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Characterizing quantum processes is a key task in the development of quantum technologies, especially
at the noisy intermediate scale of today’s devices. One method for characterizing processes is randomized
benchmarking, which is robust against state preparation and measurement errors and can be used to
benchmark Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels
essentially at optimal resource efficiency. In this Letter, we show that the favorable features of both
approaches can be combined. For characterizing multiqubit unitary gates, we provide a rigorously
guaranteed and practical reconstruction method that works with an essentially optimal number of average
gate fidelities measured with respect to random Clifford unitaries. Moreover, for general unital quantum
channels, we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed
reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity—a
figure of merit characterizing the coherence of a process.
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As increasingly large and complex quantum devices are
being built and the development of fault-tolerant quantum
computation is moving forward, it is critical to develop
tools to refine our control of these devices. For this purpose,
several improved methods for characterizing quantum
processes have been developed in recent years.
These improvements can be grouped into two broad

categories. The first category includes techniques such as
randomized benchmarking (RB) [1–11] and gate set
tomography (GST) [12], which are more robust to state
preparation and measurement (SPAM) errors. These tech-
niques work by performing long sequences of random
quantum operations, measuring their outcomes, and check-
ing whether the resulting statistics are consistent with some
physically plausible model of the system. In this way, one
can characterize a quantum gate in terms of other quantum
gates in a way that is insensitive to SPAM errors. The
amount of information extracted by such techniques is
extremely different. While RB typically characterizes a
quantum gate in terms of a single fidelity, GST yields a
complete description of an entire gate set, the state
preparation, and the measurement. In effect, the data
acquisition for GST requires an exceedingly large effort.

The second category [13–17] provides detailed tomo-
graphic information in a more resource-efficient way. It
includes techniques such as compressed sensing [18–24],
matrix product state tomography [25,26], and learning of
local Hamiltonians and tensor network states [27,28].
These methods exploit the sparse, low-rank or low entan-
glement structure that is present in many of the physical
states and processes that occur in nature. These techniques
are less resource intensive than conventional tomography
and therefore can be applied to larger numbers of qubits.
Convex optimization techniques, such as semidefinite
programming, are then used to reconstruct the underlying
quantum state or process.
A recent line of work [29,30] has attempted to unify

these two approaches to a quantum process tomography
scheme that is both robust to SPAM errors and can handle
large numbers of qubits (provided the quantum process has
some suitable structure). To achieve this goal, it turns out
that the proper design of the measurements is crucial.
SPAM-robust methods such as randomized benchmarking
are known to require some kind of computationally
tractable group structure, such as that found in the
Clifford group. Subsequently, RB methods were extended
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to other groups [31–35]. In this Letter we focus on the
Clifford group. Clifford gates are motivated by their
abundant appearance in many practical applications, such
as fault-tolerant quantum computing [7,36].
In contrast, compressed sensing methods typically

require measurements with less structure in this context,
in that their fourth-order moments are close to those of the
uniform Haar measure. Thus, the key technical question is
whether the seemingly conflicting requirements of suffi-
cient randomness and desired structure in the measure-
ments can be combined.
In this work, we show that the answer is indeed yes. In

layman’s terms, we demonstrate that Clifford-group-based
measurements are also sufficiently unstructured that they
can be used for compressed sensing. Thus, we develop
methods for quantum process tomography that are resource
efficient, robust with respect to SPAM and other errors, and
use measurements that are already routinely acquired in
many experiments.
In more detail, we provide procedures for the

reconstruction from so-called average gate fidelities
(AGFs), which are the quantities that are measured in
randomized benchmarking. It was established that the
unital part of general quantum channels can be recon-
structed from AGFs relative to a maximal linearly inde-
pendent subset of Clifford-group operations [29]. We
generalize this result by noting that the Clifford group
can be replaced by an arbitrary unitary 2-design and also
explicitly provide an analytic form of the reconstruction.
Our main result is a practical reconstruction procedure

