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1 Abstract (deutsch) 
 

Das humane Zytomegalievirus (HCMV) ist ein ubiquitäres Pathogen, das zur Gruppe 

der Herpesviren gehört. Bei Immunsupprimierten wie zum Beispiel AIDS-Patienten oder 

Organtransplantierten aber auch bei Neugeborenen kann die HCMV-Infektion schwere 

Krankheitsverläufe verursachen, die bis hin zum Tode führen. Darüber hinaus stellt 

HCMV die häufigste kongenitale Infektionsursache dar und kann sowohl zu geistiger als 

auch zu körperlicher Behinderung führen. Die vorhandenen antiviralen Medikamente 

sind durch erhebliche Nebenwirkungen und die Entwicklung von Resistenzen 

gekennzeichnet. 

 

Auf zellulärer Ebene unterscheidet man zwischen lytischer und latenter Infektion. Der 

lytische Infektionszyklus wird durch die Expression der immediate early (IE) Gene 

initiiert, die eine Kaskade von weiteren Genexpressionsprogrammen in Gang setzen 

und somit für die virale DNA-Replikation und die Produktion neuer Viruspartikel 

essentiell sind. Während HCMV zu jeder Phase des Zellzyklus in die Zelle eindringen 

kann, wird die IE-Genexpression in S/G2-Phase Zellen blockiert und kann nur in G0/G1-

Phase Zellen eingeleitet werden. Diese Blockade wird durch die Interaktion der 

zellulären Zyklin A-abhängigen Kinase mit dem viralen Protein pp150 vermittelt. 

 

In dieser Arbeit wurde die physiologische Relevanz der zellzyklusabhängigen IE-

Genexpression von HCMV untersucht. Dazu wurde eine Virusmutante verwendet, bei 

der pp150 nicht mehr in der Lage ist, eine Bindung mit Zyklin A einzugehen. Es konnte 

gezeigt werden, dass IE-Genexpression in S-Phase-Zellen zu einem stabilen G2-Arrest 

führt, welcher virale Genexpression und DNA-Replikation gut unterstützt. Auffällig war 

lediglich eine kleine Subpopulation Mitose-arretierter Zellen, in denen keine virale DNA-

Replikation stattfand. 

 

Der Virus-permissive G2-Arrest erwies sich als abhängig von pUL21a. Für dieses 

Genprodukt von HCMV konnte kürzlich gezeigt werden, dass es Zyklin A destabilisiert 

und so zu einem Arrest des Zellzyklus am Übergang von der G1- zur S-Phase führt. 

Eine Doppelpunktmutante von HCMV bei der sowohl pp150 als auch pUL21a nicht 

mehr mit Zyklin A interagieren können, führte zu erheblichen negativen Konsequenzen 

für Virus und Wirt. Ein Großteil der Zellen trat in die Mitose ein, verbunden mit einem 
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starken Verlust der Zellviabilität. Die Produktion von neuen Viruspartikeln war circa 500-

fach eingeschränkt. Dabei handelte es sich nicht um additive sondern um synergistisch 

wirkende Effekte der beiden Mutationen in pUL21a und pp150. 

 

Zusammengefasst konnte gezeigt werden, dass die viralen Proteine pp150 und pUL21a 

funktionell zusammenarbeiten, um einen unproduktiven mitotischen Zustand HCMV-

infizierter Zellen zu verhindern. Die Resultate legen ein Modell nahe, bei dem pp150 

alleine als Zyklin A-Sensor für eine produktive Infektion nicht zwingend notwendig ist, 

sondern vielmehr von HCMV entwickelt wurde, um die Zellzyklussynchronisation durch 

pUL21a zu stärken und abzusichern. 
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2 Abstract (englisch) 
 

Human Cytomegalovirus (HCMV), also known as Human Herpesvirus-5, is a 

widespread pathogen. In immunocompromised individuals, such as AIDS patients and 

transplant recipients, as well as in neonates, HCMV infection can lead to severe 

disease and death. It is the most common congenital infection leading to disabilities 

such as mental retardation and hearing impairment. The available virostatic drugs are 

characterized by severe side effects and emergence of resistant strains. 

 

At the cellular level, HCMV can either remain latent or start its lytic replication cycle. 

Lytic replication is initiated by the expression of immediate early (IE) genes which 

trigger a cascade of subsequent gene expression programs, eventually leading to viral 

DNA replication and the production of new virus progeny. While HCMV is able to enter 

the cell at any cell cycle stage, IE gene expression can only be initiated in G0/G1 phase 

cells and is blocked in S/G2 phase cells. This block is mediated by the interaction of 

cellular cyclin A-dependent kinase and the viral tegument protein pp150.  

 

Here, the physiological relevance of cell cycle-dependent IE gene expression for HCMV 

was addressed by employing a mutant virus lacking the cyclin A-binding motif in the 

pp150 protein. It was observed that the initiation of IE gene expression in S phase cells 

results in a stable G2 arrest followed by efficient expression of further viral gene 

products and viral DNA replication. Only a small subpopulation of cells entered a mitotic 

arrest and showed no signs of viral DNA replication.  

 

The virus-permissive G2-arrest was dependent on pUL21a. This viral protein has 

recently been shown to destabilize cyclin A, thereby leading to a cell cycle arrest at the 

transition from G1 to S phase. An HCMV double-point mutant where both pp150 and 

pUL21a are disabled in cyclin A-binding showed severe negative consequences for 

virus and host. A majority of infected cells was forced into mitosis accompanied by a 

sharp decrease of cell viability. Analysis of the production of new virus progeny revealed 

an approximately 500-fold growth defect. These were not only additive but synergistic 

effects of pUL21a and pp150 mutations. 
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Taken together, it could be shown that the viral proteins pp150 and pUL21a functionally 

cooperate to prevent HCMV from entering a non-productive mitotic state of infection. 

These results may point to a model where cyclin A sensing by pp150 alone is not 

absolutely required for productive HCMV infection but has been developed to 

strengthen and support cell cycle synchronization by pUL21a. 

