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Abstract 

Presynaptic membranes are covered by protein scaffolds that are formed from few 

conserved families of extended proteins: ELKS/Bruchpilot family, RIM-BP, (M)Unc13, 

Liprin-α, Syd-1 and the RIM-superfamily including the mammalian proteins Piccolo, 

Bassoon. These scaffolds regulate the docking and priming of synaptic vesicles at the 

active zones (AZ) and thus control information transfer. Scaffold components must be 

safely transported along the axon before being integrated into the scaffold upon their 

arrival at active zone membranes. In an “early” assembly the scaffold proteins Syd-1 and 

Liprin-α predefine the synaptic vesicle release sites together with Neurexin and recruit 

the “late” scaffold components, particularly Bruchpilot and RIM-BP, to assemble the 

mature AZ scaffold. Neither the structural rules, by which these AZ scaffolds are 

transported and assembled, nor how the scaffolds exactly support AZ functions are 

presently well understood. In Drosophila, the integrity of the active zone scaffold depends 

particularly on the large core scaffold proteins Bruchpilot and RIM-BP.  

During my PhD work, I conducted a comprehensive yeast-two hybrid (Y2H) analysis 

that covered 135 constructs of 35 known AZ proteins. The protein-protein interaction 

network generated from these data provide a profound basis on interacting domains/ 

regions within the AZ scaffold. Based on the Y2H results, I identified specific serine 

residues in the N-terminus of Bruchpilot as a substrate of the SRPK79D kinase. In vivo 

analysis of site specific mutations by the Sigrist group confirmed that phosphorylation of 

these serine residues acts as a master switch in the transport of the “late” scaffold 

components Bruchpilot, RIM-BP and Unc13A. Furthermore, the Y2H approach provides 

evidence on the interaction of the major scaffold proteins Bruchpilot and RIM-BP and 

explains the isoform specific co-localization of Unc13A to the “late” scaffold while Unc13B 

co-localize with the “early” scaffold.  

I characterized important domains and interactions of the large scaffold protein 

RIM-BP at a molecular level by solving corresponding crystal structures. The C-terminal 

SH3-II and SH3-III domains in RIM-BP bind several PXXP motifs in other AZ proteins while 

no interactions were identified for SH3-I. SH3-II and SH3-III binding to the transport 

adaptor Aplip1 is several fold stronger compared to other interactions and is of utmost 
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importance for the transport of the “late” scaffold components. The crystal structure of 

the central FN-III array in RIM-BP suggests a potential hinge region or a preformed binding 

site by the three FN-III domains.  

Furthermore, I crystallized and characterized the binding of Spinophilin and the “early” 

scaffold component Syd-1 to the transmembrane protein Nrx-1. The Interaction of 

Spinophilin and Syd-1 with Nrx-1 regulates the assembly and proper localization of the 

mature AZ scaffold at the synaptic terminal.  
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Zusammenfassung 

Präsynaptische Membranen beinhalten ein Gerüst aus Proteinen, die sich aus wenigen 

konservierten Familien von langen Proteinen zusammensetzen: ELKS/Bruchpilot-Familie, 

RIM-BP, (M)Unc13, Liprin-α, Syd-1 sowie der, RIM-Superfamilie mit den 

säugetierspezifischen Proteinen Piccolo und Bassoon. Diese Gerüstproteine regeln das 

Andocken und Vorbereiten von synaptischen Vesikeln an den aktiven Zonen der 

Plasmamembran und steuern so den Informationsfluss. Um bei Ankunft an der 

präsynaptischen Membran in das AZ-Gerüst integriert zu werden, müssen diese Proteine 

entlang des Axons transportiert werden. In einem „frühen“ Assemblierungsschritt 

definieren die Gerüstproteine Syd-1 und Liprin-α zusammen mit Neurexin die Regionen 

für das neue AZ-Gerüst und rekrutieren anschließend die „späten“ Gerüstproteine, 

insbesondere Bruchpilot und RIM-BP, um ein funktionsfähiges AZ-Gerüst zu assemblieren. 

Weder die molekularen Mechanismen, nach denen diese AZ-Gerüste transportiert und 

integriert werden, noch die genaue Funktionsweise der AZ-Gerüste sind derzeit gut 

verstanden. In Drosophila hängt die Integrität des AZ-Gerüsts besonders von den großen 

Proteinen Bruchpilot und RIM-BP ab. 

Während meiner Doktorarbeit führte ich umfassende Hefe-zwei-Hybrid-Analysen 

(Y2H) von über 135 Konstrukte aus 35 bekannten AZ Proteinen durch. Das aus diesen 

Daten generierte Protein-Protein-Interaktionsnetzwerk liefert eine fundierte Grundlage 

für weitere Studien über interagierende Domänen/Regionen innerhalb des AZ-Gerüsts. 

Basierend auf den Y2H-Ergebnissen identifizierte ich spezifische Serinreste im N-Terminus 

von Bruchpilot als Substrat der SRPK79D-Kinaseaktivität. Die AG Sigrist führte spezifische 

Mutationen in BRP ein und konnte so diese Phosphorylierungen als Hauptschalter beim 

Transport der "späten" Gerüstkomponenten Bruchpilot, RIM-BP und Unc13A. Darüber 

hinaus liefert der Y2H-Ansatz Hinweise auf die Interaktion der großen Gerüstproteine 

Bruchpilot und RIM-BP und erklärt die isoform-spezifische Co-Lokalisierung von Unc13A 

zum „späten“ Gerüst, während Unc13B mit dem „frühen“ Gerüst co-lokalisiert. 

Ich charakterisierte wichtige Domänen und Wechselwirkungen des großen 

Gerüstproteins RIM-BP auf molekularer Ebene durch das Lösen entsprechender 

Kristallstrukturen. Die C-terminalen SH3-II und SH3-III Domänen in RIM-BP binden an 
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mehrere PXXP-Motive in anderen AZ-Proteinen, während für die SH3-I Domäne keine 

Wechselwirkungen identifiziert wurden. Die Bindung von SH3-II und SH3-III an den 

Transportadapter Aplip1 ist im Vergleich zu anderen Wechselwirkungen um ein Vielfaches 

stärker und ist für den Transport der "späten" Gerüstbauteile von größter Bedeutung. Die 

Kristallstruktur der drei zentralen FN-III-Domänen in RIM-BP zeigt eine mögliche 

Bindungsstelle zwischen FN-III(1) und FN-III(2) sowie einen möglichen Schanierbereich 

zwischen FN-III(2) und FN-III(3) vermuten lässt. 

Darüber hinaus kristallisierte und charakterisierte ich die Bindung von Spinophilin 

sowie der "frühen" Gerüstkomponente Syd-1 an das Transmembranprotein Nrx-1, 

wodurch der Aufbau und die korrekte Lokalisierung des reifen AZ-Gerüsts am 

synaptischen Terminal geregelt wird.  
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1. Introduction 

The human brain is the most complex part of the human body. It is the major 

component of the central nervous system (CNS) which allows control and fast 

communication through the body and can be found in all vertebrates. The CNS is primarily 

composed of two cell types: neurons and glial cells. Over 100 billion neurons or nerve cells 

can be found in the brain, their main function is to receive and transmit information 

(Bartheld et al., 2016). The communication between cells happens at specialized 

junctional structures called synapses (from the Greek synapsis, meaning conjunction). 

Two types of synapses can be found: chemical synapses and electrical synapses. At electric 

synapses the pre- and postsynaptic cells are connected by gap junctions and are thereby 

able to pass an electric current from one cell to the other. The nerve cells within the CNS 

mainly communicate via chemical synapses, where an electrical signal (action potential, 

AP) is converted into a chemical signal to overcome the synaptic cleft between the cells. 

(Waites et al., 2005) 

 

1.1. Chemical Synapse and the synaptic vesicle cycle  

The presynapse of a chemical synapse (Figure 1) clusters synaptic vesicles (SVs) of 

roughly 40 nm size, that store 1500-2000 neurotransmitter (NT) molecules within their 

spherical membrane (Haucke et al., 2011). NTs can fulfil either excitatory (e.g. 

acetylcholine, glutamate) or inhibitory (e.g. GABA, Glycine) functions in signal 

transduction. SVs filled with NTs are stored in a recycling pool of vesicles, for NTs release 

these SVs have to undergo docking and priming at specialized sites called active zones 

(AZs) located in close proximity to the voltage-gated Ca2+ channels (VGCCs) (Couteaux and 

Pecot-Dechavassine, 1970). Primed SVs at the presynaptic plasma membrane build up a 

readily-releasable pool (RRP) of vesicles, a state where SVs can be released immediately 

(Haucke et al., 2011). The fusion of synaptic vesicles is mediated mainly by SNARE proteins 

(soluble NSF attachment receptor proteins) and SM proteins (Sec1/Munc18-like proteins) 

(Südhof, 2013). Upon the arrival of an action potential presynaptic plasma membranes 

depolarize which opens the VGCCs. The Ca2+ influx triggers the fusion of the primed SVs 
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with the presynaptic plasma membrane and thereby releasing the NTs into the synaptic 

cleft (exocytosis) (Figure 1). Binding of the NTs to specialized postsynaptic receptors 

triggers an ongoing signal cascade. The postsynaptic site, reacting to the signal, is 

organized by an electron-dense scaffold, the postsynaptic density (PSD). This process of 

exocytosis has to occur in less than a millisecond. To ensure fast signal transduction tight 

coupling and close proximity of SV release site to VGCCs and the postsynaptic receptor 

fields is indispensable. (Südhof, 2013, Sudhof, 2004). Since synaptic transmission requires 

a constantly filled pool of vesicles, SV endocytosis takes place in the periphery of the AZ 

(periactive zone) to recycle SV membranes. After vesicle endocytosis, SVs are refilled with 

NTs and are clustered in the recycling pool. 

At the large neuromuscular junctions (NMJ), sites were neurons contact muscle fibers 

via chemical synapses, thousands of SVs, AZs and PSDs ensure that muscle contraction 

occurs precisely (Ackermann et al., 2015). 

Figure 1 The Chemical Synapse 

The protein scaffold at the 
active zone (AZ) is responsible 
for the docking and priming of 
synaptic vesicles (SVs) (1) from 
the recycling pool of SVs. This 
constitutes a readily releasable 
pool (RRP) of SVs bound to the 
presynaptic plasma membrane. 
AZ scaffolds localize next to 
voltage-gated Ca2+ channels 
(VGCCs) to ensure fast respond 
on the influx of Ca2+-Ions 
triggered by an arriving action 
potential (AP). Influx of 
Ca2+-Ions triggers exocytosis by 
mediating the fusion of SVs with 
the presynaptic plasma 
membrane (2). Subsequent 
release of the neurotransmitter 
into the synaptic cleft activates 
postsynaptic receptors within 
the postsynaptic density and 

propagates the signal further. After exocytosis the release site is cleared to dock and prime new 
SVs and to enable endocytosis in the periphery of the AZs (3). After endocytosis SVs are filled with 
neurotransmitters and are clustered in the recycling pool of synaptic vesicles (4).   
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1.2. Active zone morphology 

AZs were first described in 1970 by Counteaux and Pecot-Dechavassine as the 

presynaptic sites were SVs fuse with the plasma membrane (Couteaux and Pecot-

Dechavassine, 1970). Electron micrographs of AZs from different neurons and organisms 

revealed conserved localization, function and size, although their shape can differ 

immense (Figure 2). At the NMJ of Drosophila melanogaster AZs have an elaborated 

electron-dense projection, called T-bar, tethering SVs to the release sites. In vertebrates 

AZs structures differ from a prominent structure called synaptic ribbon in sensory 

synapses to less complex structures in central synapses (Figure 2) (Ackermann et al., 

2015). These electron-dense projections of a set of large multi-domain proteins are also 

referred to as the cytomatrix of the active zone (CAZ). 

 

Figure 2 Morphology of active zones 

The morphology of AZs can be divided into two distinct groups; those with elaborate electron-
dense projections and those with less prominent dense projections, here shown by the electron 
micrographs and a corresponding schematic drawing. (A) The AZ scaffold from the Caenorhabditis 
elegans NMJ are quite simple, with small electron-dense projections on the surface of plasma 
membrane. (B) The AZ scaffold at the NMJ of Drosophila melanogaster has a more elaborated 
shape, called T-bar (from the side view of the electron micrographs). These ring-like structures are 
located on top of the Ca2+-channels. (C) The AZ scaffold in vertebrate photoreceptor cell ribbon 
synapse is characterized by a specialized organelle, the synaptic ribbon, which tethers the SVs near 
the AZ. (D) AZ scaffold of vertebrate central synapses is less complex and exhibits fine filamentous 
projections that connect SVs up to 100 nm from the plasma membrane. Adapted and modified 
from (Ackermann et al., 2015) 
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1.3. The active zone scaffold 

Although the shape of AZs in electron micrographs can differ immense, their function 

in SV guidance to the release sites is retained. Over the years a conserved set of major AZ 

proteins has been identified, namely ELKS/Bruchpilot (BRP) family, Rab3-interacting 

molecule (RIM), RIM-binding protein (RIM-BP), (M)Unc13, Liprin-α, Syd-1 and the 

vertebrate specific proteins Piccolo and Bassoon (Figure 3) (Gundelfinger et al., 2015, 

Sudhof, 2012, Ackermann et al., 2015, Walter et al., 2018, Petzoldt and Sigrist, 2014). 

An important factor for the AZ scaffold is redundancy. Single knockouts in mammals of 

the main scaffolding proteins RIM, RIM-BP and ELKS/BRP leads to impairments of the 

scaffold but only a combination of ELKS/BRP and RIM knockouts (Wang et al., 2016) or 

RIM and RIM-BP knockouts (Acuna et al., 2016) disrupts the AZ scaffold. The AZ scaffold 

in Drosophila is less complex then in vertebrates and the deletion of BRP (Wagh et al., 

2006) or RIM-BP (Liu et al., 2011) already leads to a disruption of the characteristic T-bar.  

In a process that is still not completely resolved the scaffold tethers vesicles by large 

scaffold proteins. Direct binding of SVs to the AZ scaffold is also mediated by Rab proteins, 

small GTPases on the surface of SVs, that work as organizers of intracellular membrane 

trafficking and membrane architecture (Kiral et al., 2018).  

Finally, the fusion of SVs with the presynaptic plasma membrane is carried out by 

SNARE proteins, (M)Unc18, (M)Unc13 and the Ca2+ sensor Synaptotagmin (Figure 3). The 

SNARE complex assembles from Synaptobrevin/VAMP of the SVs and Syntaxin-1 and 

SNAP-25 of the presynaptic plasma membrane. (M)Unc18 binds to the SNARE via 

Syntaxin-1 and is an essential protein for NT release. (Burkhardt et al., 2008, Verhage et 

al., 2000). The SNARE complex forms a highly stable four helical bundle, that can generate 

a force onto the two membranes by forming a “trans”-SNARE complex. This force brings 

the SV membrane in close proximity to the presynaptic plasma membrane which 

destabilizes their hydrophobic bilayer and opens a fusion pore (Sudhof and Rizo, 2011, 

Jahn and Fasshauer, 2012).  

The release sites are closely located next to the PSD only separated by the synaptic 

cleft to ensure fast binding of released NT to the postsynaptic receptors (Figure 3). 



Introduction 

11 

Presynaptic and postsynaptic scaffold assembly is regulated by the interaction of the two 

transmembrane proteins Neurexin-1 and Neuroligin-1 (Sudhof, 2008). 

 

Figure 3 The synaptic active zone scaffold 

The schematic drawing shows the major components of the Drosophila AZ scaffold, important 
domains/regions and their interactions are highlighted (see legend). Syd-1, Liprin-α are early 
assembly factors that coordinate localization of the AZ and the PSD via a Neurexin-1 (Nrx-1) and 
Neuroligin-1 (Nlg-1). The major scaffolding proteins ELKS/BRP, RIM and RIM-BP control the 
docking and priming of synaptic vesicles (SVs) and control the localization of Ca2+-channels to the 
SV release machinery. The influx of Ca2+-ions triggers the release of primed SVs via the complex of 
fusion proteins (Synaptotagmin, (M)Unc13, (M)Unc18, SNAP-25, complexin, syntaxin and 
synaptobrevin).  

 

1.3.1. Bruchpilot and ELKS family 

The name of the ELKS family originates from its major amino acid content (rich of 

glutamic acid E, leucine L, lysine K and serine S), other names like Rab6IP2 (Rab6 

interacting protein 2), CAST (Cytomatrix at the active zone Associated STructural protein) 

or ERC (ELKS/Rab6IP2/CAST), are used occasionally. The mammalian genome encodes for 
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two very similar ELKS proteins, ELKS1 and ELKS2, of roughly 1000 amino acid residues in 

length and several shorter transcript variants (Sudhof, 2012). Human ELKS shares 

approximately 99% protein sequence identity with the corresponding mouse and rat 

homologs (Wang et al., 2002). Caenorhabditis elegans only expresses one protein, highly 

homologous to the mammalian proteins. ELKS proteins lack a clear domain architecture, 

instead they contain long stretches of α-helical coiled-coil regions. Several interactions 

within the AZ scaffold have been addressed to ELKS proteins: RIM, Ca2+-channels, 

(M)Unc13, Liprin α, Bassoon and Piccolo (Wang et al., 2002, Ohtsuka et al., 2002, Chen et 

al., 2011, Ko et al., 2003, Takao-Rikitsu et al., 2004, Kawabe et al., 2017). Drosophila 

expresses an ELKS fusion protein called Bruchpilot (BRP), consisting of a N-terminal ELKS 

related region and a C-terminal plectin related domain, exclusively present in insects. BRP 

is present with two major isoforms at the AZ, BRP-190 (isoform G, 206 kDa 1786 amino 

acid residues) and BRP-170 (isoform I; 160kDa, 1397 amino acid residues) (Matkovic et al., 

2013), with the shorter BRP-170 isoform lacking the first 320 N-terminal residues of the 

longer BRP-190 isoform. In contrast to ELKS proteins in mammalians (tom Dieck et al., 

2012), BRP is an essential scaffold for AZ assembly. It clusters Ca2+- channels and forms 

the characteristic T-bar structure of Drosophila AZs by its elongated structure (Kittel et al., 

2006, Fouquet et al., 2009). When BRP lacks the very last 17 residues, vesicle tethering to 

the T-bar structure is nearly completely abolished (Hallermann et al., 2010). Interestingly, 

the whole C-terminus of BRP is not conserved and cannot be found in mammalian ELKS 

proteins. It may therefore fulfil tasks of the mammalian Piccolo and Bassoon, that have 

no direct homologs in Drosophila (Wagh et al., 2006). 

 

1.3.2. RIM-binding protein  

RIM-BP are conserved multi-domain scaffold proteins connecting several major AZ 

proteins via direct or indirect interactions (Kaeser, 2011). Mammals express three rim-bp 

genes, whereas there is only a single gene in Drosophila. They all contain three central 

fibronectin 3 (FN-III) domains and three Src-homology 3 (SH3) domains. One SH3 domain 

resides in front of the FN-III domains and two at the C-terminal region. Folded domains 

are intersected by non-conserved, mostly predicted unstructured regions. RIM-BP acts as 

an interaction hub within the AZ scaffold bringing several proteins in close proximity. The 
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SH3 domains can bind to different partners like RIM (Wang et al., 2000) and Ca2+-channels 

(Liu et al., 2011), all containing a typical PXXP binding motif. For the FN3 domains big 

potassium (BK) channels have been identified as binding partners in mammals recently 

(Sclip et al., 2018). For the intervening, unstructured regions in RIM-BP no binding 

partners have been identified so far. In Drosophila Rim-BP is essential for AZ scaffold 

integrity (Liu et al., 2011), whereas in the mammalian system a double mutant of RIM-BP 

and RIM is needed to interfere with the integrity of the scaffold (Acuna et al., 2016). 

 

1.3.3. Rab3 interacting molecule (RIM) 

Rab3 interacting molecule (RIM) proteins function as a central interaction hub within 

the AZ scaffold (Acuna et al., 2016). Mammals contain four genes, while C. elegans and 

Drosophila contain only one. It contains four folded domains for interactions with other 

proteins and a PXXP motif (X stands for any amino acid) for interaction with the SH3 

domains of RIM-BP. The N-terminal zinc-finger interacts with (M)Unc13, important for 

vesicle priming by disrupting the (M)Unc13 homodimer (Lu et al., 2006, Deng et al., 2011). 

The Zn-finger is flanked by binding regions for Rab3 and Rab27 that are located on SVs. A 

central PDZ domain mediates binding to ELKS and importantly to Ca-channel, which is 

important for their recruitment to AZs (Kaeser et al., 2011). The function of the two C2 

domains in the C-terminus of RIM stays elusive, although some interactions have been 

proposed (Coppola et al., 2001, Schoch et al., 2002, Kaeser, 2011). 

 

1.3.4. (M)Unc13 

(Mammalian) Uncoordinated13 ((M)Unc13) proteins are essential for NT release and 

priming of SVs, furthermore they have several functions for the RRP of vesicles (Augustin 

et al., 1999, Varoqueaux et al., 2002, Basu et al., 2005, Walter et al., 2018). While 

mammals have five (M)Unc13 genes, the Drosophila genome only encodes for one. 

(M)Unc13s are large multi-domain proteins of around 200 kDa in mammals and over 300 

kDa in Drosophila. (M)Unc13 shares a conserved C-terminal region in all isoforms and 

homologs, containing several folded domains; a Ca2+-phospholipid binding C2 domain 

(C2B), a MUN domain and a C-terminal non Ca2+ binding C2 domain (C2C). The N-terminal 
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region differs between the isoforms and homologs, giving rise to some large predicted 

unstructured regions but can also contain folded domains like a C2A domain, a Calmodulin 

(CaM) binding domain, and a phorbol ester/diacylglycerol binding C1 domain. (M)Unc13 

is regulated by RIM which binds to the C2A domain with its zinc-finger domain to disrupt 

the C2A homodimer and thereby activating (M)Unc13s priming function via the MUN 

domain (Deng et al., 2011, Dulubova et al., 2005, Lu et al., 2006, Xu et al., 2017). 

 

1.3.5. Syd-1 and Liprin α 

Synapse-defective (Syd)1 and and Liprin α are early scaffolding proteins, that were 

found to preceed the later AZ proteins like BRP, RIM-BP and (M)Unc13A by hours (Fouquet 

et al., 2009). Liprin-α contains a long predicted coiled-coil region at the N-terminus and 

three sterile alpha motif (SAM) domains. The coiled-coil region forms homodimers (Taru 

and Jin, 2011) and binds to several other AZ proteins, like ELKS (Dai et al., 2006) or RIM 

(Schoch et al., 2002). The SAM domains bind Liprin-β, CASK and LAR-type receptor 

phosphotyrosine phosphatases (Serra-Pages et al., 1995, Olsen et al., 2005). Syd-1 in 

Drosophila contains three folded domains, a PDZ domain, a C2 domain and a Rho-GAP 

domain, separated by long predicted unstructured regions. In drosophila Syd-1 PDZ 

domain is important for Neurexin-1 binding and by this synchronizing AZ and PSD 

assembly (Li et al., 2007, Owald et al., 2012). In mammalian only a distant ortholog of 

Syd-1, mSYD1A, has been identified yet, lacking the in invertebrates typical PDZ domain. 

In mSYD1A an intrinsically disordered region was found to interact with several AZ 

proteins and by this stimulating presynaptic differentiation (Wentzel et al., 2013). 

 

1.3.6. Ca2+ channels 

VGCC are very important to the release machinery. Upon the arrival of an AP they open 

and increase cytoplasmic Ca2+-ion concentration which triggers NT release by SV 

exocytosis within 100 nm around the channel (Südhof, 2013, Eggermann et al., 2011). Of 

the three different subclasses only the second, P/Q-(Cav2.1), N-(Cav2.2) and R-(Cav2.3), 

have been found to localize at AZ sites (Südhof, 2013), the Cav2.1 channels are thereby 

found to be predominant Cav2 channel to mediate NT release. The Drosophila homolog of 
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this Cav2.1 channel is Cacophony. Ca2+ channels get recruited to the AZ sites by the 

RIM/RIM-BP complex, a core scaffold within the AZ and by this linking the Ca2+ channels 

to SVs and release machinery (Acuna et al., 2015, Acuna et al., 2016). RIM directly bind 

Ca2+ channels via their PDZ domain (Kaeser et al., 2011) as well as RIM-BPs bind them via 

their SH3 domains by conserved PXXP motifs (Hibino et al., 2002). Furthermore, the 

ELKS/BRP family also has been found to control Cav2.1 channel abundance at AZs in 

mammals (Dong et al., 2018) and Drosophila (Kittel et al., 2006). The identified binding 

sites of AZ proteins to Ca2+ channels all lay within its cytosolic, unstructured C-terminus. 

These redundant interactions thereby ensure proper localization of the VGCC, since Ca2+ 

influx, triggered by an AP, is indispensable for SV release. 

 

1.3.7. Piccolo and Bassoon 

Piccolo and Bassoon are huge elongated proteins, each over 400 kDa, containing 

multiple domains. They fulfil their main function in guiding SV from the backfield of the 

synapse to the AZ. These proteins are not essential for the AZ scaffold but loss of both 

proteins causes a disruption of vesicle clustering (Gundelfinger et al., 2015, Mukherjee et 

al., 2010). For transport Piccolo and Bassoon seem to undergo pre-assembly and get 

co-transported with ELKS on Piccolo-Bassoon-ELKS/CAST transport vesicles (PTVs) to the 

synaptic membranes (Maas et al., 2012). Piccolo and Bassoon have been long thought to 

be vertebrate specific proteins, however, distant related proteins in Drosophila, 

Bruchpilot (Wagh et al., 2006) and Fife, have been identified to similar functions (Bruckner 

et al., 2012, Bruckner et al., 2017). 

 

1.3.8. Rab proteins 

Rab proteins are small monomeric GTPases and belong to the larger class of the Ras 

superfamily. They are key organizers of intracellular membrane trafficking and membrane 

organization (Kiral et al 2018). Crucial for their precise regulation and organization are the 

interactions with their effector proteins. Known effectors range over coat proteins (COP 

or clathrins), motor proteins (kinesins dyneins), and tethering complexes (EEA1, Golgins) 

up to SNAREs (Grosshans et al., 2006). They function as molecular switches and cycle 
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between a GTP-bound active state and a GDP-bound inactive state. Three Rab proteins 

have been identified in binding to AZ proteins so far: Rab3 as well as Rab27 bind to the 

RIM α-helices surrounding the zinc-finger domain (Fukuda, 2003) and Rab6 binds and 

recruits the mammalian ELKS proteins to Golgi membranes (Monier et al., 2002). Of these 

three Rabs only Rab3 has been shown to effect the AZ scaffold, by enabling long-term 

plasticity via its RIM interaction (Tsetsenis et al., 2011). 
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1.4. Transport of active zone proteins 

Exact transport and integration of AZ components to specific sites is an important 

factor for scaffold assembly and synaptic plasticity. This is not only important for de novo 

assembly but also for turnover of AZ proteins and their adaptation. One key adaptive 

response of the synapse is structural plasticity, allowing synaptic sites to be added or 

remodeled in order to change their functional properties (Van Vactor and Sigrist, 2017).  

In C. elegans AZ components and SVs undergo extensive co-transport through the axon 

(Wu et al., 2013). In mammalians AZ components are co-transported through the axon by 

presumably “preformed complexes” on Golgi derived vesicles called Piccolo-Bassoon 

Transport Vesicles (PTVs) and synaptic vesicle protein transport vesicles (STVs) (Figure 4) 

(Zhai et al., 2001, Shapira et al., 2003, Bury and Sabo, 2016, Maas et al., 2012). ELKS/Cast 

requires Piccolo and Bassoon to leave the Golgi with PTVs while STVs can carry a diverse 

set of AZ proteins (Bury and Sabo, 2016). Other proteins like RIM associates with these 

vesicles in a post-Golgi compartment. (M)Unc13 leaves the Golgi on (M)Unc13 transport 

vesicles, but can be found on PTVs at distal axons suggesting also further maturation steps 

to form common AZ precursor vesicles (Shapira et al., 2003, Maas et al., 2012, Bury and 

Sabo, 2016). After the formation of transport vesicles, they have to tether to motor 

proteins to be transported along microtubules through the axon (Figure 4). Microtubules 

(MT) are oriented with their minus end towards the soma and the plus end towards the 

distal axon. The Kinesin superfamily transports packages towards the plus end 

(anterograde) while the Dynein superfamily towards the minus end (retrograde) 

(Hirokawa et al., 2010). The transport vesicles can attach to these motor proteins through 

linker proteins. PTVs are primarily linked to the KIF5B motor protein by syntabulin while 

other transport vesicles are bound via Syd-2/Liprin α to KIF1A/UNC-104 kinesin motor (Cai 

et al., 2007, Wagner et al., 2009). The underlying molecular mechanisms controlling 

associated transport as well as the signaling determining the stop and clustering of AZ 

proteins remains largely elusive (Torres and Inestrosa, 2018).  
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Figure 4 Axonal transport of AZ precursors  

Presynaptic proteins are packaged into Golgi derived Piccolo-Bassoon Transport Vesicles (PTVs) 
or synaptic vesicle protein transport vesicles (STVs) to be transported along axonal microtubules 
(MT). Transport occurs via kinesin or dynein microtubule motors, that can be attached directly or 
indirectly via a linking protein to the PTVs or STVs. Since axonal MTs are oriented with their plus 
end towards the synaptic terminals, kinesin motors are suggested to transport newly synthesized 
protein from the soma. In a still enigmatic step these transported packages are integrated into 
maturing or newly forming AZ scaffolds.  

 

One theoretical model proposed for the trapping of AZ proteins is the ‘Q’ assembly 

hypothesis, where proteins undergo a prion-like concentration-dependent conversion, 

mediated by domains rich of glutamine and asparagine. Thereby adopting a conformation 

that stimulates their own aggregation and aggregation of other proteins (Fernandez et al., 

2010). 

Premature aggregation of AZ proteins has been described for Drosophila as well as for 

C. elegans. In C. elegans the small protein Arl-8 promotes the axonal transport of synaptic 

cargo vesicles and prevents their accumulation (Klassen et al., 2010). In Drosophila two 

independent studies showed that the serine arginine protein kinase at cytological position 

79D (SRPK79D) prevents axonal aggregation of BRP (Johnson et al., 2009, Nieratschker et 

al., 2009). 
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1.4.1. Serine arginine protein kinase at cytological position 79D (SRPK79D) 

SRPKs belong to the family of serine-threonine kinases. They can recognize and 

phosphorylate specific serine residues within serine-arginine rich motifs, so called 

RS-domains (Gui et al., 1994). So far three members of SRPK (Gui et al., 1994); SRPK1, 

SRPK2 (Wang et al., 1998) and SRPK3 (Nakagawa et al., 2005), have been identified in 

mammals. At least one orthologue of this family has been identified in yeast, C. elegans 

and Drosophila. This kinase family is best studied in phosphorylation of SR proteins, 

containing RS-domains, which are involved in pre-mRNA splicing and other gene 

regulatory processes (Lin and Fu, 2007, Zhou and Fu, 2013).  

Structurally, SRPKs comprise the canonical N- and C-terminal lobes of Ser/Thr protein 

kinases. In SRPKs these regions are intervened by an intrinsically disordered region of up 

to 200 residues (Ghosh and Adams, 2011). At the N-terminus a shorter region of predicted 

intrinsic disorder precedes the N-terminal lobe (Figure 5). While the N- and C- lobes are 

highly conserved, the disordered regions show no conservation and can differ immense 

between protein isoforms. SRPKs have been shown to engage their substrate via a docking 

groove at the C-lobe, while the active site of the kinase lays on the N-lobe (Ngo et al., 

2005).  

 

 

Figure 5 SRPK family  

The SRPK family members share a highly conserved split kinase domain consisting of an N- and 
C-terminal lobe sharing 70-80% protein sequence identity. The lobes are separated by a 
non-conserved region of predicted intrinsic disorder of up to 200 residues. The SRPK79D harbors 
a significantly longer N-terminal region of predicted intrinsic disorder compared to is mammalian 
homologs. 

 

SRPKs can employ different modes of operation depending on the nature of the 

substrate proteins; processive, semiprocessive and distributive. Lengthy SR can be 

efficiently phosphorylated by binding of the docking groove to the substrate and a 
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subsequent funneling of the substrate, in a C- to N-terminal direction through the active 

site. Targets with shorter SR repeats are phosphorylated in a distributive mechanism, 

where docking groove binding can be dispensable. Substrates with shorter and longer SR 

repeats can be phosphorylated by a combination of both mechanisms, a semiprocessive 

mechanism (Lukasiewicz et al., 2007, Ghosh and Adams, 2011, Aubol et al., 2013). 

SRPK79D is the only SRPK family member that has been identified in Drosophila so far. 

Two independent studies reported the axonal aggregation of BRP upon the loss of its 

kinase activity. A specific N-terminus of the SRPK79D-PC and -PF isoform is required for 

proper localization to the AZ (Johnson et al., 2009, Nieratschker et al., 2009). 
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2. Aims 

The project of this thesis is embedded into the collaborative research center 958, 

dealing with the scaffolding of membranes. In a shared project with the Sigrist group an 

overall goal is to elucidate the architecture of the Drosophila AZ scaffold mainly organized 

by BRP and RIM-BP. We addressed this question by a combination of in vivo genetics with 

state of the art microscopy and the in vitro analyses of interactions and X-ray structures.  

In my thesis, I aimed to: 

 

I. Uncover unknown protein-protein interactions within the scaffold by using a 

high throughput yeast-two hybrid approach and generate an interaction 

network. 

 

II. Characterize the functional regions of BRP and new interactions identified by 

the yeast-two hybrid approach. 

 

III. Biochemically and structurally characterize the RIM-BP domains. 

 

IV. Study the PDZ domain interaction of Spinophilin and Syd-1 with the Neurexin-1 

C-terminus.  
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3. Results and Discussion 

3.1. Interaction network of the Drosophila active zone scaffold 

A major part of this thesis was spent on a large Yeast-Two-Hybrid (Y2H) screen in the 

lab of Ulrich Stelzl at the MPI for Molecular Genetics. This Y2H approach was part of a 

collaborative project shared between the Sigrist group and the Wahl group, parts of the 

experiments were conducted by Janine Lützkendorf and Eva Michael. By using Ulrich 

Stelzl’s high throughput Y2H approach (Worseck et al., 2012) we intended to identify 

several protein-protein interactions (PPIs) within the Drosophila AZ scaffold. To gain 

knowledge not only of PPI but also on regions or specific domains contributing to the 

binding, proteins were dissected in overlapping constructs of known domains, functional 

regions or predicted structural regions.  

I generated a first set of 96 constructs from 10 different major AZ proteins, each 

construct was cloned in two “bait” and two “prey” vectors and performed Y2H 

experiments (see 5). In a second round Janine Lützkendorf and Eva Michael (Sigrist group) 

generated another set of constructs from other AZ proteins and screened them against 

my initial matrix and their newly cloned proteins. Known interactions like the Neurexin-1 

interaction with the PDZ domain of Spinophilin and the RIM-BP SH3 interaction with the 

RIM and the Cacophony PXXP motifs were used as positive controls in our experiments. 

In total 135 constructs of more than 35 AZ proteins were analyzed. The results of all 

screenings were analyzed to obtain a final PPI network of the tested proteins. In total 

268520 mated yeasts were analyzed for growth on selective media, corresponding to 

86310 different construct constellations.  

The final list contained 893 putative PPI between the different constructs in our Y2H 

screen, covering 182 interactions between the full-length proteins (Figure 6). Because of 

the large number of screened constructs from each protein we were able to identify 

specific binding regions of less than 200 residues length. Many of these Y2H interactions 

correspond to hitherto unknown putative interactions, while others had been reported 

earlier.  
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Parts of these results were already validated by other methods and were incorporated 

in two publications (see 3.2.2, 3.5). The interaction network contains many more putative 

interactions that must be evaluated and validated in further studies.  

 

Figure 6 Y2H interaction network of the Drosophila active zone  

The interaction network of the Drosophila AZ was generated based on the PPI identified in the 
Y2H approach. Interactions of the proteins can correspond to interactions of several constructs. 
Putative interactions are indicated connections, homodimerization by loops. Early scaffold 
proteins are shown in orange, the later scaffold proteins in green. Membrane proteins are shown 
in blue, known transport effectors in olive and other proteins in white. Graphical illustration of 
the interactions was generated by using Cytoscape (Shannon et al., 2003).  
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3.2. Bruchpilot 

Bruchpilot (BRP) is the major AZ scaffold protein that shapes the electron dense T-bar 

structure in Drosophila synapses. While the N-terminus is located at the plasma 

membrane, next to the Ca2+-channels, the C-terminus expands nearly 70 nm (Fouquet et 

al., 2009) into the cytosol to tether synaptic vesicles (Hallermann et al., 2010). This 

extended shape is presumably formed by long stretches of coiled-coil regions (Figure 7). 

BRP is lacking known folded domains, but was divided by the Sigrist group into four 

overlapping regions of certain functions: D1 is responsible for anchoring of BRP at the 

membrane, D2 is probably involved in PPI and is needed for crucial BRP localization to the 

AZ scaffold, D3 is facilitating homodimerization of BRP and D4 is tethering synaptic 

vesicles to the scaffold (Fouquet et al., 2009) (unpublished Sigrist group data) 

 

Figure 7 The Bruchpilot isoforms BRP-190 and BRP-170 

Overview of the predicted BRP protein domain structure of the BRP-190 (isoform G) and the BRP-
170 (isoform I) isoforms. Except for the N-terminus of the BRP-190 isoform, which is predicted to 
be intrinsically unstructured (grey), the BRP secondary structure is predicted to consits exclusively 
of α-helices that form continuous coiled-coil stretches (green) interrupted by short loop regions.  

 

BRP-190 full length protein cannot be expressed in E. coli, but I achieved to express it 

in insect cells. Purification of the full length BRP-190 isoform was conducted using 

different affinity tags at the N-terminus and the C-terminus. Highest yields and purity 

were obtained by using a C-terminal Strep-tag, but most protein was lost during affinity 

chromatography as it did not properly bind to the column. The same was observed when 

using other affinity tags such as GST or poly-His. BRP-190 samples were prone to severe 

degradation, regardless of the use of protease inhibitors. Two prominent degradation 

bands were identified by mass spectrometry as a N-terminal fragment (75 kDa) and a 

C-terminal fragment (140 kDa) from the full length protein. BRP-190 samples did not bind 

to anion or cation exchange chromatography resin and did not elute as single peaks from 
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size exclusion chromatography (SEC), but rather eluted in a broad peak at the void volume, 

indicating strong aggregation. In collaboration with the Max-Planck Institute for Molecular 

Genetics we tested purified BRP-190 samples in electron microscopy negative stains, 

showing protein aggregation rather than elongated BRP-190 molecules. BRP 

co-expression in insect cells with major AZ proteins like RIM-BP, Syd-1, SRPK79D, Liprin-α 

did not improve the stability of BRP. Consequently, several shorter fragments of BRP were 

cloned and expressed. BRP fragments lacking the first 152 N-terminal residues were 

solubly expressed in E. coli, but also showed severe degradation and aggregation. The 

generated expression constructs of BRP in insect cells enabled Janine Lützkendorf (Sigrist 

group) to identify specific cysteine residues in the BRP N-terminus being posttranslational 

modified by palmitoylation. Analysis of cysteine to alanine mutations in vivo revealed an 

influence on Liprin-α binding to BRP and the reduction of BRP levels at AZs (Lutzkendorf, 

2018).  

A major challenge in purifying BRP is probably the homodimerization/multimerization 

of its coiled-coil regions and the strong degradation during purification, resulting in very 

inhomogeneous/aggregated samples, observed during purification. The average number 

of BRP molecules at AZs is estimated to be approximately 140 (Ehmann et al., 2014). The 

mechanism by which BRP molecules homodimerize remains elusive. In our Y2H 

experiments we identified several regions involved in BRP-BRP interactions. Knowledge of 

this mechanism would allow the introduction of residue exchanges interfering with the 

homodimerization that could help in the generation of homogeneous samples.  

 

3.2.1. Interaction network of Bruchpilot  

Our Y2H approach of Drosophila AZ proteins revealed several interactions of BRP with 

other AZ proteins (Figure 8). Most of the interactions take place in the N-terminal D1 and 

D2 regions of BRP. Interactions for Syd-1 (Owald et al., 2010) and Cacophony (Fouquet et 

al., 2009) with BRP have been shown earlier, although we are now able to define a smaller 

minimal interacting region (Figure 8). Further in vitro validation failed due to the 

insolubility of C-terminal Cacophony constructs and severe degradation or low expression 

levels of Syd-1 constructs. The interaction for Liprin-α has been only shown for the 



Results and Discussion 

26 

mammalian proteins so far (Ko et al., 2003). Putative new interactions of BRP were 

identified with RIM-BP, SRPK79D and Spinophilin (Spn) as well as homodimerization of a 

long coiled-coil region (D2-D4). Putative interactions with a rather low score were found 

for Unc13A, Unc13B, Fife and Dynamin. No interactions were found between BRP and RIM 

which has been described for the mammalian homologs (Wang et al., 2002). 

 

Figure 8 Domain architecture of BRP-190 isoform with mapped Y2H interactions 

Schematic view of BRP-190 shown in green with its coiled-coil or functional regions (D1-D4) 
(Fouquet et al., 2009). Interaction regions with other AZ proteins, identified in our Y2H screen, are 
mapped BRP, showing only interactions that were identified with at least two different 
constructs.: SRPK (dark grey), Cacophony (blue), Syd-1 (pink) and Spinophilin (Spn) in the BRP D1 
region; RIM-BP (red), Liprin-α (yellow) in D2 and another Syd-1 binding at the D4 region. BRP 
(green) homodimerization can be found between different constructs from D2 till D4. 

 

All interactions of BRP lay within the predicted coiled-coil regions, except for the 

interaction with SRPK79D. Interestingly, the parts of the proteins that interact with BRP 

are also predicted to be mainly unstructured or contain coiled-coil regions. Coiled-coil 

regions are known to cause homo- or heterodimerization (Mason and Arndt, 2004) and 

would thereby provide an easy way to mediate several PPI with the AZ interaction 

network. The region in BRP to which the SRPK79D kinase domain (N- & C-lobe) is binding, 

has been mapped to the first 152 residues and will be discussed in a separate section (see 

3.2.2). The found interaction of RIM-BP’s N-terminus with BRP will be discussed in the 

RIM-BP section of this thesis (see 3.3.1). 
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3.2.2. BRP N-terminal phosphorylation by SRPK79D 

This section refers to the following publication: 

Driller, J. H., Lützkendorf, J., Depner, H., Siebert, M., Kuropka, B., Weise, C., Petzoldt, 

A. G., Lehmann, M., Stelzl, U., Zahedi, R., Sickmann, A., Freund, C., Sigrist, S. J., Wahl, M. 

C. “Phosphorylation of the Bruchpilot N-terminus by SRPK79D controls axonal transport 

of active zone building blocks” J. Cell Sci., in revision  

Previous studies suggest, that SRPK79D prevents the axonal aggregation of BRP during 

axonal transport (Johnson et al., 2009, Nieratschker et al., 2009). In our recent study on 

the transport effector Aplip1 the Sigrist group could show that these SRPK79D dependent 

aggregates not only contain BRP but also RIM-BP (Siebert et al., 2015). Our Y2H results on 

the BRP interaction with SRPK79D indicated for the first time a direct interaction between 

these two proteins. In order to study the underlying mechanisms of this phenotype 

observed in Drosophila axons we combined in vitro methods with in vivo studies.  

We verified the Y2H interaction of BRP-1901-152 with SRPK79Dcore (SRPK79327-869) in vitro 

with purified proteins in analytical SEC (Figure 9A). To test whether this interaction resides 

within the docking groove of SRPK79D, we mutated four conserved residues 

(SRPK79DCoreΔDock) which have been described to disrupt the substrate binding at the 

C-lobe docking groove in SRPKs (Lukasiewicz et al., 2007). Indeed, the interaction of 

SRPK79D and BRP was abolished by these mutations (Figure 9B).To identify binding sites 

of SRPK79D in the BRP-1901-152 construct, a peptide SPOT array was conducted. 

Specifically, three arginine rich motifs appeared to be the potential binding site. These 

motifs fit well to a proposed binding sequence (RXX(X)RXX(X)R, three basic residues 

separated by two to three residues) by the Ghosh lab (Lukasiewicz et al., 2007). We 

identified the BRP-190 N-terminus as a substrate of SRPK79D by using a radioactive 

phosphorylation assay. BRP1-152 as well as BRP-190 were phosphorylated, while 

BRP-190Δ1-152 was not phosphorylated (Figure 9C). The docking groove mutant showed a 

similar activity as the SRPK79DCore construct in this phosphorylation assay. 

Phosphorylation of BRP abolished the interaction with SRPK79DCore in analytical SEC. This 

phosphorylation dependent interaction is probably due to electric repulsion of the acidic 

docking groove with the attached phosphates (Ghosh and Adams, 2011). 
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Figure 9 Bruchpilot binding and phosphorylation by SRPK79D 

(A, B) Analytical SEC analyses by SDS-PAGE (A) SRPK79DCore and BRP-1901-152, showing 
phosphorylation-induced inhibition of complex formation. (B) SRPK79DCoreΔDock lacks a stable 
binding to BRP-1901-152. (C) Radioactive phosphorylation assay using SRPK79DCore and 
SRPK79DCoreΔDock, γ-[32P]-ATP and BRP-190 fragments. Only BRP constructs that contain the 
N-terminal 152 residues of BRP-190 are phosphorylated. SRPK79DCore and SRPK79DCoreΔDock show 
similar activities. Control – SRPK79DCore or SRPK79DCoreΔDock alone. Gel slices separated by gaps are 
from separate gels. Gel regions between relevant lanes were removed for clarity (dashed line). 

 

Phosphorylation sites of in vitro phosphorylated BRP-1901-152 samples were identified 

using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) together with of liquid chromatography electrospray ionization mass 

spectrometry (LC-ESI-MS). Seven to eight serine sites were identified in the first 152 amino 

acid residues of BRP-190 to be phosphorylated by SRPK79D in vitro (Figure 10A). Time 

course phosphorylation as well as under stoichiometric phosphorylation of BRP-1901-152 

was performed to identify a potential starting point for a possible progressive mechanism 

or preferred phosphorylation sites. Indeed serine sites at the C-terminus (S90, S118) of 

the construct are faster phosphorylated then the serine sites at the N-terminus (S16, S32, 

S34) (Figure 10B), indicating a progressive mechanism with a functional docking groove. 

In absence of docking groove binding (SRPK79DCoreΔDock), SRPK79D can still phosphorylate 

the BRP N-terminus via a distributive manner. Although phosphorylation tends to be 

slower, compared to SRPK79DCore comprising an intact binding site and thus enabling a 

progressive mechanism for phosphorylation. The identified phosphorylation sites 
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correlated well with the phosphorylation sites identified in immunoprecipitated BRP from 

in vivo samples (Figure 10). 

 

Figure 10 Identification of phosphorlyation sites in BRP 

(A) MALDI-TOF analysis of untreated BRP-1901-152 (black) and BRP-1901-152 phosphorylated by 
SRPK79DCore (green) indicates 7-8 phosphorylation sites. BRP-1901-152 Mtheoretical = 17340 Da. (B) In 
vitro and in vivo phosphorylation sites within the BRP-190 N-terminus identified by mass 
spectrometric analysis. Phosphorylation sites on yellow background were found to pheno-copy 
srpk79D mutants in vivo. The degree of phosphorylation was estimated from comparing MS peak 
intensities of unphosphorylated and phosphorylated peptides, in brackets indicated the 
estimation for the double phosphorylated peptide. Phosphorylation sites with an estimated 
degree of less than 5% where considered as not significant (n.s.) in vitro.  

 

Protein sequence analysis of the mammalian BRP homolog Cast revealed strict 

conservation of the BRP-190 serine sites S71, S73 and S90 while the other sites are only 

partially conserved. By generating a triple, non phosphorylatable serine to alanine 

mutation, the Sigrist group was able to show that this variant results in a phenotype 

similar to the described SRPK79D mutant phenotype (Figure 11). Characterization of these 

axonal aggregates by confocal microscopy, stimulated emission depletion light 

microscopy (STED) and electron microscopy (EM) identified the same morphology and 

protein content (BRP and RIM-BP) of these aggregates. Furthermore, the Sigrist group 

identified Unc13A as another protein within these aggregates, suggesting axonal 

co-transport of BRP/RIM-BP/Unc13A as a central building for integration in mature AZ 

scaffolds.  

In order to prove that the phosphorylation-binding relationship between members of 

the ELKS family and SRPK family follows a conserved mechanism, binding and 

phosphorylation of mammalian homologs Cast1 and Cast2 by the SRPK79D homologs 
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SRPK1 and SRPK2 was tested in vitro. Indeed, Cast1 and Cast2 are phosphorylated by 

SRPK1 and SRPK2. 

 

 

Figure 11 Characterization of the axonal aggregates 

Immunofluorescence images of the indicated genotypes. (A) The control (brprescue) shows only few, 
isolated and small BRP and RIM-BP spots per individual axon area, compared to BRP and RIM-BP 
of a brpSSS71/73/90AAA phospho-destructive mutant (B) and srpk79DVN mutant (C) and in a brpnull 
mutant (brpΔ6.1/brpDf(2R)69) background. (D, E) Electron micrographs showing a large, electron-
dense, ectopic super-assembly of AZ structures in axons of srpk79D mutants (D) and 
brpSSS71/73/90AAA mutants (E). Scale bars – 500 nm. (F, G) Immunofluorescence images of nerve 
bundles of the indicated genotypes with the indicated antibodies, of the brpSSS71/73/90AAA 
phosphorylation mutant (F) and the srpk79DVN mutant (G) in a brpnull mutant (brpΔ6.1/brpDf(2R)69) 
background. Confocal, STED as well as electron microscopy (EM) data were obtained by the Sigrist 
group.   
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3.2.3. Central dimerization domain in Bruchpilot 

BRP is the major scaffold protein of the Drosophila T-bar structure and is important for 

the tethering of SVs to the CAZ. Since no domains have been identified in BRP so far, we 

used the bioinformatics tools of the Swiss institute for bioinformatics (Pagni et al., 2004) 

to look for protein or domain patterns, motifs or functional sites within BRP that could be 

relevant within the AZ scaffold. Within the PROSITE database (Sigrist et al., 2010) the 

search revealed a pattern for a BAR domain profile with a low probability within the D3 

region of BRP (799-1123 amino acid residues, Figure 8). BAR domains are comprised of 

dimeric α-helical coiled-coils, binding negatively charged phospholipids to induce or 

stabilize membrane curvature (Daumke et al., 2014).  

BRP constructs comprising the putative BAR domain (BRP790-1129, BRP803-1116) form 

dimers in solution (Figure 12A), as shown by multiangle light scattering (MALS) and tend 

to build up oligomers at higher protein concentrations. In an initial crystallization attempt, 

BRP790-1129 was concentrated to 15 mg/ml and screened against various conditions by 

using the sitting drop vapor diffusion method. Needle-bundle crystals were obtained in a 

condition containing 0.2 M calciumacetate, 0.1 M imidazole and 10 % PEG8000 (w/v) 

(Figure 12B) but did not diffract. Construct optimization by limited proteolysis followed 

by N-terminal sequencing and reductive methylation of lysine residues did not improve 

crystal quality. Different cryo-protectants as well as dehydration of the crystals in the drop 

were tested but did not result in diffracting crystals. The Sigrist group tested the putative 

BAR domain in membrane binding/ curvature assays but could not observe any effect on 

membrane architecture. Therefore, it is not entirely clear whether this coiled-coil region 

really comprises a BAR domain or whether it only contains a dimerization motif similar to 

those in BAR domains. Furthermore, our Y2H results indicate homodimerization of BRP 

over a long stretch of its sequence (Figure 8) indicating multiple coiled-coil dimerization 

regions within its elongated structure. The purpose of multi dimerization regions in BRP 

might be an increase in redundancy to dimerize. 
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Figure 12 Central dimerization region in Bruchpilot 

(A) Multi angle light scattering (MALS) of the putative BAR domain in BRP showing a clear 
dimeric state (72,5 kDa), with a small fraction generating a dimer of a dimer (140.8 kDa). (B) 
Crystals of the putative BAR domain. 

 

3.2.4. Bruchpilot tethers synaptic vesicles at the C-terminus 

This section refers to the following publication: 

Lardong, J. A., J. H. Driller, H. Depner, C. Weise, A. Petzoldt, M. C. Wahl, S. J. Sigrist and 

B. Loll (2015). "Structures of Drosophila melanogaster Rab2 and Rab3 bound to GMPPNP" 

Acta Crystallogr F Struct Biol Commun 71(Pt 1): 34-40. 

Results in this part were obtained by Jennifer Lardong during her master thesis under 

my supervision.  

The very last 17 residues of BRP are important for the tethering of SVs to the CAZ 

(Hallermann et al., 2010). The underlying mechanism of this SV tethering by BRP still 

remains unclear. Microscopy data suggested Rab proteins, especially Rab6 and Rab8, as a 

linker between SVs and the scaffold protein BRP (unpublished Sigrist group data). 

The proteins Rab2, Rab3, Rab6 and Rab8 were tested for binding to the last 50 or 200 

amino acid residues of BRP. They were tested either in their inactivated state, GDP bound, 

or their activated state, GTP bound. Moreover, a constitutive active mutant (Der et al., 

1986, Prive et al., 1992) was generated by mutating a conserved glutamine in the switch 

II region to leucine. No binding was observed between Rabs and the BRP C-terminus in 

vitro. These results are also in accordance to our Y2H results that were performed later 

on. The published Rab3 RIM interaction was used as a positive control, while the only 
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other putative interactions where identified between Rab3 and Liprin-α and Rab8 and 

Fife, but with a much weaker score than the Rab3 RIM interaction. BRP was not among 

the found Rab interactions, although it was part of the screen with several construct, nor 

did BRP show any PPI at its very C-terminus.  

In addition we solved the crystal structures of Rab2 and Rab3 in their constitutive active 

form at 2.1 Å and 1.5 Å , respectively (Figure 13).  

 

Figure 13 Structure of Rab2 and Rab3 

Structures of dmRab2Q65L (A) and dmRab3Q80L (B) drawn in cartoon representation. α-Helices 
are colored blue, β-strands salmon and connecting loop regions brown. The bound GMPPNP is 
shown in stick representation, as are the Mg2+-coordinating residues. The octahedrally 
coordinated Mg2+ is depicted as a black sphere and coordinating water molecules as red spheres. 
Grey dashed lines indicate the coordination sphere of Mg2+. 
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3.3. RIM-binding protein 

The large multi-domain protein RIM-BP is one of the major scaffolding proteins in the 

CAZ. It binds directly or indirectly to nearly all other AZ proteins and Ca2+-channels. Its 

function within the AZ scaffold is largely redundant to RIM (Acuna et al., 2016) which it 

also binds via its SH3 domains. In contrast to mammals (Acuna et al., 2016), RIM-BP 

proteins in Drosophila are necessary for the structural integrity of the AZ scaffold (Liu et 

al., 2011).  

In Drosophila RIM-BP is a protein of nearly 2000 amino acid residues that is predicted 

to contain large intrinsically unstructured regions at the N- and C-terminus and in the 

linking regions of the conserved SH3 and FNIII domains (Figure 14). We are able to express 

this large protein in insect cells. In our attempts to purify this protein we observed strong 

degradation of this protein during purification. In order to study RIM-BP interactions and 

RIM-BP domains in vitro, the protein was dissected into its known stable domains.  

 

3.3.1. Interaction network of RIM-binding protein 

This section refers to a manuscript that is currently in preparation with me as a shared 

first author. 

Our Y2H approach contained in total 30 constructs of this large multi-domain protein, 

covering its known domains and its predicted unstructured regions in overlapping 

constructs of different size. Our Y2H results validate published interactions with the 

Ca2+-channel (Cacophony) (Liu et al., 2011) and RIM (Wang et al., 2000) by the SH3-II and 

SH3-III at the C-terminus of RIM-BP.  

We also observed a strong interaction of SH3II and SH3III to APP-like protein interacting 

protein 1 (Aplip1), a transport adaptor for the RIM-BP and BRP co-transport, identified by 

our collaborators at the Sigrist lab earlier. The interactions of the SH3-II and SH3-III to 

Aplip1, RIM and Cacophony were further characterized biochemically and structurally (see 

3.3.3) (Siebert et al., 2015). Our screen revealed new interactions of the SH3 domains to 

Unc13A (see 3.5) (Bohme et al., 2016) and Fife (Figure 14).  
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Figure 14 Domain architecture of RIM-BP with mapped Y2H interactions 

RIM-BP is a multi-domain protein of over 200 kDa in size. RIM-BP exhibits six folded domains (red), 
three SH3 domains and an array of three FN-(III) domains, while the rest of the protein is predicted 
to be mainly unstructured (grey). The long N-terminus region interacts with BRP (green), Syd-1 
(pink) and SRPK79D (dark grey). No interactions were identified for SH3-I and the FN-(III) domains. 
While both SH3-II/III interact with PXXP motifs in Cacophony, RIM, Aplip1 and Unc13A, only SH3-
III shows binding to Fife. 

 

Very interesting, putative PPI were also mapped to of RIM-BP predicted disordered 

regions: BRP (minimal construct BRP300-650), Syd-1 (minimal construct Syd-1243-777) and 

SRPK79D (SRPK79D1-340) showed binding to a construct comprising the first 600 amino acid 

residues of RIM-BP. The same RIM-BP construct seemed to homodimerize in our Y2H 

approach. Binding of RIM-BP to BRP would fit well in the picture of the overall AZ scaffold 

organization since these proteins co-localize at the scaffold and are transported together 

(Figure 14). The Y2H interaction of the SRPK79D N-terminus to RIM-BP might explain the 

localization to the BRP/ RIM-BP transport vesicles, since the SRPK79D N-terminus has 

already been shown to influence its localization (Johnson et al., 2009). 

 

3.3.2. N-terminal domain of RIM-binding protein 

This section refers to a manuscript that is currently in preparation with me as a shared 

first author. 

The N-terminus of Drosophila RIM-BP preceding the first SH3 domain (Figure 14) 

contains nearly 600 amino acid residues, while in mammalian RIM-BP this N-terminal part 

differs immensely between different isoforms. Bioinformatic analysis of the amino acid 

sequence identified a hitherto uncharacterized domain at the N-terminus of RIM-BP. 

Longer isoforms of the mammalian RIM-BP also contain a predicted α-helical region. The 

predicted domain comprises the very N-terminus to residue 254 (NTD) and is predicted to 
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be α-helical. Circular dichroisms (CD) spectroscopy identified a predominant α-helical 

content of the NTD (Figure 15). The defined melting point of 50 °C indicates that the NTD 

constructs adopt a stable fold. After heating the NTD to 95 °C, a CD spectrum was 

measured again to determine the NTD’s secondary structure composition. The recorded 

CD spectrum is indistinguishable to the first one, indicating that folding and refolding are 

reversible.  

Figure 15 Circular Dichroisms spectroscopy of the 
RIM-BP NTD 

The circular Dichroisms (CD) spectrum of the 
N-terminal domain (NTD) of RIM-BP shows a clear 
α-helical content. 

 

 

 

Analysis of the amino acid sequence reveals several ER/K motifs within the NTD, 

especially in the first 150 amino acids. ER/K motifs can stabilize single α-helices (Swanson 

and Sivaramakrishnan, 2014), these stabilized α-helices can help to mediate interactions 

(Ulrich et al., 2016). So far Y2H interactions with the RIM-BP N-terminus were not 

validated by other methods, since RIM-BP1-600 from insect cells shows severe degradation 

during purification. The Sigrist group analyzed N-terminal deletions of RIM-BP in their fly 

models. While the deletion of the first 250 amino acids showed no sever phenotype, a 

construct lacking the amino acids 151-600 (RIM-BPΔ150-600) showed a strong effect on the 

recruitment of SVs, which has been also shown for the BRP C-terminus (Hallermann et al., 

2010). In STED microscopy, RIM-BP N-terminus co-localize with the vertical structure of 

BRP and the overall scaffold appeared atypical in RIM-BPΔ150-600 mutants. Recent mass 

spectrometry cross-linking data from the Sigrist group verified the interaction of BRP and 

RIM-BP within the identified NTD region of RIM-BP.  
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3.3.3. SH3 domains of RIM-binding protein 

This section refers to the following publication: 

Siebert, M., M. A. Bohme, J. H. Driller, H. Babikir, M. M. Mampell, U. Rey, N. Ramesh, 

T. Matkovic, N. Holton, S. Reddy-Alla, F. Gottfert, D. Kamin, C. Quentin, S. Klinedinst, T. F. 

Andlauer, S. W. Hell, C. A. Collins, M. C. Wahl, B. Loll and S. J. Sigrist (2015). "A high affinity 

RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active 

zones" Elife 4. 

SH3 domains are common PPI domains that can bind to PXXP motifs (X stands for any 

amino acid) in different orientations within their hydrophobic binding pocket (Lim et al., 

1994). Interestingly all published interactions for the SH3 domains of Drosophila RIM-BP 

were confirmed for SH3-II and SH3-III. Our Y2H approach revealed similar results, while 

we identified several binding partners for SH3-II and SH3-III, no interaction was observed 

for SH3-I. While SH3-II and SH3-III share around 50% protein sequence identity, SH3-I 

shows only 32% and 37% protein sequence identity to SH3-II and SH3-III. A sequence 

alignment reveals an insertion of fife amino acids at the SH3-I domain compared to SH3-II 

and SH3-III (Figure 16). 

Our collaborators at the Sigrist group identified a new interaction for SH3II and SH3III 

by an earlier Y2H approach; Aplip1. The transport adaptor protein Aplip1 is a known linker 

of motor proteins to SV during axonal transport (Koushika, 2008). In vivo interference with 

the interaction showed protein aggregation of RIM-BP and BRP during axonal transport; 

a similar phenotype as already described for the SRPK79D mutant or our BRPSSS71/73/90AAA 

phosphorylation defective mutant (see 3.2.2) (Johnson et al., 2009, Nieratschker et al., 

2009). While Aplip1 interaction is necessary for axonal transport, interactions of the SH3 

domains with RIM and Cacophony (Ca2+-channel) are dispensable for AZ integration of 

RIM-BP. Since only the SH3/ Aplip1 interaction seems to be necessary in vivo, the question 

arose if there are measurable differences between these interactions. 

To compare the thermodynamics of the binding event between the SH3 domain and 

its known synaptic ligands, isothermal titration calorimetry (ITC) measurements were 

performed. Constructs of SH3-I, SH3-II, SH3-III and SH3-II+III were tested against peptides 

deriving from RIM, Cacophony and Aplip1 (Figure 16A). The binding of the SH3-II and 
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SH3-III domains to Aplip1 were several folds stronger compared to the peptides derived 

from Cacophony or RIM. The SH3-II+III binding of Aplip1 showed a co-operative binding 

with nanomolar affinity, while this was not seen for the other peptides (Figure 16 A).  

X-ray structures of SH3-II bound to the Aplip1 and the Cacophony (Figure 16B, C) 

derived peptides as well as the structure of SH3-III bound to the Cacophony (Figure 16D) 

derived peptide, revealed the important residues involved in peptide binding. All three 

structures show mainly hydrophobic interactions between the peptide and the 

hydrophobic SH3 binding pocket. Interestingly, nearly all the residues involved in the 

formation of hydrogen bonds to the peptides are conserved between SH3-II and SH3-III, 

while SH3-I shows nearly no sequence conservation at these positions (Figure 16E). This 

might indicate why SH3-I does not bind to the same PXXP motifs as the second or third 

SH3 domains of RIM-BP. Its function within RIM-BP still needs to be further investigated.  

  



Results and Discussion 

39 

 

Figure 16 Characterization of SH3-II and SH3-III binding to Aplip1, Cacophony and RIM  

(A) In ITC measurements Aplip1 shows the strongest interaction with SH3-II and SH3-III of RIM-BP 
compared to Cacophony (Cac) and RIM peptides. The strongest affinity (lowest KD) was identified 
between Aplip1 and the RBP SH3-II+III domain. (B-D) Crystal structures of SH3-II bound to an 
Aplip1 (B) and a Cacophony (C) derived peptide and SH3-III bound to a Cacophony (D) derived 
peptide. SH3 domains are shown in gray surface representation with the respective protein in 
cartoon representation. The bound peptides are drawn in stick representation (E) Protein 
sequence alignment of the RIM-BP SH3 domains. SH3-II and SH3-III share the highest identity 
(52%) while SH3-I only shares 32-37% sequence identity. SH3 residue sidechains involved in 
hydrogen bonds (≤3.3 Å) with the peptides are marked with rectangles, Aplip1 in blue and 
Cacophony in red.  
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3.3.4. The three central FN-III domains of RIM-BP 

This section refers to a manuscript that is currently in preparation with me as a shared 

first author. 

The central part of RIM-BP comprises and array of three FN-III domains. FN-III domains 

are found in many different proteins, including proteins of the extracellular matrix, cell 

surface receptors (Schwarzbauer and DeSimone, 2011), muscle proteins (Meyer and 

Wright, 2013) and enzymes (Pena et al., 2009). FN-III domains can serve as PPI elements, 

as seen for the ninth and tenth FN-III domain in human fibronectin (Leahy et al., 1996). 

Recently, the three FN-III domains in RIM-BP have been implicated in binding of the RCK 

domains at the C-terminus of BK-channels (Sclip et al., 2018). 

The crystal structure of the three FN-III domains of RIM-BP was solved at 2.45 Å 

resolution by multiple anomalous diffraction using selenomethionine-labeled protein. The 

asymmetric unit contains two polypeptide chains, in which residues 745-838, 843-945 and 

946-1042 form the three FN-III domains (Figure 17A). In both copies of the protein 

FN-III(1) and FN-III(2) interact mainly via a short β-sheet formed by the β-strand G of 

FN-III(1) and the BC loop of FN-III(2) (Figure 17B). In contrast, FN-III(3) is more loosely 

appended to FN-III(2). In molecule `B´ the FN-III(3) interacts with its BC loop to the linker 

regions of FN-III(2) and FN-III(3) via hydrogen bonds of R974 to the amide group of T944 

and a main chain/ main chain interaction of T978 and G946 (Figure 17C). In molecule `A´ 

the BC loop lacks electron density, indicating a flexible conformation. C854 of the FN-III(2) 

AB loop seems to stabilize the linker region in the first molecule by a hydrogen bond to 

the amide group of T944, while in molecule `A´ it adopts a different conformation and is 

not involved in hydrogen bonding the linker region.  
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Figure 17 Structure of the three FN-III domains in RIM-BP 

(A) A structural cartoon representation of molecule `B´of the three FN-III domains in RIM-BP. 
Linker regions are colored in sand, β-strands in red and not modeled linker regions are indicated 
by dashed lines. (B) Stick representation of the short β-sheet formed between FN-III(1) β-strand 
G (A830, T832 and I834) and FN-III(2) BC loop (S864, S866 and N867). Grey dashed lines indicate 
potential hydrogen, bonds with a distance cut-off of ≤3.3Å. (C) Linker region of FN-III(2-3) in 
molecule `B´ (red, sand) and molecule `A´ (light grey) when aligning both molecules on FN-III(1-2). 
Stick representation of sidechains involved in potential hydrogen bonds, grey dashed lines indicate 
potential hydrogen, bonds with a distance cut-off of ≤3.3Å. (D) Alignment of molecules `B´ and `A´ 
on the fixed FN-III(1-2) region reveals movement of FN-III(3) domain. Flexible linker (green) as well 
as the rotation of the domain were calculated by the DynDom server (Christopher and Steven, 
2016). 
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The differences in the FN-III(2)-FN-III(3) contacts of the two polypeptide chains leads 

to different orientations of the FN-III(3) domain relative to FN-III(1-2) in the two molecules 

(Figure 17D). Analysis of the FN-III(3) movement by the DynDom server (Christopher and 

Steven, 2016) showed a rotation of FN-III(3) of 32.4° and a translation of -1.3 Å between 

molecule `A´ and molecule `B´ together with a bending of the residues within the 

FN-III(2)-FN-III(3) linker region (Figure 17D). 

Most of the published arrays of FN-III regions adopt an arrangement with no or minor 

direct contacts between the FN-III domains like in fibronectin (Leahy et al., 1996). The 

limited conformation flexibility of the FN-III(1-2) module suggests that this region could 

provide a rigid spacer or a pre-formed binding site for a ligand. In in the extracellular 

domain of gp130 FN-III domains (D4 and D5) adopt a rather similar arrangement with a 

rigid interface. This allows the domains to adopt a C-shape and thus allowing signaling 

without major conformational changes upon ligand binding (Xu et al., 2010). In contrast, 

the flexible apposition of FN-III(2) and FN-III(3) indicates that this region represent a 

hinge-like element within RIM-BP. 

Some FN-III regions have been also shown to homodimerize (Carr et al., 2001, 

Leppanen et al., 2017). This is not observed for the three FN-III domains in RIM-BP. MALS 

revealed a clearly monomeric state (Mtheoretical: 32466 Da, Mn: 32610±107 Da) in 

agreement with structure analysis of the PISA server (Krissinel and Henrick, 2007). 
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3.4. Spinophilin and Syd-1 interact with the Neurexin-1 C-terminus 

This section refers to the following publication: 

Muhammad, K., S. Reddy-Alla, J. H. Driller, D. Schreiner, U. Rey, M. A. Bohme, C. 

Hollmann, N. Ramesh, H. Depner, J. Lutzkendorf, T. Matkovic, T. Gotz, D. D. Bergeron, J. 

Schmoranzer, F. Goettfert, M. Holt, M. C. Wahl, S. W. Hell, P. Scheiffele, A. M. Walter, B. 

Loll and S. J. Sigrist (2015). "Presynaptic spinophilin tunes neurexin signalling to control 

active zone architecture and function" Nat Commun 6: 8362. 

Together with the Sigrist group, I reported several mechanisms for the mature AZ 

proteins to be transported through the axon (see 3.2.2, 3.3.3) to be subsequently 

integrated into the AZ scaffolds at presynaptic terminals. Previous to the integration of 

the “late” scaffold, an early assembly step has to occur to define and prepare the specific 

sites for AZ scaffold assembly. The Liprin-α/Syd-1 “early” complex has been shown to 

precede the BRP/RBP/Unc13 complex by hours (Fouquet et al., 2009, Owald et al., 2010). 

Syd-1 was found to initiate AZ assembly by clustering Nrx-1, a transmembrane protein at 

the presynaptic membrane (Owald et al., 2012). Nrx-1 furthermore interacts with 

adhesion molecule Nlg1, which in a PSD95 mediated interaction decreases mobility of 

GluA2-containing AMPA-type glutamate receptors. This interaction is conserved within 

Nlg1 and the Drosophila protein Discs large (Dlg), to promote accumulation of 

postsynaptic glutamate receptors at early time points (Banovic et al., 2010). This 

trans-synaptic crosstalk enables cooperative assembly of pre- and postsynaptic scaffolds, 

to ensure proper signal transduction by bringing newly formed AZs in close proximity with 

the PSD. 

The Sigrist group identified the conserved scaffold protein Spinophilin (Spn) to fine 

tune AZ assembly, mediated by Syd-1. In absence of Spn, Syd-1 promotes excessive 

seeding of new AZ scaffolds. While Spn promotes mobility to Nrx-1 and thereby limits 

Nrx-1/Nlg1 signaling, Syd-1 immobilizes Nrx-1. These antagonistic effects on Nrx-1 are 

transmitted via PDZ domain binding, present in Spn as well as in Syd-1.  

I characterized the interactions of the PDZ domains from Syd-1 and Spn with the Nrx-1 

C-terminus in vitro. In vivo observations on the Nrx-1/Spn interaction in Drosophila, as 
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well as putative Y2H interactions were verified in pulldown experiments using in vitro 

purified protein samples. The interactions were further analyzed by ITC to compare the 

binding affinities of Spn and Syd-1 on the Nrx-1 C-terminus. A peptide comprising the last 

ten residues of Nrx-1 was bound 10-fold stronger by Syd-1 PDZ (5 µM) then by Spn PDZ 

(50 µM). These data support the proposed model were Spn binding to Nrx-1 promotes 

mobility to Nrx-1 and the stronger binding of Syd-1 immobilizes Nrx-1 at a certain point 

to initiate mature AZ assembly. Pulldowns with the mammalian homolog of Spn, 

Neurabin-II, and the mammalian Neurexin-1 identified a conserved binding at the Nrx-1 

C-terminus. 