for quantum channels that are close to being unitary. Let d
be the Hilbert space dimension, so that a unitary quantum
channel can be described by roughly d2 scalar parameters.
The protocol is rigorously guaranteed to succeed using
essentially order of d2 AGFswith respect to randomly drawn
Clifford gates, andwe also prove it to be stable against errors
in the AGF estimates. In this way, we generalize a previous
recovery guarantee [30] from AGFs with 4-designs to ones
with the more relevant Clifford gates.
Conversely, we prove that the sample complexity of our

reconstruction procedure is optimal in a simplified meas-
urement setting. Here, we assume that independent copies
of the channel’s Choi state are measured and use direct
fidelity estimation [27,37] and information theoretic argu-
ments [13] to show that the dimensional scaling of our
reconstruction error is optimal up to log-factors. As a side
result, we also find a new interpretation of the unitarity [8]
—a figure of merit that captures the coherence of noise. We
show that this quantity can be estimated directly from
AGFs rather than simulating purity measurements [8].
In summary, we provide a protocol for quantum process

tomography that fulfills all of the following desiderata: (i) It
is based on physically reasonable and feasible measure-
ments, (ii) makes use of them in a sample optimal fashion,
(iii) exploits the structure of the expected or targeted

channel (here, low Kraus rank reflecting quantum gates),
and (iv) is stable against SPAM and other possible errors. In
this sense, we expect our scheme to be of high importance
and practically useful in actual experimental settings in
future quantum technologies [38]. It adds to the informa-
tion obtained from mere randomized benchmarking in that
it provides actionable advice, especially regarding coherent
errors. Such advice is particularly relevant for fault-tolerant
quantum computation: Refs. [39,40] indicate that it is
coherent errors that lead to an enormous mismatch between
average errors, which are estimated by randomized bench-
marking and worst-case errors reflected by fault-tolerance
thresholds.
Our main technical contributions are results for the

second and fourth moments of AGF measurements with
random Clifford gates. For the second moment, we provide
an explicit formula improving over the previous lower
bound [30]. In the case of trace-preserving and unital maps,
our analysis gives rise to a tight frame condition. In order to
prove a bound on the fourth moment, we derive—as a more
universal new technical tool—a general integration formula
for the fourth-order diagonal tensor representation of the
Clifford group. The proof builds on recent results on the
representation theory of the multiqubit Clifford group
[41–43]. Our result is the Clifford analogue to Collins’s
integration formula for the unitary group [44,45] for fourth
orders, which we expect to also be useful in other applica-
tions. In the following, we present the precise formulation of
our results. The proofs and technical contributions are given
in the Supplemental Material [46].
A linear map from the set of Hermitian operators on a

d-dimensional Hilbert space to itself is referred to as map.
A quantum channel is a completely positive map that in
addition preserves the trace of a Hermitian operator and,
thus, maps quantum states to quantum states. A map is
unital if the identity operator (equivalently, the maximally
mixed state) is a fixed point of the map. We define the AGF
between a map X and a quantum gate (i.e., a unitary
quantum channel) U∶ρ ↦ UρU† associated with a unitary
matrix U ∈ UðdÞ as

FavgðU;XÞ ¼
Z

dψhψ jU†Xðjψihψ jÞUjψi; ð1Þ

where the integral is taken according to the uniform (Haar)
measure on state vectors.
The Clifford group constitutes a particularly important

family of unitary gates that are featured prominently in state-
of-the-art quantum architectures. Moreover, it was shown
that for many-qubit systems (i.e., d ¼ 2n), any unital and
trace-preserving map is fully characterized by its AGFs (1)
with respect to the Clifford group [29]. A detailed analysis of
the geometry of unital channels was previously given in
Ref. [62]. There, it was shown that a quantum channel is
unital if and only if it can bewritten as an affine combination
of unitary gates. (Affine here means that the expansion
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coefficients sum to 1. Unlike convex combinations, they are,
however, not restricted to being non-negative.) Motivated by
the result for Clifford gates, one can ask more generally:
What are the sets of unitary gates that span the set of unital
and trace-preserving maps?
A general answer to this question can be given using

