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1 Distributional effects of

subsidizing retirement savings

accounts: evidence from

Germany1

1.1 Introduction

Since the mid-1990s, governments have developed programs that provide financial
aid to encourage private saving for retirement purposes, especially among low- and
middle income households. Germany introduced its own program, called Riester
scheme, in 2002. It promotes certified financial products for retirement saving by
means of generous subsidies and tax deductions. Basically, all compulsorily insured
employees in Germany, including public servants, are eligible for support under the
Riester scheme.

In contrast with its goal of inducing people to save more, most empirical evalua-
tions of the Riester scheme suggest that it hardly generates any effect on savings.1

That is, the Riester scheme mainly displaces private savings from unsubsidized to
subsidized assets, so that most of the subsidies amount to windfall gains for their
beneficiaries.2 In such a context, where real behavioral responses are negligible, it is
imperative to investigate how those windfall gains are distributed. If low-income
households were the main beneficiaries, the Riester scheme would be likely to con-
tribute to reduce old-age poverty in the future. Assessing the distributional impact

1This is a post-peer-review, pre-copyedit version of an article published in Finan-
zarchiv/Public Finance Analysis. The final authenticated version is available online at:
http://dx.doi.org/10.1628/fa-2018-0017

1See Coppola and Reil-Held (2009), Corneo et al. (2009), Corneo et al. (2010) and Pfarr and
Schneider (2011) for analyses based on the German SOEP and the SAVE dataset. Börsch-Supan
et al. (2008) find ambiguous results, while Börsch-Supan et al. (2012) discuss the validity of
survey data on savings. Strong displacement effects are often found for similar programs in other
countries. Engen et al. (1996) provide a plethora of arguments why the supposed stimulation
effects of 401(k)s and IRAs in the U.S. are overstated or non-existent. A more recent example is
Chetty et al. (2014) who find in the case of Denmark that each 1$ of government expenditure
on saving subsidies increases savings by 1 cent. Engelhardt and Kumar (2011) document an
incomplete crowding out in terms of types of wealth. Carbonnier et al. (2014), using French
micro tax-data, show that savings demand is boosted for richer savers, but the effect is weak to
nonexistent for poorer individuals.

2To the extent that subsidies are shifted to the supply side, insurers capture a fraction of them. In
this paper, we abstract from shifting.
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1 Distributional effects of subsidizing retirement savings accounts

of the Riester scheme is thus an essential ingredient of a comprehensive evaluation
of that policy.

At first glance, the Riester scheme is equality-enhancing. While the German
PAYG system is of the Bismarckian variety and relies on the equivalence principle,
the provisions of the Riester scheme entail distinctive elements of progressivity: a
basic allowance that is equal for everybody and generous child allowances that favor
multi-member households. In spite of those provisions, the overall distributional
impact of the Riester scheme is a priori unclear. Participation is voluntary and
persons are entitled to the government’s financial aid only if they invest a certain
minimum amount in so-called Riester contracts, that amount being determined as a
fraction of a person’s income liable to social security contributions. This boils down
to requiring a minimum saving propensity in order to be able to invest the required
amount into a Riester contract. If the saving propensity increases with income
and poor households do not save enough to meet the participation requirement,
self-selection in the program will generate a regressive effect. Furthermore, high
income households are more likely to benefit from a special tax deduction provided
by the Riester scheme. Whether the progressive effect from the subsidy provisions
outweighs the regressive effect from self-selection and tax deductions is an empirical
issue that we address in the current paper.

Determining the distributional impact of the Riester scheme requires a dataset
that is representative of the German population and contains the necessary informa-
tion to compute the total subsidy received by each household. Such a dataset, the
Panel of Household Finance (PHF) was released by the German central bank in 2012.
It is constructed along similar lines as the Survey of Consumer Finances (SCF) in
the U.S. Its key advantage over alternative datasets like the German Socio-economic
Panel (SOEP) is that the PHF records the amounts respondents contribute to their
Riester contract. We are the first to exploit this dataset to investigate the Riester
reform. We use the contribution information to estimate the monetary benefit re-
ceived by each household and determine the effects of the Riester scheme on the
current distribution of yearly incomes. A microsimulation model predicts for each
household whether it receives a direct subsidy or a tax deduction. We carefully
distinguish between tax unit - which is used by the public administration to set the
type and level of the subsidy - and household - which is the unit from which we
derive the equivalent incomes of the population.3

Our analysis pertains to first-round effects only, i.e. it merely captures the
mechanical effect on current incomes from reaping the monetary gain delivered

3By observing the composition of the tax unit, i.e. determining how many Riester participants
and relevant dependents are present in the tax unit, and by accounting for the individual saving
efforts of the participants, we can determine how much direct allowance the tax unit receives.
By determining the income tax liability of the tax unit we can perform the higher-yield test to
ascertain whether the household receives a tax deduction or not. We then aggregate the Riester
subsidies of the tax units at the household level for the distributional analysis.

2



1.1 Introduction

by the subsidy. Our main results are as follows. Our main results are as follows.
First, we find that about 38% of the subsidies accrue to the top quintile of the
income distribution, while only about 7% accrues to the lowest quintile. Second,
the progressive schedule of the subsidy is almost exactly offset by the regressive
effect from self-selection into the program. As a result, measures of overall income
inequality like the Gini coefficient are hardly affected by the Riester scheme. Its
effect on measures of poverty is slightly worse, in particular on the share of the
population below the poverty line: the Riester scheme increases that share by nearly
one percentage point.

The issue analyzed in this paper is relevant for a number of countries beyond
Germany – countries with similar programs where participation is voluntary and
behavioral responses are small. So far, the distributional effects of these programs
have received scant attention from the literature. Important exceptions are 401(k)s
– a type of defined contribution plan – and individual retirement accounts (IRA)
in the United States. Burman et al. (2004) examine the distribution of tax benefits
from defined contribution plans and IRAs with data from the SCF and the SIPP
(Survey of Income and Program Participation). When considering both defined
contribution plans and IRAs, they find that 70% of the total tax benefit accrues to
the top quintile and almost none to the lowest quintile. These results are robust
to excluding IRAs. The pattern of self-selection into the programs is close to the
one we uncover for the Riester scheme: while only 3% of households in the bottom
quintile participate, 41% of households in the top quintile do so. Joulfaian and
Richardson (2001) investigate the demographics of the population participating in
defined contribution plans, IRAs and other subsidized savings vehicles using income
tax data. They also briefly report on the distribution of the tax benefits along the
income distribution of wage-earning households. They note that the lower half of
the distribution receives less than 10% of the overall expenditure, while almost 55%
of the expenses accrue to the top 10%. When restricting for eligibility for any of
the subsidized savings programs, the bottom 50% receive 20% of the overall benefit
and the top 10% receive 33%. Chernozhukov and Hansen (2004) use SIPP data to
examine the impact of 401(k)-plans on wealth. Their findings indicate that the effect
of 401(k)-participation is quite heterogeneous along the distribution; the largest
positive effect is experienced by those in the upper tail of the wealth distribution.
Even and Macpherson (2007) evaluate the impact of defined contribution plans on
the distribution of pension wealth with SCF data. They suggest that the switch from
defined benefit to defined contribution plans will widen the pension wealth gap
between low and high earners.

We discuss our main empirical findings in section 4.7, after having presented
the institutional details of the Riester scheme in section 1.2 and the data we employ
in section 1.3. In section 1.5 we further scrutinize the regressive effect from partici-
pation by searching for its main determinants. In line with what Chernozhukov and

3



1 Distributional effects of subsidizing retirement savings accounts

Hansen (2004) find for the US, we find that net household wealth has a distinctive
positive effect on the probability to participate in the Riester scheme.

1.2 Institutional Background

The German Retirement Wealth Act (Altersvermögensgesetz) was adopted in June
2001 with the aim of reforming the statutory pension system and promoting funded
pension plans (Riester contracts) by means of allowances and tax deductions. It
went into effect in January 2002. The relevant unit for determining a Riester subsidy
is the income tax unit, which can be a single individual or two individuals who file a
tax return jointly (married couples and registered civil partnerships). Allowances
and tax deductions depend on the number of children, the presence of a partner,
income, and dedicated savings in the tax unit.

Eligible Population In Germany, every person in mandatory pension insurance
is directly eligible to participate in the Riester scheme: dependent employees, civil
servants, persons in vocational education, farmers, and the unemployed who receive
unemployment benefits.4 Individuals who are married to a directly eligible person
and are not permanently separated, are also eligible (indirect eligibility). According
to estimates by Fasshauer and Toutaoui (2009) from 2007, 71% (38.6 million) of
individuals between 15-64 years are eligible. According to Stolz and Rieckhoff
(2013), 10.2 million individuals received direct funding from the Riester scheme in
2010.

Forms of Subsidization There are two types of subsidies: direct allowances and tax
deductions. Direct allowances comprise two parts, a personal allowance and child
allowances. In 2010, the personal allowance was 154e p.a. for singles and 308e p.a.
for couples with both parties eligible and participating. The child allowance was
185e p.a. per child (300e p.a. if the child was born after the 31st of December
2007). In addition, income tax deductions can be granted. The tax deduction is
issued on the basis of a higher-yield test by the tax authority. The tax authority
deducts the amount of own contributions including the sum of direct funding (up
to a maximum of 2,100e for singles/4,200e for couples) from the personal income
tax base and calculates an adjusted tax burden. It then adds the amount of direct
allowance to the adjusted tax burden and compares it with the regular tax burden.
The difference between the two tax burdens is the subsidy due to the tax deduction.
The tax deduction is not applied if the difference is negative.5 The sum of the

4Early pensioners are eligible if they have a fully reduced earnings capacity (voll erwerbsgemindert).
5Formally:

TAS =max (0,T BNoRiester − T BRiester ) ,

4



1.3 Data

direct funding received and the net tax savings due to the tax deduction, if any,
give the overall Riester subsidy. As an example, suppose a childless single earns
yearly income liable to social contributions of 60,000e and the tax rate is 50%. The
tax burden before Riester is 30,000e. The maximum subsidized saving amount is
2,100e =min(60,000e× 0.04,2100e). It consists of 1,946e individual contribution
and 154e allowance. The adjusted tax burden is (60000e−2100e)×0.5. Adding the
direct funding of 154e yields a tax burden equal to 29,104e < 30,000e. Thus, this
individual is granted a tax deduction of 30,000e− 29,104e = 896e and the overall
subsidy the individual receives is 154e+ 896e = 1,050e.

Minimum Saving Effort A minimum saving effort is required to receive the full
subsidy: the allowances and the personal saving effort must add up to 4% of an
individual’s income liable to social insurance contributions received in the last year
(up to a maximum of 2,100e). Both must be invested into certified financial products
called Riester contracts. The individual contribution must be at least 60e per year.
The funding is proportionally reduced if the sum of the allowance and the personal
saving effort is less than the required 4%.6

1.3 Data

1.3.1 PHF and Tax Calculation

Our empirical analysis is mainly based on the Panel on Household Finances (PHF),
a representative multiply-imputed survey dataset.7 It covers the balance sheets,
pension claims, savings, incomes and demographic characteristics of households
living in Germany. The first wave of the PHF was collected in 2010 and 2011. Several
variables were also asked retrospectively for 2009. Besides the surveyed variables,
PHF provides 1,000 bootstrap weights to avoid problems of unresolved or unknown
distributions for test statistics. By bootstrapping the variance estimates, users can
rely on familiar routines for testing with (asymptotically) normally distributed
random variables.

The PHF contains information on the amount an individual contributes to a
Riester contract, but not on the financial support received by the same individual.

with TAS the subsidy due to the tax allowance, T BRiester the tax burden with Riester tax allowance,
and T BNoRiester the tax burden without.

6Formally:
OCN =max (60,min (0.04×YLSC ,2100)−MDF) ,

where OCN is the own contribution needed, YLSC is the income liable to social contributions, and
MDF is the maximum direct funding. MDF is the personal maximum allowance an individual
can receive. E.g., MDF is equal to 154e for a childless single person.

7See von Kalckreuth et al. (2013) and HFCN (2013) for details. See Appendix 1.8.1 for detailed
information on our treatment of the multiple imputations.
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1 Distributional effects of subsidizing retirement savings accounts

We compute the subsidy by taking into account information about the household
context and by comparing the hypothetical benefits from direct funding with those
from tax deduction. Tax units are the reference unit for computing the benefit from
tax deduction. To apply the income tax law and calculate the complete Riester
subsidies, we have constructed tax units from the PHF households. Afterwards, net
incomes and subsidies are aggregated over all tax units forming a household.

1st generation

Grandparents

2nd generation

Parents

3rd generation

Children

tax unit tax unit

tax unit

married

§32 EStG

tax unit

tax unit

not married

tax unit

tax unit

married not married check eligibility

for child
subsidies

if not
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Figure 1.1: Data Preparation and Microsimulation

Our technique of tax unit assignment is depicted in the first brace of figure 1.1.
Our assignment method is equipped to deal with all household configurations of
the PHF. There are two elementary types of tax units: single adults and couples
(with respective children). Single adults are treated as complete tax units. Married
couples are treated as a single tax unit, who files jointly. Non-married couples are
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1.3 Data

treated as two separate tax units. In multi-generational households, we draw on
the PHF relationship matrix to recover the above elementary types. Children are
distinguished from adults by eligibility for child subsidies.

In order to compute the tax liability we aggregate all the taxable incomes at the
tax unit level. One can verify from figure 1.1 (second brace) that information on in-
come from self-employment, dependent employment and other income is provided
at the individual level and can thus be assigned directly to the tax units. However,
capital income and income from renting and leasing are provided at the household
level. In households containing multiple tax units, assignment to each unit is not
straightforward because information on individual ownership of the underlying as-
sets is not available. To overcome that problem we exploit the information contained
in another dataset, the German Socio-Economic Panel (SOEP).8 In 2012 the SOEP
asked individuals about the distribution of assets within their household. SOEP
thus provides the relevant information on the within-household allocation of capital
income and income from renting and leasing. We transfer this information to the
PHF through statistical matching. The criterion for a match is the Mahalanobis
distance measure.9 We calculate the Mahalanobis distance measure based on certain
covariates and assign a SOEP observation to each PHF observation according to this
distance.10

After the match is complete and the ownership percentages are assigned, data
on ownership of relevant assets is at the level of the individual in our dataset. Since
the ownership percentages from the match do not necessarily sum to 100% in each
household, we perform reweighting to achieve consistency. We employ the following
reweighting factor,

pjk =

∑I
i=1pijk∑J

j=1
∑I
i=1pijk

, (1.1)

where pijk is the percentage of ownership recovered from the match, k indexes the
household, j the tax unit and i the individual in that tax unit. Both the household
level capital income and income from renting and leasing are then assigned to the
tax units according to the reweighted percentages.

8For detailed information on the Socio-Economic Panel, see Wagner et al. (2007).
9DM(x,y) =

√
(x − y)′CV −1(x − y) ,where (x,y) may be points or vectors and CV is the covariance

matrix of (x,y). We use the following variables in the calculation of the distance: household
income variable to be assigned, individual-level income variables, number of household members,
age. We restrict matches to certain slices of the data, wherein certain variables are in total
agreement across matchable observations. These slicing variables are: filing jointly, gender and
geographical region (north, east, south, west). The match is performed with replacement.

10The theory of statistical matching requires the two datasets to follow a joint distribution process.
Then variables missing from either one or the other data set can be taken as independent. Missing
information then does not play a role for matching the two datasets and matches are consistent
with the joint distribution process. This paradigm for matching datasets has been termed the
Conditional Independence Assumption (D’Orazio et al., 2006).
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1 Distributional effects of subsidizing retirement savings accounts

The calculation of the income tax liability relies on an adapted version of the
microsimulation model STSM that was designed by Steiner et al. (2008) to calculate
income tax liabilities for the SOEP. Since the design of the PHF is very similar to the
SOEP, adapting the STSM for the PHF is straightforward (Appendix 1.8.2).

1.3.2 Descriptive Statistics

We investigate the redistributive effects of the Riester subsidies with respect to the
overall population in Germany and the subset of the population eligible for the
Riester scheme. Appendix 1.8.3 reports our results for the participating population.
We are interested in the impact on the distribution of equivalent net household
income. Net household income is defined as household income after taxes and
transfers as described in Appendix 1.8.2. We use the household’s OECD modified
equivalence scale, ESOECD = 1+0.5×(nadults−1)+0.3×nchildren, to adjust for needs.11

Our data show that 61.3% of households include at least one person who is
eligible to participate in the Riester program. The fraction of households with at
least one participating individual is 17%. In absolute terms this means 24,081,123
eligible households and 6,750,514 participating households. The average level of the
Riester subsidy per household is only 70.38e per year, but 36.7% of the beneficiaries
receive a subsidy in excess of 500e. Riester subsidies turn out to increase household
income by up to 17%.

We use two criteria to define the eligible population. First, households must
contain at least one Riester eligible person; second, at least one household mem-
ber must be below the age of 64. We impose the second criterion because older
individuals had little incentive to enter into a Riester contract at the time of the
reform or after.12 Compared to the overall population, the eligible population is
younger, has more married household heads and higher income. The fraction of
households participating in the Riester scheme is 28% when looking at the eligible
population and their average subsidy received is worth 115.94e. Tables 1.1 and 1.2
summarize the key statistics pertaining, respectively, to the overall population and
the one eligible for the Riester subsidies.

In our distributional analysis we treat the Riester subsidies, computed as de-
scribed above, as corresponding income increments for the participating households.
Since this analysis rests on the premise that households’ investments into Riester
contracts mainly displace investments they would have made in other assets, we
surmise that such a displacement does not affect other tax-favored assets – because

11To cope with outliers at the very bottom and top of the distribution and to limit biasing effects
from multiple imputation or measurement error, we employ 98% Winsorization. This entails
setting incomes below the first percentile (above the 99th percentile) to the value of the first (99th)
percentile. See Hastings Jr. et al. (1947).

12According to table 4 in Stolz and Rieckhoff (2013), only 0.06% of the Riester recipients in 2010
were born before 1946.
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Table 1.1: Descriptive Statistics for the Overall Population

mean std. error min max obs.

equivalent gross household income
with transfers without Riester subsidy

28957 450.756 850 324800 3565

equivalent net household income with
transfers without Riester subsidy

25274 334.426 518 221772 3565

number of household members 2.044 0.005 1 8 3565
marriedc 0.495 0.008 0 1 3565
agec 52.28 0.127 18 90 3565
femalec 0.350 0.006 0 1 3565
completed vocational trainingc 0.518 0.011 0 3565
completed extended vocational
trainingc

0.178 0.009 0 1 3565

completed university degreec 0.135 0.007 0 1 3565
access to tertiary educationc 0.295 0.003 0 1 3565

estimated subsidies and subsidy rates

fraction of households participating in
the Riester schemea

0.170 0.009 0 1 3565

level of Riester subsidyb 70.375 4.547 0 1764 3565
ratio of subsidy to net household in-
come in %

0.184 0.017 0 17.111 3565

Note. PHF 2010. Own calculations. 1,000 bootstrap replicate weights used to compute standard errors.
a The participation variable is a dummy variable that indicates whether at least one household member currently pays
into a Riester contract.
b The sum of the Riester subsidies of all tax units within a household.
c Variable refers to the household head.

in that case the income increment should be reduced by the foregone tax benefits
on those assets. While our data do not allow for a thorough investigation of how
shifting savings into Riester contracts actually occurs, they suggest that shifting
from other tax-favored assets is rare. Households with tax-favored assets can be
expected to use first their regularly taxed assets to invest in Riester contracts; hence,
they would give up some of their tax-favored assets only if their regular assets are
already nil. Yet, 93% of the participating households have a strictly positive level
of wealth invested in bank and savings accounts, stocks, and bonds, i.e. non-tax-
favored assets. If checking accounts are excluded, this percentage reduces to 83%,
and if we additionally require that the sum of savings accounts, stocks and bonds be
larger than the household’s saving effort, the percentage of households fulfilling this
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1 Distributional effects of subsidizing retirement savings accounts

Table 1.2: Descriptive Statistics for the Eligible Population

mean std. error min max obs.

equivalent gross household income
with transfers without Riester subsidy

32168 644.275 850 324800 2106

equivalent net household income with
transfers without Riester subsidy

27533 454.152 518 221772 2106

number of household members 2.364 0.018 1 8 2106
married 0.538 0.013 0 1 2106
age 43.29 0.210 18 90 2106
female 0.311 0.010 0 1 2106
completed vocational training 0.545 0.013 0 1 2106
completed extended vocational train-
ing

0.177 0.012 0 1 2106

completed university degree 0.146 0.010 0 1 2106
access to tertiary education 0.330 0.007 0 1 2106

estimated subsidies and subsidy rates

fraction of households participating in
the Riester scheme

0.280 0.014 0 1 2106

level of Riester subsidy 115.940 7.419 0 1764 2106
ratio of subsidy to net household in-
come in %

0.303 0.028 0 17.111 2106

Note. PHF 2010. Own calculations. 1,000 bootstrap replicate weights used to compute standard errors. All previous notes
on variables in Table 1.1 apply as in Table 1.1.

condition is 77%. As expected, the average income of the participating households
that fulfill this condition is significantly larger than the average income of those that
do not and may thus have sold tax-favored assets to pay into their Riester contract.
All this suggests that the counterfactual we adopt in our distributional analysis is a
reasonable first approximation. If investments in Riester contracts fully crowd-out
other assets in households’ portfolios, our approach is likely to overestimate the pro-
gressivity of the Riester scheme, since it appears that a larger fraction of households
in the lower tail of the income distribution would lose out on the tax benefits of
other assets when shifting their savings into Riester contracts.
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1.4 Main Results

1.4.1 Subsidization along the Income Distribution

We compare two distributions - the one before and the one after receiving the
Riester subsidies. The distribution before Riester is derived from the PHF data using
the above-mentioned tax calculator. The distribution after Riester adds to it the
simulated Riester subsidies.13 This comparison captures first round effects and
abstracts from any behavioral responses. As usual in the literature, we focus on the
distribution of equivalent income to the individuals.
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Figure 1.2: Subsidy Levels by Decile for the Overall Population

13The effect of the Riester subsidy on a household’s equivalent income is determined by summing
up the Riester subsidies of all tax units within the household, adding the sum to net household
income before Riester, and then dividing the total amount by the household’s equivalence scale.
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1 Distributional effects of subsidizing retirement savings accounts

Figure 1.2 shows the decile-specific average subsidy levels for the overall popu-
lation in Germany. Households are assigned to deciles according to their equivalent
net household income before Riester subsidies. We find that the average subsidy
increases over the deciles and the increase is sizable. In the bottom decile, the
average subsidy is 23.56e. Up to the 6th decile, we find a moderate increase of the
subsidy level to about 56.83e. Over the top four deciles, the subsidy level increases
to 156e in the top decile.14

By far the largest share of the total subsidy volume accrues to the upper part of
the distribution. This can be seen from the concentration curve depicted in figure
1.3 along with the diagonal. The concentration curve of the Riester subsidy is the
cumulative share of the Riester subsidy for the centiles of the cumulative distribution
function (CDF) of equivalent net income.15 The concentration curve, unlike the
Lorenz curve, can cross the forty-five degree line, yet a concentration curve resting
on the forty-five degree line would still imply equal distribution of the subsidy
among the population.16 We find that about 38% of the aggregate subsidy accrues
to the top two deciles of the population, while only 7.3% accrues to the bottom two
deciles.17 Hence, the Riester scheme mainly subsidizes high-income households
rather than the working poor.

1.4.2 Effects on Income Inequality and Poverty

In order to evaluate the redistributive effect of the Riester scheme, we now compute
inequality and poverty indices before and after Riester subsidies. Our distributional
analysis relies on four inequality indices: the Gini index and three members of the
generalized entropy class, namely the Theil index, the mean logarithmic deviation
(MLD) and half the squared coefficient of variation (GE(2)). These entropy measures
imply different levels of inequality aversion, with the GE(2) putting the smallest
weight on high incomes and comparatively the Theil the highest, with the MLD
lying in-between. Furthermore, we make use of three poverty indices: the headcount
ratio (HCR), the income gap ratio (IGR) and the Sen Index (Sen). The HCR is the
percentage of individuals under the poverty line, while the IGR gives the average
relative income gap of poor individuals from the poverty line. Accordingly, HCR
ignores the severity of poverty, while IGR ignores the number of poor individuals,
and both are uninformative about the extent of inequality among the poor. Since the

14In terms of equivalized subsidies, the average subsidy increases from 15.61e for the bottom decile
to 99.06e for the top decile.

15Lambert (2001, p. 268 pp.) gives an account of how to construct concentration curves for subsidies.
16To determine a household’s position in the income distributions over the five imputations we

calculate the average location of the household in the CDF of income and the average amount of
Riester subsidy received.

17In Appendix 1.8.4 we also calculate the decile graphs for other statistics like the average subsidy
rate and the participation fraction, which are computed analogously to the average subsidy level.
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Figure 1.3: Concentration Curve for the Overall Population

Riester scheme may influence all those dimensions, we additionally make use of the
Sen Index, S =H

[
I + (1− I)Gyi<Z

]
, where H is the HCR, I is the product of HCR and

IGR, and Gyi<Z is the Gini coefficient for individuals with income yi smaller than
the poverty line Z. The poverty line is set at 50% of the median of equivalent net
income in Germany. Before Riester subsidies, the poverty line as computed from the
PHF is 10,965e, while it raises to 11,007e after Riester subsidies.

All our inequality and poverty estimates are provided in table 1.3. Column woR
shows the statistics for the baseline distribution, the income distribution without
Riester subsidies. The adjacent column wR −woR gives the change in the index
when the Riester subsidies are taken into account. A positive (negative) difference
indicates a regressive (progressive) effect of the Riester program.

As shown by the upper panel of table 1.3, the Riester scheme decreases income
inequality. Despite the subsidies mainly accruing to the upper part of the distribu-
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1 Distributional effects of subsidizing retirement savings accounts

tion, the Gini coefficient and the GE-indices decline after taking the Riester scheme
into account. The effects are small:

for instance, the Gini coefficient is reduced by 0.00014. This is not simply a small
number, but it is also small as compared to what could be achieved if the budget
used for the Riester subsidies was used instead to minimize inequality. In such a
case, we compute that the Gini could be reduced by 0.00297, i.e. about twenty times
as much. The algorithm used to minimize the Gini coefficient is described by König
and Schröder (2018).

The effects of the Riester scheme on poverty are ambiguous. The HCR indicates a
rise in the incidence of poverty. The Riester scheme increases the median income and
thus the poverty line. Because participation is very low at the bottom of the income
distribution, a higher proportion of the population falls below the new poverty
line. At the same time, the average distance to the poverty line diminishes. This is
reflected by a lower value of the IGR. However, our “overall” poverty index, the Sen
Index, increases, pointing out that, while the effect of the Riester scheme on some of
the poor is beneficial (as indicated by a lower IGR), it is offset by the changes in its
two other components (HCR and Gyi<Z).

The above assessment of the distributional consequences of the Riester scheme
neglects the fact that the income distribution without the Riester scheme is asso-
ciated with an improvement of the public budget equal to the total amount of the
subsidies. The fiscal costs of the Riester scheme are sizable: at the current rate of
participation (17%) we estimate its total volume at 2,790 million e (SD: 180 mil.
e).18 Neglecting the change in the budget allows one to avoid making assumptions
about the way the government would use the resources made available by scrapping
the Riester scheme. Now, we consider a counterfactual where budget neutrality
holds and public expenditure is shifted from the Riester scheme to a hypothetical de-
mogrant. More precisely, we assume that every household in the overall population
receives the same amount of equivalized subsidy (48.23 e), with no regard shown to
eligibility for the Riester scheme. The ensuing distribution (wD) is then compared
with the distribution with the Riester scheme.19 We view such a demogrant as a
rough approximation of additional public expenditures on a vast array of publicly
provided services that are rather uniformly consumed by the population. The same
justification is usually offered when using a demogrant in theoretical models of
income redistribution.

The result of our analysis is displayed in the fourth column of table 1.3. The
Riester scheme turns out to be less progressive than a demogrant. In absolute terms,
these differences are about two to four times larger than the baseline differences
for the Riester scheme, wR−woR. This shows that even an untargeted instrument

18Stolz and Rieckhoff (2013) report the total of direct subsidies for 2010 to be 2,559 mil. e. Since
the net gains from tax deductions can be imagined as resting on top of the direct subsidies that
households have already received, we see rough agreement with our estimates.

19The poverty line is recalculated for the demogrant income distribution, amounting to 10,990e.
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like a demogrant – or a general increase in the provision of public services – would
redistribute income in a more egalitarian way than does the Riester scheme. A similar
conclusion applies if the demogrant is received by the participating population.20

The lower panel of table 1.3 shows our results for the eligible population. As
mentioned above, the eligible population is younger, has more married household
heads and higher income than the overall population. It is thus no surprise that both
inequality and poverty indices for the baseline distribution woR are always lower.
Because only eligible households remain in the sample, the progressive effect of the
Riester scheme without budget balance is stronger. The differences wR−woR for the
inequality indices are about twice as large as those for the overall population. The
differences for the poverty indices keep their signs, yet get smaller and insignificant.
Part of this result is due to the definition of the sample which leads to a relatively
strong exclusion of low-income households. Part is also due to the construction
of the poverty line, which is determined by the income distribution in the overall
population. When using the demogrant as the alternative tool for redistribution, our
previous conclusions are confirmed, but the effects are smaller in absolute terms.

To sum up, the Riester scheme has mixed effects on income inequality and
poverty that depend on the benchmark used for comparison. At first glance, this
finding may seem to be at odds with the results from the incidence analysis, i.e.
that most of the overall subsidy volume is channeled to the top of the distribution.
But inequality measures are relative: equi-proportional changes of income leave
the measured inequality unchanged. Thus, a progressive effect may obtain even
if households at the bottom of the distribution receive markedly below-average
subsidies. Key for the distributional impact is not how the subsidy level varies over
the various deciles of the distribution but how the ratio of the subsidy to the income
level (i.e. the subsidy rate) changes along the income distribution.

1.5 Proximate Causes

1.5.1 Decomposition

To better understand the drivers of the distributional impact of the Riester scheme,
we break the subsidy rate of a given decile of the income distribution, σ , into its
basic components. The subsidy rate is,

σ =
∑N
i=1 si∑N
i=1 yi

, (1.2)

20Results can be obtained from the authors upon request.
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1 Distributional effects of subsidizing retirement savings accounts

where si is the amount of equivalized subsidy received by each individual i with
equivalized income yi and N is the number of individuals in a decile.21 Let the
members of the decile be ordered so that the first M ≤N participate in the Riester
scheme and the remainder does not. Accordingly, we can rewrite the subsidy rate as,

σ =
∑M
i=1 si∑M
i=1 yi︸  ︷︷  ︸×

M
N︸︷︷︸×

N∑N
i=1 yi

×
∑M
i=1 yi
M︸               ︷︷               ︸ (1.3)

= σM × µ × ȲM
Ȳ
. (1.4)

The intensity of subsidization among the group of the M subsidized individuals
is captured by σM . Participation is reflected in the participation rate, µ = M

N , and
ȲM /Ȳ is the ratio of the average income of the beneficiaries to the average income
of the entire decile. Thus, equation (1.3) shows that the magnitude of the average
relative income increase entailed by the Riester program for a given decile can be
decomposed as the product of three terms: the average subsidy rate of those who
participate, the share of participants within the decile, and the relative income of
the participants.

Table 1.4 provides all four statistics and their standard errors for each decile of
the income distribution. We first comment on the overall population. The subsidy
rate of the decile, σ , displays a non-monotonic pattern along the income distribution
and exhibits relatively small variations across deciles. As we saw in the previous
section, this profile entails a small negative effect on inequality if budget neutrality is
neglected. In turn, this effect is mainly driven by two opposing patterns concerning
σM and µ. This is shown by the second and the third column of table 1.4. The
subsidy rate of the beneficiaries, σM , is highest in the lowest decile and decreases
over the income deciles. The participation rate, µ, displays the opposite pattern, i.e.
it tends to increase over the deciles. As it turns out, in terms of overall inequality,
the progressive effect from σM slightly dominates the regressive effect from µ.

These results allow us to qualify our previous statement that the Riester scheme
is an imprecise tool for redistribution: participation increases over the deciles,
explaining why most of the total subsidy is channeled to the upper part of the
distribution (figures 1.2 and 1.3), despite higher subsidy rates at the bottom for
those who participate. For the eligible population the same basic pattern holds true.
Accordingly, the trend in σ and the underlying causes of that trend are the same as
in the overall population.

21We calculate σ based on equivalized household incomes and equivalized household subsidies and
weight with the number of individuals in each household.

16



1.5 Proximate Causes

1.5.2 Drivers of Participation

If the Riester scheme puts cash on the table for the eligible households, why do so
many of them – about 70% – refrain from taking it? While a comprehensive analysis
of participation in the Riester scheme is beyond the scope of this paper, we close it
by offering an econometric exploration of potential drivers in a simple multivariate
framework.