 

Figure 18 Characterization of the Spn-PDZ interaction with Nrx-1 

(A) A structural representation of the Spn-PDZ interacting with the Nrx-1 C-term peptide. The 
C-terminal Nrx-1 peptide is shown in grey using a stick representation. Residues on Spn-PDZ that 
interact with the Nrx-1 peptide are highlighted in black. Red dashed lines indicate potential 
hydrogen, bonds with a distance cut-off of ≤3.3Å. (B) mFoDFc simulated annealing omit map 
shown as violet mesh contoured at 3.0 σ around the bound peptide. For calculation of the electron 
density map the Nrx-1 peptide had been omitted.  

 

The crystal structure of the Drosophila Spn PDZ domain in complex with the peptide 

comprising the ten C-terminal residues of Nrx-1 was solved at 1.2 Å resolution (Figure 18A, 

B). The PDZ domain of Spn shares the canonical fold of PDZ domains, comprising six 
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β-strands and two α-helices. The peptide binds in an anti-parallel mode and only the last 

fife residues of Nrx-1 are involved in PDZ domain binding. Amino acid residues involved in 

interactions are highly conserved (Figure 19A). Mapping the sequence conservation on 

the surface of our structure shows very high sequence identity in the binding pocket as 

well as in the bound peptide (Figure 19B). Together with our pulldown experiments these 

results strongly indicate a conserved mechanism for the Spn/Nrx-1 interaction in 

mammals.  

We were also able to obtain crystals of Syd-1/Nrx-1 C-terminus that diffracted to 2.1 Å 

resolution but unfortunately data bad quality from high anisotropy we were not able to 

solve the structure (unpublished data). 

 

Figure 19 Conservation of the Spn-PDZ domain and the Nrx-1 C-terminus 

(A) Alignment of PDZ domains from Drosophila melanogaster Spinophilin (dmSpinophilin), Homo 
sapiens Spinophilin (hsSpinophilin), Mus musculus Spinophilin (mmSpinophilin), and Rattus 
norvegicus Spinophilin (rnSpinophilin). Secondary structure elements are indicated on top of the 
sequences. Filled circles indicate residues involved in dmSpinophilin protein backbone to peptide 
backbone interactions and triangles describe residues involved in side chain interactions. 
Alignment of the last ten C-terminal amino acid residues of Drosophila melanogaster Neurexin-1 
(dmNrx-1), Homo sapiens Neurexin-1 (hsNrx-1), Mus musculus Neurexin-1 (mmNrx-1), and Rattus 
norvegicus Neurexin-1 (rnNrx-1). (B) Sequence conservation is mapped on the surface of the 
crystal structure of dmSpinophilin-PDZ. The bound dmNeurexin-1 peptide is shown in stick 
representation. Secondary structure elements are indicated on top of the sequences. Filled circles 
indicate residues involved in dmSpinophilin protein backbone to peptide backbone interactions 
and triangles describe residues involved in side chain interactions. (C) Sequence conservation is 
mapped on the surface of the bound dmNeurexin-1 peptide. dmSpinophilin-PDZ is shown as gray 
surface.   
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3.5. Unc13 isoforms A and B within the active zone scaffold 

This section refers to the following publication: 

Bohme, M. A., C. Beis, S. Reddy-Alla, E. Reynolds, M. M. Mampell, A. T. Grasskamp, J. 

Lutzkendorf, D. D. Bergeron, J. H. Driller, H. Babikir, F. Gottfert, I. M. Robinson, C. J. 

O'Kane, S. W. Hell, M. C. Wahl, U. Stelzl, B. Loll, A. M. Walter and S. J. Sigrist (2016). "Active 

zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle 

coupling" Nat Neurosci 19(10): 1311-1320. 

M(Unc)13 proteins are essential for the AZ fusion machinery of SVs with established 

functions in SV docking and priming and NT release (Walter et al., 2018). Our collaborators 

in the Sigrist group identified two major isoforms of Unc13 in Drosophila, Unc13A and 

Unc13B. Both isoforms share the same C-terminal region, covering all important domains 

for their conserved functions in SV exocytosis (Walter et al., 2018). Each isoform 

comprises a unique N-terminus of nearly 2000 amino acid residues, lacking known 

domains and showing the profile of predicted unstructured regions. Unc13B is recruited 

by the “early” scaffolding protein Liprin-α and Syd-1, while Unc13A is recruited at a later 

stage together with the main scaffolding proteins BRP and RIM-BP. The studies on the 

phosphorylation dependent aggregation of BRP in the axons revealed, that proteins of the 

“late” scaffold most likely are co-transported, presumably as a pre-complex, to be 

integrated into the mature AZ scaffold (see 3.2.2). Characterization of the two isoforms 

by the Sigrist group showed that Unc13A localizes closer to the center of AZ scaffolds then 

Unc13B. Loss of Unc13A resulted in dramatically (~90%) reduced synaptic transmission 

and strong reduction (~50%) in SV docking, implying it to dock SV in close proximity to the 

AZ for exocytosis. Since both isoforms only differ in their N-terminal region must be 

involved in the localization to the “early” or “late” scaffolds. 

Our PPI network, generated by Y2H experiments, provides evidence for the direct 

interaction of the N-terminal regions to specific proteins of the “early” or “late” scaffold 

(Table 1). We identified several strong interactions of the Unc13A specific N-terminus with 

BRP, RIM and the SH3 II and SH3III domains of RIM-BP, all proteins of the “late” scaffold 

(Table 1). Point mutants in the PXXP motif bound by the SH3 domains of RIM-BP showed 

no binding in Y2H experiments. In vivo mutation of PXXP motif although did not have 
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major impact on Unc13A localization, demonstrating again the importance of redundant 

interactions to preserve function in case of single failures. The Unc13B specific N-terminus 

only interacted reproducibly with a protein of the ”early” scaffold, Liprin-α (Table 1). 

 

Table 1 Yeast-two hybrid results for Unc13 isoforms 

 BRP RIM-BP RIM Liprin-α 

Unc13A1-606  ++ (1201-1490) ++ (SH3II/III) ++ (1-500)  
Unc13B600-1322     ++ (1-267) 
Unc13B1200-1944     ++ (1-267) 

* only Y2H interactions are shown with a reproducibility over 66% and were identified with at 
least two different vector combinations 
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4. Outlook 

My Y2H studies on the network of the Drosophila AZ scaffold provide a robust basis for 

further studies on the importance of certain regions and interactions with other proteins. 

Many of these interactions have been observed before but lack biochemical and structural 

characterization while many others have not been described yet and need to be verified 

by other methods. During my studies I started working on biochemical and structural 

characterization of interactions and generated many expression constructs that can be 

used for further in vitro studies of the putative Y2H interactions. Further validation is 

currently done in the Sigrist group by MS crosslinking of immuneprecipitated AZ proteins 

from in vivo samples.  

Y2H screens are an established tool to screen for binary PPI but can give no information 

on interactions that depend on other interaction. Therefore, it remains elusive how these 

interactions contribute to the scaffold in presence of the other proteins. The SH3 domains 

in RIM-BP or the D1/D2 region in BRP for example can bind to three or four different 

proteins within the AZ scaffold. AZ scaffolds however also show a high degree of 

redundancy in interactions as well as many possible weaker or transient interactions 

between coiled-coil or unstructured regions. Together with the problems in the 

expression of large scaffold proteins this makes in vitro studies of the huge AZ challenging. 

It is highly questionable if it is possible to assemble large complexes suitable for structural 

studies, due to inhomogeneity and flexibility.  

To overcome these experimental limitations, we started a collaboration with the group 

of Cecilia Clementi (Rice University) to combine our data on the AZ scaffold in an 

integrative modeling approach (Ward et al., 2013, Webb et al., 2018). Based on the Y2H 

interaction network one can then implement further data, like MS crosslinking data, to 

refine this model.  

Structural studies of the overall scaffold may also benefit from recent advantages in 

the field of cryo-electron microscopy (cryoEM), that contributed tremendously to the 

deeper understanding of large macromolecular structures (Cheng, 2018). While it is still 

necessary to purify homogeneous protein samples for high resolution structures, 

cryo-electron tomography (cryoET) can already visualize structures within their native 
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environment (Beck and Baumeister, 2016). With this technique native complexes in 

isolated synaptosomes can be studied to generate low resolution structures, which can 

be used to refine models derived from an integrative modeling approach. A fixed state of 

the flexible AZ scaffold would be of advantage for cryoET as it is then possible to average 

multiple images of identical conformations. The BRPnude mutant reported previously 

(Hallermann et al., 2010) could be of interest since it is not able to tether SVs and thus 

may represents a defined state without intermediate SV bound states of the scaffold.  

 

4.1. Bruchpilot 

The central scaffold protein BRP in the Drosophila AZ still remains enigmatic in its 

elongated structure although a significant progress in the identification of possible 

binding partners was made. One can think of several ways to study this protein further. I 

generated shorter constructs of BRP covering nearly the entire protein sequence. These 

constructs may be used in the biochemical and structural characterization of BRP’s coiled-

coil regions and their specific interactions.  

For visualization of BRP samples rotary shadowing electron microscopy, a technique 

suitable for thin elongated samples (Sherratt et al., 2009) might be also more suitable 

then the tested negative stains. This technique has also been used to visualize elongated 

EEA1, a protein tethering vesicles to the endosomal membrane (Murray et al., 2016). EEA1 

adopts an elongated state on the endosomal membrane to tether vesicles, upon Rab5 

binding it undergoes an entropic collapse to guide the vesicles towards the membrane. A 

similar model might be also possible for the AZ scaffold and SVs. While our studies could 

not identify a direct binding of Rabs to BRP our Y2H screen identified an interesting 

interaction of Rab8 to Fife. This interaction might provide a linker of the AZs to SVs and 

explain the effects of Fife on neurotransmitter release (Bruckner et al., 2017). 

In order to be transported BRP is phosphorylated by SRPK79D, which potentially brings 

BRP in a more stable state. To mimic this phosphorylated BRP, I generated a 

phosphor-mimetic construct, replacing phosphorylated serine residues at the N-terminus 
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by aspartate residues. This may mimic the transport stable state of BRP but still might 

need stabilizing binding partners. 

The studies of BRP also revealed a significant influence of post-translational 

modification (PTMs); N-terminal phosphorylation prevents axonal aggregation during 

transport (see 3.2.2) while dephosphorylation may be necessary for integration into the 

mature scaffold at synaptic terminals. Another PTM of BRP was identified by Janine 

Lützkendorf (Sigrist group), palmitoylation. Palmitoylation seems to influence 

Liprin-α/BRP binding (Lutzkendorf, 2018) and may help to anchor BRP to the plasma 

membrane. The role of PTMs for the AZ scaffold and their function is presently poorly 

understood but the ELKS family seems to be highly regulated by PTMs. The mammalian 

ELKS family member Cast is specifically phosphorylated to control the release probability 

of SVs (Mochida et al., 2016). 

 

4.2. RIM-binding protein 

The domains and its functions of RIM-BP have been extensively studied and 

characterized in vitro. While the SH3 domains II and III contribute to several interactions 

the function of the first SH3 domain is still enigmatic.   

A recently identified interaction of the central FN-III array in RIM-BP with BK-channels 

provides an interesting target for further structural studies of this interaction (Sclip et al., 

2018). In contrast to many other interactions within the AZ scaffold, the interaction 

originates from stable domains. Since this interaction was only found in the mammalian 

proteins it needs to be validated for Drosophila proteins. Available structures of the 

mammalian RCK domains of BK-channels (Wu et al., 2010, Yuan et al., 2011), might help 

in designing constructs for the expression of the RCK domains of the Drosophila homolog 

Slowpoke. 
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5. Appendix: Yeast-two hybrid 

In our Y2H experiments, proteins are coupled to two parts of the galactose-gene 

transcription factor (GAL4). One is coupled to a DNA-binding domain (BD) recognizing an 

upstream activating sequence while the other to an activating domain (AD) able to 

activate transcription by binding RNA polymerase. If desired proteins interact with each 

the AD and is brought in close proximity to the DB and thus activates transcription of a 

reporter gene, allowing the yeast to grow on a selective media. Proteins fused to the BD 

are called “baits” while the one coupled to the AD are called “preys”. Since concentration 

has a huge influence on interactions, low expression vectors were used for all “preys” and 

“baits”. In total four different vectors were used, two for the “baits” (pBTM116-D9, 

pBTMcC24-DM) and two for the “preys” (pACT4-DM and pGAD426-D3, that was replaced in 

the second screen by pCBDU-JW) giving rise to unique fusion proteins either containing a 

N-terminal or a C-terminal BD or AD fusion. After transformation in yeast and removal of 

auto-active “baits” all remaining “baits” were tested against a “prey-matrix” in 384-well 

format. The prey matrix comprised the unique construct two times from independent 

transformations and only if both unique constructs showed growth with the respective 

bait it was counted as putative PPI. All baits that showed at least one putative PPI by yeast 

growth on selective media were tested again using another clone from an independent 

transformation with the “prey-matrix”. By this each protein construct was tested at least 

eight times (two times for each of the four vectors) against all the constructs in our screen. 

Interactions that were only found twice or less were omitted from evaluation, due to 

the lack of reproducibility. For each PPI the “count” represents how often this specific 

interaction was found in our experiments. The strength of the interaction within our 

screen is rated by a score for each PPI, representing the reproducibility in our experiments 

(counts divided by the total number this PPI was tested). Further information about the 

orientation (bait-prey; BP or prey-bait, PB), if the interaction came with different vectors 

combinations from one orientation (BP2V/PB2V) or even with both orientation (vice 

versa) were listed to evaluate each interaction. Dimerization of a specific construct is 

indicated by DM.  
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(M)Unc13 (mammalian)uncoordinated-13 

AP action potential 

AZ active zone 

BRP Bruchpilot 

C. elegans Caenorhabditis elegans 

CAZ cytomatrix at the active zone 

CD circular dichroism 

CNS central nervous system 

E. coli Escherichia coli 

kDa kilodalton 

LC-ESI-MS liquid chromatography electrospray ionization mass 

spectrometry 

MALDI-TOF-MS matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry 

MALS multiangle light scattering 

MT microtubule 

NMJ neuromuscular junction  
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PPI protein-protein interaction 

PSD postsynaptic density 

RIM Rab3 interacting molecule 

RIM-BP Rim-binding protein 
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SDS-PAGE sodium dodecyl sulfate polyacrylamid gel electrophoresis 
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SRPK79D serine arginine protein kinase at cytological position 79D 
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Rab GTPases belong to the large family of Ras proteins. They act as key

regulators of membrane organization and intracellular trafficking. Functionally,

they act as switches. In the active GTP-bound form they can bind to effector

proteins to facilitate the delivery of transport vesicles. Upon stimulation, the

GTP is hydrolyzed and the Rab proteins undergo conformational changes in

their switch regions. This study focuses on Rab2 and Rab3 from Drosophila

melanogaster. Whereas Rab2 is involved in vesicle transport between the Golgi

and the endoplasmatic reticulum, Rab3 is a key player in exocytosis, and in the

synapse it is involved in the assembly of the presynaptic active zone. Here, high-

resolution crystal structures of Rab2 and Rab3 in complex with GMPPNP and

Mg2+ are presented. In the structure of Rab3 a modified cysteine residue is

observed with an enigmatic electron density attached to its thiol function.

1. Introduction

Rab proteins are small monomeric GTP-binding proteins (GTPases)

which constitute the largest branch of the Ras superfamily (Pereira-

Leal & Seabra, 2000). They are evolutionarily conserved, with 55–

75% identity between orthologues from yeast to mammals. More

than 70 different Rab proteins are encoded in the Homo sapiens

genome (Zerial & McBride, 2001; Bhuin & Roy, 2014), 11 in

Saccharomyces cerevisiae (Lazar et al., 1997), 29 in Caenorhabditis

elegans (Pereira-Leal & Seabra, 2000), 57 in Arabidopsis thaliana

(Vernoud et al., 2003) and about 33 in Drosophila melanogaster

(Chan et al., 2011). Rab GTPases act as key regulators of membrane

organization and intracellular trafficking in all eukaryotic cells

(Pfeffer, 1994; Zerial & McBride, 2001; Stenmark, 2009; Bhuin &

Roy, 2014), and as such take part in vesicle formation, motility,

tethering and fusion of the vesicles with their target membrane

(Zerial & McBride, 2001; Pfeffer, 2007). These functions are carried

out by a diverse collection of effector molecules, which are recruited

by specific Rab proteins, owing to their role as molecular switches.

Thus, Rab proteins regulate their particular pathways by interacting

with various effector proteins.

In their function as molecular switches, Rab proteins undergo two

alternate conformational transitions upon binding to either GDP or

GTP. Firstly, the protein is activated by a guanine-exchange factor

(GEF), which exchanges GDP for GTP. In the GTP-bound active

form, each Rab can interact with a different set of proteins (effectors)

to facilitate the delivery of transport vesicles to different acceptor

membranes (Molendijk et al., 2004). While in this conformation, Rabs

can associate with their target membrane and interact with their

effectors to recruit them to specific subcellular compartments or to

activate them. Upon stimulation by GTPase-activating proteins

(GAPs) the GTP is hydrolyzed, releasing an inorganic phosphate

group, and the now inactive Rab returns to the cytosol. Owing to the

identical mechanisms of effector binding and nucleotide exchange

and hydrolysis, Rabs share a conserved and well characterized fold

with most of the small GTPase family members.

The tertiary structure is composed of a six-stranded �-sheet

surrounded by �-helices. Extensive analyses of other GTPases have

defined two regions, termed switches I and II, located near the

phosphate region of the bound guanine nucleotide (Dumas et al.,

1999; Ostermeier & Brunger, 1999). These regions undergo dramatic
# 2015 International Union of Crystallography
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conformational changes on nucleotide exchange and are involved in

protein–protein interactions; hence, they account for the nucleotide-

dependency of most GTPase interactions (Bhuin & Roy, 2014;

Sprang, 1997). In the GDP-bound form these regions are highly

disordered and thus inactive. They only become ordered upon GTP

binding and then expose a triad of hydrophobic amino acids to the

surface of the protein. This triad, together with other residues of the

switch I and switch II regions, is crucial for the interaction of the Rabs

with their respective effector proteins, and this is thought to define

the specificity of Rabs for their different effector partners (Merithew

et al., 2001; Eathiraj et al., 2005; Burguete et al., 2008).

Rab2 has been identified as a specific regulator of vesicle transport

between the Golgi and the endoplasmic reticulum (Liu & Storrie,

2012; Stenmark, 2009) with several known effector proteins, including

GM130 and golgin-45 (Short et al., 2001). For instance, Rab2 is able to

promote the recruitment of COP I vesicles by binding to its effector

PKC 1/� (Tisdale, 2000). Furthermore, Tisdale and Balch showed that

the amino-terminus of Rab2 might be involved in the maturation of

pre-Golgi intermediates (Tisdale & Balch, 1996).

Rab3 is one of the most investigated Rab GTPases in the context

of neuronal functions. It has been identified as a specific regulator in

the exocytosis of secretory granules, including synaptic vesicles and

vesicles, from the trans-Golgi-network to apico-lateral membranes

(Stenmark, 2009; Bhuin & Roy, 2014). There are several known

effector proteins of Rab3, including RIM, which plays a role in

synaptic vesicle trafficking (Wang et al., 1997). In Drosophila Rab3

seems to have a different function at the synapse: not synaptic vesicle

trafficking but rather the trafficking of membrane/cargo for assembly

of the presynaptic active-zone cytomatrix (Graf et al., 2009).

2. Materials and methods

2.1. Macromolecule production

The cDNAs for full-length D. melanogaster Rab2 (dmRab2) and

Rab3 (dmRab3) were purchased from the Drosophila Genomics

Resource Center. The Rab2 and Rab3 genes were amplified by

polymerase chain reaction and cloned into the pET-MBP vector using

NcoI and SalI restriction sites (Table 1). The resulting constructs

comprise an N-terminal MBP tag followed by a Tobacco etch virus

(TEV) protease cleavage site followed by the N-terminal GTPase

domain of dmRab2 (amino acids 1–172) and dmRab3 (amino acids 1–

188), respectively. These construct boundaries were chosen based on

bioinformatic analysis of deposited GTPase structures in the Protein

Data Bank. Furthermore, the conserved glutamine (dmRab2 Gln65

and dmRab3 Gln80) located in the switch II region and involved in

transition-state stabilization (Privé et al., 1992; Der et al., 1986) was

mutated to a leucine. Rab mutants were prepared by site-directed

mutagenesis according to the manufacturer’s protocol (EURx ‘Site-

directed mutagenesis’). The correctness of the DNA sequences was

confirmed by DNA sequencing.

2.2. Protein expression and purification

Protein expression was conducted using chemically competent

Escherichia coli Rosetta cells. The cells were grown in autoinduction

ZY medium (Studier, 2005) with kanamycin and chloramphenicol

for 4 h at 37�C. The temperature was then decreased to 18�C and the

cells were grown overnight. The cells were harvested by centrifuga-

tion and the cell pellet was resuspended in resuspension buffer

[200 mM NaCl, 20 mM HEPES pH 7.5, 5 mM magnesium acetate,

2 mM DTT, 2%(v/v) glycerol, 10 mg l�1 lysozyme, 5 mg l�1 DNase I]

and subsequently lysed by sonication for 15 min. The lysate was

centrifuged at 56 000g for 45 min to pellet the cell debris. The

supernatant was applied to affinity chromatography using a column

packed with 20 ml amylose resin (NEB). The average incubation time

was 1 h. Two washing steps were then performed using 50 ml washing

buffer [200 mM NaCl, 20 mM HEPES pH 7.5, 5 mM magnesium

acetate, 2 mM DTT, 2%(v/v) glycerol] for each step. For elution, the

amylose resin was incubated with 20 ml washing buffer supplemented

with 20 mM maltose for 15 min. The MBP tag of the truncated

dmRab constructs was cleaved off using TEV protease (1 mg ml�1)
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Table 1
Macromolecule-production information.

dmRab2Q65L dmRab3Q80L

Source organism D. melanogaster D. melanogaster
DNA source cDNA cDNA
Forward primer ACCATGGGATGTCCTACGCGTACTTG TATACCATGGGCATGGCGAGTGGCG

Reverse primer TATAGTCGACTCACTGGATCTTCTCGTAAATC TATAGTCGACTCACTCGGACATCTTATCG

Expression vector pET-MBP pET-MBP
Expression host E. coli E. coli
Complete amino-acid sequence

of the construct produced†
GAMSYAYLFKYIIIGDTGVGKSCLLLQFTDKRFQPVHDLTIGVEFGARMITIDGKQ-

IKLQIWDTAGLEAFRSITRSYYRGAAGALLVYDITRRETFNHLTTWLEDARQHS-

NSNMVIMLIGNKSDLDSRREVKKEEGEAFAREHGLVFMETSARTAANVEEAFIN-

TAKEIYEKIQ

GAMASGGDPKWQKDAADQNFDYMFKLLIIGNSSVGKTSFLFRYADDSFTSAFVSTV-

GIDFKVKTVFRHDKRVKLQIWDTAGLERYRTITTAYYRGAMGFILMYDVTNEDS-

FNSVQDWVTQIKTYSWDNAQVILVGNKCDMEDQRVISFERGRQLADQLGVEFFE-

TSAKENVNVKAVFERLVDIICDKMSE

† The remaining tag sequence after TEV cleavage is underlined.

Table 2
Crystallization.

dmRab2Q65L dmRab3Q80L

Method Sitting-drop vapour diffusion Sitting-drop vapour diffusion
Plate type Cryschem plate Cryschem plate
Temperature (K) 291 291
Protein concentration (mg ml�1) 50 40
Buffer composition of protein solution 200 mM NaCl, 20 mM HEPES pH 7.5, 5 mM magnesium acetate,

2 mM DTT, 2%(v/v) glycerol
200 mM NaCl, 20 mM HEPES pH 7.5, 5 mM magnesium acetate,

2 mM DTT, 2%(v/v) glycerol
Composition of reservoir solution 34%(v/v) polyethylene glycol (PEG) 400, 200 mM sodium acetate

pH 4.6
28%(v/v) PEG 200, 5%(w/v) PEG 3000, 100 mM MES buffer pH 6.0

Volume and ratio of drop 1:1 1:1
Volume of reservoir (ml) 600 600
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in the presence of 100 mm guanosine 50-(�,�-imido)triphosphate

(GMPPNP; Jena Bioscience). The protease was added to the eluted

protein at a molar ratio of 1:25 and the reaction was incubated at 4�C

overnight. TEV-cleaved constructs were purified using a Superdex 75

26/60 column (GE Healthcare). The protein-containing fractions

were pooled and concentrated using a 10 kDa molecular-weight

cutoff concentrator (Millipore). The progress of protein purification

was monitored by SDS–PAGE. Protein concentrations were deter-

mined by UV absorption with extinction coefficients "(Rab2) =

21 430 l mol�1 cm�1 and "(Rab3) = 32 430 l mol�1 cm�1, respectively.

2.3. Crystallization

For crystallization experiments, dmRab2Q65L was concentrated to

50 mg ml�1 and dmRab3Q80L to 40 mg ml�1 and they were incubated

with equimolar concentrations of GMPPNP (Jena Bioscience) prior

to crystallization. Crystals were obtained by the sitting-drop vapour-

diffusion method at 291 K with drops consisting of 1 ml reservoir

solution and 1 ml protein solution (Table 2). No additional cryopro-

tection was necessary for flash-cooling the crystals in liquid nitrogen.

2.4. Data collection and indexing, structure determination and

refinement

Synchrotron diffraction data were collected on beamline 14.3 of

the MX Joint Berlin laboratory at BESSY, Berlin, Germany. X-ray

data collection was performed at 100 K. Diffraction data were

indexed and processed with XDS (Kabsch, 2010; Table 3).

2.5. Structure solution and refinement

The structure of dmRab3Q80L was solved by molecular replace-

ment using Phaser (McCoy et al., 2007) with the known structure of

Rab3A from Rattus norvegicus (rnRab3A; PDB entry 3rab) as a

search model (Dumas et al., 1999). The structure of dmRab2Q65L was

solved by molecular replacement using our initially solved structure

of dmRab3Q80L. For the calculation of the free R factor, a randomly

generated set of 5% of the reflections from the diffraction data sets

was used and was excluded from the refinement. The structures were

initially refined by applying a simulated-annealing protocol and in

later refinement cycles by maximum-likelihood restrained refinement

using PHENIX (Adams et al., 2010; Afonine et al., 2012). Model

building and water picking was performed with Coot (Emsley et al.,

2010). The model quality was evaluated with MolProbity (Chen et al.,

2010) and PROCHECK (Laskowski et al., 1993). Secondary-structure

elements were assigned with DSSP (Kabsch & Sander, 1983). Final

refinement statistics are given in Table 4. Figures were prepared using

PyMOL (DeLano, 2002). The atomic coordinates and structure-

factor amplitudes have been deposited in the Protein Data Bank

under accession codes 4rke (dmRab2Q65L) and 4rkf (dmRab3Q80L).

2.6. Mass spectrometry

Protein masses were analyzed by matrix-assisted laser desorption/

ionization–time of flight mass spectrometry (MALDI-TOF MS) using

an Ultraflex-II TOF/TOF instrument (Bruker Daltonics, Bremen,

Germany) equipped with a 200 Hz solid-state Smart beam laser. The

mass spectrometer was operated in the positive linear mode. MS

spectra were acquired over an m/z range of 5000�25 000 and data

were analyzed using the FlexAnalysis 2.4 software provided with the

instrument. The mass accuracy was estimated to be �1% in the

relevant mass range. Sinapinic acid was used as the matrix and

samples were spotted using the dried-droplet technique undiluted

and in a 1:5 dilution with 33% acetonitrile/0.1% trifluoroacetic acid.

3. Results

3.1. Expression, crystallization and structure determination

We prepared expression constructs of Rab2 and Rab3 from

D. melanogaster comprising only the GTPase domain. In addition, we

mutated the catalytically important glutamine to leucine, locking

both dmRab2 and dmRab3 into the activated GTP-bound state

(Der et al., 1986; Privé et al., 1992). To unravel the architecture of
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Table 3
Data collection and processing.

Values in parentheses are for the highest resolution shell.

dmRab2Q65L–GMPPNP dmRab3Q80L–GMPPNP

Diffraction source BESSY 14.3 BESSY 14.3
Wavelength (Å) 0.895 0.895
Temperature (K) 100 100
Detector Rayonix MX-225 Rayonix MX-225
Crystal-to-detector distance (mm) 230 145
Rotation range per image (�) 1.0 0.5
Total rotation range (�) 100 110
Exposure time per image (s) 5.2 12
Space group P3121 P212121

a, b, c (Å) 81.4, 81.4, 53.1 37.2, 80.5, 123.9
�, �, � (�) 90.0, 90.0, 120.0 90.0, 90.0, 90.0
Mosaicity (�) 0.2 0.1
Resolution (Å) 50.00–2.00 (2.12–2.00) 50.00–1.50 (1.54–1.50)
Total No. of reflections 70633 222056
No. of unique reflections 13981 (2209) 60482 (4425)
Completeness (%) 99.8 (99.2) 99.9 (100.0)
Multiplicity 5.0 (5.0) 3.7 (3.7)
hI/�(I)i 7.9 (1.8) 12.9 (2.6)
Rmeas† 0.216 (0.989) 0.082 (0.616)
CC1/2‡ 99.0 (72.4) 99.8 (75.0)
Wilson B (Å2) 25.7 19.7

† Rmeas =
P

hklfNðhklÞ=½NðhklÞ � 1�g1=2 P
i jIiðhklÞ � hIðhklÞij=Phkl

P
i IiðhklÞ, where

hI(hkl)i is the mean intensity of symmetry-equivalent reflections and N(hkl) is the
redundancy. ‡ The high-resolution cutoff was estimated using CC1/2.

Table 4
Structure solution and refinement.

Values in parentheses are for the highest resolution shell.

dmRab2Q65L–GMPPNP dmRab3Q80L–GMPPNP

Resolution range (Å) 42.4–2.0 38.3–1.5
Completeness (%) 99.8 99.7
No. of reflections, working set 132267 57442
No. of reflections, test set 699 3025
Final Rwork† 0.167 (0.237) 0.157 (0.206)
Final Rfree‡ 0.224 (0.313) 0.194 (0.237)
No. of non H-atoms

Protein 1412 2964
Mg2+ 1 2
GMPPNP 32 64
PEG 21 43
Water 113 378
Total 1579 3451

R.m.s. deviation
Bond lengths (Å) 0.008 0.010
Bond angles (�) 1.10 1.26

Average B factors (Å2)
Protein 22.5 16.5
Mg2+ 19.6 9.1
GMPPNP 19.7 9.1
PEG 28.3 26.2
Water 28.4 28.7

Ramachandran plot§
Outliers (%) 0 0
Favoured (%) 97.0 98.4

† Rwork =
P

hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj. ‡ Rfree is the same as Rcryst but calculated
using 5% of the data, which were excluded from refinement. § As calculated by
MolProbity.

electronic reprint
68



dmRab2Q65L and dmRab3Q80L, we overexpressed both proteins in

E. coli and subsequently purified and crystallized them. We could

collect high-resolution data sets to 2.0 Å resolution for dmRab2Q65L

and to 1.5 Å resolution for dmRab3Q80L. Whereas the dmRab3Q80L

crystals were indexed in space group P212121, the dmRab2Q65L crys-

tals belonged to space group P3121 (Tables 3 and 4). Both structures

were solved by molecular replacement, locating two dmRab3Q80L

molecules and one dmRab2Q65L molecule in the asymmetric unit. The

structure of dmRab2Q65L was refined to Rwork = 0.167 and Rfree =

0.224 and that of dmRab3Q80L to Rwork = 0.157 and Rfree = 0.194 with

excellent geometry. Data collection and refinement statistics are

given in Tables 3 and 4. The electron density maps for both proteins

were well defined; therefore, the model of dmRab3Q80L could be built

except for the 15 N-terminal and the two C-terminal amino acids of

the construct. In addition, the structure of dmRab2Q65L could also be

completely modelled, including four amino acids of the N-terminal

linker region that remained after TEV cleavage. The initial

2mFo � DFc and mFo � DFc electron density maps clearly revealed

the localization of GMPPNP and Mg2+ (Fig. 2). Moreover, we

observed electron density in a horseshoe shape that we could inter-

pret as PEG fragments originating from the crystallization cocktail.

3.2. Overall structure

Both proteins are monomeric based on an interface analysis with

the PISA server (Krissinel & Henrick, 2007) and in agreement with

our experimental size-exclusion chromatography. dmRab2Q65L and

dmRab3Q80L adopt the classical fold of the Rab family of GTP-

binding proteins, with one �-sheet that is composed of six �-strands

surrounded by five �-helices (Fig. 1). dmRab2 and dmRab3 share

33% sequence identity and 52% similarity. The overall folds are

related to the Ras superfamily (Tong et al., 1989; Pai et al., 1989).

dmRab2Q65L and dmRab3Q80L are practically indistinguishable, with

a root-mean-square deviation (r.m.s.d.) of 0.8 Å for 157 pairs of C�

atoms. dmRab2 shares 65% sequence identity and dmRab3 shares

73% sequence identity with rnRab3A. The reported structure of

rnRab3A in a GMPPNP-bound form (PDB entry 3rab) superimposes

with dmRab2Q65L and dmRab3Q80L with an r.m.s.d. of 0.6 Å for 169

pairs of C� atoms. In both structures the switch I and II regions are

very well defined (Sprang, 1997; Kjeldgaard et al., 1996) and are

involved in a hydrogen-bonding network to stabilize the bound

nucleotide and coordinate the Mg2+ cation (Fig. 1).

3.3. Nucleotide-binding site of dmRab2Q65L

The guanine function of GMPPNP bound to dmRab2Q65L is

involved in hydrogen bonding to Ala150, Asp122 and Asn119. The

hydroxyl functions are in contact with Gln32 and Pro33 (Table 5).

The �- and �-phosphate are stabilized by interactions with the Walker

A motif or P-loop (Saraste et al., 1990; Walker et al., 1982). This motif

in dmRab2Q65L is 13GDTDVDKS20, with the catalytic Walker A

lysine at position Lys19. The switch II region of exocytic Rab GTPase

is highly conserved and is found within the region 60WDTAGLE-

AFRSITRSYYRGA79 in dmRab2Q65L (Fig. 1a). The �-phosphate

interacts with Thr15, His35 and Thr38 as well as Gly64 (Table 5). The

Mg2+ ion is octahedrally coordinated by the hydroxyl functions of

Ser20 and Thr38 of dmRab2Q65L, the �- and �-phosphate groups of

GMPPNP and two water molecules (Fig. 1a and Table 5). The latter

two water molecules are embedded in a dense hydrogen-bonding

network including Asp36, Thr38, Asp61, Thr62 and the phosphate

functions of GMPPNP.

3.4. Nucleotide-binding site of dmRab3Q80L

The GMPPNP bound to dmRab3Q80L establishes similar inter-

actions with the protein as described above for dmRab2Q65L. The
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Figure 1
Structures of dmRab2Q65L and dmRab3Q80L drawn in cartoon representation.
�-Helices are coloured blue, �-strands salmon and connecting loop regions brown.
The bound GMPPNP is shown in stick representation, as are the Mg2+-coordinating
residues. The octahedrally coordinated Mg2+ is depicted as a black sphere and
coordinating water molecules as red spheres. Grey dashed lines indicate the
coordination sphere of Mg2+. (a) Structure of dmRab2Q65L; (b) structure of
dmRab3Q80L.

Table 5
Hydrogen-bonding interactions of GMPPNP in complex with dmRab2Q65L and
dmRab3Q80L.

Distances �3.2 Å are given. Canonical interactions of the �- and �-phosphates of
GMPPNP with the protein backbone of the P-loops are not listed.

GMPPNP dmRab2Q65L Distance (Å) dmRab3Q80L Distance (Å)

Guanine base O6 Ala150 N 2.9 Ala165 N 2.9
N1 Asp122 OD1 2.8 Asp137 OD1 2.8
N2 Asp122 OD2 2.8 Asp137 OD2 2.9
N7 Asn119 ND2 3.1 Asn134 ND2 3.2

Ribose O20 Gln32 O 2.8 Thr47 O 2.9
O20 Pro33 O 2.8
O30 Pro33 O 3.2 Ser48 O 2.7

�-Phosphate O1G Gly64 N 2.8 Gly79 N 2.8
O2G Thr38 N 3.0 Thr53 N 2.8
O2G Thr38 OG2 2.7 Thr53 OG2 2.9
O3G Thr15 OG2 2.6 Ser30 OG 2.7
O3G His35 NE2 2.9 Ser52 OG 2.6
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guanine base is hydrogen-bonded to Ala165, Asp137 and Asn134,

and the hydroxyls of the ribose moiety are hydrogen-bonded to Ser48

and Thr47 (Table 5). The Walker A motif is established by the motif
28GNSSVGKT35, with the conserved Walker A lysine being Lys34.

The side chains of dmRab2 Lys19 and dmRab3 Lys34 point to and

interact with the O atoms of the �- and �-phosphates of the bound

GMPPNP and hence adopt the so-called ‘conventional’ conformation

(Dikfidan et al., 2014). The switch II region of dmRab3Q80L comprises

the sequence 75WDTAGLERTITTAYYRGA94 (Fig. 1b) and is

shorter by two amino-acid residues compared with dmRab2Q65L. This

difference is reflected in a �-helix within the switch II region in the

structure of dmRab3Q80L. Switches I and II as well as the inter-switch

regions are important in effector protein binding (Ostermeier &

Brunger, 1999; Dumas et al., 1999). In the GTP-bound state these

regions are well ordered and expose a hydrophobic aromatic triad of

residues to the protein surface. In concert with other residues, these

residues are believed to define the specificity of different Rabs for

different effector molecules (Merithew et al., 2001). The triad is

conserved in both dmRab2Q65L and dmRab3Q80L: Phe43, Trp60 and

Tyr75 in dmRab2Q65L and Phe58, Trp75 and Tyr90 in dmRab3Q80L.

All residues are solvent-exposed, with one exception, dmRab2Q65L

Tyr75, the side chain of which points towards the protein. The

�-phosphate of GMPPNP is hydrogen-bonded to Gly79, Thr53, Ser30

and Ser32 (Table 5). In the dmRab3Q80L structure two threonine

residues, Thr35 and Thr53, are involved in Mg2+ coordination as well

as the �-phosphate groups of GMPPNP and two water molecules

(Figs. 1b and 2). The latter two water molecules are hydrogen-bonded

to Thr35, Asp76, Thr77, Val51 and Thr53.

3.5. Modified cysteine in dmRab3Q80L

The free thiol function of cysteine allows a large variety of

modifications. Many post-translational modifications such as

phosphorylation, S-nitrosylation, S-glutathionylation, sulfhydration,

sulfenylation, sulfinic acids, sulfonic acid polyprenylation and

sulfenyl-amides are known (Walsh et al., 2005; Chung et al., 2013). On

the other hand, the thiol function is extensively exploited in the

context of in vitro protein modifications such as fluorescent tagging,

paramagnetic spin labelling and many more diverse applications.

In the initially calculated electron-density maps we could observe

additional electron density attached to Cys183 that resides on the

very C-terminal �-helix of dmRab3Q80L. The electron density has an

approximately twofold rotational symmetry and has a planar shape

(Fig. 3). The volume of the electron density is large enough to

accommodate six atoms. The unknown electron density is located in a

hydrophobic pocket on the surface of the protein formed by the side

chains of Tyr20, Phe22, His66, Lys68, Val70 and Met186. The plane of

the electron density is parallel to the phenolic ring of Tyr20 (Fig. 3),

tentatively establishing a �-interaction with the unknown cysteine

modification. Even though DTT was present in our purification

buffers, the planarity and symmetry of the electron density rules out a

mixed disulfide with DTT. To shed light on the modification, we

performed MALDI-TOF MS of the dmRab3Q80L protein prior to

crystallization. The experimental molecular weight of 21 925 Da is

in reasonable agreement with the calculated theoretical mass of

research communications

38 Lardong et al. � Rab2 and Rab3 bound to GMPPNP Acta Cryst. (2015). F71, 34–40

Figure 2
Nucleotide-binding site of dmRab3Q80L. 2mFo � DFc simulated-annealing OMIT
map contoured at 1� shown as a blue mesh for the omitted GMPPNP and in violet
for the Mg2+ ion. The GMPPNP is shown in stick representation and the Mg2+ ion is
shown as black sphere.

Figure 3
Protein surroundings of Cys183 in dmRab3Q80L. (a) mFo � DFc electron-density
map contoured at 3� shown as a green mesh. Difference electron density with a
planar shape is attached to the S atom of Cys183. (b) The view in (a) rotated by 45� .
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21 939 Da. This raised the question of the point in time at which the

modification is made. Hence, we washed and dissolved dmRab3Q80L

crystals in water and subjected them to MALDI-TOF MS. We could

now see a mass difference of 135 Da compared with the theoretical

mass of the protein. Consequently, the thiol modification must take

place during the crystallization process. Next, we intended to identify

the atom establishing the thiol linkage. We therefore collected a

highly redundant, anomalous diffraction data set at 1.7 Å wavelength.

We could detect the positions of most of the sulfur atoms of cysteine

and methionine amino-acid side chains in the anomalous difference

electron density, but no anomalous difference electron density for the

atom covalently attached to the thiol of Cys183. It is tempting to

speculate about the origin of the modification. Since the modification

seems to be nearly complete for Cys183, the only source could be the

crystallization cocktail. We can merely speculate that a degradation

product of the precipitant PEG 200 might have caused the modifi-

cation.

4. Discussion

We have determined the crystal structures of constitutively active

dmRab2Q65L and dmRab3Q80L variants with bound Mg2+ and the

nonhydrolysable GTP analogue GMPPNP to atomic resolution. Our

structures provide information on the residues involved in Mg2+

coordination and interaction with GMPPNP. In the crystal structure

of dmRab3Q80L we detected a covalently attached modification at

Cys183. The latter modification remains enigmatic and hence has not

been modelled in the crystal structure of dmRab3Q80L.

Our structure of dmRab2Q65L represents the first crystal structure

of a Rab2 protein in the ‘GTP’-bound active state and allows

comparison with the structure of rnRab2A (PDB entry 1z0a; Eathiraj

et al., 2005) in the GDP-bound state. In the structure of rnRab2A–

GDP the switch I region adopts different conformations in the four

copies within the asymmetric unit. In three copies (chains A, B and

D) the switch I region is not defined in the electron-density maps and

hence is lacking from the model, whereas in one copy (chain C) the

entire switch I region could be modelled but with truncated side

chains, indicating increased flexibility. dmRab2Q65L and rnRab2A

share 94% identity and the structures superimpose with an r.m.s.d. of

1.7 Å for 165 pairs of C� atoms of chain C, whereas for chain A, which

lacks residues Pro33–His35, the r.m.s.d. is 1.4 Å for 166 pairs of C�

atoms. The different conformations are likely to be influenced by

crystal packing. Major structural differences between dmRab2Q65L

and rnRab2A are observed in the switch I and II regions (Fig. 4a). In

the structure of dmRab2Q65L presented here the switch I region is

well defined in the electron density and establishes the expected

interactions with the hydroxyl functions of the ribose and the

�-phosphate of the GMPPNP nucleotide (Table 5). Even though the

switch I region of dmRab2Q65L is involved in crystal packing, our

structure strongly suggests that the switch I region adopts the

conformation of the active state of dmRab2. The switch II region

undergoes a more drastic conformational change (Fig. 4a). By this

conformational change it establishes contact with the �-phosphate of

the GMPPNP (Table 5). Again, the observed conformation of the

switch II region could be potentially involved in crystal contacts.

dmRab2 and dmRab3 share 33% sequence identity and the

structures of the proteins are nearly identical, with an r.m.s.d. of 0.8 Å

for 157 pairs of C� atoms (Fig. 4b). Whereas the conformation of the

switch I region of both proteins is very similar, the conformation of

the switch II region is altered. In dmRab3Q80L we observe a �-helix of

six residues in length from Arg84 to Ala89 (Fig. 1b). In the structure

of dmRab2Q65L the switch II region adopts a random-coil confor-

mation. Since the switch region is involved in crystal contacts in both

structures, we cannot fully exclude a possible influence on their

conformation. These observed alterations, especially within the

switch II regions, hint at the capability of dmRab2 and dmRab3 to

bind to different effector proteins.

A potential interaction partner of Rab3A is Bruchpilot, since upon

loss of Rab3 Bruchpilot is dramatically reduced (Graf et al., 2009).

Bruchpilot acts as one of the main scaffolding proteins that decorate

the intracellular face of the active zone in Drosophila where synaptic

vesicles fuse with the membrane (Haucke et al., 2011; Kittel et al.,

2006; Liu et al., 2011). Bruchpilot is critical for the structural integrity

and functionality of the active zone. Graf and coworkers showed that

the Rab3 GTPase is essential for correct assembly of the active zone

in Drosophila (Graf et al., 2009). Owing to their described properties

and function in vesicular transport, the question arose of whether

Rab GTPases might interact with active zone proteins in synaptic

vesicle tethering. In future experiments, we would like to shed light
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Figure 4
Superposition of different Rab structures shown in ribbon presentation. (a)
Superposition of rnRab2A (PDB entry 1z0a, chain A) bound to GDP and dmRab2
bound to GMPPNP. The switch I and switch II regions of rnRab2A–GDP are
coloured purple and orange, respectively, whereas the switch I and switch II regions
of dmRab2A–GMPPNP are coloured light blue and red, respectively. (b)
Superposition of dmRab2A (grey ribbon) and dmRab3A (black ribbon) both in
the GMPPNP-bound state. The switch regions of dmRab2A are coloured as in (a).
The switch I and switch II regions of dmRab3A are coloured green and pink,
respectively.
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on these possible interactions by using our Rab GTPase constructs in

pull-down experiments.
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Abstract Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at

Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein

(RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging,

with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its

C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-

dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich

(PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked

formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins

and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of

pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ

assembly over premature assembly at axonal membranes.

DOI: 10.7554/eLife.06935.001

Introduction
The primary function of the presynaptic active zone (AZ) is to regulate the release of neurotransmitter-

filled synaptic vesicles (SVs) in response to action potentials entering the synaptic bouton (Südhof,

2012). Before AZ scaffold components (e.g., ELKS family protein Bruchpilot: BRP, Rab3-interacting

molecule (RIM)-binding protein: RBP) are integrated into synapses, however, they have to be

transported down the often very long axons. AZ scaffold proteins are characterized by strings of

interaction motifs (particularly coiled coil motifs) contributing to the avidity and tenacity of synaptic

scaffolds (Tsuriel et al., 2009). Therefore they might be considered as ‘sticky cargos’ whose

association status has to be precisely controlled during transport. Long-range axonal transport is

conducted along polarised microtubules, using kinesin-family motor proteins for anterograde and

dyneins for retrograde transport (reviewed in Maeder et al., 2014). Kinesin-1 family motor kinesin

heavy chain (KHC, also known as KIF5; Sato-Yoshitake et al., 1992; Hurd and Saxton, 1996; Takamori

et al., 2006) and Unc-104/Imac/KIF1 (Hall and Hedgecock, 1991; Pack-Chung et al., 2007) have been
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implicated in the transport of SVs, in conjunction with regulators of this process, such as Syd-1

(Hallam et al., 2002), Syd-2/Liprin-α (Serra-Pagès et al., 1998; Zhen and Jin, 1999; Miller

et al., 2005; Stryker and Johnson, 2007; Wagner et al., 2009), RSY-1 (Patel and Shen, 2009),

or ARL-8 (Klassen et al., 2010; Wu et al., 2013). In Caenorhabditis elegans, SV and AZ scaffold

proteins exhibit extensive co-transport and undergo frequent pauses, with immobile phases

promoting cargo dissociation and assembly (Wu et al., 2013). Long axons, typical for Drosophila

or mammals, pose high demands for the ‘processivity’ of axonal AZ scaffold component transport.

The molecular mechanisms, which provide this processivity and thus block premature assembly

processes remain speculative, but might also be relevant in the context of axonal transport deficits of

neurodegenerative scenarios (Millecamps and Julien, 2013). In addition, we know little concerning the

composition of cargos destined for synaptic AZs.

The electron-dense AZ cytomatrix (T-bar) at the Drosophila neuromuscular junction (NMJ) is among

others composed of oligomers of BRP and RBP (Kittel et al., 2006; Fouquet et al., 2009; Liu et al.,

2011a; Ehmann et al., 2014). We report here that BRP and RBP, but no other tested AZ components,

are co-transported in discrete transport complexes along the axon. Via a screen for RBP interaction

partners, we identified the APP-like protein interacting protein 1 (Aplip1), an adaptor protein previously

implicated in SV transport. Further analysis by X-ray crystallography and calorimetry showed that

the second and third Src homology 3 (SH3) domain of RBP bind a specific N-terminal proline-rich

(PxxP) motif of Aplip1/JIP1 with more than 10-fold higher affinity than RBP binds its synaptic

ligands (Ca2+channels/RIM) by their cognate PxxP motifs. The integrity of this motif was essential

to protect axons from forming ectopic axonal synapses, which were observed in aplip1mutant axons by

electron microscopy (EM) and super-resolution light microscopy.

In summary, we characterize a mechanism of axonal AZ protein transport through a high affinity

interaction between preassembled, stoichiometric scaffold protein complexes and the transport

adaptor Aplip1. This high affinity interaction is needed to allow for effective axonal transport and to

protect from premature AZ assembly processes.

Results
The molecular basis of how axonal protein transport is coupled to AZ assembly remains largely

unexplored. We hypothesized that BRP might be co-transported with further AZ scaffold proteins, as

eLife digest To pass on information, the neurons that make up the nervous system connect at

structures known as synapses. Chemical messengers called neurotransmitters are released from one

neuron, and travel across the synapse to trigger a response in the neighbouring cell. The formation

of new synapses plays an important role in learning and memory, but many aspects of this process

are not well understood.

In a specific region of the synapse called the active zone, a scaffold of proteins helps to release the

neurotransmitters. These proteins are made in the cell body of the neuron, and are then transported

to the end of the long, thin axons that protrude from the cell body. This presents a challenge for the

cell, because the components of the active zone scaffold must be correctly targeted to the synapse

at the end of the axon, ensuring the active zone scaffold assembles only at its proper location.

Siebert, Böhme et al. studied how some of the proteins that are found in the active zone scaffold

of the fruit fly Drosophila are transported along axons. Labelling the proteins with fluorescent

markers allowed their movement to be examined under a microscope in living Drosophila larvae. The

results showed that two of the proteins—known as BRP and RBP—are transported along the axons

together. Further investigation revealed that a transport adaptor protein called Aplip1, which binds

to RBP, is required for this movement. Siebert, Böhme et al. established the structure of the part of

RBP where this interaction occurs, and found that mutating this region causes premature active zone

scaffold assembly in the axonal part of the neuron. The interaction between RBP and Aplip1 is very

strong, and this helps to prevent the scaffold assembling before it has reached the correct part of the

neuron. Exactly how the transport adaptor and active zone protein are separated once they reach

their final destination (the synapse) remains to be discovered.

DOI: 10.7554/eLife.06935.002
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transport of preformed complexes of AZ material has been suggested previously (Zhai et al., 2001;

Shapira et al., 2003; Maas et al., 2012).

RBP co-clusters with BRP in axonal aggregates of SR kinase mutants
Firstly, we chose a previously characterized mutant of a serine–arginine (SR) protein kinase at location

79D (srpk79D). The SRPK79D protein is a member of the serine–arginine protein kinase family

previously shown to be involved in mRNA splicing and processing (Wang et al., 1998). Mutants of

srpk79D form dramatic BRP aggregates in the axoplasm, while its endogenous substrates remain

elusive (Johnson et al., 2009; Nieratschker et al., 2009). The axonal aggregations here served as

a sensitive background to screen for proteins that co-accumulate together with BRP in the axon, and

therefore indicate a joint transport mechanism.

In order to visualise the aggregates forming within axons of srpk79Dmutant larvae, we stained with

antibodies (Abs) directed against the BRP C- and N-terminus (Figure 1A, as control), and further

probed for the presence of additional AZ proteins, such as Liprin-α (Figure 1B) and Syd-1 (Figure 1C),

which interact with BRP at the AZ (Owald et al., 2010, 2012) and the small GTPase Rab3 that

was previously shown to regulate the distribution of presynaptic components at AZs (Figure 1D;

Graf et al., 2009). However, none of these AZ proteins showed co-accumulation with BRP in the

aggregates (B as also described in Johnson et al., 2009). Staining with anti-RBP Abs (Liu et al., 2011a),

by contrast, revealed strong co-localization of BRP and RBP in the axonal aggregates (Figure 1E).

Quantification of BRP and RBP co-localization in two different srpk79D mutant null alleles (atc

from Johnson et al., 2009; vn from Nieratschker et al., 2009) confirmed the impression that the

axonal RBP/BRP signals were of identical size (Figure 1F; mean area of axonal spots, BRPC-term

0.3797 ± 0.03694 μm2 in srpk79DATC, 0.3259 ± 0.02212 μm2 in srpk79Dvn; RBPC-term 0.3892 ±
0.02097 μm2 in srpk79DATC, 0.3696 ± 0.01645 μm2 in srpk79Dvn; n = 8 nerves; mean ± SEM),

and that BRP and RBP nearly always co-localized in these aggregates (Figure 1G; BRPC-term co-localizing

with RBPC-term 93.26% ± 2.172 in srpk79DATC, 95.85% ± 1.302 in srpk79Dvn; RBPC-term co-localizing with

BRPC-term 95.7% ± 0.9713 in srpk79DATC, 94.24% ± 1.162 in srpk79Dvn; n = 8 nerves; mean ± SEM).

Thus, RBP was the only AZ protein that robustly co-accumulates with BRP in srpk79Dmutant axonal

aggregates. To further explore the distribution of BRP and RBP in these aggregates we used stimulated

emission depletion (STED) light microscopy at a resolution of about 50 nm (Hell, 2007). Two-colour

STED microscopy revealed a tight and stoichiometric association of BRP and RBP in the floating axonal

aggregates of srpk79Dmutants (Figure 1H), reminiscent of EM images showing T-bar super assemblies

in these axons (Figure 1H; Johnson et al., 2009; Nieratschker et al., 2009). In fact, the relative

distribution of RBP vs BRPC-term was very reminiscent of the organisation at mature, synaptic AZs

(Liu et al., 2011a). The tight association of BRP and RBP in these ectopic aggregates further suggested

a co-transport of both AZ components. Indeed, we could identify axonal BRP spots co-positive for RBP

(Figure 1I, arrows) in wild type (WT) larvae as well. Compared to srpk79D mutant axons, WT BRP/RBP

co-positive aggregates were present at a lower frequency and displayed a ∼ four times smaller average

diameter in control axons (Figure 1F; mean area of axonal spots, BRPC-term 0.06895 ± 0.01 μm2 in WT;

RBPC-term spots: 0.09184 ± 0.0133 in WT; n = 8 nerves; mean ± SEM).

BRP and RBP are co-transported in axons together with Aplip1
We observed active anterograde and retrograde transport of the BRP (GFP-labelled)/RBP

(cherry-labelled) co-positive spots when using intravital imaging of axons of intact larvae (Rasse

et al., 2005) (Figure 2A; Video 1). Thus, as our data strongly suggested that BRP and RBP are

co-transported, we searched for adaptor proteins coupling them to axonal motors.

RBP, via its second and third SH3 domain, is known to bind synaptic ligands such as Ca2+ channels

and RIM (Liu et al., 2011a). Both the SH3 domains and the cognate PxxP motifs of the synaptic

ligands are highly conserved between mammals and Drosophila (Liu et al., 2011a; Südhof, 2012;

Davydova et al., 2014). However, in order to identify novel RBP interaction partners which might be

relevant in the context of axonal transport, we performed a large-scale yeast two-hybrid (Y2H) screen

using a construct consisting of the second and third SH3 domains of Drosophila RBP as bait (also

shown in Figure 3A). As expected, several clones representing RIM and the Ca2+ channel α1-subunit
Cacophony (Cac) were isolated (not shown). In addition, the screen recovered 14 independent

fragments of Aplip1, including a full length cDNA clone (Figure 2B). Aplip1 is the Drosophila homolog
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of c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1), a scaffolding protein that has been

shown to bind kinesin light chain (KLC; Verhey et al., 2001), Alzheimer’s amyloid precursor protein

(APP; Taru et al., 2002), JNK pathway kinases (Horiuchi et al., 2005, 2007) and the autophagosome

adaptor LC3 (Fu et al., 2014). If Aplip1 was mediating the axonal transport of RBP, moving spots co-

positive for both RBP and Aplip1 should be expected. In fact, we robustly observed co-transport

of RBPcherry and Aplip1GFP spots in both anterograde (Figure 2C, arrowhead; Video 2) and retrograde

(not shown) direction at a frequency consistent with the low frequency of single Aplip1GFP moving

particles (not shown). Furthermore, we observed BRP-shortstraw co-transport with Aplip1GFP (Figure 2D;

Figure 1. Co-accumulation of Bruchpilot (BRP) and RIM-binding protein (RBP) in srpk79D axonal aggregates.

(A–E, I) Nerve bundles of segments A1–A3 from third instar larvae of the genotypes indicated labeled with the

antibodies (Abs) indicated. (A–E, H) BRP accumulated in axonal aggregates of srpk79D mutants. (B–D) Liprin-α
(B), Syd-1 (C), and Rab3 (D), did not co-localize with axonal BRP spots. (E) By contrast, RBP invariably co-localized with BRP

in these axonal aggregates. (F) Quantification of mean area of axonal BRP and RBP spots in wild type (WT) and srpk79D

mutants. BRPC-term spots: 0.3797 ± 0.03694 μm2 in srpk79DATC, 0.3259 ± 0.02212 μm2 in srpk79Dvn, 0.06895 ± 0.01 μm2

in WT; RBPC-term spots: 0.3892 ± 0.02097 μm2 in srpk79DATC, 0.3696 ± 0.01645 μm2 in srpk79Dvn, 0.09184 ± 0.0133 in WT;

n = 8 nerves each; all panels show mean values and errors bars representing SEM; ns, not significant, p > 0.05,

Mann–Whitney U test. (G) Quantification for BRP co-localization with RBP and vice versa in srpk79Dmutants. BRPC-term co-

localizing with RBPC-term: 93.26% ± 2.172 in srpk79DATC, 95.85% ± 1.302 in srpk79Dvn; RBPC-term co-localizing with BRPC-term:

95.7% ± 0.9713 in srpk79DATC, 94.24% ± 1.162 in srpk79Dvn; n = 8 nerves each; all panels show mean values and errors

bars representing SEM; ns, not significant, p > 0.05, Mann–Whitney U test. (H) Two-colour stimulated emission depletion

(STED) images of axonal aggregates in srpk79Dmutants revealed that RBPC-Term label localized to the inside of the axonal

aggregates and was surrounded by BRPC-Term label. (I) BRP and RBP also co-localized in axonal spots of WT animals (arrow

heads show co-localization of BRP and RBP in the axon). Scale bars: (A–E, I) 10 μm; (H) 200 nm.

DOI: 10.7554/eLife.06935.003

Siebert et al. eLife 2015;4:e06935. DOI: 10.7554/eLife.06935 4 of 30

Research article Neuroscience

77

http://dx.doi.org/10.7554/eLife.06935.003
http://dx.doi.org/10.7554/eLife.06935.003
http://dx.doi.org/10.7554/eLife.06935
http://dx.doi.org/10.7554/eLife.06935


Figure 2. Live imaging of anterograde co-transport between BRP, RBP and APP-like protein interacting protein

1 (Aplip1). (A) Live imaging in intact third instar larvae showed anterograde co-transport of BRPGFP and RBPcherry.

See also, Video 1. (B) Schematic representation of Aplip1 domain structure containing two PxxP motifs, one

Src-homology 3 (SH3) domain and one C-terminal phosphotyrosine interaction domain (PID) (FL = full-length). Lines

represent Aplip1 prey fragments recovered in RBP SH3-II+III bait yeast-two-hybrid (Y2H) screen. Arrow indicates one

single clone that contained only the first of the two Aplip1-PxxP motifs. (C, D) Live imaging in intact third instar larvae

showed anterograde co-transport of Aplip1GFP and RBPcherry (C), as well as Aplip1GFP and BRP-shortstraw (D). Scale

bars: (A, C, D) 10 μm. See also, Videos 2, 3. (E) Quantification of live imaging of BRP-shortstraw flux (spots passing

through an axonal cross-section per minute) within the genetic backgrounds indicated. Anterograde and retrograde

BRP-shortstraw flux was severely impaired in aplip1ek4 and aplip1null mutant background, which was rescued when

a genomic rescue construct for Aplip1 was introduced into the aplip1null mutant background. BRP-shortstraw flux per

min, control (n = 14 nerves): anterograde: 5.267 ± 0.975, retrograde: 2.423 ± 0.604, stationary: 0.241 ± 0.071;

aplip1ek4 (n = 28 nerves): anterograde: 0.687 ± 0.098, retrograde: 0.284 ± 0.125, stationary: 1.023 ± 0.145; aplip1null

Figure 2. continued on next page
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Video 3), as expected with similarly low frequencies as observed for RBP/Aplip1 co-transport

(not shown), further pointing towards a co-transport of RBP and BRP in conjunction with Aplip1.

We used the live imaging assay to investigate BRP transport in different aplip1 mutants to

directly address whether removal of Aplip1 affects AZ scaffold protein transport. The aplip1null

allele completely and specifically removes the aplip1 gene and was generated by P-element

excision (Klinedinst et al., 2013). By comparison, the aplip1ek4 allele contains a point mutation in

the C-terminal kinesin binding domain of Aplip1 that was shown to almost completely abolish the ability

of Aplip1 to bind to KLC (Horiuchi et al., 2005). Anterograde and retrograde transport of BRP was

drastically reduced compared to controls in both aplip1 mutant alleles (Figure 2E). Through the

introduction of a genomic (gen.) construct of Aplip1 into the aplip1null mutant background (aplip1null,

gen. rescue), however, BRP flux (spots passing through an axonal cross-section in a given time) could be

restored to WT level (Figure 2E). Quantification showed that retrograde transport in the aplip1null

mutant situation was somewhat more affected (27× less compared to control) than anterograde

transport (7× less). Both directions appeared equally affected (about 8× less compared to controls) in

the kinesin-binding defective aplip1ek4 mutant. It is noteworthy that the transport of SV cargo in the

samemutant was reduced equally in both directions, whereas transport of mitochondria is only impaired

in the retrograde direction (Horiuchi et al., 2005).

RBP binds the transport adaptor Aplip1 via a high affinity PxxP-SH3
interaction
As our Y2H screen used the SH3-II and -III domains of RBP as bait (Figure 3A), PxxP motifs are

expected to mediate the interaction with Aplip1. In fact, Aplip1 contains two PxxP motifs which

were both present in most of the prey clones recovered in the Y2H screen, except for one single

clone that contained only the first more N-terminal motif (Figure 2B, arrow). Using a semi-

quantitative liquid Y2H assay and a set of Aplip1 constructs containing only either the first or the

second PxxP motif (Figure 3B), we mapped the interaction between RBP and Aplip1 to the first of

the two candidate PxxP motifs present in all clones isolated (Figure 2B). The second and third SH3

domain of RBP bound to this motif with comparable strength when measured with a semi-quantitative

liquid Y2H assay (Figure 3C; mean ß-Gal4 units for: Aplip1-PxxP1/RBP SH3-II: 24.3 ± 6.6; Aplip1-PxxP1/

RBPSH3-III: 29.1 ± 7.4; n = 3 independent experiments; mean ± SEM). No binding was observed

between the second and third SH3 domains of RBP and Aplip1-PxxP2 (Figure 3C; mean ß-Gal4 units

for: Aplip1-PxxP2/RBP SH3-II: 0.2 ± 0.0; Aplip1-PxxP2/RBPSH3-III: 0.2 ± 0.1; n = 3 independent

experiments; mean ± SEM). When mutating either the PxxP1 motif of Aplip1 (P156 → A; P159 → A,

giving rise to AxxA1) or introducing mutations known to interfere with PxxP ligand binding into the

Figure 2. Continued

(n = 11 nerves): anterograde: 0.808 ± 0.051, retrograde: 0.085 ± 0.064, stationary: 0.354 ± 0.148; aplip1null, gen rescue

(n = 26 nerves): anterograde: 3.783 ± 0.861, retrograde: 2.123 ± 0.239, stationary: 0.505 ± 0.084. All panels show

mean values and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not significant, p > 0.05,

Mann–Whitney U test.

DOI: 10.7554/eLife.06935.004

Video 1. Anterograde co-transport of BRPGFP

and RBPcherry. Live imaging in intact third instar larvae

showed anterograde co-transport of BRPGFP and

RBPcherry. Video was captured at 0.6 s per frame and

played back at 7× real time.

DOI: 10.7554/eLife.06935.005

Video 2. Anterograde co-transport of Aplip1GFP and

RBPcherry. Live imaging in intact third instar larvae

showed anterograde co-transport of Aplip1GFP and

RBPcherry. Video was captured at 0.6 s per frame and

played back at 7× real time.

DOI: 10.7554/eLife.06935.012
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individual SH3 domains of RBP (SH3-II*/SH3-III*),

the interaction was completely abolished

(Figure 3C; mean ß-Gal4 units for: Aplip1-

AxxA1/RBP SH3-II: 0.1 ± 0.1; Aplip1-AxxA1/RBP

SH3-III: 0.2 ± 0.0; Aplip1-PxxP1/RBPSH3-II*:

0.1 ± 0.0; Aplip1-PxxP1/RBP SH3-III*: 0.1 ± 0.0;

n = 3 independent experiments; mean ± SEM).

We performed isothermal titration calorimetry

(ITC) to measure the thermodynamics of the

binding directly and compare Aplip1/RBP

binding quantitatively to the established synaptic

ligands of RBP. We used four different constructs,

comprising either single RBP SH3 domains

(I, II, and III) or a construct of two RBP SH3

domains (II+III) (see also Figure 3A). Whereas we could not detect any binding of the Aplip1

peptides to RBP SH3-I, we could determine KD constants for the single SH3-II, SH3-III and the

tandem SH3-II+III (Figure 3D; Figure 3—figure supplement 1) domains of RBP. Both SH3-II and

SH3-III single domains showed a binding affinity to Aplip1 peptides several fold stronger

compared to either Cac, RIM1 or RIM2 (Figure 3D; Figure 3—figure supplements 2–4).

However, the affinity of the Aplip1 peptides to the SH3-II+III domain was the highest observed

which is indicative of co-operativity between both domains in peptide binding that could

increase the local concentrations of Aplip1 at RBP binding pockets (BPs).

Finally, in order to get a deeper atomic insight into the structural basis of the binding of RBP

towards Aplip1 in comparison to its synaptic ligands, we crystallized the Drosophila RBP SH3-II

domain together with both an Aplip1 (Figure 3E; Tables 1, 2, 3) and a Cac peptide (Figure 3F;

Tables 1, 3, 4), and RBP SH3-III with a Cac peptide (Figure 3—figure supplement 5; Tables 1, 3).

Drosophila RBP SH3-II and -III share 49.2% sequence identity and adopt the canonical fold of

SH3 domains (Figure 3E,F; Figure 3—figure supplement 5). Both domains superimpose with a root

mean deviation of 0.8 Å for 64 pairs of Cα-atoms. Both peptides sequences harbor the canonical

class I interaction motif +xΨPxxP (+, positively charged; x, any amino acid; Ψ hydrophobic amino

acid, see Figure 3D for sequence) and are bound into the respective SH3 domain in ‘plus’ direction.

We observed the classical poly-proline helix that allows for mainly hydrophobic protein-peptide

interaction in all three structures. We detected the same hydrogen pattern between the protein side

chains and peptide backbone in the structure of SH3-II with Aplip1 and Cac. The major difference is

the side chain orientation of R1687 of Cac that π-stacks with its guanidinium function with Y1372,

except for one copy, where it forms a salt-bridge to E1341. The equivalent residue to R1687 of Cac

is R153 of the Aplip1 peptide, which forms, by contrast, a bidentate salt-bridge to D1336 (Table 3). A

second major difference is induced by the two consecutive proline residues in the Cac peptide.

Consequently, the peptide has a more polyproline type II conformation that brings T1692 closer to the

protein surface and allows P1693 to deeper point in a hydrophobic pocket of the SH3-II domain.

Whereas the C-terminal portion of the Aplip1 peptide is folded in a short 310 helix, the N-terminus of

the Aplip1 peptide adopts a random coil conformation with hydrophobic interactions to the surface of

SH3-II. The Cac-derived peptide bound to SH3-III is fully defined in the electron density. However, the

peptide main chain interaction with the SH3 domains is conserved. The side chain orientation of Cac

R1687 is again different if bound to SH3-II or SH3-III. In complex with SH3-III, R1687 forms

a bidentate hydrogen bond to SH3-III D1463 and E1648. A π-stacking interaction is not possible

since Y1372 of SH3-II is replaced by SH3-III L1499. The central PxxP motifs of Aplip1 superimpose

well in both structures if bound to SH3-II and SH3-III. Towards its C-terminus, the Aplip1-PxxP1

peptide adopts a slightly different random coil conformation compared to the structure when bound to

SH3-II caused by two additional hydrogen bonds from T1692 and K1695 to the SH3-II domain (Table 3).

The Aplip1-PxxP1 motif is needed for effective axonal RBP/BRP
transport
Consistent with the idea that Aplip1 is mediating RBP transport, we found axonal aggregates con-

sisting of both RBP and BRP in the aplip1ek4, as well as the aplip1null allele (Figure 4B,C). This ectopic

Video 3. Anterograde co-transport of Aplip1GFP and

BRP-shortstraw. Live imaging in intact third instar larvae

showed anterograde co-transport of Aplip1GFP and BRP-

shortstraw. Video was captured at 0.414 s per frame and

played back at 5× real time.

DOI: 10.7554/eLife.06935.013
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Figure 3. Aplip1 binds RBP using a high-affinity PxxP1-SH3 interaction. (A) Schematic representation of RBP domain

structure containing three SH3 domains (I–III from the N-terminus) and three Fibronectin 3 (FN3) domains. The

corresponding fragments used in the large scale Y2H screen (SH3-II+III) and used as bait (SH3-II and SH3-III) in the

Y2H assay (C) against different Aplip1 prey constructs (B) are indicated. Different isothermal titration calorimetry

Figure 3. continued on next page
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RBP/BRP accumulation was rescued after introducing a genomic construct of Aplip1 into the aplip1null

mutant background (aplip1null, gen. rescue; Figure 4D). Pan-neuronal expression of an Aplip1 cDNA

equally rescued the axonal RBP/BRP accumulations (Figure 4I, quantification in K, L). Importantly,

however, the expression of an Aplip-AxxA1 cDNA construct (integrated at the same chromosomal

integration site as the control construct; expression and axonal presence confirmed with a newly

generated Aplip1 Ab; not shown) could no longer rescue the RBP/BRP accumulation phenotype

(Figure 4J, quantification in Figure 4K,L). Thus, we conclude that Aplip1 is involved in the transport

of RBP/BRP to the AZ, whereby its functionality in this context largely depends on the integrity of its

N-terminal PxxP1 motif.

