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Introduction

In its Global Risks Report 2017, the World Economic Forum identifies rising income and

wealth disparity as one of the top five global development trends that potentially causes unem-

ployment, underemployment, and profound social instability (World Economic Forum, 2017).

To counteract this development, it is necessary to quantify inequality and to analyze the distri-

bution of income and wealth. In order to measure inequality and identify factors that signifi-

cantly impact income or wealth, governments and statistical offices collect data by conducting

surveys and censuses. However, collecting data on rather private topics such as income can

lead to high item non-response rates. Therefore, it is tempting for survey designers to collect

information on income using income bands as opposed to detailed income (Micklewright and

Schnepf, 2010). This kind of data is commonly known as interval-censored data, grouped data

or banded data. It is defined as observing only the lower and upper bound of an income vari-

able with its exact value remaining unknown. Collecting only the interval information instead

of continuous data offers a higher degree of data privacy protection to survey respondents,

which lowers response burdens and thus leads to lower item non-response rates and higher data

quality. This kind of data is already being collected by a number of surveys and censuses.

Among them is the biggest annually survey in Europe, the German Microcensus (Statistis-

ches Bundesamt, 2018a), and the censuses of Australia (Australian Bureau of Statistics, 2011),

Colombia (Departamento Administrativo Nacional De Estadı́stica, 2005), and New Zealand

(Statistics New Zealand, 2013).

While data quality is increased, analyzing interval-censored data requires more advanced

statistical methods. This is due to the fact that only the interval information is observed and

the underlying data distribution within each interval remains unobserved. For instance, well-

established and widely used statistical methods, such as linear and linear mixed regression,

require a continuous response variable. Furthermore, formulas to estimate statistical indica-

tors, such as the mean, rely on metric data. While regression models are commonly applied to

analyze income and wage, the estimation of statistical indicators from interval-censored data

is of particular interest for the Federal Statistical Office and the Statistical Offices of the Ger-

man States in order to measure and monitor the regional distribution of poverty and inequality

(Stauder and Hüning, 2004). This work therefore proposes new statistical methodology for

the estimation of linear and linear mixed regression models with an interval-censored response

variable and for the estimation of statistical indicators from interval-censored data, e.g., Ger-

man Microcensus data.
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Introduction

In Part I of the thesis, theory is developed to infer the properties of a population with linear

and linear mixed models using sample data. In particular, in Chapter 1, theory is proposed

to estimate the regression parameter and its standard errors of linear and linear mixed models

with an interval-censored response variable. For the estimation of the parameters, a novel

stochastic expectation-maximization (SEM) algorithm is proposed. In order to estimate the

standard errors of the regression parameters, two different bootstraps are introduced. A non-

parametric bootstrap for the linear regression model and a parametric bootstrap for the linear

mixed regression model. Both the introduced bootstraps account for the additional uncertainty

that is caused by the interval censoring of the dependent variable. The theory is applied to

analyze interval-censored personal income data collected by the German Microcensus with

a linear mixed regression model. By applying the newly proposed methodology, different

components that significantly affect income are discovered.

In Part II, new methodology is proposed for the direct estimation (without covariates) and

the prediction of statistical indicators, for instance, poverty and inequality indicators. For the

direct estimation of statistical indicators, an iterative kernel density algorithm is proposed

in Chapter 2. The proposed algorithm generates metric pseudo samples from the interval-

censored target variable. From these pseudo samples, any statistical indicator of interest can

be estimated. The estimation of the standard errors is facilitated by a non-parametric bootstrap

that accounts for the additional uncertainty coming from the interval censoring. The method

is applied to estimate poverty and inequality indicators at the federal state level from interval-

censored household income data collected by the German Microcensus. For valid indicator

estimates, survey and household equivalence scale weights are incorporated into the algorithm

and used in the analysis.

When samples sizes are small, e.g., in small geographic areas, direct estimators of statis-

tical indicators might be unreliable. Furthermore, some areas of interest might not even be

sampled. In these situations, small area estimation (SAE) methods can provide reliable es-

timates for the desired indicators (Rao and Molina, 2015). One particular SAE method that

has been used in this context is the empirical best predictor (EBP) method (Molina and Rao,

2010). This method is based on the use of a linear mixed regression model estimated with

income as a response variable that is measured on a continuous scale. To enable the use of

the EBP method with an interval-censored response variable, the SEM algorithm proposed in

Chapter 1 is applied to estimate the model parameters in Chapter 3. The EBP method crucially

depends on the normality assumption of the residuals. Therefore, the SEM algorithm is fur-

ther developed to facilitate the use of the data-driven Box-Cox transformation (Box and Cox,

1964). The estimation of the mean squared error of the EBPs is facilitated by a parametric

bootstrap that accounts for the additional variability coming from the uncertainty from estimat-

ing the transformation parameter of the Box-Cox transformation and the uncertainty resulting

from working with limited information due to interval censoring. The newly introduced SEM

algorithm in conjunction with transformations and the modified EBP approach is then used to

estimate disaggregated poverty and inequality indicators from interval-censored income data

in Chiapas, one of the poorest states in Mexico.
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Introduction

In Part III, the implementation of the proposed theory in the programming language R
is presented (R Core Team, 2018). Implementing new methodology is valuable in order to

enable other researchers, data analysts, and practitioners to easily use the newly introduced

statistical theory. Therefore, the theory is implemented in the R package smicd available on

the Comprehensive R Archive Network. In Chapter 4, the package, its functionality, and its

usage is presented in detail.
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Part I

Linear and Linear Mixed Regression
Models with an Interval-Censored

Dependent Variable
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Chapter 1

Estimating Linear Mixed Regression
Models with an Interval-Censored
Dependent Variable using a Stochastic
Expectation-Maximization Algorithm
applied to German Microcensus Data

1.1 Introduction

In statistics, linear and linear mixed regression analysis are approaches for modeling the lin-

ear relationship between a dependent variable y and explanatory variables (or independent

variables) X. While linear regression models only contain fixed effects, linear mixed models

(also called hierarchical linear models or multilevel models) extend linear regression theory by

containing fixed effects and random effects, see for example Goldstein (2003) or Snijders and

Bosker (2011). These kinds of models are applied when the data is not independent – which is a

crucial assumption of linear regression models – but clustered. Linear mixed models allow for

all kinds of clustered data that occurs when measurements are made of related statistical units

(e.g., students within schools or people of different nationalities) or when repeated measure-

ments are made of the same statistical unit (longitudinal data). Since clustered data is common

in many disciplines, linear mixed models are widespread not only in the field of econometrics

and the social science, but also in physics, biology or medicine. Parameter estimates of these

models are commonly obtained by maximum likelihood (ML) or residual (restricted) maxi-

mum likelihood theory (REML) (Lindstrom and Bates, 1990). However, when the dependent

variable is not measured on a continuous scale, but rather censored to specific intervals (also

known as grouped or banded data), standard ML or REML theory cannot be applied without

adjusting for the unobserved data distribution within each interval.

In the field of econometrics and in the social sciences, data is frequently collected as
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CHAPTER 1. ESTIMATING LINEAR MIXED REGRESSION MODELS

interval-censored data because of confidentiality constraints or to avoid item non-response

and thus increase data quality (Micklewright and Schnepf, 2010). Item non-response can be

avoided because interval-censored data offers a higher level of data privacy protection that is

of particular concern if sensitive questions (e.g., about income) are asked in a survey or census

(Moore and Welniak, 2000; Hagenaars and Vos, 1988). Therefore, many surveys and censuses

ask for interval-censored data, for example, the German Microcensus (Statistisches Bunde-

samt, 2017), the Australian census (Australian Bureau of Statistics, 2011), the Colombian cen-

sus (Departamento Administrativo Nacional De Estadı́stica, 2005) and the census from New

Zealand (Statistics New Zealand, 2013). Asking for interval-censored data lowers the amount

of item non-response, but leads to less informative data because the distribution of the data

within each interval remains unobserved.

For dealing with interval-censored dependent variables in the linear regression context,

various approaches and statistical methods are described in the literature. A naive approach

is ordinary least squares regression (OLS) on the midpoints of the intervals (Thompson and

Nelson, 2003). However, this approach leads to biased parameter estimates because the un-

observed distribution of the sample data within each interval is neglected in the estimation

(Cameron, 1987). The performance of this approach depends heavily on the number of in-

tervals. As the number of intervals increases to infinity the bias vanishes (Fryer and Pethy-

bridge, 1972). Another approach is to conceptualize the model as an ordered logit- or probit

regression (McCullagh, 1980). However, this means switching to models with different link

functions, which alters the interpretation of the coefficients. In order to stick to the linear mod-

eling framework and to overcome the drawbacks of OLS regression on the midpoints, there

exists methodology for left-censored (Tobin, 1958), right-censored (or both) (Rosett and Nel-

son, 1975) and grouped (or interval-censored) (Stewart, 1983) dependent variables. Stewart

(1983) describes an algorithm for attaining the maximum likelihood solution when the depen-

dent variable of a linear model is interval censored. The algorithm can be seen as a special

case of the expectation-maximization (EM) algorithm introduced by Dempster et al. (1977).

Therein, monotonic convergence is guaranteed (Burridge, 1981).

For linear mixed models with an interval-censored dependent variable, OLS regression on

the midpoints and conceptualizing the model as an ordered logit- or probit regression is feasible

as well. However, to avoid biased estimation results (OLS regression on the midpoints) or

switching to models with different link functions (logit- or probit regression), we propose a

stochastic expectation-maximization (SEM) algorithm for the parameter estimation in linear

mixed models based on Celeux and Dieboldt (1985) and Celeux et al. (1996). In the SEM

algorithm, the analytical expectation step from the EM algorithm is replaced by the drawing of

pseudo samples. The algorithm can also be applied for parameter estimations in linear models

without random parameters.

The linear (mixed) regression model relies on certain model assumptions, e.g., normal-

ity of the residuals. These assumptions are also valid when the model is estimated with an

interval-censored instead of a continuous dependent variable. When dealing with departures

from the model assumptions, the proposed algorithm allows for the use of transformations on

10



CHAPTER 1. ESTIMATING LINEAR MIXED REGRESSION MODELS

the dependent variable.

For the estimation of the standard errors of the fixed effects, a parametric bootstrap is

proposed that accounts for the additional uncertainty that comes from the interval-censored

dependent variable. The validity of the proposed methodology is demonstrated via several

model-based simulations.

To show the strength and flexibility of the SEM algorithm, it is applied to model income

in Germany using Microcensus data from 2012. The German Microcensus is a representative

sample of the German population with a sample size of about 380,000 households and 820,000

household members that is carried out annually as a replacement for a full census. Since in-

come, the dependent variable in the working model, is interval censored the SEM algorithm is

applied to estimate the parameters of the linear mixed model. With this example, we substan-

tiate that asking for or providing only interval-censored data does not impair valid inference

when working with linear mixed models with an interval-censored response variable.

The paper is structured as follows. In Section 1.2, the German Microcensus data set that

is used in the application is presented. In Section 1.3, the SEM algorithm and the parametric

bootstrap is introduced. In Section 1.4, the method is empirically evaluated by several model-

based simulation studies. In Section 1.5, interval-censored income data is modeled with linear

mixed models based on data from the German Microcensus. And finally, in Section 1.6, the

main results are summarized and further research directions are presented.

1.2 The German Microcensus

The derivation of new statistical methodology for linear mixed regression models is motivated

by the German Microcensus data set that contains interval-censored income data. The German

Microcensus is a survey that is conducted annually by the German Federal Statistical Office

(Statistisches Bundesamt, 2018a). The survey has a long history and was first carried out in

1957 (Statistical Offices of the Federation and the Federal States, 2016). The total sample

size is equal to 1% of the German population. This amounts to about 380,000 households

and 820,000 household members. It is the largest annually conducted household survey in

Europe (Statistisches Bundesamt, 2018b). The large sample size is required to estimate sta-

tistical measures with high accuracy for small subdomains. Hence, for the analysis of small

subdomains, the Microcensus is superior to other, smaller, surveys (Boehle, 2015). The aim of

the Microcensus is to provide data on a regular short-term basis. Topics covered by the sur-

vey are: demographic background, migration, employment, education, and vocational training

(Schwarz, 2001). For most questions, answering is compulsory by law, however, there are also

questions that are answered on a voluntary bases, such as questions about health status, health

insurance, housing situation, and retirement programs (Statistical Offices of the Federation and

the Federal States, 2016). The results are published in several governmental reports, like the

annual report of the German Council of Economic Experts, the employment report, and the

Federal Governments Annual Pension and Insurance report. Furthermore, the data is used to

estimate EU indicators on employment policy (Statistisches Bundesamt, 2018b).
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CHAPTER 1. ESTIMATING LINEAR MIXED REGRESSION MODELS

However, the data is highly valuable not only for governmental institutions but also for

researchers from various fields, e.g., econometrics or the social sciences. Researchers appreci-

ate the Microcensus data set for very low non-response rates and high data quality (Schwarz,

2001). While low non-response rates are guaranteed by mandatory responses for most ques-

tions, high data quality is achieved with face-to-face interviews. Although the Microcensus

is valued by many researchers, analyzing the data properly is problematic when the research

focuses on income. This is due to the fact that both personal and household income are only

observed as an interval-censored variable. Furthermore, the censoring scheme and the number

of intervals has changed over time, which makes the longitudinal analyses even more com-

plicated (Boehle, 2015). Some researchers even say that because of the interval censoring of

the income variable, the Microcensus is unsuitable for valid research on the topic of income

(Stauder and Hüning, 2004).

To overcome these problems, we propose an SEM algorithm that enables the parameter

estimation in linear and linear mixed regression models with an interval-censored response

variable, independently of the censoring scheme. We demonstrate the applicability of the SEM

algorithm in Section 1.5. As a demonstration data set the scientific use file (SUF) of the German

Microcensus from 2012 is used (Statistisches Bundesamt, 2017). The SUF is a 70% sample

of the German Microcensus. In contrast to the original Microcensus data set, some variables

are aggregated to assure anonymity for small subgroups. For example, regional information is

only available on a higher geographical level (federal state level). Also nationalities with less

than 50,000 residents in Germany are aggregated to groups of nationalities (e.g., Belgium and

Luxembourg form a group).

In the application, interval-censored personal income is modeled using a linear mixed re-

gression model. The distribution of the interval-censored income variable is given in Figure

1.1 and in Table 1.5 in Appendix 1.7. It can be seen that the interval widths differ. The lower

intervals are very narrow, while the interval width increases with higher income. For instance,

the first interval is (1, 150] and the penultimate is (10000, 180000]. The last interval is omitted

in the plot because its upper bound is +∞.

In the analysis, we do not aim for a perfect income equation from an economical standpoint.

The focus of this paper is rather on the introduction of new statistical theory and the application

serves as a motivation for its development. Nevertheless, the selection of explanatory variables

is taken seriously and is based on relevant literature on the subject of modeling income and

wage (as a component of income). The Mincer equation is the classical wage equation in the

field of economics. In the Mincer equation, wage is a function of education and experience

(Mincer, 1958, 1974). In its standard version, log wage is modeled and experience is included

as a quadratic term in the equation in order to control for its decreasing marginal effect (Heck-

man et al., 2003; Lemieux, 2006). Many authors have extended the classical Mincer equation

through variables such as region, sex, job, and age (Vijverberg, 1986; Charlotte and Steiner,

1999; Bell et al., 2002; Corrado, 2007). There are also studies on the immigration wage gap in

Germany that point out the need to include identifiers for nationalities (Aldashev et al., 2008).

Based on these studies, the variables education, job, sex, age, region, and nationality described
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CHAPTER 1. ESTIMATING LINEAR MIXED REGRESSION MODELS

in Table 1.1 are included in the working model. The variable experience from the classical

Mincer equation is not included in the working model since it is not collected by the German

Microcensus.

0e+00
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2e−04

3e−04

4e−04

5e−04

0 5000 10000 15000
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D
en

si
ty

Income Distribution German Microcensus

Figure 1.1: Interval-censored personal net income distribution of the German Microcensus.
Since the upper bound of the upper interval is +∞ it is omitted for visualization purposes.

Table 1.1: Variables from the SUF of the German Microcensus used in the application.

Variable name Description
Dependent variable:
Income Interval-censored personal net income from last month
Independent variables:
Education Level of education measured on the International Standard

Classification of Education (ISCED) scale from 1997
Job Job status measured on the international Standard

Classification of Occupations (ISCO-08) scale
Sex Sex (male or female)
Age Age
Region East Germany, West Germany, Berlin
Random intercept:
Nationality First foreign nationality

Nationality is included as random intercept vj to control for the within-cluster correlation

in the data. We have decided against including it as a fixed parameter because we are not

interested in interpreting its effect. Furthermore, age is included as a squared term to control

for its decreasing marginal effect. The linear mixed model is given by

log(Incomeij) = β0 + β1Educationij + β2Jobij + β3Sexij

+ β4Ageij + β5Age2ij + β6Regionij + vj + eij ,

for i = 1, . . . , nj and j = 1, . . . , D, where nj is the number of people with nationality j

and D is equal to the number of different nationalities in the data set. After the exclusion of

unemployed people (no income from work), observations with missing values, and nationalities

13



CHAPTER 1. ESTIMATING LINEAR MIXED REGRESSION MODELS

which cannot be uniquely identified, the number of observations equals ntotal =
∑29

j=1 nj =

311659 from 29 different identifiable nationalities in the sample. Some nationalities are not

uniquely identifiable due to the mentioned anonymity constraints of the SUF.

Detailed descriptive statistics for the explanatory variables are given in Table 1.11, 1.12,

1.13, 1.14 and Table 1.15 in Appendix 1.7. The educational level ISCED 3b (apprenticeship

or vocational qualifying degree at a full-time vocational school, annual school of health care)

is attained by the largest amount of people in the sample (45.4%), while the highest level of

education ISCED 6 (doctorate) is only attained by 2.2% of the people in the sample. The

variable job is measured on the ISCO-08 scale. The modus of the variable is Technicians and

Associate Professionals with 25.8% of the respondents working in that field. In the analysis,

it is expected that a higher level of education has a positive effect on income. Furthermore,

people that work in a job with a higher status, e.g., managers, are expected to earn more. It

is notable that 74.8% of the sample are male, while only 25.2% are female. This is due to

the fact that personal income is only measured for the head of the household, who is mostly

male. We expect higher income for males than for females (gender pay gap). The minimum

age in the data set is 16, the maximum is 93, and the median 45. In the sample data, 80.8%

live in the West, 15.4% in the East, and 3.8% in Berlin. The East is defined as the federal

states of the former German Democratic Republic. All other states belong to the category

West, except the federal state Berlin. Since Berlin is the only federal state that was divided

between East and West, an extra category is defined for it. Since the East includes the states

from the former German Democratic Republic, incomes are expected to be lower than in the

West. Also, descriptive statistics for nationality, the variable specified as random intercept, are

given in Table 1.16 in Appendix 1.7. Not surprisingly, the nationality of most people is German

(91.5%).

The estimation of the model parameters with the SEM algorithm and the interpretation of

the results is conducted in Section 1.5.

1.3 Methodology

In the next two sections, the new methodology is introduced. In Section 1.3.1, we propose an

SEM algorithm for parameter estimations in linear and linear mixed models with an interval-

censored response variable. In Section 1.3.2, we present a parametric bootstrap for the esti-

mation of the standard errors of the fixed effects that accounts for the interval censoring of the

dependent variable.

1.3.1 Parameter estimation

The linear mixed model is a generalization of the linear model that allows for additional random

deviations (effects) besides the random error term. In the classical linear mixed model, the

dependent variable is observed on a continuous scale. Following Laird and Ware (1983), the
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model can be written in matrix notation as

y = Xβ + Zv + e, (1.1)

where y is aN×1 column vector of the dependent variable,N is the sample size, X is aN×p
matrix where p is equal to the number of predictors, β is a column vector of the fixed effects

regression parameters of size p × 1, Z is the N × q design matrix with q random effects, v is

a q × 1 vector of random effects and e is the residual vector of size N × 1. The distribution of

the random effects is given by

v ∼ N(0,G), where G =


σ20 σ01 . . . σ0q

σ10 σ21 . . . σ1q
...

...
. . .

...

σq0 σq1 . . . σ2q

 ,

and the distribution of the residuals is given by e ∼ N(0,R) with R = INσ
2
e where IN is

the identity matrix and σ2e is the residual variance. Furthermore, the random effects v and

the residuals e are assumed to be independent. The fixed linear predictor, as in standard OLS

regressions, is given by Xβ. The random part of the model is given by Zv + e. The vector

of random effects v is not directly estimated (it can be predicted). Instead, the variance com-

ponents of G as well as the residual variance σ2e are estimated. The design matrices X and Z

enable the flexible modeling of a variety of linear models, e.g., block designs or different hi-

erarchical designs. In order to control for correlation within clusters, random intercepts and/or

random slopes can be included into the model, e.g., to control for students within the same

schools or for people from different nationalities. The variance covariance matrix G makes

it possible to incorporate different correlation structures between the random slope and inter-

cept. Furthermore, through a general formulation of R, it can be controlled for heteroscedastic

and correlated residuals. For a more detailed introduction of mixed models, see Searle et al.

(1992); Verbeke and Molenberghs (2000); Pinheiro and Bates (2000); Raudenbush and Bryk

(2002); Demidenko (2004); McCulloch et al. (2008); Snijders and Bosker (2011). When the

dependent variable is measured on a continuous scale, estimation is usually facilitated by ML

or REML methods (Lindstrom and Bates, 1990). However, when the dependent variable is

interval censored, standard estimation methods cannot be applied without adjustment.

Consider that the only observed information concerning the dependent variable y is that

it falls into a certain interval on a continuous scale. Thus, the continuous scale is divided

into nk intervals of varying width, where the k-th interval is given by (Ak−1, Ak), with Ak−1

being the lower and Ak the upper bound of each interval. The variable k (1 ≤ k ≤ nk)

indicates into which of the nk intervals an observation falls, with k being a N × 1 column

vector k = (k1, k2, . . . , kN )T . Depending on the application, the outer intervals might be

open-ended, i.e., A0 = −∞ and Ank = +∞ are possible. This kind of censoring leads to a

loss of information, because the distribution of the sample data within each interval remains

unobserved. Therefore, we start by reconstructing the distribution of the unobserved y, using
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the observed group identifier k and the linear relationship stated in Model (1.1). To reconstruct

the unknown distribution f(y|X,Z,v,k,θ), where θ = (β,R,G), the Bayes theorem (Bayes,

1763) is applied. It follows that

f(y|X,Z,v,k,θ) =
f(k|y,X,Z,v,θ)f(y|X,Z,v,θ)

f(k|X,Z,v,θ)

∝ f(k|y,X,Z,v,θ)f(y|X,Z,v,θ).

Additionally f(k|y,X,Z,v,θ) = f(k|y) because the conditional distribution of k only de-

pends on y. It is given by f(k|y) = r with r being aN×1 column vector r = (r1, r2, . . . , rN )T

with

ri =

1 if Ak−1 ≤ yi ≤ Ak,

0 else,

for i = 1, . . . , N . The conditional distribution of y equals

f(y|X,Z,v,θ) ∼ N(Xβ + Zv,R).

This follows directly from the priorly-stated assumptions of the linear mixed model. The un-

known model parameters θ = (β,R,G) are estimated using pseudo samples ỹ (maximization-

step) of the unknown y that are iteratively drawn from the conditional distribution

f(y|X,Z,v,k,θ) (stochastic-step). The computational details of the SEM algorithm are given

below.

Computational details

To fit Model (1.1) with an interval-censored response, the parameter vector θ̂ = (β̂, R̂, Ĝ)

is estimated and pseudo samples of y are iteratively drawn by the following algorithm. The

pseudo samples are drawn from the following conditional distribution:

f(y|X,Z,v,k,θ) ∝ I(Ak−1 ≤ y ≤ Ak)×N(Xβ + Zv,R),

where I(·) denotes the indicator function. So, for observations with explanatory variables X,

the corresponding ỹ is randomly drawn fromN(Xβ+Zv,R) conditional on the given interval

(Ak−1 ≤ y ≤ Ak). The conditional distribution f(y|X,Z,v,k,θ) has the form of a two-sided

truncated normal distribution. Once θ̂ is estimated its probability density function is given by

f̂(y|X,Z, v̂,k, θ̂) =
φ
(
y−µ̂
σ̂e

)
σ̂e

(
Φ
(
Ak−µ̂
σ̂e

)
− Φ

(
Ak−1−µ̂

σ̂e

)) ,
with µ̂ = Xβ̂ + Zv̂, where φ(·) is the probability density function of the standard normal

distribution and Φ(·) is its cumulative distribution function. By definition, Φ
(
Ak−µ̂
σ̂e

)
= 1 if

Ak = +∞ and Φ
(
Ak−1−µ̂

σ̂e

)
= 0 ifAk−1 = −∞. The explicit steps of the algorithm are given
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by:

1. Estimate θ̂ = (β̂, R̂, Ĝ) of Model (1.1) using the midpoints of the intervals as a substi-

tute for the unknown y. The joint density of y and v is equal to f(y,v) = f(y|v)f(v).

The parameters are estimated by maximizing the joint density with respect to β and v

simultaneously using REML (Thompson, 1962).

2. Stochastic step: For i = 1, . . . , N , sample from the conditional distribution

f(y|X,Z,v,k,θ) by drawing randomly fromN(Xβ̂+Zv̂, R̂) within the given interval

(Ak−1 ≤ y ≤ Ak) (a two-sided truncated normal distribution) obtaining (ỹ,X,Z). The

drawn pseudo ỹ are used as a replacement for the unobserved y.

3. Maximization step: Re-estimate the vector θ̂ of Model (1.1) using the pseudo samples

(ỹ,X,Z) obtained in Step 2. Parameter estimation is carried out by REML, as in Step

1.

4. Iterate Steps 2-3B(SEM)+M (SEM) times, withB(SEM) burn-in iterations andM (SEM)

additional iterations.

5. Discard the burn-in iterations and estimate θ̂ by averaging the obtained M (SEM) esti-

mates.

In the presence of open-ended intervals A0 = −∞ and Ank = +∞, the midpoints M1 and

Mnk for the open-ended intervals in iteration Step 1 are computed as follows:

M1 = (A1 −D)/2,

Mnk = (Ank−1 +D)/2,

where,

D =
1

(nk − 2)

nk−1∑
k=2

|Ak−1 −Ak|.

Simulation results show that the choice of the midpoints for the open-ended intervals, has no

impact on the estimation results. This is due to the fact that these midpoints only serve as a

proxy for the first iteration step. In the case of open-ended intervals it is drawn from a one-sided

truncated normal distribution after the first iteration step.

As for linear models, the normality assumption of the residuals is also crucial for linear

mixed models in order to obtain estimation results that allow for valid inference. This holds

true for models with a continuous dependent variable as well as for models with an interval-

censored dependent variable. To obtain normality, a logarithmic transformation is commonly

applied to the dependent variable log(y) in the linear regression context, especially for wage or

income equations. When the dependent variable is interval censored and the SEM algorithm is

used, the logarithmic transformation can be applied by transforming the interval bounds before

iteration Step 1. Thus, the nk intervals, where the k-th interval is given by (Ak−1, Ak) are

simply transformed by taking the logarithm (log(Ak−1), log(Ak)). If any interval bound is
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negative the intervals have to be shifted to the positive region in order to ensure all interval

bounds are non-negative before applying the log transformation. Lower or upper open-ended

intervals, e.g., A0 = −∞ or Ank = +∞ do not need to be transformed, they remain open-

ended since pseudo ỹ are drawn from a one-sided truncated normal distribution as previously

described. After the transformation of the interval bounds, the SEM algorithm is applied to the

transformed intervals as stated before.

