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Figure 1.1: The process of drug development. The original figure by Pfizer Inc.  

 

1. Introduction 

The process of modern drug development mainly includes four stages1,2, drug discovery, pre-

clinical research, clinical trials and the approval of local FDA with a new drug application. 

After a new pharmaceutical drug is brought to market, it still needs to be supervised by 

regulation authorities for the drug safety.  

In the stage of drug discovery, researchers focused on looking for key targets (e.g. a protein or 

a nuclear acid) of a disease. According to the information of the target discovered, chemical 

compounds designed for binding to the target, hoping that the binding event can stop or 

reverse the effects of the considered disease. At this stage, usually, thousands of compound 

candidates are prepared for screening. Test information needs to be gathered for evaluating 

whether a chemical entity is promising and should be further studied. Important information 

involves ADME of the compounds (i.e. Absorption, Distribution, Metabolization and 

Excretion); potential benefits and related mechanisms; recommended dosage; the way of 

taking drug (e.g. by mouth or by injection); potential side effects; the drug may affect 

different groups of people (e.g. gender and race) differently; potential interactions with other 

drugs and metabolism; the comparison of effectiveness with other similar drugs and more 

aspects.  
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Prior to human clinical trials stage, researchers need to carefully detect potential drug 

toxicities for excluding the possibilities of causing serious harm for people. During pre-

clinical research, researchers would perform in vitro and in vivo experiments on 

microorganism and animal to further assess the dosing and toxicity levels. For those in vivo 

and in vitro experiments, U.S. FDA requires researchers to use the good laboratory practices 

following the minimum basic requirements.  

Based on the information collected from the first two stages, researchers can submit an 

Investigation New Durg (IND) application to local regulatory authorities (e.g. FDA in U.S.). 

If an IND application is approved, the clinical trials can be performed on humans. Clinical 

trials usually involve four steps2: clinical phase 1 trials are mainly on healthy volunteers (20-

100 people). In this phase, the goal of trials is to determine the safety and dosing; clinical 

phase 2 trials are used to get an initial reading of efficacy and further explore safety in small 

number of sick patients (up to several hundred people); in the clinical trials phase 3, large-

scale trials are made for determining safety and efficacy in sufficiently large numbers of 

patients (300-3000 people). This is a pivotal step to evaluate the potential drug molecule.  

Clinical trials phase 4 is a post-market surveillance study. Usually, after phase 3, a drug can 

receive the permission to market. But, it is still necessary to observe the behavior of the drug 

for a longer time period and a much larger patient population to detect rare or long-term 

adverse effects. During this phase, any discovered harmful effects may cause a drug being no 

longer sold, or being restricted to certain users3. The aim of the clinical trial is to test long-

term or chronic toxicities of a lead compound. On the other side, the desired effectiveness of a 

drug also needs to be demonstrated in the clinical trials.  

Overall, de novo drug design is a slow and complex process. Although the time and funds 

used for bringing a new drug to market are increasing, the number of new chemical entities 

approved is decreasing year by year. On average, a de nove drug from idea to going to market 

may take up to 18 years4, of which the clinic trials may take around 6 years. To bring a new 

drug molecule from lab to market typically costs hundreds of millions or billions U.S. 

dollars5,6. Sometimes, developing a new drug may take a maximum of 2000 million dollars6. 

Apart from high cost and spending much time, the successful rate of chemical compounds 

investigated going into the market is quite low. According to the report of Kola et al.
7, for all 

compounds that enter the clinical trials, 30% compounds tested may fail owing to the lack of 

efficiency: 30% failures come from toxicological and safety tests and only 11% can pass the 

trials. A report from Stratmann et al. mentioned after pre-clinical stage, only about 10 drug 
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candidates can be qualified for clinical trials on human. Between 2007 to 2010, nearly 50% of 

drug candidates either failed during the clinical phase 3 trial or were rejected by the national 

regulatory agency8.  

 

 

Figure 1.2: After entering the stage of clinical trials, the rate of success of compounds on the 
subsequent development phases. Data originated from the report written by Kola et al.

7  This 
figure was made by R v3.1.3. 
 
Since bringing new drugs on the market has become so difficult, new techniques are 

demanded to accelerate and enhance the efficiency of the development of a new drug. The 

combination of computer techniques with pharmacological knowledge provides a cheaper and 

more efficient procedure for drug development, which makes pharmaceutical companies and 

research institutes greatly benefit from effectively accelerating drug development.  

 

1.1 Computer-Aided Drug Design 

The path of drug development is lengthy and complicated. To explore the behavior of a drug 

in a biological system using wet lab techniques is very time-consuming and intensively 

laborious task. With the development of computer science, there is a rapidly growing effort to 

apply computation techniques to the chemical and biological field in order to streamline drug 

discovery, design, development and optimization. Computer-aided or in silico design is being 

utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the 

absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues9. In 

this way effectiveness and efficiency of the drug discovery process will improve. Furthermore, 

in silico design can be an alternative method for decreasing the use of animals referring to 

ethical reasons. It can enhance the speed of development and save money. So far, the 
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computer-based drug development techniques have successfully provided assistance for the 

development of several important drugs, such as losartan (antihypertensive drug), ritonavir 

(antiviral drug), indinavir (antiviral), donepezil (anti-Alzheimer’s disease) and more 10.  

Before going to the clinical stage of drug development, the research focuses on drug design. 

The most fundamental goal in drug design is to predict whether a lead compound will bind to 

a biological target and the activity of compound can modulate this biological target and 

related biological responses. If the answer is yes, one needs to know how strong it is. Ligand-

based drug design and structure-based design are common computational approaches applied 

in drug development. Ligand-based drug design is an indirect method to design a drug, not 

considering the target molecule explicitly. This method mainly relies on the knowledge of 

known molecules binding to the biological target of interest. These known molecules can be 

used to derive a pharmacophore model that defines the specific requirement of a molecule that 

can bind to the target11. In turn, this model may be used to design new molecule entities that 

interact with the target. Structure-based drug design, also called direct drug design, depends 

on the knowledge of the three-dimensional structure of the biological target obtained by X-ray 

crystallography or NMR spectroscopy. Based on the structure of the biological target, using 

interactive graphics and the knowledge of medicinal chemists, the candidate drugs that bind to 

the biological target with high affinity may be designed. Currently, various computational 

procedures can be used to design new drug candidates automatically12.  

(Q)SAR model, (Quantitive) Structure-Activity Relationships is an extensively used 

computer-aided drug development method13. Actually, (Q)SAR is a ligand-based method, 

which originated from Hansch model14,15. The basic hypothesis of (Q)SAR is that the 

structure of compounds determines their physical, chemical and biologic properties. This 

method can be applied as regression or classification model. For the regression task, the 

(Q)SAR model relates a set of “predictor” variables (X) to the potency of the response 

variable (Y). The classification (Q)SAR model relates the predictor variables to a categorical 

value of the response variable. For drug development with (Q)SAR modeling, the predictors 

normally consist of physicochemical properties, molecular descriptors, molecular finger prints 

and so on. The response variable of (Q)SAR is usually the biological activity of the drug. 

During the modeling process, first the relationship between chemical structure and biological 

activities is summarized by model, before new molecules can be predicted by this model.  

The original Hansch model involves a linear function correlating a biological property to be 

predicted with steric, electronic and hydrophobic indices characterizing the chemical 
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architecture16. In the following years, based on this concept, a wealth of molecular descriptors 

and algorithms have been developed to build (Q)SAR models. Until now, there are several 

available commercial powerful (Q)SAR software packages to predict toxicities for aiding the 

drug development such as Derek for windows17, MULTICASE18 and TOPKAT19.  

 Derek for windows (Lhash Ltd., UK): a knowledge-based expert system. Its toxicity 

evaluation partly depends on alerts and chemical features associated with toxicity. All 

alerts or chemical features are based either on hypotheses relating to mechanisms of 

action of a chemical class or on observed empirical relationships. If a compound was 

associated with a level of likelihood of “equivocal or higher”, it would be considered 

as toxicity positive. Otherwise, it would be negative.  

 MC4PC (MULTICASE Inc.) is a molecular fragment-based approach. In the program, 

the predictive model can be automatically generated from the datasets provided by 

users. It reduces training set chemical structures to smaller chemical fragments (2- to 

10-atom fragments) and then it identifies those fragments primarily associated with 

active compounds responsible for a biological target. Such fragments are called 

biophores. All compounds containing a specific biophore are removed from the 

training set. Then the next biophore would be identified based on the remaining part of 

the training set. Moreover, for each set of compounds sharing a specific biophore, the 

system would generate more molecular properties, which are defined as modulators in 

the program. Those molecular properties correlate with enhanced or diminished 

activity of a biophore (e.g. activating and inactivating fragments). The combination of 

these data is used to develop a QSAR model for estimating the potential toxicity of 

compounds to be tested.  

 TOPKAT (Accelrys Inc.) predicts a range of toxicological endpoints. It includes three 

QSAR models. Each model can be applied to a specific class of chemicals. A 

submitted chemical structure would be given a probability being a developmental 

toxicant in rats. If the probability is below 0.3, it indicates no potential for 

developmental toxicity, if it is larger than 0.7, it signifies developmental toxicity 

potential. The probability range between 0.3 and 0.7 refers to indeterminate zone.  

In more recent times, machine learning techniques have been introduced in the field of drug 

development20,21. Powerful statistical algorithms such as Random Forest, Artificial Neural 

Network, SVM and similar algorithms can efficiently extract rules and functions or 

procedures from large training data to build the correlation with biological activities. (Q)SAR 

models based on those machine learning algorithms can be used to optimize the biological 



 

 6 

activities, target selectivity, physicochemical and other biological properties of selected 

chemical compounds. In the pharmaceutical field, machine learning models also can be used 

to eliminate chemical compounds that have undesirable effects, such as mutagens, 

carcinogens, teratogens and other toxic compounds.  

 

1.2 Machine Learning Techniques  

Machine Learning Techniques (MLT) are powerful drug design tools that can be used to 

construct QSAR models. MLT applications in drug development are growing rapidly22. The 

models built by MLT relate chemical structure with biological activity. They are useful in 

elucidating the mechanisms of the chemical-biological interaction. One of the most important 

properties of those statistical models is their high predictive power. This feature is crucial in 

modern drug development, which efficiently guides drug discovery research.  

In the past decades, due to the rapid development in the artificial intelligence field, several 

statistical methods have enlarged the arsenal of drug development tools23-25. A number of 

MLTs have been proved to be quite useful for the construction of (Q)SAR models. These are 

Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network(ANN) and 

other MTL approaches, which have been recognized as important tools in drug discovery26-30. 

Usually, the MLTs involve three categories. Those can be classified as supervised learning 

methods (e.g. SVM, RF, Bayesian Network), unsupervised learning methods (e.g. Self-

Organizing Maps, Clustering Algorithm) and hybrid methods (e.g. Counter Propagation 

Neural Network). Hybrid models possess advantages of supervised and unsupervised learning 

techniques. MLTs are well suited for (Q)SAR studies if a set of compounds with known 

biological activities is available for learning to construct a model. Besides, for each compound, 

a number of molecular descriptors or features with different contributions can be used to 

describe chemical compounds.  

In the following, several typical MLT algorithms will be introduced including Decision Tree, 

Random Forest, Artifical Neural Network and Naïve Bayesian Classifier. In addition, it needs 

to be mentioned that SVM31-33 is also a powerful and widely applied algorithm. However, the 

core properties of SVM are closely related to DemPred and DemFeature, developed in our 

group. Those three algorithms belong to the linear classifier types. The basic theories of the 

two linear classifiers DemPred and DemFeature used in the present work is outlined in 

Chapter 2. 

 



 

 7 

1.2.1 Decision Tree 

Decision trees (DT) are one of the popular machine learning methods. It was ranked No.1 in 

the Top 10 Algorithms in Data Mining published by Springer LNCS in 200834. A decision tree 

possesses a tree-like structure and grows from a root. It comprises nodes, branches and leaves. 

Each internal node of decision tree represents a “test” on an attribute; each branch represents 

the result of the test on a node; the leaf of decision tree represents classification labels (Fig. 

1.3).  

 

 

Figure 1.3: Tree-like structure of a decision tree model. 

 

In 1987, J.R. Quinlan first invented the algorithm "iterative Dichotomiser 3" (ID3)35, which 

was used to generate a decision tree from a dataset. In 1993, Quinlan upgraded this algorithm 

with an improved version C4.536. Both algorithms, ID3 and C4.5 use the statistical calculation 

of information gain from a single attribute (feature, descriptor) to build a decision tree. Based 

on the concept of information gain, among all attributes of a training dataset, the attribute with 

maximum information gain is selected. The next step is from the remaining dataset to select 

the attribute with the most information gain to split. The process recurs on the smaller subsets. 

For each of the new subsets, the machine works in the same way until at each leaf all input 

samples belong to the same class. However, in this way it is easy to run into a problem over-

fitting during modeling. The C4.5 algorithm addresses this problem by using a tree pruning 

technique. The procedure of constructing a decision tree is summarized below.  

1. A dataset C involves NC objects (molecules) x  C, which are assigned to two different 

classes U and V containing u and v objects, respectively. The information necessary for a 

complete classification of the whole dataset is  

 I(u, v)   u/(u  v) log2[u/(u  v)]  v/(u  v) log2[v/(u  v)].   (1.1) 
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2. An object x  C can be assigned to one of the two classes U and V using the attribute 

(feature) A, which adopts the following value A(x)  {Ai | i = 1,. . . . . NA}. Using the values of 

the attribute, the objects x in C can be assigned (classified) to different subsets Ci, 

C  {Ci | i = 1,. . . . . NA}, Ci  T. The individual subsets Ci contain ui and vi objects 

NC  i (ui+vi) belonging to the classes U and V, respectively. The information necessary to 

classify all objects in the subset Ci is I(ui, vi). The expected information necessary to further 

classify all objects in C using the subsets obtained with the attribute A is the weighted average  

1

( , )( ) i i
i i

A

i

N
u v

I u v
u v

E A





 .     (1.2) 

If the partitioning in subsets Ci obtained with the attribute A was most successful the value of 

E(A) should be as small as possible.  

3. The information gained by using a classification based on the attribute A is  

gain(A)  I(u, v)  E(A).     (1.3) 

The strategy is to chose the attribute for classification, which yields the largest gain in 

information. C is the root and the subsets Ci are the first hierarchy of nodes of the growing 

tree.  

4. For each subset Ci the above procedure (1, 2, 3) is repeated using the remaining attributes. 

Thus, from the root nodes grow branches and new nodes are created.  

5. If all samples in a subset belong the same class, the corresponding node stops to grow 

branch and the model returns a leaf with this class. If on the other hand, the samples in this 

subset contain more than one class while this node stops, the model returns a leaf with the 

most frequently occurring class. If the algorithm does not reach a stop condition, new nodes 

are generated recursively. 

Basically, the decision tree algorithm C4.5 builds a decision tree on the training dataset in the 

same way as ID3. However, C4.5 has been improved on several aspects. For example, C4.5 

utilizes a threshold values to solve the problem of continuous and discrete attributes. 

Moreover, C4.5 allows attributes to be marked as a missing value. Thus, a missing value 

would not be used simply to calculate information gain and entropy. Besides, as mentioned 

above, C4.5 handles the over-fitting problem by removing branches, which are of little use, 

once the decision tree has been created.  

Nowadays, the decision trees are a powerful classification tool, which are extensively applied 

by many researchers. Drug development is a very complicated task, but brings enormous 

benefits for mankind. Decision trees have been used by biologists, chemists and even 
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computer scientists to solve problems in drug development field. For example, Bach et al.
37 

utilized decision tree technique to construct a model that assists applications for drug 

metabolism and kinetic studies, as well as for toxicological and pharmacological in vivo and 

in vitro testing. But, decision tree technique also contributed to solve the problem of 

antimicrobial resistance. For instance, Lira et al.
38 identified and synthesized two promising 

antimicrobial peptides through decision tree techniques and they successfully proved that both 

peptides have antimicrobial activity by in vitro experiments. 

 

1.2.2 Random Forest  

Random Forest (RF), as the name implies, is an ensemble algorithm, which is composed of 

many single decision trees. The output of an RF is the majority of votes of all decision trees 

trained for classification tasks or the average of the predicted values of all decision trees for a 

regression task. Leo Breiman39 firstly developed the RF algorithm and used it as a trademark. 

More specifically the RF algorithm used nowadays combines the bagging method mentioned 

by Breiman and the idea of random selection of features introduced by Ho40.  

During the process of training of the RF, the Bagging or better say Bootstrap is the key 

technique of RF. Given a training dataset D including X and Y. X={x1,x2,…,xn} n is the total 

number of samples, where xi denotes the sample and corresponding feature values. The 

response (expectation) values of the training data are Y={y1,y2,…,yn}. Bagging is repeated B 

times to select samples that constitute subsets of the training dataset with replacement. For 

each subset a decision tree is constructed. 

The pseudo-code of training a single decision tree is shown below:  

For b=1,…, B: 

1. Pick up randomly with replacement n samples from the training dataset D(X,Y) and 

obtain a training subset, Db(Xb.Yb).  

2. Train a single decision tree fb on Db(Xb.Yb).  

The trained RF model can be used to predict a new sample xnew by averaging the predicted 

values of the individual decision trees for a regression task or by taking the majority of votes 

of all individual decision trees for the classification task.  

The technique of bagging effectively improves the prediction capacity of this algorithm, 

which decreases the bias of modeling. If only a single decision tree is used for prediction, the 

model is sensitive to noise in the training dataset. The average result of a number of decision 

trees can decrease this bias effectively. In the RF approach different decision trees are trained 
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using different subsets of the whole dataset available for training. Hence, not only different 

features but also different samples are used. In this way, avoids correlations among the 

decision trees are avoided.  

Another important function of RF is the capacity to rank the feature importance. Feature 

ranking can be performed in two ways: Gini feature importance and permutation feature 

importance.41 The Gini feature importance is based on the Decrease of Gini Impurity (DGI). 

For a single decision tree, during the training process, the important feature with a high DGI 

would be selected first when building a decision tree. Thus, when considering the decision 

trees, the important features possess high Gini importance.  

Permutation features importance is calculated based on the prediction accuracy rather than 

working on the feature that is used to split the dataset into subsets. Before detailing the 

permutation importance computation, the Out-Of-Bag (OOB) error must be understood. For a 

single decision tree, OOB error is evaluated using the subsets of the training dataset, which 

are not used to construct the actual decision tree. The OOB error estimates the performance of 

the RF for optimizing parameters. The way of computing permutation feature importance is to 

compare the difference between OOB errors resulting from the dataset obtained from a 

random permutation of the targeted features and the OOB error resulting from the original 

dataset. Usually, during this process, the important features increase the OOB error.  

As an outstanding algorithm, the RF can address high-dimensional problems in which the 

number of features is much larger than number of samples. It also performs well on coping 

with highly correlated dataset. Considering “omics” data in the biological field that are 

characterized by a high degree of complexity, RF approaches have many advantages in 

solving biological and medical problems. For example, Goldstein et al.41 depicted the 

application of RF on genetic epidemiology in detail and Chen et al.42 made an extensive 

overview of applications of RF to bioinformatics. 

1.2.3 Artificial Neural Network 

In the machine learning field, the Artificial Neural Network (ANN) is a mathematic algorithm 

inspired by features of biological neural networks. The ANN simulates in an abstract way 

how the human brain works. It actually presents a system of many interconnected nodes. 

These nodes can be viewed as neurons in the brain which exchange messages between each 

other. In 1943, a neurophysiologist, Warren McClloch and a logician, Walter Pitts designed a 

computational algorithm to simulate neural networks43. This mathematic algorithm is called 

threshold logic. Since this model was created, the research for neural network went in two 
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different directions. One is to simulate the biological processes in the brain and the other 

mainly focuses on developing artificial intelligence of neural networks.  

 

Figure 1.4: The basic architecture of an Artificial Neural Network. The original figure is 

taken fromWikipedia.https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg. 

ANN comprises a large family of machine learning algorithms of different types. These are 

for instance, back propagation neural network44, radial basis function network45, recurrent 

neural network46 and more. Generally, all types of ANN have a basic topology consisting of 

neurons in an input layer, one or more hidden layers and an output layer. There can be more 

than one hidden layer, which mainly depends on the complexity of neural network. The multi-

layer perceptron (MLP) is the most common ANN algorithm. MLP includes several layers of 

neurons working as basic ANN structure. The neurons of the input layer adopt the values of 

the attributes of the samples from the dataset to be analyzed. The value xi of the input neuron i 

is transferred to a neuron k of the next layer multiplied with a specific weight wik. The sum of 

these products merging at the neuron k of the next layer  

1

n

k ki i

i

v w x


  (1.4) 

is processed by an activation function  that yields the value k  

0( )
k k k

v v              (1.5) 

placed in the neuron k of the next layer. In Equation(1.5) vk0 is a bias term. There are 

activation functions  for different tasks depending on the specific situation (e.g. sigmoid 

function and hyperbolic tangent function). The aim of activation function is to scale and 

normalize the input for the neurons in the next layer.  
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Commonly used activation functions are the sigmoid, Equation(1.6), and the hyperbolic 

tangent function, Equation(1.7)  

1
( )

1 v
v

e
 


                 (1.6) 

( )
v v

v v

e e
v

e e






 


.       (1.7) 

For each connection between two neurons of subsequent layers, the activation function 

transforms the input information into next layer until the output layer is reached. In the 

learning process the numerical values of the weights are adjusted to yield desired values for 

the neurons of the next layer, which may be a hidden layer or the output layer. The final value 

of the output layer is the predicted value of entire ANN model.  

For predicting an output, the ANN needs to be trained efficiently based on the known dataset. 

Under the supervised training paradigm, the process of supervised learning needs the dataset 

with the known response for each observation. The initially the weights have random values 

between -1 and 1. After completion of a training cycle, the ANN model calculates a 

preliminary output value as the prediction, which is compared with the true output. The 

difference is the error in the prediction. In the ANN algorithm this error is feed back through 

the whole network. The values of the weights are adjusted to lower this error. The rule of 

error adjustment follows below  

( )
ki k i

w a x  . (1.8) 

In eq. 1.8, wki(a) is the updated weight at ath training cycle, which is in proportion to the input 

value xi, to which the weight is applied, the error δk and the learning rate η. The influence of 

an input observation on the error is in proportion to the weight change of a neuron. The 

training speed is determined by the learning rate η. With increasing learning rate η, the 

training speed increases. However, a large value could lead to non-convergence of the model. 

For each cycle, the weight would be modified slightly in the direction going to a smaller error, 

until a target error is reached or no improvement of the error is observed. On another hand, if 

the training rate is too small, the process of training will be slow47. Choosing a value of the 

learning rate depends on the specific problem.  

ANN is a high-throughput technique. With the advent of this technique, ANN facilitates to 

solve many biological problems, especially on the genomics or proteomics fields. Khan et 

al.48 use ANN to deal with the complex genomic datasets. In their study, ANN was employed 

to classify 88 round blue-cells tumors into four diagnostic categories based on cDNA micro-
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array analysis of 6000 genes. In proteomics, Rogers et al.49 used ANN as the technique to 

detect early onset of renal cancer from the dataset generated by SELDI-TOF mass 

spectrometry. 

The application of ANN is general. It can be used to process data containing complex 

relationships and interactions, especially for the non-linear dependencies between data and 

outcome, which is usually difficult to interpret. More importantly, for datasets with noisy 

information the ANN algorithm is particularly suitable. However, the ANN also has its 

limitations. Although the ANN can be used to solve many complex problems, its results 

cannot be logically analyzed. The reason is the inherent the “black box” effect of ANN. With 

hidden layers the accuracy of prediction can be improved but it also obviously decreases the 

speed of computation. Therefore, usually only ANN with one or two hidden layers are 

employed. 

 

1.2.4 Naïve Bayesian Classifier 

Bayes theorem is named after the Reverend Thomas Bayes (1702-1761), who studied how to 

compute a distribution for the probability parameter of a binomial distribution. The Naïve 

Bayesian Classifier (NBC) is the algorithm for constructing classifiers based on this theorem. 

In this algorithm, the features are considered to be independent of each other (the strong 

independence assumption). This is the reason why the algorithm is called “naive”. Naive 

Bayesian classifier has been developed more than 60 years. On the text categorization field, 

especially on the spam process, it is still the very popular algorithm.  

The principle assumption is that the value of a particular feature is independent of the value of 

any other features. For example, if we want to identify the gender of a person, the data 

includes three features: height, weight and foot size. The model of Naïve Bayesian Classifier 

considers each feature contributes independently to the probability that the person is a male or 

a female. Possible correlations among features are ignored.  

Although the NBC algorithm is based on such a simplifying assumption, it can be trained 

easily to solve complex problems of supervised learning. An analysis written by Zhang et al.50 

showed an optimistic ability of Naïve Bayesian. In 2006, Caruana et al.51 made a 

comprehensive comparison of NBC with other classification algorithms. Among several 

algorithms considered in this comparison, the NBC algorithm was outperformed by other 

popular machine learning algorithms.  
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Given a dataset with class variable y and the vector x=(x1,…, xn) representing n independent 

features, the formulation of conditional probability based on the Bayes theorem can be written 

as follows  

1
1

1

( ) ( ,... | )
( | ,...., )

( ,... )
k n k

k n

n

P y P x x y
P y x x

P x x
 .    (1.9) 

Using the relation  

1 1 1( , ,...., ) ( | ,...., )* ( ,...., )
k n k n n

P y x x P y x x P x x ,    (1.10) 

We can recursively expanded P(yk, x1,…, xn) as  

     

1 1

1 2 2

1 2 2 3 3

1 2 2 3

( , ,...., ) ( ,...., , )

( | ,...., , )* ( ,...., , )

( | ,...., , )* ( | ,...., , )* ( ,...., , )

. . . .

