearly, a
longer invalidation delta supports a lower delay. Routes can
be used for a longer time before route discovery is initi-
ated by DSR or neighbor rediscovery is initiated by Greedy,
respectively. However, compared to Greedy, DSR is more
susceptible for short route invalidation times. Delay is in-
creasing significantly in this case.

Those large delays come from large setup times until the
DSR route is established. We were interested as well how
long it takes until a DSR route is established. Figure 1b
depicts the average setup time over the route invalidation
time. If invalidation time decreases (for invalidation time 0,
route discovery starts for each new message), the setup time
increases significantly. We interpret this result by the fact
that route discovery will overlap with previous ones, thus it
may take a longer time until a message is handled by a node.

We were also interested in the performance of DSR com-
pared to Greedy after the route of DSR is established. As
depicted in Figure lc, once the route is established, DSR
performs with a lower delay compared to Greedy.

Figure 1d shows the success rate of Greedy and DSR over
the invalidation timeouts. We observed a low and almost in-
variant success rate of about 20 % for Greedy, while the suc-
cess rate increases for DSR over invalidation timeout length.
Route setup in DSR favors good path over bad ones auto-
matically. In Greedy we select the neighbor node closest to
the destination. We believe that Greedy can be improved
significantly at this place, by selecting a different metric, i.e.,
a metric which also favors high quality links over bad ones.

We observed a higher success of DSR on one hand but on
the other hand DSR does not provide as much of the pay
load which is provided in Greedy packets. DSR has to store
the entire route from source to destination in the message
as well. We were thus interested in the question how many
bytes per second can be transmitted with DSR and Greedy,
respectively. As depicted in Figure le, Greedy achieves a
better data rate than DSR for low cache invalidation times.
We think that using a metric as discussed previously will
enable greedy as well to perform as good as or even better
than DSR when invalidation times are increased.

Finally, we were interested on the length of the paths taken
by DSR and Greedy. Figure 1f shows that Greedy takes
about one hop more than DSR. We observed that the paths
taken by DSR are often following the network boundary. By
the time of writing for Greedy our log files do not reveal the
paths taken.

S. CONCLUSION

In this work we presented an empirical performance com-
parison between a localized and a global routing approach.
Although, this work is not the first one providing measure-
ments in a real-world sensor network deployment, we think
that in answering the question on what are the advantages
and disadvantages of localized over globalized approaches,
such empirical results are still lacking.

Our intention is to substantiate advantages and disadvan-
tages of localized over centralized data communication pro-

tocols with real-world measurements. We focused on one
representative of localized and one representative of global
routing so far. The space of possible future investigations is
endless and we anticipate a discussion on the most interest-
ing ones to follow.

We think that a final justification when localized is bet-
ter than a globalized approach requires many independent
measurements coming from independent research groups.
Even measurements repeating experimental setups and ex-
periments of certain protocols are of importance here. We
advertise that a single result of one paper should not ex-
clude other papers performing the same measurements and
probably achieving varying results. This is however often
not that accepted in network research like it is accepted in
other disciplines like physics, for instance.

6. REFERENCES

[1] P. Buonadonna, J. Hill, and D. Culler. Active message
communication for tiny networked sensors. In
Proceedings of the Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies
(INFOCOM-01), Apr. 2001.

[2] G. G. Finn. Routing and addressing problems in large
metropolitan-scale internetworks. Technical Report
ISI/RR-87-180, Information Sciences Institute (ISI),
Mar. 1987.

[3] H. Frey and I. Stojmenovic. Geographic and energy
aware routing in sensor networks. In I. Stojmenovic,
editor, Handobook on Sensor Networks (ISBN
0-471-68472-4). Wiley, Oct. 2005.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh,

E. Brewer, and D. Culler. The nesc language: A
holistic approach to networked embedded systems. In
In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2003.

[5] M. Heissenbiittel and T. Braun. BLR: Beacon-less
routing algorithm for mobile ad-hoc networks.
Elsevier’s Computer Communications Journal, 2003.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages
93-104, 2000.

[7] D. B. Johnson and D. A. Maltz. Dynamic source
routing in ad hoc wireless networks. In Mobile
Computing. Kluwer Academic Publishers, 1996.

[8] J. Kuruvila, A. Nayak, and I. Stojmenovic. Greedy
localized routing for maximizing probability of delivery
in wireless ad hoc networks with a realistic physical
layer. In CD Proceedings of the 1st International
Workshop on AlgorithmsS for Wireless And mobile
Networks (A-SWAN) at MobiQuitous, Aug. 2004.

[9] E. M. Royer and C.-K. Toh. A review of current
routing protocols for ad hoc mobile wireless networks.
IEEE Personal Communications, 6(2):46-55, Apr.
1999.

[10] H. Takagi and L. Kleinrock. Optimal transmission
ranges for randomly distributed packet radio
terminals. IEEE Transactions on Communications,
32(3):246-257, Mar. 1984.

75

"DSR ——

30000

"DSR ——
Greedy -->¢---
10000
25000
g
7 B
£ S
> 3 20000
8 3
1000 2
3
o
15000
100 \ \ \ \ \ 10000 \ \ \ \ \
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Route/neighbor cache TTL (s) Route/neighbor cache TTL (s)
(a) Average delay of DSR and Greedy. (b) Average route setup time of DSR.
400 T 1 T
DSR —+— DSR ——
Greedy ---x--- Greedy ---x---
as0 [1
0.8 —
300 q
_2s0f 1 °
g E
E \ 2
= \ g
3 200 | e 1 g
a y @
TR
‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Route/neighbor cache TTL (s) Route/neighbor cache TTL (s)
(c) Average delay of DSR after route discovery and Greedy. (d) Success rate of DSR and Greedy.
20 T 6 T
DSR —+— DSR —+—
Greedy ---x--- Greedy ---x---
55 —
5|]
3 2
El 2
@ 5 / R
T 5 45 ~7 T -
g £
s z
[=}
4l]
35 —
o \ \ \ \ \ 3 \ \ \ \ \
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Route/neighbor cache TTL (s)

(e) Average data rate of DSR and Greedy.

Route/neighbor cache TTL (s)

(f) Average Hop count of DSR and Greedy.

Figure 1: First results showing the performance of dynamic source routing and greedy routing under different route cache and
neighbor cache invalidation intervals.

76

How to Take Advantage from Correlated Node Movement in
Mobile Sensor Networks

Alexander Klein
Innovation Works
EADS Deutschland GmbH
Munich , Germany
alexander.klein@eads.net

ABSTRACT

Many applications are designed for mobile scenarios which
have high demands on the routing protocol. Frequent topol-
ogy changes are the consequence of the short transmission
range and high mobility of the nodes. However, the num-
ber of link breaks and topology changes can be reduced in
a significant way if the forwarding nodes along a route are
chosen carefully.

In this paper an approach is introduced which decreases
the number of topology changes by taking advantage from
correlated node movement. The approach is based on de-
ferring routing messages and can be used for many popular
routing protocols to increase their performance. Its impact
on the end-to-end reliability and the selection of forward-
ing nodes in high mobile networks is simulated by adding
the method to the Ad-Hoc On-Demand Distance Vector
(AODV) and the Statistic-Based Routing (SBR) protocol.

Categories and Subject Descriptors

D.2.2 [Network Protocols]: Metrics—Routing Protocols -
delay based routing metrics.

General Terms
Algorithms, Management, Performance, Reliability, Theory

Keywords
Mobility, Routing, Wireless, Metric, Delay

1. INTRODUCTION

The number of link breaks usually corresponds to the
movement speed of the nodes in the network. Therefore,
mobility is often considered as a major problem in wireless
networks since it is mainly responsible for topology changes.
Nonetheless, in dense mobile networks there is a high prob-
ability that several nodes move along in the same direction
with similar speed. Thus, the relative movement speed of
these nodes is quite small compared to their absolute speed.

In the following, a look at the structure of an urban net-
work is taken. On one hand, there are hotspots in urban
areas e.g. pedestrian areas or areas around places of inter-
est where the user density is very high. On the other hand,
there are low density areas in the outlying districts of a city.
The nodes in such a scenario can be divided into two ma-
jor groups. The first group consists of slow moving or fixes
nodes that remain within the area close to a hotspot. The
other group is represented by nodes which move more or less

directly and fast from one hotspot to another. If two users
in one hotspot decide to move on to the next hotspot, they
will be able to directly communicate with each other during
the travel due to their correlated movement.

This paper is organized as follows. Related work is dis-
cussed in Section 2. The approach that takes advantage
from correlated node movement is introduced in Section 3.
Furthermore, the section includes a description how to im-
plement the method in AODV and SBR. Simulation results
are presented in Section 4. Finally, we summarize the results
and conclude with our fields of research in the future.

2. RELATED WORK

Routing protocols that are designed for mobile wireless
networks have to deal with frequent topology changes. It
is clear that the number of topology changes corresponds
to the transmission range and the mobility pattern of the
nodes. A shorter transmission range decreases the average
number of neighbors of a node. In addition, the neighbor-
hood of a node changes more often since nodes that pass by
remain a shorter amount of time within the coverage area of
the node. However, usually it is not possible to modify the
transmission range or the movement of a node. The rout-
ing protocols can follow different strategies to deal with the
mobility problem.

One strategy which is used by a large number of protocols
is to predict the movement and the connectivity of the nodes
in advance to minimize the number of link breaks and the
amount of routing overhead. The prediction can be based
on several characteristics e.g. bit error rate, packet loss, re-
ceived signal strength, location information obtained from
the Global Positioning System (GPS), or learned movement
patterns as shown by [3]. The Flow Oriented Routing Pro-
tocol (FORP) [4] uses the GPS information to predict the
mobility in advance. Therefore, it is able to compute the
link expiration time for each hop along the route. The pre-
dicted link expiration time is used to calculate the route
expiration time which can be regarded as a metric to evalu-
ate an end-to-end route in respect to stability and reliability.
Other routing protocols like Location-Aided Routing (LAR)
[5] utilize the GPS information to reduce flooding overhead.
Learning algorithms can be used to predict the movement
pattern of the nodes in the case that they have enough com-
putational power and are able to store the position informa-
tion. These algorithms are often based on hidden markov
models [3] or on large databases [6].

Another strategy to reduce the number of topology chan-
ges is to select a forwarding link according to different met-

77

rics like reliability [7], node speed or link duration [8]. It
has to be kept in mind that the most reliable or stable path
does not necessarily result in the shortest possible path in
respect to the number of hops.

The method that is presented in this paper prefers slow
moving nodes over fast moving nodes. It is inspired by sev-
eral observations made by [8] and [9] which analyze differ-
ent mobility models. The papers show that the link dura-
tion and the number of topology changes strongly depend
on the used mobility model and its configuration. Further-
more, the presented node speed histograms reveal that the
link duration is correlated to the speed of the nodes. Thus,
slow moving nodes should be selected as forwarding nodes
since their links tend to be more stable than the links of fast
moving nodes. Section 3 introduces the functionality of the
approach and shows its capability to take advantage from
the fact that the node speed is not uniform distributed in
many scenarios due to restricted path selection.

3. DELAY BASED APPROACH

The end-to-end reliability in wireless networks strongly
depends on the mobility of the network. The faster the
movement speeds of the nodes, the more link breaks occur
in the network. Gerharz et. al. [8] simulated the probability
distribution function of the link duration time in a network
where the nodes move according to a random waypoint mo-
bility model. They showed that the end-to-end reliability
can be increased by selecting the next hop depending on the
estimated link duration time. Another approach is to take
advantage from nodes with correlated movement since rela-
tive movement speed is mainly responsible for link breaks.
These nodes should be selected as next hop due to their more
reliable links as a consequence of their correlated movement.

The problem is to detect the correlated node movement
if no position information is available. Consider a scenario
on a highway in one direction. There will be some fast driv-
ing cars, some with average speed, and some slow moving
trucks. On one hand, if there are more trucks on the road
than other cars, the routing protocol should prefer trucks to
forward data since their movement is strongly correlated re-
sulting in a high link duration time. On the other hand, fast
movement cars are also able to build a stable network if they
represent the majority of cars on the highway. Thus, a met-
ric is required that is able to estimate the current relative
movement speed of a node. Each node is able to estimate
its speed by keeping track of the presence of its surrounding
nodes. A change in its neighborhood indicates that the node
has moved away from the other nodes or the other nodes are
moving away from it.

However, routing or data traffic are required to detect
changes in the neighborhood. Otherwise, the nodes are not
able to keep their neighbor lists up to date. In general, the
routing traffic is sufficient to maintain fresh information in
the neighbor list since even reactive protocols like AODV
transmit hello messages periodically.

The basic idea of this delay based approach is to defer the
forwarding of routing messages depending on the change of
the neighborhood. More changes in the neighborhood result
in a higher delay of the routing messages. Therefore, the
routing protocols choose nodes with a lower relative node
speed since these nodes forward routing information more
quickly. It is obvious that a mobile node or a cluster of
mobile nodes with correlated movement may have peaks in

78

their neighborhood change if they move through certain ar-
eas e.g. crossing of a road or an area of high node density.
Thus, a mechanism is required to reduce the variation of the
metric and make it robust against short temporary changes.
The exponential weighted moving average algorithm is used
to minimize the impact of peaks. The neighborhood change
metric ¢, is calculated according to Equation 1 which was
empirically determined from a set of mobile scenarios with
different mobility models, node densities, and traffic pat-
terns.

e&r=a-€-1+(1—a) X;,a=0.9 (1)

The chosen smoothing factor « represented the best trade-off
between reaction time and peak suppression in the simulated
scenarios. X, is the number of changes in the neighbor list
during the last observation interval.

3.1 Neighborhood Change Detection

Changes in the neighbor list are counted during each ob-
servation interval. The counter is increased by one each time
a node is added to the list or removed from it. Depending
on the routing protocol or design of implementation the ap-
proach can be integrated in the protocols or implemented
as a cross-layer. If the approach is integrated in the pro-
tocols it can use already existing neighbor lists to calculate
the neighborhood change. In the case, that the approach
is implemented as a cross-layer it has to keep track of the
changes in the neighborhood by itself. In the following, the
focus lies on the cross-layer approach since it is independent
of the routing protocol and the mac protocol.

3.2 Neighborhood List

The neighborhood list consists of neighbor entries. Each
entry stores information about the neighbor e.g. time of first
contact and time of last contact. However, the approach
presented in this paper only requires the time of the last
contact. If a node receives a packet of another node it checks
whether the originator of the packet is in the list. In the case
that the node is not in the list a new entry is created and
inserted in the list. Otherwise, the existing corresponding
entry is updated.

3.3 Neighbor Expiration

The neighbor expiration time has to be chosen carefully
since it depends on the traffic pattern and the routing pro-
tocol. Many protocols keep track of the surrounding nodes
by periodically transmitting hello messages. To minimize
changes in the neighbor list if some nodes are temporarily
unavailable, the neighbor expiration time is set to four times
the duration of the hello message interval of the routing pro-
tocol. The value was empirically determined from a large set
of scenarios.

3.4 Observation Interval

The observation interval has a large impact on the ap-
proach since its duration mainly affects the neighborhood
change and thus the forwarding delay of the routing mes-
sages. The duration has to be chosen in respect to the topol-
ogy change and link break rate. Duration of twice the hello
message interval of the routing protocol provided the best
performance in the set of test scenarios. It has to be kept
in mind that the duration affects the reaction time of the
approach to changes in the neighborhood.

3.5 Forwarding Delay

The time a node defers the forwarding of a routing mes-
sage is in the following referred to as forwarding delay. The
delay ¢ is calculated from the neighborhood change metric
€, of the last observation interval. Equation 2 is used to
calculate the forwarding delay in the simulated scenarios in

Section 4.
— 7AL . _ ¢
0 A (1 €r + qﬁ))

The quotient of the hello message interval Ah and A rep-
resents the maximum forwarding delay. Thus, A covers the
function of a delay limiter. The second factor of (2) is influ-
enced by ¢, and is used to divide the maximum forwarding
delay into smaller steps. A smaller ¢ value increases the
delay for a smaller number of neighbor changes. A ¢ value
of ten is used in the simulations since it results in a good
accuracy of differentiation in a large spectrum of neighbor
list changes. The additional delay has to be chosen accord-
ing to the net diameter in number of hops, the underlying
medium access layer, and the traffic load of the network.
In most scenarios, an additional delay of several millisec-
onds is quite sufficient to modify the topology of the net-
work. The impact on the end-to-end delay of data traffic
is minimized due to the fact that the cross-layer approach
only defers routing messages. Proactive protocols are less
affected by the artificial delay of the routing messages since
end-to-end routes are maintained between all nodes in the
network. However, the duration that is required to establish
a new end-to-end route in reactive and hybrid protocols is
increased by the additional delay. Nevertheless, the routes
are more stable which results in less link breaks. Therefore,
the number of route repairs is minimized. Thus, the overall
end-to-end delay can be reduced while achieving a higher
end-to-end reliability.

