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We implement an extension of the pseudofermion functional renormalization group method for quantum spin
systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the
additional terms is achieved within a nested graph construction which recombines different one-loop interaction
channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain
three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model
on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though
the renormalization group (RG) equations undergo significant modifications when including the two-loop terms,
the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically
disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the
collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which
we associate with critical temperatures Tc, are reduced by a factor of ∼2 indicating that the two-loop diagrams
play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures
are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in
Tc are reduced by ∼34%. These findings have important implications for the quantum phase diagrams calculated
within the previous one-loop plus Katanin approach which turn out to be already well converged.
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I. INTRODUCTION

One of the most fascinating situations in quantum mag-
netism arises when the effects of small spin magnitudes, low-
dimensional lattices, and frustrating interactions cooperate, to
melt conventional magnetic long-range order in the ground
state. This may result in a variety of different spin states,
ranging from valence-bond crystals [1] that still exhibit a
“hidden“ type of spontaneous symmetry breaking to quantum
spin liquids [2–5] which are characterized by topological
order [6,7] and fractional quasiparticle excitations [7,8]. Spin
liquids can again appear in many different flavors as they may
have chiral [9–12] or nematic [13–16] properties and may be
described by various different types of effective lattice-gauge
theories [17–20].

Even though such scenarios were considered very exotic
in the times of their first proposal by Anderson in 1973 [2],
the rise of powerful numerical approaches in the past decades
has given convincing evidence that the general phenomenon of
frustration-induced destruction of ground-state magnetic order
is actually not rare in dimensions D � 2. Indeed, for antifer-
romagnetic spin- 1

2 Heisenberg models, nonmagnetic phases
have been proposed on all standard two-dimensional (2D)
lattices, i.e., square [21–33], triangular [34–36], honeycomb
[37–40], and kagome [41–44] lattices, at least when frustrating
first- and second-neighbor interactions are considered. There is
also growing numerical evidence that the effects of frustration
may even stabilize magnetically disordered states in three-
dimensional (3D) spin systems, such as Heisenberg models on

simple cubic [45,46], pyrochlore [47,48], and hyperkagome
[49,50] lattices.

Despite the recent progress in the development of new nu-
merical approaches, the unambiguous identification of ground-
state properties of generic quantum spin models still represents
a serious challenge and often requires severe approximations.
This is because any numerical ground-state solver needs to
correctly capture the nontrivial interplay between magnetic
long-range order and quantum fluctuations, both of which are
complicated many-body effects. Approaches such as exact di-
agonalization, density matrix renormalization group (DMRG)
[51,52], iPEPS [53], coupled cluster method [54], and quan-
tum Monte Carlo [55,56] have been successfully applied to
quantum spin models, however, they are all limited in certain
respects. For example, DMRG has become very powerful even
in 2D, but its application in 3D seems to be out of reach. On the
other hand, exact diagonalization is independent of the lattice
dimension but restricted to very small system sizes. Quantum
Monte Carlo stands out in the sense that in nonfrustrated (i.e.,
sign-problem-free) cases numerical errors are only of statistical
type, however, the limitation to nonfrustrated systems excludes
many interesting models.

The pseudofermion functional renormalization group (PF-
FRG) method [16,33,45,50,57–61] is another numerical ap-
proach which has recently proven to be applicable to the
ground-state properties of quantum spin systems. Following
a fermionic reformulation of the spin degrees of freedom,
the system is treated within the established functional renor-
malization group (FRG) technique [62–64], which sums up
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diagrammatic vertex contributions in different one-loop in-
teraction channels. Apart from so-called Katanin terms [65]
which effectively act as fermionic self-energy corrections,
two-loop contributions have been neglected so far. Already
at this level of approximation, the PFFRG turns out to be
surprisingly powerful and flexible, as it allows to treat arbi-
trary lattices in 2D and 3D [33,45,50,57,58], isotropic and
anisotropic [16,59,60] two-body interactions, unrestricted spin
magnitudes [61] S as well as arbitrary frustrated interactions.
However, since the PFFRG performs diagrammatic summa-
tions in a situation where a small parameter is typically absent,
the errors associated with the neglected contributions are a
priori very hard to estimate. Important insight in this context
is gained by noting that to leading order, the one-loop PFFRG
is separately exact in the large-S limit [61] and in the large-N
limit [66,67], at least until the point where an instability occurs
during the RG flow [here N refers to a generalization of the
spins’ symmetry group to SU(N)]. Consequently, PFFRG can
be expected to correctly capture the ground-state properties
of spin systems deep in magnetically ordered phases (where
a large-S description applies) and deep in magnetically dis-
ordered phases such as spin liquids or valence-bond crystals
(where a large-N description applies). However, close to
quantum critical points, subleading two-loop contributions
may become important such that the exact positions of phase
boundaries might still be subject to errors in the PFFRG.

In this paper, we develop a two-loop PFFRG approach to
investigate the effects of higher diagrammatic contributions
which have been neglected in the previously applied Katanin
truncation. Since the truncation of flow equations is the central
approximation in the PFFRG, the inclusion of such higher
terms represents the key check with respect to convergence and
reliability of this method. To this end, we implement a formal-
ism that is closely related to the one proposed by Eberlein [68],
which recasts two-loop contributions into an effective one-loop
form and which is exact up to the third order in the effective
interaction (see also Refs. [69,70] for a more recent multiloop
FRG extension). As detailed below, in order to guarantee
the self-consistent treatment of self-energy renormalization
effects, our scheme even involves certain three-loop Katanin-
type contributions that have not been considered in Ref. [68].

As a first benchmark test of this complex generalization we
apply our approach to models with well-known quantum phase
diagrams such as the Heisenberg model on the square lattice
with antiferromagnetic first- and second-neighbor interactions
J1 and J2, respectively. Upon increasing the parameter g =
J2/J1, the system first shows antiferromagnetic Néel order [see
Fig. 1(a)] for 0 � g � gc1, where most numerical methods find
gc1 to be in the range 0.4 < gc1 < 0.5 [21,23–25,28,30,31].
For comparison, a previous one-loop (plus Katanin) PFFRG
study [33] found gc1 ≈ 0.4 . . . 0.45. Increasing g beyond gc1,
magnetic long-range order is destabilized due to the frustration
effect and the system resides in a magnetically disordered
phase. Despite intense numerical research for more than two
decades, the exact nature of this intermediate phase is still
under debate with suggestions ranging from different types
of valence-bond solids [23,24,31,32] to quantum spin liquids
[21,25,28–30]. For largerg � gc2 the system again shows mag-
netic long-range order of so-called collinear type [see Fig. 1(b)]
where the spins align antiferromagnetically in one lattice

FIG. 1. Illustration of Néel order (a) and collinear order (b) on
the square lattice. Also shown are two representative bonds with a
nearest-neighbor J1 and a second-neighbor J2 Heisenberg coupling.

direction and ferromagnetically in the other. Most numerical
methods find 0.6 < gc2 < 0.66 [21,23,25,26,31,32] while the
PFFRG study in Ref. [33] obtained gc2 ≈ 0.66 . . . 0.68.

A central result of our study is that the above-mentioned
sequence of quantum phases remains unchanged when adding
two-loop contributions, with only small shifts of the phase
boundary gc2. This shift reduces the extent of the intermediate
nonmagnetic phase, to better agree with other numerical
methods. In total, this finding indicates that the quantum phase
diagrams obtained by PFFRG are already well converged even
on the previously applied one-loop level. This has impor-
tant implications on the phase boundaries obtained in recent
PFFRG studies as it confirms their accuracy. On the other
hand, the added two-loop terms are found to have a large
effect on critical temperatures Tc and the fulfillment of the
Mermin-Wagner theorem. An analysis of critical temperatures
is performed as in Ref. [45], where the RG scale �c at which
the flow runs into a magnetic instability is proportional to
Tc. In magnetically ordered 2D Heisenberg systems, PFFRG
typically predicts a finite Tc on the order of the exchange
couplings, in strong violation to the Mermin-Wagner theorem
(according to which critical temperatures should be suppressed
to zero in spin-isotropic 2D systems due to strong infrared
thermal fluctuations [71,72]). We find that for the J1-J2 square
lattice Heisenberg model the added two-loop contributions
reduce Tc by a factor of 2 and, therefore, lead to a significantly
better fulfillment of the Mermin-Wagner theorem. We also
discuss the precise form of the diagrammatic contributions
which are responsible for this improvement.