( | ,...., , )* ( | ,...., , ) . . . ( | )* ( ).

k n n k

n k n k

n k n k n k

n k n k n k k

P y x x P x x y

P x x x y P x x y

P x x x y P x x x y P x x y

P x x x y P x x x y P x y P y










 (1.11) 

Furthermore, assuming independence among all features xi for a given category yk we can 

write  

1 1( | ,..., , ) ( | )
i n k i k

P x x x y P x y  ,     (1.12) 

for i=1, 2,…, n yielding  

1 1
( , ,... ) ( ) ( | )

n

k n k i ki
P y x x P y P x y


  .    (1.13) 

Since the features do not obey the laws of probability P(x1,…, xn) in Equation(1.10) is 

constant Z yielding from Equation (1.10) and (1.11)  

1
1

1( | ,..., ) ( ) ( | )
n

k n k i k

i
Z

P y x x P y P x y


  .    (1.14) 

Predicting the expectation value y
(j) for the sample (molecule) j, we take the value yk for 

which P(yk |x1
(j),…, xn

(j)), Equation (1.14) assumes the maximum  

 

( ) ( )

1,..., 1

arg max ( ) ( | )
n

j j

k i k
k K i

y P y P x y
 

  ,    (1.15) 

where xi
(j) are the features of the sample j. This is known as the Maximum A Posteriori (MAP) 

decision rule. In Equation (1.15), P(yk) is the relative frequency that the expectation value yk 

occurs in the training set and P(xi | yk) is the frequency to find the feature value xi for a given 

expectation value yk referring to class k in the training set.  

There are a several NBC algorithms in use. The difference between them mainly depends on 

the type of distribution used for P(xi|yk). In real-world problems, we often meet continuous 

data. When dealing with continuous values of the features, a typical assumption is that 
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continuous values associated with each class are distributed according to the Gaussian 

distribution. If feature xi is continuous, the training data would be segmented by the class and 

then calculate the mean value µ(yk) and variance σ(yk) of xi in each class. Thus the probability 

distribution of xi associated with class yk can be expressed as  

2

22

( ( ))1
( | ) exp( )

2 ( )2 ( )

i k

i k

kk

x y
P x y

yy


 


  .   (1.16) 

Bernoulli NBC is another variant, where the P(xi|yk) obey multivariate Bernoulli distributions. 

It is applicable for data where the features assume binary values, i.e. xi  {0, 1}. Therefore, 

this algorithm requires samples to be represented by binary-valued feature vectors. The 

decision rule for Bernoulli Naïve Bayes procedure is based on the distribution  

 ( | ) ( | ) (1 ( | ))(1 )
i k k i k i

P x y P i y x P i y x       (1.17) 

This expression penalizes the non-occurrence of feature i that is an indicator for class yk. The 

Bernoulli NBC is usually used in text classification. During the process of text classification, 

word occurrence is taken as a feature vector.  

Although the Bernoulli NBC is often used to solve problems of text classification, it can also 

be used to solve biological problems such as classification of sequence data. Qiong Wang et 

al. developed a program, Ribosomal Database Project (RDP), which is based on the Bernoulli 

NBC technique. RDP can rapidly and accurately classify bacterial 16S RNA sequences into 

the new higher-order taxonomy and is suitable for the analysis of single rRNA sequence and 

for the analysis of libraries of thousands of sequences. 
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2 Methods 

Utilizing machine learning techniques in drug discovery would result in effectively saving a 

significant amount of money and time. Since the extensive use of artificial intelligence in 

biological and medical fields has become common, an immense improvement has been made 

in drug development, greatly simplifying and accelerating drug development, especially in the 

early stages. However, the design of machine learning algorithms is also a complicated 

process. In general, the modeling for solving biological problems needs to consider several 

important elements, which consist of collecting reliable datasets, developing algorithms, 

confidence measure, and testing. Each of these elements decides on the robustness of the 

model obtained. In this chapter, the components used to construct our model are introduced in 

detail and the principles of the algorithms used for modeling are discussed. 

 

2.1 Dataset 

Generally, for machine learning tasks, the dataset contains two parts: a training set and a test 

set. The usage of the training set is the base for constructing the model, which can be used to 

discover a potentially predictive relationship through mathematic rules. Usually, the 

predictive model is adjusted to its task by optimization of its parameters. For example, a very 

simple model relating one feature x with the response value y in two dimensional space, 

y' = f(x, β) = β0 + β1 x, involves two parameters, namely, bias, β0 and slope, β1, which are the 

parameters obtained by learning from a training set.  

For a machine learning task, after establishing the predictive relationship based on the training 

set, a test set is necessary for assessing the strength and usefulness of this predictive 

relationship. The test set must be strictly independent of the training set. It is strictly 

prohibited that a sample in the test set participates in training of the model. Moreover, a 

significant principle is that it must follow the same probability distribution as the training set. 

However, in addition to the training set and test set, a validation set is also necessary. During 

modeling, to properly select model parameters, the validation set can be used to optimize 

certain global parameters. For example, in the RF39, both the number of single decision trees 

and the number of features for each tree need to be optimized through a validation set. 

Typically, the validation set is separated from the training set. A common proportion used to 

separate a validation set from the training set is 3:752.  

In my doctoral dissertation, there are two datasets studied. One is the Kaggle competition 

contest launched by Boehringer Ingelheim Inc. in 201253. This dataset provided a realistic up-
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to-date prediction scenario for drug classification and the predictions submitted in this contest 

from different professional persons and groups that certainly come close to the theoretical 

limits of what can be achieved for this prediction task. Another dataset used in the thesis is the 

phospholipidosis dataset54. Phospholipidosis is a drug-induced side effect. The early 

prediction of this side effect can accelerate drug development and decrease the cost of 

research. Moreover, in recent years, this side effect has gained more and more interests from 

pharmaceutical communities, and has been extensively studied around the world so that we 

can reliably evaluate our model by comparing with other in silico methods to predict 

phospholipidosis.  

 

 
Figure 2.1: Dataset: training set, test set and validation set. The red part is the validation set 
separated from the training set.  

The prediction tasks studied in this thesis are binary problems, which only include a positive 

set and a negative set. For a pharmaceutical problem, usually the positive set refers to the set 

of compounds causing a given biological phenomenon and the remaining compounds belong 

to the negative set.  

 

2.2 Features 

The first condition of using the computational method to explore drug-like compounds is that 

the compounds existing in the real world be transferred into the virtual space in the computer. 

A compound can be described quantitatively and qualitatively by its physicochemical 

properties, theoretical molecular properties and topological fingerprints. In bioinformatics, 

this step is a process of numerically vectorizing compounds. Thus, a compound vector can be 

input into computer for modeling or prediction.  

Currently, several software packages are available to compute features that describe 

molecular compounds. Those features are also called molecular descriptors. Table 2.1 lists the 

information of several popular applied software packages. These packages provide thousands 
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of molecular descriptors enabling prediction models to consider a broad spectrum of 

pharmacodynamics, pharmacokinetic and toxicological properties, and others.  

Since the number of molecular descriptors can be very large, it is necessary to provide tools 

that allow to reduce the number of features. Therefore, methods for selecting subsets of 

features that are relevant for the predicted property can reduce hidden dependencies among 

the features. This allows to interpret the results of predictions and saves CPU time. Datasets 

with noisy information could decrease prediction performance. In these cases, approaches that 

reduce redundant features using for instance mutual information55, Pearson product-moment 

correlation coefficient56 are most helpful. In this study, the Lasso method57 was employed to 

perform feature selection based on the weights of the features. The Lasso method is an 

embedded method which performs feature selection as part of the model construction process.  

 

Table 2.1: Overview of popular software packages for computing molecular descriptors 

software  source or reference  
DRAGON58 Todeschini et al., 2005 
Molcom-Z59 Hall et al., 2002 

JOELib60 Wegner, 2005 
Xue descriptors set61 Xue et al., 2004 

MODEL62 Li et al., 2007 
CDK Development Kit63 Steinbeck et al., 2006 

Daylight64 Daylight Inc. 
Volsurf65 Molecular Discovery Ltd. 

ChemDes66 Dong et al., 2015 
MOE67 Chemical Computing Group Inc. 

      
 

2.3 Cross-validation 

Cross-validation is a technique used for model validation68,69. The aim of the method is to 

assess the model and optimize parameters based on a dataset with known biological response 

variable. This dataset is separated from the training set. In other words, it is the validation 

dataset mentioned in Chapter 2.1. Technically, cross-validation includes two types: exhaustive 

cross validation and non-exhaustive cross-validation. 

The principle of exhaustive cross validation is to learn and test all possible ways of dividing 

the original training set into a sub-training set and a validation set. For example, Leave-one-

out (LOO) cross validation uses only one sample as the validation set and the remaining 

samples are the sub-training set. If the original training set has n samples, this method 

requires learning and validating n times. However, in the case of a dataset having a large 

number of samples, this method is time-consuming. Non-exhaustive cross-validation does not 
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compute all ways of splitting the original training set. For example, 5 folds cross-validation is 

a non-exhaustive method. In 5 folds cross-validation, the original training set is randomly 

divided into 5 subsets. The size of each subset is nearly equal. Of these 5 subsets, there is one 

subset left as the validation set and the remaining 4 subsets are used as the sub-training set. 

This process is repeated 5 times to ensure each subset is used once exactly. Depending on the 

size of the dataset, sometimes, to improve the accuracy of validation, 10 folds cross-validation 

also can be used70. This kind of method is generally called p fold cross validation. p is an 

integer. When p is equal to the size of the dataset, then p folds exactly becomes exactly same 

as leave-one-out validation. In addition, depending on the specific situation, the p folds cross-

validation can be repeated for several rounds. 

 

 

Figure 2.2: Principle of 5 folds cross-validation. For some situations, this process can be 
repeated for several rounds. Original figure from 
stats.stackexchange.com/questions/1826/cross-validation-in-plain-english.  
 

2.4 Quality measures  

To assess the prediction performance of a model, model quality measures need to be defined. 

Quality measures not only assess the prediction ability of the model but also allow us to 

compare other competitive models. In this study, the predicted tasks are binary classification 

problems. For assessing a binary problem, 4 values must be defined as a premise. They are TP, 

TN, FP and FN. TP is the number of true positive samples, TN is the number of true negative 

samples, FP is the number of false positive samples and FN is the number of false negative 

samples. Positive and negative are two classification signs, respectively. Those four values 



 

 20 

construct a 2×2 confusion matrix to evaluate machine learning prediction performance as 

shown on Figure 2.3.  

 

 

Figure 2.3: The confusion matrix used for measuring the prediction quality. 

 
The most common equation for assessing models is accuracy. It can be simply understood as 

the proportion of correct predictions. The equation for accuracy is shown as Equation (2.1). 

TP TN
accuracy

TP TN FP FN




  
                                            (2.1) 

However, the accuracy is not useful when the sizes of the two classes are very different. For 

example, if the correction rate of the positive set is much better than negative set and the 

positive set has a larger number of samples, the model also can give high accuracy, however, 

it does not mean that the model truly gives a high performance. To fairly evaluate a model, 

Brain W. Mattews introduced a method71 to assess prediction performance which takes into 

account the ratio of true and false positive samples and negative samples. When the sizes of 

two classes are very different, it can also be regarded as a balanced measure. The method was 

named the Matthews Correlation Coefficient (MCC).  

* *

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN




   
                        (2.2) 

In addition, sensitivity and specificity
72 are also employed to evaluate the prediction accuracy 

of a positive and a negative set, respectively. sensitivity measures the proportion of positive 

samples that are correctly predicted while specificity measures the proportion of negative 

samples that are correctly predicted. Both indications are mathematically expressed as:  

TP
sensitivity

TP FN



                                                             (2.3) 

TN
specificity

TN FP



                                                              (2.4) 

The evaluation of model needs to consider a trade-off between these measures.  
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2.5 Normalization 

In our research, the features of molecular data are described by different physicochemical 

properties, theoretical molecular properties and topological fingerprints. For solving the tasks 

of machine learning, molecular descriptors which are of different types need to be normalized. 

Thus, the range of different feature values possibly falls into a large scale so that in a 

classification task, the features with initially larger ranges outweigh features with initially 

smaller ranges. The function of normalization is to avoid this situation. There are various 

normalization methods. In this study, the Z-score was employed to normalize the features. 

The Z-score is also called as standard-score. The Z-score is expressed as Equation (2.5).  

* ( )
( )

training

d d

d training

d

x n x
x n




                                         (2.5) 

Where 
training

d
x  represents the average value of d

th feature in all samples of training set. 

training

d
  denotes the standard deviation of dth feature in all samples of training set. ( )

d
x n  is the 

original value of dth feature in nth sample.  

1

1 ( )

training

training

N
training

d d

n
N

x x n


                                  (2.6) 

1
22( )

trainingtraining

d d dx x                                    (2.7) 

Here, the training
N  means the number of samples in the training set.  

The absolute value of *( )
d

x n , Equation (2.5), represents the distance between the original 

value and the population mean in units of the standard deviation. When the original value, 

xd(n), is below (above) the population mean, the Z-score value is negative (positive).  

In the Kaggle competition project, the dataset had been pre-processed before downloading. 

The normalization method for that is the min-max method which brings all original values 

into the range between 0 and 1. This method performs a linear transformation on the original 

data. Equation (2.8) is the min-max normalization. 

min

max min
* ( )
( )

d

d

d

d

d

x n
x n

x

x x




  ,                                                  (2.8) 

Where max
dx  is the maximum and min

dx  the minimum value of dth feature in the dataset. 

 



 

 22 

2.6 Linear classifier 

In my doctoral thesis, a linear classifier is the key to built prediction models for drug 

classification. The linear classifier is a statistical method in the machine learning field whose 

basic classification decision depends on the value of linear combinations of features which 

numerically characterize samples in a mathematical space. In this mathematical space, a given 

dataset involves N samples with D dimensions (features) for each sample. The samples of the 

dataset are linearly separable by a (D-1)-dimensional hyperplane. In the frame of Bayes 

prediction scheme, the linear classifier is a suitable algorithm for operating classification tasks 

for which the samples belonging to different classes have equal probability distribution73,74.  

2.6.1 Linear discriminate function  

A given dataset including N samples can be represented by Equation (2.9).  

( , ),  =1,2,3,....N.
n n

x y n                                              (2.9) 

In our cases, a sample represents a compound. The nth compound can be denoted as ⃑ݔ ∈ ℝ�. 

Each compound is described by D features.  1, 1
n

y     is the class label that represents for 

instance the biological activity of the compound (i.e. binding with a protein or not). For a 

binary classification problem, 
n

y  can be +1 and -1 denoting positive and negative compounds, 

respectively. Based on the above definitions, a linear discriminate function is given by 

Equation (2.10). It is also called scoring function.  �ሺ⃑ݔ�; ,ݓ⃑⃑⃑  �ሻ = �ݓ⃑⃑⃑ ∙ �ݔ⃑  + �                                         (2.10) 

where ⃑ݔ ∈ ℝ�  is the weight vector and b is the bias74. They involve the parameters to be 

optimized, using an objective function. The dot “•” in the above equation denotes the inner 

(scalar or dot) product between two vectors which is defined by Equation (2.11). 

cos( )t

n n
w x w x   ,                                        (2.11) 

where w and n
x  denote the Euclidean norm of w  and n

x , respectively and ș denotes the 

angle between w and n
x . If ș is smaller (larger) than 90 degrees, the value of the dot product 

is positive (negative). If the dot product is 0, it means the ș is 90 degrees, which represents w

is perpendicular to x .  
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Figure 2.4: The inner product between w  and x  is defined by Eq. 2.10. Left side: If ș is less 
than 90 degrees, the value of the inner product is positive. As shown here, both the red arrow 
and the green arrow are in the same direction. Right side, if ș is less than 90 degrees, the 
value of the inner product is negative. Both arrows are in different direction. Figure source: 
Özgür Demir, Classification of Drug Molecules, Master thesis, Freie Universität Berlin. 2007. 
 

The calculation of inner product is done by summing element-wise the products of the 

components of the two vectors as defined by Equation (2.12). 

1

( ) ( )
D

t

n n

d

w x w d x d


    ,                                   (2.12) 

where n denotes the n
th compound of the dataset, D denotes the number of features and d 

denotes the dth feature.  

To separate objects in a multi-dimensional space, a hyperplane can be used, defined by 

( ; , )
n

f x w b  = 0 and t

n
w x  = -b. The orientation of the hyperplane is determined by the vector 

t
w  being the hyperplane normal vector. The hyperplane divides the multi-dimensional feature 

space, ℝ� , into two sub-spaces, ℝଵ�  and ℝଶ� . The distance between a vector n
x  and the 

hyperplane is given by Equation (2.13). 

( ; , )n

n

f x w b
r

w
                                                   (2.13) 

Based on Equation (2.13), the distance between the origin of the coordinate system and the 

hyperplane is given by Equation (2.14).  

ori

b
r

w
                                                                  (2.14) 

For a binary classification problem, the compound vector 
n

x  can be classified into the 

positive set if ( ; , )
n

f x w b  > 0, while it is classified to belong to the negative set if 

( ; , )
i

f x w b  < 0. In the special case, where ( ; , )
n

f x w b is exactly zero the compound is 
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assigned to both classes. In other words, the compound is exactly on the hyperplane. The 

decision rule can be expressed as Equation (2.15).  

0    if belongs to the positive set

( ( ; , )) 0    if belongs to the negative set

= 0    if belongs to both sets

n

n n

n

x

sign f x w b x

x






 .                        (2.15) 

For convenience, we simplify Equation (2.10) to include the bias parameter b into the vector 

w . In order to achieve this purpose, the number of dimensions weight the vector w  and the 

feature vector x  are increased by one component according to Equation 2.16 and 2.17.  
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                                                (2.17) 

Based on Equation (2.16) and (2.17), the Equation (2.10) can be simplified yielding Equation 

2.18.  

( ; , ) ( ; )t t

n n n n
f x w b w x b f x w w x                           (2.18) 

Through training with the given training set, the both parameters can be determined and then 

unknown compounds can be predicted with Equation (2.10). However, to find these optimal 

parameters, we need to define an objective function. The next section will describe how to 

obtain the optimal parameters based on a given training set.  
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Figure 2.5: ( ; , )

i
f x w b  = 0 describes a hyperplane with normal vector w and bias b. In a 

binary classification, the hyperplane separates multi-dimensional space into 2 sub-spaces. 
Blue spots belong to class 2 and red spots belong to class 1.  
 

2.6.2 Training 

To determine the parameter vector w , the model needs to be trained. For this purpose all 

compounds available in the training set (see Chapter 2.1) are considered. The linear classifier 

corresponds to supervised learning, since the compounds in the training set have known class 

labels (yn = 1 or -1). Theoretically speaking, the basic assumption of the training process is 

that a new unknown compound should be from the same probability distribution as the 

training set so that the new compound can be classified correctly.  

For a linear classifier, the aim of the training phase is based on the compounds with known 

activity to define a hyperplane, which can separate the training set into a positive and a 

negative sample sub-space. For a new compound the unknown activity is predicted according 

to which sub-space it falls into. Hence, compounds with unknown activity can be predicted 

based on the hyperplane by the following rules: 

   y 1 if ( ; ) 0

   y 1 if ( ; ) 0
n n

n n

f x w

f x w

 

  
                                           (2.19) 

or can be written as 
( ) 0,   for n 1...( ; )

n n
sign Ny f x w   .                                   (2.20) 

To obtain the optimal parameter vector it is necessary to minimize the training error, which 

can be defined as Equation (2.21). 
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1

1
( ; )

N

n n

n

Error f x w y
N 

                                        (2.21)  

However, this simple condition may not yield a unique solution. In other words, more than 

one hyperplane can meet this criterion. The possible solutions form a solution set. This 

problem may severely influence the prediction results on the test set because usually, the 

distribution of compounds in test set should be similar to the training set but not completely 

identical. A hyperplane randomly picked up from the solution set, which can correctly 

separate samples in the training set, possibly fails to properly classify compounds in a test set. 

Therefore, a proper hyperplane needs to be closer to the middle position of the solution set. 

An optimal hyperplane is expected to have a good generality so that it is capable of correctly 

classifying compounds with unknown activity. To achieve this purpose, more constraints need 

to be added to restrict the solution set.  

A positive parameter, m is introduced to restrict the distance from a compound to the 

hyperplane in the space. This parameter requires the hyperplane not only to correctly classify 

the compounds in the training set but it also requests that the compound has a minimum 

distance to hyperplane, yielding a more rigorous training concept. In the following, Equation 

(2.22) and (2.23) contain this margin condition to restrict the number of possible hyperplanes, 

by redefining Equation (2.19) and (2.20).  

   y 1 if ( ; )

   y 1 if ( ; )
n n n

n n n

f x w m

f x w m

 

   
                                               (2.22) 

or it can be written as  
( ) ,   for n 1...;( )

n nn m Nsign x wy f   .                              (2.23) 

With this new condition, the distance from the hyperplane to compounds in the training set 

needs to be at least /
n

m w . Since one can maximize /
n

m w  with a minimum value for w , 

it means we only need to search an optimal w , i.e. to minimize w . Therefore, without loss 

of generality of the model, the parameter mn can be set to 1 for all compounds. 
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Figure 2.6: For the training set (right side), both hyperplanes 1 and 2 are in the solution set, 
which can properly separate class 1 and 2. However, on the test set (left side) the hyperplane 1 
cannot perfectly separate class 1 and 2, but hyperplane 2 still can properly separate the test set. 
Evidently, hyperplane 1 is closer to the points of the two classes, leading to a worse generality 
than hyperplane 2.  
 

2.6.3 Objective function  

As mentioned above, when seeking an optimal parameter vector w , an objective function 

need to be constructed. Minimizing the objective function one can gain a solution to the set of 

linear inequalities (Equation 2.23). Usually, a gradient descent algorithm is utilized to 

minimize the objective function. For my projects, rProp, a gradient descent algorithm is 

employed to solve the objective function (see Chapter 2.7 for details this algorithm). Here, it 

needs to be noted that the easiest choice for the objective function would consist of 

minimizing the number of misclassified compounds. However, this function is a piecewise 

constant where a gradient descent algorithm would fail to solve it. Therefore, before 

performing gradient descent, we reset Equation 2.23 to Equation 2.24, which makes the 

distance from a given compound to the hyperplane exactly equal to /m w .  

( ) ,   for n 1...;( )
nn m Nsign x wy f                                                (2.24) 

In most cases, a solution for Equation 2.24 is nonexistent. Hence, the optimal parameter 

vector w , needs to be approximated by introducing a loss function. 

 

2.6.3.1 Loss function  

The loss function measures the difference between  ( ; )n nsign wy f x  and mn. Here, when 

mn = m if yn = 1 and mn = -m if yn = -1. Minimizing loss function can approximate the 
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solution as good as possible. For the binary classification task, an easy and natural selection 

for a loss function is the 0-1 loss function which would return the value of 0 if a test 

compound is predicted correctly while returning 1 for a wrong classification. However, 0-1 

loss function is not a continuous function and therefore not differentiable. Therefore, a 

continuous, convex loss function is used replacing the 0-1 loss function. In the following, 

several tractable and common loss functions are listed:  

1. Mean-squared error (MSE) 

2( ; ) ( ; )( , ) ( )
n nn nf x w f x wg m m                                       (2.25) 

2. Hinge loss  
( ; ) ( ; )( , ) max(0,  1 )

n nn nf x w f x wg m m                          (2.26) 

3. One sided log Lorentzien (1slL) 

2 +1
( ; )

else

ln( ( ; ) )    ,if  ( ) 0
( , )

0                              ,   
n

n n ni
nf x w

f x w m f x m
g m





                  (2.27) 

4. binomial negative log-likelihood (Bnll) 

 1

( , , )
( ; )( , ) ln 1.0 exp

n
n n

n q f w b m
f x wg m  

  
  ……………………(2.28) 

Those loss functions listed above are all continuous function which can be used for obtaining 

the optimal solution with gradient descent algorithm. During the training phase, the sum of 

loss function values for all training compounds constitute objective function. Take MSE as an 

example, the objective function would be as follows:  

2

0

( ) ( ( ; ) )
N

n n

n

L w f x w m


                                                   (2.29) 

The minimization can be performed using gradient descent algorithm for which the gradient is 

given by differential form (see Equation (2.30)).  

0

( )
2( )

N

n n n

n

L w
w x m x

w 


  

                                                  (2.30) 

Then the resulting optimal solution w  can be used to predict the property of compounds with 

unknown activity by Equation (2.10).  

 

2.7 Gradient descent algorithm 

The gradient descent algorithm can be used to minimize the objective function yielding 

optimal model parameters w . The gradient descent algorithm works iteratively. Usually, a 

simple gradient starts with arbitrary initial weight values 1w . The gradient descent algorithm 

intrinsically has a predetermined step size. For jth iteration, 
j

w  is obtained by moving a step in 
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direction of the negative gradient vector. The process of this iteration does not stop until the 

length of the step falls below a certain threshold. Alternatively, the stop condition of gradient 

descent can be defined as the condition that the absolute difference between two consecutive 

values of the objective function falls below a given threshold. This can be used as a 

convergence criterion. The selection of the convergence criterion is important, and needs to be 

made carefully. A larger value easily leads to a poor prediction whereas a small threshold 

value possibly causes the calculation not to be convergent. On the other hand, the gradient 

descent algorithm also needs to consider setting the initial step size. If the initial step size is 

chosen too small the convergence will take too much time. If the step size chosen is too large, 

the algorithm will oscillate around the minimum. Currently, there are several efforts to solve 

this problem in the basic gradient descent algorithm.  

In my doctoral work, an excellent gradient descent algorithm, resilient propagation (Rprop)75 

was employed to operate gradient descent. Rprop It is a very fast method to run gradient 

descent. There are three main improvements over basic gradient descent algorithms. (1) 

During the optimization process, the step size is not fixed. Rather, it is updated, referring to 

the result of the last iteration. If the projection of gradient vectors of subsequent iterations is 

negative, it means that the minimum has been traversed in the last step. Thus, the step size is 

decreased by a given factor, Ș-. On the other hand, if the projection is positive, the step size is 

increased by another factor, Ș+. (2) The change of step size for each component is calculated 

independently. This enables the algorithm to find the minimum more efficiently.  

 

 
Figure 2.7: Illustration of gradient descent on a series of iteration steps. If L(Xn) is an 
objective function with a number of features, then L(X0) ≥ L(X1) ≥ L(X2) ≥ L(X3) ≥ L(X4). 
Original figure from Wikipedia.  
 