We model the participation decision of household i, Ci with Ci ∈ {0,1}, by means
of a logit model. The model builds on the form,

P (Ci = 1|Xi) = Λ (α +γ ×Xi) , (1.5)

where Λ is the logistic cumulative density function, Xi is a set of control vari-
ables.

Our first variable of interest for explaining participation is equivalent net income.
Higher income is expected to bring about a higher saving propensity and, hence,
make it easier to surmount the hurdle of the 4% personal saving effort for full
direct funding through the Riester scheme. Furthermore, higher income implies a
higher marginal tax rate and, hence, a larger benefit from tax deductions. Therefore,
we expect income to be a key driver of participation in the Riester scheme. This
expectation is borne out by the estimation, as shown by the first row of table 1.5.22

The coefficient on log income carries a positive sign and is strongly significant in all
specifications.

When controlling for the age group, we find that people in the highest age
bracket (56-64) are significantly less likely to participate in the Riester scheme. This
can be explained by the fact that those individuals were relatively old when the
Riester scheme was introduced – in 2002 – and had little to gain from entering the
program because their accumulation period was short. The presence of children
in the household increases the probability to participate in the Riester scheme –
something that is expected in light of its generous child allowance. Neither the
gender of the household head nor the location of the household in the western or the
eastern part of Germany significantly affect the probability of benefiting from the
Riester scheme.

In addition to the previously mentioned covariates, Specification (2) of table 1.5
includes dummies for the educational attainment of the household head. A priori,
it is unclear how education should affect participation. While the better educated
are more likely to diversify their portfolios and to be aware of the specific benefits
offered by Riester scheme, it is also possible that the less educated are more easily
taking up Riester contracts because they were heavily advertised. As it turns out,

22We also run specifications with income-decile dummies. After testing, we determine that there is
only a significant difference in trend between the third and fourth decile, while all higher deciles
(4-10) appear to have the same effect.

17
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the coefficients of the education dummies are insignificant, meaning that we cannot
reach any clear-cut conclusion.

Finally, Specification (3) adds a dummy for households that belong to the top
quintile of the wealth distribution. The coefficient of the dummy is strongly sig-
nificant and positive.23 Its marginal effect at sample means is 0.122 (S.E.: 0.043).
With other covariates at their means, belonging to top quintile of the net wealth
distribution raises the probability of participating in the Riester scheme from 26%
to 38 %.24

1.6 Qualifications and Extensions

Our analysis has focused on the distribution of annual income and how that distri-
bution is directly affected by the Riester scheme. However, this program also affects
the distribution of lifetime incomes. First, the long-term distributional effects will
depend on the extent to which pay-outs will be taxed in case of the rich and credited
against old-age assistance in case of the poor. Second, lifetime distributive effects
might differ from cross-sectional effects if cross-sectional incomes are not tightly
linked with permanent incomes. For example, some people have persistently low in-
come so that annual income is a good measure of lifetime income, while other people
might have low income for lifecycle reasons (early in the career) or transitory reasons
(unemployment or time out of the labor market). Third, the relative importance of
full allowance and tax deduction can change over the lifecycle. For example, in the
beginning of the earnings career people may receive the full allowance and with
rising earnings they may switch to tax deductions, thereby altering the distributional
effects of the scheme. We plan to investigate these issues in future research.

Another drawback of the current analysis is that we are silent on behavioral
effects. Even though, they are, as we have argued, likely to be small in terms of
savings activity, there are other margins of adjustment like labor supply, that we
have not considered. The issue of behavioral effects gains even more relevance when
not just one period but the life-cycle is considered. A dynamic model of saving,

23We have tested down from the full set of net wealth decile dummies. We could not reject that
all other dummies are jointly zero and a further test could not reject the equivalence of the
coefficients for deciles 9 and 10. Results are available upon request.

24Due to the complex survey design and multiple imputation, assessing goodness of fit is non-
standard. McFadden’s R2 is unavailable, making us resort to Efron’s R2, which is not based on the
log-likelihood. Efron’s R2 is calculated as

R2
E = 1−

∑
(yi − p̂i)2∑
(yi − ȳ)2 ,

with yi the observed values, ȳ their average and p̂i the predicted probabilities from the model.
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labor supply and consumption would be the candidate to give the pertinent answers
regarding the distributional impact of the Riester scheme in the dynamic setting.

1.7 Conclusion

The Riester scheme is the main device used by the German government to subsidize
retirement saving. As suggested by previous empirical studies, the Riester scheme
largely fails to generate more savings. Rather, it generates windfall gains for a subset
of the population. In this paper, we empirically investigate the distributional impact
of the Riester scheme. We estimate that 38% of the subsidy volume accrues to the top
quintile of the income distribution, but only 7.3% to the bottom quintile. The share
of the population below the poverty line increases by nearly one percentage point.
Nevertheless, the Riester scheme is almost distributionally neutral with respect
to overall inequality measures like the Gini coefficient. Distributional neutrality
results from two mutually offsetting effects: a progressive one stemming from the
subsidy schedule, and a regressive one from voluntary participation. Participation
is quite sparse in the lower deciles of the distribution, but, due to the low incomes
at the bottom of the distribution, relative subsidization is high. In the upper part
of the distribution participation is more widespread; yet, due to the rapid rise of
incomes, subsidy rates cannot keep pace and fall off. We also show that uniformly
redistributing the amount spent by the government on the Riester scheme by means
of a demogrant would generate a significantly more equal distribution of income.

A simple multivariate regression analysis of take-up behavior of Riester subsidies
confirms its correlation with the income of households, even when controlling for the
presence of children in the household – another significant driver of participation.
On top of that, take-up behavior is significantly explained by high household wealth:
belonging to the top quintile of the distribution of net household wealth increases
the probability to participate in the Riester scheme by about 12 percentage points.
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1 Distributional effects of subsidizing retirement savings accounts

1.8 Appendix

1.8.1 Multiple Imputation

Typical phenomena in survey data are unit and item non-response. The PHF exhibits
a high unit non-response rate and a low item non-response rate.25 Wealth and
income data are assessed as highly reliable by the data providers, as respondents
were willing to answer sensitive questions concerning these items.

To deal with item non-response, the dataset was multiply imputed, both for
discrete and continuous variables.26 If a variable is missing, five values are imputed.
Otherwise the observed value is recorded in all imputations.

Multiple imputation entails that imputed values may differ across imputations.
This is because an imputed value is the prediction of a regression model specific to
that variable. In each imputation after the first, random noise is added to the predic-
tion. This holds also for categorical variables. Accordingly, as an example, a person’s
status may be employed in one imputation and unemployed in another. Further,
the framework of the imputation is hierarchical, meaning that the imputation of
some variable depends on the imputed values of others. For example, work status is
imputed before employment earnings. Non-uniformity of imputed variables across
imputations complicates our analysis. For example, eligibility for Riester subsidies
is determined by the employment status, but the employment status need not be the
same across imputations. As a result, a household may appear as “eligible” in one
imputation and “ineligible” in another. In such cases, we follow the guidelines of
Rubin (2004) and define the status as ineligible.

Our analysis of the multiply imputed dataset follows the statistical procedures
outlined in Rubin (2004). The point estimate of a variable is computed as the average
of the point estimates over all imputations,

Q̄ =
1
m

m∑
r=1

Q̂r , (1.6)

for any desired point estimate Q̄ and any within-imputation point estimate, Q̂r , with
the number of imputations r ∈ {1, . . . ,m}.

The variance of the point estimate is the weighted sum of two components: the
between-imputation and the within-imputation component. The between component
is defined as,

B =
1

m− 1

m∑
r=1

(
Q̂r − Q̄

)2
. (1.7)

25See von Kalckreuth et al. (2012) .
26See Zhu and Eisele (2013) for details.
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1.8 Appendix

The within component, Ū , is the average of the within-imputation variance

estimates, Ûr = SE2
r =

1/Nr
∑Nr
i=1(qri−Q̂r)

2

Nr
. The term qri is the variable of interest for

observation i, and Nr is the number of observations in imputation r. Formally,

Ū =
1
m

m∑
r=1

Ûr . (1.8)

The estimate of the total variance is,

T = Ū +
(
1 +

1
m

)
B, (1.9)

which will conform to the Student’s t-distribution with ν degrees of freedom,

Q̄ −Q
√
T
∼ tν ,with ν = (m− 1)

1 +
Ū

1 + 1
mB

 . (1.10)

Since our samples are adequately large and item-nonresponse is generally
low, making ν adequately large, we can use the simplifying assumption of the
t-distribution approximating the Standard Normal. Thus we calculate 95% confi-
dence intervals as CI =

(
Q̄ ± 1.96×

√
T
)
.

1.8.2 Details on Tax Calculation

Following the German income tax law, our simulation proceeds in the following
steps:

1 Calculating the sum of incomes.

2 Deducting allowances and calculating the taxable income.

3 Implementing progression reservation.

4 Calculating the tax.

5 Testing the higher yield of child allowance and adjusting tax liability.

6 Testing the higher yield of the Riester allowance and adjusting tax liability.

7 Calculating the withholding capital tax.

8 Calculating the solidarity tax.

9 Calculating net income.
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1 Distributional effects of subsidizing retirement savings accounts

10 Aggregating to household level and adding transfers.

Due to the great overlap between the SOEP and the PHF, we can restrict ourselves
to two types of notable implementation differences concerning the tax calculation.

Omissions

Firstly, in calculating the sum of incomes (point 1), we collect all incomes relevant
for the calculation of the tax base. We cannot allow for loss-compensation27, because
negative incomes are not recorded. This is also generally the case for the STSM,
but in the PHF operating costs from rent and lease have also not been recorded.
Therefore, we cannot deduct these costs from the rent and lease incomes. Secondly,
due to lack of adequate information, the calculation of the sum of incomes omits
rents of widows and orphans. Thirdly, for the same reason, we cannot deduct the so
called Entfernungspauschale.28

Concerning the deduction of allowances (point 2), we are unable to implement
the assessment of childcare costs29 as a special expense, since there is no data on this
expense in the PHF.

Furthermore, we disregard progression reservation (point 3), as it is unlikely to
affect individuals relevant to our analysis.

Improvements

Concerning point 1, we impute Werbungskosten30 from aggregate statistics31 by
grouping individuals with income from dependent employment. Considering point
10, a feature of the PHF data is its household-level variable on transfers. We simply
add transfers to net or gross household income and do not need to model them.

Otherwise the simulation follows exactly the scheme of the STSM tax calculation.

1.8.3 Sample 3: Participating Population

The third sample in use is the eligible population holding an active Riester contract,
meaning at least one actively contributing person in the household, see table 1.6.
Compared to the previous samples, these households receive considerably higher
average income. The average number of household members and married household
heads is also higher. The level of the Riester subsidy is sizably larger than in the
other samples, about 413.60e on average. About 53% of the households in the
participating population benefit from the tax deduction associated with the Riester
scheme.
27A procedure that deducts losses - either across income sources or across periods - from earnings to

lower the tax base.
28A deduction of costs arising from commutes to one’s workplace.
29See § 10 S. 1 Nr. 5 EStG.
30A deduction of costs that derive from expenses to maintain earnings. See § 9 EStG.
31Statistisches Bundesamt (2008), also with data from 2009 and 2010, which came from a special

report on request.
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1.8.4 Graphs
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average participation in each decile. Deciles are derived
from the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households.

Figure 1.4: Participation Fraction by Decile for the Overall Population
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average subsidy rate in each decile. Deciles are derived
from the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households. We
define the subsidy rate as the sum of the subsidies divided by the sum of the incomes over all households in each decile,
multiplied by 100. In that sense, we do not compute an average of the subsidy rates, but rather the subsidy rate of the decile.

Figure 1.5: Subsidy Rate by Decile for the Overall Population
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Table 1.3: Effects of the Riester scheme on inequality and poverty

Overall Population

Measure woR wR−woR wD wR−wD
Gini 32.960 -0.014* 32.899 0.048*

(0.173) (0.002) (0.173) (0.002)
MLD 20.516 -0.025* 20.377 0.114*

(0.347) (0.006) (0.342) (0.009)
Theil 18.534 -0.018* 18.461 0.054*

(0.234) (0.002) (0.233) (0.003)
GE2 21.738 -0.029* 21.657 0.053*

(0.509) (0.003) (0.508) (0.004)
HCR 12.237 0.798* 12.052 0.983*

(0.166) (0.158) (0.196) (0.124)
IGR 35.589 -2.144* 35.692 -2.248*

(1.172) (0.382) (1.232) (0.291)
Sen 6.236 0.153* 6.145 0.244*

(0.205) (0.036) (0.202) (0.032)

Eligible Population

Measure woR wR−woR wD wR−wD
Gini 31.750 -0.031* 31.693 0.026*

(0.112) (0.003) (0.112) (0.003)
MLD 18.647 -0.050* 18.533 0.064*

(0.299) (0.008) (0.295) (0.010)
Theil 17.131 -0.035* 17.067 0.029*

(0.173) (0.003) (0.172) (0.004)
GE2 19.947 -0.046* 19.876 0.025*

(0.604) (0.005) (0.603) (0.005)
HCR 10.444 0.253 10.301 0.396*

(0.286) (0.167) (0.328) (0.117)
IGR 33.010 -0.875 33.030 -0.895*

(2.155) (0.491) (2.258) (0.344)
Sen 4.943 0.035 4.871 0.107*

(0.216) (0.037) (0.214) (0.031)
Note. All entries were multiplied by 100. Statistical significance of the dif-
ferences at the 5%-level is indicated by *. 1,000 bootstrap replicate weights
used to compute standard errors. Standard errors are displayed in paren-
theses.
woR refers to the income distribution without Riester subsidies. wR refers
to the income distribution with Riester subsidies. wD refers to the income
distribution with demogrant.
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Table 1.4: Decomposition of Subsidy Rates

Decile Overall Population Eligible Population

σ σM µ ȲM /Ȳ σ σM µ ȲM /Ȳ

1 0.449 4.982 0.077 1.160 0.712 4.652 0.147 1.038
(0.081) (0.599) (0.006) (0.043) (0.095) (0.313) (0.012) (0.034)

2 0.215 3.166 0.066 1.021 0.505 2.749 0.182 1.013
(0.048) (0.292) (0.011) (0.011) (0.054) (0.125) (0.018) (0.009)

3 0.280 2.153 0.127 1.020 0.610 2.132 0.286 1.003
(0.032) (0.108) (0.013) (0.007) (0.055) (0.136) (0.024) (0.004)

4 0.294 2.049 0.144 0.998 0.493 1.742 0.282 1.001
(0.023) (0.131) (0.014) (0.006) (0.054) (0.130) (0.013) (0.004)

5 0.324 1.914 0.168 1.007 0.507 1.489 0.341 0.998
(0.024) (0.120) (0.005) (0.003) (0.025) (0.055) (0.012) (0.004)

6 0.242 1.286 0.191 0.984 0.417 1.352 0.306 1.008
(0.022) (0.069) (0.011) (0.003) (0.025) (0.062) (0.013) (0.002)

7 0.318 1.312 0.243 0.999 0.328 1.085 0.302 0.999
(0.010) (0.051) (0.005) (0.002) (0.020) (0.056) (0.003) (0.002)

8 0.267 1.187 0.224 1.004 0.423 1.261 0.336 0.998
(0.012) (0.038) (0.009) (0.003) (0.025) (0.035) (0.019) (0.004)

9 0.298 1.272 0.237 0.991 0.402 1.323 0.305 0.997
(0.008) (0.065) (0.014) (0.005) (0.020) (0.058) (0.020) (0.003)

10 0.247 1.098 0.225 1.000 0.337 1.068 0.317 0.996
(0.007) (0.044) (0.004) (0.018) (0.010) (0.038) (0.011) (0.018)

Average 0.293 2.042 0.170 1.018 0.473 1.885 0.280 1.005
Note. PHF 2010. Own calculations. There are slight deviations from the formula due to rounding errors. Both σ , σM
and their standard errors have been multiplied by 100. 1,000 bootstrap replicate weights used to compute standard errors.
Standard errors displayed in parentheses. The row “Average” gives column-averages of the respective point estimates. The
decomposition does not apply to that row.
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Table 1.5: Logit Models of Participation

Specification (1) Specification (2) Specification (3)

log of equivalent net income 0.5778*** 0.5419*** 0.4679***

(0.1347) (0.1429) (0.1430)

age: 36-45 -0.2373 -0.2140 -0.2340

(0.1955) (0.1951) (0.1954)

age: 46-55 -0.3157 -0.2978 -0.3355

(0.2084) (0.2091) (0.2103)

age: 56-64 -1.2090*** -1.1800*** -1.2930***

(0.2229) (0.2244) (0.2336)

single w/ children 0.5783 0.6016* 0.5886*

(0.3525) (0.3492) (0.3470)

couples 0.0672 0.0938 0.0807

(0.2229) (0.2229) (0.2226)

couples w/ children 0.6289*** 0.6585*** 0.6561***

(0.2091) (0.2130) (0.2115)

more than two adults 0.2943 0.3774 0.3194

(0.2654) (0.2635) (0.2650)

female 0.1004 0.0802 0.0774

(0.1683) (0.1705) (0.1730)

east 0.1700 0.2031 0.2337

(0.1989) (0.2044) (0.2074)

sec. educ. completed 0.3011 0.2627

(0.1985) (0.1978)

tertiary educ. completed -0.2079 -0.2165

(0.2347) (0.2320)

top quintile of net wealth 0.6262***

(0.2230)

constant -7.0285*** -6.7657*** -6.0048***

(1.3835) (1.4415) (1.4400)

observations 2043 2043 2043

Efron’s R2 0.065 0.066 0.069

PHF 2010. Own Calculations. 1000 bootstrap replicate weights used to compute standard errors. Standard errors
in parentheses. (***) statistically significant at the 1%-level, (**) at the 5%-level, (*) at the 10%-level. We report
the average of Efron’s R2 over all imputations, which may not be statistically appropriate when the statistic is not
normally distributed.
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1 Distributional effects of subsidizing retirement savings accounts

Table 1.6: Descriptive Statistics for the Participating Population

mean std. error min max obs.

equivalent gross household income
with transfers without Riester subsidy

34844 1209 1133 324800 628

equivalent net household income with
transfers without Riester subsidy

29721 855.418 600 221772 628

number of household members 2.738 0.062 1 7 628
married 0.600 0.026 0 1 628
age 41.26 0.504 18 90 628
female 0.282 0.023 0 1 628
completed vocational training 0.554 0.025 0 1 628
completed extended vocational train-
ing

0.208 0.025 0 1 628

completed university degree 0.168 0.020 0 1 628
access to tertiary education 0.388 0.025 0 1 628

Estimated subsidies and subsidy rates

level of Riester subsidy 413.593 15.427 0 1764 628
ratio of subsidy to net household in-
come in %

1.082 0.080 0 17.111 628

receiving Riester tax allowance 0.534 0.029 0 1 628

Note. PHF 2010. Own calculations. 1,000 bootstrap replicate weights used to compute standard errors.
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average participation in each decile. Deciles are derived
from the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households.

Figure 1.6: Participation Fraction by Decile for the Eligible Population
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average subsidy rate in each decile. Deciles are derived
from the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households. We
define the subsidy rate as the sum of the subsidies divided by the sum of the incomes over all households in each decile,
multiplied by 100. In that sense, we do not compute an average of the subsidy rates, but rather the subsidy rate of the decile.

Figure 1.7: Subsidy Rate by Decile for the Eligible Population
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average subsidy level in e p.a. Deciles are derived from
the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households.

Figure 1.8: Subsidy Level by Decile for the Eligible Population
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Figure 1.9: Concentration Curves for Overall and Eligible Population
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average subsidy rate in each decile. Deciles are derived
from the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households. We
define the subsidy rate as the sum of the subsidies divided by the sum of the incomes over all households in each decile,
multiplied by 100. In that sense, we do not compute an average of the subsidy rates, but rather the subsidy rate of the decile.

Figure 1.10: Subsidy Rate by Decile for the Participating Population
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Note. Dashed lines indicate the 95% bootstrap confidence interval. Average subsidy level in e p.a. Deciles are derived from
the equivalent net household income distribution. Each decile comprises 10% of the weighted total of households.

Figure 1.11: Subsidy Level by Decile for the Participating Population
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Figure 1.12: Concentration Curves for Overall, Eligible and Participating Population
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2 Inequality-minimization with a

given public budget1

2.1 Introduction

Globally, policy-makers are seeking to reduce inequalities in market incomes via
transfers (Joumard et al. (2012)). Their distributional effects – their progressiveness
– are usually evaluated by comparing inequality indices from the market and post-
transfer distributions. Unanswered is the issue of the effectiveness of the transfer
scheme: Is there an alternative scheme - for a given public budget - that yields a
stronger inequality reduction, and what is the maximum feasible inequality reduc-
tion? The present paper shows that to minimize a relative inequality index, it is
not always optimal to distribute income to units at the bottom of the distribution,
resulting in a truncated distribution.2 Instead, transferring to richer units with
larger population weights could be more effective. This “puzzle”, first demonstrated
by Glewwe (1991), is solved in the present paper.

We identify the optimal transfer scheme by solving a constrained minimization
problem. In our context, the problem is to minimize the inequality in a distribution
of exogenously given incomes by means of non-negative transfers with a fixed public
budget.3 If the objective function, the index of interest, and the set of constraints
is convex, then the problem can be solved by an interior-point algorithm. If the
objective function is quasiconvex and the set of constraints is convex, then the
problem can be solved by the bisection method.4 For example, the variance is convex
but the Gini index is quasiconvex.

First, consider the effect of a marginal monetary transfer. Its effect is determined
by the first derivative of the objective function with respect to the income of the
recipient: the larger the first derivative in absolute terms, the larger the inequality
reduction. Hence, we need to know what determines the first derivative. Suppose the

1This is a post-peer-review, pre-copyedit version of an article published in The Jour-
nal of Economic Inequality. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10888-018-9380-3

2Since Blackorby and Donaldson (1978), there is an established theoretical literature on the proper-
ties of social welfare functions implied by different inequality indices (see also Yitzhaki (1983)).
The Atkinson (1970) index is directly constructed from a welfare function.

3A related problem is investigated in Prete et al. (2016). The authors identify socially desirable
three brackets piecewise linear tax systems that allow collecting given revenue when the aim is to
reduce inequality or income polarization.

4Convexity requires that the second derivative of the objective function is non-negative. Quasicon-
vexity requires that the function’s sublevel sets are convex. For the definition of a sublevel set see
Section 2.2.2.
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population is homogeneous, meaning all units are of equal composition, thus having
the same material needs. The first derivative of any standard inequality measure
increases in the income or rank of the transfer recipient. This means that transfers
should always be donated to the household units with the smallest pre-transfer
income.

As an example, suppose the planner’s objective is the minimization of the Gini
index, the public budget is 1 monetary unit, and the income distribution is (14, 20,
30, 40, 80) with a Gini index of 0.33043. The optimal post-transfer distribution is
(15, 20, 30, 40, 80) with a Gini index of 0.32432. If the budget were 20 units, the
optimal post-transfer distribution would be (27, 27, 30, 40, 80) with a Gini index
of 0.23333. The latter distribution is optimal as the entire budget is channeled to
the households at the bottom of the distribution and marginal social utilities for all
transfer recipients (first derivatives of the Gini w.r.t. transfers) are equal. We call the
underlying transfer rule “bottom fill-up,” as it minimizes income differences at the
bottom of the distribution.

Now suppose the population is heterogeneous, meaning household units differ
in composition (i.e., number of household members) and needs, with the latter being
measured by an equivalence scale5. The common practice of measuring inequality in
a heterogeneous population involves two steps. The first step is the needs adjustment
of incomes by dividing a household unit’s income by its equivalence scale. The
second step involves the weighting of household units to construct the equivalent-
income distribution. The traditional approach in inequality measurement is to
weight households by the number of household members (size weighting). It is
consistent with the welfarist’s principle of normative individualism: each person
is as important as any other. Then the first derivative of the objective function is
not determined by income rank alone. Consider again the aforementioned income
distribution (14, 20, 30, 40, 80) but now suppose household sizes are (1, 4, 1, 4, 1).
Under size-weighting, the sorted equivalent income distribution under the square-
root scale is ((10, 4) (14, 1), (20, 4), (30, 1), (80, 1)), with the first number giving
equivalent income and the second the unit’s weight. The resulting Gini index is
0.36215. For the public budget of 20 units, the bottom fill-up rule gives ((18, 4)
(18, 1), (20, 4), (30, 1), (80, 1)) with a Gini of 0.24026. There is, however, a transfer
scheme with an alternative feasible post-transfer distribution ((17, 1), (18.5, 4), (20,
4), (30, 1), (80, 1)) that results in a lower Gini index of 0.23940.

Bottom fill-up fails to produce the optimal distribution because, for the size-
weighted heterogeneous distribution, the inequality-reducing effect of transfers
not only depends on (a) the recipient household’s rank in the equivalent income
distribution (as in case of a homogeneous population), but also on (b) the household’s

5An equivalence scale measures household-size economies and differences in needs across household
members (e.g. of adults and children). For example, the square-root equivalence scale adjusts
household income using the square root of the number of household members.
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weight, and (c) the transfer-induced change in average equivalent income (which
again depends on the recipient household’s weight and equivalence scale). The
bottom fill-up rule ignores channels (b) and (c).6 The basic intuition why bottom fill-
up fails for a size-weighted distribution is the following: Transferring income not to
the poorest but to a less poor and larger household unit can imply a stronger increase
of average equivalent income. This effect reduces any scale-invariant inequality
index, and can overcompensate the potential inequality reduction that could have
been achieved by shrinking income gaps at the very bottom of the distribution. In
sum, the optimal assignment of transfers will hinge on how households of different
types sort along the distribution of equivalent incomes, the type-specific equivalence
scale, and the type-specific weighting factor. Further, because of the Pigou-Dalton
principle, a transfer should always be provided to the poorest household of a certain
type.

The optimal transfer scheme provides a lower bound for the feasible post-
redistribution inequality. Its most general characterization is in terms of person-
alized transfers that may depend on the overall distribution of incomes and on
household characteristics. Such a scheme is unlikely to be applied. However, our
procedures are still useful for practical policy purposes as a benchmark: the optimal
solution can be compared to those that could be used in practice in order to identify
the second best policies that less differ from the first best one.7

Section 2 shows solutions to the aforementioned optimization problem for convex
and quasi-convex inequality indices using constrained optimization techniques.
Section 3 provides empirical applications. Section 4 concludes.

2.2 The Constrained Optimization Problem

Following Ebert and Moyes (2003), suppose households are defined by two attributes:
household income yi ≥ 0 and household type hi ∈H={1,...,H}. Household material
well-being is defined by equivalent income, the ratio of household income and the
household’s equivalence scale ESi = ES(hi) > 0. In total, the population consists of N

households and Q =
∑N
i=1
qi individuals, with qi denoting the number of individuals

in household i. Let wi denote the weight of a household. In case of a homogeneous

6Under size weighting, economies of scale create a wedge between household size and needs
(equivalence scale). A possible way to avoid the wedge is to abandon the principle of normative
individualism, and weight households by needs rather than size. Specifically, under needs
weighting, the transfer-induced change of average equivalent income does not depend on the
recipient household’s composition. Characterizations of needs weighted distributions are found
in the theoretical works of Ebert (1999), Ebert and Moyes (2003), and Shorrocks (2004). The
downside is an “ethical dilemma because individuals who have less extensive needs would be
given a lower weight” (Wodon and Yitzhaki (2005, p. 3)).

7De facto, however, the transfer schemes boil down to a bottom fill-up with type-specific truncation.
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or size-weighted heterogeneous population wi = qi . In case of a needs-weighted

heterogeneous population wi = ESi . Average equivalent income is ȳ = (
∑N
i=1
wi(yi + ti)/

ESi)/W with W =
∑N
i=1
wi .

The aim of the social planner is to minimize inequality for a given income distri-

bution, Y , via transfers, ti ≥ 0, with a given public budget, B =
∑N
i=1
ti .8 The planner

assigns the same weight to each individual of every household (size-weighting). In-
equality is inferred from the distribution of equivalent income - household income,
yi , divided by equivalence scale, ESi . The planner’s objective function is the inequal-
ity index I :RN×N×N×N+ →R, which is at least twice continuously differentiable and
convex or quasiconvex.9 Thus the optimization problem is,

minimize
ti

I

{wi , yi + ti
ESi

}N
i=1

 , (2.1)

subject to inequality constraints,

0 ≤ ti ∀i, (2.2)

and
N∑
i=1

ti ≤ B. (2.3)

The corresponding Lagrangian is,

L = I

{wi , yi + ti
ESi

}N
i=1

+
N∑
i=1

νiti +λ

B− N∑
i=1

ti

 , (2.4)

implying the following Karush-Kuhn-Tucker optimality conditions (first-order
and slack conditions),

8Extension to the case of the ti R 0 is straightforward, which enables a full derivation of a tax and
transfer system. Further, the investigator may introduce distortions. In the presence of such
distortions, δi , the transfer net of the distortion is t̃i = ti − δi and the post-transfer income is

yi − δi + ti . The public budget is B =
∑N
i=1
ti .

9Shalit and Yitzhaki (2005) minimize Gini’s mean difference subject to linear constraints in a finance
context, while Yitzhaki (1982) minimizes the squares of the differences of pre- and post-reform
after-tax income subject to non-linear constraints. Both papers consider a convex objective
function, while we also provide solutions for quasiconvex functions.
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∂L
∂ti

=
dI

({
wi ,

yi+ti
ESi

}N
i=1

)
dti

−λ+ νi
!= 0⇔

dI
({
wi ,

yi+ti
ESi

}N
i=1

)
dti

∣∣∣∣∣∣∣∣∣
ti=t∗i

= λ− νi ∀i, (2.5)

and
N∑
i=1

t∗i ≤ B, 0 ≤ t∗i ∀i, νi ≥ 0, νi(−t∗i ) = 0.

If all the Lagrange parameters νi are zero and, consequently, not binding in
the optimum, then the marginal social utilities of all transfer recipients should be
equal to the shadow-price λ.10 Take, for example, the Gini index in rank-based
formulation, where households are ordered in a non-decreasing fashion with respect
to their equivalent income, such that yi+ti

ESi
>
yj+tj
ESj
⇒ i > j and yi+ti

ESi
=

yj+tj
ESj
⇒ i = j.

Accordingly,

G =
1

W
∑N
i=1

wi
yi+ti
ESi

∑N
i=1

∑
i≥j
wiwj

(
yi + ti
ESi

−
yj + tj
ESj

)
. (2.6)

For ease of notation, let u = 1

W
∑N
i=1

wi
yi+ti
ESi

and v =
∑N
i=1

∑
i≥j
wiwj

(
yi+ti
ESi
− yj+tjESj

)
.

Suppose we are now implementing a rank-preserving marginal transfer. Re-
placing the general objective function I in (2.4) with the Gini index, the first-order
condition is,

∂G
∂ti
−λ =

∂u
∂ti

v +
∂v
∂ti
u −λ != 0, (2.7)

with
∂u
∂ti

=
−wi/ESi

W
(∑N
i=1

wi
yi+ti
ESi

)2 ,

and

∂v
∂ti

=
∑
i≥j
wiwj

1
ESi
−

∑
j≥i
wjwi

1
ESi

.

10See Luenberger (1968) and Arrow and Enthoven (1961) for references on quasiconvex program-
ming.
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The derivative ∂u
∂ti

reflects the marginal effect of a transfer on average equivalent

income. The derivative ∂v
∂ti

shows that the transfer’s effect on inequality depends on
the recipient household’s weight and equivalence scale wi

ESi
together with its rank in

the equivalent income distribution.
For a homogeneous population

∂u
∂ti

=
−1

N
(∑N
i=1

yi + ti
)2 ,

∂v
∂ti

=
∑
i≥j

1−
∑
j≥i

1.

and ∂ȳ
∂ti

= ∂ȳ
∂tj
∀i, j. The derivative ∂v

∂ti
for the homogeneous population reveals

that the transfer effect depends on the recipient household’s rank (channel (a)). The
effect is negative if the second of the two sums is larger in absolute value than the
first, i.e. if the recipient household i ranks below the median household. Because
the household types are uniform, the effect is independent of the household’s weight
(channel (b) is irrelevant). For the same reason, the transfer-induced change in
average income is independent of the transfer recipient (channel (c) is irrelevant).11

For a size-weighted heterogeneous population with wi = qi , all three channels are
reflected in the first-order conditions. The “bottom fill-up”-rule therefore secures
optimality only for the case of a homogeneous distribution. For heterogeneous
distributions, the optimal transfer scheme can be derived using constrained opti-
mization techniques. If I(·) is convex, the planner’s problem can be solved with an
interior-point algorithm. If I(·) is quasiconvex, the bisection method can be used.
Table 2.1 shows the categorization of several well-known inequality measures with
respect to whether they are convex or quasiconvex.12

11For a needs-weighted heterogeneous population wi = ESi ∀i, ∂u∂ti = −1

W

∑N
i=1

yi+ti

2 ,

∂v
∂ti

=
∑
i≥j
wj −

∑
j≥i
wj

and ∂ȳ
∂ti

= ∂ȳ
∂tj
∀i, j. So, the redistributive effect of ti depends on channels (a) and (b) but not (c).