4. SIMULATION RESULTS

The OPNET Modeler 14.5 is used to simulate the impact
of the cross-layer approach on the end-to-end reliability and
the selection of forwarding nodes of AODV and SBR in re-
spect to their current relative speed. Instead of using the
OPNET AODV model, the model is implemented as spec-
ified in the RFC. The physical layer is replaced by a disc
model to minimize side effects. Furthermore, the radio range
of the nodes is set to 200 meters and the transmit data rate
is set to 256 kb/s. The nodes use Carrier Sense Multiple Ac-
cess (CSMA) as Media Access Control (MAC) protocol with
a simple back-off algorithm. At the beginning of each simu-
lation 100 mobile nodes are randomly placed on a square of
1000 by 1000 meters.

All nodes move according to a random waypoint model
with a constant pause time of zero seconds and a minimum
node speed of 1 m/s. The maximum node speed is increased
from 2 m/s to 20 m/s in steps of 2 m/s. 10 nodes in the
network select a uniform destination at the beginning of the
simulation. These nodes generate packets according to an
exponential distribution with a mean value of 2 seconds and
a constant packet size of 1024 bits. The traffic model is
started after 300 seconds to minimize the impact of the tran-
sient phase of the random waypoint model.

The duration of the simulations is set to 1400 seconds.
Statistics are collected after 400 seconds to allow the stabi-
lization of the network. The results are calculated from 20

Table 1: AODV Configuration
Active Route Timeout 1.5s
Hello Message Interval | 0.8 s
Net Diameter 12
Net Traversal Time 14s
Node Traversal Time 0.02 s

Table 2: SBR Configuration

Active Route Timeout 3.0s
Hello Message Interval 4.0s
Decrease Routing Interval 4.0 s
Short Hello Message Interval | 4.0 s
Short Hello Message TTL 1
Hello Message Time-To-Live 12

simulation runs with different seeds of the traffic and mo-
bility model. All error bars show the 99 percent confidence
level of the collected statistics whereas histograms represent
the average of 20 simulation runs. The configurations of the
routing protocols are shown in Table 1 and Table 2. The
chosen configurations leave enough room for performance
improvements of the end-to-end reliability of the protocols.

Three different delay metrics are used to simulate the im-
pact that the deferring of routing messages has on the next
hop selection and on the reliability. The first metric for-
wards the routing messages immediately. The second met-
ric calculates the forwarding delay according the approach
presented in Section 3 and is in the following referred as
Relative Speed Estimation (RSE) metric. The forwarding
delay of the third metric is chosen in respect to the current
absolute node speed.

4.1 Node Speed Distribution

The end-to-end reliability of routing protocols is strongly
correlated to the movement pattern of the nodes in the net-
work. For that reason, a closer look is taken on the absolute
speed of the nodes at the time they forward a packet. Fig-
ure 1 and Figure 2 present the normalized histogram of the
absolute speed of the nodes when forwarding a packet. The
results of both figures show that slow moving nodes forward
more traffic than faster nodes. This behavior is independent
of the protocol and the used metric. The shape of the dis-
tribution results from the node speed distribution which is
caused by the random waypoint mobility model [8].

Furthermore, the figures point out that the node speed
distribution of the forwarding nodes can be modified by de-
ferring the routing information. However, a lower absolute
node speed does not necessarily result in a higher end-to-end
reliability. If a cluster of nodes move in the same direction
with similar the speed their absolute speed can be neglected
in contrast to their relative speed.

4.2 End-To-End Reliability

Routing protocols are often rated by their achieved end-
to-end reliability and delay. Nonetheless, the focus of this
subsection lies on the reliability due to the fact that our
testing scenarios revealed that the deference of the routing
messages has no significant impact on the average end-to-
end delay. Figure 3 and 4 show the reliability of the different
metrics and protocols depending on the maximum speed of

79

Wlrone
0.7 [JRel. Speed Estimation ||
| Il Absolute Speed

Figure 1: AODV Node Speed Histogram

the random waypoint model. The results of Figure 3 in-
dicate that the RSE and the absolute speed metric increase
the performance of AODV in the case of more mobile sce-
narios. The higher reliability results from more stable routes
as a consequence of the longer link duration time.

The SBR protocol achieves the highest end-to-end reliabil-
ity if its routing messages are deferred according to the RSE
metric which is in contrast to AODV where the absolute
speed metric offered a slightly better performance than the
RSE metric. This effect can be explained as follows. Hello
Messages are periodically flooded by the SBR protocol in the
network which results in a higher routing overhead. Thus,
the nodes have more precise information of their neighbor-
hood. For that reason, the SBR protocol takes more advan-
tage from the deferring of messages than AODV.

S. CONCLUSION AND OUTLOOK

In this paper, a new delay based approach was introduced
that is able to increase the end-to-end reliability of protocols
in mobile networks by deferring the forwarding of routing
messages. Optimized configurations were used instead of
using the default ones since these configurations only achieve
acceptable performance in networks with low mobility.

A closer look was taken on the speed of the nodes that
are selected by the protocols to forward data traffic. The
simulation results showed that the nodes are able to estimate
their relative movement speed by keeping track of changes in
their neighborhood lists. Furthermore, the results pointed
out that it is possible to modify the topology of a network
by deferring the forwarding of routing information.

Wlrone
07t o [JRel. Speed Estimation ||
| Il Absolute Speed

| S S

1§ AT X

b e
= I

1 an
Mode Speed

2af

in

Figure 2: SBR Node Speed Histogram

80

0.75r

—None
i T ---Rel, Speed Estimation
3 _ Absolute Speed

(=]
~
"
kA
iy
7

- *
—

o
@
o

End-To-End Reliability
(=]
o

e
o
o

9% 2 4 & & 10 12 14 16 18 20 22
Maximum Speed in m/s

Figure 3: AODV End-To-End Reliability

6. REFERENCES

[1] C.E. Perkins, E.M. Belding-Royer, and S.R. Das, Ad
Hoc On-Demand Distance Vector (AODV) Routing
RFC 3561, IETF MANET Working Group, 2003.

[2] A. Klein and P. Tran-Gia, A Statistic-Based Approach
towards Routing in Mesh Networks, IEEE MASS, pp.
1-6, Pisa, Italy, October 2007.

[3] J.-M. Francois, G. Leduc, and S. Martin, Learning
Movement Patterns in Mobile Networks: a Generic
Approach, in Proceedings of European Wireless 2004,
pp- 128-134, Barcelona, Spain, February, 2004.

[4] W. Su, S-J. Lee, and M. Gerla, Mobility Prediction and
Routing Ad Hoc Wireless Network, Int. Journal of
Network Management, Vol. 11, No. 1, pp. 3-30,
January, 2000.

[5] Y.-B. Ko and N.H. Vaidya, Location-Aided Routing
(LAR) in Mobile Ad Hoc Networks, in Proceedings of
ACM/IEEE MOBICOM’98, pp. 66-75, USA, 1998.

[6] N. Frangiadakis et. al., Realistic Mobility Pattern
Generator: Design and Application in Path Prediction
Algoritm Evaluation, 13th IEEE Int. Symp. on PIMRC,
Vol. 2, pp. 765-769, Athen, Greece, September, 2002.

[7] C.K. Toh, Long-Lived Ad-Hoc Routing Based on the
Concept of Associativity, IETF Draft, 1999.

[8] M. Gerharz, C. de Waal, M. Frank, and P. Martini,
Link Stability in Mobile Wireless Ad Hoc Networks, in
Proceedings of the 27th Annual IEEE Conference on
Local Computer Networks (LCN), pp. 30-39, 2002.

[9] J. Yoon, M. Liu, and B. Noble, Random Waypoint
Considered Harmful, in Proceedings of INFOCOM
2003, San Francisco, USA, April, 2003.

—Mone |
-=--Rel. Spead Estimation

Absolute Speed

Z 09
2
[:]
2055-
&
& 0.8+
8
30?5-

07

08— 4 6 @ 10 12 14 16 18 20 22

Maximum Speed in m/s

Figure 4: SBR End-To-End Reliability

Ghost: Software and Configuration Distribution for
Wireless Sensor/Actor Networks

Marcel Baunach
Department of Computer Engineering

Am Hubland
University of Wiirzburg
baunach@informatik.uni-wuerzburg.de
ABSTRACT &
Wireless sensor and actor networks commonly consist of a rat- & %«“‘b
her large number of more or less widely distributed nodes. The q\) o
resulting spatial complexity arises severe software related main- i Q}e?%

tenance problems like application code and configuration updates.
This paper presents the Ghost subsystem for efficient remote soft-
ware maintenance in such networks. Besides safety, security and
operation in heterogeneous environments we also address practical
aspects like performance and resource requirements. Some results
from a real-world installation will close this paper.

1. INTRODUCTION

In order to achieve a long lifetime for sensor/actor networks (hence-
forth simply called WSN), these distributed systems are subject to
regular maintenance cycles. Besides hardware related issues like
the renewal of power supplies or the replacement and attachment
of modules, software related modifications are also very common.
The latter allow application updates for integration of new functio-
nality or for fixing bugs. Sometimes, there is just the need to reset
a node or to modify its configuration for changing its behaviour or
individual role in the overall system.

The problem’s scope and intensity differs according to the evoluti-
on stage of the system. During software development, frequent up-
dates (test versions) for few nodes can be expected. The frequency
diminishes rapidly with the final release but then affects significant-
ly more nodes within the original environment. But still, several
updates might be required suddenly during the system runtime. It
is similar with hardware. During development there are commonly
few nodes but possibly they are already of different architectures.
Often, these nodes are densely placed and easily accessible. After
system deployment their number and heterogeneity increases wi-
thin a quite ample environment. Then, some of them are hardly or
not accessible at all. The conventional method to update sensor no-
des on demand by means of mobile computers and debug-interfaces
is safe and secure indeed but in any case extremely complex, an-
noying or even impossible. To counter this problem, the Ghost sub-
system offers an efficient method for accomplishing software and
configuration modifications via image distribution over the com-
munication infrastructure which is available anyway within such
networks. Since data dissemination protocols have received wide
attention within the WSN community, several similar approaches
like Typhoon [7], FiGaRo [8] and Deluge [6] already exist. Yet,
such systems commonly provide their own customized communi-
cation/routing protocol or even require a special runtime environ-
ment on the nodes. In our opinion, both premises are adverse, since
remote maintenance is important indeed but should neither defi-
ne the actual application’s communication nor affect the overall

@@b\“ @
EH@[

Gateway
Node

Workstation

Figure 1: Ghost infrastructure for wireless remote maintenance

system performance. This is why Ghost was designed to use any
available protocol and needs no modifications or extension of the
used operating system. Instead, our focus aims on resource-aware
integration into any software besides providing efficient and relia-
ble operation. In this paper we present the central concepts of the
Ghost remote maintenance subsystem but refer to radio communi-
cation for our concrete real world test bed.

2. CONCEPTS AND OPERATION

Figure 1 shows wireless remote maintenance as one possible Ghost
infrastructure. In this case, data is transferred from a workstation
computer to a dedicated gateway node. The gateway creates data
packets and transmits them to the destination nodes by any net-
work protocol available in the WSN. Depending on this protocol,
unicasts and broadcasts including routing are possible. If suppor-
ted, groupcasts offer the special possibility to modify software in a
role specific manner simultaneously for certain subsets of nodes.
Ghost is implemented as add-on for integration into any WSN ap-
plication. To be always available for remote commands, it runs in
parallel to each node’s individual software and performs three basic
operations:

1. reception and integrity check of Ghost command and data
packets (image fragments) from any of the node’s communi-
cation interfaces (radio, infrared, ethernet, CAN, etc),

2. direct execution of Ghost commands and buffering of images
in an external flash memory, and finally

3. reprogramming of affected memory blocks (haunting).

Therefore, the Ghost subsystem is organized in two modules (—
Fig. 2): Steps 1 and 2 are executed during regular node operation
(high level task). During step 3 the operating system along with the
entire application is stopped (low level functions). After haunting,
the device is reset.

81

Application Code -« Energy
[Task 1] =+ [Taskn] |: Harvester
Communication | Ghost [Haunt! Ghost
Protocol HL Task LL Functions
A A
SmartOS / Device Drivers OS free
A A
Communication External Flash Program/Config
Module Memory Memory

Figure 2: Ghost integration with WSN applications

2.1 Ghost Functionality

Always keep in mind, that software based remote maintenance sub-
systems stay passive for most of the entire system uptime whereas
the fraction of their active operation time is relatively small. Thus,
the complexity and permanent resource requirements (CPU, RAM,
ROM) must be adjusted carefully to the available performance of
the nodes and a well balanced cost-benefit-ratio is required.

This is why the high level module runs as regular task and requires
no further adaptation of the remaining software. This task accepts
five basic commands from virtually any communication channel:

1. New: initiates a new image transmission by sending the pre-
conditions required to run or use the image (e.g. CPU type).
This is required to avoid accidental installation of incompati-
ble software or configurations which would render the node
inoperable.

2. Data: successively transmits data fragments until the entire
image is transferred. The fragments are limited by the pay-
load size of the underlying network protocol.

3. Reset: is used for explicit restarting of nodes.

4. Query: retrieves application, hardware and runtime related
information about the node. This always includes applicati-
on type, version, build number, CPU type, remaining ener-
gy and uptime. Additional data is optional and node-specific
but always limited by the payload of a single network data
packet.

5. Haunt: initiates updating of program and/or configuration
by any previously received image. This is done in Ghost low
level mode and finally invokes an implicit node reset.

Figure 3a shows an example for a possible remote software update
procedure via a gateway node. Depending on the requirements and
remaining memory resources, an additional clone-function can be
statically linked into the Ghost subsystem:

6. Clone: requests the currently running application code from
a node.

By first sending a query, a node can check its neighbourhood for
available software types and versions. Thereby newly deployed no-
des can integrate themselves almost autonomously into a running
WSN by requesting the appropriate software from neighbour no-
des. Figure 3b shows an example. Yet, this autonomy requires that

82

Destination node

o
-g A -
Ll
£]
> =3l 2| =
© = n [0} Q.
S S o 310
[T = o
= T
3 v
O] >
— Gateway
©
@ Destination node -
g »
]
£ > | = comman
[a \S c
c o |\ 5B :
6 &z © st optional ack
(&]
) >

Source node

Figure 3: Ghost communication process

each new node is equipped with a certain initial application contai-
ning the Ghost subsystem and the knowledge about its future role in
the WSN. This role is defined by the application type, which is un-
ique for each kind of software and hardware combination (e.g. rou-
ter for TelosB nodes, ultrasound sensor for SNOWS5 nodes, etc.).
Likewise, nodes can stay up-to-date by observing their environment
for newer versions of their own software. In contrast to the common
method, where a source node (gateway) pushes the software to each
affected node, cloning allows updates to be pulled over the whole
network without explicit routing or flooding. This desired virus like
spreading is extremely useful for very large networks where the in-
dividual handling of each single node would become too complex.
Of course, the network protocol must remain compatible between
versions to support any kind of long term self-maintenance.

2.2 Security

Secure data transmission is very critical in wireless sensor net-
works. This is especially true for the deployment and maintenance
of software and configuration images since a tapping attacker might
draw conclusions about operation and vulnerabilities of the overall
network. Of course, prevention of hostile code injections or node
takeovers is also mandatory.

The obvious technique is to encrypt all communication. Yet, the
used algorithm must provide an adequate security level at appro-
priate resource requirements. Furthermore, the key selection needs
careful consideration. Where an individual key for each node pro-
vides highest security (especially, if nodes can be stolen along with
the secret), a simultaneous updating of several nodes by a single
encrypted image is not possible any more. The same holds for clo-
ning, since key exchange methods among today’s low-power nodes
are not practicable. Thus, common keys increase the performance
while significantly reducing the network load altogether with ener-
gy consumption.

Our current implementation focuses on usage during WSN deve-
lopment in research and education. Thus, we prefer performance to
security and use either no encryption at all or the TEA algorithm
[12] for a minimum of security. Then, the password is not necessa-
rily node specific, but can depend on the application type, versi-
on and build number. This way and despite of a regular password
change with each update, it is still possible to supply several nodes
simultaneously with new software. At receiver side, the high level
task validates the packets regarding encryption and CRC checksum
before executing control commands or buffering new images.

2.3 Safety and Reliability

Safety and reliability are other important factors in remote mainte-
nance systems. This includes the guaranteed and complete recep-
tion of command and data packets at the desired destination no-
des. Concerning the communication, Ghost completely relies on
the used network and routing protocol. This accounts for compact-
ness and flexibility of the Ghost subsystem. Just the data packets
are successively numbered with each new transmission.

While communication is shifted to a WSN specific protocol, Ghost
integrates some mechanisms to guarantee smooth completion of
the actual update process and to prevent the node’s total break-
down caused by unpredictable errors while haunting. This is why
the Ghost subsystem is divided into two parts.