The proposed algorithm estimates the parameters of a linear mixed model with an interval-

censored dependent variable. Another popular and often remarkably simple method (Meng

and Rubin, 1991) for estimating parameters using the ML method in models with incomplete

(unobserved or missing) data is the EM algorithm introduced by Dempster et al. (1977). Based

on the EM algorithm, Stewart (1983) introduced an ML estimator for linear regression models

for which convergence is guaranteed (Burridge, 1981). However, the EM algorithm is hard to

implement whenever the expectation in the expectation step has a complex form (Yang et al.,

2016). Furthermore, the EM algorithm might need many iterations to convergence (Ruud,

1991). The SEM algorithm, introduced as an extension of the classical EM algorithm in Celeux

and Dieboldt (1985) and Celeux et al. (1996), simply replaces the expectation step of the EM

algorithm with a stochastic approximation (the stochastic step). Based on Celeux and Dieboldt

(1985) and Celeux et al. (1996), our proposed approach can be seen as an SEM algorithm,

where Step 2 of the algorithm is the stochastic step and Step 3 is the maximization step. A

similar SEM algorithm has already been applied for kernel density estimation on aggregated

data in Groß et al. (2017) and Walter and Weimer (2018). The SEM algorithm has the advantage

of providing more information about the data (Diebolt and Ip, 1996), since in contrast to the EM

algorithm, the SEM algorithm maximizes the complete data log-likelihood in the maximization

step (Celeux et al., 1996). In contrast to classical EM algorithms, the SEM algorithm does not

underestimate the variance of the unknown y. Furthermore, the SEM algorithm can easily be

implemented in parallel computing environments to minimize computational time (Meng and

Rubin, 1991).

The described theory can also be applied to the estimation of linear models with an interval-

censored dependent variable without additional random parameters. In this case, the condi-

tional distribution f(y|X,Z,v,θ) simplifies to f(y|X,β, σ2e) ∼ N(Xβ, σ2e), because there

are no random effects in the model. Hence, in the algorithm it is again iteratively drawn from

a two-sided truncated normal distribution.

In this paper, the SEM algorithm is formulated for the case that all unobserved continuous

observations are interval censored by the same interval bounds. However, the algorithm can

also be extended to situations in which every observation has its own unique interval bounds.

This can lead to overlapping intervals and to gaps between different intervals. However, this

does not impede the use of the SEM algorithm, because a properly adjusted SEM algorithm

would simply draw from the unique intervals. Also, situations in which only some obser-

vations are censored and others are observed on a continuous scale can be handled by the

proposed SEM algorithm. In this scenario, the SEM algorithm only draws pseudo samples

for the interval-censored observations and the continuous observations stay constant during the
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iterations of the SEM algorithm.

1.3.2 Estimation of standard errors

In this section, a parametric bootstrap for the estimation of the standard errors of the fixed

effects that accounts for the additional variability coming from the interval-censored response

variable is introduced. In linear mixed models, the standard errors of the fixed effects are

commonly estimated by the inverse of the Fisher information matrix (Pinheiro and Bates, 2000;

Verbeke and Molenberghs, 2000). When the SEM algorithm is used to estimate the fixed effects

because the dependent variable is interval censored, a linear mixed model is fitted to a new

set of pseudo samples (ỹ,X,Z) in each of the B(SEM) + M (SEM) maximization steps (see

Section 1.3.1). However, estimating the standard errors of the final β̂ by simply averaging the

standard errors obtained by the inverse of the Fisher information matrix from each iteration

step would lead to erroneous results. Since simple averaging neglects the additional variation

of β̂ between the B(SEM) + M (SEM) iteration steps (the between variance), this approach

leads to underestimated standard errors.

A way to successfully consider the additional variation due to the interval-censored re-

sponse variable is the application of a suitable bootstrap method. Bootstrapping is a resampling

method that enables the estimation of standard errors and confidence intervals when no explicit

formula is available, or applicable, as in the case of the SEM algorithm. Bootstrapping was

introduced by Efron (1979) and further developed by Efron and Stein (1981); Efron (1982);

Efron and Tibshirani (1986, 1993). Existing bootstrap methods can be divided into two main

categories: non-parametric and parametric. Non-parametric bootstraps replace the unknown

original distribution by the empirical distribution of the sample (Ette, 1997), while parametric

bootstraps reconstruct the unknown original distribution from data that is generated by a para-

metric model (Wu, 1986; Davison and Hinkley, 1997; Wehrens et al., 2000). To estimate the

standard errors in the SEM context, we propose the use of a parametric bootstrap. This boot-

strap approach shows promising results in the literature (Wang et al., 2006; Thai et al., 2013)

as well as in the conducted simulation study in Section 1.4. The bootstrap is further extended

to account for the additional uncertainty that comes from the interval-censored dependent vari-

able. For this, each continuous bootstrap sample is interval censored according to the original

intervals. The parametric bootstrap in the SEM context is described by the following iteration

steps:

1. Run the SEM algorithm to obtain θ̂ = (β̂, R̂, Ĝ).

2. Generate a bootstrap sample y∗ = Xβ̂ + Zv∗ + e∗, by randomly sampling from v∗ ∼
N(0, Ĝ) and e∗ ∼ N(0, R̂).

3. Divide the continuous bootstrap sample of y∗ into nk intervals, where the k-th interval

is given by (Ak−1, Ak). This step is necessary to account for the additional uncertainty

coming from the interval-censored dependent variable.

4. Run the SEM algorithm and obtain the bootstrap parameter estimates β̂∗
b .
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5. Iterate Steps 2-4 b = 1, . . . , B times.

The bootstrap standard errors are given by

SE(β̂) =

√√√√ 1

B − 1

B∑
b=1

(β̂∗
b − β)2,

where

β =
1

B

B∑
b=1

β̂∗
b .

Any bootstrap confidence interval can be estimated by using the percentiles of the bootstrap

distribution
(
β̂∗
(α/2), β̂

∗
(1−α/2)

)
, where β̂∗

(1−α/2) is equal to the 1−α/2 percentile of the boot-

strapped coefficients β̂∗
b (Davison and Hinkley, 1997; Carlin and Louis, 2000). In the linear

regression context, without random parameters, the standard errors can be estimated with a

standard non-parametric bootstrap. For linear and linear mixed regression, the SEM algorithm,

the non-parametric and the parametric bootstrap are available in the R package smicd from

the Comprehensive R Archive Network (Walter, 2018).

1.4 Simulation study

In this section, a Monte Carlo simulation study is conducted to asses the performance of the

proposed SEM algorithm. The aim of the simulation study is to evaluate the estimated fixed

effects obtained by the SEM algorithm and its bootstrapped standard errors under different

settings.

The data in the simulation study is generated by three different models. The models in Set-

ting (A) and (C) closely follow the simulation study in Geraci and Bottai (2014); Tzavidis et al.

(2016) and Borgoni et al. (2018), while the model in Setting (B) generates a skewed dependent

variable that mimics a typical income distribution. The generated continuous data of the depen-

dent variable is interval censored in order to apply the SEM algorithm. The goal of Setting (A)

is to evaluate the effect of a different number of intervals on the estimation results of the fixed

effects and its standard errors. Therefore, the dependent variable is censored to six, 12, and 24

intervals. The number of intervals are chosen with regards to other censuses. While the Ger-

man Microcensus collects data on 24 intervals, the census from New Zealand collects income

censored to 16 intervals (Statistics New Zealand, 2013) and the Australian census collects data

that is censored to only 12 intervals (Australian Bureau of Statistics, 2011). With six intervals

we chose an even more extreme scenario to present the performance of the SEM algorithm

in such situations. It is expected that naive approaches like the midpoint regression perform

substantially worse in such scenarios in comparison to the SEM algorithm. The distribution of

the interval-censored dependent variable is given in Appendix 1.7 in Tables 1.6, 1.7 and 1.8. In

Setting (B) and (C), the dependent variable is censored to 12 intervals since this number repre-

sents a realistic, not too extreme, censoring scheme. The distribution of the dependent variable

in Setting (B) is presented in Figure 1.2 and in Table 1.9 in Appendix 1.7. It can be seen that
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the interval width increases with increasing yij , comparable to the German Microcensus. The
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Figure 1.2: Interval-censored distribution of yij from Setting (B). Since the upper bound of the
upper interval is +∞ it is omitted for visualization purposes.

goal of Setting (B) is to study the performance of the SEM algorithm in a scenario in which

the linear mixed model assumptions are not fulfilled, e.g., the residuals are not normally dis-

tributed. This is often observed for income or wage equations. The violated model assumptions

make the use of a transformation such as the logarithmic transformation necessary. Therefore,

the SEM algorithm is applied to the log-transformed interval bounds. Setting (C) is chosen to

evaluate the SEM algorithm under a more complex linear mixed model. Hence, the model in

Setting (C) includes a random slope and a random intercept. The distribution of the interval-

censored dependent variable is given in Table 1.10 in Appendix 1.7. The data is generated

under the following three models:

• Setting (A)

yij = 100 + 2xij + vj + eij , i = 1, . . . , nj , j = 1, . . . , 100

• Setting (B)

yij = exp(10− xij + vj + eij), i = 1, . . . , nj , j = 1, . . . , 100

• Setting (C)

yij = 100 + (2 + zj)xij + vj + eij , i = 1, . . . , nj , j = 1, . . . , 100

In all three settings, the group-specific sample size nj is kept constant over the Monte Carlo

replications and varies between five and 20. This leads to a total sample size of ntotal =∑100
j=1 nj = 1259. In Setting (A) and (C), the independent variable xij is uniformly distributed

U [0, 20], the random intercept vj ∼ N(0, 3) and eij ∼ N(0, 5) with vj and eij being indepen-

dent. The random slope parameter zj in Setting (C) is zj ∼ N(0, 2) and the correlation between

vj and zj is set to 0.40. In Setting (B) xij ∼ N(0, 0.5), the random intercept vj ∼ N(0, 0.16)
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and eij ∼ N(0, 0.8) with vj and eij being independent.

In all three settings, the model parameters are estimated by different estimation methods.

First, the SEM algorithm, abbreviated by SEM, is applied for the parameter estimation with

B(SEM) = 40 burn-in and M (SEM) = 200 additional iterations. Convergence is checked

visually for randomly chosen simulation runs for all three settings by plotting the parameter

estimates for each iteration step of the SEM algorithm. In all of the checked simulation runs

convergence of the SEM algorithm is achieved. The issue of checking convergence as a prac-

titioner is discussed in more detail in Section 1.5. The performance of the SEM algorithm

is compared to other estimation methods that can be applied when the dependent variable is

interval censored. The first competing method assigns each unobserved yij to its correspond-

ing interval midpoint and simply estimates the regression parameters based on these midpoints

using REML. This approach is abbreviated by MID. The second competing estimator (INT)

is the method proposed by Stewart (1983) and implemented in the R package intReg from

Toomet (2015). The proposed EM algorithm attains the maximum likelihood parameter esti-

mates when the dependent variable is interval censored. Since the method is only available for

models without random effects, it ignores the random effects dependent structure. Hence, the

method INT does not account for the clustering of the data. Furthermore, the estimates of the

linear mixed model (LME) with the uncensored continuous dependent variable are used as a

reference model. LME can be seen as the gold standard because it uses the full information of

the dependent variable (the observed sample yij). In Setting (B), all methods are applied to the

log-transformed dependent variable or to the log-transformed intervals, respectively, to assure

that the normality assumption of the residuals is fulfilled.

The performance of the discussed methods is evaluated by estimating the relative bias (RB)

and the relative efficiency (EFF) of the fixed effects. For each setting M = 500 Monte Carlo

samples are generated independently by the described models. The RB is given by

RB
(
β̂
)

=
1

M

M∑
m=1

(
β̂(m) − β

β

)
× 100,

where β̂(m) is the estimated fixed effect of iteration step m and β is the corresponding true

value. The relative efficiency EFF is defined as

EFF
(
β̂
)

=
s2model(β̂)

s2LME(β̂)
,

where s2(β̂) = M−1
∑M

m=1(β̂
(m) − β)2 and β = M−1

∑M
m=1 β̂

(m). The estimates of LME

are used as a reference model in the denominator because they are based on the continuous

dependent variable (the observed yij). In the numerator, the estimates of the proposed SEM

algorithm and the estimates of the competing methods INT and MID are plugged in.

The number of bootstrap samples for the estimation of the standard errors of the fixed

effects is set to B = 500. The performance of the bootstrapped standard errors is evalu-

ated by reporting averages over simulations of the empirical (Monte Carlo) standard errors
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SE(β̂) =

√
M−1

∑M
m=1(β̂

(m) − β)2 and the estimated standard errors of the fixed effects.

The simulation results for the fixed effects are given in Table 1.2 and for the standard errors

in Table 1.3. The results are discussed in detail in the following subsections.

Table 1.2: Estimation results of the RB, the EFF and the point estimate for the fixed effects
averaged over the 500 Monte Carlo samples for the different settings and the 4 different esti-
mation methods.

β̂0 β̂1
RB EFF β̂0 RB EFF β̂1

Setting (A) - 6 intervals
LME 0.0072 1.0000 100.0072 -0.0419 1.0000 1.9992
SEM 0.0368 1.5402 100.0368 -0.1889 2.2434 1.9962
MID -18.4089 44.3905 81.5911 72.9730 69.7612 3.4595
INT 0.0088 1.8337 100.0088 -0.0787 2.7488 1.9984

Setting (A) - 12 intervals
LME 0.0072 1.0000 100.0072 -0.0419 1.0000 1.9992
SEM 0.0078 1.1142 100.0078 -0.0556 1.3006 1.9989
MID -5.0185 20.0462 94.9815 19.1119 33.0699 2.3822
INT 0.0025 1.3922 100.0025 -0.0605 1.7834 1.9988

Setting (A) - 24 intervals
LME 0.0072 1.0000 100.0072 -0.0419 1.0000 1.9992
SEM 0.0048 1.0339 100.0048 -0.0413 1.0816 1.9992
MID -1.7530 8.6745 98.2470 6.5016 13.5934 2.1300
INT 0.0019 1.3107 100.0019 -0.0567 1.5463 1.9989

Setting (B) - 12 intervals
LME Log -0.1269 1.0000 9.9873 -0.4975 1.0000 -0.9950
SEM Log -0.1181 1.0727 9.9882 -0.4504 1.0931 -0.9955
MID Log 1.8681 1.3730 10.1868 10.6633 1.6880 -1.1066
INT Log -0.0749 1.4420 9.9925 -0.2422 1.5100 -0.9976

Setting (C) - 12 intervals
LME 0.0017 1.0000 100.0017 0.5229 1.0000 2.0105
SEM 0.0192 1.3264 100.0192 0.3549 1.0260 2.0071
MID -0.4420 3.8319 99.5580 0.4657 1.1755 2.0093
INT -0.0786 5.1123 99.9214 0.9418 1.3299 2.0188

Setting (A)

Setting (A) serves to analyze the effect of the number of intervals the dependent variable is

censored to on the estimation results of the fixed effects. Estimating the model parameters with

the observed continuous dependent variable (LME) yields, as expected, unbiased estimation

results (see Table 1.2). Furthermore, applying the proposed SEM algorithm and INT in order
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Table 1.3: Estimation results of the empirical and the estimated standard error averaged over
the 500 Monte Carlo samples using the SEM algorithm for all settings.

β̂0 β̂1
Empirical Estimated Empirical Estimated
standard standard standard standard

error error error error
Setting (A) - 6 intervals 0.2669 0.2548 0.0171 0.0167
Setting (A) - 12 intervals 0.2270 0.2288 0.0130 0.0129
Setting (A) - 24 intervals 0.2187 0.2206 0.0118 0.0117
Setting (B) - 12 intervals 0.1374 0.1359 0.0521 0.0510
Setting (C) - 12 intervals 0.2656 0.2471 0.1040 0.1035

to estimate the model parameters with an interval-censored dependent variable gives unbiased

estimation results for all three censoring schemes of Setting (A). These results are anticipated

because theoretically both methods give unbiased estimation results whenever the model as-

sumptions are fulfilled. However, the SEM algorithm is more efficient than INT for all three

censoring schemes. This is expected because INT neglects the unobserved heterogeneity com-

ing from the clustered data. As the number of intervals increases, the efficiency of the SEM

algorithm also increases because more information is available for the estimation of the param-

eters. For the 24-interval scenario, the SEM algorithm is almost as efficient as LME. The MID

method gives heavily biased and inefficient results for all three censoring scenarios. This is due

to the fact that the MID method does not account for the unobserved distribution of the data

within each interval. The results from Setting (A) demonstrate the ability of the SEM algorithm

to efficiently account for the clustered structure of the data under different censoring scenarios.

In order to evaluate the bootstrapped standard errors of the fixed effects, the estimated stan-

dard errors are compared to the empirical standard errors. From Table 1.3, it can be observed

that the parametric bootstrap offers a good approximation of the fixed effects standard errors

for all censoring schemes. As expected, the standard errors increase when the number of inter-

vals decreases due to the additional uncertainty coming from the fewer interval bounds that are

used in the estimation process of the SEM algorithm.

Setting (B)

Setting (B) is set up to evaluate the SEM algorithm under the logarithmic transformation. The

findings are comparable to Setting (A). The methods LME, SEM, and INT provide unbiased

estimation results for the fixed effects. However, since INT neglects the clustered structure of

the data, the SEM algorithm that accounts for the clustering is more efficient. Even though

the dependent variable is interval-censored to only 12 intervals, the SEM algorithm is almost

as efficient as LME. Again, using the midpoints of the intervals as proxy for the unobserved

distribution of the data within each interval yields biased and inefficient results.

The evaluation of the standard errors (see Table 1.3) provides evidence that the proposed

parametric bootstrap can also be applied under transformation.
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Setting (C)

Finally, Setting (C) serves to evaluate the performance of the SEM algorithm under a more

complex linear mixed model (random slope and random intercept). The estimation results for

the fixed effects are unbiased for LME, SEM, and INT. The superiority of the SEM algorithm

is expressed in the large efficiency advantage compared to INT. This result is expected because

the interval regression neglects the random slope and intercept from the true data-generating

process. The midpoint regression only exhibits a small bias in this setting. However, this is just

an artefact of the censoring scheme that favors, in this particular set up, the midpoint regression.

This result does not provide evidence that the midpoint regression yields reliable fixed effects

parameter estimates for linear mixed models. In fact, in Cameron (1987) it is shown that the

midpoint regression gives biased estimation results.

As for Setting (A) and (B), the parametric bootstrap provides a good approximation for the

standard errors of the fixed effects (see Table 1.3).

Overall, the simulation results provide empirical evidence that the SEM algorithm gives un-

biased estimation results for different data-generating processes and various censoring schemes.

Furthermore, the SEM algorithm is more efficient than the competing methods because it ac-

counts for the clustered structure of the data. The proposed parametric bootstrap for the esti-

mation of the standard errors of the fixed effects accounts well for the additional uncertainty

coming from the interval-censored dependent variable.

In the next section, the SEM algorithm is applied to data from the German Microcensus.

1.5 Application: German Microcensus

In this section, the SEM algorithm is applied to model income with data from the German

Microcensus. The data and the estimation problem are described in detail in Section 1.2. As

presented in Section 1.2, the logarithm of the interval-censored net income variable is modeled

by a linear mixed regression model. The explanatory variables education, job, sex, age, region,

and the variable specified as random intercept (nationality) are also described in Section 1.2.

In order to estimate the model parameters, the SEM algorithm is applied with 40 burn-in

and 200 additional iterations. To assure convergence of the SEM algorithm the convergence

of all parameters is visually checked. Exemplary, the convergence plots for the regression

parameter female and age are given in Figure 1.3. In these plots, the estimated coefficient (y-

axis) is plotted for each iteration step (x-axis) of the SEM algorithm. From the plot, it can be

seen that the parameters have converged.

The number of bootstrap samples for the estimation of the standard errors is set to 500,

similar to the number of bootstrap samples in the simulation study conducted in Section 1.4.

The estimated linear mixed model is presented in Table 1.4. The marginal R-square of the

model is 0.41 and the conditional R-square is 0.46, thus the random intercept increases the

model fit by 0.05 (Nakagawa and Schielzeth, 2013; Johnson, 2014). The intraclass correlation

coefficient (ICC) that measures the correlation among people with the same nationality is 0.23.

Thus, the clustered structure of the data should not be neglected and the use of a linear mixed
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Figure 1.3: Convergence plots of the estimated fixed effects.

model is justified. All of the above measures are estimated as averages over the iteration runs

of the SEM algorithm. With regard to the gender pay gap, it can be seen that being female

rather than male lowers income, on average, by 28% holding all other regressors constant. Not

surprisingly, by looking at education it can be noted that, on average, a higher educational

achievement increases income. Also, people with a management job position have, on average,

the highest income among all job categories. As commonly described in the literature, there

is a significant East West income gap in Germany (Blum et al., 2010). People from the East

(formerly German Democratic Republic GDR) have, on average, a 26% lower income than

people from the West (base category). The age of a person has, on average, a positive effect

on income, but with decreasing marginal effects (negative coefficient for age squared). This

result is plausible because people reduce working hours or work in part-time jobs more often

when they get older. The bootstrapped 95% confidence intervals indicate that all estimated

fixed effects have a significant impact on income.

The presented application shows how the proposed methodology enables researchers to an-

alyze interval-censored income data from the German Microcensus with linear mixed regres-

sion models. While the analysis presents some initial interesting insights into the explanation

of income, the income equation can be further developed and improved by experts from the

field of wage and income modeling. The analysis was conducted with the R package smicd

(Walter, 2018).
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Table 1.4: Estimation results obtained by the SEM algorithm for the linear mixed model fitted
to German Microcensus data.

Fixed Effects Estimates CI LB+ CI UB+

(Intercept) 6.35443 6.13609 6.58860
Male (Base category)

Female -0.28101 -0.28438 -0.27760
ISCED 1 (Base category)

ISCED 2 0.05860 0.04654 0.06966
ISCED 3c 0.36520 0.34621 0.38485
ISCED 3a 0.01348 0.00040 0.02743
ISCED 3b 0.19238 0.18114 0.20212
ISCED 4a, b 0.29086 0.27901 0.30291
ISCED 5b 0.33089 0.31910 0.34264
ISCED 5a 0.51163 0.49962 0.52200
ISCED 6 0.83952 0.82386 0.85510

West (Base category)
East -0.26320 -0.26772 -0.25898
Berlin -0.17841 -0.18631 -0.17129

Age 0.05702 0.05605 0.05787
Age squared -0.00057 -0.00058 -0.00056
Manager (Base category)

Professionals -0.15501 -0.16233 -0.14794
Technicians and Associate
Professionals -0.26021 -0.26645 -0.25374
Clerical Support Workers -0.30240 -0.31010 -0.29525
Services and Sales Workers -0.46191 -0.46928 -0.45430
Skilled Agricultural, Forestry
and Fishery Workers -0.56141 -0.57770 -0.54567
Craft and Related Trades Workers -0.40545 -0.41212 -0.39827
Plant and Machine Operators
and Assemblers -0.44183 -0.44932 -0.43413
Elementary Occupations -0.61204 -0.62105 -0.60279
Armed Forces Occupations -0.06635 -0.08708 -0.04585

Random Effects Variance SD ICC
Nationality (Intercept) 0.01498 0.12239
Residuals 0.16055 0.40068 0.23393
Marginal R-squared: 0.410 Conditional R-squared: 0.460
+CI = 95% confidence interval, LB = lower bound, UB = upper bound
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1.6 Discussion

In surveys or censuses, income data is often only observed as an interval-censored variable due

to confidentiality constraints or in order to decrease item non-response. This is also the case for

the largest survey in Europe, the German Microcensus. In this paper, statistical methodology

is proposed that enables the estimation of linear and linear mixed models with an interval-

censored dependent variable. The proposed methodology is motivated by EM algorithms that

are often used to estimate model parameters with ML theory from incomplete data (in our case

the interval-censored dependent variable). The introduced SEM algorithm is a further develop-

ment of the EM algorithm that replaces the unobserved (interval-censored) dependent variable

in each iteration step with a continuous pseudo sample. From these continuous pseudo sam-

ples, the linear mixed model parameters are estimated. The estimation of the standard errors

of the fixed effects is facilitated by a parametric bootstrap. The bootstrap accounts for the ad-

ditional uncertainty coming from the interval-censored dependent variable. The methodology

works for linear mixed models with multiple hierarchical levels and complex correlation struc-

tures. It can also be simplified to be applied to linear models. The methodology is evaluated by

detailed model-based simulations. The simulation results underline the superiority of the SEM

algorithm compared to other available estimation methods. It is implemented in the R package

smicd from the Comprehensive R Archive Network (Walter, 2018).

The SEM algorithm is then used to model interval-censored income data with a random

intercept model. The analysis is based on the SUF of the German Microcensus with 311,659

observations. The estimation results demonstrate the effect of different explanatory variables

on income. In order to control for different nationalities, a random intercept is included in the

model.

Further research will focus on analytical standard errors for the fixed effects since the pro-

posed parametric bootstrap is very computationally intensive. Additionally, a convergence rule

could be implemented to stop the SEM algorithm after a sufficient number of iterations and

thus save computing time.
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1.7 Appendix

Table 1.5: German Microcensus, 24 intervals: Distribution of personal net income.

Interval Number of observation
(1,150] 180

(150,300] 341
(300,500] 2133
(500,700] 4553
(700,900] 8053

(900,1100] 14115
(1100,1300] 21793
(1300,1500] 27133
(1500,1700] 30368
(1700,2000] 43299
(2000,2300] 40033
(2300,2600] 29411
(2600,2900] 17516
(2900,3200] 16987
(3200,3600] 15150
(3600,4000] 10203
(4000,4500] 10084
(4500,5000] 5417
(5000,5500] 3628
(5500,6000] 2610
(6000,7500] 3298

(7500,10000] 2834
(10000,18000] 1802

(18000,+∞) 718

Table 1.6: Setting (A), 6 intervals: Distribution of one arbitrary sample data set.

Interval Number of observation
(1,104] 126

(104,112] 260
(112,120] 236
(120,128] 252
(128,136] 256

(136,+∞) 129
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Table 1.7: Setting (A), 12 intervals: Distribution of one arbitrary sample data set.

Interval Number of observation
(1,100] 32

(100,104] 94
(104,108] 126
(108,112] 134
(112,116] 133
(116,120] 103
(120,124] 120
(124,128] 132
(128,132] 136
(132,136] 120
(136,140] 88

(140,+∞) 41

Table 1.8: Setting (A), 24 intervals: Distribution of one arbitrary sample data set.

Interval Number of observation
(1,98] 15

(98,100] 17
(100,102] 40
(102,104] 54
(104,106] 63
(106,108] 63
(108,110] 63
(110,112] 71
(112,114] 66
(114,116] 67
(116,118] 53
(118,120] 50
(120,122] 54
(122,124] 66
(124,126] 63
(126,128] 69
(128,130] 74
(130,132] 62
(132,134] 64
(134,136] 56
(136,138] 45
(138,140] 43
(140,142] 33

(142,+∞) 8
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Table 1.9: Setting (B), 12 intervals: Distribution of one arbitrary sample data set.