 



 

5 
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„Ich, Christoph Schablowsky, versichere an Eides statt durch meine eigenhändige 

Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: „Konsequenzen einer 

zellzyklusunabhängigen viralen Genexpression für den lytischen Infektionszyklus des 

humanen Zytomegalievirus“ selbstständig und ohne nicht offengelegte Hilfe Dritter 

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.  

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer 

Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements 

for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte 

zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische 

Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) 

entsprechen den URM (s.o.) und werden von mir verantwortet.  

 

Mein Anteil an der ausgewählten Publikation entspricht dem, der in der untenstehenden 

gemeinsamen Erklärung mit dem/der Betreuer/in, angegeben ist. Sämtliche 

Publikationen, die aus dieser Dissertation hervorgegangen sind und bei denen ich Autor 
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4 Ausführliche Anteilserklärung 

 

Publikation: 

Weisbach H*, Schablowsky C*, Vetter B, Gruska I, Hagemeier C, Wiebusch L. Synthetic 

lethal mutations in the cyclin A interface of human cytomegalovirus. PLoS Pathog. 

2017; 13(1): e1006193. 

* geteilte Erstautorenschaft 

 

Beitrag im Einzelnen: 

Ich, Christoph Schablowsky, und Dr. Henry Weisbach haben zu gleichen Teilen zur 

Planung, Durchführung, Analyse, Darstellung und Bewertung der hier veröffentlichten 

Arbeit beigetragen.  

Herr Dr. Weisbach hat überwiegend die Doppelmutante HCMV pp150/pUL21a-RXLmut 

analysiert während ich ausschließlich Arbeiten zur Einzelmutante HCMV pp150-

RXLmut durchgeführt habe. 

 

Die Arbeiten zur Einzelmutante umfassten die eigenständige Arbeit in der Zellkultur mit 

Kultivierung von primären Lungenfibroblasten, Viruszucht, Infektion mit 

unterschiedlichen Viren, Zellzählung, Zellernte und Färbung mit Propidiumiodid sowie 

unterschiedlichen Antikörpern. Darüber hinaus wurde die EdU Click-it-Reaktion mit dem 

Nachweis von viralen Antigenen kombiniert. Im Weiteren habe ich zur Etablierung der 

Gating-Strategie für die Analyse der Zellzyklusverteilung und Chromatin Kondensierung 

von HCMV-infizierten Zellen am Durchflusszytometer beigetragen. 

 

Nach der selbstständigen Analyse der Zellen am Durchflusszytometer wurden die 

Ergebnisse mit Hilfe geeigneter Software in Form von Dot-Plots oder Overlay-

Histogrammen dargestellt. 

Für die Publikation habe ich den Großteil der Ergebnisse beigesteuert, die sich auf die 

Analyse der Einzelmutante HCMV pp150-RXLmut beziehen. Die gesamte Abbildung 2 

besteht überwiegend aus Ergebnissen meiner Arbeit, insbesondere Abbildung 2A, 2C, 

2D, 2E und 2F. Bei Abbildung S2 handelt es sich ausschließlich um ein Ergebnis 

meiner Arbeit. 
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An der Ausarbeitung des Manuskripts hatten Dr. Henry Weisbach und ich den gleichen 

Anteil, wobei ich insbesondere meine eigenen Resultate beschrieben sowie den 

dazugehörigen Material- und Methodenteil verfasst habe. 

 

 

 

Unterschrift des Doktoranden/der Doktorandin 

 
____________________________ 
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5 Auszug aus der Journal Summary List (ISI Web of KnowledgeSM) 
 

“PLoS Pathogens” gehört im Bereich der Virologie zu den ersten 30 % der nach Impact Factor 

sortierten Journale (Platz 2 von 33). Es weist einen Eigenfaktor von 0,142730 auf (siehe 

Abbildung). Damit gilt es nach den Kriterien der Promotionsordnung der Charité – 

Universitätsmedizin Berlin als Top-Journal. 

Journal Data Filtered By:   Selected JCR Year: 2016 Selected Editions: SCIE,SSCI  
Selected Categories:  “VIROLOGY” Selected Category     

Scheme: WoS  
Gesamtanzahl: 33 Journale  

Rank Full Journal Title Total Cites Journal Impact Factor Eigenfactor Score 

1   Cell Host & Microbe 13,089 14.946 0.061030

2 PLoS Pathogens 37,598 6.608 0.142730

3 REVIEWS IN MEDICAL VIROLOGY 1,839 5.439 0.003280

4 Current Opinion in Virology 2,682 5.067 0.014150

5 AIDS 20,962 5.003 0.041170

6 JOURNAL OF VIROLOGY 91,319 4.663 0.137420

7 ANTIVIRAL RESEARCH 7,138 4.271 0.016650

8 Annual Review of Virology 237 4.143 0.001580

9 JOURNAL OF VIRAL HEPATITIS 4,766 4.122 0.011920

10 Retrovirology 3,760 3.867 0.012780

11 Viruses-Basel 4,670 3.465 0.019810

12 

INTERNATIONAL JOURNAL OF 

MEDICAL MICROBIOLOGY 3,727 3.391 0.008180

13 VIROLOGY 24,873 3.353 0.031340

14 JOURNAL OF NEUROVIROLOGY 2,487 3.206 0.004340

15 JOURNAL OF CLINICAL VIROLOGY 7,120 3.051 0.018140

16 JOURNAL OF GENERAL VIROLOGY 18,722 2.838 0.022510

17 

Influenza and Other Respiratory 

Viruses 1,451 2.677 0.006180

18 VIRUS RESEARCH 8,165 2.628 0.016300

19 ANTIVIRAL THERAPY 3,338 2.594 0.008070

20 Virology Journal 5,723 2.139 0.015390
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21 

AIDS RESEARCH AND HUMAN 

RETROVIRUSES 4,607 2.095 0.008550

22 ARCHIVES OF VIROLOGY 9,092 2.058 0.014210

23 JOURNAL OF MEDICAL VIROLOGY 8,252 1.935 0.011710

24 Food and Environmental Virology 466 1.847 0.001350

25 

JOURNAL OF VIROLOGICAL 

METHODS 7,209 1.693 0.010780

26 CURRENT HIV RESEARCH 1,079 1.612 0.002790

27 VIRAL IMMUNOLOGY 1,275 1.432 0.001880

28 VIRUS GENES 2,346 1.431 0.004330

29 INTERVIROLOGY 1,372 1.292 0.001740

30 Future Virology 596 0.958 0.002230

31 ACTA VIROLOGICA 670 0.673 0.000880

32 

SOUTHERN AFRICAN JOURNAL OF 

HIV MEDICINE 147 0.345 0.000670

33 VIROLOGIE 57 0.294 0.000080

Copyright © 2017 Thomson Reuters  

 