12See Appendix 2.6.1 for proofs. In the case of the Gini index, the bisection method is rather
computer-time intensive. To avoid this computational burden, we exploit that the Gini is a
linear-fractional function, meaning that an equivalent convex problem can be solved with the
interior-point algorithm. This saves an immense amount of computer time. See Appendix 2.6.2
for details.

42



2.2 The Constrained Optimization Problem

Table 2.1: Properties of Selected Inequality Indices
Index Convex Quasiconvex
Variance Yes Yes
Absolute Mean Deviation Yes Yes
Relative Mean Deviation No Yes
Gini Index No Yes
Theil Index No Yes
Atkinson Index No Yes

2.2.1 Solution for Convex Indices

Several interior-point algorithms to solve convex optimization problems are pro-
posed in the literature. A general introduction to this literature is Boyd and Vanden-
berghe (2004). This section does not provide a comprehensive introduction; rather it
provides a ready access to the literature and implementation for non-specialists.

Following Boyd and Vandenberghe (2004), an interior-point algorithm solves
convex optimization problems of the type,

minimize f
(
{xn}Mn=1

)
(2.8)

subject to gj
(
{xn}Mn=1

)
≤ 0, j = 1, . . . , J ,

where f (·) and the functions gj(·) map from RM to R and are twice continu-
ously differentiable and convex. In our context, a social planner seeks to minimize
inequality with non-negative transfers given a public budget B, i.e.

minimize
ti

I

{wi , yi + ti
ESi

}N
i=1

 (2.9)

subject to 0 ≤ ti , i = 1, . . . ,N
N∑
i=1

ti ≤ B.

Ideally, we would proceed to optimize a modified Lagrangian, L, with first-order
conditions given by,

∂L
∂ti

=
dI

({
wi ,

yi+t∗i
ESi

}N
i=1

)
dti

−λ∗ + ν∗i = 0 ∀i. (2.10)
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2 Inequality-minimization with a given public budget

Because we have one first-order condition for each i, but three unknowns, ν∗i , λ
∗

and t∗i , the system is unidentified. Interior-point algorithms reformulate the problem
to avoid underidentification by means of a so-called barrier function, ι, which is
integrated into the objective function. In our case, the inequality index is extended
by a barrier function that takes large positive values if either the constraints for the
transfers and/or the budget constraint are violated.

The reformulated unconstrained problem incorporating the barrier function is,

minimize Ĩ (t) = I

{wi , yi + ti
ESi

}N
i=1

+ ι
(
p, {ti}Ni=1

)
, (2.11)

where ι
(
p, {ti}Ni=1

)
= −

∑N
i=1

1
pLog(ti) − 1

pLog
(
B−

∑N
i=1
ti

)
, and p denoting the barrier

parameter, a large number defined by the researcher.13 In our setting, the barrier
function puts a penalty on violations of the imposed constraints on transfers and

the public budget. For example, consider the term −1
pLog

(
B−

∑N
i=1
ti

)
: As the sum of

transfers approaches the public budget, the term increases exponentially because
of the logarithm, and p scales the barrier function. Particularly, as p approaches
infinity, ι(·) approaches the indicator function of our set of constraints,

I+

(
{ti}Ni=1

)
=

{
0,ti≥0 and

∑N
i=1 ti≤B

∞,ti<0 or
∑N
i=1 ti>B

. (2.12)

There is an immediate connection between the unconstrained problem (2.11) and
the constrained problem (2.9). By multiplying (2.11) with p, we obtain an equivalent

problem pI (·)−
∑N
i=1

Log(ti)−Log
(
B−

∑N
i=1
ti

)
. Now assume that vector

{
t∗i
}N
i=1

solves the

optimization problem and is within the constraint set. Then the following holds,

p

dI

({
wi ,

yi+t∗i
ESi

}N
i=1

)
dt∗i

− 1
t∗i
−
 −1

B−
∑N
i=1 t

∗
i

 = 0 ∀i. (2.13)

To re-convert the first-order condition (2.13) into (2.5), set ν∗i = − 1
pt∗i

and λ∗ =
−1

p(B−
∑N
i=1 t

∗
i )

, giving

dI

({
wi ,

yi+t∗i
ESi

}N
i=1

)
dti

−λ∗ + ν∗i = 0 ∀i. (2.14)

13In the applications we set p = 107.
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Hence, there is an equivalence between the unconstrained and the constrained
problem outlined in equations (2.11) and (2.9). This equivalence is important, as
(2.11) can be solved by Newton’s method.

The intuition of Newton’s method is illustrated best in a one–dimensional setting
following Judd (1998, pp. 96). Suppose our aim is to find the root of a complicated
function f (x). The general idea of numerical methods, including Newton’s method,
is to replace the complicated function with a simple approximation, say f (x) =mx+b
with root x = − bm . We also know that the tangent line of a function is the “best” linear
approximation of a function around its tangency point.

Since it is easy to find the root of the linear function, Newton’s method assumes
that the complicated function is a line and then finds the root of the line supposing
that the line’s crossing is a good approximation to the root of the complicated
function. Formally, suppose we have the tangent line of f (x) at x = a, where a is the
starting point, f (x) ≈ f (a) + f ′(a)(x − a) = 0 and x = a− f (a)

f ′(a) . If the approximation is
poor, the idea of Newton’s method is to find the root of a new tangent line at x = x1:
x2 = x1 −

f (x1)
f ′(x1) . These so-called Newton steps are undertaken for x2,x3, ...,xn until

f (xn)
f ′(xn) is small, meaning convergence to an approximation of the root.

In our setting, we do not search for a good approximation of the root of a func-
tion but for the minimum of the unconstrained problem. In such an optimization
Newton’s method is applied to f ′, so that xn+1 = xn −

f ′(xn)
f ′′(xn) . This allows us to find

f ′(limn→∞xn) = 0. In particular, xn→ x is a critical point.
More general and for higher dimensions, Newton’s method comprises four steps:

Step 1 Start from a feasible transfer scheme. For example, a feasible scheme is
t0 with ti = B/N ∀i. This gives an initial value of the objective function of the
unconstrained problem, Ĩ (·), Ĩ0.

Step 2 To improve Ĩ0, calculate a Newton step. A Newton step takes the known
information of the function at a given point (value, gradient, and Hessian), makes a
quadratic approximation of that function, and minimizes that approximation. More
specifically, the Newton step gives the direction toward the optimum, defined by the
weighted negative gradient,

∆t = −
(
∇2Ĩ (t)

)−1
∇Ĩ (t) . (2.15)

The Newton step is the product of two terms, the inverse of the Hessian,(
∇2Ĩ (t)

)−1
, and the negative gradient, −∇Ĩ (t). ∆t gives the change of the transfer

schedule t0 (to be multiplied with step-size scalar, s). The Hessian is the higher-
dimensional generalization of the second derivative and multiplying by its inverse
is the non-commutative generalization of dividing by the second derivative f ′′ in
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2 Inequality-minimization with a given public budget

the one-dimensional case. Weighting by the Hessian fits the steps to the shape of
the contour sets of the function, as shown in Figure 2.1, thereby inducing faster
convergence than other methods like steepest descent. The ellipse around t0 is given
by the points of unit distance measured in terms of the norm of the Hessian. Step 2
selects the point on the boundary of the ellipse that gives the smallest value of the
objective function.

Step 3 The line through the initial point t0 and the point on the boundary of the
ellipse is defined by t0 +s∆t (black line in Figure 2.1). Step 2 searches for the optimal
s, s∗, that determines the point on the line with the smallest level of Ĩ . This is the
so-called line-search. One line-search variant is called backtracking. It relies on the
idea of approximating Ĩ along the direction ∆t with a first-order Taylor expansion.

Set s = 1 and compute Ĩ . If the transfer-induced reduction of the objective
function is sufficiently large, the line-search algorithm terminates. Sufficiently large
means that the new value of the objective function is smaller than the first-order
Taylor expansion around t0, scaled by α, i.e, Ĩ (t + s∆t) ≤ Ĩ(t) +αs∇Ĩ(t)′∆t. Parameter
α ∈ (0,1) is set by the researcher to define the acceptable decrease of Ĩ along the
current direction ∆t.14 Otherwise, rescale s with parameter β ∈ (0,1), and repeat the
above procedure. Again, β is determined by the researcher.15 Completing Step 3
gives the new point t1 = t0 + s∗∆t.

Step 4 Here the decrease of Ĩ between transfer scheme t0 and t1 in terms of the

squared Newton decrement, defined asND2 (t) = ∇Ĩ(t)′
(
∇2Ĩ(t)

)−1
∇Ĩ(t), is evaluated.

If the squared Newton decrement is smaller than the specific threshold, 2ε, with ε
defined by the researcher, then the algorithm terminates. Otherwise, start with t1
and repeat Steps 2-4 again.

Newton’s method with backtracking line search is summarized in the box Algo-
rithm 1.

2.2.2 Solution for Quasiconvex Indices

Quasiconvex functions have convex sublevel sets. A sublevel set of a function, f , is,

L−k (f ) = {(x1, · · · ,xn) | f (x1, · · · ,xn) ≤ k} ,

14The parameter α cannot be set to be larger than 1, since, at best, the condition Ĩ (t + s∆t) =
Ĩ(t) + s∇Ĩ(t)′∆t can be fulfilled with an infinitesimal s. The Taylor expansion is a lower bound on
the function Ĩ .

15Backtracking is quite insensitive to the choice of α and β. See Boyd and Vandenberghe (2004).
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Algorithm 1 Newton’s Method with Backtracking Line-Search

Start from some point t in the domain of Ĩ (·) and choose ε > 0 as the tolerance.

Compute ∆t andND2 (t) at the current point.
whileND2 (t) /2 > ε do

1. Line-Search: Choose some α ∈ (0,1) and a β ∈ (0,1) Set s = 1.
while Ĩ (t + s∆t) > Ĩ(t) +αs∇Ĩ(t)′∆t do

Set s = βs.
end while
2. Update: Change the current point t to be t = t + s∆t

end while

Note. The ellipse around t0 is given by
{
x
∣∣∣‖x− t0‖∇2f (t0) = 1

}
. The black line is given by t0 + s∆t.

Dotted lines are contour sets of f (t).

Figure 2.1: Newton’s Method with Backtracking Line-Search for the Function f (t) = et1+3t2−0.1 +
et1−3t2−0.1 + e−t1−0.1.

with k denoting the upper bound of the sublevel set. According to the extreme
value theorem, the function implied by the sublevel set has a minimum. The
objective is to find the lowest k.

The search for the lowest value of k is performed by solving a sequence of convex
optimization problems. At every candidate value k, there exists a convex function
Φk, with the property that Φk(x) ≤ 0 if f (x) < k. This property implies that a vector
x that guarantees Φk(x) ≤ 0 also guarantees f (x) ≤ k. As a corollary, if no vector
x exists such that Φk(x) ≤ 0, then f (x) > k. This procedure allows distinguishing
between feasible and infeasible solutions.

The bisection method provides the lowest feasible value of k by successively
eliminating infeasible values. Below, we provide an illustration of the bisection
method for identifying a transfer scheme that minimizes the Gini index, G, which is
quasiconvex. Accordingly, there exists a function, Φk(G), that is convex. As shown

in Appendix 2.6.1, Φk(G) =
∑N
j=1wj

∑N
i=1wi

∣∣∣∣yi+tiESi
− yj+tjESj

∣∣∣∣− k (2W ∑N
i=1wi

yi+ti
ESi

)
.
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2 Inequality-minimization with a given public budget

Step 1 Determine an upper and lower bound of the Gini index, denoted u and l.
A reasonable choice of u and l is the theoretical minimum of the Gini index, l = 0,
and the Gini of the pre-transfer distribution for u. Further, define a tolerance level
as stopping criterion, ε > 0.

Step 2 Bisect the interval between l and u to find a candidate value k = l+u
2 .

Step 3 Check if there exists a feasible transfer scheme t such that Φk (G (t)) ≤
0,

∑N
i=1 ti ≤ B , ti ≥ 0 ∀i. The feasibility problem is solved by means of an interior-

point algorithm. Specifically, the algorithm solves the following problem: minimize
0 s.t. Φk (G (t)) ≤ 0,

∑N
i=1 ti ≤ B , ti ≥ 0 ∀i. If a feasible transfer scheme is found, set

u = k. Otherwise, set l = k.

Step 4 Repeat steps 2-3 until u − l < ε.

The bisection method converges after Log2

(
u−l
ε

)
iterations. The algorithm is

detailed in box Algorithm 2.

Algorithm 2 Bisection Method
Set the value l as the lower bound of the function and u as the upper bound. Define
ε > 0 to be the tolerance.

while u − l ≥ ε do
1. Set k = l+u

2 .
2. Find t s.t. Φk (G (t)) ≤ 0,

∑N
i=1 ti ≤ B, ti ≥ 0 ∀i

if t is a solution of 2. then
set u = k

else
set l = k

end if
end while

Figure 2.2 illustrates the bisection method assuming three iterations. In the first
two iterations, there exists a feasible solution to the optimization problem, providing
two new upper bounds, u1 and u2. The third iteration fails to provide a feasible
solution, leaving the interval [l3,u3], which satisfies the tolerance criterion ε.

2.3 Application

This section presents two applications of constrained optimization techniques in
the context of inequality. The first application relies on two synthetic datasets and
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l0 u0

u1 = l0+u0
2

l1

u2l2

l3 u3

u3 − l3 < ε

Figure 2.2: Bisection of Parameter Range [l0,u0]

serves two purposes: 1) to illustrate the difference between a transfer-scheme based
on bottom fill-up and the optimal transfer scheme; and 2) to give an impression of
the optimization problem’s computational burden as a function of sample size. The
second application is a real-world implementation.

2.3.1 Synthetic Data

The synthetic datasets are presented in Table 2.2. The two panels of the table
distinguish two alternative pre-transfer distributions (distributions (1) and (2) ).
Column yi provides the household pre-tax income, qi the number of household
members, ESi the equivalence scale, and yi/ESi the pre-tax equivalent income. We
assume the planner’s exogenous budget is 105 monetary units. Two indices serve
as criteria: the quasiconvex Gini index and the convex absolute mean deviation
(AMD). The adjacent two columns provide the nominal transfers and post-transfer
equivalent incomes under bottom fill-up, while the last two columns provide the
same information for the optimal transfer scheme.16

For the pre-transfer distribution (1) in the upper panel of Table 2.2 the AMD
is 6.420 and 0.073 is the Gini index. The transfer budget suffices to equalize the
post-transfer equivalent incomes among the three households at the bottom of the
distribution, each getting an equivalent post-transfer income of 107.14 income units.
For the post-transfer distribution under bottom fill-up, the AMD is 2.995 and 0.032
is the Gini index. Distribution (1) is constructed in a way that large household
types with high weights and high within-household economies of scale cluster at the
bottom of the distribution of pre-transfer equivalent income. In this constellation,
the optimal transfer scheme coincides with bottom fill-up. This is because all three

16We provide the Matlab-code for the methods employed in the Online Appendix Implementation
of the optimization of a convex measure is straightforward. One needs to code the inequality
measure and then optimize using fmincon.

49
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channels suggest that the households at the bottom of the distribution are the
appropriate transfer recipients.

Distribution (2), in the bottom panel, is constructed in a way such that the
bottom of the pre-transfer equivalent income distribution comprises heterogeneous
household types: large and small households. For example, the lowest-ranked
household is a one-member household, but the second-lowest ranked household is a
nine-member household. Just focusing on the recipient household’s rank (channel
(a)), the one-member household should receive a transfer. However, it has a low
weight and no or low household-size economies of scale arise (channels (b) and
(c)). As a result, the optimal transfer scheme deviates from bottom fill-up. While
under bottom fill-up four households at the bottom receive transfers that equalize
their equivalent incomes at a level of 113.12 monetary units, the optimal transfer
scheme does not grant transfers to the lowest and third lowest-ranked one-member
households, but to the second- and fourth lowest ranked nine member households.
For the latter two households, the assigned transfers equalize the post-transfer
equivalent income. Thus, the optimal transfer scheme is a type-specific bottom
fill-up, but the lowest-ranked households need not be the ones that benefit from
transfers.

This application provides guidance concerning the practical implementation
of an inequality-minimizing transfer scheme. It is apparent that transfers should
be granted to the poorest household of each type (type-specific bottom fill up).
Transfers should not necessarily be granted to households at the bottom of the
distribution. This is the case when households at the bottom of the distribution have
small weight and no or low household-size economies of scale. In this case channels
(b) and (c) work in favor of higher-ranked multi-member household units. This is a
general conclusion, which can be seen from the exercise detailed below.

To complete the exercise, we take the above pre-transfer distributions and iden-
tify the optimal post-transfer equivalent income distributions for various levels of the
public budget. The resulting optimal post-transfer equivalent income distributions
are provided in the two graphs in Figure 2.3. The upper graph refers to distribution
(1) while the bottom graph refers to distribution (2). The abscissa provides the trans-
ferable public budget, B. The ordinate provides the optimal post-transfer equivalent
incomes. The dark-grey lines with crosses connect the post-transfer incomes for the
one-member households, the black lines with squares for the two, and the light-gray
lines with circles for the nine member households.

For distribution (1), bottom-fill up coincides with the optimal transfer rule for
all values of the public budget, supporting our above arguments: Starting with a
public budget of zero, the first transfer units are allocated to the lowest-ranked
households until it catches up with the second-lowest ranked household in terms
of post-transfer equivalent income. For higher transfer volumes, transfers are split
among the two households in a way that their post-transfer equivalent incomes are
the same (truncation of the distribution), explaining why the slope of the recipients’
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Table 2.2: Synthetic Data

Distribution yi qi ESi yi/ESi t
fill-up
i

yi+t
fill-up
i
ESi

t
opt
i

yi+t
opt
i

ESi
270 9 3 90 51.42 107.14 51.42 107.14
285 9 3 95 36.42 107.14 36.42 107.14
134 2 1.414 95 17.17 107.14 17.17 107.14
156 2 1.414 110 0 110 0 110

(1) 345 9 3 115 0 115 0 115
120 1 1 120 0 120 0 120
125 1 1 125 0 125 0 125
130 1 1 130 0 130 0 130
191 2 1.414 135 0 135 0 135

AMD 6.420 2.995 2.995
Gini 0.073 0.032 0.032
90 1 1 90 23.12 113.12 0 90

285 9 3 95 54.37 113.12 75 120
95 1 1 95 18.12 113.12 0 95

330 9 3 110 9.37 113.12 30 120
(2) 115 1 1 115 0 115 0 115

169.7 2 1.414 120 0 120 0 120
177 2 1.414 125 0 125 0 125
184 2 1.414 130 0 130 0 130
405 9 3 135 0 135 0 135

AMD 7.037 4.358 3.53
Gini 0.078 0.04 0.038

income-function gets smaller. If the transfer budget is large enough, such that the
post-transfer equivalent incomes of the bottom three households are equalized, the
budget is transferred to the three households again securing a truncated distribution,
etc.

For distribution (2), bottom fill-up is not the optimal transfer rule for most
values of the public budget. This is because it fails to consider the interplay of
channels (a), (b), and (c). Due to this interplay, for a transfer budget up to 45, the
transfer recipient is not the lowest-ranked household with an equivalent income
of 90, a one-member household, but a nine-member household with a pre-transfer
equivalent income of 95. Notice that there is another two-member household with
the same pre-transfer equivalent income of 95 that does not receive transfers if the
public budget is low. The nine-member household is the preferred transfer recipient
as the channels (b) and (c) outweigh the gains in terms of inequality reduction that
could be achieved by providing the transfers to lower-ranked households. Notice
that the equivalent income of the recipient household increases with B at rate 1

ES .
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For a budget of B = 45, the transfer-receiving nine-member household has the
same post-transfer equivalent income as the second-ranked household of its type.
For a budget of up to 105, each additional transfer amount is equally split between
these two households (household-type specific bottom fill-up). Notice that with a
transfer volume of more than 75 there is a re-ranking between the two recipient
households and the highest-ranked one-member household. The assignment of the
marginal transfer changes when the two nine-member recipient households have an
equivalent income of 120, the income of the lowest-ranked two-member household.

For the transfer range between 106 and 165, the one-member households are
recipients of each additional transfer unit, and again there is a type-specific bottom
fill-up, with the transfers first being allocated to the lowest-ranked one-member
household. Once parity of equivalent incomes is reached for the lowest- and second-
lowest ranked one-member household, additional transfers are again equally split
among the two (household-type specific bottom fill-up), and among all three one-
member households for a transfer volume between 150 and 165.

When all recipient households have a post-transfer equivalent income of 120,
making them equally well-off with the lowest-ranked four-member household, each
additional transfer unit is assigned in a way that the post-transfer-equivalent incomes
of all the recipient households are equalized (general bottom fill-up).

Computational Burden To gain an impression of the computational burden of the
optimization, we sequentially take n-folds of the original number of observations up
to 1152 observations, while proportionally adjusting the transfer budget starting at
150 monetary units. Figure 2.4 shows the computational burden in seconds using a
computer with an Intel i7-4770 (3.5GHz) processor, 8 GB RAM, and Matlab R2017b.
We show results for the variance (convex), the Theil index and the Gini index (both
quasiconvex). The comparison between the variance and the Theil reveals the typical
differences between a convex and a quasiconvex measure. For the variance the
computational burden is low, even for larger datasets. For example, the solution
takes about 80 seconds for a sample size of 1152 observations. For the same number
of observations, the computer time for the quasiconvex Theil index amounts to
about 18500 seconds. The difference results from the fact that we need to apply
the interior-point algorithm only once for the variance, while for the Theil index,
bisection requires 20 iterations.

As detailed in Appendix 2.6.2, to minimize the Gini, we need to transform the
problem to make it differentiable by introducing new variables and constraints
that mimic the behavior of the nondifferentiable absolute values: For n transfer
recipients, one needs to introduce n2 − (n+1)n

2 new variables and for each of them two
new constraints. The computational burden for solving the transformed problem is
enormous, e.g., more than 600 hours for a sample of 1152 observations. To reduce the
computer time, we exploit that the Gini is a linear-fractional function (see Appendix
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(a) Distribution (1)

(b) Distribution (2)

Figure 2.3: Optimal Post-Transfer Distributions as Functions of Public Budget

2.6.2), meaning an equivalent convex problem can be solved with the interior-point
algorithm. The solution for 1152 observations requires 36 hours.

2.3.2 Real Data

The real-world application deals with an assessment of the re-distributive effects
of a pension reform in Germany, the introduction of the so-called Riester scheme.
For dependently employed individuals, the scheme grants allowances and tax cuts
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(a) Variance

(b) Theil (c) Gini

Figure 2.4: Computational Burden in Seconds Depending on Number of Observations N

based on saving efforts and their household’s composition. The policy was intended
to have a progressive effect on the German income distribution. Corneo et al.
(2018) find a small progressive effect of the Riester scheme on the distribution of
equivalent incomes in year 2010: considering the Riester scheme reduces the Gini
index from 0.32960 to 0.32946. The total Riester-related transfer volume is about
2.79 billion e. The above methods enable an assessment of the magnitude of the
achieved inequality-reduction of 0.04 percent. Applying the bisection method gives
an alternative scheme that lowers the Gini index by about 1 percent to a value of
0.32660.

2.4 Qualifications and Extensions

The current paper offers a solution to the problem of an inequality minimizing
social planner in a setting with fixed incomes. Traditionally, in public economics
the problem under consideration is that of a welfare maximizing social planner,
who also has to consider the revenue side for the desired transfers. As laid out
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above, it is possible to introduce distortions into the minimization framework,
but this is a way of stepping over the problem considered most relevant in the
taxation literature ever since Mirrlees (1971): incentive compatibility. In problems
of optimal income taxation of the Mirrleesian tradition there is an information
asymmetry between the social planner and the individuals. Earned income is
known but the productivity of individuals is not. Thus the planners objective is
to offer a tax schedule that incentivizes individuals to earn income according that
is commensurate with their productivity and not to imitate the behavior of an
individual with differing productivity. In the current setting this complication is
ignored since incomes are exogenous. Introducing information asymmetry into the
framework is therefore an interesting extension.

Further, an assumption for this setting is the knowledge and simple form of
heterogeneity between households. The households only differ in size, composition
and income. The equivalence scale for a given household is a deterministic function
of household size and composition only, as is standard in most empirical inequality
studies. Both assumptions are not uncontroversial.

Assuming full knowledge of the heterogeneity is not an uncontroversial assump-
tion, as the discussion above about the Mirrlees-model illustrates. Ranking in the
distribution crucially depends on both the income as well as the size and composi-
tion of the household through the equivalence scale and the weight. If households
can deceive the planner about these characteristics, then the current solution scheme
breaks down. A possible extension is to compare the performance of the current
solution technique with more simple methods, like basing transfers only on income
rank or a simple demogrant, when there is uncertainty about the either the measured
income or the size and composition of the household.

Finally, there is the problem of using, and thereby assuming the identification of
equivalence scales. These are supposed to facilitate income comparisons between
households of differing compositions. An equivalence scale is supposed to adjust
household disposable income such that the equivalized income is that amount of
income, which, if given to a single person, would allow them to reach the same
level of welfare as a typical member of the household. As laid out in the review
article by Chiappori (2016), there are numerous conceptual and econometric issues
rooted in the use equivalence scales. Most pressing among the conceptual issues
is the assumption that interpersonal welfare comparisons are feasible, stemming
from the fact that the definition of an equivalence scale necessitates the definition of
household welfare. To adhere to the concept of normative individualism, household
welfare needs to be a function of the household members’ utilities. Choosing the
function that aggregates individual utilities is therefore another crucial issue that
possibly restricts the finding of any analysis using the thus defined equivalence scale.
Empirically, under strong assumption, equivalence scales can be identified from
consumption behavior, which raises a whole host of other questions regarding data
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quality and identifying assumptions. For all of these reasons the consideration of the
role of equivalence scales in this framework is another avenue for future research.

2.5 Conclusion

Transfer schemes implemented around the world seek to mitigate inequality in the
distribution of market incomes, motivating a central question: How to design the
transfer scheme in order to minimize a given inequality index given a particular
public budget to distribute. The answer is particularly complex for heterogeneous
distributions where households/individuals differ in characteristics or level of needs
and may receive different weights, while their income should be equalized using
equivalence scales. Then transferring income to the bottom of the distribution fails
to guarantee a maximum inequality reduction.

The present paper provides general answers for convex and quasiconvex inequal-
ity indices building on mathematical methods developed for solving constrained
minimization problems. The adequate solution method depends on the properties of
the index of interest. For convex indices, the appropriate method is the interior-point
algorithm, for quasiconvex indices it is the bisection method. In application, we
show that computer time should not undermine the applicability of the detailed
procedures.

In a broader perspective, the methods are suited to solving all kinds of convex or
quasiconvex optimization problems. Possible applications include a generalization
of our analysis when incomes are endogenous to social transfers and taxes, the
minimization of the excess burden of a tax, the analysis of risky prospects, and the
construction of optimal portfolios by means of the Mean-Gini approach (see Shalit
and Yitzhaki (2005)).

56



2.6 Appendix

2.6 Appendix

2.6.1 Proofs of Convexity and Quasiconvexity

The following proofs show the property of convexity or quasi-convexity of a variety
of inequality indices. With yi we denote the income of an individual or a household
and abstain from considering weighting factors in order to ease the proofs. However,
the proofs are without loss of generality, as one could replace yi with yi+ti

ESi
and scale

the sums with weights wi .17

The Variance is Convex

The variance is defined as,

V
(
{yi}Ni=1

)
=

1
N

N∑
i=1

yi − 1
N

N∑
i=1

yi


2

. (2.16)

The functions yi − 1
N

∑N
i=1 yi are affine and, therefore, convex for all i. Squaring

these functions and then summing preserves convexity. Therefore, the variance is
convex.

The Absolute Mean Deviation is Convex

The absolute mean deviation is defined as,

AMD
(
{yi}Ni=1

)
=

1
N

N∑
i=1

∣∣∣∣∣∣∣yi − 1
N

N∑
i=1

yi

∣∣∣∣∣∣∣ . (2.17)

The functions yi − 1
N

∑N
i=1 yi are composed with the absolute value, which is a

norm. Norms are convex and, therefore, the convexity of the expression is pre-
served.18 As before with the variance, this implies that the absolute mean deviation
is convex.

The Gini Index is Quasiconvex

The Gini index can be written as,19

17If we optimize with respect to ti , then yi+ti
ESi

is just an affine transformation of the ti and therefore
preserves concavity or convexity. Changing the sums to be weighted also preserves concavity or
convexity. See Boyd and Vandenberghe (2004).

18See Boyd and Vandenberghe (2004).
19As shown in Yitzhaki and Schechtman (2012) there are more than a dozen alternative ways to

define the Gini index.
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G
(
{yi}Ni=1

)
=

1

2N
∑N
i=1 yi

N∑
j=1

N∑
i=1

∣∣∣yi − yj ∣∣∣ . (2.18)

To establish quasiconvexity of G(·), we need to establish that G(·) is quasiconvex
in yi .20 Next we introduce the Gini’s sublevel sets, L−k (G),

L−k (G) = {(y1, · · · , yn) | G(y1, · · · , yn) ≤ k} , (2.19)

with k denoting the upper bound of the sublevel set. If the elements of L−k (G) are
convex for every k, then G(.) is quasiconvex. The sublevel set for an arbitrary k may
be denoted by,

1

2N
∑N
i=1 yi

N∑
j=1

N∑
i=1

∣∣∣yi − yj ∣∣∣ ≤ k (2.20)

N∑
j=1

N∑
i=1

∣∣∣yi − yj ∣∣∣− k2N
N∑
i=1

yi ≤ 0. (2.21)

This inequality condition holds because of the non-negativity of the mean and
can be shown to describe a convex set in yi by establishing that the left-hand side is
a convex function in yi for all k. This is sufficient, since any sublevel set of a convex
function is a convex set and here we are studying the sublevel set of the function
with level-value zero.

Next, we rewrite the left-hand side as a function that has known convexity prop-
erties. We note that the left-hand side can be expressed as the point-wise maximum
of 2N−1 linear expressions in yi with another linear function in yi subtracted. For
example if N = 2 :

max {2(y1 − y2) ,2(y1 − y2)} − k4
2∑
i=1

yi (2.22)

20Yitzhaki and Lambert (2013) investigate the relationships between Gini’s mean difference (GMD),
the mean absolute deviation, the least absolute deviation, and the absolute deviation from a
quantile.
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The point-wise maximum of linear expressions is convex, so the maximum term
is convex.21 The second term is linear in the yi and, thus, also convex. So the whole
left-hand side is convex for any k. Ergo, the Gini index is quasiconvex in the yi .22

The Relative Mean Deviation is Quasiconvex

The following proof builds on the convexity of the absolute mean deviation (see

proof above). Since RMD =
AMD({yi }Ni=1)

1
N

∑N
i=1 yi

, we can form the sublevel sets,

AMD
(
{yi}Ni=1

)
− k 1

N

N∑
i=1

yi ≤ 0. (2.23)

The lefthand side contains only convex terms. Hence, the sublevel sets of the
RMD are convex. Therefore, the RMD is quasiconvex.23

The Atkinson Index is Quasiconvex

The Atkinson-Index is defined as,

Aε
(
{yi}Ni=1

)
= 1− 1

1
N

∑N
i=1 yi

 1
N

N∑
i=1

(yi)
1−ε


1

1−ε

. (2.24)

First, consider only the second term of Aε and substitute p = 1− ε. Then,

s
(
{yi}Ni=1

)
=

 1
N

N∑
i=1

(yi)
p


1
p

. (2.25)

This function is concave for (p−1) < 0 or equivalently ε ≥ 0.24 To show quasicon-
vexity, we need to establish that the sublevel sets of Aε are convex. This is sufficiently
shown by verifying that the negative term of Aε has convex sublevel sets, as the rest
is just an affine transformation.

The sublevel sets are given by,

21See Boyd and Vandenberghe (2004).
22Lambert and Yitzhaki (2013) show that the absolute mean deviation is a special case of the between-

group Gini mean difference (BGMD). In contrast to the Gini index, the BGMD is not normalized
by the mean and is convex.

23The relative mean deviation is convex as, in contrast to the absolute mean deviation, the relative
mean deviation is divided by the mean.

24See Boyd and Vandenberghe (2004, p. 87).
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− 1
1
N

∑N
i=1 yi

 1
N

N∑
i=1

(yi)
1−ε


1

1−ε

≤ k (2.26)

−

 1
N

N∑
i=1

(yi)
1−ε


1

1−ε

− k 1
N

N∑
i=1

yi ≤ 0. (2.27)

Next, we assess if the functions on the left-hand side are convex. If they generate
sets that are convex given any k, quasiconvexity is implied. Since the first function is
convex – the negative of s

(
{yi}Ni=1

)
is convex – and the second function is affine, this

is the case.