As the high level task runs as part of the application and in parallel
to the user tasks it is permanently ready to process Ghost packets
(— Fig. 2). If a haunt command arrives, the Ghost task checks for
sufficient remaining energy to perform the expensive update ope-
ration. If energy is low, haunting is deferred to allow a possibly
available energy harvester to recharge the power supply. As soon as
enough energy is available or if the charge level can not be deter-
mined at all, the Ghost task stops the operating system and passes
control to the low level functions for haunting the system.

Checking the remaining energy before each update is very import-
ant since many sensor nodes are based on microcontrollers with
program flash ROM. Besides, many applications are statically lin-
ked and hard to modify at runtime. In both cases, the node’s pro-
gram memory must be erased before installing the new software. A
power breakdown between erasing and complete reflashing would
indispensably corrupt the node and require manual repair — if this is
possible at all. Indeed, the energy requirements for updating a node
may not be underestimated. They depend on the electrical charac-
teristics of program and flash memory and on the image size. The
latter defines the number of read/write cycles and in consequence
the total duration of this critical process. Section 4 shows the ener-
gy requirements of a concrete Ghost implementation.

Yet, underestimated energy resources as well as other unpredictable
problems can still lead to node reset or hanging during the update.
Thus, the Ghost low level functions configure an available watch-
dog timer to force an reset in case of a hanging node. A reset always
leads to a well defined system state, since the Ghost low level part
will never be erased from the ROM. In particular, it contains an
emergency function (— Fig. 4), which is automatically executed at
node start-up to recover from awkward situations. First, it tests a
flag indicating the state of the last update. On success, the regular
application is started and the operating system takes over control.
On failure, the power supply is again checked repeatedly until there
is sufficient energy to restart the update.

3. IMPLEMENTATION

As useful and indispensable remote maintenance is for large scale
or frequently updated sensor networks, as complex are the resulting
requirements and challenges for a concrete implementation. There-
by, some problems are rooted in the underlying network (hardware
and protocols), in the node’s architecture and in the applied opera-
ting system. Our implementation of Ghost uses the SNOWS [2, 5]
sensor node and the SmarrOS [3] operating system. Within the test
application presented below we used the SmartNet wireless com-
munication protocol.

—>| reset |<—- | startup |

last update Y
successful? [> [start OS

N] *

regular operation
J sufficient energy ::|N application / Ghost HL
available?

haunt!i
Yi Ghost LL

reset!
l«——| reflash

Figure 4: Ghost low level operation during system runtime

The SNOWS5 [2, 5] nodes integrate a MSP430F1611 [10] controller
with 10 kB RAM and 48 kB ROM running at 8 MHz. An exter-
nal 2 MB flash memory allows simultaneous buffering of various
Ghost program and configuration images. Communication is do-
ne via a CC1100 [9] radio transmitter supporting data rates up to
500 kbps.

SmartOS [3] was developed for real-time operation of low-power
and low-performance devices like sensor nodes. The preemptive
scheduling of prioritized tasks allows prompt processing of inter-
nal and external events. Altogether with the sophisticated resour-
ce management policy, it allows the easy composition of arbitrary
tasks to still efficient applications. Thus, SmartOS based software
can easily be extended by the Ghost subsystem.

Finally, SmarfNet was developed for both, CSMA/CA or slotted
wireless communication. It allows broadcasts, groupcasts, the in-
tegration of routing protocols and self-organizing communication
via e.g. HashSlot [1]. The SmartNet high priority task processes
incoming data packets and redirects them to the appropriate recei-
ver tasks. Similar to TCP ports in IP networks, this is done by each
packet’s port ID and destination address. In turn, the receiver task
is signalled and reactivated by SmartOS according to its priority.

Fig. 2 shows the integration of the Ghost subsystem into a SmartOS
based software. Since SmartOS is fully preemptive, it is sufficient
to link the Ghost modules into the the WSN application. Besides
adding the high level task, the linker also places the low level mo-
dule adequately to start the execution of the emergency recovery
function at system start prior to the operating system. The required
memory (RAM/ROM) adds up of the Ghost modules plus the com-
munication protocol and the flash memory driver. However, the last
two components are often part of the application anyway and thus
mean no extra system load. Yet, a slim and OS independent version
of the flash memory driver is required within the low level module
to gain read access to this device. In general, performance losses
caused by Ghost are negligible since only the relatively rare Ghost
commands trigger the execution of the high level task. As already
mentioned in section 2.3, an energy harvester is optional but can
account significantly to the system stability during memory update
processes.

4. TESTBED AND RESULTS

For evaluating the just described techniques under real world con-
ditions, we used a SNoW Bat [4] indoor localization system com-
prising 45 nodes. In this section we will present some results con-
cerning update speed, resource requirements and energy efficiency.

83

20 kB program image, SmartNet at 250kbps, no encryption, 45 nodes
1400 140

N — 120

S N
S o
S o

100
L —

S i
40

[SEEN
S 9o
s o

achieved payload data rate [B/s]
o o
3 3
s 3
m
Update duration [s]

o
o

10 20 50 100 150 200 220
data packet payload size [B]

Figure 5: Ghost performance for program image update

In fact, these metrics are not only Ghost dependent but also re-
flect some characteristics of the applied communication protocol,
the node’s software architecture and hardware components.

Regarding the ROM size, our current Ghost implementation takes
<880 B without and <1 kB with clone functionality (depending
on the compiler’s optimization level). The RAM requirements of
the high level module are about 126 B fixed plus the buffer size for
the data packet payload. As figure 5 shows, the latter has significant
impact on the data dissemination time. Thus, we commonly chose
100 B for trade-off between speed and memory consumption.

When updating the software within our test bed, we found that
SmartfNet managed to deliver the data very reliable, though the
nodes’ main application also made intensive use of wireless com-
munication during the remote maintenance process. Finally, repro-
gramming all 45 nodes by an image groupcast commonly took the
same time as reprogramming a single one (approx. 22 sec). In
comparison, manual flashing of the same WSN system via JTAG
successively node by node took approximately 1 hour and was sim-
ply too much time-consuming. In fact, this expected speed-up was
the initial main motivation for developing the Ghost system at all.

Finally, table 1 shows the energy requirements of a single node
during various operation modes. One can see clearly, that updating
the program memory imposes significant load on the power supply
compared to regular operation. Yet, intentionally provoked node
breakdowns due to current peaks or empty batteries were safely
handled by the low level recovery function.

5. CONCLUSION AND OUTLOOK

In our paper we presented the Ghost remote maintenance subsys-
tem for wireless sensor and actor networks. We showed, that effi-
cient and fast software and configuration updates are possible wi-
thout the need for a predefined communication protocol or espe-
cially modified system software. Instead, Ghost integrates easily
into any WSN application and accepts data from arbitrary sources
(wired or wireless). Thereby it requires little memory and compu-
tational power. Besides, it supports role specific software deploy-
ment by either direct transmission via a gateway or by autonomous
self-maintenance of the nodes via cloning. This way, simultaneous
updates are even possible in heterogeneous networks. Finally, the
sophisticated low level module along with the optional encrypti-

84

on allows extremely safe and secure operation for reliable remote
maintenance. Our current work in this field addresses viral data dis-
semination techniques, power aware operation in general and ener-
gy harvesting in particular.

Table 1: Energy requirements during sensor node operation
low system load (no radio) 17mW
heavy system load (no radio) 26mW
data reception (radio) and buffering (flash) | 69mW
haunting process (copy flash to ROM) 81mW

6. REFERENCES

[1] M. Baunach. Speed, Reliability and Energy Efficiency of
HashSlot Communication in WSN Based Localization
Systems. In Verdone [11], pages 74-89.

[2] M. Baunach, R. Kolla, and C. Miihlberger. SNoW®: A
versatile ultra low power modular node for wireless ad hoc
sensor networking. In P. J. Marron, editor, 5. GI/ITG KuVS
Fachgesprdch Drahtlose Sensornetze, pages 55-59,
Stuttgart, 17.—18. July 2006. Institut fiir Parallele und
Verteilte Systeme.

[3] M. Baunach, R. Kolla, and C. Miihlberger. Introduction to a
Small Modular Adept Real-Time Operating System. In
Distributed Systems Group, editor, 6. Fachgesprdch
Sensornetzwerke, pages 1-4, Aachen, 16.—17. July 2007.
RWTH Aachen University.

[4] M. Baunach, R. Kolla, and C. Miihlberger. SNoW Bat: A
high precise WSN based location system. Technical Report
424, Institut fiir Informatik, Universitdt Wiirzburg, May
2007.

[5] M. Baunach, R. Kolla, and C. Miihlberger. SNoW?®: a
modular platform for sophisticated real-time wireless sensor
networking. Technical Report 399, Institut fur Informatik,
Universitdt Wiirzburg, Jan. 2007.

[6] J. W. Hui and D. E. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
J. A. Stankovic, A. Arora, and R. Govindan, editors, SenSys,
pages 81-94. ACM, 2004.

[7] C.-J. M. Liang, R. Musaloiu-Elefteri, and A. Terzis.
Typhoon: A Reliable Data Dissemination Protocol for
Wireless Sensor Networks. In Verdone [11], pages 268-285.

[8] L. Mottola, G. P. Picco, and A. A. Sheikh. FiGaRo:
Fine-Grained Software Reconfiguration for Wireless Sensor
Networks. In Verdone [11], pages 286-304.

[9] Texas Instruments Inc., Dallas (USA). CC1100 Single Chip
Low Cost Low Power RF Transceiver, 2006.

[10] Texas Instruments Inc., Dallas (USA). MSP430x161x Mixed
Signal Microcontroller, Aug. 2006.

[11] R. Verdone, editor. Wireless Sensor Networks, 5th European
Conference, EWSN 2008, Bologna, Italy, January
30-February 1, 2008, Proceedings, volume 4913 of Lecture
Notes in Computer Science. Springer, 2008.

[12] D.J. Wheeler and R. M. Needham. TEA, a Tiny Encryption
Algorithm. In B. Preneel, editor, F'SE, volume 1008 of
Lecture Notes in Computer Science, pages 363—-366.
Springer, 1994.

Positionierung und Sensor Web Enablement in
Geosensornetzwerken

Kai Walter
Professur flir Geodésie und Geoinformatik
Universitat Rostock
Justus-von-Liebig-Weg 6

18059 Rostock
+49 381 498 3213

kai.walter@uni-rostock.de

Keywords
Drahtlose Sensornetzwerke, Geosensornetzwerke, Positionierung,
Sensor Web, OGC, Sensor Web Enablement, Frithwarnsystem,
Hangrutschung

1. Einleitung

Der Begriff ,,Digitale Erde” wurde im Jahr 1998 mafigeblich
gepragt und malt eine dreidimensionale Reprisentation der
Erdoberfliache verschiedenster Auflosungen zur Unterbringung
ausgedehnter Mengen von georeferenzierten Daten aus (OGC,
1998). Grundbestandteil dieser Digitalisierung ist eine, zum Teil
bereits heute gegebene Allgegenwirtigkeit von untereinander
vernetzten Sensoren. Die fortwidhrende Miniaturisierung von
Hardware, die Effizienzsteigerung der Ressourcennutzung und die
Verfligbarkeit ~ preisgiinstiger massentauglicher Sensor-
komponenten erschliefit ein immer breiteres Anwendungsfeld fiir
den Einsatz von Sensornetzwerken. Zukiinftige Sensornetzwerke
bestechen aus grolen Mengen von einfach auszubringenden
Sensoreinheiten, die sich selbst organisieren, drahtlos miteinander
kommunizieren, Messungen durchfithren und auswerten konnen
und die Beobachtung verschiedenster Gebiete und Phénomene
ermoglichen. Ziel dieses Beitrags ist es, Aspekte des Einsatzes
von Sensornetzwerken vorzustellen, die im Rahmen von
Forschungsprojekten ~ der Professur fir Geoddsie und
Geoinformatik der Universitdt Rostock entwickelt werden.

Zentraler Ansatz des seit Frithjahr 2007 vom Bundesministerium
fir Bildung und Forschung (BMBF) im Rahmen des
Geotechnologien-Programms ~ geforderten ~ Verbundprojekts
SLEWS (Sensor based Landslide Early Warning System) ist die
Konzeption und prototypische Entwicklung von Methoden und
Technologien fiir flexible und ressourceneffektive Alarm- und
Friihwarnsysteme unter Verwendung eines drahtlosen
Sensornetzwerks am Beispiel von Hangrutschungen.

Im Zuge des DFG-Projektes GeoSens wurde ein
Lokalisierungsalgorithmus fiir ~ drahtlose =~ Sensornetzwerke
entwickelt, der auf geoditischen Ausgleichungsansitzen beruht
und den Berechnungsaufwand sowie den Energieverbrauch auf
ressourcenlimitierten Sensorknoten bei gleichzeitig signifikanter
Erhohung der Positionierungsgenauigkeit deutlich reduziert.

2. Drahtlose Geosensornetzwerke

Reichenbach (2007) beschreibt ein Sensornetzwerk als eine
Menge von Knoten, die iiber eine bestimmte Flache platziert
werden und physikalische Daten eines Phdnomens von Interesse

Alexander Born
Professur fir Geodasie und Geoinformatik
Universitat Rostock
Justus-von-Liebig-Weg 6

18059 Rostock
+49 381 498 3210

alexander.born@uni-rostock.de

messen. Auf einem Knoten sind Detektoren installiert, deren
Signale stellvertretend fiir eine Messgrofe stehen. Jeder Knoten
ist durch einen ressourcenlimitierten Controller mit beschriankter
Speicherkapazitit, Prozessorleistung und Kommunikationseinheit
auslesbar (Bill et al., 2008). Erfolgt die Kommunikation zwischen
den Knoten funkbasiert, wobei Messdaten iiber die direkten
Nachbarn bis zu einer Datensenke iibertragen werden konnen,
spricht man von einem drahtlosen Sensornetzwerk (DSN, engl.
Wireless Sensor Network; WSN, siehe hierzu Akyildiz et al.,
2002). Ein Geosensornetzwerk (GSN), als spezielle Auspriagung
eines DSN (Heunecke, 2008), verkniipft ein drahtloses
Sensornetzwerk mit der Notwendigkeit, die Position eines oder
mehrerer Knoten in einem iibergeordneten Lagebezugssystem zu
bestimmen (siche hierzu Kapitel 3). Drahtlose ad hoc
Geosensornetzwerke werden zukiinftig aus tausenden winzigen,
elektronischen, kostengiinstigen Sensorknoten bestehen, die ihre
Umgebung iiberwachen, einfache Rechenschritte ausfiihren und
miteinander kommunizieren konnen. Das Geosensornetzwerk
konfiguriert sich unmittelbar nach Ausbringung der Knoten selbst.
Jeder einzelne Knoten ist in der Lage, bei Bedarf aktiviert zu
werden und solange zu arbeiten, wie seine Energiequelle
ausreicht. Mittels Methoden wie Selbstheilung und
Selbstorganisierung reagiert das Netzwerk auf Knotenausfille und
Storungen. Je nach Auswahl der Detektoren ist ein GSN als
universell anpassbares Instrument zur Beobachtung
verschiedenster Phdnomene einsetzbar, welches die grofrdumige
Erfassung von Umweltphinomenen in unterschiedlichsten
Umgebungen, z.B. auch in schwer zugénglichen Regionen und bei
sich bewegenden Objekten, erlaubt. Geosensornetzwerke sind
zukiinftig als Quelle automatisierter Datengewinnungsmethoden
fiir verschiedenste GIS-Anwendungsfelder sehr interessant (siche
hierzu Kapitel 5).

3. Positionierung in Geosensornetzwerken

Eine der wichtigsten Aufgaben fiir eine raumbezogene
Datenauswertung ist bei einer zufilligen Ausbringung der
Sensoren die Bestimmung der Position jedes Einzelnen. Ungenaue
Eingangsgroflen wie z.B. Distanzmessungen und die sehr
eingeschrinkten und begrenzten Energie- und Rechenressourcen
eines jeden Knotens sowie die hoch miniaturisierte Hardware und
geringe Batteriekapazitit erfordern die Entwicklung robuster,
energieeffizienter und priziser Lokalisierungsalgorithmen. Dieses
Kapitel gibt einen Uberblick iiber die aktuellen Forschungen an
der Universitdt Rostock auf dem Gebiet der Lokalisierung in
Geosensornetzwerken (GSN) und beschreibt Methoden zur

85

Standortbestimmung von Sensorknoten sowie der Verbesserung
ihrer Position durch Ausreiflerdetektion.

3.1.1 Netzwerktopologien

Der Lokalisierungsprozess in einem drahtlosen GSN basiert auf
unterschiedlichen Netzwerktopologien (Abbildung 1), welche im
Folgenden kurz beschrieben werden sollen. Allen gemein ist
dabei, dass einige wenige energie- und rechenstirkere Knoten mit
existierenden Positionierungssystemen (Global = Navigation
Satellite System (GNSS), Global System for Mobile
Communications (GSM)) ausgeriistet sind. Diese Knoten werden
im Folgenden als Beacons bezeichnet. Nachdem diese Beacons
ihre Position ermittelt haben, bestimmen die restlichen Knoten
ihre Position, z.B. durch Streckenmessungen, eigenstindig.