Aplip1 promotes BRP transport in absence of RBP
As indicated above, BRP accumulated in the axons of aplip1 mutants as well. Thus, BRP could

be transported through Aplip1 via binding to RBP, other yet undetected co-transported AZ

proteins, or BRP could bind Aplip1 independently of RBP. We therefore created aplip1/rbp and

aplip1/brp double mutants to investigate the functional relation of RBP and BRP with regard to

Aplip1-dependent transport. While removing BRP in srpk79D mutants also abolished the axonal

RBP spots (Figure 5—figure supplement 1D), removing BRP in aplip1 mutants had no apparent

effect on axonal RBP accumulations (Figure 5B; control in Figure 5A). On the other hand,

genetic elimination of RBP did not interfere with the accumulation of BRP in aplip1 mutant axons

(Figure 5E; controls in Figure 5C,D). Thus, BRP transport also ‘suffers’ from the absence of the

Aplip1 adaptor when RBP is removed in parallel. Hence, Aplip1 promotes BRP transport even in

the absence of RBP. To address a putative molecular basis of this relationship, we performed

a Y2H assay to test for direct interaction between five different BRP constructs and a full length

Aplip1 construct (see Figure 3B for domain structure). Despite these efforts, robust interactions

between Aplip1 and BRP fragments could not be detected (data not shown). Nonetheless, both

RBP but also BRP were easily detected in anti-GFP immunoprecipitations (IPs) from a synaptic

membrane preparation (Figure 5F; Figure 5—figure supplement 2) derived from Drosophila

Figure 3. Continued

(ITC) peptides (SH3-I, SH3-II, SH3-III and SH3-II+III) used for ITC measurements (D) are also shown. (B) Schematic

representation of Aplip1 domain structure entailing two PxxP motifs, one SH3 and one C-terminal PID. Different

preys (Aplip1-PxxP1, -AxxA1 and -PxxP2) used in Y2H assay (C) are indicated. (C) Liquid Y2H assay of individual

Aplip1 prey fragments against different RBP baits. Aplip1-PxxP1 interacted with both the single SH3-II and -III

domains of RBP. Mutating this first PxxP motif (Aplip1-AxxA1) construct abolished the binding. Aplip1-PxxP2

showed no interaction to RBP SH3 domains. Constructs with point-mutated RBP SH3 domains (SH3-II*, SH3-III*)

abolished the binding to Aplip1-PxxP1. (D) Peptide sequences used for ITC measurements. Aplip1 showed the

strongest interaction with RBP compared with Cacophony (Cac), RIM1 and RIM2, with the strongest affinity (lowest

KD) between Aplip1 and the RBP SH3-II+III domain. (E, F) Crystal structure of Aplip1-peptide (E; see also, 3D for

peptide sequence) and of Cac-peptide (F; see also, Figure 3D for peptide sequence) bound to RBP SH3-II. The SH3

domain is shown in gray surface representation with (left) and without (right) the respective protein in cartoon

representation. The bound peptides are drawn in stick representation. Hydrogen bonds ≤3.3 Å are indicated by red

dashes. In the right panel, several peptide SH3-II complexes as observed in the asymmetric unit are superimposed

and shown in different colors. See also, Tables 1–4.

DOI: 10.7554/eLife.06935.006

The following figure supplements are available for figure 3:

Figure supplement 1. ITC measurements for Aplip1 and RBP SH3 domains.

DOI: 10.7554/eLife.06935.007

Figure supplement 2. ITC measurements for Cac and RBP SH3 domains.

DOI: 10.7554/eLife.06935.008

Figure supplement 3. ITC measurements for RIM1 and RBP SH3 domains.

DOI: 10.7554/eLife.06935.009

Figure supplement 4. ITC measurements for RIM2 and RBP SH3 domains.

DOI: 10.7554/eLife.06935.010

Figure supplement 5. Crystal structure of Cac-peptide bound to RBP SH3-III domain.

DOI: 10.7554/eLife.06935.011
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head extracts of pan-neuronal driven Aplip1-GFP cDNA construct (Depner et al., 2014). Of note,

within axons of rbpnull mutant larvae, ectopic BRP accumulations could not be observed (not shown).

Thus, we provide evidence for an RBP-independent but Aplip1-dependent transport component for

BRP, whose mechanistic details have still to be deciphered. Taken together, our results imply that

though BRP and RBP are co-transported in the WT situation, their Aplip1-dependent transport can

be genetically uncoupled.

Table 1. Data collection and refinement statistics
Data collection

Structure RBP SH3-II RBP SH3-II RBP SH3-III

Aplip1 Cac Cac

PDB entry 4Z88 4Z89 4Z8A

Space group C2 P21 I222

Wavelength (Å) 0.91841 0.91841 0.91841

Unit cell

a; b; c (Å) 108.3; 62.4; 163.6 58.3; 122.2; 68.5 52.1; 54.3; 73.6

α; β; γ (˚) 90.0; 90.3; 90.0 90.0; 113.2; 90.0 90.0; 90.0; 90.0

Resolution (Å)* 50.00–2.09 50.00–2.64 50.00–1.75

(2.19–2.09) (2.74–2.64) (1.86–1.75)

Unique reflections 64,269 (7760) 25,229 (2591) 10,690 (1579)

Completeness* 98.9 (92.4) 96.9 (95.0) 98.7 (92.6)

<I/σ(I)>* 7.7 (2.6) 8.0 (2.1) 14.2 (2.2)

Rmeas*, † 0.127 (0.533) 0.157 (0.726) 0.127 (0.663)

CC1/2* 99.1 (68.0) 98.9 (81.2) 99.7 (76.5)

Redundancy* 3.7 (3.7) 3.5 (3.2) 5.6 (3.1)

Refinement

Non-hydrogen atoms 7564 6239 850

Rwork*, ‡ 0.210 (0.314) 0.255 (0.367) 0.159 (0.233)

Rfree*, § 0.236 (0.396) 0.312 (0.490) 0.208 (0.332)

Average B-factor (Å2) 40.8 52.10 18.8

No. of complexes 24 10 1

Protein residues 6484/41.0 663/51.1 74/17.6

Peptide residues 861/42.7 92/63.6 15/15.9

Buffer molecules 11/40.2 1/46.3 –

Water molecules 57/29.6 134/30.3 110/28.6

r.m.s.d.#

bond length (Å) 0.007 0.005 0.010

bond angles (˚) 1.224 1.140 1.210

Ramachandran outliers (%) 0.1 0.56 0

Ramachandran favoured (%) 98.4 98.0 100

*values in parentheses refer to the highest resolution shell.

†Rmeas = Σh [n/(n − 1)]1/2 Σi|Ih − Ih,i|/ΣhΣiIh,i where Ih is the mean intensity of symmetry-equivalent reflections and n is

the redundancy.

‡Rwork = Σh|Fo − Fc|/ΣFo (working set, no σ cut-off applied).

§Rfree is the same as Rwork, but calculated on 5% of the data excluded from refinement.

#Root-mean-square deviation (r.m.s.d.) from target geometries.

CC, coiled coil.

DOI: 10.7554/eLife.06935.014
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RBP and BRP form ectopic AZs at
the axonal plasma membrane of
aplip1 mutants
The BRP flux in axons of aplip1 mutants was

severely diminished, but not completely abolished

(Figure 2E). At the same time, AZ localization of

both BRP and RBP at synaptic terminals of aplip1

mutants was still observed in both aplip1 alleles

(not shown), although slightly reduced (not shown).

This indicates that alternative transport mecha-

nisms and adaptors exist which operate in parallel

to Aplip1, as the synaptic phenotype is relatively

weak. In fact, axonal accumulations of BRP have

already been described for Acyl-CoA long-chain

Synthetase (Acsl, Liu et al., 2011b) as well as for

Unc-51 (Atg1) mutants (Wairkar et al., 2009).

In our experiments, we found RBP to invariably

co-cluster with BRP in the mutants mentioned

(Figure 6B,C; control in Figure 6A), and equally in

mutants of the Drosophila ß-amyloid protein

precursor-like (Appl; Torroja et al., 1999a,

1999b; Figure 6D) and Unc-76 (Gindhart et al.,

2003; Figure 6E). The fact that RBP and BRP

tightly co-accumulated in axonal aggregates of all

these transport mutants strengthens the probabil-

ity that BRP is always co-transported with RBP.

To gain a deeper insight into the substructure of the BRP/RBP accumulations in aplip1 mutant

axons, we again used two-colour STED microscopy. In contrast to the srpk79D aggregates, however,

STED images of axonal BRB/RBP accumulations were reminiscent of mature synaptic AZs (Liu et al.

2011a), with BRPC-term signal surrounding the RBP signal, which, in turn, is oriented closer towards the

axonal plasma membrane (Figure 7A, arrow head; plasma membrane indicated by dashed line).

Interestingly, in contrast to the floating T-bar super-aggregates in srpk79D mutants (Johnson et al.,

2009; Nieratschker et al., 2009), these axonal BRP spots in aplip1 mutants were positive for Syd-1

(compare Figures 1C, 7B). Intriguingly, floating T-bars have been observed in synaptic boutons in syd-

1 mutants (Owald et al., 2010). Together, this is suggestive of a role of Syd-1 in the membrane-

anchoring of AZ proteins.

Furthermore, we asked whether BRP/RBP aggregates identified in aplip1 mutants represent ectopic

AZs forming at the axonal plasma membrane. In fact, EM analysis easily revealed T-bar structures, typical

for synaptic terminals (Figure 7C, arrow heads, magnification in E), at axonal plasma membranes of aplip1

mutants (Figure 7D, arrow heads, magnification in F), but never in controls (not shown). We found

these ectopic axonal T-bars surrounded by SV profiles (Figure 7D, arrows), very similar to ‘normally

positioned’ T-bars at the presynaptic terminal (Figure 7C, arrows). Consistently, the SV marker

Synaptotagmin-1 (Syt-1) was found to be associated with BRP/RBP accumulations in aplip1null

mutants (Figure 7H, quantification in Figure 7K). This phenotype could be rescued by the

expression of an Aplip1 WT cDNA construct (Figure 7I, quantification in Figure 7K) but not by the

expression of the Aplip1-AxxA1 construct (Figure 7J; quantification in Figure 7K). Thus, a point-like

interaction surface of Aplip1 which binds RBP with high affinity is important to block a whole

sequence of assembly events at the axonal plasma membrane, including AZ scaffold (‘T-bar’)

formation and the accumulation of SVs.

To further support the importance of adaptor protein—cargo interaction in blocking ectopic AZ

assembly we downregulated the expression of motor proteins. This also leads to transport

defects and ectopic axonal AZ protein accumulations but in principle leaving the adaptor

protein—cargo interaction intact. Interestingly, motoneuronal driven Imac-RNAi led to only

few axonal BRP/RBP accumulations although with no preference concerning their direction

in relation to the axonal plasma membrane (Figure 7—figure supplement 1B; arrow heads).

Table 2. Completeness of the model for RBP

SH3-II and bound Aplip1 peptide

RBP SH3-II Range Aplip1 Range

chain A 1318–1382 chain M 153–163

chain B x1318–1382 chain N 155–159

chain C x1318–1381 chain O 154–163

chain D x1318–1382 chain P 153–159

chain E 1319–1381 chain Q 151–163

chain F x1318–1380 chain R 153–159

chain G x1318–1381 chain S 151–163

chain H x1318–1382 chain T 152–156

chain I x1318–1382 chain U 152–163

chain J x1318–1381 chain V 152–158

chain K x1318–1381 chain W 152–163

chain L x1318–1381 chain X 152–158

Completeness of the model given for the 12 complexes

of RBP SH3-II bound to the Aplip1 peptide
149TRRRRKLPEIPKNKK163. Superscript ‘x’ indicates addi-

tional N-terminal residues of RBP SH3-II originating from

the linker region between the protease cleavage site

and the N-terminus.

DOI: 10.7554/eLife.06935.015
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In contrast motoneuronal driven KHC-RNAi

showed prominent axonal aggregates consis-

tent of BRP/RBP but most of the time

showing an irregular, elongated shape

(Figure 7—figure supplement 1C; arrow

heads). As mentioned above, proper T-bars

were identified in aplip1 mutant axons with

ease. In contrast, systematic EM analysis of khc

mutant axons revealed just one electron dense

material that showed a T-bar-like appearance

(Figure 7—figure supplement 1D; arrow

head, magnifications in E, F) but never in

control (ctrl) or motoneuronal driven Imac-

RNAi.

In summary, we find that the SH3-II and -III

interaction surface of RBP serves as a multi-

functional platform for differential protein in-

teraction with either other AZ components or the

transport adaptor and therefore, motor-cargo

linkage. Thus, interaction surfaces of RBP/BRP

‘cargo complexes’ might be shielded and

blocked from undergoing premature assembly

by interactions with transport adaptors, while

genetically induced loss of these adaptors might

provoke premature AZ assembly.

Discussion
Large multi-domain scaffold proteins such as BRP/

RBP are ultimately destined to form stable

scaffolds, characterized by remarkable tenacity

and a low turnover, likely due to stabilization by

multiple homo- and heterotypic interactions si-

multaneously (Sigrist and Schmitz, 2011). How

these large and ‘sticky’ AZ scaffold components

engage into axonal transport processes to ensure

their ‘safe’ arrival at the synaptic terminal remains to be addressed. We find here that the AZ scaffold

protein RBP binds the transport adaptor Aplip1 using a ‘classic’ PxxP/SH3 interaction. Notably,

the same RBP SH3 domain (II and III) interaction surfaces are used for binding the synaptic AZ

ligands of RBP, that is, RIM and the voltage gated Ca2+ channel (Wang et al., 2002; Kaeser

et al., 2011; Liu et al., 2011a; Davydova et al., 2014), though with clearly lower affinity than for

Aplip1. A point mutation which disrupts the Aplip1-RBP interaction provoked a ‘premature’

capture of RBP and the co-transported BRP at the axonal membrane, thus forming ectopic but,

concerning T-bar shape and BRP/RBP arrangement, WT-like AZ scaffolds. The Aplip1 orthologue Jip1

has been shown to homo-dimerize via interaction of its SH3 domain (Kristensen et al., 2006). Thus, the

multiplicity of interactions, with Aplip1 dimers binding to two SH3 domains of RBP as well as to KLC,

might form transport complexes of sufficient avidity to ensure tight adaptor–cargo interaction and

prevent premature capture of the scaffold components.

Our intravital imaging experiments showed that within axons RBP and BRP are co-transport in

shared complexes together with Aplip1, whereas we, despite efforts, were unable to detect any co-

transport of other AZ scaffold components, that is, Syd-1 or Liprin-α with BRP/RBP (not shown). In

addition, STED analysis of axonal aggregates in srpk79D mutants showed BRP/RBP in stoichiometric

amounts, but also failed to detect other AZ scaffold components. Moreover, BRP and RBP co-

aggregated in the axoplasm of several other transport mutants we tested (acsl, unc-51, appl, unc-76),

consistent with both proteins entering synaptic AZ assembly from a common transport complex. Of

note, during AZ assembly at the NMJ, BRP incorporation is invariably delayed compared to the ‘early

assembly’ phase which is driven by the accumulation of Syd-1/Liprin-α scaffolds (Fouquet et al., 2009;

Table 3. Hydrogen bonding interaction

Aplip1 SH3-II Distance

Arg153N Asp1359OD2 2.4

Arg153NH2 Asp1336OD1 3.0

Arg153NH2 Asp1336OD2 2.6

Lys154N Asn1334OD1 2.9

Lys154O Asn1334ND2 3.0

Pro156O Asn1376ND2 2.8

Cac SH3-II Distance

Gly1686N Asp1359OD2 2.7

Arg1687N Asp1359OD2 2.8

Arg1688N Asn1334OD1 3.0

Arg1688O Asn1334ND2 2.9

Pro1690O Asn1376ND2 2.8

Cac SH3-III Distance

Arg1687NH1 Asp1463OD1 2.9

Arg1687NH1 Glu1488OE2 3.0

Arg1687NH2 Glu1488OE2 3.1

Arg1688N Asn1461OD1 2.8

Arg1688O Asn1461ND2 3.0

Pro1690O Asn1376ND2 2.9

Thr1692OG Asn1376ND2 2.9

Lys1695O Tyr1451OH 2.8

Ser1697OG Leu1450O 2.7

Hydrogen bonding interaction of RBP SH3-II with Aplip1

and Cac, as well as RBP SH3-III in complex with Cac.

Distance ≤3.2 Å are given in Å.

DOI: 10.7554/eLife.06935.016
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Owald et al., 2010, 2012). As the early assembly

phase is, per se, still reversible (Owald et al.,

2010), the transport of ‘stoichiometric RBP/BRP

complexes’ delivering building blocks for the

‘mature scaffold’ might drive AZ assembly into

a mature, irreversible state (Owald et al., 2010),

and seems mechanistically distinct from early

scaffold assembly mechanisms.

Previous work suggested that AZ scaffold

components (Piccolo, Bassoon, Munc-13 and

ELKS) in rodent neurons are transported to

assembling synapses as ‘preformed complexes’,

so-called Piccolo-Bassoon-Transport Vesicles

(PTVs; Zhai et al., 2001; Shapira et al., 2003;

Maas et al., 2012). The PTVs are thought to be

co-transported with SV precursors (Ahmari et al.,

2000; Tao-Cheng, 2007; Bury and Sabo, 2011)

anterogradely mediated via a KHC(KIF5B)/

Syntabuli/Syntaxin-1 complex (Cai et al., 2007)

and retrogradely via a direct interaction between

Dynein light chain and Bassoon (Fejtova et al.,

2009). Since their initial description, however,

further investigations of PTVs have been ham-

pered by the apparent relative scarcity of PTVs,

and by the lack of genetic or biochemical options for specifically interfering with their transport or final

incorporation into AZs.

Despite efforts we were not able to detect a direct interaction of Aplip1 and BRP although their

common transport can be uncoupled from the presence of RBP. One possible explanation could be

a direct interaction of Aplip1 to other AZ proteins that are co-transported together with BRP and RBP.

It is interesting that the very C-terminus of BRP is essential for SV clustering around the BRP-based AZ

cytomatrix (Hallerman et al., 2010). Thus, it is tempting to speculate that adaptor/transport complex

binding might block premature AZ protein/SV interactions before AZ assembly, but further analysis

will have to await more atomic details as we could gain for the RBP::Aplip1 interaction.

The down-regulation of the motor protein KHC also provoked severe axonal co-accumulations of

BRP and RBP but per se should leave the adaptor protein-AZ cargo interaction intact. In contrast to

aplip1, the axonal aggregations in khc mutants adapted irregular shapes most of the time, likely not

representing T-bar-like structures. Thus, our data suggest a mechanistic difference when comparing

the consequences between eliminating adaptor cargo interactions with a direct impairment of motor

functions. Still, we cannot exclude that trafficking of AZ complexes naturally antagonizes their ability

to assemble into T-bars.

The idea that proteins/molecules are held in an inactive state till they reach their final target has

been observed in many other cell types. For example, in the context of local translation control,

mRNAs are shielded or hidden in messenger ribonucleoprotein particles during transport so that they

are withheld from cellular processing events such as translation and degradation. Shielding is thought

to operate through proteins that bind to the mRNA and alter its conformation while at the correct

time or place the masking protein is influenced by a signal that alleviates its shielding effect (Spirin,

1996; Johnstone and Lasko, 2001). As another example, hydrolytic enzymes, for example,

lysosomes, are transported as proteolytically inactive precursors that become matured by proteolytic

processing only within late endosomes or lysosomes (Ishidoh and Kominami, 2002). Particularly

relevant in the context of AZ proteins involved in exocytosis, the Habc domain of Syntaxin-1 folds back

on the central helix of the SNARE motif to generate a closed and inactive conformation which might

prevent the interaction of Syntaxin-1 with other AZ proteins during diffusion (Dulubova et al., 1999;

Ribrault et al., 2011).

Previously, genetic analysis of C. elegans axons forming en passant synapses suggested a tight

balance between capture and dissociation of protein transport complexes to ensure proper

positioning of presynaptic AZs. In this study, overexpression of the kinesin motor Unc-104/KIF1A

Table 4. Completeness of the model for RBP

SH3-II and bound Cac peptide

RBP SH3-II Range Cac Range

chain A 1318–1381 chain a 1686–1697

chain B x1318–1381 chain b 1686–1695

chain C x1318–1382 chain c 1686–1697

chain D x1318–1381 chain d 1686–1697

chain E 1318–1382 chain e 1685–1694

chain F x1318–1382 chain f 1685–1693

chain G x1318–1382 chain g 1686–1693

chain H 1318–1381 chain h 1686–1693

chain I x1318–1381 chain i 1686–1693

chain J x1318–1382 chain j 1686–1697

Completeness of the model given for the six complexes

of RBP SH3-II and the bound Cac peptide
1685IGRRLPPTPSKPSTL1699. Superscript ‘x’ indicates ad-

ditional N-terminal residues of RBP SH3-II originating

from the linker region between the protease cleavage

site and the N-terminus.
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Figure 4. Aplip1-PXXP1 motif is needed for its function as RBP/BRP transport adaptor. (A–D) Nerve bundles

of segments A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.

(E, F) Quantification of BRP/RBP spot numbers. BRP spots per μm2: WT (n = 8 nerves): 0.084 ± 0.010; aplip1ek4

(n = 9 nerves): 0.205 ± 0.025; aplip1null (n = 8 nerves): 0.183 ± 0.025; aplip1null, gen. rescue (n = 8 nerves): 0.034

± 0.007; RBP spots per μm2, WT (n = 8 nerves): 0.074 ± 0.007; aplip1ek4 (n = 9 nerves): 0.180 ± 0.019; aplip1null

(n = 8 nerves): 0.153 ± 0.037; aplip1null, gen. rescue (n = 8 nerves): 0.025 ± 0.006. All panels show mean values

and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not significant, p > 0.05,

Mann–Whitney U test. (G–J) Nerve bundles of segment A1–A3 from third instar larvae of the genotypes

indicated labeled with the Abs indicated. BRP and RBP co-localized in control animals and accumulated in

a co-localizing fashion in axons of aplip1null mutant animals. Re-expression of an Aplip1-WT cDNA construct

in the aplip1null background rescued the phenotype, while re-expression of an AxxA1 construct did not.

Figure 4. continued on next page
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reduced the capture rate and could suppress the premature axonal accumulations of AZ/SV proteins

in mutants of the small, ARF-family G-protein Arl-8. Interestingly, large axonal accumulations in arl-8

mutants displayed a particularly high capture rate (Klassen et al., 2010; Wu et al., 2013). Similarly,

both aplip1 alleles exhibited enlarged axonal BRP/RBP accumulations. Thus, the capture/dissociation

balance for AZ components might be shifted towards ‘capture’ in these mutants, consistent with the

ectopic axonal T-bar formation. It is tempting to speculate that loss of Aplip1-dependent scaffolding

and/or kinesin binding provokes the exposure of critical ‘sticky’ patches of scaffold components such

as RBP and BRP. Such opening of interaction surfaces might increase ‘premature’ interactions of cargo

proteins actually destined for AZ assembly, thus increase overall size of the cargo complexes by

oligomerization between AZ proteins and, finally, promote premature capture and ultimately ectopic

AZ-like assembly. On the other hand, the need for the system to unload the AZ cargo at places of

physiological assembly (i.e., presynaptic AZ) might pose a limit to the ‘wrapping’ of AZ components

and ask for a fine-tuned capture/dissociation balance.

Several mechanisms for motor/cargo separation such as (i) conformational changes induced by

guanosine-5′-triphosphate hydrolysis, (ii) posttranslational modification as de/phosphorylation, or

(iii) acetylation affecting motor-tubulin affinity, have been suggested for cargo unloading

(Hirokawa et al., 2010). Notably, Aplip1 also functions as a scaffold for JNK pathway kinases,

whose activity causes motor-cargo dissociation. JNK probably converges with a mitogen-

activated protein kinase (MAPK) cascade (MAPK kinase kinase Wallenda phosphorylating MAPK

kinase Hemipterous) in the phosphorylation of Aplip1, thereby dissociating Aplip1 from KLC.

Thus, JNK signaling, co-ordinated by the Aplip1 scaffold, provides an attractive candidate mechanism

for local unloading of SVs (Horiuchi et al., 2007) and, as shown here, AZ cargo at synaptic boutons. Our

study further emphasises the role of the Aplip1 adaptor, whose direct scaffolding role through binding

AZ proteins might well be integrated with upstream controls via JNK and MAP kinases. Intravital

imaging in combination with genetics of newly assembling NMJ synapses should be ideally suited to

further dissect the obviously delicate interplay between local cues mediating capturing and axonal

transport with motor-cargo dissociation.

Materials and methods

Genetics
Fly strains were reared under standard laboratory conditions (Sigrist et al., 2003) on semi-defined

medium (Bloomington recipe). For all experiments both male and female larvae were used for

analysis. The following genotypes were used: WT: +/+ (w1118). srpk79D: srpk79Datc/srpk79Datc

(unless otherwise noted). srpk79Dvn: srpk79Dvn/srpk79Dvn. srpk79Datc: srpk79Datc/srpk79Datc. brpDf/+;
srpk79D: Df(2R)BSC29/+; srpk79Datc/srpk79Datc. brpnull/brpDf; srpk79D: brp69/Df(2R)BSC29;

srpk79Datc/srpk79Datc. rbpDf/+;srpk79D: Df(3R)S2.01/+; srpk79Datc/srpk79Datc. rbpnull/rbpDf; srpk79D:

rbpSTOP1/Df(3R)S201; srpk79Datc/srpk79Datc. aplip1ek4: aplip1ek4/aplip1ek4. aplip1null: aplip1ex213/aplip1ex213.

aplip1, gen.rescue: aplip1gen.rescue(ex213)/aplip1gen.rescue(ex213). Aplip1 cDNA rescue: control: elav/+;;
aplip1ex213/+. aplip1null: elav/+;;aplip1ex213/aplip1ex213. WT rescue: elav/+;UAS-Aplip1-WT/+;aplip1ex213/
aplip1ex213. AxxA1 rescue: elav/+;UAS-Aplip1-AxxA1/+;aplip1ex213/aplip1ex213. brpDf/+;aplip1ek4: Df(2R)

BSC29/+; aplip1ek4/aplip1ek4. brpnull/brpDf;aplip1ek4: brp69/Df(2R)BSC29; aplip1ek4/aplip1ek4. Ok6>+: OK6-

Gal4/+. OK6>Aplip1-RNAi;rbpDf/+: OK6-Gal4/UAS-aplip1-RNAi;Df(3R)S2.01/+. OK6>Aplip1-RNAi;

rbpnull/Df: OK6-Gal4/UAS-aplip1-RNAi; rbpSTOP1/Df(3R)S201. acsl: acsl05847/acsl1. unc51 (atg-1): atg1ey07351/

Df(3L)BSC10. appl: applBG0264/appl Df(1)yT7-518. unc-76: unc-76G0158/y. Aplip1GFP,BRP-shortstraw: OK6-Gal4/UAS-

BRP-shortstraw;UAS-Aplip1GFP/+. Aplip1GFP,RBPcherry: OK6-Gal4/OK6-Gal4;UAS-Aplip1GFP/UAS-Aplip1GFP

Figure 4. Continued

(K, L) Quantification of the number of BRP/RBP spots per μm2 axon. BRP spots per μm2, control (n = 12 nerves):

0.084 ± 0.010; aplip1null (n = 16 nerves): 0.198 ± 0.022; WT rescue (n = 14 nerves): 0.078 ± 0.009; AxxA1

rescue (n = 14 nerves): 0.177 ± 0.012; RBP spots per μm2, control (n = 12 nerves): 0.071 ± 0.013; aplip1null

(n = 16 nerves): 0.188 ± 0.026; WT rescue (n = 14 nerves): 0.039 ± 0.004; AxxA1 rescue (n = 14 nerves): 0.158 ±
0.015. All panels show mean values and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns,

not significant, p > 0.05, Mann–Whitney U test. Scale bar: (A–D, G–J) 10 μm.
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were crossed to upstream activator sequence (UAS)-RBPcherry/UAS-RBPcherry. BRPGFP,RBPcherry: OK6-Gal4/

OK6-Gal4;genomicBRPGFP/genomicBRPGFP were crossed to UAS-RBPcherry/UAS-RBPcherry. Live

imaging BRP-shortstraw in aplip1 mutant backgrounds (Figure 2E): ctrl: OK6-Gal4/UAS-BRP-

shortstraw.aplip1ek4: OK6-Gal4/UAS-BRP-shortstraw;aplip1ek4/aplip1ek4. aplip1null: OK6-Gal4/UAS-BRP-

shortstraw;aplip1ex213/aplip1ex213. aplip1gen.rescue: OK6-Gal4/UAS-BRP-shortstraw;aplip1gen.rescue(ex213)/

aplip1gen.rescue(ex213). Ok6/+;UAS-KHC-RNAi. Ok6/+;UAS-Imac-RNAi.

Stocks were obtained from: brp69 (Kittel et al., 2006), Df(3R)S2.01 and rbpSTOP1 (Liu et al., 2011a),

aplip1ex213 and aplip1gen.rescue(ex213) gift from Catherine Collins (Klinedinst et al., 2013), srpk79Datc

(Johnson et al., 2009), srpk79Dvn (Nieratschker et al., 2009), UAS-Aplip1GFP (Horiuchi et al., 2005),

UAS-BRP-shortstraw (Schmid et al., 2008) and genomic BRPGFP (Matkovic et al., 2013). The aplip1ek4,

Df(2R)BSC29, acsl05847, acsl1, atg1ey07351, applBG0264, appl Df(1)yT7-518, Df(3L)BSC10, unc-76G0158 lines were

provided by the Bloomington Drosophila Stock Center. UAS-Aplip1-RNAi, UAS-Imac-RNAi and

UAS-KHC-RNAi from VDRC.

Figure 5. Aplip1 promotes BRP transport in absence of RBP. (A–E) Nerve bundles of segments A1–A3 from third

instar larvae of the genotypes indicated labeled with the Abs indicated. (A) Removing one copy of BRP in aplip1ek4

mutants had no apparent effect on axonal RBP accumulation. (B) RBP still accumulates in brpnull;aplip1ek4 double

mutants. (C, D) Driver control and removing one copy of RBP in motoneuronal driven Aplip1-RNAi had no apparent

effect on axonal BRP accumulation. (E) BRP still accumulates in rbpnull,aplip1 double mutants Scale bar: (A–E) 10 μm.

(F) Immunoprecipitation (IP) of Aplip1GFP with anti-GFP Ab from Drosophila active zone (AZ) protein-enriched

fraction was followed by Western blot (WB) analysis using anti-BRPLast200 and anti-RBPSH3-II+III. Both BRP and RBP

could be detected in Aplip1GFP IPs, but are absent in controls (plain beads; GFP trapped beads). (For whole WBs,

see Figure 5—figure supplement 2).

DOI: 10.7554/eLife.06935.019

The following figure supplements are available for figure 5:

Figure supplement 1. Accumulation of BRP in srpk79D mutant axons is unaffected by removing RBP.

DOI: 10.7554/eLife.06935.020

Figure supplement 2. IP of Aplip1GFP with anti-GFP (Full blot).

DOI: 10.7554/eLife.06935.021
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Generation of RBPcherry cDNA construct
RBP cDNA was assembled based on exon annotation sequence of RBP-PF isoform from flybase. cDNA

clones, AT04807; RH38268 and a gene synthesis fragment from MWG eurofins GMBH, Germany,

containing 1–1131 bp of RBP-PF isoform were used to assemble the cDNA. All the fragments were

cloned into a modified pENTR4 cloning vector described in Fouquet et al. (2009). The final pENTR4

construct contains 5499 bp RBP cDNA was recombined with pTW-Cherry gateway Drosophila

transgenic vector. Transgenic flies were generated at Bestgene Inc., CA, USA and insertion was

confirmed by genotyping.

Generation of Aplip-WT1 and Aplip1-AxxA1 construct
To generate the cDNA of Aplip1 (with WT or mutated first PXXP motif), the full length cDNA clone of

Aplip1 was kindly obtained from HYBRIGENICS Services, France and used as a template for cloning

full length Aplip1 into pENTR/D-Topo (Invitrogen, Germany) using the following primers:

Aplip1-FL-FW 5′-CACCATGGCCGACAGCGAATTCGAGGAGTT-3′
Aplip1-FL-REV 5′-TCGGCGCGCCCACCCTTCTACTCAATGTAG-3′

Through Gateway reaction, the construct was shuttled into GAL4/UAS vector and sent for injection

at BestGene Inc., CA, USA. Point mutations were introduced into the constructs via mutated primers

with the ‘Quick Change II Site-Directed Mutagenesis Kit’ from Stratagene, CA, USA. This induced

a change of the prolines of PxxP1 (155-PEIP-160) into alanines (155-AEIA-160) after mutagenesis.

Following primers were used:

Forward 5′ CGTCGTCGCAAGTTGGCGGAAATAGCGAAAAACAAGAAATCT 3′
Reverse 5′ AGATTTCTTGTTTTTCGCTATTTCCGCCAACTTGCGACGACG 3′

Generation of peptides for crystallography
For crystallography constructs comprising either the RBP SH3-II (residue 1318–1382) or SH3-III

(residue 1441–1507) domain of RBP were amplified by PCR and cloned into the pGEX-6P1 vector

using EcoRI and XhoI restriction sites.

The following primers were used:

SH3II_for 5′-CAGAATTCCGCTATTTTGTGGCCATGTTC-3′
SH3II_rev 5′-TACTCGAGTCACTCCACCTCGGAGACCAT-3′

Figure 6. Several known transport adaptor mutants showed axonal BRP and RBP co-accumulations. (A–E) Nerve

bundles of segment A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.

BRP and RBP accumulated in a co-localizing manner in axons of WT (A), acsl (B), unc-51 (atg-1; C), appl (D) and

unc-76 (E). Scale bar: 10 μm.

DOI: 10.7554/eLife.06935.022
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Figure 7. Ectopic AZ scaffold and synaptic vesicle (SV) accumulation in aplip1 mutant axons. (A) Two-colour STED

images of axonal aggregates in aplip1ek4 mutants revealed that the structures observed (arrow heads) have identical

BRP and RBP arrangement, as recently observed at presynaptic AZs (Liu et al., 2011a). Right panels display

magnifications of single axonal AZ. Dashed lines indicate axonal plasma membrane. (B) Two-colour STED images of

axonal aggregates in aplip1ek4 mutants revealed that the structures observed (arrow head) have identical BRP and Syd-1

arrangement as observed at immature presynaptic AZs (Owald et al., 2010). Right panels display magnifications of

single axonal AZ. Dashed lines indicate axonal plasma membrane. (C) Terminal T-bar (arrow heads) surrounded by SVs

(arrows) taken from electron micrographs of WT third instar larvae after conventional embedding. (D) Ectopic axonal

T-bar (arrow heads) taken from electron micrographs from aplip1ek4 mutant third instar larvae after conventional

embedding. SVs accumulate around the ectopic T-bar (arrows). (E) Magnification of (C). (F) Magnification of (D).

(G–J) Nerve bundles of segment A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs

indicated. Syt-1 accumulates at a subset of axonal BRP aggregations in aplip1null and AxxA1 rescue (H, J) larvae, but not

in control and WT rescue larvae (G, I). (K) Quantification of the number of Syt-1 spots per μm2 axon. control (n = 12

nerves): 0.004 ± 0.002; aplip1null (n = 16 nerves): 0.040 ± 0.011; WT rescue (n = 13 nerves): 0.014 ± 0.007; AxxA1 rescue

(n = 13 nerves): 0.052 ± 0.017. All panels show mean values and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01;

***p ≤ 0.001; ns, not significant, p > 0.05, Mann–Whitney U test. Scale bars: (A, B) 500 nm; (C, D) 100 nm; (G, J) 10 μm.

DOI: 10.7554/eLife.06935.023

The following figure supplement is available for figure 7:

Figure supplement 1. Ectopic AZ protein accumulations in motoneuronal driven Imac- and KHC-RNAi axons.

DOI: 10.7554/eLife.06935.024
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SH3III_for 5′-CAGAATTCAACATGCCCGTGAAGCGAATG-3′
SH3III_rev 5′-TACTCGAGTCAGTCCGCCAGGAAGTTAGA-3′

The resulting constructs comprise an N-terminal GST-tag that is followed by a PreScission cleavage

site and the respective SH3 domain. Correctness of the DNA sequences was confirmed by DNA

sequencing.

Yeast two-Hybrid
The Yeast two-Hybrid screen for RBP interaction partners was carried out in collaboration

with HYBRIGENICS Services, France using the LexA system (pB27 with bait; pP6 vector with

prey) against the HYBRIGENICS Drosophila melanogaster head (adult) library. The vector maps

of the bait and prey vectors are confidential (protected under material transfer agreement).

The plasmids (pP6 and pB27) encode tryptophan (Trp) and leucine (Leu) biosynthesis genes, and

were successfully double transformed into the TATA strain lacking genes for synthesis of Leu and Trp

which can be followed by positive growth in LT media. Reporter genes for the protein–protein

interaction are HIS3, which can be later detected by growth on plates lacking histidin, as well as lacZ

which allows the detection of interaction in a more quantitative fashion with a β-galactosidase assay.

To transform the yeast cells with the pP6 and pB27 vector respectively the LiAc/single strand DNA/

PEG technique was used (Gietz and Schiestl, 2007).

The RBP constructs for Y2H were cloned into pB27 bait vector. The RBP cDNA clone AT04807

(Drosophila Genomics Resource Centre, IN, USA) was used as a template for PCR reaction. For

amplification the following primers were used:

5′-CAGAATTCGGTCAACCGGGACAACCGGGG-3′
5′-TAACTAGTTCAGTCGGGCGCGTCCGCCAGGA-3′

Protein sequence of the bait fragment

RBP SH3-II+III (length: 209 AA; Orientation C-term free [N-LexA-bait-C])
GQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRG

RRGYVPHNMVSEVEDTTASMTAGGQMPGQMPGQMGQGQGVGVGGTAQVMPGQGAPQQSMRNVS

RDRWGDIYANMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVP

SNFLADAPD

Liquid Y2H ß-Galactosidase assay
The assay was carried out as described in JH Miller ‘Experiments in Molecular Genetics’ 1972 Cold

Spring Harbor Laboratories pages 352–355.

The RBP constructs for Y2H were cloned into pB27 bait vector. The RBP cDNA clone AT04807

(Drosophila Genomics Resource Centre) was used as a template for PCR reaction. For amplification

the following primers were used:

RBP SH3-II
5′-CAGAATTCGGTCAACCGGGACAACCGGGG-3′
5′-TAACTAGTTCAGTCCTCCACCTCGGAGACC-3′

Giving rise to the following sequence
PGQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELR

GRRGYVPHNMVSEVED

RBP SH3-III
5′-CAGAATTCATGCCCGTGAAGCGAATG-3′
5′-TAACTAGTTCAGTCGGGCGCGTCCGCCAGGA-3′

Giving rise to the following sequence
MPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPSNFLADAPD

RBP SH3-II+III
5′-CAGAATTCGGTCAACCGGGACAACCGGGG-3′
5′-TAACTAGTTCAGTCGGGCGCGTCCGCCAGGA-3′
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Giving rise to the following sequence
GQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRG

RRGYVPHNMVSEVEDTTASMTAGGQMPGQMPGQMGQGQGVGVGGTAQVMPGQGAPQQSMRNVS

RDRWGDIYANMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPS

NFLADAPD

By applying the site-directed mutagenesis strategy, different constructs were designed for RBP

using mutated primers. Mutagenesis was carried out by Dr Martin Meixner (SMB. GmbH, Germany,).

The following point mutations were used:

RBP SH3-II*: Prolin1373 → Leucin

Giving rise to the following sequence
PGQPGQPGQMPGAQKKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELR

GRRGYVLHNMVSEVED

RBP SH3-III*: Prolin1500 → Leucin

Giving rise to the following sequence
MPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVLSNFLADAPD

The Aplip1 prey fragment only containing the first PXXP was generated from the
full length fragment via PCR using the primers
Aplip first PXXP FW 5′-CGTACTCCATGGCTGAGGACGATGAGCTGGGCGA-3′
Aplip first PXXP REV 5′-CTGACTACTAGTTGGAGTCCTCGTCCATCAAGTA-3′

Giving rise to the following sequence

Aplip1-PXXP1 (length: 139 AA)

EDDELGDGLKVTLSSDGSLDTNDSFNSHRHHPLNHQDAIGGFLGMDTSGLGGNSAPVTIGASTDLLAPNT

AATRRRRKLPEIPKNKKSSILHLLGGSNFGSLADEFRNGGGGGIPPAVRSGQQRSFLSLKCGYLMDEDS

The Aplip1 prey fragment only containing the second PXXP was generated from the full length

fragment via PCR using the primers

Aplip second PXXP FW 5′-CGTACTCCATGGCTCTTCTAGGTGGCTCCAACTT-3′
Aplip second PXXP REV 5′-CTGACTACTAGTTCTGGCCAAAGGGCACGC-3′

Giving rise to the following sequence

Aplip1-PXXP2 (length: 100 AA)

LLGGSNFGSLADEFRNGGGGGIPPAVRSGQQRSFLSLKCGYLMDEDSSPDSERMQSLGDVDSGHSTAHS

PNDFKSMSPQITSPVSQSPFPPPFGGVPFGQ

The Aplip1 prey fragment only containing the mutated first PXXP motif (AxxA) (see also Generation

of Aplip-WT1 and Aplip1-AxxA1 construct) was generated from the full length fragment via PCR using

the primers:

Forward 5′ CGTCGTCGCAAGTTGGCGGAAATAGCGAAAAACAAGAAATCT 3′
Reverse 5′ AGATTTCTTGTTTTTCGCTATTTCCGCCAACTTGCGACGACG 3′

Giving rise to the following peptide sequence

Aplip1-AXXA1 (length: 139 AA)

EDDELGDGLKVTLSSDGSLDTNDSFNSHRHHPLNHQDAIGGFLGMDTSGLGGNSAPVTIGASTDLLAPNT

AATRRRRKLAEIAKNKKSSILHLLGGSNFGSLADEFRNGGGGGIPPAVRSGQQRSFLSLKCGYLMDEDS

The BRP constructs for Y2H were cloned into pB27 bait vector. Yeast two-hybrid constructs

for BRP were obtained by PCR using the corresponding cDNA as template (modified from Wagh

et al., 2006).

To generate BRP prey fragments the following primers were used:

Forward 5′ CAGCGGCCGCTCCAGTAACTAGCTCTGG 3′
Reverse 5′ TAACTAGTTTATATGTGCCGCTGGTAGTC 3′
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Giving rise to the following peptide sequence

BRP-D1 (length: 359 AA)

PVTSSGVRSPGRVRRLQELPTVDRSPSRDYGAPRGSPLAMGSPYYRDMDEPTSPAGAGHHRSRSASRPPM

AHAMDYPRTRYQSLDRGGLVDPHDREFIPIREPRDRSRDRSLERGLYLEDELYGRSARQSPSAMGGYNTG

MGPTSDRAYLGDLQHQNTDLQRELGNLKRELELTNQKLGSSMHSIKTFWSPELKKERAPRKEESAKYSLIN

DQLKLLSTENQKQAMLVRQLEEELRLRMRQPNLEMRQQMEAIYAENDHLQREISILRETVKDLECRVETQK

QTLIARDESIKKLLEMLQAKGMGKEEERQMFQQMQAMAQKQLDEFRLEIQRRDQEILAMAAKMKTLEE

QHQDYQRHI

Forward 5′ CAGCGGCCGCGATGTTCCAGCAGATGC 3′
Reverse 5′ TAACTAGTTTACTGTGTGACTCTCAGCTCGGC 3′

Giving rise to the following peptide sequence

BRP-D2 (length: 339 AA)

MFQQMQAMAQKQLDEFRLEIQRRDQEILAMAAKMKTLEEQHQDYQRHIAVLKESLCAKEEHYNMLQTD

VEEMRARLEEKNRLIEKKTQGTLQTVQERNRLTSELTELKDHMDIKDRKISVLQRKIENLEDLLKEKDNQVDM

ARARLSAMQAHHSSSEGALTSLEEAIGDKEKQMAQLRDQRDRAEHEKQEERDLHEREVADYKIKLRAAESE

VEKLQTRPERAVTERERLEIKLEASQSELGKSKAELEKATCEMGRSSADWESTKQRTARLELENERLKHDLER

SQNVQKLMFETGKISTTFGRTTMTTSQELDRAQERADKASAELRRTQAELRVTQ

Forward 5′ CAGAATTCGAGCGGGCCGACAAGGC 3′
Reverse 5′ TAACTAGTTCACATTTGCGCCTTCTC 3′

Giving rise to the following peptide sequence

BRP-D3 (length: 636 AA)

ERADKASAELRRTQAELRVTQSDAERAREEAAALQEKLEKSQGEVYRLKAKLENAQGEQESLRQELEKAQ

SGVSRIHADRDRAFSEVEKIKEEMERTQATLGKSQLQHEKLQNSLDKAQNEVDHLQDKLDKACTENRRLV

LEKEKLTYDYDNLQSQLDKALGQAARMQKERETLSLDTDRIREKLEKTQVQLGRIQKERDQFSDELETLKER

SESAQTLLMKAARDREAMQTDLEVLKERYEKSHAIQQKLQMERDDAVTEVEILKEKLDKALYASQKLIDEK

DTSNKEFEKMLEKYDRAQNEIYRLQSRCDTAEADRARLEVEAERSGLAASKAREDLRKLQDESTRLQEACD

RAALQLSRAKECEDNARSELEHSRDRFDKLQTDIRRAQGEKEHFQSELERVTYELERAHAAQTKASASVEA

AKEEAAHYAVELEKMRDRYEKSQVELRKLQDTDTFGRETRRLKEENERLREKLDKTLMELETIRGKSQYESE

SFEKYKDKYEKIEMEVQNMESKLHETSLQLELSKGEVAKMLANQEKQRSELERAHIEREKARDKHEKLLKEV

DRLRLQQSSVSPGDPVRASTSSSSALSAGERQEIDRLRDRLEKALQSRDATELEAGRLAKELEKAQM

Forward 5′ CAGCGGCCGCCCTGCAACAGTCCTCGG 3′
Reverse 5′ TAACTAGTTTACAACTCTGTGACCAG 3′

Giving rise to the following peptide sequence

BRP-D4 N-term (length: 348 AA)

LQQSSVSPGDPVRASTSSSSALSAGERQEIDRLRDRLEKALQSRDATELEAGRLAKELEKAQMHLAKQQEN

TESTRIEFERMGAELGRLHDRLEKAEAEREALRQANRSGGAGAAPHPQLEKHVQKLESDVKQLAMEREQL

VLQLEKSQEILMNFQKELQNAEAELQKTREENRKLRNGHQVPPVAAPPAGPSPAEFQAMQKEIQTLQQK

LQESERALQAAGPQQAQAAAAAGASREEIEQWRKVIEQEKSRADMADKAAQEMHKRIQLMDQHIKDQ

HAQMQKMQQQMQQQQQAAQQAVQQAAQQQQSAAGAGGADPKELEKVRGELQAACTERDRFQQ

QLELLVTEL

Forward 5′ CAGAATTCAAGAGCAAGATGTCCAAC 3′
Reverse 5′ TAACTAGTTTAGAAAAAGCTCTTCAA 3′

Giving rise to the following peptide sequence

BRP-D4 C-term (length: 227 AA)

SKMSNQEQAKQLQTAQQQVQQLQQQVQQLQQQMQQLQQAASAGAGATDVQRQQLEQQQKQLE

EVRKQIDNQAKATEGERKIIDEQRKQIDAKRKDIEEKEKKMAEFDVQLRKRKEQMDQLEKSLQTQGGGAA

AAGELNKKLMDTQRQLEACVKELQNTKEEHKKAATETERLLQLVQMSQEEQNAKEKTIMDLQQALKIAQ

AKVKQAQTQQQQQQDAGPAGFLKSFF
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IP
IP of elav-Gal4/+;UAS-Aplip1GFP/+ was performed as described in Depner et al. (2014). In brief, the

experiment was performed as following, 500 μl adult fly heads were mechanically homogenized in 500 μl
lysis buffer (50 mM Tris pH 8.0, 150 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10% glycerol containing

protease inhibitor cocktail [Roche, Germany]). 0.4% Sodium deoxycholate was added, and the

lysate was incubated on ice for 30 min. The lysate was diluted 1:1 with sodiumdeocycholat-free

lysis buffer, then 1% Triton X-100 was added and lysate was kept on the wheel at 4˚C for 30 min. After

centrifugation for 15 min at 16,000×g, the supernatant was used in IPs with GFP-Trap-A beads and

blocked agarose beads as binding control (Chromotek, Germany). After incubation overnight at 4˚C,

beads were washed in buffer without detergent and glycerol. Proteins were eluted from the beads with

SDS sample buffer. Afterward, the SDS-PAGE samples were subjected to Western blot (WB).

SDS-PAGE and Tris-Acetate gel electrophoresis
The gel electrophoresis for both SDS-PAGE and Tris-acetate gels was conducted according to the

standard protocols (Laemmli, 1970; Schägger, 2006). Colloidal Coomassie blue stain was used to

detect proteins based on manufacture protocol (Carl‐Roth, Germany and Invitrogen). For BRP, RBP

and Aplip1, standard SDS-PAGE gels (6–12%) were used to separate the target protein.

WB analysis
Following the separation by gel electrophoresis, the proteins were transferred into a nitrocellulose

membrane by wet transfer procedure using cold transfer buffer (25 mM Tris, pH 8.0, 150 mM glycine,

20% methanol). For visualization of proteins, the membrane was stained using Ponceau-S staining

solution (Sigma–Aldrich, MO, USA). 5% milk powder in phosphate buffered saline (PBS) was used for

blocking of the membrane. Following the blocking, the membrane was incubated with the primary

Abs guinea pig BRPLast200 (1:5000, Ullrich et al., in submission) and rabbit RBPSH3-II+III (1:1000, Depner

et al., 2014) at 4˚C for overnight. After several washing steps, the membrane was incubated with

horseradish peroxidase (HRP) conjugated secondary Abs (Dianova, Germany). For detection, an

enhanced chemoluminescence substrate (GE Healthcare, United Kingdom) was used and the X-ray

film (GE Healthcare) development was carried manually.

Immunostaining
Larval filets were dissected and stained as described previously (Owald et al., 2010). The following

primary Abs were used: rabbit BRPN-term (1:500; Qin et al., 2005); rabbit Liprin-α (1:500; Fouquet et al.,

2009); rabbit Syd-1 (1:500;Owald et al., 2010); rabbit Rab3 (1:500; Graf et al., 2009); rabbit RBPC-term,

rabbit RBPSH3-II+III (1:500; Depner et al., 2014); rabbit Syt1-CL1 (1:1000; gift from N Reist [Mackler et al.,

2002], Colorado State University, CO, USA); mouse GFP (3E6) (1:500, Life Technologies, Germany),

mouse Nc82 = anti-BRPC-term (1:100, Developmental Studies Hybridoma Bank, University of Iowa, Iowa

City, IA, USA). Except for staining against CacGFP, where larvae were fixed for 5 min with ice-cold

methanol, all fixations were performed for 10 min with 4% paraformaldehyde in 0.1 mM PBS.

Secondary Abs for standard immunostainings were used in the following concentrations: goat

anti-HRP-Cy5 (1:250, Jackson ImmunoResearch, PA, USA); goat anti-rabbit Cy3 (1:500, Life

Technologies); goat anti-mouse Alexa-Fluor-488 (1:500, Life Technologies). Larvae were mounted in

vectashield (Vector labs, United Kingdom). Secondary Abs for STED were used in the following

concentrations: For Figures 1H, 7A: goat anti-mouse Atto594 (1:250); goat anti-rabbit Atto594 (1:250);

goat anti-mouse Atto647N (1:100), goat anti-rabbit Atto647N (1:100) (ATTO-TEC, Germany). For

Figure 7B: goat anti-mouse Atto590 (1:100); goat anti-rabbit star635 1:100 (Atto590 [ATTO-TEC] and

star635 [Abberior, Germany]) coupled to respective IgGs (Dianova, Germany). For Figure 7—figure

supplement 1A–C: goat anti-mouse Alexa-Fluor-488 (1:500, Life Technologies) and goat anti-rabbit

Alexa-Fluor-532 (1:500, Life Technologies) was used. For STED imaging larvae were mounted in Mowiol

(Max-Planck Institut for Biophysical Chemistry, Group of Stefan Hell) or Prolong Gold antifade reagent

(Life Technologies; Figure 7—figure supplement 1A–C).

Image acquisition, processing and analysis
Confocal microscopy was performed with a Leica TCS SP5 (all except for Figure 4G–J and Figure 7G–J)

or a Leica SP8 (Figure 4G–J and Figure 7G–J) confocal microscope (Leica Microsystems, Germany).
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STED microscopy was performed with a custom-built STED-microscope (see below). Images of fixed

and live samples were acquired at room temperature. Confocal imaging of axons was done using a z

step of 0.25 μm. The following objective was used: 63× 1.4 NA oil immersion for NMJ confocal imaging.

All confocal images were acquired using the LCS AF software (Leica, Germany). Images from fixed

samples were taken from third instar larval nerve bundles (segments A1–A3). Images for figures were

processed with ImageJ software to enhance brightness using the brightness/contrast function.

If necessary images were smoothened (0.5–1 pixel Sigma radius) using the Gaussian blur

function.

Quantifications of axonal spot number and size were performed following an adjusted manual

(Andlauer and Sigrist, 2012), briefly as follows. The signal of a HRP-Cy5 Ab was used as template for

a mask, restricting the quantified area to the shape of the axon/nerve bundles. The original confocal

stacks were converted to maximal projections and after background subtraction, a mask of the axonal

area was created by applying a certain threshold to remove the irrelevant lower intensity pixels.

The segmentation of single spots was done semi-automatically via the command ‘Find Maxima’

and by hand with the pencil tool and a line thickness of 1 pixel. To remove high frequency noise

a Gaussian blur filter (0.5 pixel Sigma radius) was applied. The processed picture was then transformed

into a binary mask using the same lower threshold value as in the first step. This binary mask was then

projected onto the original unmodified image using the ‘min’ operation from the ImageJ image

calculator. The axonal spots of the resulting images were counted with the help of the ‘analyze particle’

function with a lower threshold set to 1. The spot density was obtained by normalizing the total number

of analyzed particles to the axonal area measured via HRP. Colocalization of RBP/BRP spots (Figure 1G)

was counted manually.

Data were analyzed using the Mann–Whitney U test for linear independent data groups. Means are

annotated ±SEM. Asterisks are used to denote significance: *p < 0.05; **p < 0.01; ***p < 0.001; n.s.

(not significant), p > 0.05.

STED microscopy
For Figures 1H, 7A two-colour STED images were recorded with a custom-built STED microscope

which combines two pairs of excitation and STED laser beams all derived from a single supercontinuum

laser source (Bückers et al., 2011). For Figure 7B STED microscopy was performed as previously

described in Li et al. (2014). Here, two-colour STED images were recorded on a custom-built STED-

microscope (Göttfert et al., 2013), which combines two pairs of excitation laser beams of 595 nm and

640 nm wavelength with one STED fiber laser beam at 775 nm. All STED images were acquired using

Imspector Software (Max Planck Innovation GmbH). STED images were processed using a linear

deconvolution function integrated into Imspector Software (Max Planck Innovation GmbH, Germany).

Regularization parameters ranged from 1e−09 to 1e−10. The point spread function (PSF) for deconvolution

was generated by using a 2D Lorentz function with its half-width and half-length fitted to the half-width

and half-length of each individual image. For Figure 7—figure supplement 1, STED microscopy was

performed with a Leica TCS SP5 time gated STED microscope equipped with a 100× 1.4 NA objective

using the LCS AF software (Leica) for image acquisition. Alexa-Fluor-488 and Alexa-Fluor-532 were

excited using a pulsed white light laser at 488 and 545 nm, respectively. STED was achieved with

a continous STED laser at 592 nm. In gSTED mode time gated detection started at 1.2 ns–6 ns for

Alexa488 while for Alexa532 gating time was set to 2.3 ns–6 ns. Raw gSTED images were

deconvolved using the built-in algorithm of the LAS AF software (Signal intensity; regularisation

parameter 0.05). The PSF was generated using a 2D Lorentz function with the full-width half

maximum set to 60 nm. Images for figures were processed with ImageJ software to remove obvious

background, enhance brightness/contrast and smoothened (1 pixel Sigma radius) using the

Gaussian blur function.

Live imaging and analysis
Live imaging was performed as previously described (Füger et al., 2007). Briefly, third instar larvae

were put into a live imaging chamber and anaesthetized with 10–20 short pulses of a desflurane-air

mixture until the heartbeat completely stopped. For assessing axonal transport, axons immediately

after exiting the ventral nerve cord were imaged for 10 min using timelapse confocal microscopy.

The flux was determined by manually counting the number of moving spots (unidirectional for >3
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frames) passing a virtual line in the middle of the nerve bundle. Mean flux was calculated by pooling

results from at least three independent larvae and at least six nerves. If little or no flux was observed,

additional nerves were imaged to avoid any bias from selecting specific nerves.

ITC
ITC experiments were performed at 25˚C on an iTC200 microcalorimeter (Malvern Instruments Ltd.,

United Kingdom). The same peptides were employed as used for the co-crystallization experiments

(see below). Lyophilized peptides were resuspended in the final buffer of the proteins (10 mM Tris-HCl

pH 7.4, 100 mM NaCl). RBP SH3-II and SH3-III were both provided at a concentration of 150 μM, RBP

SH3-II+III was provided at 78 μM. The proteins were titrated with 16 injections of 2.5 μl of either Aplip1,
Cac, RIM1 or RIM2 peptide at a concentration of 2 mM with 2-min intervals. The released heat was

obtained by integrating the calorimetric output curves. Binding parameters were calculated using the

Origin5 software using the ‘One Set of Sites’ curve fitting model provided by the software.

The following peptides were used

RBP SH3-I
RFPYDPPEEAEGELSLCAGDYLLVWTSGEPQGGYLDAELLDGRRGLVPASFVQRLVG

RBP SH3-II
RYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYVPHNMVSEVE

RBP SH3-III
KRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPSNFLAD

RBP SH3-II+III
RYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYVPHNMVSEVEDTT

ASMTAGGQMPGQMPGQMGQGQGVGVGGTAQVMPGQGAPQHSMRNVSRDRWGDIYANMPVKRM

IALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVPSNFLAD

Aplip-PxxP1: TRRRRKLPEIPKNKK

Cac: IGRRLPPTPSKPSTL

RIM1: GRQLPQVPVRSG

RIM2: GRQLPQLPPKGT

Protein expression and purification for crystallization
Protein expression was conducted using chemically competent Escherichia coli BL21-CodonPlus-RIL cells.

The cells were grown in autoinduction ZY-medium (Studier, 2005) with ampicillin and chloramphenicol

for 4 hr at 37˚C. Afterwards, the temperature was decreased to 18˚C, and the cells were grown overnight.

The cells were harvested by centrifugation at 8,000×g for 6 min. The cell pellet was resuspended in

resuspension buffer (40 mM Tris/HCl pH 7.5 at RT, 250 mM NaCl, 1 mM DTT, 10 mg/l lysozyme and

5 mg/l DNase I) and subsequently lysed by sonification for 20 min. The lysate was centrifuged at

56,000×g for 45 min to pellet the cell debris. The supernatant was applied for affinity chromatography

using 10 ml glutathione sepharose 4B (GE Healthcare). Hereafter, two washing steps were performed

using 80 ml washing buffer (20 mM Tris/HCl pH 7.5 at RT, 250 mM NaCl, 1 mM DTT) for each step. The

GST-tag of the respective SH3 domain was cleaved off on the beads using PreScission protease (1 mg/ml).

Therefore 40 ml washing buffer with PreScission protease in a molar ratio of 1:30 to the maximum loading

capacity of the glutathione sepharose were incubated with the beads at 4˚C while gently rotating

overnight. The PreScission-cleaved constructs were purified using a Superdex 75 26/60 column (GE

Healthcare). The protein containing fractions were pooled and concentrated using a 3 kDa molecular

weight cut-off concentrator (Millipore, Germany). Protein concentrations were determined by UV-

absorption.

Crystallization and crystal cooling
For crystallization experiment the RBP SH3-II was concentrated to 56 mg/ml and the RBP SH3-III to

62 mg/ml. The same peptides as for ITC measurements were used and synthesized at the Leibniz

Institute for Molecular Pharmacology with N-terminal acetylation and C-terminal amidation. The
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unsolubilized peptides were mixed in a fivefold molar excess with the protein solution and incubated for

2 hr on ice. Insoluble peptide was removed by centrifugation (16,000×g for 1 min) prior to crystallization

experiments. All crystallization experiments were carried out at 291 K in a sitting drop setup. Crystals of

RBP SH3-II bound to the Aplip1 peptide were obtained over a reservoir solution composed of 2.2–2.6 M

ammonium sulfate, 0.1 M bicine with final pH 9. For cryoprotection, the crystals were transferred to

a reservoir solution supplemented with 25% (vol/vol) glycerol. Crystals of RBP SH3-II bound to Cac were

obtained over a reservoir solution of 0.2 M Ca(Ac)2, 0.1 M MES pH 6.0, and 20% (wt/vol)

polyethylenglycol (PEG) 8000. For cryoprotection, the crystals were transferred to a reservoir solution

supplemented with 15% (vol/vol) PEG 400. Crystals of RBP SH3-III bound to the Cac peptide appeared

over a reservoir solution of 0.2 M Li2SO4, 0.1 M MES pH 6.5, and 30% (vol/vol) PEG 400. After

cryoprotection the crystals were flash-cooled in liquid nitrogen.

Diffraction data collection and analysis as well as structure
determination
Synchrotron diffraction data were collected at the beamline 14.2 of the MX Joint Berlin laboratory at

BESSY (Berlin, Germany). X-ray data collection was performed at 100 K. Diffraction data were processed

with the XDS package (Kabsch, 2010). The diffraction data of RBP SH3-II/Aplip1-PxxP1 were initially

indexed in P622. Cumulative intensity distribution analysis as well as calculation of the moment of the

observed intensity/amplitude distribution performed with PHENIX.XTRIAGE and POINTLESS (Evans,

2011) indicated an unusual intensity distribution, likely caused by twinning. For determination of the

correct space group, the diffraction data were processed in P1. Subsequently, the structure was solved by

molecular replacement with the program PHASER (McCoy et al., 2007). We used the NMR structure of

the SH3-II domain of human RBP (PDB entry 2CSQ) as search model and could locate 24 copies of the

SH3 domain. Next the diffraction data and the coordinates of our molecular replacement were analysed

by the program ZANUDA (Lebedev and Isupov, 2014) revealing that sixfold is in fact broken and C2 is

the true symmetry, with sixfold twinning with the six twin operators: h, h, l; h, −k, −l; 1/2h − 3/2k, −1/2h −
1/2k, −k; −1/2h + 3/2k, 1/2h + 1/2k, −l; −1/2h − 3/2k, −1/2h + 1/2k, −l and 1/2h + 3/2k, 1/2h − 1/2k, −l. In
total we could locate in the asymmetric unit 12 copies of RBP SH3-II bound to Aplip1-PxxP1. The crystals

of RBP SH3-II and SH3-III bound to the Cac peptide have P21 and I222 symmetry, respectively. Analyses of

the diffraction data of the complex of RBP SH3-II and Cac revealed one pseudo-merohedral twin operator

(h, −k, −h − l), that was later included in the refinement protocol. The structures of RBP SH3-II and SH3-III

each bound to the Cac derived peptide were solved by molecular replacement with our previously

determined structure of RBP SH3-II. The asymmetric unit of RBP SH3-II bound to Cac contains 10

complexes and of RBP SH3-III bound to Cac one complex, respectively.

Refinement and validation
The refined molecular replacement solution clearly revealed the presence of the bound Aplip1-PxxP1

peptide in 2mFo − DFc and mFo − DFc electron density maps. For refinement, a set of 4.7% of Rfree

reflections was generated in P622 and then expanded to C2 to insure equal distribution of the Rfree

reflections in all six twin domains. For calculation of the free R-factor of the other two data sets, a randomly

generated set of 5% of the reflections from the diffraction data set was used and excluded from the

refinement. The structure was manually built in COOT (Emsley et al., 2010) and refined in REFMAC

5.8.0073 (Murshudov et al., 2011) with intensity based twin refinement. In final stages TLS refinement was

applied with every protein and peptide chain as single TLS group. The structures with bound Cac peptide

were refined with PHENIX.REFINE (Adams et al., 2010; Afonine et al., 2012). Water molecules were

picked with COOT and manually inspected. All structures were evaluated with MOLPROBITY (Chen et al.,

2010) and PROCHECK (Laskowski et al., 1993). Figures were drawn with PYMOL (DeLano, 2002).

EM
Conventional embedding was performed as described previously (Fouquet et al., 2009).

Statistics
Data were analyzed using the Mann–Whitney rank sum test for linear independent data groups (Prism;

GraphPad Software, Inc.). Means are annotated ± SEM. Asterisks are used to denote significance (*p

< 0.05; **p < 0.01; ***p < 0.005; not significant, p > 0.05).
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Figure 1. Co-accumulation of Bruchpilot (BRP) and RIM-binding protein (RBP) in srpk79D axonal aggregates.

(A–E, I) Nerve bundles of segments A1–A3 from third instar larvae of the genotypes indicated labeled with the

antibodies (Abs) indicated. (A–E, H) BRP accumulated in axonal aggregates of srpk79D mutants. (B–D) Liprin-α
(B), Syd-1 (C), and Rab3 (D), did not co-localize with axonal BRP spots. (E) By contrast, RBP invariably co-localized with BRP

in these axonal aggregates. (F) Quantification of mean area of axonal BRP and RBP spots in wild type (WT) and srpk79D

mutants. BRPC-term spots: 0.3797 ± 0.03694 μm2 in srpk79DATC, 0.3259 ± 0.02212 μm2 in srpk79Dvn, 0.06895 ± 0.01 μm2

in WT; RBPC-term spots: 0.3892 ± 0.02097 μm2 in srpk79DATC, 0.3696 ± 0.01645 μm2 in srpk79Dvn, 0.09184 ± 0.0133 in WT;

n = 8 nerves each; all panels show mean values and errors bars representing SEM; ns, not significant, p > 0.05,

Mann–Whitney U test. (G) Quantification for BRP co-localization with RBP and vice versa in srpk79Dmutants. BRPC-term co-

localizing with RBPC-term: 93.26% ± 2.172 in srpk79DATC, 95.85% ± 1.302 in srpk79Dvn; RBPC-term co-localizing with BRPC-term:

95.7% ± 0.9713 in srpk79DATC, 94.24% ± 1.162 in srpk79Dvn; n = 8 nerves each; all panels show mean values and errors

bars representing SEM; ns, not significant, p > 0.05, Mann–Whitney U test. (H) Two-colour stimulated emission depletion

(STED) images of axonal aggregates in srpk79Dmutants revealed that RBPC-Term label localized to the inside of the axonal

aggregates and was surrounded by BRPC-Term label. (I) BRP and RBP also co-localized in axonal spots of WT animals (arrow

heads show co-localization of BRP and RBP in the axon). Scale bars: (A–E, I) 10 μm; (H) 200 nm.
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Figure 2. Live imaging of anterograde co-transport between BRP, RBP and APP-like protein interacting protein

1 (Aplip1). (A) Live imaging in intact third instar larvae showed anterograde co-transport of BRPGFP and RBPcherry.

See also, Video 1. (B) Schematic representation of Aplip1 domain structure containing two PxxP motifs, one

Src-homology 3 (SH3) domain and one C-terminal phosphotyrosine interaction domain (PID) (FL = full-length). Lines

represent Aplip1 prey fragments recovered in RBP SH3-II+III bait yeast-two-hybrid (Y2H) screen. Arrow indicates one

single clone that contained only the first of the two Aplip1-PxxP motifs. (C, D) Live imaging in intact third instar larvae

showed anterograde co-transport of Aplip1GFP and RBPcherry (C), as well as Aplip1GFP and BRP-shortstraw (D). Scale

bars: (A, C, D) 10 μm. See also, Videos 2, 3. (E) Quantification of live imaging of BRP-shortstraw flux (spots passing

through an axonal cross-section per minute) within the genetic backgrounds indicated. Anterograde and retrograde

BRP-shortstraw flux was severely impaired in aplip1ek4 and aplip1null mutant background, which was rescued when

a genomic rescue construct for Aplip1 was introduced into the aplip1null mutant background. BRP-shortstraw flux per

min, control (n = 14 nerves): anterograde: 5.267 ± 0.975, retrograde: 2.423 ± 0.604, stationary: 0.241 ± 0.071;

Figure 2. continued on next page
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Figure 2. Continued

aplip1ek4 (n = 28 nerves): anterograde: 0.687 ± 0.098, retrograde: 0.284 ± 0.125, stationary: 1.023 ± 0.145; aplip1null

(n = 11 nerves): anterograde: 0.808 ± 0.051, retrograde: 0.085 ± 0.064, stationary: 0.354 ± 0.148; aplip1null, gen rescue

(n = 26 nerves): anterograde: 3.783 ± 0.861, retrograde: 2.123 ± 0.239, stationary: 0.505 ± 0.084. All panels show

mean values and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not significant, p > 0.05,

Mann–Whitney U test.

DOI: 10.7554/eLife.06935.004
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Figure 3. Aplip1 binds RBP using a high-affinity PxxP1-SH3 interaction. (A) Schematic representation of RBP domain

structure containing three SH3 domains (I–III from the N-terminus) and three Fibronectin 3 (FN3) domains. The

corresponding fragments used in the large scale Y2H screen (SH3-II+III) and used as bait (SH3-II and SH3-III) in the

Y2H assay (C) against different Aplip1 prey constructs (B) are indicated. Different isothermal titration calorimetry

Figure 3. continued on next page
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Figure 3. Continued

(ITC) peptides (SH3-I, SH3-II, SH3-III and SH3-II+III) used for ITC measurements (D) are also shown. (B) Schematic

representation of Aplip1 domain structure entailing two PxxP motifs, one SH3 and one C-terminal PID. Different

preys (Aplip1-PxxP1, -AxxA1 and -PxxP2) used in Y2H assay (C) are indicated. (C) Liquid Y2H assay of individual

Aplip1 prey fragments against different RBP baits. Aplip1-PxxP1 interacted with both the single SH3-II and -III

domains of RBP. Mutating this first PxxP motif (Aplip1-AxxA1) construct abolished the binding. Aplip1-PxxP2

showed no interaction to RBP SH3 domains. Constructs with point-mutated RBP SH3 domains (SH3-II*, SH3-III*)

abolished the binding to Aplip1-PxxP1. (D) Peptide sequences used for ITC measurements. Aplip1 showed the

strongest interaction with RBP compared with Cacophony (Cac), RIM1 and RIM2, with the strongest affinity (lowest

KD) between Aplip1 and the RBP SH3-II+III domain. (E, F) Crystal structure of Aplip1-peptide (E; see also, 3D for

peptide sequence) and of Cac-peptide (F; see also, Figure 3D for peptide sequence) bound to RBP SH3-II. The SH3

domain is shown in gray surface representation with (left) and without (right) the respective protein in cartoon

representation. The bound peptides are drawn in stick representation. Hydrogen bonds ≤3.3 Å are indicated by red

dashes. In the right panel, several peptide SH3-II complexes as observed in the asymmetric unit are superimposed

and shown in different colors. See also, Tables 1–4.
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Figure 3—figure supplement 1. ITC measurements for Aplip1 and RBP SH3 domains. Quantification of protein-

peptide interactions by ITC. Both the raw data and the data integrated are shown. Data were fitted based on the

‘One Set of Sites’ model. (A) Titration of RBP-BP SH3-II and the Aplip1 peptide. (B) Titration of RBP-BP SH3-III and

the Aplip1 peptide. (C) Titration of RBP-BP SH3-II+SH3-III and the Aplip1 peptide.

DOI: 10.7554/eLife.06935.007
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Figure 3—figure supplement 2. ITC measurements for Cac and RBP SH3 domains. Quantification of protein-

peptide interactions by ITC. Both the raw data and the data integrated are shown. Data were fitted based on the

‘One Set of Sites’ model. (A) Titration of RBP-BP SH3-II and the Cac peptide. (B) Titration of RBP-BP SH3-III and the

Cac peptide. (C) Titration of RBP-BP SH3-II+SH3-III and the Cac peptide.