The Theil Index is Quasiconvex

The definition of the Theil Index is,

T =
1
N

N∑
i

Nyi∑N
i yi

Log
[
Nyi∑N
i yi

]
. (2.28)

For quasiconvexity the sublevel sets of the Theil Index need to be convex. Ac-
cordingly,

1
N

N∑
i

Nyi∑N
i yi

Log
[
Nyi∑N
i yi

]
≤ k (2.29)

N∑
i

yiLog
[
Nyi∑N
i yi

]
− k

N∑
i

yi ≤ 0. (2.30)

The functions on the left-hand side induce convex sets if they are convex. The
second term is affine and, thus, convex. The first term is convex if its Hessian is

positive semi-definite. The second partial derivatives of f ({yi}Ni=1) =
∑N
i yiLog

[
Nyi∑N
i yi

]
are,

fyi ,yi =
1
yi
− 1∑N

i yi
, fyi ,yj = − 1∑N

i yi
. (2.31)
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Then the Hessian of f ({yi}Ni=1) is,

Hf =


1
y1
− 1∑N

i yi
− 1∑N

i yi
· · ·

− 1∑N
i yi

1
y2
− 1∑N

i yi
...

. . .

 . (2.32)

We can reshape the matrix before we test for positive semi-definiteness as

Hf =


1
y1

0 · · ·
0 1

y2
...

. . .

−


1∑N
i yi

1∑N
i yi

· · ·
1∑N
i yi

1∑N
i yi

...
. . .

 . (2.33)

The Hessian is positive semi-definite iff for any vector υ,

υ′


1
y1

0 · · ·
0 1

y2
...

. . .

υ −υ′


1∑N
i yi

1∑N
i yi

· · ·
1∑N
i yi

1∑N
i yi

...
. . .

υ ≥ 0. (2.34)

To show that this is the case, we rely on the Cauchy-Schwarz-Inequality. It states
that for any two vectors a and b,

(a′a)(b′b) ≥ (a′b)2. (2.35)

State the dot-product of the Hessian with υ as summations,

1∑N
i yi


 N∑
i

yi


 N∑
i

υ2
i

yi

−
 N∑
i

υi


2 ≥ 0. (2.36)

To complete the proof, pick a′ = (
√
y1,
√
y1, . . .) and b′ = ( υ1√

y1
, υ2√
y2
, . . .), which

establishes that the above sums are greater or equal to zero.
Since both functions determining the sublevel sets are convex for any k, the Theil

is quasiconvex.
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2.6.2 Implementation for the Gini Index

The optimization problem with the classic formulation of the Gini index is,

minimize
t

1

2W
∑N
i=1
wi

yi+ti
ESi

N∑
i=1

wi

N∑
j=1

wj

∣∣∣∣∣∣yi + ti
ESi

−
yj + tj
ESj

∣∣∣∣∣∣ (2.37)

subject to 0 ≤ ti , i = 1, . . . ,N
N∑
i=1

ti ≤ B

Because of the absolute value function in the classic formulation of the Gini
index, it is not differentiable at zero. To derive a differentiable reformulation, we
introduce the variables ∆ij , which replace the absolute differences in the objective
function, and impose linear constraints that require the ∆ij to be non-negative:

−∆ij +
(
yi+ti
ESi
− yj+tjESj

)
≤ 0 and −∆ij −

(
yi+ti
ESi
− yj+tjESj

)
≤ 0.25 To see that this is the case, pick

an income difference between any i and j and consider the following scenarios for
∆ij :

1. Let
(
yi+ti
ESi
− yj+tjESj

)
be non-negative. Then ∆ij has to be greater than or equal to(

yi+ti
ESi
− yj+tjESj

)
and, thus, will always be greater than or equal to −

(
yi+ti
ESi
− yj+tjESj

)
.

Accordingly, the ∆ij will be non-negative.

2. Let
(
yi+ti
ESi
− yj+tjESj

)
be negative. Then ∆ij has to be greater than or equal to

−
(
yi+ti
ESi
− yj+tjESj

)
and, thus, will always be greater than

(
yi+ti
ESi
− yj+tjESj

)
. So, the ∆ij

will again be non-negative.

Hence, we can convert (2.37) into an equivalent differentiable optimization
problem,

25See Boyd and Vandenberghe (2004, p. 294).
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minimize
t,∆ij

1

2W
∑N
i=1
wi

yi+ti
ESi

N∑
i=1

wi

N∑
j=1

wj∆ij (2.38)

subject to 0 ≤ ti , i = 1, . . . ,N
N∑
i=1

ti ≤ B

−∆ij +
(
yi + ti
ESi

−
yj + tj
ESj

)
≤ 0, ∀i, j = 1, . . . ,N

−∆ij −
(
yi + ti
ESi

−
yj + tj
ESj

)
≤ 0, ∀i, j = 1, . . . ,N .

A Linear-Fractional Problem The objective function in the modified problem
(2.38) has a specific form: an affine function in the numerator and an affine function
in the denominator. Problems of this type are called linear-fractional (see Boyd
and Vandenberghe (2004, p. 151) or originally Charnes and Cooper (1962)). The
equivalent problem is,

minimize
t̃,∆̃ij ,z

N∑
i=1

wi

N∑
j=1

wj∆̃ij (2.39)

subject to 0 ≤ t̃i , i = 1, . . . ,N
N∑
i=1

t̃i ≤ zB

− ∆̃ij +
(
zyi + t̃i
ESi

−
zyj + t̃j
ESj

)
≤ 0, ∀i, j = 1, . . . ,N

− ∆̃ij −
(
zyi + t̃i
ESi

−
zyj + t̃j
ESj

)
≤ 0, ∀i, j = 1, . . . ,N .

2W
N∑
i=1

wi
zyi + t̃i
ESi

= 1

z ≥ 0,

where we obtain the desired transfer schedule ti = 1
z t̃i ∀i. The major advantage

of solving this problem, instead of performing bisection on (2.38), is the immense
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saving in computational effort: we need only one run of the interior-point algorithm
to solve (2.39) instead of several, as in the case of bisection.

Size of the Problem and Improving Performance Further, there are two possibil-
ities to reduce the number of variables and constraints for a given dataset: First, we
can reduce the size of the dataset if two or more households are of the same type – in
terms of their equivalence scale – and have the same income. Then we may simply
add up their population weights and optimize the collapsed dataset. Second, we
may restrict the number of households that may be recipients of a transfer in the
optimization by performing the following procedure: 1. Perform a bottom fill-up
procedure for every equivalence-scale-type, where the entire budget at disposal is
distributed only among households of this type. 2. Mark those households that
are recipients of a positive transfer. 3. Perform the optimization of (2.39) with free
transfer variables for the marked households only.

The justification is that, even in the most extreme case, where just one type of
household experiences a bottom fill-up, only the marked households can be transfer
recipients. Other households of the same type have a weaker effect on the Gini index
than the marked households.

Further, to save on memory and reduce computational effort, we provide the
following guidelines to enhance the performance of the solver fmincon in Matlab:

1. The gradient of the objective function, the gradient of the constraints and the
Hessian should be generated as sparse matrices to save memory.

2. The gradient of the objective function and the Hessian are zero everywhere
and should be supplied directly by the user.

3. The gradient of the constraints is constant and can be generated before the
execution of interior-point algorithm.

4. Parallel computations should be implemented in order to calculate the gradient
of the constraints wherever possible.

64



3 Hours risk, wage risk, and

life-cycle labor supply

3.1 Introduction

What drives the riskiness of earnings? A glance at the recent literature on life-cycle
consumption, saving and labor supply suggests an implicit consensus: shocks to
wages are the central source of risk. In this paper we re-open this discussion by
starting from the natural decomposition of earnings into hours worked and wages.
Thus, the main contribution of the paper is a decomposition of earnings risk along
these lines: We tailor a structural model of life-cycle labor supply to feature earnings
risk from both wage and hours shocks and assess the strength of their contributions
to total earnings risk.

Knowing the extent to which hours and wage shocks contribute to total income
risk is of general interest as it should inform future modeling decisions. Further,
it informs us about the effectiveness of specific policy measures aimed at reducing
income risk. For instance, if income risk was driven almost entirely by wage risk,
devising policies to reduce the impact of shocks to hours would not be a fruitful
endeavor.

In our model individuals face shocks to their productivity of market work, which
result in wage shocks, as is standard. Our concise extension of the standard life-cycle
model of consumption and labor supply is to model hours shocks as innovations in
the disutility of work. Shocks to worked hours are conceptualized in an analogous
fashion to wage shocks, namely as shocks to home production. For instance, when
pressing needs of family members arise, they increase the opportunity costs of
market work sharply. In terms of observed choices, one should then notice a shock
to hours of work. Both types of shocks are decomposed into permanent (random
walk) and transitory (MA(1)) components. Permanent wage shocks include the
obsolescence of human capital, or the acquisition of new skills. Permanent hours
shocks might, e.g., be caused by injuries or shocks to home production stemming
from family members’ needs.

While the extension of the model to include hours shocks is conceptually straight-
forward, the empirical analysis is complicated substantially. In our setting hours
residuals contain hours shocks in addition to reactions to wage shocks. Thus, we need
to separate the two. The solution is to utilize the covariance of hours and wages to
estimate a transmission parameter that quantifies how permanent wage shocks affect
the marginal utility of wealth. The parameter is allowed to vary between individuals.
The larger this parameter is, the larger is the impact of shocks, and the lower is the

65



3 Hours risk, wage risk, and life-cycle labor supply

degree of insurance against risk.1 Estimation of the transmission parameter allows
us to calculate the Marshallian labor supply elasticity eschewing consumption or
asset data, the reliability of which has been hotly debated (Attanasio and Pistaferri,
2016). Thus, the second main contribution of our paper is the estimation of the
transmission parameter without using consumption data, offering a new method to
estimate the Marshallian elasticity.

We apply our framework to observations on married men in the US from the
Panel Study of Income Dynamics (PSID) over the period 1970 to 1997, since at the
end of this period the survey frequency turned bi-annual. Our estimate of the Frisch
elasticity of labor supply is 0.36 and our estimate of the average Marshallian elasticity
is -0.08, which is close to recent estimates in Blundell et al. (2016a); Heathcote et al.
(2014a). We find that the standard deviation of permanent wage shocks is larger
than the standard deviation of transitory shocks. The same holds for hours shocks,
where the standard deviation of permanent shocks is about twice as large as that
of transitory shocks. For most samples, the standard deviation of permanent hours
shocks is slightly larger than that of permanent wage shocks.

However, the respective impact on earnings risk cannot directly be inferred from
this evidence, as the reaction to shocks depends on the degree of insurance. The
main exercise with the key components of earnings risk in hand is the variance
decomposition. Here we shut down each of the stochastic components except for
one in order to quantify their respective contributions to overall earnings risk. At
the mean of the transmission parameter, permanent wage shocks explain about
18 percent of cross-sectional earnings growth risk, while permanent hours shocks
explain 13 percent. Transitory wage shocks dominate their counterpart in the hours
process. While transitory shocks are responsible for the lion’s share of cross-section
earnings growth risk, only permanent shocks have a substantial impact on life-time
earnings. At the mean, a positive permanent hours shock of one standard deviation
at age 30 increases life-time earnings by 124 000 Dollar compared to 150 000 Dollar
for a permanent wage shock of one standard deviation. Thus, both types of shocks
play an important role for life-time earnings.

We also consider a set of alternative models that resemble those applied in the
extant literature. Crucially, a model abandoning hours shocks fits the data worse
and leads to a substantial overestimation - in absolute terms - of the Marshallian
elasticity. Finally, we show how our estimate of the transmission of wage shocks to
the marginal utility of wealth can be used to calculate the pass-through of permanent
wage shocks to consumption. Calibrating the parameter of relative risk aversion to
two, we find that these pass-through parameters for different samples are roughly in
line with those estimated in Blundell et al. (2008) using consumption and earnings

1When we speak of insurance, we mean precautionary measures like savings and labor supply and
not direct insurance bought on the market. The financial market in our model only features a
single bond with a fixed interest rate.
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data. For the full sample this calculation implies that – on average – an increase in
wages by one percent leads to an increase in consumption by .78 percent.

Our paper is related to studies that decompose total income risk into persistent
and transitory components, which derive from ideas by Friedman (1957) and Hall
(1978) (see MaCurdy, 1982; Abowd and Card, 1989; Meghir and Pistaferri, 2004;
Guvenen, 2007; Blundell et al., 2008; Guvenen, 2009; Hryshko, 2012; Heathcote
et al., 2014a; Blundell et al., 2016a). Abowd and Card (1989) were pioneers in
analyzing the covariance structure of earnings and hours of work. They find that
most of the idiosyncratic covariation of earnings and hours of work occurs at fixed
wage rates.

In contrast, more recent papers have focused on insurance mechanisms rather
than shock sources and restrict the source of risk to stem from wage shocks. In a
rich model of family labor supply and consumption, Blundell et al. (2016a) estimate
the Marshallian and Frisch consumption and labor supply elasticities using hours,
income, asset, and consumption data. Similar to them, we allow for partial insurance
of permanent wage shocks, but we depart from their approach by allowing for
partially insured hours shocks and using hours and income data alone.

With a similar focus, Heathcote et al. (2014a) analyze the transmission of wage
shocks to hours in a setting where shocks are either fully insurable or not insurable
at all (island framework). They derive second hours-wage moments from which they
identify variances of shocks, the Frisch elasticity of labor supply, and the coefficient
of relative risk aversion. Our study differs in two important aspects: First, we
assume that shocks are partially insurable as indicated by a consumption insurance
parameter similar to Blundell et al. (2008, 2013, 2016a). This parameter may differ
between individuals. Second, we introduce hours shocks and estimate their variance.
While Heathcote et al. (2014a) allow for initial heterogeneity between agents in the
disutility of work, they hold this parameter constant over the life-cycle.

There are some papers that do focus on shock sources more explicitly and for
this purpose employ dynamic programming techniques. Low et al. (2010) quantify
the contributions of productivity shocks, job losses, and job offers to overall earnings
risk. As they point out, in order to disentangle shocks from the reaction to shocks,
it is necessary to model consumer behavior. They model labor supply as a discrete
decision with fixed hours of work and the possibility of job loss, while we focus on
the intensive margin of work hours and allow for hours adjustment and permanent
and transitory shocks to hours. Similarly, Kaplan (2012) models consumption and
hours of work and allows for involuntary unemployment shocks. These shocks along
with nonseparable hours preferences on the extensive and intensive margin aid in
the modeling of the declining inequality in hours worked over the first half of the
life-cycle.

On the other end of the spectrum, Altonji et al. (2013) allow for both i.i.d. wage
and hours shocks in addition to employment and job changes, but they do not work
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with a fully structural model. They approximate economic decisions of agents in
their account of the dynamics of earnings and wage profiles.

The next section outlines the life-cycle model of labor supply and consumption,
section 3.3 describes how the magnitudes of shock variances and labor supply
elasticities are estimated. In section 3.4 we present results for the parameters of
wage and hours processes and the Frisch and Marshallian labor supply elasticities.
Then we offer a decomposition of residual earnings variance, which spells out the
the importance of wage and hours shocks. Further we calculate the influence of
the two shock types on life-time earnings. In section 3.5 we give a characterization
of permanent hours shocks, show results when varying the modeling assumptions,
discuss the model fit and benchmark our results by relating them to consumption
insurance. Section 3.7 concludes.

3.2 The Model

Individuals maximize the discounted sum of utilities over the lifetime running from
t0 to T :2

max
ct ,ht

Et0

 T∑
t=t0

ρt−t0v(ct,ht,bt)

 , (3.1)

where ct and ht denote annual consumption and hours of work, while bt contains
taste shifters. ρ denotes a discount factor and v(·) an in-period utility function.

The budget constraint is

at+1

(1 + rt)
= (at +wtht +Nt − ct), (3.2)

where at represents assets, rt the real interest rate, and Nt non-labor income.
Instantaneous utility takes the additively-separable, constant relative risk aver-

sion (CRRA) form

vt =
c1−ϑ
t

1−ϑ
− bt

h
1+γ
t

1 +γ
, ϑ ≥ 0,γ ≥ 0. (3.3)

We specify bt = exp(ςΞt − υt). Ξt as a set of personal characteristics. υt is an
idiosyncratic disturbance with mean zero that captures shocks like unexpected
changes in home production, e.g., childcare or spousal needs, sickness, and other
unexpected changes in the disutility of labor supply.

2We omit individual-specific subscripts.
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Wage and hours shock processes — Wage growth is determined by human capital
related variables X, which contains ∆Ξ, where ∆ indicates first differences, and an
idiosyncratic error ω:

∆ lnwt =αXt +∆ωt (3.4)

Hours shocks (υt) and wage shocks (ωt) consist of permanent and transitory
components, pt and τt, that follow a random walk and an MA(1)-process respectively.
For x ∈ {υ,ω}:

xt = pxt + τxt
pxt = pxt−1 + ζxt
τxt = θxε

x
t−1 + εxt

ζxt ∼N
(
0,σ2

ζ,x

)
, εxit ∼N

(
0,σ2

ε,x

)
E
[
ζxt ζ

x
t−l

]
= 0, E

[
εxt ε

x
t−l

]
= 0 ∀l ∈Z,0

Permanent and transitory hours and wage shocks are uncorrelated.

Labor supply — An approximation of the first order condition with respect to
consumption yields the intertemporal labor supply equation (see MaCurdy, 1981;
Altonji, 1986, and Appendix 3.8.1):

∆ lnht =
1
γ

[− ln(1 + rt−1)− lnρ+∆ lnwt − ς∆Ξt + ηt +∆υt] , (3.5)

where 1
γ is the Frisch elasticity of labor supply, Ξt contains taste shifters, υt is the

associated error, and ηt is a function of the expectation error in the marginal utility
of wealth.3 γ is identified by estimating equation (3.5) using instrumental variables
for ∆ lnwt.

Denote by ∆̂x idiosyncratic changes in x. The focus of this paper is on idiosyn-
cratic changes in log earnings, �∆lnyt, i.e., earnings changes that result from wage
or hours shocks. It is useful to decompose these into temporary and permanent
changes, distinguished by the superscripts per and tem respectively:

�∆lnyt = �
∆lnw

per
t + �∆lnwtemt + �

∆lnh
per
t + �∆lnhtemt (3.6)

3ηt =
ελt
λt
−O

(
− 1/2(ελt /λt)

2
)
, i.e., it contains the expectation error of marginal utility of wealth and

the approximation error.
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The expressions for temporary and permanent wage changes in terms of shocks
are obtained directly from the wage process:

�∆lnwtemt = εωt + (θω − 1)εωt−1 −θωε
ω
t−2 (3.7)�

∆lnw
per
t = ζωt . (3.8)

Note that in the case of temporary wage changes, everything apart from εωt
is known to the agent at t − 1. In contrast, the idiosyncratic wage change due to
permanent shocks is entirely surprising. Write idiosyncratic hours growth as

�∆ lnht =
1
γ

[ �∆ lnwt + ηt +∆υt
]
. (3.9)

We make the simplifying assumption that transitory shocks do not impact
η.4 Thus, the expressions for temporary hours changes in terms of shocks follow
immediately from the stochastic processes of transitory shock components and the
Frisch labor supply equation (3.9):

�∆lnhtemt =
1
γ

(
ευt + (θυ − 1)ευt−1 −θυε

υ
t−2 + εωt + (θω − 1)εωt−1 −θωε

ω
t−2

)
. (3.10)

In our model the expectation error is a linear function of unexpected permanent
changes to income. This is in line with models that approximate the life-time budget
constraint like Blundell et al. (2016a). The expression is

ηt = −φλt
( �
∆lnw

per
t + �

∆lnh
per
t

)
, lnφλt ∼N

(
µφ,σ

2
φ

)
(3.11)

The parameter φλt measures how shocks to income transmit to ηt, which is in
utility units. It is a measure of consumption insurance; perfectly insured individuals
do not adjust their consumption as a response to a permanent shock and thus
their marginal utility of consumption is unchanged. For instance, for individuals
who have accumulated substantial assets, remaining life-time earnings only play
a relatively small role in total life-time income. These individuals do not adjust
their consumption by much in response to a wage shock. Blundell et al. (2016a)
study in detail what governs the transmission of shocks to consumption and hours
worked. The parameter is individual-specific since it depends - among other things

4This holds when one assumes, as we do, that transitory shocks do not affect the marginal utility of
wealth. See the insurance parameters for transitory shocks in Blundell et al. (2008) for justification
of that assumption.
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- on the amount of assets currently held in relation to the total stock of human
wealth (see Blundell et al., 2016a, p. 396, for the related consumption-insurance
parameter). In the case of no insurance, a one percentage change in income leads to a
one percentage change in consumption and φλt = ϑ.5 In the case of full consumption
insurance, φλt = 0 and income changes do not translate into changes in consumption
at all. In general it seems reasonable to expect that there is at least some degree of
insurance, such that the estimate of E[φλt ] is a lower bound for the average degree of
relative risk aversion.

Positive income shocks lead to a decrease in the marginal utility of wealth,
therefore φλt is positive and should follow a distribution with no support on negative
values. Hence, we estimate the model under the assumption that φλt is lognormally
distributed. An equivalent transmission parameter for income shocks to the marginal
utility of wealth is estimated in Alan et al. (forthcoming).

Plugging equation (3.8) into (3.11) and subsequently (3.11) into (3.9) and solving
for �∆lnht yields the expression for idiosyncratic permanent changes in hours of work:

�
∆lnh

per
t =

1−φλt
γ +φλt

ζωt +
1

γ +φλt
ζυt (3.12)

The term κ = 1−φλt
γ+φλt

gives the uncompensated reaction to a permanent wage

change, the Marshallian labor supply elasticity. If φλt = 0, the case of perfect insur-
ance, the Marshallian collapses to the Frisch elasticity, the reaction to a transitory
shock. The transmission coefficient for a permanent hours shock, 1

γ+φλt
has the

same property. The higher φλt , the more are hours shocks cushioned. A further
property of the hours shock transmission coefficient is that it equals the Hicksian
elasticity for a permanent wage shock. This peculiarity arises from the way b affects
marginal trade-offs: in a static version of the model with no unearned income the
marginal optimality condition (MRS = price ratio) is given by b h

γ

c−ϑ
= w.6 When

we hold the level of consumption constant, a change in w and a change in b cause
the same type of adjustment in h, although differently signed. However, when
we let consumption adjust and derive the Marshallian demand for h, we find that
lnh = 1

γ+ϑ [(1−ϑ) lnw − lnb]. Through the effect on the budget constraint, a change

in w causes an income effect of size −ϑ
γ+ϑ in elasticity form. b does not affect the

budget constraint and therefore does not have the same effect.

5This can be seen by taking logs of the first derivative of equation (4.2) with respect to ct . φ
λ
t might

exceed ϑ if shocks to life-time income not captured by the model are positively correlated with
permanent hours and wage shocks.

6 In the static model, the consumer maximizes utility, V = c1−ϑ
1−ϑ − b

h1+γ

1+γ , subject to the budget
constraint, c = wh.
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Consumption — The equation for consumption growth can be obtained analogously
to equation (3.5) (see, e.g., Altonji, 1986):

∆ lnct =
1
ϑ

[ln(1 + rt−1) + lnρ − ηt] (3.13)

Thus income shocks are directly related to consumption growth by −ηt/ϑ. The
direct estimation of equation (3.13) using consumption data is beyond the scope of
this study. Nonetheless, we benchmark our results by calculating the reaction of
consumption to wage shocks by calibrating ϑ.

Figures 3.1 and 3.2 show how each type of permanent shock propagates through
the various quantities of interest. The major distinction for the two types is that
wage shocks do not only have a direct effect on income, but also affect the choice of
hours through the Marshallian elasticity.

wage shock wage

hours

income consumption

Figure 3.1: Transmission of Permanent Wage Shock

hours shock hours income consumption

Figure 3.2: Transmission of Permanent Hours Shock

3.3 Recovering Labor Supply Elasticities, Wage

Shocks, and Hours Shocks

In this section we detail how the labor supply elasticities as well as the standard
deviations of permanent and transitory components of wage shocks, ωt, and hours
shocks, υt, are recovered in estimation. The estimation is carried out in three stages.
First, we use OLS to obtain residuals from the wage equation and IV to obtain
residuals from the hours equation as well as an estimate for the Frisch labor supply
elasticity. Second, we estimate the variances of transitory and permanent shocks
to wages by fitting three theoretical autocovariance moments of the wage residual
to the data. Third, we estimate hours shock variances by fitting the corresponding
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autocovariance moments for the hours residual as well as the covariance of hours
and wage residuals to the data.

We state the variance-covariance moments with measurement error. Measure-
ment error is modeled as having no intertemporal correlation, but we do allow for
correlation between the types of measurement error. Denote by

ln x̃t = lnxt +mex,t (3.14)

the observed value for the log of variable x, where mex,t is the mean zero measure-
ment error with variance σ2

me,x. The variances encountered in the moment conditions
are σ2

me,h,σ
2
me,w and σ2

me,h,w, which are the variance of measurement error in log hours,
log wages and their covariance respectively. We state the precise way we calibrate
the magnitudes of the measurement error variances at the end of the section.

Frisch elasticity, hours residuals, and wage residuals — The augmented empiri-
cal Frisch labor supply equation containing measurement errors is

∆ ln h̃t =
1
γ

[− ln(1 + rt−1)− lnρ+∆ ln w̃t − ς∆Ξt + ηt +∆υt] (3.15)

− 1
γ
∆mew,t +∆meh,t.

The error term of equation (3.15) is correlated with differenced log wages because
wage shocks impact the marginal utility of wealth and because of measurement
error. To obtain the Frisch elasticity from equation (3.5) we use human capital
related instrumental variables for ∆ ln w̃t following MaCurdy (1981). Hours residuals
(η+∆υ̃t)/γ = (η+∆υt −∆mew,t)/γ +∆meh,t are obtained by running IV on differenced
log hours using differenced year, child, disability and state dummies as covariates.
The instruments for the differenced log wage are interactions of age and years of
education, i.e., age, education, education2, age× education, age× education2, age2 ×
education and age2 × education2. Wage residuals ∆ω̃t = ∆ωt +∆mew,t are obtained
by estimating equation (3.4) augmented by an error term, i.e. regressing differenced
log wages on the same exogenous regressors as in the hours equation as well as the
excluded instruments.

Wage shocks — After recovering ∆ω̃t, all parameters of the autoregressive process,
(θ,σ2

ε,ω,σ
2
ζ,ω), are identified through combinations of the autocovariance moments.

Label the k-th autocovariance moment by Λω̃,k:
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Λω̃,0 = E
[
(∆ω̃t)

2
]

=2
(
1−θω +θ2

ω

)
σ2
ε,ω + σ2

ζ,ω (3.16)

+2σ2
me,w

Λω̃,1 = E [∆ω̃t∆ω̃t−1] =− (θω − 1)2σ2
ε,ω (3.17)

−σ2
me,w

Λω̃,2 = E [∆ω̃t∆ω̃t−2] = −θωσ2
ε,ω (3.18)

Net of σ2
me,w, dividing Λω̃,2 by Λω̃,1 identifies the parameter θω. Successively,

the variance of the transitory shock is identified from Λω̃,1 and the variance of the
permanent shock from Λω̃,0 (see Hryshko, 2012).

Hours shocks — The residual obtained from estimating the labor supply equation
contains both hours shocks υt and a function of expectation errors, ηt. The variance
of the residual of the labor supply equation contains both the mean and the variance

of φλt
γ+φλt

and the variance of the permanent hours shocks, which causes an identifi-

cation problem. The procedure for wage moments does not carry over. We use the
contemporaneous covariance of hours and wage residuals to identify the mean of

1− γ

γ+φλt
, which is equivalent to φλt

γ+φλt
. To arrive at the theoretical variance moment,

use equations (3.8), (3.11), (3.12), and (3.15) to find the following expression for the
hours residual

η +∆υ̃t
γ

=
1
γ

[
−
(
1−γ 1

γ +φλt

)
ζυt − (1 +γ)

(
1−γ 1

γ +φλt

)
ζωt (3.19)

+ ζυt + ευt + (θυ − 1)ευt−1 −θυε
υ
t−2

]
− 1
γ
∆mew,t +∆meh,t,

where the first line on the right hand side equals ηt/γ . The variance can be
written as
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Λυ̃,0 = E

(ηt +∆υ̃t
γ

)2 =
1
γ2

(
σ2
ζ,υ + 2

(
θ2
υ −θυ + 1

)
σ2
ε,υ (3.20)

+ (1 +γ)2(1− 2γM1 +γ2M2)σζ,ω

)
+M2σ

2
ζ,υ

+ 2σ2
me,h +

2σ2
me,w

γ2 −
4σ2

me,h,w

γ
,

whereM1 andM2 denote the first and second non-central moments of 1/(γ+φλt ),
the random component in 1 − γ

γ+φλt
. As no analytical expression exists for these

moments, we find them numerically as described in Appendix 3.8.2.
The autocovariance moments of the hours residual Λυ̃,1 and Λυ̃,2 are analogous

to their wage process counterparts:

Λυ̃,1 = E
[
(ηt +∆υ̃t) (ηt−1 +∆υ̃t−1)

γ2

]
= −

(θυ − 1)2σ2
ε,υ

γ2 (3.21)

− σ2
me,h −

σ2
me,w

γ2 +
2σ2

me,h,w

γ

Λυ̃,2 = E
[
(ηt +∆υ̃t) (ηt−2 +∆υ̃t−2)

γ2

]
= −

θυσ
2
ε,υ

γ2 (3.22)

To estimate the variance of permanent hours shocks, we need to identifyM1
using the contemporaneous covariance of hours and wage residuals:

Λω̃,υ̃,0 = E
[
(ηt +∆υ̃t)∆ω̃t

γ

]
=

(γ + 1)(γM1 − 1)σ2
ζ,ω

γ
(3.23)

−
2σ2

me,w

γ
+ 2σ2

me,h,w.

This covariance is larger in absolute value the smaller γ,which denotes resistance
to intertemporal substitution of hours of work, and the larger E[φλt ]. When γ goes
to infinity, the effect of permanent wage shocks on income is only mechanical and
not through labor supply reactions.
M1 and M2 contain both µφ and σφ. Theoretically, σφ is identified through

the cokurtosis moments of the wage and hours residuals. However, cokurtosis
moments are very noisy, hence σφ can only be estimated to a reasonable degree
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of reliability when using several million observations.7 Therefore, we apply the
alternative estimation strategy of calibrating σφ to 1.023 based on results in Alan
et al. (forthcoming). Using this calibration, onceM1 is estimated, the mean of φλt ,

E[φλt ] = eµφ+
σ2
φ
2 , can be recovered. In section 3.5 we show the robustness of our

results to alternative values of this parameter.

Marshallian elasticity — The term multiplied with σ2
ζ,ω in equation (3.23) can be

rewritten as E
[

1−φλt
γ+φλt

]
− 1
γ , the average Marshallian minus the Frisch elasticity of

labor supply. Thus, the Marshallian can directly be calculated from the parameter
estimates. The Marshallian elasticity is the uncompensated reaction to a permanent
wage shock.8

The Marshallian elasticity is the relevant concept for the evaluation of tax re-
forms, which are best described as unanticipated, permanent shifts in net-of-tax
wages (Blundell and Macurdy, 1999). Using similar considerations as in our study,
the Marshallian elasticity has been estimated using the covariance of earnings and
wages, household sharing parameters, and the ratio of assets to total (human and
non-human) wealth in Blundell et al. (2016a, eq. A2.23). Heathcote et al. (2014a) use
the covariance of hours and consumption as well as of wages and consumption to
estimate the Marshall elasticity. In contrast, we rely only on hours and wage data.9

Estimation — We estimate the parameters of the autoregressive processes and the
transition of wage shocks by fitting the theoretical moments {Λω,k ,Λυ,k ,Λω,υ,k} to
those of the data. The vector of parameters, denoted Θ, is estimated using the method
of minimum distance and an identity matrix serves as the weighting matrix.10 The
distance function is given by

DF(Θ) = [m(Θ)−md]′I[m(Θ)−md], (3.24)

where m(Θ) indicates theoretical moments and md empirical moments. An
outline of the entire estimation procedure is detailed in Hryshko (2012). Standard
errors are obtained by the block bootstrap with 200 replicates.

7Simulations evidencing this are available upon request from the authors.
8See Keane (2011, p.1008) for a discussion of why reactions to permanent shocks equal the Marshal-

lian elasticity.
9Heathcote et al. (2014a) also estimate a variant that does not rely on consumption data. Their

approach differs because their specific island framework implies that the marginal utility of
wealth is constant across individuals in the same age-year cell.