To complete the analysis of critical temperatures, we
additionally consider the 3D Heisenberg case where Tc is
typically finite. As an example, we discuss one-loop and
two-loop PFFRG results for the 3D nearest-neighbor ferro-
magnetic Heisenberg model on the simple cubic lattice. For
the established one-loop PFFRG scheme, we find that Tc is
overestimated by ∼29% as compared to (quasi)exact quantum
Monte Carlo results. As an effect of two-loop contributions,
this error is reduced to an overestimation of ∼19%, which
is a further indication that critical temperatures come out
substantially improved due to the additional terms.

The paper is structured as follows: The method section
(Sec. II) first reviews the general PFFRG formalism and
explains the Katanin truncation scheme (Sec. II A). The two-
loop extension (including the Katanin-corrected terms) and
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its diagrammatic implementation is discussed in the following
Sec. II B. After some remarks about the numerical evaluation
of the RG equations (Sec. II C), we present the results of our
study in Sec. III. We first investigate the J1-J2 square lattice
Heisenberg model (Sec. III A) followed by a brief discussion of
the 3D simple cubic Heisenberg model (Sec. III B). The paper
ends with a conclusion in Sec. IV. Three appendices contain
further details about the two-loop scheme such as the derivation
of the RG equations (Appendix A), the diagrammatic discus-
sion of the Mermin-Wagner theorem (Appendix B), and the
numerical implementation of the � integration (Appendix C).

II. METHOD

A. General PFFRG scheme and Katanin truncation

Before we discuss the implementation of two-loop terms,
we first briefly review the general PFFRG scheme and the
Katanin truncation as it has been applied previously [33]. We
start with a generic Heisenberg model of the form

H =
∑
(ij )

Jij SiSj , (1)

where i, j are the sites of an arbitrary lattice and Jij can be any
set of exchange couplings between sites i and j . The sum runs
over pairs of sites (ij ). Within all PFFRG approaches, the spin
operators are first recast into a fermionic form, using

S
μ

i = 1

2

∑
α,β

f
†
iασ

μ
αβfiβ . (2)

Here, fiα (f †
iα) are spinful fermionic annihilation (creation)

operators with α =↑ , ↓ acting on site i. Furthermore, σ
μ
αβ

(μ ∈ {x,y,z}) denotes the Pauli matrices. The representation
in Eq. (2) needs to be treated with some caution as it introduces
unphysical spin-zero states (with local occupations Qi ≡
f

†
i↑fi↑ + f

†
i↓fi↓ = 0 or Qi = 2) in addition to the physical

spin- 1
2 states (with local occupation Qi = 1). A convenient

method to eliminate possible unwanted contributions of the
S = 0 states in the PFFRG results is to add a local level
repulsion term −A

∑
i S2

i to the Hamiltonian [61]. If A is
positive, the energy levels in the physical spin- 1

2 subspace
are shifted down compared to the unphysical states which
guarantees that for A sufficiently large, unphysical states

do not contribute to the ground-state properties. We note,
however, that for generic Heisenberg models, including the
systems studied here, there is no qualitative change in the
results when increasing A from zero, which indicates that
already for A = 0, unphysical states do not contribute (for
a detailed discussion of this important point, see Ref. [61]).
This property can be understood by noting that an unphysically
occupied S = 0 site acts like a magnetic vacancy in the spin
lattice, which costs an excitation energy on the order of the
exchange couplings. The ground state without level-repulsion
terms should therefore not be poisoned with contributions from
unphysical fermionic occupations. All results presented in the
following are calculated for A = 0.

Next, the fermionic model obtained when inserting Eq. (2)
into Eq. (1) is treated within the standard functional renor-
malization group (FRG) framework [62–64]. A somewhat
unusual situation occurs because the fermionic system is
purely quartic in the fields, without any kinetic hopping terms.
As a consequence, the free fermionic propagator G0 on the
imaginary Matsubara axis has the simple form

G0(ω) = 1

iω
, (3)

and is local in real space to all orders of diagrammatic
expansions.

The first important step in all FRG schemes is to regularize
the free propagator. Within PFFRG, this amounts to introduc-
ing an artificial Heaviside step function in G0 which suppresses
the fermionic propagation in the infrared limit, i.e., we replace

G0(ω) → G�
0 (ω) = θ (|ω| − �)G0(ω), (4)

where � is the so-called RG scale. Formally, this regularization
connects the trivial limit � → ∞, where the propagator
vanishes identically and only bare interactions Jij remain, with
the fully renormalized and physically relevant limit � = 0.
The FRG describes the system’s evolution between both limits
in terms of flow equations for the one-particle-irreducible
m-particle vertex functions. These equations are formally exact
and can be derived from the scale derivative of the effective
action. The first two equations for the self-energy �� and the
two-particle vertex 	� read as

d

d�
��(1) = − 1

2π

∑
2

	�(1,2; 1,2)S�(2), (5)

d

d�
	�(1′,2′; 1,2) = 1

2π

∑
3,4

[	�(1′,2′; 3,4)	�(3,4; 1,2) − 	�(1′,4; 1,3)	�(3,2′; 4,2) − (3 ↔ 4)

+ 	�(2′,4; 1,3)	�(3,1′; 4,2) + (3 ↔ 4)]G�(3)S�(4) + 1

2π

∑
3

	�
3 (1′,2′,3; 1,2,3)S�(3). (6)

Here, arguments “1” denote multi-indices comprising the
Matsubara frequency, lattice site, and spin index, i.e., 1 =
{ω1,i1,α1}. Furthermore, 	�

3 stands for the three-particle ver-
tex. The FRG equations contain the fully dressed propagator

G� = [(
G�

0

)−1 − ��
]−1

, (7)

and the so-called single-scale propagator

S� = G� d

d�

[
G�

0

]−1
G�, (8)

where the latter follows from a � derivative of G�, acting only
on the � dependence contained in G�

0 but not on ��. The
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FIG. 2. Diagrammatic illustration of the PFFRG equations for (a) the self-energy �� and (b) the two-particle vertex 	̃�, where the terms
appear in the same order as in Eqs. (11) and (12). The vertex functions ��, 	̃�, and 	�

3 are represented by gray shaded disks, squares, and
hexagons, respectively. The single-scale propagator S� (fully dressed propagator G�) is drawn as an arrow with (without) a slash. Numbers
1, 1′, . . . stand for frequency and spin variables while site indices are specified by i1, i2, j (note the site variables do not change along fermion
lines). The square brackets in (b) indicate that the previous five terms additionally appear with the single-scale propagator occurring on the
fermion line 3 [which corresponds to the term ∼G�(ω4)S�(ω3) in Eq. (12)].

right-hand side of Eq. (8) contains a Heaviside step function
and a δ function with nonanalyticities occurring at the same
frequencies ω. This situation can be treated as described in
Refs. [73,74], yielding

S�(ω) = δ(|ω| − �)

iω − ��(ω)
. (9)

Note that for Heisenberg systems on lattices with equivalent
sites (particularly, for lattices with a monoatomic unit cell)
the propagators are independent of spin and site indices, i.e.,
G�(1) ≡ G�(ω1) and S�(1) ≡ S�(ω1). Similar flow equa-
tions can also be formulated for higher vertices where the
� derivative of each m-particle vertex is determined by all
m′-particle vertices with m′ � m + 1. In total, this results in
an infinite but exact hierarchy of coupled FRG differential
equations.