Abbildung: Auszug aus der Journal Summary List für den Fachbereich Virologie im Jahr 2016. 
https://intranet.charite.de/fileadmin/user_upload/microsites/sonstige/medbib/Impact_Faktoren_2016/ISI-
WEB-Liste-Kategorie-Virology.pdf (Auszug am 09.01.2018). 
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Synthetic lethal mutations in the cyclin A
interface of human cytomegalovirus
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Charité Universitätsmedizin Berlin, Labor für PädiatrischeMolekularbiologie, Berlin, Germany

� These authors contributed equally to this work.
* lueder.wiebusch@charite.de

Abstract

Generally, the antagonism between host restriction factors and viral countermeasures

decides on cellular permissiveness or resistance to virus infection. Human cytomegalovirus

(HCMV) has evolved an additional level of self-imposed restriction by the viral tegument

protein pp150. Depending on a cyclin A-binding motif, pp150 prevents the onset of viral gene

expression in the S/G2 cell cycle phase of otherwise fully permissive cells. Here we address

the physiological relevance of this restriction during productive HCMV infection by employing

a cyclin A-binding deficient pp150 mutant virus. One consequence of unrestricted viral gene

expression in S/G2 was the induction of a G2/M arrest. G2-arrested but not mitotic cells sup-

ported viral replication. Cyclin A destabilization by the viral gene product pUL21a was

required to maintain the virus-permissive G2-arrest. An HCMV double-point mutant where

both pp150 and pUL21a are disabled in cyclin A interaction forced mitotic entry of the majority

of infected cells, with a severe negative impact on cell viability and virus growth. Thus, pp150

and pUL21a functionally cooperate, together building a cell cycle synchronization strategy of

cyclin A targeting and avoidance that is essential for productive HCMV infection.

Author summary

Efficient virus replication depends on continuous, uninterrupted supply with metabolites

and replication factors from the host cell. This is difficult to achieve in actively dividing

cells, especially for a slowly replicating virus like HCMV, a widespread pathogen of major

medical importance in immunocompromised patients. To ensure that viral replication is

not disturbed by cell division, HCMV has developed a twofold strategy of cyclin A target-

ing and avoidance. First, HCMV employs the viral cyclin A substrate pp150 to synchro-

nize the onset of replication with G1, a cell cycle phase of low cyclin A expression. Then,

HCMV expresses the cyclin A destabilizing factor pUL21a to maintain the G1 cell cycle

state until the successful release of virus progeny. While this strategy is based on two viral

proteins, a cyclin A sensor and effector, it relies on one and the same type of cyclin A

interaction motif, making HCMV vulnerable to binding site disruption.

PLOS Pathogens | DOI:10.1371/journal.ppat.1006193 January 27, 2017 1 / 15
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Introduction
Control of the cell division cycle by cyclins, cyclin-dependent kinases (CDKs) and CDK inhib-

itors (CKIs) is fundamental for proliferation, development and homeostasis of multicellular

organisms [1, 2]. To reprogram the cell cycle for their own benefit, viral pathogens have

evolved, or acquired from their host, genes and sequence motifs facilitating direct interaction

with the cyclin-CDK protein network [3].

Herpesviruses are particularly well suited for multifaceted interactions with the cell cycle

machinery, owing to the large coding capacity of their genomes. The repertory of herpesviral

cell cycle regulators comprises on the one hand factors leading to constitutive activation of the

cell cycle. This is exemplified by the � and �-herpesviral orthologs of cyclins [4] and CDKs [5],
which release CDK substrate phosphorylation from the control of cellular cyclins and CKIs [6,

7]. On the other hand, herpesviruses target cellular cyclin-CDK activity to arrest the cell cycle

at stages conducive to virus replication [8]. A recent example is the UL21a gene product

(pUL21a) of human cytomegalovirus (HCMV), which is required to block DNA synthesis and

mitotic entry of infected cells [9, 10]. Like CKIs of the Cip/Kip family (p21, p27, p57), pUL21a

contains a high affinity RXL-type cyclin binding motif but is only a poor CDK substrate [10].

In contrast to CKIs, however, pUL21a does not act as a stoichiometric inhibitor of cyclin-CDK

complexes but specifically recruits cyclin A (also referred to as cyclin A2) for proteasomal deg-

radation [9, 10].

Viral interactions with the cell cycle are not necessarily unidirectional. HCMV encodes a

second RXL-type cyclin A-binding protein, pp150 (also referred to as pUL32), that is neither

an activator nor an inhibitor of the cell cycle but is itself subject of cyclin A-CDK-dependent

regulation [11]. PP150 enters the host cell as part of the HCMV virion and blocks de novo viral
gene expression in a cyclin A and CDK-dependent manner [12, 13]. In fibroblasts and other

permissive cell types, this mechanism restricts the onset of viral replication to the G0/G1 phase

of the cell cycle where cyclin A expression is low or absent. S/G2 cells, though, do not abrogate

but only delay infection as pp150-mediated repression is relieved once cells loose cyclin A pro-

tein after cell division [14, 15]. Animal CMVs, including chimpanzee CMV, the closest relative

of HCMV, lack RXL sequence motifs in their pp150 homologues and accordingly initiate viral

gene expression independent of the cell cycle position at the time of infection [11, 16]. Thus, it

is yet unclear what function, if any, the pp150-dependent restriction serves in the context of

productive HCMV infection.

Here, we show that the pp150-RXL motif, alone, is dispensable for efficient viral growth.