 

 30 

(3) Only the direction of the gradient is taken into account. This prevents the algorithm from 

slowing down as the step size gets smaller, since the gradient gets smaller when approaching 

the minimum. The iteration rules of the rProp algorithm can be formally described as follows: 

1 1

1
max

1 1
min

( ),  with 0.001

min( , ) if  0

max( , ) if  0  

        else

j j j j

d d d d d

j j j

d d d

j j j j

n d d d

j

d

sign Ew w

E E

E E





 

 

  





 

  

 

 

 

  

   


   



                        (2.31) 

where j

d
w  denotes the dth component (weight) of the rProp optimized gradient at the jth step of 

the optimization process. j

d
  denotes the step size for the d

th component (weight) at the j
th 

step of the optimization process. max  and min  represent the upper and lower step size limits, 

respectively. j

d
E is the dth component of the gradient of the objective function at the jth step. 

The parameters used in rProp are given empirically: max  = 50, min  = 10-6,    = 0.5 and 

  = 1.2.  

 

 
Figure 2.8: A polynomial is employed to fit the ten blue points. The red curve is the fitting 
model of the polynomial. M is the degree of the polynomial. For M = 9, the curve becomes 
very complex. The curve fits the given blue points perfectly, but yields a poor approximation 
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between the points. This is a typical overfitting phenomenon. When M = 0 & 1, the red curve 
does not fit the blue points appropriately. When M=3, the red curve may generalize better to 
more points drawn from the underlying unknown probability distribution. Green curve is the 

perfect fitting curve. Figure source: Christopher M. Bishop, Pattern Recognition and Machine 
Learning. Springer, 2006.  
 

2.8 Regularization 

In machine learning, the process of training is to fit a model to a given training set. This 

training set is expected to be representative enough for the probability distribution of the 

targets to be predicted so that the test set is covered by the sample space. However, if the 

model overreacts to minor fluctuations in the training set, overfitting could occur. Overfitting 

means the model specializes for the training set so perfectly that it looses the ability to 

generalize. As a consequence, the prediction performance on a new dataset, or say test set is 

poor because new unknown compounds can be similar but not identical with compounds in 

the training set. To improve the robustness and generalization of the prediction model, 

overfitting needs to be avoided. As demonstrated by Figure 2.8, a polynomial algorithm is 

used as an example to demonstrate overfitting.  

Regularization is a method to reduce overfitting in order to improve the generalization of a 

prediction model. For this purpose an additional term is added to the objective function. 

During the training phase, the constraints (see Equation (2.22) & (2.23)) are relaxed allowing 

for more compounds in training set to be misclassified. Thus, regularization term penalizes 

unnecessary complexity of the model to improve the generality of the model. In the studies of 

my doctoral projects, two types of regularization were employed. These are Lasso 

regularization (L1)57 and ridge regression regularization (L2)78. 

 

2.8.1 Lasso Regularization 

Lasso is a commonly used regularization57, also called L1 regularization. During modeling, 

Lasso regularization adds the sum of the absolute values of features to the objective function. 

Lasso has the inherent linear dependence on input features of the model so that it disables 

irrelevant features leading to sparser sets of features. Due to the linear form of Lasso 

regularization, shown as Equation (2.32), the weights of many features contributing weakly to 

prediction are rigorously set to zero. Thereby Lasso regularization can be an embedded 

method, efficiently operating feature selection. The regularization parameter λ1 is a multiplier 

to determine the degree of regularization. The larger λ1 value is, the more features whose 
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weights are set to zero. Usually, before modeling, several λ1 would be given manually, using a 

validation dataset to determine the optimal value.  

 1  11
1

N

d

d

w w 


   ,                                            (2.32) 

Where wd  represents the weight value of the dth feature and N is the number of features.  

Lasso regularization is not differentiable whenever weights of features are set to zero so that a 

special solver is required to solve the objective function embedded with the Lasso 

regularization term. Currently, several solvers76-78 are available to minimize the objective 

function with Lasso regularization term. In my project, Orthant-Wise Limited-memory Quasi-

Newton algorithm (OWL-QN), developed by Andrew et al.
77 was employed to solve L1 

regularization, which has been implemented in DemPred software package79. The OWL-QN 

algorithm utilizes a condition that for a given orthant (half-space) of the function space, a 

differentiable objective function added with L1 term is again differentiable.  

2.8.2 Ridge regression Regularization 

Ridge regression regularization is closely related to Lasso regularization78, which is also used 

to reduce overfitting during modeling. This regularization is also called L2 regularization. In 

contrast to Lasso regularization, Ridge regression is milder. L2 adds the sum of square of 

model parameters to the objective function (see Equation (2.33)).  

2 2

 2  22
1

( )
N

d

d

w w 


   ,                                         (2.33) 

where wd represents the weight value of the dth feature and N the number of features. 

Since the quadratic form of Ridge regression regularization cannot set the weights of features 

rigorously to zero during optimization, ridge regression regularization is not capable of 

reducing the number of features directly. However, with increasing λ2, the weights of 

irrelevant or redundant features are decreased. In other words, the influence of these features 

is diminished. λ2 can be determined with a validation dataset. In my projects, the L1 and L2 

regularization cannot be optimized simultaneously. The objective function combined with the 

L2 regularization term is minimized with the Rprop algorithm75,76.  

 

2.9 DemPred 

Previously, our group developed a machine learning software package named DemPred79. The 

aim of this software is to help people understand underlying biochemical processes as well as 

speed up the detection of new active drug compounds for research targets.  
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The implementation of state-of-the-art prediction methods requires a great deal of expertise 

and time. Hence, a device with high performance yet easy to use is needed. DemPred was 

developed to satisfy this demand. In addition, DemPred can be extended to build own models 

for a particular prediction task.  

Currently, DemPred had been successfully applied to various tasks such as prediction of 

peptides binding to the major histocompatibility complex II (MHC II)80, prediction of human 

volume of distribution and clearance81 and the prediction of protein decoys82. In most cases, 

the generated model yields results that were as good as or even better than those of state-of-

the-art prediction techniques at the time of development employed by other groups. DemPred 

is an object-oriented software package. It can be used to deal with various biological problems. 

Depending on the problem that needs to be solved, a specific object function is predefined and 

implemented for handling.  

The objective function of DemPred is given as Equation. (2.34). 
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1
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
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
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
 


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







                   (2.34) 

where ( ( , ), )
n n

g f x w y  represents the loss function and yn is the biological response value. The 

additional term || ||p

p p
w  is a regularization term that is used to reduce overfitting. p = 1 

or 2 denotes the L1 or L2 regularization, respectively. N is the total number of compounds in 

the training set. 

 

2.10 DemFeature 

DemFeature is also an in silico model, which is further developed based on DemPred. The 

core idea of DemFeature is to constitute a specific training subset for a specific test compound. 

Certainly, the source of the training subset is from the original training set. In the training 

phase, this method ignores compounds of the training set that are not sufficiently similar or 

dissimilar to the compound to be classified. Based on this strategy, ideally, the considered 

sample can be more accurately interpreted based on the feature values.  

The workflow of DemFeature is illustrated in Figure 2.9. Step 1: A compound k to be 

predicted is randomly picked up from the test set; Step 2: This picked compound k needs to be 

measured for similarity with all compounds in training set; Step 3: The similarity value of 

compound k with compounds of the training subset is the criterion to compose a training 
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subset for compound k; Step 4: The selected training subset is used to construct a specific 

model to predict molecule k. Thus, a specific prediction model is designed to each molecule 

in the test set.  

 

 

Figure 2.9: Basic workflow of DemFeature. DemFeature-1 and -2 have the same work model. 
The difference between them is the method for constituting a training subset. 
 

For the definition of similarity, in DemFeature, a new parameter s(k, n) is introduced, which 

accounts for the similarity between the sample k to be predicted and a compound n in training 

set. Before calculating s(k, n), the participating feature vectors need to be normalized 

following Equation. 2.35. 

ˆ /
n n n n

x x x x  ,                                              (2.35) 

where 
n

x  is the feature vector of the compound n in training set. The compound k in a test set 

also needs to be normalized in this way. With the normalized feature vectors the similarity s(k, 

n) is defined by Equation. 2.36.  

ˆ ˆ( , )     ( , ) [ 1.0,1.0]nkx xs k n s k n                                   (2.36) 

( , )s k n  measures the similarity between the compounds k and n. The range of this value is 

between -1 and 1. The closer this value is to 1.0, the more similar both compounds are. 

 

2.10.1 DemFeature-1 

The definition of the similarity between two compounds can determine how to select a 

training subset to predict a compound k in test set. However, the s(k, n)  itself cannot decide 

the size of the training subset. The aim of DemFeature is to select a training subset according 

to the compound k to be predicted. If the size of training subset is too large, relatively 

dissimilar compounds could influence the correctness of prediction and also increase CPU run 
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time. On the other hand, if the size of the training subset is too small, the diversity of training 

set may be so low that prediction performance goes down. Therefore, for DemFeature-1, the 

parameters cutoff
  [-1, +1] are given to control the size of the training subset. For example, 

if s(k, n) > cutoff = -0.2, then only the compounds n in the training set fulfilling s(k, n) > =-

0.2, would be selected to predict compound k.  

Based on the objective function of DemPred, a new objective function ( )
k k

L w  of 

DemFeature-1 is defined as below: 
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where 
CUT

N


 and 
CUT

N


 represent the size of the training positive subset and negative subset, 

respectively. W 
+ and W 

- are weights for controlling the balance between the positive and 

negative set. s(k, n)  is given by absolute value to multiply the loss function. ( ( , ), )
n n

g f x w y  

represents the loss function and yn the biological response value. In this objective function 

( )
k

L w , the regularization term is the ridge regression regularization. The rProp algorithm is 

utilized to minimize the objective function to obtain the parameters,
k

w  for the compound k to 

be predicted. 

 

2.10.2 DemFeature-2 

Although DemFeature-1 introduces cutoff parameters to govern the size of the training subset 

of each compound to be predicted, it still cannot rigorously fix the size of the training subset. 

For example, if there is a training set containing 3000 compounds, cutoff = 0.0 could select 

1500 compounds as the training subset for the compound k while compound k+1 only has 300 

compounds as a training subset. Thus, for the dataset having a huge number of compounds 

with a large number of features, it probably costs too much CPU run time. To solve this 

problem, DemFeature-2 was designed. 

Based on the similarity between the compound to be tested and the compounds in the training 

set, the idea of DemFeature-2 is to select the 4 small sets from the original training set to 

constitute an even more specialized training subset for each test compound. These 4 small 

training sets are: (1) most similar positive compounds set, (2) most similar negative 

compounds set, (3) most dissimilar positive compounds set and (4) most dissimilar negative 
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compounds set. The number of compounds in those sets is given manually. It means the 

number of training subset is fixed. Thus, the size of training subsets can be restricted to 

control the CPU run time for modeling more precise. Moreover, this even simpler model can 

be easily interpreted to understand the relations between compounds and biological response.  

As described above, the objective function of DemFeature-2 includes four parts, namely, the 

most similar positive set, the most similar negative set, the most dissimilar positive set and the 

most dissimilar negative set. The Equation (2.38) is the objective function of DemFeature-2 

including an L2 regularization term. 
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where for a training subset of the compound k to be predicted, simN

 , dissN
 , simN

  and dissN
  

respectively represent the number of samples in the similar positive set, the similar negative 

set, the dissimilar positive set and the dissimilar negative set, respectively. 
sim

W
 , 

sim
W

 , 
sim

W
  

and 
sim

W
  indicate the weights of each part for controlling the balance among the sets. 

s(k, n)  is given by absolute value to multiply loss function. ( ( , ), )
n n

g f x w y  represents the 

loss function and yn the response value.  

 

2.11 Quadratic features 

The principle of quadratic features is to map the current model from a lower dimensional into 

a higher dimensional feature space by increasing the number of features. Quadratic features 

can be produced by using the original (linear) features to generate products of important 
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quadratic features and add them to the linear features. The important features set is actually a 

subset of linear features. The importance of features refers to the absolute values of the 

weights, w , which can be obtained by solving the objective function of DemPred (see 

Equation (2.34)). The larger the absolute values of the weights are, the more important are the 

corresponding features. Since the method of using the important features to generate quadratic 

features can produce a huge number of features, the number of the important features needs to 

be chosen carefully referring to the number of linear features. If the number of quadratic 

features is too large, it will take too much CPU time to train the prediction model. For the nth 

compound in the dataset, the notation of the quadratic feature vector qf  is given by Equation 

(2.40).  

1 1 1 2 1 1 2 1 22 2 2( , ,...... , (2), ,...... , ....  , ,...... )I I

q i i i i i i i i i
I N N Nf f f f f f f f f f f f f f f f f ff               (2.40) 

where I denotes the number of important features and N is the total number of features in the 

dataset. Note that the values of the features depend on the molecule considered. In this thesis, 

quadratic features were combined with the linear features together to build the prediction 

model. 

 

2.12 Comparison of the performance between two models  

When several approaches are employed to solve a classification task, those approaches may 

show different results. Although statistical performance metrics such as MCC, accuracy, can 

be used to compare the differences among approaches, it may be impossible to reflect the 

statistical significance of those differences with those performance metrics. Therefore, to 

properly evaluate the difference between two approaches in a binary classification, the p-

value can be employed as a parameter to compare two prediction schemes to tell how much 

they differ83.  

Suppose predicted results generated by model A and B are based on the same dataset. 

Comparing both results to the correct response value, there are four situations shown in Figure 

2.10.  
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model A correct 

model B correct 

a 

model A correct 

model B   wrong 

b 

model A   wrong 

model B correct 

c 

model A   wrong 

model B   wrong 

d 
 
Figure 2.10: Comparing prediction results of two models (A and B) with the correct value, 
there are four possible outcomes. a, b, c and d represent the count of four situations. 
 

As shown above, if the probabilities that the models disagree (one model is correct the other 

wrong) are equal (pb = pc), both models (A and B) perform equally well and have the same 

accuracy. This is the null hypothesis (H0: pb = pc), i.e. the two models are equivalent. We like 

to find out how much the prediction results of the two models need to differ that we can state 

that the two models are inequivalent. The McNemar's test84 was employed to test the 

difference of the distributions in this research defined by Equation (2.41).  

2
2 ( 1)

( )

b c

b c


 



                                                 (2.41) 

Based on b and c, the McNemar's test can output a 2 value, which can be compared with the 

value from the 2 distribution that corresponds to a specific significance level. Alternatively, 

the binominal distribution83 (see Equation (2.42)) can be used to calculate the p-value based 

on b and c. However, this p-value needs to be multiplied by 2 because a 2-sided test is used.  
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                                      (2.42) 

If the p-value is very large, the two models are not significantly different. Conversely, the 

models are significantly different if the p-value is very small. Usually, if more than 2 models 

need to be compared by p-value, a matrix of p-values can be prepared to compare them. 

 

2.13 Confidence measure 

Measuring the confidence of the prediction performance of a model is a way to assess the 

reliability. In this research, we used a method to calculate confidence corresponding to 

probability of correctness of outcome, which is employed to solve binary classification tasks.  

Our scoring function used in the study is the linear scoring function, 
n

y w x b   , which is 

the scoring function of DemPred and is also used in our newly developed methods, 

DemFeature-1&-2. After the model parameters w  are determined, the scoring function can be 

used to predict unknown samples. In the training y adopts the idealized values +1 or -1 if the 
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considered compound belongs to the positive or negative set, respectively. Hence, if y is 

above 0.0, the compound is predicted to belong to the positive set, while for y below 0.0, the 

compound should belong to the negative set. The probability measures that a compound 

belongs to the positive or negative set is expressed as Equation (2.43).  

1
max{0, (1 )}

2
p y                                                   (2.43) 

However, the actual value of y differs from +1 or -1. As long as y is in the interval[-1,+1] the 

probabilities are properly normalized: 1p p   . If the value y is outside of the interval, we 

normalize the probabilities, as follows:  

ˆ p
p

p p




 




                                                     (2.44) 

These normalized probabilities can be used to define a confidence value, Equation (2.45):  

 
 ˆ2 1confidence p    ,                                             (2.45)  

which provides the information of how probable a prediction is.  
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3 Applications 

This chapter mainly describes the results obtained with our methods. It consists of two 

projects: This first predicts the datasets of the Kaggle™53 competition and the second predicts 

the dataset of phospholipidosis54. The datasets of the Kaggle™ competition were used by 

many professional persons and groups so that it can be used to obtain realistic evaluations of 

the performances of our models. All datasets used in this competition can be downloaded 

from http://www.kaggle.com/c/bioresponse/data. Alternatively, phospholipidosis, a side effect 

caused by taking medicine, has elicited an increasing interest within the drug discovery 

community recently. This dataset will be used to verify whether our models can be applied in 

the early stage of drug development as a mean of reducing costs. For each project, both 

DemPred and DemFeature are used to predict the datasets. In addition, we used other models 

to compare the prediction performances with DemPred and DemFeature. 

 

3.1 Project 1: Kaggle™ competition  

In 2012, Boehringer Ingelheim Inc. launched a competition53 on the Kaggle™, that is an 

online data mining platform on which people can submit datasets to launch a competition for 

obtaining the best model from participants all over the world. The aim of this competition is 

to investigate the utility of computational crowdsourcing in generating highly predictive 

models for use within the pharmaceutical industry. It is believed that the competitive 

dynamics of participants is more effective in driving optimized models than developing the 

powerful prediction models based on an objective measure of performance. The data provided 

for this contest were anonymized using not the clear names of features. Furthermore during 

the competition the specific property to be predicted was not revealed to participants until the 

end of the competition, in order to ensure a truly blind contest. In other words, these 

anonymous data were provided during the competition for the purpose of mitigating any 

possible influence from a pharmic expertise bias so as to guarantee a fair contest of the 

methods applied by the participants. Additionally, this competition also helps not only the 

organizer but also researchers in computer aided drug development to know the relations 

between machine learning skills and field expertise.  

 

http://www.kaggle.com/c/bioresponse/data
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Figure 3.1: Two paths to construct a model to predict the target of interest. The lower path is 
the traditional way of building models by experts. The upper path is the crowd sourcing 
approach, which identifies the best model through competition. Original figure is taken from 
the article of Bentzien et al

53.  
 

In this Kaggle™ competition, the organizers (Boehringer Ingelheim Inc., a pharmaceutical 

company) have chosen a biologically relevant target based on prior articles that describe the 

provenance of this biological data and many prior prediction models that were built and 

produced results. The reference to the prior biological prediction models is to enable a 

realistic expectation setting. 

The purpose of using the dataset of the Kaggle™ competition to design the algorithm in this 

research is helpful for us to evaluate our models from a relatively objective perspective. 

However, it is inevitable that in our studies, the most successful model was selected through a 

comparison of the prediction performances of the different models while being fully aware of 

the results. In spite of the fact that we were trying to train our prediction model in a 

competition scenario, our prediction is not fully unbiased, since we know the final results 

while the participants of the Kaggle™ competition did not knew them before the competition 

terminated. Therefore, we do not claim that our prediction model is the truly better than the 

best models in the Kaggle™ competition.  
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3.1.1 Dataset 

The dataset used in the Kaggle™ competition is the benchmark dataset for in silico prediction 

of Ames mutagenicity, as described by Hansen et al.
85. The Ames test is the bacterial reverse 

mutation assay, which is used to detect mutagenicity in vitro. This method is an efficient and 

early alert mechanism of potential genotoxicity. Within drug discovery, genotoxicity is an 

important global property of high pharmaceutical relevance. On the other hand, this curated 

dataset is of high quality and is well known within the academic communities and many 

expertise investigations86 have been done on this dataset, which is convenient for obtaining a 

direct comparison with expertise methods.  

The original benchmark dataset of Ames comprises 6500 compounds. The dataset used in the 

Kaggle™ competition is an updated version consisting of 6512 compounds. The original 

compounds are represented as SMILES string. For calculating the descriptors of those 

compounds, they were converted into 3D molecules by the competition organizers, out of 

which 9 compounds failed to be converted due to the software limitations. A pipeline plot 

protocol62 was employed to filter the remaining 6503 molecules. This protocol removed 251 

compounds, including: 1. compounds with non-zero formal charge. 2. Molecules with more 

than 99 atoms. 3. compounds with undesirable atoms of types D, B, P, Al, Ga, Si, Ge, Sn, As, 

Sb, Se, Te, At, He, Ne, Ar, Kr, Xe, Rn. Finally, after this screening, the remaining 6252 

compounds comprised the dataset of the competition of which 3401 compounds were active 

(positive compounds) in Ames test while the rest of the 2851 compounds were inactive in the 

Ames test (negative compounds). The ratio of the positive set to the negative set is 1: 1.19, 

which is considered as a balanced dataset. In the competition, this dataset was randomly 

divided into three parts: training set, public test set and private test set (Table 3.1). During the 

run of the competition, all participants could only access the training and public test set.  

 

Table 3.1: the datasets used in the Kaggle™ competition. 

 
# compd. whole 

dataset 

#compd. 

pos. 
#compd. neg. 

the ratio pos. & 

neg. 

training set 3751 2034 1717 1:1.18 
public test set 625 329 296 1:1.11 
private test set 1876 1038 838 1:1.24 

 
Six software packages were used to prepare descriptors for those compounds. As mentioned 

above, the real names of these descriptors were hidden to participants during the competition. 

Table 3.2 shows the molecular descriptors used in this dataset. According to the article of the 
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organizers53, they calculated a total of 5030 molecular descriptors. The absence of 

stereochemical information in the original dataset prevents that the 3-D molecular descriptors 

can be calculated. Moreover, the organizers also deleted 3253 molecular descriptors due to 

two reasons: 1. 2537 descriptors with low variance (≤0.01), which was calculated using the 

standard deviation over all compounds in the dataset, and 2. 716 descriptors showing high 

correlation (Caret high correlation filter >0.90)53. Finally all remaining 1776 features were 

normalized with the min-max method as defined by Equation (2.8) such that the feature 

values are in the interval [0, 1].  

 

Table 3.2: the molecular descriptors used in the Kaggle™ competition. 

descriptors 
class 

# descriptors # remaining descriptors 

MOE2D65 186 76 
MolConn-Z57 745 174 

clogP87 1 0 
CADDAP88 1920 696 

pipeline Pilot62 130 5 
daylight-FP89 2048 825 

total 5030 1776 
 

In addition to in silico molecular descriptors, the dataset also has a biological target to be 

predicted. For this target, +1 represent the positive property and -1 represent the negative 

property.  

In this research, in addition to applying DemPred (see Chapter 2.9), we developed a new 

algorithm (DemFeature) to perform predictions for this dataset because it provides a realistic 

up-to-date prediction scenario for drug classification and the predictions submitted in this 

contest from different professional persons and groups may come close to the theoretical 

limits of what can be achieved for this prediction task. Hence, it is very useful to evaluate our 

models with respect to this dataset.  

 

3.1.2 Results 

This section depicts the prediction results of DemPred, DemFeature-1 and DemFeature-2 to 

predict datasets of the Kaggle™ competition. These models were built with the training set of 

the Kaggle™ competition. In addition to linear features, quadratic features (see Chapter 2.11) 

were also used to build the DemPred model. All datasets were automatically normalized by Z-

score (Equation 2.5) in DemPred and DemFeature software packages. Moreover, in order to 
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evaluate the objectivity of these models, the results of ranked models of the Kaggle™ 

competition were also used as means of comparison with our methods. The results of these 

comparisons are also reported in this section. 

 

3.1.2.1 Prediction results of DemPred 

DemPred is an object-oriented prediction method developed by our group. For a detailed 

introduction of DemPred, refer to Chapter 2.9. In this study, The DemPred model was built 

with the training set of the Kaggle™ dataset, which includes 3651 compounds. Since an 

L1&L2 two-step90 method was employed to construct the DemPred model to predict CoEPrA 

tasks91 and achieved good prediction results, we also decide use this method to construct the 

DemPred model for the Kaggle™ dataset. It must be emphasized that the datasets in CoEPrA 

are typical biological datasets containing octo- and nona- peptides relevant to MHC class I 

binding, which play an important role in the immune response of mammals.  

As the procedure mentioned in the publication of Demir et al.90, DemPred combined with L1 

feature selection was used in the first stage to predict the private and public test set of the 

Kaggle™ competition. As the L1 approach is able to precisely set the weights of the weak 

features to zero, it is able to control overfitting of model by feature selection. After feature 

selection through L1, the L2 regularization was employed to deal with the remaining features. 

The L2 approach is a quadratic term that cannot set the weight of features to zero, which 

means that L2 would not cause disappearance of features. The strength of L1 & L2 depends 

on the weight parameter λ in Equation(2.34). Therefore, choosing the appropriate λ value is 

important to govern the L1 & L2 approaches. In this study, several λ values were considered 

including λ1∈ {0.002, 0.003, ..., 0.02, 0.021, 0.022, 0.024, 0.026, 0.028, 0.03, 0.035, 0.04, 

0.045 ,0.050}; λ2∈ {0.01,0.03,0.04, …, 0.2, 0.22, 0.25, 0.28, 0.3, …, 0.37, 0.4, 0.45, 0.5, 0.55, 

0.6, 0.65, 0.7, 0.75, 0.8}. Usually, the appropriate value of this parameter is determined by 

applying it to a validation set (see Chapter 2.1). As mentioned above, the public test set could 

be accessed by all participants during course of the competition. Therefore, in order to have 

the same conditions as all participants, the public test set was also used to optimize 

parameters. The process of optimization is the most CPU time demanding step. The larger the 

λ value used, the more CPU time is needed.  

In addition to linear features, quadratic features were also produced for the construction of the 

DemPred prediction model. In this study, the linear features are the original features of the 

Kaggle™ dataset. The quadratic features were produced based on the linear features. The 
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detailed descriptions of the quadratic features are presented in Chapter 2.11. The quadratic 

features are capable of mapping the dataset targeted onto a space of higher dimensions for 

classification.  

 

3.1.2.1.1 Linear features prediction results  

Choosing different loss functions (see Chapter 2.6.3.1) could have different effects on 

prediction results. In this research, we mainly used two loss functions in the construction of 

the DemPred model, namely, the Mean Squared Error (MSE) (Equation (2.25)) and one sided 

log-Lorentzian (1slL) (Equation (2.27)). Both loss functions were employed along with L1 or 

L2 terms to minimize the objective function. Table 3.3 shows MCC (Equation (2.2)) results of 

DemPred model with two different loss functions for the Kaggle™ dataset. To simulate the 

competition as closely as possible, the public test set was first used to optimize λ values. In 

addition, the λ values optimized by 10-cross validation using the training set are also used for 

comparison.  