The above FRG equations can be written in a more conve-
nient form which better highlights the spatial site-index struc-
ture of the different terms. The locality of the propagator G�

0
implies that a two-particle vertex 	�(1′,2′; 1,2) cannot change
its site index along fermion lines and, hence, 	�(1′,2′; 1,2) can
only depend on two sites, with either i1′ = i1, i2′ = i2 or i1′ =
i2, i2′ = i1. Taking into account the antisymmetry of fermionic
vertices under the exchange of two external variables, one may
therefore parametrize the site dependence of 	�(1′,2′; 1,2) by

	�(1′,2′; 1,2) = 	̃�
i1i2

(1′,2′; 1,2)δi1′ i1δi2′ i2

− 	̃�
i2i1

(1′,2′; 2,1)δi1′ i2δi2′ i1 . (10)

Note that the new vertex 	̃� obeys 	̃�
i1i2

(1′,2′; 1,2) =
	̃�

i2i1
(2′,1′; 2,1) and that multi-indices “1” in the arguments of

	̃� only contain the frequency ω1 and the spin α1 while the
site dependencies are written as a subscript index. Inserting the
parametrization of Eq. (10) into Eqs. (5) and (6), one obtains

d

d�
��(ω1) = 1

2π

∑
2

⎡
⎣−

∑
j

	̃�
i1j

(1,2; 1,2) + 	̃�
i1i1

(1,2; 2,1)

⎤
⎦S�(ω2), (11)

d

d�
	̃�

i1i2
(1′,2′; 1,2) = 1

2π

∑
3,4

⎡
⎣	̃�

i1i2
(1′,2′; 3,4)	̃�

i1i2
(3,4; 1,2) −

∑
j

	̃�
i1j

(1′,4; 1,3)	̃�
ji2

(3,2′; 4,2) + 	̃�
i1i2

(1′,4; 1,3)	̃�
i2i2

(3,2′; 2,4)

+ 	̃�
i1i1

(1′,4; 3,1)	̃�
i1i2

(3,2′; 4,2) + 	̃�
i1i2

(3,2′; 1,4)	̃�
i1i2

(1′,4; 3,2)

⎤
⎦[G�(ω3)S�(ω4) + G�(ω4)S�(ω3)]

+ 1

2π

∑
3

	�
3 (1′,2′,3; 1,2,3)S�(ω3). (12)

A diagrammatic representation of these equations is shown in
Fig. 2. The first two lines of Eq. (12) contain contributions from
different interaction channels, which can be distinguished by
their real-space index structure. This channel decomposition
will turn out to be useful for the construction of two-loop
terms in the next section. Also, the five terms in lines one

and two of Eq. (12) are associated with different physical
properties of spin phases. The first term is the particle-particle
ladder which describes fermionic pairing effects and which
is essential for the description of Z2 spin liquids [6]. The
second term is the RPA channel which is responsible for the
formation of magnetic long-range order. The RPA terms also
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FIG. 3. (a) Example for an additional three-particle contribution that is generated within the Katanin truncation [Eq. (14)]. The depicted
graph is obtained by inserting a self-energy correction into the particle-particle interaction channel which results in a three-particle term of the
form ∼∑

3 	�
3 (1′,2′,3; 1,2,3)S�(ω3) [last term in Eq. (12) and in Fig. 2(b)]. (b) Example for the construction of a nested graph in the two-loop

extension beyond the Katanin truncation. Two interaction channels are inserted into each other where in one of them (the “outer” graph) the
single-scale propagator S� is replaced by the propagator G�. (c) The recombination of graphs (here, two particle-particle diagrams) can also
lead to terms which are not of three-particle type (see text for details). (d) An improved level of approximation is obtained when equipping the
nested diagrams of the two-loop extension with a Katanin correction. The illustrated graph follows from (b) after a self-energy insertion in the
single-scale propagator.

guarantee that the PFFRG is exact in the large-S limit [61].
While the vertex corrections (third and fourth term) cannot
be attributed to a particular spin limit, the fifth term contains
the particle-hole ladder which ensures the exactness in the
large-N limit [66,67,75]. This term describes fluctuations in
the fermionic hopping channel which together with the pairing
channel is important for the formation of nonmagnetic states
[7].

For a numerical treatment of the PFFRG equations, the
two-particle vertex needs to be further parametrized in its spin
and frequency arguments. Particularly, 	̃ can be written as a
sum of a spin-spin interaction vertex 	̃�

s and a density-density
interaction vertex 	̃�

d :

	̃�
i1i2

(1′,2′; 1,2) =
[
	̃�

s i1i2
(ω′

1,ω
′
2; ω1,ω2)

∑
μ

σμ
α1′α1

σμ
α2′α2

+ 	̃�
d i1i2

(ω′
1,ω

′
2; ω1,ω2)δα1′α1δα2′α2

]

× δ(ω1 + ω2 − ω1′ − ω2′ ). (13)

In this formulation, the initial conditions of the RG flow
defined at � → ∞ are given by 	̃∞

s i1i2
= Ji1i2/4, 	̃∞

d i1i2
= 0,

and �∞ = 0. As it only complicates the equations, we will not
make explicit use of this parametrization in the following but
discuss the flow equations on the basis of Eqs. (11) and (12).

On a pure one-loop level, the three-particle term ∼	�
3 in

Eq. (12) is neglected completely which immediately leads to
a closed set of flow equations. This approximation, however,
turns out to be insufficient to correctly describe the ground-
state phases of quantum spin models; particularly, nonmag-
netic states cannot be captured. A crucial improvement comes
with the so-called Katanin truncation [65] which lies at the
heart of the PFFRG approach as it has been applied previously.
Within this scheme, the three-particle term in Eq. (12) is also
ignored but the single-scale propagator S� in this equation is
replaced by

S� −→ − d

d�
G� = S� − (G�)2 d

d�
��. (14)

The additional term ∼d��/d� on the right-hand side of
Eq. (14) is a self-energy correction which enters the two-
particle vertex flow. Since the new single-scale propagator

is given by the full � derivative of G�, the Katanin scheme
guarantees the complete (maximal) feedback of the self-energy
into the two-particle vertex. The (imaginary) self-energy cor-
responds to a pseudofermion lifetime which describes a reduc-
tion of the local magnetic moment due to quantum fluctuations.
The full and self-consistent inclusion of self-energy corrections
in the flow of the two-particle vertex is, hence, essential for
detecting nonmagnetic phases in the PFFRG. Without these
additional Katanin terms, phase diagrams largely resemble the
corresponding classical ones.

Effectively, the new self-energy corrections from the
last term on the right-hand side of Eq. (14) corre-
spond to certain three-particle contributions of the form
∼ ∑

3 	�
3 (1′,2′,3; 1,2,3)S�(ω3) [see last term in Eq. (12) and

in Fig. 2(b)]. To see this, one reexpresses the derivative
d��/d� in Eq. (14) by the right side of the flow equation for
the self-energy [Eq. (11)]. As an example of this reformulation,
Fig. 3(a) shows the additional Katanin diagram that is obtained
when the new single-scale propagator is inserted into the
particle-particle channel [first term on the right-hand side of
Eq. (12) and Fig. 2(b)]. This term has exactly the form of the
three-particle contribution in the flow equation for 	̃� and,
therefore, effectively acts as a two-loop correction. Diagrams
similar to Fig. 3(a) are also obtained when inserting the new
single-scale propagator into the other interaction channels.
While the Katanin terms are indispensable for capturing the
correct ground-state physics of quantum spin models, they
can also be implemented with relative ease. This is because
the two ingredients for the additional diagrams, the different
interaction channels in Eq. (12) and the � derivative of the
self-energy in Eq. (11), are already included in a pure one-
loop scheme such that a Katanin truncation only requires the
recombination of known diagrams.

B. Two-loop extension

We now discuss an extension of the PFFRG approach
described above which takes into account additional two-loop
terms. All such two-loop terms effectively contribute to the
three-particle vertex 	�

3 which is, therefore, better approxi-
mated. It is important to emphasize, however, that still not
all possible diagrammatic contributions to the three-particle
vertex are summed up in this scheme. To specify which three-
particle diagrams are included, one may expand the last term in

144404-5



MARLON RÜCK AND JOHANNES REUTHER PHYSICAL REVIEW B 97, 144404 (2018)

Eq. (12) in powers of the effective interaction 	�. As discussed
below (see Appendix A), our two-loop scheme is exact up to
terms (	�)3 while higher contributions to 	�

3 [those of order
(	�)4] are not completely summed up. This approach closely
resembles the one proposed by Eberlein which has been applied
to the attractive Hubbard model [68]. As explained below, our
formalism even goes beyond Eberlein’s scheme since it also
includes certain three-loop terms [contributions on the order
(	�)4]. Here, we discuss this extension on a diagrammatic
level and rather illustratively while Appendix A contains a
more stringent calculation of the flow equations.