However, genetic disruption of both pp150 and pUL21a-RXL motifs dramatically enhances

the mitotic phenotype and growth defect of a pUL21a-RXL single mutant virus. Thus, the

cyclin A antagonist pUL21a and the cyclin A sensor pp150 are part of a virus-host interface,

that functions as a fail-safe system securing undisturbed HCMV replication under non-mitotic

conditions.

Results
Besides its role as a cell cycle-dependent restriction factor, pp150 has a well-documented func-

tion in the late phase of HCMV infection where it is required for capsid trafficking and stabil-

ity [17–19], virion maturation and egress [20–22]. Before we began to use the cell cycle-

independent HCMV-pp150-RXL mutant for investigating the consequences of unrestricted

viral gene expression in S/G2, we made sure that the essential late functions of pp150 are not

hampered by the cyclin binding deficiency. To this end we infected G0/G1-arrested fibroblasts,

which, independent of the pp150-RXL mutation status, supported the ganciclovir-sensitive de
novo synthesis of viral DNA (Fig 1A) and all stages of HCMV protein expression (Fig 1B). By

Essential cooperation of viral cyclin A interactors

PLOS Pathogens | DOI:10.1371/journal.ppat.1006193 January 27, 2017 2 / 15
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measuring the accumulation of infectious progeny in the supernatant, we confirmed

that pp150-RXL mutants were capable to grow to almost the same high levels as the corre-

sponding WT and revertant viruses (Fig 1C). Furthermore, we made sure that the pp150-RXL

mutation does not negatively affect virion infectivity (S1 Fig). Thus, in principle, pp150-RXL

mutant HCMV is fully competent in virus replication and release.

We then infected proliferating cells, that were partially synchronized in S phase by release

from contact inhibition. As expected, only pp150-RXL mutant HCMV was able to initiate viral

immediate early (IE) gene expression in S phase cells (S2 Fig). Whereas HCMV-WT infected S

phase cells, like non-infected control cells, were able to complete the cell cycle and divided

between 6 and 24 h post infection, the pp150-RXL mutant virus blocked cell division leading

to an accumulation of cells with a G2/M DNA content (Fig 2A–2C). At later times, we

observed a shift of the G2/M-arrested population to a> 4n DNA content, resembling the gain

of DNA content seen in the G1-arrested fractions of HCMV-WT and pp150-RXL mutant

Fig 1. The essential function of pp150 in the late phase of HCMV infection is not compromised by lack
of cylin A binding. Density-arrested fibroblasts were infected with the indicated recombinant viruses. (A) The
cellular DNA content was analyzed at regular intervals by propidium iodide staining and flow cytometry.
Shown are DNA histograms where a 2n (n = haploid number of chromosomes) DNA content is indicative of
G0/G1 and a 4n DNA content of G2/M cells. Where indicated, ganciclovir (GCV) was added to the cells at day
1 post infection (dpi) to discriminate between viral and cellular DNA replication. (B) The expression of selected
IE, early and late gene products was monitored by immunoblot analysis of whole cell lysates; loading control:
GAPDH; hpi: hours post infection. (C) To obtain virus growth curves, cell culture supernatants were collected
on a daily basis and analyzed for infectious titers. Data points are displayed on a logarithmic scale and
represent means and standard deviations of biological triplicates.

doi:10.1371/journal.ppat.1006193.g001

Essential cooperation of viral cyclin A interactors

PLOS Pathogens | DOI:10.1371/journal.ppat.1006193 January 27, 2017 3 / 15
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Fig 2. Loss of pp150-cyclin A interaction leads to an HCMV-permissive G2 arrest. Fibroblast cultures were partially synchronized
in early S phase and infected with pp150-WT or pp150-RXLmutant viruses. Where indicated, cells were pulse-labeled with 5-ethynyl-
2’-deoxyuridine (EdU) 60 min before infection to distinguish S phase fromG1 cells. (A) Cell cycle progression of infected and non-
infected control cells was analyzed by flow cytometry. (B) Distribution over G0/1, S and G2/M cell cycle phases was calculated and
presented as means and standard deviations of biological triplicates. (C) To assess cell division, cell numbers were monitored over
time. (D) At 24 h, HCMV-pp150-RXLmut-infected cells were either treated with ganciclovir to inhibit viral DNA synthesis or left

Essential cooperation of viral cyclin A interactors

PLOS Pathogens | DOI:10.1371/journal.ppat.1006193 January 27, 2017 4 / 15
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infected cells (Figs 1A and 2A). The late increase in DNA content was of viral origin as it was

for the most part prevented by treatment with ganciclovir, an inhibitor of the HCMV DNA

polymerase (Fig 2D). This indicated that the pp150-RXL mutant virus is able to replicate its

genome in G2 cells with similar speed and efficiency as in G1 cells.

This view was further supported by analysis of viral IE, early and late gene expression. We

employed a 5-ethynyl-2’-deoxyuridine (EdU) pulse labeling strategy [23] to separately track

G1 and S phase-infected cells. The negative impact of S phase infection on HCMV-WT gene

expression was still evident 3 to 4 days later by reduced levels of viral early (gB) and late (pp28)

gene products in EdU-positive cells. In contrast, the pp150-RXL mutation allowed the cascade

of lytic gene expression to proceed with similar strength and kinetics in EdU-positive and neg-

ative cells (Fig 2E). The presence of pp28 which, as a “true” late gene product, depends on viral

DNA synthesis [24], supported our conclusion from the ganciclovir experiment that efficient

viral replication can occur at late stages of the cell cycle, if only the cyclin A-dependent block

of IE gene expression is overcome.

We then had a closer look at the cell cycle position of pp150-RXL mutant infected cells. To

check whether the observed block in cell division takes place in G2 or M phase, we analyzed

histone H3 serine-10 phosphorylation. Although this phosphosite has a dual role in chromo-

some condensation [25] and transcriptional elongation [26], and was recently found increased

in HCMV-Ad169 infected interphase cells [27], the high abundance of histone H3 de novo
phosphorylation during M phase [28] makes it a reliable and well-accepted marker of mitosis

in flow cytometry and immunocytochemistry. We identified a small but, compared toWT, sta-

tistically significantly increased population of pp150-RXL mutant infected M phase cells that

in contrast to G2 cells showed no signs of viral DNA replication (Fig 2F and 2G). Thus, in the

absence of pp150-mediated restriction, HCMV is fully competent to replicate from the S/G2

cell cycle compartment but has an increased risk to enter into an abortive mitotic state.