Abbildung 6: Ad hoc vernetzte Sensorknoten: a) mit Beacons,
b) mit Beacons und einer festen Senke (freies Netz), c¢) ohne
Beacons und vier Senken (Infrastrukturfall).

a) . b) . o] « H
M Senke

Sensorknoten & Beacon

In dem ersten Fall (Abbildung la) besteht das Netz aus ad hoc
vernetzten Sensorknoten und den Beacons. Hier wird der
Lokalisierungsalgorithmus entweder auf allen Sensorknoten
und/oder zusitzlich auf den Beacons durchgefiihrt. Das bringt den
Vorteil mit sich, dass jeder Knoten seine Position mit dem
geringsten Kommunikationsaufwand im Netz selbst bestimmt.

Im Gegensatz dazu senden im zweiten Fall (Abbildung 1b) alle
Sensorknoten ihre Daten zur Senke (z.B. einem Server, PC) im
Netzwerk. Die Senke iibernimmt dabei alle Berechnungsschritte
der komplexen Lokalisierungsalgorithmen. Die Nachteile dieser
Vorgehensweise sind der extrem hohe Kommunikationsaufwand
im Netzwerk sowie die Anfilligkeit bei Unerreichbarkeit der
Senke durch deren Ausfall oder Blockade der Weiterleitung.
Vorteil ist allerdings, dass die Senke Teil einer Infrastruktur ist,
die die Bestimmung eines geoddtischen Datums (Ursprung,
Rotation, Translation und Malfstab eines
Referenzkoordinatensystems) ermoglicht. Damit kann die Position
eines einzelnen Sensorknotens in einem weltweiten
Referenzsystem (z.B. WGS84) wiedergegeben werden.

Beide Techniken haben den Nachteil, dass sie entweder einen
hohen Kommunikations- oder Berechnungsaufwand mit sich
bringen. Im dritten, dem giinstigsten Fall (Abbildung 1c) ergibt
sich eine Mischtopologie, in der der weniger komplexe Teil der
Lokalisierung auf den Sensorknoten durchgefiihrt und der
energieaufwindige Teil, im Hinblick auf moglichst geringe
Kommunikationskosten, auf die Senke ausgelagert wird. Dieser
hybride Algorithmus muss flexibel genug sein, um alle méglichen
Knotenausfille zu kompensieren und damit sowohl eine
dauerhafte, verteilte als auch eine zentralisierte Berechnung
zuzulassen, was zu einer lingeren Lebensdauer des Netzwerkes
fiihrt.

3.1.2 Lokalisierungsmethoden
In der Literatur wird zwischen zwei Moglichkeiten unterschieden,
um eine Lokalisierung in Sensornetzwerken zu erméglichen (Born

86

et. al. 2008). Die approximativen Algorithmen nutzen entweder
Naherungsbeziehungen oder nur sehr ungenaue Positionen bzw.
Distanzen als Eingangsdaten und bestimmen eine eher grobe
Position mit wenig Rechenaufwand. Dazu nutzen sie zum Beispiel
Schwerpunktbildung (WCL) (Blumenthal et. al. 2005) oder
Flacheniiberlagerung (APIT) (He et. al. 2003). Sie konnen Fehler
einfacher verzeihen und sind damit i.A. sehr robust. Allerdings ist
der Algorithmusfehler selbst dafiir verantwortlich, dass sie auch
bei fehlerfreien Eingangswerten nie eine exakte Position
ermitteln.

Dies ist wiederum ein Vorteil der zweiten Klasse - den exakten
Algorithmen. Sie konnen bei entsprechend genauen
Eingangswerten auch exakte Ausgangswerte produzieren (Born
et. al. 2006). Jedoch bendétigen sie dafiir i.A. viel Rechenzeit und
Speicher, wodurch eine uneingeschrankte Ausfithrung auf
ressourcenlimitierten Sensorknoten nicht méglich ist. Dennoch
gibt es erste Ansétze, die durch z.B. eine sinnvolle Verteilung der
Subaufgaben (,,Distributed Least Squares“-Algorithmus (DLS))
(Reichenbach et. al. 2006), die Algorithmen bei gleichbleibender
Prézision vereinfachen. Der DLS benutzt Distanzen zwischen den
Knoten und basiert auf einer anschliefenden iiberbestimmten
Trilateration. Durch eine geschickte Verteilung der
Berechnungen, komplexe Aufgaben (Matrixinversionen) werden
auf die ressourcenstarken Beacons ausgelagert und nach Fluten
dieser ins GSN auf den Sensorknoten die sparsame
Nachberechnung (Multiplikation, Addition einer 2x2-Matrix)
ausgefiihrt, wurden Einsparungen von bis zu 86% im
Ressourcenverbrauch im Vergleich zu etablierten exakten
Methoden erreicht.

3.1.3 Ausreifler

Messungen, wenn sie denn durchgefiihrt werden, sind immer
fehlerbehaftet. Gerade die bekannten Distanzmessverfahren (z.B.
Signalempfangstirkemessung (RSS)) in GSN sind sehr
fehleranfillig und konnen eine grole Zahl Ausreifler produzieren
(Reichenbach und Timmermann 2006). Wie im Kapitel 2
aufgezeigt, konnen auf den Sensorknoten diverse Sensoren zur
Erfassung physikalischer Phinomene installiert sein. Diese
Sensormesswerte konnen, wenn sie mit definierten Regeln
mathematisch mit rdumlichen Eigenschaften in Verbindung
gebracht werden, zur Verbesserung der Position eingesetzt
werden. In (Reichenbach et. al. 2008) wird der ,,Anomaly
Correction in Localization“-Algorithmus (ACL) vorgestellt, mit
dessen Hilfe Sensormesswerte zur Ausreiflerdetektion genutzt
werden. Dafiir wird iiber dem Gebiet von Interesse eine
Footprintkarte in Sensorintervalle unterteilt, die z.B. durch Luft-
oder Satellitenbilder gewonnen wurde. Die gemessenen Werte
werden dann mit den Positionen verglichen, die mit
durchgefiihrten Trilaterationen erreicht, auf die Footprintkarte
abgebildet und somit den a priori definierten Sensorintervallen
zugeordnet wurden. Stimmen die Sensormesswerte mit den
erwarteten tiberein, werden die Beobachtungen zur weiteren
Lokalisierung verwendet. Im Falle einer Diskrepanz wird die
Trilateration als Ausreiflier verworfen. Allerdings ist es auch
moglich, dass ein Sensorintervall auf mehrere rdumlich getrennte
Flachen aufgeteilt wird, um verschiedene Gebiete mit dem
gleichen Sensorprofil auszustatten. Diese getrennten Flichen
verhalten sich aber im Wesentlichen wie getrennte
Sensorintervalle, mit dem Unterschied, dass Positionen, die in
einer Teilfliche liegen, jedoch zur anderen gehoren, nicht als
Ausreifler erkannt werden.

4. Sensor Web

Ein Schwerpunkt bei der Untersuchung der Anwendungsbereiche
von Geosensornetzwerken ist die Adaption des Grundkonzepts
des Sensor Web. Im Rahmen von Forschungsprojekten der NASA
prigte sich der Begriff ,,Sensor Web* fiir die Zusammenarbeit
heterogener und rdumlich verteilter Sensorsysteme und
Sensorplattformen zur Nutzung als Makro-Instrument (Delin,
2002). Vor allem im Bereich der Beobachtung und Vorhersage
von Naturkatastrophen zeichnet sich dadurch ein hohes Potential
ab, bestehende Systeme und Konzepte mafB3geblich zu verbessern

Weltweit existiert jedoch eine grole Anzahl verschiedener Hard-
und Softwarestandards fiir den Umgang mit Sensorik und
Sensordaten, begriindet in der breiten Menge von Sensortypen,
Nutzergemeinschaften und teilweise proprietdren Technologien
und Softwareanwendungen. Seit dem Jahr 2000 beschéftigt sich
das Open Geospatial Consortium (OGC) im Rahmen der Sensor
Web Enablement-Initiative (SWE) mit der Erstellung von
standardisierten Schnittstellenprotokollen und Datenmodellen
(siche Tabelle 1), um alle Arten von verfiigbaren Sensoren und
Instrumenten, aber auch Archive von Sensordaten iiber das
WWW auffindbar, zugreifbar und wenn moglich auch
kontrollierbar zu machen (Botts, 2007).

Tabelle 1: Spezifikationen der OGC SWE-Reihe

Spezifikation Anwendung

Observations &

Beschreibung von
Measurements Scheme &

(0&M) Sensorbeobachtungen
Sensor Model Language Modellierung von Sensorik
(SensorML) und Sensorprozessen
Transducer Markup Modellierung von
Language (TML) Messwertgebern
Sensor Observations Service Lieferung von
(SOS) Sensorbeobachtungsdaten
Sensor Planning Service Anforderung und Planung von
(SPS) nutzerbasierten Datenanfragen

Sensor Alert Service (SAS) /
Web Notification Services
(WNS)

Ubermittlung sensorbezogener
Meldungen

Ziel der SWE-Spezifikationen ist jedoch nicht der Ersatz
notwendiger Spezialanwendungen zum Betrieb von Sensorik,
sondern deren Kapselung, um den einheitlichen Zugriff,
unabhingig von der unterliegenden Umsetzung, zu gewahrleisten.

Primdrer Nutzen ist die verbesserte Auffindbarkeit von
Sensorsystemen und ihre automatisierte Verwendung als
Informationsressource. Ohne erforderliches Vorwissen koénnen
Sensoren und Messwerte anhand von zeitlichen, ridumlichen oder
phanomenbasierten Kriterien ausfindig gemacht und komplexe
Informationen iiber Detektoren (z.B. Kalibrierung), Arten von
Messungen (Messreihen) und Beschaffenheit von Messdaten
(Datenqualitdt) eingeholt werden.

5. GSN in Frithwarnsystemen

Ziel des Projekts SLEWS ist die Umsetzung eines dienstbasierten
Frihwarn- und Informationssystems unter Ausbringung
massentauglicher Detektoreinheiten iiber ein funkbasiertes

Geosensornetzwerk zur Detektierung von Hangrutschungen (siche
Arnhardt et al., 2007). Die Verwendung eines GSN verspricht
eine gute rdumliche Abdeckung in einem akzeptablen Verhiltnis
zum Installationsaufwand. Der Einsatzbereich der zugrunde
liegenden Geodateninfrastruktur (GDI, siehe Nebert et al., 2004)
umfasst die Datengewinnung und Aufarbeitung, die Datenanalyse
zur Informationsschopfung und Visualisierung, bis hin zur
Verteilung von expliziten Warn- und Hinweismeldungen an
entsprechende Organe des Katastrophenschutzes. Dabei soll die
Orchestrierung flexibler, tber das WWW verbundener
Dienstkomponenten den Funktionsablauf von klassischen, ,,black
box“-artigen Frithwarnsystemen emulieren und erweitern.
Vorteile sind sowohl in der Austausch- und Skalierbarkeit der
Dienstkomponenten als auch in der Entkopplung von
anfilligkeitsbehafteten hierarchischen Informationsstrukturen
solcher monolithischer Systeme zu sehen. Die Anpassung des
Konzepts an die Ziele der Sensor Web-Initiative verspricht die
ErschlieBung neuer Anwendungsdimensionen fiir das GSN und
ermoglicht den dynamischen Import und Export von Dienst- und
Datenressourcen von und zu weiteren interoperablen Sensor- und
Informationssystemen.

5.1.1 Echtzeitanforderungen

Eine zentrale Problemstellung bei der Realisierung ist die
Nutzung als Echtzeitbeobachtungssystem. Klassische
Echtzeitsysteme erfordern meist eine strikt bidirektionale
Prozesskommunikation, durch die nutzerbasierte Messbefehle
zeitnah von der Sensorik ausgefiihrt und Messergebnisse iiber
ereignisbasierte Push-Kommunikation vermittelt werden kénnen.
Ein selbstorganisiertes, ressourcenlimitiertes GSN ist groftenteils
unidirektional ausgelegt (Knoten > Datensenke) und erlaubt nur
eine begrenzte Fernsteuerbarkeit. Zusitzlich handelt es sich bei
SWE-Diensten wie dem SOS, der von zentraler Wichtigkeit fiir
die Verfugbarkeit von zeitkritischen Messdaten ist, um einen
passiven Server, der parameterbasierte Anfragen eines
Clientsystems beantwortet (Pull-Kommunikation). Die SWE-
Spezifikationsreihe bietet mit den Diensten SPS und SAS
grundlegende Mittel, um diese Probleme zu adressieren, jedoch
wird weiterhin die Entwicklung spezieller Gateway- und
Clientsysteme notwendig sein.

5.1.2 Semantische Anforderungen

Die semantisch eindeutige Verwendung von Ausdriicken ist einer
der wichtigsten Punkte bei der korrekten Erstellung von
Datenmodellen in SensorML- und O&M-Dokumenten. SWE-
Spezifikationen beschreiben zwar den syntaktischen Aufbau von
Informationen, jedoch nicht ihren semantischen Inhalt. Die
semantisch unscharfe Verwendung von Ausdriicken erschwert die
automatische Verarbeitung und Lesbarkeit fiir AuBenstehende.
Um die verwechslungsfreiec Anwendung von Begriffen wie
Phéanomennamen, Sensortypen und Einheiten zu gewiéhrleisten, ist
die Schaffung von kontrollierten Vokabularen notwendig. Ein
kontrolliertes Vokabular ermoglicht das Spezifizieren von
Begriffen durch die Verkniipfung mit Metadaten und die
Zuordnung in spezielle Anwendungsbereiche.

6. Fazit

Die Entwicklung ressourcensparender, priziser Lokalisierungs-
algorithmen erhoéhen die Skalierbarkeit und Robustheit von
autonomen ad hoc Geosensornetzwerken. An der Universitit
Rostock wurden im aktuellen Projekt Algorithmen entwickelt, die
in einem GSN energieeffizient zur Lokalisierung eingesetzt
werden konnen. Eventuelle AusreiBler und grobe Fehler sind in

87

einem ersten Schritt mit dem ACL-Algorithmus aufgedeckt und
eliminiert worden. Die geoditische Ausgleichung stellt hierbei
Mittel zur Verfugung, die fiir die weitere Verbesserung
vorgestellter Algorithmen eingesetzt werden konnen. Dabei
stehen eine genauere Betrachtung der erreichten Genauigkeit
sowie der Einfluss fehlerbehafteter Distanzmessungen im
Vordergrund. Der vorgestellte DLS-Algorithmus ist um einige
Besonderheiten erweitert worden, weist aber auf dem Gebiet der
Mobilitdat von GSN Schwichen auf, die im weiteren Verlauf der
hier beschriebenen Projekte eliminiert werden sollen.

Das Projekt SLEWS arbeitet an der Weiterentwicklung von
Technologien und Methoden fiir den Einsatz von Beobachtungs-
und Frithwarnsystemen bei Hangrutschungen. Die OGC SWE-
Initiative liefert mit Spezifikationen und Datenmodellen
umfangreiche Werkzeuge zur Integrierung von Instrumenten wie
Geosensornetzwerken in ein interoperables Sensor Web. Die
Verwendung offener Standards und Schnittstellen sichert
Herstellerneutralitit, verbessert systemiibergreifende
Interoperabilitit im Kontext nationaler und internationaler
Frihwarnsysteme und filhrt zur Entkopplung von
anfilligkeitsbehafteten hierarchischen monolithischen
Informationsstrukturen. Wesentliche Herausforderungen bestehen
in der funktionellen Kombination der SWE-Dienste zur Lieferung
von Echtzeitdaten und in der semantisch eindeutigen Schaffung
von Namensrdumen fiir Phinomen- und Sensorparameter in
SWE-Datenstrukturen.

7. Danksagung

Dieses Arbeit wird durch die Deutsche Forschungsgemeinschaft
(DFG) unter der Nummer BI467/17-1 (Schlusselwort: Geosens)
sowie durch das Bundesministerium fiir Bildung und Forschung
(BMBF) unter der Nummer 03G0662A (Schliisselwort: SLEWS)
gefordert.