DOI: 10.7554/eLife.06935.008
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Figure 3—figure supplement 3. ITC measurements for RIM1 and RBP SH3 domains. Quantification of protein-

peptide interactions by ITC. Both the raw data and the data integrated are shown. Data were fitted based on the

‘One Set of Sites’ model. (A) Titration of RBP-BP SH3-II and the RIM1 peptide. (B) Titration of RBP-BP SH3-III and the

RIM1 peptide. (C) Titration of RBP-BP SH3-II+SH3-III and the RIM1.

DOI: 10.7554/eLife.06935.009
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Figure 3—figure supplement 4. ITC measurements for RIM2 and RBP SH3 domains. Quantification of protein-

peptide interactions by ITC. Both the raw data and the data integrated are shown. Data were fitted based on the

‘One Set of Sites’ model. (A) Titration of RBP-BP SH3-II and the RIM2 peptide. (B) Titration of RBP-BP SH3-III and the

RIM2 peptide. (C) Titration of RBP-BP SH3-II+SH3-III and the RIM2.
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Figure 3—figure supplement 5. Crystal structure of Cac-peptide bound to RBP SH3-III domain. The SH3 domain is

shown in gray surface representation, with (left) and without (right) the respective protein in cartoon representation.

The bound peptides are drawn in stick representation. Hydrogen bonds ≤3.3 Å are indicated by red dashes.

DOI: 10.7554/eLife.06935.011
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Figure 4. Aplip1-PXXP1 motif is needed for its function as RBP/BRP transport adaptor. (A–D) Nerve bundles

of segments A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.

(E, F) Quantification of BRP/RBP spot numbers. BRP spots per μm2: WT (n = 8 nerves): 0.084 ± 0.010; aplip1ek4

(n = 9 nerves): 0.205 ± 0.025; aplip1null (n = 8 nerves): 0.183 ± 0.025; aplip1null, gen. rescue (n = 8 nerves): 0.034

± 0.007; RBP spots per μm2, WT (n = 8 nerves): 0.074 ± 0.007; aplip1ek4 (n = 9 nerves): 0.180 ± 0.019; aplip1null

(n = 8 nerves): 0.153 ± 0.037; aplip1null, gen. rescue (n = 8 nerves): 0.025 ± 0.006. All panels show mean values

and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns, not significant, p > 0.05,

Mann–Whitney U test. (G–J) Nerve bundles of segment A1–A3 from third instar larvae of the genotypes

indicated labeled with the Abs indicated. BRP and RBP co-localized in control animals and accumulated in

a co-localizing fashion in axons of aplip1null mutant animals. Re-expression of an Aplip1-WT cDNA construct

in the aplip1null background rescued the phenotype, while re-expression of an AxxA1 construct did not.

Figure 4. continued on next page
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Figure 4. Continued

(K, L) Quantification of the number of BRP/RBP spots per μm2 axon. BRP spots per μm2, control (n = 12 nerves):

0.084 ± 0.010; aplip1null (n = 16 nerves): 0.198 ± 0.022; WT rescue (n = 14 nerves): 0.078 ± 0.009; AxxA1

rescue (n = 14 nerves): 0.177 ± 0.012; RBP spots per μm2, control (n = 12 nerves): 0.071 ± 0.013; aplip1null

(n = 16 nerves): 0.188 ± 0.026; WT rescue (n = 14 nerves): 0.039 ± 0.004; AxxA1 rescue (n = 14 nerves): 0.158 ±
0.015. All panels show mean values and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ns,

not significant, p > 0.05, Mann–Whitney U test. Scale bar: (A–D, G–J) 10 μm.

DOI: 10.7554/eLife.06935.018

Figure 5. Aplip1 promotes BRP transport in absence of RBP. (A–E) Nerve bundles of segments A1–A3 from third

instar larvae of the genotypes indicated labeled with the Abs indicated. (A) Removing one copy of BRP in aplip1ek4

mutants had no apparent effect on axonal RBP accumulation. (B) RBP still accumulates in brpnull;aplip1ek4 double

mutants. (C, D) Driver control and removing one copy of RBP in motoneuronal driven Aplip1-RNAi had no apparent

effect on axonal BRP accumulation. (E) BRP still accumulates in rbpnull,aplip1 double mutants Scale bar: (A–E) 10 μm.

(F) Immunoprecipitation (IP) of Aplip1GFP with anti-GFP Ab from Drosophila active zone (AZ) protein-enriched

fraction was followed by Western blot (WB) analysis using anti-BRPLast200 and anti-RBPSH3-II+III. Both BRP and RBP

could be detected in Aplip1GFP IPs, but are absent in controls (plain beads; GFP trapped beads). (For whole WBs,

see Figure 5—figure supplement 2).

DOI: 10.7554/eLife.06935.019
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Figure 5—figure supplement 1. Accumulation of BRP in srpk79D mutant axons is unaffected by removing RBP.

(A–F) Nerves of segments A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.

Removing BRP in srpk79Dmutants (D) also abolished axonal RBP spots, while removing RBP in srpk79Dmutants did

not affect BRP accumulations (F).

DOI: 10.7554/eLife.06935.020

Figure 5—figure supplement 2. IP of Aplip1GFP with anti-GFP (Full blot). Full blot IP of Aplip1GFP with anti-GFP from

Drosophila AZ protein-enriched fraction was followed by WB analysis using anti-BRPLast200 and anti-RBPSH3-II+III Abs.

DOI: 10.7554/eLife.06935.021
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Figure 6. Several known transport adaptor mutants showed axonal BRP and RBP co-accumulations. (A–E) Nerve

bundles of segment A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs indicated.

BRP and RBP accumulated in a co-localizing manner in axons of WT (A), acsl (B), unc-51 (atg-1; C), appl (D) and

unc-76 (E). Scale bar: 10 μm.

DOI: 10.7554/eLife.06935.022
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Figure 7. Ectopic AZ scaffold and synaptic vesicle (SV) accumulation in aplip1 mutant axons. (A) Two-colour STED

images of axonal aggregates in aplip1ek4 mutants revealed that the structures observed (arrow heads) have identical

BRP and RBP arrangement, as recently observed at presynaptic AZs (Liu et al., 2011a). Right panels display

magnifications of single axonal AZ. Dashed lines indicate axonal plasma membrane. (B) Two-colour STED images of

axonal aggregates in aplip1ek4 mutants revealed that the structures observed (arrow head) have identical BRP and Syd-1

arrangement as observed at immature presynaptic AZs (Owald et al., 2010). Right panels display magnifications of

single axonal AZ. Dashed lines indicate axonal plasma membrane. (C) Terminal T-bar (arrow heads) surrounded by SVs

(arrows) taken from electron micrographs of WT third instar larvae after conventional embedding. (D) Ectopic axonal

T-bar (arrow heads) taken from electron micrographs from aplip1ek4 mutant third instar larvae after conventional

embedding. SVs accumulate around the ectopic T-bar (arrows). (E) Magnification of (C). (F) Magnification of (D).

(G–J) Nerve bundles of segment A1–A3 from third instar larvae of the genotypes indicated labeled with the Abs

indicated. Syt-1 accumulates at a subset of axonal BRP aggregations in aplip1null and AxxA1 rescue (H, J) larvae, but not

in control and WT rescue larvae (G, I). (K) Quantification of the number of Syt-1 spots per μm2 axon. control (n = 12

nerves): 0.004 ± 0.002; aplip1null (n = 16 nerves): 0.040 ± 0.011; WT rescue (n = 13 nerves): 0.014 ± 0.007; AxxA1 rescue

(n = 13 nerves): 0.052 ± 0.017. All panels show mean values and errors bars representing SEM. *p ≤ 0.05; **p ≤ 0.01;

***p ≤ 0.001; ns, not significant, p > 0.05, Mann–Whitney U test. Scale bars: (A, B) 500 nm; (C, D) 100 nm; (G, J) 10 μm.
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Figure 7—figure supplement 1. Ectopic AZ protein accumulations in motoneuronal driven Imac- and KHC-RNAi

axons. (A, B) Two-colour STED images of axonal aggregates in ctrl and Ok6::UAS-Imac-RNAi revealed that BRP and

RBP co-accumulate in both genotypes but, in contrast to aplip1mutants, show no preference concerning orientation

towards the axonal plasma membrane (arrow heads). (C) Two-colour STED images of axonal aggregates in Ok6::

UAS-KHC-RNAi revealed that the BRP-RBP accumulations observed in this genotype mostly show irregular shapes

(arrow heads) with diverse orientations in the axon. (D) The only ectopic axonal electron dense formation (arrow

head) found in electron micrographs in Ok6::UAS-KHC-RNAi third instar larvae after conventional embedding. (E, F)

Magnification of (D). SVs (arrows) accumulate around the ectopic electron-dense structure (arrow head) but are also

accumulating all along the axon. Scale bars: (A–C) 1.5 μm; (D) 200 nm; (E) 100 nm; (F) 50 nm.
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Presynaptic spinophilin tunes neurexin signalling
to control active zone architecture and function
Karzan Muhammad1,2,w, Suneel Reddy-Alla1,2, Jan H. Driller3, Dietmar Schreiner4, Ulises Rey2,

Mathias A. Böhme2, Christina Hollmann2, Niraja Ramesh1, Harald Depner1,2, Janine Lützkendorf2,

Tanja Matkovic1,2, Torsten Götz1,2, Dominique D. Bergeron2, Jan Schmoranzer3,5, Fabian Goettfert6,

Mathew Holt7, Markus C. Wahl3, Stefan W. Hell6, Peter Scheiffele4, Alexander M. Walter2,5, Bernhard Loll3

& Stephan J. Sigrist1,2

Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ)

depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the

scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein

spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/

neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in

the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1

levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1,

Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked trans-

mission is strongly reduced at spinophilin terminals, owing to a severely reduced release

probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes

neurexin/neuroligin signalling to control active zone number and functionality, thereby

optimizing them for action potential-induced exocytosis.
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C
hemical synapses release synaptic vesicles (SVs) at
specialized presynaptic membranes, so-called active zones
(AZs), which are characterized by electron-dense struc-

tures, reflecting the presence of extended molecular protein
scaffolds. These AZ scaffolds confer stability and facilitate SV
release1. Importantly, at individual AZs, scaffold size is found to
scale with the propensity to engage in action potential-evoked
release2–4. An evolutionarily conserved set of large multi-domain
proteins operating as major building blocks for these scaffolds has
been identified over the last years: Syd-2/Liprin-a, RIM, RIM-
binding-protein (RBP) and ELKS family proteins (of which the
the Drosophila homologue is called Bruchpilot (BRP))1,5–7.
However, how presynaptic scaffold assembly and maturation
are controlled and coupled spatiotemporally to the postsynaptic
assembly of neurotransmitter receptors remains largely unknown,
although trans-synaptic signalling via Neurexin-1 (Nrx-1)–
Neuroligin-1 (Nlg1) adhesion molecules is a strong candidate
for a conserved ‘master module’ in this context, based on Nrx-Nlg
signalling promoting synaptogenesis in vitro, synapses of
rodents8,9, Caenorhabditis elegans10 and Drosophila11–16. With
respect to scaffolding proteins, Syd-1 was found to promote
synapse assembly in C. elegans5, Drosophila17 and rodents18. In
Drosophila, the Syd-1-PDZ domain binds the Nrx-1 C terminus
and couples pre- with postsynaptic maturation at nascent
synapses of glutamatergic neuromuscular junctions (NMJs) in
Drosophila larvae. Syd-1 cooperates with Nrx-1/Nlg1 to stabilize
newly formed AZ scaffolds, allowing them to overcome a
‘threshold’ for synapse formation13. Additional factors tuning
scaffold assembly, however, remain to be identified. We show
here that the conserved scaffold protein spinophilin (Spn) is able
to fine-tune Nrx-1 function by binding the Nrx-1 C terminus
with micromolar affinity via its PDZ domain. In the absence of
presynaptic Spn, ‘excessive seeding’ of new AZs occurred over the
entire NMJ due to elevated Nrx-1/Nlg1 signalling. Apart from
structural changes, we show that Spn plays an important role in
neurotransmission since it is essential to establish proper SV
release probability, resulting in a changed ratio of spontaneous
versus evoked release at Spn NMJ terminals.

Results
Presynaptic Spn restricts the AZ number. Glutamatergic NMJs
of Drosophila larvae continuously expand to meet the require-
ments of the growing muscle fibres by adding new release sites (or
synapses) to their structure19,20. These synapses are characterized
by a single presynaptic AZ opposed by a single postsynaptic
density (PSD) composed of glutamate receptors (GluRs). AZ
formation is initiated by both Syd-1 and Liprin-a clusters and
finalized by the incorporation of BRP21. Here we used the
Drosophila NMJ model system to search for factors restricting the
number of BRP scaffolds. To this end, a set of proteins and their
known binding partners, which we previously detected in
immunoprecipitation experiments against BRP22, were
suppressed by RNA interference (RNAi) restricted to presyna-
ptic motor neurons. RNAi-induced presynaptic knockdown of
the only Drosophila homologue of the Neurabin/Spn family
caused an increase of AZ numbers at the NMJ (Fig. 1a;
Supplementary Fig. 1a–e). Simultaneously, the total area of
postsynaptic GluRs increased (Supplementary Fig. 1b–e).

Motivated by this result, we generated a Spn null allele using
Flippase-mediated trans-deletion of FRT sites with two transpo-
son lines flanking the spn locus, resulting in a complete deletion
of the Spn-encoding sequence (spnD3.1) (Fig. 1b). Genomic PCR23

was used to validate the elimination of the entire spn locus.
Animals died in pupal stages when we put the spnD3.1

chromosome in trans to a large deficiency (spnD3.1/dfBSc116,

from hereafter Spn). Neurabin/Spn family proteins in rodents
are strongly expressed in postsynaptic spines24,25 and are also
found in presynaptic compartments26,27. Our presynaptic Spn
knockdown clearly affected AZ scaffold formation, pointing
towards a presynaptic role for Spn at Drosophila NMJs. To
validate this hypothesis, and to determine Spn localization,
we raised a polyclonal antibody against a fusion protein from the
Spn N-terminal region (Anti-SpnNterm, Fig. 1a; green bar). The
Spn antibody robustly stained wild-type NMJs, but the signal was
lost in Spn mutant larvae (Fig. 1c,d). Staining was restored after
crossing in a genomic Spn rescue construct (Pac(Spn1)), proving
the specificity of the NMJ Spn antibody signal (Fig. 1e). To
characterize the localization of endogenous Spn in pre- versus
postsynaptic compartments, we expressed the Spn-RNAi
transgene in either the pre- or postsynaptic compartment of the
NMJ using specific Gal4-driver lines. Motoneuron-driven
presynaptic RNAi left the anti-Spn staining intact at the bouton
periphery, but removed the staining within the horseradish
peroxidase (HRP) signal, which outlines the neuronal membrane
(Fig. 1f). Muscle-driven postsynaptic RNAi made the Spn staining
surrounding the boutons vanish. However, the signal inside the
presynaptic boutons (Fig. 1g) remained unchanged. When a
GFPSpn fusion construct was co-expressed with the AZ marker
BRP-D3Straw within the motoneurons21, presynaptic Spn formed
discrete clusters, often found adjacent to BRP-labelled AZ
scaffolds (Fig. 1g,h). This pattern was very similar to the
residual endogenous Spn staining found remaining after the
expression of RNAi in the postsynaptic muscle (Fig. 1g). Thus,
Spn localizes to both pre- and postsynaptic compartments at
larval NMJs. Presynaptic Spn localizes close to presynaptic AZ
scaffolds.

Subsequently, we analysed the role of Spn in synaptic
organization at developing NMJs, using the null allele (Spn) we
created (Fig. 1b). Detailed analysis of Spn NMJs revealed that AZ
scaffold densities increased. Postsynaptic GluR (GluRIID) label-
ling28 was also strikingly increased (Fig. 2a,b). We expressed two
different but overlapping genomic pacman transgenes29

containing the full spn locus (Pac(Spn1&2); Fig. 1b) in the null
allele mutant background to prove the specificity of the Spn null
phenotype. Both genomic constructs fully rescued adult viability
and, importantly, the NMJ phenotypes of Spn. In addition,
deletion of a stretch encoding the Spn open reading frame within
the genomic construct of Pac(Spn2), named Pac(Spn*), abolished
rescue activity (data not shown). We further tested a semi-lethal
transposon insertion within the spn locus (Mi(Mic)SpnMI06873),
which we found to significantly reduce anti-Spn staining. The
latter mutant showed NMJ phenotypes similar, but somewhat
weaker, than those observed in Spn null larvae (Supplementary
Fig. 2a–e). Taken together, we show that loss of Spn affects the
synaptic structure of the NMJ. We quantified relevant structural
parameters using BRP/GluRIID/HRP co-stainings to further
characterize this phenotype (Fig. 2d–g). Average NMJ size
(visualized via HRP) was not significantly changed in the Spn
null background. Similarly, but more pronounced than in the
RNAi experiments, the densities of presynaptic AZs (BRP cluster
numbers normalized to synaptic HRP area) were significantly
increased in Spn when compared with controls (Fig. 2d,e). We re-
expressed the protein using a neuronal driver line elav(x)-C155-
gal4 in the Spn null background to test whether this was due to a
loss of presynaptic Spn. Indeed, presynaptic expression of Spn
complementary DNA (cDNA) effectively re-established normal
AZ densities (Fig. 2c–e). By contrast, postsynaptic (that is,
muscle) expression of Spn in the null background appeared to
have no effect (data not shown). Moreover, the postsynaptic
phenotype of increased GluR fields was reverted towards normal
levels on presynaptic Spn expression (Fig. 2f). Thus, presynaptic
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Spn restricts both the dimensions of the PSD, as well as the
number of juxtaposed presynaptic BRP scaffolds. The BRP
scaffold is tightly associated with Ca2þ channels and RBP,
another structural component of the AZ scaffold30. Numbers of
Ca2þ channel clusters and RBP clusters were also increased at
Spn terminals (Supplementary Fig. 3a–f). By contrast, cysteine
string protein, a SV protein, appeared unchanged when compared
with controls (Supplementary Fig. 3d–h). Taken together, these
data show that Spn terminals have a specific increase in the
number of AZ scaffolds.

AZ scaffolds lacking Spn remain small. Confocal images
suggested that individual presynaptic AZ scaffolds, as identified by
their BRP spots, were atypically small at Spn terminals. However,
confocal resolution (B250 nm) is not sufficient to reliably
quantify AZ scaffold size. Thus, we turned to stimulated emission

depletion (STED) microscopy operating with E45 nm lateral
resolution21,31 to visualize AZ scaffolds in their planar orientation
(Fig. 3a–c). Analysing the longest peak-to-peak axes through
individual AZs revealed that the diameters of BRP AZ scaffolds
were substantially reduced in Spn mutants, while presynaptic Spn
re-expression restored normal AZ size (Fig. 3a–e).

In summary, a larger number of smaller presynaptic AZ
scaffolds are forming in the absence of presynaptic Spn. Electron
microscopic (EM) analysis consistently revealed smaller but
otherwise normal T-bars (Fig. 3f,h, arrowheads; Supplementary
Fig. 4a–e). In some cases, two of these small T-bars converged
(juxtaposed) into one common large postsynaptic compartment,
identified by a region in which pre- and postsynaptic membranes
were tightly apposed (Fig. 3g).

GluRs at wild-type NMJ synapses localize at postsynaptic
membranes opposed to presynaptic AZs. As mentioned above
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(Fig. 2), individual GluR clusters were atypically enlarged in Spn.
As details of the GluR organization may not be resolved by
standard confocal imaging, we used three-dimensional structured
illumination microscopy (3D SIM) with an isotropic resolution of
E120 nm32. This provides a significant improvement in optical
resolution along the z-axis, while STED only increases the x–y
resolution. Therefore, SIM allowed us to resolve the 3D
organization of GluR fields relative to the AZs. Consistent with
the EM analysis, Spn NMJs showed extended, often continuous
receptor fields, juxtaposed to several small AZs, with a clear
increase in the area of the postsynaptic compartment labelled
with GluRs (Fig. 3i–l).

Increased Nrx-1 signalling mediates the Spn phenotype. PSDs
of Drosophila NMJs contain two subtypes of GluR complexes,
distinguished by the incorporation of either receptor subunit
GluRIIA or GluRIIB28. Immature wild-type PSDs contain more
GluRIIA than IIB, while GluRIIB incorporation occurs during
subsequent PSD maturation, revealed by in vivo imaging33. We
recently discovered that Nlg1, Nrx-1 and Syd-1 mutants share a
specific deficit in the incorporation of GluRIIA receptors into the
PSD driving ‘early’ PSD growth13. In contrast, here we observed a
threefold increase of GluRIIA intensity at Spn terminals, probably

responsible for the overgrowth of the postsynaptic GluR fields,
while GluRIIB levels remained unchanged (Supplementary
Fig. 5a–e). Thus, lack of Spn apparently results in an opposite
phenotype to Nrx-1 signalling pathway mutants (Nrx-1, Nlg1,
Syd-1), which show fewer but larger and often mis-shapen AZ
scaffolds13,15,16. To further investigate a possible antagonistic
relationship between Spn and Nrx-1/Nlg1, we investigated
whether Nrx-1 levels were changed at Spn terminals, using an
antibody detecting endogenous Nrx-1 (ref. 15). We observed a
significant increase in the levels of Nrx-1 (measured either as
the total integrated fluorescence from the anti-Nrx-1 label, or
total area of Nrx-1 clusters normalized to synaptic HRP area;
Fig. 4a–d). We next asked whether this increase in Nrx-1 could
promote Nrx-1 signalling. To test this, we first evaluated the levels
of Nlg1 and Syd-1 in Spn mutants. We found that the level of
both proteins increased at Spn NMJs (Fig. 4e–h; Supplementary
Fig. 6a–g). However, Fasciclin-II (another cell adhesion molecule
unrelated to the Nrx-1/Nlg1 signalling pathway34) was
unchanged (Supplementary Fig. 7a,b). Next, to confirm that
Nrx-1 signalling is directly responsible for the generation of more
AZs at Spn terminals, a single copy of the nrx-1 gene (allele
Nrx-1241; ref. 15) was removed from the Spn background. This
manipulation in wild type background had no detectable effect on
NMJ and AZ organization (ref. 15; data not shown). Strikingly,
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AZ numbers were reduced to wild type levels after removing a
single nrx-1 gene copy from the Spn background (Fig. 4i–l). The
AZ assembly and maturation mediated by Nrx-1 depends on both
muscle expressed (postsynaptic) Nlg1 (refs 11,35) and
presynaptic Syd-1. In fact, removing a single nlg1 gene copy in
Spn null background (nlg2.3; ref. 11) suppressed the Spn
phenotype (Fig. 4m–p). Furthermore, removing a single gene
copy of syd-1 also suppressed the Spn phenotype (Fig. 4q–t). We
went on to analyse the functional relationship between Spn and
Syd-1; both are presynaptically expressed scaffold proteins
containing a PDZ domain.

Antagonism of Spn and Syd-1 for Nrx-mediated synapse
assembly. We previously found that Nrx-1 levels are decreased in
Syd-1 mutants, but stabilized on re-expression of Syd-1.

Moreover, previous fluorescence recovery after photobleaching
(FRAP) analysis showed elevated mobility of Nrx-1GFP in a Syd-1
mutant background13. As Nrx-1 and Syd-1 clusters in Spn were
upregulated (Fig. 4a–d;Supplementary Fig. 6a–g), we asked
whether it was possible that the motility of Nrx-1 was altered
in Spn mutants by performing FRAP experiments on Nrx-1GFP.
We found a delayed recovery and, thus, reduced motility of Nrx-1
in the Spn null background (Supplementary Fig. 6i–l). At the
same time, lack of Drosophila CASK (Caki), another scaffolding
protein that binds to the Nrx-1 C terminus36,37, did not show
any noticeable effect on Nrx-1 motility (Supplementary Fig. 6).
Moreover, the recovery of Syd-1GFP clusters appeared to be
unchanged at Spn terminals (even though the cluster density was
increased) (Supplementary Fig. 6i–k). Thus, Spn-mediated Nrx-1
motility is apparently not connected to altered Syd-1 motility.
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We further investigated whether, as suggested by the Nrx-1
FRAP data, Syd-1 and Spn would operate in a competitive
manner. Consequently, we revisited our previous finding
that overexpression of Syd-1 within motoneurons results in

co-expressed Nrx-1GFP being recruited into AZs13. However,
when Spn was also co-overexpressed with Nrx-1GFP and
mStrawberrySyd-1, both the Nrx-1GFP level and mStrawberrySyd-1
level at AZs dropped (Nrx1GFP intensity in wild-type background:
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1.0±0.06, n¼ 20; Nrx1GFP intensity in the presence of
overexpressed Spn: 0.8±0.04, n¼ 19; Po0.01; Mann–Whitney
t-test (U¼ 113). mStrawSyd-1 intensity in wild-type background:
1.0±0.04, n¼ 20; mStrawSyd-1 intensity in the presence of Spn:
0.76±0.05; Po0.01; Mann–Whitney t-test (U¼ 75)). Thus, Spn
gain-of-function might influence Nrx-1, antagonistic to the Spn
loss-of-function phenotype (Fig. 4b; Supplementary Fig. 6a–g). In
fact, AZ sizes on Spn overexpression were slightly (but
significantly) increased over controls (Ctrl: 222±3, n¼ 108;
GFPSpn: 246±4.5, n¼ 160; ctrl versus GFPSpn OE Po0.001;
Student’s t-test).

The Spn-PDZ domain interacts with Nrx-1 C terminus. We
performed immunoprecipitation experiments from Drosophila

head extracts22, using antibodies against Nrx-1 (refs 13,15), to test
whether Spn and Nrx-1 might be part of a common complex.
Western blot analysis with the anti-Spn antibody specifically
detected bands in the range of B200 kD, validating the specificity
of our custom-made anti-Spn antibodies (Fig. 5a; upper panel).
Using Nrx-1 antibodies, which robustly immunoprecipitated
Nrx-1 (Fig. 5a; middle panel), Spn could be co-immuno-
precipitated, but was absent in negative controls which used an
irrelevant IgG (Fig. 5a; lower panel). We performed a yeast two-
hybrid (Y2H) analysis using a C-terminal fragment of Nrx-1 to
screen against different fragments of Spn to investigate a direct
Nrx-1/Spn interaction (Fig. 5b,c). As a control, we included a
Syd-1 fragment, which we had previously shown to interact with
Nrx-1 (ref. 13). Semiquantitative Y2H analysis uncovered a
strong and specific interaction between the cytosolic part of Nrx-1
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(hereafter termed Nrx-1 C-term) and a 500 amino acid region of
Spn containing the PDZ domain (Spn-F3) (Spn-F3�Nrx-1
C-term in Fig. 5c). The fact that the overlapping constructs F2
and F4 (Fig. 5b) did not show any interaction narrowed down the
possible interacting stretch to a region comprising only the PP1
and the PDZ domains. These domains are present in all Spn
family members and are highly conserved between fly, worm and
rodent (Supplementary Fig. 8a). The Nrx-1 C-term/Spn-F3
interaction was eliminated after deleting the last five amino
acids of the Nrx-1 C terminus. In addition, introduction of a
point mutation38 in the Spn-PDZ domain (in the ligand-binding
pocket) which abolishes ligand binding, also abolished the
interaction (Fig. 5c). Thus, the very C-terminal PDZ-binding
motif of Nrx-1 interacts directly with PDZ domains found in both
Spn and Syd-1. To characterize the binding of Nrx-1 C-term to
the Spn-PDZ domain at atomic resolution, we turned to X-ray
crystallography. We solved the structure of PDZ domain
containing residues 1,258–1,347 of Spn in complex with the last
10 C-terminal residues of Nrx-1 (at 1.2 A� resolution) (Fig. 5d;
Supplementary Fig. 8; Supplementary Table 1). The Spn-PDZ
domain shares the characteristic canonical fold of PDZ domains,
which is composed of six b-strands and two a-helices39.
According to its specificity for C-terminal peptides, Spn-PDZ
is a class II PDZ domain, recognizing the signature motif
X–C–X–C (X, unspecified; and C, hydrophobic amino acid
residue). We found the peptide-binding groove to be flanked by a
b-strand (b2) and an a-helix (a2). The Nrx-1 peptide binds in an
anti-parallel mode, with main chain/main chain hydrogen
bonding to b2 of the Spn-PDZ. The carboxylate of the Nrx-1
peptide is hydrogen bonded to backbone amides of L1271 and
L1273 in Spn-PDZ (Fig. 5d;Supplementary Table 2). Further
interactions are established with the side chains of Spn-PDZ
residues residing on b4 and a2 (Fig. 5d). In addition, we observed
an inter-peptide interaction that might be important for
stabilizing the peptide conformation. We investigated the
binding thermodynamics of the Nrx-1 C-term peptide to the
PDZ domains of Spn or Syd-1 using isothermal calorimetry
(ITC). The Syd-1-PDZ domain showed higher affinity binding
(Kd 5mM) than the Spn-PDZ domain (50 mM) (Supplementary
Fig. 8e,f). Both Spn-PDZ domains and Nrx-1 C-termini are
highly conserved between Drosophila and rodents
(Supplementary Fig. 8a,c). In fact, an in vitro pull-down
experiment effectively precipitated both the Drosophila Spn-
PDZ and rat Spn-PDZ using the respective Nrx-1 peptides
(Supplementary Fig. 9a). To validate an in vivo inter-
action between Spn and Nrxs in rodents, we performed
co-immunoprecipitation experiments from mouse whole brain
lysates using a newly generated affinity-purified pan-Nrx
antibody (Supplementary Fig. 9b). We analysed the co-
imunoprecipitated proteins by mass spectrometry. Nlg, Spn and
several additional synaptic PDZ-domain-containing proteins
known to interact with Nrxs could be detected in the Nrx
immunoprecipitates, but not in precipitations with control IgGs
(Fig. 5e). The presence of Spn/Nrx complexes was further
confirmed by western blotting of the precipitates (Fig. 5f). Thus,
we find that Spn/Nrx interactions show evolutionary conservation
fully consistent with their shared sequence conservation.

PDZ domain ligand binding of Spn controls AZ structure and
function. If binding of the Spn-PDZ domain to Nrx-1 was, in
fact, functionally relevant, introducing the point mutation13,38

that interferes with Nrx-1 binding in vitro should compromise
Spn function in vivo. Indeed, expression of the Spn cDNA
containing the relevant point mutation (PDZ*Spn) no longer
rescued the structural presynaptic AZ phenotype of Spn mutants.

As expected, expression of wild-type cDNA (WTSpn; Fig. 2c)
rescued the phenotype (Fig. 6a–e). Thus, interfering with ligand
binding to the Spn-PDZ domain renders the protein incapable of
limiting AZ numbers.

Finally, we investigated the physiological consequences of
presynaptic Spn loss. We performed two-electrode voltage-clamp
recordings (TEVC) to assay SV release. We observed a clear
increase in the frequency of spontaneous SV release from Spn
terminals, which dropped to normal rates when normal (WTSpn)
was re-expressed in the presynaptic motoneuron (Fig. 6f,i).
However, on expression of PDZ*Spn under identical conditions,
the frequencies of spontaneous release events remained high
(Fig. 6f,i). The amplitudes of single spontaneous release events
were significantly larger at Spn terminals (Fig. 6j), potentially
reflecting the larger postsynaptic GluRIIA receptor fields described
above (Fig. 2b; Supplementary Fig. 5; Fig. 3i–l). In contrast, release
evoked by single action potentials was clearly decreased at Spn
NMJs (Fig. 6g,k). Loss of Spn also altered synaptic short-term
plasticity, in response to stimulation with a pair of action
potentials (at 10- or 30-ms intervals). Here Spn NMJs displayed
abnormal facilitation (Fig. 6h,m,n). Both defects were rescued by
the presynaptic expression of WTSpn, while expression of the
PDZ*Spn again did not rescue. Altogether, these results suggest
that Spn is not only responsible for the functional distribution of
presynaptic AZ scaffolds but also plays an important role in SV
release, and that the reduced evoked responses were not due to
decreased postsynaptic sensitivity. In addition, a higher number of
presynaptic AZs, as observed in Spn terminals, is in line with an
increased number of spontaneous release events detected.
However, the fact that evoked release is lowered is unexpected,
raising the question of whether the additional AZs observed in Spn
are sub-optimal for evoked release, but can maintain spontaneous
release. To answer this question, we went on to investigate the
function of Spn at the single AZ level.

Spinophilin optimizes evoked release at single synapses. The
TEVC recordings sample release events over the whole NMJ of
the respective muscle, but do not allow for the analysis of indi-
vidual AZs. To investigate the latter, we used a recently developed
assay employing post-synaptically expressed GCaMP to char-
acterize the spatial and temporal dynamics of exocytotic
events2,3,40. We imaged GCaMP responses to spontaneous
exocytosis for 100 s (see Supplementary Movies 1 and 2 for
examples) and, subsequently GCaMP response to action potential
stimulation (35 action potentials given at 0.2 Hz, see
Supplementary Movies 3 and 4 for examples). After recordings,
larvae were fixed, stained against BRP and visualized using
confocal microscopy. Alignment of these confocal images to the
live movies (Supplementary Fig. 10; see methods for further
details) allowed us to map activity at individual AZs (Fig. 7).
Strikingly, spontaneous activity per AZ was not changed at Spn
NMJs, suggesting that the net increase of spontaneous events
observed in TEVC experiments is, indeed, due to an increase in
synapse number rather than in their individual release rates
(Fig. 7a,c). By contrast, the probability of evoked exocytosis was
drastically reduced (Fig. 7b,d). However, the individual evoked
GCaMP signals were indistinguishable between Spn and control
NMJs (Fig. 7d). Consistent with our TEVC results, we found that
loss of Spn changed the partitioning of AZs between these two
discrete release modes: the fraction of AZs dedicated to evoked
release was significantly reduced in Spn (Fig. 7e). Therefore, we
conclude that even though Spn-deficient synapses participate in
both modes of SV release, Spn is essential for establishing correct
synaptic release probability, in agreement with the altered short-
term plasticity we observed in our TEVC experiments (Fig. 6k–n).
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It was found recently that release probability at individual AZs
correlated with the local levels of BRP2,40 which, as mentioned
above, is reduced at Spn synapses (Fig. 3). Is the decrease in
release probability at Spn synapses due to a reduction in their
BRP levels? To address this question, we investigated the
relationship between synaptic BRP and the number of release

events evoked at single AZs2. We found that release probability
was indeed positively correlated with BRP levels (Fig. 7f).
Furthermore, the average number of release events evoked at
Spn synapses also (but somewhat weaker) correlated with
BRP level. However, as this relationship differed from that
observed in control animals we can rule out the possibility
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Figure 6 | Electrophysiological characterization of Spn NMJs. (a–d) BRPNc82 labelling in indicated genotypes. (e) Quantification of BRP spot densities in

a–d, Ctrl: 100±4.6, n¼ 6; Spn: 126.1±2.08, n¼ 8; WTrescue: 104.5±2.6, n¼8; PDZ*rescue: 137.8±4.45, n¼ 7. Ctrl versus Spn Po0.001, (U¼ 2). Spn

versus WTrescue Po0.001, (U¼0.0). WTrescue versus PDZ*rescue Po0.001, (U¼0). (f) Representative mEJCs traces. (g) Representative eEJCs traces.

(h) Paired-pulse measurements with inter stimulus interval (ISI) of 10 ms; (i) Quantification of mEJC frequencies (Ctrl: 2.02±0.16, n¼ 28; Spn: 3.33±0.34,

n¼ 15, Po0.01; WTrescue: 2.32±0.26, n¼ 16, P40.05; PDZ*rescue: 3.16±0.36, n¼ 16, Po0.05. (j) Quantification of mEJC amplitudes (Ctrl:

�0.78±0.03 nA, n¼ 28; Spn: �0.96±0.05 nA, n¼ 15, Po0.01; WTrescue: �0.80±0.02 nA, n¼ 16, P40.05; PDZ*rescue: �0.86±0.03 nA, n¼ 15,

P40.05). (k) Quantification of eEJC amplitudes (Ctrl: �80.23±4.66 nA, n¼ 28; Spn: � 55.00±3.29 nA, n¼ 24, Po0.01; WTrescue: �82.58±6.0 nA,

n¼ 18, P40.05; PDZ*rescue: � 38.66±3.67, n¼ 18, Po0.01). (l) Quantification of quantal content (Ctrl: 101.4±5.89, n¼ 28; Spn: 57.20±3.42, n¼ 24,

Po0.001; WTrescue: 103.0±7.53, n¼ 18, P40.05; PDZ*rescue: 45.13±4.29, n¼ 18, Po0.001). (m) Quantification of the pair pulse ratio with an ISI of

10 ms. (Ctrl: 0.90±0.05, n¼ 28; Spn: 1.26±0.09, n¼ 22; Po0.01; WTrescue: 1.01±0.08, n¼ 18, P40.05; PDZ*rescue: 1.36±0.09, n¼ 18, Po0.001).

(n) Quantification of the paired-pulse ratio with a 30 ms ISI (Ctrl: 1.08 ±0.04, n¼ 28; Spn: 1.37±0.06, n¼ 21, Po0.01; WTrescue: 1.28±0.05, n¼ 18,

P40.05; PDZ*rescue: 1.44±0.08, n¼ 17, Po0.001). Statistics: one-way analysis of variance with Tukey’s multiple comparison post test. All panels show

mean±s.e.m., NS, not significant; *Pr0.05; **Pr0.01; ***Pr0.001. Scale bars: a–d, 10mm; f, 1 nA/1 s; g,h, 20 nA/20 ms.
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that the effect is mediated solely through BRP reduction. Thus, we
conclude that Spn is not only important for controlling synapse
number and size, but also for optimizing action-potential-
induced exocytosis by enhancing release probability at
individual AZs.

Discussion
The trans-synaptic dialogue between Nrx-1 and Nlg1 aids in the
initial assembly, specification and maturation of synapses, and is
a key component in the modification of neuronal net-
works12,41,42. Regulatory factors and processes that fine-tune
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and coordinate Nrx-1/Nlg1 signalling during synapse assembly
process are currently under investigation. Our data indicate that
Drosophila Spn-like protein acts presynaptically to attenuate Nrx-
1/Nlg1 signalling and protects from excessive seeding of new AZ
scaffolds at the NMJ. In Spn mutants, excessive AZs suffered from
insufficient evoked release, which may be partly explained by
their reduced size, and partly by a genuine functional role of Spn
(potentially mediated via Nrx-1 binding).

In mice, loss of Spn (Neurabin II), one of the two Neurabin
protein families present in mammals, was reported to provoke a
developmental increase in synapse numbers43. While Spinophilin
was found to be expressed both pre- and post-synaptically26,27, its
function, so far, has only been analysed in the context of
postsynaptic spines43–46. Given the conserved Spn/Nrx-1
interaction we report (Fig. 5), Spn family proteins might
execute a generic function in controlling Nrx-1/Nlg1-dependent
signalling during synapse assembly. We consistently find that Spn
counteracts another multi-domain synaptic regulator, Syd-1, in
the control of Nrx-1/Nlg1 signalling. Previous genetic work in
C. elegans identified roles of Syd-1 epistatic to Syd-2/Liprin-a in
synaptogenesis5,47. Syd-1 also operates epistatic to Syd-2/Liprin-a
at Drosophila NMJs17,48. Syd-1 immobilizes Nrx-1 (ref. 13),
positioning Nlg1 at juxtaposed postsynaptic sites, where it is
needed for efficient incorporation of GluR complexes. Intravital
imaging suggested an early checkpoint for synapse assembly,
involving Syd-1, Nrx-1/Nlg1 signalling and oligomerization of
Liprin-a in the formation of an early nucleation lattice49,50, which
is followed later by ELKS/BRP-dependent scaffolding events21,51

(our model in Fig. 8, upper panel). As Spn promotes the
diffusional motility of Nrx-1 over the terminal surface and limits
Nrx-1/Nlg1 signalling, and as its phenotype is reversed by loss of
a single gene copy of nrx-1, nlg1 or syd-1, Spn displays all the
features of a ‘negative’ element mounting, which effectively sets
the threshold for AZ assembly. As suggested by our FRAP
experiments (Supplementary Fig. 6), Spn might withdraw a
population of Nrx-1 from the early assembly process, establishing
an assembly threshold that ensures a ‘typical’ AZ design and

associated postsynaptic compartments (Fig. 8). As a negative
regulatory element, Spn might allow tuning of presynaptic AZ
scaffold size and function (see below).

The C. elegans Spn homologue NAB-1 (NeurABin1) was
previously shown to bind Syd-1 in cell culture recruitment
assays52. We found consistent evidence for Syd-1/Nrx-1/Spn
tripartite complexes in salivary gland experiments (Supplemen-
tary Fig. 11). Moreover, the PDZ domain containing regions of
Spn and Syd-1 interacted in Y2H experiments (Fig. 5c). It would
be interesting to dissect whether the interaction of Spn/Syd-1
plays a role in controlling the access of Nrx-1 to one or both
factors. For C. elegans HSN synapses, a previous study52 showed
that loss of NAB-1 results in a deficit of synaptic markers, such as
Syd-1 and Syd-2/Liprin-a, while NAB-1 binding to F-actin was
also found to be important for synapse assembly. Though at first
glance rather contradictory to the results we describe in this
study, differences might result from Chia et al. studying synapse
assembly executed over a short time window, when partner cells
meet for the first time52. In contrast, we used a model (Drosophila
larval NMJs) where an already functional neuronal terminal adds
novel AZs17,21. Despite our efforts, we were unable to
demonstrate a role of F-actin in the assembly of AZs of late
larval Drosophila NMJs. F-actin patches might be particularly
important to establish the first synaptic contacts between partner
cells. Both the study by Chia et al. and this study, however, point
clearly towards important regulatory roles of Spn family members
in the presynaptic control of synapse assembly.

Further, we describe a novel interaction between the Spn-PDZ
domain and the intracellular C-term of Nrx-1 at the atomic level.
Interestingly, we found that all functions of Spn reported in this
study, structural as well as functional, were strictly dependent
on the ligand-binding integrity of this PDZ domain. It is
noteworthy that the Spn-PDZ domain binds other ligands as well,
for example, Kalirin-7 and p70S6K (refs 53–55), and further
elucidation of its role as a signal ‘integrator’ in synapse plasticity
should be interesting. The fact that Nrx-1 levels were increased at
Spn NMJs and, most importantly, that genetic removal of a single
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nrx-1 gene copy effectively suppressed the Spn AZ phenotype,
indicates an important role of the Spn/Nrx-1 interaction in this
context. Affinity of Spn-PDZ for the Nrx-1 C-term was somewhat
lower than that of the Syd-1-PDZ, both in ITC and Y2H
experiments (Fig. 5c). Nonetheless, overexpression of Spn was
successful in reducing the targeting effect of Syd-1 on over-
expressed Nrx-1GFP (see above). It will be interesting to see
whether this interaction can be differentially regulated, for
example, by (de)phosphorylation.

It is worth noting that apart from Syd-1 and Spn, several other
proteins containing PDZ domains, including CASK, Mint1/X11,
CIPP and Syntenin13,36,56–59, were found to bind to the Nrxs
C-termini (also see Fig. 5e,f). CASK was previously shown to
interact genetically with Nrx-1, controlling endocytic function at
Drosophila NMJs36. However, when we tested for an influence of
CASK on Nrx-1GFP motility using FRAP, genetic ablation of
CASK had no effect (Supplementary Fig. 6). Thus, CASK
function seemingly resembles neither Syd-1 nor Spn. Clearly,
future work will have to address and integrate the role of other
synaptic regulators converging on the Nrx-1 C-term. In
particular, CASK (which displays a kinase function that
phosphorylates certain motifs within the Nrx-1 C-term) might
alternately control Spn- and Syd-1-dependent functions37.
Presynaptic Nrx-1, through binding to postsynaptic Nlg1 at
developing Drosophila NMJ terminals, is important for the proper
assembly of new synaptic sites11,13,15,36. It is of note, however,
that while mammalian Nrxs display robust synaptogenetic
activity in cellular in vitro systems, direct genetic evidence for
synaptogenetic activity of Nrxs in the mammalian CNS remained
rather scarce. Triple knockout mice lacking all a-Nrxs display no
gross synaptic defects at the ultrastructural level60,61. Future
analysis will have to investigate whether differences here might be
explained by specific compensation mechanisms in mammals; for
example, by b-Nrxs, or other parallel trans-synaptic communi-
cation modules. Genuine functional deficits in neurotransmitter
release were also observed after the elimination of presynaptic
Spn. Elimination of ligand binding to the PDZ domain rendered
the protein completely nonfunctional, without affecting its
synaptic targeting. Thus, the Spn functional defects are likely to
be mediated via a lack of Nrx-1 binding. Notably, ample evidence
connects Nrx-1 function with both the functional and structural
maturation of Drosophila presynaptic AZs8,16,41,62,63. Our work
now promotes the possibility that binding of Spn to Nrx-1 is
important for establishing correct release probability,
independent of absolute AZ scaffold size (Fig. 7). It is
noteworthy that Nrx-1 function was previously shown to be
important for proper Ca2þ channel function and, as a result,
properly evoked SV release60. Thus, it will be interesting to
investigate whether the specific functional contributions of Spn
are mediated via deficits in the AZ organization of voltage-gated
Ca2þ channels or Ca2þ sensors, such as synaptotagmin64–66.
Taken together, we found an unexpected function for Spn in
addition of AZs at Drosophila glutamatergic terminals, through
the integration of signals from both the pre- and postsynaptic
compartment. Given that we find the Spn/Nrx-1 interaction to be
conserved from Drosophila to rodents, addressing similar roles of
presynaptic Spn in mammalian brain physiology and
pathophysiology might be informative.

Methods
Genetics and molecular cloning. Fly strains were reared under standard
laboratory conditions67. Both male and female larvae were used for analysis in all
experiments (except electrophysiological recordings, see below). The structure of
the spnD3.1 allele eliminating the complete Spn locus, CG16758 (and partially
deleting the CG45186 loci) was validated by genomic PCR23. The combination of
spnD3.1 in trans with the deficiency chromosome dfBSc116 (Spn deficiency: Df)
resulted in animals deficient in the Spn locus. Lethality in Spn was completely

rescued by returning one copy of the genomic region of Spn in this mutant
background. It is of note that another mutant allele of Spn was reported previously
and was shown to be ‘semi-lethal’68; however, no functional analysis was
performed in this study. w1118 served as a genetic background for all experiments.
Recombinations were verified using PCR or complementation analysis. The
following recombination lines were used: for Syd-1(dsyd-1ex3.4/þ , spnD3.1/SpnDf),
Nrx-1 (Nrx-1241/þ , spnD3.1/SpnDf) and Nlg1(Nlg1ex2.3/þ , spnD3.1/SpnDf). Flies
carrying UAS–green fluorescent protein (GFP)-tagged Nrx-1 (ref. 15), UAS–GFP
or mStraw-tagged Syd-1 were described previously13. UAS-untagged or GFP-
tagged Spn were obtained by recombining pUAST-attb-rfa and pUAST-attb–GFP–
rfa with pENTR-Spn FL, respectively. The full-length Spn cDNA was cloned into
pENTR from BDGP clone LD45234, via Spe1 and Kpn1 restriction sites, using
primers 50-ATGGATAGCGAAAAGGTGGCCAAAC-30 and 50-CTTCTTTTTGG
CCGCCTTCTTCTC-30 .

A rabbit polyclonal anibody was raised against a 6�His-tagged fusion protein
of Spn N-term region (Fig. 1a, green bar). The corresponding expression construct
was cloned after PCR with 50-CACCAGCGTTCTCATCCAGTC-30 and 50-TTAC
ACAATGTCCACGGCTTCA-30 primers, and TOPO cloned into pENTR
D-TOPO.

The point-mutated PDZ domain of Spn cDNA (PDZ*Spn cDNA) was
constructed by circular PCR using primers: 50-GTGGAATTGATGGCGGGTCC
TGAGGGTGCGGGTCTCAGTATAATTG-30 and 50-CAATTATACTGAGACCC
GCACC CTCAGGACCCGCCATCAA TTCCAC-30 .

Clonings for crystal trials, ITC and GST pull-down assays. The constructs
comprising the PDZ domains of dmSpn (residue 1,258–1,347), dmSyd-1 (residue
155–242) and rnSpn (residue 493–583) were amplified by PCR and cloned into the
pET-MBP vector using NcoI and SalI restriction sites with primers: dmSpn_fwd:
50-TATACCATGGCGCATGTCTTCCCCGTGG-30 , dmSpn_rev: 50-TATA CCAT
GGTGGCCGCTTCGG-30 , dmSyd-1_fwd:50-TATACCATGGCGCAGGCGGTCG
ATGC-30 , dmSyd-1_rev:50-TATACCATGGCGCACACGGTTCAACTTGTCG-30,
rnSpn_fwd: 5-0TATACCATGGAGCTGTTTCCTGTGGAG-30 and rnSpn_rev:
50-ATATGTCGACCTACTCCCGGCCAATCATG-30.

The resulting constructs contained an N-terminal His6-MBP-tag followed by a
tobacco etch virus cleavage site and the respective PDZ domain. The constructs
comprising the last 10 C-terminal amino acids of dmNrx-1 (residue 1,831–1,840)
and rnNrx-1 (residue 1,498–1,507) were amplified by PCR and cloned into the
pGEX-6-P1 vector by a SLIC reaction using overlapping primers: dmNrx-1ct_fwd:
50-GACTCCAAGGACGTCAAGGAGTGGTATG TGTAACTGACGATCTGC
CTCG-30 , dmNrx-1 ct_rev: 50-TTACACATACCACTCCTTGACGTC CTTGG
AGTC GTCACGATGCGGCC-30 , rNrx-ct_fwd: 50-AAGAAGAACAAAGACAA
AGAGTATTACGTCTAGCTG ACGATCTGCCTCG-30 , rNrx-1ct_rev: 50- CTAG
ACGTAATACTCTTTGTCTTTGTTCTTCTTGTCAC GA TGCGGCC-30 .

The resulting constructs comprised an N-terminal GST-tag followed by a
PreScission cleavage site and the respective 10 C-terminal amino acids of Nrx-1.
Detailed version of methods for Protein expression and purification, ITC assays
and crystallization are presented in Supplementary Methods.

Generation of Spn genomic constructs. Pac (Spn1) was created from P[acman]
BAC clone CH321-01N11 (genomic region 2499270 to 2581398; CHORI-321
library of the BACPAC Resource Centre), which was subjected to transgenesis
using the Phi31 system (P[acman] strain 24872, M[vas-int.Dm]ZH-2A,
PBac[y[þ ]-attP- 3B]VK00037). Similarly, Pac(Spn2) was obtained by injecting the
P[acman] BAC clone CH321-67O06 (genomic region 2469714 to 2556468).
Pac(Spn*) corresponds to P[acman] BAC clone CH321-67O06, but lacks the whole
Spn open reading frame, and was cloned according to the Counter Selection BAC
Modification kit obtained from Gene Bridges GmbH. rpsL-neomycin (neo)
template DNA was used to generate selectable cassettes. Primers contained a 50-bp
homology region and a sequence for amplification of the rpsL-neo counter
selection cassette. Selectable cassettes were generated by PCR using Vent
Polymerase (New England Biolabs, Inc.) and the following primer pairs. Spn-rpsL-
fwd:50-GGCCCGAAATTCAAGCTAAACGGACGCGTTTTCGTCGCGAGTTTA
ACC GCGGCCTGGTGATGATGGCGGGATCG-30 , Spn-rpsL-rev: 50-ATTTCAG
AGTATATTTATTAGCACTGATTTTGAGATTTATT ATTTTCCATTCAGAAG
AACTCGTCAAGAAGGCG-30 .

Yeast-2-hybrid clones. Yeast-2-hybrid analysis was carried out using the LexA
system (pB27 bait vector; pP6 bait vector). The cytoplasmic C terminus of Nrx-1
was cloned into pB27 using primers: 50-GATGGAATTC-AATGGCGATCGTG
GCT-30 and 50-GTCTATACTAGT-TTACACATACCACTCCTTGACGTCCT-30 .

The Spn and Syd-1 fragments depicted in Fig. 6 were cloned into pP6 using:
F1-fwd: 50-CAATTCCATGGC-CATGGAGAAACCGATGCATCAT-30 , F1-rev:
50-CAACCTCGAGTTA-ATA GC CGACGTCCACGTA-30 , F2-fwd: 50-CAAACC
ATGGCC-GGTCGCAAATCTGTGGACG-30 , F2-rev: 50-CTTGGATCCTT-ACT
CGTGCAGTGATTCCCC-30 , F3-fwd: 50-GATCCATGGCC-CGTGAAGAGCTG
GAAAAC-30 , F3-rev: 50-GTTGGATCCTTA-CGTCTTACGCATCATCTG-30 ,
F4-fwd: 50-GATCccatggccGAGGAGCGCTTGAAGCGCCAA-30 , F4-rev: 50-CTGG
GATCCTTGTGCACCTGGGCATA-30 , F5-fwd: 50-GATC CCATGGCCAACTC
GCATCTGCTGGCCAACGTG-30 , F5-rev: 50-GGAATCCTCGAG-CTTCTTTTTG
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GCCGCCTTCTTCT-30, Syd-1 F1-fwd: 50-GTCTATGAATTC ATGACG GTGC
AACC GGCTGAA-30, Syd-1 F1-rev: 50-GTCTATACT-AGTT CCCGTT GACA
TTC TTCTCG-30 .

Immunostaining and imaging. Larval filets were dissected and stained as
described previously13,21. Primary antibodies used were: rabbit (Rb) SPNN2.2

(1:3,000), RbGluRIID (1:500), RbDSyd-1 (1:500), RbNlg1 (1:500), RbDRBP (1:500)
and guinea pig Nrx-1 (1:500) (generously provided by M. Bhat). We used MNc82
(1:100) and MCSP (1:500) (Developmental Studies Hybridoma Bank (DSHB), the
University of Iowa, Iowa City, IA), MFasII (1D4; DSHB), mouse monoclonal
antibody 3E6 (to stain GFP) (1:500) (Invitrogen) and rabbit anti-dsRed (1:500)
(Clontech). Secondary antibodies were generally diluted 1:500. Secondary
antibodies for STED were used in the following concentrations: goat anti-mouse
Atto590 1:100 and goat anti-rabbit star635 1:100. The dyes Atto590 (ATTO-TEC)
and Star635 (Abberior) were coupled to the stated IgGs (Dianova). Imaging larvae
were mounted in Mowiol (Sigma-Aldrich) for STED.

The sizes and surface densities of AZ cluster (visualized using BRPnc82, RimBP
and CacGFP) were quantified from maximal projections of confocal NMJ stacks. A
Cy5-HRP antibody (23-175-021, Jackson ImmunoResearch, 1:250) was used to
outline the shape of the NMJ. Control and mutant larvae were stained in the same
vial. All images for synapse quantification from fixed samples were acquired using
the same microscope settings (with � 63 magnification and numerical aperture 1.4
oil objective, Leica). AZ cluster analysis was done as described previously69; AZ
densities were obtained by normalizing the total number of particles analysed to
the total synaptic area (pixel units) measured via HRP. Similarly, the absolute
intensities of synaptic proteins per NMJ were normalized to the absolute intensity
of synaptic HRP of the corresponding NMJ.

In vivo imaging and FRAP analysis. All UAS constructs were driven in
motoneurons using OK6-Gal475. Intravital live imaging was performed as descri-
bed previously13,21.

STED and EM. STED microscopy was performed as described previously30. BRP
ring diameter measurements were performed on deconvolved images. Line profiles
were placed across the middle of planer-oriented BRP rings and the longest peak-
to-peak distance measured. Five to seven images obtained from four to five third
instar larvae per genotype were processed and analysed.

Head fractionation, co-immunoprecipitation and Y2H assay. We followed a
new protocol using Drosophila head fractionation, to obtain protein extracts used
in co-immunoprecipitation experiments. Extracts were run on 6% Tris_HCl gels.
Proteins were then transferred onto a nitrocellulose membrane and blocked with
5% milk in 1� PBS supplemented with 0.1% Tween-20 (PBS-T). Membranes were
probed with guinea pig anti-Nrx-1 (1:5,000; a custom polyclonal directed against
the last 100 amino acids of Nrx-1) and rabbit anti-SpnN2.2 (1:10,000) diluted in
PBS-T. After washing, secondary anti-guinea pig or anti-rabbit HRP-conjugated
antibodies were used for detection (Dianova) in conjunction with an enhanced
chemoluminescence (GE Healthcare ECL Prime; product number RPN 2232)
detection system with Hyperfilm ECL (GE Healthcare). Films were scanned in
transmission mode (Epson V770). Images were imported to Photoshop (Adobe),
and brightness and contrast were adjusted. The liquid Y2H b-galactosidase assay
was performed as reported previously70.

Co-immunoprecipitation from mouse brain. Brains were homogenized in 25 ml
per g tissue in homogenization buffer (50 mM Tris-HCL, pH7.4, 150 mM NaCl,
10% glycerol, 2 mM caCl2þ EDTA free protease and phosphatase inhibitor mixes)
using glass homogenizer. After homogenization samples were sonicated with
3� 10 pulses, Triton-X100 was added to the final concentration of 1% and
homogenate was incubated for 10 min at 4 �C with rotation. Sample was sonicated
again with 10 pulses. Samples were spun down at 20,000� g for 30 min. About
10ml per ml homogenate of protein A/G magnetic beads were added following
30 min incubation and separation of magnetic beads from the homogenate.
Homogenate was aliquoted in 2 ml tubes (1.6 ml per tube) and 0.8 mg affinity-
purified anti-pan-NRX or rabbit IgG was added to each aliquot. Samples were
incubated overnight with rotation at 4 �C. About 8 ml protein-A magnetic beads
(Dynabeads) were added and samples were incubated for additional 2 h. Samples
were washed 3� with homogenization bufferþ 0.1% Triton-X100 and once with
homogenization buffer without detergent. Bound proteins were eluted with 30 ml
2% sodium deoxycholate. Eluted proteins were separated on 8% PAA gel and
probed with anti-spinophilin (1:1,000, Cell Signaling, E1E7R) and anti-pan-Nrx
(40 mg ml� 1, homemade, affinity purified).

Two-electrode voltage clamp recordings. TEVC recordings were performed on
larval NMJs of third instar males (muscle 6 and segments A2 and A3), essentially as
described6. The composition of the extracellular hemolymph-like saline (HL-3) was
(in mM) NaCl 70, KCl 5, MgCl2 20, NaHCO3 10, trehalose 5, sucrose 115, HEPES
5 and CaCl2 1.5, pH adjusted to 7.2. Recordings were made from cells with an
initial membrane potential (Vm) between � 50 and � 70 mV and input resistances

of Z4 MO, using intracellular electrodes with resistances of 8–20 MO and filled
with 3 M KCl. eEJCs, which reflect the compound excitatory junctional current of
both the motoneurons innervating muscle 6 (voltage clamp at � 60 mV) and
mEJCs (voltage clamp at � 80 mV) were low pass filtered at 1 kHz. The 0.2-Hz
stimulation protocols included 20 traces per cell. Paired-pulse recordings consisted
of 10 traces per interval per cell in which a 4-s rest was left between paired pulses.
For determination of the base line of the second pulse at the 10-ms interpulse
interval, the decay of the first pulse was extrapolated. Recordings were analysed
with pClamp 10 (Molecular Devices). Stimulation artifacts in eEJC recordings were
removed for clarity.

GCaMP5 imaging; assaying spontaneous and evoked release by Ca2þ imaging.
Optical analysis of spontaneous and evoked transmitter release was performed
similarly as described3 by imaging postsynaptic GCaMP5 fluorescence signals in flies
expressing UAS-myrGCaMP5. Local activity patterns were aligned to confocal
images of a post-fixed staining against GFP and BRP to identify single AZs. See
Supplementary Methods for full details of Ca2þ imaging, image alignment and
signal processing.

Statistics. Data were analysed using Prism (GraphPad Software). Nonparametric
Mann–Whitney U-tests were used to compare two groups for all data sets.
Nonparametric Kruskal–Wallis tests were used for comparison of more than two
groups, followed by a Dunn’s multiple comparison test. P values, n values and
U or K statistics are given in the figure legends or main text. Similarly, the
electrophysiological data are reported as mean±s.e.m. and P value denotes the
significance according to one-way analysis of variance with Tukey’s multiple
comparison post-test.
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Supplementary Figure 1  related  to  figure  1:  (A)  Dendrogram  analysis  comparing 
Neurabin family of proteins together with that of Drosophila Spn. Shank3 has been used 
as an out-group. (B-C) RNAi mediated knockdown of presynaptic Spn results in 
more AZ  scaffolds  and  enlarged  glutamate  receptor  field  size. (D-E) Quantifications  
of  total  BRP  spots  and  Glutamate  receptor  field  sizes     in 	   motoneuron derived 
Spn-RNAi, BRP spots: in ctrl : 274± 17.4, n = 9;   Spn: 340 ±18.1 , n = 10; ctrl versus Spn 
P< 0.05 ; Mann-Whitney U-test (U = 15).Total GluRIID area: in ctrl: 77.8± 6.5, n = 9; Spn: 
113.6 ±11.2 , n = 10; ctrl versus Spn P<0.05 ; Mann-Whitney U-test (U = 17). Scale bar 
10µm. 
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Supplementary Figure  2 related to Figures 1&2. Additional allele of spn loucs,   MiMic-
SpnMi06873

 shows  similar  phenotypes  of  Spn  larvae.  (A)  Genomic  locus  of  
transposon element integration. (B-C) Reduced anti-Spn staining at the NMJ of 
SpnMi06873 allele with concomitant increase of BRP spot density. (D-E) Enlarged 
GluRIID field size in MiMic-SpnMi06873 hypomorphic allele. Scale bar 10 µm.  
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Supplementary Figure 3 related to Figures 2 and 3. RBP and CacGFP spot density 
increased at Spn NMJs. (A)  UAS-CacGFP   expression  in  Ctrl  compared  to  (B)   Spn  
show   significant increase of total amount of Ca2+  channels at Spn NMJs. (D-E) RBP 
spot  density is similarly increased in Spn NMJ while synaptic vesicle marcker CSP 
does not alter. (C, F-H) CacGFP in Ctrl: 100 ± 7.6, n = 9; CacGFP  in Spn: 158 ± 15.67 n =  
8; Ctrl versus Spn P<0.001 Mann-Whitney U-test (U = 4), (RBP in Ctrl: 100 ±  2.7, 771	  	  	  	  	  	  
n = 10; RBP in Spn: 145.5 ± 5.6 n = 10; Ctrl versus Spn P<0.001 Mann-Whitney 
U-test (U = 1), (CSP in Ctrl: 100 ± 14, n = 10; CSP in Spn: 102 ± 15.64 n= 10; Ctrl 
versus Spn P>0.05 Mann-Whitney U-test (U = 47), (HRP integrated intensity in Ctrl: 
100±5.4, n=10; HRP in Spn: 97.8±5.9, n=10; Ctrl versus Spn P>0.05 Mann-Whitney U-
test (U = 41). Error bars indicate SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.005; ns, P > 
0.05. Scale bar: 10µm. 
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Supplementary Figure 4 related to Fig.3. Electron dense projection analyses in Spn 
NMJs. Two	   independent examples  of  dense  projection  (T-bars)  are  shown  per 

indicated genotypes of Ctrl (A), Spn (B) and WTSpn rescue(C). (D)T-bar platform’s 
width (electron-dense materials parallel to double membrane) were significantly shorter 

in Spn compared with Ctrl and WTrescue (Ctrl: 150±14.3 nm, n=12; Spn: 113.8 ± 

5.6 nm, P<0.05, n=21; WTSpn-rescue: 154± 9 nm, P<0.01 n=19;   one-way ANOVA  
Tukey’s  posttest).  (E)  The  T-bar  height  (pedestal  plus platform perpendicular to 
double membrane) was unaffected in Spn compared to controls (Ctrl:  66.9±1.7  nm,  

n=1;  Spn:  64.8±5.6  nm,  P>0.05,  n=21; WTSpn-rescue: 61.3±2.08 nm, P> 0.05, 
n=19; one-way ANOVA Tukey’s posttest). All panels show mean values and errors 
bars representing SEMs. *, P ≤ 0.05; n.s., P > 0.05. Scale bar: 100 nm. 
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Supplementary Figure  5  related  to  Fig.4.  Spn  controls  postsynaptic  GluR  field  

size   and composition. (A-B) Co-labelling of DGluRIIA and DGluRIIB for wild type (A), 
Spn (B), NMJs. (C) Integrated GluRIIA signal (wild type: 100±9.9, n=7; Spn: 

299.3±11.15,  n=8;WT  versus  Spn  P<0.001;  Mann-Whitney  U-test  (U  =  0.0).  (D) 
Integrated GluRIIB signal (wild type: 100±15.9, n=7; Spn: 94.95±6.2, n=8; WT versus 

Spn P: 0.8 ; Mann-Whitney U-test (U = 26). (E) Increased incorporation of GluRIIA  

compared to GluRIIB (wild type: 0.41±0.05, n=7; Spn: 1.2±0.1, n=8; wild type versus 

Spn P< 0.001; Mann-Whitney U-test (U = 1). Scale bar 5 µm. 
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Supplementary Figure  6 related to Fig.4. Elevated levels of endogenous Syd-1 in Spn  

NMJs. (A) co-labelling of Syd1 and HRP in WT and (B) in Spn NMJs. (C) Total 
amount of Syd-1 is increased in Spn, Wild type: 100± 6, n = 14; Spn: 133.5 ±8.4, n =  
19; wild type versus Spn P<0.01 ; Mann-Whitney U-test (U = 55). (D) while amount of 
BRP is unaffected, Wild type: 100± 5, n =14; Spn: 101.8 ±4.5 , n = 19; wild type 
versus Spn P> 0.05 ; Mann-Whitney U-test (U = 123). The NMJ size (chart	   not  
depicted),  measured  via  HRP  staining,  is  not  changed  in  Spn,     Wild 	   	   	   	   	   	   type: 
228± 11, n = 14; Spn: 206 ±7.7 , n = 19; wild type versus Spn P> 0.05 ; Mann-

Whitney U-test (U = (E-H) Similarly, GFPSyd-1 over-expression in   Spn (F)  shows  more 

but smaller  GFPSyd1  spots  compared  to  controls (E). Quantifications of GFPSyd-1 spot 
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density (G) and NMJ size (H) in control and Spn animals, GFPSyd-1 spots: Wild type: 
1.12± 0.07, n = 7; Spn: 1.39 ±0.03 , n = 6; wild type versus Spn P<0.01 ; Mann-
Whitney U-test (U = 2). NMJ size: wild type: 201.4±31.8, n=7; Spn: 184.8±21.6 

µm2; wild type versus Spn P>0.05 ; Mann-Whitney  U-test  (U  =  18). (I-L) FRAP of 

Nrx-1GFP expressed  in  motor  neurons  of  wild  type,  Spn  and  Caki  larvae.  The 
middle (photobleached) rows were taken 2 min after the top row. (L) Quantifications of 

the  Nrx-1GFP  recovery  signal  in  respected  genotypes  were  normalized  to  its 	  	  	  	  

recovery   in   wild type   larvae.   Nrx-1GFP     in   wild type:   1.0±0.1,   n=47;   Nrx-1GFP     

in	  Spn :0.49±0.06, n=14; Nrx-1GFP in Caki: 1.01±0.06, n=27. Nrx-1GFP recovery in wild 

type versus Spn, P<0.001 Mann-Whitney U-test (U = 138), Nrx-1GFP  recovery in wild 

type versus Caki, P>0.05 Mann-Whitney U-test (U = 518). (M-O) FRAP  of  GFPSyd-1  
expressed  in motor neurons of wild type and Spn larvae. The middle (photobleached) 

row taken 2 min after the top row. (O) Quantifications of GFPSyd-1 recovery signal  

normalized to wild type. GFPSyd-1 in wild type: 1.0 ±0.1, n = 9; GFPSyd-1 in Spn 

:1.0±0.1, n = 6;	   GFPSyd-1 in wild type versus Spn background, P>0.05; Mann-
Whitney U-test (U = 27). Scale bars 10µm. 

 

 

 

 
Supplementary Figure 7 r e l a t e d  t o  f i g u r e  4 Synaptic cell adhesion molecule 

Fasciclin II staining in Spn NMJs. Co-labelling of FasII staining with HRP marker in 

(A) wild type and (B) Spn NMJs, show no changes upon lack of Spn. Scale bar 2.5 µm.  
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Supplementary Figure 8 related to figure 5. Similarity between Nrx-1 C-
termini and PDZ domains of fly and rodent 	   animal  models.  (A)  Alignment  
of  PDZ  domains  from  dmSpinophilin,   Homo 	   sapiens Spinophilin 
(hsSpinophilin), Mus musculus Spinophilin   (mmSpinophilin), and Rattus 
norvegicus Spinophilin (rnSpinophilin). Secondary structure elements are 
indicated on top of the sequences. Filled circles indicate residues involved 
in dmSpinophilin protein backbone to peptide backbone interactions and 
triangles describe residues involved in side chain interactions. (B) 
Sequence conservation is 	  mapped on the surface of the crystal structure of 
dmSpinophilin-PDZ. The bound dmNeurexin peptide is shown in stick 
representation. Secondary structure elements are indicated on top of the 
sequences. Filled circles indicate residues involved in dmSpinophilin protein 
backbone to peptide backbone interactions and triangles describe residues 
involved in side chain interactions. (C) Alignment of the last 	  ten C-terminal  
amino  acid  residues  of  dmNeurexin,  Homo  sapiens Neurexin 	  
(hsNeurexin),  Mus  musculus  Neurexin  (mmNeurexin),  and  Rattus  
norvegicus 	  Neurexin (rnNeurexin). (D) Sequence conservation is mapped 
on the surface  of the  bound  dmNeurexin peptide.  dmSpinophilin-PDZ  is  
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shown  as  gray  surface.  (E,F) Quantification of protein-peptide 
interactions by ITC. Both the raw data and the	   integrated data are 
shown. Data were fitted based on the “One Set of Sites” model. (E) 
Titration of MBP-dmSyd-1 PDZ and the dmNeurexin peptide. In a 
control experiment with MBP, we could not detect any binding of the 
dmNeurexin peptide. (F)  Titration  of  dmSpinophilin-PDZ  and  the  
dmNeurexin  peptide. (G) mFoDFc simulated annealing omit map shown as 
violet mesh contoured at 3.0 σ around  the  bound  peptide.  For  
calculation  of  the  electron  density  map  the dmNeurexin  peptide  had  
been  omitted.  The  peptide  is  shown  in  gray  stick representation and 
dmSpinophilin-PDZ in cartoon representation. 
 
 
 
 
 

Supplementary Figure 9  related  to  Fig.  5  (A)  MBP-dmSpinophilin  
(MBP-dmSpn  PDZ) and 	   MBP-rnSpinophilin (MBP-rnSpn PDZ) pulldown 
assays in the presence of  GST- 	   dmNeurexin1 (GST-dmNrx11831-1840) and 
GST-rnNeurexin 1 (GST-rnNrx11498-1507) peptides and the indicated 
proteins. (B) Immunoprecipitation of Nrx-1 complex 	   	   	   	   	   	   	   from mouse brain 
homogenate. 
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Supplementary Figure 10 r e l a t e d  t o  f i g u r e  7  Assignment of single 
active zones identified by post-hoc staining	   against Bruchpilot (BRP) to 
GCaMP5 events at control and Spn NMJs. (A, B) In 	   vivo GCaMP5 signal, 
produced from live movies by an average projection of 2000 frames 
acquired during spontaneous activity. (A1, B1) GCaMP5 signal after 
fixation, shown is a Z-projection of confocal light microscopic scans. 
Individual 	   	   	   areas of the confocal image were registered to the first 
frame of the in vivo GCaMP5 signal (see Methods). A2, B2) The same 
registration transformation as 	   for the confocal GCaMP5 images (A1, B2) 
was used to align individual active	   zones identified in confocal scans by 
staining against the presynaptic active zone marker BRP. (A3, B3) BRP 
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staining was used to place uniformly sized regions of interest (ROIs) to 
read out GCaMP5 fluorescence over time. Images A1, A2,  A3 and B1, B2, 
B3 are placed on top of the first frame acquired in the live Ca2+- 
imaging experiment (exposure time 0.05s). Scale bar 5µm. 
 