The basic idea behind the two-loop extension shares some
similarities with the Katanin truncation. It recombines known
diagrammatic contributions to obtain new terms of the three-
particle type ∼ ∑

3 	�
3 (1′,2′,3; 1,2,3)S�(ω3) [last term in

Eq. (12) and in Fig. 2(b)]. The construction of these diagrams
[which is schematically illustrated in Fig. 3(b)] requires two
terms out of the five interaction channels on the right-hand side
of Eq. (12) or Fig. 2(b). For the example in Fig. 3(b), the random
phase approximation (RPA) channel and the particle-particle
channel are chosen. In one of these interaction channels [such
as the particle-particle channel in Fig. 3(b)], the single-scale
propagator S� is replaced by the propagator G� such that
the internal fermion lines are given by a product G�G�. In
the other interaction channel, the internal fermion lines G�S�

are kept unchanged. For the construction of a two-loop term,
one two-particle vertex in the graph with internal propagators
G�G� is replaced by the graph with internal propagators

G�S�. The resulting diagram [right side of Fig. 3(b)] has
the desired form of the three-particle term in Eq. (12) and
Fig. 2(b). More diagrams of this nested form can be constructed
by choosing different combinations of interaction channels
and taking into account the two possibilities for selecting the
two-particle vertex where the insertion can take place.

Some caution is required when inserting interaction chan-
nels into each other, as this may also result in a diagram of the
form of Fig. 3(c). In this specific example, the particle-particle
graph has been inserted into itself. The resulting term, however,
is no contribution to ∼ ∑

3 	�
3 (1′,2′,3; 1,2,3)S�(ω3). This

becomes obvious when cutting the single-scale propagator line
in Fig. 3(c) which produces a three-particle graph that is not
one-particle irreducible. (The one-particle irreducibility means
that a diagram cannot be split into two parts when cutting
a single-fermion line.) In the current one-particle-irreducible
implementation of the PFFRG, such terms must be discarded.

The criterion specifying which channels may be inserted
into each other relies on the so-called transfer frequencies
s, t, u, which for a vertex 	̃�

i1i2
(1′,2′; 1,2) are defined by

s = ω1 + ω2, t = ω1′ − ω1, u = ω1′ − ω2. The five interac-
tion channels in the first two lines of Eq. (12) may be grouped
according to the transfer frequencies occurring in the internal
fermion lines: Exploiting energy conservation in each diagram,
one finds s = ω3 + ω4 (u = ω3 − ω4) in the particle-particle
(particle-hole) term while for the other interaction channels
one has t = ω3 − ω4. Following this scheme of distinguishing
the different interaction channels, we define the quantities

X�
s,i1i2

(1′,2′; 1,2) = 1

2π

∑
3,4

	̃�
i1i2

(1′,2′; 3,4)	̃�
i1i2

(3,4; 1,2)[G�(ω3)S�(ω4) + G�(ω4)S�(ω3)], (15)

X�
t,i1i2

(1′,2′; 1,2) = 1

2π

∑
3,4

⎡
⎣−

∑
j

	̃�
i1j

(1′,4; 1,3)	̃�
ji2

(3,2′; 4,2) + 	̃�
i1i2

(1′,4; 1,3)	̃�
i2i2

(3,2′; 2,4) + 	̃�
i1i1

(1′,4; 3,1)	̃�
i1i2

(3,2′; 4,2)

⎤
⎦

× [G�(ω3)S�(ω4) + G�(ω4)S�(ω3)], (16)

X�
u,i1i2

(1′,2′; 1,2) = 1

2π

∑
3,4

	̃�
i1i2

(3,2′; 1,4)	̃�
i1i2

(1′,4; 3,2)[G�(ω3)S�(ω4) + G�(ω4)S�(ω3)] (17)

such that d	̃�/d� = X�
s + X�

t + X�
u + 1/(2π )

∑
3 	�

3 (1′,2′,3; 1,2,3)S�(ω3). The full contribution to the two-particle flow in
this two-loop extension, containing all allowed diagrammatic recombinations, is then given by

d

d�
	̃�

i1i2
(1′,2′; 1,2)|tl

= 1

2π

∑
3,4

⎧⎨
⎩[

X�
t,i1i2

(1′,2′; 3,4) + X�
u,i1i2

(1′,2′; 3,4)
]
	̃�

i1i2
(3,4; 1,2) + 	̃�

i1i2
(1′,2′; 3,4)

[
X�

t,i1i2
(3,4; 1,2) + X�

u,i1i2
(3,4; 1,2)

]

−
∑

j

[
X�

s,i1j
(1′,4; 1,3) + X�

u,i1j
(1′,4; 1,3)

]
	̃�

ji2
(3,2′; 4,2) −

∑
j

	̃�
i1j

(1′,4; 1,3)
[
X�

s,ji2
(3,2′; 4,2) + X�

u,ji2
(3,2′; 4,2)

]
+ [

X�
s,i1i2

(1′,4; 1,3) + X�
u,i1i2

(1′,4; 1,3)
]
	̃�

i2i2
(3,2′; 2,4) + 	̃�

i1i2
(1′,4; 1,3)

[
X�

s,i2i2
(3,2′; 2,4) + X�

t,i2i2
(3,2′; 2,4)

]
+ [

X�
s,i1i1

(1′,4; 3,1) + X�
t,i1i1

(1′,4; 3,1)
]
	̃�

i1i2
(3,2′; 4,2) + 	̃�

i1i1
(1′,4; 3,1)

[
X�

s,i1i2
(3,2′; 4,2) + X�

u,i1i2
(3,2′; 4,2)

]

+ [
X�

s,i1i2
(3,2′; 1,4) + X�

t,i1i2
(3,2′; 1,4)

]
	̃�

i1i2
(1′,4; 3,2) + 	̃�

i1i2
(3,2′; 1,4)

[
X�

s,i1i2
(1′,4; 3,2) + X�

t,i1i2
(1′,4; 3,2)

]⎫⎬⎭
× G�(ω3)G�(ω4). (18)
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Here, the index “tl” specifies that the equation only shows the
contributions to d	̃�/d� from the two-loop extension. Since
this equation has the same form as Eq. (12) but with modified
vertex functions, it can be considered to be of effective one-loop
structure. Most importantly, it only contains terms that are
already known from Eq. (12), which simplifies its numerical
evaluation significantly. Hence, this two-loop scheme is an
efficient and numerically not too costly approach which takes
into account important (but not all) parts of the three-particle
vertex 	�

3 without the need to solve an explicit flow equation
for 	�

3 .
The interaction channels X�

s/t/u which enter Eq. (18) contain
a single-scale propagator S� [see Eqs. (15)–(17)]. Generally,
S� can either be implemented as in the one-loop approach [see
Eq. (8)] or as in the Katanin truncation [see Eq. (14)]. Using
the definition (8) for the single-scale propagator immediately
leads to the two-loop approach of Ref. [68] which can be
shown to be exact up to the third order in the effective
interaction 	� (see Appendix A). However, since the last
term in Eq. (14) is already known from the self-energy flow,
it does not come with additional numerical costs to build
in Katanin corrections in Eq. (18). In fact, the inclusion of
Katanin terms in Eq. (18) yields proper contributions of the
form ∼ ∑

3 	�
3 (1′,2′,3; 1,2,3)S�(ω3) [see Fig. 3(d) for an

example]. In similarity to Sec. II A, these corrections ensure
a fully self-consistent treatment of the self-energy which is
important for a proper incorporation of fluctuation effects.
All results presented below have been obtained within this
“Katanin-corrected” two-loop scheme. Its explicit derivation
starting from the flow equation for the three-particle vertex
is outlined in Appendix A, where we closely follow Ref. [68].
The example in Fig. 3(d), showing the graph in Fig. 3(b) with a
self-energy insertion in the single-scale propagator, illustrates
that the extra Katanin-corrected two-loop terms are of fourth
order in the effective interaction 	� and of three-loop type.

C. Numerical implementation and calculation
of magnetic susceptibilities

Before we show results for the two-loop scheme in the next
section, some comments about the numerical evaluation of the
flow equations and the calculation of physical observables are
in order. All approximation schemes discussed in Secs. II A
and II B are formulated such that the infinite hierarchy of
coupled FRG equations is reduced to a closed set involving
only �� and 	̃�. However, to be amenable to numerical
treatment further approximations are necessary. First, the FRG
equations contain two-particle vertices 	̃�

i1i2
for all possible

combinations of sites i1, i2. A finite set of vertices is obtained
by discarding all 	̃�

i1i2
where the distance between sites i1

and i2 exceeds a given value Nl (in units of nearest-neighbor
lattice spacings). This effectively limits the range of spin-spin
correlations in the system. Second, the Matsubara frequencies
ω1, ω2, ω1′ , ω2′ appearing in the arguments of 	̃�

i1i2
(1′,2′; 1,2)

become continuous at T = 0. To numerically handle this
situation, we define vertex functions on a discrete frequency
grid which consists of a finite number of values Nω for each
of the three transfer frequencies s, t , and u.