10Altonji and Segal (1996) show that the identity weighting matrix is preferable for the estimation of
autocovariance structures using micro data.
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3.3 Recovering Labor Supply Elasticities, Wage Shocks, and Hours Shocks

The data — We use annual data from the PSID for the survey years 1970 to 1997.
After this point in time the PSID is bi-annual. Annual hours of work and earnings
refer to the previous calendar year. Hours are constructed by the PSID by multiplying
actual weeks worked with usual hours of work per week. Earnings include wages
and salaries from all jobs and include tips, bonuses, and overtime. We calculate the
hourly wage by dividing earnings through hours of work. As hours and earnings
are measured with error, a negative correlation between measured hours and wages
is induced, which we correct for as described in the final part of this section. Our
sample consists of working, married males aged 28 to 60, who are the primary
earners of their respective households. We focus on this group because the extensive
labor supply margin plays a small role in their labor supply behavior and in order to
allow comparisons to the extant literature. Table 3.1 shows summary statistics of the
main sample. Monetary variables are adjusted to 2005 real values using the CPI-U.

Table 3.1: Descriptives

mean s.d.
Age 41.35 8.66
Annual hours of work 2220.28 530.11
Hourly wage 26.86 22.83
Number of kids in household 1.64 1.39
N 46340

Note: Own calculation based on the PSID. Mone-
tary values inflated to 2005 real dollars.

Measurement errors — Wages and hours are measured with error, which we as-
sume to be classical in levels, i.e. i.i.d. over time and individuals. As wages are
calculated by dividing annual earnings through hours, the wage measure suffers
from division bias, i.e., the measurement errors of wages and hours are negatively
correlated. Following Meghir and Pistaferri (2004) and Blundell et al. (2016a) we
use estimates from the validation study by Bound et al. (1994) for the signal-to-
noise ratios of wages, hours, and earnings. As in Blundell et al. (2016a), we assume
that the variance of the measurement error of hours is σ2

me,h = 0.23var(h), the vari-
ance of the measurement error of wages is σ2

me,w = 0.13var(w), and the variance
of the measurement error of earnings is σ2

me,y = 0.04var(y), where var(h), var(w),
and var(y) denote the variances of the levels of log wages, log hours, and log earn-
ings. The covariance of the measurement errors of log wages and hours is given by
σ2
me,h,w = (σ2

me,y − σ2
me,w − σ2

me,h)/2.
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3.4 Main Results

Standard deviations of wage shocks — Table 3.2 reports the standard deviations
of permanent and transitory wage shocks as well as the parameter of transitory shock
persistence. Throughout the paper we show results for the full sample as well as
three sub-samples, which might differ with respect to their labor supply behavior and
exposure to shocks: a sample excluding young workers, one consisting of individuals
with more than high school education and a sample of individuals without children
less than seven years old in the household. First, while the magnitude of the standard
deviation of permanent shocks is similar in the four samples, excluding young
workers leads to a decline of this figure. This is in line with the finding of a u-shaped
pattern of permanent wage shocks over the life-cycle as in Blundell et al. (2016a)
and Meghir and Pistaferri (2004). Second, for all samples the standard deviation
of transitory shocks is smaller than that of permanent shocks. Third, the highly
educated face a substantially lower standard deviation of transitory shocks than
the full sample. For those without children less than seven years permanent and
transitory shocks are slightly lower than for the full sample.

Table 3.2: Wage Variances
I II III IV

Full sample Age≥40 High educ No children <7
θω 0.2701 0.3450 0.2737 0.1832

(0.0090) (0.0241) (0.0325) (0.0212)
σε,ω 0.1337 0.1382 0.0772 0.1166

(0.0017) (0.0030) (0.0015) (0.0025)
σζ,ω 0.1770 0.1554 0.1765 0.1639

(0.0009) (0.0014) (0.0007) (0.0011)
N 46340 20607 19831 24547

Note: Own calculation based on the PSID. Bootstrapped stan-
dard errors in parentheses.

Standard deviations of hours shocks — The first three rows in Table 3.3 show
the parameters of the process of shocks to the disutility of work. For ease of inter-
pretation, the parameters are reported as they enter the hours equation (3.5), i.e.
multiplied with 1/γ . The size of these estimates are generally comparable to those
of the wage process. The standard deviation of the permanent hours shocks drops
when we consider the highly educated. This group also experiences less pronounced
transitory shocks in comparison to the main sample. Otherwise, permanent shocks
to the disutility of work are of a fairly consistent size across the samples. For all
three subsamples the standard deviation of transitory shocks is lower than in the
full sample. The magnitude of the standard deviation of permanent hours shocks
is a first indicator that these shocks play a significant role for overall earnings risk.
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3.4 Main Results

However, as described in section 3.2, the effect of innovations in the marginal disu-
tility of work on earnings depends on the degree of consumption insurance. At the
end of this section we discuss the importance of wage shocks and hours shocks to
overall earnings risk.

Table 3.3: Hours variances and labor supply elasticity
I II III IV

Full sample Age>=40 High educ No children <7
θυ/γ 0.1515 0.4013 0.1140 0.2463

(0.0039) (0.0059) (0.0065) (0.0053)
σε,υ/γ 0.1114 0.0730 0.0709 0.0790

(0.0011) (0.0012) (0.0014) (0.0012)
σζ,υ/γ 0.1990 0.2102 0.1648 0.1914

(0.0010) (0.0327) (0.0010) (0.0058)
1/γ 0.3614 0.4020 0.2851 0.3148

(0.0856) (0.3778) (0.0975) (0.1080)
E[φλt ] 1.8918 1.4084 0.5668 0.9565

(0.1117) (4.0920) (0.0436) (1.2774)
E[κ] -0.0767 -0.0023 0.1302 0.0631

(0.0105) (0.0254) (0.0078) (0.0164)

Note: Own calculation based on the PSID. Clustered standard
errors for 1/γ , bootstrapped standard errors for other coefficients
in parentheses.

Frisch elasticity — Row 4 in Table 3.3 reports the estimates of the Frisch elasticity.
In contrast to the most closely related papers (Blundell et al., 2016a; Heathcote
et al., 2014a), we obtain the Frisch elasticity directly through IV estimation and not
through covariance moments.11 The estimated Frisch elasticity for the main sample
is 0.36, which is in line with the literature (Keane, 2011). The point estimate of
the Frisch elasticity increases when excluding younger individuals. This result is
expected as younger individuals could be less willing to reduce their hours of work
in the case of a decrease in the hourly wage because the accumulation of human
capital impacts their opportunity costs of time (Imai and Keane, 2004). Similarly,
human capital considerations are more important for the highly educated, where
the Frisch elasticity is lower than that of the main sample. The estimate for those
without young children is fairly close to that of the main sample, but slightly smaller.

Transmission parameter — Row 5 in Table 3.3 shows the estimated mean of the
parameter that measures the transmission of shocks to the marginal utility of wealth,
E[φλt ]. As this parameter falls, individuals become more insured against shocks. A

11Table 3.10 in the appendix additionally displays the Kleibergen and Paap (2006) F statistic, indicat-
ing that only sample II might suffer from substantial weak instrument bias and should therefore
be interpreted with caution.
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value of zero indicates that permanent shocks do not impact the marginal utility
of wealth at all. We expect households with larger accumulation of assets relative
to human wealth to exhibit smaller values of E[φλt ]. The point estimate drops
only slightly relative to the full sample, when excluding young workers, but is
substantially smaller when focusing on those without young children and especially
on the highly educated. It is not surprising that more well-educated individuals are
also insured to greater extent.

Marshallian elasticity —Table 3.3 reports the average of the Marshallian elasticity
defined in equation (3.12) as the reaction to a permanent wage shock.12 The wealth
effect outweighs the substitution effect, leading to a negative (but small) estimate
for the main sample, in line with the recent literature.13 The negative Marshallian
implies that hours move in the opposite direction of wages and thus function as
a consumption smoothing device. When excluding younger workers, the estimate
edges even closer to zero, signifying no long-term adjustment in hours for older
workers. The smaller the average transmission parameter, the closer is the average
Marshallian to the Frisch elasticity because the shock has a smaller effect on the
marginal utility of wealth. The smaller wealth effect for older workers is expected
because for individuals close to the end of their life-cycle transitory and permanent
shocks have the same effect on the marginal utility of wealth. In the sample without
young children in the household the estimate is positive, making the substitution
effect the dominant force as the average transmission parameter is relatively small
for this sample. The highly educated show the highest positive Marshallian elasticity
driven by their very small transmission parameter.

Importance of hours and wage shocks — Using our estimates for the variances of
hours and wage shocks allows us to quantify their contribution to the cross-sectional
variance of overall earnings growth. The stochastic component of earnings net of
measurement error is given by the sum of hours and wage residuals plus the Frisch
reactions to idiosyncratic wage changes, which we have removed from the hours
residual by detrending with wages, see equation (3.15). The variance of stochastic
earnings growth is thus given by

12We calculate κ as the numerical expectation E
[

1−φλt
γ+φλt

]
, which does not simply reduce to

1−E[φλt ]
γ+E[φλt ]

.
13Blundell et al. (2016a) and Heathcote et al. (2014a) find Marshallian elasticities for men of -0.08 and

-0.16 respectively. The latter number is obtained by inserting the obtained parameter estimates in
the formula for the labor supply reaction to an uninsurable shock. Altonji et al. (2013) report a
coefficient that determines "the response to a relatively permanent wage change" of -0.08.
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E
[( �∆ lny

)2
]

=
1
γ2

[
γ2M2

(
σ2
ζ,υ + (γ + 1)2σ2

ζ,ω

)
(3.25)

+ 2(γ + 1)2((θω − 1)θω + 1)σ2
ε,u + 2((θυ − 1)θυ + 1)σ2

ε,υ

]
M2 is obtained numerically using the estimates of the underlying parameters.

Note thatM2 depends on the variance of the transmission parameter φλt , which is
known to individuals. Additionally the realization of transitory components of wage
and hours growth are partially known in advance, see equation (3.7). Therefore this
overall variance is not a pure measure of risk. The first row of Table 3.4 shows the
cross-sectional variance of the stochastic component of earnings growth for the four
samples. Rows 2-5 show the contributions of shock components, i.e., the variance of
earnings growth when the variances of all other shock components are set to zero.
Earnings growth variances for the highly educated and for the sample excluding
households with young children are substantially lower than that of the main sample.
For all samples, except that of the highly educated, transitory wage shocks play
the largest role in explaining earnings growth variance. The main source of the
variance in income growth for the highly educated are permanent wage shocks. Their
contribution is roughly double that of permanent hours shocks. For all samples
the share of the cross-sectional hours variance due to permanent hours shocks is at
minimum more than half the share explained by permanent wage shocks. For the
sample excluding younger workers, the shares of earnings growth variance explained
by permanent hours and wage shocks are of similar magnitude. For older workers
the seniority dynamics of their wage become less relevant, which should drive down
the contribution of permanent wage shocks to the variance of earnings. A similar
dynamic does not necessarily follow for shocks to home production. The highly
educated experience the bulk of their variation through permanent wage shocks,
while all other sources of the variance lose relevance compared to the main sample.
The earnings and wage profile of the highly educated is much steeper; human capital
can still increase substantially through labor market experience (see Imai and Keane,
2004). These potential increases in productivity during working life leave room for
a greater variation across individuals and over time.
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Table 3.4: Decomposition of variance of earnings growth
I II III IV

Full sample Age>=40 High educ No children <7
V

( �∆ lny
)

0.1464 0.1293 0.0857 0.1071
σε,ω 0.0532 0.0581 0.0158 0.0400
σζ,ω 0.0426 0.0326 0.0398 0.0319
σε,υ 0.0216 0.0082 0.0090 0.0100
σζ,υ 0.0290 0.0304 0.0210 0.0252

Note: Variance of �∆ lny when all other shock variances are set to
zero. First line: actual variance of �∆ lny given by equation (3.25).
Own calculation based on the PSID.

When evaluating risk of idiosyncratic earnings growth instead of its cross-
sectionalvariance, everything that is known to an agent at t − 1 must be excluded
from (3.25) and φλt must be treated as non-stochastic. Denote by It−1 the agent’s
information set at t −1. At that point in time the agent knows φλt and the realization
of shocks in t − 1. Thus, E

[�∆ lnyt |It−1

]
includes the transitory components from the

previous two periods. The resulting equation for earnings risk conditional on the
information set in t − 1 is

E
[(�∆ lnyt −E

[�∆ lnyt |It−1

])2∣∣∣∣ It−1

]
=
σ2
ζ,υ + (γ + 1)2σ2

ζ,ω

(γ +φλt )2
+

1
γ2

(
σ2
ε,υ + (γ + 1)2σ2

ε,ω

)
(3.26)

In Table 3.5 φλt is set to the sample mean. Thus, the cross-sectional variance
of unexpected earnings growth can be interpreted as earnings risk for a typical
individual in each sample. A comparison of the first lines in Tables 3.4 and 3.5
shows that for the full sample earnings growth risk at the mean is about 55% of
the cross-sectional idiosyncratic earnings growth variance. The degree to which
the size of contributions of transitory shocks decreases depends on the parameter
θ of the respective MA(1) process. The smaller θ, the larger is the share of risk in
the total variance of idiosyncratic earnings growth. The importance of permanent
shocks decreases relative to Table 3.4 because φλt is non-stochastic. The importance
of permanent wage shocks decreases for all samples and to a large degree for the first
two samples, where the Marshallian labor supply elasticity is negative at the mean
of φλt . Similarly, the importance of permanent hours shocks for total earnings risk is
much smaller for these two samples as φλt cushions the reaction to innovations in
the marginal disutility of work. For all samples, permanent hours shocks explain at
least 17 percent of earnings risk. Nonetheless, wage risk is more important in all
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samples, although for older individuals the magnitudes are very close, as they were
for the variance.

Table 3.5: Decomposition of earnings risk at mean
I II III IV

Full sample Age>=40 High educ No children <7
V (∆ lny) 0.08 0.0803 0.0731 0.0788
σε,ω 0.0331 0.0375 0.0098 0.0235
σζ,ω 0.0205 0.0194 0.0381 0.0275
σε,υ 0.0124 0.0054 0.005 0.0062
σζ,υ 0.014 0.018 0.0201 0.0217

Note: Earnings growth risk with φλt set to sample mean. First line:
Total earnings risk at mean given by equation (3.26).
Own calculation based on the PSID.

While transitory shocks are an important driver of cross-sectional earnings
growth variance, only permanent shocks have a large impact on the present value
of life-time earnings. A back-of-the-envelope calculation14 using the average coeffi-
cients of the main sample shows that for an individual aged 30 and retiring at 65, a
typical positive permanent wage shock of one standard deviation increases present
value life-time earnings by about 150 000 Dollar, while a typical positive permanent
hours shock increases life-time income by 124 000 Dollar.15 Typical permanent
wage and hours shocks at age 50 for the same individual increase life-time income
by 92 000 and 76 000 Dollar respectively. Thus, both types of permanent shocks
have a substantial impact on life-time earnings.

The impact of hours shocks depends largely on the degree of insurance. In the
benchmark case of full insurance with φλt = 0 individuals adjust their hours of work
much more in response to a shock to the disutility of work. Then the impact of a
typical permanent wage shock at age 30 is 252 000 Dollar because in this case the
Frisch labor supply reaction amplifies the wage shock. The analogous impact of a
typical hours shock is 208 000 Dollar. Clearly, the impact of a permanent shock on
life-time income varies widely between individuals.

14The impact of a typical permanent wage shock at the mean of φλt is given by the geometric series
y
(
1 +

(
1−

(
E[φλt ]

)
/
(
γ +E[φλt ]

))
σζ,ω

)
(1−1/r65−age)/(1−1/r) and the impact of a typical permanent

hours shock is y (1/ (γ +E[φλt]))σζ,υ(1−1/r65−age)/(1−1/r), where annual earnings y are set to the
sample mean of 57 267 Dollar and the real interest rate r is 1.0448 based on World Bank figures
for our period. This abstracts from deterministic earnings growth, i.e. it makes the simplifying
assumption that earnings would remain constant without shocks.

15Note that the ratio of the impacts of typical permanent hours and wage shocks on lifetime earnings
equals the square root of the corresponding ratio of contributions to earnings risk reported in
Table 3.5.
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3.5 Discussion

Characterizing hours shocks — In order to investigate and understand the sources
of permanent hours shocks, we estimate their standard deviation in alternative
samples. Column I in Table 3.6 reports the value for the full sample. Column
II contains results for a sample of individuals in blue collar jobs. Individuals in
advanced technical sectors, like electrical and mechanical engineering or skilled
service jobs like legal or medical services are excluded. One could expect that the
demand for these more regularized jobs only allows for very limited variation in
hours. However, this does not seem to be the case, as the estimate of the permanent
shocks hardly changes. In column III we exclude the years 1981 and 1982, when a
global recession hit the US. The estimate of the standard deviation of permanent
hours shocks hardly changes, which shows that the results are not driven by the crisis.
Finally, in column IV the sample is restricted to individuals who have stayed in their
current job for at least twelve months. This leads to a slight decrease in the estimate.
However, it is safe to say that permanent hours shocks do not reflect changes in
occupation or job instability. The upshot of these alternative estimations is that
permanent hours shocks play an important role throughout all samples and are not
restricted to very specific adjustments or at-risk groups. The fact that hours shocks
do not seem to be driven by occupation changes or possibly unwanted changes in
hours of work during crises suggests an interpretation of permanent hours shocks as
shocks to home production.

Table 3.6: Permanent hours shock variances in alternative samples and
models

I II III IV
Main Blue collar Exclude years 81-82 Only stayers

σζ,υ/γ 0.1990 0.2087 0.2066 0.1918
(0.0010) (0.0018) (0.0025) (0.0016)

N 46340 38030 40999 35901

Note: Own calculation based on the PSID. Bootstrapped standard
errors in parentheses.

Hours shocks and transmission in alternative models — In Table 3.7 we report
the parameters of the hours shock process and the transmission parameter as well as
the implied Marshallian elasticity for the main sample under various restrictions
or alternative assumptions. Further we display a measure of overall fit of these
alternative models, namely the value of the distance function DF(Θ), so that we
may develop an idea about the value of the main model in describing the data. The
estimates of the main model are repeated for comparison in column I. In column
II, the variance of ln(φλt ) is calibrated to half the value of our main specification.
All estimated coefficients except for the standard deviation of permanent hours
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shocks and the mean of the transmission parameter are unchanged. The standard
deviation of the permanent hours shocks is slightly larger. The reason is that the
variance of the transmission parameter interacts with the variance of hours shocks
in explaining the variance of hours growth, see equation (3.20). The fit of this
alternative model is just slightly worse, since the variance of permanent wage shocks
can freely adjust. The exercise demonstrates that the results only depend to a small
degree on this calibration. Columns III and IV illustrate the importance of allowing
for hours shocks. In column III the variance of permanent hours shocks is set to
zero. While the estimated variance of transitory hours shocks increases only slightly,
the estimated mean of the transmission parameter increases to roughly 2.47. The
fit of this model is substantially worse with an increase of the distance function by
6 orders of magnitude. The implied Marshallian elasticity doubles. In column IV
both transitory and permanent hours shocks are restricted to zero. In this case the
estimated average transmission parameter increases to roughly 20.8 and an implied
Marshallian elasticity of about -0.7. These extreme estimates are explained by the
fact that the transmission of wage shocks is now the only channel to explain hours
variance. Naturally, the fit takes another hit from this restriction, although it is not
as severe as the first jump. The order of magnitude of the distance function increases
onefold. That the final change in fit is not as large as the one in model III further
underlines the fact that permanent wage shocks are an important part of the picture
in the attempt to explain the variance of the hours residual.

Table 3.7: AR Hours Estimation in Alternative Models
I II III IV

Main Model σφ halved σζ,υ = 0 σζ,υ = 0 & σε,υ = 0
θυ/γ 0.1515 0.1515 0.1454

(0.0039) (0.0039) (0.0013)
σε,υ/γ 0.1114 0.1114 0.1501

(0.0011) (0.0011) (0.0005)
σζ,υ/γ 0.1990 0.2116

(0.0010) (0.0026)
E[φλt ] 1.8918 1.4317 2.4705 20.7997

(0.1117) (0.0691) (0.1784) (3.2642)
E[κ] -0.0767 -0.0767 -0.1450 -0.6952

(0.0105) (0.0105) (0.0111) (0.0093)
DF(Θ) 1.9398× 10−11 7.0055× 10−11 3.8247× 10−05 0.0005

Note: Own calculation based on the PSID. Bootstrapped standard errors in
parentheses.

Model Fit — The model attempts to fit the first three autocovariance moments of the
hours and wage residuals and the covariance of the two. In Table 3.8 we show how
the data estimates of these moments stack up against the values fit by the model. We
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use the main sample to evaluate the fit. As expected, the model fits the empirical
moments very well.

Table 3.8: Model Fit
Var. wages 1. AutoCov

wages
2. AutoCov
wages

Var. hours 1. AutoCov
hours

2. AutoCov
hours

Cov. hours
& wages

emp. 0.1530 -0.0560 -0.0048 0.1443 -0.0529 -0.0052 -0.1010
mod. 0.1530 -0.0560 -0.0048 0.1443 -0.0529 -0.0052 -0.1010

Note: Variance moments of residuals obtained from the regressions of equations (3.5) and (3.4) for the main sam-
ple.
Own calculation based on the PSID.

The current model does not allow for variation in these targeted variances over
age groups and thus imposes that their pattern is essentially flat over the life-cycle.
Figures 3.4a, 3.4b and 3.4c show the two residual variance series and the covariance
over age. The figures show that these variances do not vary substantially over the
life-cycle.

Partial consumption insurance — The parameter φλt is directly related to con-
sumption growth, see equation (3.13) and Alan et al. (forthcoming). In our model
with endogenous labor supply permanent wage shocks translate into changes in
consumption by φλt /ϑ × (1 + (1 −φλt )/(γ +φλt )). We set ϑ = 2, which is close to the
estimates of related papers16 and calculate the resulting pass-through at mean values
of φλt , reported in Table 3.9. For the full sample we find that on average a permanent
wage shock of one percent leads to an increase in consumption by 0.76 percent.
This figure can be compared to studies that use consumption data to obtain similar
parameters. Blundell et al. (2016a) use 1999-2009 PISD data and find that the
Marshallian response of consumption to male wage shocks is 0.58, when female
labor supply is held constant. We obtain a slightly smaller pass-through parameter
for the older sample than for the main sample, but find a substantially smaller
pass-through of wage shocks to consumption for the highly educated, for whom
a permanent wage increase by one percent leads to an increase in consumption of
just 0.31 percent. Using a similar data set to ours, 1978-1992 PSID data, Blundell
et al. (2008) estimate the pass-through of permanent income shocks to consumption,
which is given by φλt /ϑ in our model. With a Marshallian labor supply elasticity
close to zero – as the one we have estimated – this parameter comes close to the
pass-through of permanent wage shocks. Their estimate for the full sample is 0.64
and the estimate for their college sample is 0.42. We confirm the finding that the
highly educated are much better insured against income shocks than is the case for
the whole population.

16Blundell et al. (2016a) estimate a parameter of relative risk aversion of 2.4 and Heathcote et al.
(2014a) estimate 1.7.
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Figure 3.3: Fit of variance and covariance moments over the life-cycle
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Note: Own calculation based on the PSID. Empirical and theoretical variance and covariance moments
of residuals obtained from the estimation of equations (3.4) and (3.5) for the main sample with
bootstrapped 95 percent confidence interval.
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Table 3.9: Pass-through of permanent wage shocks to consump-
tion

I II III IV
Full sample Age>=40 High educ No young children

0.7648 0.6304 0.3135 0.4820

Note: E[φλt ]/ϑ × (1−E[φλt ])/(γ +E[φλt ]) with ϑ=2.
Own calculation based on the PSID. Bootstrapped standard
errors in parentheses.

Much of the literature on consumption insurance makes use of moment conditions
involving consumption data. We obtain comparable estimates from labor supply
and earnings data alone. Similarly, Heathcote et al. (2014a) estimate their model
with and without moment conditions using consumption. The obtained estimates of
the share of insurable wage dispersion are essentially the same. A simple back-of-
the-envelope calculation based on our results for the pass-through parameter to the
marginal utility of wealth yields consumption insurance parameters that are broadly
comparable to those obtained in previous papers using consumption data. This adds
to the notion that much can be learned about consumption insurance from earnings
and labor supply data alone.

3.6 Qualifications and Extensions

The model chosen for this current analysis, although it is a workhorse for modern
dynamic labor supply studies, is not without its drawbacks. Firstly, it is not a
model of all of the individual’s life-cycle. We do not consider the retirement phase
of the individual and the influence this part of the life-cycle has on individual’s
behavior. Empirically, it seems that consumption strongly adjusts around the time
of retirement, yet behavior before entry into retirement is quite consistent, which is
also known as the retirement-consumption puzzle (Attanasio and Weber, 2010).17

However, it is apparent that this should heavily bear on the labor supply decisions
we seek to explain during the active working phase. Secondly, we abstract from the
household context and abstract from joint decision-making or at least responsiveness
to behavior of the partner in the household. Recent studies, for example Blundell
et al. (2016a), allow for a joint consideration of the primary and secondary earner’s
decisions in the household. Since the paper is focused on the decomposition of
earnings variance and risk, we are willing to omit this feature. However, it cannot
be ruled out that some of the reactions of the primary earner to, for example,

17This puzzle has been resolved to some extent in recent papers. See for example Hurd and Rohwed-
der (2008)
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the secondary earners wage process are picked up in our estimates. More on this
below. Thirdly, we assume that agents know the type and parameters of their shock
processes. In particular, they know whether shocks are permanent or transitory and
the respective variance of the shocks. They simply do not know the realization of
the shock. There has been some recent work to soften this assumption. The main
contribution in this direction is Guvenen (2007), who develops a model of individuals
applying Bayesian learning to discover the nature of their earnings process. While
full knowledge of the shock process is certainly a very strong assumption, the
generalization to a Bayesian learning framework brings with it other conceptual
pitfalls. Firstly, individuals still need to know about the structure of the shock
process. Secondly, there is the issue of individual’s priors about the shock variances
of a process. It is not obvious how to they should be modeled and, in fact, mirrors
the issue of assuming the variances of the shocks as known. This consideration is
beyond the scope of this paper.

A crucial assumption in the set-up of the model is that innovations to the
disutility of labor arrive through the parameter bt. This parameter can possibly also
be associated with innovations to the utility from consumption, since bt appears as a
factor in the marginal rate of substitution between labor supply and consumption.
The following argument can be put forth to defend the interpretation in terms of
the disutility from labor supply: shocks that shape utility from consumption may
mainly be rooted in the innovation of new products, which are aggregate shocks
not included in the idiosyncratic part of bt. Otherwise, changes in the utility from
consumption might largely be driven by age, which will also not be picked up in
νt. However, we cannot definitvely rule out that certain shocks to the utility from
consumption do enter and affect our results.

A possible extension is to make the form of the shock process more flexible to
capture not only dynamics in the variance of earnings, but higher moments and
therefore be more precise about what type of risk individuals are facing. Recent
work in this direction has been done by Guvenen and Smith (2014) and Guvenen
et al. (2015) in a mainly descriptive fashion and documenting the nonlinear nature
of earnings risk. Arellano et al. (2017) develop a method to estimate such nonlinear
earnings processes using panel data and use the PSID and Norwegian register data to
document nonlinear persistence of shocks and conditional skewness. They also trace
the impact of these phenomena to differential consumption responses. However,
they do not model labor supply.

3.7 Conclusion

At the outset we asked a simple question: What are the drivers of the riskiness of
earnings? To get at the answer, we have decomposed idiosyncratic income uncer-
tainty into contributions of transitory and permanent wage and hours shocks. This
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is a departure from extant work, where unexplained income volatility is entirely
due to wage shocks. In order to separate hours shocks from labor supply reactions
to wage shocks, we build on a life-cycle model of labor supply and consumption
and estimate a transmission parameter that captures the impact of shocks on the
marginal utility of wealth. This parameter captures consumption insurance and is
allowed to vary between individuals. We find that both wages and hours are subject
to permanent shocks. At the mean, permanent wage shocks have a stronger impact
on life-time earnings. Using the mean of the transmission parameter and mean
annual earnings, a positive permanent wage shock of one standard-deviation at age
30 increases life-time earnings by 150 000 Dollar, while the effect of a permanent
hours shock of one standard-deviation is 124 000 Dollar. Both permanent hours and
wage shocks are an important source of cross-sectional earnings growth volatility
and earnings risk. Ergo, the data tell a story beyond wage risk.

Along the way to this result, we have shown an alternative way to calculate the
Marshallian elasticity of labor supply, which we find to be negative, but small, at
-0.08. There is more insurance against permanent wage shocks among the highly
educated, for whom we estimate a small positive Marshallian elasticity. Setting
the variance of both transitory and permanent hours shocks to zero, we estimate a
Marshallian of -0.70 for the main sample, which demonstrates the importance of
modeling hours shocks.

Our investigation of the sources of permanent hours shocks leads us to believe
that they are best described as shocks to home production. We cannot rule out that
other restrictions affect the variance of hours. However, we do rule out two potential
major sources of hours shocks. Permanent hours shocks persist as a phenomenon
when restricting the sample to individuals who stay in their respective jobs over
time and when excluding the years 1981-82, when a major economic crisis hit the
US. These tests, along with the results from our four main samples, strongly suggest
that hours shocks are a phenomenon that is not restricted to very specific, one-off
adjustments or only relevant for narrowly defined groups.

Calibrating the coefficient of relative risk aversion, we calculate the pass-through
of permanent wage shocks to consumption and find reasonable figures in the same
range as those reported in Blundell et al. (2008). These results are encouraging as
they show that comparable estimates of consumption insurance can be obtained
using consumption or labor supply data.

Natural extensions of our framework include modeling family labor supply and
the extensive labor supply margin. Moreover, the sources of hours shocks merit
further research. One promising avenue would be to explicitly model and then
separate out shocks to home production from other restrictions to labor supply.
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3.8 Appendix

3.8.1 Derivation of the Labor Supply Equation

The residual in the labor supply equation consists of in-period shocks and expec-
tations corrections in the marginal utility of wealth due both to wage and hours
shocks.

The first order condition of the consumer’s problem w.r.t. ht is:

∂L
∂ht

= Et
[(
−bth

γ
t

)
+λtwt

]
= 0, (3.27)

where λt = ∂u(ct ,ht ,bt)
∂Ct

denotes the marginal utility of wealth. The Euler equation
of consumption is given by

1
ρ(1 + rt)

λt = Et[λt+1]. (3.28)

Expectations are rational, i.e., λt+1 = Et[λt+1] + ελt+1
, where ελt+1

denotes the
mean-zero expectation correction of Et[λt+1] performed in period t + 1. Expectation
errors are caused by innovations in the hourly wage residual ωt+1 and innovations
in hours shocks υt+1, which, as implied by rational expectations, are uncorrelated
with Et[λt+1]. Rational expectations imply that ελt+1

is uncorrelated over time, so
that regardless of the autocorrelative structure of the shock terms, ελt+1

will only be
correlated with the innovations of the shock processes.

Resolving the expectation operator in equation (3.27) yields

bth
γ
t = λtwt. (3.29)

Taking logs of both sides we arrive at the structural labor supply equation

lnht =
1
γ

(lnλt + lnwt − lnbt) . (3.30)

To find an estimable form for lnht, we take logs of (3.28) and resolve the expec-
tation:

lnλt = ln(1 + rt) + lnρ+ ln
(
λt+1 − ελt+1

)
A first order Taylor-expansion of ln

(
λt+1 − ελt+1

)
gives ln(λt+1)− ελt+1

λt+1
, leading to

the expression

lnλt = ln(1 + rt) + lnρ+ ln(λt+1)−
ελt+1

λt+1
+O

(
− 1

2

(
εt+1

λt+1

)2 )
. (3.31)
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Accordingly, when we backdate (4.35), we can insert it in (3.30) and remove lnλt
by first differencing.

3.8.2 Distribution of the Shock Pass-Through on Hours

The moments of the term φλt
γ+φλt

are not as tractable as the rest of the random variables

in the variance moment estimation, since we assume lnφλt ∼N (µφ,σφ). We can refine
the expression to find a more basic expression:

φλt
γ +φλt

= 1−γ 1

γ +φλt

The only random term in this expression is 1
γ+φλt

. We can find its distribution by

re-expressing its CDF in terms of the underlying normal distribution of lnφ. Let
1

γ+φλt
= Z. Then

P (Z ≤ z) = P
(

1

γ +φλt
≤ z

)
(3.32)

P
(
lnφλt ≤ ln

(1
z
−γ

))
=

∫ ln( 1
z−γ)

−∞

exp
(
− (x−µφ)2

2σ2
φ

)
√

2πσ2
φ

dx (3.33)

Integrating this CDF, we find the CDF for the random variable Z.