 

Supplementary Figure 11 In-vivo complex formation between GFPSpn, 
mStrawSyd-1 and  Nrx-1GFP. (A) co-expression  of  GFPSpn  and  mStrawSyd-1  
leads  to  co-aggregation  of both proteins at  the  membrane  but  also  in  
cytoplasm  of  salivary  gland  cells. (B) Addition of Nrx-1GFP to (A), triple 
expression, leads to diffused localization of both 	   	   	   	  Spn and Syd-1 at the 
membrane. Scale bar 25µm. 
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Supplimentary Figure 12 Conserved interaction between Spn and Nrx-1 
as shown in Fig.5. (A-B) Immunoblot (un-cropped) of fly Nrx-1 
immunoprecipitate (IP) from Drosophila head fractionation sample enriched 
for AZ proteins (see Methods). (A) Enrichment of Nrx-1 in ginue pig anti-
Nrx-1 Co-IP sample. (B) Spn bands of expected size can be detected in 
Nrx-1 Co-IP sample, but is absent in control immunoglobulin G is used 
(IgG). (C-D) Similary this interaction could be detected in rodent brain 
homogenates. (C) Western-blot analysis of a pan-Nrx antibody IP. (D) Co-
IP complex with anti-Spn antibody.	  
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Supplementary Table 1 Data collection and refinement statistics for 
dmSpinophilin-PDZ  bound to a dmNeurexin derived peptide. 
 

Data collection  

PDB entry 4XHV 

Space group P43212 

Wavelength [Å] 0.91841 

Unit cell a; b; c [Å] 45.3; 45.3; 94.5 

α; β; γ [º] 90.0; 90.0; 90.0 

Resolution [Å] a 45.30-1.23 (1.30-1.23) 

Unique reflections 29395 (4571) 

Completeness a 99.7 (98.5) 

<I/σ(I)> a 21.6 (2.4) 

Rmeas 
a, b 0.060 (0.699) 

CC1/2 a 100.0 (75.8) 

Redundancy a 6.1 (3.8) 

Refinement  

Non-hydrogen atoms  

Rwork
 a, c 0.138 (0.207) 

Rfree 
a, d 0.162 (0.210) 

Average B-factor [Å2] 14.6 

Protein residues 94 / 13.5 

Peptide residues 10 / 14.1 

Water molecules 176 / 25.0 

Buffer molecules 3 / 18.3 

r.m.s.d. e bond length [Å] 0.016 

    bond angles [°] 1.628 

Ramachandran outliers [%] 0 

Ramachandran favored [%] 99.1 
a values in parentheses refer to the highest resolution shell. 
b Rmeas = Σh [n/(n-1)]1/2

 Σi ⏐ Ih - Ih,i⏐/ ΣhΣi Ih,i.where Ih is the mean intensity of symmetry-

equivalent reflections and n is the redundancy. 
c Rwork = Σh ⏐Fo – Fc⏐/ Σ Fo (working set, no σ cut-off applied). 
d Rfree is the same as Rwork, but calculated on 5% of the data excluded from 

refinement. 
e Root-mean-square deviation (r.m.s.d.) from target geometries. 
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Supplementary Table 2 Peptide interactions with a distance cut-off of 
≤ 3.3 Å. 
 
dmSpinophlin-

PDZ 

dmNeurexin distance Peptide Peptide distance 

Leu1271N Val1840O 2.7    

Leu1273N Val1840OXT 3.3    

Leu1273O Val1840N 2.9    

Arg1335NE Thr1839O 3.0    

Arg1335NH Thr1839O 2.9    

   Tyr1839OH Glu1837OE2 2.6 

Ile1275N Trp1838O 2.9    

Ile1275O Glu1837N 2.9    

Lys1294NZ Glu1837OE1 3.0    

Gln1327NE2 Lys1836O 3.1    

   Asp1834N Ser1832O 3.1 

   Asp1834OD1 Asp1831O 2.9 

   Asp1834OD1 Asp1831OD1 2.8 

Lys1288NZ Ser1832OG 3.1    

   Asp1831O Asp1831OD1 2.9 
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Supplementary Methods 
 

Protein expression and purification 

Protein expression was performed using BL21-T1R cells. Cells were grown 

in auto- induction ZY-medium (Studier, 2005) with Kanamycin for 4 h at 37 

°C. Afterwards, the temperature was decreased to 18 °C and cells were 
grown overnight. Harvested cells were resuspended in extraction buffer (40 

mM Tris/HCl (pH 7.5) 400 mM NaCl, 1 mM DTT, 10 mg/l lysozyme and 5 

mg/l DNase I) a t  r o o m  t e m p e r a t u r e  and subsequently lysed by 

sonification. Lysates were centrifuged at 56,000 x g for 45 min to pellet the 

cell debris. Supernatants were subjected to affinity chromatography using 

amylose resin (NEB). Two washing steps were performed using washing 
buffer (20 mM Tris/HCl (pH 7.5) 200 mM NaCl, 1 mM DTT)  a t  r o o m  

t e m p e r a t u r e . Amylose resin was incubated twice with washing buffer 

supplemented with 10 mM maltose for 15 min for p r o t e i n  elution. The 

MBP-tag of the PDZ domains was cleaved off using TEV protease (1 

mg/ml). Protease was added to the eluted protein in a molar ratio of 1:30 

and the reaction incubated at 4 °C overnight. TEV protease and cleaved 

His6-MBP-tag was removed using Ni-NTA resin. TEV-cleaved constructs 
were purified using a Superdex 75 26/60 column (GE Healthcare), where 

fractions containing protein were pooled and concentrated using a Centricon 

(MWCO 3,000) (Millipore). Protein concentrations were determined by UV-

absorption. 
Isothermal titration calorimetry 
Isothermal titration calorimetry experiments were performed at 25°C on an 

iTC200 microcalorimeter (Malvern Instruments Ltd.). A peptide with the 

sequence 1831DSKDVKEWYV1840 was synthesized by JPT – Innovative 

Peptide Solutions company. Lyophilized peptide was resuspended in the 
same buffer as the proteins. Spn-PDZ was injected in steps of 30 µM 

equivalent concentration against 182 µM of peptide; MBP-Syd-1-PDZ was 
injected in steps of 18 or 19 µM e q u i v a l e n t  concentration against 160 
or 174 µM of peptide. In a control experiment, MBP with injected (22 µM 

equivalents) against 174 µM peptide. All measurements were performed 
with 20 injections of 2.0 µl volume at intervals of 2 min. The heat released 

was obtained by integrating the calorimetric output curves. Binding 
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parameters were calculated with Origin5 software using the “One Set of 
Sites” curve-fitting model provided by the software. 

 

Thermofluor 
A thermofluor analysis was performed for buffer optimization using a 

Mx3005P qPCR system (Agilent). Buffers containing zinc salts in different 

concentrations gave a thermal shift of at least 12 °C. 

Crystallization and crystal cooling 

For crystallization, Spn-PDZ was purified as described, with 100 µM zinc 
chloride present in all buffers. The protein was concentrated to 60 mg/ml. 
The unsolubilized peptide (DSKDVKEWYV) was mixed in a three-fold 
molar excess with the protein and incubated for 2 h on ice. Insoluble 
peptide was removed by centrifugation (16,000 g for 1 min) prior to the 
crystallization experiments. The initial crystals were obtained by the sitting-
drop vapor-diffusion method at 18 °C with a reservoir solution composed of 
0.1 M Tris-HCl (pH 8.5 at RT), 0.01 M nickel chloride a n d  20 % (w/v) 
PEG 2000 MME. Crystals were cryo-protected using 20 % (v/v) ethylene 
glycol, which was added to the reservoir solution.  

 

X-ray data collection, structure determination and refinement 
Synchrotron diffraction data were collected at beamline 14.2 of the Joint 
Berlin MX Laboratory at BESSY (Berlin, Germany). X-ray data collection 
was performed at 100 K. Diffraction data were processed with XDS1. The 
structure of Spn-PDZ in space group P43212 was solved by molecular 
replacement using Phaser-MR2, in which the shortened structure of the Spn 
PDZ domain from Rattus norvegicus (PDB entry 3EGG3) was used as a 
search model. A randomly generated set of 5 % of reflections w a s  
excluded from the refinement for the calculation of the free R-factor. The 
structure was initially refined by applying a simulated annealing protocol and, 
in later refinement cycles, by maximum-likelihood restrained refinement 
using PHENIX4, 5. Model building and water picking was performed with 
COOT6.  Model quality was evaluated with MolProbity4, 7. Figures were 
prepared using PyMOL8. 
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Detailed methods for GCamp5 imaging; assaying spontaneous and 
evoked release by Ca2+ imaging.  
Third instar larvae of both sexes expressing UAS-myrGCaMP59 in the 

muscle were dissected in Ca2+ free, ice-cold HL3 saline containing (in 
mM): NaCl 70, KCl 5, MgCl2 20, NaHCO3 10, trehalose 5, sucrose 115, 
Hepes 5 (pH 7.2) at room temperature). The motoneuron nerves were cut 
below the ventral nerve cord and the CNS was removed. The preparation 
was allowed to rest for 5-10 min in HL3 containing 1.5 mM CaCl2 at RT. 
During this time, the motor nerve of the respective segment was sucked 
into a stimulation pipette filled with HL3 for later NMJ stimulation. Image 
sequences (spontaneous and evoked release) were acquired at 20 Hz with 
an Olympus BX51WI epifluorescence microscope with a 40x (NA 0.8) 
water immersion objective (Olympus), equipped with a Lambda DG-4 light 
source (Sutter Instruments, Novato, CA, USA) and a Hamamatsu Orca-
Flash 4.0 V2 camera (exposure time 0.05 s). The camera was operated in 
stream mode using HoKaWo software (vers. 2.9, Hamamatsu Germany). 
First, spontaneous activity in muscle 4 in segments A2 or A3 was recorded 
for 100 s. Then evoked release was stimulated 35 times by depolarizing the 
afferent motor nerve using voltage steps to 10 V. Each step lasted 300 µs 
and was applied at a frequency of 0.2 Hz with an S48 Stimulator (Grass 
Technologies, Warwick, RI, USA). The stimulator and camera were 
triggered using a Digidata 1440A (Axon CNS, Molecular Devices, 
Sunnyvale, CA, USA), running Clampex software (vers. 10.4, Molecular 
Devices, UK). The larval fillet was fixed immediately in PBS containing 4 
% PFA immediately after the final stimulation was applied. Fillets were then 
stained for BRP(see above).  

 

Ca2+ imaging and data analysis.  

Image sequences were processed using ImageJ (version 1.48t and 1.48q). 

Slight drift between images was corrected with the “TurboReg” plugin 

(http://bigwww.epfl.ch/thevenaz/turboreg/), which uses the “Rigid Body” 

transformation10 to register all images to the first frame of the spontaneous 

recording. Additionally, maximal z-projections of post-hoc confocal images of 

the GCaMP5 fluorescence were aligned to this target frame using the 
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“affine” transformation. The same transformation was also applied to the 

other channel with the BRP staining (Supplementary Fig.10). Single AZs 

were automatically identified through their intensity maxima and equally-

sized regions of interest (ROIs, 0.65 µm diameter) were placed around 

each maximum (Supplementary Fig.10). Integrated fluorescence intensity 

values from each ROI were read out from each frame to capture the 

temporal change in GCaMP5 fluorescence at a particular AZ. Each ROIs 

was then moved to a region outside of the GCaMP5 signal to obtain a  

background intensity value, which was subtracted from the signal. Data 

were transferred to Matlab (Mathworks, vers. R2011a) for further analysis. 

Spikes were detected by analyzing the background corrected GCaMP5 

intensity profiles using a custom-written script. Traces were filtered using a 

running average filter implemented in the Matlab function “filter” with a box 

size of four frames. Spikes were identified by detecting signals that 

exceeded the standard deviation of the signal by a factor of 4 for at 

least three consecutive frames. The following criteria were applied to 

prevent the same signal being counted several times at adjacent AZs: only 

the largest signal in recordings of spontaneous activity was considered if 

several AZs had simultaneous fluorescence peaks. Signals were only 

considered for the analysis of evoked episodes if they were temporally 

locked to the stimulation, with peak values occurring within 1 s after the 

stimulus. Spikes that coincided at different AZs were only considered if they 

were at least 2.5 µm apart, otherwise only the largest signal was considered. 

All signals matching these criteria were evaluated by visual inspection and 

peaks that showed atypical rise and decay kinetics were rejected. A section 

of the local GCaMP5 fluorescence signal (2 s prior and 2s after the 

maximal spike value) was selected to obtain the average GCaMP5 

response (Fig. 7c and d) and the baseline corrected by subtracting a line 

that was fitted to the fluorescence signal during the first and last second of 

this 4 s window. Traces were then averaged over all events from all AZs in 

one animal and, finally, averaged over all animals. The total number of 

spontaneous events per NMJ was divided by the number of analyzed AZs 

and the acquisition time in order to calculate the frequency of spontaneous 

events per AZ. The total number of AZs that showed activity at least once 
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was divided by the total AZ number to obtain the fraction of active AZs. The 

release probability per AZ was calculated by dividing the total number of 

stimulus-locked, evoked events per NMJ by the number of AZs and 

stimuli. All values were then averaged over all animals. The BRP intensities 

per AZ were measured from confocal maximal projection images using the 

same ROIs that were used for reading out the GCaMP5 fluorescence. The 

BRP intensities were then binned in ascending order in five bins containing 

the same number of AZs and the average BRP intensity as well as the 

average number of evoked events calculated per AZ. Binned data were then 

averaged over all animals of one group. Linear fits were performed in 

OriginPro 6G (vers. 8.0773) taking vertical and horizontal error bars into 

account. The function “Compare Datasets” was used to test whether the two 

datasets were significantly different from one another. 
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ABSTRACT 44 

Brain function relies on fast and precisely timed synaptic vesicle (SV) release at active zones 45 

(AZs). SV release efficacy depends on SV-Ca2+ channel distances, but molecular 46 

mechanisms controlling this are unknown. Here we show that distances can be defined by 47 

targeting two Unc13 isoforms to presynaptic AZ sub-domains. Super-resolution and intravital 48 

imaging of developing Drosophila glutamatergic synapses revealed that the Unc13B isoform 49 

was recruited to nascent AZs by the scaffolding proteins Syd-1/Liprin-ɑ, while Unc13A was 50 

positioned by Bruchpilot/Rim-binding protein complexes at maturing AZs. Unc13B localized 51 

120 nm away from Ca2+ channels, while Unc13A localized only 70 nm away, and was 52 

responsible for docking SVs at this distance. Unc13ANull mutants suffered from inefficient, 53 

delayed and EGTA supersensitive release. Mathematical modelling suggests that synapses 54 

normally operate via two independent release pathways differentially positioned by either 55 

isoform. We identify isoform-specific Unc13/AZ scaffold interactions regulating SV-Ca2+ 56 

channel topology whose developmental tightening optimizes synaptic transmission. 57 

  58 
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INTRO 59 

Synaptic communication relies on the timed fusion of synaptic vesicles (SV) to release 60 

neurotransmitter from the presynapse in response to action potentials (APs). To gain release 61 

competence, prior reactions need to take place. Docking, the targeted SV localization to the 62 

AZ plasma membrane, and priming, the maturation of SVs into a readily releasable pool 63 

(RRP), were shown to require the neuronal SNAREs Syntaxin, SNAP25, and VAMP21-3. A 64 

conformational change from closed to open Syntaxin required to engage all 3 neuronal 65 

SNAREs, is thought to be catalyzed by the essential priming factor (M)Unc13, thus 66 

establishing an RRP and enhancing SV replenishment following exocytosis2, 4-7. To couple 67 

SV release to electrical stimulation by APs, Ca2+ ions entering the cell through voltage-gated 68 

Ca2+ channels activate the Ca2+ sensor Synaptotagmin on the SV to trigger fusion1. The 69 

efficacy of synaptic transmission largely depends on the distance between SVs and voltage-70 

gated Ca2+ channels. Close proximity is required for immediate responses, which may 71 

require active localization of RRP SVs, a process referred to as positional priming8-10. 72 

At AZs, an evolutionarily conserved set of large proteins is implicated in the spatial 73 

organization of synapse topology including RIM, (M)Unc13, Rim-binding protein (RBP), 74 

Liprin-α, and ELKS/Bruchpilot (BRP) proteins11. Among these, ELKS/BRP-family proteins, 75 

RIMs and RBPs are required to ensure proper Ca2+ channel-SV topology, Ca2+ channel 76 

density and their levels predict release at single AZs12-17. Furthermore, Liprin-ɑ organizes AZ 77 

composition18-20. Intravital imaging of the AZ assembly-trajectory of the Drosophila 78 

neuromuscular junction (NMJ) showed that an early Syd-1/Liprin-ɑ scaffold protein complex 79 

initiates AZ-assembly. This protein complex precedes a second one containing BRP and 80 

RBP by hours18, 21. 81 

Here we show that two scaffold protein complexes define the spatio-temporal 82 

organization of two Unc13 isoforms during AZ maturation. Unc13B appeared together with 83 

the “early” Liprin-ɑ/Syd-1 scaffold and its AZ accumulation was specifically dependent on this 84 

scaffold. At matured AZs, Unc13B remained clustered at larger distances from Ca2+ channels 85 

(>100 nm). Later during the assembly process, Unc13A was positioned and stabilized in 86 
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discrete clusters via the ELKS/BRP/RBP scaffold close to presynaptic Ca2+ channels (<100 87 

nm). In line with a function in both molecular priming and vesicle positioning, we find that 88 

Unc13A dominates release not only by enhancing the number of docked and primed 89 

vesicles, but also by regulating the probability of release, its latency and sensitivity to Ca2+ 90 

buffers. Our results are in line with two coexisting functional exocytosis pathways with 91 

identical Ca2+ sensing and fusion mechanisms at mature AZs, differentially positioned by the 92 

two Unc13 isoforms whose precise spatio-temporal placement determines AZ maturation 93 

and function. 94 

  95 
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RESULTS 96 

We previously analyzed the developmental assembly and maturation of glutamatergic 97 

synapses in Drosophila and discovered that the central AZ protein scaffold, consisting of 98 

BRP and RBP, is incorporated at an advanced stage of a maturation process lasting many 99 

hours18. Elimination of either BRP or RBP leads to severe SV release deficits, at least partly 100 

caused by reduced coupling of Ca2+ channels to the SV fusion machinery14, 15. As neither 101 

RBP nor BRP are per se proteins with established direct function in SV exocytosis, we 102 

wondered whether additional effectors among release machinery proteins might be 103 

organized via the scaffolding function of the RBP/BRP complexes. 104 

 105 

Unc13A and B are important for efficient AZ formation 106 

In order to identify novel RBP interaction partners which might be relevant in this context, we 107 

performed a pair-wise yeast two-hybrid (Y2H) matrix screen using a construct consisting of 108 

the 2nd and 3rd SH3 domains of Drosophila RBP as bait. The screen recovered a direct binary 109 

interaction with an N-terminal proline‐rich (PxxP) motif-containing region of Drosophila 110 

Unc13A (Figure 1a), one of the two Unc13 isoforms transcribed from a single Drosophila 111 

Unc13 locus (www.flybase.org). An arrangement in which two promoters of the same locus 112 

produce different isoforms was noted before for the AZ-protein BRP22. Similar to the BRP 113 

isoforms, the two Unc13 isoforms differ within their N-terminal region, but are identical at 114 

their C-terminal region which includes the so-called C1, C2B, MUN and C2C domains23 115 

(Figure 1a,b). Binding of diacylglycerol (DAG) to the C1 domain was shown to induce the 116 

translocation of (M)Unc13s to the plasma membrane and to influence vesicular release 117 

probability, linking C1 domain activation to a lowering of the energy barrier for SV fusion24, 25. 118 

The central C2B domain is involved in Ca2+-dependent phospholipid binding and modulates 119 

presynaptic plasticity26. Furthermore, both isoforms harbor the MUN domain, the minimal 120 

domain required for molecular priming27, 28. Unlike Unc13B, Unc13A also harbors a central 121 
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Ca2+-dependent Calmodulin (CAM) binding domain that is required for Ca2+-dependent 122 

acceleration of RRP replenishment at mammalian synapses7. 123 

To investigate the isoform-specific localization of Unc13A and -B at the Drosophila 124 

NMJ, we raised antibodies (ABs) against their N-terminal regions (epitopes see Figure 1a,b) 125 

which detected both proteins at Wild type NMJ terminals (Figure 1c,d). Unc13A showed a 126 

somewhat higher degree of colocalization with the AZ-specific BRP signal than Unc13B 127 

(Figure 1c,d; arrows in 1d indicate Unc13B spots devoid of BRP; Pearson's correlation 128 

coefficient: BRP/Unc13A (n=21 NMJs from 6 larvae): 0.535 ± 0.021; BRP/Unc13B (n=11 129 

NMJs from 4 larvae): 0.458 ± 0.02; p=0.0124 (U=52), Mann-Whitney U-test). To ensure the 130 

specificity of staining and to investigate the functionality of both isoforms, we generated 131 

isoform-specific mutant alleles. For this, we performed chemical (ethane methyl sulfonate; 132 

EMS) mutagenesis, screened for chromosomes that were lethal over a 4th chromosomal 133 

Unc13Null allele (P8420023) and isolated two alleles harbouring premature STOP codons 134 

which specifically affect Unc13A translation (EMS7.5 (from now on called Unc13ANull); 135 

EMS7.96; see Figure 1a). When these alleles were placed in trans to the Unc13Null allele, few 136 

positive larvae were observed. These were hardly able to move and only occasionally 137 

developed to weak adult flies. However, by incorporating a genomic clone (pacman 138 

technology29) encoding the complete Unc13 locus (from now on ‘Ctrl’ if not specified 139 

otherwise) in the Unc13Null allele background, adult vitality was restored, proving that the 140 

deficits of the Unc13A specific alleles in fact map to the Unc13 locus. In these flies, staining 141 

for Unc13A and B was restored (Figure 1e,f) while NMJs of larvae carrying the Unc13ANull 142 

mutation specifically lost the Unc13A-, but not the Unc13B-signal (Figure 1g,h). Notably, no 143 

Unc13B-specific mutations could be isolated when screening for lethality over the Unc13Null 144 

situation, possibly because Unc13B specific mutants are viable. To nonetheless create 145 

specific Unc13B mutants, we deleted the first 1000 base pairs of the Unc13B specific N-146 

terminal exon on the basis of a large genomic clone and re-inserted this transgene into an 147 

Unc13Null mutant background (Unc13BNull; see Figure 1b for deleted region). The Unc13B 148 

deficient flies were viable to adulthood and fertile. At Unc13BNull mutant NMJs, Unc13B 149 
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staining was lost while Unc13A staining was normal (Figure 1i,j). Furthermore, we produced 150 

C-terminally GFP-labeled versions of both isoforms, which, when expressed in motoneurons, 151 

effectively reached NMJ terminals and occupied typical positions (compare Figure 1k with 1c 152 

and Figure 1l with 1d). 153 

Previous analyses showed that Drosophila Unc13Null mutant alleles are embryonically 154 

lethal23. Given that both isoform-specific mutants reached larval stages, we concluded that 155 

both isoforms must be functionally relevant, and started to comparatively analyze their 156 

importance for the AZ-maturation at larval NMJs. AZ-densities were significantly reduced in 157 

terminals lacking either Unc13A or Unc13B (Figure 1m-p) and NMJs had a tendency to be 158 

smaller in both genotypes (not shown). Despite these similarities, we also identified major 159 

differences. At Unc13ANull mutant NMJ terminals, individual AZs often showed larger BRP-160 

labeled AZs (arrows in Figure 1m), while Unc13BNull AZs appeared normal (Figure 1n).  161 

 162 

Unc13B precedes Unc13A at nascent AZs  163 

Developing AZs at NMJ terminals undergo a stereotypical but desynchronized maturation 164 

process where new synapses are “born” in-between preexisting ones. Unlike Unc13A, which 165 

showed a somewhat higher degree of overlap with BRP (compare Figure 1c,k with 1d,l), 166 

Unc13B had a tendency to be prominent at inter-bouton sites (Figure 1l; arrows), where new 167 

AZs often form (Böhme and Sigrist, unpublished observation). To analyze the accumulation 168 

of Unc13A and Unc13B along the AZ “maturation trajectory”, we comparatively analyzed AZ-169 

accumulation of both isoforms in relation to the early arriving scaffold protein Liprin-ɑ by 170 

intravital imaging of developing NMJ terminals. Early third instar larval NMJs were imaged 171 

once (=time point zero) and the same NMJs were re-imaged 6 hours later to reconstruct the 172 

temporal sequence of protein arrival (Figure 2a). At AZs of larvae co-expressing Unc13AC-173 

term-GFP with Liprin-ɑ (motoneuronally expressed Liprin-ɑStrawberry), we frequently observed 174 

single Liprin-ɑ spots that did not contain Unc13AC-term-GFP at time point zero (Figure 2b, 175 

arrows), but never observed single Unc13AC-term-GFP spots without Liprin-ɑ labelling. 176 
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Interestingly, Unc13BC-term-GFP and Liprin-ɑ colocalized almost entirely at any investigated time 177 

point (Figure 2c). When tracking the temporal sequence of protein arrival at maturing AZs, 178 

individual Liprin-ɑ spots were often also positive for Unc13AC-term-GFP at the second imaging 179 

time point (compare Figure 2d with 2e). In contrast, nearly all newly forming AZs were 180 

positive for both Unc13BC-term-GFP and Liprin-ɑ (compare Figure 2f with 2g). We conclude that 181 

Unc13B arrives at a similar time point as Liprin-ɑ and thus in an early phase of the AZ 182 

maturation18, 21, 30, while Unc13A arrives later. 183 

 184 

Unc13A/B clustering depends on different scaffolding proteins  185 

Apart from Liprin-α, Syd-1, another major scaffolding protein, also arrives early at nascent 186 

AZs. We therefore investigated whether Unc13B clustering depended on these proteins. 187 

While Unc13A and BRP levels were only slightly reduced in Liprin-ɑNull and Syd-1Null mutants 188 

(Figure 3a,c; Supplementary Figure 1a-f), Unc13B was almost completely lost at AZs of 189 

Liprin-ɑNull mutants (Figure 3b,d; Supplementary Figure 1i,j). Similar (albeit somewhat 190 

weaker) effects were observed in Syd-1Null mutants (Supplementary Figure 1g-j). To 191 

investigate whether Liprin-α and Syd-1 interact physically with Unc13B, suitably sized 192 

domains of Liprin-ɑ and Syd-1 were tested against the Unc13B N-terminus in a Y2H 193 

approach (Supplementary Figure 2a for domain structures and Y2H constructs) and indeed 194 

revealed several interactions. Specifically, the central N-terminal Unc13B fragment (fragment 195 

2; Supplementary Figure 2a) interacted with an N-terminal fragment of Liprin-ɑ. This 196 

fragment, along with fragment 1, also interacted with a stretch of Syd-1 between the N-197 

terminal PDZ and the central C2 domain (Supplementary Figure 2a). 198 

As previously mentioned, we found a direct interaction of an N-terminal Unc13A 199 

sequence with RBP in a pair-wise Y2H matrix screening, and Unc13A immunoreactivity 200 

largely overlapped with BRP at the confocal level (Figure 1c,k). Thus, we tested for a 201 

dependence of Unc13A and -B on the “late scaffold” components. Unc13A (and, similarly, 202 

BRP) levels were severely reduced at NMJs following Brp knock-down (via RNAi; 203 
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Supplementary Figure 3a,b,d-f) and in RbpNull mutants (Supplementary Figure 3a,c,d-f). 204 

Moreover, hardly any Unc13A or BRP spots could be detected upon Brp knockdown in 205 

RbpNull (Figure 3e,g; Supplementary Figure 3d-f; double-homozygous combinations of null 206 

alleles of Rbp and Brp hardly survived into larval stages). With regard to Unc13B levels, 207 

neither Brp knock-down (Supplementary Figure 3g,h,j,k), nor Rbp deletion (Supplementary 208 

Figure 3g,i,j,k), nor the combined knockdown of Brp in the RbpNull background significantly 209 

affected Unc13B levels (Figure 3f,h; Supplementary Figure 3j,k). 210 

To address the molecular basis of the redundancy between BRP and RBP in Unc13A 211 

accumulation, we tested for interactions of the Unc13A N-terminal region with various BRP 212 

and RBP fragments (Supplementary Figure 2b). The Y2H screen recovered that solely the 213 

very N-terminal fragment of Unc13A, including the PxxP motif (Fragment 1; Supplementary 214 

Figure 2b), bound to C-terminal fragments of RBP. This fragment also interacted with an N-215 

terminal fragment of BRP (Supplementary Figure S2b). These results make it likely that 216 

direct N-terminal interactions of Unc13A with BRP and RBP accumulate Unc13A at the AZ in 217 

a partially redundant fashion. To independently test the differential role of the BRP/RBP 218 

scaffold in clustering Unc13A, but not Unc13B, we made use of the Rab3 mutant phenotype 219 

in which BRP is concentrated in only about half of all available AZs, leaving the other half 220 

(which are still positive for postsynaptic glutamate receptors) devoid of this key presynaptic 221 

release component31. In this situation of more extreme local patterning, we found that RBP 222 

also exclusively concentrated at BRP positive sites (not shown), indicating that RBP and 223 

BRP tightly co-operate and invariably co-cluster within NMJ AZs. Notably, at Rab3Null NMJs, 224 

Unc13A strictly “followed” the BRP scaffold and appeared to scale with the local amounts of 225 

BRP (Figure 3i). In contrast, Unc13B also segregated towards BRP/RBP negative sites 226 

(Figure 3j; arrows indicate Unc13B positive, but BRP negative positions, while arrowheads 227 

indicate sites positive for both Unc13B and BRP). In conclusion, we find a remarkable 228 

specificity concerning the scaffold accumulation of the two Unc13 isoforms: whereas Unc13A 229 

is recruited by the “late” BRP/RBP scaffold, Unc13B is recruited via the “early” Liprin-ɑ/Syd-1 230 

scaffold.  231 
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Unc13A dominates evoked SV release at larval NMJs 232 

As both Unc13 isoforms localized to NMJ AZs via different scaffold complexes, we went on 233 

investigating their functional roles in AP-evoked and spontaneous SV release performing 234 

two-electrode voltage clamp recordings (TEVC) at 3rd instar larval NMJs of both Unc13 235 

isoform specific mutants (Figure 4). Recordings of Unc13BNull mutant animals uncovered a 236 

rather moderate but significant reduction of evoked excitatory NMJ currents (eEJCs; Figure 237 

4a,c) without changes in their kinetics (Figures 4b,d; Supplementary Figure 4a,b). The 238 

amplitudes of spontaneous release events were unchanged, while frequencies were slightly 239 

but non-significantly reduced (Figure 4e-g). We found no differences in miniature excitatory 240 

NMJ current (mEJC) rise times but significantly longer decay times in Unc13BNull cells 241 

(Supplementary Figure 4e,f). Strikingly, mutants of Unc13A showed drastically reduced 242 

eEJCs, less than 10 % of control values, and increased eEJC 10%-90% rise times (Figure 243 

4h-k). Loss of Unc13A also increased the time-to-peak (ttp) while the decay was unchanged 244 

(Supplementary Figure 4c,d). In the Unc13ANull mutants we discovered a higher frequency of 245 

spontaneous events which may have been a consequence of their increased amplitude (thus 246 

resulting in an increased signal-to-noise ratio, facilitating their detection; Figure 4l-n) but 247 

mEJCs kinetics were unchanged (Supplementary Figure 4g,h). Thus, compound recordings 248 

at 3rd instar NMJ terminals demonstrated a fundamental role of Unc13A for evoked release, 249 

which cannot be substituted by Unc13B.  250 

 251 

Distinct sub-active zone patterning of Unc13A versus Unc13B  252 

At the confocal level we had noticed that the endogenous Unc13A signal showed a stronger 253 

overlap with the AZ-specific BRP label than Unc13B (Figure 1c,d). To analyze the sub-AZ 254 

distribution of both isoforms in detail, we performed dual-color super-resolution STED 255 

microscopy (with 35 nanometer lateral resolution for both channels) which confirmed this 256 

impression with Unc13A being localized closer to the BRP positive signals (Figure 5a). At 257 

single AZs, Unc13A localized to discrete clusters facing the inner margin of antibody staining 258 
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against BRP in top view (Figure 5b). Unc13A signals appeared interspersed with the RBP 259 

signal which we previously showed to form a ring-like array of clusters in the AZ center15 260 

(Figure 5c). In striking contrast, Unc13B clusters were often attached to the outer edge of the 261 

BRP signal but sometimes also localized at BRP-negative positions (Figure 5d, arrows). At 262 

single BRP-labeled AZs, Unc13B was located further away from the AZ center (Figure 5e) in 263 

some distance to the RBP signal (Figure 5f). Our previous analysis showed that Syd-1/Liprin-264 

ɑ co-cluster and localize at the outer edge of matured AZs18, 21. In fact, Syd-1 clusters closely 265 

matched the positions of Unc13B (compare Figure 5e with 5g) and co-labelling of 266 

motoneuronally overexpressed Syd-1GFP and endogenous Unc13B revealed their close 267 

apposition (Figure 5h). We also investigated the differential localization of BRP and Unc13B 268 

in the Rab3Null mutant background with STED resolution. In Rab3Null, BRP ring-like structures 269 

clustered together and Unc13B still localized at the outer edge of this scaffold (Figure 5i; 270 

clustered AZs magnified in 5j; arrowheads point to Unc13B immunoreactivity at the edge of 271 

clustered BRP rings). In addition, Unc13B immunoreactivity was also observed at BRP/RBP 272 

negative positions (Figure 5i; arrows). Thus, early and late AZ scaffold complexes not only 273 

control the temporal, but also the spatial patterning of Unc13 isoforms at single AZs.  274 

 275 

Unc13A mediates SV docking at the AZ center 276 

Previous work showed that the voltage operated N/P/Q-type Ca2+ channel α1 subunit 277 

Cacophony (Cac) is exclusively responsible for evoked release at NMJ AZs and clusters in 278 

the center of the BRP labeled AZ15, 18, 32. To map the topology of Unc13 isoforms with respect 279 

to the Ca2+ channels, we investigated AZs immunostained for CacGFP and Unc13A and -B, 280 

respectively, using STED microscopy (Figure 6a,b). We found that Unc13A localized close to 281 

CacGFP, while Unc13B was found at larger distances, in line with the distribution of the two 282 

isoforms with respect to BRP (Figure 5b,e). To obtain a quantitative measure of the local 283 

isoform distribution at single AZs, we calculated the average intensity profiles of the two 284 

isoforms from the center of the BRP scaffold (see methods for details; Figure 6c). The 285 

169



13 
 

maximum of the average (and normalized) intensity profile was found around 70 nm away 286 

from the AZ center in the case of Unc13A, and around 120 nm away for Unc13B (Figure 6c). 287 

Unc13 proteins have established functions in vesicle docking2, 33. Since Unc13A localized 288 

close to Ca2+ channels and dominated release, we wondered whether Unc13A specifically 289 

targeted SVs close to the Ca2+ channels in the AZ center to facilitate their release. SV 290 

distributions are ideally captured with high-pressure freeze (HPF) electron microscopy, which 291 

preserves AZ-morphology without fixation artefacts2. We determined lateral distances of 292 

docked SVs (with no discernible distance to the plasma membrane) to the center of the 293 

electron dense Drosophila cytomatrix (T-bar), which is assembled from the BRP/RBP 294 

scaffold and overlays the position of the AZ-centered Ca2+ channels14, 15, 18. At Wild type AZs, 295 

SVs were often docked in close proximity to the T-bar (Figure 6d; black circles; quantification 296 

in f). In contrast, in Unc13ANulls, the number of docked SVs was reduced (Figure 6e,g), but 297 

neither total nor T-bar tethered SV-numbers were changed (data not shown and Figure 6h). 298 

Loss of SV-docking was specific to positions close to the AZ (T-bar) center (Figure 6e; black 299 

circles; quantification in f), resulting in increased average distances from the AZ center from 300 

87 nm to 147 nm (Figure 6i). Subtracting the average vesicle distribution at Unc13ANull AZs 301 

from the one in the Wild type controls revealed Unc13A-specific docking positions, which 302 

peaked around 50 nm (Figure 6f, grey dotted line), in close agreement with the position of 303 

maximal Unc13A immunoreactivity from the AZ center seen by STED microscopy (70 nm; 304 

compare Figure 6f with 6c). We did not detect any difference in SV diameters between 305 

Unc13ANull and Wild type animals (Unc13ANull (n=16 AZs from 2 larvae): 27.44 ± 0.38 nm; 306 

Wild type (n=10 AZs from 5 larvae): 27.40 ± 0.65 nm; p = 0.7102 (U=72.5), Mann-Whitney U-307 

test) suggesting that an increase in neurotransmitter content is unlikely to cause the 308 

observed increased mEJC amplitudes (Figure 4m). Together, our data suggest that both 309 

isoforms differ dramatically in their sub-AZ localization, with Unc13A mediating SV-docking 310 

close to Ca2+ channels. 311 

 312 

 313 
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Unc13A controls vesicular release probability  314 

Previous analyses in several systems have identified Unc13 proteins as essential exocytosis 315 

factors with established functions in SV docking and priming2, 5, 6, 34. In line with this, fewer 316 

(~50%) SVs were docked in Unc13ANulls (Figure 6g). Recently it was suggested that docking 317 

and priming are morphological and physiological correlates of the same molecular process2. 318 

However, the (~90 %) reduction of release at Unc13ANull NMJs (Figure 4j) was much larger 319 

than the (~50 %) reduction of docked vesicles. Our data therefore argue that not only 320 

docking and priming are reduced but that the remaining vesicles in Unc13ANulls further suffer 321 

from reduced release probability (pVr) in response to single APs. Changes in pVr can be 322 

detected by a shift in the apparent Ca2+ sensitivity of release which can be probed by 323 

monitoring evoked transmission while titrating extracellular Ca2+ concentrations35. When 324 

performing such experiments, we found that absolute eEJC amplitudes increased with 325 

extracellular Ca2+ concentrations in both genotypes, as expected from increased AP-induced 326 

Ca2+ currents. However at Unc13ANull NMJs, exocytosis was highly significantly reduced at all 327 

investigated extracellular Ca2+ concentrations (Figure 7a,b; Supplementary Table 1). 328 

Importantly, we observed a major shift in the dependence of neurotransmitter release on 329 

extracellular Ca2+, reflected in a rightward shift of the dependence of normalized release, 330 

without detectable changes in the slope (Figures 7c; Supplementary Figure 5a-c). This 331 

demonstrates that Unc13A-loss reduced the sensitivity of SV release on extracellular Ca2+, 332 

but not its cooperativity. To probe for an altered pVr at Unc13ANull NMJs by an independent 333 

means, we investigated short-term plasticity in response to paired AP stimuli given at short 334 

(10 ms) intervals. The paired pulse ratio (PPR=eEJC2/eEJC1; second eEJC amplitude 335 

divided by the first) was investigated at all extracellular Ca2+ concentrations (except for the 336 

0.75 mM data point in Unc13ANull where calculation was not reliable because eEJC1 337 

amplitudes were generally close to zero). In line with reduced pVr, we found that Unc13ANull 338 

synapses displayed stronger facilitation at all extracellular Ca2+ concentrations (Figure 7d,e; 339 

Supplementary Table 1). This effect was specific to the A isoform because loss of Unc13B 340 
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neither altered the apparent Ca2+-dependence of release nor the PPRs (Supplementary 341 

Figure 5d-h; Supplementary Table 1).  342 

Coupling distances between Ca2+ channels and SVs can greatly influence pVr9, 10, 36 343 

and since deletion of Unc13A resulted in loss of SV-docking close to the AZ center (and 344 

therefore to the Ca2+ channels; Figure 6e,f,i) we tested whether Unc13ANull AZs suffered from 345 

looser Ca2+ channel-SV coupling by studying the effects of the slow exogenous Ca2+ buffer 346 

EGTA. A competition between this buffer and the SV release machinery for Ca2+ leads to an 347 

inhibition of SV release, which largely depends on the distances Ca2+ ions need to diffuse 348 

from the channel to the SV: the larger the distance, the stronger the inhibition by EGTA8, 37. 349 

To investigate genotype-specific changes in EGTA sensitivity, APs were elicited at low 350 

frequencies (0.1 Hz) and after 5 baseline stimulations, EGTA-AM (an esterified membrane-351 

permeable version of EGTA, final concentration 200 µM) was added to the bath and eEJCs 352 

were monitored for 30 min. Consistent with looser Ca2+ channel-SV coupling, we found that 353 

at Unc13ANull mutant synapses, relative amplitudes declined much faster (Figures 7f,g; 354 

Supplementary Figure 5i-k), reached lower asymptotic values (Supplementary Figure 5k) and 355 

were reduced at all investigated time points (Figures 7g; Supplementary Figure 5i). We could 356 

exclude that this was due to differential loading of AM-esters, because incubation with the 357 

fast Ca2+ buffer Bapta-AM (which also affects vesicles close to the Ca2+ source) led to 358 

indistinguishable reductions of eEJC amplitudes regardless of the genotype (Supplementary 359 

Figure 5l-o). Together, our data establish that Unc13A is required to maintain proper pVr and 360 

its loss results in an increased EGTA sensitivity, consistent with a function in tight coupling of 361 

SVs and Ca2+ channels. 362 

 363 

Co-existence of nano- and microdomain coupling at single AZs 364 

Given the differential positioning of the two Unc13 isoforms, we next wanted to investigate 365 

whether SV release from Wild type AZs may occur from two differentially placed pathways 366 

(A- and B-pathway; Figure 7i) and whether the Unc13ANull release phenotype may reflect loss 367 

of the closely coupled one. We hypothesized that the two pathways merely differed in 368 
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positioning, but were independent and had identical fusion and Ca2+ sensing mechanisms. 369 

To quantitatively test this hypothesis against our data, we turned to mathematical modelling 370 

to describe SV release from both pathways in the Wild type and from the B-pathway only in 371 

the Unc13ANull situation (Figure 7i). A necessary assumption of our model was that Ca2+ 372 

channels were localized in the AZ center in both genotypes, which was confirmed in STED 373 

analyses (data not shown). However, Unc13ANull AZs had larger BRP ring diameters 374 

(Supplementary Figure 6a-d) and increased CacGFP spot sizes (Supplementary Figure 6e-g), 375 

suggestive of an increased Ca2+ channel number per AZ, which we accounted for in our 376 

model (see methods for details). 377 

AP-induced Ca2+ influx was described from a point source in the AZ-center and Ca2+ 378 

dynamics were simulated in space and time (Figure 7h). Due to an increased distance, Ca2+ 379 

transients reached lower peak amplitudes and were delayed at the B pathway (Figure 7i). SV 380 

release was driven by the same Ca2+ sensing mechanism at both pathways (allosteric five-381 

site binding model38; see Supplementary Table 2 for all parameter values) and eEJCs were 382 

calculated by convolving vesicle release rates with genotype-specific mEJCs (Figure 7j, see 383 

methods for details). To calculate the parameters of our model, especially the distances of 384 

the two pathways from the AZ center, we simultaneously fit the output of the model to all 385 

experimental data of both genotypes (see Supplementary Table 1 for simulated values, 386 

Supplementary Table 2 for parameter values, and methods for more details). The best fit 387 

resulted in a very satisfactory agreement of simulation and experimental data (data are 388 

points, model predictions lines in Figure 7b,c,e,g), demonstrating that a parallel arrangement 389 

of micro- and nanodomain coupled release pathways can explain the observed phenotype. In 390 

fact, loss of pathway A in this model was sufficient to account for all phenotypes of the 391 

Unc13ANull: reduced exocytosis (Figure 7b,j), delayed release (calculated eEJCs had a 392 

difference in time-to-peak (ttp) of ∆ttp = 1.2 ms; Supplementary Figure 4c and Figure 7j), 393 

rightward shift in the dependence on extracellular Ca2+ (Figure 7c), paired pulse facilitation 394 

(Figure 7e,j) and increased sensitivity to EGTA (Figure 7g). Finally, though not constrained in 395 

any way, distances of the two release pathways to the Ca2+ channels in the model were 396 
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calculated to 76.75 nm and 144.7 nm respectively, in close agreement with the distance of 397 

Unc13A and -B proteins from the AZ center quantified by STED microscopy (70 nm and 398 

120 nm, Figure 6c). Together, our collective data and theoretical calculations favor a 399 

scenario in which two SV release pathways, whose positions are determined by the priming 400 

factors Unc13A and/or B, operate in parallel via the same Ca2+ sensing mechanism. 401 

 402 

  403 
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DISCUSSION 404 

All presynaptic AZs accumulate scaffold proteins from a canonical set of few protein families, 405 

which are characterized by extended coiled-coil stretches, intrinsically unstructured regions 406 

and a few classical interaction domains, particularly PDZ- and SH3-domains. These multi-407 

domain proteins collectively form a compact “cytomatrix” often observable by electron dense 408 

structures covering the AZ membrane which were found to physically contact SVs, and thus 409 

suggested to promote SV docking and priming, as well as to recruit Ca2+ channels12-15. Still, 410 

how the structural scaffold components (ELKS, RBP, RIM, Liprin-ɑ) tune the functionality of 411 

the SV release machinery remains largely enigmatic. Liprin-ɑ is crucial for the AZ assembly 412 

process and at Drosophila NMJ AZs, Liprin-ɑ/Syd-1 cluster formation initializes the assembly 413 

of an “early” scaffold complex, which subsequently guides the accumulation of a “late” 414 

RBP/BRP scaffold complex18-20, 39. Here we provide evidence that these scaffold complexes 415 

together operate as “molecular rulers” which confer a remarkable degree of order, patterning 416 

AZ composition and function in space and time: the “early” Liprin-ɑ/Syd-1 clusters recruit 417 

Unc13B and this scaffold serves as a template to accumulate the “late” BRP/RBP scaffold 418 

which recruits Unc13A (Supplementary Figure 7). Spatially, Unc13 isoforms are precisely 419 

organized in the 10s of nanometers range which our data suggest to be instrumental to 420 

control SV release probability and SV-Ca2+ channel coupling (see below). As a molecular 421 

basis of this patterning and recruitment, we identified a multitude of molecular contacts 422 

between the Unc13 N-termini and the respective scaffold components using systematic Y2H 423 

analysis. As one out of several interactions, we identified a cognate PxxP motif within the N-424 

terminus of Unc13A to interact with the 2nd and 3rd SH3 domain of RBP (Supplementary 425 

Figure 2b). Point mutants within the PxxP motif interfered with the binding of the RBP-SH3 426 

domains II and III on the Y2H level, however, were without major impact on Unc13A 427 

localization and function when introduced into an Unc13 genomic transgene (data not 428 

shown). Nonetheless, elimination of the scaffold components BRP and RBP on the one-or 429 

Liprin-ɑ on the other hand, drastically impaired the accumulation of Unc13A or -B. We 430 

suggest that these results are explained by a multitude of parallel interactions which provide 431 
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the avidity needed to enrich the respective Unc13 isoforms in their specific “niches” and may 432 

cause a functional redundancy among interaction motifs, as we likely observed in the case of 433 

the Unc13A PxxP motif. Future analysis will also have to investigate these interaction 434 

surfaces in greater detail, and address how exactly “early” and “late” scaffolds coordinate AZ 435 

assembly.  436 

 Unc13 proteins have well-established functions in SV docking and priming2, 23, 33, 34. 437 

Accordingly, we observed that loss of Unc13A resulted in overall reduced SV-docking without 438 

affecting T-bar-tethered SVs (Figure 6g,h), which is qualitatively opposite to a function of 439 

BRP in SV-localization, whose C-terminal amino acids function in T-bar-tethering, but not 440 

docking. Mutants lacking these residues suffer from increased synaptic depression40, 441 

suggesting a role in SV replenishment. Therefore, in addition to its role in localizing Unc13A 442 

to the AZ reported here, BRP may also cooperate functionally with Unc13A by facilitating SV 443 

delivery to docking sites. 444 

Synapses are highly adapted to their specific features, varying widely concerning their 445 

release efficacy and short-term plasticity. These features impact on information transfer and 446 

may provide neurons with the ability to detect input coherence, maintain stability, and 447 

promote synchronization. Differences in the “biochemical milieu of SVs” can tune priming 448 

efficacy and release probability, which largely affects short-term plasticity41. In our 449 

experiments, we could show that Unc13A-loss resulted in dramatically (~90%) reduced 450 

synaptic transmission which exceeded the (~50%) reduction in SV-docking, pointing to an 451 

additional function in enhancing release efficacy. These changes were paralleled by 452 

drastically increased short-term facilitation as well as EGTA super-sensitivity and could be 453 

due to decreased Ca2+ sensitivity of the molecular release machinery, e.g. mediated by 454 

different Synaptotagmin-type Ca2+ sensors, or different numbers of SNARE complexes12, 42, 455 

43. However, while we observed a rightward shift of the dependence of normalized release 456 

amplitudes on extracellular Ca2+ concentration at Unc13A deficient synapses, its slope and 457 

thus Ca2+-cooperativity was unaltered, arguing against fundamentally different Ca2+-sensing 458 

mechanisms (Figures 7c; Supplementary Figure 5a-c). Instead we favor a scenario in which 459 
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SV Ca2+-sensing is conserved, but local Ca2+ signals at SV positions are attenuated because 460 

of their larger distances to Ca2+ channels upon Unc13A-loss. Both Unc13 isoforms were 461 

clearly segregated physically with different distances to the Ca2+ channel cluster and loss of 462 

Unc13A selectively reduced the number of docked SVs in the AZ center. These findings are 463 

easiest explained by Unc13A promoting the docking and priming of SVs closer to Ca2+ 464 

channels than Unc13B. In fact, mathematical modelling reproduced our data by merely 465 

assuming release from two independent pathways with identical Ca2+ sensing and fusion 466 

mechanisms which only differed in their physical distance to the Ca2+ source in the AZ 467 

center. The distances estimated by the model were in very good agreement with the 468 

positions of the two Unc13 isoforms defined by STED microscopy. Thus, our data suggest 469 

that differences in the distance of SVs in the 10’s of nm range to the Ca2+ channels mediated 470 

by the two Unc13 isoforms likely contribute profoundly to the observed phenotypes. We imply 471 

that the role of the N-terminus is to differentially target the isoforms into specific zones of the 472 

AZ, while the conserved C-terminus confers identical docking and priming functions at both 473 

locations. Notably, recent work in C. elegans also characterized two Unc13 isoforms, with 474 

fast release being mediated by UNC-13L, whereas slow release required both UNC-13L and 475 

-S44. The proximity of the UNC-13L isoform to Ca2+ entry sites was mediated by the protein’s 476 

N-terminal C2A-domain (not present in Drosophila) and was critical for accelerating 477 

neurotransmitter release, and for increasing/maintaining the probability of evoked release 478 

assayed by the fraction of AP- to sucrose-induced release45. In contrast, the slow SV release 479 

form dominantly localized outside AZ regions44. Thus it would be interesting to investigate the 480 

sub-AZ distribution of C. elegans Unc-13 isoforms and test whether the same scaffold 481 

complexes as in Drosophila mediate the localization of the different Unc-13 isoforms. 482 

Striking differences in short-term plasticity have been reported for mammalian Unc13 483 

isoforms46. The mammalian genome harbours five Munc13 genes11. Of those, Munc13-1, -2 484 

and -3 are expressed in the brain and function in SV release11, and differential expression of 485 

Munc13 isoforms at individual synapses may represent a mechanism to control short-term 486 

plasticity46. Thus, it might be warranted to analyze whether differences in the sub-active zone 487 
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distribution of Munc13 isoforms contribute to these aspects of synapse diversity in the rodent 488 

brain.  489 

Fast and slow phases of release have recently been attributed to parallel release 490 

pathways operating in the Calyx of Held of young rodents (56 nm and 135 nm)47 qualitatively 491 

matching the co-existence of two differentially positioned release pathways described here. 492 

Our finding of discretely localized release pathways with distances larger than 60 nm is 493 

further in line with the recent suggestion that SVs need to be positioned outside an 494 

“exclusion zone” from the Ca2+ source (~50 nm distance to the center of the SV for the Calyx 495 

of Held)48. At mammalian synapses, developmental changes in the coupling of SVs and Ca2+ 496 

channels were described47, 49, 50, which qualitatively matches the sequential arrival of loosely 497 

and tightly coupled Unc13B and -A isoforms during synaptogenesis described here. Thus, 498 

our work suggests that differential positioning of Unc13 isoforms couples functional and 499 

structural maturation of AZs. To what degree modulation of this process contributes to the 500 

functional diversification of synapses should be an interesting subject of future analysis.  501 

  502 
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FIGURE LEGENDS 650 

Figure 1: Generating isoform-specific mutants of Unc13A and Unc13B 651 

(a,b) Schematic representation of Unc13A/-B gene loci and domain structures: Calmodulin 652 

(CAM), C1, C2B, MUN and C2C domain. Both isoforms differ exclusively in their N-terminal 653 

region (purple for Unc13A including the RBP-binding PxxP motif (a), orange for Unc13B (b)). 654 

Epitope positions of N-terminal isoform-specific antibodies (ABs) are indicated (Unc13A 655 

epitope/Unc13B epitope). Positions of Unc13A isoform-specific EMS point mutations 656 

(EMS7.5 (Unc13ANull) and 7.96) as well as the position of the deleted fragment giving rise to 657 

the Unc13BNull pacman construct (Unc13BNull) are also shown. (c-l) Muscle 4 NMJs of 658 

segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled with the ABs 659 

indicated. (c) Immunostaining with an Unc13A-specific antibody (magenta) revealed a high 660 

degree of overlap with the AZ-protein BRP (green) at Wild type NMJs. (d) Immunostaining 661 

with an Unc13B-specific antibody (magenta) labelled Wild type NMJs but showed only partial 662 

overlap with BRP (green) and exhibited Unc13B-positive signals devoid of BRP (arrows). 663 

(e,f) Unc13A and -B specific immunoreactivity was restored in Ctrl. (g) Unc13A-specific 664 

immunoreactivity was lost in Unc13ANull and BRP spots appeared enlarged. (h) Unc13B-665 

specific immunoreactivity was present at Unc13ANull NMJs. (i) Unc13A-specific 666 

immunoreactivity was present in Unc13BNull. (j) Unc13B-specific immunoreactivity was 667 

completely lost in Unc13BNull. (k) Motoneuronally overexpressed Unc13AC-term-GFP 668 

immunoreactivity showed an almost complete overlap with BRP, similar to the endogenous 669 

Unc13A immunoreactivity (Figure 1c). (l) Motoneuronally overexpressed Unc13BC-term-GFP 670 

immunoreactivity only showed partial overlap with BRP similar to the endogenous Unc13B 671 

immunoreactivity (Figure 1d). Single Unc13B spots lacking BRP often localized in-between 672 

synaptic boutons, exhibiting sites thought to be positions of new AZ formation (arrows). (m,n) 673 

Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled 674 

with indicated ABs. Arrows point to enlarged BRP spots in Unc13ANull. (o,p) BRP density is 675 

reduced in Unc13ANull and Unc13BNull in comparison to their respective controls (Wild type 676 
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(n=19 NMJs) vs. Unc13ANull (n=23 NMJs), p=0.0002 (U=69); Ctrl (n=28 NMJs) vs. Unc13BNull 677 

(n=35 NMJs), p=0.0337 (U=336)). For each genotype 5 larvae were used. Number and p 678 

values are listed in Supplementary Table 1 as well. Statistics: Mann-Whitney U-test. All 679 

panels show mean ± SEM; *, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. 680 

For all representative images experiments were repeated with at least 4 larvae and 3 681 

different NMJs per larva. Scale bars: 5 μm.  682 
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Figure 2: In vivo analysis of Unc13A and -B accumulation 699 

(a) In vivo imaging procedure at Drosophila larval NMJs. Early 3rd instar larval NMJs were 700 

imaged once (=time point zero) and the same NMJs were reimaged after 6h. The 701 

incorporation of new AZs was tracked. (b,c) Muscle 26/27 NMJs of segments A2-A4 from 3rd 702 

instar larvae of the displayed genotypes labelled with the fluorophores indicated. (b) In vivo–703 

imaged larval NMJ boutons from motoneurons overexpressing Unc13AC-term-GFP and Liprin-704 

αStraw. Liprin-αStraw often showed single positive spots at t=0h (arrows). Box shows magnified 705 

example from d and e. (c) Unc13BC-term-GFP and Liprin-αStraw showed an almost complete 706 

overlap at t=0h. Box shows magnified example in f and g. (d,e) Single AZs overexpressing 707 

Unc13AC-term-GFP and Liprin-αStraw reimaged after 6h. Single AZs with Liprin-αStraw
 being single 708 

positive at t=0h (d, arrows) also obtained Unc13AC-term-GFP 6h later (e, arrows). (f,g) Single 709 

AZs overexpressing Unc13BC-term-GFP and Liprin-αStraw reimaged after 6h. Single AZs devoid of 710 

Unc13BC-term-GFP and Liprin-αStraw at t=0h (f, arrow) obtained both proteins 6h later (g, arrow). 711 

Experiments were repeated with 3 larvae and 6 NMJs for Unc13AC-term-GFP and Liprin-αStraw 712 

and with 5 larvae and 13 NMJs for Unc13BC-term-GFP and Liprin-αStraw. Scale bars: (b,c) 5 µm; 713 

(d-g) 500 nm.    714 

185



29 
 

Figure 3: Two different scaffold complexes organize the AZ localization of Unc13 715 

isoforms 716 

(a,b,e,f,i,j) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed 717 

genotypes labelled with indicated ABs. (a,c) Unc13A intensity was unaffected in Liprin-αNull 718 

(Wild type (n=13 NMJs from 4 larvae) vs. Liprin-αNull (n=12 NMJs from 4 larvae), p=0.1495 719 

(U=51)). (b,d) Unc13B intensity was severely decreased in Liprin-αNull (Wild type (n=11 NMJs 720 

from 5 larvae) vs. Liprin-αNull (n=15 NMJs from 5 larvae), p=0.0002 (U=9)). (e,g) Unc13A 721 

intensity was severely decreased in Brp, Rbp double mutants (Ctrl (n=14 NMJs from 5 722 

larvae) vs. BrpRNAi;RbpNull (n=15 NMJs from 5 larvae), p <0.0001 (U=0)). (f,h) Unc13B 723 

intensity was unaffected in Brp, Rbp double mutants (Ctrl (n=12 NMJs from 5 larvae) vs. 724 

BrpRNAi;RbpNull (n=10 NMJs from 5 larvae), p=0.339 (U=45)). (i) Unc13A strictly “followed” 725 

BRP in Rab3Null mutants. (j) Unc13B was unaffected by BRP-redistribution in Rab3Null 726 

mutants. Arrows show Unc13B signals devoid of BRP signal while arrowheads show 727 

BRP/Unc13B double-positive labels. Number and p values are listed in Supplementary Table 728 

1. Statistics for c,d,g,h: Mann-Whitney U-test. All panels show mean ± SEM; *, p ≤0.05; **, p 729 

≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. For representative images i,j experiments 730 

were repeated with at least 3 larvae and 3 different NMJs per larva. Scale bars: 5 μm. 731 

  732 
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Figure 4: Unc13A is essential for fast, efficient synaptic transmission 733 

(a) Representative eEJC traces for Ctrl (black) and Unc13BNull (blue). (b) Normalized 734 

amplitudes for Ctrl and Unc13BNull revealed similar kinetics for both genotypes. (c) eEJC 735 

amplitudes for Ctrl and Unc13BNull differ significantly with reduced amplitudes in Unc13BNull 736 

(Ctrl (n=12 NMJs) vs Unc13BNull (n=12 NMJs), p=0.0260 (t(22)=2.388)). For both genotypes 737 

12 larvae were used. (d) The eEJC (10% to 90%) rise time is unaltered in Unc13BNull (blue) 738 

in comparison to the Ctrl (black) (Ctrl (n=12 NMJs from 12 larvae) vs Unc13BNull (n=11 NMJs 739 

from 11 larvae), p=0.7671 (t(21)=0.2998)). (e) Representative mEJC traces for Ctrl (black) 740 

and Unc13BNull (blue). (f,g) mEJC amplitudes and frequencies are similar in Ctrl and 741 

Unc13BNull (mEJC amplitudes: Ctrl (n=14 NMJs from 10 larvae) vs Unc13BNull (n=7 NMJs 742 

from 5 larvae), p=0.6425 (t(19)=0.4717); mEJC frequencies: Ctrl (n=14 NMJs from 10 larvae) 743 

vs Unc13BNull (n=7 NMJs from 5 larvae), p=0.1783 (t(19)=1.398)). (h) Representative eEJC 744 

traces for Wild type (black) and Unc13ANull (red). (i) Normalized amplitudes for Wild type and 745 

Unc13ANull revealed delayed synaptic transmission in Unc13ANull in comparison to Wild type. 746 

(j) eEJC amplitudes are dramatically decreased in Unc13ANull compared to Wild type (Wild 747 

type (n=12 NMJs from 12 larvae) vs Unc13ANull (n=12 NMJs from 12 larvae), p <0.0001 748 

(t(22)=10.37)). (k) The eEJC (10% to 90%) rise time is dramatically increased in Unc13ANull 749 

(red) relative to Wild type (black) (Wild type (n=12 NMJs from 12 larvae) vs Unc13ANull (n=9 750 

NMJs from 9 larvae), p=0.003 (U=13.50)). (l) Representative mEJC traces for Wild type 751 

(black) and Unc13ANull (red). (m) Unc13ANull exhibit significantly larger mEJC amplitudes 752 

compared to Wild type (Wild type (n=12 NMJs from 6 larvae) vs Unc13ANull (n=11 NMJs from 753 

6 larvae), p=0.0004 (t(21)=4.248)). (n) The mEJC frequency is increased in Unc13ANull (Wild 754 

type (n=12 NMJs from 6 larvae) vs Unc13ANull (n=11 NMJs from 6 larvae), p=0.043 755 

(t(21)=2.154)). Recordings were performed in the presence of 1.5 mM extracellular Ca2+. 756 

Number and p values are listed in Supplementary Table 1. Statistics: Student's t-test besides 757 

panel k where a Mann-Whitney U-test was performed. All panels show mean ± SEM; *, p 758 

≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. 759 
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Figure 5: Two-color STED analysis of Unc13A and Unc13B organization at Drosophila 760 

NMJ synapses. 761 

(a-j) Two-color STED images of synaptic boutons (a,d,i) or individual planar AZs (b,c,e-h,j) 762 

from 3rd instar larvae of the displayed genotypes labelled with the indicated ABs. (a) Unc13A 763 

localized almost exclusively to the BRP-positive signal. (b,c) Unc13A immunoreactivity 764 

localized to the inside or partly overlapped with the BRP signal (b) and in close proximity to 765 

the RBP signal, surrounding or overlapping with it (c). (d) Unc13B localized to the BRP-766 

positive signal but also showed immunoreactivity devoid of BRP (d; arrows). (e,f) Unc13B 767 

immunoreactivity localized to the outer edge of the BRP signal (e) and further away from the 768 

RBP signal, not contacting it (f). (g) Motoneuronal Syd-1GFP showed a similar localization as 769 

Unc13B outside at the edge of the BRP ring-like structure (compare 5g with 5e). (h) Co-770 

labelling of motoneuronally overexpressed Syd-1GFP and endogenous Unc13B revealed a 771 

close apposition of both proteins to another. (i) BRP ring-like structures clustered together at 772 

Rab3Null mutant NMJs. Unc13B still localized to the edge of the BRP scaffold (arrow heads, 773 

also magnification in j) but also showed immunoreactivity devoid of BRP following a pattern 774 

that was very reminiscent of the shape of the bouton even without the presence of the 775 

BRP/RBP scaffold (arrows). (j) Magnification of single AZs clustered together in Rab3Null. 776 

Unc13B localized to a similar position as at Wild type AZs (arrow heads; compare 5j with 5e). 777 

For representative images experiments were repeated with at least 2 larvae and 3 NMJs. 778 

Scale bars: (a,d,i) 1.5 μm; (b,c,e-h) 50 nm; (j) 250 nm. 779 

  780 
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Figure 6: Unc13A and -B localize in distinct distances from the presynaptic Ca2+ 781 

channels  782 

(a,b) Two-color STED images of individual planar AZs from 3rdinstar larvae of the displayed 783 

genotypes labelled with the indicated ABs. Unc13A localized in close proximity to 784 

motoneuronally overexpressed CacGFP, surrounding it (a) while Unc13B localized in a larger 785 

distance (b). (c) Mean intensity profile of Unc13A/-B immunoreactivity plotted from the center 786 

of the AZ (the reference center being that of the BRP signal). The intensity maximum of the 787 

average fluorescence profile was found 70 nm from the AZ center for Unc13A and at 120 nm 788 

for Unc13B. (d,e) High-pressure-freeze (HPF) images of T-bar cross section from Wild 789 

type (d) and Unc13ANull (e) NMJs. In Unc13ANull T-bars appeared larger, and SVs docked 790 

(black circles) in close proximity to the T-bar center were lost. (f) Docked SVs were binned 791 

with regard to their distance from the T-bar center, and the average number of docked SVs 792 

per bin was plotted. The number of docked SVs in close proximity to the T-bar center where 793 

Ca2+-channels are located is reduced in Unc13ANull (red) compared to Wild type (black). 794 

Subtracting the average vesicle distribution at Unc13ANull AZs from Wild type controls 795 

revealed Unc13A-specific docking positions, which peaked around 50 nm (grey dotted line). 796 

(g) The average number of docked SVs is significantly reduced at Unc13ANull (red) NMJs in 797 

comparison to Wild type (black) (Wild type (n=11 AZs from 5 larvae) vs Unc13ANull (n=16 AZs 798 

from 2 larvae), p=0.0015 (U=22)). (h) The average number of T-bar tethered SVs is similar in 799 

Wild type and Unc13ANull (Wild type (n=11 AZs from 5 larvae) vs Unc13ANull (n=16 AZs from 2 800 

larvae), p=0.7275 (U=80.5)). (i) The average distance of docked SVs to the T-bar center is 801 

significantly increased in Unc13ANull compared to Wild type (Wild type (n=11 AZs from 5 802 

larvae) vs Unc13ANull (n=16 AZs from 2 larvae), p=0.0035 (U=169.5)).  Statistics for g-803 

i: Mann-Whitney U-test. All panels show mean ± SEM; *, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; 804 

ns, not significant, p >0.05. For representative images a and b experiments were repeated 805 

with at least 2 larvae and 6 NMJs. Scale bars: (a,b,d,e) 50 nm. 806 
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Figure 7: Unc13A increases extracellular Ca2+ sensitivity, release probability and 808 

mediates tight SV to Ca2+ channel coupling 809 

(a) Extracellular Ca2+ was varied (in mM: 0.75, 1.5, 3, 6, 10), and single eEJCs and paired-810 

pulse stimulations with 10 ms inter-stimulus interval (ISI) recorded. Representative eEJC-811 

traces for Wild type (black) and Unc13ANull (red) at various [Ca2+]ext reveal severely impaired 812 

release in Unc13ANull synapses, at all extracellular Ca2+ concentrations. (b) The mean eEJC-813 

amplitude in Unc13ANull is significantly lower than in Wild type animals at all tested [Ca2+]ext 814 

(n=12 NMJs from 12 larvae per Ca2+ concentration and genotype; p<0.0001 for all tested 815 

Ca2+ concentrations; 0.75 mM Ca2+: t(22)=4.961; 1.5 mM Ca2+: t(22)=10.37; 3 mM Ca2+: 816 

t(22)=16.05; 6 mM Ca2+: t(22)=15.89; 10 mM Ca2+: t(22)=12.54). Experimental data is 817 

indicated as dots, model predictions are shown as lines. (c) Analysing the Ca2+-dependence 818 

of release revealed a rightward shift in the sensitivity of release to extracellular Ca2+ 819 

concentrations in Unc13ANull mutant synapses (see also Figure S5a-c for analyses using the 820 

hill equation). Dots represent experimental data, lines represent model predictions (Wild type 821 

(n=12 NMJs from 12 larvae per Ca2+ concentration) vs Unc13ANull (n=10 NMJs from 10 822 

larvae per Ca2+ concentration): 0.75 mM Ca2+: p=0.0092 (U=20); 1.5 mM Ca2+: p<0.0001 823 

(U=0); 3 mM Ca2+: p=0.0005 (U=7); 6 mM Ca2+: p=0.0272 (U=26); 10 mM Ca2+: p=0.0062 824 

(U=18)). (d) Representative, normalized paired-pulse eEJC traces with 10 ms ISI for Wild 825 

type (black) and Unc13ANull (red) at various [Ca2+]ext. (e) The paired-pulse ratios were 826 

significantly increased in Unc13ANull at 10 ms ISI for all [Ca2+]ext (Wild type (n=12 NMJs from 827 

12 larvae per Ca2+ concentration) vs Unc13ANull (n=10 NMJs from 10 larvae per Ca2+ 828 

concentration): 1.5 mM Ca2+: p=0.0001 (t(20)=4.579); 3 mM Ca2+: p<0.0001 (t(20)=5.028); 6 829 

mM Ca2+: p<0.0001 (t(20)=6.222); 10 mM Ca2+: p=0.0002 (t(20)=4.534)). Dots represent 830 

experimental data, lines represent model predictions. (f) Effect of 200 µM EGTA-AM/DMSO 831 

6 min after addition to the extracellular-solution. Representative normalized eEJC traces for 832 

Wild type (black with DMSO, blue with EGTA-AM/DMSO) and Unc13ANull (gold with DMSO, 833 

red with EGTA-AM/DMSO). Unc13ANull animals showed a stronger reduction of eEJCs. 834 

Recordings were performed in the presence of 2.5 mM extracellular Ca2+. (g) Time course of 835 
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the effects of 200 µM EGTA-AM addition in both genotypes. Normalized amplitudes declined 836 

much faster and reached lower values in Unc13ANull mutant synapses than in Wild type 837 

synapses. Dots represent experimental data, lines represent model predictions (Wild type 838 

(n=10 NMJs from 10 larvae) vs Unc13ANull (n=10 NMJs from 10 larvae): 3 min: p=0.0004 839 

(t(18)=4.387); 6 min: p=0.0115 (t(18)=2.812); 9 min: p=0.025 (t(18)=2.446); 12 min: 840 

p=0.0063 (t(18)=3.090)). (h) 3D plots of simulated Ca2+-transients at 1.5 mM [Ca2+]ext in 0.1 841 

ms intervals, starting with the peak of Ca2+-influx (set to t=0.0 ms). [Ca2+]int shows rapid 842 

spatial and temporal decrease. Ca2+ influx was assumed to occur from a point source at the 843 

base of the simulation volume (AZ) located in the center. (i) Illustration of the exocytosis 844 

model containing two independent SV release pathways (A and B), both driven by identical 845 

Ca2+ sensing and fusion mechanisms, but differentially positioned with respect to the Ca2+-846 

source (Cac, blue). Ca2+-transients in the Wild type were smaller at the B position (grey line) 847 

than at the A position (black line). Release in the Unc13ANull was assumed to occur from the 848 

B position only, with the only difference to the Wild type situation being a slightly increased 849 

Ca2+-current to account for the observed increase in Ca2+ channels in this mutant 850 

(Supplementary Table  2, Supplementary Figure 6e,f). The background color indicates the 851 

spatial heterogeneity in free Ca2+ at the peak of the AP-induced Ca2+ transient. Ca2+ 852 

concentrations are only shown in the relevant range between 0 and 150 µM for better 853 

visualization, while actual peak concentration at the simulated source reached ~887 µM (see 854 

panel h). (j) Simulated single eEJCs at 1.5 mM extracellular Ca2+ are shown for the Wild type 855 

and the Unc13ANull model. The normalized simulated eEJC traces reveal a similar delay in 856 

the Unc13ANull model as observed experimentally (Figures 4i,k and Supplementary Figure 857 