As shown in Table 3.3, at the stage of L1 feature selection, it can be clearly seen that very 

small λ1 values have removed a large number of features. For the ability to delete features, the 

loss function 1slL makes L1 to display stronger effects than by using MSE. When the λ1 value 

is just 0.004, the 1slL can remove near 2/3 of the features, causing a decrease from 1776 to 

544 features. The prediction results of the private test set are better than of the public test set. 

Although the optimized λ values are based on the public test set, it does not lead to a 

measurable advantage for the prediction of the public test set to be better than that for the 

private test set. As clearly shown in Figure 3.2, the prediction performance of the private test 

set is always better than that of the public test set. This may be so, since the private test set 

was constructed to be easier predictable than the public test set53.  

Furthermore, at the second step, the L2 regularization was applied to the remaining features 

after L1 feature selection. However, this effectively does not improve the prediction 

performance. In fact, the prediction performance of DemPred built with MSE declines after 

regularization with the L2 approach. In addition, as evident in Table 3.3, for both loss 

functions, the obvious difference in prediction results was not influences very much by the 

number of features, which differed in all four considered cases. It can be deduced that the 

features in the dataset include many redundant or weak features so that decreasing the number 

of features from 517 and 544 to 280 and 251, respectively, does not influence the quality of 

the prediction.  
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Table 3.3: Prediction with DemPred using linear features with two different loss functions.  

loss function Mean Squared Error one-sided log Lorentzian 

test set private  public  private  public  

optimization based on public test set 

L1 feature selection     

λ1 / # features a 0.012 / 517 0.004 / 544 

prediction MCC 0.617 0.577 0.600 0.586 

L2 regularization     

λ2 0.200 0.130 

prediction MCC 0.590 0.557 0.610 0.577 

optimization based on 10-fold cross validation with training set  

L1 feature selection     
                                                                                                                             

λ1 / # features a 
0.024 / 280 0.011 / 251 

prediction MCC 0.604 0.570 0.583 0.534 

L2 regularization     

λ2 0.350 0.150 

prediction MCC  0.601 0.557 0.616 0.567 
a. The number of features after the deletion of weak features by the L1 approach.  

 

The L1&L2 two-step optimization procedure was applied for the construction of the DemPred 

prediction model. Step 1: only L1 approach is used. Step 2: The features whose weights are 

set to zero with L1 were removed. L2 regularization was applied to all remaining features.  

 
Figure 3.2 shows that the prediction performance represented by plotting the MCC value 

(vertical axis) versus the λ1 values for private, public test set and training set (recall). The 

latter actually means to recall what has been learned before. The difference in performance 

between prediction and recall can be used to evaluate the degree of overfitting. The right side 

of Figure 3.2 displays the prediction results obtained with the MSE loss function and the left 

side shows the prediction performance obtained with the 1slL loss function. It is clearly 

visible that for both loss functions, the prediction performances for the public and private test 

sets first increase before they decrease with λ1. The latter happens, since with increasing λ1 

eventually to many features are effectively removed. On average, the prediction performance 

of the private test set is better than that of the public test set. The recalls of both loss functions 

keep decreasing as the value the of λ1 increases. By increasing the λ1 value, the generality of 

the DemPred model increases. This increase in generality, however, cannot offer a better 

prediction performance as it goes along with loss of specificity.  
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Figure 3.2: Right vertical axes and black lines: MCC values plotted versus λ1 values. Private 
test set (solid line), public test set (dotted line), training set (i.e. recall) (dashed-dotted line). 
Left vertical axes, red line: number of features plotted versus λ1 values. This figure was made 
by R v3.1.3. 
 
 

When comparing the prediction performances of both loss functions, optimal prediction with 

1slL is reached with a relatively small λ1 value (around λ1 = 0.004), while optimal prediction 

with MSE is reached for λ1 = 0.012. In both cases the maximum MCC values is almost the 

same. 

 

Figure 3.3: MCC values plotted versus the λ2 value. Private test set (solid line), public test set 
(dotted line), training set (i.e. recall) (dashed-dotted line). For one sided log-Lorentzian (left), 
black lines: 544 features. blue lines: 251 features. For Mean Squared Error (right): black 

lines: 517 features. blue lines: 280 features. This figure was made by R v3.1.3. 
 

Figure 3.3 shows the prediction performance represented by the MCC value (vertical axis) as 

a function of the λ2 values for private test set, public test set and training set (recall). The L2 
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regularizations were applied for the reduced feature sets after L1 feature selection. Although 

relatively large λ2 values were used, the influence of λ2 values is not as large as λ1 (see Figure 

3.2). 

In the Kaggle™ competition, the successful teams identified D27 as the most important 

feature, which strongly correlates with the biological target53. In this study, we also used the 

DemPred model to investigate the importance of features. The absolute values of the weights 

calculated with the objective function reflect the importance of the corresponding features. 

Since the feature values vary in the interval [0, 1] contributions of features to the negative 

biological target value (-1) require negative values of the corresponding weights, while for the 

positive biological target value (+1) the weights of corresponding features need to be positive. 

Figure 3.4 demonstrates the most important 20 features measured by the absolute values of 

weights. Obviously, the absolute weight of D27 feature is far stronger than other features, 

indicating that it is a very important feature. This result basically agrees with the results of the 

winning teams of the the Kaggle™ competition. 

 

Figure 3.4: Weights of the most important 20 features. The horizontal axis is the features ID 
and vertical axis reflects the absolute weight values of corresponding features. Red crosses 
correspond to positive weights and blue crosses to negative weights. The weight values were 
generated by DemPred model with L2 regularization with λ2 = 0.008 and MSE loss function. 
This figure was made by R v3.1.3. 
 

To further investigate the importance of D27, two DemPred models were built. The first 

DemPred model was built with only the D27 feature while the remaining 19 features were 
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used to build the second DemPred model. The comparison of prediction performance is 

shown in Table 3.4. By comparison, it can be seen that D27 exhibits a stronger prediction 

power than the other 19 best features. Using only D27, the prediction results, MCC, of the 

private and public test sets can reach 0.494 and 0.462, respectively. However, the MCC of the 

model built with remaining 19 features only manages to reach 0.144 and 0.156 for the private 

and public test sets. On the other hand, although D27 exhibits a powerful prediction ability, it 

cannot achieve a good prediction result by itself alone.  

 
Table 3.4: The comparison of prediction results (MCC) for the DemPred model. 

features private test set public test set 

only D27
a
 0.494 0.462 

remaining 19 features
b
 0.144 0.156 

a. MCC prediction result built only with the D27 feature. 
b. MCC prediction results built with best 19 features except D27. 

Both DemPred models were built with the MSE loss function. λ1 and λ2 are set to 0.0.  
 
 

3.1.2.1.2 Prediction results with quadratic features 

Applying DemPred for the original set of linear features, the weight of each feature can be 

calculated. As mentioned before, the weight characterizes the importance of a feature. Based 

on the absolute values of the weights, the most important 50 features were selected and then 

multiplied in a pairwise manner with all the linear (original) features. The products formed by 

the total set of features and the selected features constitute the quadratic features. Chapter 

2.11 provides details how the quadratic features are generated. 

For the construction of prediction models we now merging the set of quadratic features with 

the set of original linear features. The resulting larger dimension of the feature space may 

possibly yield better prediction results. A similar approach was also used for the SVM using 

the technique of kernel functions to map datasets into a higher-dimensional feature space31-33. 

Brown et al.
92used such an approach to classify genes into different functional categories, 

obtaining good results. However, sometimes additional information produced by the higher 

dimensions may hamper the model building so that the prediction performance decreases 82. 

The datasets of the Kaggle™ competition use 1776 features, excluding the biological target 

feature (-1 and +1). In addition to using all 1776 linear features to generate quadratic features, 

there are 4 other reduced linear features sets prepared by the DemPred L1 approach, which 

eliminate less important features. By using 1 values of 0.002, 0.004, 0.006 and 0.008, the 
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number of features is reduced from 1776 to 1108, 804, 633, 426, respectively. These are 

produced using the MSE loss function. Thus, 5 linear feature sets were prepared to produce 

quadratic features. For each features set, the 50 features with the highest weight values 

(absolute values) were used to multiply pairwise with all the linear features of the 

corresponding set. In this way, 5 quadratic feature sets are generated comprising of a large 

number of new features. The numbers of them are 88000, 55400, 40300, 31650, and 21300, 

respectively. The detailed information of these quadratic features is listed in Table 3.5. 

 

Table 3.5: The number of quadratic features.  

linear features 
quadratic 
features 

deleted 
features 

a
 

remaining 
features 

1776(all features) 88000 5199 82801 

1108 55400 3898 54292 

806 40300 2214 36678 

633 31650 1671 31017 

426 21300 1246 20874 
a. features whose values do not vary. 
 

The quadratic features of the five sets are merged with the corresponding linear features. Thus, 

for each compound, there are 5 feature sets used for generating a prediction model. These five 

feature sets involve 84577, 55098, 38892, 31650 and 21300 features, respectively.  

For these combined feature sets, the L1&L2 two-step method was again applied to build the 

DemPred model for the Kaggle™ datasets. The 1slL loss function can deal with outliers more 

appropriately. But, since both loss functions, MSE and 1slL, yield almost the same 

performance with the linear feature set. There seem to be no strong outliers in the datasets. 

However, to avoid possible weak outliers, the following studies used 1slL to construct models 

that the value of loss function increase smoothly with increasing prediction errors and lslL is a 

0-1 indicator function, which is more suitable for classification. Using the public test set to 

optimize results, the L1 feature selection was applied in the construction of DemPred models, 

out of which the 1108 set produces the best prediction results. The results are shown in Table 

3.6. The results of only using linear features were also added to the comparison with quadratic 

features. The specific feature ID indexes of 1108 features are shown in Appendix 1. 

As shown in Table 3.6, in addition to MCC, accuracy, sensitivity (positive prediction 

accuracy) and specificity (negative prediction accuracy) were also employed to evaluate the 

model quality (see Chapter 2.4). Although a huge number of quadratic features greatly 

increases the CPU calculation time, the addition of quadratic features has significantly 
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improved the prediction performance of MCC and accuracy, as compared to the prediction 

results of only using linear features dataset. For the public test set, the value of MCC 

improves from 0.586 to 0.624 while accuracy improves from 79.4% to 81.3%. Conversely, 

for the private test set, the value of MCC improves from 0.610 to 0.618 while accuracy 

improves from 80.8% to 81.8%. This enhancement is mainly due to the specificity. For the 

public test set, the number of negative compounds correctly predicted increases from 218 to 

233 and for the private test set, increases from 630 to 642. Since specificity reflects the 

prediction accuracy of negatives, seemingly, it can be deduced that the additional quadratic 

features are helpful in detecting negative compounds.  

 

Table 3.6: Prediction results with DemPred including quadratic features. The accuracy is 
presented as percentage of correct predictions. The number of compounds classified 
correctly/total number of compounds is given in parentheses. The sensitivity and specificity 
are defined as decimal value that is the number of positive or negative compounds classified 
correctly/total number of positive or negative compounds, shown in parentheses. All metrics 
equations can be refer to Chapter 2.4. 

linear features only MCC accuracy sensitivity specificity 

L1 feature selection with λ1 = 0.004; number of features a 517 

public test set 0.586 79.4% (496/625) 0.845 (278/329) 
0.736 

(218/296) 

private test set 0.600 
80.3% 

(1506/1876) 0.844 (876/1038) 
0.752 

(630/838) 
L2 regularization λ2 = 0.130; number of features a 517 

public test set 0.577 78.9% (493/625) 0.839 (276/329) 
0.733 

(217/296) 

private test set 0.610 
80.8% 

(1516/1876) 0.855 (887/1038) 
0.751 

(629/838) 

with quadratic features 
b MCC accuracy sensitivity specificity 

L1 feature selection with λ1 = 0.017; number of features a 1038 

public test set 0.624 81.3% (508/625) 0.836 (275/329) 
0.787 

(233/296) 

private test set 0.618 
81.2% 

(1523/1876) 0.849 (881/1038) 
0.766 

(642/838) 
L2 regularization λ2 = 0.550; number of features a 1038 

public test set 0.621 81.1% (507/625) 0.845 (278/329) 
0.774 

(229/296) 

private test set 0.614 
81.2% 

(1519/1876) 0.847 (879/1038) 
0.764 

(640/838) 
a. Features selected after L1 approach  
b. The addition of quadratic features generated with the 1108 feature set.  

 
 

As shown in Table 3.6, after using L1 feature selection, the L2 regularization does not 

improve the prediction performance and even makes it a little worse. It seems that the 
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quadratic features have been selected rigorously by L1 feature selection. In addition, it is 

worth noting that many quadratic features are not really useful so that a small 1 drastically 

removed a large number of features, causing a decrease from 54292 to only 1038. The L1&L2 

two-step optimization procedure was applied to construct the DemPred model. Step 1: only 

L1 feature selection is used. The features whose weights were set to zero were removed. Step 

2: only L2 regularization was applied to all remaining features after L1 feature selection.  

 
As for the difference between the private and public test sets (by MCC), after the addition of 

quadratic features, the prediction result of the private test set is better than that of the public 

test set. However, when the prediction quality of the test sets are judged by accuracy, the 

difference between the private and public test sets is very small. For the dataset with 

additional quadratic features, the difference in the accuracy between the private and public 

test sets is only 0.1%. Overall, the tests seem to perform by better when judged by sensitivity 

than by specificity. However, since datasets are asymmetric containing more molecules with 

positive than with negative target value the MCC result is a more reliable measure of 

prediction quality than accuracy.  

 

 
Figure 3.5: The prediction performances of the DemPred models in MCC versus the 1 value 
after the addition of quadratic features, and using only linear features. This figure was made 
by R v3.1.3. 
 

Figure 3.5 illustrates the MCC performances of DemPred models after the addition of 

quadratic features and using only linear features. All curves come close to reaching the 

maximum MCC value at almost the same 1 value of about 0.01 to 0.02. When comparing the 

overall results using only linear features and after adding quadratic features, it can be found 
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that the enhancement of prediction performance obtained by the addition of quadratic features 

is more pronounced for the public test than for the private test set. From the five different 

quadratic features sets, the prediction performance is the lowest if all 1776 linear features are 

used to generate the quadratic features. This result seems to reflect that a very large number of 

features may lead more likely to over-fitting.  

 

3.1.2.2 Prediction results of DemFeature 

DemFeature is a new algorithm based on DemPred that has been developed for my doctoral 

thesis. In DemFeature, each compound in the test set is considered individually, i.e. a specific 

training subset is designed for each compound to be predicted, based on molecular similarity, 

which is a computed value varying from -1 to +1. Chapter 2.10 introduces the DemFeature 

algorithm in detail. DemFeature considers for a compound to be predicted only a limited 

number of the most similar compounds for the training set. Therefore, the 1slL loss function 

was used because it is not sensitive to outliers. The objective function of DemFeature includes 

a L2 regularization term for which a λ2 value needs to be optimized. Since DemFeature 

requires more CPU time to calculate results, only the public test set was used to optimize the 

λ2 parameter and no cross validation with the training set was used as was done with DemPred.  

In this section, two versions of DemFeature: DemFeature-1 and DemFeature-2 were utilized 

to constitute models to predict the Kaggle™ datasets. DemFeature-1 uses a parameter cutoff, 

which excludes compounds of the training set that are not sufficiently similar to the 

compound to be predicted. By contrast, for a compound to be predicted in the training phase, 

DemFeature-2 only considers the most similar and the most dissimilar compounds of the 

training set, which can reduce the required CPU time is considerably.  

 

3.1.2.2.1 Prediction results of DemFeature-1 

As introduced in Chapter 2.10.1, the parameter S(k,n) represents the similarity between a 

compound n from the training set and the compound k from the test set. S(k,n) can vary from 

-1.0 to +1.0. For S(k,n) close to +1.0, the two compounds k and n are very similar, for S(k,n) 

close to -1.0 the two compounds are opposite in character while for S(k,n) close to 0.0 the two 

compounds are unrelated (dissimilar). Based on the measurement of similarity, a parameter, 

cutoff  [-1, +1], is used to decided on the number of compounds in the training subset for 

the compound to be predicted in the test set. Thus, compounds that are not sufficiently related 

to the compound that is to be classified are ignored in the training phase. cutoff is also an 
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empirical parameter. In this study, the optimal cutoff value out of -0.4, -0.2, 0.0, 0.2, 0.4 was 

determined using the public test set. Moreover, the five different linear feature sets (1776, 

1108, 806, 633 and 426 feature sets as produced in Chapter 3.1.2.1.2) were prepared for the 

construction of the DemFeature-1 model. Firstly, the cutoff=0.0 was used to find the best 

feature set. Among five feature sets, the 1108 features dataset gives the best prediction 

performance (see Figure 3.6). Then the optimized cutoff value (-0.2) is obtained for the 1108 

feature set. Table 3.7 shows the prediction performance of DemFeature-1. 

 

 

 

Figure 3.6: 5 MCC for the feature sets 1776, 1108, 806, 633 and 426. The 1108 feature set 
produces the best prediction results in public and private test sets. Here, cutoff = 0.0. This 
figure was made by R v3.1.3. 
 

Table 3.7: Prediction performance of DemFeature-1 for the Kaggle™ datasets using the 1108 
feature set with cutoff = -0.2 and λ2 = 0.06.  

  MCC accuracy sensitivity specificity 

public test set 0.676 83.8% (534/625) 0.857 (283/329) 0.807 (241/296) 

private test set 0.641 82.3% (1543/1876) 0.842 (875/1038) 0.797 (668/838) 
 

For DemFeature-1, the prediction quality is for the public test set better than for the private 

test set, albeit the differences are smaller for accuracy than for the MCC values. This result is 

astonishing, since the public test set should by construction contain compounds, which are on 

the average more difficult to predict53 than the private test set. However, the parameters cutoff 

and λ2 have been optimized by using the public test set, which might have introduced some 

preference for the prediction of the public test set. The value of the sensitivity is larger than of 
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the specificity, since the number of positive compounds is larger than the number of negative 

compounds.  

Since for each compound considered for prediction a specific DemFeature-1 model must be 

built, applications with DemFeature-1 are more CPU time intensive than with DemPred. 

However, as shown by the results in Figure 3.7, DemFeature-1 greatly improves the quality of 

prediction. Interestingly, using quadratic features for the DemPred model improves the 

prediction performance compared to using only linear features, but it is not better than the 

DemFeature-1 model and needs more CPU time. 

 

 

Figure 3.7: Comparison of prediction performances for three different models. DemPred1 
model built with linear features only. DemPred2: built with linear and quadratic features. 
DemFeature-1 built with 1108 features, cutoff = -0.2 and λ2 = 0.06. This figure was made by 
R v3.1.3. 
 

How the prediction performance depends on the parameter cutoff is shown in Figure 3.8 for 

the DemFeature-1 model. It illustrates that the distribution of compounds in the training set is 

based on a similarity with compounds in the private and public test sets. The similarities of a 

compound to be predicted with DemFeature-1 using the compounds in the training set are 

different for the two test sets. Based on the similarity value S(k,n), a different number of 

compounds in the training set would be distributed across different intervals of similarity 

(vertical axis of left side of Figure 3.8). The horizontal axis of left side of Figure 3.8 

represents the mean of the overall compounds in the test sets at each similarity interval.  
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Figure 3.8: Left: Histogram of similarities. The number of training compounds is plotted as 
function of the similarity averaged over the compounds of the public (red) and private (blue) 
test sets. Right: prediction performance (MCC) as function of the cutoff value. This figure 
was made by R v3.1.3. 
 

Basically, the similarities of the compounds in the training set averaged relative to the test sets 

are approximately normal distributed (left side of Figure 3.8). The similarity distributions of 

the compounds in the training set relative to the private and public test sets are very similar. 

The similarity is concentrated between -0.2 to 0.2. The most similar compounds (similarity 

more than 0.2) and the most dissimilar compounds (similarity less than -0.2) occupy less than 

15% of all compounds in the training set. The parameter cutoff decides on the number of 

compounds in the training subset through a measurement of similarity. For example, if the 

cutoff value is equal to 0.2, in order for a compound to be predicted, the compounds in the 

training set with similarities above 0.2 would be selected to construct a specific training 

subset.  

The left side of Figure 3.8 provides MCC values for cutoff value as large as 0.4, where only 

the few most similar compounds are used to construct the training subset and thus cannot 

produce the best prediction result. However, if the cutoff value is very small, for example -0.4, 

too many unrelated compounds will be brought into the training subset, which causes the 

prediction quality to decline. Combining this with the right part of Figure 3.8, it is clear that to 

predict a compound, the optimized cutoff value of -0.2 removes only a few irrelevant 

compounds (less than 0.03% on average) from the training subset but retains the majority of 

compounds. For DemFeature-1, it seems that in the dataset, only the few very dissimilar 

compounds lead to a decrease in prediction performance. 
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3.1.2.2.2 Prediction result of DemFeature-2 

DemFeature-2 employs a different method to compile a compound specific training subset. 

While DemFeature-1 utilizes the parameter cutoff to determine the number of compounds in 

the training subset for a compound to be classified, DemFeature-2 directly selects a fixed 

number of most similar and dissimilar compounds from a training set to constitute a training 

subset for a compound to be predicted. For Equation (2.38), the parameters Nsim
+, Ndis

+, Nsim
-, 

Ndis
- represent four respective sets: the number of most similar positive compounds, most 

dissimilar positive compounds, most similar negative compounds and most dissimilar 

negative compounds in the training set for a considered test compound. For instance, when 

Nsim
+ =100, it means that for the considered test compound, the 100 most similar positive 

training compounds will be selected to be a part of training subset. In the following text, the 

names of these sets are abbreviated as PosSim, PosDis, NegSim and NegDis. Since these 

numbers are empirical parameters, the prediction results of the public test set were used to 

determine the number of these parameters as well as used for optimizing other parameters. In 

addition, the objective function of DemFeature-2 includes the L2 regularization term for 

controlling overfitting with possible values of λ2 ∈ {1.2, 1.5, 1.8, 2.0, 2.5, …, 40.5}. Several 

parameter combinations were chosen and the prediction results of the private and public test 

sets were listed in Table 3.9 and Figure 3.9. 

 

As shown in Table 3.9 and Figure 3.9, the number of compounds in PosSim was increased 

from 100 to 400 and while the number of compounds in the other three sets ( NegSim, PosDis 

and NegDis ) remained at 100. Then, the same operation was repeated in NegSim. Results 

show that the increment of the number of compounds in PosSim and NegSim does not reflect 

an obvious influence on the prediction performance and does not result in better prediction 

performance than the combination of 100 compounds in all four sets (PosSim, PosDis, 

NegSim and NegDis). However, as compared with using 100 compounds in all four sets, 

results indicate that by increasing the number of compounds on PosSim improves sensitivity 

while the same performance in NegSim improves specificity.  

Increasing the number of compounds in PosDis improves the specificity while increasing the 

number of compounds in NegDis enhances sensitivity. However, increasing the number of 

compounds in PosDis or NegDis produces a side effect: when the number of compounds in 

PosDis is increased, the specificity increases while the sensitivity gradually decreases. 

Increasing the number of compounds in NegDis is on contrary to the same increment in 
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PosDis: as the number of compounds in NegDis increases, sensitivity gradually ascends and 

specificity gradually descends. 

 

Table 3.9: Prediction results with DemFeature-2 using different training subsets I. 

PosSim PosDis NegSim NegDis λ2 
public test set private test set 

MCC accuracy sensitivity specificity MCC accuracy sensitivity specificity 

100 100 100 100 7.5 0.634 0.818 0.851 0.780 0.607 0.807 0.847 0.757 
             

150 100 100 100 6.5 0.634 0.818 0.848 0.784 0.607 0.807 0.847 0.757 

100 150 100 100 6.5 0.663 0.830 0.805 0.858 0.622 0.810 0.790 0.835 

100 100 150 100 13.0 0.638 0.819 0.869 0.764 0.614 0.810 0.838 0.764 

100 100 100 150 11.0 0.600 0.795 0.912 0.315 0.603 0.803 0.901 0.681 
             

200 100 100 100 6.5 0.634 0.818 0.854 0.777 0.607 0.807 0.851 0.752 

100 200 100 100 1.5 0.606 0.798 0.736 0.868 0.614 0.801 0.739 0.877 

100 100 200 100 1.8 0.634 0.818 0.851 0.780 0.608 0.820 0.841 0.757 

100 100 100 200 7.5 0.557 0.770 0.924 0.598 0.572 0.783 0.932 0.598 
             

300 100 100 100 4.5 0.632 0.816 0.854 0.774 0.607 0.807 0.850 0.753 

100 300 100 100 2.0 0.535 0.747 0.593 0.912 0.565 0.761 0.632 0.921 

100 100 300 100 15.0 0.637 0.819 0.830 0.807 0.62 0.812 0.828 0.792 

100 100 100 300 2.0 0.499 0.733 0.942 0.500 0.528 0.753 0.958 0.500 
             

400 100 100 100 4.0 0.625 0.813 0.854 0.767 0.605 0.807 0.849 0.752 

100 400 100 100 2.0 0.492 0.715 0.517 0.936 0.538 0.733 0.551 0.956 

100 100 400 100 2.0 0.631 0.816 0.854 0.774 0.604 0.805 0.845 0.755 

100 100 100 400 2.0 0.466 0.707 0.964 0.422 0.498 0.732 0.972 0.436 

1. PosSim: number of the most similar positive compounds; PosDis: number of the most 
dissimilar positive compounds; NegSim: number of the most similar negative 
compounds; NegDis: number of the most dissimilar negative compounds.  