the notion of unitary t-designs. Unitary t-designs [3,63]
(and their state cousins, spherical t-designs [64,65], respec-
tively) are discrete subsets of the unitary groupUðdÞ (resp.,
complex unit sphere) that are evenly distributed in the sense
that their average reproduces the Haar (resp., uniform)
measure over the full unitary group (resp., complex unit
sphere) up to the tth moment. The multiqubit Clifford
group, for example, forms a unitary 3-design [66–68]. For
spherical designs, a close connection between informa-
tional completeness for quantum state estimation and the
notion of a 2-design has been established in Ref. [65]; see
also Refs. [69–71]. A similar result holds for quantum
process estimation, and it is the starting point of our work.
Indeed, the following is essentially due to Ref. [72]. We
give a concise proof in the form of the slightly more general
Theorem S.36 in the Supplemental Material [46].
Proposition 1. (Informational completeness and unitary

designs) Let fUkgNk¼1 be the gate set of a unitary 2-design
represented as channels. Every unital and trace-preserving
map X can be written as an affine combination X ¼ ð1=NÞP

N
k¼1 ckðXÞUk of the Uk’s. The coefficients are given by

ckðXÞ ¼ CFavgðUk;XÞ − ðC=dÞ þ 1, where C ¼ dðdþ 1Þ
ðd2 − 1Þ.
Hence, every unital and trace-preserving map is uniquely

determined by the AGFs with respect to an arbitrary unitary
2-design.
Clifford gates are a particularly prominent gate set with

this 2-design feature. However, its cardinality scales super-
polynomially in the dimension d. For explicit character-
izations, this is far from optimal. However, in certain
dimensions there exist subgroups of the Clifford group
with cardinality proportional to d4 that also form a 2-design
[63,73]. More generally, order of d4 logðdÞ Clifford gates
drawn independent and identically distributed (i.i.d.) from
the uniform distribution are an approximate
2-design [74]. From Proposition 1, we expect that such
randomly generated approximate 2-designs yield approxi-
mate reconstruction schemes for unital channels.
Our main result focuses on the particular task of

reconstructing multiqubit unital channels that are close
to being unitary, i.e., well approximated by a channel of
Kraus rank equal to 1. Techniques from low-rank matrix
reconstruction [13,14,18,19,24,75] allow for exploiting this
additional piece of information in order to reduce the
number of AGFs required to uniquely reconstruct an
unknown unitary gate.
Suppose we are given a list of m AGFs

fi ¼ FavgðCi;XÞ þ ϵi; ð2Þ

between the unknown unitary gate X and Clifford gates Ci,
where the Ci are chosen uniformly at random and the AGFs
fi are possibly corrupted by additive noise ϵi. In order to
reconstruct X from these observations, we propose to
perform a least-squares fit over the set of unital quantum
channels, i.e.,

minimize
Xm
i¼1

½FavgðCi;ZÞ − fi�2

subject to Z is a unital quantum channel: ð3Þ
We emphasize that this is an efficiently solvable convex
optimization problem. The feasible set is convex since it is
the intersection of an affine subspace (unital and trace-
preserving maps) and a convex cone (completely positive
maps).
Valid for multiqubit gates (d ¼ 2n), our main result states

that this reconstruction procedure is guaranteed to succeed
with exponentially high probability, provided that the
number m of AGFs is proportional [up to a logðdÞ-factor]
to the number of degrees of freedom in a general unitary
gate. The error of the reconstructed channel is measured
with the Frobenius norm in Choi representation k · k; see
the Supplemental Material [46] for details. Here, we give a
concise statement for the case of unitary gates. A more
general version—Theorem S.16 in the Supplemental
Material [46]—shows that the result can be extended to
cover approximately unitary channels.
Theorem 2. (Recovery guarantee for unitary gates) Fix

the dimension d ¼ 2n. Then,

m ≥ cd2 logðdÞ ð4Þ
noisyAGFswith randomly chosenClifford gates sufficewith
high probability (of at least 1 − e−γm) to reconstruct any
unitary quantum channel X via Eq. (3). This reconstruction
is stable in the sense that the minimizer Z♯ of Eq. (3) is
guaranteed to obey

kZ♯ − Xk ≤ C̃
d2ffiffiffiffi
m

p kϵkl2 : ð5Þ

The constants C̃, c, γ > 0 are independent of d.
We note the following:
(i) Equation (5) shows the protocol’s inherent stability to