Interval Number of observation
(1,200] 37

(200,600] 184
(600,1200] 229

(1200,2000] 219
(2000,3000] 165
(3000,4200] 116
(4200,5600] 95
(5600,7200] 70
(7200,9000] 49

(9000,11000] 30
(11000,13200] 21

(13200,+∞) 44

Table 1.10: Setting (C), 12 intervals: Distribution of one arbitrary sample data set.

Interval Number of observation
(1,75] 10

(75,87.5] 20
(87.5,100] 134
(100,112] 338
(112,125] 265
(125,138] 189
(138,150] 136
(150,162] 95
(162,175] 37
(175,188] 24
(188,200] 6

(200,+∞) 5

Table 1.11: Distribution of the variable Sex.

Sex Percentage
Male 74.8

Female 25.2
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Table 1.12: Distribution of the variable Education.

Education Percentage
ISCED 1 – no general or vocational certificate 1.7

or school certificate obtained after no more
than 7 years of school attendance)

ISCED 2 – secondary education without 7.3
professional degree or secondary degree

with completed semi-skilled training,
internship or year of pre-vocational

training or no general graduation, but
with semi-skilled training, internship

or pre-vocational training

ISCED 3c – preparatory service for 0.7
intermediate service in public

administration

ISCED 3a – qualification for university 2.2
or university of applied science

ISCED 3b – apprenticeship or vocational 45.4
qualifying degree at a full-time vocational

school, annual school of health care

ISCED 4a, b – qualification for university 7.3
or university of applied science and

apprenticeship, vocational qualifying
degree at a full-time vocational school,

annual school of health care

ISCED 5b – master craftsman, technician, 14.0
or equivalent technical college degree,
2 or 3 years medical school, university

of cooperative education degree, or
specialized or engineering school of the

GDR graduation or public administration
college degree

ISCED 5a – university of applied science, 19.1
university

ISCED 6 – doctorate 2.2

Table 1.13: Distribution of the variable Region.

Region Percentage
West 80.8
East 15.4

Berlin 3.8
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Table 1.14: Distribution of the variable Age.

Statistical Measure Age
Min. 16

1st Qu. 37
Median 45

Mean 44
3rd Qu. 52

Max. 93

Table 1.15: Distribution of the variable Job.

Job field Percentage
Managers 6.6

Professionals 14.7
Technicians and Associate Professionals 25.8

Clerical Support Workers 11.1
Services and Sales Workers 10.2

Skilled Agricultural, Forestry and Fishery Workers 1.0
Craft and Related Trades Workers 14.7

Plant and Machine Operators and Assemblers 10.5
Elementary Occupations 4.8

Armed Forces Occupations 0.5
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Table 1.16: Distribution of the variable Nationality.

Country of the nationality Percentage
Germany 91.47

Bosnia and Herzegovina 0.24
Bulgaria 0.10

France 0.17
Croatia 0.34
Greece 0.43

Italy 0.89
Macedonia 0.13

Netherlands 0.21
Kosovo 0.34
Austria 0.24
Poland 0.79

Portugal 0.17
Romania 0.26

Russia 0.56
Spain 0.15

Turkey 2.31
Hungary 0.11
Ukraine 0.15

Morocco 0.09
South America 0.09

United States of America 0.17
Afghanistan 0.05

Vietnam 0.13
Iraq 0.06
Iran 0.10

Kazakhstan 0.15
Thailand 0.03

China 0.06
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Chapter 2

Estimating Poverty and Inequality
Indicators using Interval-Censored
Income Data from the German
Microcensus

2.1 Introduction

In its Global Risks Report 2017, the World Economic Forum proclaims rising income and

wealth disparity as the number one trend in determing global developments, governing the

risks of, among others, profound social instability and unemployment (World Economic Fo-

rum, 2017). Germany has also faced an increase in income inequality since its reunification in

1990 (Fuchs-Schündeln et al., 2010; Bönke et al., 2014). Yet, the question of how poverty and

inequality is defined and can accurately be measured or diagnosed in a society remains debat-

able, see for example Hagenaars and Vos (1988) and Lok-Dessallien (1999). A common way to

measure poverty and inequality is the estimation of statistical poverty and inequality indicators.

However, for several reasons computing them in practice is not a trivial task. Since income in-

formation is not easily accessible governments or statistical offices need to conduct surveys

or censuses to garner information about personal or household income. One main difficulty is

that, in most societies, income is considered a private topic. In the survey literature, questions

about the aspects of income are referred to as “sensitive question”, therefore item non-response

is high for these questions (Hagenaars and Vos, 1988; Moore and Welniak, 2000). To counter

this, many censuses, such as the German (Statistisches Bundesamt, 2017), the Australian (Aus-

tralian Bureau of Statistics, 2011), the Colombian (Departamento Administrativo Nacional De

Estadı́stica, 2005) and the census from New Zealand (Statistics New Zealand, 2013), do not

ask for the exact income of their citizens. They ask only for the income interval a person or

household belongs to, thereby creating a sense of anonymity. The so obtained income data is

not metric but rather interval censored (or grouped). This makes the use of standard formulas

for the estimation of poverty and inequality indicators impossible because they rely on metric
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data.

To clarify the terminology, depending on the author, the term grouped or censored income

data can have different statistical meanings. Some authors such as Milanovic (2003) andMinoiu

and Reddy (2008) use the term grouped data to refer to quantile means and Chotikapanich

et al. (2007) consider population shares and class means. We use the term interval-censored

(or grouped) data, to refer to data that has the form of a frequency table, as in Hall and Wand

(1996) or Chen (2017). This type of data is obtained by the aforementioned censuses.

A common parametric approach for density estimation from interval-censored data is the

use of the multinomial distribution, see for example Reed and Wu (2008) and Kleiber (2008).

From the estimated parametric density any poverty and inequality indicator can be calculated.

Chen (2017) proposes a generalized approach to multinomial maximum likelihood estimation

for several types of grouped data, showing its consistency and supplying complementary sim-

ulation results.

With respect to inequality indicators, Kakwani and Podder (2008) argue against the para-

metric estimation of the income density from grouped data due to its lack of precision and

present a method that can be utilized to estimate the Lorenz curve directly from the interval-

censored data in order to compute inequality indicators.

While many authors agree with the Kakwani and Podder (2008) critique on the estimation

of parametric distributions, they resolve these issues by instead using non-parametric estima-

tors to model income instead. The popularity of these estimators comes from the fact that they

do not require any prior assumptions about the theoretical distribution or its family. Although

most authors do not directly address the topic of interval-censored or grouped data, there is

much literature about rounded data, which is easily obtained from interval-censored data by

substituting the intervals with their centers. Hall (1982), Scott and Sheather (1985), and Hall

and Wand (1996) study the effects of rounded and interval-censored data on standard, non-

parametric kernel density estimation (KDE). In contrast to uncensored data, they derive that

the mean integrated squared error of the KDE for rounded data depends on the smoothness of

the used kernel function. Moreover, they find that censoring affects the bias rather than the

variance of the estimate. Additionally, Hall and Wand (1996) present minimum grid sizes for

KDE which are needed to achieve a given degree of accuracy. Grid size corresponds to the

amount of points and therefore to the amount of intervals when the interval centers are used on

which the density is estimated.

Wang and Wertelecki (2013) point out that standard KDE leads to increasingly spiky den-

sity estimates at rounded points with a growing sample size. KDE becomes smoother when

larger bandwidths are used, thus an oversmoothed bandwidth selection was proposed by Wand

and Jones (1995) and implemented in the R package KernSmooth (Wand, 2015). Neverthe-

less, Wang and Wertelecki (2013) argue that this mostly leads to flatter estimates that under-

estimate the true density. Alternatively, they propose a bootstrap-type kernel density estimator

and show in a simulation study that the estimator provides better accuracy than the standard

KDE and the over-smoothed KDE.

Groß et al. (2017) melt the principle of stochastic expectation-maximization algorithms
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(Nielsen, 2000) with KDE to create a new density estimation alogrithm for rounded two-

dimensional data. Its superiority compared to a standard KDE is made apparent in a simulation

study (Groß and Rendtel, 2016). Their algorithm can be seen as a generalization of the Wang

and Wertelecki (2013) estimator.

Although a correctly estimated density leads to correctly estimated poverty and inequality

indicators Lenau and Münnich (2016) focus their analysis on the impact of different estimation

methods on the direct performance of the estimated statistical indicators. They evaluate three

different estimation methods: Non-parametric splines, estimating the generalized beta distri-

bution of the second kind (GB2), and linear interpolation. Linear interpolation is the method

used by the German statistical offices to estimate indicators from interval-censored data. This

approach is similar to assuming a uniform distribution within each interval. They conclude that

the performance of the different methods depends highly on the censoring schemes and none of

the methods showed adequate results in terms of bias and variance for all analyzed censoring

schemes.

To overcome the disadvantage of the different estimation methods, we propose a non-

parametric KDE algorithm that is based on the algorithm of Groß et al. (2017). The KDE

algorithm enables the estimation of poverty and inequality indicators from interval-censored

data under different censoring schemes. In order to obtain representative results, the KDE al-

gorithm can incorporate survey weights. The standard errors of the statistical indicators are

estimated by a non-parametric bootstrap.

The paper is structured as follows. In Section 2.2, the KDE algorithm and the proposed

non-parametric bootstrap are introduced. In Section 2.3, the properties of the KDE algorithm

and the bootstrap are evaluated using Monte Carlo simulation studies under different interval-

censoring schemes and different theoretical distributions. In Section 2.4, the algorithm is used

to estimate regional poverty and inequality indicators from the German Microcensus. A final

discussion of the major results, their implications, and an outlook is given in Section 2.5.

2.2 Methodology

In order to estimate poverty and inequality indicators, we propose a novel KDE algorithm to

generate metric pseudo samples from the observed interval-censored data. By using the pseudo

samples, poverty and inequality indicators can be estimated applying standard formulas. In the

next two subsections, the novel KDE algorithm is introduced and a non-parametric bootstrap

is proposed for the variance estimation of the statistical indicators.

2.2.1 Kernel density estimation from interval-censored data

Kernel density estimation is one of the most established non-parametric density estimation

techniques in the literature and was first introduced by Rosenblatt (1956) and Parzen (1962).

It is applied to estimate a continuous density from a random variable with density f(x) di-

rectly from its independent and identically distributed observations without making any prior

assumptions about its distributional family. Let X = {X1, X2, . . . , Xn} denote a sample of
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size n. For i = 1, . . . , n the KDE is defined as

f̂h(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
,

where k(·) is a kernel function and the bandwidth is denoted by h > 0. For the shape and

performance of the estimator, the choice of the bandwidth h is essential. The larger the h,

the smoother the estimated density, but also the more information about details, such as lo-

cal extrema, may be lost (Zambom and Dias, 2012). Hence, bandwidth selection methods

are widely discussed in the literature with the two main categories being plug-in and cross-

validation (Jones et al., 1996; Loader, 1999; Henderson and Parmeter, 2015). The basic idea

of the first is to minimize the asymptotic mean integrated squared error whilst substituting the

unknown density in the optimization with a pilot estimate, whereas the second method is a

more data-driven approach, for example, utilizing leave-one-out cross-validation.

In the presented Naive KDE, it is assumed that observations are taken directly from the con-

tinuous distribution that is to be estimated. Often, however, collecting continuous data is not

possible due to various restrictions in practice, such as, for example, confidentiality concerns.

In these situations we are left with interval-cesnsored data, where only the interval information

is observed. Thus, only the lower AK−1 and upper AK interval bounds (AK−1, AK) of X

is observed and its continuous value remains unknown. The continous scale is divided into

nK intervals. The variable K (1 ≤ K ≤ nK) indicates which of the intervals an observation

K = {K1,K2, . . . ,Kn} falls into. Open-ended intervals, thusA0 = −∞ orAnK = +∞ have

to be replaced by a finite number (see Section 2.3.4). Applying KDE to the interval midpoints

of the interval-censored data falsely allocates too much probability mass to the midpoints and

too little to the unobserved Xi. This leads to spiky estimates, unless the bandwidth is chosen

to be very large (Wang and Wertelecki, 2013). Increasing the bandwidth cannot be consid-

ered as a solution to this problem because this causes additional loss of information about the

underlying true distribution. The Wang and Wertelecki (2013) simulation study further found

standard KDE to be very sensitive to sample size when interval censoring is ignored. Further-

more, Hall (1982) and Hall and Wand (1996) showed that, in contrast to uncensored data, the

asymptotic performance of KDE for interval-censored data depends on the smoothness of the

kernel function in use.

These findings underline the necessity of using a more sophisticated non-parametric ap-

proach for density estimation from interval-censored data. Wang and Wertelecki (2013) intro-

duce a bootstrap-type KDE based on a measurement error model and confirmed its superiority

over the Naive estimator with simulations. Groß et al. (2017) then generalized and extended

the approach based on the stochastic expectation-maximization (SEM) algorithm and itera-

tive bootstrapping. Their newly proposed density estimator, abbreviated to GRSST, outper-

forms Naive KDE and a measurement error-based estimator by Delaigle (2007), especially for

stronger interval censoring. Since the GRSST estimator was formulated for two-dimensional

data with equal-sized interval censoring, we reformulate the approach. The reformulated KDE

algorithm enables the density estimation for one-dimensional data with unequally sized censor-
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ing. During the algorithm pseudo samples of the unobserved Xi are generated from which the

density and any statistical indicator can be estimated. Hence, for the estimation of poverty and

inequality indicators the unobserved distribution of the interval-censored X is reconstructed.

This is done with the use of the known interval informationK. From Bayes’ theorem it follows

that the conditional distribution of X given K is:

π(X|K) ∝ π(K|X)π(X),

where π(K|X) is defined as a product of Dirac distributions π(K|X) =
∏n
i=1 π(Ki|Xi) with

π(Ki|Xi) =

1 if AK−1 ≤ Xi ≤ AK ,

0 otherwise,

for i = 1, . . . , n. Using this formulation pseudo samples (imputations) of the unknown Xi

are drawn that enable the estimation of any statistical indicator. Since π(X) =
∏n
i=1 f(Xi)

is initially unknown, an initializing estimate f̂h(x) that is based on the interval midpoints,

serves as a proxy. After that, the pseudo samples drawn from π(X|K) are used to re-estimate

π(X). The following section focuses on the exact implementation of the proposed algorithm

and discusses similarities to the popular EM algorithm by Dempster et al. (1977) and the SEM

algorithm by Celeux and Dieboldt (1985) and Celeux et al. (1996).

Estimation and Computational Details

As in Groß et al. (2017) to fit the model pseudosamples of Xi are drawn from the conditional

distribution

π(Xi|Ki) ∝ I(AK−1 ≤ Xi ≤ AK)f(Xi),

where I(·) denotes the indicator function. The conditional distribution of Xi given Ki is the

product of a uniform distribution and density f(x). As the density f(x) is unknown it is

replaced by f̂h(x), an estimate that is obtained by the prior defined kernel density estimator.

Hence, Xi is iteratively drawn from the known interval (AK−1, AK) with the current density

estimate f̂h(x) used as sampling weight. The steps of the iterative algorithm are described

below.

Step 1: Use the midpoints of the intervals as pseudo X̃i for the unknown Xi. Obtain a

pilot estimate of f̂h(x), by applying KDE. Choose a sufficiently large bandwidth h, such

that no rounding spikes occur.

Step 2: Evaluate f̂h(x) on an equal-spaced fine grid G = {g1, . . . , gj} with j grid points

g1, . . . , gj . The width of the grid is denoted by δg. It is given by,

δg =
|A0 −AnK |

j − 1
,
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and the grid is defined as,

G = {g1 = A0, g2 = A0 + δg, g3 = A0 + 2δg, . . . , gj−1 = A0 + (j − 2)δg, gj = AnK}.

Step 3: Sample from π(X|K) by drawing a pseudo sample X̃i randomly from

{GK = gj |gj ∈ (AK−1, AK)} with sampling weights f̂h(X̃i) for K = 1, . . . , nK .

The sample size within each interval is given by the number of observations within each

interval.

Step 4: Estimate any statistical indicator of interest Î using the pseudo X̃i.

Step 5: Recompute f̂h(x), using the pseudo samples X̃i obtained in iteration Step 3.

Step 6: Repeat Steps 2-5, with B(KDE) burn-in and S(KDE) additional iterations.

Step 7: Discard the B(KDE) burn-in iterations and estimate Î by averaging the obtained

S(KDE) estimates.

The KDE algorithm estimates the distribution of an interval-censored variable by only using

the interval information. An algorithm that is widely used for models that depend on latent

variables (in our case the unobserved interval-censored X) is the EM algorithm (Dempster

et al., 1977). In the EM algorithm the expectation ofX|K is obtained analytically. However, in

the context of kernel density estimation this does not work because all values inside an interval

would be concentrated at one point, the expectation. In a SEM algorithm, the analytical E-step

from the EM algorithm is replaced by the drawing of pseudo samples (Celeux and Dieboldt,

1985; Celeux et al., 1996). In case of the KDE algorithm, it is drawn from the distribution

of π(X|K). Hence, the proposed KDE algorithm has similarities to a SEM algorithm. In its

common form, the EM and SEM algorithm are used for maximum likelihood (ML) estimation

with unobserved data. McLachlan and Krishnan (2008) proposed a generalization of the SEM

algorithm that can be used with surrogates for the ML estimation. In the KDE algorithm the

maximization of the asymptotic mean integrated squared error is used as such a surrogate.

More information on the similarities between the KDE, the EM, and SEM algorithm and the

GRSST estimator – on which the KDE algorithm is based – are given in (Groß et al., 2017).

2.2.2 Variance estimation

This section introduces a method for the variance estimation of the statistical indicators that are

estimated by the KDE algorithm. A common way to estimate the variance, if X is observed

on a continuous scale, is linearization. Taylor linearization (Tepping, 1968; Woodruff, 1971;

Wolter, 1985; Tille, 2001) is a well-known and commonly applied method for the estimation of

variance for non-linear indicators, such as ratios or correlations. However, the method cannot

be applied for the variance estimation of all non-linear indicators. For the variance estimation

of mathematically more complex indicators, e.g., the Gini coefficient, Deville (1999) intro-

duced the generalized linearization method. The generalized linearization method is also used
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by Eurostat for the variance estimation of complex indicators (Osier, 2009). Nevertheless, lin-

earization cannot be applied when the variable of interest is observed as an interval-censored

variable (Lenau and Münnich, 2016). To still produce variance estimates, resampling methods,

such as bootstrapping can be applied (Münnich, 2008). Bootstrapping methods approximate

the variance of an estimated indicator, in cases where the variance cannot be stated as closed-

form solution (Bruch et al., 2011). Therefore, the bootstrap introduced by Efron (1979) and

Shao and Tu (1995) is used for the variance estimation of the indicators estimated by the KDE

algorithm. Also, any confidence interval can be estimated by using the quantiles from the

bootstrap results (Rao and Wu, 1988; Rao et al., 1992; Pretson, 2008). The use of the boot-

strapping allows us to avoid theoretical calculations. However, the potential disadvantage is

a long computational time. The non-parametric bootstrap is based on the assumption that the

drawn sample is representative of the population. Therefore, the empirical distribution function

F̂ is a non-parametric estimate of the population distribution F . The desired poverty indicator

of interest Î , is the empirical estimate of the true parameter. The bootstrap standard errors are

calculated as follows:

Step 1: Draw with replacement a bootstrap sample of the interval-censored X(b)
i of size

n from the sample data set.

Step 2: Apply the KDE algorithm to the bootstrap interval-censored sample X(b)
i for the

estimation of any indicator Î(b) of interest.

Iterate Steps 1-2, b = 1, . . . , B times and estimate the standard error

se(Î) =

√∑B
b=1(Î

(b)−I(b))2
B with I = 1

B

∑B
b=1 Î

(b).

2.3 Simulation results

This section presents extensive model-based simulation results in order to evaluate the perfor-

mance of the KDE algorithm in the context of estimating poverty and inequality from interval-

censored income data. The simulation study is set up with the following specifications. From

a theoretical distribution M = 500 samples of simulated income data are drawn. The drawn

samples are censored to specific intervals. The sample size for each sample is n = 10000. The

KDE algorithm is evaluated for large samples because interval-censored income data is com-

mon for censuses which, in general, have very large sample sizes. For instance, in the applica-

tion in Section 2.4, German Microcensus data is used which has a sample size of n = 454852.

From the simulated interval-censored income data different poverty and inequality indicators

are estimated. The formulas are presented for metric data because the KDE algorithm gener-

ates metric data from interval-censored data that is used to estimate the statistical indicators.

Consider X = (X1, . . . , Xn) with X1 ≤ . . . ≤ Xn and let w = (w1, . . . , wn) be the corre-

sponding sampling weights. The weighted mean and the weighted quantiles (10%, 25%, 50%,
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75%, 90%) are given by

ÎMean =

∑n
i=1wiXi∑n
i=1wi

, (2.1)

ÎQ(p)
=

1
2 (Xi +Xi+1) if

∑i
j=1wj = p

∑n
j=1wj ,

Xi+1 if
∑i

j=1wj ≤ p
∑n

j=1wj ≤
∑i+1

j=1wj ,
(2.2)

where p denotes the quantile p ∈ (0, 1). In the simulation study sampling weights are not

included, because they are not needed to evaluate the performance of the KDE algorithm.

Therefore,wi = 1∀i in the simulation study. However, in the application in Section 2.4 weights

are included for representative inference. The weighted poverty measures Headcount Ratio

(HCR) and Poverty Gap (PGap) (Foster et al., 1984) are given by

ÎHCR =
1∑n
i=1wi

n∑
i=1

wiI(Xi ≤ z), (2.3)

ÎPGap =
1∑n
i=1wi

n∑
i=1

wi

(
z −Xi

z

)
I(Xi ≤ z), (2.4)

where I(·) denotes the indicator function. The HCR and PGap include a threshold z that is

known as the poverty line. For the simulation a relative poverty line, defined as 60% of the

median of the simulated income variable is chosen. This corresponds to the EU definition

(Eurostat, 2014). The HCR is a measure of the percentage of observations (individuals or

households) below the poverty line, whereas the PGap measures the average distance of those

observations from the poverty line. Inequality is commonly measured by the Gini coefficient

(Gini, 1912) and the quintile share ratio (QSR). The weighted indicators are estimated by

ÎGini =

2
∑n

i=1

(
wixi

∑i
j=1wj

)
−
∑n

i=1w
2
iXi∑n

i=1wi
∑n

i=1wiXi
− 1

 , (2.5)

ÎQSR =

∑n
i=1 I(Xi ≥ Q̂0.8)wiXi∑n
i=1 I(Xi ≤ Q̂0.2)wiXi

. (2.6)

The range of the Gini coefficient lies between 0 and 1. The higher its value, the higher the

inequality. If the Gini coefficient is equal to 0 there is perfect equality in the data, whereas a

Gini coefficient of 1 indicates perfect inequality. The QSR is the ratio of observations richer

than 20% of the richest observations to the 20% of the poorest observations. Higher values of

the QSR indicate higher inequality.

The indicators are estimated by the proposed KDE algorithm. The number of burn-in iter-

ations of the algorithm is set to B(KDE) = 80, the number of additional iterations S(KDE) =

400. Our experiences running several simulations show that 480 iterations are usually enough

to ensure convergence. Nevertheless, we check the convergence plots from randomly chosen

simulation runs to assure that the indicators in the presented simulations converge. The issue

of convergence is discussed in more detail in Section 2.4. The number of grid points is set to
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j = 4000. In general, a higher number of grid points leads to more precise estimation results,

because the number of grid points determines how many unique values the pseudo samples

of the interval-censored variable can consist of. However, the estimation time increases with

the increasing number of grid points. In the simulation, the number of grid points is chosen

such that a further increase in the number of grid points does not lead to better estimation

results. The presented poverty and inequality indicators are not only estimated by the KDE al-

gorithm (KDE). For comparison, the indicators are also estimated by linear interpolation. This

method is used by the Federal Office of Statistics in Germany for the estimation of poverty and

inequality indicators from the interval-censored income variable of the German Microcensus

(Information und Technik (NRW), 2009). This approach gives the same results as assuming a

uniform distribution within the income classes (Uni). Furthermore, the statistical indicators are

estimated by using the midpoints (Mid) of the intervals as a proxy for the unobserved values

within the income interval. Finally, the statistical indicators are also estimated with the con-

tinuous uncensored data (True). The results of the point estimates are evaluated by the relative

bias (rB),

rB
(
Î
)

=
1

M

M∑
m=1

(
Îm − I
I

)
× 100,

and the empirical standard errors (se.emp),

se.emp(Î) =

√√√√ 1

M

M∑
m=1

(Îm − I)2,

with

I =
1

M

M∑
m=1

Îm.

The proposed non-parametric bootstrap for the estimation of the standard errors is evaluated

by comparing the estimated standard errors to the empirical standard errors. The bootstrap is

run with B = 100. This number shows it is sufficient to obtain valid approximations of the

standard errors.

The simulation study is divided into four subsections. In Section 2.3.1, the influence of

different numbers of intervals on the performance of the KDE algorithm is evaluated. In Sec-

tion 2.3.2, different true distributions are evaluated and, in Section 2.3.3, the effect of equal vs.

ascending interval width is studied. Section 2.3.4 summarizes the final results and discusses

the issue of how to handle open-ended intervals.

2.3.1 Different interval-censoring scenarios

In this section, the influence of the number of intervals on the performance of the KDE algo-

rithm is studied. As theoretical distribution the four-parameter GB2 distribution that is often

used to model income is specified such that the GB2 distribution well approximates the em-

pirical German income distribution (Graf and Nedyalkova, 2014). The chosen parameters are
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given in Table 2.3. The drawn samples are interval censored using three different censoring

scenarios. In Scenario 1, the data is censored to 24 intervals as in the German Microcensus

(Statistisches Bundesamt, 2017) that is used in the application in Section 2.4. The interval

widths are chosen such that the interval-censored theoretical distribution follows the empirical

distribution of the household income in the German Microcensus. This is visualized in Figure

2.1 in the upper two panels. The lower two panels show the GB2 distribution censored to 16

intervals (Scenario 2) and eight intervals (Scenario 3). The performance of the algorithm with

the lower number of classes is studied because censuses from other countries censor the income

variable to fewer than 24 intervals. For example, in the census from New Zealand the income

variable is censored to 16 intervals (Statistics New Zealand, 2013), in the Australian census the

data is censored to 12 intervals (Australian Bureau of Statistics, 2011), and in the Colombian

census the income variable is censored to only nine intervals (Departamento Administrativo

Nacional De Estadı́stica, 2005).

The results of the point estimates are given in Table 2.1. Using the continuous uncensored

data for the estimation of the poverty and inequality indicators leads to unbiased results. This is

not surprising as the sample size (n = 10000) is very large. Using only the interval information,

the KDE algorithm outperforms the other approaches (Mid and Uni) in all three scenarios.

The out-performance is especially stronger for indicators that rely on the whole shape of the

distribution (Gini coefficient, mean), for the more extreme quantiles (10% quantile and 90 %

quantile), and for indicators that rely on more extreme quantiles (QSR). As the number of

intervals decreases, the performance of the KDE algorithm worsens. Nevertheless, the bias is

still under 1% for all indicators, except for the QSR, PGap and the Gini coefficient. The QSR

shows a bias of -1.1%, the PGap a bias of 2.3%, and the Gini coefficient shows a bias of -1.9%

in the eight-interval scenario.