2. The parameters highlighted indicate the numbers varied in a combination. 
3. λ2 was determined by the prediction results of public test set 

 

 

Based on the results described above, in order to obtain a good prediction performance, a 

proper balance between sensitivity and specificity is necessary. Although a larger number of 

compounds in PosDis or in NegDis can produce a higher specificity or sensitivity, the 

improvement on sensitivity or specificity significantly weakens the other, thus leading to a 

poor prediction performance. The combination of 150 compounds in PosDis and 100 

compounds in the other three sets produces the best prediction performance of both public test 

set and private test set. Results show that using 150 compounds in PosDis can improve 

specificity while it does not significantly impair sensitivity. It is worth noting that based on 

the public test set, this is also the optimized combination. Furthermore, the prediction results 

of increasing the number of compounds on two sets concurrently can be observed in Table 

3.10 and Figure 3.10.  
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Figure 3.9: Prediction results with DemFeature-2 using simultaneously four different training 
subsets (PosSim, PosDis, NegSim, NegDis). To investigate the influence of the size of these 
four sets, the number of compounds in one of the four sets is increased while that of other sets 
remain unchanged. This figure was made by R v3.1.3. 
 

 

Table 3.10: Prediction results with DemFeature-2 using four different training subsets. 

PosSim PosDis NegSim NegDis λ2 
public test set private test set 

MCC accuracy sensitivity specificity MCC accuracy sensitivity specificity 

150 100 150 100 2.0 0.640 0.821 0.851 0.787 0.595 0.803 0.842 0.749 

100 150 100 150 6.0 0.631 0.816 0.854 0.774 0.624 0.814 0.856 0.763 
             

200 100 200 100 5.5 0.634 0.818 0.845 0.787 0.608 0.807 0.845 0.760 

100 200 100 200 6.5 0.654 0.827 0.866 0.784 0.624 0.814 0.857 0.761 
             

300 100 300 100 33.0 0.634 0.818 0.446 0.784 0.618 0.811 0.836 0.779 

100 300 100 300 6.5 0.651 0.826 0.872 0.774 0.619 0.812 0.855 0.760 
             

400 100 400 100 29.0 0.634 0.818 0.842 0.791 0.626 0.816 0.840 0.785 

100 400 100 400 6.5 0.644 0.822 0.869 0.770 0.620 0.813 0.853 0.764 
             

300 300 300 300 3.0 0.660 0.830 0.872 0.784 0.627 0.816 0.854 0.770 

400 400 400 400 9.5 0.644 0.822 0.869 0.770 0.621 0.813 0.846 0.772 

1. PosSim: number of the most similar positive compounds; PosDis: number of the most 
dissimilar positive compounds; NegSim: number of the most similar negative 
compounds; NegDis: number of the most dissimilar negative compounds. 

2. The parameters highlighted indicate the numbers varied in a combination. 
3. λ2 was determined by the prediction results of public test set.  
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Comparing the results listed in Table 3.10 with results of the combination (PosSim:100; 

PosDis: 100; NegSim:100, NegSim:100), it is found that the increment of the number of 

compounds in PosSim and NegSim does not effectively improve prediction performance. On 

the other hand, the concurrent increment of the number of compounds in both PosDis and 

NegDis are capable of properly balancing sensitivity and specificity. However, its prediction 

performance still is not better than for the combination (PosSim:100; PosDis: 150; 

NegSim:100, NegSim:100).  

 

 

Figure 3.10: Prediction results with DemFeature-2 using simultaneously four different 
training subsets (PosSim, PosDis, NegSim, NegDis). In this investigation, the number of 
compounds in PosSim and NegSim were increased at the same time while those in PosDis 
and NegDis remained at 100 compounds. Then this was repeated by increasing the number of 
compounds in PosDis and NegDis and keeping the number of compounds in PosSim and 
NegSim at 100. This figure was made by R v3.1.3. 
 

 

When the number of compounds in all four sets is increased to 300, a fairly good prediction 

performance (MCC: 0.660 on public test set; MCC: 0.627) can be achieved. However, the 

number of compounds in a training subset for each compound to be predicted would reach 

1200, which takes as much CPU time as when using DemFeature-1, but it does not produce a 

prediction performance which is as good as obtained with DemFeature-1. In Summary, when 

DemFeature-2 considers only the most similar and dissimilar training compounds for a test 

compound, it produces a better prediction performance than DemPred (see Figure 3.11). 

Although the prediction results are not as good as the one of DemFeature-1, it takes 

considerably less CPU time than DemFeture-1. Additionally, its results are easier to be 
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explained when further investigations are conduced with a smaller number of compounds in 

the training subset.  

 
Figure 3.11: Comparison of prediction performances among four different models. DemPred1 
built with linear features only. DemPred2 built with quadratic features plus linear features. 
DemFeature-1 built with 1108 features with cutoff: -0.2. DemFeature-2 built with the 
combination (PosSim:100; PosDis: 150; NegSim:100, NegSim:100). This figure was made by 
R v3.1.3. 
 
Table 3.11: Comparison of prediction performance of different models.  

method MCC accuracy Sensitivity specificity 

public test set  

1. on public test set;  
3. on private test seta  0.637 81.9% (516/625) 0.818 (268/329) 0.794 (248/296) 

11. on public test set;  
1. on private test set 0.652 82.7% (512/625) 0.815 (273/329) 0.838 (239/296) 

DemFeature-1  0.676 83.8% (534/625) 0.857 (283/329) 0.807 (241/296) 
random forest 
benchmark on 

Kaggle™ 
competition  

0.586 79.4% (496/625) 0.818 (269/329) 0.767 (227/296) 

SVM benchmark on 
Kaggle™ 

competition  
0.529 76.5% (478/625) 0.833 (274/329) 0.689 (204/296) 

private test set  

1. on public test set;  
3. on private test set  0.668 83.6% (1569/1876) 0.860 (893/1038)  0.807 (676/838)  

11. on public test set;  
1. on private test set 0.660 83.2% (1560/1876) 0.841 (873/1038)  0.820 (687/838)  

DemFeature-1  0.641 82.3% (1543/1876) 0.842 (875/1038)  0.797 (668/838)  
random forest 
benchmark on 

Kaggle™ 
competition  

0.659 83.2% (1560/1876) 0.855 (873/1038)  0.802 (687/838)  

SVM benchmark on 
Kaggle™ 

competition  
0.535 77.0% (1445/1876) 0.792 (888/1038)  0.743 (672/838)  

a For the competition, this model is ranked 1st in the public test set and ranked 3rd in the 
private test set.  
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3.1.2.3 Comparison with results from the Kaggle™ competition 

Since the DemFeature-1 model gives the best result, the achieved results by the top-ranking 

participants of the Kaggle™ competition were used to compare with the result of the 

DemFeature-1 model. The Kaggle™ competition ranks the contest in an order following the 

LogLoss (see Equation (3.1)),  

 
1

1 ˆ ˆlog( ) (1 ) log(1 )
N

n n n n

n

Logloss m m m m
N 

       (3.1) 

where ˆ
n

m  is the posterior probability that the n
th

 sample elicited a response and 
n

m  is the 

experimental observation value. Regarding the property of the DemFeature-1 model, we did 

not use the LogLoss to evaluate the prediction performance. According to the information 

provided by Boehringer Ingelheim Inc., we calculated several quality measures (see Chapter 

2.4) of top models for comparison. The results are shown in Table 3.11.  

For the Kaggle™ competition, the best results of the public and private test sets were not 

achieved by the same participant. Therefore, we provide the models ranking 1st on the private 

and public test sets, respectively. In addition, the results produced by the random forest 

benchmark and the SVM benchmark of the Kaggle™ competition are also provided for 

comparison. In the Kaggle™ competition, the random forest and SVM models are provided 

by the Scikit-learn package93. The random forest model was trained with default parameters. 

SVM used radial basis function as its kernel function and was also trained with default 

parameters. By contrast, the DemFeature-1 model obviously gives the best results in public 

test set by MCC (public test set: 0.676, private test set: 0.641) and accuracy (public test set: 

83.8%, private test set: 82.3%). With respect to the sensitivity of the public test set, 

DemFeature-1 is also the best. The model that ranked 1st in the private test set gives a higher 

specificity than the DemFeature-1 model. Although the DemFeature-1 model does not give 

the best result in the private test set, it can still considered to be reasonably good. On the other 

hand, the sensitivity is higher than the specificity for both private and public test sets, which 

can be explained by the number of positive compounds being larger than the number of 

negative compounds (public test set: 329 positives and 296 negatives; private test set: 1038 

positives and 838 negatives), which in turn means that the positive compounds are easier 

identified by in silico prediction. It must be noted that high accuracy of positive compounds is 

more important in drug development.  

Another point worth taking note is that the SVM benchmark performs very poorly in the 

Kaggle™ competition. However, it cannot be denied that the SVM model is an excellent 
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algorithm31-33. SVM has been extensively applied in different fields and has performed 

excellent for different datasets. Basically, DemFeature-1 algorithm works similarly as SVM; 

both are linear classifier algorithms. However, DemFeature-1 has been significantly improved 

for the prediction of the Kaggle™ dataset. In other words, the DemFeaure-1 model could be 

an alternative solution for the problems that cannot be solved sufficiently precise by SVM. In 

summary, all of the top-ranking models have excellent prediction performance in both private 

and public test sets (see Table 3.11). In contrast to the results from the Kaggle™ contest 

DemFeature-1 performs slightly better for the public test set than for the private test set 

although the public test set should by construction be more difficult to predict53. This may be 

the case, since DemFeature-1 uses more information from the public test set than the 

participants of the Kaggle™ contest. 

 

3.1.2.4 P-values to compare different models  

In order to compare the difference in performance, the P-value (see Chapter 2.12) is 

employed to evaluate the difference in the prediction results generated by two different 

models. A P-value can be calculated using a binomial test (see Equation (2.41)) or a 

McNemar’s test (see Equation (2.42)), and usually varies between 0.0 and 1.0. The higher a 

P-value is, the more similar the results of the two models are. In this research, a P-value 

matrix (see Table 3.12) was constructed to pairwise compare the differences among the top-

ranking models of the competition: the random forest benchmark, the SVM benchmark and 

the DemFeature-1 model. The P-values of the models are compared separately for the private 

and public test sets.  

As shown in Table 3.12, in the private test set, the top-ranking models of the Kaggle™ 

competition, as well as the random forest and DemFeature-1 models are significantly different 

from the SVM model, since the corresponding P-values are all smaller than 0.0001. The P-

value between the top-ranking models and random forest are all significantly larger than zero 

for the private test. Thus, the top-ranking models are not significantly different from the 

random forest benchmark. This small difference proves furthermore that for private test set 

the prediction results among the top-ranking models are very similar. Based on the P-values 

for the private test set of DemFeature-1 with random forest and the top-ranking models, it is 

clear that the DemFeature-1 model is not significantly different from these models.  
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Table 3.12: Comparison of P-values among different models.  

public test set 

methods SVM 
1st on private 
11th on public 

2nd on private 
26th on public 

3rd on private 
1st on public 

DemFeature-
1 

random forest 0.102 0.005 0.007 0.038 0.001 
SVM   0.001 <0.0001 0.001 <0.0001  

1st on private test set 
11th on public test set     0.860 0.556 0.322 

2nd on private test set 
26th on public test set       0.522 0.201 

3rd on private test set 
1st on public test set         0.097 

private test set 

methods SVM 
1st on private 
11th on public 

2nd on private 
26th on public 

3rd on private 
1st on public 

DemFeature-
1 

random forest <0.0001  0.921 1.000 0.452 0.229 
SVM   <0.0001  <0.0001  <0.0001  <0.0001  
1st on private test set 
11th on public test set     1.000 0.342 0.193 

2nd on private test set  
26th on public test set       0.322 0.162 

3rd on private test set 
1st on public test set         0.047 

 
 
For the public test set, the P-values between SVM and random forest prediction model are 

larger than for the private test set (in private test set: <0.0001; in the public test set: 0.102). In 

addition, the P-values between SVM and the two top-ranking models (the model of 1st in the 

private test set and the model of 3rd in the private test set) also increase from <0.0001 to 0.001. 

Moreover, the P-values between the DemFeature-1 model and the top-ranking models are 

slightly higher in the public test set than in the private test set. On average, the P-values 

among top-ranking models in the public test set are also higher than in the private test set. 

Hence, overall, except for the random forest model, the prediction results of all models are 

more consistent in the public test set than in the private test set. This may be due to the fact 

that all prediction models except the random forest used at least implicitly information on the 

prediction performance for the public test set.  

The DemFeature-1 model is based on an algorithm that is very different from the random 

forest. On the other hand, all top-ranking models of the Kaggle™ contest were developed 

from random forest53. However, it is worth noting that except when compared with SVM (P-

value is smaller than 0.0001), the DemFeature-1 model does not reflect any significant 

difference for the private and public test sets when compared with the high ranked models of 

the Kaggle™ contest. 
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3.1.2.5 Measure confidence of prediction 

Correlating the confidence (see Equation(2.45)) for each compound in the dataset with 

prediction performance is helpful to estimate the validity of the prediction results. The 

introduction of confidence measurement is detailed in Chapter 2.13. In this study of the 

Kaggle™ dataset prediction, a polynomial function of third order is employed for fitting the 

prediction performance to the confidence. Since the number of compounds in the datasets is 

not large, for properly generating a fitting curve, all compounds of private test set and public 

test set were used together. Hence, the total number of the considered compounds is 2501. 

The predictive values of DemFeature-1 (see Table 3.7) model were used to measure the 

confidence of prediction as it produces the best prediction results among all of our models. 

Since the prediction performance cannot be calculated for a single compound, the confidence 

(ranged between 0.0 and 1.0) was equally divided into 20 intervals. For each interval, 30 

compounds would be randomly picked up for the calculation of accuracy and MCC. This 

process would be repeated 20 times to calculate the mean value of accuracy and MCC. In 

addition, the standard deviations of 20 times prediction results of those intervals are also 

calculated for generating error bars.  

 
Figure 3.12: Correlation between confidence (see Equation (2.45)) and the prediction 
performance (accuracy and MCC) for both private test set and public test set. The predictive 
values are produced by DemFeature-1 (Equation (2.37)). Histogram (black) indicates the 
distribution of the number of compounds at the 20 confidence intervals (left to right on the 
horizontal axis: low confidence to high confidence). The filled blue circles represent 
accuracy and MCC. The fitting curves (red) are generated by third order polynomials:  

3 2 1

3 2 1

0.01761 0.13912 0.83949 0.17666,

0.1597 0.2787 0.2245 0.6035;

accuracy conf conf conf

MCC conf conf conf

   

    
.  

This figure was made by R v3.1.3. 
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The mean values and standard deviations were calculated by randomly picking up 30 
compounds from each interval and repeated 20 times.  
 
 
Figure 3.12 shows that the prediction performances (accuracy and MCC) strongly correlate 

with the confidence of the compounds. Basically, the accuracy (left side) has a good 

agreement with the MCC (right side), whereas, for the fitting curves of the prediction 

performances, the MCC has a steeper slope than the accuracy. Generally, the number of 

compounds in the intervals gradually increases from a low confidence level to a high 

confidence level, although the slight declines occurred at several interval bins. It drastically 

increases on the interval between 0.95 to 1.00, which accounts for 25.3% compounds of 

dataset and its accuracy can reach 0.943 and MCC is 0.906. This clearly shows that the 

compounds with a higher confidence are more likely to be classified correctly demonstrating 

the usefulness of the confidence value.  

 

3.1.3 Discussion  

Analysis of outliers  

In this study, two loss functions combined with L1&L2 two-step regularization were applied 

to build DemPred models. The MSE loss function (Equation (2.25)) is capable of recalling 

each compound in the training set as accurate as possible so that outliers of the training set 

may have a strong influence on the prediction result. The second loss function used in this 

research is 1slL (Equation (2.27)), which is not sensitive to the outliers in the training set. 

Technically, 1slL is more suitable to deal with a classification task because it is not necessary 

to precisely locate all compounds in the feature space. Its value increases smoothly with 

increasing prediction error so that it can weaken the influence of potential errors in the dataset. 

However, as shown in Figure 3.2, the maximum prediction results of the DemPred models 

with the two loss functions are almost the same. Consequently, it can be deduced that no 

significant outlier exist in the Kaggle™ datasets.  

 

DemPred built with L1 & L2 two step method  

The L1 approach is capable of setting the weights of features to zero so that features can be 

removed. Already with a small value of λ1 many features were removed and at the same time 

the prediction performance was improved. From this we can conclude that the deleted features 

have no predictive power or may even disturb prediction results. On the other hand, among 

the remaining useful features many are nearly equivalent. This is demonstrated by comparing 
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the prediction performance using 544 features with the one using only 251 features (see Table 

3.3), which is nearly the same. It is interesting to observe that after L1 feature selection, the 

L2 regularization for the remaining features did not improve prediction performance any more. 

This phenomenon was also described by Demir et al.
90. This may be explained by the rigorous 

feature selection done by the L1 approach. 

 

Figure 3.13: The two loss functions g(f,y) used in the computations: 1slL (Equation (2.27)) 
and MSE (Equation (2.28). Horizontal axis represents the f-y, which is the difference between 
the estimating value of scoring function f and the corresponding true property value y. Crosses 
represent MSE and solid points represent 1slL. This figure was made by R v3.1.3. 
 

 

Analysis of feature D27  

Our results demonstrated that feature D27 is obviously more important than all other features 

used for the Kaggle™ competition. Another direct investigation was carried out to observe 

the numerical value of D27. D27 is a binary feature with values of 1 and 0. Assigning the 

value 1 of for feature D27 to the biological target value +1 and 0 to the biological target value 

-1, 74% of all compounds involving both test sets and the training set do match. For 4628 

compounds of the 6252 compounds in the training set, private test set and public test set, the 

values 1 and 0 of the D27 feature of compounds exactly match with the corresponding 

biological target values, +1 and -1, respectively. This result explains why D27 plays such an 

important role in this dataset.  
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DemFeature-1  

DemFeature-1 utilizes a parameter cutoff to govern the number of compounds in an 

individual training subset. With the value of the parameter cutoff the more similar compounds 

in the training set are selected to constitute a training subset for a specific test compound to be 

considered. Therefore, choosing an appropriate cutoff value is crucial. Since the public test 

set was available during the Kaggle™ competition, it was used here to optimize the 

parameters cutoff and 2. The prediction performance improved if the very dissimilar 

compounds were not contained in the training subset (see Figure 3.8), which was achieved by 

using a value of cutoff that is not too negative. This shows that very dissimilar compounds 

may hamper the resulting prediction model. If on the other hand the value of cutoff is too 

positive, the number of compounds in the training subset becomes too small to generate a 

successful prediction model. Since the individual feature values vary with different test 

compounds, the number of compounds in the training subset obtained with the same value of 

cutoff is different for each test compound.  

 

DemFeature-2 

For DemFeature-2, the number of compounds of training subset is fixed. Four parameters 

including PosSim, PosDis, NegSim, NegDis are utilized instead of cutoff. For a test 

compound, these parameters represent the number of most similar positive compounds, the 

number of most dissimilar positive compounds, the number of most similar negative 

compounds and the number of most dissimilar negative compounds, respectively. These 

parameters are optimized using the public test set. If PosSim, NegSim and NegDis remain 

unchanged and only the number of compounds in PosDis is increased, the specificity would 

improve whereas the sensitivity would deteriorate. If PosSim, PosDis and NegSim remain 

unchanged and the number of compounds in NegDis increases, this would lead to an increase 

of sensitivity while specificity would decrease. Therefore, a proper balance between 

sensitivity and specificity is necessary for obtaining a good prediction performance. As the 

results in Chapter 3.1.2.2.2 showed, this balance requires that the number of compounds in 

PosDis or in NegDis should not be too large. The best combination found is PosSim:100; 

PosDis: 150; NegSim:100, NegDis:100. For this combination, when the number of 

compounds is slightly increased to 150 in PosDis, the specificity reaches 0.858. This 

increment does not impair sensitivity too much as sensitivity remains at 0.805. By contrast, if 

the number of compounds in NegDis is increased to 150 while the other three sets remain 

unchanged, the sensitivity reaches 0.912 but the specificity goes down to 0.315. Hence, it 
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seems that the majority of the compounds in NegDis are useful for the prediction performance 

of the positive set, while only a small portion of the compounds in PosDis are useful for the 

prediction performance of the negative set. Another reason causing this phenomenon could be 

that the number of compounds in the positive set is larger than the number of compounds in 

the negative set (see Table 3.1) so that specificity changes more easily by the number of 

compounds predicted correctly in the negative set. Hence, for obtaining a robust DemFeature-

2 model, it is very important to balance between sensitivity and specificity through a proper 

setting of the number of compounds in the four sets.  

 

Why DemFeature works better for the public than for the private test set  

In this work, the DemFeature models produce better prediction results in the public than in the 

private test set, which is in contrast to the results of DemPred and of the participants in the 

Kaggle™ competition. Although optimization based on the public test set is advantageous in 

that better prediction results can be obtained, we have discovered through an internal 

observation on all of the prediction results of both public and private test sets (with all 

parameter candidates prepared to be optimized) that the DemFeature algorithm indeed 

predicts data from the public test set more easily than from the private test sets. To understand 

this different behavior, we consider for each compound k of the test set the most similar 

compound in the training set, whose similarity value sk is given by Equation (3.2)  

                                      ˆ ˆmax( ) k
n

nkx x s                              (3.2) 

ˆ
kx  is the feature vector of compound k in the test set and ˆ

nx  is the feature vector of compound 

n in the training set. The features are normalized according to Equation (2.35). The average of 

the sk values over all compounds of the public or private test set is given by Equation (3.3).  

                                                   
1

1
k

ktest

testN

S s
N 

  ,                                                           (3.3) 

Where Ntest is the number of compounds in the considered test set.  

For the public test set <Spublic> = 0.8191 while for the private test set <Sprivate> = 0.8174. 

Hence, <Spublic> is slightly larger than <Sprivate> such that the DemFeature prediction model, 

which focuses on the more similar compounds of the training set has an advantage in 

predicting the compounds of the public test set. However, another factor that fosters better 

prediction results for the public than for the private test set is due to the fact that the global 

parameters cutoff and 2 are optimized by using the public test set.  
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3.1.4 Conclusion  

In this study, several approaches were applied to the classification task of the 2012 Kaggle™ 

competition launched by Boehringer Ingelheim Inc. for evaluating the prediction potential of 

our models within the pharmaceutical industry. The aim of the Kaggle™ competition was to 

explore the capacity of crowd computing for use within drug discovery and development. 

Hence, this competition used a curated experimental genotoxicity dataset, which is an 

important property in the detection of drug safety at the early stages of drug development. To 

avoid any possible expert bias, during the competition, all biological and chemical 

information was withheld from all participants. The reasons why we used this dataset to 

examine our models are: (i) it provides a realistic up-to-date prediction scenario for drug 

classification; (ii) the predictions submitted by different professional persons and groups 

certainly came close to the theoretical limits of what could be achieved for this prediction task. 

Here, it needs to be emphasized that the aim of this study is not to predict a biological 

problem, rather, it is to develop in silico methods used for better and more efficient evaluation 

of properties of unknown compounds for the process of drug development.  
 
We used DemPred with linear and quadratic features and DemFeature-1 & -2 with linear 

features to build models with the training set to predict the target values of compounds from 

the private and public test sets, respectively. The DemFeature-1 model produces the best 

prediction results. It outperforms all results achieved for the public test set in the Kaggle™ 

competition. Based on the information provided by Boehringer Ingelheim Inc., all of the top-

ranking models are built with random forest or its variants. Also the random forest benchmark 

added to the Kaggle™ contest data produces good prediction results, especially for the private 

test set. By contrast, the SVM benchmark produces relatively poor results. It seems that these 

Kaggle™ competition datasets are hard to be predicted by a simple linear classifier. However, 

the obvious improvement of prediction results using DemFeature-1 compared with results of 

SVM benchmark and DemPred, demonstrates that a well-designed training subset can 

improve the prediction quality of a linear classifier considerably. The DemFeature-2 

algorithm is a variant of the DemFeature-1 algorithm. Although DemFeature-2 cannot 

produce better prediction results than DemFeature-1, it can significantly reduce the CPU time 

required and the fixed numbers of similar and dissimilar compounds in the training subset are 

perhaps helpful in explaining the connection between biological response and compounds. 

Overall, the DemFeature algorithms could be an alternative, especially in cases where 

problems are hard to be resolved by traditional linear classifiers. 
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3.2 Project 2: Drug-induced phospholipidosis prediction 

Phospholipidosis (PLD) can be induced by administration of medicine for a long period, 

which is called drug-induced phospholipidosis. Actually, PLD is a lipid storage disorder in 

which complexes containing the drug and phospholipid accumulate within lysosomes in the 

living cell as lamellar inclusion bodies94 which is the morphological hallmark of PLD. This 

complex has been found in a variety of tissue types95, 96 such as lung, liver, brain, kidney, 

ocular tissue, heart, adrenal glands, hematopoietic tissue and circulating lymphocytes97. In 

preclinical studies, the human organs that most often showed characteristic lysosomes related 

with PLD are lungs and liver98. Apart from human beings, Drug-induced PLD also occurs in 

other species, such as rodents99. PLD can cause histological changes in tissues such as foamy 

macrophages, which can be observed with light microscopy98 (Figure 3.14). These 

histological changes are sometimes also considered as markers that indicate whether a drug 

may cause PLD. Nevertheless, the gold standard method to determine whether a drug is 

capable of inducing PLD is the transmission electron microscopy (TEM), which is used to 

confirm the presence of multilamellar bodies within lysosomes97 (Figure 3.15 & 3.16)  

 

 
 

Figure 3.14: Pulmonary phospholipidosis: foamy macrophages in the cell of lung observed 
with light microscopy. Original figure by Chatman et al. 98.  

 
 

Currently, a number of marketed drugs have been verified as causing PLD in vitro or in 

vivo
101,102. The majority of PLD-inducers possess a cationic amphiphilic structure. Those 

drugs are also called Cationic Amphiphilic Drugs (CADs). The first clinical case of CADs-

induced PLD was reported in 1971 in which multilamellar bodies were confirmed by TEM in 

several tissues of Japanese patients who were treated with the antianginal medication 4,4-
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diethylaminoethoxyhexestrol (DH)99. CADs possess two typical structural features: a rigid 

hydrophobic moiety and a hydrophilic amine group that is charged as cation under 

physiological conditions103. The hydrophobic moiety of CADs usually is an aromatic ring. 

Slavov et al.
104 proposed a toxicophore model summarized by the structural features of CADs. 