The finding of non-permissive mitotic cells was reminiscent of the phenotype of pUL21a-

RXL mutant HCMV, which has lost the capacity to block the G1/S transition by cyclin A

down-regulation and in consequence, forces up to 30% of infected cells into a non-productive

and genetically unstable metaphase arrest [10]. This prompted us to ask whether both mecha-

nisms, the pp150-cyclin A-dependent restriction of viral gene expression to G0/G1 and the

pUL21a-cyclin A-dependent cell cycle block may cooperate to protect HCMV from fatal entry

into mitosis. To address this question we constructed a virus carrying double-point mutations

of both, the pUL21a and pp150 RXL motifs and compared the effects on cell cycle progression

and virus replication side by side with the corresponding single mutants and HCMV-WT.

During the first 12 to 24 h after virus entry, the pp150 status clearly dominated the phenotypic

outcome of HCMV infection. The pUL21a-RXL single mutant, like WT virus, was unable to

start IE gene expression in S/G2 (S3 Fig), and hence also to block cell division (Fig 3A). In con-

trast, the pp150/pUL21a-RXL double mutant behaved like the pp150-RXL single mutant virus

in these respects. From 24 h on, the consequences of uncontrolled cyclin A expression (S4 Fig)

became apparent in RXL double mutant and, with a delay of further 24 h, also in pUL21a-RXL

single mutant infected cells: i) cells moved from G1 towards G2/M (Fig 3A); ii) mitotic

untreated. DNA histograms were obtained by flow cytometry. (E) EdU incorporation and the expression of selected viral immediate
early (IE1/2), early (gB) and late (pp28) gene products were determined by flow cytometry at different time points post infection. EdU-
positive cells are displayed in red, EdU-negative cells in gray. (F) IE-positive cells were analyzed by flow cytometry for phosphorylation
of histone H3 at serine 10 (pH3(ser10)), a marker of mitotic chromatin condensation. The relative proportion of mitotic cells (mitotic
index) is given in percent of total cells. (G) The averages and standard deviations of mitotic indices were calculated from six
independent experiments. Statistically significant differences, based on a two-tailed, paired Student’s t test, are marked with asterisks;
** (p 	 .01); * (p 	 .05).

doi:10.1371/journal.ppat.1006193.g002
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Fig 3. Pp150 and pUL21a cooperate to prevent HCMV-infected cells from entering a non-productive and unstable
mitotic state. Fibroblasts were first synchronized in early S phase and then (at time point 0 h) infected with the indicated
recombinant viruses. Cells and cell culture supernatants were harvested at regular intervals and analyzed for cell numbers,
cell cycle distribution and virus growth. (A) DNA histograms of propidium iodide stained cells. (B) To determine mitotic
indices of infected cells, the relative numbers of pH3(ser10) and IE1/2-positive cells were quantified by flow cytometry. Data

Essential cooperation of viral cyclin A interactors

PLOS Pathogens | DOI:10.1371/journal.ppat.1006193 January 27, 2017 6 / 15

15



chromosome condensation was induced (Fig 3B, S5 Fig); iii) expression of mitotic kinases

cyclin B, aurora A and B was strongly up-regulated above the already increased levels in WT

and pp150-RXL mutant infected cells (S4 Fig). The latter observation was consistent with our

previous finding [10] that loss of pUL21a-cyclin A interaction enhances the long known stim-

ulatory effect of HCMV on cyclin B expression [29].

Not only was the timing of mitotic entry accelerated by the simultaneous deletion of both

cyclin A interaction sites, its extent was greatly elevated as well (Fig 3B, S5 Fig). The mitotic

index peaked at 48 h in case of the RXL double mutant, reaching 60% of IE-positive cells. At

this time, only 10–12% of the pp150 or pUL21a-RXL single mutant infected cells had entered

mitosis (Fig 3B), demonstrating a synergistic pro-mitotic effect of the RXL double mutation.

The high and early incidence of mitotic cells had a huge negative impact on viral replication,

which was reflected by the near absence of cells accumulating with a greater than 4n DNA con-

tent (Fig 3A, S3 Fig) and by an about 500-fold growth defect (Fig 3C) of the RXL double

mutant. In contrast, the pp150-RXL single mutation conferred even a growth advantage on

HCMV during the first 4 to 6 days after S-phase infection, compared toWT virus. This sug-

gests that in the presence of a functional cyclin A degradation mechanism, the fast, cyclin A-

resistant onset of viral gene expression outweighs the negative consequences of a moderately

increased mitotic index.

Notably, the pUL21a-RXL single mutant showed a greater lag in accumulation of infectious

progeny (Fig 3A) than previously reported for G0/G1 phase infection experiments [10]. That

was reflected at the protein level by reduced expression of the essential viral trans-activator IE2

and of early and late gene products (S4 Fig). The changes are most likely due to the continuous

presence of cyclin A in pUL21a-RXLmut infected S phase cells (S4 Fig) which in the presence

of pp150-WT is known to exert a negative effect on viral gene expression [9, 12, 30]. Analysis

of early (gB) and late (pp28) protein profiles in the fraction of IE-positive S/G2 cells confirmed

that, in contrast to pp150-RXLmut infection, the G2 arrested state was only semi-permissive

for the pUL21a-RXL single mutant in terms of viral replication (S6 Fig). Remarkably, up to

30% of all pUL21a-RXLmut andWT infected cells remained refractory to IE gene expression

for 2 days, even after re-entry into G1 phase (S3 Fig). Whereas WT closed the gap to pp150-

RXL mutant infections between 2 and 4 days post infection (S3 Fig), the number of IE-defi-

cient pUL21-RXL single mutant infected cells only slowly decreased, consistent with the

delayed growth of this mutant (Fig 3A).