The estimated indicators using the other approaches (Mid and Uni) exhibit far larger biases

as the number of intervals decreases. For example, in the eight-interval scenario the PGap has

a bias of 22% and 20% and the Gini coefficient of 14% and 24% for the estimation approaches

Uni and Mid, respectively. This shows the superiority of the KDE algorithm.

The precision of the KDE algorithm, measured by the empirical standard error (se.emp),

is for all three scenarios close to the estimation results using the uncensored data. This is

the case because the estimated indicators rely on the metric pseudo samples from the KDE

algorithm. However, the pseudo samples can – in rare circumstances – include very extreme

values that lead to a higher variance when statistical indicators are estimated that rely on the

whole distribution. This is, for example, the case for the mean in the 24-interval scenario. The

KDE algorithm almost loses no precision for a lower number of intervals. The methods Uni

and Mid lead to less precise estimation results, especially with fewer intervals. For some of

the estimated quantiles the empirical standard error of the Mid approach is 0. This is due to

the fact that the Mid approach estimates the indicators on the midpoints of the intervals. This

leads to only 24, 16 or eight unique values, respectively. With a sample size of (n = 10000)

the estimated quantiles are likely to fall on the same midpoint for each of the 500 Monte Carlo

iterations. If the estimated quantile is constant over all Monte Carlo iterations, the empirical
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Figure 2.1: Interval-censored income distribution of the German Microcensus (upper left) and
theoretical GB2 distribution. The GB2 distribution is censored to 24 (upper right), 16 (lower
left) and 8 intervals (lower right).

standard error is 0.

In Table 2.2, the proposed bootstrap for the estimation of the standard errors is evaluated

for the three different censoring scenarios. The standard errors estimated by the non-parametric

bootstrap (se.est) offer a good approximation of the empirical standard errors (se.emp). This

underlines the reliability of the proposed bootstrap method.

2.3.2 Different true distributions

While the previous section evaluates the performance of the KDE algorithm using different

censoring schemes, this section focuses on the evaluation of the performance using different

theoretical distributions. A large number of theoretical distributions are suggested in the litera-

ture for modeling income distributions (McDonald and Ransom, 1979; McDonald, 1984; Mc-
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Table 2.1: Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods estimated for a selection of statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Quality Estimation

Measure Method GB2: 24 intervals
rB True 0.053 0.036 0.008 -0.003 0.017 0.023 -0.087 -0.005 -0.163 -0.005

KDE -0.102 -0.059 -0.033 -0.045 0.121 0.002 -0.141 0.720 0.181 -0.036
Uni -0.366 -0.086 0.065 0.080 0.171 1.104 1.087 3.751 2.628 3.374
Mid -4.654 0.003 -0.313 1.501 1.848 2.218 -11.962 35.517 1.529 6.161

se.emp True 87.600 72.172 71.259 109.180 222.019 95.973 0.003 0.049 0.001 0.003
KDE 84.944 68.284 69.756 112.048 227.883 121.231 0.003 0.067 0.001 0.004

Uni 96.181 69.987 70.633 119.183 240.357 111.912 0.003 0.060 0.001 0.003
Mid 83.717 0.000 0.000 738.583 1092.148 137.517 0.003 0.351 0.001 0.005

GB2: 16 intervals
rB True -0.007 0.012 0.022 0.021 0.014 -0.020 -0.030 -0.077 0.109 -0.102

KDE 0.323 -0.021 0.260 0.190 -0.051 -0.018 0.478 0.699 0.034 -0.401
Uni -0.991 -1.832 0.823 3.492 3.543 1.154 4.522 5.113 7.699 3.691
Mid -14.210 -8.097 -1.200 3.499 3.098 1.536 -12.619 92.185 6.194 0.835

se.emp True 90.029 72.505 78.428 113.178 232.863 101.242 0.003 0.048 0.001 0.003
KDE 88.476 72.731 73.944 119.657 229.199 101.652 0.003 0.049 0.001 0.003

Uni 120.142 84.036 81.005 131.425 248.381 110.794 0.003 0.055 0.001 0.003
Mid 221.137 0.000 0.000 0.000 0.000 121.311 0.003 0.321 0.001 0.004

GB2: 8 intervals
rB True 0.076 0.006 -0.016 0.021 0.017 -0.006 -0.103 -0.051 -0.131 -0.037

KDE 0.106 -0.173 0.252 0.145 -0.141 -0.685 0.119 -1.151 2.329 -1.871
Uni -0.980 -1.850 0.820 3.519 3.587 4.190 4.323 17.586 21.758 13.522
Mid -13.972 -8.012 -1.155 3.582 3.092 10.187 -12.555 164.261 20.273 24.256

se.emp True 92.276 75.720 71.976 111.044 240.443 100.286 0.003 0.050 0.001 0.003
KDE 88.373 74.822 70.126 113.115 231.700 126.809 0.003 0.071 0.001 0.004

Uni 120.998 86.888 73.876 128.360 253.586 132.150 0.003 0.075 0.001 0.004
Mid 220.916 0.000 0.000 0.000 0.000 183.278 0.003 0.481 0.001 0.005
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Table 2.2: Empirical and estimated standard error for the selected statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Measure Estimation

Method GB2: 24 intervals
se.emp KDE 84.944 68.284 69.756 112.048 227.883 121.231 0.003 0.067 0.001 0.004

se.est 84.945 71.525 72.437 110.804 234.200 120.855 0.003 0.067 0.001 0.004

GB2: 16 intervals
se.emp KDE 88.476 72.731 73.944 119.657 229.199 101.652 0.003 0.049 0.001 0.003

se.est 87.972 70.564 68.708 110.969 224.122 96.000 0.003 0.050 0.001 0.003

GB2: 8 intervals
se.emp KDE 88.373 74.822 70.126 113.115 231.700 126.809 0.003 0.071 0.001 0.004

se.est 85.036 71.131 68.217 109.751 229.160 132.415 0.003 0.076 0.001 0.005
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Donald and Xu, 1995; Bandourian et al., 2003; Kleiber and Kotz, 2003). According to McDon-

ald (1984), McDonald and Xu (1995), Bordley et al. (1997), McDonald and Ransom (2008)

the GB2 distribution is well-suited for modelling income and it is superior to other parametric

distributions (Kleiber and Kotz, 2003; Dastrup et al., 2007; Jenkins, 2009). Nevertheless, two

special cases of the GB2 distribution are used for evaluations in order to illustrate the flexibility

of the KDE algorithm: the Dagum (Dagum, 1977) distribution and the Singh-Maddala (Singh

and Maddala, 1976) distribution. The choice of parameters follows Bandourian et al. (2002)

(see Table 2.3) in order to approximate empirical income distributions. The data is censored

to eight intervals and the interval width is chosen such that the relative frequency within each

interval is similar to the eight-interval GB2 scenario from the previous section (see Figure 2.2

and 2.1). The eight-interval scenario is chosen to evaluate the KDE algorithm under extreme

scenarios. By keeping the relative frequencies equal within each interval the effect of different

distributions (GB2, Dagum, and Singh-Maddala) on the estimation results is isolatedly evalu-

ated.

Table 2.3: Distributions for the Model-based simulation.

Distribution Parameter
GB2 7.481 16351 0.4 0.468
Dagum 4.413 94075 0.337
Singh-Maddala 1.771 500000 25.12
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Figure 2.2: Dagum and Singh-Maddala distribution censored to 8 intervals.

The estimation results of the point estimates are given in Table 2.4 (Dagum and Singh-

Maddala) and Table 2.1 (GB2). As expected, using the uncensored data leads to unbiased esti-

mation results. Also, the KDE algorithm that only uses the interval information yields unbiased

results for all indicators under the different scenarios. Hence, the performance of the KDE al-

gorithm is not impaired by the underlying theoretical distribution. The benchmark methods

(Uni and Mid) give heavily biased estimation results, especially for indicators that depend on

the whole distribution. For example, the QSR has a bias of 16.5% (Uni) and 210% (Mid)

for the Dagum scenario and 18.5% (Uni) and 200% (Mid) for the Singh-Maddala scenario.

These simulation results disqualify both estimation methods for use in practical applications.

Regarding the precision, the conclusions from the previous section are transferable.
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Table 2.4: Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods estimated for a selection of statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Quality Estimation

Measure Method Dagum: 8 intervals
rB True 0.041 -0.014 0.020 0.003 0.005 0.015 0.032 0.072 0.036 0.028

KDE 0.192 0.088 -0.146 0.225 0.038 -0.396 -0.126 -0.770 -0.084 -0.851
Uni -0.977 -1.719 0.675 3.150 2.883 5.454 2.579 16.532 4.163 9.840
Mid -23.304 -12.787 -2.552 3.227 2.420 12.042 29.230 209.641 -2.171 16.251

se.emp True 399.449 437.440 455.249 584.052 988.153 442.182 0.004 0.128 0.002 0.003
KDE 382.632 422.677 440.771 567.565 964.208 479.943 0.004 0.135 0.002 0.003

Uni 459.406 461.163 456.904 645.016 1052.903 613.491 0.004 0.171 0.002 0.004
Mid 0.000 0.000 0.000 0.000 0.000 826.842 0.005 1.024 0.002 0.005

Singh-Maddala: 8 intervals
rB True -0.070 0.001 0.035 0.014 -0.015 0.003 0.023 0.017 0.041 -0.006

KDE 0.270 0.014 0.042 -0.039 -0.031 0.093 -0.039 0.714 0.085 0.213
Uni -1.031 -1.210 1.652 2.963 2.039 6.269 1.800 18.504 4.321 11.024
Mid -21.083 -11.797 -1.789 3.039 1.636 12.618 27.516 199.584 -1.651 17.009

se.emp True 416.957 486.609 555.653 731.369 1049.186 443.818 0.004 0.099 0.002 0.002
KDE 389.926 447.684 546.007 698.835 998.289 462.384 0.004 0.106 0.002 0.002

Uni 467.696 502.097 547.127 784.601 1072.791 598.248 0.004 0.145 0.002 0.003
Mid 784.213 0.000 0.000 0.000 0.000 784.707 0.005 0.930 0.002 0.004

50



CHAPTER 2. DIRECT ESTIMATION OF STATISTICAL INDICATORS

As given in Table 2.5, the estimated standard errors offer a good approximation of the

empirical standard errors for the different scenarios.

2.3.3 Equal and ascending interval width

While the German (Statistisches Bundesamt, 2017), the Australian (Australian Bureau of Statis-

tics, 2011), the Colombian (Departamento Administrativo Nacional De Estadı́stica, 2005), and

the census from New Zealand (Statistics New Zealand, 2013) use ascending class width, pre-

vious research shows that the performance of alternative estimation methods depends on the

interval width (Lenau and Münnich, 2016). More precisely, performance depends on whether

the data is censored to intervals of equal width or ascending width. Therefore, the GB2 dis-

tribution from Table 2.3 is now censored to eight intervals with equal class width (except the

last interval, which has an open-ended upper interval bound). In all previous simulation sce-

narios ascending interval width is used. Figure 2.3 shows the censored GB2 distribution. The

theoretical distribution is kept fixed in order to evaluate the influence of the censoring on the

performance.
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Figure 2.3: GB2 distribution censored to equally sized intervals (except the last – open-ended
– interval).

The results of the point estimates are given in Table 2.6. As before, using the uncensored

data leads to unbiased estimates. The estimates obtained by the KDE algorithm are unbiased

except for the QSR, PGap, and Gini coefficient. These estimates exhibit a very small bias of

-1.7%, 1.4% and -2.2%. However, the results are comparable to the estimation results from the

GB2 scenario with eight intervals with ascending interval width. Hence, the KDE algorithm

does not seem to be affected by the censoring scheme. The benchmark indicators Uni and

Mid show, as before, large biases especially for indicators that rely on the whole shape of the

distribution. With regard to precision, the results and interpretation are the same as before.

The proposed bootstrap also gives valid results with equal-sized intervals (see Table 2.7).

2.3.4 Conclusion and final remarks

The simulation results show that the KDE algorithm outperforms other approaches (Uni and

Mid) in terms of bias in all scenarios. The KDE method gives unbiased results under differ-
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Table 2.5: Empirical and estimated standard error for the selected statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Measure Estimation

Method Dagum: 8 intervals
se.emp KDE 382.632 422.677 440.771 567.565 964.208 479.943 0.004 0.135 0.002 0.003

se.est 385.340 420.523 445.765 573.573 953.225 468.896 0.004 0.134 0.002 0.003

Singh-Maddala: 8 intervals
se.emp KDE 389.926 447.684 546.007 698.835 998.289 462.384 0.004 0.106 0.002 0.002

se.est 386.539 430.594 523.137 691.090 983.671 460.726 0.004 0.110 0.002 0.002
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Table 2.6: Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods estimated for a selection of statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Quality Estimation

Measure Method GB2: 8 intervals (equally sized)
rB True 0.079 0.035 0.013 -0.026 -0.092 -0.024 -0.127 -0.144 -0.248 -0.110

KDE -0.005 -0.422 0.238 -0.066 0.050 -0.840 0.290 -1.706 1.370 -2.181
Uni -7.074 -2.388 0.909 0.560 1.704 4.648 7.351 21.365 30.052 16.251
Mid -14.151 4.640 11.598 10.730 3.174 12.498 19.720 73.226 28.594 30.467

se.emp True 88.841 75.061 72.038 111.139 233.943 95.398 0.003 0.051 0.001 0.003
KDE 86.255 70.621 76.142 109.506 223.898 128.012 0.003 0.076 0.001 0.005

Uni 116.469 70.955 88.391 156.503 260.393 130.810 0.003 0.076 0.001 0.004
Mid 0.000 0.000 0.000 544.426 0.000 180.793 0.004 0.281 0.001 0.005

Table 2.7: Empirical and estimated standard error for the selected statistical indicators.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Measure Estimation

Method GB2: 8 intervals (equally sized)
se.emp KDE 86.255 70.621 76.142 109.506 223.898 128.012 0.003 0.076 0.001 0.005

se.est 84.456 67.507 75.134 108.778 224.587 138.326 0.003 0.079 0.001 0.005

53



CHAPTER 2. DIRECT ESTIMATION OF STATISTICAL INDICATORS

ent censoring schemes and for different underlying theoretical distributions. The relative bias

increases slightly whenever the number of intervals decreases. However, also in very extreme

censoring scenarios (with only eight intervals), the results are very precise. The relative bias

is under 1% for almost all indicators. The KDE method shows comparable results in terms

of precision to the direct estimation of the indicators from the continuous uncensored data.

Additionally, it is superior to other approaches (Mid and Uni) that show worse precision for

most indicators. Due to its easy usage, its ability to adapt to different underlying theoretical

distributions and different censoring schemes and its precision practitioners should prefer the

KDE algorithm to other approaches.

The KDE algorithm cannot handle open-ended intervals. As mentioned before, lower

bounds equal to −∞ or upper bounds equal to +∞ have to be replaced by a finite number.

The chosen value effects the performance of the KDE algorithm. However, not all poverty and

inequality indicators depend on the outer intervals. Indicators that depend on the outer inter-

vals are indicators that depend, by their definition, on the whole distribution e.g., the mean or

the Gini coefficient. These indicators are always influenced by the way in which open-ended

intervals are handled, whereas other indicators, such as the median, are only affected if they

fall into one of the open-ended outer intervals. The replacement value used for open-ended

upper and lower intervals also has an impact on the performance of the methods Uni and Mid.

To make simulation results from the different estimation methods comparable to each other,

we replace +∞ of the upper interval with a value of three times the value of the lower bound.

For instance, if the interval is (4000,+∞) we replace the upper bound with 4000 ∗ 3 = 12000,

resulting in the interval (4000, 12000] which is used by the KDE algorithm. In an applica-

tion the practitioner should choose the interval bounds for open-ended intervals with caution,

with regard to content and to the censoring scheme. However, our experiences running several

simulations indicate that a value of three times the value of the lower bound serves as a good

approximation when working with interval-censored income data.

2.4 Estimating poverty and inequality indicators from the Ger-
man Microcensus

In this section, the KDE algorithm is applied to the problem of estimating poverty and inequal-

ity indicators from interval-censored German Microcensus data. The relevance of poverty and

inequality estimation becomes apparent when considering the rich amount of literature avail-

able on this topic. Germany’s increasing inequality has sparked the interest of many scholars

and governmental institutions. Known for stable wages in the 70s and 80s (Abraham and

Houseman, 1995), Germany has faced growing income inequality since its reunification in

1990 (Fuchs-Schündeln et al., 2010; Bönke et al., 2014).

Most of these studies consider or focus on survey data such as the Socio-Economic Panel

(SOEP) or the Income, Receipts, Expenditure survey (in German: Einkommens- und Ver-

brauchsstichprobe) (EVS). In contrast to the Microcensus, participation is voluntary and par-

ticipants are asked for their exact income (not interval censored), which enables the estimation
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of poverty and inequality indicators using standard formulas. However, since the German Mi-

crocensus is by far the biggest survey in Germany it would be favorable to use its data for the

estimation of poverty and inequality. The proposed KDE algorithm makes the valid and precise

estimation of complex poverty and inequality indicator from interval-censored data possible.

This allows researchers and practitioners to use the German Microcensus for the further and

more in-depth investigation of the increasing income inequality in Germany. The following ap-

plication presents estimation results from cross-sectional data for the year 2012. To investigate

the spatial distribution of inequality, the different indicators are estimated for the 16 federal

states.

2.4.1 Data and preparation

The German Microcensus is a representative household survey conducted by the Federal Sta-

tistical Office of Germany. About 1% of the German population is chosen randomly by a

specified survey design and is asked about the living conditions. The Microcensus was first

conducted in 1957 and provides data regarding the structure and the economic and social sta-

tus of the population. Over the years the Microcensus has become one of the most important

data sources regarding aspects such as partnership, family, labor market, and eduction. For

the estimation of poverty and inequality the variable household net income is used. For the

analysis the Scientific-Use-File (SUF), a 70% sample of the Microcensus is used (Statistisches

Bundesamt, 2017). After data cleaning, we are left with a sample size of nGermany = 454852.

Since interests also lie in the spatial distribution of poverty and inequality the statistical indi-

cators are estimated for each federal state separately and for Germany. The sample size for

each federal state and its location is given in Table 2.8 and Figure 2.7 in Appendix 2.6. The

sample sizes are very large for each federal state even for Bremen, the state with the smallest

sample size nBremen = 3356. Thus, there are enough observations to directly (without covari-

ates) estimate the statistical indicators with small standard errors. As previously mentioned,

the variable household income is interval censored to 24 intervals. The distribution is visual-

ized in Figure 2.1 in the upper-left panel. To make the household income comparable between

households of different sizes, the OECD household weights are used to estimate equivalized

household income. Each household’s interval bound is divided by its corresponding OECD

weight. For instance, a household within interval (1300, 1500] and with an OECD weight of

1.5 has equivalence interval bounds of (867, 1000].

2.4.2 Estimation and results

In order to estimate the poverty and inequality indicators, the KDE algorithm is applied to

the equivalenced interval bounds. The open-ended interval is handled as described in Section

2.3.4. Furthermore, for representative results the extrapolation factors of the Microcensus are

used for the estimation of the weighted statistical indicators (formulas are given in Equation

(2.1)-(2.6)). Therefore, the KDE algorithm draws iteratively new metric pseudo samples plus

the corresponding extrapolation weight from the equivalenced interval-censored household in-
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come. As in the simulations, the number of burn-in iterations is B(KDE) = 80, the number of

additional iterations is S(KDE) = 400 and the number of grid points j = 4000. The number

of B(KDE) and S(KDE) is sufficiently large as is seen in the convergence plot in Figure 2.4.

Both indicators converge after 480 iterations. While indicators that are dependent on the whole

distribution converge slower (e.g., the Gini coefficient), indicators that do not depend on the

whole distribution (e.g., the HCR) converge faster. Also, all other indicators are checked for

convergence, but only two plots are shown exemplarily. The standard errors of the weighted

indicators are estimated by the described non-parametric bootstrap as proposed by Alfons and

Templ (2013). Differently than described in Section 2.2.2 not only the interval censored obser-

vations are drawn but also the corresponding weights. The number of bootstrap samples is set

to B = 100 as in the simulation study.
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Figure 2.4: Convergence of the KDE algorithm for the Gini coefficient and the HCR.

The estimated indicators are presented in Figure 2.5 and 2.6 and the exact values and the

estimated standard errors are given in Appendix 2.6 in Table 2.9. The estimated HCR = 0.15,

the Gini = 0.29 and the QSR = 4.31. These results are comparable to the results from the

EVS. The EVS reports the following values: HCR = 0.16, the Gini = 0.27 and the QSR = 4.1

(Statistisches Bundesamt, 2018c). Owing to the large sample size, valid estimates for smaller

geographical areas can be estimated to evaluate the regional distribution of poverty and inequal-

ity in Germany. The quantiles and the mean indicate that the East (formerly German Demo-

cratic Republic DDR) is poorer than the West. This result is commonly known in Germany

and is not very surprising. Nevertheless, Brandenburg and Berlin have higher incomes than

the rest of East Germany (Mecklenburg-Vorpommern, Saxony, Saxony-Anhalt and Thuringia).

Also Bremen, a federal state in the West, shows low income for the 10% and 25% quantile in

comparison to the rest of West Germany, while for the higher quantiles Bremen shows similar

results to the rest of Germany. The poorest states with a median of 1,211.29 Euro and 1,247.05

Euro are Mecklenburg-Vorpommern and Saxony-Anhalt and the richest ones with a median of

1,580.43 Euro and 1,580.35 Euro are Baden-Württemberg and Bavaria. For the estimation of

the HCR and PGap, a regional poverty line (60% of the median) is used. The HCR indicates

that in the East fewer people live under the regional poverty line than in the West. Also, the

people living under the poverty line live closer to it in the East, as shown by the PGap. When

looking at the QSR and the Gini coefficient, the East-West trend is less striving. Nevertheless,
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the states in the East have lesser income inequality. The most unequal states with a Gini coeffi-

cient of 0.32 and 0.31 are Hamburg and Bremen and the most equal ones with a Gini coefficient

of 0.25 and 0.25 are Saxony and Thuringia. The estimated standard errors of the indicators on

state areas are quite small. Therefore, estimating precise indicators for smaller geographical

areas would probably also be possible, in order to get an even closer look at the geographical

distribution of poverty and inequality.

The application impressively demonstrates how the KDE algorithm enables the estimation

of poverty and inequality indicators from interval-censored data. The precise estimations ob-

tained by the KDE algorithm enable statisticians and statistical offices to report a variety of

poverty and inequality indicators using the German Microcensus. The regional estimates will

help to identify regions with lower income and higher inequality to target political activities

more accurately for those in need.
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(a) Regional distribution of the 10% quantile.
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(f) Regional distribution of the mean.

Figure 2.5: Regional distribution of different statistical indicators in Germany.
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Figure 2.6: Regional distribution of different statistical indicators in Germany.
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2.5 Discussion and outlook

In numerous censuses e.g., the German Microcensus or the Australian census, the variable

household or personal income is not observed on a continuous scale, but is rather censored to

specific intervals. This is due to confidentiality constraints or to reduce item non-response. Es-

timating poverty and inequality indicators from these kinds of data requires more sophisticated

statistical methods. As an estimation method we propose an iterative KDE algorithm that en-

ables the precise estimation of statistical indicators from interval-censored data. The proposed

KDE algorithm has similarities to SEM algorithms that are commonly used for the estimation

of models that depend on latent unobserved variables (in our case the interval-censored in-

come). However, instead of maximizing the likelihood as is common for SEM algorithms, the

asymptotic mean integrated squared error of the KDE is maximized. For the estimation of the

standard errors of the statistical indicators a non-parametric bootstrap is proposed. The KDE

algorithm and the bootstrap work for different censoring scenarios and different underlying

true distributions. The methodology is available in the R package smicd from the Com-

prehensive R Archive Network (Walter, 2018). Our simulation results demonstrate that the

estimated poverty and inequality indicators outperform other estimation techniques (linear in-

terpolation or the use of the midpoints of the intervals) in terms of bias. Also, the standard

errors of the estimates are close to the standard errors from the estimates that were obtained

with the uncensored data, supporting the precision of the algorithm. Furthermore, the KDE

algorithm has the advantage of adapting to different interval-censored theoretical distributions.

Therefore, it is universally applicable for the estimation of poverty and inequality indicators

from interval-censored income data. We demonstrate the usefulness by estimating regional

poverty and inequality indicators from the German Microcensus. To get representative results

the algorithm is extended to take OECD equivalence weights and survey weights into account.

The estimated regional indicators are plotted on maps that visualize the magnitude of poverty

and inequality in Germany. With the help of the KDE algorithm statistical indicators can be

precisely estimated from interval-censored data in order to tackle the increasing problem of

rising poverty and inequality in societies all over the world.

Further research should focus on convergence criteria that make the manual choice of the

number of iteration obsolete.

Acknowledgements

We thank Timo Schmid and Marcus Groß for discussions and helpful comments on this paper.

60



CHAPTER 2. DIRECT ESTIMATION OF STATISTICAL INDICATORS

2.6 Appendix

Table 2.8: Sample size for Germany and each of the 16 federal states.

State Sample size Number in Map
Germany 454852

Schleswig-Holstein 15302 1
Hamburg 8630 2

Lower Saxony 45828 3
Bremen 3356 4

North Rhine-Westphalia 90778 5
Hesse 35730 6

Rhineland-Palatinate 21229 7
Baden-Württemberg 58685 8

Bavaria 75244 9
Saarland 5688 10

Berlin 19311 11
Brandenburg 15400 12

Mecklenburg-Vorpommern 8706 13
Saxony 24609 14

Saxony-Anhalt 13495 15
Thuringia 12861 16

German Federal States

Figure 2.7: German Federal States, the names of the corresponding numbers are given in Table
2.8.
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Table 2.9: Estimated statistical indicators for Germany and the 16 federal states. Standard errors are given in parentheses.