4c). Simulations of paired pulse responses (10 ms interval) for 1.5 mM [Ca2+]ext are also 858 

shown. Number and p values are listed in Supplementary Table 1. Statistics: Student's t-test 859 

except for panel (c) where a Mann-Whitney U-test was used. All panels show mean ± SEM; 860 

*, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. 861 
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ONLINE METHODS 863 

MATERIAL AND METHODS 864 

 865 

Genetics 866 

Fly strains were reared under standard laboratory conditions51 and raised at 25°C on semi-867 
defined medium (Bloomington recipe). For most experiments both male and female larvae 868 
were used. For electrophysiological analysis only male larvae were used. The following 869 
genotypes were used: Wild type: +/+ (w1118). Unc13ANull: EMS7.5/P84200. Unc13BNull: 870 
Del100BPacman/+;P84200/P84200. Ctrl: Unc13Pacman/+;P84200/P84200. Motoneuronal 871 
driven UAS-Unc13AC-term-GFP (Figure 1): Ok6-GAL4/+; UAS-Unc13AC-term-GFP/+. Motoneuronal 872 
driven UAS-Unc13BC-term-GFP (Figure 1): Ok6-GAL4/+; UAS-Unc13BC-term-GFP/+. Genotypes 873 
used for in vivo imaging were: Unc13B and Liprin-α: Ok6-GAL4/+; UAS-Unc13BC-term-874 
GFP/UAS-Liprin-αStraw. Unc13A and Liprin-α: Ok6-GAL4/+; UAS-Unc13AC-term-GFP/ UAS-Liprin-875 
αStraw. Genotypes used for scaffold dependence (Figure 3 and Supplementary Figures 1,3): 876 
Syd-1Null: Syd-11.2/Syd-13.4. Liprin-αNull: Liprin-αF3ex15/Liprin-αR60. Ctrl: Ok6-GAL4,Dicer/+. Brp-877 
RNAi: Ok6-GAL4,Dicer/+; UAS-Brp-RNAi-B3,C8/+. RbpNull: Ok6-GAL4,Dicer/+; RbpStop1/ 878 
Df(3R)S201. Brp-RNAi;RbpNull: Ok6-GAL4,Dicer/+; RbpStop1/Df(3R)S201, UAS-Brp-RNAi-879 
B3,C8. Rab3Null: Rab3rup/Rab3rup. Motoneuronal driven Syd-1GFP (Figure 5): Ok6-GAL4/UAS-880 
Syd-1GFP. Motoneuronal driven CacGFP (Figure 6): Ok6-GAL4/UAS-CacGFP. Genotypes used 881 
for CacGFP in Unc13ANull (Supplementary Figure 6): Ctrl: genomic CacGFP/+. Unc13ANull: 882 
genomic CacGFP/+; EMS7.5/P84200. Unc13BNull: Del100BPacman/ genomic CacGFP; 883 
P84200/P84200. 884 

Stocks were obtained from: Ok6-Gal452; UAS-Brp-RNAi-B3,C853; genomic CacGFP22; UAS-885 
CacGFP15; RbpStop1, Df(3R)S20115; Syd-11.2, Syd-13.4 21; Liprin-αF3ex15, Liprin-αR60 39; Rab3rup31; 886 
UAS-Syd-1GFP21; UAS-LiprinStraw30. P84200 was provided by the Drosophila Genetic 887 
Resource Center (DGRC). 888 

 889 

Generation of Unc13ANull by chemical mutagenesis 890 

The EMS screen was performed according to standard protocols. In brief, isogenic w1118 891 
males were mutagenized with 25 mM EMS solution and crossed to virgins carrying a fourth 892 
chromosomal balancer. For initial mapping, male F1 offspring were crossed with P84200 893 
virgins, and candidate flies were tested for adult lethality. Genomic DNA was extracted from 894 
positive candidate flies, and PCR amplicons containing Unc13 exon clusters were double-895 
strand sequenced to identify the mutations.  896 

 897 

Generation of Unc13BNull and Ctrl 898 

Unc13 genomic transgenes were generated by Red/ET Recombineering. For this purpose, 899 
the Unc13 P[acman] BAC CH321-60O10 clone containing the Drosophila unc13 gene was 900 
obtained from the BACPAC Resources Center, CA, USA used as a template for all cloning 901 
strategies. Based on the P[acman] technology29 and using Red/ET Recombineering in E.coli 902 
for modifying large DNA vector constructs (GeneBridges Protocol: Counter-Selection BAC 903 
Modification Kit, Version 3.2, January 2012), a genomic rescue construct encompassing the 904 
whole Drosophila Unc13 locus including putative promotor regions was generated giving 905 
raise to ‘Ctrl’. Based on this wild type construct, an Unc13 isoform B specific deletion 906 
construct (Unc13BNull) was generated by removing the first 1000 bp of the Unc13B DNA 907 
sequence, causing a shift of the reading frame, which interrupts the translation of Unc13B by 908 
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generating an early stop-codon. The cloning strategy was performed according to the 909 
Counter-Selection BAC Modification Kit by Red®/ET® Recombination (Gene Bridges 910 
Protocol, No. K002, Version 3.2, January 2012). For the Generation of transgenic flies both 911 
constructs were send for DNA micro-injection in embryos to Rainbow Transgenic Flies, Inc, 912 
CA, USA(service type: B/D2, injected fly strain: Strain 24862; y[1] M{vas-int.Dm}vZH-2A w[*]; 913 
PBac{y[+]-attP-9A}VK00005) on LB agar. 914 

 915 

Generation of UAS-Unc13AGFP and UAS-Unc13BGFP 916 

UAS-Unc13AGFP 917 

To generate the cDNA of Unc13A, the C-term of Unc13 (1647- 2871 aa) was cloned from 918 
cDNA clone LD28927 (obtained from DGRC) into pENTR/D-Topo (Invitrogen) using the 919 
following primers: 920 
Unc13-Cterm-FW 5'- CACCATGCATCCCGGTGACAATCCATTC - 3' 921 
Unc13-Cterm-Rev 5'- TGTACCCATGGTTGGCTCCT- 3' 922 
The N-term of Unc13A is available at DGRC as cDNA with clone number LD15472. The 923 
Unc13A C-term fragment was ligated to the Unc13A N-term. The obtained construct is 924 
lacking 1859 bp in the N-terminal region of Unc13A, which were cloned into pENTR/D-Topo 925 
vector using the following primers: 926 
Unc13-1859 FW 5'- CACCATGCGCACTACGTGAGGC - 3' 927 
Unc13-1859 REV 5'- AGGCTTCAGATACTCAGATATG- 3' 928 
In a final step both fragments were fused to the Unc13A cDNA in pENTR/D-Topo vector. 929 
Through Gateway reaction, the construct was shuttled into GAL4/UAS vector containing a 930 
GFP tag. 931 

 932 

UAS-Unc13BGFP 933 

Unc13B N-term was generated from the Pacman clone CH321-74A09 (obtained from 934 
BACPAC Resource Center BPRC, California, USA) and cloned into pENTR/D-Topo using 935 
the following primers:  936 
Unc13-N-term/IsoB FW 5'-CACCATGATGAACACATCTCAGCT- 3'  937 
Unc13-N-term/IsoB REV 5'--CTTGTCCCTGTCCTTTATCAT- 3'  938 
The N-terminal part (exon 1) of Unc13B was fused to exons 2,3 and 4 by elongase PCR 939 
using a Unc13B Y2H construct (containing the last 1000 bp of exon 1) and Unc13A cDNA as 940 
templates. The primers used for amplification are:  941 
HB-dunc13RB-prey4 FW 5'-CACCATGGCTGCACATTCTGACGACGATG- 3' 942 
Unc-13 PCR2 REV 5'-CGGCGCTGCAGGCAGTCCGCATTCAGAAGG- 3' 943 
The amplified fragment was cloned to pENTR/D-Topo vector and ligated to the C-terminal 944 
part of Unc13A cDNA  resulting in the final Unc13B cDNA entry clone. Through Gateway 945 
reaction, the construct was shuttled into GAL4/UAS vectors containing a GFP tag. 946 

 947 

Generation of Unc13A and Unc13B specific antibodies 948 

Unc13A specific antibody:  949 

The poly clonal antibody was raised in Guinea pig. The immunization of the animals was 950 
performed using a GST tagged fusion protein. The coding sequence corresponding to 384-951 
494aa of Unc13A:  952 
SVTSFPSSAVTAITKTRKLPKVLPTPLCKSSRHPITIATDALSSSYTSDPLPEKSHRPAAKQLP953 
KLPISLPQSNDRASLNSNWATPPAPDALPFNSFDHKSASSPTPTTTITK  954 
The PCR was performed using the following primers: 955 
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Unc13A N-term FW 5 CA AATTCA C TCACAA TTTCCC  956 
Unc13A N-term REV 5 TACTC A TCATTTT TTATT TT TTTT 957 
The PCR product was ligated to pGEX-6p1 (GST tag vector). The expression and purification 958 
of the target protein were conducted as mentioned above. After injection into guinea pig 959 
animals, several attempts to produce a 6×His tagged fusion protein of the same protein 960 
construct were not successful. Therefore, the GST tag of the GST tagged fusion protein was 961 
cleaved and the pure protein was used for the affinity purification of the AB containing serum 962 
which obtained from Selbaq. 963 

 964 

Unc13B specific antibody: 965 

A rabbit poly clonal antibody was raised against the N-terminus of Unc13B with the following 966 
peptide sequence (941-1602 AA):  967 
SNFHSFPLSHEQAQTTNQTEFVILEENLNYIYELSKNLPICSAYENKSIFDMKYEICDSNEIGK968 
FSTVDEMLEWDQLNEPDKQNFSGKRLNSNLMPDLLTAQIPNSISKHNKNTSVNIEYVRQKE969 
NKGMDRRSIIEPNIYNGKSEDQICRPCLTDKLVFYPSSNSITDHNSSHDFNCLSQQDQTRIIK970 
EFGSAHLNQDPTNYLDYTSGTYSKAPPEVLTHETNSSHLEFNHESESLFNSPNTSSYCKQK971 
FVPGTSPAKPSKVWKRLNTILADNLKLKRVSKFNRSLSLPGDVQSQGLQRQPRGQAGSCPF972 
IHKRSNLAGSPVQLSKRIQKLPIRFIGRAKGVPFVRRSSSPDSAVSLDSAADKRFSSEKGLKK973 
KTISSKMSGLMQKAKTYKRHSFVLRRGCNMSDSELEMPDFVSSGNDNSSISTREILLNQSIE974 
VEDEQEDFNYKNRCDSKSVLGGSIEKLNGNLTNNLFPIVGDLKKIQSPLPLAVLTEIPSYKDE975 
YSNKSDSIKNSPIEMPKILLETACNQELNLAHSDDDVDKNILANSAKDYVNAPTFSILKTVEDA976 
SEPTMTPLHTTTTTNSSLNVTSALWVTQQCLDLPNYPGWGSREDDDNRSQHSARTLSSSR977 
RQSTEDSIDTDDEYFYYELRQLEEQEKQRAHNSAIPSCER  978 
The coding sequence was cloned from Pacman clone CH321-74A09 (BACPAC Resource 979 
Center BPRC, CA, USA) into pENTR/D-Topo (Invitrogen, CA, USA). The following primers 980 
were used: 981 
Unc13B FW 5’-CACCATGGCTTCGAACTTTCACAGTTTCCC-3´  982 
Unc13B REV 5’-AGTACTAGTTTATCGTTCACAAGATGGAATTGC-3´  983 
Through Gateway reaction, the construct was shuttled into the bacterial expression vectors 984 
pDEST17(N-terminal 6xHis-‐tag) and expressed as corresponding fusion proteins. Rabbit 985 
antisera, obtained from Selbaq, were affinity purified with the same fusion protein. 986 

 987 

Generation of RBPSH3-II+IIIantibody 988 

A guinea-pig poly clonal antibody was generated against a GST tagged fusion protein of 989 
RBP with the following sequence: 990 
YFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYVPHNM991 
VSEVEDTTASMTAGGQMPGQMPGQMGQGQGVGVGGTAQVMPGQGAPQQSMRNVSRD992 
RWGDIYANMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELD993 
GVRGLVPSNFLAD  994 
The fragment of expression was amplified from RBPcDNA clone AT04807 (Drosophila 995 
Genomics Resource Centre) using the following primers: 996 
FW 5’-CAGAATTCCGCTATTTTGTGGCCATGTTC-3´  997 
REV 5’-TACTCGAGTCAGTCCGCCAGGAAGTTAGA-3´  998 
Following the PCR, the fragment was cloned into the pGEX-6p1 GST vector. The expression 999 
and purification of the target protein were performed in Escherichia coli under native 1000 
conditions. For affinity purification of the AB containing serum (obtained from Selbaq), a 1001 
6×His tagged fusion protein was used with the same amino acid sequence of the GST 1002 
construct used for immunization. 1003 

 1004 
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Immunostaining 1005 

Larval filets were dissected and stained as described previously21. The following primary 1006 
antibodies were used: guinea-pig Unc13A (1:500; this study); rabbit Unc13B (1:1000; this 1007 
study); rabbit RBPC-term (1:500;15) guinea-pig RBPSH3-II+III (1:500; this study); mouse GFP (3E6; 1008 
1:500, Life Technologies A-11120), rabbit GFP (1:500, Life Technologies A11122), mouse 1009 
Nc82 = anti-BRPC-term (1:100, Developmental Studies Hybridoma Bank, University of Iowa, 1010 
Iowa City, IA, USA); rabbit BRPLast200 (1:1000;54). Except for staining against CacGFP and 1011 
Unc13A, where larvae were fixed for 5 min with ice-cold methanol, all fixations were 1012 
performed for 10 min with 4 % paraformaldehyde (PFA) in 0.1 mM phosphate buffered saline 1013 
(PBS). Secondary antibodies for standard immunostainings were used in the following 1014 
concentrations: goat anti-HRP-Cy5 (1:250, Jackson ImmunoResearch, PA, USA); goat anti-1015 
rabbit-Cy3 (1:500, Jackson ImmunoResearch 111-165-144, PA, USA); goat anti-mouse-Cy3 1016 
(1:500, Jackson ImmunoResearch 115-165-146); goat anti-mouse or anti guinea pig Alexa-1017 
Fluor-488 (1:500, Life Technologies A11001/A11073, CA, USA). Larvae were mounted in 1018 
vectashield (Vector labs, CA, USA). Secondary antibodies for STED were used in the 1019 
following concentrations: goat anti-mouse Atto590 (1:100); goat anti-rabbit Atto590 (1:100); 1020 
goat anti-guinea pig star635 (1:100); goat anti-rabbit star635 (1:100); Atto590 (ATTO-TEC 1021 
AD 590-31) and star635 (Abberior 1-0101002-1) coupled to respective IgGs (Dianova). For 1022 
STED imaging larvae were mounted in Mowiol (Max-Planck Institut for Biophysical 1023 
Chemistry, Group of Stefan Hell). 1024 

 1025 

Image Acquisition, Processing and Analysis 1026 

Confocal microscopy was performed with a Leica SP8 microscope (Leica Microsystems, 1027 
Germany). STED microscopy was performed with a custom-built STED-microscope (see 1028 
below). Images of fixed and live samples were acquired at room temperature. Confocal 1029 
imaging of NMJs was done using a z step of 0.25 μm. The following objective was used: 1030 
63×1.4 NA oil immersion for NMJ confocal imaging. All confocal images were acquired using 1031 
the LCS AF software (Leica Microsystems, Germany). Images from fixed samples were 1032 
taken from 3rd instar larval NMJs (segments A2-A4). Images for figures were processed with 1033 
ImageJ software to enhance brightness using the brightness/contrast function. If necessary 1034 
images were smoothened (0.5 pixel Sigma radius) using the Gauss blur function. Confocal 1035 
stacks were processed with ImageJ software (http://rsbweb.nih.gov/ij/). Quantifications of AZ 1036 
spot number, density and size (scored via BRP) were performed following an adjusted 1037 
manual55, briefly as follows. The signal of a HRP-Cy5 antibody was used as template for a 1038 
mask, restricting the quantified area to the shape of the NMJ. The original confocal stacks 1039 
were converted to maximal projections and after background subtraction, a mask of the 1040 
synaptic area was created by applying a certain threshold to remove the irrelevant lower 1041 
intensity pixels. The segmentation of single spots was done semi-automatically via the 1042 
command “Find Maxima” embedded in the ImageJ software and by hand with the pencil tool 1043 
and a line thickness of 1 pixel. To remove high frequency noise a Gaussian blur filter (0.5 1044 
pixel Sigma radius) was applied. The processed picture was then transformed into a binary 1045 
mask using the same lower threshold value as in the first step. This binary mask was then 1046 
projected onto the original unmodified image using the “min” operation from the ImageJ 1047 
image calculator. The synapses of the resulting images were counted with the help of the 1048 
“analyze particle” function with the threshold set to 1. The spot density was obtained by 1049 
normalizing the total number of analyzed particles to the NMJ area measured via HRP. The 1050 
mean intensity of synaptic proteins per NMJ was measured using the command “measure” 1051 
giving the mean gray pixel value within the HRP mask. For colocalization analysis (Manders 1052 
or Pearson correlation) the ImageJ plugin “JACOP” 1053 
(http://rsb.info.nih.gov/ij/plugins/track/jacop2.html) was used. 1054 

 1055 
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STED Microscopy  1056 

Two-colour STED images were recorded on a custom-built STED-microscope56, which 1057 
combines two pairs of excitation laser beams of 595 nm and 640 nm wavelength with one 1058 
STED fiber laser beam at 775 nm. All STED images were acquired using Imspector Software 1059 
(Max Planck Innovation GmbH, Germany). STED images were processed using a linear 1060 
deconvolution function integrated into Imspector Software (Max Planck Innovation GmbH, 1061 
Germany). Regularization parameters ranged from 1e−09 to 1e−10. The point spread function 1062 
(PSF) for deconvolution was generated by using a 2D Lorentz function with its half-width and 1063 
half-length fitted to the half-width and half-length of each individual image. Images for figures 1064 
were processed with ImageJ software to remove obvious background, enhance 1065 
brightness/contrast and smoothened (1 pixel Sigma radius) using the Gauss blur function. 1066 
The average aligned intensity profiles depicted in Figure 6C were generated from STED 1067 
images obtained by co-staining BRP together with either Unc13A or –B. The BRP signal was 1068 
used to align the local fluorescence signal in the following way: first, several sub-images 1069 
(size 51 x 51 pixel, pixel size 10 nm) containing BRP rings were placed per STED images. 1070 
The sub-images were cut out in both channels (BRP and either Unc13A or Unc13B) and 1071 
centered according to the BRP signal. This was achieved by finding individual BRP peaks 1072 
with the ImageJ (version 1.48q) function “find maxima”, and shifting the image such that the 1073 
center of gravity of the peaks was in the center of the sub-image. Only sub-images with at 1074 
least two maxima were considered. To generate average fluorescence profiles, intensity line 1075 
profiles were read out across a horizontal line in the middle of the image (pixels 1 to 51 in x 1076 
at pixel position y=26). The image was then successively rotated 35 times in 10° steps while 1077 
reading out intensity profiles in the same manner. Intensity profiles of all rotations were 1078 
averaged. This procedure was performed for all images in all channels (no. of sub-images for 1079 
BRP/Unc13A: n=132; no. of sub-images for BRP/Unc13B: n=117). Intensity profiles 1080 
generated this way contained a local minimum at the center of the sub-images in all 1081 
channels, demonstrating the proper alignment of the BRP signal and a stereotypical 1082 
distribution of Unc13 fluorescence. Intensity profiles were then plotted from the center 1083 
outwards and the midline pixel position (x=26) was set to zero (no information is lost by this 1084 
because intensity profiles were symmetric due to the averaging across full rotations of the 1085 
individual images). To plot the mean fluorescence distribution across the plot area, mean 1086 
absolute fluorescent values were normalized. For this, the traces were integrated over the full 1087 
range (0 to 250 nm) and the individual values divided by this number in a genotype specific 1088 
manner.  1089 

The measurements of BRP ring diameters (as depicted in Supplementary Figure 6) 1090 
were performed on deconvolved images. A line profile was laid across the middle of planar 1091 
oriented BRP rings and the peak-to-peak distance measured. Subsequently the line was 1092 
rotated 90 degrees, a second line profile was created and the peak-to-peak distance 1093 
measured again. The average of both peak-to-peak distances gave the ring diameter.  1094 

 1095 

In vivo live imaging and analysis 1096 

For temporal analysis of synapse assembly imaging of intact Drosophila larvae was 1097 
performed as previously described57, 58. Briefly, third instar larvae were put into a drop of 1098 
Voltalef H10S oil (Arkema, Inc., France) within an airtight imaging chamber. Before imaging, 1099 
the larvae were anaesthetized with 20 short pulses of a desflurane (Baxter,IL, UAS) air 1100 
mixture until the heartbeat completely stopped. Selected NMJs were exclusively located in 1101 
abdominal segments A2, A3 and A4 on muscles 26 and 27. Confocal stacks of NMJs were 1102 
recorded using a z step size of 0.25 μm. After image acquisition, single larvae were kept 1103 
separately for 6h on normal food at 25°C to capture the whole maturation process. 1104 
Subsequently, the very same NMJs were subjected to live imaging again. 1105 

 1106 
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Electrophysiology 1107 

Recordings were performed essentially as previously described59. All experiments were 1108 
performed on male, 3rd instar, larvae raised on semi-defined medium (Bloomington recipe) at 1109 
25°C. The eEJCs were low-pass filtered at 5 kHz and sampled at 10 kHz. The stimulation 1110 
artifact of eEJCs was removed for clarity. TEVC recordings were performed at room 1111 
temperature on third-instar larval NMJs (muscle 6 of abdominal segments A2/A3). Larvae 1112 
were dissected in ice cold Ca2+-free hemolymph-like solution (HL3;60; Composition (in mM): 1113 
NaCl 70, KCl 5, MgCl2 20, NaHCO3 10, trehalose 5, sucrose 115, HEPES 5, pH adjusted to 1114 
7.2). The CaCl2 concentration used for experiments is noted in the corresponding figures. 1115 
Recordings were made only from cells with an initial Vm between -50 and -70mV and input 1116 
resistances of ≥4 MΩ, using intracellular electrodes with resistances of 8-15 MΩ, filled with 1117 
3M KCl. eEJCs were recorded at a voltage clamp of -60 mV and mEJCs were recorded at a 1118 
voltage clamp of -80 mV.   1119 

Ca2+ titration experiments were performed from an initial Ca2+ concentration of 0.75 1120 
mM. The concentration was subsequently increased to 1.5, 3.0, 6.0, and 10 mM. At each 1121 
Ca2+concentration, a single eEJC was recorded. Following the 10 seconds rest, one paired 1122 
pulse trace was recorded (10 ms ISI). Paired pulse ratios were calculated by dividing the 1123 
amplitude after the second stimulus by the amplitude after first stimulus. The bath solution 1124 
was then exchanged five times via pipetting and the process was repeated at the next 1125 
Ca2+concentration. Calcium-dependence of release data in individual cells were fit with a 1126 
standard site-specific Hill equation (I=Imax*[Ca2+]ex

h/(KD
h+[Ca2+]ex

h), where [Ca2+]ex is the 1127 
concentration of extracellular Ca2+,I is current, Imax is the asymptotic current, h is the hill 1128 
slope, and KD is the extracellular Ca2+ concentration at which I=0.5*Imax. To obtain the plots in 1129 
Figure 7c and Supplementary Figure 5a,d, amplitudes (I) were divided by Imax in each cell, 1130 
then averaged. Quantifications of the KD and the hill coefficient h (slope) were obtained from 1131 
individual cell fits with a site-specific Hill equation (Graphpad Prism, vers. 5). Cells were 1132 
excluded if the Hill equation could not be properly fit to the data (affected only 2 cells in 1133 
Unc13ANull). The data are reported as mean ± s.e.m., n indicates the number of cells 1134 
examined. 1135 

 1136 

Ca2+ buffering with EGTA-AM and Bapta-AM (TEVC) 1137 

In an EGTA-AM wash-in experiment, initial amplitudes were recorded for 1 min before 1138 
0.2 mM EGTA-AM (in DMSO) and Pluronic F-127 (same volume like EGTA-AM, ratio 1:1) 1139 
was added to the extracellular solution containing 2.5 mM Ca2+. For control, the same 1140 
volume (final concentration 0.4%DMSO (v/v) and Pluronic F-127 (ratio 1:1, stock solution 1141 
20% (w/v) in DMSO) was added to the extracellular solution. The cell was clamped at -60mV 1142 
and recordings lasted for a total of 3000s. Nerve stimulation was applied throughout at 0.1 1143 
Hz. The baseline amplitude was obtained by averaging the initial five amplitudes. The decay 1144 
of the amplitudes upon addition of EGTA-AM was fitted in the range between wash-in and 1145 
1000 s with a single exponential fit in Igor Pro with the following formula: 1146 
 1147 
 f(x)=y0+(1-y0)*exp(-(x-x0)/Tau) 1148 
 1149 
where x is time, f(x) are normalized amplitudes, which start at 1 and decay in a 1150 
monoexponential fashion once EGTA-AM concentrations rise in the presynaptic terminal. 1151 
The function features a delay (x0) to account for variable delay times between experiments. 1152 
Tau is the time constant of the inhibition and y0 represents the asymptotic plateau value at 1153 
full inhibition at steady state. 1154 

In an incubation experiment, Bapta-AM (Abcam, 100 mM stock solution in DMSO) 1155 
was dissolved in Ca2+-free HL3 to a final concentration of 0.1 mM. The same volume of 1156 
Pluronic F-127 (Molecular Probes, OR, UAS, 20% (w/v) in DMSO) was added. For control an 1157 
equal amount of DMSO (final concentration v/v: 0.2%) and Pluronic F-127 was dissolved in 1158 
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Ca2+-free HL3. The dissected larva was incubated exactly 30 minutes at room temperature, 1159 
then it was rinsed three times with HL3 containing 2.5 mM Ca2+ to remove residual Bapta-AM 1160 
from the fillet before the recording was started. In TEVC at -60mV 100 APs of a 60Hz train 1161 
were measured in HL3 in the presence of 2.5 mM extracellular Ca2+. Data was analyzed 1162 
using pClamp 10 (Molecular Devices, CA, USA) and a custom-written MATLAB (MathWorks, 1163 
MA, USA, R2010b) script. Changes in the first amplitude of the train upon Bapta-AM 1164 
incubation were compared by dividing the amplitude with Bapta/DMSO (with Pluronic F-127) 1165 
treatment by the amplitude with DMSO (with Pluronic F-127) treatment to reveal potential 1166 
genotype-specific changes in Bapta sensitivity. 1167 

 1168 

Electron Microscopy/HPF 1169 

HPF embedding was performed as described previously22. In brief, about three to five 1170 
Drosophila late second/early third instar larvae were placed in an aluminum specimen carrier 1171 
of 200-μm depth (type A; Leica, Germany), filled with yeast paste, and covered with a lid 1172 
(specimen carrier typeB, Leica, Germany). Samples were frozen immediately in an HPF 1173 
machine (HPM100; Leica). Cryosubstitution was performed in an AFS (Leica, Germany) in 1174 
anhydrous acetone with 1% EMD Millipore water, 1% glutaraldehyde, and 1% 1175 
osmiumtetroxide. From -90°C for 10 h the temperature was slowly (5°C/h) increased to -1176 
20°C, the samples incubated for additional 12 h before being warmed (10°C/h) to 20°C. The 1177 
samples were washed with acetone and incubated with 0.1% uranylacetate dissolved in 1178 
anhydrous acetone for 1 h at RT. After washing, the samples were infiltrated with the plastic 1179 
resin Epon in increasing concentrations. The first incubation step in 30% Epon/70% acetone 1180 
for 4 h was followed by 70% Epon/30%acetone overnight. The samples were incubated twice 1181 
in 100% Epon for 2 h before being embedded. 60–65 nm sections were cut using an 1182 
ultramicrotome (RMC Power Tome XL; Reichert Ultracut S). Sections were collected on 1183 
Formvar-coated 100 mesh grids. Sections were post stained with 2% uranylacetate for 30 1184 
min and lead citrate for 3 min. Micrographs were acquired on an electrone microscope 1185 
(Tecnai Spirit; FEI or Zeiss 900). The analysis of the EM micrographs was done with ImageJ 1186 
(http://imagej.nih.gov/ij). The micrographs were rotated (linear extrapolation) till the AZ 1187 
membrane was horizontal. The plasma membrane, the electron-dense T-bar and SV in a 300 1188 
nm radius from the T-bar center were detected by eye and labeled manually. The nearest 1189 
distance of the outer leaflet of SVs to the inner leaflet of the plasma membrane at the T-bar 1190 
pedestal center was measured. Only SVs with direct contact to the plasma membrane were 1191 
categorized as "docked". SVs with contact to the T-bar were classified to be "tethered". The 1192 
SV distances to the T-bar pedestal center were binned in 30 nm bins and the number of SVs 1193 
in a respective bin was counted and plotted.  1194 

 1195 

Yeast two-Hybrid Interaction Mating 1196 

To create a prey matrix for interaction mating, the MATα yeast strain L40cca61 was 1197 
individually transformed with plasmids pACT4-DM and pGAD426-D3 (coding Gal4 activation 1198 
domain fusions at the N-terminus) encoding prey proteins (Unc13A Frag I;II;III and Unc13B 1199 
Frag I;II;III;). The resulting yeast colonies were arrayed in 384-well microtiter plates. cDNA 1200 
fragments encoding the bait protein fragments (BRP; RBP; Syd1; Liprin-α Fragments) were 1201 
subcloned into two gateway compatible yeast expression vectors: pBTM116-D9 and 1202 
pBTMcC24-DM (identical to pBTM116-D9 except that the lexA DNA-binding protein is fused 1203 
at the C-terminus of the ORF61). The resulting plasmids were transformed into the MATa 1204 
yeast strain L40ccua and assembled in 96-well plates. For the Y2H matrix approach62, 1205 
autoactivating strains starting the transcription of the reporter genes HIS3, URA3 were 1206 
excluded from the set of bait strains (e.g. all Unc13 constructs). The matrix-format Y2H 1207 
protein-protein interaction screening was designed and run as described in62. For interaction 1208 
mating, 25 ml fresh overnight cultures of the bait strains (-Trp/+His +Ade +Ura +Leu) were 1209 
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distributed into a 384-well MTPs (40µl each well) using a pipetting robot (Biomek FX, 1210 
Beckman Coulter, Germany). The freshly grown prey yeast colonies (- L/+His +Ade +Ura + 1211 
Trp) were individually scratched off the agar and resuspended each into a well of the40µl bait 1212 
strains containing MTPs. The pair-wise combinations of bait and prey strains were mixed and 1213 
transferred immediately onto YPD agarplates in a gridpattern using a spotting robot 1214 
(KBiosystems, Great Britain) and incubated for 36 hr at 30°C. For detection of protein-protein 1215 
interactions, diploid yeasts carrying both -baits and preys- were spotted from YPD agar onto 1216 
selective SDIV (-Leu-Trp-Ura-His) agar plates. Interacting bait-prey pairs were identified by 1217 
growth on selective agar plates (Leu-Trp-Ura- His) after 5–6 days of incubation at 30°C. Non 1218 
autoactivating baits (L40ccU MATa yeast strains) were mated with prey strains at least four 1219 
times using independently transformed bait and prey yeast colonies (384 array format). Only 1220 
bait-prey pairs that showed growth and therefore a protein-protein-interaction at least twice 1221 
were considered as a “+”. All others were considered as non-interacting and therefore signed 1222 
with a “-“.  1223 

 1224 

Primer sequences of the prey fragments of Unc13A N-term 1225 

Unc13A N-term Fragment 1 (length: 1-606 AA)  1226 
Primer: 1227 
Unc13A N-term FW1: 1228 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGACGCACTACGTGAGGCAT 1229 
Unc13A N-term RV1: 1230 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCCCGCTATATGGATCGGCTAA 1231 
Giving rise to the following protein sequence: 1232 
MTHYVRHDYFHNTQNGALSSDTSRISYSQISYETQPSREYFSESYALSNQGPEECSRVSHL1233 
NSDTVLTTVDNSNNSYGYDYLECYGANIQCDPEEDSVDNWNENTSVVADQYGLGHNNLNC1234 
TSSKLLPKLPNIENGRGSSNACAPQMDVKFNTKGMCIKIDHSYGVCMAKAHDFVGRLSPSD1235 
YQNILGNNLNGYAGCAYSSTFLDNAMSSAPLRVLPQSPRCSSYLGRNIIGFNADAAQRDGR1236 
GFDTDQTDAMGSESSTYEVYEKMQRPYTSMLPLDYSDYQEGCYNTDNLSTYSDTPPSNNT1237 
QLKRQMQRKISLMMAMTTASVIASGEIRVPVHSKQSKKSTEIQTDSIIGNTISTNAAARDLDR1238 
CLATESCEVIVDTRDSGSVTSFPSSAVTAITKTRKLPKVLPTPLCKSSRHPITIATDALSSSYT1239 
SDPLPEKSHRPKQLPKLPISLPQSNDRASLNSNWATPPAPDALPFNSFDHKSASSPTPTTTI1240 
TKDTETTSYLVETDFIGARHNALYQYDSKEPNIVFSDKSVEAEHSPTWTPLSPIQSKQSPCP1241 
PVALPSNIMQNVSLTCHLPEIEATRSDIEREPESSSIEPILEIEKLADPYSG 1242 
 1243 

Unc13A N-term Fragment 2 (length: 494 -1111 AA)  1244 
Primer: 1245 
Unc13A N-term FW2: 1246 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAAAGATACGGAAACCACCTCA 1247 
Unc13A N-term RV2: 1248 
GGGGACCACTTTGTACAAGAAAGCTGGGTGATTTCTGACTAAGGTCGAACT 1249 
Giving rise to the following sequence: 1250 
KDTETTSYLVETDFIGARHNALYQYDSKEPNIVFSDKSVEAEHSPTWTPLSPIQSKQSPCPP1251 
VALPSNIMQNVSLTCHLPEIEATRSDIEREPESSSIEPILEIEKLADPYSGPGSALFNISEYLKP1252 
YTLNKPILSEEKKNHIANAASTSTTTPLNITSDDEFSSYSNKWTSTCVNFQPLDVESSLNISLK1253 
VNAGTNQAELLMTPLKSSTPLFISSNGTSDNFNLRKSSPPDSAFTTTVNVNSFETVLVSGSQ1254 
TASPSPSNLKSPPSIAPLLSYSDYMKQFELPELPQPIMDLSENDTATQSDSFNVINNTLTNAD1255 
NLNSYNQMDVESKSSLQLPSYSSESFDPCSVPSFSIKNKEYKIVEKLDSLSNVESVESPKTL1256 
VSPVNPLNCSKLLPGTESIVSNDVAFDDTFYDSFNVDIKELTAFVDHVAPEDGLYNFPNDKT1257 
SVEFSFDKTEDTIDMNQNLSSGECGYYKPSQAQQKASVVASAASSVLDGISKGLKGGLDGV1258 
FSGVSSTVDVTQSNPSSKRGFSFNLASKIVPSVGGLLTSTSSTSIKQTGSETNPTLILISPENV1259 
SSRNSNYIPTTSPSCTQKNGEENLYSATVHNKSTKSNSYYNEVGEISSTLVRN 1260 
 1261 
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Unc13A N-term Fragment 3 (length: 1000-1632 AA) 1262 
Primer: 1263 
Unc13A N-term FW3: 1264 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCTCAACAGTTGATGTCACTCAA 1265 
Unc13A N-term RV3: 1266 
GGGGACCACTTTGTACAAGAAAGCTGGGTGATTAAGCTGCATGATTATTTT 1267 
Giving rise to the following sequence: 1268 
STVDVTQSNPSSKRGFSFNLASKIVPSVGGLLTSTSSTSIKQTGSETNPTLILISPENVSSRNS1269 
NYIPTTSPSCTQKNGEENLYSATVHNKSTKSNSYYNEVGEISSTLVRNVCDSYDNSYDEMIL1270 
TNEMVNIGMLDSESEFGLIENSYSYQVPDNEQIDSVNSYNNKTQNVTNNGIEKANTKNKPVP1271 
LHDPPTKKASTVGMFGSILGKAAAAVQSATQAVNQSASSVASVVAQKPTIVPRTNNVLLLSS1272 
VCSPNEIKRNSSSVEFDSEYGYQMPDVESLSSHYANTGGDYDNSNMKIHEFGTYADDRPY1273 
ADYHTNGNQSQFKEEAVIPGEPEVINTNILPIGPQATGKKLPTVNGKSALLIKQMPTEVYDDE1274 
SDTDELDVSPSTGKVPSYSIYSEQEDYYMDLQQTTPSIQPNGFYEQVNNGYDYREDYFNEE1275 
DEYKYLEQQREQEEHNQPKNKKYLKQAKISKIQPPSLDFIDVGQDDDFIYDNYHSEDDSGNY1276 
LEGSSSGSVGPIEGSIIKVDSNIEASFASLNKKSDSFTPTNDSLQKHDTVIGESTTKLTRLRTE1277 
KMCPDVDEEDENLSDHVSDLTDLSKLISQKKKTLLRGETEEVVGGHMQVLRQTEITARQRW1278 
HWAYNKIIMQLN 1279 
 1280 

Primer sequences of the bait and prey fragments of Unc13B N-term  1281 
Unc13B N-term Fragment 1 (length: 1-711 AA) 1282 
Primer: 1283 
Unc13B N-term FW1: 1284 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGATGAACACATCTCAGCTG 1285 
Unc13B N-term RV1: 1286 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTGAGCTGCCAACTAATTTTTT 1287 
Giving rise to the following sequence: 1288 
MMNTSQLQVTGDTEKKSQLLKKELKINTQEKLIFAENALKSQIKIKEQLRLQQQSTIYASSLLS1289 
SSAAGSVRAPLLSQGHLNSIQHNMDFDLAKAQIPEMQPPMSKSPNGLDFSYLSYPSINTNES1290 
MISIKSEQQLCQSYNSEQHSDYIISDYMDKIATRISLLETELKFAWRALDLLSTEYGKIWIRLEK1291 
LENISIEQQSVVGNLVDLIGASKKELQKVDIERMKVPLYQDEDQLLPLEMEDTLDIDIQSSNRD1292 
FDKNLTFENHEKTFVTKHTQATKSEDLMNSAYAIDSHPNFENIDFNGKNLDIGIIKFGFEKGY1293 
EPKQKGNQSDFEAYKESRTKLYSDSDLMLYERQQFLANSARAELMKEFLNGRRVLNEISAS1294 
SGALSKSSEKDKNLVKPREPLLSEIDDTYVRRSTCELVSPSSNNFFQIAASKTGEGGNQVLPI1295 
EDTGGTESPANINEVDESFYKNLNEAYRDNELSSEIFKVDALLHQSEATHDHISFIRNQSTSS1296 
PVLNNQRVNAITGTQPLQTAKACLVTEPNQHLNKEPRKHRKKKHHTNEMDMINKLKCILAQA1297 
QSTEIIKRDIEELGSKLSDACVKQTETENKSDNHISTSYLKDDIRKMLNNVIQTLLGEINKIKGL1298 
QSLSATQLSQLQNAVWSEERFFQKISLVDKKLTLLLLNPLTVTEELQRLCISNTNEKFVLVIKK1299 
LKKNIDTLKKLVGSS 1300 
 1301 

Unc13B N-term Fragment 2 (length: 600-1322 AA) 1302 
Primer: 1303 
Unc13B N-term FW2: 1304 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCAACCATATTAGTACCAGTTAT 1305 
Unc13B N-termRV2: 1306 
GGGGACCACTTTGTACAAGAAAGCTGGGTGACCACTCATCTTGGACGAAAT 1307 
Giving rise to the following sequence: 1308 
NHISTSYLKDDIRKMLNNVIQTLLGEINKIKGLQSLSATQLSQLQNAVWSEERFFQKISLVDKK1309 
LTLLLLNPLTVTEELQRLCISNTNEKFVLVIKKLKKNIDTLKKLVGSSLDDFKIDNSHANMTTFH1310 
SLNPSHNSNDSSFSAHLLRNNSNLDEQLKILETQEIEIHRKKKIDEIVSGLSEETYTFNPDMEY1311 
KSQHSCTNSTDNIIGFSKNIYNEDEYIKSLRKSLERHNSMIFLLHLQNPEKHKVLADINDAQM1312 
DSNRASLSPPPPAPTDTVYLNDAINQITYQQRNGKSDSGLSSMSGWSANSQVSVGLQNYD1313 
PACNNILENCSERLQTYHSFPLAENSNFHSFPLSHEQAQTTNQTEFVILEENLNYIYELSKNL1314 
PICSAYENKSIFDMKYEICDSNEIGKFSTVDEMLEWDQLNEPDKQNFSGKRLNSNLMPDLLT1315 
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AQIPNSISKHNKNTSVNIEYVRQKENKGMDRRSIIEPNIYNGKSEDQICRPCLTDKLVFYPSS1316 
NSITDHNSSHDFNCLSQQDQTRIIKEFGSAHLNQDPTNYLDYTSGTYSKAPPEVLTHETNSS1317 
HLEFNHESESLFNSPNTSSYCKQKFVPGTSPAKPSKVWKRLNTILADNLKLKRVSKFNRSLS1318 
LPGDVQSQGLQRQPRGQAGSCPFIHKRSNLAGSPVQLSKRIQKLPIRFIGRAKGVPFVRRS1319 
SSPDSAVSLDSAADKRFSSEKGLKKKTISSKMSG 1320 
 1321 

Unc13B N-term Fragment 3 (length: 1200-1944 AA) 1322 
Primer 1323 
Unc13B N-term FW3: 1324 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCTCAAAGGTATGGAAGAGGCTA 1325 
Unc13B N-termRV3: 1326 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCTTGTCCCTGTCCTTTATCAT 1327 
Giving rise to the following sequence: 1328 
SKVWKRLNTILADNLKLKRVSKFNRSLSLPGDVQSQGLQRQPRGQAGSCPFIHKRSNLAGS1329 
PVQLSKRIQKLPIRFIGRAKGVPFVRRSSSPDSAVSLDSAADKRFSSEKGLKKKTISSKMSGL1330 
MQKAKTYKRHSFVLRRGCNMSDSELEMPDFVSSGNDNSSISTREILLNQSIEVEDEQEDFN1331 
YKNRCDSKSVLGGSIEKLNGNLTNNLFPIVGDLKKIQSPLPLAVLTEIPSYKDEYSNKSDSIKN1332 
SPIEMPKILLETACNQELNLAHSDDDVDKNILANSAKDYVNAPTFSILKTVEDASEPTMTPLHT1333 
TTTTNSSLNVTSALWVTQQCLDLPNYPGWGSREDDDNRSQHSARTLSSSRRQSTEDSIDT1334 
DDEYFYYELRQLEEQEKQRAHNSAIPSCERQNDNDVLFSQIGQLLQNDVNGGDGFRHSNG1335 
CNDGEDAIIFSPSESVKLRMSEVFKELKSVVSLNPSVNNDATFEGVPIVKPTYEKLETVSDLH1336 
SAWQDVNGDLQIAASDIDSNEDLVGNKGRETPTYNKQRKLRRLKKKTRDRKINISKNATSSS1337 
SSCHSENECNTPLGQCTQKSVAEKDTNDISNKSEASSETSGPDTPAELSDVDISETENGLR1338 
ADDGQNIDNMRGNSGSLLKVNRKYLLQFDVDHSLINQPLETSQYNTHMLENITSASIPSQNR1339 
QIDSKTLMSQSSHADGSQAVGNETAVGLSSSKWKLLKTLKERKIEEKNNQDKIKEDEMIKDR1340 
DK 1341 
 1342 

Liprin α isoform A fragment 1 (length: 1-550 AA)  1343 
Primer 1344 
Lip1F: 1345 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTGGAACATGATGTGCG 1346 
Lip550R: 1347 
GGGGACCACTTTGTACAAGAAAGCTGGGTGACTGGGGTCCACTACG 1348 
Giving rise to the following sequence: 1349 
MWNMMCDVMPTISEDSISQRSSQFSGEDANFEQLMVSMLDERDKLMDSLREAQERLNETE1350 
NKLRDVEKERDSLQRQINANLPQEFATLTKELTQARETLLERDEEIGELKAERNNTRLLLEHL1351 
ECLVSRHERSLRMTVVKRQAAAQSGVSSEVEVLKALKSLFEHHKALDEKVRERLRLSIEKNN1352 
MMEEELSSAKEELAQYKAGVVPAGVGSGSGAGSAATTAGGGGAENGLKEKMAGVGGSG1353 
GVNGEANELNDYAAKTHELQTIIEKQTSELSQWQRRVSDLNNKISELEENMSRVQKEHCKA1354 
QDQCAKLQRDLRENVAQKEDQEERITTLEKRYLNAQRESTSLHDLNEKLEQELRHKEAQLK1355 
LHEEKIGAIEEKLELSEQKLAQHAKLQPDMEEQLKARMEALTKAQERHGSAEDRIRGLETNL1356 
DEKTNEVVRLNQRLKMNEEHNLRLSSTVDKLLSESNERLQVHLKERMHALDEKNALTQELE1357 
KARKVAEELHHEKSEIMKELSKTRLEIENFKRQLLQQEIAYNIQQTEALTRSLSPSSVVDPS 1358 
 1359 

Liprin-α isoform A fragment 2 (length: 250-550 AA)  1360 
Primer 1361 
Lip250F: 1362 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGAGCTGAACGACTACGC 1363 
Lip550R: 1364 
GGGGACCACTTTGTACAAGAAAGCTGGGTGACTGGGGTCCACTACG 1365 
Giving rise to the following sequence: 1366 
NELNDYAAKTHELQTIIEKQTSELSQWQRRVSDLNNKISELEENMSRVQKEHCKAQDQCAK1367 
LQRDLRENVAQKEDQEERITTLEKRYLNAQRESTSLHDLNEKLEQELRHKEAQLKLHEEKIG1368 
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AIEEKLELSEQKLAQHAKLQPDMEEQLKARMEALTKAQERHGSAEDRIRGLETNLDEKTNEV1369 
VRLNQRLKMNEEHNLRLSSTVDKLLSESNERLQVHLKERMHALDEKNALTQELEKARKVAE1370 
ELHHEKSEIMKELSKTRLEIENFKRQLLQQEIAYNIQQTEALTRSLSPSSVVDPS 1371 
 1372 

Liprin α isoform A fragment 3 (length: 526-946 AA)  1373 
Primer 1374 
Lip526F: 1375 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGAGATCGCCTACAACATCC 1376 
Lip946R: 1377 
GGGGACCACTTTGTACAAGAAAGCTGGGTGATTCCACAGGGCAAACG 1378 
Giving rise to the following sequence: 1379 
EIAYNIQQTEALTRSLSPSSVVDPSGAFSRSNSHASFETHSLRRQSKQRLSEENALVRSMAE1380 
QEWEKLQQAAHAQQQAYELASAADCDDSDVLYAAATDMMSPSGHTDAQTLAMMLQEQLD1381 
AINNEIRLIQEEKQSTEARAEELESRVGSLEHVNLLARGRSMDRQSPPMSGRSTPNSPQRD1382 
FMQKYHTLNLPVLSSDASREELHGGMSTTGDSSSGGAASPLTARSMRLERVAQALAHSQE1383 
ELRRRSIGLNPNASVAPNHTGGHMPLSSHSYGLSPLSSRYGSQESLRHYNTMGSMSMLQT1384 
PTSGVSREAAAAAVQKKKGIKSSLGRFFSKKEKVKGVKDTLPDGSPSMMSIGNLSIGLSEVD1385 
SNYDAMSMTGGMMPRIASSQGSKISSVDYGRQKKEHDYRNDLLGEAMKAGTPFALWN 1386 
 1387 

Syd-1 fragment 1 ORF 1 21; length: 1-242AA; synthetic gene) 1388 
Primer 1389 
Syd1F: 1390 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGACTGTTCAACCTGCTG 1391 
Syd242R: 1392 
GGGGACCACTTTGTACAAGAAAGCTGGGTGACGCTGACGTATGGCC 1393 
Giving rise to the following sequence: 1394 
MTVQPAEMAENGRSVPDVTASPGRAPPGPLPANQMPAMGNQQHHGNQQHHGNQQQHH1395 
GNQHSNHRGQSGSLSNAAGVKDPVMLQGDFRKVSGISSEIFRQIEAVENDHDPNTAAALEA1396 
VERRGEMIVRVLEPRCMGSKQAVDAAHKLMNKADARHTVQLVEIVKRPGQTLGLYIREGNG1397 
ADRTDGVFISRIALESAVYNSGCLRVGDEILAVNLVDVTHMSLDDVVIIMSIPRRLVLAIRQR 1398 
 1399 

Syd-1 fragment 2 ORF 1 21; length:1-777 AA; Synthetic gene) 1400 
Primer 1401 
Syd1F: 1402 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGACTGTTCAACCTGCTG 1403 
Syd777R: 1404 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTCCGGAGATGCCGC 1405 
Giving rise to the following sequence: 1406 
MTVQPAEMAENGRSVPDVTASPGRAPPGPLPANQMPAMGNQQHHGNQQHHGNQQQHH1407 
GNQHSNHRGQSGSLSNAAGVKDPVMLQGDFRKVSGISSEIFRQIEAVENDHDPNTAAALEA1408 
VERRGEMIVRVLEPRCMGSKQAVDAAHKLMNKADARHTVQLVEIVKRPGQTLGLYIREGNG1409 
ADRTDGVFISRIALESAVYNSGCLRVGDEILAVNLVDVTHMSLDDVVIIMSIPRRLVLAIRQRR1410 
GNRGTGSPGPPTLSRPEQKPPPVVVIKRDLRDEDLDETDRMPRPRSSRDGREMTESRSRL1411 
GLGLNNYSPQSEQLDMYYNTRGGGGGAMGEPPNWGYKPPPPPSSVITEQPTKAHAFAPS1412 
HAYYQNAGTLESLAEKVHAFYPGQPGGPPVGPSRRMSTGTGNVGLAQQHARFPRSGSDQ1413 
HLPRVEYSDYSNSLGRHSLLRSSLKPGTTGGAPMQVGVGGTLGRYGRYDQQRAGVSKYG1414 
PPSGGAQSLTRRSRPNLDYSSDTEATIGPRPSYYYYNRPAIGSMSRGSGGAGGGVGAAST1415 
AALLAGAADLNKFNSLPRERPGTRLQGIRSRMGDRLVDENDGNTSAPEFDVRRGRDLRQRI1416 
TASPSIFTADEYRAWLRRAPSSSAIAEQMRMTRDMFAQPRAQRFSCSAENIHDALRNTESIY1417 
SSRNHILGTGTLDRNMGLTRPISALPVRSMSSQHIGGAGSIRSPSIRRMRQLLELSAGPASP1418 
SGSILSTGGHQSPAPTPSATLPRPHRQIDINPAEFAKYKLDKPIVDIGGISG 1419 
 1420 
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Syd-1 fragment 3 ORF 1 21; 155-1120aa; Synthetic gene) 1421 
Primer 1422 
Syd155F: 1423 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCACACGGTTCAACTTGTCG 1424 
Syd1120R: 1425 
GGGGACCACTTTGTACAAGAAAGCTGGGTGGGGCCAAATCTGGAGAAG 1426 
Giving rise to the following sequence: 1427 
HTVQLVEIVKRPGQTLGLYIREGNGADRTDGVFISRIALESAVYNSGCLRVGDEILAVNLVDV1428 
THMSLDDVVIIMSIPRRLVLAIRQRRGNRGTGSPGPPTLSRPEQKPPPVVVIKRDLRDEDLDE1429 
TDRMPRPRSSRDGREMTESRSRLGLGLNNYSPQSEQLDMYYNTRGGGGGAMGEPPNWG1430 
YKPPPPPSSVITEQPTKAHAFAPSHAYYQNAGTLESLAEKVHAFYPGQPGGPPVGPSRRMS1431 
TGTGNVGLAQQHARFPRSGSDQHLPRVEYSDYSNSLGRHSLLRSSLKPGTTGGAPMQVG1432 
VGGTLGRYGRYDQQRAGVSKYGPPSGGAQSLTRRSRPNLDYSSDTEATIGPRPSYYYYNR1433 
PAIGSMSRGSGGAGGGVGAASTAALLAGAADLNKFNSLPRERPGTRLQGIRSRMGDRLVD1434 
ENDGNTSAPEFDVRRGRDLRQRITASPSIFTADEYRAWLRRAPSSSAIAEQMRMTRDMFAQ1435 
PRAQRFSCSAENIHDALRNTESIYSSRNHILGTGTLDRNMGLTRPISALPVRSMSSQHIGGA1436 
GSIRSPSIRRMRQLLELSAGPASPSGSILSTGGHQSPAPTPSATLPRPHRQIDINPAEFAKYK1437 
LDKPIVDIGGISGMLWIHLLAGRGLRTAPEGAAGTATQGQTRDLYCVIECDRVHKARTVVRS1438 
GDLQFDWDESFELDLVGNKQLDVLVYSWDPQHRHKLCYRGAISLSSILRQSPLHQLALKVE1439 
PRGTIYIRMRHTDPLALYKRRGLPSLRAGYPTLFGADLETVVNRESKNAPGSAPVPIVLRRC1440 
VEEVERRGLDIIGLYRLCGSATKKRLLREAFERNSRAVELTPEHVPDINVITGVLKDYLRELPE1441 
PLFTRCLFQMTVDALAVCLPDDPEGNAKLMLSILDCLPRANRATLVFLLDHLSLVVSNSERN1442 
KMSAQALATVMGPPLMLHSASAQPGADIDHAQPIAVLKYLLQIWP 1443 
 1444 

Syd-1 fragment 4 ORF 1 21; 243-777aa; Synthetic gene) 1445 
Primer 1446 
Syd243F: 1447 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCGTGGCAACCGTGG 1448 
Syd777R: 1449 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTCCGGAGATGCCGC 1450 
Giving rise to the following sequence: 1451 
RGNRGTGSPGPPTLSRPEQKPPPVVVIKRDLRDEDLDETDRMPRPRSSRDGREMTESRSR1452 
LGLGLNNYSPQSEQLDMYYNTRGGGGGAMGEPPNWGYKPPPPPSSVITEQPTKAHAFAP1453 
SHAYYQNAGTLESLAEKVHAFYPGQPGGPPVGPSRRMSTGTGNVGLAQQHARFPRSGSD1454 
QHLPRVEYSDYSNSLGRHSLLRSSLKPGTTGGAPMQVGVGGTLGRYGRYDQQRAGVSKY1455 
GPPSGGAQSLTRRSRPNLDYSSDTEATIGPRPSYYYYNRPAIGSMSRGSGGAGGGVGAAS1456 
TAALLAGAADLNKFNSLPRERPGTRLQGIRSRMGDRLVDENDGNTSAPEFDVRRGRDLRQ1457 
RITASPSIFTADEYRAWLRRAPSSSAIAEQMRMTRDMFAQPRAQRFSCSAENIHDALRNTES1458 
IYSSRNHILGTGTLDRNMGLTRPISALPVRSMSSQHIGGAGSIRSPSIRRMRQLLELSAGPAS1459 
PSGSILSTGGHQSPAPTPSATLPRPHRQIDINPAEFAKYKLDKPIVDIGGISG 1460 
 1461 

Syd-1 fragment 5 ORF 121; 778-1500aa; Synthetic gene) 1462 
Primer 1463 
Syd778F: 1464 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCTGTGGATTCACCTG 1465 
Syd1500R: 1466 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCGACTCAGGCGACTTG 1467 
Giving rise to the following sequence: 1468 
MLWIHLLAGRGLRTAPEGAAGTATQGQTRDLYCVIECDRVHKARTVVRSGDLQFDWDESF1469 
ELDLVGNKQLDVLVYSWDPQHRHKLCYRGAISLSSILRQSPLHQLALKVEPRGTIYIRMRHT1470 
DPLALYKRRGLPSLRAGYPTLFGADLETVVNRESKNAPGSAPVPIVLRRCVEEVERRGLDIIG1471 
LYRLCGSATKKRLLREAFERNSRAVELTPEHVPDINVITGVLKDYLRELPEPLFTRCLFQMTV1472 
DALAVCLPDDPEGNAKLMLSILDCLPRANRATLVFLLDHLSLVVSNSERNKMSAQALATVMG1473 
PPLMLHSASAQPGADIDHAQPIAVLKYLLQIWPQPQAQHQQMAQHMGGAAGAMMGGLVTA1474 
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GSMSNMAGVASGNTGRRGESTGQRGSKVSALPADRQQLLLQQQAQLMAAGNLLRSSTSV1475 
TNILSQGHPQLSATANNHLYQSVVGQLAQSHRALQQAVQQPYQLGGSVGSAIPDPSPLPLP1476 
GTPSPGSSSASTGSGSGSGKSTDTIKRGASPVSVKQVKIVDQPSSPYSIVMKKPPLQKDAP1477 
VEITTPTTQADTESTLGCKESNGTASRRGNVDFYDTHKTQAKSVVNEESSYSSKYTGSETK1478 
KIIPGNSSYTPSKANASGLSGGEDYKAMRNKSSATSSSSSSQATVLSAGSTATSAPTTSSDD1479 
SDDLVSYKSSASTNALLAQSQAMTTSQLMSKYLKREPRVQFTPIKSPES 1480 
 1481 

Syd-1 fragment 6 ORF 1 21; 921-1844aa;Synthetic gene) 1482 
Primer 1483 
Syd921F: 1484 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTTTGGTGCTGATCTCGAAAC 1485 
Syd1844R: 1486 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTTTAATGTCATCGTACTCGTCAG 1487 
Giving rise to the following sequence: 1488 
FGADLETVVNRESKNAPGSAPVPIVLRRCVEEVERRGLDIIGLYRLCGSATKKRLLREAFER1489 
NSRAVELTPEHVPDINVITGVLKDYLRELPEPLFTRCLFQMTVDALAVCLPDDPEGNAKLMLS1490 
ILDCLPRANRATLVFLLDHLSLVVSNSERNKMSAQALATVMGPPLMLHSASAQPGADIDHAQ1491 
PIAVLKYLLQIWPQPQAQHQQMAQHMGGAAGAMMGGLVTAGSMSNMAGVASGNTGRRG1492 
ESTGQRGSKVSALPADRQQLLLQQQAQLMAAGNLLRSSTSVTNILSQGHPQLSATANNHLY1493 
QSVVGQLAQSHRALQQAVQQPYQLGGSVGSAIPDPSPLPLPGTPSPGSSSASTGSGSGSG1494 
KSTDTIKRGASPVSVKQVKIVDQPSSPYSIVMKKPPLQKDAPVEITTPTTQADTESTLGCKES1495 
NGTASRRGNVDFYDTHKTQAKSVVNEESSYSSKYTGSETKKIIPGNSSYTPSKANASGLSG1496 
GEDYKAMRNKSSATSSSSSSQATVLSAGSTATSAPTTSSDDSDDLVSYKSSASTNALLAQS1497 
QAMTTSQLMSKYLKREPRVQFTPIKSPESPSPPGSGDGLPKGTYQLVTPISGSSSKPGATT1498 
GAISKYTTGSVESSINANSQKLSSPSRLCNSKDSNSRTGTASSTTPATSMVSTGRRLFDSLA1499 
SSSSSETETKTYIGGTTAASGAITTTIYTNDTKNSGSSSSKSGIGGGSGTGLGAVSGASSETR1500 
SFGSTLFGSSGLGNGNGSSHNHSSASPSPFTTTNGNGNHNTMHLYGTLPKNGTSTGAALF1501 
GGSANSSSYHSSASGSGAGTASSSGVSSMTGSTNSYDFYTSTSSTVSSSRPFANGGNNYH1502 
TLGTYRAQYAATNPFLDAFDEKPGSNGGNAHGEEKLGADKGHHRAAVMAFQSSGDSKNG1503 
SDEYDDIK 1504 
 1505 

Syd-1 fragment 7 ORF 1 21; 1-1844aa; Synthetic gene) 1506 
Primer 1507 
Syd1F: 1508 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGACTGTTCAACCTGCTG 1509 
Syd1844R: 1510 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTTTAATGTCATCGTACTCGTCAG 1511 
Giving rise to the following sequence: 1512 
MTVQPAEMAENGRSVPDVTASPGRAPPGPLPANQMPAMGNQQHHGNQQHHGNQQQHH1513 
GNQHSNHRGQSGSLSNAAGVKDPVMLQGDFRKVSGISSEIFRQIEAVENDHDPNTAAALEA1514 
VERRGEMIVRVLEPRCMGSKQAVDAAHKLMNKADARHTVQLVEIVKRPGQTLGLYIREGNG1515 
ADRTDGVFISRIALESAVYNSGCLRVGDEILAVNLVDVTHMSLDDVVIIMSIPRRLVLAIRQRR1516 
GNRGTGSPGPPTLSRPEQKPPPVVVIKRDLRDEDLDETDRMPRPRSSRDGREMTESRSRL1517 
GLGLNNYSPQSEQLDMYYNTRGGGGGAMGEPPNWGYKPPPPPSSVITEQPTKAHAFAPS1518 
HAYYQNAGTLESLAEKVHAFYPGQPGGPPVGPSRRMSTGTGNVGLAQQHARFPRSGSDQ1519 
HLPRVEYSDYSNSLGRHSLLRSSLKPGTTGGAPMQVGVGGTLGRYGRYDQQRAGVSKYG1520 
PPSGGAQSLTRRSRPNLDYSSDTEATIGPRPSYYYYNRPAIGSMSRGSGGAGGGVGAAST1521 
AALLAGAADLNKFNSLPRERPGTRLQGIRSRMGDRLVDENDGNTSAPEFDVRRGRDLRQRI1522 
TASPSIFTADEYRAWLRRAPSSSAIAEQMRMTRDMFAQPRAQRFSCSAENIHDALRNTESIY1523 
SSRNHILGTGTLDRNMGLTRPISALPVRSMSSQHIGGAGSIRSPSIRRMRQLLELSAGPASP1524 
SGSILSTGGHQSPAPTPSATLPRPHRQIDINPAEFAKYKLDKPIVDIGGISGMLWIHLLAGRGL1525 
RTAPEGAAGTATQGQTRDLYCVIECDRVHKARTVVRSGDLQFDWDESFELDLVGNKQLDV1526 
LVYSWDPQHRHKLCYRGAISLSSILRQSPLHQLALKVEPRGTIYIRMRHTDPLALYKRRGLPS1527 
LRAGYPTLFGADLETVVNRESKNAPGSAPVPIVLRRCVEEVERRGLDIIGLYRLCGSATKKRL1528 
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LREAFERNSRAVELTPEHVPDINVITGVLKDYLRELPEPLFTRCLFQMTVDALAVCLPDDPEG1529 
NAKLMLSILDCLPRANRATLVFLLDHLSLVVSNSERNKMSAQALATVMGPPLMLHSASAQPG1530 
ADIDHAQPIAVLKYLLQIWPQPQAQHQQMAQHMGGAAGAMMGGLVTAGSMSNMAGVASG1531 
NTGRRGESTGQRGSKVSALPADRQQLLLQQQAQLMAAGNLLRSSTSVTNILSQGHPQLSA1532 
TANNHLYQSVVGQLAQSHRALQQAVQQPYQLGGSVGSAIPDPSPLPLPGTPSPGSSSAST1533 
GSGSGSGKSTDTIKRGASPVSVKQVKIVDQPSSPYSIVMKKPPLQKDAPVEITTPTTQADTE1534 
STLGCKESNGTASRRGNVDFYDTHKTQAKSVVNEESSYSSKYTGSETKKIIPGNSSYTPSKA1535 
NASGLSGGEDYKAMRNKSSATSSSSSSQATVLSAGSTATSAPTTSSDDSDDLVSYKSSAST1536 
NALLAQSQAMTTSQLMSKYLKREPRVQFTPIKSPESPSPPGSGDGLPKGTYQLVTPISGSSS1537 
KPGATTGAISKYTTGSVESSINANSQKLSSPSRLCNSKDSNSRTGTASSTTPATSMVSTGRR1538 
LFDSLASSSSSETETKTYIGGTTAASGAITTTIYTNDTKNSGSSSSKSGIGGGSGTGLGAVSG1539 
ASSETRSFGSTLFGSSGLGNGNGSSHNHSSASPSPFTTTNGNGNHNTMHLYGTLPKNGTS1540 
TGAALFGGSANSSSYHSSASGSGAGTASSSGVSSMTGSTNSYDFYTSTSSTVSSSRPFAN1541 
GGNNYHTLGTYRAQYAATNPFLDAFDEKPGSNGGNAHGEEKLGADKGHHRAAVMAFQSS1542 
GDSKNGSDEYDDIK 1543 
 1544 

BRP isoform G fragment 1 (length: 1-650 AA; Synthetic gene) 1545 
Primer 1546 
BRP1F: 1547 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTCTCGTGATGACTATAATCCC 1548 
BRP650R: 1549 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGGGTTCTTCTCAGCTC 1550 
Giving rise to the following sequence: 1551 
MSRDDYNPVTSSGVRSPGRVRRLQELPTVDRSPSRDYGAPRGSPLAMGSPYYRDMDEPT1552 
SPAGAGHHRSRSASRPPMAHAMDYPRTRYQSLDRGGLVDPHDREFIPIREPRDRSRDRSL1553 
ERGLYLEDELYGRSARQSPSAMGGYNTGMGPTSDRAYLGDLQHQNTDLQRELGNLKREL1554 
ELTNQKLGSSMHSIKTFWSPELKKERALRKEESAKYSLINDQLKLLSTENQKQAMLVRQLEE1555 
ELRLRMRQPNLEMQQQMEAIYAENDHLQREISILRETIKDLECRVETQKQTLIARDESIKKLLE1556 
MLQAKGMGKEEERQMFQQMQAMAQKQLDEFRLEIQRRDQEILAMAAKMKTLEEQHQDYQ1557 
RHIAVLKESLCAKEEHYNMLQTDVEEMRARLEEKNRLIEKKTQGTLQTVQERNRLTSELTEL1558 
KDHMDIKDRKISVLQRKIENLEDLLKEKDNQVDMARARLSAMQAHHSSSEGALTSLEEAIGD1559 
KEKQMAQLRDQRDRAEHEKQEERDLHEREVADYKIKLRAAESEVEKLQTRLERAVTERERL1560 
EIKLEASQSELGKSKAELEKATCEMGRSSADWESTKQRIARLELENERLKHDLERSQNVQK1561 
LMFETGKISTTFGRTTMTTSQELDRAQERADKASAELRRTQ 1562 
 1563 

BRP isoform G fragment 2 (100-650aa; Synthetic gene) 1564 
Primer 1565 
BRP100F: 1566 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCATGATAGAGAATTTATCCCAATCC 1567 
BRP650R: 1568 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGGGTTCTTCTCAGCTC 1569 
Giving rise to the following sequence: 1570 
HDREFIPIREPRDRSRDRSLERGLYLEDELYGRSARQSPSAMGGYNTGMGPTSDRAYLGD1571 
LQHQNTDLQRELGNLKRELELTNQKLGSSMHSIKTFWSPELKKERALRKEESAKYSLINDQL1572 
KLLSTENQKQAMLVRQLEEELRLRMRQPNLEMQQQMEAIYAENDHLQREISILRETIKDLEC1573 
RVETQKQTLIARDESIKKLLEMLQAKGMGKEEERQMFQQMQAMAQKQLDEFRLEIQRRDQ1574 
EILAMAAKMKTLEEQHQDYQRHIAVLKESLCAKEEHYNMLQTDVEEMRARLEEKNRLIEKKT1575 
QGTLQTVQERNRLTSELTELKDHMDIKDRKISVLQRKIENLEDLLKEKDNQVDMARARLSAM1576 
QAHHSSSEGALTSLEEAIGDKEKQMAQLRDQRDRAEHEKQEERDLHEREVADYKIKLRAAE1577 
SEVEKLQTRLERAVTERERLEIKLEASQSELGKSKAELEKATCEMGRSSADWESTKQRIARL1578 
ELENERLKHDLERSQNVQKLMFETGKISTTFGRTTMTTSQELDRAQERADKASAELRRTQ 1579 
 1580 

BRP isoform G fragment 3 (length: 100-850 AA; Synthetic gene) 1581 
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Primer 1582 
BRP100F: 1583 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCATGATAGAGAATTTATCCCAATCC 1584 
BRP850R: 1585 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCTCGCTGCGTTCCTTG 1586 
Giving rise to the following sequence: 1587 
HDREFIPIREPRDRSRDRSLERGLYLEDELYGRSARQSPSAMGGYNTGMGPTSDRAYLGD1588 
LQHQNTDLQRELGNLKRELELTNQKLGSSMHSIKTFWSPELKKERALRKEESAKYSLINDQL1589 
KLLSTENQKQAMLVRQLEEELRLRMRQPNLEMQQQMEAIYAENDHLQREISILRETIKDLEC1590 
RVETQKQTLIARDESIKKLLEMLQAKGMGKEEERQMFQQMQAMAQKQLDEFRLEIQRRDQ1591 
EILAMAAKMKTLEEQHQDYQRHIAVLKESLCAKEEHYNMLQTDVEEMRARLEEKNRLIEKKT1592 
QGTLQTVQERNRLTSELTELKDHMDIKDRKISVLQRKIENLEDLLKEKDNQVDMARARLSAM1593 
QAHHSSSEGALTSLEEAIGDKEKQMAQLRDQRDRAEHEKQEERDLHEREVADYKIKLRAAE1594 
SEVEKLQTRLERAVTERERLEIKLEASQSELGKSKAELEKATCEMGRSSADWESTKQRIARL1595 
ELENERLKHDLERSQNVQKLMFETGKISTTFGRTTMTTSQELDRAQERADKASAELRRTQA1596 
ELRVTQSDAERAREEAAALQEKLEKSQGEVYRLKAKLENAQGEQESLRQELEKAQSGVSRI1597 
HADRDRAFSEVEKIKEEMERTQATLGKSQLQHEKLQNSLDKAQNEVDHLQDKLDKACTEN1598 
RRLVLEKEKLTYDYDNLQSQLDKALGQAARMQKERETLSLDTDRIREKLEKTQVQLGRIQKE1599 
RDQFSDELETLKERSE 1600 
 1601 

BRP isoform G fragment 4 (length: 790-1786 AA; Synthetic gene) 1602 
Primer 1603 
BRP790F: 1604 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCAATCCCAGTTGGACAAGG 1605 
BRP1786R: 1606 
GGGGACCACTTTGTACAAGAAAGCTGGGTGGAAGAAGGATTTGAGGAAACCG 1607 
Giving rise to the following sequence: 1608 
QSQLDKALGQAARMQKERETLSLDTDRIREKLEKTQVQLGRIQKERDQFSDELETLKERSE1609 
SAQTLLMKAARDREAMQTDLEVLKERYEKSHAIQQKLQMERDDAVTEVEILKEKLDKALYAS1610 
QKLIDEKDTSNKEFEKMLEKYDRAQNEIYRLQSRCDTAEADRARLEVEAERSGLAASKARE1611 
DLRKLQDESTRLQEACDRAALQLSRAKECEDNARSELEHSRDRFDKLQTDIRRAQGEKEHF1612 
QSELERVTYELERAHAAQTKASASVEAAKEEAAHYAVELEKMRDRYEKSQVELRKLQDTDT1613 
FGRETRRLKEENERLREKLDKTLMELETIRGKSQYESESFEKYKDKYEKIEMEVQNMESKLH1614 
ETSLQLELSKGEVAKMLANQEKQRSELERAHIEREKARDKHEKLLKEVDRLRLQQSSVSPG1615 
DPVRASTSSSSALSAGERQEIDRLRDRLEKALQSRDATELEAGRLAKELEKAQMHLAKQQE1616 
NTESTRIEFERMGAELGRLHDRLEKAEAEREALRQANRSGGAGAAPHPQLEKHVQKLESD1617 
VKQLAMEREQLVLQLEKSQEILMNFQKELQNAEAELQKTREENRKLRNGHQVPPVAAPPAG1618 
PSPAEFQAMQKEIQTLQQKLQESERALQAAGPQQAQAAAAAGASREEIEQWRKVIEQEKS1619 
RADMADKAAQEMHKRIQLMDQHIKDQHAQMQKMQQQMQQQQQAAQQAVQQAAQQQQS1620 
AAGAGGADPKELEKVRGELQAACTERDRFQQQLELLVTELEKSKMSNQEQAKQLQTAQQQ1621 
VQQLQQQVQQLQQQMQQLQQAASAGAGATDVQRQQLEQQQKQLEEVRKQIDNQAKATE1622 
GERKIIDEQRKQIDAKRKDIEEKEKKMAEFDVQLRKRKEQMDQLEKSLQTQGGGAAAAGEL1623 
NKKLMDTQRQLEACVKELQNTKEEHKKAATETERLLQLVQMSQEEQNAKEKTIMDLQQALK1624 
IAQAKVKQAQTQQQQQQDAGPAGFLKSFF 1625 
  1626 
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RBP isoform F fragment 1 (length: 1-151 AA)  1627 
Primer 1628 
RBP1F: 1629 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCATTTATGTGAATTTCCCAG 1630 
RBP151R: 1631 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCGAGCGGGATGCCTG 1632 
Giving rise to the following sequence: 1633 
MHLCEFPSANVEEENRRPEKAAAAASKKQKHKQQKSRPRGSHSMPYESMHHHQSAAAAV1634 
AAGTTPNGMLDALSLQLRDAEMRRTEIERAHQETLAQIRNLSGSARPDAEAVENLQSRARE1635 
LEKKVALENVRCEELQIELTSALKAKQASRS 1636 
 1637 