In these compounds, the distances between the centroid of one hydrophobic ring and the 

hydrophilic group (amino group) are between 0.35 nm and 0.75nm. In addition, a second 

hydrophobic ring, usually an aromatic ring is present, at a distance of 0.55nm to 0.70nm from 

the amino group. The third feature is that the distance between the centroids of two ring 

structures is 0.40nm-0.50nm.  

 

 
Figure 3.15: TEM images of phospholipidosis induced by azithromycin (an antibiotic) in 
human meibomian gland epithelial cells. The left image is the control test. On the right image, 
the dark onion-shaped parts are lamellar bodies indicated by arrows. Original figure by Liu et 

al .100.  
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Figure 3.16: The TEM image of phospholipidosis in soft tissue. The multi-lamellar structure 
is clearly visible. Original figure by Chatman et al.

98.  
 

 

 
Figure 3.17: The toxicophore associated with PLD-inducers proposed by Slavov et al.

104.  
 

Although CADs play an important role in inducing PLD, not all CADs can induce PLD, 

according to the FDA PLD database102. In the report by Choi et al.
105, they also stated not all 

PLD inducers are CADs. There are several non-CAD chemical species which are capable of 

causing PLD such as aminoglycoside, aminocyclitol and macrolide antibiotics.  
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Figure 3.18: Both amiodarone and imipramine are CAD PLD-inducers, which have been 
tested in vivo

106. Original figures were retrieved from DrugBank107.  
 
 

 
Figure 3.19: phenacetin is a non-CAD PLD-inducer. Original figures were retrieved from 

DrugBank107.  

 

 

 
Figure 3.20: both compounds are PLD non-inducers, of which metapyrilene is a CAD 
compound and acetaminophen is a non-CAD compound. Original figures were retrieved from 
DrugBank107.  
 

 

Generally, PLD is considered as an adaptive response. This syndrome is reversible once the 

patient stops taking the related drugs103. In 2004, the US FDA established a phospholipidosis 

working group to investigate drug-induced PLD related toxicity54. So far, there is no direct 
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evidence indicating that PLD harms human health. Liu et al.100 even found drug-induced PLD 

to have a beneficial effect, which can be useful in the treatment of meibomian gland 

dysfunction. However, PLD itself is related to the phospholipid disorder and is likely to have 

concomitant toxicological phenomena in affected organs106. For example, researchers proved 

that PLD is associated with several genetic conditions such as Niemann-Pick and Tay-Sachs 

diseases108,109. Additionally, two reports pointed out several PLD-inducing compounds also 

cause concurrent inflammatory and / or degenerative changes in tissues110,111. Therefore, for 

drug development, especially pharmaceutical companies, this uncertain harm cannot simply 

be ignored. Considering the reason of drug safety, there is a demand to identify PLD-inducers 

at an early stage of drug development to avoid huge efforts in both time and money.  

The precise mechanism of drug-induced PLD remains unclear. There are several possible 

mechanisms for drug-induced PLD proposed by Sawada et al.
109: 1. The activity of 

phospholipase is inhibited by drugs; 2. the lysosomal enzyme transport is inhibited by drugs; 

3. The capacity of phospholipid biosynthesis in tissues is enhanced; 4. The capacity for 

synthesizing cholesterol is strengthened. Fischer et al.
96 also mentioned in their article that the 

formation of PLD is possibly induced by several mechanisms. Apart from the unclear 

mechanism of induction, it has been found that a PLD-inducer may perform differently under 

different conditions such as species, tissue type, age, sex etc.112. In addition, it has been found 

that some compounds that induce PLD in vivo do not induce PLD in in vitro tests, while the 

compounds demonstrated to induce PLD in vitro may not cause PLD in vivo
103,106. According 

to the report written by Morelli et al.
112, gentamicin is capable of inducing PLD in both 

human and animal but in cell-based assays, the PLD induction effect is not demonstrated.  

In summary, it can be said that is not easy to identify and predict PLD reliably. Currently, 

TEM is still the most reliable method to confirm PLD. However, it is a labor intensive method, 

which cannot be used to screen a large number of compounds in a short time. For drug 

development, TEM is difficult to apply in the early stage to investigate a large number of 

unknown compounds. Therefore, in past decades, scientific communities have made huge 

efforts to develop a variety of in vitro and in silico methods for predicting PLD.  

To date, there are a number of in vitro PLD prediction assays based on cells, which are 

combined with different methods such as electron microscopy or fluorescent probes such as 

Nile red97. However, these cell based methods depend on the concentration and the cell line 

used. In addition to in vitro cell based methods for predicting PLD, researchers have also 

developed in vitro non-cell based methods for assessing the potential for inducing PLD. 
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Vitovic et al.113 used the critical micelle concentration of short-term acidic phospholipids, 

using the surface tension activity to assess the PLD potential of drugs. Jiang et al.114 employed 

a chromatography approach to screen PLD-inducers, which utilized immobilized artificial 

membrane chromatography and electrokinetic chromatography with surfactant unilamellar 

vesicles as the pseudostationary phase. Compared with in vivo methods, in vitro methods are 

relatively high-throughput methods. Nevertheless, a crucial point needs to be considered, as 

we mentioned above, the drugs that induce PLD in vitro may not demonstrate the same effect 

in vivo and vice versa.  

in silico methods for predicting PLD have also attracted the attention of pharmaceutical 

scientists. Several in silico tools had been developed to assess drug’s potential for inducing 

PLD. Ploemen et al.
115 only used ClogP and pKa to build up a simple equation to assess the 

PLD-inducing potential. Based on the works of Ploemen et al., Tomizawa et al.
116 used net 

charge (NC) to replace pKa and they found this modification can improve performance. 

Furthermore, Pelletier et al.
117 still used ClogP and pKa  as prediction parameters but modified 

his rules slightly to upgrade the Ploemen model obtaining better prediction performance. In 

addition, Hanumegowda et al.
106 found that a pharmacokinetic parameter, the volume of 

distribution, can strengthen the Ploemen model to predict occurrence of PLD. In contrast to 

the Ploemen model and other related models, Przybylak et al.
97,118

 utilized characteristic 

structural alerts to construct a prediction model. Ivanciuc119 employed several excellent 

machine learning algorithms to built statistical models to predict a drug’s PLD inducing 

potential.  

 

3.2.1 in silico methods assessing the potential of drug inducing PDL 

in vitro and in silico methods have their pros and cons. Chatman et al.
98

 suggested that the 

two kinds of methods need not be mutually exclusive. They proposed three tiers in their 

publication to reduce the risk of PLD issues. In this three-tier program, they suggested the 

first tier should utilize in silico tools to screen lead compounds and then be supplemented with 

in vitro assays to verify minimal PLD liability. In fact, in silico methods are a low-cost tool 

and their biggest advantage is that compounds can be verified before chemical synthesis, 

which is very useful when verifying artificially designed compounds. In this section, a 

detailed description is given to introduce several popular in silico methods.  
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3.2.1.1 Ploemen model for predicting PLD 

In 2004, Ploemen et al.
115 proposed an equation to rapidly discriminate possible PLD inducers 

among candidate compounds. This equation was concluded by an investigation of PLD 

inducers and they found those had high ClogP and pKa values. Thus, they derived a condition 

shown as Equation (3.4) below. Using this equation, if the sum of the squared ClogP value 

and the squared pKa value is greater than 90 and both ClogP > 1 and pKa > 8, then this 

compound is identified as a PLD-inducer. Here, ClogP reflects hydrophobic characteristics 

and pKa reflects the degree of ionization. In case the compound possesses two or more than 

two titratable groups the larger the pKa is, the more basic is considered. On the other hand, if 

the physicochemical properties of a compound are not fulfilled by these criteria, then it is 

identified as PLD negative. This simple model is explicit and corresponds to the features of 

CADs. However, this model does not provide a deep understanding of the prediction ability. 

In particular, it is hard to produce a high prediction performance for non-CAD PLD inducers.  

                   
2 2If  ( ) ( log ) 90 , and 8& log 1

the compound is predicted as PLD inducer
a apK C P pK C P   

                (3.4) 

 

3.2.1.2 Pelletier model: modified Ploemen model 

Pelletier et al. 117optimized the model proposed by Ploemen et al. In their work, they plotted a 

Spotfire figure, which reflects the relationship of ClogP and pKa for each compound. By using 

this figure, they made efforts to manually adjust parameters for selecting optimized values to 

separate positive and negative compounds. Finally, they derived a new rule (see Equation 

(3.5)) to predict drug-induced PLD by slightly modifying the Ploemen model. For a given test 

compound, if the sum of the squared values of both ClogP and pKa  exceeds the threshold 

value of 50 and ClogP ≥ 2 and pKa ≥ 2, then it can be judged as a PLD-inducer. Conversely, if 

this sum is smaller than the threshold, then it can be considered a PLD negative compound. In 

their report, they prepared a dataset consisting of 201 compounds (85 positive compounds and 

116 negative compounds) to compare their model with Ploemen model. The prediction result 

of the Ploemen model is: Specificity = 0.77, Sensitivity = 0.74 and accuracy = 0.75; the 

prediction performance of modified Ploemen model is: Specificity = 0.85, Sensitivity = 0.79 

and accuracy = 0.82. Obviously, the modified model improved the prediction performance 

compared with the Ploemen model.  

                   
2 2If  ( ) ( log ) 50 , and 6& log 2

then the compound is predicted as PLD inducer
a apK C P pK C P   

                (3.5) 
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3.2.1.3 Tomizawa model  
The Tomizawa model is another variant of the Ploemen model. In 2006, Tomizawa et al.

116
 

proposed to use the Net Charge (NC) to substitute pKa value of the original model. They 

suggested that for the case of zwitterions, the positive charge from the high pKa basic 

functional group can be counteracted by the low pKa acidic functional group. Therefore, the 

NC is a better choice to reflect ionization of compounds in organelles. In their test, the NC of 

compounds was calculated at pH 4.0 because this value is close to the pH in lysosomes. 

Finally, based on NC value and ClogP value, they provided a rule to judge PLD induction 

potential. Using the following prediction model: if ClogP > 1 and 1 ≤ NC ≤ 2 for a given 

compound, it is a PLD inducer. Compounds with NC > 2 were not included in their dataset. 

Furthermore, they provided a criterion for PLD risk ratings of compounds shown in Equation 

(3.6). In their publication, a total of 63 compounds were used to test the proposed method. 

The prediction accuracy reaches 98.4% (62/63). Of these 63 compounds, 33 compounds 

constitute the initial test set, which has been verified by TEM. The comparison with the 

Ploemen model based on these 33 compounds illustrated that the Tomizawa model improved 

prediction performance.  

   

If 1, then PLD negative

If 1 and log 1.61, then PLD positive, low risk

If 1 and log 1.61 and <2.75, then PLD positive, medium risk

If 1 and log 2.75 or (1,2] then PLD positive, high 

NC

NC C P

NC C P

NC C P NC


 
 
   risk

       (3.6) 

 

3.2.1.4 Hanumegowda model 

Since PLD occurrence may result from the residence of compounds in tissues, Hanumegowda 

et al.
106 added a pharmacokinetic parameter, the volume of distribution (Vd), which is an 

important factor reflecting the presence of residual compounds in tissues. They deduced that 

this parameter can be used to screen PLD-inducers from PLD non-inducers. They proposed a 

new criterion to predict the PLD induction potential, shown as Equation (3.7) below. This 

equation combines Vd with ClogP and pKa values together. In their publication of 

Hanumegowda et al. applied this proposed method to predict 101 compounds (51 positive 

compounds and 50 negative compounds). They also used the Ploemen model to predict the 

same dataset for comparison. The accuracy of the Ploemen model for these 101 compounds 

was 77%, while the Hanumegowda model gave an accuracy of 88%. Moreover, the 

Tomizawa model was also used for comparison but they removed 3 compounds whose NC 

values were above 2.0. Therefore, the accuracy of the Tomizawa model is 82% based on 98 

compounds. Based on those results, they said that their model can predict the PLD induction 
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potential better than the other two models. However, this model is still a relatively empirical 

model. More importantly, it is quite difficult and expensive to measure Vd values as these 

need to be tested in vivo in animals. Hanumegowda also mentioned that calculated Vd values 

would render their model less reliable.  

                       
If  log 180 , and log 2

then the compound is predicted as PLD inducer
a dpK C P V C P   

                   (3.7) 

 
 

3.2.1.5 SMARTS models  

Przybylak et al.
97 proposed an in silico to model predict the PLD induction potential of drugs, 

which is based on several characteristic structural fragments of PLD-inducers to identify 

inducers and non-inducers of PLD. The workflow of this model is a like a decision tree, 

including three steps to screen compounds as shown in Figure 3.21. The first version of the 

SMARTS model was derived from the database made by Kruhlak et al.
95

. Based on this 

database, 32 structural patterns (called SMARTS patterns in their publications because in their 

model, all fragments are described in SMARTS strings) were developed to screen possible 

PLD inducers. In addition to those 32 structural patterns, patterns characterizing ring systems, 

carboxylic acids and nitro groups were also included in SMARTS model. In 2014, Przybylak 

et al. updated the SMARTS model by adding 7 new structural patterns concluded from the US 

FDA PLD database published in 2012 consisting of 743 compounds118. The new proposed 

SMARTS model has been shown to be better than the first version. A detailed list of 

SMARTS patterns is shown in Appendix 2.  
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Figure 3.21: Workflow of the original SMARTS model. In this figure, the first phase only 
includes 32 structural patterns and it has been updated to 39 patterns in the second version. 
Original figure from Przbylak et al. 117.  
 

In the SMARTS model, the first step is to input a given compound as a SMILES string and to 

check whether there are matches with the 39 structural patterns of the model. If a given 

compound possesses matches with one or more of those 39 structural patterns, the compound 

can be judged to be a possible PLD inducer. If not, it is directly classified as a PLD non-

inducer. The possible PLD inducer goes into the second phase, if it matches carboxylic or 

nitro SMARTS patterns, then this compound is classified as the PLD non-inducer. If not, this 

compound is still a possible PLD inducer and goes into the final phase for judgment. In the 

final judgment phase, the possible PLD inducer needs to match with ring system patterns. If it 

matches with them, then it is predicted to be a PLD inducer; if not, it is considered to be a 

PLD non-inducer. It is worth noting that ring patterns are important features describing the 

hydrophobic moiety of PLD inducers, but they are not used in the first phase because many 

PLD non-inducers also possess ring systems. However, these patterns are used in the later 

phase for avoiding false positives. When investigating the prediction performance, Przybylak 

et al.97, compared the SMARTS model with the Ploemen model, Pelletier model and 

Hanumegowda model. They found that the prediction performance of the SMARTS model is 

better than the other three models. 
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3.2.2 Phospholipidosis database 

For in silico prediction, the quality of the database is a problem that must be considered 

because the prediction performances of the models depend critically on the datasets used for 

training. Currently, many PLD databases have been published by researchers. However, an in 

silico PLD prediction model cannot be better than the experimental dataset used to train it. In 

addition to technical limitations, there are several other problems in those datasets that 

prevent the construction of excellent models.  

Published PLD databases come from different species because the number of compounds 

proved to induce PLD in human is limited. However, as mentioned above, some compounds 

induce PLD in animals but not in humans. Another point of concern is that the metabolism 

plays a key role in inducing PLD54. For some drugs, the drug itself cannot induce PLD but the 

metabolites of the drugs generated in vivo induce PLD. Unfortunately, few databases have 

considered the influence of such biotransformation. This is a major reason why in silico 

models do not provide correct predictions for some compounds. For example, the 

ketoconazole itself cannot induce PLD but its major metabolite, de-N-acetyl-

ketoconazole(DAKC), can induce PLD.  

Moreover, in many PLD databases, numerous so called PLD non-inducers were actually not 

tested for PLD induction. The reasons why they were defined as PLD negative compounds is 

simply that no reports exist indicating those compounds are related to PLD induction54,120. 

Many PLD positive compounds listed in the databases are only related to the presence of 

foamy macrophages, cytoplasmic vacuolations, cytoplasmic granules, lipidosis, dyslipidosis, 

histiocytosis and so on54. Those physiological phenomena are not reliable indications for 

confirming the occurrence of PLD. Detecting lamellar bodies in the lysosomes by TEM is still 

the most reliable method for judging whether a compound can induce PLD. Considering these 

reasons, in this study, we decided to use a curated database to build our models. Such a 

database was provided by Goracci et al.
54 Furthermore, we also used an independent test set 

provided by Boehringer Ingelheim to validate our models. However, it needs to be noted that 

the independent test set was only verified by an in vitro method and it was not confirmed 

using the TEM method.  

 

3.2.2.1 Goracci phospholipidosis database  

To provide a high quality PLD database, Goracci et al.
54 carefully analyzed seven popular 

databases listed in Table 3.13. To obtain a more reliable database, they corrected errors and 
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discrepancies appearing in those databases and deleted doubtful compounds because the PLD 

assignments of many compounds are inconsistent in different databases. In addition, they also 

considered metabolism and other factors influencing PLD induction properties. This rigorous 

analysis leads to a curated PLD database consisting of 331 compounds, which only contains 

disclosed compounds belonging to those seven databases. To date, this 331 compounds 

database is the most reliable PLD database. In our research, this database was used to examine 

the prediction performance of our in silico models.  

 
Table 3.13: The seven PLD databases investigated by Goracci et al. 54 

author, year  
database 

abbreviation  
PLD+ 

compounds 
PLD- 

compounds 
unique 

compounds 
a 
 

Orogo et al., 2012102 O2012 215 232 262 
Tomizawa et al., 2006116 T2006 35 17 2 
Pelletier et al., 2007117 P2007 56 61 0 
Vitovic et al., 2008113 V2008 34 18 0 
Lowe et al., 2010120 L2010 99 82 2 

Hanumegowda, et al. 
2010106 

H2010 38/33b  42/9b  3 

Fischer et al., 201296 F2012 27/23b  5/9b  2 
a. Compounds that are reported in that database only. 
b. numbers refer to in vitro / in vivo data, respectively. Although some databases do not 

contain new compounds, they provide useful information. 
The compounds used in this research are all disclosed compounds. 
 
 

Confirming the presence of lamellar bodies in lysosomes with TEM is the gold standard for 

examining the PLD induction potential of drugs. Therefore, we further investigated those 331 

compounds in the Goracci database54. We divided those compounds into two categories: 

TEM-confirmed definite compounds and TEM-confirmed unclear compounds. A detailed 

discussion of analyzed results will be reported in a later section. 

Of the seven databases used to compile the Goracci database, only the four databases, namely, 

Orogo database, Tomizawa database, Pelletier database and Lowe database, clearly claim 

information related to TEM confirmation as shown on Figure 3.22. Lowe et al.
120 collected 

185 compounds containing 102 PLD inducers and 83 PLD non-inducers. From the 102 PLD 

inducers, 68 compounds are TEM-confirmed and the remaining 34 compounds were reported 

to be PLD inducers because foamy macrophages or vacuolatins were observed in 

histopathological tests. Unfortunately, Lowe et al. did not provide a name list of TEM-

confirmed compounds. Therefore, for 102 PLD inducers, it is impossible to know the specific 

names of TEM-confirmed PLD inducers. However, in the Lowe database, the 83 PLD non-

inducers have all been confirmed by TEM.  
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In 2012, Orogo et al.
102 constructed an updated version of PLD working group database of US 

FDA, which was based on the old version of the PLD database95 and added compounds from 

literature and according to information from pharmaceutical companies. The updated version 

of the database contains 447 disclosed compounds, which is the largest dataset of those seven 

databases considered by Goracci et al.54. The Orogo database classified all compounds into 

two categories: high-confidence and medium-confidence. The high-confidence PLD inducers 

are TEM-confirmed compounds while the medium-confidence PLD inducers were determined 

histopathological by presence of foamy macrophages, cytoplasmic vacuolations, cytoplasmic 

granules, lipidosis, dyslipidosis or histiocytosis. For PLD non-inducers, they investigated 

FDA documents. If PLD keywords were absent for a compound in the New Drug Application 

(NDA) documents, it was classified as high-confidence compound. For the medium-

confidence compound, PLD keywords were not found in the Investigational New Drug (IND) 

documents.  

The Pelleter database provides 117 public compounds including 56 PLD inducers and 61 PLD 

non-inducers. All 56 PLD inducers have been confirmed by TEM. In addition, in the report of 

Tomizawa et al., they also verified 23 compounds using the TEM method. However, it must 

be noted that the compounds collected in the four databases (Orogo database, Tomizawa 

database, Pelletier database and Lowe database) include duplicate compounds.  

Based on the information in those four databases, it can be concluded that in the Goracci 

database54, 178 compounds are TEM-confirmed. However, it cannot be claimed that the 

remaining 153 compounds are not TEM-confirmed (i. e. they are TEM-confirmed unclear), 

since we only took the information from the seven datasets cited by the Goracci database and 

did not perform an independent large-scale literature search. Hence, we consider only those 

178 compounds to be TEM-confirmed, while it is unclear for the remaining 153 compounds.  
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Figure 3.22: Construction of the Goracci database54. This database includes 331 compounds. 
However, one compound was removed because the molecular descriptors could not be 
generated with the software packages. From the remaining 330 compounds 178 are TEM-
confirmed, while for 152 compounds it is unclear.  
 

 

Due to software limitations one compound (piperamide) in the Goracci database54 could not 

be characterized by molecular descriptors. Therefore, only 330 compounds were used for the 

present study. Details on the molecular descriptors are given in chapter 3.2.3. The information 

on the TEM-confirmed and TEM-confirmed unclear compounds are listed in Appendix 3.  

 

3.2.2.2 Independent phospholipidosis test dataset 

For this study, an independent test set was prepared to evaluate the performance of our 

models to predict the PLD induction potential. This independent test set contains 133 

compounds, of which 72 are PLD positive and 61 PLD negative. The PLD measurement was 

based on in vitro cell assays. The dataset was provided by courtesy of Boehringer Ingelheim. 

Therefore, structure information of the compounds cannot be disclosed here. An in vitro 

fluorescent phospholipid-based assay was used to verify the compounds in the independent 

test set at Boehringer Ingelheim. This method was introduced first by Nioi et al.
108.  

The assay setup can be briefly described as follows. HepG2 cells, which are human liver 

tissue cells, were seeded into 96 well plates at a density of 5,000 cells per well in 100 l 

media and allowed to attach overnight. To each well was added 50 l of the HCS 
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LipidTOXTM red reagent (Life Technologies; diluted 1:500 in normal growth medium) and 

50 l of the test article or control (diluted in normal growth medium). After 48 h, cells were 

fixed in 4% formaldehyde in PBS containing Hoechst 33341 for 20 min at 37 °C. Following 

washing, the fluorescence was measured using an Arrayscan VTi high content analysis reader 

(Thermo Scientific). For each assay, amiodarone (Sigma) was used as a positive control and 

aspirin was used as a negative control. Compounds and controls were typically assayed at 9 

concentrations ranging from 0.78 to 200 M. Compounds showing a dose-responsive increase 

of LipidTOX fluorescence intensity that is equal to or greater than 2.5-fold of the concurrent 

vehicle control at non-cytotoxic concentrations (>75% viability of concurrent vehicle control), 

is considered a positive response in this assay.  

 

Table 3.14: Overview of molecular descriptors used for PLD. 

feature groups number of features 
MoKa_pKa_logD122  5 

ECFP4123 1024 
Estat124  114 

Fragment130-132 1162 
Ghose Grippen125  120 

MOE Descriptors67  185 
PipelinePilot126 68 
MDL2DKeys127 166 

Sterimol128  12 
Talete129 5571 

total  

features used
a
 

8427 

3849 

a. After deleting duplicate features, the number of features used is 3849.  
The molecular descriptors were provided by courtesy of Dr. Jörg Bentzien at Boehringer-
Ingelheim. 
 

3.2.3 Molecular descriptors for PLD  

So far, it is not clear yet which descriptors of compounds are most important to identify their 

ability to induce PLD. Nevertheless, many researchers priories molecular descriptors relating 

to CADs because the majority of drugs that are verified as inducing PLD are CADs. But, not 

all PLD inducers are CADs. Therefore, in this study, we employed 10 different software 

packages to generate molecular descriptors and topological fingerprints for covering chemical 

diversity as much as possible. Thus, a total of 8427 molecular descriptors were calculated for 

each compound using the software MoKa122, ECFP4123, E-states124, Fragment Descriptors130-

132, Ghose Grippen125, MOE descriptors67, Pipeline Pilot126, MDL2Dkeys127, Sterimol128, 

Talete129. Table 3.14 lists information on the molecular descriptors.  
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For the compound piperamide in the Goracci database54, features could be calculated due to 

limitations of the software. Therefore, this compound was excluded from the database. In 

addition, for zidovudine and azaserine three features, DRV, DSA and DSB, failed to be 

calculated. In this case for both compounds, feature values that are averages over the other 

compounds was used as substitute. To save CPU time and facilitate the identification of 

important features, duplicated features were removed from the database. As a result, 4573 

molecular features were deleted, leaving a final number of 3849 features. To create a proper 

predictive environment for the independent test set, the same 3849 features were used. 

 

3.2.4 Results 

In this section, we depict the prediction results of several approaches applied to PLD datasets, 

including the Goracci database54 and the independent test set. Both DemPred (see Chapter 2.9) 

and DemFeature-1(see Chapter 2.10.1) were utilized to predict the Goracci database (Chapter 

3.2.2.1). In addition, in order to investigate whether the SAMRTS features are suitable for our 

models to predict PLD, the SMARTS features were also used to constitute the DemFeature-1 

model. Moreover, for further validating our methods, both DemPred and DemFeature-1 

models were also used to predict the independent test dataset (3.2.2.2). Before constituting 

DemPred and DemFeature-1 models, the features of all datasets have been normalized by Z-

score (Equation (2.5)). In addition to our models, several popular models, namely, the 

Ploemen model(see Chapter 3.2.1.1), the Pelletier model (see Chapter 3.2.1.2), and the 

original and updated SMARTS models (see Chapter 3.2.1.5), were used to compare with our 

prediction models in this section.  