additive noise. This stability combined with the robustness
of randomized benchmarking against SPAM errors results
in an estimation procedure that is potentially more resource
intensive but considerably less susceptible to experimental
imperfections and systematic errors than many other
reconstruction protocols [13,16,37].
(ii) The proof can be verbatim adapted to an optimization

of the l1 norm instead of the l2 norm in Eq. (3), resulting in
a slightly stronger error bound.
(iii) The theorem achieves a quadratic improvement (up

to a log-factor) over the minimal number of AGFs required
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for a naive reconstruction via linear inversion for the case
of noiseless measurements. But what is the number of
measurements required to obtain the AGFs and to suppress
the effect of the measurement noise ϵ in the reconstruction
error (5)? For randomized benchmarking setups, a fair
accounting of all involved errors is beyond the scope of the
current work. But in order to show that the scaling of the
noise term in our reconstruction error (5) is essentially
optimal, we consider the conceptually simpler measure-
ment setting where the channel’s Choi state is measured
directly. In the Supplemental Material [46] E, we prove
upper and lower bounds to the minimum number of channel
uses sufficient for a reconstruction via algorithm (3) with
reconstruction error (5) bounded by εrec > 0. This number of
channel uses scales as d4=ε2rec up to log-factors. The upper
bound relies on direct fidelity estimation [37]. In order to
establish a lower bound, we extend information theoretic
arguments from Ref. [13] to rank-1 measurements.
(iv) Finally, we note that the reconstruction (3) can be

practically calculated using standard convex optimization
packages. A numerical demonstration is shown in Fig. 1
and discussed in more detail in the Supplemental Material
[46] H. There, we also show that measuring AGFs with
respect to Clifford unitaries seems to be comparable to
Haar-random measurements, even in the presence of noise.
This confirms an observation that was already mentioned
in Ref. [30].
The proof of Theorem 2 is presented in the Supplemental

Material [46] D. The AGFs can be interpreted as expectation
values of certain observables, which are unit rank projectors
onto directions that correspond to elements of the Clifford
group. In contrast, most previous work on tomography via

compressed sensing features observables that have full rank,
e.g., tensor products of Pauli operators. Sincewenowwant to
utilize observables that have unit rank, a different approach
is needed. One approach developed by a subset of the authors
in Ref. [30] is to use strong results from low-rank matrix
reconstruction and phase retrieval [24,71,77–79]. These
methods [24,79] require measurements that look sufficiently
random and unstructured, in that their fourth-order moments
are close to those of the uniform Haar measure. The multi-
qubit Clifford group, however, does constitute a 3-design, but
not a 4-design. In Ref. [30], this discrepancy is partially
remedied by imposing additional constraints (a “nonspiki-
ness condition”; see also Ref. [80]) on the unitary channels
to be reconstructed. In turn, their result also required these
constraints to be included in the algorithmic reconstruction
which renders the algorithm impractical [81]. Moreover,
important classes of channels, e.g., Pauli channels, do not
satisfy this condition in general. Here, we overcome these
issues by appealing to recentworks that fully characterize the
fourth moments of the Clifford group [41,42]. In order to
apply these results, we develop an integration formula for
fourth moments over the Clifford group. This formula is
analogous to the integration over the unitary group know
as Collins’s calculus with Weingarten functions [44]; see
the Supplemental Material [46] A. Equipped with this new
representation-theoretic technique, we show in the
Supplemental Material [46] C that the deviation of the
Clifford group from a unitary 4-design is—in a precise
sense—mild enough for the task at hand.
Our final result addresses the unitarity of a quantum

channel. Introduced by Wallman et al. [8], the unitarity is a
measure for the coherence of a (noise) channel E. It is
defined to be the average purity of the output states of a
slightly altered channel E0 [82]

uðEÞ ¼
Z

dψTrðE0ðjψihψ jÞ†E0ðjψihψ jÞÞ ð6Þ

that flags the absence of trace preservation and unitality.
The unitarity can be estimated efficiently by using tech-
niques similar to randomized benchmarking [83]. It is also
an important figure of merit when one aims to compare
the AGF of a noisy gate implementation to its diamond
distance [39,40]—a task that is important for certifying
fault-tolerance capabilities of quantum devices.
Although useful, the existing definition of the unitarity