Finally, for an actual solution, the RG equations are nu-
merically integrated over �, which requires a small but finite

integration step width. Typically, RG steps are defined by a
series of values . . . ,�n−1,�n,�n+1, . . . related via �n+1 =
s�n where s is smaller but close to one. Note that s can be
chosen as a constant or it can be a function of the RG scale,
s = s(�n). The latter possibility allows us to study special
points in the RG flow (such as magnetic instabilities) with
higher precision, i.e., with smaller integration step widths.
Below, we will study different choices for the dependence
s(�n) which we label by s(�n) = s

y
x (�n). In this notation,

x specifies the maximum of the function s
y
x (�n) (which occurs

in the small-� limit) and y enumerates different functions
with the same maximum. The precise form of the functions
s1

0.995, s
2
0.995, s

3
0.995 used below are given in Appendix C.

The quality of the results crucially depends on whether a
good compromise between the range of correlations Nl, the
number of discrete frequencies Nω, and the RG integration
step width s can be found. For all truncation schemes of
Sec. II, the computation times grow with the 2dth power
in Nl (where d is the dimension of the system), the fourth
power in Nω, and linearly in the number of �-integration
steps. As discussed below, identifying a suitable parameter
setting is particularly important in the two-loop scheme. While
this approach circumvents the explicit evaluation of a flow
equation for the three-particle vertex, this comes at the cost of
a rapid error propagation in the derivation of nested graphs. An
example for a good parameter choice in the two-loop scheme
is Nl = 5, Nω = 120, s = 0.995. Comparing numerical per-
formances for equal parameter settings, the computation times
increase roughly by a factor 2 when including the two-loop
contributions.

The physical outcome of the PFFRG approach is the static
spin-spin correlator

χzz
ij =

∫ ∞

0
dτ

〈
Sz

i (τ )Sz
j (0)

〉
, (19)

where τ is an imaginary-time variable. Note that for the spin-
isotropic models considered here, one has χij ≡ χxx

ij = χ
yy

ij =
χzz

ij . Expressing the spin operators in terms of pseudofermions,
Eq. (19) can be written as a frequency convolution of the
two-particle vertex and fermionic propagators. To investigate
whether a particular type of magnetic order develops, one
calculates the Fourier-transformed correlator χ�(k) (i.e., the
momentum-dependent magnetic susceptibility) at the corre-
sponding wave vector k. If χ�(k) shows a pronounced kink or
cusp during the RG flow this indicates the onset of magnetic
order. As argued in Ref. [45], the RG scale �c of this cusp
may be related to the critical temperature Tc = π�c/2 at which
the magnetic instability occurs. If, on the other hand, the RG
flow of the susceptibility remains smooth down to � → 0, a
nonmagnetic phase is identified.

III. RESULTS

A. Antiferromagnetic J1- J2 square lattice Heisenberg model

A main difficulty in the numerical evaluation of the Katanin-
corrected two-loop PFFRG equations lies in the rapid error
propagation of the nested graph construction. Small errors in
the one-loop terms may grow significantly when recombining
them into two-loop terms. It is therefore crucial to study how
different parameter choices for Nl, Nω, and s affect the results.
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FIG. 4. Effects of different system sizes Nl, number of frequency mesh points Nω, and �-integration step widths s on the Katanin-corrected
two-loop PFFRG results. (a) Néel susceptibility χ�(k = (π,π )) of the antiferromagnetic nearest-neighbor Heisenberg model on the square
lattice for varying step width functions s and frequency meshes Nω. Arrows indicate the magnetic instability. (b) Dependence of the Néel
susceptibility on different system sizes Nl. (c) Néel susceptibility χ�(k = (π,π )) of the J1-J2 Heisenberg model at g = 0.6 for different
frequency meshes Nω. Smooth flows indicate a magnetically disordered phase.

To this end, we first consider the antiferromagnetic Heisenberg
model on the square lattice with nearest-neighbor couplings
J1 > 0 only see [Figs. 4(a) and 4(b)].

For all parameter settings that we have studied, the flow
of the k = (π,π ) component of the magnetic susceptibility
χ�(k) shows a pronounced peak during the RG flow [marked
by arrows in Figs. 4(a) and 4(b)] followed by sudden drop and
a numerically unstable behavior. This is the expected RG flow
behavior in the Néel ordered phase, indicating that the magnetic
instability is correctly detected. We note that in contrast to
an exact solution where susceptibilities should show a real
divergence at a magnetic instability, in our PFFRG data we
typically see a finite peak. This is because of the combined
effects of finite system sizes Nl and finite frequency grids Nω

which both regularize the divergence.
The precise shape of the flowing susceptibility shows some

characteristic dependencies on Nl, Nω, and s. Most impor-
tantly, an insufficient �-integration step width s may lead to an
unstable flow behavior before the physically relevant � regime
is reached. An example for s = 0.98 is shown in Fig. 4(a) where
strong and diverging oscillations set in at � ≈ 0.31 while for a
denser integration grid the flow continues to smaller � values
(green line). To obtain reasonable RG flows, we find that s

needs at least to be given by 0.995 at small � (which is fulfilled
for the step-width functions s

1/2/3
0.995 used below). In contrast, for

the one-loop plus Katanin scheme, an integration step width
of s = 0.98 is often sufficient to yield well-converged results.
This stricter condition on s is one of the main reasons for the
longer computation times in the two-loop scheme.

We have also checked the influence of different frequency
grids [see Fig. 4(a)]. In general, with increasing number of
discrete mesh points, the RG flow becomes steeper and the
magnetic instability sets in at larger �. Furthermore, for small
Nω = 80 or 100, the flowing susceptibility is overlaid by
oscillations which, for example, produce the humps at � ≈
0.32 in Fig. 4(a). Such features directly reflect the frequency
discretization. Our results for denser grids indicate that they
mostly disappear for Nω � 120. With increasing system sizes
Nl we likewise observe a steeper RG flow and an earlier onset
of the instability [see Fig. 4(b)]. For Nl ≈ 7, the critical � scale
seems to be mostly converged.

We repeated this analysis for finite second-neighbor interac-
tions J2. In agreement with previous one-loop PFFRG studies,
for sufficiently large g = J2/J1 we identify a nonmagnetic
phase where the RG flow does not show any instability features
down to smallest � values. An example is given in Fig. 4(c)
showing flowing susceptibilities for g = 0.6 at the Néel wave
vector k = (π,π ) (this is the Fourier component where the
susceptibility is maximal). Due to small correlation lengths in
magnetically disordered phases, the conditions on the system
size Nl are less strict such that Nl = 5 is mostly sufficient. Also,
the convergence in Nω is found to be better. Nevertheless, at
very small � � 0.1 good convergence is hard to reach even
for Nω = 120.