RBP isoform F fragment 2 (length: 151-680 AA)  1638 
Primer 1639 
RBP151F: 1640 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTCGGCCTGCTCCG 1641 
RBP680R: 1642 
GGGGACCACTTTGTACAAGAAAGCTGGGTGGCCTACTAAGCGTTGCAC 1643 
Giving rise to the following sequence: 1644 
SACSGMGSVSSGGGATIPTSASSSTVTWAPTISHQDQGSEIDIIMAKIEQDNRVLAELEQPR1645 
TSASASMSALPPSSMLSTVNSEFRTISKSELEEELNRYKRAVLGGSGGGGGGVGGGGGGV1646 
SALSSGYSSLPQSLASTLPNGGASTSLSGTSLGSHSAAAAAAAHSVSAGSGGVVGGGGQG1647 
GLSSISALVPNSISGISSSLSSHAIQSMQYGTGQTSVEKLLSGTSGITGIPPLPVNIHTMKAMP1648 
TALSQRGTIQLYNLQSTTMPLLSLNSHNLPPAGSTSYSALGAGGGTSLTHPTMANLGLLDTG1649 
TLLGSTGLSGLGVGPSVGGITGATSLYGLSGGGGGAGGLGSSYGPPFLDVASSASYPFTAA1650 
ALRQASKMKMLDEIDIPLTRYNRSSPCSPIPPNNWGLDEFTDGLSVSMMHNRGGLALGALD1651 
LDTRNHGLNGASEPQVDMLDIPGKGRCCVFIARFPYDPPDVHNEFLSMPCREAEGELSLCA1652 
GDYLLVWTSGEPQGGYLDAELLDGRRGLVPASFVQRLVG 1653 
 1654 

RBP isoform F fragment 3 (length: 610-1844 AA)  1655 
Primer 1656 
RBP610F: 1657 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTTCATAGCCAGATTTCCCTATG 1658 
RBP1844R: 1659 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTTTGCCAAAGCCGAACC 1660 
Giving rise to the following sequence: 1661 
FIARFPYDPPDVHNEFLSMPCREAEGELSLCAGDYLLVWTSGEPQGGYLDAELLDGRRGLV1662 
PASFVQRLVGDDLLEFHQAVLSTLRDAEDGSMQCDTTSLPSLPPHNPLLTHTHEDLARLSET1663 
HTDLEHDQDDISDNVPAPKHLTLERQLNKSVLIGWSPPEPVGYNLIDSYHVYVDGVLKVTVK1664 
ANERTRALIEGVDSTRPHRISVRSVTQNRQTSRDAACTMIIGRDTAHLGPSAVRASHITCSSA1665 
VISWLPANSNHQHVVCVNNVEVRTVKPGMYRHTITGLAPSTQYRVTVRAKHLRAVGQHAA1666 
NVGQTGGAGRPGQEEAPGAYADFRTLTKGLPDPPQEIQLEAGPQDGTILVTWQPVNRPTS1667 
TGPVTGYAVYADGKKVTDINSPTGDHALIDIGKLGVFNPRAVTIRTKSRDSQSADSAPILIPNT1668 
VRNAVARRGPNQMGMGPQLPQGPHGMTVQQQMGGMPGQPGQQGQHMMGGQQDHGQ1669 
YDPNQMQQQQQQQGQPGQPGHQPDAGSGLLGGLLGGLFSKPTQNQVNQNGYQPGQPG1670 
AQRGMVPIPGRPQGPQQQQQQPYGPQGPMGGPRFRGPVPGQLNMQGQQMQGQMQGQ1671 
MQGQMQGQMSGQMPGQMPGQMPGQMPGQMAGQMAGQMPGQMPGQMPGQMSGQM1672 
PGQMMGPRGPLNQQQQQQQQMQQGQMMPGQQAGQQQAQPGQPGQPGQMPGAQKKP1673 
RYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYVPHN1674 
MVSEVEDTTASMTAGGQMPGQMPGQMGQGQGVGVGGTAQVMPGQGAPQQSMRNVSR1675 
DRWGDIYANMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGEL1676 
DGVRGLVPSNFLADAPDQYNNQMGPGGVAGRGGLSQRGRGQGPGARGPPPPPRDNMM1677 
PGMGGRGQPGKNARPASPTLLDNTGHPAPDHQTQGMIGRVGNVGLQQQQQQQQQQQQ1678 
LQQQQQYGQQQTQMGQQQQQQQQMGQPGMMGQQMGQPMGQQMGQMGQMGQMGQ1679 
QQMGQQQMGQQQQTPTTQAQTGGLFSGATSLLSGATSAATGGLFGSKQPPKTDPMQPQ1680 
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GGVQPAQQQANAFGAQQPGMGMQQQGGMQSGMQQGMQQGMQQGMQQGMQQGMQ1681 
QGMQQGMQQGMQPGMQQQQQQPQQVPPQAQAPPPGPGAGLLGGLKGIAAAAPGGDVL1682 
SKGKDLFGKFGFGFGK 1683 
 1684 

RBP isoform F fragment 4 (length: 1040-1382 AA)  1685 
Primer 1686 
RBP1040F: 1687 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAACACTGTGCGCAATGC 1688 
RBP1382R: 1689 
GGGGACCACTTTGTACAAGAAAGCTGGGTGCTCCACCTCGGAGACC 1690 
Giving rise to the following sequence: 1691 
NTVRNAVARRGPNQMGMGPQLPQGPHGMTVQQQMGGMPGQPGQQGQHMMGGQQDH1692 
GQYDPNQMQQQQQQQGQPGQPGHQPDAGSGLLGGLLGGLFSKPTQNQVNQNGYQPGQ1693 
PGAQRGMVPIPGRPQGPQQQQQQPYGPQGPMGGPRFRGPVPGQLNMQGQQMQGQMQ1694 
GQMQGQMQGQMSGQMPGQMPGQMPGQMPGQMAGQMAGQMPGQMPGQMPGQMSG1695 
QMPGQMMGPRGPLNQQQQQQQQMQQGQMMPGQQAGQQQAQPGQPGQPGQMPGAQ1696 
KKPRYFVAMFDYDPSTMSPNPDGCDEELPFQEGDTIKVFGDKDADGFYWGELRGRRGYV1697 
PHNMVSEVE 1698 
 1699 

RBP isoform F fragment 5 (length: 1441-1507 AA)  1700 
Primer 1701 
RBP1441F: 1702 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAACATGCCCGTGAAGC 1703 
RBP1507R: 1704 
GGGGACCACTTTGTACAAGAAAGCTGGGTGGTCCGCCAGGAAGTTAG 1705 
Giving rise to the following sequence: 1706 
NMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVP1707 
SNFLAD 1708 
 1709 

RBP isoform F fragment 6 (length: 1441-1844 AA)  1710 
Primer 1711 
RBP1441F: 1712 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAACATGCCCGTGAAGC 1713 
RBP1844R: 1714 
GGGGACCACTTTGTACAAGAAAGCTGGGTGTTTGCCAAAGCCGAACC 1715 
Giving rise to the following sequence: 1716 
NMPVKRMIALYDYDPQELSPNVDAEQVELCFKTGEIILVYGDMDEDGFYMGELDGVRGLVP1717 
SNFLADAPDQYNNQMGPGGVAGRGGLSQRGRGQGPGARGPPPPPRDNMMPGMGGRG1718 
QPGKNARPASPTLLDNTGHPAPDHQTQGMIGRVGNVGLQQQQQQQQQQQQLQQQQQY1719 
GQQQTQMGQQQQQQQQMGQPGMMGQQMGQPMGQQMGQMGQMGQMGQQQMGQQ1720 
QMGQQQQTPTTQAQTGGLFSGATSLLSGATSAATGGLFGSKQPPKTDPMQPQGGVQPAQ1721 
QQANAFGAQQPGMGMQQQGGMQSGMQQGMQQGMQQGMQQGMQQGMQQGMQQGM1722 
QQGMQPGMQQQQQQPQQVPPQAQAPPPGPGAGLLGGLKGIAAAAPGGDVLSKGKDLFG1723 
KFGFGFGK 1724 
  1725 
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Statistics 1726 

Data were analyzed using Prism (Version 5, GraphPad Software, CA, USA). To compare two 1727 
groups, two-tailed t-test or Mann-Whitney U-test was used for all data sets. Data distribution 1728 
was assumed to be normal but this was not formally tested. For comparison of more than two 1729 
groups, nonparametric one-way analysis of variance (ANOVA) tests were used, followed by 1730 
a Turkey’s multiple comparison test. No statistical methods were used to pre-determine 1731 
sample sizes but our sample sizes are similar to those generally employed in the field. Data 1732 
collection and analyses were not performed blind to the conditions of the experiments, nor 1733 
was data collection randomized. For immunostainings, all genotypes were prepped in one 1734 
session, stained in one cup and analyzed in an unbiased manner. For electrophysiological 1735 
recordings, genotypes were measured in an alternating fashion on the same day and strictly 1736 
analyzed in an unbiased manner. P values and n values are given in the figure legends, 1737 
reporting checklist or main text. Means are annotated ± SEM. Asterisks are used to denote 1738 
significance: *, p <0.05; **, p <0.01; ***, p <0.001; n.s. (not significant), p >0.05. For further 1739 
information a supplementary methods checklist is available with the manuscript.  1740 

 1741 

Mathematical Modelling 1742 

We wanted to investigate whether synaptic transmission at the NMJ may rely on two 1743 
independently operating release pathways with identical Ca2+ sensing and vesicle fusion 1744 
mechanisms that are located at different distances from the Ca2+ channels. We were 1745 
especially interested in understanding whether loss of the close pathway may underlie the 1746 
Unc13ANull phenotype. To test this, we developed a mathematical model (see Figure 7) to 1747 
simulate vesicle release and postsynaptic responses. The model assumes two independent 1748 
release pathways controlled by identical Ca2+ sensitivity and identical fusion rate constants 1749 
which only differ in their distances from the Ca2+ source. 1750 

Calculation of local Ca2+ signals at distinct distances from the Ca2+ source 1751 

To calculate Ca2+ transients occurring upon opening of voltage-gated channels in the 1752 
presynapse, we used the tool ‘CalC’ (v6.8.5 x64) developed and maintained by Victor 1753 
Matveev63 which allows the simulation of Ca2+ concentrations in four dimensions (spatial and 1754 
temporal). It permits the definition of the position of the Ca2+ source, Ca2+ currents, the 1755 
reaction volume, and endogenous and exogenous Ca2+. To reproduce conditions similar to 1756 
those at AZs of the Drosophila NMJ, Ca2+ influx was simulated from a point source placed in 1757 
the bottom center of a reaction box (depth x width x height: 0.54x0.54x0.4 µM, volume: 1758 
116.64 µm³). We assumed these currents to be Gaussian with a full-width at half maximum 1759 
of 460 µs, which was previously shown to be in reasonable agreement with Ca2+ transients at 1760 
sufficient distances (>30 nm) from Ca2+ channel clusters, even if channels gated 1761 
stochastically36. The simulated reaction volume dimensions were chosen to match 1762 
experimentally determined inter-AZ distances of 540 nm (observation from STED 1763 
experiments; data not shown) and the height was taken from Meinrenken et al.36. Like in 1764 
previous simulations of local Ca2+ diffusion at single active zones36, 49, boundaries were 1765 
assumed to be reflective, which intrinsically accounts for exchange of Ca2+ ions across AZs 1766 
and thus allows consideration of all AZs and their interactions while only simulating one. To 1767 
obtain the local free [Ca2+] at the positions of the two independent release pathways 1768 
assumed in our model, the temporal changes in Ca2+ upon AP-stimulation at two distinct 1769 
distances from the AZ center (Ca2+ source) were calculated. This assumes radial symmetry 1770 
between Ca2+ channel clusters and vesicles, a premise that is in line with a recently 1771 
proposed “perimeter release model” found at the Calyx of Held synapse49. For our purposes, 1772 
CalC was iteratively called from a custom-written MATLAB (2015b, Mathworks Inc., MA, 1773 
USA) script, where one or several of the free parameters (explained below) were written into 1774 
the parameter-file with each iteration, and used in the calculations. Basal Ca2+ concentrations 1775 
were assumed to be 50 nM, the diffusion coefficient was set to 0.223 µm²/ms 64, and Ca2+ 1776 
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extrusion rate was 0.4 ms-1 65. To mimic physiological Ca2+ buffering, we incorporated ATP 1777 
(diffusion coefficient = 0.22 µm²/ms, KD = 200 µM, koff = 100 ms-1, [ATP] = 650 µM37, 49) and a 1778 
fixed endogenous Ca2+ buffer (diffusion coefficient = 0.001 µm²/ms, KD = 100 µM, kon = 0.1 1779 
µM-1ms-1, concentration = 4 mM65, 66). To simulate the EGTA-AM wash-in experiment (Figure 1780 
7g), we included another buffer representing EGTA in increasing concentrations (diffusion 1781 
coefficient = 0.22 µm²/ms, KD = 0.07 µM, kon = 0.0105 µM-1ms-1) 67. EGTA concentrations 1782 
within the AZ at different time points ([3 6 9 12] min) were calculated assuming the following 1783 
exponential growth function: 1784 

(1.1) [ ]( ) = [ ]∞(1 − ) 1785 

where [ ]∞ is the asymptotic EGTA concentration at t=∞ and  is the time constant. Both 1786 
were set as free parameters in our simulations (see below). To simulate synaptic responses 1787 
at varying extracellular Ca2+ concentrations ([Ca2+]ext, [0.75 1.5 3 6 10] mM), we assumed a 1788 
Michaelis-Menten-like relationship for calculating the electrical charge of Ca2+ influx 1789 
(equation(1.2))68.  1790 

(1.2) = ∙ 	 [ ][ ]  1791 

Exocytosis model 1792 

Ca2+-driven exocytosis from distinct RRPs at both locations was described by the so-called 1793 
“allosteric model” developed by Lou et al.38 where single vesicles bind up to five Ca2+ ions, 1794 
which maximizes their exocytosis rate. There is slower release from states with fewer Ca2+ 1795 
ions associated, and even in the absence of Ca2+, release rates are non-zero. We did not 1796 
explicitly describe endocytosis and vesicle replenishment reactions, but assumed constant 1797 
refilling of the RRPs (R) from upstream (infinite) depots. All reactions are comprised in the 1798 
chemical equation depicted in Supplementary Figure 8 (all considerations identical for 1799 
pathways 1 and 2). 1800 

 1801 

The temporal changes of all states are given by the following kinetic equations, which are 1802 
ordinary differential equations (R – releasable vesicle, Cref - refill constant, F – fused vesicle): 1803 

(1.3) 
[ ] = −(5[ ] + )[ ] + [ ] +  1804 

(1.4) 
[ ] = 5[ ] [ ] − ( + 4[ ] + )[ ] + 2 [ ] 1805 

(1.5) 
[ ] = 4[ ] [ ] − (2 + 3[ ] + )[ ] + 3 [ ] 1806 

(1.6) 
[ ] = 3[ ] [ ] − (3 + 2[ ] + )[ ] + 4 [ ] 1807 

(1.7) 
[ ] = 2[ ] [ ] − (4 + [ ] + )[ ] + 5 [ ] 1808 

(1.8) 
[ ] = [ ] [ ] − (5 + )[ ] 1809 

(1.9) 
[ ] = ([ ] + [ ] + [ ] + [ ] + [ ]) + [ ] 1810 

where:  1811 

(1.10) =  1812 
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To find the starting point of the simulations, steady state populations of the vesicle states at 1813 
50 nM resting [Ca2+] were calculated and Cref determined by forcing mass conservation of 1814 
vesicles (i.e. constant pool sizes). This was achieved by assuming a replenishment of 1815 
vesicles equal to the number of vesicles fused at steady state, as seen in equation (1.11): 1816 

 1817 

(1.11) =	 ([ ] + [ ] + [ ] + [ ] + [ ] ) + [ ]  1818 

with the index „0“ denoting steady state values. Steady state values were calculated with the 1819 
function fsolve in MATLAB from equations (1.3)-(1.7) and mass conservation. Exocytosis 1820 
was driven by the temporal changes in Ca2+ at the vesicle position (pathway A or B) and the 1821 
temporal development of all vesicle states was calculated by integrating the kinetic equations 1822 
(1.3)-(1.10) using the ode15s function in MATLAB, yielding a time vector and a 1823 
corresponding vector giving the population of all vesicle states at each time point. 1824 

In our simulations, Wild type synapses had release from both pathways (Figure 7i, 1825 
distance values see Supplementary Table 2), so that the total transmitter release (NT) was 1826 
summed over those (NT(WT) = F(pathway 1)+F(pathway 2)). Unc13ANull mutants were 1827 
assumed to only have release from pathway 2 (NT(Unc13ANull)=F(pathway 2)), but at the 1828 
same time we corrected for increased Ca2+ channel numbers observed in Unc13ANull in the 1829 
model (described below). 1830 

To generate eEJCs that could be compared to the experimentally determined 1831 
postsynaptic responses, the temporal change of the released vesicles (NT) was interpolated 1832 
over a resampled time vector using the MATLAB function interp1 (sampling rate:	10 ). For 1833 
quantization to single vesicle transitions, the resulting vector was rounded (using the 1834 
MATLAB function round), and then differentiated (with the MATLAB function diff) to give 1835 
differences between successive elements along the vector. The result is a vector that - at 1836 
these sufficiently high sampling rates - only contained the values 0 and 1, where 1 demarks 1837 
the timing of a single vesicle fusion event. To calculate evoked excitatory junctional currents 1838 
(eEJCs) corresponding to these events, this vector was convolved with genotype-specific 1839 
mEJCs (using the MATLAB function conv) derived from fitting individual experimentally 1840 
acquired mEJCs with the following function modified from Equation A2 by Neher & Sakaba69 1841 
(1.12): 1842 

(1.12) ( ) = ∙ [ ( ) − 	 ( ) ] +  1843 

where amp is the maximal glutamate release which is liberated with a time constant τrise 1844 
resulting in the mEPSC rise. The effect of the transmitter dissipates with a time constant 1845 τdecay, resulting in the mEPSC decay. Both processes begin with the liberation of the 1846 
transmitter at the time tstart. corr is a constant baseline offset. This function was fit to all 1847 
individual mEPSCs (using the MATLAB function fminsearch) and the average of all 1848 
parameters was used to generate representative, genotype specific mEJCs. These had 1849 
amplitudes of -503 pA (Wild type) and -614 pA (Unc13ANull). The convolution led to simulated 1850 
compound eEJCs as depicted in Figure 7j.  1851 

 1852 

Comparison of simulation and experimental values, and parameter optimization 1853 

In order to compare our simulation output with the experimentally determined values, we 1854 
calculated first and second eEJC amplitudes and their time-to-peak (ttp) from our simulated 1855 
traces. Just as in the analysis of experimentally recorded currents, the first amplitudes were 1856 
calculated as the difference between baseline and first minimum, and paired-pulse ratios 1857 
were calculated as the difference between second peak and maximum value between both 1858 
peaks (≙ starting point of second response) divided by the first amplitude. To calculate I/Imax 1859 
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values, Imax was determined by fitting a hill curve to the first amplitudes at all [Ca2+]ext values, 1860 
as was done for experimental data, shown in equation (1.13): 1861 

(1.13) = [ ]	 		[ ]  1862 

 1863 

where h is the hill slope. In this instance Imax, KD, and h were determined by the least square 1864 
MATLAB curve fitting function lsqcurvefit.  1865 

All parameters of our model were either taken from the literature, experimentally 1866 
determined, or optimized to match experimental data. We identified a minimal set of 9 free 1867 
parameters as input for our optimization algorithm: (1) The distance of pathway A to the Ca2+ 1868 
channels and (2) the size of the RRP of pathway A; (3) the distance of pathway B to the Ca2+ 1869 
channels and (4) the size of the RRP of pathway B; (5 and 6) the asymptotic values of the 1870 
electrical charge over the Ca2+ channel cluster in the Wild type and Unc13ANull mutants. We 1871 
assumed genotype specific differences here because of the observation that CacGFP spots 1872 
visualized with IHC were ~1.6-fold larger in the Unc13ANull situation (Figure S6f). Another free 1873 
parameter - which we assumed to be identical in both genotypes - was the (7) Michaelis-1874 
Menten constant that described the dependence of the synaptic Ca2+ charge as a function of 1875 
[Ca2+]ext (see equation (1.2)). Finally, application of EGTA-AM was assumed to lead to 1876 
identical increases in synaptic EGTA levels regardless of the genotype and was described by 1877 
the (8) asymptotic [ ]∞ and (9) the time constant  of EGTA accumulation in the cell to 1878 
calculate [ ]( ) at t = [3 6 9 12] minutes (see equation (1.1)). 1879 

To quantify the deviation between model simulation and data, cost values indicating the 1880 
quality of the fit were calculated as follows: differences between experimental (exp) and 1881 
simulated (sim) values were calculated and normalized once to the experimental and to the 1882 
simulated values. The mean of these values was squared (Chi-squared cumulative cost 1883 
function, see equation (1.14)). To account for the different number of data points in each 1884 
experiment, a weight factor was introduced. The model was fit to the following datasets: 9 (5 1885 
wt, 4 mutant) PPR values recorded at various [Ca2+]ext (Figure 7E), 8 EGTA values (two at 1886 
each time point, see Figure 7G), 1 shift in the time-to-peak (ttp) value (the shift between Wild 1887 
type and Unc13ANull ttps, see Figure S4c), but 10 values in each 1st amplitude and I/Imax 1888 
values (Figure 7B+C). The weighting factors were hence: 1889 ℎ = [ ( 	 ); ( 	 ); ( 	 ); ( 	 ); ( ); 1890 (1 	 	 ); (1 	 	 ); 	 ; ( 	 )] 1891 

(1.14)  1892 

	 = 	 ℎ ( ) ∙ exp	( ) − ( )( ) + exp	( ) − ( )exp	( )2  

where n is the number of simulated experiments and weight(n) the respective weighting 1893 
factor. The weighted cumulative costs for each [Ca2+]ext were then summed to give the final 1894 
cost value. Best fit parameters were found by minimizing cost values with the MATLAB 1895 
function fminsearch. The best fit parameters can be found in Supplementary Table 2 1896 
(highlighted in red). The choice of fminsearch as a solver posed the risk of our results 1897 
representing a local minimum of the objective function (the cumulative cost). Therefore, we 1898 
performed a separate global optimization using a genetic algorithm (MATLAB function ga, 1899 
implemented in the global optimization toolbox) with loose constraints and a small population 1900 
size of 30 individuals in each generation, but otherwise with all routines identical to the ones 1901 
described above. Constraints and a small population size were necessary for feasibility, as 1902 
calculations were very time-consuming even with highly efficient parallel execution of CalC 1903 
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(MATLAB function parfor). As expected from a global minimum at the parameter values 1904 
found by fminsearch, this routine identified similar parameter values (data not shown).    1905 

 1906 

Data and code availability 1907 

The data that support the findings of this study are available from the corresponding author 1908 
upon request. Furthermore all custom-written code files are available upon request. 1909 

 1910 

  1911 
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Supplementary Figure 1 

Liprin-ɑ/Syd-1 scaffold complexes organize the AZ localization of Unc13B 

(a,b) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled with the antibodies (ABs) indicated. 
(c) Mean BRP intensity measured over the whole NMJ was unchanged in Syd-1

null and Liprin-α
null in comparison to the Wild type (Wild 

type (n=13 NMJs from 4 larvae) vs. Syd-1
null (n=11 NMJs from 4 larvae) vs. Liprin-α

null (n=12 NMJs from 4 larvae): p >0.05 for Wild type 
vs Syd-1

null; p >0.05 for Wild type vs. Liprin-α
null; p >0.05 for Syd-1

null vs. Liprin-α
null; p=0.2883 (F(2,33)=1.29)). (d) BRP spots per µm² 

NMJ were slightly reduced in Syd-1
null and significantly reduced in Liprin-α

null in comparison to the Wild type (Wild type (n=13 NMJs 
from 4 larvae) vs. Syd-1

null (n=11 NMJs from 4 larvae) vs. Liprin-α
null (n=12 NMJs from 4 larvae): p >0.05 for Wild type vs Syd-1

null; p 
≤0.01 for Wild type vs. Liprin-α

null; p >0.05 for Syd-1
null vs. Liprin-α

null; p=0.0108 (F(2,33)=5.207)). (e) Mean Unc13A intensity measured 
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over the whole NMJ was unchanged in Syd-1
null and Liprin-α

null in comparison to the Wild type (Wild type (n=13 NMJs from 4 larvae) vs. 
Syd-1

null (n=11 NMJs from 4 larvae) vs. Liprin-α
null (n=12 NMJs from 4 larvae): p >0.05 for Wild type vs Syd-1

null; p >0.05 for Wild type 
vs. Liprin-α

 null; p >0.05 for Syd-1
null vs. Liprin-α

null; p=0.2105 (F(2,33)=1.63)). (f) Unc13A spots per µm² NMJ were slightly reduced in 
Syd-1

null and Liprin-α
null in comparison to the Wild type (Wild type (n=13 NMJs from 4 larvae) vs. Syd-1

null (n=11 NMJs from 4 larvae) vs. 
Liprin-α

null (n=12 NMJs from 4 larvae): p ≤0.05 for Wild type vs Syd-1
null; p >0.05 for Wild type vs. Liprin-α

null; p >0.05 for Syd-1
null vs. 

Liprin-α
null; p=0.0278 (F(2,33)=4.00)). (g,h) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes 

labelled with the ABs indicated. (i) Mean Unc13B intensity measured over the whole NMJ was slightly reduced in Syd-1
null but severely 

reduced in Liprin-α
null in comparison to the Wild type (Wild type (n=13 NMJs from 5 larvae) vs. Syd-1

null (n=11 NMJs from 5 larvae) vs. 
Liprin-α

null (n=15 NMJs from 5 larvae): p >0.05 for Wild type vs Syd-1
null

; p ≤0.001 for Wild type vs. Liprin-α
null

; p ≤0.01 for Syd-1
null vs. 

Liprin-α
null; p <0.0001 (F(2,36)=15.13)). (j) Unc13B spots per µm² NMJ were significantly reduced in Syd-1

null but severely reduced in 
Liprin-α

null in comparison to the Wild type (Wild type (n=13 NMJs from 5 larvae) vs. Syd-1
null (n=11 NMJs from 5 larvae) vs. Liprin-α

null 
(n=15 NMJs from 5 larvae): p ≤0.01 for Wild type vs Syd-1

null
; p ≤0.001 for Wild type vs. Liprin-α

null
; p ≤0.001 for Syd-1

null vs. Liprin-α
null; 

p <0.0001 (F(2,36)=42.93)). Number and p values are listed in Supplementary Table 1. Statistics for c-f, i, j: nonparametric one-way 
analysis of variance (ANOVA) test, followed by a Turkey’s multiple comparison test. All panels show mean ± SEM; *, p ≤0.05; **, p 
≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. Scale bars: 5 μm. 
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Supplementary Figure 2 

Unc13B interacts with Syd-1/Liprin-α; Unc13A interacts with BRP/RBP  

(a) Schematic representation of Unc13B N-terminus including three fragments (1-3) that were used in the Y2H screen; Liprin-α domain 
structure containing three C-terminal SAM domains (I-III from the N terminus); Syd-1 domain structure containing an N-terminal PDZ 
domain, a C2 and a Rho-GAP domain. The corresponding fragments of each protein used in the Y2H screen are indicated. A central N-
terminal fragment of Unc13B interacted with an N-terminal part of Liprin-α. Both very N-terminal fragments of Unc13B interacted with a 
central stretch of Syd-1 located in-between PDZ- and C2-domain. (b) Schematic representation of Unc13A N-terminus including three 
fragments (1-3) that were used in the Y2H screen. The RBP-binding PxxP motif is indicated; RBP domain structure containing three 
SH3 domains (I-III from the N terminus) and three Fibronectin 3 (FN3) domains; BRP domain structure containing several coiled-coil 
(CC) domains. The corresponding fragments of each protein used in the Y2H screen are indicated. The most N-terminal fragment of 
Unc13A (including the RBP binding PxxP motif) interacted with both C-terminal fragments of RBP including the SH3-domains II and III, 
and with an N-terminal part of BRP. 
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Supplementary Figure 3 

BRP/RBP scaffold complexes organize the AZ-localization of Unc13A 

(a-c) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled with the ABs indicated. BRP as well 
as Unc13A were severely decreased upon motoneuronal downregulation of BRP or in Rbp

null mutants. (d,e) BRP as well as Unc13A 
intensity were severely decreased upon motoneuronal downregulation of BRP or in Rbp

null mutants with the strongest downregulation 
upon Brp knockdown in Rbp

null (BRP intensity: Ctrl (n=14 NMJs from 5 larvae) vs. Brp
RNAi

 (n=15 NMJs from 5 larvae) vs. Rbp
null (n=15 

NMJs from 5 larvae) vs. Brp
RNAi

;RBP
null (n=13 NMJs from 5 larvae): p ≤0.001 for Ctrl vs Brp

RNAi
; p ≤0.001 for Ctrl vs. Rbp

null 
; p ≤0.001 

for Ctrl vs. Brp
RNAi

;RBP
null; p ≤0.05 for Brp

RNAi vs. Rbp
null; p >0.05 for Brp

RNAi vs. Brp
RNAi

;RBP
null

; p ≤0.05 for Rbp
null vs. Brp

RNAi
;RBP

null; p 
<0.0001 (F(3,53)=31.96)); Unc13A intensity: Ctrl (n=14 NMJs from 5 larvae) vs. Brp

RNAi
 (n=15 NMJs from 5 larvae) vs. Rbp

null (n=15 
NMJs from 5 larvae) vs. Brp

RNAi
;RBP

null 
(n=13 NMJs from 5 larvae): p ≤0.001 for Ctrl vs Brp

RNAi
; p ≤0.001 for Ctrl vs. Rbp

null
; p ≤0.001 

for Ctrl vs. Brp
RNAi

;RBP
null; p >0.05 for Brp

RNAi vs. Rbp
null; p >0.05 for Brp

RNAi vs. Brp
RNAi

;RBP
null; p >0.05 for Rbp

null vs. Brp
RNAi

;RBP
null; p 

<0.0001 (F(3,53)=30.07)). (f) Unc13A spots per µm² NMJ were decreased upon motoneuronal downregulation of BRP or in Rbp
null 

mutants with the strongest downregulation upon Brp knockdown in Rbp
null (Ctrl (n=14 NMJs from 5 larvae) vs. Brp

RNAi
 (n=15 NMJs from 

5 larvae) vs. Rbp
null (n=15 NMJs from 5 larvae) vs. Brp

RNAi
;RBP

null (n=13 NMJs from 5 larvae): p ≤0.001 for Ctrl vs Brp
RNAi

; p ≤0.001 for 
Ctrl vs. Rbp

null
; p ≤0.001 for Ctrl vs. Brp

RNAi
;RBP

null
; p ≤0.01 for Brp

RNAi vs. Rbp
null; p >0.05 for Brp

RNAi vs. Brp
RNAi

;RBP
null

; p ≤0.001 for 
Rbp

null vs. Brp
RNAi

;RBP
null; p <0.0001 (F(3,53)=63.28)).  (g-i) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the genotypes 

indicated labelled with the ABs indicated. BRP but not Unc13B were severely decreased upon motoneuronal downregulation of BRP as 
well as in Rbp

null mutants. (j) Mean Unc13B intensity measured over the whole NMJ was not affected upon downregulation of BRP or in 
Rbp

null mutants or even upon Brp knockdown in Rbp
null (Ctrl (n=12 NMJs from 5 larvae) vs. Brp

RNAi
 (n=11 NMJs from 5 larvae) vs. 

Rbp
null (n=13 NMJs from 5 larvae) vs. Brp

RNAi
;RBP

null (n=10 NMJs from 5 larvae): p >0.05 for Ctrl vs Brp
RNAi; p >0.05 for Ctrl vs. Rbp

null; 
p >0.05 for Ctrl vs. Brp

RNAi
;RBP

null; p >0.05 for Brp
RNAi vs. Rbp

null; p >0.05 for Brp
RNAi vs. Brp

RNAi
;RBP

null; p >0.05 for Rbp
null vs. 

Brp
RNAi

;RBP
null; p=0.3491 (F(3,42)=1.127)). (k) Unc13B spots per µm² NMJ were unchanged upon downregulation of BRP or in Rbp

null 
mutants or even upon Brp knockdown in Rbp

null (Ctrl (n=12 NMJs from 5 larvae) vs. Brp
RNAi

 (n=11 NMJs from 5 larvae) vs. Rbp
null (n=13 

NMJs from 5 larvae) vs. Brp
RNAi

;RBP
null (n=10 NMJs from 5 larvae): p >0.05 for Ctrl vs Brp

RNAi; p >0.05 for Ctrl vs. Rbp
null; p >0.05 for 

Ctrl vs. Brp
RNAi

;RBP
null; p >0.05 for Brp

RNAi vs. Rbp
null; p >0.05 for Brp

RNAi vs. Brp
RNAi

;RBP
null; p >0.05 for Rbp

null vs. Brp
RNAi

;RBP
null; 

p=0.6570 (F(3,42)=0.5408)). Number and p values are listed in Supplementary Table 1. Statistics for d-f, j,k: nonparametric one-way 
analysis of variance (ANOVA) test, followed by a Turkey’s multiple comparison test. All panels show mean ± SEM; *, p ≤0.05; **, p 
≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. Scale bars: 5 μm. 
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Supplementary Figure 4 

TEVC analysis of Unc13A and Unc13B mutant terminals 

(a,b) The time-to-peak (time difference between stimulation pulse to the afferent nerve and the eEJC minimum) and eEJC decay, which 
is the time constant τ resulting from a single exponential fit in the range from 60% of the eEJC amplitude back to baseline, both are 
similar in Ctrl (black) and Unc13B

null (blue) (time to peak: Ctrl (n=12 NMJs from 12 larvae) vs Unc13B
null (n=12 NMJs from 12 larvae), 

p=0.1333 (t(22)=1.559); eEJC decay: Ctrl (n=12 NMJs from 12 larvae) vs Unc13B
null (n=11 NMJs from 11 larvae), p=0.2413 

(t(21)=1.206)). (c) The time to peak is significantly prolonged in Unc13A
null mutant synapses (Wild type (n=12 NMJs from 12 larvae) vs 

Unc13A
null (n=12 NMJs from 12 larvae), p=0.0162 (t(22)=2.605)). (d) The eEJC decay is similar in Wild type and Unc13A

null (Wild type 
(n=12 NMJs from 12 larvae) vs Unc13A

null (n=9 NMJs from 9 larvae), p=0.2136 (U=36)). (e) The mEJC rise time is unaltered in 
Unc13B

null mutant synapses compared to Ctrl (Ctrl (n=14 NMJs from 10 larvae) vs Unc13B
null (n=7 NMJs from 5 larvae), p=0.7652 

(U=44.5)). (f) In Unc13B
null the mEJC decay is significantly increased compared to Ctrl (Ctrl (n=14 NMJs from 10 larvae) vs Unc13B

null 
(n=7 NMJs from 5 larvae), p=0.0480 (U=22.00)). (g,h) mEJC kinetics do not differ between Wild type and Unc13A

null (mEJC rise time: 
Wild type (n=12 NMJs from 6 larvae) vs Unc13A

null (n=11 NMJs from 6 larvae), p=0.1914 (t(21)=1.350); mEJC decay: Wild type (n=12 
NMJs from 6 larvae) vs Unc13A

null (n=11 NMJs from 6 larvae), p=0.2546 (t(21)=1.171)). All recordings were performed in the presence 
of 1.5 mM extracellular Ca2+. Number and p values are listed in Supplementary Table 1. Statistics: Student's t-test besides panels d,e,f 
where a Mann Whitney U-test was performed. All panels show mean ± SEM; *, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, p 
>0.05. 
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Supplementary Figure 5 

Ca2+ sensitivity and release probability is altered upon loss of Unc13A but not -B 

(a-f) Plot of eEJC amplitude as a function of extracellular Ca2+ concentrations [Ca2+]ext fitted with Hill equations to determine the values 
for slope and KD. A clear shift can be observed in (a) Unc13A

null mutant synapses (red) compared to Wild type (black), whereas in (d) 
there is no change upon loss of Unc13B

null (blue) compared to Ctrl (black) (a: Wild type (n=12 NMJs from 12 larvae per Ca2+ 
concentration) vs Unc13A

null (n=10 NMJs from 10 larvae per Ca2+ concentration): 0.75 mM [Ca2+]ext: p=0.0092 (U=20); 1.5 mM [Ca2+]ext: 
p <0.0001 (U=0); 3 mM [Ca2+]ext: p=0.0005 (U=7); 6 mM [Ca2+]ext: p=0.0272 (U=26); 10 mM [Ca2+]ext: p=0.0062 (U=18)); d: Ctrl (n=12 
NMJs from 12 larvae per Ca2+ concentration) vs Unc13B

null (n=12 NMJs from 12 larvae per Ca2+ concentration): 0.75 mM [Ca2+]ext: 
p=0.1971 (t(22)=1.330); 1.5 mM [Ca2+]ext: p=0.2652 (t(22)=1.143); 3 mM [Ca2+]ext: p=0.9269 (t(22)=0.09278); 6 mM [Ca2+]ext: p=0.5181 
(t(22)=0.6569); 10 mM [Ca2+]ext: p=0.6284 (t(22)=0.4908)). The values for I/Imax can be found in Supplementary Table 1. (b) Ca2+-
dependence of release analysis revealed an increased Ca2+ requirement (KD, obtained from fitting with the Hill function) in Unc13A

null 
mutant synapses (Wild type (n=12 NMJs from 12 larvae) vs Unc13A

null (n=10 NMJs from 10 larvae), p=0.0004 (U=6)). (c) The apparent 
Ca2+ cooperativity of release (slope, obtained from fitting with the Hill function) is not different in Unc13A

null relative to Wild type (Wild 
type (n=12 NMJs from 12 larvae) vs Unc13A

null (n=10 NMJs from 10 larvae), p=0.6682 (U=53)). (e,f) The Ca2+-dependence and Ca2+-
cooperativity of release are both unaltered upon loss of Unc13B (KD: Ctrl (n=12 NMJs from 12 larvae) vs Unc13B

null (n=12 NMJs from 
12 larvae), p=0.9566 (t(22)=0.05502); slope: Ctrl (n=12 NMJs from 12 larvae) vs Unc13B

null (n=12 NMJs from 12 larvae), p=0.1574 
(t(22)=1.464)). (g)  Sample traces of paired pulse stimulation for Ctrl (black) and Unc13B

null (blue) at 10 ms ISI show no differences 
between genotypes. (h) The paired pulse ratios were not significantly changed in Unc13B

null at 10 ms ISI, in all Ca2+ concentrations (Ctrl 
(n=12 NMJs from 12 larvae per Ca2+ concentration) vs Unc13B

null (n=12 NMJs from 12 larvae per Ca2+ concentration): 0.75 mM 
[Ca2+]ext: p=0.1971 (t(22)=1.33); 1.5 mM [Ca2+]ext: p=0.1678 (t(22)=1.426); 3 mM [Ca2+]ext: p=0.474 (t(22)=0.7284); 6 mM [Ca2+]ext: 
p=0.3726 (t(22)=0.9102); 10 mM [Ca2+]ext: p=0.2602 (t(22)=1.156)). Values can be found in Supplementary Table 1. (i) Unc13A

null (gold: 
control with DMSO, red: with EGTA-AM/DMSO) shows faster and stronger inhibition of eEJC amplitudes after addition of 200 µM 
EGTA-AM to the extra-cellular solution compared to Wild type (black: control with DMSO, blue: with EGTA-AM/DMSO). Amplitudes are 
normalized to average eEJC amplitudes obtained during 1 min of baseline recording prior to the addition of EGTA-AM/DMSO or DMSO, 
each with Pluronic F-127. Synaptic transmission was stimulated by single action potentials every 10 s. Experiments were performed in 
the presence of 2.5 mM extracellular Ca2+. Values can be found in Supplementary Table 1. (j) The time constant of the inhibition 
caused by EGTA-AM application was determined by fitting a single exponential decay function to 100 peak amplitude values after 
addition of EGTA-AM in individual cells. This revealed a significantly faster inhibition in Unc13A

null compared to Wild type animals (Wild 
type + EGTA (n=10 NMJs from 10 larvae) vs Unc13A

null + EGTA (n=10 NMJs from 10 larvae), p=0.0012 (t(18)=3.835)). (k) The 
asymptotic inhibition is captured in the exponential fit as the plateau value which was significantly decreased in Unc13A

null in 
comparison to Wild type (Wild type + EGTA (n=10 NMJs from 10 larvae) vs Unc13A

null + EGTA (n=10 NMJs from 10 larvae), p=0.016 
(t(18)=2.6508)). (l) 30 min incubation with the fast Ca2+-buffer Bapta-AM reduced eEJC amplitudes in both genotypes to a similar 
extent. Sample traces for Wild type (black with DMSO, blue with Bapta-AM/DMSO) and Unc13A

null (gold with DMSO, red with Bapta-
AM/DMSO) exhibit similar Bapta-sensitivity for both genotypes. For clarity, the stimulation artefact was removed and replaced by a 
straight line. (m,n) The significant reduction of the eEJC amplitude after 30 min Bapta-AM incubation is similar in Wild type (m) and 
Unc13A

null (n) compared to DMSO incubated cells (m: Wild type + DMSO  (n=15 NMJs from 9 larvae) vs Wild type + Bapta (n=14 NMJs 
from 9 larvae), p <0.0001 (t(27)=12.59); n: Unc13A

null + DMSO (n=14 NMJs from 10 larvae) vs Unc13A
null + Bapta (n=14 NMJs from 8 

larvae), p=0.0004 (t(26)=4.095)). Values can be found in Supplementary Table 1. (o) The Bapta sensitivity is calculated as the ratio of 
eEJC amplitude size in the presence of Bapta-AM/DMSO to the eEJC amplitude size in the presence of DMSO. The Bapta-sensitivity 
does not differ between Wild type and Unc13A

null (Bapta sensitivity: Wild type (n=14 NMJs from 9 larvae) vs Unc13A
null (n=14 NMJs 

from 8 larvae), p=0.304 (t(26)=1.049)). Values can be found in Supplementary Table 1. Statistics: Student's t-test except for panels (a-
c) where a Mann-Whitney U-test was performed. All panels show mean ± SEM; *, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, 
p >0.05. 
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Supplementary Figure 6 

Increased Ca2+ channel abundance at Unc13A
null mutant AZs 

(a) Two-color STED images of multiple AZs from 3rd instar larvae of the displayed genotypes labelled with the indicated ABs. BRP rings 
were larger in Unc13A

null. (b) BRP ring diameters were increased in Unc13A
null in comparison to the Wild type (Wild type (n=9 NMJs 

from 3 larvae) vs Unc13A
null (n=12 NMJs from 3 larvae), p=0.0001 (U=0)). (c) Two-color STED images of multiple AZs from 3rd instar 

larvae of the displayed genotypes labelled with the indicated ABs. BRP ring structure appeared normal in Unc13B
null (d) BRP ring 

diameters were unchanged in Unc13B
null in comparison to Ctrl (Ctrl (n=8 NMJs from 3 larvae) vs Unc13B

null (n=8 NMJs from 3 larvae), 
p=0.9591 (U=31)). (e) Muscle 4 NMJs of segments A2-A4 from 3rd instar larvae of the displayed genotypes labelled with the ABs 
indicated. (f) Cac-GFP spot sizes were increased in Unc13A

null
 but not Unc13B

null
 in comparison to Ctrl (Ctrl (n=19 NMJs from 5 larvae) 

vs. Unc13A
null (n=15 NMJs from 5 larvae) vs. Unc13B

null (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs Unc13B
null; p ≤0.001 for Ctrl vs. 

Unc13Anull
; p ≤0.001 for Unc13B

null vs. Unc13A
null; p <0.0001 (F(2,52)=54.12)). (g) Mean Cac-GFP intensity measured over the whole 

NMJ was similar in Unc13A
null

, Unc13B
null

 and Ctrl (Ctrl (n=19 NMJs from 5 larvae) vs. Unc13A
null (n=15 NMJs from 5 larvae) vs. 

Unc13B
null (n=21 NMJs from 5 larvae): p >0.05 for Ctrl vs Unc13B

null; p >0.05 for Ctrl vs. Unc13Anull; p >0.05 for Unc13B
null vs. 

Unc13A
null; p=0.166 (F(2,52)=1.855)). Number and p values are listed in Supplementary Table 1. Statistics: Mann-Whitney U-test, 

except for f and g where a nonparametric one-way analysis of variance (ANOVA) test, followed by a Turkey’s multiple comparison test 
was performed. All panels show mean ± SEM; *, p ≤0.05; **, p ≤0.01; ***, p ≤0.001; ns, not significant, p >0.05. Scale bar: (a,c) 500 nm; 
(e) 5 μm. 
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Supplementary Figure 7 

Sketch of de novo synapse formation 

During the process of AZ assembly, clusters of Syd-1 and Liprin-α undergo rounds of assembly and disassembly at the presynaptic 
membrane. Unc13B localizes to sites of de novo synapse formation via the Syd-1/Liprin-α scaffold. At nascent synapses, this induces a 
loose SV-Ca2+ channel coupling. Later during the AZ maturation process, Unc13A localizes to more mature synapses via a second, 
central RBP/BRP scaffold that concentrates Unc13A at the center of the AZ. Unc13A facilitates a close localization of SVs to the 
presynaptic Ca2+ channels and therefore maintains a tight stimulus/secretion coupling.  
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Supplementary Figure 8 

Allosteric five-site binding model of Ca2+-driven exocytosis 

Reaction scheme (derived from the ‘allosteric model’; Lou et al., 2005. Nature. 435:497-501) depicts the sequential binding of up to five 
Ca2+ ions to a single vesicle (RCa0-5). 
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Supplementary Table 1  
 
Summary of all obtained parameters in this study 
 
 
Light microscopy: CLSM  (Fig. 1, 3; Fig. S1, S2, S5)  mean ± SEM   
Parameter  
(Figure) Description control (n) mutant (n) P (test)  

AZ density  
(Fig. 1)  

BRP spots/µm2     

Unc13Anull (Fig.1o)  1.658 ± 0.079 (19) 1.207 ± 0.063 (23) ≤0.001*** (Mann-Whitney U-test) 

Unc13Bnull (Fig.1p)  1.559 ± 0.070 (28) 1.354 ± 0.055 (35) ≤0.05* (Mann-Whitney U-test) 

mean BRP intensity  
(Fig. S1c; S3d) measured over the whole NMJ (% of Wild type)   

in Syd-1null (Fig. S1c)  100.0 ± 9.269 (13) 80.62 ± 10.390 (11) n.s. (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Liprin-αnull (Fig. S1c)  82.13 ± 9.353 (12) n.s. 

in BrpRNAi (Fig. S3d)  100.0 ± 15.41 (14) 7.639 ± 0.498 (15) ≤0.001*** (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Rbpnull (Fig. S3d)  40.29 ± 3.292 (15) ≤0.001*** 

in BrpRNAi;Rbpnull (Fig. S3d)  4.135 ± 0.843 (13) ≤0.001*** 

AZ density (Fig. S1d) BRP spots/µm2    

in Syd-1null (Fig. S1d)  1.352 ± 0.058 (13) 1.057 ± 0.124 (11) n.s. (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Liprin-αnull (Fig. S1d)  0.878 ± 0.132 (12) ≤0.01** 

mean Unc13A intensity  
(Fig. 3c, g; S1e; S3e)  measured over the whole NMJ (% of Wild type) 

  

in Syd-1null (Fig. S1e)  100.0 ± 8.084 (13) 99.04 ± 11.50 (11) n.s. (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Liprin-αnull (Fig. 3c, S1e)  79.36 ± 7.923 (12) n.s. 

in BrpRNAi (Fig. S3e)  100.0 ± 15.060 (14) 15.24 ± 1.916 (15) ≤0.001*** (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Rbpnull (Fig. S3e)  23.88 ± 2.478 (15) ≤0.001*** 

in BrpRNAi;Rbpnull (Fig. 3g, Fig. S3e)  10.88 ± 1.117 (13) ≤0.001*** 

Unc13A density  
(Fig. S1f; S3f) Unc13A spots/µm²  

  

in Syd-1null (Fig. S1f)  1.679 ± 0.088 (13) 1.322 ± 0.098 (11) ≤0.05* (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Liprin-αnull  (Fig. S1f)  1.361 ± 0.110 (12) n.s. 
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in BrpRNAi (Fig. S3f)  1.781 ± 0.106 (14) 0.442 ± 0.065 (15) ≤0.001*** (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Rbpnull (Fig. S3f)  0.851 ± 0.094 (15) ≤0.001*** 

in BrpRNAi;Rbpnull (Fig. S3f)  0.271 ± 0.052 (13) ≤0.001*** 

mean Unc13B intensity  
(Fig. 3d, h; S1i; S3j) measured over the whole NMJ (% of Wild type) 

  

in Syd-1null (Fig. S1i)  100.0 ± 14.770 (11) 75.58 ± 7.521 (13) n.s. (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Liprin-αnull (Fig. 3d, Fig. S1i)  29.52 ± 5.936 (15) ≤0.001*** 

in BrpRNAi (Fig. S3j)  100.0 ± 10.07 (12) 111.20 ± 11.60 (11) n.s. (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Rbpnull (Fig. S3j)  109.20 ± 14.80 (13) n.s. 

in BrpRNAi;Rbpnull (Fig. 3h, S3j)  140.7 ± 25.88 (10) n.s. 

Unc13B density  
(Fig. S1j; S3k) Unc13B spots/µm²  

  

in Syd-1null (Fig. S1j)  1.592 ± 0.072 (11) 1.145 ± 0.069 (13) ≤0.01** (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Liprin-αnull (Fig. S1j)  0.382 ± 0.115 (15) ≤0.001*** 

in BrpRNAi (Fig. S3k)  0.910 ± 0.102 (12) 1.053 ± 0.119 (11) n.s. (ANOVA test, followed by a 
Turkey’s multiple comparison test) 

in Rbpnull (Fig. S3k)  0.886 ± 0.112 (13) n.s. 

in BrpRNAi;Rbpnull (Fig. S3k)  1.060 ± 0.168 (10) n.s. 

BRP ring diameter  
(Fig. S6b,d)  measured with STED microscopy (nm) 

   

in Unc13Anull (Fig. S6b)  191.0 ± 3.721 (9) 244.9 ± 3.045 (12) ≤0.001*** (Mann-Whitney U-test) 

in Unc13Bnull (Fig. S6d)  183.4.0 ± 1.421 (8) 182.3 ± 4.262 (8) n.s. (Mann-Whitney U-test) 

mean Cac spot size  
(Fig. S6f)  % of control 

   

in Unc13Anull  100.0 ± 4.70 (19) 159.5 ± 6.65 (15) ≤0.001*** (Mann-Whitney U-test) 

in Unc13BNull  88.84 ± 3.819 (21) n.s. (Mann-Whitney U-test) 

mean Cac intensity  
(Fig. S6g)  % of control 

   

in Unc13Anull  100.0 ± 8.543 (19) 113.1 ± 9.082 (15) n.s. (Mann-Whitney U-test) 

in Unc13Bnull  89.17 ± 8.146 (21) n.s. (Mann-Whitney U-test) 
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TEVC recordings (Fig. 4, 7; Fig. S4, S5)  mean ± SEM    

Parameter (Figure) Description control (n) mutant (n) P (test)  

eEJC amplitude [nA] in Unc13Anull  
(Fig. 4j; 7a, b)  

measured (n)  
(simulated with mathematical modeling) 

   

[Ca2+]ex = 0.75 mM  -26.10 ± 4.89 (12)  
(-18.34)  

-1.82 ± 0.17 (12)  
(-1.589) 

≤0.001*** (t- test) 

[Ca2+]ex = 1.5 mM  -77.46 ± 6.95 (12)  
(-63.58) 

-4.88 ± 0.77 (12)  
(-6.471) 

≤0.001*** (t- test) 

[Ca2+]ex =3 mM  -143.90 ± 8.07 (12)  
(-130.8) 

-13.07 ± 1.13 (12)  
(-17.35) 

≤0.001*** (t- test) 

[Ca2+]ex =6 mM  -193.96 ± 10.04 (12)  
(-187.6) 

-30.86 ± 2.12 (12)  
(-30.20) 

≤0.001*** (t- test) 

[Ca2+]ex =10 mM  -220.72 ± 13.94 (12)  
(-215.3) 

-41.78 ± 3.09 (12)  
(-37.99) 

≤0.001*** (t- test) 

eEJC amplitude [nA] in Unc13Bnull  
(Fig. 4c)      

[Ca2+]ex = 0.75 mM  -30.64 ± 3.643 (12) -20.17 ± 3.176 (12) ≤0.05* (t- test) 

[Ca2+]ex =1.5 mM  -77.33 ± 6.383 (12) -57.93 ± 5.026 (12) ≤0.05* (t- test) 

[Ca2+]ex =3 mM  -138.3 ± 8.208 (12) -117.3 ± 7.375 (12) n.s. (t- test) 

[Ca2+]ex =6 mM  -189.4 ± 11.54 (12) -164.8 ± 8.270 (12) n.s. (t- test) 

[Ca2+]ex =10 mM  -224.1 ± 13.14 (12) -190.9 ± 8.751 (12) ≤0.05* (t- test) 

time to peak [ms] in Unc13Anull  
(Fig. S4c) 

     

[Ca2+]ex = 0.75 mM  3.892 ± 0.309 (12) 4.900 ± 0.760 (12) n.s. (t- test) 

[Ca2+]ex = 1.5 mM  3.117 ± 0.142 (12) 4.208 ± 0.394 (12) ≤0.05* (t- test) 

[Ca2+]ex =3 mM  2.350 ± 0.120 (12) 3.017 ± 0.263 (12) ≤0.05* (t- test) 

[Ca2+]ex =6 mM  1.925 ± 0.0913 (12) 2.600 ± 0.140 (12) ≤0.001*** (t- test) 

[Ca2+]ex =10 mM  1.883 ± 0.0694 (12) 2.275 ± 0.143 (12) ≤0.05* (t- test) 

time to peak [ms] in Unc13Bnull  
(Fig. S4a)  

     

[Ca2+]ex = 0.75 mM  4.225 ± 0.240 (12) 4.275 ± 0.332 (12) n.s. (t- test) 

[Ca2+]ex =1.5 mM  3.425 ± 0.0888 (12) 3.908 ± 0.297 (12) n.s. (t- test) 

[Ca2+]ex =3 mM  2.542 ± 0.0528 (12) 2.592 ± 0.119 (12) n.s. (t- test) 
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[Ca2+]ex =6 mM  2.175 ± 0.0664 (12) 2.108 ± 0.114 (12) n.s. (t- test) 

[Ca2+]ex =10 mM  2.042 ± 0.106 (12) 1.950 ± 0.116 (12) n.s. (t- test) 

mEJC analysis in Unc13Anull  
(Fig. 4m, n; S4g,h)  

     

Amplitude (nA)  -0.614 ± 0.02 (12) -0.751 ± 0.02 (11) ≤0.001*** (t- test) 

Frequency (Hz)  1.06 ± 0.12 (12) 1.41 ± 0.11 (11) ≤0.05* (t- test) 

Rise time (ms)  1.690 ± 0.129 (12) 1.451 ± 0.119 (11) n.s. (t- test) 

Decay (ms)  6.299 ± 0.228 (12) 6.805 ± 0.376 (11) n.s. (t- test) 

mEJC analysis  [nA] in Unc13Bnul l 
(Fig. 4f, g; S4e,f)  

     

Amplitude (nA)  -0.859 ± 0.03 (14) -0.837 ± 0.03 (7) n.s. (t- test) 

Frequency (Hz)  2.08 ± 0.15 (14) 1.70 ± 0.23 (7) n.s. (t- test) 

Rise time (ms)  1.127 ± 0.034 (14) 1.174 ± 0.078 (7) n.s. (Mann-Whitney U-test) 

Decay (ms)  7.075 ± 0.398 (14)  8.931 ± 0.683 (7) ≤0.05* (Mann-Whitney U-test) 

eEJC analysis in Unc13Anull  
(Fig. 4k; S4d)  

     

Rise time (ms)  0.966 ± 0.052 (12) 2.0 ± 0.383 (9) ≤0.01** (Mann-Whitney U-test) 

Decay (ms)  5.627 ± 0.196 (12) 6.058 ± 0.425 (9) n.s. (Mann-Whitney U-test) 

eEJC analysis  [nA]  in Unc13Bnull  
(Fig. 4d; S4b)  

     

Rise time (ms)  1.125 ± 0.044 (12) 1.158 ± 0.101 (11) n.s. (t- test) 

Decay (ms)  6.074 ± 0.181 (12) 6.706 ± 0.511 (11) n.s. (t- test) 

paired pulse ratio in Unc13Anull  
(Fig. 7e)  

measured (n)  
(simulated with mathematical modeling) 

   

[Ca2+]ex = 0.75 mM  1.683 ± 0.308 (12) (1.273) -- -- -- 

[Ca2+]ex = 1.5 mM  0.904 ± 0.065 (12) (0.973) 3.796 ± 0.748 (10) (3.297) ≤0.001*** (t- test) 

[Ca2+]ex =3 mM  0.633 ± 0.021 (12) (0.635) 1.846 ± 0.264 (10) (2.128) ≤0.001*** (t- test) 

[Ca2+]ex =6 mM  0.631 ± 0.023 (12) (0.402) 1.309 ± 0.116 (10) (1.324) ≤0.001*** (t- test) 

[Ca2+]ex =10 mM  0.674 ± 0.035 (12) (0.304) 1.192 ± 0.111 (10) (0.986) ≤0.001*** (t- test) 

paired pulse ratio in Unc13Bnull  
(Fig. S5h)  

     

[Ca2+]ex = 0.75 mM  1.255 ± 0.201 (12) 1.787 ± 0.245 (12) n.s. (t- test) 
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[Ca2+]ex =1.5 mM  0.741 ± 0.079 (12) 0.974 ± 0.143 (12) n.s. (t- test) 

[Ca2+]ex =3 mM  0.637 ± 0.034 (12) 0.596 ± 0.044 (12) n.s. (t- test) 

[Ca2+]ex =6 mM  0.503 ± 0.117 (12) 0.614 ± 0.0316 (12) n.s. (t- test) 

[Ca2+]ex =10 mM  0.680 ± 0.043 (12) 0.619 ± 0.029 (12) n.s. (t- test) 

I/IMax in Unc13Anull  
(Fig. 7c; S5a)  

measured (n)  
(simulated with mathematical modeling) 

   

[Ca2+]ex = 0.75 mM  0.110 ± 0.020 (12) (0.079) 0.033 ± 0.003 (10) (0.036) ≤0.01** (t- test) 

[Ca2+]ex = 1.5 mM  0.327 ± 0.029 (12) (0.274) 0.089 ± 0.014 (10) (0.146) ≤0.001*** (t- test) 

[Ca2+]ex =3 mM  0.608 ± 0.034 (12) (0.563) 0.240 ± 0.020 (10) (0.390) ≤0.001*** (t- test) 

[Ca2+]ex =6 mM  0.820 ± 0.042 (12) (0.808) 0.560 ± 0.039 (10) (0.679) ≤0.05* (t- test) 

[Ca2+]ex =10 mM  0.934 ± 0.058 (12) (0.927) 0.768 ± 0.056 (10) (0.854) ≤0.01** (t- test) 

I/IMax in Unc13Bnull  
(Fig. S5d)  

     

[Ca2+]ex = 0.75 mM  0.096 ± 0.015 (12) 0.120 ± 0.014 (12) n.s. (t- test) 

[Ca2+]ex =1.5 mM  0.277 ± 0.024 (12) 0.303 ± 0.025 (12) n.s. (t- test) 

[Ca2+]ex =3 mM  0.562 ± 0 035 (12) 0.542 ± 0.032 (12) n.s. (t- test) 

[Ca2+]ex =6 mM  0.790 ± 0.039 (12) 0.743 ± 0.045 (12) n.s. (t- test) 

[Ca2+]ex =10 mM  0.915 ± 0.041 (12) 0.879 ± 0.053 (12) n.s. (t- test) 

KD and slope in Unc13Anull   
(Fig. S5b,c)  values of fitted Hill coefficients 

   

KD (mM)  2.048 ± 0.160 (12) 8.063 ± 1.537 (10) ≤0.001*** (Mann-Whitney U-test) 

slope  1.922 ± 0.2003 (12) 2.079 ± 0.232 (10) n.s. (Mann-Whitney U-test) 

KD and slope in Unc13Bnull   
(Fig. S5e, f)  values of fitted Hill coefficients 

   

KD (mM)  2.966 ± 0.273 (12) 2.987 ± 0.265 (12) n.s. (Mann-Whitney U-test) 

slope  1.501 ± 0.096 (12) 1.751 ± 0.140 (12) n.s. (Mann-Whitney U-test) 

normalized residual amplitude  
in Unc13Anull  (Fig. 7g; S5i)  

with 200µM EGTA -AM/DMSO in the extracellular solution;  measured 
(n) (simulated with mathematical modeling) 

  

after 3 min  0.784 ± 0.031 (10)  
(0.821) 

0.530 ± 0.048 (10)  
(0.512) 

≤0.001*** (t- test) 

after 6 min  0.671 ± 0.040 (10)  
(0.741) 

0.434 ± 0.073 (10)  
(0.382) 

≤0.05* (t- test) 
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after 9 min  0.592 ± 0.055 (10)  
(0.699) 

0.379 ± 0.066 (10)  
(0.303) 

≤0.05* (t- test) 

after 12 min  0.569 ± 0.058 (10)  
(0.677) 

0.354 ± 0.038 (10)  
(0.300) 

≤0.01** (t- test) 

normalized residual eEJC amplitude  
in Unc13Anull  (Fig. S5i)  with DMSO in the extracellular solution (control)   

after 3 min  0.960 ± 0.029 (10) 0.8660 ± 0.077 (10)  n.s. (t- test) 

after 6 min  0.949 ± 0.015 (10) 0.8216 ± 0.081 (10) n.s. (t- test) 

after 9 min  0.934 ± 0.012 (10) 0.8145 ± 0.085 (10) n.s. (t- test) 

after 12 min  0.921 ± 0.014 (10) 0.8554 ± 0.111 (10) n.s. (t- test) 

Decay and plateau in Unc13Anull  
(Fig. S5j, k) 

values of single exponential fit to amplitude (normalized) decay  
upon 200 µm EGTA-AM/DMSO application 

 

tau (s)  264.5 ± 32.94 (10) 122.8 ± 16.73  (10) ≤0.01** (t- test) 

plateau  0.530 ± 0.057 (10) 0.354 ± 0.033 (10) ≤0.05* (t- test) 

total residual eEJC amplitude  
in Unc13Anull (Fig. S5m, n, o)  upon incubation with 100µM Bapta-AM/DSMO     

DMSO (Ctrl): amplitude (nA) after 30 min -116.9 ± 8.033 (15) 9.707 ± 2.224 (14) ≤0.001*** (t- test) 

Bapta-AM: amplitude (nA) after 30 min -9.481 ± 1.921 (14) -0.591±0.096 (14)  ≤0.001*** (t- test) 

Bapta sensitivity   0.081 ± 0.016 (14) 0.060 ± 0.009 (14) n.s. (t- test) 
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Supplementary Table 2: Model values (dual pathway model) 

Parameter 
name Value Unit Description Source 

dist1 76.8 nm Pathway 1: Distance from  
Ca2+ source and RRP size 

best fit 

R0A 670 vesicles 

dist2 145 nm Pathway 2: Distance from  
Ca2+ source and RRP size R0B 196 vesicles 

Qmax 
(Wild type) 

2.57 fC 
max Ca2+ channel charge in 
Wild type AZs (see equation 

(2)) 

Qmax 
(Unc13Anull) 

4.41 fC 
max Ca2+ channel charge in  

Unc13Anull AZs (see equation 
(2)) 

KM 1.74 mM 

Michaelis-Menten constant to 
calculate dependence of 
synaptic Ca2+ current on 
extracellular [Ca2+] (see 

equation (2)) 

[EGTA]max 3925 µM asymptotic value and time 
constant of exponential 
[EGTA] int increase (see 

equation (1)) τEGTA 5.12 min 

Further Parameters 

Parameter 
name Value Unit Description Source 

L+ 3.5·10-4 s-1 
basal fusion rate constant of 

[R] Kochubey&Schneggenburger, 
2011. Neuron. 69:736-748. 

k3 1.4·108 M-1·s-1 

rate constants of Ca2+ 
binding/release 

k-3 4000 s-1 
Wolfel et al., 2007. 