Although mitotic entry of infected cells was characterized by a shutdown of viral gene

expression (S6 Fig), the RXL double mutant was still capable to maintain viral gene expression

and replication in G2 (S4 and S6 Figs). To clarify what causes the 500-fold growth defect, we

analyzed the influence of mitotic entry on the stability and viability of RXL-double mutant

infected cells. In fact, those cells showed, similar to the pUL21a-RXL single mutant [10], chro-

mosomal damage that progressively leads to a complete pulverization of the chromosomal

material (S7 Fig). Furthermore, the decrease of mitotic cells seen after 2 dpi (Fig 3B) was paral-

leled by a large die-off of double mutant infected cells (Fig 3D, S8 Fig). Seemingly, the popula-

tion of double mutant infected cells is continuously depleted of cells entering mitotic

represent the means and standard deviations of biological triplicates. (C) For virus growth curves, titers of infectious virus
progeny were determined in biological triplicates. (D) The numbers of viable, propidium iodide excluding cells were
determined by flow cytometry. (E) The observations were summarized into a model that visualizes the chain of events after
S phase infection, leading to either a virus-permissive G1/G2 cell cycle arrest or a non-permissive mitotic state and cell
death. Different numbers of asterisks, symbolizing virus progeny, indicate how efficient each virus can replicate in the
particular cell cycle phases. In the case of the pUL21a-RXL mutant, it is currently unclear to what extent S phase infected
cells contribute to G1, G2 and M phase arrested populations.

doi:10.1371/journal.ppat.1006193.g003
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catastrophe and cell death. Regarding this instability of mitotic cells, the total number of dou-

ble mutant infected cells entering mitosis during the time course of the experiment probably

was greatly underestimated by flow cytometry (Fig 3B, S5 Fig), which gives only a snap-shot of

the relative cell cycle distribution of viable cells.

We conclude that in the absence of the pp150/pUL21a-cyclin A interface, cyclin A and

cyclin A-resistant viral gene expression together lead to the fast kinetics and high penetrance

of mitotic entry seen for RXL-double mutant infected cells, with severe consequences for cell

survival and virus growth (Fig 3E).

Discussion
HCMV encodes two cyclin A interacting proteins, the cyclin A-CDK substrate pp150 and the

cyclin A destabilizing module pUL21a. Here we show that both proteins act synergistically,

together constituting a control circuit required for the synchronization of viral replication

with the cell division cycle. The tegument protein pp150 senses the cellular cyclin A status at

the beginning of infection and restricts the onset of IE gene expression to the G0/G1 phase,

where cyclin A2-CDK is inactive. The early gene product pUL21a maintains the status of low

cyclin A2-CDK activity by targeting cyclin A for proteasomal degradation. Thus, pp150-medi-

ated restriction of viral gene expression in S/G2 phase has a genuine function in the productive

replication cycle of HCMV instead of being merely an inevitable by-product of a silencing

mechanism that contributes to establishing quiescent infection in undifferentiated cells [11].

The pp150-dependent restriction to cyclin A-negative cells appears important enough to

justify a significant delay of virus gene expression and replication after infection of proliferat-

ing cells (Figs 2E and 3C). This is particularly remarkable in view of the high overall growth

rates of a cyclin A sensor-less pp150-RXL mutant virus in both G1 and G2 cell cycle compart-

ments (Figs 1C and 3C). In that respect, pp150 mutant HCMV behaves like animal CMVs,

which lack a pp150-cyclin A interface and therefore can efficiently replicate in S/G2 cells [11,

16]. Taken together, this may point to a model where cyclin A sensing by pp150 alone is not

absolutely required for productive HCMV infection but has been developed to strengthen and

support cell cycle synchronization by pUL21a. Because pUL21a is expressed with early kinetics

and therefore not available during the first hours of infection [31], a pre-synchronization step

by a protein like pp150, delivered by the incoming virion, makes sense and keeps lytic gene

expression in safe distance from G2/M transition, giving pUL21a time to install a stable cell

cycle arrest in interphase. If this presynchronization is missing the pUL21a function is not suf-

ficient, or is not present early enough, to tightly inhibit mitotic entry in every infected cell

(Figs 2F, 2G and 3B).

The described synchronization strategy of HCMV is in striking analogy to how another

human pathogen, human papilloma virus (HPV) coordinates its replication with the host cell

cycle. Just as HCMV, many HPV strains encode two RXL motif containing cyclin A interac-

tors, E1 and E1�E4 [32, 33]. The early protein E1 is a DNA helicase that, due to its cyclin

A-CDK-dependent nuclear localization, is only able to initiate viral DNA synthesis in its

CDK-phosphorylated form [33, 34]. This makes sense from the viewpoint of HPV given that

this small DNA virus in contrast to HCMV heavily depends on the cellular DNA replication

machinery, which is only available and active at times of high cyclin A-CDK activity. The late

protein E1�E4 re-localizes cyclin A-CDK to the cytoplasm, thereby preventing the onset of

mitosis [35, 36]. Thus, both HCMV and HPV have evolved two layers of cyclin A interaction.

The first layer consists of cyclin A-sensitive CDK substrates that confine the start of viral repli-

cation to the most suitable cell cycle phase—G1 in case of HCMV, S phase in case of HPV.

The second layer consists of potent, negative regulators of cyclin A-CDK that provide stable
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conditions for virus growth by arresting the cell cycle in interphase (HCMV: G1 arrest, HPV:

G2 arrest). It is fascinating, that two only distantly related viruses like HCMV and HPV have

developed such similar strategies to best synchronize their life cycle with that of virally favor-

able phases of the cell cycle for reaching highest efficacy and efficiency of viral replication.

Although HCMV, HPV and many other viruses have evolved sophisticated mechanisms to

prevent mitotic entry in productively infected cells [37], it is important to note that in other

contexts, such as virus entry or persistence, viruses use mitosis to their own advantage. Herpes-

viruses as well as papillomaviruses encode mitotic chromosome tethering factors to maintain

latent viral genomes episomally in dividing cells [38–41]. Papillomaviruses and select retrovi-

ruses require the nuclear envelope breakdown in mitosis for nuclear import of viral genomes

[42].