F(z) = 1/2

1−Erf

 ln
(

1
z −γ

)
−µφ

(2σ2
φ)1/2




Here Erf(·) is the Gaussian error function. To generate the first and second
noncentral moments, we take the derivative to find the PDF of Z.

f (z) = −
exp

(
−(ln( 1

z−γ)−µφ)2

2σ2
φ

)
√

2πσ2
φz(1 + zγ)

The first and second noncentral moments are M1 =
∫ 1/γ

0
zf (z)dz and M2 =∫ 1/γ

0
z2f (z)dz. These are calculated via numerical integration, as there is no closed

form solution. We implement these formulas in our moment conditions. In estima-

92



3.8 Appendix

tion we restrict the values of µφ not to exceed 5, as the moments of φλt
γ+φλt

asymptote

beyond that point.

3.8.3 Tables

Table 3.10: Frisch Labor Supply Equation Estimation
I II III IV

Full sample Age>=35 High educ With children
∆ ln(wage) 0.3614 0.4020 0.2851 0.3148

(0.0856) (0.3778) (0.0975) (0.1080)
N 46340 20607 19831 24547
Kleibergen and Paap (2006) F stat 18.4680 1.2408 11.7317 11.6739

Note: Own calculation based on the PSID. Clustered standard errors in parentheses.
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4.1 Introduction

Over their life-cycle individuals experience changes in the remuneration of their
work. Some of these changes in earnings are expected, some are not. The unforeseen
changes constitute risk that alters forward-looking working, saving, and consump-
tion decisions. The class of models investigating these responses typically assume
an incomplete financial market and frame saving with a non-contingent bond as the
central device to insure against income risk. In this class of models the consumption
reaction to a permanent change in income should be strong, even one-to-one if
the utility function does not exhibit positive prudence.1 However, as for example
Blundell et al. (2008) document, pass-through of a permanent shock from income
to consumption is not one-for-one empirically, which is generally referred to as
excess smoothness. This phenomenon has lead researchers to explore other sources of
insurance that mitigate the pass-through, such as precautionary saving, labor supply,
labor supply of the secondary earner, and progressive taxation (Blundell et al., 2015,
2016a; Heathcote et al., 2014a).

The current paper sets out to answer two major questions related to the riskiness
of earnings:

1. How has permanent earnings risk developed over the last decade in the US
and to what extent has progressive taxation insured against this risk?

2. What is the insurance effect of the current and alternative tax schedules?

The analysis builds on a life-cycle model of labor supply, which features risk origi-
nating in hourly wages. The model is tractable and allows for the estimation of the
relevant parameters giving the evolution of risk and the behavioral parameters of
labor supply in two steps: 1. Estimation of growth in log wages and log hours, de-
rived from the first order condition for labor supply, which yields residual wage and
residual hours growth. 2. Method of moments estimation using the second moments
of residual wage and residual hours growth, which yields the relevant parameters
to measure risk and pass-through to earnings. This approach has successfully been
employed by both Blundell et al. (2016a) and Heathcote et al. (2014a) for the purpose
of exploring and comparing different insurance channels. The approach relies on the

1See Krueger (2007, pp.46-48) for an illustration with a specific income process and quadratic utility.
Further, see Attanasio and Weber (2010) for a comprehensive survey on the issue of consumption
responses to changes in the income process. Precautionary saving, which operates when prudence
is positive, can smooth the consumption profile.
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approximation of the labor supply equation and the life-time budget constraint.2 In-
come taxation, like in previous contributions ( Blundell et al. (2016a) and Heathcote
et al. (2014a)) is modeled by means of a power function approximation. Two novel-
ties of the current paper are the integration of tax deductions and that I find a form
of the approximation that is compatible with nonlabor income. In both cases the
forms are chosen to maintain the tractability of the first order condition approach.
On the empirical side, to quantify risk and insurance, I follow the standard approach
of estimating shock variances and calculating their pass-through to earnings. I use a
novel approach to assess how changes in the tax code alter the insurance provided
by progressive taxation. First, I slightly modify the tax code of the tax calculator and
compute the new distribution of incomes. Second, using this new distribution of
incomes, I estimate the parameters of the tax function approximation and calculate
the relative change to the base level.

I employ US data from the Panel Study of Income Dynamics (PSID) from 1998 to
2014, which means I can cover the influence of the US financial crisis of 2008 on my
measure of risk. The PSID has been used extensively in other studies of this issue
and enables me to embed my findings in the literature.

As concerns the research questions, I find a moderate rise in the permanent
component of wage risk until 2006 (18% increase in the standard deviation) and
a strong increase from 2006 to 2008 (14% increase in the standard deviation) that
persists until 2010 and only partially reverts in 2012. In studying the pass-through
of this “gross” risk onto earnings I find that progressive taxation played a minor
mitigating role. On average about a 5% decrease in pass-through compared to the
case with no progressive taxation. I cannot detect a major change in the estimated
progressivity and, in turn, insurance around the 2008 crisis. The rise in gross
risk after the crisis transfers to net earnings. Finally, I examine a counterfactual
calculation, of how high the top tax rate needed to be to return earnings risk to
pre-crisis levels. I conclude that an increase of about 56% of the actual rate would
have achieved this goal.

As concerns the modeling of the tax function, I find that tax deductions are of
minor importance in shaping how progressive the tax system is. However, they do
have an influence on the parameters of the approximated function. Further, when
investigating the approximation of net income, I find that the estimates are sensitive
to whether one fits the relationship in levels or logs. The approximation in levels
provides a better fit and implies less progressivity. Overall, I find that the fitted
power function performs relatively well. I calculate a fiscal gap per tax unit, the
difference between actual and fitted tax burden, of roughly -650$ implying that the
model slightly underpredicts liabilities.

2The accuracy of these approximation methods has been explored in Domeij and Flodén (2006);
Blundell et al. (2008, 2016a) among others. I will not examine the properties of these approxima-
tions.
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In the next section I provide an overview of the related literature. In section
4.3 I relate the model set up and then focus on the approximation of the retention
function in sections 4.4 to 4.6.2. I introduce the PSID data in section 4.5. Section 4.7
presents the results of estimating the life-cycle model and section 4.8 contextualizes
these results in terms of the pass-through of wage risk to earnings risk and conducts
the policy exercise regarding the top tax rate.

4.2 Taxation as Insurance

The idea that taxation can act as an insurance mechanism against risky income flows
dates back to the 1980s with foundational contributions by Varian (1980) and Eaton
and Rosen (1980). While Varian (1980) considers a dynamic model, in which an
individual may self-insure against income risk via saving, Eaton and Rosen (1980)
explicitly model labor supply with uncertainty in wages but neglect dynamics. Both
Eaton and Rosen (1980) and Varian (1980) come to the conclusion that taxation can
be desirable if an individual faces shocks and is risk averse. Varian (1980) considers
an optimal nonlinear tax schedule with the finding that a more progressive tax
schedule is optimal, when the Arrow-Pratt measure of absolute risk aversion is
increasing. Under the imposition of a utility function that features constant relative
risk aversion (CRRA) marginal tax rates increase in income, given that the coefficient
of relative risk aversion is larger than 1.

Low and Maldoom (2004) make the connection between the two papers and
examine optimal taxation when labor income is risky and both labor supply and
savings are choice variables of the individual. The fundamental trade-off is between
the incentive effect on labor supply stemming from income uncertainty and the
benefit of social insurance that derives from lowering the variance of net income.
They determine that the trade-off is parametrized by the ratio of prudence to risk
aversion.

Several recent empirical studies like Blundell et al. (2016a), Blundell et al.
(2015) ,Heathcote et al. (2014a), and Heathcote et al. (2017a) seek to estimate the
degree of insurance stemming from sources like savings, (family) labor supply and
taxes over the life-cycle. Blundell et al. (2016a) find that insurance via progressive
taxation makes up a sizable contribution (∼11%) to insurance of permanent wage
shocks, but other forces, most prominently (family) labor supply, dominate. For
Norwegian data analyzed in Blundell et al. (2015) the riskiness of earnings is strongly
attenuated by the tax and transfer system, especially for those with lower education,
who experience roughly 20% less impact of a permanent shock of one standard
deviation on annual disposable compared to annual market income. Heathcote et al.
(2014a) simply aim to calculate the overall insurance provided by the aforementioned
mechanisms. They do, however, find that own labor supply dampens the effect
persistent shocks have on consumption by roughly 15%. Heathcote et al. (2017a) go
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a step beyond the description of insurance mechanisms and provide a closed-form
expression for social welfare, which crucially depends on the riskiness of earnings,
and ultimately characterize the progressivity of the optimal income tax.

In the current paper I take a closer look at the descriptive side of insuring income
fluctuations through progressive taxation. I evaluate how this insurance channel
has been shaped by the policy maker. I do not provide a closed-form expression for
social welfare, as Heathcote et al. (2017a) do, and am therefore silent on optimal
policy. It is certainly the case that the policy maker should adopt some consistent
stance on how to treat the trade-off between providing insurance and diminishing
incentives for work. Therefore, I document the insurance effect of the chosen tax
policy and its effect on net earnings risk.

4.3 The Model

The life-cycle behavior of individuals is described in the following. I give a detailed
treatment of the way the tax and transfer system is modeled in sections 4.4-4.6.2.

The Life-Cycle Problem Life-cycle optimization by the individual proceeds by
maximization of the sum of discounted in-period utilities from t0 to T . I omit an
individual specific subscript.

max
ct ,ht

Et0

 T∑
t=t0

ρt−t0v(ct,ht,bt)

 , (4.1)

where v is the in-period utility function taking consumption ct, hours of work ht,
and taste- shifters bt as arguments. ρ is the discount factor. I specify the taste shifter
bt = exp(ςΞt − υt). ςΞt is a linear combination of a set of personal characteristics.
υt accounts for the non-systematic variation of the taste shifter, which is assumed
to be normally distributed and uncorrelated over time. The functional form of the
in-period utility function is given by

v(ct,ht,bt) =
c1−ϑ
t

1−ϑ
− bt

h
1+γ
t

1 +γ
, ϑ ≥ 0,γ ≥ 0, (4.2)

where 1
ϑ pins down the intertemporal elasticity of substitution with respect to con-

sumption, while 1
γ gives the Frisch-elasticity of labor supply. Thus, in-period utility

is additively-separable and conforms to constant relative risk aversion (CRRA).
The intertemporal budget constraint is

at+1

(1 + rt)
= at + Tt (wtht +Nt)− ct, (4.3)
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where at represents assets, rt the real interest rate,3 Nt non-labor income, and
Tt(·) is the retention function that returns post-government/net income.

In the following I will examine interior solutions to this problem by estimating
the associated labor supply equation derived from the first-order conditions.

Uncertainty Wages evolve according to the equation

∆ lnwt = αXt +∆ωt, (4.4)

where Xt contains variables influencing human capital and ∆ωt contains the innova-
tion in the idiosyncratic shock processes.

It is assumed that the unobservable components determining wage growth can
be decomposed into a permanent and a transitory process, which are chosen to
be a random walk and a small-order moving average process (MA(1)).4 Thus, the
dynamics of the idiosyncratic component of wages are described by the following
set of equations:

ωit = pit + τit (4.5)
pit = pit−1 + ζit
τit = θεit−1 + εit

ζit ∼N
(
0,σ2

ζ,t

)
, εit ∼N

(
0,σ2

ε,t

)
E [ζtζt−l] = 0, E [εtεt−l] = 0 ∀l ∈Z,0

pit is the permanent component and τit the transitory. While pit and τit exhibit
serial correlation, their innovations ζit and εit do not. With this error structure I can
proceed to estimate the shock variances using the autocovariance moments of wages.
The identification of the individual shock variances from year to year is discussed in
4.7.2 and in appendix 4.11.6. Suffice it to say that I need to impose an assumption
regarding the initial conditions of the transitory shocks variances. In the empirical
implementation I choose the zeroth and first transitory variance to have the same
value. I determine the propagation of the shocks to hours and ultimately earnings in
section 4.6.2.

Empirical Implementation Using the first order condition for labor supply and
the wage equation in log changes, I can estimate residuals for both quantities. I
assume that the levels of wages, hours and earnings are measured with error. I
give my treatment of measurement error of in appendix 4.11.1. Using the second

3Accordingly, the model features an incomplete capital market.
4Choosing this process is standard in the extant literature and has favorable properties as far as

identification is concerned.
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moments of the residuals from the labor supply and wage growth estimation I can
recover the wage shock variances as well as the relevant parameters to determine
shock pass-through to earnings. The roadblock in the way of the first step is how to
model the function T (·) in a way that makes the first step tractable. I will lay out
the theoretical issues regarding this issue in section 4.4 and let the implementation
follow in sections 4.5 and 4.6.

4.4 Approximation of the Tax and Transfer System

In brief, to proceed with the labor supply estimation, I need to approximate the
retention function.5 The retention function T (·) takes as inputs gross income as
well as characteristics of the tax unit and returns net income.6 The function T (·) is
nonlinear, not continuous, and therefore non-differentiable. While it is not an issue
to model the dependence on characteristics of the tax unit, it is not tractable to choose
a non-continuous, non-differentiable retention function. When one proceeds with
the first-order approach to labor supply estimation, while also approximating the
life-time budget constraint, it turns out to be very advantageous to choose a power-
function approximation of the tax function, as the resulting structural equations
will be linear in log-space and the model becomes tractable.7

There are three objectives for this theoretical section and the empirical section
4.6: First, in this section I want to introduce the commonly chosen power function
approximation of the retention function and its connection to a common measure of
progressivity of the tax system. Further, I will show that, when one introduces an
explicit distinction between gross and taxable income in the retention function, the
deductions determining this relationship may or may not have an impact on labor
supply decisions. This depends on whether the function giving taxable income is
nonlinear.

Second, in section 4.6 I want to provide accuracy measures of this approximation
along the distribution of gross income. It is common to refer to goodness of fit
measures, like the R2 from the regression of log net on log gross or log taxable
income while imposing the power-function. Implicitly, the reported R2 uses a
linear model for the tax function to calculate the total sum of squares. In some
situations this comparison is certainly enlightening, however, one can better assess
the immediate performance by directly inspecting the deviations between fitted

5See Blundell and Macurdy (1999) and Keane (2011) for surveys on labor supply estimation and
which approaches exist to implement taxation. Whether using an approximation is sensible,
solely rests on how well the approximated post-government income corresponds to its observed
counterpart.

6In this paper I will neither make an explicit distinction between pre-government and gross income
nor between post-government and net income; I will define the terms in section 4.5.

7See Blundell et al. (2016a) and Blundell et al. (2016b).
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and observed values. Therefore, I will generally rely on the root mean square error
(RMSE) to evaluate fit. I will also calculate the implied fiscal gap arising from the
approximation approach, so that I may gauge the effect on the government budget
that the approximation will entail.

Third, I will explore the relationship between crucial parameters of the tax
system, like the top tax rate and the size of the standard deduction, and the shape
of the approximation function, in particular the parameter governing progressivity.
This is crucial to detect the impact of a policy change on quantities like labor supply
and the insurance provided through taxation.

Section 4.6 will also deal with the last steps toward tractability by extending the
approximation for nonlabor income and allowing time-differencing.

4.4.1 The Power Function Approximation

Choosing a power function to represent the retention function was popularized by
Feldstein (1969) and recent applications in the related literature include Kaplan
(2012), Blundell et al. (2016a), Heathcote et al. (2014a), and Heathcote et al. (2017a).
The relationship between gross and net income is given by

T (yi,t) ≈ χy1−τ
i,t . (4.6)

In this highly simplified version the parameters χ and τ are neither individual-
nor time-specific. Accordingly such an approximation will miss out on much of the
variation that is driven by i) the differences in the assessment criteria that apply to
the particular tax unit, e.g. whether the tax unit consists of a couple filing jointly or
a single, and ii) the differences in the relevant parameters of the tax code over time,
e.g. the top tax rate.

For a single cross-section t it is possible to introduce tax-unit specific variation
in the parameters, by letting

T (yi,t) ≈ χi (yi)1−τi ,

and permitting individual variation through a parametric form such that

χi = fχ(Zi),
τi = fτ(Zi),

where the functions fχ and fτ may, for example, be linear in the tax unit’s
characteristics Zi . However, this type of modeling is incompatible with the structural
labor supply estimation pursued later.8 Further, the focus of the current paper is on

8Estimation of the Frisch elasticity would have to be performed per group leading to potential
power issues in estimation.

101



4 Earnings risk and tax policy

how the policy maker shapes individuals’ exposure to earnings risk. Hence, I will
fix the parameters in the cross-section, but allow variation over time, so that

Tt(yi,t) ≈ χty
1−τt
i,t . (4.7)

To investigate the relationship between changes in the tax system and changes in
the parameters of the approximation, I will need to isolate the mechanical effect that
changes in the tax system have on the parameters of the approximation. I pursue the
following three-step process to derive the mechanical effect of a change in the tax
code on τ : 1) For a given cross-section t I derive the baseline estimate τt. 2) I change
the tax system in one relevant variable in a microsimulation program, e.g. increase
the top marginal tax rate by one percent for the year t, run the counterfactual tax
simulation and find the new estimate τct . 3) Finally, I determine the percentage
change in the parameter τct −τt

τt
to determine the elasticity of the approximation pa-

rameters with respect to the tax parameters, i.e. the mechanical effect. I use NBER’s
taxsim tax-calculator, which allows for only a couple of the tax code variations. I
have chosen to restrict my attention to two parameters: the standard deduction and
the top tax rate. The choice is motivated by the impact these two parameters have
on the estimated tax function and their contested status in public policy debates. As
described above, I will vary these parameters by one percentage point and calculate
the impact on the parameters of the approximation. This exercise is detailed in
section 4.6.1.

The above strategy does not come without drawbacks. Since I calculate the
approximation using only the sample observed in this particular cross-section, there
are bound to be characteristics of the sample that drive the approximation results.

4.4.2 The Measure of Progressivity

The choice of the power function to approximate the retention function entails a
convenient link with a crucial metric discussed in the economics of taxation: the
residual income progressivity or – in more intuitive terms – the elasticity of after-
tax income with respect to gross income. Residual income progressivity can be
expressed as ∂(y−T (y))

∂y
y

y−T (y) = 1−∂T (y)/∂y
1−T (y)/y , where T (·) gives the tax liability. According

to Jakobsson (1976), when comparing two tax schedules T1 and T2, one is more
progressive than the other, when

1−∂T1(y)/∂y
1− T1(y)/y

<
1−∂T2(y)/∂y

1− T2(y)/y
∀y. (4.8)
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One implication of Jakobsson’s theorem is that for a progressive tax sched-
ule ∂T (y)/∂y > T (y)/y ∀y.9 In the case of the power function approximation,
∂(y−T (y))

∂y
y

y−T (y) = 1 − τ . Further, the progressivity parameter 1 − τ directly impacts
labor supply decisions, as shown in section 4.4.3, and the extent of insurance offered
by taxation.

There is some ambiguity in the literature about how to measure the progressivity
parameter. Specifically, it is possible to either measure progressivity by approx-
imating net income based on gross income or net income minus deductions on
taxable income; the latter being called statutory progressivity.10 I am interested in
the parameters of the tax-function that affect behavior, which, in my setting, are
the parameters affecting the choice of hours of work. First, I will alter the notation
slightly to examine the relationship between effective and statutory marginal tax
rates. I denote the statutory tax function by Ts(·) and by ỹ(y) the function mapping
from gross to taxable income. The tax liability is given by the composition of both
functions Ts(ỹ(y)). The statutory marginal tax rate is given by T ′s = ∂Ts

∂ỹ , while the

effective marginal tax rate is T ′e = ∂Ts
∂ỹ

∂ỹ
∂y . This implies that statutory marginal rates

bound effective marginal rates (weakly) from above, i.e.11

∂Ts
∂ỹ

∂ỹ

∂y
≤ ∂Ts
∂ỹ

. (4.9)

This is evident, because the above expression holds with equality only when ∂ỹ
∂y =

1. Whether this is the case is an empirical issue discussed in section 4.6.1. However,
it is reasonable to expect that the effective tax function will be less progressive than
the statutory one.

In the next section I use a static variant of the model in section 4.3 to fix ideas
about how the retention function and its parameters affect labor supply decisions.

4.4.3 Modeling the Retention Function

Taking the model of section 4.3 while suppressing the time indices and setting
non-labor income to zero, the first order condition for hours of work will take the
form,

9Accordingly, when we approximate progressive tax schedules with continuous and differentiable
functions, this implies that the approximation function has to be strictly convex. For intuition
why this must be the case, construct the limiting case where T (·) is linear and therefore ∂T (y)/
∂y = T (y)/y ∀y.

10See Blundell et al. (2016a) and Heathcote et al. (2017a) for illustrations of the two competing
methods.

11This statement only holds when ∂ỹ
∂y ≤ 1 ∀y, as one would reasonably anticipate.
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hγ =
1
b
λT ′(wh)w, (4.10)

T (·) is the function giving net income, so I can replace it with y −Ts(ỹ(y)). Notice
that, depending on whether the function Ts(·) is nonlinear deductions will enter
(4.10) and therefore influence the individuals’ decision on labor supply. This is
clearly the case when we consider a progressive tax system. Accordingly, in this
setting I find it to be sensible to let the function giving taxable income also directly
depend on gross income to retain tractability. A straightforward way to model both
the tax and taxable income based on gross income is,

Ts(ỹ) = y − χ̃ỹ1−τ̃ ,

ỹ(y) = κy1−ι. (4.11)

This choice also conforms with the structure of the model of section 4.3 regarding
consumption, since there is only one composite consumption good and no other
good relevant for deductions. I illustrate more generally how deductions affect
labor supply decisions in appendix 4.11.4, where I introduce a separate composite
consumption good which can be deducted from gross income.12 The indication
of that model, however, is the same as the one of equation (4.10): as long as the
retention function possesses some nonlinearity, deductions do influence the first
order condition for labor supply. With the approximation chosen, I resolve T ′ in
(4.10) to obtain

hγ =
1
b
λ(1− τ̃)χ̃

(
κ (wh)1−ι)−τ̃ κ(1− ι) (wh)−ιw. (4.12)

Applying logs and rearranging terms,

γ lnh = ln((1− τ̃)χ̃)− τ̃ (lnκ+ (1− ι) (lnw+ lnh)) + ln(κ(1− ι))− ι (lnw+ lnh) + lnw

lnh =
[(1− τ̃)(1− ι) lnw − lnb+ lnλ+ ln((1− τ̃)χ̃) + ln(κ(1− ι))− τ̃ lnκ]

γ + τ̃(1− ι) + ι
. (4.13)

Which implies that the relevant tax-modified λ-constant elasticity, the analogue
to the Frisch, is given by (1−τ̃)(1−ι)

γ+τ̃(1−ι)+ι . Accordingly, with this specification for the
retention function, not only the parameter of the statutory system τ̃ , but also the

12This approximation of net income and the tax system is different from the model of net income in
Heathcote et al. (2017b), where deductions would appear as an extra additive term in the labor
supply equation. This also implies that my statutory tax function is not comparable with their
statutory tax function.
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parameter of the taxable income function ι influence the individual’s hours-response
to changes in the wage.

With these results, I can make some further observations. First, it follows from
(4.11) that there exists a direct mapping from gross to net income, which is also a
power function. Accordingly, whether I estimate both equations or just one power
function approximation from gross to net income results in the same predictions for
net income. I define (1− ι)(1− τ̃) := 1− τ and χ̃κ1−τ̃ := χ, so that the tax is given by

T (y) = y −χy1−τ . (4.14)

This is very convenient if only observations on net and gross income are available
in the data or microsimulation of the tax and benefit system is not feasible.

Second, this also has an implication for how progressivity is measured. It
becomes clear that progressivity of the entire system can be summarized as,

∂ (y − Ts(ỹ(y)))
∂y

y

y − Ts(ỹ(y))
=
χ̃(1− τ̃)

(
κy1−ι

)−τ̃
κ(1− ι)y−ι

χ̃ (κy1−ι)1−τ̃ y−1

=
(1− τ̃)(1− ι)χ̃κ1−τ̃y−ι−τ̃+ιτ̃

χ̃κ1−τ̃y−ι−τ̃+ιτ̃ = (1− τ̃)(1− ι).

Accordingly, when ι increases, progressivity of the tax system increases.
Third, it is important to note that the chosen model implies no impact on

progressivity when ι = 0. In this case the overall progressivity τ could be recovered
both from the mapping between gross and net income, but also taxable and net
income.

This final issue of whether a power or an affine function best represents the
mapping from gross to taxable income is an empirical issue, which I will tackle in
section 4.6 after introducing the data source in the next section.

4.5 Data

For all empirical exercises I use 9 waves of the Panel Study of Income Dynamics
(PSID) coming from the survey years 1999 to 2015.13 The data are collected bienni-
ally and with reference to the previous year, so that the respective observed years
are 1998 to 2014. I restrict the sample to households that either have a married or
single head of household. Further, I follow Heathcote et al. (2017a) in restricting
the sample to households with heads in prime working age, namely 25 to 60, and

13PSID (2015) marks the data and see PSID (2017) for an introduction to the PSID.
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only keeping households with the head earning at least the equivalent of part-time
work at the minimum wage.14 Finally, I drop observations with less than 260 and
more than 4000 yearly hours. These restrictions allow me to focus on the population
unambiguously participating in the labor market. Monetary variables are deflated
to the base year 1998 using the CPI-U. Sample statistics of relevant variables for the
final panel are presented in the reference year 2000 are presented in table 4.1.15

Hours are on a yearly scale and wages are hourly wages. The underlying income
variable is the labor income of the head of the household.

Table 4.1: Sample Statistics in Year 2000
years of num. of

age hours wage education children
mean 40.80 2164.25 19.88 13.22 1.08
sd 9.16 554.98 21.39 2.47 1.19
min 25 260 2.15 0 0
max 60 4000 447.29 17 8
taxation gross tax net
variables income liability income
mean 64508 18921 50411
sd 71911 29591 46437
min 5648 -3481 5231
max 2026291 905915 1145453
Obs. 4878

Note: Own calculation based on PSID (2015). All statistics are unweighted.

Tax Variables I calculate all taxation variables using the taxsim tax calculator
provided by the National Bureau of Economic Research (see Feenberg and Coutts
(1993)). The preparation of the data before applying the tax calculator is done by
adapting files provided by Kimberlin et al. (2016) accessible on the NBER taxsim
webpage. Gross income includes all labor and non-labor income of the house-
hold, like interest, dividend, and rent income, plus half of FICA.16 Deductions are
calculated using PSID data on mortgage interest, medical expense and charitable
giving deductions, while deductions stemming from state taxes are calculated by
taxsim. The tax liability contains federal, state and FICA tax. Postgovernment or
net income is gross income minus the tax liability plus transfers and half of FICA

14This amounts to an hourly wage of $5.15 deflated to 1998 times 1000 yearly hours.
15Complete sample statistics for every year are presented in appendix 4.11.2. The year 2000 is fairly

representative, although the sample size increases in 2002 and 2008 to a level slightly above 5100
and 5400 observations respectively.

16FICA or FICA tax is a payroll tax to fund social security and medicare payments.
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(employer’s share). Transfers, except for the EITC, which is calculated by taxsim,
are recorded in the PSID data, i.e. TANF, social security, unemployment benefits,
workers’ compensation and veterans’ pensions.

4.6 Estimating the Tax Function Approximation

In this section I address two broad sets of issues: First, I cover the questions raised
in the previous section and explore the fit of the approximation, how relevant
deductions are in shaping progressivity, and the policy maker’s influence over
measured progressivity. Results on these issues apply across the board when a power
function is used to approximate the retention function and are not specific to my
application. Second, I implement a further modification to the approximation to
allow for nonlabor income and I examine the issue of time-differencing with the
power function present in the labor supply equation. These are tractability issues
that are specific to this paper only.

4.6.1 General Results

Estimating the Taxable Income Function

I estimate both a linear (ι = 0) and a power function for the relationship between
gross and taxable income. If the relationship is linear, then deductions do not affect
progressivity. Table 4.2 shows the estimated values for the parameters ι and κ
over time in the unrestricted model and in the restricted model (ι = 0). Table 4.2
further shows a likelihood ratio test of the restricted model and a comparison of
the root mean square error (RMSE) of the two models. ι is slightly below zero and
so the exponent in the model is greater than one, making the estimated function
convex. This indicates that retention of taxable from gross income rises over the
distribution of gross income. However, ∂ỹ(y)

∂y < 0 over the relevant range, so that
overall progressivity of the tax system is lower due to deductions, as hypothesized
in section 4.4.2. The values of ι exhibit some variation over time, but group pretty
tightly in the range of -0.05 to -0.09. In the restricted model, with ι set to zero, the
values for κ lie in the range of 0.8 to 0.9 and are much larger than in the unrestricted
model. The simple linear model implies that roughly 85 percent of a tax unit’s
income is taxable. The likelihood ratio tests, however, show that the null hypothesis
of model equivalence is easily rejected in all years, indicating that the taxable income
function is nonlinear. This is also evidenced by the consistently lower RMSE for
the unrestricted model. In relative differences the unrestricted model delivers a
roughly 35% lower RMSE over the range of years when the restricted model is the
base. Therefore, I reject the linear model of taxable income.
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To visualize the fit I plot predicted versus actual values of both models for the
year 2000 in figure 4.1. It is clear that the unrestricted model fits the mass at the
lower end of the gross income distribution better than the restricted model, while
also being able to curve up and fit values at the tail of the distribution. However,
both functions have to start in the origin and fail to fit values with positive gross and
zero taxable income well.

Table 4.2: Taxable Income Function
unres. restr. LR-Test RMSE

Year κ 1− ι κ χ2 p unres. restr. rel. diff. Obs.
1998 0.263 1.091 0.813 76401 0 7773 11652 -0.333 4535
2000 0.245 1.096 0.827 82065 0 8342 12794 -0.348 4878
2002 0.373 1.063 0.854 83267 0 8283 12642 -0.345 5104
2004 0.339 1.069 0.903 109172 0 10427 18149 -0.425 5133
2006 0.310 1.076 0.829 80580 0 8605 12836 -0.330 5191
2008 0.388 1.058 0.846 86231 0 8819 13473 -0.345 5415
2010 0.317 1.073 0.791 50267 0 8313 10673 -0.221 5141
2012 0.388 1.058 0.854 91930 0 7595 12227 -0.379 5225
2014 0.325 1.073 0.836 99186 0 7613 12280 -0.380 5346

Note: Own calculation based on PSID (2015). Restricted (ι = 0) and unrestricted model estimated
using nonlinear least squares. Estimation was performed using cross-sectional frequency weights.
The relative difference of RMSEs is calculated in the following way: RMSE

unres.−RMSEres.
RMSEres.

Estimating the Retention Function

I now estimate the power function mapping for the retention function in two differ-
ent ways: First, I estimate the mapping from taxable to net income (partial retention
function) and then the combined relationship, i.e. the mapping from gross to net
income (complete retention function). A visual illustration of the two approaches is
given by figure 4.2. Qualitatively, both models fit a globally concave function, but
the implied estimates for the progressivity parameter are clearly different. This can
further be verified from table 4.3, where in the first four columns the parameter
estimates for both models are displayed. That the estimated functions are concave is
expected considering the results in the previous section.

I find that the that the progressivity parameter of the partial retention function
1 − τ̃ is roughly of the size 0.8 to 0.88. However, here I need to stress again that
these estimates are not directly comparable with those in Heathcote et al. (2017a),
since the authors model the relationship between net income minus deductions and
taxable income.
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Figure 4.1: Taxable Income Model Fit in 2000

Note: Own calculation based on PSID (2015). The graph plots gross income against taxable income.
Light gray dots indicate observed values, black dots are predictions based on the unrestricted model
and gray dots are predictions from the restricted model. Gross income above $300000 not shown.

The central result of this section is that the progressivity parameter of the
complete retention function is in the range of 0.89 to 0.95. These estimates are
reassuringly close to the estimates found in Blundell et al. (2016a) and to estimates
in Gouveia and Strauss (1994). Blundell et al. (2016a) estimate a progressivity pa-
rameter of roughly 0.9 and Gouveia and Strauss (1994) arrive at values between
0.92 and 0.95 for the period from 1979 to 1989.17 These estimates diverge from the
one provided by Heathcote et al. (2017a). Their estimate suggests more progres-
sivity, with 1− τ = 0.82. Since this is ultimately the parameter that will adjust the
Frisch-elasticity of labor supply the comparison is appropriate. I comment on the
discrepancy below.