J. Neurosci. 27:3198-3210. 

k4 6000 s-1 fusion rate constant of [RCa5] Lou et al., 2005. Nature. 
435:497-501. 

b 0.5 - cooperativity factor Wolfel et al., 2007. 
J. Neurosci. 27:3198-3210. 
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Summary statement 30 

Our results indicate that reversible SRPK79D-mediated phosphorylation of a conserved N-31 

terminal region in BRP/ELKS operates as a switch that ensures safe axonal transport of active 32 

zone precursor building blocks. 33 

 34 

Abstract 35 

Protein scaffolds at presynaptic active zone membranes control information transfer at 36 

synapses. For scaffold biogenesis and maintenance, scaffold components must be safely 37 

transported along axons. A spectrum of kinases was suggested to control transport of scaffold 38 

components, but direct kinase/substrate relationships and operational principles steering 39 

phosphorylation-dependent active zone protein transport are presently unknown. Here we show 40 

that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly 41 

elongated BRP/ELKS active zone proteins in vivo is crucial for ordered active zone precursor 42 

transport. Point mutations that block SRPK79D-kinase-mediated phosphorylation of the 43 

BRP/ELKS N-terminus interfered with axonal transport in vivo, leading to BRP/ELKS-positive 44 

axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates 45 

only formed in the presence of non-phosphorylatable BRP/ELKS isoforms containing the 46 

SRPK79D-targeted N-terminal stretch. Our results suggest that specific active zone proteins are 47 

pre-assembled and co-transported as functional scaffold building blocks, and that transient post-48 

translational modification of a discrete unstructured domain of one master scaffold component 49 

blocks precocious oligomerization of such building blocks during their long-range transport. 50 

 51 

Keywords 52 

Active zone/Axonal transport/Bruchpilot/ELKS/SRPK79D/phosphorylation 53 
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Introduction 55 

Functionality of the nervous system is based on rapid communication between neurons and 56 

their target cells through specialized cell-cell contacts generically termed synapses. Appropriate 57 

synaptic function is essential for all types of cognitive processes, including memory formation and 58 

learning. Chemical synapses are asymmetrically organized with a presynaptic active zone (AZ) 59 

capable of neurotransmitter release upon action potential arrival and a postsynaptic compartment 60 

able to receive and further process this signal. The presynaptic compartment regulates the 61 

docking, priming, exocytic fusion and endocytic recovery of synaptic vesicles (SVs) at the plasma 62 

membrane of chemical synapses and usually accumulates large numbers of SVs (Südhof, 2012, 63 

Walter, Bohme et al., 2018). To support these functions, AZs comprise specialized membrane-64 

associated protein scaffolds, i.e. electron dense structures essential for synapse tenacity, 65 

localization of SV fusion and positioning of voltage-dependent calcium channels (Haucke, Neher 66 

et al., 2011). 67 

The cytoplasm of the presynaptic bouton is populated with several hundred protein species, 68 

whose copy numbers cover several orders of magnitude (Wilhelm, Mandad et al., 2014). However, 69 

AZ scaffolds per se are composed of members of only a few protein families: ELKS/CAST family, 70 

RIM-superfamily, including the mammalian Piccolo and Bassoon, RIM-binding protein (RIM-BP), 71 

(M)UNC-13, Liprin-α and SYD-1 (Gundelfinger, Reissner et al., 2015, Petzoldt & Sigrist, 2014, 72 

Südhof, 2012, Walter, Haucke et al., 2014). AZ scaffold composition is evolutionarily conserved; 73 

for example, AZ scaffolds at Drosophila neuromuscular junctions (NMJs) form T-bar-shaped 74 

structures, also referred to as cytomatrices at the AZ (CAZs), that are organized around the central 75 

ELKS/CAST scaffolding protein Bruchpilot (BRP) and RIM-BP (Kittel, Wichmann et al., 2006, Liu, 76 

Siebert et al., 2011, Van Vactor & Sigrist, 2017). The use of electron tomography and super-77 

resolution light microscopy revealed underlying macromolecular architectures within presynaptic 78 

scaffolds (Ackermann, Waites et al., 2015, Kittel et al., 2006, Kittelmann, Liewald et al., 2013, 79 

Maglione & Sigrist, 2013). 80 
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New AZ scaffolds have to be assembled during the development of synaptic circuits and most 81 

likely are dynamic structures, in which components are turned over. Work on mammalian and 82 

Drosophila synapses provided evidence for a tight link between AZ size and complexity and the 83 

resulting functional synaptic output (Ackermann et al., 2015). Modulation of the size and possibly 84 

the composition of AZ scaffolds might serve as a mechanism, by which the SV release function 85 

could be adapted to activity-related or homeostatic demands. These programs seem to span vast 86 

time scales, ranging from minutes to days (Van Vactor & Sigrist, 2017). Consistent with these 87 

notions, scaffold assembly is based on dynamically regulated protein-protein interactions that rely 88 

on a conserved set of interaction surfaces, including both intra- and intermolecular coiled-coil, 89 

SAM and PDZ domain interactions (Südhof, 2012). 90 

Current efforts seek to characterize the routes and kinetics of proteins to and from the AZ 91 

scaffolds and to define the different pools of AZ proteins contributing to scaffold dynamics. 92 

However, our current understanding of the mechanisms that regulate assembly of new AZ 93 

scaffolds and of the dynamics of already established ones remains very fragmentary. De novo 94 

assembly and turnover of AZ scaffolds presumably involve synthesis of AZ scaffold components 95 

in the cytoplasm of the neuronal cell body and transport over large distances along axons to 96 

synaptic terminals (Johnson, Fetter et al., 2009, Nieratschker, Schubert et al., 2009, Siebert, 97 

Bohme et al., 2015). Electron and light microscopic analyses of AZ scaffolds provided some 98 

evidence for AZ scaffold formation from discrete building blocks (Ehmann, Sauer et al., 2015, 99 

Kittelmann et al., 2013, Matkovic, Siebert et al., 2013, Shapira, Zhai et al., 2003). Thus, a logical 100 

principle underlying AZ assembly mechanisms and dynamics could be the provision of pre-formed 101 

AZ building blocks via axonal transport. Indeed, presynaptic material has been suggested to travel 102 

along the axon as pre-assembled protein clusters on different types of transport vesicles (Bury & 103 

Sabo, 2016, Maeder, San-Miguel et al., 2014). However, direct demonstration of the existence of 104 

such scaffold building blocks has been notoriously difficult, potentially reflecting low steady state 105 

numbers of scaffold protein copies per unit. Thus, to date it still remains unclear which proteins 106 
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travel together and on what kind of organelle. Moreover, it is presently unclear how premature 107 

aggregation of the scaffold components beyond the level of individual building blocks during 108 

transport would be prevented. 109 

Previous work on the mechanisms underlying transport of AZ components through axons 110 

implicated serine/arginine-rich protein (SR protein)-specific kinase at cytological position 79D 111 

(SRPK79D) in this process: Knockout of SRPK79D or inactivation of its kinase activity led to the 112 

formation of interconnected, electron-dense, axonal aggregates that contained BRP and that 113 

resembled over-sized T-bars (Johnson et al., 2009, Nieratschker et al., 2009). Given that SRPKs 114 

are known to phosphorylate serine residues in serine/arginine dipeptide-rich regions (RS domains) 115 

of SR proteins, a family of regulatory factors involved in alternative pre-mRNA splicing and other 116 

gene regulatory processes (Lin & Fu, 2007, Zhou & Fu, 2013), the functional implication of 117 

SRPK79D in the transport of AZ scaffold components is surprising. Furthermore, as known AZ 118 

scaffold components do not contain canonical RS domains or extended RS dipeptide repeats and 119 

as direct phosphorylation of these proteins by SRPK79D has not yet been demonstrated, it is 120 

presently unclear how SRPK79D might mechanistically intersect with the transport of AZ proteins. 121 

Here, we delineated in vivo phosphorylation sites in BRP and found that BRP variants bearing 122 

a phosphorylation-defective N-terminus led to axonal T-bar-like assemblies that closely resembled 123 

aggregates elicited by SRPK79D mutants. The assemblies not only contained the major AZ 124 

components BRP and RIM-BP, but also comprised the critical release factor Unc13A, suggesting 125 

co-transport of the three proteins as a pre-formed AZ scaffold building block. Systematic yeast 126 

two-hybrid (Y2H) screening, in vitro interaction studies and mass spectrometric analyses showed 127 

that SRPK79D specifically binds at the N-terminus of BRP and phosphorylates specific sites within 128 

this predicted unstructured region, including sites that upon mutation led to axonal aggregation. 129 

The homologous region of mammalian ELKS/CAST was phosphorylated by members of the SRPK 130 

family as well. Genetic analyses showed that phosphorylation of the N-terminal BRP stretch keeps 131 

transporting AZ building blocks in solution. Reversible phosphorylation of N-terminal regions in AZ 132 
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scaffold proteins of the ELKS/CAST family by SRPKs thus might constitute an evolutionarily 133 

conserved master switch to stabilize the transport of a major AZ building block. 134 

  135 
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Results 136 

The unstructured N-terminus of BRP undergoes extensive phosphorylation in vivo 137 

We hypothesized that reversible phosphorylation of AZ core components may prevent their 138 

precocious oligomerization, which poses a potential problem during their axonal transport. An N-139 

terminal region of about 300 residues in BRP appears to be largely intrinsically unstructured, while 140 

the remaining portions of BRP are predicted to adopt α-helical conformations, giving rise to an 141 

extended coiled-coil structure of the protein that shapes the T-bar AZ scaffold in its ultrastructural 142 

extensions (Fig 1A) (Fouquet, Owald et al., 2009). Bioinformatics analyses using the NetPhos 3.1 143 

server (Blom, Gammeltoft et al., 1999) predicted many phosphorylation sites clustered in the 144 

presumably unstructured N-termini of BRP/ELKS-family AZ proteins (Fig 1A). 145 

To experimentally determine sites at which BRP is phosphorylated in vivo, synaptosomes were 146 

isolated from adult Drosophila fly head protein extracts as previously described by us (Depner, 147 

Lützkendorf et al., 2014). Monoclonal antibody NC82 was used to immunoprecipitate BRP. The 148 

precipitate was fractionated by SDS-PAGE, the prominent 190 kDa band was excised and 149 

subjected to tandem mass spectrometry (MS)-based peptide sequencing. This analysis revealed 150 

27 phosphorylation sites in the long BRP-190 isoform (Fig 1A). Notably, 13 of these phosphosites 151 

fall within an N-terminal 140-residue portion that precedes the extended coiled-coil regions of BRP 152 

(Fig 1 A, B). The five phosphosites found within the coiled-coil regions predominantly reside in 153 

stretches that interrupt the predicted coiled-coil structures. Interestingly, several phosphorylation 154 

sites detected in Drosophila BRP are conserved in mammalian homologue ELKS proteins and 155 

have been partially experimental validated (Dephoure, Zhou et al., 2008, Hornbeck, Zhang et al., 156 

2015, Parker, Yang et al., 2015, Sacco, Humphrey et al., 2016, Sharma, D'Souza et al., 2014). 157 

 158 
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Phosphorylation of the BRP N-terminus ensures safe transport of active zone building 159 

blocks 160 

To delineate functional roles of BRP phosphorylation, we generated large, genomic p[acman] 161 

brp constructs, in which identified phosphorylation sites were abrogated by alanine mutations. We 162 

had previously shown that wild type (wt) p[acman] brp constructs (brprescue) completely rescued 163 

brpnull (brp∆6.1/brpDF(2R)69) alleles (per se pupal lethals) to full viability and fertility and are thus 164 

equivalent to the endogenous locus (Matkovic et al., 2013). We started by simultaneously 165 

exchanging S16, S32, S43, T59, Y130, S137, S629, S1216 of BRP-190 for non-phosphorylatable 166 

alanines (brpmultiAla). The majority of the corresponding residues are not strongly conserved in the 167 

BRP/ELKS family (Fig 1A). Similar to brprescue, expression of brpmultiAla elicited a complete rescue 168 

of brpnull alleles, indicating no essential function for phosphorylation at the altered sites. 169 

Next, we generated a genomic p[acman] brp construct, in which S71, S73 and S90 that are 170 

highly conserved throughout the BRP/ELKS family in mammalian (Mochida, Hida et al., 2016, 171 

Parker et al., 2015) were jointly exchanged for alanines and introduced it into a brpnull background 172 

in comparison to a non-mutated control construct (F). Determination of hatching rates revealed 173 

robust differences between the control and the phosphorylation-defective brpSSS71/73/90AAA mutant. 174 

The Mendelian ratio within the F1 generation of brpSSS71/73/90AAA flies was only about 12 %, as 175 

compared to about 27 % for the non-mutated control (formally expected rate 33 %). These 176 

observations suggest that the brpSSS71/73/90AAA mutant is functionally compromised as compared to 177 

the rescue control. 178 

Strikingly, confocal microscopy revealed numerous BRP-positive (0.13 spots per µm2 individual 179 

axon area) and RIM-BP-positive (0.15 spots per µm2 individual axon area) aggregates within 180 

motoneuron axons of third instar larvae upon disruption of BRP N-terminal phosphorylation sites 181 

at positions 71, 73 and 90 (Fig 2D), suggesting disturbed axonal transport of AZ scaffold proteins. 182 

Most aggregates were positive for both BRP and RIM-BP. In contrast, brprescue axons exhibited 183 

significantly less BRP-positive (0.005 spots per µm2 individual axon area) and RIM-BP-positive 184 
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(0.04 spots per µm2 individual axon area) punctae. Furthermore, in brpSSS71/73/90AAA mutant animals, 185 

the BRP (0.14 µm2) and RIM-BP (0.12 µm2) spots had a similar size and were significantly larger 186 

and abnormally formed compared to those found in control nerves (BRP 0.05 µm2; RIM-BP 0.06 187 

µm2). 188 

The brpSSS71/73/90AAA-dependent axonal aggregates were reminiscent of previously reported 189 

BRP-positive and RIM-BP-positive axonal super T-bar structures that emerged upon loss of 190 

function of SRPK79D (Fig 1C) (Nieratschker et al., 2009, Siebert et al., 2015). In srpk79DVN 191 

mutants (srpk79DVN deletes a large part of the srpk79D gene, generating a srpk79D null mutant  192 

(Johnson et al., 2009, Nieratschker et al., 2009)), we found the average sizes of BRP-positive (0.3 193 

µm2) and RIM-BP-positive (0.25 µm2) punctae further enlarged compared to corresponding 194 

punctae in brpSSS71/73/90AAA mutants (Fig 2E). In electron microscopy (EM) analyses, electron-dense 195 

aggregates were readily found in motoneuron axons of brpSSS71/73/90AAA mutants, whose 196 

appearance and distribution closely resembled the aggregates forming in srpk79DVN mutants (Fig 197 

3A, B). Likewise, stimulated emission depletion light microscopy at a resolution of about 50 nm 198 

(Hell, 2007) showed a “stoichiometric patterning” of BRP and RIM-BP epitopes within the 199 

brpSSS71/73/90AAA aggregates, very similar to the previously reported, STED-visualized patterning of 200 

srpk79D mutant axonal aggregates (Fig 3C, D) (Siebert et al., 2015). 201 

Recent work by our group has shown that at AZs, the BRP/RIM-BP scaffold is crucial to properly 202 

cluster and position the critical release factor Unc13A (Böhme, Beis et al., 2016). Like for RIM-203 

BP, staining with anti-Unc13A antibody revealed close and stoichiometric association of BRP and 204 

Unc13A in the floating axonal aggregates of both brpSSS71/73/90AAA and srpk79DVN mutants (Fig 3E, 205 

F). In fact, the STED-resolved relative distribution of RIM-BP vs. BRPC-term as well as of Unc13A 206 

vs. BRPC-term were reminiscent of the organization of these epitopes within the scaffolds of synaptic 207 

AZs (Böhme et al., 2016, Liu et al., 2011). 208 

 209 
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Formation of axonal aggregates depends on an N-terminal region unique to the long of the 210 

two BRP isoforms 211 

The above morphological and compositional analyses strongly suggest that axonal T-bar-like 212 

aggregates forming in srpk79D-deficient and brpSSS71/73/90AAA mutants are equivalent in nature. To 213 

further characterize which AZ protein(s) cause(s) these axonal T-bar-like aggregates, we 214 

eliminated several AZ proteins in the background of the srpk79D gene. The brp locus gives rise 215 

to at least two prominent BRP isoforms, originating from alternative promoters, which contain 216 

(BRP-190) or lack (BRP-170) an N-terminal stretch of about 320 amino acid residues (Fig 1A). 217 

Previous analyses have shown that AZ scaffolds comprise a circular arrangement of alternating 218 

BRP-190 and BRP-170 clusters (Matkovic et al., 2013). To test if both isoforms were needed for 219 

the formation of the axonal T-bar-like aggregates, isoform-specific brp mutants were generated 220 

and tested in a srpk79Datc background (srpk79Datc leads to the production of a non-functional, 221 

truncated form of SRPK79D, (Johnson et al., 2009). No axonal aggregates were formed when 222 

both BRP isoforms or BRP-190 alone were knocked out in a brp null background (Fig 4A-E). In 223 

contrast, axonal aggregates were still observed when only BRP-170 was removed (Fig 4F, G). 224 

Likewise, rim-bp and srpk79D double knockouts still displayed BRP-positive aggregates, 225 

indicating that RIM-BP is not essential for axonal aggregate formation (Fig 4H-J). These results 226 

suggest that BRP-190 might be the only AZ scaffold component that is essential for the formation 227 

of axonal T-bar-like aggregates upon knockout/mutation of SRPK79D or, most likely, in 228 

brpSSS71/73/90AAA mutants. Notably, the N-terminal about 320 residues that discriminate BRP-190 229 

from BRP-170 seem to play an important and specific role in the formation of BRP-positive axonal 230 

aggregates. Thus, our observations suggest a functional relationship between SRPK79D and the 231 

N-terminal region of BRP-190 in preventing axonal aggregation of AZ components during their 232 

axonal transport to synapses. 233 

 234 
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The BRP N-terminal region comprises several docking sites for SRPK79D 235 

As the brpSSS71/73/90AAA mutant pheno-copies the srpk79DVN mutant, axonal aggregates seen in 236 

these mutants likely originate due to the same mechanistic principle. The most facile explanation 237 

for the similar effect of these mutants would be that SRPK79D phosphorylates BRP to facilitate 238 

axonal transport, although BRP does not contain a typical RS-domain. This hypothesis is 239 

supported by the observation that SRPK79D and BRP co-localize in vivo (Johnson et al., 2009). 240 

We directly tested this idea by conducting in vitro binding and phosphorylation studies using 241 

recombinant SRPK79D and BRP fragments. 242 

While SRPKs encompass the canonical N- and C-terminal lobes of Ser/Thr protein kinases, a 243 

region of about 200 residues that is predicted to be intrinsically disordered intervenes between the 244 

lobes in this protein kinase family (Ghosh & Adams, 2011). In addition, a shorter region of 245 

predicted intrinsic disorder precedes the N-terminal lobe of these kinases. Moreover, some SRPKs 246 

have been shown to engage their substrates via a docking groove on the C-lobe (Ngo, Chakrabarti 247 

et al., 2005). SRPK79D contains a split kinase domain typical of the SRPK family and appears to 248 

encompass a docking groove but harbors a significantly longer region of predicted intrinsic 249 

disorder preceding the N-terminal lobe compared to mammalian SRPK1/2 (Fig 5A). The 250 

SRPK79D unstructured N-terminus, which is required for its localization with BRP in vivo (Johnson 251 

et al., 2009), and its putative docking groove on the C-lobe represent possible regions, through 252 

which the enzyme might transiently engage substrate proteins at sites that are distinct from or 253 

overlapping with the phosphorylated regions; alternatively, SRPK79D might use these regions to 254 

dock to other proteins that in turn are associated with substrate proteins. We therefore employed 255 

the Y2H system (Worseck, Grossmann et al., 2012) to uncover potential, direct interactions 256 

between SRPK79D and the proteins found in the axonal aggregates. Apart from the full-length 257 

proteins, we tested Y2H interactions among fragments of the proteins that covered known 258 

functional regions, predicted or known folded domains or regions of predicted intrinsic disorder. 259 

251



A robust Y2H interaction was detected between full-length SRPK79D (SRPK79DFL) as well as 260 

all SRPK79D constructs containing the two lobes of the kinase core (SRPK79DCore, 261 

SRPK79DCoreΔlinker1, SRPK79DCoreΔlinker2) and a region comprising the N-terminal 152 residues of 262 

the BRP-190 isoform (BRP-1901-152; Table 1). Neither the intrinsically disordered SRPK79D N-263 

terminal region (SRPK79D1-340) nor the linker region between the N- and C-lobes (omitted in 264 

constructs SRPK79DCoreΔlinker1 and SRPK79DCoreΔlinker2) were required for Y2H interactions with 265 

BRP-1901-152. The SRPK79D N-terminus alone interacted with diverse, putatively unstructured or 266 

coiled-coil regions of tested AZ proteins, among these BRP and RIM-BP. These results indicate 267 

that BRP-190 might directly interact with SRPK79D, possibly via its N-terminal region inserting 268 

into the docking groove of the kinase. 269 

To test whether the observed Y2H interactions of SRPK79D and BRP-1901-152 originated from 270 

direct contacts between these proteins, we recombinantly produced the corresponding protein 271 

fragments (Fig 5A) and tested their interactions by analytical size exclusion chromatography 272 

(SEC). To test for the role of the docking groove in the interaction, we generated a SRPK79D 273 

variant bearing a disrupted docking groove (SRPK79DCoreΔDock) (Lukasiewicz et al., 2007). 274 

SRPK79DCore and BRP-1901-152 co-migrated during SEC and together eluted earlier than the 275 

isolated proteins (Fig 5B). Consistent with the Y2H results, truncation of the inter-lobe linker region 276 

of SRPK79D (SRPK79DCoreΔlinker1) had no effect on BRP-1901-152 binding. In line with the idea that 277 

BRP-1901-152 binds to the docking groove of SRPK79D, the SRPK79DCoreΔDock variant did not co-278 

elute with BRP-1901-152 in SEC (Fig 5C). 279 

To further narrow down the SRPK79D binding site(s) on BRP-1901-152, we conducted peptide 280 

SPOT analyses. SPOT membranes contained overlapping 25-residue peptides covering the BRP-281 

190 N-terminal region with a seven-residue offset (Table S2). The SRPK79D kinase domain 282 

construct (SRPK79DCore) bound to peptides representing three BRP regions (15-RSPGRVRR-22; 283 

66-HHRSRSASR-74; 113-RSRDRSLER-121; Fig 5E), suggesting that it can attach to several 284 

sites on BRP-190. Notably, the sequences of these three putative docking sites somewhat 285 
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resemble proposed binding motifs recognized by SRPK1, which consist of three basic residues 286 

(underlined) separated by two to three positions (Lukasiewicz et al., 2007). Together, these data 287 

suggest that direct binding of SRPK79D within the N-terminal about 150 residues of BRP-190 288 

might underlie the functional SRPK79D-BRP interplay in preventing axonal T-bar-like aggregates. 289 

 290 

SRPK79D phosphorylates specific sites in the BRP N-terminus in vitro 291 

SRPKs can employ different modes of operation depending on the nature of the substrate 292 

proteins. Substrates comprising extended RS repeats can be phosphorylated via a processive 293 

mechanism that involves an initial engagement of the substrate at a docking groove on the C-294 

terminal lobe of the kinase (Lukasiewicz et al., 2007). Subsequently, phosphorylation sites are 295 

continuously funneled into the active center in a C-to-N-terminal direction. Continued 296 

phosphorylation eventually reduces target affinity, most likely by electrostatic repulsion between 297 

the phosphates and the acidic docking groove (Ghosh & Adams, 2011). For targets with only short 298 

RS repeats, docking groove binding can be dispensable and such targets can be phosphorylated 299 

via a distributive mechanism or in a dual-track mode that encompasses processive and distributive 300 

phases (Aubol, Plocinik et al., 2013, Lukasiewicz et al., 2007). 301 

To test if the observed interaction of SRPK79D with the N-terminal region of BRP-190 forms 302 

the basis for SRPK79D-mediated BRP phosphorylation, we conducted in vitro phosphorylation 303 

assays using recombinant proteins. Upon incubation with γ-[32P]-ATP, SRPK79DCore 304 

phosphorylated full-length BRP-190, BRP-1901-152 as well as itself, but strikingly failed to 305 

phosphorylate a large BRP-190 fragment (BRP190Δ1-152) that lacked the N-terminal 152 residues 306 

(Fig 5F). Identical preparations of catalytically inactive SRPK79DCore-dead, bearing a K376M 307 

exchange that disrupts ATP binding (Johnson et al., 2009), did not exhibit similar kinase activity 308 

(Fig 5F), indicating that the observed phosphoryl-transfer activity originates from recombinant 309 

SRPK79DCore. In contrast, the SRPK79DCoreΔDock variant that exhibits a disrupted docking groove 310 

phosphorylated the same BRP variants as SRPK79DCore (Fig 5F). These results are consistent 311 
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with the idea that SRPK79D specifically targets the BRP N-terminal region, and that the enzyme 312 

can act through a distributive mechanism, as previously described for SRPK1 (Aubol et al., 2013). 313 

As ongoing phosphorylation of target sites reduces the affinity of substrate proteins to SRPK1 314 

(Ghosh & Adams, 2011), phosphorylated BRP-190 might likewise exhibit reduced affinity to 315 

SRPK79D. To test this prediction, we monitored interaction of SRPK79DCore with BRP-1901-152 316 

after prior phosphorylation by analytical SEC. In contrast to non-phosphorylated BRP-1901-152 (Fig 317 

5B), BRP-1901-152 no longer co-migrated with SRPK79DCore in SEC after prior incubation in the 318 

presence of ATP (Fig 5B). Bands representing BRP-1901-152 were shifted to slightly higher 319 

apparent molecular mass on the SDS polyacrylamide gels after incubation with SRPK79DCore and 320 

ATP (Fig 5B), consistent with SRPK79DCore-mediated phosphorylation. While the catalytically 321 

inactive SRPK79DCore-dead variant also bound to non-phosphorylated BRP-1901-152 (Fig 5D), as 322 

expected if initial binding occurs through its intact docking groove, it did not release the substrate 323 

after incubation with ATP (Fig 5D). 324 

 325 

Identification of phosphorylation sites within the BRP N-terminus 326 

To determine the sites of SRPK79DCore-mediated phosphorylation, we analyzed non-327 

phosphorylated and in vitro phosphorylated BRP-1901-152 by matrix-assisted laser 328 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After one hour of 329 

incubation with SRPK79DCore or SRPK79DCoreΔDock and ATP, BRP-1901-152 showed an increase in 330 

molecular mass of 556 Da, suggesting seven added phosphate groups (each contributing ~ 80 331 

Da), with a smaller portion of the protein carrying an eight-phosphate group (Fig 6A). Time course 332 

experiments monitoring BRP-1901-152 phosphorylation by SRPK79DCore and SRPK79DCoreΔDock 333 

revealed faster phosphorylation with an intact SRPK docking groove (Fig S1). Independent of the 334 

docking groove, the same phosphorylation state was reached after one hour (Fig S1 and Fig S2A). 335 

These findings indicate that an intact docking groove increases phosphorylation kinetics but does 336 

not alter phosphorylation specificity. 337 
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To map the exact phosphorylation sites in BRP-1901-152, we performed tryptic in-gel digestion 338 

followed by mass spectrometry. By using a combination of liquid chromatography electrospray 339 

ionization mass spectrometry (LC-ESI-MS) and MALDI-TOF-MS, we confirmed almost complete 340 

phosphorylation of residues S16, S32, S34, S71, S73, S90 and S118 after one hour of incubation 341 

(Fig 6B, C). Except for S90, all these residues reside within one of the SRPK79D docking sites on 342 

BRP-1901-152 and are part of RS or SR dipeptides. 343 

Analyzing the time course of SRPK79DCore-mediated BRP-1901-152 phosphorylation by LC-ESI-344 

MS, showed that S90 and S118 are phosphorylated first, with over 90 % (S90) or over 80 % (S118) 345 

of these residues phosphorylated within 30 seconds. S71/S73, S32/S34 and S16 were 346 

phosphorylated at progressively lower rates (Fig 6B). The exact order of phosphorylation of the 347 

closely-spaced residues could not be resolved, as S71/S73 on the one hand and S34/S32 on the 348 

other were part of the same tryptic peptides.  349 

Our MS analyses reliably covered over 90 % of the BRP-1901-152 sequence and almost all of 350 

its potential 7 to 8 phosphorylation sites observed by analysis of the intact BRP-1901-152 by MALDI-351 

TOF-MS (Fig 6B, C). However, we did not observe peptides containing S114, which resides within 352 

one of the binding motifs in an RSR motif, possibly due to several arginine residues in the 353 

immediate vicinity giving rise to very small tryptic peptides. To confirm phosphorylation sites that 354 

were not covered by detectable tryptic peptides, we used recombinantly expressed sub-fragments 355 

of BRP-1901-152, incubated them with SRPK79DCore or SRPK79DCoreΔDock and ATP and performed 356 

total mass analyses by MALDI-TOF-MS, indicating an almost full phosphorylation at S114 and 357 

partial phosphorylation at S16 (Fig S2). 358 

The above findings show that SRPK79D predominantly phosphorylates sites in BRP-1901-152 359 

that reside within or in direct vicinity of the kinase docking sites. The SRPK79D-mediated 360 

phosphorylation seems to preferentially start at the C-terminal region of BRP-1901-152, around S90 361 

and S118. The directional C-to-N-terminal phosphorylation together with faster phosphorylation 362 

with an intact docking groove hints at the possibility that SRPK79D might also be able to work 363 
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processively for faster phosphorylation of several sites but can still work in a distributive manner 364 

(docking groove mutant), as previously seen for SRPK1 and SRSF1 (Aubol, Chakrabarti et al., 365 

2003). Reduced affinity of the substrate upon its phosphorylation additionally supports 366 

mechanistic commonalities to SRPK1. Notably, all the identified in vitro phosphorylation sites, 367 

except S114 and S118, correspond to sites that were also found phosphorylated in vivo; in 368 

particular, they encompass S71, S73 and S90, which upon alanine mutation led to axonal 369 

BRP/RIM-BP/Unc13A aggregates (see above). None of the additional, potentially 370 

phosphorylatable seven serines and five threonines within the first 152 residues of BRP were 371 

phosphorylated by SRPK79D significantly in vitro, suggesting that the recombinant SRPK79D 372 

constructs largely retain the substrate specificity of endogenous SRPK79D. Seven in vivo sites at 373 

the BRP-190 N-terminus (S43, T59, S60, Y130, S133, S137 and S139) were not found to be 374 

phosphorylated by SRPK79D in vitro and may thus be targeted by other kinases (Fig 6C). 375 

 376 

Phosphorylation of ELKS family members by SRPKs is evolutionarily conserved 377 

To test if mammalian SRPKs can phosphorylate the N-termini of mammalian BRP orthologues 378 

CAST1/2, we conducted in vitro binding studies and kinase assays, using recombinant SRPK1, 379 

SRPK2 and CAST1/2 constructs. Two fragments comprising N-terminal regions of Cast2 (Cast21-380 

163 and Cast21-353) co-migrated with SRPK1CoreΔlinker (equivalent to SRPK1NS3 in and SRPK2Core) 381 

eluting earlier from the column as the individual proteins (Fig 6D, E). Moreover, both fragments as 382 

well as the related BRP-1901-152 were phosphorylated by the kinases upon incubation with γ-[32P]-383 

ATP (Fig 6F). These data are consistent with the idea that SRPK-mediated phosphorylation of the 384 

N-termini of ELKS family proteins is an evolutionarily conserved regulatory principle that may be 385 

involved in controlling axonal transport of AZ scaffold components in neurons across the animal 386 

kingdom. 387 

  388 
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Discussion 389 

The molecular mechanisms underlying ordered axonal transport of AZ scaffold proteins are 390 

presently poorly understood. In particular, it is unclear whether, and if so which, AZ scaffold 391 

components are co-transported as functional building blocks and how neurons avoid pre-mature 392 

higher-order aggregation of AZ scaffold proteins during transport. Several lines of evidence 393 

indirectly implicate reversible protein phosphorylation as an important regulatory principle for 394 

axonal transport of AZ scaffold proteins. Interestingly, several kinases, such as Protein kinase A, 395 

Ca2+/calmodulin-dependent protein kinase (CaMKII) and Glycogen synthase kinase 3 (GSK3), 396 

seem to negatively regulate transport of AZ and SV material, as their knockout was shown to 397 

promote transport (Guillaud, Wong et al., 2008, Hall & Hedgecock, 1991, Morfini, Szebenyi et al., 398 

2002, Sato-Yoshitake, Yorifuji et al., 1992, Wairkar, Toda et al., 2009). In contrast, functional 399 

impairment of SRPK79D in Drosophila causes ectopic accumulation of scaffold proteins within the 400 

axoplasm (Johnson et al., 2009, Nieratschker et al., 2009), indicating that SRPK79D is a positive 401 

regulator of axonal transport. However, how SRPK79D supports transport of AZ scaffold proteins 402 

has so far remained elusive. 403 

Here, we show that SRPK79D mediates its “transport-stabilization” function by phosphorylating 404 

a specific, only about 150-residue stretch at the very N-terminus of the extended coiled-coil 405 

domain protein BRP. SRPK79D can bind at three arginine-rich motifs and phosphorylates at least 406 

seven sites within or in close vicinity of these motifs. When interfering with SRPK79D-mediated 407 

phosphorylation of BRP by serine to non-phosphorylatable alanine exchanges in the brp genomic 408 

context, axonal aggregates formed. These mimicked in ultrastructural detail and molecular 409 

composition the srpk79DVN aggregates: large, extended, multiple T-bars containing BRP, RIM-BP 410 

and Unc13A. Importantly, these aggregates no longer formed when the brp-190 isoform 411 

exclusively containing this sequence stretch was genetically eliminated. Thus, obviously a key 412 

function of SRPK79D is to tonically keep the N-terminal stretch of BRP phosphorylated during 413 

axonal transport. It thereby protects the transported BRP-190 isoform from undergoing a pseudo-414 
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AZ-like assembly process within the axoplasm, which co-aggregates, but does not depend on, 415 

RIM-BP and Unc13A. As the size of the BRP/RIM-BP/Unc13A aggregates in the brpSSS71,73,90AAA 416 

mutant was somewhat reduced compared to the qualitatively very similar aggregates in sprk79D 417 

mutants, it is possible that the sites not included in our triple mutant but found to be phosphorylated 418 

by SRPK79D in vitro (S16, S32, S34, S114, S118) contribute as well to a the srpk79D mutant 419 

phenotype. 420 

Further expanding on our previous analyses (Siebert et al., 2015), results reported here 421 

document that brpSSS71,73,90AAA- and srpk79Dnull-induced aggregates accumulate only a specific 422 

sub-spectrum of AZ proteins, namely BRP, RIM-BP and Unc13A. These three proteins exactly 423 

constitute SV release sites within the central AZ scaffold (Reddy-Alla, Böhme et al., 2017). They 424 

incorporate into assembling AZ scaffolds only after other scaffold proteins, Syd-1 and Liprin-α, 425 

have initialized the actual assembly process (Böhme et al., 2016). We did not find the “early 426 

seeding factors” Syd-1 and Liprin-α either within the srpk79D mutant nor in the brpSSS71,73,90AAA 427 

mutant aggregates. Thus, BRP phosphorylation by SRPK79D seems to block the premature 428 

oligomerization of a specific scaffold “building block” (BRP/RIM-BP/Unc13A) from forming pre-429 

assembled units in a kinase activity-dependent fashion. We previously showed that RIM-BP is 430 

directly transported via a high-affinity interaction between its SH3 domains II and III and a proline-431 

rich stretch of the JIP-1 homologue Aplip1, which in turn binds to the kinesin 1A type motor 432 

Unc104/Imac (Siebert et al., 2015). Thus, the RIM-BP constituent might actually provide a key 433 

connection of the transported building block to the transport machinery. 434 

To the best of our knowledge, our work for the first time documents direct phosphorylation and 435 

consequent regulation of a synaptic protein by a SRPK-type kinase. SRPK family members have 436 

so far been predominantly implicated in the phosphorylation and thus regulation of SR proteins 437 

that act as regulators of various gene regulatory processes (Lin, Chen et al., 2007, Zhou & Fu, 438 

2013). Our mechanistic results imply a similar mode of action of SRPK79D on BRP as previously 439 

described for SRPKs acting on RS domain-containing substrates. Depending on the nature of its 440 
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substrate, SRPK1 can phosphorylate them via a semi-processive, directional or distributive 441 

mechanism (Aubol et al., 2013). Although the docking groove seems to be dispensable for the 442 

overall phosphorylation state of the BRP N-terminus, our data show faster phosphorylation with 443 

an SRPK79D variant bearing an intact docking groove. Thus, while SRPK79D can obviously 444 

phosphorylate the BRP-190 N-terminus by employing a distributive mechanism, an intact docking 445 

groove ensures faster phosphorylation of specific sites. SRPK79D with an intact docking groove 446 

also shows a tendency to phosphorylate the more C-terminal region of BRP-1901-152 first, indicated 447 

by the faster phosphorylation rate of S90 and S118 compared to the more N-terminally located 448 

sites. SRPK79D may thus act at least to some extent processively and in a C-to-N direction on 449 

BRP-190 in vivo. 450 

Consistent with our results, it has been shown that the non-conserved, putatively unstructured 451 

N-terminus of SRPK79D is important for its localization with BRP (Johnson et al., 2009). Our Y2H 452 

studies further show that this SRPK79D N-terminal portion engages in several weak and rather 453 

unspecific interactions with AZ proteins in unstructured or coiled-coil regions, notably also in the 454 

co-transported proteins BPR and RIM-BP. We suggest that these weaker interactions do not 455 

directly impact on the SRPK79D mechanism of action but might rather ensure a high local 456 

concentration of SRPK79D at the transported protein complex. 457 

The question arises of how the phosphorylation status of a confined, likely intrinsically 458 

disordered stretch at the BRP N-terminus might influence the aggregation status of a ”whole 459 

transport package” that, apart from BRP, contains RIM-BP and Unc13A. We speculate that the 460 

high charge density at the BRP N-terminus introduced through multiple phosphate moieties might 461 

trigger an extensive, cooperative conformational switch in the protein, rendering it less 462 

aggregation-prone. Consistent with this notion, conformational changes can be propagated over 463 

long distances through coiled-coil arrangements in proteins, as illustrated for example by ATP 464 

binding-hydrolysis-ADP/Pi release cycles in motor proteins (Carter, Diamant et al., 2016). As an 465 

alternative mechanism, EEA1 has recently been shown to undergo a massive extended-to-466 
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collapsed conformational change that is initiated by upon binding to Rab5:GTP and is propagated 467 

over the entire length of this 1400-residue protein (Murray, Jahnel et al., 2016). 468 

Ultimately, the BRP/RIM-BP/Unc13A building block transported down the axon must be 469 

integrated into the AZ scaffold. It appears likely that local de-phosphorylation of BRP might be part 470 

of the integration process. Thus, one might expect localized phosphatase activity to promote 471 

scaffold assembly. In fact, in previous synaptic AZ assembly studies at Drosophila NMJ synapses, 472 

protein phosphatase 2A (PP2A) was found to regulate presynaptic assembly. In absence of the 473 

phosphatase, assembling postsynaptic glutamate receptor fields often lacked presynaptic AZ 474 

scaffolds (Viquez, Fuger et al., 2009), a finding that is at least consistent with PP2A supporting 475 

developmental scaffold assembly via BRP de-phosphorylation. PP2A activity and assembly 476 

function seemingly are tuned by activities of the serine-threonine kinase GSK-3beta (Viquez et al., 477 

2009) and Unc-51 (Atg1) (Wairkar et al., 2009). 478 

We also show that mammalian BRP homologues are equally phosphorylated by SRPKs at their 479 

conserved N-terminal stretches. Notably, SRPKs have been implicated in various 480 

neurodegenerative diseases (Chan & Ye, 2013, Jang, Liu et al., 2009). Furthermore, mammalian 481 

SRPK2 has already been shown to play a role in neuronal function by phosphorylating tau at a 482 

specific position to inhibit axonal elongation in neurons (Hong, Chan et al., 2012). Our results, 483 

therefore, might be of importance for AZ assembly and plasticity, and consequently developmental 484 

circuit formation, learning and memory processes, in the human brain as well. In addition, they 485 

further underscore that future studies investigating the molecular principles underlying SRPK-486 

related neuronal diseases (Chan & Ye, 2013) should take into account not only well-documented 487 

functions of SRPKs in regulating gene expression but also roles, by which these enzymes might 488 

more directly influence the functions of neuronal proteins. 489 

  490 
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Materials and methods 491 

Cloning and mutagenesis 492 

DNA fragments encoding SRPK79D constructs were cloned into pGEX 6P1 vector from a 493 

codon-optimized gene (Centic Biotec) using BamHI and NotI. A DNA fragment encoding 494 

SRPK2Core was cloned into pETM11 vector (EMBL, Heidelberg) from a mSRPK2 plasmid 495 

(provided by S. Schoch-McGovern, Universität Bonn), using NcoI and SalI. SRPK1 expression 496 

constructs were provided by G. Ghosh, University of California, San Diego. DNA fragments 497 

encoding BRP N-terminal constructs were cloned into pETM11 vector from a codon-optimized 498 

gene (Centic Biotec) using NcoI and SalI. DNA fragments encoding BRP-190 and BRP-190Δ1-152 499 

were cloned from a codon-optimized gene into a modified pFL vector (EMBL, Grenoble) that 500 

directed production of protein bearing an N-terminal His10-tag followed by a TEV cleavage site and 501 

a C-terminal Strep-tag, using EcoRI and SalI. A DNA fragment encoding Cast1 was cloned from 502 

cDNA into a modified pFL vector that directed production of protein bearing an N-terminal His10-503 

tag followed by a TEV cleavage site, using EcoRI and SalI. DNA fragments encoding Cast2 N-504 

terminal fragments were cloned from cDNA into pETM11 vector, using NcoI and SalI. A DNA 505 

fragment encoding BRP-1901-152,6SD was obtained as a synthetic gene (GeneArt, ThermoFischer) 506 

in a pET151/D-TOPO expression vector. All other mutations were incorporated by QuikChange 507 

mutagenesis (Agilent). All constructs were verified by DNA sequencing. 508 

 509 

Protein production and purification 510 

Protein constructs used here are listed in Table S1. Production of SRPK79D constructs was 511 

done in Escherichia coli BL21 Rosetta 2 cells in ZYM auto-induction media (Studier, 2005). Cells 512 

were grown for 4 h at 37° C and subsequently incubated at 18° C overnight. Cells were harvested 513 

by centrifugation (9000 x g, 7 min) and resuspended in lysis buffer (400 mM NaCl, 40 mM Tris/HCl, 514 

pH 7.5, 5 % (v/v) glycerol, 1 mM DTT) supplemented with DNase. The cells were lysed by 515 

sonication (Sonopuls HD 3100, Bandelin) and lysate was cleared by centrifugation (55,000 g, 1 h, 516 
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4° C). Cleared lysate was incubated for 1 h with Glutathione-Sepharose 4B resin (GE Healthcare), 517 

washed with lysis buffer and protein was eluted in steps by adding 10 mM reduced glutathione to 518 

the lysis buffer. Tags were cleaved by adding 1:20 Prescission protease and dialyzing against 519 

SEC buffer (200 mM NaCl, 20 mM Tris/HCl, pH 7.5, 1 mM DTT) overnight. Depending on the size 520 

of the protein construct, the GST-tag was removed by recycling over Glutathione-Sepharose or in 521 

a final SEC step (Superdex 75 16/60, GE Healthcare). Proteins were concentrated and flash 522 

frozen in liquid nitrogen at concentrations of 10-20 mg/ml. 523 

Constructs of the BRP N-terminus and the Cast2 N-terminus were produced and cells were 524 

lysed as described above, with addition of 20 mM imidazole to the lysis buffer. Affinity 525 

chromatography was carried out using Ni2+-NTA agarose (Macherey Nagel). Prior to protein 526 

loading, the resin was equilibrated with lysis buffer and the protein was eluted by addition of 300 527 

mM imidazole to the lysis buffer. His-tags were cleaved by adding 1:20 TEV protease overnight. 528 

Further purification was performed by ion-exchange chromatography on MonoS and MonoQ 529 

columns (GE Healthcare). Proteins were eluted by applying a linear salt gradient to 200 mM NaCl. 530 

Purified proteins were concentrated to 1-2 mg/ml and flash frozen in liquid nitrogen. 531 

SRPK1 and SRPK2 constructs were expressed and purified by Ni2+-NTA affinity 532 

chromatography as described above. His-tags were not cleaved, and final purification was done 533 

by SEC on Superdex S200 16/60 or 10/300 increase columns (GE Healthcare). Purified proteins 534 

were concentrated to 5-20 mg/ml and flash frozen in liquid nitrogen. 535 

For production of BRP and Cast1 variants via recombinant baculoviruses in insect cells, E. coli 536 

DH10MultiBac cells were used to generate bacmids. SF9 cells were transfected with the purified 537 

bacmids for each construct and a first virus generation (V0) was harvested after 72 h. V0 virus was 538 

used to generate a virus with a higher titer (V1) in SF9 cells, which was then used for large-scale 539 

production in High Five cells. Cells were harvested when viability dropped below 90 % or when 540 

the eYFP signal reached a plateau. Harvested cells were either flash frozen in liquid nitrogen and 541 

stored at -80° C or directly used for purification. 542 
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Cell pellets of BRP-190 and BRP-190Δ1-152 expressions were resuspended in 400 mM NaCl, 543 

40 mM Tris/HCl, pH 8.5, 5 % (v/v) glycerol, 1 mM DTT supplemented with protease inhibitors 544 

(Roche) and lysed by sonication. Lysates were cleared by centrifugation and proteins were 545 

captured on Strep-Tactin resin (IBA). After washing, proteins were eluted by addition of 2.5 mM 546 

desthiobiotin in 400 mM NaCl, 40 mM Tris/HCl, pH 8.5, 5 % (v/v) glycerol, 1 mM DTT and flash 547 

frozen in liquid nitrogen. 548 

Cast1 was purified via Ni2+-NTA affinity chromatography, MonoQ ion exchange 549 

chromatography (elution in a linear salt gradient to 500 mM NaCl). Final SEC was carried out on 550 

a Superdex S200 10/300 column in 200 mM NaCl, 20 mM Tris/HCl, pH 7.5, 1 mM DTT. Purified 551 

protein was concentrated to 0.8 mg/ml and flash frozen in liquid nitrogen. 552 

 553 

Animal rearing and fly strains 554 

Fly strains were reared under standard laboratory conditions (Sigrist, Reiff et al., 2003) at 25° 555 

C, 65 % – 70 % humidity and constant 12/12 hr light/dark cycle in incubators. Both male and 556 

female larvae were used for analysis in all experiments. The following genotypes were used: WT: 557 

+/+ (w1118). srpk79DVN: srpk79DVN / srpk79DVN. srpk79Datc: srpk79Datc / srpk79Datc. brpDf/+; 558 

srpk79Datc: Df(2R)BSC29/+; srpk79Datc / srpk79Datc. brpnull/brpDf; srpk79Datc: brp69/Df(2R)BSC29; 559 

srpk79Datc/srpk79Datc. rim-bpDf/+; srpk79Datc: Df S2.01/+; srpk79Datc / srpk79Datc. rim-bpnull/rim-560 

bpDf; srpk79Datc: rim-bpSTOP1/Df S201; srpk79Datc / srpk79Datc. Genomic brpp[acman]WT was crossed 561 

to brpnull ∆6.1/brpDf69 and genomic phosphorylation mutant brpSSS71/73/90AAA was crossed to brpnull 562 

∆6.1/brpDf69. Stocks were obtained from: brp69 (Kittel et al., 2006); Df2.01 and rim-bpSTOP1 (Liu et al., 563 

2011); srpk79Datc; srpk79Dvn (Nieratschker et al., 2009); genomic brpp[acman]WT (Matkovic et al., 564 

2013). 565 

 566 
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Generation of modified P[acman]-BRP construct 567 

The attB-P[acman] BAC clone containing the genomic region of BRP was obtained from 568 

(Matkovic et al., 2013). Mutations were incorporated according to the Counter Selection BAC 569 

Modification Kit (Gene Bridges GmbH) by using the following primers: Amplification of the rpsL 570 

cassette: 5´-571 

CGACATGGATGAGCCAACCAGTCCGGCCGGAGCGGGTCACCATCGCAGCCGGGGCCTGG572 

TGATGATGGCGGG-3´ (forward); 5´-573 

GAATGGGTATGAACTCGCGATCATGGGGATCCACGAGTCCACCGCGATCCAGTCAGAAGA574 

ACTCGTCAAGAAG-3´ (reverse); mutagenesis 5´-575 

ACATGGATGAGCCAACCAGTCCGGCCGGAGGGGTCACCATCGCAGCCGGGCCGCCGCCA576 

GACCACCGATGGCCCATGCC-3´ (forward); 5´-577 

ATGGGTATGAACTCGCGATCATGGGGATCCACGAGTCCACCGCGATCCAGCGCTTGGTAG578 

CGGGTTC-3´ (reverse). After sequencing, the construct was injected into an attP site-containing 579 

fly strain (y[1] w[1118]; PBac{y[+]-attP-9A}VK00005; Bloomington Drosophila Stock Center line 580 

#9725) using the services of BestGene Inc. 581 

 582 

BRP immunoprecipitation of fly heads 583 

For the identification of BRP residues phosphorylated in vivo, protein extractions from wild type 584 

Drosophila heads in the presence of phosphatase inhibitors (PhosStop, Roche) combined with 585 

immunoprecipitations and mass-spectrometry based analyses were done as previously described 586 

(Owald, Fouquet et al., 2010). Briefly, synaptosome membranes were enriched by differential 587 

centrifugation (Depner et al., 2014) 10 μg - 20 µg of Ms-anti-NC82 antibody and IgG control were 588 

coupled to protein A beads (Bio-Rad). Antibody-coupled resin was incubated with solubilized and 589 

precleared synaptosome membrane preparations (LP1; 1 mg protein at 2 µg/µl) in IP buffer (20 590 

mM HEPES pH 7.4, 200 mM KCl, 2 mM MgCl2, 1% Triton X-100) for 10 h at 4° C. After washing 591 

four times with IP buffer, Ab-Ag-complexes were eluted with 60 µl 2x sample buffer (containing 592 
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1M Tris-HCl pH 6,8; 10% SDS; glycerol; β-mercaptoethanol; 1% Bromphenol blue). Samples were 593 

analyzed by Western blot and subjected to liquid chromatography-tandem mass spectrometry 594 

(LC-MS/MS) analysis. MS data were searched against the flybase.org database using the 595 

MASCOT search algorithm. 596 

 597 

Yeast two-hybrid analyses 598 

Y2H analyses were performed as described in (Böhme et al., 2016). Briefly, DNA fragments 599 

encoding various regions of SRPK79D, BRP and RIM-BP were each cloned into two bait and two 600 

prey vectors. Diploid yeasts, carrying each a unique bait/prey vector pair, were generated by 601 

mating yeast carrying individual bait and prey vectors. Putative protein-protein interactions (PPIs) 602 

were identified by yeast growth on selective media (Worseck et al., 2012). Bait and prey constructs 603 

that led to auto-activation were removed from the analysis. Only bait vector/prey vector 604 

combinations that showed growth at least in four independent replicas were considered as putative 605 

PPIs. Y2H interactions are listed in Table 1. 606 

 607 

Analytical size exclusion chromatography  608 

Analytical SEC was performed on an 3.2/300 Superdex 200 increase column (GE Healthcare) 609 

at 4° C in 200 mM NaCl, 20 mM Tris/HCl, pH 7.5, 2 mM MgCl2, 1 mM DTT. 50 – 100 µg of SRPK 610 

variant was mixed with a 1.2-fold molar excess of BRP or ELKS family constructs. Samples were 611 

incubated for 15 min on ice before loading onto the column. For runs involving prior 612 

phosphorylation, 1 mM ATP was added to the protein mixtures and samples were incubated for 613 

30 min on ice. Fractions were collected and analyzed by SDS-PAGE. 614 

 615 

Radioactive in vitro phosphorylation assays 616 

50 pmol of SRPKs were mixed with 50 pmol of a phosphorylation target in 20 µl reaction buffer 617 

(200 mM NaCl, 20 mM Hepes/NaOH, pH 7.5, 2 mM MgCl2, 1 mM DTT). Reactions were started 618 
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by addition of 1 µl of a 5 mM ATP solution in reaction buffer supplemented with γ-[32P]-ATP (9.25 619 

MBq, 250 µCi). Samples were incubated for 1 h at room temperature and reactions were stopped 620 

by addition of SDS sample buffer and subsequent heating of the samples to 95° C for 5 min. 621 

Samples were analyzed via SDS-PAGE. Gels were scanned on a Storm PhosphorImager (GE 622 

Healthcare). 623 

 624 

In vitro phosphorylation for mass spectrometry 625 

Time course experiments were performed to analyze the SRPK97D-dependent 626 

phosphorylation of the BRP N-terminus. 3 µg (180 pmol) of BRP-1901-152 were incubated in vitro 627 

with equal amounts of SRPK79DCore or SRPK79DCoreΔDock in 200 mM NaCl, 40 mM HEPES, pH 628 

7.5, 2 mM MgCl2 on ice. The reactions were started by addition of 1 mM ATP. Samples were 629 

collected at time points of 30 s, 5 min and 1 h and stopped by addition of SDS sample buffer and 630 

boiling for 10 min at 95° C. 631 

 632 

Liquid chromatography-mass spectrometry 633 

Samples were separated by SDS-PAGE and proteins were stained by Coomassie Brilliant 634 

Blue. Gel bands corresponding to BRP-1901-152 were excised, washed with 50 % (v/v) acetonitrile 635 

in 50 mM ammonium bicarbonate, shrunk by dehydration in acetonitrile and dried in a vacuum 636 

centrifuge. The dried gel pieces were incubated with 50 ng trypsin (sequencing grade modified, 637 

Promega) in 25 µl of 50 mM ammonium bicarbonate at 37° C overnight. To extract the peptides, 638 

25 µl of 0.5 % (v/v) trifluoroacetic acid (TFA) in acetonitrile was added and the extract was dried 639 

under vacuum. 640 

 641 

Liquid chromatography-tandem mass spectrometry 642 

Peptides were transferred to 10 μl of 0.1 % (v/v) TFA, 5 % (v/v) acetonitrile and 2 µl were 643 

analyzed on a reversed-phase capillary nano liquid chromatography system (Ultimate 3000, 644 
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Thermo Scientific) connected to an Orbitrap Velos mass spectrometer (Thermo Scientific). 645 

Samples were desalted on a trap column (PepMap100 C18, 3 μm, 100 Å, 75 μm i.d. × 2 cm; 646 

Thermo Scientific) using a mobile phase of 0.05 % TFA, 2 % acetonitrile in water. After switching 647 

the trap column inline, LC separations were performed on a capillary column (Acclaim PepMap100 648 

C18, 2 μm, 100 Å, 75 μm i.d. × 25 cm, Thermo Scientific) at an eluent flow rate of 300 nl/min. 649 

Mobile phase A contained 0.1 % formic acid in water, mobile phase B contained 0.1 % formic acid 650 

in acetonitrile. The column was pre-equilibrated with 3 % mobile phase B followed by an increase 651 

to 50 % mobile phase B in 50 min. Mass spectra were acquired in a data-dependent mode, utilizing 652 

a single MS survey scan (m/z 350-1500) with a resolution of 60,000 in the Orbitrap, and MS/MS 653 

scans of the 20 most intense precursor ions in the linear trap quadrupole. 654 

 655 

Data processing and phosphorylation analysis 656 

Identification of proteins was performed using the Mascot Daemon and Mascot Server version 657 

2.5.0 (Matrix Science). Raw data were searched against an in-house custom protein sequence 658 

database including the sequence of BRP-1901-152. A maximum of two missed cleavages was 659 

allowed and the mass tolerance of precursor and sequence ions was set to 10 ppm and 0.35 Da, 660 

respectively. Oxidation (M), propionamide (C), acetylation (protein N-terminus) and 661 

phosphorylation (STY) were used as variable modifications. A significance threshold of 0.05 was 662 

used based on decoy database searches and a peptide ion score cut-off of 20 was applied. In 663 

addition, tandem mass spectra of phosphopeptides were manually verified. Phosphorylation 664 

degrees for each residue were estimated by manually comparing relative MS peak intensities in 665 

the extracted ion chromatograms of the corresponding peptide/phosphopeptide pairs as described 666 

(Boehm, Seidler et al., 2012, Seidler, Adal et al., 2009). 667 

 668 
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Intact protein mass determination by MALDI-TOF mass spectrometry 669 

Protein masses were analyzed by matrix-assisted laser desorption/ionization-time of flight 670 

mass spectrometry (MALDI-TOF-MS) using an Ultraflex-II TOF/TOF instrument (Bruker Daltonics, 671 

Bremen, Germany) equipped with a 200 Hz solid-state Smart beam™ laser. The mass 672 

spectrometer was operated in the positive linear mode. MS spectra were acquired over an m/z 673 

range of 3,000 - 20,000 and data were analyzed using FlexAnalysis 2.4. software provided with 674 

the instrument. 675 

Sinapinic acid was used as the matrix (saturated solution in acetonitrile:0.1% trifluoroacetic 676 

acid 1:2) and samples were spotted undiluted using the dried-droplet technique. Where necessary, 677 

samples were diluted in TA33 (33 % acetonitrile, 0.1 % trifluoroacetic acid in water). External 678 

calibration was performed using the Bruker Protein Calibration Standard I (Bruker Daltonics, 679 

Bremen, Germany). 680 

 681 

Peptide SPOT analysis 682 

Membranes with the spotted peptides (Table S2) were washed once with 100 % ethanol for 10 683 

min and three times with PBS/1 mM DTT. The membranes were blocked with 5 % BSA in PBS/1 684 

mM DTT for 3 h. After three additional washing steps, the membranes were incubated overnight 685 

with GST-SRPK79D (20 µg/ml) and GST (6 µg/ml) in PBS/1 mM DTT plus 5 % BSA. The 686 

membranes were then washed three times with PBST/1 mM DTT and subsequently incubated for 687 

1 h with 1:1000 α-GST-Z5 in PBS plus 5 % BSA. After incubation, the membranes were washed 688 

again three times with PBS/1 mM DTT and were then incubated with 1:5000 horseradish 689 

peroxidase (HRP)-coupled αRabbit antibody for 1 h. Final detection was done by adding 690 

electrochemiluminescence solution (PJK GmbH) after three more washing steps with PBS/1 mM 691 

DTT. Luminescence was detected by sequential scanning using an Intas Advanced Fluorescence 692 

Imager. 693 

 694 
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Immunohistochemistry, image acquisition and analysis 695 

Immunohistochemistry was performed according to our standard protocol (Andlauer, Scholz-696 

Kornehl et al., 2014). Conventional confocal and STED images were acquired with TCS SP8 and 697 

TCS SP8 gSTED 3× microscopes (Leica Microsystems), respectively. Images of fixed samples 698 

were acquired at room temperature. NMJ z-stacks had a step size of 0.3 μm between single optical 699 

slices. Images were acquired from 3rd instar larval axons. All images were acquired using the LCS 700 

AF software (Leica Microsystems, Wetzlar, Germany). For previous descriptions see (Fouquet et 701 

al., 2009). 702 

 703 

Immunostainings of larval and embryonic NMJs 704 

Dissections were performed in HL3 by opening the larvae/embryo dorsally along the midline 705 

and removing the innards to grant visual access to the larval CNS axons. Dissections were fixated 706 

with 4 % paraformaldehyde in PBS (pH 7.2) for 10 min. After fixation, the filets were washed with 707 

PBS plus 0.05 % Triton-X 100 (PBT) and blocked for 60 min in 5 % normal goat serum (NGS). 708 

For immunostainings, the larvae were incubated with primary antibodies at 4° C overnight and 709 

subsequently washed in a 0.05 % PBT solution for 12 h at room temperature. Larvae were then 710 

incubated overnight with secondary antibodies at 4° C. Washing procedures were repeated. 711 

Immunocytochemistry was equal for both conventional confocal and STED microscopy. Larvae 712 

were finally mounted either in Vectashield (Vector Laboratories) or Mowiol. Antibody dilutions 713 

were: 1:100 – 1:200 M-α-Nc82; 1:500 Rb-α-RIM-BP; 1:500 GP-α-Unc13A (Böhme et al., 2016) 714 

and HRP-Cy5 1:250 (Dianova). All confocal secondary antibodies were diluted 1:500. Secondary 715 

antibodies used for STED images (Goat-α-M-STAR635p (Abberior); Goat-α-Rb-Atto594 716 

(Invitrogen); and Goat-α-Gp-Atto594 (Invitrogen)) were diluted 1:200. 717 

 718 
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Statistics 719 

Unless otherwise stated, data were analyzed with GraphPad Prism 5 software using the 720 

ANOVA Tukey´s post test. Asterisks are used to indicate statistical significance of the results (* = 721 

p < 0.05; ** = p < 0.01; *** = p <0.005; ns = p > 0.05). Briefly, the signal of an HRP-Cy5 Ab was 722 

used as template for a mask, restricting the quantified area to the shape of the axon/nerve bundle. 723 

The original confocal stacks were converted to maximal projections. After background subtraction, 724 

a mask of the axonal area was created by applying a threshold to remove spurious low-intensity 725 

pixels. The segmentation of single spots was done semi-automatically via the “Find Maxima” 726 

routine and by hand with the pencil tool and a line thickness of 1 pixel. To remove high-frequency 727 

noise, a Gaussian blur filter (0.5-pixel Sigma radius) was applied. The processed picture was then 728 

transformed into a binary mask using the same lower threshold value as in the first step. This 729 

binary mask was then projected onto the original unmodified image using the “min” operation from 730 

the ImageJ image calculator. The axonal spots of the resulting images were counted with the help 731 

of the “analyze particle” function with a lower threshold set to 1. The spot density was obtained by 732 

normalizing the total number of analyzed particles to the axonal area measured via HRP. 733 

 734 

Electron-microscopy 735 

Conventional embedding was performed as described previously (Fouquet et al., 2009). 736 
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Figures and figure legends 942 

 943 

 944 
 945 

Figure 1. Extensive phosphorylation at the BRP/ELKS N-terminus 946 

(A) Overview of the domain architectures and phosphosites in BRP-190 and BRP-170 isoforms. 947 

Indicated phosphosites were predicted by the NetPhos 3.1 server (Blom et al., 1999) and 948 

confirmed experimentally. BRP isoforms are predicted to be rich in α-helices and to contain large 949 

stretches of coiled-coil (green). Phosphorylation sites found in mammalian ELKS proteins and are 950 

conserved in Drosophila BRP proteins are colored in red, while phosphorylation sites only 951 

identified in Drosophila are shown in blue. (B) Multiple sequence alignment of the N-terminal 952 

region (residues 1-152) of D. melanogaster BRP isoform G with homologues from Apis mellifera 953 

(honey bee), Tribolium castaneum (red flour beetle) and Mus musculus (mouse) prepared with 954 

Geneious version 8.1.9 software. Darker shading indicates higher conservation of residues. 955 

Phosphorylatable residues are highly evolutionarily conserved at positions corresponding to BRP 956 

residues S71, S73, S90, Y130, S133 and S137. Colors were used as above phosphorylation sites 957 

with yellow background were subjected to further functional characterization.   958 
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 959 

 960 

Figure 2. BRP phosphorylation mutant pheno-copies srpk79D deletion. 961 

Immunofluorescence images of the indicated genotypes. (A) The control (brprescue) shows only 962 

few, isolated and small BRP and RIM-BP spots per individual axon area, compared to BRP and 963 

RIM-BP of a brpSSS71/73/90AAA phospho-destructive mutant (B) and srpk79DVN mutant (C) and in a 964 

brpnull mutant (brpΔ6.1/brpDf(2R)69) background. (D) Quantification of measured spot numbers per 965 

individual axon area. brprescue: 0.04258 ± 0.01073 RIM-BP punctae/μm2 axon area and 0.00551 ± 966 

0.0007957 BRP punctae/μm2 axon area (n = 12 NMJs; n = 6 animals); brpSSS71/73/90AAA: 0.1514 ± 967 

0.02410 RIM-BP punctae/μm2 axon area and 0.134 ± 0.02702 BRP punctae/μm2 axon area (n = 968 

12 NMJs; n = 6 animals); srpk79DVN mutant: 0.0967 ± 0.005668 RIM-BP punctae/μm2 axon area 969 

and 0.09243 ± 0.008974 BRP punctae/μm2 axon area (n = 10 NMJs; n = 5 animals). (E) 970 

Quantification of averaged aggregate sizes. brprescue: mean area for RIM-BP punctae 0.0620 ± 971 

0.007572 μm2; mean area for BRP punctae 0.052 ± 0.009978 μm2 (n = 12 NMJs; n = 6 animals). 972 

brpSSS71/73/90AAA phosphorylation mutant: mean area for RIM-BP punctae 0.1158 ± 0.007432 μm2; 973 

mean area for BRP punctae 0.1383 ± 0.01260 μm2 (n = 12 NMJs; n = 6 animals). srpk79DVN 974 
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mutant: mean area for RIM-BP punctae 0,2525 ± 0,0175 μm2 and mean area for BRP punctae 975 

0,3050 ± 0,03318 μm2 (n = 10 NMJs; n = 5 animals). Quantification was done using ANOVA 976 

Tukey’s post test. Scale bars – 500 nm. 977 

  978 
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 979 

Figure 3. Ectopic assembly of electron-dense cytomatrices in srpk79D and brpSSS71/73/90AAA 980 

mutant axons. 981 

(A, B) Electron micrographs showing a large, electron-dense, ectopic super-assembly of AZ 982 

structures in axons of srpk79D mutants (A) and brpSSS71/73/90AAA mutants (B). Scale bars – 500 nm. 983 

(C, D) Immunofluorescence images of nerve bundles of the indicated genotypes with the indicated 984 

antibodies. In the srpk79DVN mutant (C, E) and the brpSSS71/73/90AAA phosphorylation mutant (D, F) 985 

in a brpnull mutant (brpΔ6.1/brpDf(2R)69) background, both active zone components RIM-BP (C, D) and 986 

Unc13A (E, F) co-localize with BRP in axonal aggregates. Scale bars – 500 nm.  987 

280



 988 

 989 

Figure 4. BRP-190 is required for axonal aggregate formation in srpk79D mutants 990 

Nerve endings of the indicated genotypes were co-stained with antibodies against the BRP C-991 

terminus (NC82) and RIM-BP. (A, B) Positive controls (srpk79D homozygous null mutant in trans 992 

to heterozygous brpDf or brpnull). (C) Axonal aggregate formation requires BRP. No axonal 993 

aggregates are formed in brpDf/ brpnull, srpk79Datc double mutants. (D, E) The BRP-190 isoform is 994 

sufficient to form axonal aggregates (brp∆190/ brpnull; srpk79Datc). Nomenclature of genotypes: 995 

brpnull = brp69, brpDf = Df(2R)BSC29. (F, G) Axonal aggregate formation requires BRP-190, 996 

removal of only the BRP-170 isoform in a double mutant background (brp∆170/ brpnull; srpk79Datc) 997 

has no effect on axonal aggregate formation. (H, I) Positive controls for srpk79D mutant in double 998 

heterozygous mutant combination for RIM-BP: rim-bpnull or rim-bpDf; srpk79D crossed against +; 999 

srpk79D. (J) Axonal aggregation formation does not depend on RIM-BP. Double mutant 1000 

combination (rim-bpnull; srpk79D crossed against rim-bpDf; srpk79D) still show BRP-positive axonal 1001 

agglomerates. Nomenclature of genotypes: rim-bpnull = rim-bpSTOP1, rim-bpDf = rim-bpS2.01 (Liu et 1002 

al., 2011) HRP – horseradish peroxidase. Scale bars – 500 nm. 1003 
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 1005 

Figure 5. Phosphorylation-dependent interaction of SRPK79D and the BRP-190 N-terminus 1006 

(A) Domain architecture of mammalian SRPK1/2 and Drosophila SRPK79D. Predicted 1007 

unstructured regions separate the folded kinase N- and C-lobes (teal) that share 60 – 70 % 1008 

sequence identity between mammalian and Drosophila SRPKs. SRPK79DCore and its variants in 1009 

the N-lobe (SRPK79DCore-dead) and C-lobe (SRPK79DCoreΔDock) bear truncated N-terminal regions. 1010 

(B-D) Analytical SEC analyses. (B) SRPK79DCore and BRP-1901-152, showing phosphorylation-1011 

induced inhibition of complex formation. (C) Lack of stable binding of SRPK79DCoreΔDock to BRP-1012 

1901-152. (D) Binding of SRPK79DCore-dead to BRP-1901-152. Portions of the gels between the regions, 1013 

to which SRPK79D constructs and BRP-1901-152 migrated, were removed (dashed lines). (E) 1014 
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Peptide SPOT analysis of overlapping BRP-1901-152 peptides with GST (control) and GST-tagged 1015 

SRPK79DCore. Numbers at the beginning and the end of each line indicate the starting and the end 1016 

residues of the peptides spotted, respectively. (F) Radioactive phosphorylation assay using 1017 

SRPK79DCore, SRPK79DCoreΔDock SRPK79DCore-dead, γ-[32P]-ATP and BRP-190 fragments. Only 1018 

BRP constructs that contain the N-terminal 152 residues of BRP-190 are phosphorylated. 1019 

SRPK79DCore and SRPK79DCoreΔDock show similar activities, while SRPK79DCore-dead shows no 1020 

activity. Control – SRPK79DCore, SRPK79DCoreΔDock or SRPK79DCore-dead alone. Gel slices 1021 

separated by gaps are from separate gels. Gel regions between relevant lanes were removed for 1022 

clarity (dashed line). 1023 

 1024 
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 1026 

 1027 

Figure 6. Identification of evolutionarily conserved phosphorylation sites in the BRP N-1028 

terminus. 1029 

(A) MALDI-TOF analysis of untreated BRP-1901-152 and BRP-1901-152 phosphorylated by 1030 

SRPK79DCore (green) indicates 7-8 phosphorylation sites. BRP-1901-152 Mtheoretical = 17340 Da. (B) 1031 

In vitro and in vivo phosphorylation sites within the BRP-190 N-terminus identified by mass 1032 

spectrometric analysis. Sites only found in vivo – black; sites only found in vitro – orange; sites 1033 

found in vivo and in vitro – green. Phosphorylation sites on yellow background were found to 1034 

pheno-copy srpk79D mutants in vivo. The degree of phosphorylation was estimated from 1035 
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comparing MS peak intensities of unphosphorylated and phosphorylated peptides, in brackets 1036 

indicated the estimation for the double phosphorylated peptide. Phosphosites with an estimated 1037 

degree of less than 5% where considered as not significant (n.s.) in vitro. (C) Schematic view on 1038 

the BRP-190 N-terminus with all identified phosphorylation sites in vitro and in vivo. Colors as 1039 

used in the table, blue rectangles indicate the regions bound in our peptide SPOT analysis (Fig. 1040 

5E). (D, E) Analytical SEC shows binding of SRPK2Core to Cast21-353 (D) and SRPK1CoreΔlinker to 1041 

Cast21-163 (E). Portions of the gels between the regions, to which SRPK1/2 and Cast2 constructs 1042 

migrated, were removed (dashed lines). (F) In vitro phosphorylation of BRP-1901-152 and Cast1/2 1043 

fragments by SRPK1, SRPK1CoreΔlinker and SRPK2Core using γ-[32P]-ATP. 1044 
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Tables 1046 

Table 1. Yeast two-hybrid interactions of SRPK79D and BRP constructs* 1047 

 BRP-1901-152 BRP-190100-360 BRP-190300-850 BRP-190500-1350 BRP-1901201-1786 

SRPK79D + - - - - 

SRPK79DCore + - - - - 

SRPK79DCoreΔlinker1 ++ - - - - 

SRPK79DCoreΔlinker2 ++ - - - - 

 1048 

* Y2H interactions were regarded as reproducible if unique bait vector/prey vector combination 1049 

grew at least in four independent replicas. + – Y2H interactions that were reproducible with one 1050 

bait vector/prey vector combination; ++ – interactions that were reproducible with two bait 1051 

vector/prey vector combinations. 1052 
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Phosphorylation of the Bruchpilot N-terminus unlocks axonal transport 1055 
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Supplementary tables 1082 

Table S1. Overview of in vitro constructs 1083 

Construct Organism Protein Residues Residue exchanges/ 
deletions 

SRPK79D D. melanogaster SRPK79D isoform F 1-869  
SRPK79DCore D. melanogaster SRPK79D isoform F 327-869  
SRPK79DCoreΔDock D. melanogaster SRPK79D isoform F 327-869 D758A, D774A, E781A, K825A 
SRPK79DCore-dead D. melanogaster SRPK79D isoform F 327-869 K376M 
SRPK79DCoreΔlinker1 D. melanogaster SRPK79D isoform F 327-869 Δ570-696 
SRPK79DCoreΔlinker2 D. melanogaster SRPK79D isoform F 327-869 Δ492-696 
SRPK79D1-340 D. melanogaster SRPK79D isoform F 1-340  
BRP-170 D. melanogaster Bruchpilot isoform I 1-1397  
BRP-190 D. melanogaster Bruchpilot isoform G 1-1786  
BRP-190Δ1-152 D. melanogaster Bruchpilot isoform G 153-1786  
BRP-1901-152 D. melanogaster Bruchpilot isoform G 1-152  
BRP-19036-152 D. melanogaster Bruchpilot isoform G 36-152  
BRP-1901-(Δ107-

122)152 
D. melanogaster Bruchpilot isoform G 1-152 Δ107-122 

BRP-1901-152,6SD D. melanogaster Bruchpilot isoform G 1-152 S32D, S34D, S71D, S73D, 
S90D, S118D 

SRPK1 Homo sapiens SRSF protein kinase 1 1-655  
SRPK1CoreΔlinker H. sapiens SRSF protein kinase 1 58-655 Δ256-473 
SRPK2Core Mus musculus SRSF protein kinase 2 

isoform c 
49-682  

Cast21-163 Rattus 
norvegicus 

Cast2a 1-163  

Cast21-353 R. norvegicus Cast2a 1-353  
Cast1 R. norvegicus Cast1 1-957  
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Table S2. Peptide sequences of the BRP-1901-152 SPOT membrane 1085 

No. Peptide Length Position 

1 MSRDDYNPVTSSGVRSPGRVRRLQE 25 1-25 

2 PVTSSGVRSPGRVRRLQELPTVDRS 25 8-32 

3 RSPGRVRRLQELPTVDRSPSRDYGA 25 15-39 

4 RLQELPTVDRSPSRDYGAPRGSPLA 25 22-46 

5 VDRSPSRDYGAPRGSPLAMGSPYYR 25 29-53 

6 DYGAPRGSPLAMGSPYYRDMDEPTS 25 36-60 

7 SPLAMGSPYYRDMDEPTSPAGAGHH 25 43-67 

8 PYYRDMDEPTSPAGAGHHRSRSASR 25 50-74 

9 EPTSPAGAGHHRSRSASRPPMAHAM 25 57-81 

10 AGHHRSRSASRPPMAHAMDYPRTRY 25 64-88 

11 SASRPPMAHAMDYPRTRYQSLDRGG 25 71-95 

12 AHAMDYPRTRYQSLDRGGLVDPHDR 25 78-102 

13 RTRYQSLDRGGLVDPHDREFIPIRE 25 85-109 

14 DRGGLVDPHDREFIPIREPRDRSRD 25 92-116 

15 PHDREFIPIREPRDRSRDRSLERGL 25 99-123 

16 PIREPRDRSRDRSLERGLYLEDELY 25 106-130 

17 RSRDRSLERGLYLEDELYGRSARQS 25 113-137 

18 ERGLYLEDELYGRSARQSPSAMGGY 25 120-144 

19 DELYGRSARQSPSAMGGYNTGMGPT 25 127-151 

20 ARQSPSAMGGYNTGMGPTS 19 134-152 
  1086 
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Supplementary figures 1087 

 1088 

 1089 

Figure S1. Intact protein mass analysis of phosphorylated BRP-1901-152 in a time course 1090 

experiment 1091 

BRP-1901-152 (unphosphorylated, black) was phosphorylated by SRPK79DCore (orange) and 1092 

SRPK79DCoreΔDock (teal). Reactions were stopped by adding SDS sample buffer at certain time 1093 

points and analyzed by MALDI-TOF-MS. Dashed lines in the spectra indicate the number of 1094 

phosphorylation sites. SRPK79DCore phosphorylates BRP-1901-152 faster than SRPK79DCoreΔDock, 1095 

as indicated by higher intensity peaks representing phosphorylated protein at all time points. After 1096 

one hour, both kinase constructs had added at least seven phosphates to BRP-1901-152. 1097 

  1098 

290



 1099 

 1100 

Figure S2. Mass analysis of phosphorylated BRP-190 fragments 1101 

(A-D) Phosphorylation was carried out by SRPK79DCore (orange) and SRPK79DCoreΔDock (teal). (A) 1102 

Both kinases added roughly seven phosphates to BRP-1901-152 (B) BRP-1901-152,6SD (phospho-1103 

mimetic aspartate residues at positions 32, 34, 71, 73, 90 and 118) was phosphorylated at mainly 1104 

one site by both kinase constructs. (C) Phosphorylation of BRP-19036-152, which yielded on 1105 

average five attached phosphates (mass shift of 402 Da), indicated that in the region of residues 1106 

1-35 only two predominant sites are located, probably S32 and S34. (D) Phosphorylation of BRP-1107 

1901-(Δ107-122)152 (deletion of one SRPK binding motif found by our peptide SPOT analysis; Fig 5E) 1108 
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resulted in a total mass shift of 403 Da, indicating five attached phosphates. In summary, these 1109 

results indicate a more complete phosphorylation of S114 compared to S16. 1110 

 1111 

 1112 
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