Quant0.1 Quant0.25 Median Quant0.75 Quant0.9 Mean HCR QSR PGap Gini
Germany 770.16 1040.23 1445.53 1998.96 2714.63 1675.88 0.15 4.31 0.03 0.29

(0.00) (3.28) (4.93) (2.59) (3.69) (1.85) (0.00) (0.01) (0.00) (0.00)
Schleswig-Holstein 794.21 1092.99 1512.96 2071.11 2743.79 1736.25 0.15 4.33 0.04 0.29

(6.04) (5.83) (7.39) (7.80) (20.01) (9.35) (0.00) (0.05) (0.00) (0.00)
Hamburg 765.68 1069.24 1540.20 2166.83 3002.79 1815.45 0.17 4.92 0.04 0.32

(7.16) (9.21) (10.47) (13.44) (29.75) (14.14) (0.00) (0.09) (0.00) (0.00)
Lower Saxony 770.08 1040.25 1445.04 1970.84 2603.04 1636.36 0.16 4.16 0.03 0.28

(4.10) (2.53) (5.44) (7.11) (13.00) (5.79) (0.00) (0.04) (0.00) (0.00)
Bremen 665.44 876.91 1328.23 1879.66 2564.10 1540.03 0.18 4.72 0.04 0.31

(10.82) (9.93) (16.76) (25.28) (47.95) (19.19) (0.01) (0.12) (0.00) (0.01)
North Rhine-Westphalia 756.85 1013.41 1418.50 1985.64 2674.27 1649.22 0.15 4.29 0.03 0.29

(0.72) (0.01) (3.01) (4.70) (9.05) (3.69) (0.00) (0.02) (0.00) (0.00)
Hesse 798.23 1094.75 1540.36 2149.61 2997.03 1825.06 0.16 4.66 0.03 0.31

(4.56) (4.88) (6.03) (7.49) (14.23) (7.54) (0.00) (0.04) (0.00) (0.00)
Rhineland-Palatinate 770.65 1067.23 1485.95 2052.43 2810.09 1720.30 0.15 4.49 0.04 0.30

(5.39) (5.36) (6.36) (8.97) (17.17) (8.40) (0.00) (0.06) (0.00) (0.00)
Baden-Württemberg 837.76 1148.33 1580.43 2160.84 2900.98 1806.40 0.15 4.24 0.04 0.29

(2.23) (4.10) (4.08) (6.62) (10.50) (5.52) (0.00) (0.03) (0.00) (0.00)
Bavaria 841.94 1148.28 1580.35 2147.52 2944.04 1826.62 0.14 4.33 0.03 0.29

(5.37) (4.62) (4.99) (5.19) (8.81) (4.75) (0.00) (0.03) (0.00) (0.00)
Saarland 784.70 1035.41 1434.20 1938.86 2559.91 1615.95 0.14 3.98 0.03 0.27

(8.77) (9.73) (10.55) (14.70) (32.54) (13.40) (0.01) (0.07) (0.00) (0.00)
Berlin 730.96 912.14 1328.50 1867.05 2552.45 1547.47 0.15 4.15 0.02 0.29

(5.38) (5.19) (8.41) (11.20) (15.87) (8.77) (0.01) (0.05) (0.00) (0.00)
Brandenburg 716.80 979.24 1351.02 1823.73 2446.72 1528.25 0.14 4.10 0.03 0.28

(5.93) (6.78) (6.43) (10.03) (17.36) (8.08) (0.00) (0.05) (0.00) (0.00)
Mecklenburg-Vorpommern 671.30 895.52 1211.29 1629.61 2120.56 1355.61 0.13 3.74 0.03 0.26

(4.92) (5.77) (7.51) (9.78) (20.77) (11.96) (0.00) (0.08) (0.00) (0.01)
Saxony 709.57 945.88 1247.40 1622.64 2155.08 1383.20 0.12 3.52 0.02 0.25

(4.62) (4.00) (4.31) (5.48) (10.93) (5.09) (0.00) (0.03) (0.00) (0.00)
Saxony-Anhalt 675.70 928.47 1247.05 1643.78 2161.33 1382.23 0.14 3.78 0.03 0.26

(5.25) (5.85) (5.90) (7.68) (17.09) (6.24) (0.00) (0.05) (0.00) (0.00)
Thuringia 755.17 973.23 1283.80 1683.44 2226.40 1435.52 0.11 3.50 0.02 0.25

(5.32) (4.23) (5.50) (7.11) (16.00) (7.45) (0.00) (0.04) (0.00) (0.00)
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Chapter 3

Small Area Estimation with
Interval-Censored Income Data

3.1 Introduction

Recent applications of small area estimation (SAE) methodologies have been concerned with

the estimation of area-specific income indicators, for example the median income, the head

count ratio and the quintile share ratio (Rao and Molina, 2015; Rojas-Perilla et al., 2017; Tza-

vidis et al., 2018). Popular SAE methods that have been used in this context include the so-

called World Bank method (Elbers et al., 2003) and the empirical best predictor (EBP) method

(Molina and Rao, 2010). In these papers, small area estimation is based on the use of a unit-

level nested error regression (random effects) model estimated with income as a response vari-

able that is measured on a continuous scale.

It is tempting for survey designers to reduce survey related costs by collecting information

on income using income bands as opposed to detailed income information (Micklewright and

Schnepf, 2010). Collecting data in bands may also help with reducing respondent burden, item

non-response and micro-data disclosure risk. On the other hand, it is also reasonable to expect

that collecting interval-censored data may result in a loss of information compared to collecting

on a continuous scale. The impact of this loss of information on the quality of official statistics

estimates is of particular importance. Interval-censored household income data are collected

as part of the German Microcensus (Statistisches Bundesamt, 2017). In the UK, the Office

for National Statistics experimented with the collection of interval-censored income data in the

lead up to the 2001 census (Collins and White, 1996). In this paper the terms grouped data,

banded data, and interval-censored data are used interchangeably.

Although regression methods for grouped data have been studied in the econometric lit-

erature (Hsiao, 1983) to the best of our knowledge this is not the case with random effects

models. Small area estimation is therefore challenging when the analyst only has access to

a grouped response variable. The present paper proposes an extension of the EBP method

when the response variable is banded. The methodology works by reversing the process of

banding, leading to an outcome measured on a continuous scale. Estimation of the parameters
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of the unit-level nested error regression model is implemented via a stochastic expectation-

maximization (SEM) algorithm (Celeux and Dieboldt, 1985). The estimated model parameters

are then used for small area prediction. The proposed methodology also allows for the use

of data-driven transformations when the error term of the model lack normality. Following

González-Manteiga et al. (2008), the estimation of the mean squared error (MSE) of the small

area estimates is facilitated by a parametric bootstrap, which incorporates the additional uncer-

tainty due to interval censoring of the response variable assuming that the censoring mechanism

is known. The proposed method assumes that there is no measurement error in reporting the

band associated with the latent continuous variable. In this paper we develop the methodology

under a 2-level nested error regression model but an extension to 3-level structures – incorporat-

ing possible cluster effects – along the lines of the methodology proposed by Marhuenda et al.

(2017) is feasible. Finally, as it is the case with the EBP method or the World Bank method,

we assume access to micro-data for the model covariates from census or administrative data.

The proposed methodology makes possible the use of SAE methods with interval-censored

outcomes and therefore it enables survey organizations to consider collecting data in this form.

The paper is organized as follows. Section 3.2 introduces the SEM algorithm that is used

for the estimation of the regression parameters of a 2-level nested error regression model. In

Section 3.3, the EBP method with interval-censored data is presented. In Section 3.4 extensive

model-based simulations are carried out. In Section 3.5, the new statistical methodology is

used to estimate poverty and inequality indicators from interval-censored data from Mexico.

Finally, the main results are summarized and discussed in Section 3.6.

3.2 The nested error linear regression model with an interval-
censored response variable

Consider a finite population U of size N , divided into D areas/domains. The terms areas

and domains are used interchangeably in this paper. The population size of each of the D-

domains U1, U2, . . . , UD is given by N1, N2, . . . , ND. Let us for now assume that the response

variable denoted by yij is measured on a continuous scale, where j = 1, 2, . . . , ni denotes

the jth unit belonging to the ith domain, with i = 1, 2, . . . , D. The vector x is defined as

xTij = (x1ij , . . . , xpij), where p denotes the number of explanatory variables. A nested error

linear regression model is used for modeling the relationship between the variable of interest

and auxiliary information with the unexplained variation being captured by the random effect

term, ui and the residuals eij . In the simplest case a 2-level nested error regression model as

defined in Battese et al. (1988) is given by

yij = xTijβ + ui + eij , (j = 1, . . . , ni), (i = 1, . . . , D),

ui
iid∼ N(0, σ2u),

eij
iid∼ N(0, σ2e),

yij |xij , ui ∼ N(xTijβ + ui, σ
2
e).

(3.1)
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In the case of interval-censored data, yij is unobserved and the only observed information

concerning the dependent variable is, that it falls within an interval. The continuous scale is

divided into K intervals, where the k-th interval is given by (Ak−1, Ak). The variable kij
(1 ≤ kij ≤ K) indicates in which of the intervals the dependent variable falls into. The first

and K-th interval are allowed to be open ended, therefore A0 = −∞ and AK = +∞ are

possible. Situations in which either or none of the outer intervals are open ended can also be

handled by the proposed methodology. Furthermore, the interval length is allowed to be arbi-

trary and can vary between intervals. Since the underlying distribution of yij is unknown, the

aim is to reconstruct the conditional distribution f(yij |xij , kij , ui, θ), where θ = (β, σ2e , σ
2
u)

are the unknown model parameters, β is a p× 1 vector of regressors and the error terms ui and

eij are assumed to be independent and normally distributed. Estimation methods such as max-

imum likelihood (ML) or restricted maximum likelihood (REML) are utilized for estimating θ

when yij is observed on a continuous scale (Lindstrom and Bates, 1990). However, when the

response variable is interval censored, formulating the likelihood is more challenging. In this

section an SEM algorithm for fitting the model is proposed and data-driven transformations are

also considered for handling potential departures from the model assumptions.

Different approaches for dealing with interval-censored response variables in regression

modeling that assume independent observations have been proposed in the literature. A naive

approach uses ordinary least squares on the midpoints of the intervals. While this approach is

easy to implement (Thompson and Nelson, 2003), it has two major drawbacks. The uncertainty

associated with the value of each observation within each interval is not accounted for and

dealing with open ended intervals is not easy. Simulation results demonstrate, that the grouping

coarseness affects the quality of the estimates hence necessitating more advanced estimation

methods (Cameron, 1987). Nevertheless, the naive approach can provide results of acceptable

quality if the grouping is very fine (Fryer and Pethybridge, 1972). An alternative approach is to

view the outcome as ordinal and use an ordered probit or logit regression model (McCullagh,

1980). However, since the predicted values are then expressed in terms of the probability of

belonging in each interval, these models cannot be used for predicting the unknown value of

the response variable on the continuous scale.

To overcome these drawbacks, linear regression models for left-censored (Tobin, 1958),

right-censored (Rosett and Nelson, 1975) and grouped (or interval-censored) (Stewart, 1983)

dependent variables have been proposed. Stewart (1983) proposes an expectation-maximization

(EM) algorithm for estimating the model parameters of a linear regression model with grouped

response variable.

For the nested error regression model we were unable to find relevant literature. Therefore,

in this paper we propose a SEM algorithm (Celeux and Dieboldt, 1985; Celeux et al., 1996)

for estimating the parameters of the nested error regression model when the outcome is inter-

val censored. A similar SEM algorithm is proposed in Groß et al. (2017) for kernel density

estimation on aggregated data.

To reconstruct the unknown distribution f(yij |xij , kij , ui, θ) we use the Bayes theorem and
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express the target distribution as follows:

f(yij |xij , kij , ui, θ) =
f(kij |yij , xij , ui, θ)f(yij |xij , ui, θ)

f(kij |xij , ui, θ)

∝ f(kij |yij , xij , ui, θ)f(yij |xij , ui, θ).

Since f(kij |yij , xij , ui, θ) = f(kij |yij), the conditional distribution of kij is given by

f(kij |yij) =

1 if Ak−1 ≤ yij ≤ Ak,

0 else,

and under (3.1),

f(yij |xij , ui, θ) ∼ N(xTijβ + ui, σ
2
e).

Because yij is unobserved, one approach to fitting the model defined above is to use the SEM

algorithm. The algorithm works by replacing the unobserved data in the complete data likeli-

hood by generating pseudo samples given the observed data and the current values of θ (S-step)

and then maximizes the complete data likelihood for updating θ (M-step). The updated vector

of model parameters is used for generating pseudo samples ỹij of the unknown yij from the

conditional distribution f(yij |xij , kij , ui, θ). The iterations stop after B +M steps.

3.2.1 The SEM algorithm

Assuming θ is known, pseudo samples, ỹij , are drawn from the following conditional distribu-

tion

f(yij |xij , kij , ui, θ) ∝ I(Ak−1 ≤ yij ≤ Ak)×N(xTijβ + ui, σ
2
e),

where I(·) denotes the indicator function. The conditional distribution of yij has the form of a

two sided truncated normal distribution given by

f(yij |xij , kij , ui, θ) =
φ
(
yij−µij
σe

)
σe

(
Φ
(
Ak−µij
σe

)
− Φ

(
Ak−1−µij

σe

)) ,
with µij = xTijβ+ui, φ(·) is the probability density function of the standard normal distribution

and Φ(·) is its cumulative distribution function. By definition Φ
(
Ak−µij
σe

)
= 1 if Ak = +∞

and Φ
(
Ak−1−µij

σe

)
= 0 if Ak−1 = −∞. For each observation with explanatory variables

xij the corresponding ỹij is randomly drawn from N(xTijβ + ui, σ
2
e) within the given interval

(Ak−1 ≤ yij ≤ Ak). This is the S-step of the SEM algorithm. The M-step comprises fitting

the nested error regression model using the newly generated (ỹij , xij). The steps of the SEM

algorithm are as follows:

1. Estimate θ̂ = (β̂, σ̂2e , σ̂
2
u) from (3.1) using the midpoints of the intervals as a substitute

for the unknown yij . The parameters are estimated using restricted maximum likelihood
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(REML).

2. S-step: For j = 1, . . . , ni and i = 1, . . . , D sample from the conditional distribution

f(yij |xij , kij , ui, θ) by drawing randomly from N(xTij β̂ + ûi, σ̂
2
e) within the given in-

terval (Ak−1 ≤ yij ≤ Ak) obtaining (ỹij , xij). The drawn pseudo ỹij are used as

replacement for the unknown yij .

3. M-step: Re-estimate the vector θ̂ using (3.1) and the pseudo samples (ỹij , xij) from

Step 2. The parameters are estimated using REML as in Step 1.

4. Iterate Steps 2-3 B +M times, with B burn-in iterations and M additional iterations.

5. Discard the burn-in iterations and estimate θ̂ by averaging the derived M estimates.

For open ended intervals A0 = −∞ and AK = +∞, the midpoints M1 and MK in Step 1 are

computed as follows:

M1 = (A1 −D)/2,

MK = (AK−1 +D)/2,

where

D =
1

(K − 2)

K−1∑
k=2

|Ak−1 −Ak|.

Empirical results show that the procedure for handling open ended intervals in the first iteration

step has little impact on prediction.

The proposed SEM algorithm makes repeated use of a two sided truncated normal distri-

bution, by drawing from N(xTij β̂ + ûi, σ̂
2
e) within the given interval (Ak−1 ≤ yij ≤, Ak).

Therefore, the performance of the SEM algorithm relies on the Gaussian assumptions of the

error terms being met. To ensure that this is the case, the SEM algorithm is extended to allow

for the use of transformations.

3.2.2 The SEM algorithm under transformations

Transformations of the outcome can be used for ensuring that the model assumptions are met.

Broadly speaking one can use non-adaptive or adaptive transformations. For the application

in this paper that models income-type data, the logarithmic transformation is probably the one

most commonly used. While the logarithmic transformation is easy to use, there is no guaran-

tee that it will provide the best transformation for the target distribution. This is particularly

crucial in this paper since the validity of the normality assumption of the residuals cannot be

tested due to the fact that the response variable is interval censored. Therefore, using adaptive

(data-driven) transformations, instead of fixed transformations, is preferable. In addition, the

logarithmic transformation can be obtained as a special case of a family of adaptive transfor-

mations. In this paper we focus on the use of the Box-Cox transformation (Box and Cox, 1964;

Draper and Cox, 1969) and its extension under the nested error regression model (Gurka et al.,
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2006). The Box-Cox transformation is given by

yij(λ) =


(yij+s)

λ−1
λ if λ 6= 0,

ln(yij + s) if λ = 0,

where s is a fixed shift parameter that assures yij+s > 0. The Box-Cox transformation depends

on the transformation parameter λ that is used for transforming the data Tλ(yij) = yij(λ). The

aim is to find the value of λ given the data such that the assumptions about the error terms of the

nested error regression model are met (Gurka et al., 2006). The implementation of data-driven

transformations within the SEM algorithm is computationally intensive because the transfor-

mation parameter λ has to be estimated in each iteration step. The algorithm is structured into

two parts. In Part 1 the SEM algorithm is used for finding the optimal transformation param-

eter, λ̂(F ). In Part 2 the SEM algorithm is implemented with the estimated λ̂(F ) from Part 1.

The detailed steps of the SEM algorithm under transformations are given below.

Part 1

1. Define a grid g of possible values of λ. Using each value in the grid in turn, implement

the steps below.

2. Use the scaled version of the Box-Cox transformation, as defined in Rojas-Perilla et al.

(2017), to transform the midpoints of each interval (Ak−1, Ak) and fit the nested error

regression model (3.1). Repeat the same process for each value of λ in g and select the

value of λ̂ that maximizes the restricted maximum likelihood (Bartlett, 1937).

3. Using the selected value of λ̂ from the previous step fit the nested error regression model

(3.1) to obtain θ̂ = (β̂, σ̂2e , σ̂
2
u).

4. Generate a new pseudo sample as a proxy for the unobserved yij(λ̂). To do this, for j =

1, . . . , ni and i = 1, . . . , D sample from the conditional distribution f(yij(λ)|xij , kij , ui)
by drawing from N(xTij β̂ + ûi, σ̂

2
e) within the given interval (Ak−1(λ̂) ≤ yij(λ̂) ≤

Ak(λ̂)) to obtain (ỹij(λ̂), xij). Back-transform ỹij(λ̂) to the original scale ỹij using the

selected λ̂ from Step 2.

5. Go to Step 1 and select a new optimal λ̂ this time using the newly generated ỹij from the

previous step in Step 2 of the algorithm instead of the interval midpoints.

6. Iterate Steps 1-5 B +M times, with B burn-in iterations and M additional iterations.

7. Discard the burn-in iterations and estimate the final λ̂(F ) by averaging the M estimates

of λ̂.

Part 2

8. Use λ̂(F ) from Part 1 and the the Box-Cox transformation to transform the midpoints of

each interval (Ak−1, Ak).
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9. Fit the nested error regression model (3.1) using the transformed midpoints to obtain

θ̂ = (β̂, σ̂2e , σ̂
2
u).

10. S-step: Generate a new pseudo sample as a proxy for the unobserved continuous out-

come. To do this, for j = 1, . . . , ni and i = 1, . . . , D sample from the conditional

distribution f(yij(λ)|xij , kij , ui) by drawing from N(xTij β̂ + ûi, σ̂
2
e) within the given

interval (Ak−1(λ̂
(F )) ≤ yij(λ̂(F )) ≤, Ak(λ̂(F ))) to obtain (ỹij(λ̂

(F )), xij).

11. M-step: Re-estimate the vector θ̂ using (3.1) and the pseudo samples (ỹij(λ̂
(F )), xij)

from the previous step.

12. Iterate Steps 10-11 B +M times, with B burn-in iterations and M additional iterations.

13. Discard the B burn in iterations and estimate θ̂ by averaging the derived M estimates.

Figure 3.1 illustrates why in the case of using transformations it is important to structure the

SEM algorithm in two parts, i.e., finding the optimal λ first and then using the optimal λ,

estimating β. The left panel of Figure 3.1 plots the estimated λ for each iteration step of the

algorithm for estimating its convergence. The right panel of Figure 3.1 plots λ̂ against any β̂

for each iteration step of Part 1. From that plot it is clear that by simply running Part 1 and

averaging the M estimates of β̂ and λ̂ the averaged estimates would not correspond. This is

the case because the relationship between λ̂ and β̂ is non-linear. Therefore, the SEM algorithm

has to be divided into two parts. In Part 1 the final λ̂(F ) is estimated and in Part 2 this estimate

is used for estimating the parameters of the nested error regression model on the transformed

scale.
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Figure 3.1: Convergence of λ̂ and any β̂ using the SEM algorithm.

3.3 Small area empirical best prediction with interval-censored data

In this section we present methods for small area prediction when the response variable is in-

terval censored. The application is on estimating income-type indicators. In addition to the

notation we introduced in the previous section, we denote sampled units in area i by si and

the non-sampled units by ri. For each area i the sample size is ni with n =
∑D

i=1 ni and the

population vector yi for area i comprises sampled and non-sampled units yTi = (yTis, y
T
ir). The

target of inference are small area parameters that include linear and non-linear indicators which
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can be expressed as functions of an income variable for example, average and median equival-

ized income, the head count ratio (at risk of poverty indicator), the quantile share ratio index,

and the Gini coefficient. Since in this paper we assume the availability of unit-level survey and

census/administrative data, two methods for estimating non-linear indicators are available, the

World Bank method (Elbers et al., 2003) and the popular EBP method (Molina and Rao, 2010).

Although our focus is on the use of the EBP method, the proposed methodology can be applied

to the World Bank method too. The EBP method makes use of unit-level nested error regres-

sion model and is summarized below. The response variable is income that is only available

in the survey. The explanatory variables, used for modeling the income variable, are available

both in the survey and in the census data sets. After the model is fitted using the survey data, the

estimated model parameters are combined with census micro-data to form unit-level synthetic

census predictions of the income variable. These synthetic values are then used for estimating

the target parameters. Census predictions are generated by using the conditional predictive

distribution of the out-of-sample data given the sample data. The starting point is the following

unit-level nested error regression model,

yij = xTijβ + ui + eij , ui
iid∼ N(0, σ2u), eij

iid∼ N(0, σ2e),

where ui denotes the domain (area) random effect. Assuming normality for the unit-level error

and the domain random effects, the conditional distribution of the out-of-sample data given the

sample data is also normal. Predictions for the entire population of area i are generated from

the following model,

y∗ij = xTijβ + ũi + u∗i + e∗ij , (3.2)

u∗i
iid∼ N(0, σ2u × (1− γi)), e∗ij

iid∼ N(0, σ2e), γi =
σ2u

σ2u + σ2
e
ni

,

where ũi = E(ui|yis) is the conditional expectation of ui given the sample data yis. Imple-

mentation of Equation (3.2) requires replacing the unknown quantities β, σu, σe, with estimates

and simulating L synthetic populations of the income variable, y∗ij . Linear and non-linear indi-

cators are computed in each domain i for each replication and the estimates are averaged over

the number of Monte Carlo simulations L. This number is usually set equal to L = 50 or

L = 100 but higher numbers are also possible.

In the presence of an interval-censored income variable the EBP approach needs to be

modified. In the first step the model parameters, θ̂ = (β̂, σ̂2u, σ̂
2
e), are estimated using the SEM

algorithm outlined in Section 3.2. Having estimated θ̂, the remaining steps of the Monte Carlo

algorithm used to implement the EBP approach are as follows:

1. Use the sample data and the SEM algorithm to estimate θ̂ = (β̂, σ̂2u, σ̂
2
e) and γ̂i = σ̂2

u

σ̂2
u+

σ̂2e
ni

.

2. For l = 1, . . . , L:

(a) Generate a synthetic population under the nested error regression model ŷ∗(l)ij =
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xTij β̂ + ũi + u
∗(l)
i + e

∗(l)
ij , where xij are population micro-data for unit j in area i,

u
∗(l)
i

iid∼ N(0, σ̂2u(1− γ̂i)), e∗(l)ij
iid∼ N(0, σ̂2e) and ũi is given by ũi = E(ui|yis).

(b) In each area, estimate the target parameter Î(l)i using ŷ∗(l)ij .

3. The target parameter is estimated by averaging over the L Monte Carlo estimates Î(l)i in

each area,

ÎEBPi =
1

L

L∑
l=1

Î
(l)
i .

It is likely that when modeling an income variable the normality assumptions of the nested error

regression model may not hold. In this case a suitable transformation is needed and the SEM

algorithm is implemented using the results in Section 3.2.2. After estimates of θ̂ = (β̂, σ̂2u, σ̂
2
e)

and λ̂(F ) have been obtained, the Monte Carlo steps of the EBP method are implemented as

follows:

1. Use the sample data and the SEM algorithm to estimate θ̂ = (β̂, σ̂2u, σ̂
2
e), λ̂(F ) and

γ̂i = σ̂2
u

σ̂2
u+

σ̂2e
ni

.

2. For l = 1, . . . , L:

(a) Generate a synthetic population under the nested error regression model

ŷ
∗(l)
ij (λ̂(F )) = xTij β̂ + ũi + u

∗(l)
i + e

∗(l)
ij , where xij are population micro-data for

unit j in area i, u∗(l)i
iid∼ N(0, σ̂2u(1 − γ̂i)), e∗(l)ij

iid∼ N(0, σ̂2e) and ũi is given by

ũi = E(ui|yis).

(b) Back-transform to the original scale ŷ
∗(l)
ij = T−1

(
ŷ
∗(l)
ij (λ̂(F ))

)
.

(c) In each area, estimate the target parameter Î(l)i using ŷ∗(l)ij .

3. The target parameter is estimated by averaging over the L Monte Carlo estimates Î(l)i in

each area,

ÎEBPi =
1

L

L∑
l=1

Î
(l)
i .

For non-sampled areas we cannot estimate an area random effect, hence ũi is not available. In

this case Step 2(a) above is modified such that synthetic values of the outcome are generated

as follows, ŷ∗(l)ij (λ̂(F )) = xTij β̂ + u
∗(l)
i + e

∗(l)
ij , where the error terms are drawn from u

∗(l)
i

iid∼
N(0, σ̂2u) and e∗(l)ij

iid∼ N(0, σ̂2e). The same applies to the case where we are working with the

untransformed response variable.

3.3.1 Mean squared error estimation

MSE estimation is a crucial step in small area estimation. Complications arise due to the

complexity of non-linear indicators which make the development of analytic MSE estimators

difficult. For the EBP Molina and Rao (2010) propose a parametric bootstrap MSE estimator
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under the nested error regression model. A parametric bootstrap is also used when working

with an interval-censored outcome. However, there are two additional sources of variability

we need to account for. One is the uncertainty due to the estimation of the transformation

parameter and the second is the uncertainty resulting from working with limited information

due to interval censoring. The bootstrap MSE assumes that the mechanism used to interval

censor the response variable is known. Denoting by b the bootstrap iteration, the bootstrap

MSE estimator below is presented in the more general case where a transformation of the

response variable is used.

1. (a) Using the sample estimates, β̂, σ̂2u, σ̂
2
e , λ̂

(F ), at convergence of the SEM algorithm,

generate u∗(b)i
iid∼ N(0, σ̂2u) and e∗(b)ij

iid∼ N(0, σ̂2e) and a bootstrap superpopulation

ŷ
∗(b)
ij (λ̂(F )) = xTij β̂ + u

∗(b)
i + e

∗(b)
ij , where xij are population micro-data for unit j

in area i.

(b) Back-transform ŷ
∗(b)
ij = T−1

(
ŷ
∗(b)
ij (λ̂(F ))

)
to the original scale and compute the

population value of the target parameter in area i and bootstrap iterations b, Ii,b.

(c) Select a bootstrap sample using a simple random sampling with replacement from

each area that respects the area-specific sample sizes of the original sample.

(d) Using the known censoring mechanism and the bootstrap sample data, create the

interval-censored response variable.

(e) Use the SEM algorithm with the current bootstrap sample for deriving EBP esti-

mates of the target parameters. In this case where a transformation is used this

consists of using Parts 1 and 2 from Section 3.2.2 and the EBP algorithm under a

transformation described in Section 3.3.

(f) Obtain EBP estimates of the target parameter in area i and bootstrap iteration b,

ÎEBPi,b .

2. Using a total of B bootstrap samples, the MSE estimator is computed as follows:

M̂SE
(
ÎEBPi

)
=

1

B

B∑
b=1

(
ÎEBPi,b − Ii,b

)2
.