 

Table 3.15: Number of positive and negative PLD compounds in the five subsets used for 
cross validation.  

index  
test set training set 

NumFeaa  
positive negative positive Negative 

1 17 49 109 155 3780 

2 28 38 98 166 3790 

3 24 42 102 162 3781 

4 30 36 96 168 3790 

5 27 39 99 165 3785 
a. The original number of features is 3849. However, different training subsets have different 

numbers of features that do not vary. Therefore, the number of features is different for 
each subset.  
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3.2.4.1 Prediction of Goracci database 

As mentioned in the Chapter 3.2.3, the modified Goracci database54 used in our research 

involves 330 compounds characterized by 3849 features. To fully utilize each compound in 

the dataset to optimize the prediction performance of our models, a 5-cross validation 

technique (see Chapter 2.3) was applied to the dataset. During cross validation, each left out 

subset was not used for modeling so that the test set information was not used at all. Thus, 

each subset selected randomly from the whole dataset by cross validation represents an 

external dataset so the whole dataset can be truly predicted to efficiently assess the prediction 

performance of the models. Table 3.15 details the subsets separated from the whole dataset. 

For training, the ratio of positive and negative compounds was fixed at 1:1.5. Features whose 

values do not vary over all considered compounds cannot contribute to prediction and are 

therefore removed.  

 

3.2.4.1.1 The prediction results of DemPred  

The five training subsets were utilized to construct the DemPred models (see Chapter 2.9) to 

predict the corresponding test subsets. The DemPred models were built using the L1 & L2 

two-step method (see Chapter 2.8). As applied to the datasets of the Kaggle™ competition 

(see Chapter 3.1), first the L1 approach was used for feature selection to reduce the 

complexity of the prediction problem. The L1 approach can identify the features that 

contribute only insignificantly to the prediction performance. After the L1 feature selection, 

the remaining features were further processed by L2 regularization. The L2 approach slightly 

adjusts the weight values of the features rather than completely deleting them. The efficiency 

of L1 & L2 approach depends on a proper selection of the λ values. Therefore, the choice of 

these values is important when using the L1 & L2 methods. The strategy to find the optimized 

λ values is different from the application for the Kaggle™ datasets. Here, for each 

combination of four subsets (listed in Table 3.15) that are used for training a ten fold-cross 

validation was performed to find the optimal λ values (described in Chapter 2.3) from a given 

set of values. These are λ1∈{0.003, 0.004, 0.005, 0.006,…..., 0.150, 0.152, 0.153, 0.155, 

0.160, 0.162, 0165, 0.170} and λ2∈{0.03, 0.04,… 0.10, 0.12, 0.15, 0.20, 0.25, 0.30,…, 0.37, 

0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90}. 

Since the project is a classification task, the one sided log Lorentzian (Equation (2.27)) was 

employed as loss function to construct the objective function because it can match the 0-1 

indicator function. With this loss function the deviation between the values of the scoring 
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function (Equation (2.10)) and corresponding biological response values (-1 and +1) are 

smaller and the prediction results are less sensitive to outliers in the datasets. In this research, 

as shown in Table 3.15, 5 training subsets from the Goracci database54 were used to build the 

DemPred models with the two-step L1 & L2 approach to predict the test subsets. The test 

subsets are external datasets - not used for model building - to test the prediction performance 

of the model.  

As mentioned in Chapter 3.2.4, a total of 3849 features was used to constitute the prediction 

models. The prediction results of the DemPred model built with the L1 approach for 5 subsets 

of the Goracci database are shown in Table 3.16. The comparable results of 5 subsets 

demonstrated that the subset 4 has the worst prediction result (only 0. 391 by MCC and 69.7% 

by accuracy). The main reason is that its sensitivity is significantly worse than other ones. 

The subset 5 gives the best results 0.654 by MCC and 83.8% by accuracy. As a whole, the 

MCC is 0.532 and accuracy is 77.9%.  

 
 
Table 3.16: Prediction results for the five subsets (Table 3.15) by L1 feature selection 
(λ2=0.0). 

  λ1
a  # features

b  MCC accuracy  sensitivity specificity 

subset 1 0.028 155 0.515 78.8%(52/66) 0.765(13/17) 0.796(39/49) 

subset 2 0.045 143 0.578 78.8%(52/66) 0.821(23/28) 0.763(29/38) 

subset 3 0.055 106 0.551 78.8%(52/66) 0.750(18/24) 0.810(34/42) 

subset 4 0.075 56 0.391 69.7%(46/66) 0.500(15/30) 0.861(31/36) 

subset 5 0.02 194 0.654 83.8%(55/66) 0.778(21/27) 0.872(34/39) 

average     0.532
c
  77.9%(257/330) 0.714(90/126) 0.819(167/204) 

a. λ1 is determined by 10-fold cross-validation on the training subsets.  
b. The number of features after feature selection. 
c. The MCC for the whole dataset is calculated by summing up TP, TN, FP and FN of 

all subsets. 
 
 

For the L1 feature selection, it is worth noting that already with a small λ1 value a large 

number of features can be deleted. For each subset, less than 5% of all features were retained 

(see Table 3.16). Interestingly, the prediction performance is not deteriorated by strongly 

decreasing the number of features and the model with a smaller number of features can 

provide even better prediction performance than one with a larger number of features.  
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Figure 3.23: Prediction performances of the five subsets (Table 3.15) with L1 feature 
selection. Dashed lines represent training set (recall) and solid lines represent prediction 
performances of test subsets. The red line demonstrates the changing of number of features 
with increasing of λ1 value. The left vertical axis (black) represents MCC performance and 
right vertical axis (red) represents the number of features retained. The horizontal axis 
represents the selected λ1 values. The smallest λ1 is 0.001. This figure was made by R v3.1.3. 
 

 

Figure 3.23 shows the dependence of the prediction performance of DemPred and number of 

selected features as a function of the λ1 value. This figure illustrates the relations between the 

λ1 value and the number of selected features, which clearly reflects that the L1 approach has a 

strong effect for the sparsity of features. When the λ1 is larger than 0.15, the number of 

features will be less than 20 for all five subsets. The highest prediction performance is given 

by a relatively small number of features. Except for subset 4 the prediction performance first 

increases with increasing λ1 value before it finally decreases. For the subset 4, the L1 

approach cannot efficiently improve the prediction performance.  
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After L1 feature selection, L2 regularization was employed based on the remaining features to 

build the DemPred model for the Goracci database. Table 3.17 shows the prediction results of 

the DemPred model. The prediction performances (MCC and accuracy) on subset 1, subset 3 

and subset 4 are better than the results using only the L1 approach. For subset 5 the prediction 

results are the same for subset 2 they are slightly worse. The average prediction results are 

slightly better with additional L2 regularization yielding for MCC and accuracy 0.536 and 

78.2%, respectively, as compared to 0.532 and 77.9% if only L1 feature selection is applied. 

The improvement is due to an increase in specificity from 0.819 to 0.828 while the sensitivity 

declines from 0.714 to 0.706. However, after L2 regularization, the prediction results of 

DemPred are better than the results of the Pelletier model (MCC: 0.534, accuracy 77.9%). In 

addition, it is worth noting that in this stage the prediction performances are not significantly 

influenced by λ2 (see Figure 3.24) as the influence of λ1 in the stage of L1 feature selection 

(see Figure 3.19).  

 

 

Table 3.17: DemPred prediction results for the five subsets with L2 regularization (λ1=0.0). 

 λa # features
b MCC accuracy  sensitivity specificity 

subset 1 0.200 155  0.588  80.3%(53/66) 0.882(15/17) 0.775(38/49) 
subset 2 0.300 143  0.571  78.8%(52/66) 0.785(22/28) 0.785(30/38) 
subset 3 0.300  106  0.542  78.8%(52/66) 0.708(17/24) 0.833(35/42) 
subset 4 0.350 56  0.398  69.7%(46/66) 0.466(14/30) 0.889(32/36) 
subset 5 0.150  194  0.654  83.8%(55/66) 0.778(21/27) 0.872(34/39) 
average   0.536

 c
  78.2%(258/330) 0.706(89/126) 0.828(169/204) 

a. λ2  is determined by 10-fold cross-validation on training subsets as described in main text.  
b. Number of features retained after L1 feature selection (see Table 3.16). 
c. The MCC for the whole dataset is calculated by summing up TP, TN, FP and FN of 

subsets. 
 
 
 



 

 91 

 
Figure 3.24: Prediction performances of the five subsets (Table 3.15) with L2 regularization after L1 
feature selection. The number of features is given in Table 3.17. Dashed lines represent training set 
(recall) and solid lines represent prediction performances of test subsets. 1r to 5r indicate the recall 
curves of 1st subset to 5th subset and 1 to 5 indicate the prediction curves of 1st subset to 5th subset.  
This figure was made by R v3.1.3. 
 

3.2.4.1.2 The prediction results of DemFeature-1 

DemFeature-1 was also used to predict the Goracci database. DemFeature-1 was developed 

from DemPred. Unlike DemPred, DemFeature-1 specifically and carefully considers each 

compound in the test set. Based on the similarity rule (Equation (2.36)), an individual training 

subset is built for each compound of the test set. The method has been described in Chapter 

2.10.1. DemFeature-1 uses a parameter (cutoff) to control the number of compounds in each 

training subset. In the application for PLD, the cutoff value 0.0 was used to construct 

DemFeature-1 models. The prediction power of this method has been verified through the 

datasets of the Kaggle™ competition as mentioned in Chapter 3.1. For the datasets of the 

Kaggle™ competition, albeit DemFeature-1 is CPU time expensive, it efficiently improves 

prediction performance. Due to the excellent prediction performance of DemFeature-1, it was 

employed also to predict the PLD datasets. The objective function of DemFeature-1(Equation 

(2.37)) includes an L2 regularization term used to mitigate the risk of overfitting. The 

parameter λ2 needs to be optimized to control the strength of L2 regularization. Since 

DemFeature-1 is very CPU time expensive, one third of the compounds are randomly selected 

from the training subset as validation set to optimize λ2. The candidates for λ2 in this study 

include λ2 ∈ {0.15, 0.18, 0.20, 0.23, 0.25, 0.28, 0.30, 0.33, 0.35, 0.36, 0.37, 0.38, 0.4, … …, 
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0.45, 0.48, 0.50, 0.53, 0.55,… … , 0.7, 0.72, 0.75, 0.78, 0.79, 0.8, 0.82, 0.85, 0.88, 0.9, 0.92, 

0.95}.  

 

Table 3.18: Prediction results of the DemFeature-1 model with the reduced feature set obtained by L1 
feature selection.  
 

  λ2
a 

# 

features
b 

MCC accuracy  sensitivity specificity 

subset 1 0.55 155 0.567 78.8%(52/66) 0.941(15/17) 0.755(37/49) 

subset 2 0.55 143 0.578 78.8%(52/66) 0.821(23/28) 0.763(29/38) 

subset 3 0.65 106 0.562 78.8%(52/66) 0.708(19/24) 0.786(33/42) 

subset 4 0.35 56 0.509 75.8%(50/66) 0.700(21/30) 0.806(29/36) 

subset 5 0.3 194 0.561 83.3%(52/66) 0.741(20/27) 0.821(32/39) 

average     0.552
 c
  78.2%(258/330) 0.778(98/126) 0.784(160/204) 

a. λ2 is determined by randomly selecting one third of the compounds from the five 
training subsets.  

b. The number of features was obtained using DemPred with L1 feature selection.  
c. The MCC for the whole dataset is calculated by summing up TP, TN, FP and FN of 

five subsets.   
 

Table 3.19: Prediction results of DemFeature-1 with all features (3849 features).  

 λ2
a # features

b MCC accuracy  sensitivity specificity 

subset 1 0.250  3780 0.683 81.8%(56/66) 0.882(16/17) 0.816(40/49) 
subset 2 0.350  3790 0.661  83.3%(54/66) 0.821(23/28) 0.816(31/38) 
subset 3 0.150  3781 0.598 80.3%(54/66) 0.625(15/24) 0.929(39/42) 
subset 4 0.650  3790 0.572  78.8%(52/66) 0.700(21/30) 0.861(31/36) 
subset 5 0.550 3785 0.748  87.9%(58/66) 0.778(22/27) 0.949(36/39) 
average   0.645

 c
  83.3%(275/330) 0.770(97/126) 0.873(178/204) 

a. λ2 is optimized using one third of randomly selected compounds from the training 
subset.  

b. The initial number of all features is 3849. For each subset, features, which did not vary, 
were deleted leading to feature numbers that can differ for each subset.  

c. The MCC for the whole dataset is calculated by summing up TP, TN, FP and FN of 
five subsets. 

 
 
DemFeature-1 was applied to the five subsets of the Goracci database54 used by DemPred (see 

Table 3.16). Table 3.18 shows the prediction results of DemFeature-1 with L1 feature 

selection (Chapter 3.2.4.1.1). Compared with the prediction results of DemPred (shown in 

Table 3.17), the sensitivity improves from 0.706 to 0.762, especially on subset 4 whose 

sensitivity improved from 0.466 to 0.700 leading to a prediction performance of 0.509 by 

MCC and 75.8% by accuracy. This substantial increase in correct identification of PLD 

inducers, which is important in the field of drug discovery, demonstrates the advantage of 
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DemFeature-1. On the other hand, the specificity of the DemFeature-1 model is only 0.784 

compared to 0.828 obtained with DemPred. The overall accuracy of DemFeature-1 is not as 

good as of DemPred, However, the large enhancement in sensitivity yields a slightly larger 

MCC for DemFeature-1 for DemPred (0.536 versus 0.552).  

In addition to using a reduced feature set to construct the DemFeature-1 model, the training 

set was also employed with all features (3849 features) to construct the DemFeature-1 model 

(results in Table 3.19). The DemFeature-1 model built with all features is significantly better 

than the DemFeature-1 model built with the reduced number features (see Figure 3.25). The 

MCC increases from 0.552 to 0.645 and the accuracy rises from 78.2% to 83.3%. Although 

the prediction performance for subset 4 is still the worst of all five subsets, the prediction 

result has improved considerably in terms of MCC and accuracy compared with the previous 

models (see Table 3.17 & Table 3.18). Comparatively, the specificity shows greater 

improvement than sensitivity. The specificity of the DemFeature-1 model built with all 

features increases from 0.784 to 0.873, while the sensitivity stays practically on the same level.  

 

 

Figure 3.25: DemFeature-11 denotes the DemFeature-1 model trained with the reduced 
number of features. DemFeature-12 denotes the DemFeature-1 model trained with all features. 
The DemFeature-1 models are significantly better than the DemPred model, with a clear 
increase in sensitivity. Compared to the DemFeature-1 model trained with reduced features, 
adding more features efficiently increases the specificity of the DemFeature-1 model. This 
figure was made by R v3.1.3. 
 
 

Additionally, since the SMARTS features (Chapter 3.2.1.6) created by Przybylak et al.97,117 

offer an excellent prediction performance through a workflow, in this study the features of the 

updated SMARTS model were also employed to construct the DemFeature-1 model. The 

updated SMARTS model has 44 features including 39 structural patterns and 5 other 
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judgment conditions. The prediction results of the DemFeature-1 model with SMARTS 

features are shown in Table 3.20. The prediction performance of the DemFeature-1 model 

built with SMARTS features is much worse than the SMARTS model. Nevertheless, it is 

worth noting that the specificity of this model is 0.907, which is significantly better than the 

SMARTS model including original and updated versions whose specificities are 0.848 and 

0.819, respectively.  

 
 

Table 3.20: Prediction results of DemFeature-1 using the 39 SMARTS features97, 118 (cutoff = 

0.0). 

  λ2
a 
 # features

b
 MCC accuracy  sensitivity specificity 

subset 1 0.300 39 0.621 86.4%(57/66) 0.529(9/17) 0.980(48/49) 
subset 2 0.500 39 0.444 72.7%(48/66) 0.464(13/28) 0.921(35/38) 
subset 3 0.300 36 0.381 72.7%(48/66) 0.458(11/24) 0.881(37/42) 
subset 4 0.300 39 0.391 69.7%(46/66) 0.500(15/30) 0.861(31/36) 
subset 5 0.300 39 0.390 71.2%(47/66) 0.481(13/27) 0.872(34/39) 
average     0.443

 c
 74.6%(246/330) 0.484(61/126) 0.907(185/204) 

a. λ2  is determined by a third validation sets randomly selected from training subsets. 
b. The number of SMARTS features is 44. For each subset, the features (STD=0) were 

deleted leading to the number of features being different in each subset. 
c. The MCC for the whole dataset is calculated by summing up TP, TN, FP and FN of 5 

subsets. 
 
 

To further investigate the influence of SMARTS features, they were added to the 3849 

features used in our study to construct a DemFeature-1 model. Thus, a total of 3993 features 

were employed to build the DemFeature-1 model. The results of prediction performance of 

this model are shown in Table 3.21. The addition of SMARTS features is not useful to 

improve the prediction performance of the DemFeature-1 model. The prediction results of the 

models with additional SMARTS features and without SMARTS features almost stay on the 

same level. The sensitivity of this model is the same as the sensitivity given by the 

DemFeature-1 model only with the original 3849 features while the specificity of the model 

with additional SMARTS features decreases slightly from 0.907 to 0.858.  
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Table 3.21: Prediction results of DemFeature-1 with 39 added SMARTS features97,118 (cutoff 

= 0.0).  

  λ2
a 
 # features 

b
 MCC accuracy  sensitivity specificity 

subset 1 0.3 3824  0.683 84.8%(56/66) 0.941(16/17) 0.816(40/49) 
subset 2 0.35 3824  0.661 83.3%(55/66) 0.821(23/28) 0.842(32/38) 
subset3 0.1 3822  0.563 80.3%(53/66) 0.625(15/24) 0.905(38/42) 
subset4 0.65 3828  0.572 78.8%(52/66) 0.700(21/30) 0.861(31/36) 
subset5 0.65 3829  0.687 84.8%(56/66) 0.815(22/27) 0.872(34/39) 
average    0.628 82.4%(272/330) 0.770(97/126) 0.858(175/204) 

a. λ2 is determined by a randomly selected validation set which is one third of the training 
subset. 

b. The number of features is 3993 including ours 3849 features and 44 SMARTS features. 
Features whose values do not vary in the training set were deleted leading to different 
numbers of features for each subset.  

c. The MCC for the whole dataset is calculated by summing up TP, TN, FP and FN of 5 
subsets. 

 

 

3.2.4.1.3 The prediction results of TEM-confirmed compounds  

As introduced above, the Transmission Electron Microscopy (TEM) is the gold standard 

method to identify positive or negative PLD properties of a compound. PLD positive 

compounds that are only confirmed by histopathological presence of foamy macrophages, 

cytoplasmic vacuolations, cytoplasmic granules, lipidosis, dyslipidosis or histiocytosis cannot 

be considered reliable PLD-inducers. On the other hand, many compounds in the PLD 

databases are considered PLD negative only due to the lack of evidence of PLD. Goracci et 

al.
54 analyzed seven popular PLD databases and removed unreliable compounds. However, 

the compounds in this curated database are not all confirmed by the TEM method. 

 
 
Table 3.22: Comparison of predictions for TEM-confirmed and TEM-confirmed unclear 
compounds using the same prediction scheme as used for Table 3.19. 

TEM-confirmed 178 compounds 

  true positive 
TP 

true negative 
TN 

false positive 
FP 

false negative 
FN 

number of compounds 78 66 9 25 
mean value of scoring 

function 
0.593 -0.778 0.306 -0.483 

TEM-confirmed unclear 152 compounds 
number of compounds 19 112 17 4 
mean value of scoring 

function 
0.527 -0.628 0.451 -0.596 

 
 



 

 96 

In the Goracci database, specific information concerning which compounds have been 

confirmed by the TEM method is not provided. Therefore, we tracked back to investigate the 

seven PLD databases used to construct the Goracci database. There are only four databases 

providing information of TEM identification. Of the 330 compounds of the Goracci database, 

178 are TEM-confirmed while it is unclear for the other 152 compounds (TEM-confirmed 

unclear). Chapter 3.2.2.1 describes in detail the sources of TEM identification information.  

The scoring function (Equation (2.10)) is used to predict the property assignment of a 

compound in the test set. The biological response representing PLD assignment in the training 

set is -1 and +1 for being negative and positive with respect to PLD-induction, respectively. If 

the value of the scoring function (y value ) is greater than zero, the test compound is judged to 

be positive else it is judged negative. The higher the positive predicted value of the scoring 

function is, the higher is the probability that the corresponding compound belongs to the 

positive set and vice versa. To observe whether TEM-confirmed compounds are more reliable, 

the predicted values of TP, TN, FP and FN of the TEM-confirmed compound set were 

summed up, respectively for comparison with their counterparts among the TEM-confirmed 

unclear compounds. The results of the comparison are shown in Table 3.22. The predicted 

values of the scoring function are calculated by the DemFeature-1 model built with all 

features (3849 features). The results for each compound are given in Appendix 3.  

Table 3.22 demonstrates that the mean value of the scoring function (MVSF) of TPs of TEM-

confirmed compounds is larger than the MVSF of TPs of TEM-confirmed unclear compounds. 

The MVSF of TNs for TEM-confirmed compounds is obviously lower than the MVSF of TNs 

for TEM-confirmed unclear compounds. These comparisons suggest that the reliability of 

TEM-confirmed compounds is higher than of the TEM-confirmed unclear compounds. On the 

other hand, the MVSF of FPs for TEM-confirmed compounds is lower than the MVSF of FPs 

for TEM-confirmed unclear compounds. The MVSF for FNs for TEM-confirmed compounds 

is larger than the MVSF of FNs for TEM-confirmed unclear compounds. Those results reflect 

that the TEM-confirmed unclear compounds have a higher probability to be judged 

incorrectly. However, it must be noted that the number of FPs for TEM-confirmed 

compounds and the number of FNs for TEM-confirmed unclear compounds are relatively 

small compared to the number of compounds in the other sets. In summary for the TEM-

confirmed compounds correct assignments are made with a higher degree of confidence while 

incorrect assignments with lower degree of confidence than for the TEM-confirmed unclear 

compounds. However, one can also observe that the prediction results are more favorable for 
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the TEM-confirmed unclear dataset than for the TEM-confirmed compounds, since in the 

former case only 21 (13.8%) wrong assignments are made while in the latter case these are 34 

(19.1%). To check whether such a comparison is robust, we also designed another way to 

compare the reliability (see Figure 3.26).  

As shown in Figure 3.26, we used TEM-confirmed compounds as the training set to build a 

DemFeature-1 model to predict the TEM-confirmed unclear compounds. Then, we deleted the 

compounds classified incorrectly in TEM-confirmed unclear dataset and used the remaining 

compounds as a training set to in turn predict the TEM-confirmed compounds. In addition, 

instead of deleting the incorrect predicted compounds o the TEM-confirmed unclear dataset, 

we exchanged their PLD properties and then trained a DemFeature-1 model based on this 

modified TEM-confirmed unclear dataset to predict the TEM-confirmed compounds. The 

results are shown on Table 3.23.  

 

Figure 3.26: First the TEM-confirmed compounds are used to train a model to predict TEM-
confirmed unclear compounds to find out which compounds are classified incorrectly in the 
set of TEM-confirmed unclear compounds. Then, two tests are performed to analyze whether 
the PLD properties of the incorrectly classified compounds are unreliable.  
 

 

As shown in Table 3.23, after deleting the compounds classified incorrectly in the TEM-

confirmed unclear set, the prediction performance can be improved (prediction 2). 

Furthermore, if we change the PLD properties of misclassified compounds, the prediction 

performance can be greatly improved (prediction 3). This improvement mainly comes from an 

enhanced sensitivity. From those results, it can be deduced that the positive compounds in the 

TEM-confirmed unclear set include actually many negative compounds. On the other hand, 

the specificities of prediction 2 and prediction 3 are lower than for prediction 1. These 
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phenomena can explain why the quality of the negative compounds in the TEM-confirmed 

unclear set is relatively better than the quality of the positive compounds in the TEM-

confirmed unclear set. Indeed, the majority of the negative compounds in the TEM-confirmed 

unclear set belong to the high-confidence compounds in the Orogo database102. The reason for 

those compounds being classified as negative compounds is because the absence of PLD 

keywords in the New Drug Application documents of the U.S. FDA. Combined with the 

investigation results in Table 3.23, those negative compounds in the TEM-confirmed unclear 

set can be trusted as relatively reliable PLD non-inducers. Therefore, when building a proper 

PLD prediction model, if there are too few negative compounds, those negative compounds in 

the TEM-confirmed unclear set can be considered as reliable PLD negative compounds.  

 

 

Table 3.23: Prediction using different trainings sets of the TEM-confirmed unclear 
compounds. 

  λ2 MCC accuracy sensitivity specificity 

prediction 1 0.750  0.442 65.7%(117/178) 0.437(45/103) 0.960(72/75) 

prediction 2 0.750 0.507 72.5%(129/178) 0.592(61/103) 0.907(68/75) 

prediction 3 0.700 0.690 84.8%(151/178) 0.864(89/103) 0.827(62/75) 
prediction 1: Use TEM-confirmed unclear set to predict TEM-confirmed set of the Goracci 
database54.  
prediction 2: Predict TEM-confirmed set after deleting the compounds classified incorrectly 
in TEM-confirmed unclear dataset.  
prediction 3: Predict TEM-confirmed set after exchanging the PLD properties in the TEM-
confirmed unclear dataset. 
 
 

3.2.4.1.4 Measurement of predictive confidence 

The predictive confidence measurement was defined in Chapter 2.13. It estimates the 

reliability of the classification for a compound. The predictive confidence is a probability 

measure that a compound is correctly predicted to be PLD inducer or not. According to this 

definition, for the binary classification, the minimal probability for the predicted class must be 

larger than 0.5. Confidence is normalized to the range of 0.0-1.0. The confidence can be 

considered as an internal measure of prediction performance. Thus, this confidence should 

correlate with prediction quality including MCC and accuracy. The Figure 3.23 demonstrates 

the correlation between confidence and prediction quality. The prediction result was provided 

by DemFeature-1 model built with 3849 features (see Table 3.19).  

Based on the prediction quality of the compounds in each bin of the histogram, clearly, the 

prediction quality is proportional to the confidence level. The compounds with high 
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confidence have a high probability of being classified correctly. According to Figure 3.27, 

from the confidence level 0.5 onwards, the prediction quality is such that accuracy and MCC 

values are above 0.8. Furthermore, the confidence of the majority of compounds is greater 

than 0.5. Moreover, it is worth noting that of those 10 bins, the bin representing the maximum 

confidence interval (0.9-1.0) accounts for the largest number of compounds (>24%). Overall, 

it can be concluded that a compound predicted with higher the confidence is more likely 

correctly predicted. 