8. REFERENZEN

[1] Akyildiz, L. F., Su, W., Sankarasubramaniam, Y. und Cayirci,
E. (2002): Wireless Sensor Networks - A Survey. Computer
Networks 38(3), S. 393-422

[2] Arnhardt, C.; Asch, K.; Azzam, R.; Bill, R.; Fernandez-
Steeger, T. M.; Homfeld, S. D.; Kallash, A.; Niemeyer, F.;
Ritter, H.; Toloczyki, M.; Walter, K. (2007): Sensor based
Landslide Early Warning System - SLEWS, Development of
a geoservice infrastructure as basis for early warning systems
for landslides by integration of real-time sensors. In:
Koordinationsbiiro GEOTECHNOLOGIEN: Science Report,
Early Warning Systems in Earth Management. Potsdam: Vol.
10,S.75- 88

[3] Bill, R., Niemeyer, F., Walter, K. (2008): Konzeption einer
Geodaten- und Geodiensteinfrastruktur als Frithwarnsystem
fiir Hangrutschungen unter Einbeziehung von Echtzeit-
Sensorik. In: GIS - Zeitschrift fiir Geoinformatik. 2008, Nr.
1,S.26-35

[4] Blumenthal, J., Reichenbach, F., Timmermann, D.: Precise
positioning with a low complexity algorithm in ad hoc
wireless sensor networks. PIK - Praxis der
Informationsverarbeitung und Kommunikation 28 (2005)
80-85

88

[5] Born, A., Reichenbach, F., Bill, R. und Timmermann, D.,
2006. Bestimmung Optimaler Startwerte zur Exakten
Lokalisierung mittels Geodétischer Ausgleichung. In: 5.Gl/
ITG KuVS-Fachgesprich Drahtlose Sensornetzwerke,
Technischer Bericht 2006/7., S. 93-98.

[6] Born, A., Reichenbach, F., Bill R.; Timmermann D.:
Lokalisierung in Ad Hoc Geosensornetzwerken mittels
geoddtischer Ausgleichungsrechnung. In: GIS, Zeitschrift fiir
Geoinformatik. 2008, Nr. 1, S. 4 - 16.

[7] Botts, M. (2007): OGC White Paper — OGC Sensor Web
Enablement: Overview and High Level Architecture. Version
3. URL: http://www.opengeospatial.org/pressroom/papers
(rev.: 28.12.2007). OGC 07-165

[8] Delin, K.A. (2002): The Sensor Web - A macro-instrument
for coordinated sensing. Sensors, 2002, 2, S. 275

[9] He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher, T.:
Range-free localization schemes for large scale sensor
networks. (2003) 81-95 San Diego, CA, USA.

[10] Heunecke, O. (2008): Geosensornetzwerke im Umfeld der
Ingenieurvermessung. In: Forum - Zeitschrift des Bundes der
Offentlich bestellten Vermessungsingenieure. 02/2008, S.
357 - 364

[11] Nebert, D.D. et.al. (2004): Developing Spatial Data
Infrastructures: The SDI Cookbook. Version 2.0. URL:
http://www.gsdi.org/publications.asp (rev.: 25.01.2004).
Letzter Zugriff am 25.02.2008)

[12] OGC (1998): OGC White Paper:The Digital Earth -
Understanding our planet in the 21st Century. URL:
http://www.opengeospatial.org/pressroom/papers (rev.:
31.01.1998)

[13] Reichenbach, F. (2007): Ressourcensparende Algorithmen
zur exakten Lokalisierung in drahtlosen Sensornetzwerken.
Dissertationsschrift, Universitdt Rostock

[14] Reichenbach, F., Born, A., Timmermann, D., Bill, R.:
Splitting the linear least squares problem for precise
localization in geosensor networks. Proceedings of the 4th
International Conference on GIScience (2006) 321-337
Miinster, Germany

[15] Reichenbach, F., Born, A., Nash, Ed., Strehlow, Ch.,
Timmermann, D., Bill, R. 2008. Improving Localization in
Geosensor Networks Through Use of Sensor Measurement
Data. Proceedings of the 5th International Conference on
GIScience (2008) Park City, USA (in press)

[16] Reichenbach, F. und Timmermann, D., 2006. Indoor
Localization with Low Complexity in Wireless Sensor
Networks. In: 4th International IEEE Conference on
Industrial Informatics, S. 1018-10

Self-Adaptive Load Balancing for Many-To-Many
Communication in Wireless Sensor Networks

Manuel Gonzalo, Klaus Herrmann, Kurt Rothermel
Universitat Stuttgart
Universitatsstrasse 38
Stuttgart, Germany

{firsthname.lasthame}@ipvs.uni-stuttgart.de

ABSTRACT

New scenarios in wireless sensor networks, where several
independent sinks can ask for different kinds of data, are
currently emerging. Former algorithms that route data to
a centralized sink, are not appropriate for these scenarios.
First solutions for these multi-source to multi-sink scenarios
simply create independent trees for each source. As a re-
sult, some nodes become hot-spots, since they are included
in several trees, whereas nodes around them remain unused.

In this paper, we propose a new algorithm that balances the
load evenly in the network, extending the network lifetime,
while still providing a small delay in packet delivery. Based
on the information of one-hop neighbors and the number of
hops to the sinks, the algorithm attempts to reduce both
the delay and the power consumption. We present the cost
function used to select the next hop(s) towards the sinks.
The evaluation of the protocol demonstrates its ability to
fulfill its target.

1. INTRODUCTION

A wireless sensor network (WSN) is a multi-hop ad hoc
wireless network, composed of hundreds or even thousands
of autonomous nodes, with disposable batteries and sensors
attached. These sensor nodes provide physical information
about the environment, such as acoustic, light or tempera-
ture measurements.

Due to new capabilities offered by more powerful sensor
nodes, new scenarios are emerging, where data must be de-
livered to several sinks. Consider a wireless sensor network
which can provide several kinds of data. Independent agents,
with different kinds of applications running on them, can ac-
cess the network and ask for a certain kind of data, each one
independent from each other. Hence, each source has to de-
liver its information to a certain group of sinks, which can
be different for each source. Another example is the increas-
ing use of actuators in WSN, where each actuator requires
different kinds of information from the network. These new
scenarios require a many-to-many communication paradigm.

Unfortunately, current protocols used for many-to-one com-
munication [4] [5] are not appropriate in case data must
reach several sinks. Most commonly, they simply duplicate
the same solution. Recently, some new protocols deal with
the problem of routing data to several sinks in WSN. Never-
theless, they usually create a tree with the source at the top
and the sinks as leaves. However, these trees are created in-

dependently from each other. Hence it is possible that some
nodes are included in many paths between sources and sinks.
As a result, such nodes spend too much energy forwarding
packets and their batteries get exhausted quickly. Whereas
the total amount of energy spent by the WSN can be opti-
mal (if each of the trees is also optimal), this expense can be
concentrated among a small number of nodes. This means
that such nodes deplete their batteries very fast, while other
nodes remain almost unused. Finally, this can lead to the
partition of the network, avoiding the transmission of data.

Our goal in this paper is to enable the adaptation of rout-
ing paths for many-to-many communication, appropriate for
these new multi-sink scenarios. In order to select the next
node(s) towards the sink, a cost function is evaluated. This
cost function maintains a trade-off between low delay and
low power consumption, while keeping the load of the net-
work evenly balanced. The function takes into account the
number of hops to the sinks, as well as the load produced
by all the sources in the network. It balances the load based
only on one-hop information, a requisite in WSN. It does
not require a setup phase, because the different parameters
in the cost function change according to the traffic in the
network. This cost function uses different weights for each
one of its parameters, which can be updated by the sinks.
Therefore, an agent could set a higher priority for one of
the metrics against the other ones, e.g. low-delay with high
energy consumption.

The remainder of this paper is organized as follows. Related
work is reviewed in the next Section. In Section 3, we present
our algorithm and motivate all the parameters taken into
account. Furthermore, we present the cost function used
to select the next node(s) to the sinks. Section 4 shows an
evaluation of our protocol. Finally, Section 5 presents some
conclusions and the next steps in our work.

2. RELATED WORK

Regarding scenarios with multi-source and one sink that ad-
dress load balancing, the protocol presented in [7] forms an
initial tree that gets adapted using topological knowledge.

In some scenarios where several sinks exist, the task con-
sists of simply routing the packets from the sources to only
one of the sinks. Normally, the closest sink is selected in
order to save energy and make the communication more re-
liable. In [2], the authors present an algorithm for maxi-
mizing the lifetime of sensor networks by reducing the total

89

energy consumption and balancing the energy usage among
sensor nodes.

In [1], an algorithm for sending information from multi-
sources to multi-sinks is presented. It considers that sources
address the same sinks. The protocol merges the paths that
lead to the same sinks, so as to avoid the replication of mes-
sages. Nodes aggregate their readings with the ones they
receive, until the maximum capacity is reached. Similarly
to us, they use the notion of paths and sinks. Nevertheless,
in our scenario, a source can potentially route its readings
to an independent group of sinks. Hence, aggregation is not
possible. Additionally, our approach tries to separate the
trees created for each source in order to balance the load.

There exist some approaches [3] [6] that address one-to-
many communication in WSN, but they do not take into
account the existence of several trees. In [3], its authors
propose a feedback learning approach, where nodes explore
different possible routes and provide feedback to previous
nodes. It identifies lowest cost paths and alternates the use
of these discovered paths in order to save energy. It needs
a setup phase. In [6], an algorithm to trade-off the power
consumption and the delay created from sources to sinks is
proposed. It uses a hop count vector to support the routing
decision.

3. LOAD-BALANCING ALGORITHM
3.1 Metrics

When creating a routing protocol for a WSN scenario, two
different metrics can be optimized: the delay transmission
from sources to sinks and the power consumption in the
network.

If the delay from sources to sinks is to be minimized, the
number of hops between source and sinks must also be min-
imized. The simplest solution consists of finding the shortest
individual paths to each sink. For each one of the sinks, the
neighbor which offers less hops to each sink, is chosen as the
next hop towards this sink. This approach offers a mini-
mum delay, although the number of intermediate nodes can
be very high.

In case the power consumption is to be minimized, the main
strategy is to combine multiple transmission paths, so that
they are split as close to the sinks as possible, in order to
avoid the replication of packets. Although the total number
of relay nodes is minimized, this can highly increase the
transmission delay.

Both approaches explained above only take into account the
tree created by a single source. Nevertheless, when there are
more sources sending their readings, the trees are created
independently.

3.2 Motivation

The algorithm that we present takes into account several pa-
rameters in order to maintain a trade-off between the energy
consumption and the delay. These parameters are motivated
below.

If both metrics are to be optimized, the number of hops must
be close to the minimum. Because when the number of in-

90

termediate nodes increases, the probability of losing a packet
in such an unreliable medium increases accordingly. If paths
are split too far from the sinks, more nodes are involved in
the routing of messages, increasing the computational and
energy cost.

There exist some other parameters that can be useful to
balance the load among all nodes in the network:

When choosing the next hop, it is preferable to use lightly
loaded neighbors, so as to reduce the number of collisions
and not to exhaust the energy of nodes. An equivalent met-
ric to the number of messages sent is the number of sources
a node serves. Additionally, the number of served sources
is more stable than the messages sent, as it considers the
traffic coming from a source, independently from the sinks
it is addressed to.

It would be desirable to have certain information about what
the path looks like in the next hops, before choosing a certain
neighbor. Since the information available in sensor networks
is rather expensive to get and to store, nodes can only count
on local information. The number of paths is defined as
the number of source-sink paths passing through a given
node. By counting the number of paths, a node can get
an insight of how loaded the next nodes will be, because at
some moment, these paths are split.

In order to balance the load evenly through the network,
neighbors that have little remaining energy should be avoided
as relay nodes. As a metric for measuring the remaining en-
ergy, we consider the number of messages a node has sent
since it is operative. In case the batteries are replaced, this
counter is reset.

In case a highly loaded scenario is considered, the influence
of contention and collisions must also be taken into account.
In such a case, it is desirable to avoid sending messages
to nodes that have detected such problems, because a high
probability that these packets get lost exists. Measuring the
times a message could not be sent because the medium was
busy, gives a good measurement of contention.

3.3 Assumptions

Each sink defines its interests about a certain kind of sensor
reading and disseminates this information through the net-
work. Each source has a list of all the sinks it must serve
and each node knows the number of hops necessary to reach
each sink from each neighbor.

Each node maintains a list of its neighbors and their associ-
ated information, i.e. number of sources, number of paths,
the consumed energy and the high load indicator. This infor-
mation is piggybacked in the data packets that nodes trans-
mit and is overheard by all neighbors. This consumes at
the most 4 bytes of the payload. We define an epoch as the
amount of time between two successive updates of this in-
formation. Nodes always transmit their information of the
previous epoch.

3.4 Cost function

In our approach, we have defined the cost function depicted
in Equation 1. The neighbor or set of neighbors that mini-

cost(ng, sg) = w1 - Zhops(nj, Sk) + w2 - N+ ws -

k

mize this cost function are chosen as forwarding nodes. Each
parameter of the function cost derives from the parameters
explained in Section 3.2. Except for the first two parameters,
that depend on the network topology and that are assumed
to be fixed, the rest are adapted during the whole routing
process, according to the information of the adjacent nodes.
Hence, a setup phase is not required.

The first two parameters, the most significant ones, are cal-
culated at some point after getting the number of hops to
each one of the sinks (only once). Let z be the minimum
number of hops from a node to a certain sink, only neigh-
bors that offer at most x + 1 hops to this sink are taken into
account as possible next hops. In this way, nodes which are
farther away from the sinks than the routing node are not
considered as next hops.

In order to explain how combinations of next nodes are cre-
ated, let us consider a simple scenario with two sinks, S
and S2, and a node, X, with two neighbors, N1 and Ns.
N, offers node X a path to sinks S; and S2 with 3 and 5
hops, respectively. N» offers node X a path to sinks S; and
S2 with 4 and 3 hops, respectively. With this information,
node X creates several combinations. If the packet must be
routed to S1, the next neighbor can be either N; with 3 hops
or N2 with 4 hops. When routing a packet to S2, the next
neighbor can only be N> with 3 hops. In case the packet
must be routed to S; and Sz, there exist two combinations:
N, for S1 and Ny for Ss with a total cost of 6, or Na for
both S1 and S2 with a cost of 7.

Among the possible combinations, only those K combina-
tions that provide a lower number of hops are stored. The
higher K is, the more different possibilities a node has to for-
ward a packet, however a larger computation delay is also
expected. If the delivery delay must be minimized, this pa-
rameter must have a large weight.

Each combination has associated a number of neighbors, N
in Equation 1. The smaller the weight of neighbors is, the
larger the probability that the paths remain unsplit, keeping
the total energy consumption low.

The energy of the nodes is independent from the rest of the
parameters, as it measures the number of messages a node
has sent (or forwarded) since it is active. A large weight for
the energy means that load in the network is more balanced.
The three remaining parameters are closely related to each
other.

The number of sources a node has served in the last epoch
is related to the high load indicator. The maximum num-
ber of served sources is not known before hand. When this
number is reaching its maximum, the number of contentions
increases and, therefore, the load indicator is active. As long
as the number of served sources is far from its maximum
(load indicator is not active), the cost due to the number of
messages sent only depends on the number of sources and

sources

. paths
N

energy

Wy ws - + weg - highload (1)

N

ws. However, when the number of sources is close to its max-
imum (load indicator is active), the cost due to the messages
sent also depends on the high load indicator and ws. The
cost in this case must be much higher, because such nodes
should not be chosen as next nodes; thus, we must be much
larger than ws.

The number of paths of a node is also related to the number
of sources the node is serving, as for each source, there is at
least one path. Since it only gives an insight of how loaded
the next nodes could be on their way to the sinks, a small
weight must be assigned to this parameter.

The weight of each parameter (w1, ..., we) can be either pre-
programmed on the nodes or established by a sink. Because
of this, the routing in the network can be adapted to the
needs of the users. For instance, if the delay is the metric to
be minimized, w1 must be the prevailing weight. If, on the
contrary, it is fundamental to maintain an even load in the
network, ws must have a significant weight. When trying to
avoid contention problems, ws gains importance.

4. EVALUATION

Network lifetime is the most important criterion in sensor
networks. We define network lifetime as the time until some
percentage of the nodes die, possibly causing the partition
of the network. In order to maximize the network lifetime,
two conditions must be fulfilled: the total amount of energy
spent in the network must be minimized and the difference
between the individual node energy consumption and the
average consumption must also be minimal.

The main quantities that have been evaluated are:

e Percentage of packets delivered to the sinks.

e Total energy spent by the network, in terms of the
amount of messages sent in the network.

e The standard deviation of the node energy consump-
tion.

e The delay in the network, in terms of the number of
hops until a message reaches the sinks.

The algorithm has been implemented on top of TinyOS [8],
and evaluated using the TOSSIM [9] simulator. For the first
experiments, a regular grid has been used, where the nodes
can communicate with their four neighbors. The algorithm
has also been evaluated with a random topology, where the
number of neighbors varies from 2 to 8.

All scenarios comprise 100 nodes, 20 nodes are data sources
and 8 are sinks. Each sink asks for information of 10 different
sources. Sources send a reading every 5 seconds (they are
not synchronized with each other). Each simulation lasted
2500 s, which means that each source sent 500 readings. The

91

800 ®
g 700 ?
(=]
@ o >
a BOQ [
o | me > B
1SS
5 500 s
5 -
o
5 400 std. dev. without LB =
= . std. dev. with LB --—-=---
300 mean without LB ° 1
mean with LB .
200 L - -
1 2 4 6 8

Number of sinks

Figure 1: Standard deviation of the node energy
consumption in terms of sent messages

experiments have been repeated at least five times and the
presented results represent their average.