3.4 Model-based simulations

This section presents model-based simulation results for assessing the performance of the pro-

posed methodology. In particular, we assess the performance of EBP point estimators and of

corresponding MSE estimators. As poverty indicators we estimate the head count ratio (HCR)

and the poverty gap (PGAP) as defined in Foster et al. (1984) (income deprivation) and the
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mean of household income in each area i. The indicators are defined as follows:

HCRi =
1

ni

ni∑
j=1

I(yij ≤ z),

PGAPi =
1

ni

ni∑
j=1

(z − yij
z

)
I(yij ≤ z),

Meani =
1

ni

ni∑
j=1

yij ,

where yij denotes the outcome variable, I(·) denotes the indicator function and z is the poverty

threshold. In the simulations and application in this paper z is set to 60% of the median of

income, as defined by (Eurostat, 2014).

Two population models outlined in Table 3.1 are used for generating the simulated data.

The normal scenario (in Section 3.4.1) is used for evaluating the performance of the EBP

approach under interval censoring of the response variable when the model assumptions are

met. The log-scale scenario (in Section 3.4.2) attempts to mimic the distribution of an income

variable we might work with in practice. In this case the Gaussian assumptions of the model are

not met and the use of transformations is necessary. For both population models we also assess

the estimation of the transformation parameter λ. This can be achieved since the theoretical

values of λ under the normal and log-normal scenarios are known. In addition, we also assess

the properties of the proposed bootstrap MSE estimator.

For the normality-based scenario we use two different interval-censoring mechanisms, re-

ferred to as normal scenario 1 and normal scenario 2 (see Tables 3.8 and 3.9 in Appendix 3.7).

This allows us to explore the impact of the number of groups on the performance of the small

area estimators which is of interest for survey practitioners. Under normal scenario 1 the num-

ber of groups used for splitting the income variable is 14. Under normal scenario 2 we use a

more extreme censoring mechanism with only seven groups. The reason for deciding to use

this number of groups in the simulation studies follows international practice. For example,

the census in Colombia groups income in nine intervals, in Australia 10 intervals are used and

in New Zealand 14 (Departamento Administrativo Nacional De Estadı́stica, 2005; Australian

Bureau of Statistics, 2011; Statistics New Zealand, 2013).

In each Monte Carlo run a finite population U of size N = 10000 is generated and is

partitioned into D = 50 areas U1, U2, . . . , UD each with size Ni = 200. From the finite

population we select a sample using an unbalanced design with area-specific sample sizes ni
ranging between 8 ≤ ni ≤ 29. The total sample size is n = 921. In total we run 200 Monte

Carlo iterations with the number of Monte Carlo iterations for implementing the EBP set to

L = 200 and the number of bootstrap iterations for MSE estimation set to B = 200.

Different small area estimators are compared. In particular, we compare the EBP under

the model that assumes that the continuous response variable is available (abbreviated below

by LME) to the EBP when only the interval-censored variable is available and the use of the

SEM algorithm is necessary (abbreviated below by SEM). For both model-based scenarios we
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Table 3.1: Model-based simulation scenarios.

Scenario Model xij zij µi ui eij
Normal 4500− 400xij + ui + eij N(µi, 3) - U(−3, 3) N(0, 5002) N(0, 10002)
Log-scale exp(10− xij − 0.5zijui + eij) N(µi, 2) N(0, 1) U(−3, 3) N(0, 0.42) N(0, 0.82)

further compare the standard EBP when a Box-Cox transformation is used (LME Box-Cox) to

the EBP-SEM approach when a Box-Cox transformation is used (abbreviated below by SEM

Box-Cox). This allows us to examine how well the parameter of the Box-Cox transformation

λ is estimated when we only have access to the interval-censored response. For assessing the

use of a fixed transformation, the standard EBP as well as the EBP with grouped data is used

with a logarithmic transformation (LME Log, SEM Log). The SEM algorithm uses 40 burn-in

iterations and 200 additional iterations. This number is sufficient in the simulation study to

ensure convergence. The convergence of the SEM algorithm is graphically checked by plotting

the parameter estimates at each iteration step for randomly chosen simulation runs.

The performance of point estimates is assessed by computing the area-specific root mean

squared error (RMSE) of the target parameter Îi (Hyndman and Koehler, 2006). Tables are

used to report the average, over areas, of the RMSE. The area-specific values of the RMSE are

computed as follows:

RMSE
(
ÎEBPi

)
=

[
1

M

M∑
m=1

(
Î
EBP (m)
i − I(m)

i

)2]1/2
, (3.3)

where M is the total number of Monte Carlo iterations, m denotes the Monte Carlo iteration,

ÎEBPi is the estimated indicator using one of the above mentioned methods and Ii is the true

population value.

The proposed MSE estimator is visually evaluated, by plotting the estimated root MSE

defined as Est.RMSEi :=

√
M̂SE

(
ÎEBPi

)
and the empirical root MSE, called Emp.RMSEi

as defined in (3.3) for each area i. Furthermore, for each area i the relative bias and the relative

RMSE of the Est.RMSEi are estimated as follows:

rel.RMSE
(
Est.RMSEi

)
=

[(
Est.RMSEi − Emp.RMSEi

Emp.RMSEi

)2
]1/2

× 100,

rel.Bias
(
Est.RMSEi

)
=

(
Est.RMSEi − Emp.RMSEi

Emp.RMSEi

)
× 100.

The results of the different scenarios are presented in the next two sections.

3.4.1 Results: Normality-based scenarios

Table 3.2 presents the results for normal scenario 1 (14 intervals) and normal scenario 2 (seven

intervals) using the SEM method, the SEM Box-Cox method, and the LME and LME Box-Cox
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methods. The results show that the performance of the EBPs using the SEM algorithm is close

to the performance of the EBPs when the continuous outcome is fully available. As expected,

when using the fully available continuous outcome the EBP estimates are more efficient (lower

RMSE) than the SEM-based estimates. However, despite working with the interval-censored

outcome the increase in RMSE (reduction in efficiency) is not dramatic which demonstrates

that the SEM algorithm works well. In line with the theory, the results also show that as

the number of classes used to discretise the continuous outcome reduces (from 14 to seven

groups), the RMSE of the SEM-based estimates increases. This is reasonable as in this case

the information available reduces. Nevertheless, even in the case of scenario 2 we would argue

that the performance of the SEM-based estimates is reasonable. Our view is based on the fact

that seven groups present a rather extreme scenario.

Table 3.2: Performance of the estimated EBPs in terms of RMSE over areas.

Indicator: Mean HCR PGAP
Median Mean Median Mean Median Mean

Normal scenario 1 (14 intervals)
RMSE LME 201.482 212.450 0.033 0.035 0.014 0.015

LME Box-Cox 201.675 212.466 0.033 0.035 0.014 0.016
SEM 203.783 217.075 0.034 0.036 0.014 0.016
SEM Box-Cox 204.604 217.335 0.034 0.036 0.014 0.017

Normal scenario 2 (7 intervals)
RMSE LME 200.725 212.405 0.033 0.035 0.014 0.015

LME Box-Cox 201.422 212.502 0.033 0.035 0.014 0.016
SEM 216.780 225.692 0.035 0.038 0.015 0.017
SEM Box-Cox 215.324 225.897 0.035 0.037 0.016 0.018

Log-scale scenario (7 intervals)
RMSE LME Log 994.586 988.374 0.063 0.065 0.039 0.040

LME Box-Cox 995.068 992.021 0.063 0.065 0.040 0.040
SEM Log 1046.724 1030.190 0.066 0.068 0.041 0.042
SEM Box-Cox 1043.407 1040.646 0.066 0.068 0.040 0.042

In Figures 3.2 and 3.3 the estimated density of the population yij values are plotted against

the estimated density of ŷ∗(l)ij using the different estimation methods from one arbitrarily chosen

simulation run. The plots confirm the previous conclusions. The density estimated with the

SEM methods is close to the population density and estimates become less accurate as the

number of intervals used in censoring the response variable decreases (see Figures 3.2 and

3.3).

The performance of the estimates using the SEM and SEM Box-Cox methods is very sim-

ilar. In the case of the normal-based scenarios this is expected since the data driven transfor-

mation parameter, λ, is estimated to be close to one, which is equivalent to using no transfor-

mation. This is confirmed by looking at the estimation of λ given in Table 3.3. Hence, the

Box-Cox transformation adapts well to the shape of the data distribution, even though only the

interval information is used estimating λ. The estimation accuracy for λ also depends on the

number of intervals used for censoring the response variable, as seen in Table 3.3 for normal

scenario 1 and normal scenario 2.

The MSE results for the different indicators are summarized in Table 3.4. Table 3.4 shows

the relative bias and the relative RMSE of the estimated RMSE. Overall, the relative bias and
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Figure 3.2: Normal scenario 1 (14 intervals): Estimate of the true population density and
estimate of the predicted population density ŷ∗(l)ij from a randomly chosen run l.
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Figure 3.3: Normal scenario 2 (7 intervals): Estimate of the true population density and esti-
mate of the predicted population density ŷ∗(l)ij from a randomly chosen run l.

relative RMSE are relatively low. In particular, for most scenarios and target parameters the

relative bias is below 10% and for a few scenarios somewhat above 10%. The relative RMSE

also shows that the bootstrap estimator is stable. From Table 3.4 we cannot evaluate how well

the estimated RMSE tracks the empirical (Monte Carlo) RMSE. Therefore, Figure 3.4 shows

the estimated and empirical RMSE over the domains when estimating the HCR using the SEM

Box-Cox method. We conclude that the estimated RMSE tracks the empirical RMSE well.

3.4.2 Results: Log-scale scenario

In this section we present results when the assumptions of the nested error regression model

are not met. This is the case for the log-scale scenario. Its generation mechanism is described

in Table 3.1. For this scenario the response variable is grouped in seven intervals hence, a

fairly extreme censoring mechanism is evaluated. The distribution of the response variable

using one arbitrarily chosen Monte Carlo population can be seen in Table 3.10 in Appendix

3.7. Four estimation methods are compared, namely the SEM Box-Cox method, the SEM Log
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Table 3.3: Estimates of the transformation parameter λ over simulation runs.

Normal scenario 1 Normal scenario 2 Log-scale scenario
Median Mean Median Mean Median Mean

LME: λ̂ 0.91 0.91 0.91 0.91 0.00 0.00
SEM: λ̂(F ) 0.91 0.91 0.85 0.86 0.00 0.00

Table 3.4: Performance of the bootstrapped root MSE estimator over areas.

Indicator: Mean HCR PGAP
Median Mean Median Mean Median Mean

Normal scenario 1 (14 intervals)
rel.Bias[%] SEM 7.371 7.054 5.907 5.069 2.307 3.066

SEM Box-Cox 7.557 7.331 5.611 5.471 -6.856 -5.580
rel.RMSE[%] SEM 9.497 10.502 10.588 11.379 12.046 13.344

SEM Box-Cox 9.916 10.854 10.778 11.418 13.033 14.007
Normal scenario 2 (7 intervals)
rel.Bias[%] SEM 5.296 5.839 4.710 3.649 -0.178 0.297

SEM Box-Cox 5.462 6.095 4.591 3.909 -15.770 -14.823
rel.RMSE[%] SEM 8.586 9.911 10.224 10.978 12.224 13.294

SEM Box-Cox 8.815 10.297 10.296 11.067 19.269 19.155
Log-scale scenario (7 intervals)
rel.Bias[%] SEM Log 7.219 6.559 6.734 7.582 6.737 7.130

SEM Box-Cox 13.169 25.997 6.780 7.649 7.096 7.573
rel.RMSE[%] SEM Log 33.486 34.777 13.188 14.248 21.017 21.625

SEM Box-Cox 42.186 60.854 13.227 14.361 21.332 21.930

method, the LME Box-Cox method, and the LME Log method. Estimation without the use

of transformations is not considered in this case because we know that the model assumptions

do not hold. Nevertheless, the methods that use a Box-Cox transformation are adaptive and

the estimated transformation parameter informs us about the need to use a transformation.

The results in Table 3.2 show that the performance of the estimates using the SEM Box-Cox

and the SEM Log methods is close to the performance of the estimates using the LME Box-

Cox and the LME Log methods that assume that the continuous outcome variable is available.

As expected, some accuracy in estimation is compromised when working with the interval-

censored outcome. However, the SEM-based estimates remain competitive when compared to

the estimates obtained by assuming that full information for the response variable is available.

This is also confirmed by looking at how the SEM-based methods recover the true population

density in Figure 3.5.

The use of the Box-Cox transformation appears to be working well. Under this scenario

the transformation parameter λ should be estimated to be close to zero. This is confirmed by

examining the estimation results of λ̂ in Table 3.3. Finally, as shown in Figure 3.4 and Table

3.4 the proposed bootstrap MSE estimator tracks the empirical (Monte Carlo) well and has

reasonably low relative bias. As expected, the MSE under the Box-Cox version of the SEM is

somewhat more unstable than the corresponding MSE for the Log SEM. This is due to the fact

that in the case of the Box-Cox method the transformation parameter is estimated with each

bootstrap sample whereas for the Log method the transformation is held fixed.
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Figure 3.4: Estimated and empirical area-specific RMSEs of the HCR using the SEM Box-Cox
estimator.
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3.5 Estimating small area deprivation indicators for municipali-
ties in the Mexican state of Chiapas

In this section the proposed methods are applied to real census and survey data from Mexico.

Despite Mexico being the 15th largest economy in the world (International Monetary Fund,

2017), the fight against poverty and inequality is of great importance for the country since high

poverty rates are omnipresent. During the Mexican peso crisis extreme poverty increased from

21% in 1994 to 37% in 1996 (Pereznieto, 2010). Today, poverty rates remain at considerably

high levels. According to the World Bank (2010), 33% of the population in the country expe-

rienced moderate poverty and 9% extreme poverty in 2013. This demonstrates the relevance

of estimating and mapping poverty at local levels such that appropriate interventions can be

designed.

In this paper the target parameters are the average municipal household income, the mu-

nicipal head count ratio and the municipal poverty gap. Estimation uses the 2010 equivalized

household income and expenditure survey called ENIGH (Encuesta Nacional de Ingreso y

Gasto de los Hogares) and a large sample of the 2010 National Population and Housing cen-

sus. Both data sets are collected by the National Institute of Statistics and Geography (INEGI

Instituto Nacional de Estadı́stica y Geografı́a) and they are provided to us by the National

Council for the Evaluation of Social Development Policy (CONEVAL Consejo Nacional de

Evaluación de la Polı́tica de Desarrollo Social). Both the census and survey data set include

socioeconomic and regional information at household level. While the data cover all 31 states

of Mexico, the application is focusing on the state of Chiapas. Chiapas is one of the poorest

states in Mexico with an average income of about 40% of the national median income (Levy

et al., 2016). The state is located in the south of Mexico at the boarder to Guatemala. The

survey covers 42 out of the 118 municipalities in Chiapas so there are 42 in-sample and 76

out-of-sample municipalities for which no sample data is available. In order to derive precise

and reliable estimates at the level of municipality for all 118 municipalities we rely on the use

of model-based methods and auxiliary information from the census and survey micro-data.

The total sample size is n = 2486 households and the census sample size is N = 96350

households. The regional distribution of the sample size is given in Table 3.5. The sample size

of the in-sample municipalities varies between 13 and 651 households with a median sample

size of 33 households. Since sample sizes are small in many municipalities, SAE methods can

potentially improve the accuracy of the small area estimates.

Table 3.5: Distribution of the sample and census household sizes across areas.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample 13.00 17.00 33.00 59.19 51.00 651.00
Census 82.00 399.50 617.50 816.50 839.00 7172.00

The estimation methods we consider in this paper rely on the use of a nested error re-

gression model estimated with the survey data. The response variable equivalized household

income is measured on a continuous scale. In order to present the performance of the newly
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proposed methodology we group equivalized household income to 14 and eight intervals. The

distribution of the grouped equivalized household income is given in Table 3.11 and Table 3.12

in Appendix 3.7. The variables in Table 3.6 were identified as possible covariates that predict

equivalized household labor income well. The variables in the working model are selected with

regards to content and by a – for mixed models suitable – coefficient of determination proposed

by Nakagawa and Schielzeth (2013). The conditional R2
c , interpreted as the variance explained

by the whole model, is R2
c,lme = 0.61 when estimating the model with the observed continu-

ous response variable on the transformed scale (Box-Cox transformation). When estimating the

model with an interval-censored response variable on the transformed scale (Box-Cox trans-

formation) using the SEM algorithm the R2
c,sem(14) = 0.61 and R2

c,sem(8) = 0.62 for the 14

and eight interval scenario, respectively.

Table 3.6: Variables used in the nested error regression working model.

Variable type Description
Response variable: Interval-censored equivalized household labour income
Auxiliary variables: Value of all household goods

Value of household communication equipment
Share of employees in the household
Educational level of head of household
Social class of head of household
Municipalities of Chiapas

The Box-Cox transformation is used as the preferred transformation method because it is

data-driven. This is particularly crucial when working with interval-censored data as response

variable, because the normality assumption of the residuals cannot be checked. The estimated

transformation parameters are λlme = 0.16 for the continuous response, λsem(14) = 0.18 and

λsem(8) = 0.17 for the 14 and eight interval-censoring scenarios, respectively. The results show

that the algorithm is able to identify the λ we would have estimated should we have modelled

the continuous outcome. The results also indicate that the use of a logarithmic transformation

or the use of the untransformed response variable may lead to erroneous results. Rojas-Perilla

et al. (2017) and Tzavidis et al. (2018) show that even if λ̂ is close to 0 the the EBP estimates

using the Box-Cox transformation may outperform the EBP estimates using the logarithmic

transformation.

Estimates of the mean equivalized household labor income, HCR and PGAP for each of

the 118 municipalities are obtained by using the SEM Box-Cox method based on 14 and eight

intervals, and by using LME Box-Cox based on the observed continuous response variable.

The mean and median averaged over all municipalities are given in Table 3.7 and plotted

in Figures 3.6 and 3.8. The results show that the point estimates from all three estimation

methods are very close. Interval censoring does not appear to impact significantly on the

estimation results. Additionally, the relative efficiencies of the estimators (EFF) defined as

EFF (ÎEBPi ) = RMSEsem(ÎEBPi )/RMSElme(Î
EBP
i ) is reported in the Table 3.7. It is no-

table that the efficiency loss is small even when the response variable is grouped to only eight

intervals. In the 14 interval scenario the point estimates of the mean are even more efficient,

but this result is only due to the Monte Carlo variability. The spatial distributions of the HCR
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in municipalities in Chiapas are shown in Figure 3.6 for all three estimation methods. The

figure supports the priorly-stated results that estimation results are very closed to each other,

independently from the estimation method.

Table 3.7: Point estimates and corresponding EFF of the point estimates over municipalities
using the SEM Box-Cox algorithm.

Mean HCR PGAP
Median Mean Median Mean Median Mean

Point estimate LME Box-Cox 814.4 872.6 0.426 0.432 0.220 0.233
Point estimate SEM Box-Cox 14 intervals 812.1 870.8 0.426 0.427 0.224 0.233
EFF 0.983 0.995 1.018 1.024 1.022 1.035
Point estimate SEM Box-Cox 8 intervals 810.5 863.9 0.421 0.428 0.219 0.232
EFF 1.028 1.013 1.029 1.038 1.043 1.046
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Figure 3.6: Estimated HCR for municipalities in the state of Chiapas based on different esti-
mation methods.

A possible way to further validate the estimation results is by comparing the direct estimates

to the model-based estimates. In Figure 3.7 the direct estimates of the mean (based on the

observed continuous data) are compared to the model-based estimates (SEM Box-Cox) of the

mean using an interval-censored response variable (14 intervals). As expected the left panel

shows a positive linear correlation between the estimates. The right panel plots the value of

the estimates for both estimation method for each in-sample domain. The pattern shows that

as the sample size increases the direct estimates and the SEM Box-Cox estimates are almost

identical. This is reasonable because the direct estimates gain precision with increasing sample

size.

Figure 3.8 presents municipal estimates of mean income and PGAP for the SEM Box-Cox

algorithm based on 14 intervals. The plots for the other estimation methods are omitted, be-

cause the results are comparable. We observe that municipalities in the middle and in the east of

Chiapas exhibit high rates of HCRs and PGAPs and low levels of mean equivalized household

labor income and are thus more strongly affected by poverty. These regions are characterized

by high mountains, the Chiapas Highlands and a large concentration of indigenous population.

There are, however, two regions in the center of the state with relatively high mean income and

low rates of poverty. These are the regions where the capital Tuxtla Gutiérrez and the larger

city San Cristóbal de las Casas are located. Also the coastal region – especially in the south –
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Figure 3.7: The left panel shows a scatter and the right panel a line plot of the direct and the
model-based estimate for each in-sample domain (municipality).

where the economically most important city Tapachula is located, is affected less by poverty.

The analysis shows that even though Chiapas is one of the poorest states in Mexico, there are

spatial variations between the municipalities. These differences can be revealed by using SAE

methods designed for grouped data. The proposed SEM Box-Cox method is – to the best of

our knowledge – the first approach that allows the use of the popular EBP method in conjunc-

tion with a grouped response variable. This enables the estimation of spatially disaggregated

target indicators with small sample sizes when confidentiality restrictions or decisions about

the survey design require the use of relatively limited information for the response variable.
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Figure 3.8: Estimated mean and PGAP for municipalities in the state of Chiapas.

3.6 Concluding remarks

The paper proposes small area estimation methodology when working with a response variable

that is interval censored. The novel aspects of the paper include the estimation of a nested

error regression model when the response is interval censored, the estimation both of linear

and non-linear indicators for small areas, the use of data-driven transformation with the nested

error regression model and the estimation of the MSE of the small area target parameters that

accounts for the fact that we are working with limited information compared to standard small

area models.
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The proposed methods are evaluated using model-based simulations under different scenar-

ios for the model error terms. The results show the proposed methods work well and in most

scenarios the loss of accuracy in the estimates is small when compared to the use of EBPs that

are estimated assuming the availability of full information for the response variable. As ex-

pected the loss of accuracy also depends on the number of intervals used for censoring the data

and the proposed methodology appears to be working well even when the number of groups

used is fairly small. The results also show that the use of an adaptive transformation works

properly and the transformation parameter is estimated well in the presence of limited infor-

mation for the response variable. Finally, the proposed MSE estimator appears to be capturing

the different sources of variability and appropriately tracks the empirical MSE.

The new methodology is used to estimate disaggregated poverty and inequality indica-

tors for municipalities in Chiapas, a southern state of Mexico, using interval-censored income

grouped in eight and 14 intervals. In order to evaluate the proposed methodology estimates of

the target parameters are also obtained when income is fully available, i.e., not interval cen-

sored. The Box-Cox transformation is applied to ensure that the model assumptions are met.

The estimates from the continuous and grouped responses are very close, indicating the validity

of the proposed methodology. The plotted poverty maps enable policy makers to get a spatial

overview of the distribution of poverty in Chiapas and to target poorer regions more precisely.

Current research focuses on extending the SEM method for fitting nested error regression

models for more complex structures, for example models with random slopes. Estimation of

the standard errors of the fixed and random parameters and inference is of particular interest.

In future research we plan to focus on the situation where interval censoring is also affecting

some of the auxiliary variables. This is a more challenging problem but perhaps more realistic

if interest is in protecting data confidentiality.
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3.7 Appendix

Table 3.8: Normal scenario 1 (14 intervals): Distribution of one arbitrarily chosen Monte Carlo
population.

Interval Frequencies
[1, 1000) 314
[1000, 2000) 656
[2000, 2500) 582
[2500, 3000) 785
[3000, 3500) 972
[3500, 4000) 1091
[4000, 4500) 1153
[4500, 5000) 1113
[5000, 5500) 940
[5500, 6000) 827
[6000, 6500) 608
[6500, 7000) 405
[7000, 8000) 400
[8000,+∞) 154

Table 3.9: Normal scenario 2 (7 intervals): Distribution of one arbitrarily chosen Monte Carlo
population.

Interval Frequencies
[1, 2000) 970
[2000, 3000) 1367
[3000, 4000) 2063
[4000, 5000) 2266
[5000, 6000) 1767
[6000, 7500) 1265
[7500,+∞) 302
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Table 3.10: Log-scale scenario (7 intervals): Distribution of one arbitrarily chosen Monte Carlo
population.

Interval Frequencies
[1, 500) 1473
[500, 1000) 1703
[1000, 2000) 2113
[2000, 4000) 2093
[4000, 8000) 1453
[8000, 16000) 770
[16000,+∞) 395

Table 3.11: Distribution of grouped equivalized household labor income (14 intervals).

Interval Frequencies
[1, 50) 108
[50, 100) 104
[100, 200) 156
[200, 400) 234
[400, 600) 273
[600, 1000) 411
[1000, 1500) 325
[1500, 2000) 226
[2000, 3000) 247
[3000, 4000) 157
[4000, 5500) 92
[5500, 8000) 81
[8000, 12000) 48
[12000,+∞) 24

Table 3.12: Distribution of grouped equivalized household labor income (8 intervals).

Interval Frequencies
[1, 100) 212
[100, 400) 390
[400, 1000) 684
[1000, 2000) 551
[2000, 4000) 404
[4000, 8000) 173
[8000, 1200) 48
[12000,+∞) 24
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Chapter 4

The R Package smicd: Statistical
Methods for Interval-Censored Data

4.1 Introduction

Interval-censored or grouped data occurs when only the lower Ak−1 and upper Ak interval

bounds (Ak−1, Ak) of a variable are observed and its true value remains unknown. Instead of

measuring the variable of interest on a continuous scale, for instance income data, the scale

is divided into nk intervals. The variable k (1 ≤ k ≤ nk) indicates in which of the nk in-

tervals an observation falls into. This leads to a loss of information since the shape of the

distribution within the intervals remains unknown. In the field of survey statistics, asking for

interval-censored data is often done in order to avoid item non-response and thus increase data

quality. Item non-response is avoided because interval-censored data offers a higher level of

data privacy protection (Hagenaars and Vos, 1988; Moore and Welniak, 2000). Among others,

popular surveys and censuses that collect interval-censored data are the German Microcensus

(Statistisches Bundesamt, 2017), the Colombian census (Departamento Administrativo Na-

cional De Estadı́stica, 2005) and the Australian census (Australian Bureau of Statistics, 2011).

While item non-response is reduced or avoided, the statistical analysis of the data requires more

elaborate mathematical methods. Even statistical indicators that are easily calculated for met-

ric data, e.g., the mean, cannot be estimated using standard formulas (Fahrmeir et al., 2011).

Also, estimating linear and linear mixed regression models which are applied in many fields

of statistics requires advanced statistical methods when the dependent variable is interval cen-

sored. Therefore, the presented R package (R Core Team, 2018) implements three major func-

tions: kdeAlgo() to estimate statistical indicators (e.g., the mean) from interval-censored

data, semLm() and semLme() to estimate linear and linear mixed regression models with an

interval-censored dependent variable.

For the estimation of statistical indicators from interval-censored data different approaches

are described in the literature. These approaches can be broadly categorized into four groups:

Estimation on the midpoints (Fahrmeir et al., 2011), linear interpolation of the distribution

function (Information und Technik (NRW), 2009), non-parametric modeling via splines (Berger
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and Escobar, 2016) and fitting a parametric distribution function to the censored data (Dagum,

1977; McDonald, 1984; Bandourian et al., 2002). Some of these methods are implemented in R
packages available on the Comprehensive R Archive Network (CRAN). The method of linear

interpolation is implemented for the estimation of quantiles in the R package actuar (Dutang

et al., 2008). The package also enables the estimation of the mean on the interval midpoints.

Fitting a parametric distribution to interval-censored data can be done by using the R package

fitdistrplus (Delignette-Muller and Dutang, 2015).