Why then mitosis presents a problem when it occurs in the middle of the productive repli-

cation cycle of HCMV? Certainly, the global shutdown of gene transcription [43] and mRNA

translation [44] in mitosis would seem to be counterproductive for a virus that hijacks the host

cell machinery to achieve maximum replication. Also, structural changes like the nuclear enve-

lope breakdown are potentially harmful for the functional integrity of viral replication and

assembly compartments [10]. However, if mitosis would represent only a short and transient

interruption in the replication cycle of HCMV, the virus could possibly cope with such pertur-

bations. But, HCMV, as many viruses, encode potent inhibitors of the anaphase promoting

complex (APC/C) to stabilize substrates of this E3 ubiquitin ligase that play a role in viral repli-

cation [45–48]. Due to the essential function of APC/C in mitosis, productively infected cells

cannot simply traverse through this cell cycle phase—they become arrested at the metaphase-

anaphase transition [10]. Another aspect is that HCMV expresses DNA damaging enzymes

[49, 50] and subverts cellular DNA repair [51, 52]. It is unclear, as yet, to what extent virus-

induced DNA breaks contribute to the chromosomal fragmentation visible in mitotic cells (S7

Fig). However, unrepaired DNA damage and prolonged metaphase arrest are known to cause

cell death by mitotic catastrophe [53, 54] and, though HCMV is a master in preventing prema-

ture cell death during interphase [55], it is evidently not equally prepared to protect produc-

tively infected cells in mitosis.

Materials andmethods

Cells and viruses
Human embryonic lung fibroblasts (Fi301) were maintained as described previously. To syn-

chronize them in S phase, fibroblasts were first synchronized in G1 phase by contact inhibition

and then seeded at lower cell density to allow reentry into the cell cycle. Thirteen to seventeen

hours after re-plating when most cells had reached early S phase, they were infected. The follow-

ing recombinant viruses were used: the parental WT virus HCMV-TB40-BAC4 [56], HCMV-

TB40-pUL21a-RXLmut [10], the HCMV-TB40-pp150-RXL mutant RV1659 and revertant

RV1677 [11]. To obtain a HCMV-TB40-pp150/pUL21a-RXL double mutant, the pUL21a-

RRLARA mutation was introduced into RV1659 by traceless BACmutagenesis [57]. Viruses

were propagated on Fi301 cells and titered by flow cytometry of IE1/IE2-positive cells as

described [10]. A multiplicity of infection (MOI) of 5 to 10 IE-protein-forming units (IU) per

cell was used for all experiments. To determine particle-to-IU ratios in virus stocks, virion

DNA was prepared by ultracentrifugation and proteinase K/SDS treatment essentially as

described [58], and quantified by real-time PCR using the UL123-specific primer pair 5’-GCCT

TCCCTAAGACCACCAAT-3’ / 5’-ATTTTCTGGGCATAAGACATAATC-3’. For detection of

S phase cells, cells were pulse-labelled (60 min) with 10 μM 5-ethynyl-2´-desosxyuridine (EdU)
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before infection. Where indicated, ganciclovir was used at a final concentration of 50 μM.

Giemsa staining was performed essentially as described [10].

Flow cytometry
To analyze DNA content, EdU incorporation, viral protein expression and histone phosphory-

lation, cells were harvested by trypsinization, fixed and permeabilized by incubation in 75%

ethanol for at least 12 h at 0˚C. Afterwards, cells were stained with specific antibodies and pro-

pidium iodide as described previously [12]. The following mouse monoclonal primary anti-

bodies were used: anti-IE1/IE2 (clone E13, Argene), anti-IE1/IE2 (clone 8B1.2, Merck-

Millipore), anti-pUL55/gB (clone CH28, Santa Cruz Biotechnology), anti-pUL99/pp28 (clone

CH19, Santa Cruz Biotechnology) and anti-pH3-ser10 (clone 6G3, Cell Signaling Technology).

An Alexa Fluor 488-conjugated goat anti-mouse IgG antibody (Life Technologies) served as

secondary reagent. Isotype-specific antibodies were used for co-staining of IE1/IE2, pUL99/

pp28 (Alexa Fluor 488-conjugated goat anti-mouse IgG2a, Life Technologies), pUL55/gB

(V450-conjugated rat anti-mouse IgG1, BD Biosciences) and pH3-ser10 (Alexa Fluor 647-con-

jugated goat anti-mouse IgG1, Life Technologies). Alternatively, a rabbit polyclonal pH3-ser10

antibody (Cell Signaling Technology) was employed. For detection of EdU-positive cells, the

Click-iT EdU Alexa Flour 647 imaging kit (Life Technologies) was used according to the man-

ufacturer´s instructions. For cell counting and live-dead cell discrimination, cells were har-

vested by trypsinization and resuspended in ice-cold PBS. Immediately prior to flow

cytometry, propidium iodide was added to the sample at a final concentration of 25 μg/ml.

Cells were analyzed with a FACSCanto II flow cytometer (BD Biosciences) using FACSDiva,

CellQuest-Pro (BD Biosciences), FlowJo (FlowJo LLC) and ModFit-LT (Verity Software

House) software packages. Cellular debris, cell doublets and aggregates were gated out of

analysis.

Immunoblot analysis
Whole-cell lysates were prepared, clarified, adjusted to equal protein concentrations and fur-

ther processed as previously described [13]. SDS-polyacrylamide gel electrophoresis and

immunoblotting were performed according to standard protocols. The following primary anti-

bodies were applied: anti-IE1/IE2 (clone E13, Argene), anti-pUL44 (clone CH16, Santa Cruz

Biotechnology), anti-pUL55/gB (clone CH28, Santa Cruz Biotechnology), anti-pUL57 (clone

CH167, Santa Cruz Biotechnology), anti-pUL83/pp65 (clone CH12, Santa Cruz Biotechnol-

ogy), anti-pUL84 (clone Mab84), anti-pUL99/pp28 (clone CH19, Santa Cruz Biotechnology),

anti-GAPDH (clone 6C5), anti-pUL82/pp71 (clone 2H10; a gift from Tom Shenk), anti-

pUL32 (clone XP1; generously provided by Bodo Plachter). All antibodies were used at a final

concentration of 1 μg/ml.