Several configurations have been tested, but due to lack of
space, only some significant results are presented in this pa-
per.

In Fig. 1, we compare an approach where the load balancing
is not considered (i.e. in cost function ws=ws=ws=we=0)
with another approach that minimizes contention and bal-
ances the load in the network (i.e. w1=80, w2=100, w3=8,
wa=1, ws=1, we=40). We can see how the standard devia-
tion improves with our approach. For the case of 6 sinks, the
percentage of delivered packets to the sinks even increases
10%, while the total energy consumption only increases 4%.

This promising results show how our algorithm is able to
balance the load in the network, while maintaining the en-
ergy consumption and delay low.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a routing algorithm tailored to
scenarios with multi-sources and multi-sinks in WSN, which
balances the load in the network. We proposed a cost func-
tion used by nodes to select the forwarding node(s) towards
the sinks. This function uses local information to balance
the load among the neighboring nodes, while not increasing
the delay significantly. As the total energy consumption in
the network only rises slightly, the network lifetime is max-
imized.

Our future work includes further experimentation with sev-
eral weights, as well as the inclusion of some other param-
eters in the cost function, such as the number of collisions
registered by the MAC-layer.

6. REFERENCES

[1] Pietro Ciciriello, Luca Mottola, and Gian Pietro Picco.
Efficient Routing from Multiple Sources to Multiple
Sinks in Wireless Sensor Networks. In Proceedings of the
4th European Conference on Wireless Sensor Networks
(EWSNO7), Delft (The Netherlands), January 2007.

[2] Feilong Tang, Minyi Guo, Minglu Li, Yangin Yang,
Daqgiang Zhang, Yi Wang. Wireless Mesh Sensor
Networks in Pervasive Environment: a Reliable
Architecture and Routing Protocol. In Proceedings of
ICPP Workshops’2007.

92

[3] Anna Forster and Amy L. Murphy. FROMS: Feedback
Routing for Optimizing Multiple Sinks in WSN with
Reinforcement Learning 3rd International Conference
on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), Melbourne, 3-6 Dec
07.

[4] C. Intanagonwiwat, R. Govindan, D. Estrin, J.
Heidemann, and F. Silva. Directed Diffusion for
Wireless Sensor Networking. IEEE Trans. on
Networking, February 2003.

[6] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. TAG: a Tiny AGgregation
Service for Ad-Hoc Sensor Networks. OSDI, December
2002.

[6] Shun-Yu Chuang, Chien Chen, Chang-Jie Jiang
Minimum-delay energy-efficient source to multisink
routing in wireless sensor networks. Signal Processing,
2007, v:87, n:12, pp:2934-2048.

[7] P.-H. Hsiao, A. Hwang, H.T. Kung, D. Vlah. Load
balancing routing for wireless access networks. In
Proceedings of IEEE INFOCOM’01, Anchorage,
Alaska, USA, 2001, pp. 986-995.

[8] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.,
Pister, K. System architecture directions for networked
sensors. In ASPLOS-IX: Proc. of the 9nt Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems. (2000) 93-104.

[9] Levis, P., Lee, N., Welsh, M., Culler, D. TOSSIM:
accurate and scalable simulation of entire TinyOS
applications. In Proc. of the 5th Symp. on Operating
Systems Design and Implementation (OSDI). (2002)
131-146.

From Academia to the Field:
Wireless Sensor Networks for Industrial Use

Rainer Falk
Siemens AG
Corporate Technology

rainer.falk@siemens.com

Christoph Niedermeier
Siemens AG
Corporate Technology

christoph.niedermeier@siemens.com

ABSTRACT

Fundamental differences exist between academic research on
wireless sensor networks and industrial wireless sensor networks
as envisaged by the BMBF-funded project ZESAN. Their re-
quirements and underlying assumptions are described to bridge
the gap between research and industrial application.

1. INTRODUCTION

Wireless sensor networks have been a hot research topic ever
since the vision of smart dust was articulated. Nowadays, sensor
networks are on the verge to industrial use. Several aspects of
wireless sensor networks are appealing for industrial use: there is
no need for wiring (which may be a huge cost factor or simply not
practical, e.g. in the case of moving parts), and as the installation
is very flexible it can be used also for temporary installations.
However, it is hard to transfer results of the latest research di-
rectly to industrial wireless sensor networks as assumptions on the
setup and environment made by research are significantly differ-
ent compared to important industrial application scenarios.

Section 2 describes three typical industrial use cases for wireless
sensor networks. Section 3 sets into contrast assumptions and
requirements of academic sensor networks and industrial sensor
networks in several areas. Section 4 concludes the paper.

2. SCENARIOS

Some typical use cases are described that are drawn from process
and factory automation industry (used e.g. in refineries or manu-
facturing automation) to illustrate typical industrial application
environment of wireless sensor networks.

2.1 Condition Monitoring

A condition monitoring system supervises a set of machines to
obtain information about their condition and to schedule mainte-
nance only if needed, thereby reducing down time of machinery
and costs.

Hans-Joachim Hof
Siemens AG
Corporate Technology

hans-joachim.hof@siemens.com

Rudolf Sollacher
Siemens AG
Corporate Technology

rudolf.sollacher@siemens.com

Ulrike Meyer
Siemens AG
Corporate Technology

meyer.ulrike@siemens.com

Norbert Vicari
Siemens AG
Corporate Technology

norbert.vicari@siemens.com

Control
station

Figure 1. Condition monitoring of events

Sensor nodes are attached to the machines to analyze the current
state of the machine, see Figure 1. The number of sensor nodes is
likely to be rather small as only a single machine or a manufactur-
ing cell will be monitored by a single wireless sensor network.
For example, it may be analyzed if a vent is out-of-balance. Sen-
sor nodes periodically send reports to a central server (control
station) where they are evaluated by a plant operator. If a problem
is identified, maintenance may be scheduled.

2.2 Temporary Monitoring

In process automation, mass losses may occur from time to time.
It may be hard to localize the source of the mass loss by observa-
tion or using only the measurements of installed sensors. A tem-
porary monitoring system like the one shown in Figure 2 may be
used to locate the source of mass loss. The monitoring system
uses wirelessly connected sensors, e.g. ultrasonic flow sensors,
that can be easily installed where and when needed (and removed
again when the leakage has been found). The temporarily in-
stalled monitoring system provides temporally and spatially more
fine-grained information as the placement of temporary sensors
can be denser than the placement of regular (built-in) sensor
nodes.

93

Control
station

Temporary ultrasonic
flow sensor.
0815

Installed flow sensor
0glis
-—

Temporary ultrasonic 0 Temporary utrasonic Temporary ultrasonic
flow sensor. flowr sensor. flows senso-

11s) 0.8 1/s 0.8 If5

Figure 2. Temporary monitoring in process automation
used to find source of mass loss

2.3 Decentralized Process Control

Intelligent field devices and an industrial sensor network can be
used to implement decentralized control mechanisms. To do so,
sensors measure actual values and send them to intelligent field
devices acting as local controllers. These field devices check if
actual values match specified values and react if necessary. Addi-
tionally, the sensor nodes report measured values to the control
station so that the plant operator can react depending on the state
of the overall process. Figure 3 shows an example in which four
local controllers and the control station receive measurements
from sensors over the sensor network.

Control
station

Figure 3. Decentralized control in process automation

94

3. Academic Assumptions vs. Industrial Ap-

plications

Significant differences exist between assumptions made for wire-
less sensor networks in academic research and wireless sensor
network applications envisaged for process and factory automa-
tion and other industrial applications. The differences of the un-
derlying assumptions made regarding deployment, use of infra-
structure, operation, self-organization, integration, and number of
nodes are described.

3.1 Deployment

The first difference arises regarding the deployment of sensor
nodes. Plants are carefully planned and the employed networks
are engineered. A well-planned network is cost-efficient, reliable,
and predictable. Hence, a planned deployment of industrial sensor
networks is often a must-have. In the scenarios described above,
sensor nodes are carefully placed at distinct locations (e.g. in
vicinity of a machine, near the expected source of mass loss, at a
point of measurement ...). However, current research often as-
sumes a random deployment of sensor nodes, e.g. sensor nodes
are assumed to be air-dropped. While this assumption is true for
applications such as disaster management, military intelligence,
and environmental monitoring, a random deployment cannot be
expected e.g. for process and factory automation.

3.2 Infrastructure

Most sensor network research assumes that the sensor network is
decentralized and uses no infrastructure for its operation (besides
a central data sink). In an industrial environment, often infrastruc-
ture components as e.g. gateways or range extenders are available
that can be used for controlling and optimizing the operation of
the sensor network (e.g. to minimize communication path length,
to minimize energy use of battery powered devices, to support
security ...). In fact, as wireless sensor networks used in industrial
applications are planned networks, the infrastructure components
can be placed in an optimized way. In all three scenarios de-
scribed above, the function of the sensor network includes report-
ing to the plant operator via a gateway. Infrastructure components
are likely to be placed in a way that optimizes the coverage of the
industrial wireless sensor network.

Figure 4 shows a typical industrial sensor network setting: several
sensor nodes communicate with one of multiple gateways (GWs).
The gateways are connected to the (wired or wireless) factory
intranet. These gateways are placed in a way that minimizes the
path length in the industrial sensor network.

The use of infrastructure is also advantageous because plant op-
erators usually require access to devices for information and de-

bugging purposes.
3.3 Operation

In academic research projects it is often assumed that a wireless
sensor network is deployed in a public space and — once deployed
— works without administration and unsupervised. In industrial
applications, hoverer, and in particular in process and factory
automation, wireless sensor networks are usually deployed in
access-restricted areas.

Figure 4. Typical industrial wireless sensor network setting
with two gateways

Plant premises are rarely accessible without physical access con-
trol. This affects the security design of industrial wireless sensor
network protocols as a corruption of a sensor node due to physical
access is less likely. To ensure an uninterrupted uptime of a plant,
an industrial sensor network will typically not be unsupervised
but rather be watched carefully 24/7. A typical sensor network
used in industry is administered and, if problems arise, mainte-
nance staff has access to every single sensor node.

3.4 Self-Organization

Self-organization is a big issue in academic research. For indus-
trial applications of wireless sensor networks, a reliable, control-
lable and predictable operation is of high importance. The plant
engineers, plant operator, and maintenance staff need a way to
plan and supervise the sensor network. Self-organization has to be
designed so that reliable and predictable, comprehensible opera-
tion is ensured. Even a self-organized industrial WSN needs to
report its state to allow for maintenance if required. In some situa-
tions, self-organized behavior is not feasible; rather, the system
must be able to identify such situations and ask for external inter-
vention.

3.5 Integration with Infrastructure Systems
Industrial wireless sensor networks are likely to be integrated into
other — sometimes already existing — systems. Usually, these sys-
tems base on standards, such as a certain fieldbus protocols or
Profinet which— compared to office IP networks — have differing
requirements regarding determinism. Often the higher level sys-
tems follow a cyclic polling approach which is in contrast to the
event based model used in research networks. Care has to be
taken that the plant operator can access all necessary data at all
times. In contrast, the integration with other networks is often not
covered in academic research. In the described industrial scenar-
ios, the wireless sensor networks are connected to the plant’s
control system.

3.6 Number of Nodes

Another objective addressed in current research on wireless sen-
sor networks is scalability to tens of thousands of sensor nodes.
For industrial applications, wireless sensor networks, however,
are likely to comprise only some tens to at most hundreds of sen-
sor nodes. Industrial wireless sensor networks are usually quite

small. For example, in condition-based monitoring the network
can be expected to have only some tens of sensor nodes (at most).
It is also likely that a factory complex does not house one single
large sensor network, but instead several independent sensor net-
works in parallel. The factory network control system takes care
of distributing data to where it is needed. Hence, solutions are
needed that are suitable for small to medium size sensor networks
consisting of tens or hundreds of nodes.

3.7 Summary
Table 1 summarizes main differences between academic wireless
sensor networks and industrial wireless sensor networks.

Table 1. Summary of differences between academic wireless
sensor networks and industrial wireless sensor networks

Academic WSN Industrial WSN
Deployment random planned
Infrastructure often no yes
Operation unsupervised supervised

Application area public spaces access restricted

areas

Self-organization yes only to a certain
extent

Integration usually no issue big issue

Number of nodes 10.000+ tens or hundreds

It is necessary to carefully consider these differences when de-
signing a solution for industrial wireless sensor networks to de-
termine to what degree research results are suitable for envisaged
industrial usage scenarios of wireless sensor networks.

4. CONCLUSION

Three typical applications of wireless sensor networks in an in-
dustrial setting have been described. Their usage environment was
compared with the assumptions often made by academic research
work. The BMBF-funded ZESAN project develops solutions for
reliable, energy-efficient, and self-organizing wireless sensor
networks addressing requirements of prominent industrial applica-
tion scenarios. The gap between topics addressed by academic
research and the needs of the envisaged industrial applications
needs to be closed. Industrial wireless sensor networks are usually
planned, get deployed in a deterministic way, and are supervised
during their operation, and can make use of infrastructure compo-
nents. Some of those infrastructure components are used to inte-
grate the industrial wireless sensor network into the plant system.
And, finally, the number of nodes used in industrial sensor net-
works is likely to be lower than assumed in some academic re-
search and will typically range from tens to at most some hun-
dreds. The assumptions made by academic research make it some-
times difficult to transfer the results to industrial applications
having different requirements and side conditions.

ACKNOWLEDGEMENT

This work has been performed as part of the ZESAN project
partly funded by the Federal Ministry of Education and Research
under the funding number 01BN0712A. The paper represents the
opinion of the authors. The authors would like to acknowledge the
contributions of their colleagues participating in the ZESAN pro-
ject.

95

Vergleichbarkeit von Ansatzen zur
Netzwerkanalyse in drahtlosen Sensornetzen

Joachim Wilke
Institut fir
Telematik

Universitat Karlsruhe (TH)
wilke@ira.uka.de

Zinaida Benenson
Institut fir Informatik
Universitdt Mannheim
zina@uni-mannheim.de

Frank Werner
Institut fir
Theoretische Informatik
Universitat Karlsruhe (TH)
werner@ira.uka.de

Simon Kellner
Institut fur Betriebs- und
Dialogsysteme
Universitat Karlsruhe (TH)

Markus Bestehorn
Institut fir Programmstrukturen
und Datenorganisation
Universitat Karlsruhe (TH)
bestehorn@ira.uka.de

Erik-Oliver Blai
Networking & Security
EURECOM France
blass@eurecom.fr

kellner@ira.uka.de

Kurzfassung

In diesem Dokument wird die Vergleichbarkeit verschie-
dener Netzwerk-Simulatoren, -Emulatoren und theore-
tischer Analyse in drahtlosen Sensornetzen untersucht.
Die Ergebnisse dieses im Rahmen des ZeuS-Forschungs-
projektes durchgefiihrten Experiments zeigen die Stir-
ken und Schwichen der verschiedenen Ansétze auf.

1. EINLEITUNG

Im Rahmen des ZeuS—Forschungsverbundesl , einem Pro-
jekt zur Erforschung von Grundlagen zuverlédssiger Kom-
munikation in drahtlosen Sensornetzen, werden an den

beteiligten Instituten Simulationen und Evaluierung mit

verschiedensten Werkzeugen durchgefiihrt. Neben einer

Netzwerksimulation mit GloMoSim kommen auch die

Eigenentwicklung KSNSim sowie der Emulator des Ti-

nyOS-Betriebsystems TOSSIM zum Einsatz. Zusitzlich

wurde in einer formalen, theoretischen Analyse der Kon-

nektivitdtsgraph verschiedener untersuchter Topologien

durch Markovketten modelliert und mittels Prism [6] ana-
lysiert. Um die Vergleichbarkeit der so auf unterschiedli-

che Weise gewonnenen Ergebnisse auch tiber die einzel-

nen Teilprojekte hinaus zu gewdihrleisten, wurde ein ge-

meinsames Experiment durchgefiihrt. Der folgende Be-

richt dokumentiert dieses Experiment und stellt eine Aus-
wertung der Ergebnisse und der daraus gewonnenen Er-

kenntnisse dar.

Nach einem Uberblick iiber verwandte Forschungsarbei-
ten in Kapitel 2 wird der Versuchsaufbau des durchge-
fithrten Experiments in Abschnitt 3 beschrieben. Es folgt
mit Abschnitt 4 eine Diskussion der Besonderheiten der
einzelnen eingesetzten Werkzeuge. Eine Analyse und Zu-
sammenfassung der Ergebnisse in Kapitel 5 schlieSen
diese Arbeit ab.

2. VERWANDTE ARBEITEN

Cavin et. al haben 2002 bereits einige MANET-Simula-
toren verglichen [4]. Die dort verwendeten Simulatoren
OPNET Modeler, NS-2 und GloMoSim iiberschneiden
sich jedoch nur in einem Fall mit den bei uns verwende-
ten Werkzeugen. Weiterhin beschrinkt sich diese Arbeit
nicht auf reine Simulatoren, sondern greift mit TOSSIM
auch auf einen Emulator und mit der theoretischen Ana-
lyse formale Ansétze auf.