I give a more intuitive description of the fit for the complete model by calculating
the fiscal gap implied by the gross-to-net approximation. This fiscal gap is the
difference between the predicted and the observed tax liability based on taxsim
(T − T̂ ). I plot the fiscal gap over the distribution of gross income in figure 4.3 for
the year 2000. As one would expect, there are a lot of observations in the left tail
of the income distribution up to roughly $100000 of gross income that achieve an

17Blundell et al. (2016a) do not use the taxsim tax-calculator, but have rather programmed their own.
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(a) Complete Retention Function Fit in 2001

(b) Partial Retention Function Fit in 2001

Figure 4.2: Partial and Complete Retention Function Fit in 2000

Note: Own calculation based on PSID (2015). Complete model shown in the upper and partial in
the lower panel. The graphs plot gross/taxable income against net income. Light gray dots indicate
observed values, black dots are model predictions. Gross income above $300000 not shown.

acceptable fit. This is also evidenced by the fit of the LOWESS-line18 centering
around zero. However, many observations do have overpredicted tax liabilities,
which is clear from a somewhat strong spread into negative values at the very low

18The acronym LOWESS stands for locally weighted scatterplot smoothing, a local linear regression
method.
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end of the income distribution. Up to roughly $200000 residuals are centered on
zero. Beyond this threshold the LOWESS-line bends up, which indicates that tax
liabilities are underpredicted.

Further, to illustrate the impact on the budget of the state, I also calculate the
cumulative and the average fiscal gap in every year. They are shown in the third-
and second-to-last columns of table 4.3. Overall, the approximation imposes higher
tax liabilities in every year compared to the taxsim values. The pattern over the
years is not uniform. There are years with larger fiscal gaps, like 2004 and 2008, but
the average overestimation of the fiscal gap is roughly $64 million. This number can
be more easily interpreted when one considers the adjacent column, which contains
the average fiscal burden. On average each tax unit must pay $650 more than under
the actual tax schedule. The average tax liability over all years is roughly $17000,
so that the approximation would impose an increase of 3.82% of the average tax
liability.

Table 4.3: Retention Function
Partial Complete Absolute
Model Model Fiscal Gap

Year χ̃ 1− τ̃ χ 1− τ cumul. avg. Obs.
1998 8.905 0.806 2.456 0.897 -29588838 -314 4535
2000 9.384 0.802 2.610 0.893 -22463340 -234 4878
2002 5.854 0.842 2.298 0.903 -54895752 -558 5104
2004 3.519 0.888 1.373 0.949 -164579872 -1671 5133
2006 6.526 0.836 2.121 0.912 -49338128 -490 5191
2008 4.086 0.876 1.692 0.931 -97131440 -955 5415
2010 6.892 0.833 2.318 0.905 -36420912 -362 5141
2012 4.128 0.876 1.775 0.928 -80230176 -831 5225
2014 6.973 0.829 2.401 0.901 -45120448 -435 5346
mean -64418767 -650

Note: Own calculation based on PSID (2015). Both models estimated using nonlinear least squares.
The fiscal gap is calculated using predicted tax liabilities from taxsim and the complete model.
Estimation and ancillary calculations were performed using cross-sectional frequency weights.

Relationship to the Estimates of Heathcote et al. (2017a) Finally, I want to
explain why Heathcote et al. (2017a) find a different estimate for the progressivity
parameter 1− τ . The clearest conceptual distinction to point out is that Heathcote
et al. (2017a) measure statutory progressivity by regressing the log of net income
minus deductions on the log of taxable income.19 Even though the conceptual

19In their model, deductions, at least at the margin, are fixed and do not react to income changes.
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Figure 4.3: Fiscal Gap in 2000

Note: Own calculation based on PSID (2015). The graph plots the difference between approximated
and actual tax liabilities over the distribution of gross incomes. Light gray dots are observed fiscal
gaps, the black dashed line is LOWESS fit of the data. Gross income above $300000 not shown.

difference is large, empirically it appears to matter little. Rather, it is of crucial
importance whether one estimates the model using nonlinear least-squares or with
OLS after a log-transformation.

In appendix 4.11.5 I have run the log-specification and the equivalent nonlinear
least-squares specification using the data that Heathcote et al. (2017a) provide for
replication. I estimate both models pooled over the period 2000-2006. When using
nonlinear least-squares I arrive at a much larger value of about 0.93 instead of 0.82
for the progressivity parameter. When comparing the RMSE of the residuals in
levels, the log specification performs worse than the nonlinear one; the RMSE is
slightly more than twice as large. This is because the log specification implicitly puts
less weight on observations at the top end of the taxable income distribution and
overpredicts their tax liabilities.

The reason why the estimates differ lies in the specification and not in the
conceptual difference between effective or statutory progressivity, as my “effective”
estimate of τ is very close to the “statutory” τ found using nonlinear least-squares
using their data.20 So, although I am convinced that it is appropriate to model the

20It can further be argued that their approximation function only partly captures statutory progres-
sivity. Heathcote et al. (2017a) do include transfers in their measure of net income and therefore
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effective progressivity following the arguments in section 4.4.3 and appendix 4.11.4,
the importance of whether the effective or the statutory progressivity is modeled is
ultimately of minor importance for the empirics.

The Policy Maker’s Influence over Progressivity

As discussed above, it is vital for policy making to have a measure of the impact
a change in tax policy has on the progressivity parameters of the approximation.
Therefore, I calculate the mechanical effect of policy changes on the parameters of
the approximation determining progressivity.

I conduct two experiments using the non-standard options of the taxsim tax-
calculator: 1) I increase the standard deduction available to the tax units by one
percent. 2) I increase the top tax rate by one percent.

Following that, I calculate taxable and net income, and run the approximation
procedures. I recover the new, counterfactual approximation parameters ιct and
τct , and compute relative differences from the baseline in each year. These relative
differences give the elasticity of the approximation parameters with respect to a
change in the tax function, i.e. the desired mechanical effect of a change in the tax
function. Table 4.4 lists the effects on ι and on τ of the two scenarios.

Table 4.4: Elasticities of the Approximation Parameters
scenario 1998 2000 2002 2004 2006
deduction ι 0.485 0.419 0.465 0.386 0.546

τ 0.117 0.101 0.084 0.122 0.118
top tax rate ι 0 0 0 0 0

τ 1.380 1.424 1.725 2.730 1.558

2008 2010 2012 2014 mean
deduction ι 0.499 0.815 0.579 0.564 0.529

τ 0.103 0.135 0.113 0.107 0.111
top tax rate ι 0 0 0 0 0

τ 1.954 1.164 1.896 1.577 1.712

Note: Own calculation based on PSID (2015). Approximation models computed in the same way as in
sections 4.6.1 and 4.6.1. Calculations performed using cross-sectional frequency weights. Scenario
deduction corresponds to an increase of the standard deduction by one percent. Scenario top tax rate
corresponds to an increase of the top tax rate by one percent.

count transfers as part of the statutory system. However, by regressing the log of of net income
minus deductions on the log of taxable income, individuals with zero taxable income with positive
net income achieved with transfers cannot affect the progressivity estimate as they are excluded
from the regression. The same would hold if they estimated the relationship using nonlinear
least-squares, since the function has to start in the origin. This problem does not arise when one
directly maps from gross to net income, provided the sample is restricted to the active population.
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The most noticeable feature of the results is that a change in the standard
deduction affects both ι and τ , but a change in the top tax rate does not affect ι. But
this is expected because a change in the top tax rate should not affect the mapping
from gross to taxable.

In terms of the magnitude of the reactions, the picture is relatively uniform. A
one percent increase in the standard deduction increases ι by half a percent. Since
an increase in ι necessitates an increase in overall progressivity, τ rises by roughly
a tenth of a percent. The increase of the top tax rate by one percent shows a much
greater effect on overall progressivity. The change in τ in the mean is roughly 1.7
percent. However, the variability of the estimates is a lot higher in this scenario,
which is likely driven by fluctuations in the size and the respective incomes of the
group paying the top tax rate.

4.6.2 Tractability Results

Deriving the Labor Supply Equation

In the previous sections I have introduced the power function as a convenient
approximation of the retention function. However, to make the approximation fully
tractable with the first order approach of estimating labor supply, I need to make a
further adjustment to allow for nonlabor income and time-differencing.

To allow for non-labor income Nt, I will adjust the approximation slightly and
show that in terms of tractability of the first-order approach the adjustment has very
desirable properties, while the cost in terms of fit is acceptable.

The life-cycle model is the same as described in section 4.3. I choose the following
functional form for Tt(·):

Tt(wtht,Nt) ≈ χ̃t
(
κt(wtht)

1−ιt
)1−τ̃t + χ̃t

(
κt(Nt)

1−ιt
)1−τ̃t

= χt (wtht)
1−τt +χt (Nt)

1−τt , (4.15)

so that the budget constraint takes the form,

at+1

(1 + rt)
= at +χt (wtht)

1−τt +χt (Nt)
1−τt − ct. (4.16)

The additional assumption imposed in contrast to the approximations in 4.4.1 is
that one can separately apply the power function approximation to labor earnings
and non-labor income and arrive at the same net income. I call this the additive
approximation and will discuss how appropriate this alternate choice is in terms of
fit in section 4.6.2. The first order condition for choosing labor supply in this setting
is

114



4.6 Estimating the Tax Function Approximation

h
γ
t =

1
bt
λtχt (1− τt) (wtht)

−τtwt. (4.17)

To make the estimation in growth rates, which eliminates λt, tractable, I posit
the following lagged approximation:

Tt−1(wt−1ht−1,Nt−1) ≈ χ̂t−1 (wt−1ht−1)1−τt + χ̂t−1 (Nt−1)1−τt . (4.18)

Here the degree of progressivity is set to the value of the upcoming period and the
parameter χ̂ can freely adjust to fit the period t − 1 distribution of post-government
income. Again, the question whether it is possible to make this substitution depends
on the fit of the approximation, which I discuss in section 4.6.2.

Divide (4.17) by hγt−1, so that(
ht
ht−1

)γ
=
bt−1

bt

λt
λt−1

χt
χ̃t−1

(1− τt)
(1− τt)

(
wt
wt−1

ht
ht−1

)−τt wt
wt−1

. (4.19)

Taking logs I find that

γ∆ lnht = ∆ lnλt + (lnχt − ln χ̂t−1)− τt∆ lnht + (1− τt)∆ lnwt −∆ lnbt

∆ lnht =
1

γ + τt
[∆ lnλt + (lnχt − ln χ̂t−1) + (1− τt)∆ lnwt −∆ lnbt]

∆ lnht =
1

γ + τt
[const +∆ lnλt + (1− τt)∆ lnwt − ς∆Ξt +∆υt] . (4.20)

The term const contains all the terms not varying in the cross-section. Finally,
I obtain the estimating equation for labor supply by resolving the expression for
the intertemporal difference in the log marginal utility of wealth. Everything in
that term, except for the innovations ηt, are absorbed into the constant. I derive the
approximation of the Euler equation that underlies this substitution in appendix
4.11.3. Then,

∆ lnht ≈
1

γ + τt
[const + (1− τt)∆ lnwt − ς∆Ξt +∆υt + ηt] . (4.21)

This tax-modified Frisch elasticity can be estimated by IV techniques. Its estima-
tion is the objective in section 4.7.1.

The innovations ηt are purely a function of the permanent wage shocks ζit.
An approximation of the life-time budget constraint as described in Blundell et al.
(2016a) reveals

ηit = −ϕit(1− τ)
(
1 +

1− τt
γ + τt

)
ζit, ϕit ∼ LN

(
µφ,σ

2
φ

)
. (4.22)
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ϕit is a transmission parameter measuring how permanent wage shocks affect
ηit. It is individual specific because it is mainly driven by the ratio of wealth to total
wealth including human wealth (Jessen and König, 2018). Further, the parameter is
necessary to compute the Marshallian elasticity of labor supply. Since I do not use
consumption or asset data, I choose a log-normal distribution with the underlying
parameters µϕ and σϕ to model its distribution, as ϕit can only take on non-negative
values.

Additive Approximation

The main concern regarding the use of the additive formulation of the tax function
approximation is whether it restricts the goodness of fit or whether it gravely alters
the parameter estimates relevant for the calculation of progressivity. This is not
the case. The additive formulation neither has a major impact on the parameter
estimates for ι and τ , nor does it gravely change the goodness of fit. Unfortunately it
is not possible to conduct a direct, formal test because the models are not nested.
However, it is obvious from the results in table 4.5 that the two approximations
deliver very similar results in terms of coefficients and goodness of fit.

The table’s contents are reassuring: The parameters that determine progressivity,
ι and τ , are exceptionally close in almost every year. Despite the major alteration of
the approximation, my results in terms of the effect of taxation on labor supply are
bound to be comparable to the rest of the literature. The largest differences occur
in 2014, where 1− ι is roughly one percent smaller and 1− τ roughly one percent
larger in the additive model. The multiplicative parameters, κ and χ, show larger
differences and more variability, but this will not impact the estimation of the Frisch
elasticity.

Although goodness of fit in terms of the RMSE does not have a uniform pattern,
it is very close in almost all years. In some years, like 1998 and 2008, the additive
deduction model even dominates the original, while in 2004 and 2008 the additive,
complete model dominates the original. The overall impression is that the original
model has better fit in most years. However, the difference is slight: the biggest
relative difference in the deduction model is recorded in 2002, where the RMSE is 2.6
percent larger in the additive model. The largest relative difference in the complete
model also occurs in 2002; a difference of 6.7 percent. Generally, one can observe
that relative differences in the RMSE in the complete model are larger, clustering in
the range of 0.3 to 6.2 percent, excluding 2004 and 2008. In sum, I can conclude that
the additive model does almost as good of a job of fitting taxable and net income as
the original model.
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4.6 Estimating the Tax Function Approximation

Table 4.5: Additive Tax Function
Taxable Income Model

Additive Original
Model Model RMSE

Year 1− ι κ 1− ι κ add. orig. rel. diff. Obs.
1998 1.090 0.275 1.091 0.263 7692 7773 -0.010 4535
2000 1.094 0.263 1.096 0.245 8407 8342 0.008 4878
2002 1.056 0.414 1.062 0.373 8496 8283 0.026 5104
2004 1.071 0.344 1.069 0.339 10676 10427 0.024 5133
2006 1.069 0.351 1.076 0.310 8786 8605 0.021 5191
2008 1.057 0.400 1.057 0.388 8717 8819 -0.012 5415
2010 1.066 0.353 1.073 0.317 8329 8313 0.002 5141
2012 1.051 0.430 1.058 0.388 7652 7595 0.008 5225
2014 1.064 0.372 1.073 0.325 7783 7613 0.022 5346

Retention Function Model
Additive Original

Model Model RMSE

Year 1− τ χ 1− τ χ add. orig. rel. diff. Obs.
1998 0.899 2.277 0.897 2.456 6587 6582 0.001 4535
2000 0.895 2.402 0.893 2.610 13230 13222 0.001 4878
2002 0.911 2.007 0.903 2.298 4362 4089 0.067 5104
2004 0.946 1.379 0.949 1.373 6925 7177 -0.035 5133
2006 0.919 1.868 0.912 2.121 4754 4505 0.055 5191
2008 0.933 1.609 0.931 1.692 4589 4626 -0.008 5415
2010 0.913 2.031 0.905 2.318 4369 4245 0.029 5141
2012 0.936 1.566 0.928 1.775 4639 4485 0.034 5225
2014 0.911 2.048 0.901 2.401 4544 4391 0.035 5346

Note: Own calculation based on PSID (2015). Models estimated using nonlinear least squares. Esti-
mation and ancillary calculations were performed using cross-sectional frequency weights. Relative
difference between RMSEs calculated using this expression: RMSE

add−RMSEorig
RMSEorig

.
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4 Earnings risk and tax policy

Approximation of Lagged Net Income

The final issue to resolve is the evaluation of the fit of the tax approximation when
restricting the progressivity parameter 1− τ in the approximation of the t − 1-tax-
system to the value estimated in t. In this restricted model only χ can adjust. The
corresponding unrestricted model is the additive, effective model shown in table 4.5.
I present the RMSE of both the restricted and the unrestricted model in table 4.6
along with a linear one for comparison. The linear model is a natural benchmark,
since it restricts the effect of taxation on labor supply to be nil.

At first glance table 4.6 shows that the restricted model generates noticeable
differences in terms of fit in years like 2002 and 2012 compared to the unrestricted
model. However, since changes in progressivity between years cannot be fully
accounted for by letting only χ adjust, this loss in fit is expected. When compared
to the linear model, in which τ is set to zero, the restricted still compares favorably.
The loss of fit is primarily an issue in the upper tail of the distribution. In figure 4.4 I
plot both the restricted and the unrestricted model predictions against the observed
values for the year 2002, which has the worst relative gap in RMSE. It is clear from
the figure that the most severe deviations from the unrestricted model only occur
after levels of roughly $200000 gross income. Below this threshold both models
make very similar predictions. While the approximation with the imposed leading
progressivity parameter is certainly not preferable to the unrestricted model, it does
not lead to a major reduction in terms of goodness of fit. Further, it still handily
outperforms the linear model. Accordingly, imposing this relationship implicitly
when I estimate the labor supply equation (4.21) is a justifiable sacrifice to attain
tractability.

4.7 Results

I now turn to the empirical implementation: First, I estimate both the tax-modified
and the unmodified Frisch elasticity of labor supply and the residuals of the wage and
hours equations. Second, I estimate the permanent and transitory shock variances of
the wage process and finally the Marshallian elasticity of labor supply.

4.7.1 First Stage - Labor Supply

To obtain the residuals of the wage equation (4.4), I perform a first-differenced
regression of the log of hourly wages on indicator variables for calendar years, states,
industries, occupations, number of children in the household, and race. Further, I
include a second order polynomial of years of education and its interaction with age.
This last set of variables is also used as the set of excluded instruments for wages in
the labor supply estimation.
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4.7 Results

Table 4.6: Fit of the Retention Function with Lead of Progressivity Parameter
RMSE rel. diff. of RMSE

restr. vs.
unres.

unres.
vs. lin.

restr.
vs. lin.Year restr. unres. linear Obs.

1998 6587 6595 10159 0.001 -0.352 -0.351 4535
2000 13230 13293 15791 0.005 -0.162 -0.158 4878
2002 4362 6148 11837 0.409 -0.631 -0.481 5104
2004 6925 8300 11260 0.199 -0.385 -0.263 5133
2006 4754 4950 9845 0.041 -0.517 -0.497 5191
2008 4589 5359 10603 0.168 -0.567 -0.495 5415
2010 4369 4779 8699 0.094 -0.498 -0.451 5141
2012 4639 5995 10671 0.292 -0.565 -0.438 5225

Note: Own calculation based on PSID (2015). Models estimated using nonlinear least squares. Esti-
mation and ancillary calculations were performed using cross-sectional frequency weights. Relative
difference between RMSEs calculated using these expression from left to right: RMSE

restr.−RMSEunres.
RMSEunres. ,

RMSErestr.−RMSElin.
RMSElin.

, RMSE
unres.−RMSElin.
RMSElin.

.

Figure 4.4: Fit of Restricted and Unrestricted Model in 2002

Note: Own calculation based on PSID (2015). The graph plots gross income against net income. Light
gray dots indicate observed values, black dots are predictions based on the unrestricted model and
gray dots are predictions from the restricted model. Gross income above $300000 not shown.
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4 Earnings risk and tax policy

Now I specify the observable portion of the taste-shifter Ξt in the labor supply
equation (4.21). Again, I include indicators for years, states, industries, occupations,
number of children in the household, and race. I first estimate equation (4.21) pooled
over all years to find an estimate of the average tax-modified Firsch elasticity. It is
an average over the years because the tax-modified elasticity varies with τ , which
in turn changes year to year. I use the average progressivity parameter over the
years to back out the unmodified Frisch elasticity 1/γ , as it does not vary over the
years. The average of 1− τ over the years relevant for estimation (2000-2014) can
be determined from the pooled estimation of the additive model of equation (4.15),
which is 1− τ̄ = 0.925 .

I display the estimated tax-modified and the unmodified Frisch elasticity along
with the average progressivity parameter in table 4.7.

Table 4.7: Regression Results
1− τ̄ (1− τ̄)/(γ + τ̄) 1/γ

0.925 0.469 0.528
(0.061) (0.071)

Kleibergen Paap F Stat. 64.56
Obs. 30558 30558

Note: Own calculation based on PSID (2015). Robust standard errors in parentheses. (1−τ̄)/γ+τ̄ is the
tax-modified Frisch elasticity and 1/γ is the regular Frisch-elasticity. Observations are person-years.

The estimated tax-modified Frisch elasticity of labor supply is about 0.47 and
the unmodified elasticity is slightly larger with a point estimate of 0.528. Both
are statistically significant at conventional levels and the F statistic according to
Kleibergen and Paap (2006) does not indicate a weak-instrument issue. That unmod-
ified Frisch elasticities are larger than tax-modified ones is known in the literature
and expected. The tax-modified elasticity gives the response to a transitory wage
change before taxes, while the unmodified Frisch gives the response after-tax. The
tax-modified elasticity is adjusted for the disincentive effect of the progressive tax
system, which lowers individuals’ responsiveness to a change in the wage. My result
for the unmodified Frisch elasticity is in line with the estimates presented in Heath-
cote et al. (2014a) (0.462) and in Blundell et al. (2016a) (0.681).21 That the estimates
agree fairly well is encouraging as both studies employed the same data source and
similar portions of the data, but they did not use the same method to estimate the
unmodified Frisch elasticity. Rather, both use the method of moments applied to
residual variances to estimate it. Note, however, that in Blundell et al. (2016a) the
second earner is explicitly considered and, therefore, the structural equations on
which the estimation rests are quite distinct from mine.

21Heathcote et al. (2017a) use the unmodified Frisch elasticity estimated in Heathcote et al. (2014a)
for the calibration of their model.
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4.7 Results

The difference between the tax-modified and the unmodified elasticity is rather
small and most likely not statistically significant in spite of the small standard
errors. The unmodified elasticity is roughly four percent larger than the tax-modified
counterpart. In comparison, it is roughly 17 percent larger for Blundell et al. (2016a).
But even in that study the increase is most likely not statistically significant.

The residuals for the second stage of the estimation are obtained from estimating
equation (4.21) year by year to account for the time-dependence of the tax-modified
Frisch elasticity.

4.7.2 Second Stage - Wage Variance Process

I estimate the stochastic process for wages described in 4.5. I provide an example
of the identification for the process with t=3 in appendix 4.11.6. As I discussed in
section 4.3, it is necessary to set an initial condition for the transitory process in
period zero, so I restrict the innovation variance for the transitory shock in period
0 to have the same value as in period 1, σ2

ε,0 = σ2
ε,1. Further, as shown in appendix

4.11.6, I can only identify all the parameters of interest up to period t −1 if t periods
are available.

Method of Moments I estimate the wage process using the method of moments
with a unit weighting matrix. Let the set of parameters of interest be denoted by
Σ, so that it contains all the 7 permanent shock variances σ2

ζ , 7 transitory shock
variances σ2

ε , and the persistence parameter θ. Then the minimization program for
the method of moments is given by

minimize
Σ

[m(Σ)−me]′I[m(Σ)−me], (4.23)

where m(Σ) is the vector of theoretical autocovariance moments of ∆ωit and me is
the observed counterpart. By choosing the identity matrix I as the weighting matrix,
I minimize the squared sum of deviations between the observed and theoretical
moments.22 I calculate standard errors for the parameters using the block bootstrap
method. I draw 200 boostrap replications of the data.23

I present the estimates of the persistence parameter and the standard deviations
of the two shock types in table 4.8.

The time trend of the standard deviations of the two shock types is striking. The
size of permanent shocks to the wage process increases steadily until the financial
crisis of 2008 hits. In 2008 the size of permanent shocks is extraordinarily large and

22Altonji and Segal (1996) show that the identity weighting matrix is generally preferable for the
estimation of autocovariance structures using panel data.

23This accounts for various issues that would otherwise affect the more conventional Delta-method
standard errors, which include the use of estimates for the variance of the measurement error,
heteroskedasticity and serial correlation.
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4 Earnings risk and tax policy

Table 4.8: Wage Process
2000 2002 2004 2006 2008 2010 2012 all

σζ,t
0.1853 0.2011 0.1970 0.2194 0.2503 0.2503 0.2374

(0.0028) (0.0018) (0.0014) (0.0014) (0.0011) (0.0011) (0.0009)

σε,t
0.1728 0.2688 0.1900 0.1055 0.1041 0.1372 0.0615

(0.0019) (0.0016) (0.0025) (0.0023) (0.0022) (0.0018) (0.0030)

θ
-0.0329
(0.0076)

Note: Own calculation based on PSID (2015). Bootstrap standard errors based on 200 replications in
parentheses.

remains at this level in 2010 with a slight recovery in 2012. To contrast, the increase
in the standard deviation of permanent shocks from 2000 to 2006 is roughly 14
percent, while the increase from 2006 to 2008 is, again, 14 percent.

Transitory shocks show a completely different intertemporal pattern. While the
size of the standard deviation is comparable to the permanent counterpart in the
first couple of years, transitory shock size almost halves in 2006. This downtrend is
not heavily impacted by the financial crisis of 2008. Even in 2012 transitory shock
size appears to decrease further rather than tend back to pre-crisis levels.

This pattern is interesting on its own as it suggests that permanent, partially
uninsurable wage risk has increased for the active population and not just due to
the impact of the financial crisis. The pattern of rising partially uninsurable wage
risk is also documented in Table E1 of Heathcote et al. (2014b). Even though they do
not estimate the process I have chosen, they do report close analogues, namely the
uninsurable, island-level shock variances. They estimate their process until 2006
and report a standard deviation of 0.1236 in 2000 for these shocks and 0.1378 in
2006 when frequency-adjusted.24 This implies an increase of the standard deviation
from 2000 to 2006 of about 11 percent, showing that the relative trend lines up in
both sets of results.

The results in Blundell et al. (2016a) are harder to compare because there is
explicit consideration of a secondary earner, shocks are allowed to be correlated
across primary and secondary earner, variances are calculated with respect to the
age group and not the calendar year, and their sample period runs from 1998 to
2008. Still, their average figure for the permanent shock standard deviation primary
earners face is 0.1741 and, considering all these caveats, fairly close to my estimates
for the pre-crisis period.

24Heathcote et al. (2014a) assume a distinction between insurable and uninsurable shocks from the
outset and rationalize it using an island-structure for the shock process that agents face (Attanasio
and Rıos-Rull, 2000). I add the two shock variances reported in Heathcote et al. (2014b) for the
two years that are pooled in my dataset to account for the frequency difference.
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4.7 Results

4.7.3 Marshallian Elasticity

Finally, I use the autocovariance moments of the hours residuals and the covariance
moments with the wage residuals to estimate the parameters of ϕ, µϕ and σ2

ϕ.25

Consistent with the estimation procedure above, this is done by the method of
moments choosing the identity matrix as the weighting matrix. The reader should
note that the parameter ϕ does depend on τt and so the estimation delivers values
for the parameters µϕ and σ2

ϕ that let me calculate the mean of ϕ for the average
degree of progressivity over the years. In section 4.8 I recalculate the mean of ϕ
under the assumption that τ is zero, which then in turn enables me to calculate the
mean of ϕ at all different τt. I show the results of the estimation in table 4.9.

Table 4.9: Hours Process

µϕ σϕ E[ϕ] κ̄
-0.2850 0.7776 1.0338 -0.2405
(0.0148) (0.008) (0.0099) (0.0068)

Note: Own calculation based on PSID (2015). Bootstrap standard errors based on 200 replications in
parentheses. E[ϕ] denotes the average pass-through parameter for permanent shocks over time. κ̄ is
the average Marshall elasticity of labor supply calculated using E[ϕ] and τ̄ .

The implied estimate for the average Marshallian elasticity across the years can
be calculated from the following formula implied by (4.21) and (4.22),

κ̄ =
1− τ̄
γ + τ̄

(
1−E[ϕ]

(
1 +

1− τ̄
γ + τ̄

))
. (4.24)

The estimate in table 4.9 is negative and statistically significant with a point
estimate of -0.2405. This estimate is larger in absolute terms than the one shown
in Blundell et al. (2016a); that being -0.08. However, their 95-percent confidence
band does overlap with mine and their result is most likely driven by the more
comprehensive model with a second earner and non-separable preferences. This
follows, because I get a very similar result for the Marshallian elasticity compared to
mine if I plug their baseline estimates into my formula for the Marshallian elasticity
(about -0.27). Accordingly, the difference between the two estimates is not much of
a surprise, as some of the neglected issues, like correlated shocks between primary
and secondary earner, are bound to be picked up by my estimate.

25Further, I estimate the variances of the innovations to the taste-shifter b that moderates the
disutility from work. Again, an initial condition needs to be chosen: I assume that the zeroth and
first innovation variance are of the same magnitude. I display these in Appendix 4.11.7.
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4 Earnings risk and tax policy

4.8 Insurance of Earnings Risk

4.8.1 Calculating Pass-Through

In the following I provide a calculation of the amount of insurance offered by pro-
gressive taxation against the risk stemming from the stochastic process underlying
wages. In particular, I quantify how much of a given permanent wage shock trans-
fers onto hours and subsequently earnings.26 The following decomposition of the
pass-through coefficient of a permanent shock to earnings is:

∂∆ lnyt
∂ζ

≈ (1− τt)
(
1 +

∂∆ lnht
∂ζ

)
(4.25)

Using the structural equations (4.4),(4.21) and (4.22) this expands to,

∂∆ lnyt
∂ζ

≈(1− τt)
(
1 +

1− τt
γ + τt

(
1−E[ϕ]

(
1 +

1− τt
γ + τt

)))
. (4.26)

Earnings react with one plus the Marshall elasticity to a given shock and the
total response is dampened by the progressivity parameter. If the tax and transfer
system did not feature progressivity, the impact on earnings would be

∂∆ lnyt
∂ζ

∣∣∣∣∣
τ=0
≈
(
1 +

1
γ

(
1−E

[
ϕ|τ=0

](
1 +

1
γ

)))
. (4.27)

ϕ|τ=0 is the transmission parameter, that depends on the unmodified Frisch
elasticity 1/γ .27

I calculate the insurance due to the progressive tax system by relating the impact
of a given shock with and without the progressive tax system. A natural shock-size
to pick is the standard deviation of the permanent shock in that period because it
communicates how risky a given period is for someone experiencing the average

26Authors often quantify the consumption response as well. However, since I don’t use consumption
data, this is not possible. The consumption response is

∂∆ lnct
∂ζ

≈
∂∆ lnyt
∂ζ

−
∂∆s/y

∂ζ
,

where ∂∆s/y
∂ζ is the savings response and s/y is the average propensity to save.

27The conversion is straightforward.

E[ϕ] =
1−π

1/ϑ + (1−π) 1−τ̄
γ+τ̄

, (4.28)
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4.8 Insurance of Earnings Risk

shock in absolute terms. The average insurance value over all years, shown in table
4.10, can be calculated by using the average progressivity parameter and the average
standard deviation of the permanent shock.

Table 4.10: Average Insurance of Earnings

1− τ̄ σ̄ζ
∂∆ lnyt
∂ζ σ̄ζ

∂∆ lnyt
∂ζ

∣∣∣∣
τ=0

σ̄ζ %-
reduction

0.925 0.22 0.1538 0.1631 5.7

Note: Own calculation based on PSID (2015).

A shock of size 0.22 is attenuated by roughly 30 percent, through both the tax
system and the labor supply reaction because the Marshallian is negative. When the
tax system offers no insurance, the attenuation is only about 25 percent. Therefore,
insurance offered through progressive taxation is roughly 5.7 percent. When I shut
down the labor supply reaction (∂∆ lnht

∂ζ = 0), progressive taxation is the only source
of insurance, and the percentage reduction of the shock equals τ̄ , so 7.5 percent. The
degree of insurance offered by progressive taxation is attenuated by the labor supply
reaction.

I can now calculate the year-specific impact of a permanent wage shock ∂∆ lnyt
∂ζ

∣∣∣∣
τt

and the year-specific degree of insurance. I show these values in table 4.11.
Table 4.11 relates two important facts. First, the amount of pass-through from

permanent wage shocks to income has grown over time and therefore the amount
of insurance offered by the tax system has waned. However, the change in the pass-
through coefficient is relatively small. The highest pass-through is recorded in 2004
and the lowest in 2000, while overall growth from 2000 to 2012 was about 3 percent.
This leads me to conclude that the pass-through coefficient has been rather stable
over time even through the crisis. Second, and in stark contrast to the time series of
the pass-through coefficient: risk, measures by the standard deviation of permanent
wage shocks, has grown quite substantially. σζ,t started at a level of 0.18, grew to a
peak of 0.25 during the crisis and fell to 0.23 in 2012; total growth from 2000 to 2012
is about 28 percent. Since the pass-through parameter remained roughly constant,
shocks passed on to earnings follow the trend in wage shocks. Pass-through adjusted
risk grew from 0.12 in 2000 to 0.16 in 2012, a 33% increase. In sum, permanent
earnings risk rose quite drastically, but the tax system, as captured by τ , did not
undergo major alterations after that.

where π is the mean of the ratio of assets to total wealth, which is the sum of assets and human
wealth. Then

E
[
ϕ|τ=0

]
= 1/

(
1/ϕ +

(1 +γ)τ̄
γ(γ + τ̄)

)
. (4.29)
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4 Earnings risk and tax policy

Table 4.11: Earnings Pass-Through Values and Insurance by Year
2000 2002 2004 2006 2008 2010 2012

∂∆ lnyt
∂ζ

∣∣∣∣
τt

0.6820 0.6912 0.7113 0.6962 0.7037 0.6924 0.7054

σζ,t 0.1853 0.2011 0.1970 0.2194 0.2503 0.2503 0.2374

∂∆ lnyt
∂ζ

∣∣∣∣
τt
σζ,t 0.1264 0.1390 0.1401 0.1527 0.1761 0.1733 0.1675

%-reduction
from τ = 0

7.3 6.0 3.3 5.4 4.4 5.9 4.1

Note: Own calculation based on PSID (2015). The last line represents the additional insurance above

the level of ∂∆ lnyt
∂ζ

∣∣∣∣
τ=0

.