In survey statistics, interval-censored data is often collected for income or wealth variables.

Thus, the performance of the above-mentioned methods is commonly evaluated by simulation

studies that rely on data that follows some kind of income distribution. The German statistical

office (DESTATIS) uses the method of linear interpolation for the estimation of statistical indi-

cators from interval-censored income data collected by the German Microcensus (Information

und Technik (NRW), 2009). This approach gives the same results as assuming a uniform distri-

bution within the income intervals. Estimation results are reasonably accurate if the estimated

indicators do not depend on the whole shape of the distribution, e.g., the median (Lenau and

Münnich, 2016). Fitting a parametric distribution to the data enables the estimation of indica-

tors that rely on the whole shape of the distribution. This method works well when the data

is censored to only a few equidistant intervals (Lenau and Münnich, 2016). Non-parametric

modeling via splines shows especially good results for a high number of intervals in ascending

order (Lenau and Münnich, 2016). However, according to Lenau and Münnich (2016) all of

the above-mentioned methods show large biases and variances when the estimation is based

on a small number of intervals. Therefore, a novel kernel density estimation (KDE) algorithm

is implemented in the smicd package that overcomes the drawbacks of the previously men-

tioned methods (Walter and Weimer, 2018). The algorithm bases the estimation of statistical

indicators on pseudo samples that are drawn from a fitted non-parametric distribution. The

method automatically adapts to the shape of the true unknown distribution and provides re-

liable estimates for different interval-censoring scenarios. It can be applied via the function

kdeAlgo().

Similarly to the direct estimation of statistical indicators from interval-censored data, there

exists a variety of ad-hoc approaches and explicitly formulated mathematical methods for the

estimation of linear regression models with an interval-censored dependent variable. The fol-

lowing methods and approaches are used for handling interval-censored dependent variables

within linear regression models: Ordinary least squares (OLS) regression on the midpoints

(Thompson and Nelson, 2003), ordered logit- or probit-regression (McCullagh, 1980), and

regression methodology formulated for left-, right-, and interval-censored data (Tobin, 1958;

Rosett and Nelson, 1975; Stewart, 1983). All of these methods are implemented in differ-

ent R packages available on CRAN. OLS regression on the midpoints is applicable by using

the lm() function from the stats Package (R Core Team, 2018), ordered logit regression is

implemented in the MASS package (Venables and Ripley, 2002), and interval regression is

implemented in the IntReg (Toomet, 2015) package.

While OLS regression on the midpoints of the intervals is easily applied, it comes with the
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disadvantage of giving biased estimation results (Cameron, 1987). This approach disregards the

uncertainty stemming from the unknown true distribution of the data within the intervals and

therefore leads to biased parameter estimates. Its performance relies on the number of intervals

and estimation results are only comparable to more advanced methods when the number of

intervals is very large (Fryer and Pethybridge, 1972). Conceptualizing the model as an ordered

logit or probit regression is feasible by treating the dependent variable as an ordered factor

variable (McCullagh, 1980). However, this approach also neglects the unknown distribution of

the data within the intervals. Furthermore, the predicted values are not on a continuous scale

but are in terms of probability of belonging to a certain group. To overcome these disadvantages

and obtain unbiased estimation results Stewart (1983) introduces regression methodology for

models with an interval-censored dependent variable. Walter et al. (2017) further develop his

approach and introduce a novel stochastic expectation-maximization (SEM) algorithm for the

estimation of linear regression models with an interval-censored dependent variable that is

implemented in the smicd package. The model parameters are unbiasedly estimated as long

as the model assumptions are fulfilled. The function semLm() provides the SEM algorithm

and enables the use of fixed (logarithmic) and data-driven (Box-Cox) transformations (Box

and Cox, 1964). The Box-Cox transformation automatically adapts to the shape of the data and

transforms the dependent variable in order to meet the model assumption.

In order to analyze longitudinal or clustered data (e.g., students within schools) linear

mixed regression models are applicable. These kinds, of models control for the correlated

structure of the data by including random effects in addition to the usual fixed effects. In order

to deal with an interval-censored dependent variable in linear mixed regression models there

are several approaches described in the literature. Linear mixed regression models, just like

linear regression models, can be estimated on the interval midpoints of the censored-dependent

variable. Furthermore, conceptualizing the model as an ordered logit or probit regression model

is feasible (Agresti, 2010). These approaches inherit the same advantages and disadvantages

as previously discussed. Linear mixed regression on the midpoints can be applied by the lme4
(Pinheiro et al., 2017) or nlme (Bates et al., 2015) package and the ordered logit regression is

implemented in the ordinal package (Christensen, 2015). To my knowledge, there are no R
packages for the estimation of linear mixed regression models with an interval-censored depen-

dent variable. Therefore, the package smicd contains the SEM algorithm proposed by Walter

et al. (2017) for the estimation of linear mixed regression models with an interval-censored de-

pendent variable. If the model assumptions are fulfilled, the method gives unbiased estimation

results. The function semLme() enables the estimation of the regression parameters and it

also allows for the usage of the logarithmic and Box-Cox transformation in order to fulfill the

model assumptions (Gurka et al., 2006).

The paper is structured into two main sections. Section 4.2 deals with the direct estimation

of statistical indicators from interval-censored data whereas Section 4.3 introduces linear and

linear mixed regression models with an interval-censored dependent variable. Both sections

have been divided into three subsections: first the statistical methodology is introduced, then

the core functions of the smicd package are presented, and finally, illustrative examples with
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two different data sets are provided. In Section 4.4 the main results are summarized and an

outlook is given.

4.2 Direct estimation of statistical indicators

In the following three subsections, the methodology for the direct estimation of statistical

indicators from interval-censored data is introduced, the core functionality of the function

kdeAlgo() is presented and statistical indicators are estimated using the European Union

Statistics on Income and Living Conditions (EU-SILC) data set (European Commission, 2013).

4.2.1 Methodology: Direct estimation of statistical indicators

In order to estimate statistical indicators from interval-censored data the proposed algorithm

generates metric pseudo samples of an interval-censored variable. These pseudo samples can

be used to estimate any statistical indicator. They are drawn from a non-parametrically esti-

mated kernel density. Kernel density estimation was first introduced by Rosenblatt (1956) and

Parzen (1962). By its application the density f(x) of a continuous independently and identi-

cally distributed random variable is estimated without assuming any distributional shape of the

data. The estimator is defined as

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, i = 1, . . . , n,

where K(·) is a kernel function, h > 0 the bandwidth and x = {x1, x2, . . . , xn} denotes a

sample of size n. The performance of the estimator is determined by the optimal choice of

h. The selection of an optimal h is widely discussed in the literature, see Jones et al. (1996);

Loader (1999); Zambom and Dias (2012). When working with interval-censored data, a stan-

dard KDE cannot be applied since x is not observed on a continuous scale. Nevertheless, its

unobserved true distribution is of continuous form. As an ad hoc solution the density f̂h(x)

can be estimated based on the interval midpoints. The resulting density estimate will be spiky

unless the bandwidth is sufficiently large. A large bandwidth, however, leads to a loss of in-

formation (Wang and Wertelecki, 2013). Therefore, Walter and Weimer (2018) propose an

iterative KDE algorithm for density estimation from interval-censored data. The approach is

based on Groß et al. (2017) who introduce a similar KDE algorithm in a two-dimensional set-

ting with an equidistant interval width. Walter and Weimer (2018) show that the algorithm can

be adjusted to one-dimensional data with an arbitrary class width. For the estimation of linear

and non-linear statistical indicators the unknown distribution of x has to be reconstructed by

using the observed interval k = {k1, k2, . . . , kn} that an observation falls into. From Bayes’

theorem (Bayes, 1763) it follows that the conditional distribution of x|k is:

π(x|k) ∝ π(k|x)π(x)
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with π(k|x) is defined by a product of a Dirac distribution π(k|x) =
∏n
i=1 π(ki|xi) with

π(ki|xi) =

1 if Ak−1 ≤ xi ≤ Ak,

0 else,

for i = 1, . . . , n. Since π(x) is unknown it is replaced by a kernel density estimate f̂h(x).

Estimation and computational details

To fit the model, pseudosamples of xi are drawn from the conditional distribution

π(xi|ki) ∝ I(Ak−1 ≤ xi ≤ Ak)f(xi),

where I(·) denotes the indicator function. The conditional distribution of π(xi|ki) is given

by the product of a uniform distribution and density f(xi). As the density is unknown it is

replaced by an estimate f̂h(x), which is obtained by the KDE. In particular, xi is repeatedly

drawn from the given interval (Ak−1, Ak) by using the current density estimate f̂h(x) as a

sampling weight. The explicit steps of the iterative algorithm as given in Walter and Weimer

(2018) are stated below:

1. Use the midpoints of the intervals as pseudo x̃i for the unknown xi. Estimate a pilot

estimate of f̂h(x), by applying KDE. Note: Choose a sufficiently large bandwidth h in

order to avoid rounding spikes.

2. Evaluate f̂h(x) on an equal-spaced grid G = {g1, . . . , gj} with grid points g1, . . . , gj .

The width of the grid is denoted by δg. It is given by

δg =
|A0 −Ank |
j − 1

,

and the grid is defined as:

G = {g1 = A0, g2 = A0 + δg, g3 = A0 + 2δg, . . . , gj−1 = A0 + (j − 2)δg, gj = Ank}.

3. Sample from π(x|k) by drawing randomly from Gk = {gj |gj ∈ (Ak−1, Ak)} with

sampling weights f̂h(x̃i) for k = 1, . . . , nk. The sample size for each interval is given

by the number of observations within each interval. Obtain x̃i for i = 1, . . . , n.

4. Estimate any statistical indicator of interest Î using x̃i.

5. Recompute the density f̂h(x), using the pseudo samples x̃i obtained in iteration Step 3.

6. Repeat Steps 2-5, with B(KDE) burn-in and M (KDE) additional iterations.

7. Discard theB(KDE) burn-in iterations and estimate the final Î by averaging the obtained

M (KDE) estimates.
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For open-ended intervals, e.g., (15000,+∞) the upper bound has to be replaced by a finite

number. Walter and Weimer (2018) show through model-based simulations that a value of

three times the value of the lower bound (15000, 45000) gives appropriate estimation results

when working with income data.

The variance of the statistical indicators is estimated by bootstrapping. Bootstrap methods

were first introduced by Efron (1979). These methods serve as an estimation procedure when

the variance cannot be stated as closed-form solution (Shao and Tu, 1995). While bootstrap-

ping avoids the problem of the non-availability of a closed-form solution, it comes with the

disadvantage of long computational times. In the package, a non-parametric bootstrap that ac-

counts for the additional uncertainty coming from the interval-censored data is implemented.

This non-parametric bootstrap is introduced in Walter and Weimer (2018).

4.2.2 Core functionality: Direct estimation of statistical indicators

The presented KDE algorithm is implemented in the function kdeAlgo() (see Table 4.1).

The arguments and default settings of kdeAlgo() are briefly summarized in Table 4.2. The

function gives back an S3 object of class "kdeAlgo." A detailed explanation of all com-

ponents of an "kdeAlgo" object can be found in the package documentation. The generic

functions plot() and print() can be applied to "kdeAlgo" objects to output the main

estimation results (see Table 4.1). In the next section the function kdeAlgo() is used to esti-

mate a variety of statistical indicators from interval-censored EU-SILC data and its arguments

are explained in more detail.

Table 4.1: Implemented functions for the direct estimation of statistical indicators.

Function Name Description
kdeAlgo() Estimates statistical indicators and its standard errors from

interval-censored data
plot() Plots convergence of the estimated statistical indicators and

estimated density of the pseudo x̃i
print() Prints estimated statistical indicators and its standard errors

4.2.3 Example: Direct estimation of statistical indicators

To demonstrate the function kdeAlgo(), the total disposable household income and the cor-

responding household weight from the public use file (PUF) of the European Union Statistics

on Income and Living Condition (EU-SILC) data set is used (European Commission, 2013).

The PUF is a fully synthetic data set which cannot be used for inferential statistics. Never-

theless, the distribution of the data mimics the distribution of the original data set (Eurostat,

2018). The PUF has the advantage (over the scientific use file) of being easily available on

the Eurostat website (Eurostat, 2018). The analysis is carried out using the German PUF from

2013. After the deletion of missing values there are 12,703 observations left in the EU-SILC

survey that are used in the analysis. Since the total disposable household income is measured
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Table 4.2: Arguments of function kdeAlgo().

Argument Description Default
xclass Interval-censored variable
classes Numeric vector of interval bounds
threshold Threshold used for poverty indicators

(60% of the median of the target variable) 0.6
burnin Number of burn-in iterations B(KDE) 80
samples Number of additional iterations M (KDE) 400
bootstrap.se If TRUE, standard errors of the statistical

indicators are estimated FALSE
b Number of bootstraps for the estimation of

the standard errors 100
bw Smoothing bandwidth used ”nrd0”
evalpoints Number of evaluation grid points 4000
adjust Bandwidth multiplier bw = adjust ∗ bw 1
custom indicator A list of user-defined statistical indicators NULL
upper If upper bound of the upper interval is +∞ e.g.,

(15000,+∞), then +∞ is replaced by
15000 ∗ upper 3

weights Survey weights NULL
oecd Household weights of equivalence scale NULL

on a continuous scale, it is censored to 24 intervals for demonstration purposes. For a realistic

censoring scheme the interval bounds are chosen such that they match the interval bounds used

in the German Microcensus from 2013 (Statistisches Bundesamt, 2014). The German Micro-

census is a representative household survey that covers 830,000 persons in 370,000 households

(1% of the German population) in which income is only collected as interval-censored variable

(Statistisches Bundesamt, 2016).

In a first step the variable total disposable household income called hhincome net is

interval censored according to the 24 intervals in the German Microcensus using the function

cut(). The vector of interval bounds is called intervals and the newly obtained interval-

censored income variable is called c.hhincome.

R> intervals <- c(0,150,300,500,700,900,1100,1300,1500,1700,

+ 2000,2300,2600,2900,3200,3600,4000,4500,5000,5500,6000,

+ 7500,10000,18000,Inf)

R> c.hhincome <- cut(hhincome_net, breaks = intervals)

In order to get a descriptive overview of the distribution of the censored income data the

function table() is applied.

R> table(c.hhincome)

c.hhincome

(0,150] (150,300] (300,500]
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229 283 442

(500,700] (700,900] (900,1.1e+03]

532 576 609

(1.1e+03,1.3e+03] (1.3e+03,1.5e+03] (1.5e+03,1.7e+03]

570 555 586

(1.7e+03,2e+03] (2e+03,2.3e+03] (2.3e+03,2.6e+03]

819 744 673

(2.6e+03,2.9e+03] (2.9e+03,3.2e+03] (3.2e+03,3.6e+03]

612 604 685

(3.6e+03,4e+03] (4e+03,4.5e+03] (4.5e+03,5e+03]

510 587 461

(5e+03,5.5e+03] (5.5e+03,6e+03] (6e+03,7.5e+03]

375 279 536

(7.5e+03,1e+04] (1e+04,1.8e+04] (1.8e+04,Inf]

392 198 23

Most incomes are in interval (1700, 2000] and only 23 incomes are in the upper interval.

For the estimation of the statistical indicators the function kdeAlgo() of the smicd package

is called with the following arguments.

R> Indicators <- kdeAlgo(xclass = c.hhincome, classes =

+ intervals, bootstrap.se = TRUE, custom_indicator =

+ list(quant05 = function(y, treshold, weights)

+ {wtd.quantile(y, probs = 0.05, weights)}, quant95 =

+ function(y, treshold, weights){wtd.quantile(y, probs =

+ 0.95, weights)}), weights = hhweight)

The variable c.hhincome is assigned to the argument xclass and the vector of in-

terval bounds intervals is assigned to the argument classes. The default settings of

the arguments burnin, samples, bw, evalpoints, adjust and upper are retained.

Simulation results from Walter and Weimer (2018) and Groß et al. (2017) show that these

settings give good results when working with income data. Changing these arguments has

an impact on the performance of the KDE algorithm. As default, the statistical indicators:

mean, Gini coefficient, headcount ratio (HCR), the quantiles (10%, 25%, 50%, 75%, 90%),

the poverty gap (PGAP) and the quintile share ratio (QSR) are estimated (Gini, 1912; Foster

et al., 1984). The HCR and PGAP rely on a poverty threshold. The default choice of the

threshold argument is 60% of the median of the target variable as suggested by Eurostat

(2014). Besides the mentioned indicators, any other statistical indicator can be estimated via

the argument custom indicator. In the example the argument is assigned a list that holds

functions to estimate the 5% and 95% quantile. The custom indicators must depend on the

target variable, the threshold (even if it is not needed for the specified indicator) and optionally

on the weights argument, if the estimation of a weighted indicator is required. To estimate
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the standard errors of all indicators bootstrap.se = TRUE and the number of bootstrap

samples is 100 (the default value as suggested in Walter and Weimer (2018)). Lastly, the house-

hold weight (hhweight) is assigned to the argument weights in order to estimate weighted

statistical indicators. It can also be controlled for households of different sizes, by assigning

oecd a variable with household equivalence weights. By applying the print() function to

the "kdeAlgo" object the estimated statistical indicators (default and custom indicators) as

well as their standard errors are printed. For instance, in this example the estimated mean is

about 2,916 Euro and its standard error is 23.124.

R> print(Indicators)

Value:

mean gini hcr quant10 quant25 quant50

2916.041 0.425 0.289 591.783 1203.239 2295.574

quant75 quant90 pgap qsr quant05 quant95

3901.166 5935.196 0.131 11.929 343.548 7583.327

Standard error:

mean gini hcr quant10 quant25 quant50

23.124 0.004 0.003 11.050 15.289 25.819

quant75 quant90 pgap qsr quant05 quant95

38.855 57.051 0.002 0.251 11.451 82.597

In Walter and Weimer (2018) the performance of the KDE algorithm is evaluated via de-

tailed simulation studies. By applying the function plot() "kdeAlgo" objects can be

plotted. Thereby, convergence plots for all estimated statistical indicators and a plot of the

estimated final density are obtained.

R> plot(Indicators)

Figure 4.1 shows convergence plots for three of the estimated indicators (panel 1-3). Ad-

ditionally, a plot of the estimated final density with a histogram of the observed data in the

background (panel 4) is obtained. In panel 1-3 the estimated statistical indicator (HCR, PGAP,

75% quantile) is plotted for each iteration step of the KDE algorithm. A vertical line marks

the end of the burn-in period. All convergence plots in Figure 4.1 demonstrate that the number

of iterations is chosen sufficiently large for the estimates to converge. If convergence were

not achieved the arguments burnin and samples should be increased. It is notable that

the estimated 75% quantile has the same value for almost all iterations steps. This is the case

because the quantile, as any other statistical indicator, is estimated using the pseudo samples

that are drawn on 4,000 grid points G. Estimating a quantile based on 12,703 observations on

only 4,000 unique outcomes (pseudo values) leads to equal quantile estimates for almost all

iteration steps of the KDE algorithm.
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Figure 4.1: Convergence plots of the statistical indicators and a plot of the estimated final
density with a histogram of the observed distribution of the data in the background.

4.3 Regression analysis

In the following three subsections the statistical methodology for linear and linear mixed re-

gression models with an interval-censored dependent variable is introduced, the core func-

tionality of the functions semLM() and semLME() is presented and examination scores of

students from schools in London are exemplary modeled.

4.3.1 Methodology: Regression analysis

The theoretical introduction of the new regression method, proposed by Walter et al. (2017), is

presented for linear mixed regression models. The theory for linear regression models can be

obtained by simplifying the introduced method. In its standard form the linear mixed regression

model serves to analyze the linear relationship between a continuous dependent variable and
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some independent variables (Goldstein, 2003). Random parameters (random slopes and ran-

dom intercepts) are included in the model to account for correlated data e.g., students within

schools. The model in matrix notation (Laird and Ware, 1983) is given by

y = Xβ + Zv + e, (4.1)

where y is a n× 1 column vector of the dependent variable, n is the sample size, X is a n× p
matrix where p is equal to the number of predictors, β is a column vector of the fixed effects

regression parameters of size p× 1, Z is the n× q design matrix with q random effects, v is a

q × 1 vector of random effects, and e is the residual vector of size n × 1. The distribution of

the random effects is given by

v ∼ N(0,G), where G =


σ20 σ01 . . . σ0q

σ10 σ21 . . . σ1q
...

...
. . .

...

σq0 σq1 . . . σ2q

 ,

and the distribution of the residuals is given by e ∼ N(0,R) with R = Inσ
2
e where In

is the identity matrix and σ2e is the residual variance. The random effects v and the residu-

als e are assumed to be independent. For a more detailed introduction of mixed models see

Searle et al. (1992); McCulloch et al. (2008); Snijders and Bosker (2011). In the case of an

interval-censored dependent variable the parameters of Model (4.1) have to be estimated with-

out observing y on a continuous scale. Instead, only the interval identifier k, now defined as

n × 1 column vector, is observed. Open-ended interval bounds A0 = −∞ and Ank = +∞
and unequal interval widths are allowed. Since the true distribution of y is unknown the aim

is to reconstruct the distribution of y using the known intervals k and the linear relationship

stated in Model (4.1). As presented in Walter et al. (2017) in order to reconstruct the unknown

distribution of f(y|X,Z,v,k,θ), where θ = (β,R,G), the Bayes theorem (Bayes, 1763) is

applied. Hence,

f(y|X,Z,v,k,θ) ∝ f(k|y,X,Z,v,θ)f(y|X,Z,v,θ),

with f(k|y,X,Z,v,θ) = f(k|y) because the conditional distribution of the interval identifier

k only depends on y. It is given by f(k|y) = r with r being a n × 1 column vector r =

(r1, r2, . . . , rn)T with

ri =

1 if Ak−1 ≤ yi ≤ Ak,

0 else,

for (i = 1, . . . , n) and

f(y|X,Z,v,θ) ∼ N(Xβ + Zv,R). (4.2)

The relationship in Equation (4.2) follows from the linear mixed model assumptions (Model

(4.1)). The unknown parameters θ = (β,R,G) are estimated based on pseudo samples ỹ
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(since y is unknown) that are iteratively drawn from f(y|X,Z,v,k,θ). The next subsection

states the computational details of the SEM algorithm.

Estimation and computational details

To fit Model (4.1), the parameter vector θ̂ = (β̂, R̂, Ĝ) is estimated and pseudo samples of the

unknown y are iteratively generated by the following SEM algorithm. The pseudo samples ỹ

are drawn from the conditional distribution

f(y|X,Z,v,k,θ) ∝ I(Ak−1 ≤ y ≤ Ak)×N(Xβ + Zv,R),

where I(·) denotes the indicator function. Hence, for y with explanatory variables X the cor-

responding ỹ is drawn from N(Xβ + Zv,R) conditional on the given interval (Ak−1 ≤ y ≤
Ak). If θ̂ is estimated the conditional distribution f(y|X,Z,v,k,θ) follows a two-sided trun-

cated normal distribution. Its probability density function equals

f̂(y|X,Z, v̂,k, θ̂) =
φ
(
y−µ̂
σ̂e

)
σ̂e

(
Φ
(
Ak−µ̂
σ̂e

)
− Φ

(
Ak−1−µ̂

σ̂e

)) , (4.3)

with µ̂ = Xβ̂ + Zv̂. φ(·) denotes the probability density function of the standard normal

distribution and Φ(·) denotes its cumulative distribution function. From its definition it follows

that Φ
(
Ak−µ̂
σ̂e

)
= 1 if Ak = +∞ and Φ

(
Ak−1−µ̂

σ̂e

)
= 0 if Ak−1 = −∞. The steps of the

SEM algorithm as described in Walter et al. (2017) are:

1. Estimate θ̂ = (β̂, R̂, Ĝ) from Model (4.1) using the midpoints of the intervals as substi-

tutes for the unknown y. The parameters are estimated by restricted maximum likelihood

theory (REML) (Thompson, 1962).

2. Stochastic step: For i = 1, . . . , n, draw randomly from N(Xβ̂ + Zv̂, R̂) within the

given interval (Ak−1 ≤ y ≤ Ak) (the two-sided truncated normal distribution given in

Equation (4.3)) obtaining (ỹ,X,Z). The drawn pseudo ỹ are used as replacements for

the unobserved y.

3. Maximization step: Re-estimate the parameter vector θ̂ from Model (4.1) by using the

pseudo samples (ỹ,X,Z) from Step 2. Again, parameter estimation is carried out by

REML.

4. Iterate Steps 2-3B(SEM)+M (SEM) times, withB(SEM) burn-in iterations andM (SEM)

additional iterations.

5. Discard the burn-in iterationsB(SEM) and estimate θ̂ by averaging the obtainedM (SEM)

estimates.
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If open-ended intervals A0 = −∞ and Ank = +∞ are present, the midpoints M1 and Mnk of

these intervals in iteration Step 1 are computed as follows:

M1 = (A1 −D)/2,

Mnk = (Ank−1 +D)/2,

where

D =
1

(nk − 2)

nk−1∑
k=2

|Ak−1 −Ak|.

These midpoints serve as proxies for the unknown interval midpoints in Step 1 of the algorithm.

The SEM algorithm for the linear regression model is obtained by simplifying the conditional

distribution f(y|X,Z,v,θ) ∼ N(Xβ + Zv,R) to f(y|X,β, σ2e) ∼ N(Xβ, σ2e) according

to the model assumptions of a linear regression model. In the SEM algorithm for linear models

it is then drawn from N(Xβ, σ2e) within the given interval.

The standard errors of the regression parameters are estimated using bootstrap methods.

For the linear regression model a non-parametric bootstrap (Efron and Stein, 1981; Efron,

1982; Efron and Tibshirani, 1986, 1993) and for the linear mixed regression model a parametric

bootstrap (Wang et al., 2006; Thai et al., 2013) is used to estimate the standard errors. The

non-parametric as well as the parametric bootstrap are further developed to account for the

additional uncertainty that is due to the interval-censored dependent variable. Both newly

proposed bootstraps are available in the smicd package.

To assure that the model assumptions are fulfilled the logarithmic and the Box-Cox trans-

formations are incorporated into the function semLm() and semLme().

4.3.2 Core functionality: Regression analysis

The introduced SEM algorithm is implemented in the functions described in Table 4.3. The

arguments and default settings of the estimation functions semLm() and semLme() are sum-

marized in Table 4.4. Both functions return a an S3 object of class "sem" "lm" or "sem"

"lme". A detailed explanation of all the components of these objects can be found in the

smicd package documentation. The generic functions plot(), print() and summary()

can be applied to objects of class "sem" "lm" and "sem" "lme" in order to summarize

the main estimation results. In the next section the functionality of semLm() and semLme()

is demonstrated based on an illustrative example.

4.3.3 Example: Regression analysis

To demonstrate the functions semLm() and semLme() the famous London school data set

that is analyzed in Goldstein et al. (1993) is used. The data set contains the examination results

of 4,059 students from 65 schools in six Inner London Education Authorities. The data set

is available in the R package mlmRev (Bates et al., 2014) and also included in the package

smicd. The variables used in the following example are: general certificate of secondary ex-
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Table 4.3: Implemented functions for the estimation of linear and linear mixed regression
models.

Function Name Description
semLm() Estimates linear regression models with an interval-censored

dependent variable
semLme() Estimates linear mixed regression models with an

interval-censored dependent variable
plot() Plots convergence of the estimated parameters and estimated

density of the pseudo ỹ from the last iteration step
print() Prints basic information of the estimated linear and linear mixed

regression models
summary() Summary of the estimated linear and linear mixed regression models

Table 4.4: Arguments of functions semLm() and semLme().