Further insight is gained when comparing the RG flows
of the Katanin-corrected two-loop scheme with the previous
one-loop plus Katanin approach. Differences are most obvious
in magnetically ordered phases such as for g = 0 [Fig. 5(a)]
and g = 1 [Fig. 5(c)]. In the latter case, an instability at
k = (π,0) clearly indicates the collinear phase. Considering
χ�(k = (π,π )) for g = 0 and χ�(k = (π,0)) for g = 1 (at
other wave vectors the susceptibilities are comparatively small)
we find that down to the critical RG scale �c of the one-loop
PFFRG scheme, both susceptibilities are of very similar size.
Below this point, the two-loop result keeps increasing until
an instability occurs at a critical �c that is roughly halved
compared to the one-loop result. Furthermore, instability
features appear more sharply. The significant decrease of �c

reveals an important thermodynamic property of the two-
loop scheme. We first note that both the RG scale � and
the temperature T effectively act as an infrared frequency
cutoff. Based on a comparison of the cutoff procedures in
the large-S limit, it has been argued [45] that they are related
via T = π�/2. Since the Mermin-Wagner theorem forbids
finite-temperature phase transitions in 2D Heisenberg models
[71,72], one would not expect to find instabilities at finite RG
cutoffs [76]. Critical scales �c > 0 must, hence, be considered
as artifacts of the truncation of FRG equations. The decrease
of �c, however, indicates that the inclusion of two-loop
terms improves the fulfillment of the Mermin-Wagner theorem
significantly. Indeed, the origin of this improvement can be
explained on a diagrammatic level, as detailed in Appendix B.
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FIG. 5. Comparison of the flowing susceptibilities in the one-loop plus Katanin (dashed lines) and in the Katanin-corrected two-loop scheme
(full lines). Here and in the following figures, the two approaches are briefly denoted by “one loop“ and “two loop”. Blue (red) lines show the
Néel (collinear) susceptibility. The plots in (a)–(c) correspond to g = 0, g = 0.6, and g = 1, respectively. Vertical black lines (full and dashed)
in (a) and (c) mark the positions of critical RG scales �c in both approaches. The inset in (a) shows an enlarged view of the one-loop instability.

We also compare one-loop and two-loop results in the
magnetically disordered phase atg = 0.6 [see Fig. 5(b)]. While
down to � ≈ 0.4 both approaches yield similar results, for
smaller � the two-loop susceptibility becomes larger. How-
ever, within wide ranges of �, the ratio of the susceptibility
at wave vectors k = (π,π ) and k = (π,0) remains roughly
unchanged when including two-loop contributions.

We have investigated more coupling ratios g to map out the
phase diagram in the range 0 � g � 1 (see Fig. 6). We find that
the overall sequence of quantum phases and their boundaries
remain largely unchanged when varying the �-integration
step widths and the frequency meshes. This also applies to
differences between the one-loop and two-loop schemes.
Furthermore, the aforementioned factor of ∼2 between the
critical scales of both approaches appears throughout the
ordered phases.

It is important to emphasize that an exact determination of
phase boundaries is a difficult task in all PFFRG schemes. This
is because close to critical points where instability scales �c

FIG. 6. Phase diagram of the J1-J2 square lattice Heisenberg
model showing the dependence of the critical RG scale �c on the
coupling ratio g. A vanishing �c indicates a magnetically disordered
phase. Shown are results for the one-loop (dashed lines) and two-loop
(full lines) approaches using different frequency grids Nl and RG step
sizes. A data point with large numerical uncertainties is marked by
“?”.

become small, it is hard to distinguish whether an observed
anomaly is due to numerical errors (which inevitably grow
at small �) or due to a real magnetic instability. For this
reason, we have not attempted to investigate the critical regions
with higher precision. Some quantitative conclusions about the
positions of the phase boundaries can still be drawn. First, we
do not find any shifts of the transition at gc1 when including
two-loop terms. A rough estimate of its position yields 0.45 <

gc1 < 0.5. Slight differences compared to the results reported
in an earlier study [33] are due to the denser frequency and �

grids used here. On the other hand, for the second transition
at gc2, our results indicate small modifications. While the
one-loop results would be consistent with a transition at around
gc2 ≈ 0.7, the two-loop scheme still detects a clear magnetic
instability feature at this point. A calculation with an increased
number of frequencies (Nω = 120) might even point towards
collinear magnetic order at g = 0.65, although uncertainties
are significant due to the aforementioned reason (this data point
is marked by “?” in Fig. 6). We, hence, estimate this phase
transition to be approximately located at gc2 ≈ 0.65 within the
two-loop approach.

Comparing with the literature, other numerical works have
reported a large variety of different boundary positions [21–32]
which do not yet allow to draw a final conclusion about
the exact extent of the ground-state phases. While for the
first transition, earlier studies have favored gc1 ≈ 0.4 or even
smaller [22,31,32], more recent works find larger values such
as gc1 ≈ 0.45 [25,28]. Very recent PEPS approaches [27]
predict the transition to be close to 0.5 or even above [29,77].
Therefore, the relatively large value of 0.45 < gc1 < 0.5 that
we find seems to be in good agreement with the latest numerical
studies. Concerning the second phase transition, our estimate
of gc2 ≈ 0.65 is certainly in the upper range of values predicted
by other methods but is still consistent with Refs. [22,23,26].
Particularly, the reduction of gc2 upon including two-loop
contributions improves the agreement with other works.

B. Ferromagnetic Heisenberg model on the simple cubic lattice

We conclude this section with a brief discussion of criti-
cal temperatures in the 3D case where the Mermin-Wagner
theorem does not forbid magnetic instabilities at finite T . As
an example, we consider the nearest-neighbor ferromagnetic
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FIG. 7. Susceptibility χ�(k = (0,0,0)) of the nearest-neighbor
ferromagnetic Heisenberg model on the simple cubic lattice. Dashed
(full) lines denote the one-loop (two-loop) results. Note that the
x axis has been converted into a temperature axis by using the
relation T = π�/2. Vertical lines (dashed and full) mark the critical
temperatures of the one-loop and two-loop approaches, which are
given by Tc = 1.081|J1| and Tc = 0.997|J1|, respectively. The thick
black line denotes the exact quantum Monte Carlo result [78] Tc =
0.839|J1|. The inset illustrates ferromagnetic order on the simple
cubic lattice.

Heisenberg model on the simple cubic lattice. The nonfrus-
trated nature of this model allows us to compare results with
the (quasi)exact quantum Monte Carlo method. Apart from
increased numerical efforts due to additional site summations
(which lead to a scaling of computation times with the
sixth power in Nl instead of the fourth power), the PFFRG
schemes do not undergo any conceptual modifications in 3D.
In Fig. 7 we show the flowing susceptibility χ�(k = (0,0,0))
for the one-loop and two-loop schemes. While both approaches
clearly detect a ferromagnetic instability during the RG flows,
the critical RG scale of the two-loop scheme is found to be
smaller. The relative reduction of �c, however, is not as pro-
nounced as in the 2D case. Furthermore, in contrast to 2D where
both schemes only differ below the one-loop critical RG scale,
here two-loop contributions seem to become relevant much
earlier. For comparison with the quantum Monte Carlo result
[78] Tc = 0.839|J1|, we use the relation Tc = π�c/2 that has
been proposed in Ref. [45]. We find that the one-loop critical
temperature Tc = 1.081|J1| overestimates the quantum Monte
Carlo value by ∼29% while the two-loop result Tc = 0.997|J1|
only overestimates the exact value by ∼19%. In similarity to
the 2D case, this indicates that critical temperatures come out
significantly better when including two-loop terms.

IV. CONCLUSION AND OUTLOOK

In this work we have developed an extension of the PF-
FRG approach that takes into account two-loop diagrammatic
contributions. Conceptually, the additional terms are generated
by recombining two-particle interaction channels such that the
approach has an effective one-loop structure. To ensure a self-
consistent treatment of self-energy effects, our approach also

includes Katanin corrections of three-loop type. Compared
to a PFFRG scheme that explicitly takes into account the
flow of three-particle vertex functions (which has not yet
been implemented), this formulation simplifies the numerical
evaluation significantly. Yet, our two-loop scheme suffers from
severe error propagation which we mitigate by using dense
frequency meshes and small RG integration step widths.