To characterize the relationship between τ and the pass-through coefficient to
earnings, I display figure 4.5.

The upper panel compares the pass-through to earnings as calculated above
and the pass-through when the labor supply reaction is set to zero, while the lower
panel characterizes the labor supply reaction by graphing the Marshallian elasticity
over the range of τ . At the origin τ = 0, so that the pure labor supply reaction can
be seen on the abscissa. As τ and therefore progressivity increase, pass-through
is diminished and insurance increases. The initial rise is slow, as the labor supply
reaction runs counter to the new insurance offered through the tax system. However,
at very high levels of progressivity, the labor supply reaction becomes less and less
important, as the margin to respond becomes thinner and thinner. This leads to the
convergence of the two curves at τ = 1. This can also be verified in the lower panel.
The labor supply reaction, i.e. the Marshallian elasticity, increases with τ , so that it
becomes more muted. Finally the reaction is zero at τ = 1.

4.8.2 Stabilizing Earnings Risk

I have shown the rise in permanent earnings risk over the early 2000s and that
progressive taxation in terms of the progressivity parameter 1− τ played a minor
role in shaping how this risk transferred onto earnings. Rather, I find that the labor
supply response was of primary importance for the pass-through.

The following is an illustration of the counterfactual approach to tax policy eval-
uation using the methods of section 4.6.1. I calculate the levels of the progressivity
parameter 1− τ and the adjustment to the top tax rate in each year that would have
resulted in holding the level of earnings risk ( ∂∆ lnyt

∂ζ

∣∣∣∣
τt
σζ,t) constant at the average
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4.8 Insurance of Earnings Risk

(a) Earnings Pass-Through

(b) Marshallian Elasticity

Figure 4.5: Earnings Pass-Through and Marshallian Elasticity as Functions of τ

Note: Own calculation based on PSID (2015). Shows the pass-through coefficient ∂∆ lnyt
∂ζ at different

levels of τ and the pass-through if there were no labor supply response, i.e. 1− τ . Also shows the and
the Marshallian elasticity κ as a function of τ .

level over the sample period, which is about 0.1536.28 The top tax rate is paid by a
small fraction of tax units in the dataset, ranging from 655 to 1990 cases (frequency
weights applied) in the sample period. This exercise is supposed to illustrate the
influence of the policy maker in shaping the risk experienced by individuals. I show
the calculations in table 4.12.

At an average passed-on earnings risk of 0.1536, the period most closely resem-
bling this level of risk is 2006, which – necessarily – is the period with the smallest
implied change to the top tax rate. All previous periods had lower values of risk and
therefore, to achieve stabilization, progressivity has to be decreased by cutting rates
quite substantially. In contrast, the periods after 2006 imply changes toward higher
progressivity than is observed. The implied progressivity parameter in this period
hovers around 0.8, which comes with a strong increase in the top tax rate. However,

28Note that this exercise is not budget neutral
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4 Earnings risk and tax policy

Table 4.12: Calculation of Stabilizing Progressivity and Tax Change
2000 2002 2004 2006 2008 2010 2012

∂∆ lnyt
∂ζ

∣∣∣∣
τt
σζ,t 0.1264 0.1390 0.1401 0.1527 0.1761 0.1733 0.1675

1− τavg. risk
t 1.1661 1.0412 1.0709 0.9263 0.7808 0.7808 0.8356

%-change
of top tax
rate to reach
τ

avg. risk
t

-47.81 -29.39 -45.6 -1.84 56.38 38.02 36.91

Note: Own calculation based on PSID (2015). Last line calculated using the year-specific percentage
changes that a 1% change in the top tax rate induces.

all the implied changes are to be taken with a grain of salt, as I have calculated only
what would be implied for the top tax rate holding all other aspects of the tax system
fixed. Certainly, decreases of the top tax rate would be tied to lowering some or all
the other rates as well, if a certain change resulted in the top rate falling below the
second-highest or other lower rates. However, I cannot take this into account.29

However, the broad picture in considering the changes around the crisis is clear.
The financial crisis of 2008 was accompanied by a substantial rise in permanent
wage and earnings risk. To mitigate this risk and keep it at the level of 2006, the
state would have had to increase progressivity drastically during the crisis. For
example, the relative difference between the 1 − τ2008 and 1 − τavg. risk

2008 is roughly
-16.3%. However, the observed pattern of progressivity during the crisis is the exact
opposite. Progressivity generally decreased or at least stayed above the level of 2006,
implying that the state did not substantially react to this rise in the riskiness of
earnings by altering the tax system.

4.9 Qualifications and Extensions

The current model features many of the issues as the one of chapter 3. Namely, it
does not consider the retirement-phase of the life-cycle, there is no joint decision-
making in the household and the second earner is not explicitly modeled, and agents
know the type and parametrization of their shock processes. The last issue has now
become more pressing as I am assuming that the agents know the evolution of the
variances over time. A fundamental question to ask in that regard is whether agents

29However, as the parameter τ shapes the retention function globally, the new system after the policy
change does generally imply a change for individuals other than those paying the top tax rate. So
in this sense the new approximated system corresponds to a certain tax schedule with lowered tax
liabilities for tax units at the lower end of the income distribution.
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4.10 Conclusion

can use signals to inform themselves about the moments of the stochastic processes.
To make the statement slightly more piqued: can they distinguish times of high
and low uncertainty? Nieuwerburgh and Veldkamp (2006), for example, gives an
account of agents learning about an uncertain economic environment before and
after booms. Decisive for learning about the state of the world is the frequency of
economic decision-making, which slows down past a boom. Potentially, this entails
that agents might be far more off in their estimates of the variance parameters of
their processes during the crisis of 2008.

The current model makes many concessions to tractability. The most prominent
in this paper is the power function approximation of the tax system. As discussed
above, the power function approximation is both a blessing and a curse. While it
is both convenient for tractability of the model and the link to progressivity, it is
restrictive in terms of the tax schedules it can represent. A possible extension is to
switch to a fully specified structural model that uses dynamic programming as the
solution method. In that case, the tax function can be arbitrary, even though using a
tax calculator like taxsim is likely still infeasible due to the computational intensity.
However, being able to introduce a discontinuous function that can fit observations
with no gross and positive net income would be a marked improvement.

Finally, the tax experiment is somewhat limited in its scope: When I change
the tax schedule and run through microsimulation, I change the estimate of the
progressivity parameter. However, a change in the progressivity parameter does
imply a change for the net incomes across the whole range of gross incomes according
to the power function. Thus, simulating a reform that, for example, only affected
the bottom of the distribution, would imply a change in the progressivity parameter
that would also affect the top. Therefore, to take account of this fact, it would be
appropriate to consider only reforms, where at least changes at the top and the
bottom of the tax schedule take place. This is certainly an extension that I will
consider. However, this requires custom reform options in the tax calculator taxsim,
which have to be implemented by NBER based on request.

4.10 Conclusion

In this paper I document rising permanent earnings risk from 2000 to 2012 in
a model of life-cycle labor supply. The increase of the permanent earnings risk
is steady over the first half of this period and punctuated by the crisis in 2008.
Namely, I document a 14% increase of the standard deviation of the permanent risk
component in 2008 compared to the previous period. Further, I shed light on the
role that progressive taxation played in the mitigation of this risk, which is minor.

The tax and transfer system is approximated by way of a power function to make
the labor supply estimation tractable. Deductions have a minor role in shaping the
progressivity of the system, but they do make it less progressive. An intriguing find-
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ing is that the relevant parameters of the approximation, especially the parameter τ ,
which determines progressivity, are sensitive to the estimation method. Estimating
the approximation using nonlinear least-squares implies smaller values of 1 − τ ;
0.93 instead of 0.82 found with the log specification. The fit of the model estimated
using nonlinear least-squares performs about two times better in terms of root mean
square error compared to the log-specification. In general, the power-function fits
the data quite well, with an implied tax liability that is on average 650$ higher than
the values derived from the tax-simulation model taxsim.

The estimation of the life-cycle labor supply model mostly confirms findings
in the related literature. I find a tax-modified Frisch-elasticity of labor supply of
0.469 and an unmodified, after-tax Frisch-elasticity of 0.528. These values locate in
the middle of the estimates presented in Blundell et al. (2016a) and Heathcote et al.
(2014a). The Marshallian elasticity of labor-supply is negative and larger in absolute
value compared to Blundell et al. (2016a).

Finally, I find that the pass-through of permanent wage-risk to earnings is
roughly constant over time, which implies that earnings risk is mainly driven by
the rise of permanent wage risk. From a counterfactual calculation I determine
that to drive down earnings risk to pre-crisis levels, the progressivity parameter
should have been lowered to 0.78 instead of the observed 0.93. This could have been
achieved by raising the top tax rate by 56 percent.

In sum, I find that permanent earnings risk has been increasing at a steady clip
over the early 2000s and taken a significant jump after the crisis of 2008 hit. The
government, however, has not exercised much influence over this rise and has hardly
varied the progressivity of the tax and transfer system.

130



4.11 Appendix

4.11 Appendix

4.11.1 Measurement Error in Hours, Wages and Earnings

Following Blundell et al. (2016a), I correct the measurement error in log earnings,
hours and wages using the estimates from the validation study Bound et al. (1994)
to determine the proportion of the overall variance that is due to measurement error.
Let ỹ, h̃ and w̃ denote observed log earnings, hours and wages respectively. Then for
any of these the following relationship holds,

x̃ = x+mex,x ∈ {y,h,w},

where mex denotes the measurement error and x the true value. From Blundell
et al. (2016a) I adopt the following relationships,

V ar (mey) = 0.04V ar (ỹ) ,

V ar(meh) = 0.23V ar(h̃),
V ar (mew) = 0.13V ar (w̃) .

It follows that the covariance between measurement error in wages and hours is
given by

Cov
(
mew,meh

)
=

1
2

(
V ar (mey)−V ar

(
meh

)
−V ar (mew)

)
(4.30)

With Differenced Variables The estimation of the stochastic processes is defined
in terms of differenced variables, hence I need to account for the differenced and
not the contemporary measurement error. In analogue to the above definitions, let
∆x̃ = x̃t − x̃t−1. Thus,

∆x̃ = ∆x+∆mex.

The variance of the measurement error of differenced earnings is thus given by,

V ar (∆mey) = V ar
(
me

y
t

)
− 2Cov

(
me

y
t ,me

y
t−1

)
+V ar

(
me

y
t−1

)
(4.31)

V ar (∆mey) = V ar
(
me

y
t

)
+V ar

(
me

y
t−1

)
(4.32)

where the second line follows from the assumption that measurement error
is not correlated over time. Since the information about measurement error vari-
ances available from the validation study only covers relationships in levels, this
assumption is required for the correction to be generalizable to temporal differences.
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Again, I need to know the covariance of measurement errors in hours and wages
to proceed with the estimation. By directly evaluating the covariance I find that,

Cov (∆mew,∆mey) = Cov
(
mewt ,me

h
t

)
+Cov

(
mewt−1,me

h
t−1

)
. (4.33)

4.11.2 Sample Statistics by Year

Table 4.13: Sample Statistics
1998 2000 2002 2004 2006 2008 2010 2012 2014

mean 40.25 40.80 41.04 41.01 41.14 41.02 40.75 40.44 40.15
age sd 8.86 9.16 9.51 9.89 10.16 10.29 10.31 10.40 10.19

min 25 25 25 25 25 25 25 25 25
max 60 60 60 60 60 60 60 60 60
mean 2220.35 2164.25 2175.95 2170.55 2187.35 2082.21 2092.34 2115.17 2099.96

hours sd 568.53 554.98 585.47 595.44 572.71 561.58 597.68 582.91 572.19
min 260 260 280 284 301 288 260 260 260
max 4000 4000 4000 4000 4000 4000 4000 4000 4000
mean 18.72 19.88 19.50 20.13 19.42 20.13 19.35 18.76 18.28

wage sd 17.78 21.39 27.32 39.07 25.51 31.59 22.43 34.73 26.31
min 1.84 2.15 1.41 1.35 1.77 1.75 1.68 1.75 1.72
max 369.65 447.29 1079.63 1962.33 1078.91 1655.29 541.02 1695.15 1404.01
mean 13.18 13.22 13.20 13.33 13.34 13.64 13.74 13.76 13.67

years of sd 2.60 2.47 2.58 2.41 2.49 2.43 2.33 2.40 2.69
education min 0 0 0 0 0 0 0 0 0

max 17 17 17 17 17 17 17 17 17
mean 1.14 1.08 1.02 1.02 1.02 1.00 0.99 0.99 0.99

num. of sd 1.21 1.19 1.16 1.16 1.19 1.20 1.21 1.20 1.22
children min 0 0 0 0 0 0 0 0 0

max 8 8 8 8 7 9 11 9 10
mean 62033 64508 64011 64829 64348 62935 59815 57965 56763

gross sd 63859 71911 88631 107774 77425 93988 69498 98594 75944
income min 5598 5648 5585 5558 5575 5547 5555 5515 5562

max 2021635 2026291 3370736 4822393 2759532 4850993 1605779 4544498 3689743
mean 17808 18921 18400 17605 17382 17094 15441 14712 15194

tax sd 25820 29591 38444 41616 30133 37067 26351 38906 32249
liability min -2778 -3481 -4656 -3665 -7157 -4715 -7560 -5838 -6969

max 895765 905915 1565206 1790800 1148302 2002816 666962 1842388 1705600
mean 48789 50411 50142 51804 51440 50232 48620 46886 45738

net sd 41082 46437 52933 69025 50053 59587 45842 62244 46860
income min 5541 5231 4176 5019 5900 3616 5551 4035 4752

max 1158005 1145453 1856328 3105156 1659988 2915430 968201 2771067 2057084
Obs. 4535 4878 5104 5133 5191 5415 5141 5225 5346

Note: Own calculation based on PSID (2015). All statistics are unweighted.

4.11.3 Approximation of the Euler Equation

The Euler equation of consumption is given by

1
ρ(1 + rt)

λt = Et[λt+1]. (4.34)
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Expectations are rational, i.e., λt+1 = E[λt+1] + ελt+1
, where ελt+1

denotes the
mean-zero expectation correction of E[λt+1] performed in period t + 1. Expectation
errors are caused by innovations in the hourly wage residual ωt+1, which, as implied
by rational expectations, are uncorrelated with Et[λt+1]. Rational expectations imply
that ελt+1

is uncorrelated over time, so that regardless of the autocorrelative structure
of the shock terms, ελt+1

will only be correlated with the innovations of the shock
processes.

To find an estimable form for ∆ lnht, we take logs of (4.34) and resolve the
expectation:

lnλt = ln(1 + rt) + lnρ+ ln(λt+1 − εt+1)

A first order Taylor-expansion of ln(λt+1 − εt+1) gives ln(λt+1) +
ελt+1
λt+1

, leading to
the expression

lnλt = ln(1 + rt) + lnρ+ ln(λt+1) +
ελt+1

λt+1
+O

(
− 1/2(εt+1/λt+1)2

)
. (4.35)

Accordingly, when we backdate 4.35, I can remove lnλt in the first difference
formulation of the labor supply equation 4.20.

4.11.4 A Model with Explicit Expenditure for Deductions

Two-Stage Budgeting

In the following I explore the within-period leisure-consumption-allocations of
individuals when they have the ability to deduct from their taxable income by
making purchases of deductible goods.

In the case of perfect foresight and with intertemporally additively-separable
utilities over the life-cycle one can decompose the standard optimization of the
consumer into two separate optimization procedures (see Blundell and Walker
(1986) and Keane (2011)). First, the consumer allocates full income Ft into each
period out of life-time wealth Wt so as to equate the appropriately discounted
values of the marginal utility of income. Second, the consumer chooses in-period
consumption-leisure bundles to maximize in-period utility. I derive in an expression
for the optimal choice of hours and whether a change in the wage wt influences
hours also through the parameters that relate expenditure for deductible goods to
deductions.
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In-Period Allocation

The optimization of the in-period utility function is the same as in any static problem
with the exception that it proceeds with full income given, so that Ft is fixed. The
optimization program is

max
ct ,c

d
t ,ht

U(ct, c
d
t ,ht), (4.36)

s.t. Ft = χ
(
wtT −D

(
pd,tc

d
t

))1−τ
−χ

(
wtht −D

(
pd,tc

d
t

))1−τ
+ ct + pd,tc

d
t (4.37)

where, for simplicity’s sake, I use the parametric form

U(ct, c
d
t ,ht) = u

(
cdt , ct

)
−
h

1+γ
t

1 +γ
, γ ≥ 0. (4.38)

Here I divide consumption into two types of goods, non-tax-deductible goods
ct, with its price normalized to 1, and tax-deductible goods cdt and price pd,t. Utility
from consumption is given by the concave and twice continuously differentiable
function u(·). The function D(·) gives the deductions from gross income and is
increasing in pd,tc

d
t . Further, T is the total time endowment in the period. To find an

indication of the role that deductible goods play in determining labor supply, I have
to inspect the first-order condition for h:

h
γ
t = λ

(
χ (1− τ)

(
wtht −D

(
pd,tc

d
t

))−τ
wt

)
. (4.39)

This expression reveals that, the choice of hours depends nonlinearly on deduc-
tions.

Building on this result, I make the pragmatic choice in section 4.4.3 of approxi-
mating taxable income as a power function of gross income. Otherwise there would
be no way of proceeding with the first-order approach or the impact of deductions
would have be neglected.

4.11.5 Replication Estimation of the Tax Function Approximation

in Heathcote et al. (2017a)

I estimate the model for statutory progressivity shown in eq. A2 of Heathcote
et al. (2017b) using the data provided in the replication files for Heathcote et al.
(2017a). This means, I model their net income variable minus deductions based on
taxable income. I do it once in logs and once using nonlinear least-squares with the
quantities in levels. In line with their estimation procedure I pool all observations in
their panel from 2000 to 2006. Each cross-section contains between 3000 to 3500
observations. The results are shown in table 4.14. I use their notation, where 1− τ is
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the progressivity parameter and λ is the coefficient of the function equivalent to χ
in my notation.

Table 4.14: Progressivity Estimates
log spec. nonlin. spec.

λ 5.568 1.449
1− τ 0.819 0.937
RMSE 18714 8932
Obs. 12875 12875

The table shows that the nonlinear specification and the log specification imply
very different progressivity estimates. The nonlinear model implies much lower
progressivity. Further, the fit, assessed by computing the RMSE of the predicted
residuals in levels, is slightly more than twice as large when computed based on the
log specification.

In table 4.15 I show the estimates year by year along with my own estimates for
the total progressivity. The take-away is that the estimates of the statutory progres-
sivity parameter, when measured with nonlinear least-squares, are very close to the
estimates of total progressivity that I calculate. Hence, I find that the quantitative
importance of the distinction between statutory and total progressivity is quite small.
However, the table does highlight the inferior fit of the log specification in terms of
the RMSE. In every year the log specification fits worse than the equivalent nonlinear
specification.

Table 4.15: Progressivity Estimates by Year
log specification nonlinear specification complete model

Year λ 1− τ RMSE Obs. λ 1− τ RMSE Obs. χ 1− τ Obs.
2000 4.284 0.840 7229 3198 2.286 0.895 5081 3198 2.610 0.893 4878
2002 6.05 0.811 12953 3204 2.336 0.896 6370 3204 2.298 0.903 5104
2004 6.221 0.811 32099 3266 1.097 0.960 9813 3266 1.373 0.949 5133
2006 5.789 0.818 13402 3207 2.037 0.910 7903 3207 2.121 0.912 5191

Note: The first two models are the same as the two displayed in table 4.14, but are disaggregated by
year. The last model is the complete model of table 4.3 displayed for comparison.

4.11.6 Identification Example of the Stochastic Process for

Wages

Let the stochastic process for wages be
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ωit = pit + τit + meit (4.40)
pit = pit−1 + ζit
τit = θεit−1 + εit

ζit ∼N
(
0,σ2

ζ,t

)
, εit ∼N

(
0,σ2

ε,t

)
E [ζtζt−l] = 0, E [εtεt−l] = 0 ∀l ∈Z,0

The equations giving the value of the time-differenced innovation ∆ωit are

∆ωit =
{

(θ−1)εit−1+ζit+εit+∆meit if t=1
(θ−1)εit−1−θεit−2+ζit+εit+∆meit if t>1 (4.41)

Let there be three periods, such that t ∈ {1,2,3}. Then I obtain the following
matrix of autocovariance moments:

VCV∆ω = (4.42) 2σ2
me+(θ−1)2σ2

ε,0+σ2
ε,1+σ2

ζ,1 −σ2
me−θ2σ2

ε,0−σ
2
ε,1+θ(σ2

ε,0+σ2
ε,1) −θσ2

ε,1

−σ2
me−θ2σ2

ε,0−σ
2
ε,1+θ(σ2

ε,0+σ2
ε,1) 2σ2

me+σ2
ε,1−2θσ2

ε,1+θ2(σ2
ε,0+σ2

ε,1)+σ2
ε,2+σ2

ζ,2 −σ2
me−θ2σ2

ε,1−σ
2
ε,2+θ(σ2

ε,1+σ2
ε,2)

−θσ2
ε,1 −σ2

me−θ2σ2
ε,1−σ

2
ε,2+θ(σ2

ε,1+σ2
ε,2) 2σ2

me+σ2
ε,2−2θσ2

ε,2+θ2(σ2
ε,1+σ2

ε,2)+σ2
ε,3+σ2

ζ,3


There are six unique moments in the above matrix that are used for identification.

Let every element of VCV∆ω be denoted by the symbols Γk,j , where k, j ∈ {1,2,3}, so
that for example the variance in period 1 is Γ1,1 = 2σ2

me + (θ −1)2σ2
ε,0 +σ2

ε,1 +σ2
ζ,1. The

easiest way to proceed is to set the innovation variance of the transitory process
in t = 0 to zero. Further, as laid out in appendix 4.11.1, I can treat the variance of
the measurement error as known. Then the set of moments used for identification
becomes:

Γ1,1 =σ2
ε,1 + σ2

ζ,1

Γ1,2 =− σ2
ε,1 +θσ2

ε,1

Γ1,3 =−θσ2
ε,1

Γ2,2 =σ2
ε,1 − 2θσ2

ε,1 +θ2σ2
ε,1 + σ2

ε,2 + σ2
ζ,2

Γ2,3 =−θ2σ2
ε,1 − σ

2
ε,2 +θ(σ2

ε,1 + σ2
ε,2)

Γ3,3 =σ2
ε,2 − 2θσ2

ε,2 +θ2(σ2
ε,1 + σ2

ε,2) + σ2
ε,3 + σ2

ζ,3
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Accordingly, the identification proceeds by solving for the variances and the
persistence parameter

σ2
ε,1 = −(Γ1,2 + Γ1,3)

θ = Γ1,3/(Γ1,2 + Γ1,3)

σ2
ζ,1 = Γ1,1 + (Γ1,2 + Γ1,3)

σ2
ε,2 =

1
Γ1,3

Γ1,2+Γ1,3
− 1

Γ2,3 +

( Γ1,3

Γ1,2 + Γ1,3

)2

−
Γ1,3

Γ1,2 + Γ1,3

× (−(Γ1,2 + Γ1,3))


σ2
ζ,2 = Γ2,2 −

(
Γ1,3

Γ1,2 + Γ1,3
− 1

)2

× (−(Γ1,2 + Γ1,3))

− 1
Γ1,3

Γ1,2+Γ1,3
− 1

Γ2,3 +

( Γ1,3

Γ1,2 + Γ1,3

)2

−
Γ1,3

Γ1,2 + Γ1,3

× (−(Γ1,2 + Γ1,3))


Each further period delivers two more moments that can be used for identifica-

tion, so that the next set of permanent and transitory variances can be identified.
Another possibility to identify the process is to set the first two transitory shock

variances equal to each other, σ2
ε,0 = σ2

ε,1. The identification proceeds analogously,
except that instead of θ being identified directly, the ratio θ/(1 − θ) is identified.
However, this makes no difference in practice.

4.11.7 Innovations to Taste-Shifter b

Table 4.16: Taste-Shifter Innovations
2000 2002 2004 2006 2008 2010 2012

σν,t
0.3188 0.0370 0.0009 0.4594 0.4237 0.3263 0.5023

(0.0033) (0.0044) (0.0006) (0.0025) (0.0027) (0.0032) (0.0021)

Note: Own calculation based on PSID (2015). Bootstrap standard errors based on 200 replications in
parentheses.

The standard deviations for the innovations of the taste-shifter are roughly two
times as large as the permanent shock variances of the wage process. There is no
very clear-cut trend across the years. In 2004 the estimate is so small that it turns
insignificant. This points to a large degree of instability in the evolution of the
variance of the taste-shifter. In the current model this component of the hours
variance is purely transitory.
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English Summary

This dissertation consists of four empirical chapters with the second also making a
methodological contribution.

The first chapter empirically investigates the distributional consequences of the
Riester scheme, the main private pension subsidization program in Germany. 38%
of the aggregate subsidy accrues to the top two deciles of the income distribution,
but only 7.3% to the bottom two. Nonetheless the Riester scheme is almost distribu-
tionally neutral in terms of standard inequality measures. Two effects offset each
other: a progressive one stemming from the subsidy schedule and a regressive one
due to voluntary participation. Participation is associated not only with high income
but also with high household wealth.

The second chapter solves the problem of a social planner who seeks to minimize
inequality via transfers with a fixed public budget in a distribution of exogenously
given incomes. The appropriate solution method depends on the objective function:
If it is convex, it can be solved by an interior-point algorithm. If it is quasiconvex,
the bisection method can be used. Using artificial and real-world data, an implemen-
tation the procedures shows that the optimal transfer scheme need not comply with
a transfer scheme that perfectly equalizes incomes at the bottom of the distribution.

The third chapter investigates the nature of earnings risk in a model of life-cycle
labor supply. The recent literature on life-cycle consumption, saving and labor
supply focuses on wage shocks as the central source of risk. In the paper we pro-
pose a life-cycle labor supply model that features risk in both wages and hours and
disentangle their effects on earnings risk. To this end we estimate a transmission
parameter that measures how permanent wage shocks impact the marginal utility
of wealth. Estimating our model with the Panel Study of Income Dynamics (PSID)
shows that both permanent wage and hours shocks play an important role in explain-
ing the cross-sectional variance in earnings growth. Still, permanent wage shocks
have a quantitatively larger impact on life-time earnings. Allowing for hours shocks
improves the model fit considerably. The empirical strategy allows for estimating
the Marshallian labor supply elasticity without the use of consumption or asset data.
We find this elasticity on average to be negative, but small. Finally, we link our
estimate of the transmission parameter to consumption insurance and show that the
sensitivity of consumption to wage shocks implied by our estimate is in line with
recent estimates in the literature.

The fourth chapter is another application of a life-cycle labor supply model,
but this time with a focus on progressive taxation. I quantify individuals’ exposure
to permanent earnings risk and find that permanent earnings risk in the US has
been on the rise since the early 2000s. Most importantly, it has taken a marked
hike during the financial crisis of 2008. In contrast, the insurance effect of the
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progressive tax and transfer system, which mitigates this risk, has remained flat. I
estimate the progressivity of the tax and transfer system using a power function
approximation and evaluate its properties in representing the tax system. This
progressivity parameter is sufficient to identify the insurance effect of the tax and
transfer system. When progressivity is shut down, the model features 5% less
insurance. Earnings risk could have been reduced to pre-crisis levels by increasing
progressivity substantially, lowering the progressivity parameter from the observed
level of 0.93 to 0.78.
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Deutsche Zusammenfassung

Diese Dissertation besteht aus vier empirischen Kapiteln, wobei das zweite auch
einen methodologischen Beitrag leistet.

Das erste Kapitel untersucht empirisch die Auswirkungen der Riesterförderung
auf die Einkommensverteilung. 38% der Gesamtsubventionen kommen den oberen
zwei Dezilen der Einkommensverteilung zugute, aber nur 7,3% in die unteren
zwei. Die Riesterförderung ist trotzdem nahezu verteilungsneutral in Termini von
Standardungleichheitsmaßen. Die Ursache hierfür liegt in zwei Effekte, die sich
gegenseitig ausgleichen: Eine Progressiver, der aus der Art der Subventionierung
entspringt, und ein Regressiver, der aus den Teilnahmemustern folgt. Partizipation
an der Riesterförderung ist nicht nur mit hohem Einkommen, sondern auch mit
hohem Haushaltsvermögen korreliert.

Das zweite Kapitel löst das Problem eines sozialen Planers, der versucht, die Un-
gleichheit durch Transfers mit einem festen öffentlichen Budget in einer Verteilung
von exogen gegebenen Einkommen zu minimieren. Die geeignete Lösungsmethode
hängt von der Zielfunktion ab: Wenn die Zielfunktion konvex ist, kann sie durch
einen Interior-Point-Algorithmus gelöst werden. Wenn sie quasikonvex ist, kann die
Bisection-Methode verwendet werden. Mit künstlichen und realen Daten zeigen
wir, dass die Transfers nicht mit Transfers übereinstimmen müssen, welche die
Einkommen am unteren Ende der Verteilung ausgleichen.

Das dritte Kapitel untersucht die Art das Risiko der Erwerbseinkommen in einem
Modell des Arbeitsangebots über den Lebenszyklus. Die aktuelle Literatur über
den Lebenszykluskonsum, sowie das Spar- und Arbeitsangebotsverhalten konzen-
triert sich auf Lohnschocks als zentrale Quelle des Risikos. In vorliegenden Papier
schlagen wir ein Lebenszyklusmodell vor, das Risiko sowohl in Löhnen als auch
in Arbeitsstunden berücksichtigt und mithilfe dessen man die zwei Risikoarten
voneinander trennen kann. Zu diesem Zweck schätzen wir einen Parameter, der
misst wie permanente Lohnschocks auf den Grenznutzen des Vermögens übertra-
gen werden. Die Schätzung des Modells mit der Panel Study of Income Dynamics
(PSID) zeigt, dass sowohl permanente Lohn- als auch Stundenschocks eine wichtige
Rolle bei der Erklärung der Querschnittsvarianz des Gewinnwachstums spielen.
Dennoch haben permanente Lohnschocks einen quantitativ größeren Einfluss auf
die Lebensverdienst. Stundenschocks verbessern die Modellfit erheblich. Die em-
pirische Strategie erlaubt es uns, die Marshallische Elastizität Arbeitsangebots zu
schätzen, ohne dass die Verwendung von Konsum- oder Vermögensdaten notwendig
ist. Die Marshallische Elastizität ist im Durchschnitt negativ, aber klein. Schließlich
zeigen wir die Verbindung zwischen unserem Übertragungsparameter und dem
Versicherungsparameter für Konsum bekannt aus Blundell et al. (2008). Wir zeigen,
dass die durch unsere Schätzung bestimmte Sensitivität des Konsums hinsichtlich
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permanenten Lohnschocks mit den relevanten Schätzungen aus der Literatur übere-
instimmt.

Das vierte Kapitel ist eine weitere Anwendung eines Lebenszklusmodells des
Arbeitsangebots. Diesmal liegt der Schwerpunkt auf der Modellierung des progres-
siven Steuersystems. Ich quantifiziere den Grad zum dem Individuen permanentem
Lohnrisiko ausgesetzt sind und stelle fest, dass das permanente Risiko des Erwerb-
seinkommens in den USA seit den frühen 2000ern zugenommen hat. Vor allem stieg
es während der Finanzkrise in 2008 deutlich an. Eine entsprechende Ausweitung
des Versicherungseffekt des progressiven Steuer- und Transfersystems, der diesen
Anstieg hätte bremsen können, blieb aus. Ich schätze die Progressivität des Steuer-
und Transfersystems unter Verwendung einer Approximation mittels einer Potenz-
funktion und werte die Eigenschaften der Approximation hinsichtlich der Darstel-
lung des Steuersystems aus. Der geschätzte Progressionsparameter reicht aus, um
den Versicherungseffekt des Steuer- und Transfersystems zu ermitteln. Berechnet
man die Transmission des Risikos bei einer Progressivität von null, dann ergeben
sich 5% weniger Versicherung der Schocks. Das Risiko der Erwerbseinkommen
hätte auf das Niveau vor der Krise reduziert werden können, wenn die Progressivität
wesentlich erhöht und der Progressivitätsparameter von 0,93 auf 0,78 gesenkt wurde
worden wäre.
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