Supporting information
S1 Fig. Virion infectivity is not affected by pp150-RXLmutation. Virus stocks of

HCMV-WT and HCMV-pp150-RXLmut were titrated by determining the concentration of

infectious, IE1/IE2 protein forming units (IU). In addition, virion DNA was isolated from

virus stocks and quantified by real-time PCR. The histogram shows relative particle to IU

ratios of HCMV-WT and pp150-RXLmut, with WT set to 1.0. Data represent the means and

standard deviations of technical triplicates.

(TIF)
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S2 Fig. In the absence of pp150-cyclin A interaction S phase-infected cells immediately

start viral gene expression and arrest with a 4n DNA content. Embryonic lung fibroblasts

were partially synchronized in early S phase and infected with pp150-WT or pp150-RXL

mutant HCMV. Cellular DNA content and expression of immediate early gene products IE1

and IE2 were analyzed during the first 24 h post infection by flow cytometry (n = haploid

number of chromosomes).

(TIF)

S3 Fig. In the absence of both pp150 and pUL21a-cyclin A interaction the vast majority of

infected cells accumulates with a 4n DNA content and does not show signs of viral DNA

replication. Partially synchronized fibroblasts were infected near the G1/S transition with the

indicated HCMV variants. Major immediate early (IE) gene expression and DNA content

were analyzed by flow cytometry on a daily basis. Shown are dot plots where the cellular events

are divided into 6 subpopulations. Upper left region: IE+/DNA content = 2n; lower left region:

IE-/DNA content = 2n; upper middle region: IE+/DNA content>2n and�4n; lower middle

region: IE-/DNA content>2n and�4n; upper right region: IE+/DNA content>4n; lower

right region: IE-/DNA content>4n (n = haploid number of chromosomes). A DNA content

>4n indicates viral DNA replication of G2 arrested cells.

(TIF)

S4 Fig. Accelerated induction of cyclin A and mitotic kinases in RXL double mutant

infected cells. G1/S fibroblasts were infected with HCMV-WT, the indicated RXL mutants or

left uninfected. Whole cell lysates were prepared from 0 to 96 h post infection and analyzed by

immunoblotting for protein expression of cyclins, mitotic kinases and selected immediate

early, early and late gene products. In addition, histone H3-serine 10 phosphorylation, pH3

(ser10), was analyzed. The conditions used for immunoblot detection of pH3(ser10) were not

sensitive enough to allow a comparison of pH3(ser10) levels in non-infected and HCMV-WT

infected cells. Equal protein amounts were loaded, which was controlled by analysis of

GAPDH expression.

(TIF)

S5 Fig. Determination of mitotic index in HCMV infected cells. Fibroblasts were synchro-

nized and infected as described above. After harvest (here: at 72 h), cells were stained with pro-

pidium iodide and monoclonal antibodies against IE1/IE2 and pH3(ser10). The percentage of

mitotic, pH3(ser10) positive cells was assessed by flow cytometry. Only the fraction of IE1/

IE2-positive cells was included in the analysis.

(TIF)

S6 Fig. HCMV early and late gene expression is blocked in mitosis and severely delayed in

in pp150-WT S/G2 cells. Fibroblasts were infected in early S phase with HCMV-WT or the

indicated RXL mutants. Cellular DNA content, mitotic marker pH3(ser10) and expression of

viral immediate early (IE1/2), early (gB) and late (pp28) proteins were analyzed by flow cytom-

etry at the indicated time points. (A) To test how efficiently the HCMV replication cycle pro-

ceeds in S/G2 versus M phase, a gating strategy was designed where the quadrant of IE-

positive S/G2/M cells (Q2) was subdivided into a pH3(ser10)-positive mitotic population (R1)

and a pH3(ser10)-negative S/G2 population (R2). Both populations were compared with

respect to gB and pp28 protein expression. (B) Shown are histogram overlays of IE-positive

mitotic and S/G2 populations. Non-infected S/G2 cells were analyzed to control for non-spe-

cific (NS) background staining.

(TIF)
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S7 Fig. Mitotic entry of RXL double mutant infected cells is accompanied by progressive

chromosomal fragmentation. Chromosome spreads of HCMV-pp150/pUL21a-RXLmut

infected cells were subjected to Giemsa staining and compared to equally prepared material of

HCMV-UL21a-RXLmut infected cells from 1 to 4 days post infection. Representative images

are shown.

(TIF)

S8 Fig. RXL double mutant infection results in rapid loss of viable cells. S phase fibroblasts

were infected with HCMV-WT or the indicated RXL mutants. Cells were harvested at regular

intervals. Immediately after harvest, cells were subjected to propidium iodide (PI) staining and

flow cytometry. Forward scatter (FSC) and sideward scatter (SSC) were used to define a region

(R1) that excludes cellular debris from analysis (upper panel). PI fluorescence was analyzed to

determine the percentage of viable, PI excluding cells (R2) in the parental region R1. Events

originating from R2 are highlighted in red. The experiment was performed twice in triplicates

with similar results. Representative dot plots are shown.

(TIF)
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Supporting Information 

 

 

 

S1 Fig. Virion infectivity is not affected by pp150-RXLmutation. 

 

 

 

S2 Fig. In the absence of pp150-cyclin A interaction S phase-infected cells immediately start viral 
gene expression and arrest with a 4n DNA content. 
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S3 Fig. In the absence of both pp150 and pUL21a-cyclin A interaction the vast majority of infected 
cells accumulates with a 4n DNA content and does not show signs of viral DNA replication.  
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S4 Fig. Accelerated induction of cyclin A and mitotic kinases in RXL double mutant infected cells.  
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S5 Fig. Determination of mitotic index in HCMV infected cells. 
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S6 Fig. HCMV early and late gene expression is blocked in mitosis and severely delayed in pp150-
WT S/G2 cells. 
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S7 Fig. Mitotic entry of RXL double mutant infected cells is accompanied by progressive 
chromosomal fragmentation. 
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S8 Fig. RXL double mutant infection results in rapid loss of viable cells. 
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7 Lebenslauf 
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