As an exploratory study to benchmark our results, we
consider the antiferromagnetic J1-J2 Heisenberg model on the
square lattice. Despite the fact that the two-loop extension
involves a large number of new terms in the RG equations,
the overall phase diagram of this model remains surprisingly
unchanged. Particularly, we clearly find the expected sequence
of Néel ordered, nonmagnetic, and collinear ordered phases.
While we do not detect any changes of the transition from
the Néel ordered to the nonmagnetic phase upon including
two-loop terms, the boundary between the nonmagnetic and
the collinear phase undergoes a moderate shift towards smaller
coupling ratios g. This result indicates that the one-loop
approach already yields good approximations of magnetic
phase diagrams. In contrast, critical RG scales �c (which
are finite in all PFFRG schemes) change significantly in our
two-loop extension. Throughout the ordered phases we find
that �c (or equivalently the critical temperature Tc) is reduced
by a factor ∼2 which indicates a better fulfillment of the
Mermin-Wagner theorem. We explain this improvement by
identifying the relevant self-energy and two-particle vertex
diagrams. Better estimates for critical temperatures are also
obtained in 3D such as for the ferromagnetic nearest-neighbor
Heisenberg model on the simple cubic lattice. While the one-
loop and two-loop schemes both overestimate Tc, the error is
reduced by ∼ 1

3 in the two-loop approach.
Our two-loop extension will be useful for a variety of future

investigations. For example, it would be interesting to study the
nature of the nonmagnetic phase in the J1-J2 Heisenberg model
which has not been further characterized here. A previous
one-loop PFFRG work [33] investigated dimer susceptibilities
for various valence-bond crystal configurations and found
that the responses are generally rather small. Furthermore,
the responses for different dimer configurations are almost
identical which would be consistent with a spin-liquid ground
state. Whether a certain valence-bond crystal is favored by
additional two-loop contributions remains an open question
for future studies. Given the large number of interesting
frustrated spin systems in 2D and 3D, we also suggest to apply
our approach to further lattice models to check whether the
conclusions of this work remain valid. Examples for possible
lattices include the triangular, honeycomb, and kagome
lattices. The ultimate goal of two-loop PFFRG schemes
would be to describe chiral magnetic properties such as the
formation of chiral spin liquids. Since the spin-chirality term
involves three spin operators, this is not possible in a pure
two-particle (or one-loop) formalism. Whether the current
two-loop extension is sufficient to resolve such effects is a
priori not clear and needs to be investigated in detail.

ACKNOWLEDGMENTS

We thank M. Hering, Y. Iqbal, R. Thomale, and S. Trebst
for fruitful discussions. This work is supported by the Freie
Universität Berlin within the Excellence Initiative of the
German Research Foundation.

144404-10



EFFECTS OF TWO-LOOP CONTRIBUTIONS IN THE … PHYSICAL REVIEW B 97, 144404 (2018)

FIG. 8. (a) Schematic diagrammatic illustration of the FRG equa-
tion for the three-particle vertex. For simplicity, we draw the fermion
lines without arrows and do not specify how fermion lines are
connected inside a vertex. Note that in the first and second terms
on the right-hand side, the single-scale propagators may also appear
at another propagator line. (b) Approximation of the three-particle
vertex as derived in Eq. (A8). All truncation schemes of Sec. II are
based on the depicted diagrams (see text for details).

APPENDIX A: DERIVATION OF THE TWO-LOOP
TRUNCATION FROM THE THREE-PARTICLE

VERTEX FLOW

In this Appendix, we outline how the two-loop scheme of
Eq. (18) can be formally derived from the flow equation of
the three-particle vertex. We closely follow Ref. [68] but also
show how the Katanin-corrected two-loop terms of Fig. 3(d)
are obtained.

We start with the flow equation for the three-particle vertex
which can be schematically written as

d

d�
	�

3 = tr(S�	�G�	�G�	� + G�	�S�	�G�	�

+ G�	�G�	�S�	�)

+ tr
[
	�(S�G� + G�S�)	�

3

] + tr
(
S�	�

4

)
. (A1)

For simplicity, we have omitted all arguments of the ver-
tex functions. The trace stands for the internal summa-
tions/integrations and 	�

4 is the four-particle vertex. A dia-
grammatic illustration of this equation is shown in Fig. 8. The
single-scale propagator in Eq. (A1) is given by Eq. (9) where
the � derivative only acts on the θ function contained in G�

0 .
One can therefore write

S� = −G̃�d�θ� with G̃� = (
G−1

0 − ��
)−1

, (A2)

where θ� ≡ θ (|ω| − �) and d� ≡ d/d� are shorthand nota-
tions for the regulator function and the � derivative, respec-
tively. Using this identity, Eq. (A1) becomes

d�	�
3 = −tr[G̃�	�G̃�	�G̃�	�(d�θ�θ�θ�)]

− tr
[
	�G̃�G̃�	�

3 (d�θ�θ�)
] + tr

(
S�	�

4

)
, (A3)

where we avoid writing repeating factors as powers to indicate
that they might have different arguments. In the following steps
of approximation, we only neglect terms in fourth or higher
orders in the effective interaction 	� such that the scheme

remains exact up to O[(	�)3]. First, this allows us to discard
the term ∼	�

4 in Eq. (A3) since the four-particle vertex is
at least of the order (	�)4. As the three-particle vertex is
∼O[(	�)3], one could also neglect the term ∼	�	�

3 within
this level of approximation (as done in Ref. [68]). However,
since this term will generate the Katanin-corrected two-loop
diagrams of the order (	�)4, we will keep it here. The next
step amounts to rewriting Eq. (A3) such that it contains �

derivatives acting on the entire trace:

d�	�
3 = −d�tr(G̃�	�G̃�	�G̃�	�θ�θ�θ�)

− d�tr
(
	�G̃�G̃�	�

3 θ�θ�
)

+ tr[(d�	�	�	�)G̃�G̃�G̃�θ�θ�θ�]

+ tr[	�	�	�(d�G̃�G̃�G̃�)θ�θ�θ�]

+ tr
[
(d�	�)G̃�G̃�	�

3 θ�θ�
]

+ tr
[
	�(d�G̃�G̃�)	�

3 θ�θ�
]

+ tr
[
	�G̃�G̃�

(
d�	�

3

)
θ�θ�

] + O[(	�)4]. (A4)

Using G̃ ∼ O[(	�)0] and counting the powers of 	� appear-
ing on the right-hand sides of the flow equations for ��,	�,
and 	�

3 , one finds

d�G̃� ∼ (G̃�)2d��� ∼ O(	�),

d�	� ∼ O[(	�)2], d�	�
3 ∼ O[(	�)3]. (A5)

It follows that all terms in the third to 7th line of Eq. (A4) are at
least on the order (	�)4 and can therefore be neglected within
the current level of approximation. Exploiting G� = G̃�θ�

one may write Eq. (A4) as

d�	�
3 = −d�tr(G�	�G�	�G�	�) − d�tr

(
	�G�G�	�

3

)
+ O[(	�)4]. (A6)

A straightforward � integration yields a self-consistent equa-
tion for 	�

3 :

	�
3 ≈ −tr(G�	�G�	�G�	�) − tr

(
	�G�G�	�

3

)
. (A7)

This equation may be solved iteratively by successively insert-
ing it into itself. The first iteration step leads to

	�
3 ≈ −tr(G�	�G�	�G�	�)

+ tr[	�G�G�tr(G�	�G�	�G�	�)]. (A8)

All truncation schemes discussed in Sec. II (i.e., the Katanin
truncation of Sec. II A, the two-loop extension of Sec. II B,
and the Katanin-corrected two-loop scheme) are based on
this approximation for 	�

3 . For a diagrammatic representa-
tion of Eq. (A8), see Fig. 8(b). To obtain a contribution to
∼ ∑

3 	�
3 (1′,2′,3; 1,2,3)S�(ω3) in Eq. (12), a pair of external

propagator lines of 	�
3 needs to be connected by a single-scale

propagator. As illustrated in Fig. 8(b), there are various ways
of performing such contractions. Considering the first term
∼	�	�	�, one may either fuse two lines belonging to the
same two-particle vertex [such as lines “1” and “2” in Fig. 8(b)]
or two lines belonging to different two-particle vertices [such
as lines “2” and “3” in Fig. 8(b)]. While the first possibility
leads to a Katanin term as in Fig. 3(a), the second possibility
generates a nested two-loop diagram as in Fig. 3(b). Similar
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types of contractions also exist for the second term in Eq. (A8)
which already contributes to the fourth order in	�. Connecting
lines “4” and “5” in Fig. 8(b) yields a Katanin-corrected
two-loop diagram such as the one in Fig. 3(d). However, other
possibilities of connecting fermion lines, e.g., “4” and “6” are
not taken into account since such diagrams cannot be simply
expressed as a recombination of two interaction channels.

APPENDIX B: DIAGRAMMATIC DISCUSSION OF THE
MERMIN-WAGNER THEOREM IN ONE-LOOP AND

TWO-LOOP PFFRG SCHEMES

In this Appendix, we present a diagrammatic argument
explaining why the two-loop scheme of Sec. II B leads to
an improved fulfillment of the Mermin-Wagner theorem (i.e.,
to reduced critical temperatures in isotropic 2D Heisenberg
systems). Our argument relies on an approximation for the
two-particle vertex which has been proposed by Brinckmann
and Wölfle [79] (we call it the BW approximation in the
following). This scheme is similar to the FLEX approximation
that has been used to investigate 2D Hubbard models [80].
Most importantly, Brinckmann and Wölfle showed analytically
and numerically that their approximation exactly fulfills the
Mermin-Wagner theorem in 2D.