3. VERSUCHSBESCHREIBUNG

Untersucht werden im Folgenden verschiedene Parame-
ter die sich in einem Netzwerk durch einfaches proba-

Uhttp://www.zeus-bw-fit.de

bilistisches Fluten einer Nachricht [NV bestimmen lassen:
der Energieverbrauch, die Anzahl versendeter bzw. emp-
fangener Nachrichten, die Wahrscheinlichkeit, dass ein-
zelne Knoten die Nachricht erhalten haben und beson-
dere Eigenschaften/Messgroflen die das betrachtete Pro-
gramm unterstiitzt, abhéngig von der Simulationsumge-
bung (siehe Abschnitt 4). Die Topologien wurden so ge-
wihlt, dass die Auswirkung von probabilistischem Flu-
ten auf symmetrische und unsymmetrische Sensoranord-
nungen (Abbildung 1c¢) untersucht werden kann.

In allen betrachteten Topologien bekommt Knoten A von
der Basisstation die Nachricht N und leitet diese mit
Wahrscheinlichkeit p = 1 weiter. Bei allen iibrigen Kno-
ten wird beim Empfang eines Paketes ,,gewiirfelt (d.h.,
eine Zufallszahl 0 < pz < 1 wird gezogen) und ent-
sprechend dem Ausgang (pz < p) das Paket mit der
Wahrscheinlichkeit p an alle Nachbarknoten weiterge-
leitet.

Um prizise Daten und eine gute Vergleichbarkeit zu er-
halten, soll eine moglichst geringe relative Standardab-
weichung in den einzelnen Ergebnissen erzielt werden.
Dazu sollten mindestens 200 Durchliufe fiir jede Konfi-
guration durchgefiihrt werden.

3.1 Topologiewahl

Das Experiment wurde mit unterschiedlichen Topologi-
en durchgefiihrt. Fiir diese Arbeit wurden drei Topologi-
en (Abb. 1) ausgewihlt, die deutliche Unterschiede be-
ziiglich Aufbau, Symmetrie und Vernetzung zeigen.

Die Kanten innerhalb der Topologien reprisentieren den
Konnektivititsgraph (Routing-Baum), also den Weg, den
die Nachricht N im Netz zuriicklegen soll. Die Distanz
zwischen den Knoten, fiir die eine Verbindung (Kante
im Konnektivitdtsgraph) existiert, soll hochstens 10 Me-
ter sein. Die zu flutende Nachricht IV betridgt exakt 56
Byte (maximale Paketgrofe in TinyOS). Mit Beginn der
Simulation befinden sich alle Knoten im eingeschalteten
Zustand und warten auf Nachrichten. Die Position der
einzelnen Sensorknoten werden fiir alle Topologien in
einer Szenariobeschreibung definiert, so dass diese allen
Experimenten als Ausgangsbasis zur Verfiigung stehen.
Neben den Topologien wird auch die Wahrscheinlich-
keit p einer Weiterleitung variiert, wobei 0,2 < p < 1
in Schritten von je 0,2 simuliert wird. Abhingig von den
Mboglichkeiten der verwendeten Werkzeuge werden wei-
tere Parameter spezifiziert. Alle wichtigen Simulations-
parameter sind in Tabelle 1 zusammengefasst.

97

98

VAR
SN
NN% o AN
ERNZERN Ll <>\
N N I R = /A
N/ 1 N
(a) Topologie 1 (b) Topologie 3 (c) Topologie 5

Figure 1: Verwendete Topologien

Nachrichtenldnge I = 56 Bytes [5]
Weiterleitungs- p € {0,2;0,4;0,6;0,8;1,0}
wahrscheinlichkeiten

MAC CSMA/CA
Sendereichweite r = 10 Meter

Hohe der Antenne h = 1,5 Meter
Datenrate R = 38400 Bit/s [5]
Stromverbrauch

Funk Ipunk = 16 mA [5]
CPU ICPU =5 mA [1,3]
Energieverbrauch (siehe Abschnitt 3.2)
Nachricht versenden P, = 185,2 uAs
Nachricht empfangen | P,,, = 42 uAs

Table 1: Simulations-Parameter

3.2 Energie

Die wohl interessanteste Metrik in Sensornetzen, den
Energieverbrauch, mit unterschiedlichen Simulatoren zu
erfassen, ist eine Herausforderung fiir sich. Einerseits
soll der simulierte Verbrauchswert nahe an der Reali-
tat liegen, andererseits ist beim Einsatz verschiedener
Werkzeuge darauf zu achten, dass die Ergebnisse ver-
gleichbar bleiben: Da einige der eingesetzten Simulato-
ren nur auf Netzwerkebene arbeiten, bleibt als gemein-
same Datenbasis leider nur Paketempfang und -versand
tibrig. Daher wurden diese Operationen auf realen Kno-
ten (MICAz) vermessen.

Um den Eigenschaften der Energieressource Rechnung
zu tragen, wurde die der Batterie entnommene Ladung
mit Hilfe eines NI-USB-6210 [9] gemessen. Dem Emp-
fang einer 56 Byte grofien Nachricht wurde ein Ladungs-
wert von 42 p4As und eine Dauer von 1,85 ms im Durch-
schnitt zugeordnet, gemessen vom Beginn des Empfangs
am CC2420 bis zur Benachrichtigung der Anwendung.
Der Versand eines Pakets derselben Grofle dauert hinge-
gen im Durchschnitt 8,34 ms und benétigt dabei 0,185
mAs an Ladung, gemessen vom Zeitpunkt, an dem die
Anwendung den Sendeauftrag erteilt, bis zur Versandbe-
stitigung der TinyOS Netzwerkschicht.

Nicht beriicksichtigt werden hier Energiewerte fiir den
Mikroprozessor und das An-/Ausschalten des CC2420,
da diese fiir den Vergleich der Werkzeuge nicht relevant
sind. Der Stromverbrauch beim Lauschen auf Pakete so-
wie zusitzlicher Energieaufwand bei Kollisionen bleibt
ebenfalls unberiicksichtigt, da die notwendigen Zahlen
nicht von allen verglichenen Werkzeugen geliefert wer-

den. Deshalb stellen die Energiewerte aus den Simula-
toren sehr kleine untere Schranken fiir den Energiever-
brauch von MICAz Knoten dar, die in der Praxis nicht
erreicht werden konnen. Die damit in verschiedenen Si-
mulatoren errechneten Werte lassen sich jedoch gut ver-
gleichen.

4. AUSWERTUNG

Im Folgenden werden die einzelnen Experimente und
die Besonderheiten der einzelnen Werkezuge vorgestellt.

4.1 GloMoSim

Die Implementierung des Versuchs erfolgte als Proto-
koll auf Anwendungsebene. Die von GloMoSim bereit-
gestellten Implementierungen der niedrigeren Netzwerk-
schichten wurden unverédndert tibernommen und ledig-
lich in ihrer Parametrisierung gemifl den Vorgaben an-
gepasst.

Die Knotenplatzierung wurde direkt aus den einheitlich
definierten Szenariobeschreibungen iibernommen und in
der Konfiguration mit NODE-PLACEMENT-FILE refe-
renziert. Die Signalausbreitung wurde mit dem in Glo-
MoSim vorhandenem TWO-RAY-Modell simuliert, wel-
ches ein PROPAGATION-LIMIT von —111 dBm vor-
sieht. Die Parameter zur Funkschnittstelle wurden ent-
sprechend der MicaZ-Spezifikation angepasst. Insbeson-
dere wurde das SNR-BOUNDED Modell zum Empfang
von Datenpaketen ausgewihlt, welches Signale liber dem
RADIO-RX-SNR-THRESHOLD von 10 dB fehlerfrei zu-
stellt und sonst verwirft. Als MAC-PROTOCOL kommt
CSMA-CA zum Einsatz. Die Simulationsergebnisse sind
Mittelwerte von je 1000 Durchldufen mit variierenden
SEEDs des GloMoSim Zufallsgenerators.

4.2 TOSSIM

TOSSIM ist ein Simulator, der von TinyOS bereitgestellt
wird. Sein Radiomodell basiert auf der Signalverstir-
kung (gain), die jeweils zwischen zwei Knoten festge-
legt wird. Da die Signalstirke mit der Entfernung ab-
nimmt, ist gain immer negativ. In diesem Experiment
haben wir die gains mit Hilfe der von TOSSIM bereitge-
stellten Hilfsmittel generiert. Als Eingaben dienten die
Koordinaten der Knoten und mehrere Umgebungspara-
meter (path-loss exponent, noise floor, white Gaussian
noise usw), die dem Tutorial [12] entnommen wurden.

TOSSIM simuliert Umgebungsrauschen und Interferen-

global a : [0..1] init 1;

module SensorA
// Local State

// (0=idle, l=forward, 2=drop, 3=sleep)
la: [0..3] init O;
[1(a=1l)&(la=0) -> pf:(la’'=1)&(b’'=1)&
(d’=1)& (c’"=1)
+ 1-pf:(la’'=2);
[](a=1)&(la=2) -> (la’'=2);
endmodule

Figure 2: Prism Modell eines Moduls, das einen Sensor-
knoten représentiert

zen mit Hilfe des Closest Pattern Matching (CPM) Ver-
fahrens [8]. CPM braucht als Eingabe sogenannte noi-
se traces, die zum Teil mit TinyOS mitgeliefert wer-
den. Die von uns verwendete mitgelieferte Datei bein-
haltet die noise traces der Meyer Library an der Stan-
ford University [11]. Das Rauschen in dieser Umgebung
ist hoch wegen vieler WLAN Access Points. Somit wird
der Empfang der Packete durch den gain zwischen dem
Sender und dem Empfinger, die Interferenzen mit an-
deren Nachrichten, und durch das Umgebungsrauschen
bestimmt.

Da sich das obige Modell zum Empfang von Datenpake-
ten erheblich von den Modellen in allen anderen von uns
verwendeten Simulatoren unterscheidet, ist nicht klar,
wie und ob in TOSSIM die Modellparameter so gewéhlt
werden konnen, dass sie in etwa zum Beispiel denen von
GloMoSim entsprechen. Auflierdem kann man die Sen-
dereichweite in TOSSIM im Gegensatz zu anderen Si-
mulatoren nicht dndern, da diese Eigenschaft noch nicht
implementiert wurde. In unseren Experimenten lag die
Sendereichweite zwischen 10 und 18 Metern.

4.3 Formale Betrachtung

Die theoretische Analyse wird mit Markov-Ketten durch-
gefiihrt, wodurch sich die auftretenden Wahrscheinlich-

keiten mit hoher Prizision (ohne Standardabweichung)

berechnen lassen. Die Modellierung und Evaluation er-

folgt mit Prism [6] fiir jede Topologie getrennt. Die be-

rechneten GroBen lassen sich als untere Schranke fiir

die zu messenden Werte verstehen und betrachten den

optimalen Fall, in dem Kollisionen, Sendewiederholun-

gen und andere storende Effekte ausgeschlossen werden.

Auf die Bit-Ubertragungs- (physical) und die Sicherungs-
Schicht (data link) wird bei der Modellierung verzichtet.

Jeder Knoten wird als Modul (Abbildung 2) mit jeweils
einer lokalen Variable modelliert, die den jeweiligen Zu-
stand fiir /dle, Forward und Sleep représentiert. Um die
Modellkomplexitit zu reduzieren® wird auf eine explizi-
te Darstellung des Sender-/Empfingermodells verzich-
tet. Dennoch konnte fiir Topologie 5 keine Erreichbar-
keit auf einem Rechner mit 32GB RAM wegen Spei-
cheriiberlauf berechnet werden. Die Modellierung sieht
fiir die Kommunikation zwischen den Knoten das Set-
zen eines globalen Nachrichten-Bits vor, um so den Pa-
ketempfang zu betrachten.

Das so konstruierte Modell entspricht dem Konnektions-
graphen fiir die Topologien, wie sie Abbildung 1 zeigt.

“bei einer NetzgroBe von 14 Knoten wichst das Modell
auf 124 - 10 Zustiinde und 1,5 - 10° Transitionen

Hierzu wird keine Sendereichweite definiert, sondern die
Konnektion aus der Topologievorgabe verwendet. Ein
Paketverlustmodell wird nicht betrachtet, denn wie durch
Experimente [2] gezeigt wurde, ldsst sich bei einer Sen-
deleistung von 3,99 - 1077 mW (—163,98 dBm) eine
Bit Error Ratio von 10™% messen, die fiir die vorliegen-
den Experimente vernachléssigbar klein ist.

4.4 KSNSim

Der JAVA basierte Karlsruhe Sensor Networking Simu-
lator (KSNSim) wurde mit dem Ziel entwickelt, Mecha-
nismen zur relationalen Anfrageverarbeitung in Sensor-
netzen schnell und ohne Spezifikation von Netzwerk-,
Energie- oder Betriebssystemparametern auf ihre Funk-
tionstlichtigkeit zu testen. Ein weiteres Entwurfsziel bei
der Entwicklung des Simulators ist die Schnittstellen-
Kompatibilitit mit dem auf den Sun SPOT [10] verwen-
deten Java SDK, so dass entwickelte Programme oh-
ne Portierungsaufwand auch in einem realen Sensornetz
aus Sun SPOT Knoten genutzt werden konnten. Ziel war
es also nicht, drahtlose Kommunikation moglichst reali-
tatsgetreu nachzubilden oder besonders ausgefeilte Kom-
munikationsmechanismen bereitzustellen.

Das Netzwerkmodell zur Simulation von drahtloser Kom-
munikation ist daher so einfach wie moglich: Sensoren
werden an explizit definierten Punkten in einem virtuel-
len Raum platziert und haben eine Sendereichweichte r.
Als Kommunikationsmodell dient ein Unit-Disk-Graph
mit Radius 7. Alle Knoten, die einen Abstand grofer als
r zum Absender einer Nachricht haben, werden von der
Kommunikation nicht beeinflusst.

Auf Grund der extrem einfachen Modellierung der Kom-
munikation ist es daher vor allem zu erwarten, dass die
Anzahl der empfangenen Nachrichten iiberschétzt wird,
da keinerlei Paketverlust simuliert wird. Diese erwarte-
te Uberschitzung der empfangenen Nachrichten bewirkt
eine Uberschitzung der Anzahl erreichter Knoten und
des Energiebedarfes.

5. ZUSAMMENFASSUNG

In Abbildung 3 werden die Ergebnisse des Experiments
zusammengefasst. Alle Diagramme verwenden die selbe
Legende, die in Abbildung 3d dargestellt ist.

Abbildung 3a zeigt die Resultate des Energieverbrauchs,
den die verschiedenen Werkzeuge fiir die ausgewéhlten
Topologien errechnet haben. Trotz fehlender vollstéin-
diger Ubereinstimmung, sind Parallelen erkennbar, et-
wa bei der Reihenfolge der Topologien beziiglich ihres
Energieverbrauchs. Einem direkten Vergleich der Ener-
gieverbriuche stehen zudem die in einigen Werkzeugen
fehlenden Moglichkeiten, Kollisionen und Paketwieder-
holungen mit einzubeziehen, entgegen.

Weitere Details sind durch Aufschliisselung der Ergeb-
nisse in versendete und empfangene Pakete in den Abbil-
dungen 3b und 3c erkennbar. Die Unterschiede im Ener-
gieverbrauch sind demzufolge hauptsichlich auf Diffe-
renzen bei der Zahl der empfangenen Pakete zuriick-
zufithren, was auf die teilweise unterschiedlichen Sen-
dereichweiten (und damit verdnderte Konnektivititsgra-
phen) und Paketverlustmodelle zuriickzufiihren ist.

Letztendlich gibt es deutliche Unterschiede bei der Zahl
der erreichten Knoten (Abbildung 3d), die neben den

99

Vergleich Energieverbrauch

Vergleich gesendeter Nachrichten

6F T T T

Energie [mAs]

Anzahl gesendeter Nachrichten

o
0.2 03 04 05 0.6 07 0.8 0.9
Wahrscheinlichkeit [%]

(a) Energieverbrauch im Vergleich

Vergleich empfangener Nachrichten

0.2

. .
03 0.4 0.5 0.6 0.7 0.8 0.9 1
Wahrscheinlichkeit [%]

(b) Zahl der versendeten Pakete

Vergleich erreichte Knoten

Anzahl empfangener Nachrichten

Knoten erreicht

Top1 - Glomo —+—
Top1 - Tossim -+
Top1 - Prism -+

Top3 - KSN —-5-—
Topb - Glomo —=—
Top5 - Tossim =
Tops - Prism

Top5 - KSN —#-—

. .
02 03 0.4 05 06 07 0.8 0.9
Wahrscheinlichkeit [%]

(c) Zahl der empfangenen Pakete

. .
03 0.4 05 06 07 0.8 0.9 1
Wahrscheinlichkeit [%]

(d) Anzahl der erreichten Knoten

Figure 3: Evaluationsergebnisse

bisher genannten Ursachen auch auf starke Varianzen
der Ergebnisse bei geringem p zuriickzufiihren ist.