(6) is arguably not very intuitive. Here, we try to (partially)
amend this situation by providing a simple statistical
interpretation:
Theorem 3. (Operational interpretation of unitarity) Let

fUkgNk¼1 be the gate set of a unitary 2-design. Then, for all
Hermiticity-preserving maps X

Var½FavgðUk;XÞ� ¼ uðXÞ
d2ðdþ 1Þ2 ; ð7Þ

FIG. 1. Reconstruction of a Haar-random 3-qubit channel using
the optimization (3): The plots show the dependence of the
observed average reconstruction error εrec ≔ kZ♯ − Xk on
the number of AGFs m for different noise strengths η ≔
kϵkl2 . The error bars denote the observed standard deviation.
The averages are taken over 100 samples of random i.i.d.
measurements and channels (nonuniform). The MATLAB code
and data used to create these plots can be found on GitHub [76].
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where the variance is computed with respect to Uk drawn
randomly from the unitary 2-design.
The proof of the theorem is given in the Supplemental

Material [46] G. Note that the variance is taken with respect
to unitaries drawn from the unitary 2-design and not the
variance of the average fidelity with respect to the input
state as calculated, e.g., in Ref. [84].
In this Letter, we address the crucial task of character-

izing quantum channels. We do so by relying on AGFs of
the quantum channel of interest with simple-to-implement
Clifford gates. More specifically, we start by noting that
(i) the unital part of any quantum channel can be written in
terms of a unitary 2-design with expansion coefficients
given by AGFs. As a consequence, for certain Hilbert space
dimensions d, the unital part can be reconstructed from d4

AGFs with Clifford-group operations by a straightforward
and stable expansion formula. (ii) As the main result, we
prove for the case of unitary gates that the reconstruction can
be practically done using only essentially order of d2 random
AGFs with Clifford gates. In a simplified measurement
setting, we prove that this also leads to a resource optimal
scaling in terms of the total number of channel invocations
required to estimate the AGFs up to a precision of ε. For the
proof, we derive a formula for the integration of fourth
moments over the Clifford group, which is similar to
Collins’s calculus with Weingarten functions. This integra-
tion formula might also be useful for other purposes. (iii) We
prove that the unitarity of a quantum channel, which is a
measure for the coherence of noise [8], has a simple statistical
interpretation: It corresponds to the variance of the AGFwith
unitaries sampled from a unitary 2-design.
The focus of this work is on the reconstruction

of quantum gates. Here, the assumption of unitarity
considerably simplifies the representation-theoretic effort
for establishing the fourth moment bounds required for
applying strong existing proof techniques from low-rank
matrix recovery. These extend naturally to higher Kraus
ranks, and we leave this generalization to future work.
Existing results [85,86] indicate that the deviation of the
Clifford group from a unitary 4-design may become more
pronounced when the rank of the states or channels in
question increases. This may lead to a nonoptimal rank
scaling of the required number of observations m. In fact, a
straightforward extension of Theorem 2 to the Kraus rank-r
case already yields a recovery guarantee with a scaling
of m ∼ r5d2 logðdÞ.
Practically, it is important to explore how this protocol

behaves when applied to data obtained from interleaved
randomized benchmarking experiments. Such numerical
studies would further allow for a comparison to other
established schemes such as GST, for which no theoretical
guarantees exist. In Ref. [29], the authors show how to use
interleaved randomized benchmarking experiments to mea-
sure the AGF between a known Clifford gate and the
combined process of an unknown gate concatenated with

the average Clifford error process. In order to obtain
tomographic information about the isolated unknown gate,
the authors had to do a linear inversion of the average
Clifford error. However, in most cases, we expect the
average Clifford error to be close to a depolarizing channel
which has very high rank. Thus, building on our intuition
obtained for quantum states [87] and using our techniques,
we could obtain a low-rank approximation to the combined
unknown gate and average Clifford error, which under the
assumption of a high-rank Clifford error, would naturally
pick out the coherent part of the unknown gate.
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