Argument Description Default
formula A two-sided linear formula object
data A data frame containing the variables of the model
classes Numeric vector of interval bounds
burnin Burn-in iterations 40
samples Additional iterations 200
trafo Transformation of the dependent variable: None, ”None”

logarithmic or Box-Cox transformation
adjust Extends the number of iterations for the estimation 2

of the Box-Cox transformation parameter:
(burnin+ samples) ∗ adjust

bootstrap.se If TRUE standard errors and confidence intervals of FALSE
the regression parameters are estimated

b Number of bootstraps for the estimation of
the standard errors 100

amination scores (examsc), the standardized London reading test scores at the age of 11 years

(standLRT), the sex of the student (sex), and the school identifier (school). In the original

data set the variable examsc is measured on a continuous scale. In order to demonstrate the

functionality of the functions semLm() and semLme() the variable is arbitrarily censored to

nine intervals. As before, the censoring is carried out by the function cut() and the vector of

interval bounds is called intervals.

R> intervals <- c(1,1.5,2.5,3.5,4.5,5.5,6.5,7.7,8.5,Inf)

R> Exam$examsc.class<- cut(Exam$examsc, intervals)

The newly created interval-censored variable is called examsc.class. The distribution

is visualized by applying the function table().

R> table(Exam$examsc.class)

(1,1.5] (1.5,2.5] (2.5,3.5] (3.5,4.5] (4.5,5.5] (5.5,6.5]

1 32 249 937 1606 951
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(6.5,7.7] (7.7,8.5] (8.5,Inf]

267 15 1

It can be seen that most examination scores are concentrated in the center intervals. To fit

the linear regression model the function semLM() is called.

R> LM <- semLm(formula = examsc.class ˜ standLRT + sex,

+ data = Exam, classes = intervals, bootstrap.se = TRUE)

The formula argument is assigned the model equation, where examsc.class is re-

gressed on standLRT and sex. The argument data is assigned the name of the data set

Exam and the vector of interval bounds intervals is assigned to the classes argument.

The arguments burnin and samples are left as defaults. The specified number of default

iterations is sufficiently large for most regression models, however, convergence of the pa-

rameters has to be checked by plotting the estimation results with the function plot() after

the estimation. No transformation is specified for the interval-censored dependent variable

therefore trafo is assigned its default value. The argument adjust is only relevant if the

Box-Cox transformation trafo="bc" is chosen. In this case the number of iterations for the

estimation of the Box-Cox transformation parameter λ can be specified by this argument. The

convergence of the transformation parameter λ has to be checked using the function plot().

More information on the Box-Cox transformation and on the estimation of the transformation

parameter is given in Walter et al. (2017). For the estimation of the standard errors of the re-

gression parameters the argument bootstrap.se is set to TRUE. The number of bootstrap

samples b is 100, its default value, which again is reasonable for most settings. A summary of

the estimation results is obtained by the application of the function summary().

R> summary(LM)

Call:

semLm(formula = examsc.class ˜ standLRT + sex, data = Exam,

classes = intervals, bootstrap.se = TRUE)

Fixed effects:

Estimate Std.Error Lower 95%-level Upper 95%-level

(Intercept) 5.069695 0.0176955 5.029111 5.106293

standLRT 0.590856 0.0125097 0.565046 0.613674

sexM -0.171377 0.0269704 -0.237042 -0.114465

Multiple R-squared: 0.3501 Adjusted R-squared: 0.3498

Variable examsc.class is divided into 9 intervals.

The output shows the function call, the estimated regression coefficients, the bootstrapped

standard errors, and the confidence intervals as well as the R-squared and the adjusted R-

squared. Furthermore, the output reminds the user that the dependent variable is censored to
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nine intervals. All estimates are interpreted as in a linear regression model with a continuous

dependent variable, hence, if standLRT increases by one unit and all other parameters are

kept constant, examsc.class increases by 0.59 on average. The bootstraped confidence

intervals indicate that all regressors have a significant effect on the dependent variable.
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Figure 4.2: Convergence plots of estimated model parameters and the estimated final density
with a histogram of the observed distribution of the data in the background.

By using the generic function plot() on an object of class "sem" "lm" convergence

plots of each estimated regression parameter and of the estimated residual variance are ob-

tained. Furthermore, the density of the generated pseudo ỹ variable from the last iteration

step is plotted with a histogram of the observed distribution of the interval-censored variable

examsc.class in the background.

R> plot(LM)

In Figure 4.2 a selection of convergence plots is given in panel 1-3 and the density of the

pseudo ỹ from the last iteration step of the SEM algorithm is given in panel 4. The estimated
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parameter is plotted for each iteration step of the SEM algorithm. A vertical line indicates the

end of the burn-in period (40 iterations). The final parameter estimate is obtained by averag-

ing the M (SEM) additional iterations (200). The selected 240 iterations are enough to obtain

reliable estimates in this example, because the estimates have converged.

As already mentioned, the smicd package also enables the estimation of linear mixed re-

gression models by the function semLme(). In the London school data set students are nested

within schools, therefore it is necessary to control for the correlation within-schools. In order

to do that the variable school is specified as a random intercept. Furthermore, a random slope

parameter on the standardized London reading test score standLRT is included in the model

to allow for different slopes. Again, the variable sex is included as an additional regressor.

Hence, the formula argument is assigned the following model equation examsc.class ∼
standLRT + sex + (standLRT|school). So far, the function semLme() enables

the estimation of linear mixed models with a maximum of one random slope and one random

intercept parameter. Regarding all other arguments, the same specifications as before are made.

R> LME <- semLme(formula = examsc.class ˜ standLRT + sex +

+ (standLRT|school), data = data, classes = intervals,

+ bootstrap.se = TRUE)

By using the generic function summary() the estimation results are printed. In addition

to the fixed effects, the estimated random effects are obtained as in the lme4 and nlme pack-

ages. Since the R-squared and the adjusted R-squared are not defined for mixed models the

summary() function prints the Marginal R-squared and Conditional R-squared (Nakagawa

and Schielzeth, 2013; Johnson, 2014).

> summary(LME)

Call:

semLme(formula = examsc.class ˜ standLRT + sex + (standLRT |

school), data = data, classes = intervals,

bootstrap.se = TRUE)

Random effects:

Groups Name Variance Std.Dev.

school (Intercept) 0.08524761 0.2919719

standLRT 0.01515524 0.1231066

Residual 0.57213169 0.7563939

Fixed effects:

Estimate Std.Error Lower 95%-level Upper 95%-level

(Intercept) 5.065732 0.0435255 4.973548 5.159554

standLRT 0.553797 0.0215305 0.504993 0.595787

sexM -0.174975 0.0331477 -0.250686 -0.105352
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Marginal R-squared: 0.319 Conditional R-squared: 0.4205

Variable examsc.class is divided into 9 intervals.

Again, interpretation is the same as in linear mixed models with a continuous dependent

variable. By applying the generic function plot() to an "sem" "lme" object the same

plots as for the linear regression model are plotted.

4.4 Discussion and outlook

Asking for interval-censored data can lead to lower item non-response rates and increased

data quality. While item non-response is potentially avoided, applying traditional statistical

methods becomes infeasible because the true distribution of the data within each interval is

unknown. The functions of the smicd package enable researchers to easily analyze this kind of

data. The paper briefly introduces the new statistical methodology and presents, in detail, the

core functions of the package:

• kdeAlgo() for the direct estimation of any statistical indicator,

• semLm() to estimate linear models with an interval-censored dependent variable,

• semLme() to estimate linear mixed models with an interval-censored dependent vari-

able.

The functions are applied in order to estimate statistical indicators from interval-censored EU-

SILC income data and to analyze interval-censored examination scores of students from Lon-

don with linear and linear mixed regression models.

Further developments of the smicd package will include the possibility to estimate the

bootstrapped standard errors in parallel computing environments. Additionally, it is planned to

allow for the use of survey weights in the linear (mixed) regression models.
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auf der Basis des Mikrozensus. Technical report, Statistische Analysen und Studien NRW.

Stewart, M. (1983). On least square estimation when the dependent varaible is grouped. The

Review of Economic Studies 50(4), 737–753.

Tepping, B. (1968). Variance estimation in complex surveys. Proceedings of the American

Statistical Association Social Statistics Section, 11–18.

Thai, H., F. Mentre, N. Holford, C. Veyrat-Follet, and E. Comets (2013). A comparison of

bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects mod-

els. Pharmaceutical Statistics 12(3), 129–140.

114

http://www.forschungsdatenzentrum.de/en/database/microcensus/index.asp
http://www.forschungsdatenzentrum.de/en/database/microcensus/index.asp
https://unstats.un.org/unsd/demographic/sources/census/quest/NZL2013enIn.pdf
https://unstats.un.org/unsd/demographic/sources/census/quest/NZL2013enIn.pdf
http://www.forschungsdatenzentrum.de/en/database/microcensus/codebook_microcensus_2014.pdf
http://www.forschungsdatenzentrum.de/en/database/microcensus/codebook_microcensus_2014.pdf
http://www.forschungsdatenzentrum.de/en/database/microcensus/codebook_microcensus_2014.pdf
http://www.forschungsdatenzentrum.de/en/database/microcensus/index.asp
http://www.forschungsdatenzentrum.de/en/database/microcensus/index.asp
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_schluesselverzeichnis.pdf
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_schluesselverzeichnis.pdf
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Bevoelkerung/Mikrozensus.html
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Bevoelkerung/Mikrozensus.html
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Bevoelkerung/Mikrozensus.html
https://www.destatis.de/EN/FactsFigures/SocietyState/Population/HouseholdsFamilies/Methods/Microcensus.html
https://www.destatis.de/EN/FactsFigures/SocietyState/Population/HouseholdsFamilies/Methods/Microcensus.html
https://www.destatis.de/EN/FactsFigures/SocietyState/Population/HouseholdsFamilies/Methods/Microcensus.html
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile


BIBLIOGRAPHY

Thompson, J. W. A. (1962). The problem of negative estimates of variance components. Annals

of Mathematical Statistics 33(1), 273–289.

Thompson, M. L. and K. Nelson (2003). Linear regression with type I interval- and left-

censored response data. Environmental and Ecological Statistics 10(2), 221–230.

Tille, Y. (2001). Theorie des sondages: Echantillonnage et estimation en populations finies.

Paris: Dunod.

Tobin, J. (1958). Estimation of relationships for limited dependent variables.

Econometrica 26(1), 24–36.

Toomet, O. (2015). intReg: Interval Regression. R package version 0.2-8.

Tzavidis, N., N. Salvati, T. Schmid, E. Flouri, and E. Midouhas (2016). Longitudinal analysis

of the strengths and difficulties questionnaire scores of the Millennium Cohort Study chil-

dren in England using M-quantile random-effects regression. Journal of the Royal Statistical

Society: Series A 179(2), 427–452.

Tzavidis, N., L.-C. Zhang, A. Luna, T. Schmid, and N. Rojas-Perilla (2018). From start to

finish: a framework for the production of small area official statistics. Journal of the Royal

Statistical Society: Series A 181(4), 927–979.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S. New York:

Springer.

Verbeke, G. and G. Molenberghs (2000). Linear Mixed Models for Longitudinal Data. New

York: Springer.

Vijverberg, W. P. M. (1986). Consistent estimates of the wage equation when individuals

choose among income-earning activities. Southern Economic Journal 52(4), 1028–1042.

Walter, P. (2018). smicd: Statistical Methods for Interval Censored Data. R package version

1.0.2.

Walter, P., M. Groß, T. Schmid, and N. Tzavidis (2017). Estimation of linear and non-linear

indicators using interval censored income data. Technical report, Freie Universität Berlin,

School of Business & Economics.

Walter, P. and K. Weimer (2018). Estimating poverty and inequality indicators using interval

censored income data from the German microcensus. Technical report, Freie Universität

Berlin, School of Business & Economics.

Wand, M. (2015). KernSmooth: Functions for Kernel Smoothing. R package version 2.23-15.

Wand, M. and M. Jones (1995). Kernel smoothing. London: Chapman & Hall.

Wang, B. and M. Wertelecki (2013). Density estimation for data with rounding errors.

Computational Statistics & Data Analysis 65, 4–12.

115



BIBLIOGRAPHY

Wang, J., J. R. Carpenter, and M. A. Kepler (2006). Using SAS to conduct nonparametric

residual bootstrap multilevel modeling with a small number of groups. Computer Methods

and Programs in Biomedicine 82(2), 130–143.

Wehrens, R., H. Putter, and L. Buydens (2000, 12). The bootstrap: a tutorial. Chemometrics

and Intelligent Laboratory Systems 54(1), 35–52.

Wolter, K. (1985). Introduction to Variance Estimation. New York: Springer.

Woodruff, R. S. (1971). A simple method for approximating the variance of a complicated

estimate. Journal of the American Statistical Association 66(334), 411–414.

World Bank (2010). Poverty & equity data portal. http://povertydata.worldbank.

org/poverty/country/MEX/. Accessed: 2017-10-14.

World Economic Forum (2017). Global risks 2017. http://reports.weforum.org/

global-risks-2017/part-1-global-risks-2017/. Accessed: 2017-09-28.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis.

The Annals of Statistics 14(4), 1261–1295.

Yang, Y., H. K. T. Ng, and N. Balakrishnan (2016). A stochastic expectation-maximization

algorithm for the analysis of system lifetime data with known signature. Computational

Statistics 31(2), 609–641.

Zambom, A. Z. and R. Dias (2012). A review of kernel density estimation with applications to

econometrics. International Econometric Review 5(1), 20–42.

116

http://povertydata.worldbank.org/poverty/country/MEX/
http://povertydata.worldbank.org/poverty/country/MEX/
http://reports.weforum.org/global-risks-2017/part-1-global-risks-2017/
http://reports.weforum.org/global-risks-2017/part-1-global-risks-2017/


Summaries

Summaries in English

Abstract: Estimating Linear Mixed Regression Models with an Interval-Censored
Dependent Variable using a Stochastic Expectation-Maximization Algorithm ap-
plied to German Microcensus Data

Linear mixed regression analysis is a well-established statistical method used in various re-

search fields. In its standard form the dependent variable is measured on a continuous scale.

Parameter estimates are commonly obtained by maximum likelihood or residual maximum

likelihood theory. However, when working with income data, the dependent variable might

be censored to specific intervals in order to increase data privacy protection and to lower item

non-response. This is the case in many surveys and censuses, such as the German Microcen-

sus. To enable parameter estimation in these situations a stochastic expectation-maximization

algorithm (SEM) is proposed. In order to estimate the standard errors of the fixed effects,

a parametric bootstrap that accounts for the additional uncertainty coming from the interval-

censored dependent variable is introduced. Model-based simulation results show the validity

of the new methodology. The SEM algorithm is applied to data from the German Microcensus.

In the application, the relationship between an interval-censored income variable and relevant

explanatory variables is modeled with a linear mixed regression model. A random intercept on

the variable nationality controls for the within-cluster correlation.

Keywords: grouped data, banded data, income, parametric bootstrap, linear regression,

multilevel regression, hierarchical linear regression

Abstract: Estimating Poverty and Inequality Indicators using Interval-Censored
Income Data from the German Microcensus

Rising poverty and inequality increases the risk of social instability in countries all around

the world. To measure poverty and inequality there exists a variety of statistical indicators.

Estimating these indicators is trivial as long as the income variable is measured on a metric

scale. However, estimation is not possible, using standard formulas, when the income variable

is interval-censored (or grouped), as in the German Microcensus. This is the case for numer-

ous censuses due to confidentiality constraints or in order to decrease item non-response. To
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enable the estimation of statistical indicators in these scenarios, we propose an iterative ker-

nel density algorithm that generates metric pseudo samples from the interval-censored income

variable. Based on these pseudo samples, poverty and inequality indicators are estimated. The

standard errors of the indicators are estimated with a non-parametric bootstrap. Simulation

results demonstrate that poverty and inequality indicators from interval-censored data can be

unbiasedly estimated by the proposed kernel density algorithm. Also, the standard errors are

correctly estimated with the non-parametric bootstrap. The kernel density algorithm is applied

in this work to estimate regional poverty and inequality indicators from German Microcensus

data. The results show the regional distribution of poverty and inequality in Germany.

Keywords: direct estimation, grouped data, kernel density estimation, non-parametric

bootstrap, income

Abstract: Small Area Estimation with Interval-Censored Income Data

Among a variety of small area estimation methods one popular approach for estimating lin-

ear and non-linear poverty and inequality indicators is the use of the empirical best predictor

under the unit-level nested error (random effects) regression model. The empirical best pre-

dictor relies on fitting a nested error regression model with a continuous dependent variable.

Fitting the nested error regression model and parameter estimation is more challenging when

the response variable is interval censored. Interval censoring of sensitive variables for exam-

ple, income is sometimes the preferred approach for collecting data due to data confidentiality

concerns or concerns about response burden. The work in this paper proposes methodology

that enables fitting a nested error regression model when the dependent variable is interval

censored. Model parameters are then used for small area prediction of finite population param-

eters of interest. Model fitting in the case of an interval-censored response variable is based on

the use of a stochastic expectation-maximization algorithm. Since the stochastic expectation-

maximization algorithm relies on the Gaussian assumptions of the model error terms, adaptive

transformations are incorporated for handling departures from normality. The estimation of the

mean squared error of the small area parameters is facilitated by a parametric bootstrap that

captures the additional uncertainty due to the interval-censoring mechanism and the possible

use of adaptive transformations. The empirical properties of the proposed methodology are

assessed by using model-based simulations. The relevance of the proposed methodology in

policy work is illustrated by estimating deprivation indicators for municipalities in the Mexi-

can state of Chiapas.

Keywords: empirical best predictor, nested error regression model, grouped data, stochas-

tic expectation-maximization
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Abstract: The R Package smicd: Statistical Methods for Interval-Censored Data

The package smicd supports two new statistical methods for the analysis of interval-censored

data: 1) direct estimation/prediction of statistical indicators, and 2) linear (mixed) regression

analysis. Direct estimation of statistical indicators, for instance poverty and inequality indi-

cators, is facilitated by a non-parametric kernel density algorithm. The algorithm allows us

to account for weights in the estimation of statistical indicators. The standard errors of the

statistical indicators are estimated with a non-parametric bootstrap. Furthermore, the package

offers statistical methods for the estimation of linear and linear mixed regression models with

an interval-censored dependent variable, particularly random slope and random intercept mod-

els. Parameter estimates are obtained through a stochastic expectation-maximization algorithm.

Standard errors are estimated using a non-parametric bootstrap in the linear regression model

and by a parametric bootstrap in the linear mixed regression model. To handle departures from

the model assumptions, fixed (logarithmic) and data-driven (Box-Cox) transformations are in-

corporated into the algorithm. The functionality of the package is illustrated with example data

sets to estimate poverty indicators from interval-censored data in Germany and to linear model

interval-censored examination scores of students from London schools.

Keywords: grouped data, kernel density estimation, regression models, income data, stochas-

tic expectation-maximization algorithm, direct estimation

Kurzzusammenfassungen in Deutsch

Zusammenfassung: Parameterschätzung in linear gemischten Modellen mit grup-
pierter abhängiger Variable durch einen Stochastic Expectation-Maximization
Algorithmus angewandt auf den deutschen Mikrozensus

Die linear gemischte Regressionsanalyse ist ein etabliertes statistisches Verfahren, welches

in verschiedenen Forschungsbereichen verwendet wird. Standardmäßig ist die abhängige Va-

riable metrisch skaliert. In diesem Fall werden die Regressionsparameter mit der Maximum-

Likelihood-Methode oder der restringierten Maximum-Likelihood-Methode geschätzt. Bei der

Analyse von Einkommensdaten kann es jedoch vorkommen, dass die Daten nicht stetig, son-

dern gruppiert erhoben wurden. Daten werden in dieser Form erhoben um z.B. höheren Da-

tenschutz zu gewährleisten oder die Rate an fehlenden Werten zu verringern. Gruppierte Daten

werden im Rahmen von vielen Umfragen und Zensus erhoben, z.B. vom deutschen Mikro-

zensus. Um die Schätzung der Regressionsparameter mit gruppierter abhängiger Variable zu

ermöglichen, wird ein Stochastic Expectation-Maximization (SEM) Algorithmus vorgeschla-

gen. Die Schätzung der Standardfehler der fixen Regressionsparameter erfolgt mit einem pa-

rametrischen Bootstrapverfahren. Dieses berücksichtigt die zusätzliche Unsicherheit in der Pa-

rameterschätzung, die durch die gruppierte abhängige Variable entsteht. Modellbasierte Simu-

lationsergebnisse bestätigen die Validität des vorgeschlagenen Verfahrens. Im Anschluss wird

der SEM Algorithmus auf Daten des deutschen Mikrozensuses angewandt. In der Anwendung
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wird der Zusammenhang zwischen gruppiertem Einkommen und relevanten erklärenden Varia-

blen durch ein linear gemischtes Modell geschätzt. Ein zufälliger Achsenabschnitt kontrolliert

für die Korrelation der Beobachtungen von Personen mit gleicher Nationalität.

Stichworte: Intervalklassierte Daten, Einkommen, parametrischer Bootstrap, lineare Re-

gression, Mehrebenenanalyse, hierarchische lineare Regression

Zusammenfassung: Berechnung von Armuts- und Ungleichheitsindikatoren aus
gruppierten Einkommensdaten des deutschen Mikrozensus

Ansteigende Armut und Ungleichheit erhöht das Risiko von sozialer Instabilität in Ländern

überall auf der Erde. Um Armut und Ungleichheit zu messen, existieren eine Vielzahl von

statistischen Indikatoren. Diese Indikatoren können einfach berechnet werden solange die er-

hobene Einkommensvariable metrisch skaliert ist. Jedoch ist ihre Berechnung mit Hilfe von

Standardformeln nicht möglich, wenn Einkommen, wie im deutschen Mikrozensus, nur grup-

piert erhoben wird. Auch andere Zensus erheben Einkommen nur gruppiert, um Vertraulichkeit

der Antworten zu gewährleisten und Antwortausfälle möglichst zu vermeiden. Um in diesen

Fällen die Berechnung von statistischen Indikatoren zu ermöglichen, wird ein iterativer Kern-

dichteschätzalgorithmus vorgestellt, der aus gruppierten Daten metrische generiert. Mittels der

so gewonnenen metrischen Daten können die interessierenden Armuts- und Ungleichheitsindi-

katoren berechnet werden. Die Standardfehler der statistischen Indikatoren werden unter Ver-

wendung eines nicht-parametrischen Bootstrap-Verfahrens berechnet. Simulationsergebnisse

zeigen, dass der vorgeschlagene Algorithmus die unverzerrte Berechnung von Armuts- und

Ungleichheitsindikatoren ermöglicht. Auch die mit dem Boostrap-Verfahren berechneten Stan-

dardfehler sind valide. Der Kerndichteschätzalgorithmus wird anschließend verwendet, um re-

gionale Armuts- und Ungleichheitsindikatoren aus deutschen Mikrozensusdaten zu berechnen.

Die Analyseergebnisse veranschaulichen die räumliche Verteilung von Armut und Ungleich-

heit in Deutschland.

Stichworte: Direkte Schätzung, intervalklassierte Daten, Kerndichteschätzer,

nicht-parametrischer Bootstrap, Einkommen

Zusammenfassung: Small Area Estimation mit gruppierten Einkommensdaten

Ein populärer Ansatz zur Schätzung linearer und nichtlinearer Armuts- und Ungleichheitsin-

dikatoren für kleinräumige Gebiete ist der Empirical Best Predictor. Dieser basiert auf einem

linear gemischten Modell (zufälliger Achsenabschnitt) mit einer stetigen abhängigen Varia-

ble. Wenn die abhängige Variable jedoch nicht stetig, sondern gruppiert erhoben wird, ist die

Schätzung der Modellparameter erschwert. Sensible Daten, z.B. Einkommensdaten, werden

mitunter gruppiert abgefragt, um ihre Vertraulichkeit zu gewährleisten und Antwortausfälle zu

minimieren. In dieser Arbeit wird ein Stochastic Expectation-Maximization Algorithmus vor-

geschlagen, der es ermöglicht, die Parameter eines gemischten Modells mit zufälligem Ach-
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senabschnitt zu schätzen, wenn die abhängige Variable gruppiert ist. Die Parameter werden

anschließend verwendet, um lineare und nichtlineare Indikatoren für kleine Gebiete zu be-

rechnen. Der Stochastic Expectation-Maximization Algorithmus setzt die Normalverteilung

der Fehlerterme des Modells voraus. Um Abweichungen von der Normalverteilungsannah-

me entgegenzuwirken, werden adaptive Transformationen in den Algorithmus integriert. Die

Schätzung des mittleren quadratischen Fehlers der berechneten Indikatoren erfolgt durch einen

parametrischen Bootstrap. Dieser berücksichtigt die zusätzliche Unsicherheit, die durch die

gruppierte abhängige Variable und durch die adaptive Transformation entsteht. Die empiri-

schen Eigenschaften der vorgeschlagenen Methode werden mit modellbasierten Simulationen

evaluiert. Ihre Relevanz für politische Entscheidungen wird durch die Schätzung von Armut-

sindikatoren für Gemeinden im mexikanischen Bundesstaat Chiapas illustriert.

Stichworte: Empirical Best Predictor, linear gemischtes Modell mit zufälligem Achsenab-

schnitt, intervallklassierte Daten, Stochastic Expectation-Maximization Algorithmus

Zusammenfassung: Das R Paket smicd: Statistische Methoden für gruppierte Da-
ten

Das Paket smicd ermöglicht die Analyse von gruppierten Daten mit Hilfe von zwei neuen

statistischen Methoden: 1) Direkte Schätzung/Vorhersage von statistischen Indikatoren und 2)

linear (gemischte) Regressionsanalyse. Die direkte Schätzung von Indikatoren, z.B. Armuts-

und Ungleichheitsindikatoren, erfolgt mittels eines Kerndichteschätzalgorithmus. Gewichtete

Indikatoren können berechnet werden, indem Stichproben und/oder Haushaltsgewichte mit in

den Algorithmus aufgenommen werden. Ein nicht-parametrischer Bootstrap erlaubt die Be-

rechnung der Standardfehler. Das Paket ermöglicht außerdem die Parameterschätzung in linear

und linear gemischten Regressionsmodellen mit gruppierter abhängiger Variable (Modelle mit

zufälligem Achsenabschnitt und Steigungsparameter). Die Parameter werden von einem Sto-

chastic Expectation-Maximization Algorithmus geschätzt. Die Schätzung der Standardfehler

erfolgt mit einem nicht-parametrischen Bootstraps im linearen Modell und mit einem para-

metrischen Bootstrap im linear gemischten Modell. Um Verletzungen von Modellannahmen

zu beheben, beinhaltet der Algorithmus fixe und datengetriebene Transformationen (logarith-

mische und Box-Cox Transformation). Die Funktionalität des Pakets wird anhand von zwei

Datensätzen präsentiert. Es werden beispielhaft Armutsindikatoren in Deutschland berechnet

und Prüfungsnoten von Londoner Schülern linear (gemischt) modelliert.

Stichworte: Intervalklassierte Daten, Kerndichteschätzer, Regressionsmodell, Einkommens-

daten, Stochastic Expectation-Maximization Algorithmus, direkte Schätzung
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