Die Ergebnisse zeigen insgesamt, dass eine grundsitzli-
che Vergleichbarkeit schon jetzt gegeben ist. Deckungs-
gleiche Ergebnisse werden jedoch durch die stark unter-
schiedliche Flexibilitdt und Konfigurierbarkeit der ver-
wendeten Werkzeuge sowie das stark vereinfachte Ener-
giemodell verhindert.

Um realistische Werte des Energieverbrauchs ermitteln
zu konnen, ist die Energieabschitzung zur Laufzeit und
Energiemessungen der Knoten in einem Testbett [7] in-
teressant. Das wird ermdglicht durch eine Erweiterung
des verwendeten Betriebssystems (TinyOS) bzw. durch
eigene Hardware zur Knotenverwaltung. Beide Ansét-
ze werden gegenwidrtig implementiert und in zukiinftige
Publikationen einfliefen.

6. REFERENCES

[1] Atmel Corporation. ATMEL ATmegal28 datasheet.
http://www.atmel.com/dyn/resources/
prod_documents/doc2467.pdf, 2002.
E.-O. BlaB. Sicherer, aggregierender Datentransport in
drahtlosen Sensornetzen. Dissertation, Universititsverlag
Karlsruhe, Karlsruhe, Germany, June 2007. ISBN:
978-3-86644-142-2.
E.-O. BlaB}, L. Tiede, and M. Zitterbart. An
energy-efficient and reliable mechanism for data
transport in wireless sensor networks. In Proceedings of
International Conference on Networked Sensing Systems,
pages 211-216, Chicago, USA, May 2006. ISBN

(2]

[3

[t}

100

[4

=

[5

—_

[6

—

[7

—

(8]

[9

—

[10]
[11]

[12]

0-9743611-3-5.

D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of
MANET simulators. In POMC ’02: Proceedings of the
second ACM international workshop on Principles of
mobile computing, pages 38-43, New York, NY, USA,
2002. ACM.

Crossbow Inc. RADIO, RF concepts, and TOS radio
stack, 2006.

http://www.eol.ucar.edu/isf/
facilities/isa/internal/CrossBow/
PresentationOverheads/Dayl_Sect06_
RFConcepts.pdf.

A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A Tool for Automatic Verification of
Probabilistic Systems. In H. Hermanns and J. Palsberg,
editors, Proc. 12th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’06),
volume 3920 of LNCS, pages 441-444. Springer, 2006.
S. Kellner, M. Pink, D. Meier, and E.-O. Blaf3. Towards a
Realistic Energy Model for Wireless Sensor Networks. In
5th Ann. Conf. on Wireless on Demand Network Systems
and Services (WONS 2008), pages 97-100, 2008.

H. Lee, A. Cerpa, and P. Levis. Improving wireless
simulation through noise modeling. In /PSN ’07: Proc.
6th Int. Conf. on Inf. Processing in Sensor Networks,
pages 21-30, New York, NY, USA, 2007. ACM.

NI USB-6210 USB Multifunction DAQ.
http://sine.ni.com/nips/cds/view/p/
lang/de/nid/203189.

SUN Microsystems Inc., Small Programmable Object
Technology (SPOT).

TinyOS Tutorial. Lesson 11: TOSSIM.
http://docs.tinyos.net.

M. Zuniga. Building a network toplogy for TOSSIM.
http://www.tinyos.net.

FRONTS - Foundations of Adaptive Networked
Societies of Tiny Artefacts

Tobias Baumgartner, Alexander Krdller,

and Sandor P. Fekete
IBR, Algorithms Group
Braunschweig University of Technology
Braunschweig, Germany
{t.baumgartner, a.kroeller,

s.fekete}@tu-bs.de

ABSTRACT

The European project FRONTS aims at understanding adap-
tive large-scale heterogeneous wireless sensor networks act-
ing in a dynamic environment. This includes designing dif-
ferent mathematical models beyond the state of the art for
such networks. Based on these models, a new network in-
frastructure will be developed, followed by a large set of
algorithms solving global tasks like exploration of unknown
areas or target tracking. We provide a coherent package con-
sisting of a simulation framework, hardware, and a remotely
accessible testbed, building a powerful tool for evaluation
and validation of the results of FRONTS. Our framework
allows for easy exchangeability between simulation and real-
world experiment, as well as rapid engineering.

Keywords

Wireless Sensor Networks, Simulation, iSense, Shawn

1. INTRODUCTION

We are now on the verge of Wireless Sensor Networks (WSNs)
leaving the landrush phase and becoming more and more
mainstream. Many complex issues have been addressed, and
we see a number of operating WSNs. This shifts the focus
from initial questions about how to get working networks at
all, to those about the shape of future networks and their
applications. Being relieved from dealing with complex low-
level issues, we now can concentrate on high-level applica-
tions and protocols.

It is our belief that soon sensor networks will exist with a
number of properties:

Heterogeneity: WSNs will no longer consist of identical
devices. The need to maintain networks over long pe-
riods of time will result in different software and hard-
ware generations from one family to coexist. Also,
there will be completely different devices in networks
due to interactions between networks, the need for spe-
cialized sensory in certain areas, and because networks
will grow organically.

Dynamics: Other than in today’s networks, different kinds
of dynamics will happen at the same time in a net-
work. Some nodes may enter and leave the network
due to off-duty cycling. Others are moving with some
external carrier like vehicles, animals, or water flows.

Claudia Becker and Dennis Pfisterer
Institute of Telematics
University of Libeck
Libeck, Germany

{becker, pfisterer}@itm.uni-luebeck.de

Finally, some nodes may actively move around to in-
vestigate events, help bridging communication gaps,
or populate unexplored areas with passive nodes. An-
other source of dynamics is the environment. In long-
lasting networks, there may be huge changes in the
surroundings and therefore in the constraints and ob-
jectives of the network.

Massive Sizes: When issues about information exchange
between neighboring sensor networks are solved, huge
sensor networks arise instantly. Also, continuously de-
creasing hardware costs, and ongoing research on real
sensor nodes lead to the feasibility of obtaining a great
amount of nodes. Hence, current algorithms that were
tested on mostly a few hundred nodes must also scale
up to hundreds of thousands of nodes.

The FRONTS project [2] is part of the European Seventh
Research Framework Programme (FP7, [1]). It is a collabo-
ration of 11 European working groups, aiming at investigat-
ing the algorithmic foundations of future WSNs and provid-
ing answers for questions that arise now. The participants
have a great deal of experiences with the fundamental the-
ory of wireless sensor networks. Together, we will contribute
research to the following issues:

e Development of validated mathematical models for large-
scale wireless sensor networks beyond oversimplifica-
tions such as Unit Disk Graphs, infinite-capacity links,
random waypoints movements.

e Design of dynamic and adaptable network infrastruc-
tures, including enabling security by developing appro-
priate algorithms, protocols, and strategies.

e Design of algorithms for solving global tasks like collec-
tive exploration of unknown areas, or target tracking
in dynamically changing environments.

The paper is structured as follows. The project FRONTS
itself and its aims are described in more detail in the follow-
ing Section 2. The IBR at the Braunschweig University of
Technology and the I'TM at the University of Liibeck par-
ticipate in FRONTS. The practical parts of the project are
our responsibility. It is our aim to get valuable feedback
from implemented algorithms, protocols, and applications
that are developed within the project. Feedback will be

101

achieved by evaluations and validations. Therefore we will
build up the Experiments Repository, which will consist of
an appropriate simulation package for wireless sensor net-
works as well as at least one physical testbed. It will be
remotely accessible via the Internet for all project partners.
The requirements concerning software and hardware tech-
nologies, and the technologies to cope with these needs are
described in Section 3.

2. EUROPEAN PROJECT FRONTS

The aim of FRONTS is to understand the theoretical back-
grounds of large-scale adaptive heterogeneous wireless sen-
sor networks. These networks consist of nodes that provide
different capabilities and act in a dynamic environment. Dy-
namics can either be active or passive. When dealing with
active mobility, nodes are able to move autonomously to des-
ignated parts of the network. Passive mobility means that
nodes are connected to moving objects like vehicles or hu-
man beings. With FRONTS, we will be able to get a clear
grasp of such networks. It will be crucial not only for under-
standing the net behavior, but also for supporting algorithm
development in nearly all related areas.

The goals of FRONTS can be summarized as follows:

e Design a unifying framework,

e Obtain a set of design rules,

e Provide distributed adaptation techniques,

e Provide laws on adaptation,

e Obtain knowledge of combining heterogeneous nodes,

e Provide a set of algorithms, and

Evaluate with both simulation and experiments.

The main issue is to develop mathematical models that de-
scribe the focused adaptive large-scale networks of heteroge-
neous nodes in dynamic environments. Such models include
mobility for dealing with different kinds of dynamics, com-
putation models that consider the limited memory and lim-
ited knowledge of the nodes, and cooperation models that
cover homogeneneous, hierarchical, and diversified systems.
With the aid of the resulting unifying framework we intend
to get a consistent working set of design rules of such sys-
tems. These rules will help us to develop adaptation tech-
niques for which we provide basic laws. This includes the
effect of adaptation on the system performance, the cost of
distributed coordination regarding adaptation, the commu-
nication overhead, overhead in terms of energy consumption,
and possible trade-offs. However, these adaptation tech-
niques will help designing a dynamic and adaptable network
infrastructure to cover nodes that adapt to each other and
to changing needs. This includes both the communication
structure between nodes, and general data access even when
the data moves dynamically in the network.

Another objective is the combination and interaction of het-
erogeneous nodes to obtain a useful global behavior. A net-
work of nodes that have different capabilities should combine
the various strengths resulting in a net that is much more
powerful than a network of homogeneous nodes can ever
be. A crucial issue here are strategies for role assignment
that act dynamically according to the current needs of the

102

system. Different capabilities of nodes lead also to new ap-
proaches for security. For example, work can be outsourced
to more powerful nodes in the network, or completely new
protocols, algorithms, and strategies can be designed.

Building on the previous work, the participants of FRONTS
will examine strategies and algorithms, which are focused
on solving global tasks in the network. This will result in
a set of algorithms that contain a collective exploration of
an unknown area by considering both active and passive
mobility in the network, algorithms for target tracking in
dynamic environments with either a moving sink to which
data must be sent, or a mobile agent that follows the target,
and algorithms for network connectivity maintenance with
actively moving nodes.

3. EXPERIMENTS REPOSITORY

The previous section described the project objectives. A
decisive point are the practical aims of the project, such as
evaluation and validation of developed algorithms. We will
contribute an Evaluation Package to obtain valuable feed-
back for the project’s theoretical insights. This package will
consist of a WSN simulator, appropriate hardware, and at
least the provision of one sensor network testbed composed
of about 50 sensor nodes. The common central testbed will
be accessible via Internet for all project partners to test pro-
tocols, algorithms, and applications.

We had to cope with the following requirements concerning
suitable software and hardware technologies:

e We need a simulation framework that aims particu-
larly at high level algorithms and a quick and easy
development process.

e We need a simulator that copes with simulations of
large-scale networks with tens to hundreds of thou-
sands of sensor nodes in an adequate time frame.

e We need a simulator that realizes realistic and univer-
sally valid, i.e. hardware-independent, evaluations.

e We also need working and easily maintained hardware
for our practical evaluations.

e To narrow the gap between virtuality (simulations)
and reality (experimentations on real hardware) it is
desirable to have the possibility of easy transfers of
implemented algorithms from one to the other.

In the following, technologies that address our above speci-
fied needs are described. They will be part of our Evaluation
Package.

Shawn [4] is a discrete event simulator for sensor networks.
It has been primarily designed for simulating large-scale net-
works with up to a million of nodes, with an algorithmic
point of view. Instead of simulating a phenomenon itself,
it simulates the effects. This approach leads to an essential
performance gain. Shawn finishes simulations in minutes
where, say, Ns-2 [3] is running for more than a day [8].

Other design focus points are flexibility and extensibility.
All crucial parts that can influence the simulation are de-
signed as exchangeable models. First of all is the commu-

nication model that defines whether two nodes in the net-
work can in principle communicate with each other. Next
is the edge model that is responsible for neighborhood rep-
resentation. It provides access to links between nodes in a
graph structure, using the communication model to decide
whether there is a link between any two nodes. There is a
very simple edge model with no memory overhead, but wast-
ing computation time, up to a very fast model that requires
much memory. Finally, there is the transmission model that
is used to transmit messages. It uses the edge model to se-
lect potential receivers of a sent message. There are several
models available that can also be put into a chain of mul-
tiple models. Beginning with a reliable model that simply
transmits every message, there are also models for simulat-
ing message loss and delay, as well as CSMA and TDMA.
All of these models can be arbitrary combined, which leads
to very flexible and powerful options in simulation behavior.
Also, models can easily be exchanged to run an algorithm
in different scenarios without any additional effort.

The simulation controller manages the process of simulation,
and provides access to the simulated world with all available
nodes. This allows for an easy development of centralized
algorithms. It is possible to write a task that is executed
once and has access to the whole simulation via the con-
troller. However, Shawn has been primarily designed for
simulating distributed algorithms. Each node in the network
can contain multiple independent processors, whereby each
processor may implement an individual algorithm. These
algorithms may either run independently from each other,
or interact over common variables that are appended in a
type-safe way to the nodes.

The design with processors, tasks, and the previously pre-
sented models enables a rapid algorithm engineering with
short development cycles per algorithm. This makes Shawn
an attractive choice, especially for implementing and evalu-
ating high-level algorithms.

iSense [5] is a hardware and software platform. Its modular
approach allows adapting the hardware and software used
for a specific application exactly to the required functional-

ity.

A fundamental design guideline is to use only languages and
tools that are well understood by a large user community.
Consequently, the object oriented C++ programming lan-
guage and popular tools such as the Gnu Compiler Collec-
tion [7] (GCC) and the Eclipse [6] development framework
are used. iSense includes a tiny STL-like implementation.
Thus, implementations for standard containers such as lists,
maps and sets are already part of iSense. Hence, the learn-
ing curve for many system designers and solution developers
is extremely flat.

iShell is a tool that is provided by iSense. It provides an
easy way for the communication between sensor networks
and PCs. Functionalities like serial and over-the-air pro-
gramming are supported, as well as a serial terminal and
a plug-in system to facilitate the supplementation of indi-
vidual desired functionality as monitoring or analyzing the
network.

Application code that has been developed with the iSense
framework is ready to run on any platform that supports
an implementation of the iSense API. Primarily it is avail-
able for the iSense hardware platform, as well as for the
simulation environment Shawn. Thus, system designers and
solution developers are able to test their implemented appli-
cations in the simulator before transferring them onto the
iSense hardware. That way time will be saved for the overall
development process.

Thus, there are three options given to practically evaluate
implemented protocols or algorithms:

(1) Simulating with Shawn.
(2) Testing on real hardware with iSense.

(3) Testing on a common centralized sensor node testbed.

When implementing algorithms, protocols, or applications
for either of these three options, it is trivial to switch to one
of the others afterwards. This is because of the compatibility
between Shawn and iSense. This expands the possibilities
for evaluating and validating, and reduces the overall time
of development processes in addition to all the other tech-
nologies’ features and advantages mentioned above.

4. CONCLUSION

We introduced the European project FRONTS. The main
objectives of the project are to get a fundamental under-
standing of the properties of wireless sensor networks, to
develop algorithms, design rules for algorithms and applica-
tions, and to form a unifying framework for adaptive wireless
sensor networks.

One of the next steps will be to build up the Experiments
Repository. This contains the aim of establishing a reposi-
tory of applications for simulation, as well as building up a
testbed composed of real sensor nodes. Further, the testbed
shall be connected to the Internet via the tool iShell that is
provided by iSense. That way all project partners will be
able to test their algorithms on a common hardware plat-
form.

5. REFERENCES

[1] FPT7. http://cordis.europa.eu/fp7/home_en.html.

[2] FRONTS. http://fronts.cti.gr/index.php/home.

[3] ns-2: Network simulator-2. http://isi.edu/nsnam/ns.

[4] Shawn. http://shawn.sf.net.

[5] C. Buschmann and D. Pfisterer. iSense: A modular
hardware and software platform for wireless sensor
networks. Technical report, 6. Fachgespréch Drahtlose
Sensornetze der GI/ITG-Fachgruppe Kommunikation
und Verteilte Systeme, 2007.

[6] Eclipse Foundation. Eclipse — an open development
platform, 2001. http://wuw.eclipse.org/.

[7] Free Software Foundation, Inc. Gnu Compiler
Collection (GCC), 1984. http://gcc.gnu.org/.

[8] A. Kroller, D. Pfisterer, C. Buschmann, S. P. Fekete,
and S. Fischer. Shawn: A new approach to simulating
wireless sensor networks. In Proceedings of the 3rd
Symposium on Design, Analysis, and Simulation of
Distributed Systems (DASD’05), pages 117-124, 2005.

103