The BW scheme is based on the same pseudofermionic
representation as our PFFRG approach. It starts defining a
dressed propagator G(ω) via the Dyson-Schwinger equation

G(ω) = [iω − �(ω)]−1. (B1)

The self-energy �(ω) that enters Eq. (B1) is of Fock type
as depicted in Fig. 9(a). Note that the double dashed line in
Fig. 9(a) is a renormalized exchange interaction generated
by the RPA series in Fig. 9(b) [the thin dashed line on the
right-hand side of Fig. 9(b) is the bare exchange interaction].
Most importantly, all propagators appearing in Figs. 9(a) and
9(b) are the dressed ones of Eq. (B1), drawn as thick lines. This
property makes the BW approximation fully self-consistent:
the dressed propagator depends on the self-energy which
in turn contains the full propagator. The self-consistency is also
the key reason why the BW scheme fulfills the Mermin-Wagner
theorem. Within a pseudofermionic formulation, the RPA
diagrams represent the leading order in a 1/S expansion [61],
i.e., they show the strongest divergence when approaching
a magnetic instability from the high-temperature side. To
discuss the Mermin-Wagner theorem in the context of the
BW scheme, we first assume that a magnetic instability
occurs at a finite temperature Tc > 0. When approaching Tc

from above, the diverging effective interaction in Fig. 9(b)
is fed back into the self-energy which, hence, becomes large
near criticality. The self-energy is purely imaginary due to
particle-hole symmetry and can therefore be interpreted as an
inverse pseudofermion lifetime. Since a small fermion lifetime
is equivalent to strong quantum fluctuations, the instability
is suppressed when reinserting the self-energy into the RPA
diagram (via dressed propagators). In 2D, this negative
feedback mechanism reduces critical temperatures down to
zero in agreement with the Mermin-Wagner theorem [79].

In principle, the BW approximation can be treated itera-
tively by successively calculating self-energies and reinserting
them into the RPA diagram. In the following, we will discuss

to which extent the diagrams of such iterations are included in
our PFFRG approaches. To avoid lengthy formulas and to be
more illustrative, this analysis is done diagrammatically. We
particularly focus on the diagrams of the first iteration step
depicted in Figs. 9(c) and 9(d). On this level of approximation,
the self-energy �1 contains a free-fermion propagator G0 =
1/(iω) which is drawn as a thin line. Furthermore, �1 contains
a “partially” renormalized interaction defined in Fig. 9(d) and
illustrated by a thick dashed line. This interaction follows
from an RPA series that contains the free propagator and the
bare interaction (we therefore refer to it as the “bare RPA
interaction” in the following). Below, we will show that �1

is completely contained in the two-loop PFFRG scheme of
Sec. II B such that the feedback mechanism suppressing Tc is
at least included on the level of the first iteration step. On the
other hand, within the one-loop (plus Katanin) truncation not
even �1 is fully summed up, which explains the significant
improvement when including two-loop terms.

Our diagrammatic argument proving that �1 is fully con-
tained in the extended scheme of Sec. II B starts with the
two-loop flow equations in Eqs. (12) and (18). We approximate
their right-hand sides such that they generate a smaller set of
diagrams. Note that for all truncation schemes presented in
Sec. II, the bare RPA interaction of Fig. 9(d) is fully contained
in an PFFRG solution for 	̃�. This is proven in Ref. [61],
where it is shown that such diagrams are generated by the
RPA interaction channel. In a first step of approximation, all
two-particle vertices 	̃� appearing on the right-hand sides
of Eqs. (12) and (15)–(18) are replaced by the bare RPA
interaction. With this replacement, the amount of diagrams
contained in a solution for 	̃� is reduced. In a further reduction,
only certain interaction channels are taken into account. Partic-
ularly, from the five interaction channels of Eq. (12), only the
particle-particle, the RPA, and the particle-hole channels are
kept. Furthermore, from the many possibilities of constructing
nested two-loop terms, only four contributions are considered.
Altogether, these modifications result in the two-loop equation
for 	̃� shown in the first line of Fig. 9(e). As usual, gray slashes
indicate that a � derivative is acting on the propagator. Most
importantly, the product rule for derivatives may be applied
backwards on the right-hand side of this equation such that the
whole expression can be written as a single � derivative [see
second line of Fig. 9(e)]. This step of manipulation uses the
identity of Fig. 9(f) showing how the � derivative acts on the
bare RPA interaction. The equation in Fig. 9(e) may now be
straightforwardly � integrated as a whole. The solution for 	̃�

is given by the three diagrams in the second line of Fig. 9(e).
Since our manipulations of the flow equation only reduce the
amount of generated terms, this proves that such diagrams are
certainly contained in a two-loop PFFRG scheme.

We now consider the PFFRG equation for the self-energy
in Eq. (11) [which is also depicted in Fig. 9(g)]. Replacing the
two-particle vertex on the right-hand side of this equation by
the solution in Fig. 9(e) results in six graphs, three of which
are shown in the first line of Fig. 9(g). The other terms are
irrelevant for this discussion. One finds that these three graphs
can be written as a � derivative of �1 as depicted in the second
line of Fig. 9(g). Integrating this equation, hence, shows that
�1 is fully contained in the self-energy of a two-loop PFFRG
scheme.
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( (

FIG. 9. (a) Self-energy of the BW approximation. The thick line with an arrow is the dressed propagator in Eq. (B1). The double dashed
line is a renormalized interaction defined by the RPA series in (b). The thin dashed line in (b) is the bare interaction Jij . As explained in the main
text, the self-consistent structure of (a) and (b) guarantees the fulfillment of the Mermin-Wagner theorem. (c) On the first level of iteration, the
self-energy �1 carries a free-fermion propagator (thin line with an arrow) and a “partially” renormalized interaction (thick dashed line), referred
to as bare RPA interaction. (d) The bare RPA interaction follows from an RPA series containing free-fermion propagators. (e) Simplified version
of the two-loop PFFRG flow equation where on the right-hand side the two-particle vertex has been replaced by the bare RPA interaction and
only certain interaction channels are taken into account. This equation can be integrated, leading to the two-particle diagrams in the second
line. (f) � derivative of the bare RPA interaction. (g) PFFRG flow equation for the self-energy with the two-particle diagrams from (e) inserted
(only three out of six terms are shown in the first line). The equation can be integrated proving that �1 is fully contained in a two-loop PFFRG
scheme.

For this derivation, the inclusion of the nested two-loop
graphs in the first line of Fig. 9(e) is crucial. Without these
contributions (i.e., in a one-loop scheme), �1 is no longer
completely summed up. Similar arguments can also be for-
mulated for higher levels of iteration �2, �3, . . . . It turns out
that already �2 is not fully contained in any of the truncations
discussed here. However, at least more diagrammatic contribu-
tions of �2 are summed up when extending the PFFRG from
one loop to two loop. An exact fulfillment of the Mermin-

Wagner theorem is only expected when completely including
�∞ ≡ � of Figs. 9(a) and 9(b).

APPENDIX C: DEFINITION OF THE STEP-WIDTH
FUNCTIONS s y

x FOR � INTEGRATIONS

The interval between consecutive RG steps �n,�n+1 in the
numerical integration of the PFFRG equations is defined via

�n+1 = s(�n)�n. (C1)

In Sec. III, we use different choices for the function s(�n) < 1 which are labeled by s
y
x (�n) and defined via

s1
0.995(�n) =

⎧⎪⎨
⎪⎩

0.95 if �n > 0.6,

0.98 if 0.6 � �n > 0.4,

0.995 if 0.4 � �n,

(C2)

s2
0.995(�n) =

⎧⎪⎨
⎪⎩

0.95 if �n > 0.8,

0.98 if 0.8 � �n > 0.6,

0.995 if 0.6 � �n,

(C3)

s3
0.995(�n) =

⎧⎪⎨
⎪⎩

0.95 if �n > 1.6,

0.98 if 1.6 � �n > 1.2,

0.995 if 1.2 � �n.

(C4)
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