 

 
Figure 3.27: The left plot represents the correlation between the confidence and accuracy and 
the right plot represents the correlation between the confidence and MCC value. Each plot 
consists of a histogram for the number of molecules (black), prediction quality points (blue) 
and a linear fitted line (red). The histogram contains 10 bins. Of those 10 bins, each bin 
represents a confidence interval of 0.1. 330 compounds from the Goracci database spread over 
those bins in accordance with the confidence value of each compound. The number of 
compounds in each bin is reflected on the right vertical axis. The prediction quality points 
(accuracy and MCC) were calculated based on the compounds within each bin. The result 
shown on this figure is given by the DemFeature-1 model built with 3849 features. The fitting 
equations are: 1 10.2787 0.6861,   0.5780 0.3341;accuracy conf MCC conf     This 
figure was made by R v3.1.3. 
 

3.2.4.1.5 PLD prediction performance for different models  

Several in silico prediction models classifying PLD inducers and PLD non-inducers have 

been introduced in the previous sections. In this section, we employ the Ploemen model 

(Chapter 3.2.1.1), Pelletier model (Chapter 3.2.1.2), original SMARTS model and updated 

SMARTS model (Chapter 3.2.1.6), to compare with the models we developed, DemPred 

(Chapter 2.9) and DemFeature-1(Chapter 2.10.1). The results of the Ploemen model and 

Pelletier model were produced by our programs. The results of the original SMARTS model 

and updated SMARTS model were given in the publication by Przybylak et al.
97 . Table 3.24 

lists the results of the comparison. 
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Table 3.24: Predictive statistics of PDL prediction models.  

  MCC  accuracy  sensitivity  specificity  

Ploemen model  0.421 66.1%(218/330)  0.452(57/126)  0.789(161/204)  

Pelletier model  0.534 77.9%(257/330)  0.722(91/126)  0.814(166/204)  

original SMARTS  0.56 79.4%(262/330)  0.706(89/126)  0.848(173/204)  

updated SMARTS  0.608 80.6%(266/330)  0.833(105/126)  0.789(161/204)  

DemPred
a 0.536 78.2%(258/330) 0.706(89/126) 0.828(169/204) 

DemFeature-1
b  0.645 83.3%(275/330) 0.770(97/126) 0.873(178/204) 

a. The result of the DemPred model is given by L2 regularization. It is based on reduced 
number of features, which were selected by L1 approach.  

b. The result of the DemFeture-1 model is obtained with all 3849 features.  
 
 
 
According to the comparison (Table 3.24), the Ploemen model shows a poor prediction 

performance with 66.1% by accuracy and 0.421 by MCC. This model is based only on two 

simple physicochemical properties, log P and pKa. Based on the prediction performance of 

the Ploemen model, it seems that log P and pKa alone are not sufficient to give a reasonable 

prediction result. However, the Pelletier model, which is a modified version of the Ploemen 

model and is also based on log P and pKa, provides an obvious improvement in prediction 

performance in terms of accuracy, from 66.1% to 77.9% and in MCC, from 0.421 to 0.534. 

Despite this improvement the Pelletier does not reach the prediction quality of the SMARTS 

models and of our models.  

The prediction results of both original SMARTS model and updated SMARTS model are 

better than those of the Ploemen, Pelletier and DemPred model. The updated SMARTS model 

improves the sensitivity compared to the original SMARTS model but the updated SMARTS 

model predicts more false positives than the original SMARTS model. Although the updated 

SMARTS model has the best sensitivity of all considered prediction models, the decrease in 

specificity lowers the prediction results characterized by MCC and accuracy.  

The DemFeature-1 model built with all 3849 features offers the highest predictive power. The 

3849 features cover a large area of chemical diversity, which seems to be advantageous to 

identify PLD inducers correctly. The usage of a large number of features is not helpful to 

explain mechanism of PLD occurrence, which is still not understood. On the other hand, such 

in silico models can efficiently guarantee drug safety in the early stage of drug development.  
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Table 3.25: The comparison of P-value among different models. 

Goracci database total number of compounds: 330 
  updated SMARTS original SMARTS DemPred

a
  Pelletier Ploemen  

DemFeature-1
b
 0.374 0.171 0.017 0.045 0.006 

updated SMARTS  0.584 0.445 0.306 0.018 
original SMARTS   0.740 0.614 0.026 

DemPred
a
    1.000 0.138 

Pelletier     0.071 
a. The result of the DemPred model is given by L2 regularization. It is based on the reduced 

number of features, which were selected by the L1 approach. 
b. The result of the DemFeture-1 model is computed with all 3849 features.  
 
 

3.2.4.1.6 Comparing prediction models by P-values  

To further compare the difference in prediction results between two models, P-values were 

computed. As introduced in Chapter 2.12, a binomial test (Equation (2.41)) or a McNemar’s 

test (Equation (2.42)) can be used to calculate the P-value. A matrix of the P-values is shown 

in Table 3.25 comparing the prediction results of 6 different models. Based on those P-values, 

only few of the considered pairs of prediction models are significantly different from each 

other possessing P-values below 0.05. These are DemFeature-1 relative to the DemPred, 

Pelletier and Ploemen model and on the other hand the Ploemen model relative to the two 

SMARTS models. All other models have a prediction quality, which in a statistical sense is 

similar. Since the Pelletier model uses only a simple rule referring to two features, logP and 

pKa, the corresponding P-values reflect that these two features play important roles in 

identifying PLD inducers. The P-value between the updated SMARTS model and original 

SMARTS model is 0.584. It reveals that the addition of seven SMARTS patterns in the 

updated SMARTS model does not significantly change the prediction performance of the 

original SMARTS model. Moreover, except for the updated SMARTS model, the P-values 

between the DemFeature-1 model built with all 3849 features and all other models are 

relatively small. Since the DemFeature-1 model is built with all features gives the best 

prediction results, those P-values support evidence that the mechanism of PLD formation 

cannot be explained a few features. To efficiently identify PLD inducers in the early stage of 

drug development, in silico PLD prediction models need to consider many features.  

 

3.2.4.2 Prediction results of independent test set 

As discussed in Chapter 3.2.2.2, in this research an independent test set was prepared to 

further assess in silico models predicting PLD induction potential. This independent test set 
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consists of 131 compounds with 72 PLD positive and 61 PLD negative compounds. 

According to the dataset provider, Boehringer Ingelheim, the PLD activity of those 

compounds was assessed by a fluorescent phospholipid-based assay, which is an in vitro cell-

based method108. Although the gold standard method TEM was not used to evaluate those 

compounds, the prediction results of this independent test set can still be a reference for 

evaluating the prediction performances of models.  

To create a scenario as for previous efforts predicting the Goracci database, the 3849 features 

used to predict the Goracci database were also utilized to construct the DemPred model and 

DemFeature-1 model for predicting the independent test set. The 330 compounds in the 

Goracci database were used as training set to build prediction models. In addition to DemPred 

and DemFeature-1, the Pelletier model and updated SMARTS model were also employed to 

predict the independent test set and the results were compared.  

For DemPred and DemFeature-1 models, identical λ candidates used to predict the Goracci 

database were prepared for optimizing the λ-values. The L1 & L2 two-step method was also 

applied to construct the DemPred model, where L1 is the feature selection step. The 

optimized λ1 enables DemPred to use a reduced number of 55 features. According to the 

absolute weight values of the features, the 15 most important features are shown in Figure 

3.27.  

 

Figure 3.27: The 15 most important features are shown with their corresponding weights. The 
larger the absolute value of the weight is, the more important is the corresponding feature. 
The weights are calculated by the DemPred model with the L1 approach and λ1 =0.075. This 
figure was made by R v3.1.3. 
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As demonstrated in Figure 3.27, the feature Moka_pKa_MB has the strongest correlation with 

the PLD property. Moka_pKa_MB is the most basic pKa value, which is consistent with the 

prediction rule of the Ploemen and Pelletier model. It shows that the most basic pKa value 

indeed is an important feature for predicting the PLD property of a compound. On the other 

hand, the feature MDL2D166Keys153 is the strongest descriptor for detecting negative 

compounds. This feature defines a 2D substructure in a compound containing a carbon with at 

least three neighbors when those neighbors are two carbons as well as one oxygen. Around 

64.2% negative compounds contain this substructure.  

Table 3.26 shows the results of different approaches predicting the independent test set. For 

DemPred and DemFeature-1, the 330 compounds of the Goracci database were used as the 

training set. The independent test set was not used to construct the prediction models.  

 

Table 3.26: Prediction results of the independent test set by different models. 

 MCC accuracy sensitivity specificity 

Pelletier model 0.511 75.2%(100/133) 0.903(65/72) 0.557 (35/61) 
updated SMARTS 0.442 72.2%(96/133) 0.722(52/72) 0.721 (44/61) 

DemPred L1 feature selection 
a
 0.410 69.9%(93/133) 0.639(46/72) 0.770 (47/61) 

DemPred L2 regularization 
b
 0.315 63.9%(85/133) 0.500(36/72) 0.803 (49/61) 

DemFeature-1  
(all features)

c
 

0.255 59.4%(79/133) 0.375(27/72) 0.852 (52/61) 

DemFeature-1 
(800 best features)

d
 

0.531 76.7%(102/133) 0.778(56/72) 0.754 (46/61) 

a. DemPred with L1 feature selection, λ1 = 0.075. 55 features were retained from L1 
approach.  

b. DemPred with L2 regularization was applied to the dataset with 55 features after L1 
feature selection, λ2 = 0.13.  

c. DemFeature-1 built with all features (3489 features), λ2 = 0.700. 
d. The 800 best features were selected through absolute weight values of features, which were 

calculated by DemPred with L2 (λ2 = 0.100). The larger the absolute weight values are, the more 
important the corresponding features, λ2 = 0.410.  

 
 

Overall, comparing MCC and accuracy, the prediction performance for the independent test 

set is worse than for the Goracci database. Surprisingly, the Pelletier model produces the best 

result, especially in terms of sensitivity. As shown in Table 3.26, the prediction results of the 

Pelletier model on the independent test set is even better than the updated SMARTS model. 

The sensitivity of the Pelletier model can reach 0.903, which is overwhelmingly better than 

other models. The updated SMARTS model on the independent test set does not perform as 

good as on the Goracci database and its prediction results are worse than Pelletier model. 

Only the specificity of the updated SMARTS model is better than the Pelletier model. This 
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result seemingly contradicts the conclusion that Ploemen and Pelletier models are insufficient 

to classify PLD inducers from non-inducers in the publication of Przybylak et al 
97. 

The L1 & L2 two-step method was also applied to build the DemPred models. The optimized 

λ1 enables L1 regularization to give a reduced features set consisting of 55 features, which 

yields MCC: 0.410 and accuracy: 69.9%. The prediction of DemPred L2 regularization was 

performed on the dataset with 55 features carried over from L1 feature selection but it did not 

give better prediction results.  

For the independent test set, DemFeature-1 with all features performs very poorly with MCC 

of only 0.255 and accuracy of 59.4%. However, the DemFeature-1 model built with the 800 

best features greatly improves the MCC from 0.255 to 0.531 and the accuracy from 59.4% to 

76.7%, which is better than other models. The 800 best features were selected by the absolute 

weight values, which represent the importance of corresponding features. The weight values 

were calculated by DemPred with the L2 approach with λ2 = 0.10. To investigate how the 

prediction results of the test set depend on the number of best features, we evaluate the MCC 

as a function of the number of best features. There are for instance 349 features whose 

absolute values of the weights is above 0.01 and 2900 features with weight values above 

0.001. Figure 3.28 illustrates the results.  

 

Figure 3.28: The MCC of the prediction results of DemFeature-1 is displayed for the test set 
as a function of the number of best features. The best features are determined by applying 
DemPred with L2 regularization using λ2 = 0.10. The importance of features is ranked 
according to their absolute values of weight that they obtain with the DemPred computation. 
One starts with the list of features at the highest rank and includes all features of subsequent 
lower rank until the given number of best features is reached. This figure was made by R 
v3.1.3. 
 

As shown in Figure 3.25, choosing around 800 of the most important features gives the best 

prediction result. Interestingly, with around 40 most important features, it gives the second 
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best prediction result. With less than 30 of the most important features, the performance of the 

prediction goes down drastically. A further investigation into the 40 most important features 

found that Moka_pKa_MB ranks 31st. As we introduced before, Moka_pKa_MB is an 

important feature for predicting PLD. When this feature is deleted, the prediction performance 

decreases markedly. It demonstrates that also for the independent test set, the most basic pKa 

plays an important role in distinguishing PLD inducers from PLD non-inducers.  

For DemFeature-1, the independent test set is different from the situation of the Goracci 

database whose best result was obtained using all 3849 features. Here the optimal prediction 

result was achieved with the 800 best features. The complexity of the DemFeature-1 model 

built with the 800 best features is smaller than the one built with all 3849 features. This 

indicates that the independent test set is dissimilar from the Goracci database. Moreover, for 

further demonstrating the dissimilarity between these two sets, the following investigation 

was carried out. Equation (3.8) was employed to calculate the inter-variance between the 

Goracci database and the independent test set and the intra-variances of both datasets. The 

results are shown in Table 3.27.  
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Suppose that there are two datasets, namely, 1st dataset and 2nd dataset. In the Equation (3.8) 

1,

ˆ
i

f  represents the i
th normalized feature vector in 1st dataset and 2,

ˆ
jf  represents the j

th
 

normalized feature vector in 2nd dataset. Both feature vectors are normalized by Equation 

(2.35). N1 and N2 are the number of compounds in 1st and 2nd datasets, respectively. var(1,2) 

represents the inter-variance between the two datasets. When the 2nd dataset is replaced by the 

1nd dataset in Equation (3.8) it measures the intra-variance of the 1nd dataset.  

As shown in Table 3.27, the intra-variance of the total set, the intra-variance of the positive 

set and the intra-variance of the negative set are for the independent test set smaller than for 

the Goracci database. The values of the intra-variances reflect that in the chemical space the 

distribution of compounds of the independent test set is narrower than of the Goracci database. 

Additionally, the inter-variances between Goracci database and independent test set 

considering the total sets, the positive sets and the negative sets are all larger than the 

corresponding intra-variances. Hence, the chemical space covered by the independent test set 

is not fully included in the chemical space covered by Goracci database. Therefore, using 

Goracci database for training can cause some problems to predict the independent test set as 
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has been experienced. In the independent test set 54 compounds are incorrectly classified by 

DemFeature-1 using all 3849 features (see Table 3.26). According to Table 3.27, the inter-

variances of the 54 compounds of the independent test set that are incorrectly classified are 

slightly larger than the corresponding inter-variances considering all compounds of the 

independent test set. This indicates that the incorrectly classified compounds of the 

independent test set are indeed more dissimilar from Goracci database than the correctly 

classified compounds..  

 
 
Table 3.27: Intra-variances of Goracci database (GD) and independent test set (ITS) and 
inter-variance of GD and ITS. All variances are measured with 3849 features.  

 
inter-variance  
of GD and ITS 

intra-variance  
of GD 

intra-variance  
of ITS 

inter-variance of GD and 
incorrectly classified 
compounds in ITSd 

total set a 1.418441 1.411507 1.264117 1.418653 
positive set b 1.404277 1.389553 1.187447 1.408309 
negative set c 1.422522 1.404093 1.310719 1.426637 

a. variances involving positive and negative set. 
b. variances of the positive set only. 
c. variances of the negative set only. 
d. The 54 incorrectly classified compounds in independent test set are obtained by 

DemFeature-1 with 3849 features (see Table 3.26).  
 

 
In addition, it is worth noting that the Goracci database is a more reliable dataset, with 54% of 

compounds having been identified by the TEM method and many of the compounds have 

been evaluated by several labs independently. In contrast the independent test set was only 

evaluated by an in vitro method (Chapter 3.2.3.3) and not with the gold standard method, 

TEM.  

 

3.2.5 Discussion  

DemPred built with L1 & L2 two steps method  

Since the quality of the PLD dataset has an important influence on the prediction performance 

of the models, the carefully curated database made by Goracci et al.
54 was employed in this 

study to construct in silico models for predicting PLD. To enable each compound of the 

Goracci database to be predicted, a 5-cross validation was used to predict the Goracci 

database (see Table 3.15). Moreover, since the mechanism causing PLD is still not clear, a 

large number of features were generated to cover as large a chemical space as possible.  
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The L1&L2 two-step method was used to build the DemPred models. L1 is the step for 

feature selection. With optimized λ1 value less than 0.05% of features are kept yielding 

prediction results of 0.532 for MCC and 77.9% for accuracy, which is equivalent to the 

prediction performance of the Pelletier model on the Goracci database (see Table 3.16 & 

Table 3.24). Seemingly, a small number of features have a strong capacity to classify PLD 

inducers from PLD non-inducers. This phenomenon proves that a large fraction of the 3849 

features have no predictive power or may even disturb results for predicting PLD.  

Furthermore, based on the reduced number of features given by the L1 approach, the L2 

regularization was used to build the DemPred models. L2 regularization slightly improved the 

prediction performance reaching 0.536 for MCC and 78.2% for accuracy, which is not an 

significant improvement. This result may be explained by L1 feature selection having made a 

rigorous feature selection so that the L2 regularization cannot significantly increase prediction 

performance.  

 

DemFeature-1 

The reduced number of features selected by DemPred with the L1 approach were also used to 

build the DemFeature-1 model. The prediction results of the DemFeature-1 model based on 

reduced number of features are 0.552 for MCC (see Table 3.18), which is better than the 

results (MCC = 0.536) of the DemPred model. Comparing with DemPred, the improved 

prediction result with DemFeature-1 is mainly due to the sensitivity enhancing from 0.706 to 

0.778, while the specificity decreases from 0.828 to 0.784 (see Table 3.17 & Table 3.18). 

Despite this behavior, the improvement in the correct identification of PLD inducers is very 

important for drug development. It is worth noting that the sensitivity of subset 4 obtained 

with DemPred is only 0.466, which is the worst one among all five subsets. With 

DemFeature-1 sensitivity increases from 0.466 to 0.700. This result clearly manifests the 

advantage to use DemFeature-1 for drug development.  

In addition to the DemFeature-1 model built with the reduced number of features, we also 

employed all features (3849 features) to build the DemFeature-1 model. The prediction results 

of the DemFeature-1 model built with all features improve the prediction performance 

measured by MCC and accuracy (see Table 3.19) considerably compared to the DemFeature-

1 model built with the reduced number of features (see Table 3.18). The prediction 

performance was improved, since the specificity increases from 0.784 to 0.873 while the 

sensitivity almost stays on the same level. This phenomenon shows that a reduced features set 
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selected by the L1 approach is sufficiently capable of identifying PLD-inducers but still 

allows to many false positives. After adding more features to build the DemFeature-1 model, 

the number of false positives goes down (see Figure 3.21). Seemingly, the majority of features 

are needed to identify PLD non-inducers.  

Analysis of SMARTS features used with DemFeature-1  

The decision tree-like SMARTS model built by Przybylak et al. offers a good prediction 

performance with 44 SMARTS features (see Table 3.24). However, using the same SMARTS 

features, the DemFeature-1 model does not offer a reasonable prediction performance (see 

Table 3.20). It seems that those SMARTS features are unsuitable for a statistics-based model. 

It could be explained that the SAMRTS model is a rule-based model in which an unknown 

compound need to be judged through several steps starting from the top of the decision tree 

and going downward. Hence, in the SMARTS approach the features are not considered 

simultaneously, in contrast to the prediction algorithms used in the present study, which may 

make a difference. On the other hand, the prediction results of DemFeature-1 model built with 

the combination features set including our 3849 features and 44 SMARTS features is almost 

equivalent to the DemFeature-1 model only using all 3849 features (see Table 3.21). From 

this result one may conclude that the predictive capacities of the 3849 features have covered 

the predictive capacities contributed by the 44 SMARTS features.  

Analysis of subset 4  

Of all five subsets of the Goracci database, the subset 4 is the hardest one to predict (see 

Figure 3.19). The best result for subset 4 given by DemPred is only 0.398 for MCC and 69.7% 

for accuracy (see Table 3.17). Although the prediction result for subset 4 of DemFeature-1 

improves to 0.572 for MCC and 78.8% for accuracy, the prediction result for subset 4 is still 

slightly worse than for the other subsets. A method illustrated in Figure 3.22 (results in Table 

3.23) was also used to investigate subset 4. The investigation results for subset 4 are shown in 

Table 3.28.  

It can be seen that both methods (1) deleting compounds that are classified incorrectly in 

subset 4 and (2) inverting the PLD properties of those compounds can produce a better 

prediction result than using the original subset 4 to predict the remaining compounds in the 

Goracci database. The good results of both methods are mainly contributed to an improved 

specificity (see prediction 1 & 2 in Table 3.27), which elucidates that quite a number positive 

compounds in subset 4 may actually be negative compounds. When we put those compounds 
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into the negative set or delete them, the prediction performance can be improved by an 

increase in specificity.  

 
 
Table 3.28: Prediction of the Goracci dataset with DemFeature-1 using different training sets 
of subset 4.  

 

 

 

 

prediction 1: Use subset 4 to train a DemFeature-1 model and predict remaining compounds 
of the Goracci database54 belonging to the subsets 1, 2, 3, 5.  
prediction 2: Predict remaining compounds of the Goracci database after deleting compounds 
in training subset 4, which were incorrectly classified before.  
prediction 3: Predict remaining compounds of the Goracci database using a subset 4 for 
training where the PLD properties of incorrectly classified compounds in subset 4 were 
inverted.  
 
 

Prediction 2 & 3 give a relatively worse sensitivity than prediction 1. We can deduce that the 

quality of the negative compounds in original subset 4 is more reliable than of the positive 

compounds. In addition, another piece of evidence to support this deduction is that the 

specificity of subset 4 predicted by the DemPred model built with the L1 approach is 0.861, 

while the sensitivity is only 0.500 (see Table 3.16). After L2 regularization, the specificity of 

subset 4 predicted by the DemPred model is 0.889, whereas, the sensitivity even decreases to 

0.466. Hence, the main reason that DemPred models do not return good prediction results for 

subset 4 is the low quality of the positive compounds. Moreover, it is worth noting that the 

DemFeature-1 model (see Table 3.18 and Table 3.19) has significantly improved the 

sensitivity of subset 4 to 0.700, which demonstrates the advantage of DemFeature-1 

prediction model.  

 

Analysis of the independent test set 

The Pelletier model gives an excellent prediction result for the independent test set. The 

prediction performance of the Pelletier model on this dataset is obviously better than other 

datasets. To explain the reason, we need to consider the principle of the Pelletier model. The 

majority of PLD inducers are CADs, which have the property of lysosomotropism. Those 

compounds are membrane penetrable and partition across the lysosomal membrane based on a 

concentration gradient. In addition, the property of weak base of CADs makes them 

  λ2 MCC accuracy sensitivity specificity 

prediction 1 0.600  0.518 0.769(203/264) 0.750(72/96) 0.780(131/168) 

prediction 2 0.400  0.599 0.818(216/264) 0.677(65/96) 0.899(151/168) 

prediction 3 0.300  0.598 0.818(216/264) 0.656(63/96) 0.911(153/168) 
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protonated in the acidic environment. As a result, the pH in lysosome would increase toward 

neutrality, which is less favorable for lysosome hydrolases. The prediction rules of the 

Pelletier model judge a compound with high log P and high pKa as a PLD inducer (see 

Chapter 3.2.1.2), which is based on the lysosomotropic properties of CADs. In the 

independent test set, there are 91 compounds out of 133 compounds that fulfill the rules of the 

Pelletier model to be judged as PLD-inducers. Of those 91 compounds, 65 compounds are 

experimental PLD-inducers. This is the reason why the Pelletier model offers a high 

sensitivity, resulting in the Pelletier model’s good MCC and accuracy (see Table 3.26). 

Despite the very good prediction performance of Pelletier model on the independent test set is 

very good, only two features, log P and pKa, are still not sufficient to explain PLD. Some 

PLD inducers’ log P are not high, for example, aminoglycoside antibiotics, but they also can 

go into cells132. Possibly, the hydrophilic channels in the cell membrane can bring the 

compounds with low log P into cells. Moreover, not all PLD inducers belong to CADs. 

Therefore, only considering two simple features is not reliable for detecting PLD in drug 

development. Nevertheless, the advantage of the Pelleter model is relatively faster than other 

in silico models. In drug discovery, Pelletier model can be used to screen a huge number of 

unknown compounds in the first step and then use other powerful yet time-consuming models 

such as DemFeature-1 to investigate the compounds survived from Pelletier model screening. 

For the independent test set, the Pelletier model performs even better than the SMARTS 

model. This situation is inconsistent with the results in the publication of Przybylak et al
97

. In 

their publication, the SMARTS model is significantly better than the Pelletier model. In our 

research on the Goracci database, the prediction results of the SMARTS models are also 

better than Pelletier model (see Table 3.24). The limitation of the SMARTS model is one 

reason to explain this phenomenon. SMARTS features were concluded from available public 

PLD datasets. Those features were particularly chosen to give the “possible best” prediction 

results so there may be some loss of generality. Some of the SMARTS features are very 

specific to identifying a single compound. Thus, for an undisclosed dataset, namely, 

independent test set, the SMARTS model possibly fails to predict it with a good prediction 

result.  

 

3.2.6 Conclusion 

Drug-induced PLD is a side effect, which can impair lipid metabolism and the accumulation 

of phospholipid and drugs in cells. To date, the mechanism of drug-induced PLD is still not 
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clear yet. Regarding the safety of drugs, PLD needs to be detected as early as possible. in 

silico models demonstrate an important high-throughput method to detect toxicity in the early 

stage of drug development at a low cost. Moreover, it can be used to test new compounds 

before chemical synthesis. Recently, several in silico models have been proposed to identify 

the PLD induction potential of compounds such as the Pelletier model and SMARTS model. 

In this study, we utilized our in silico methods, DemPred and DemFeature-1 to investigate the 

prediction power of models on PLD inducers. The carefully curated Goracci database and a 

proprietary independent dataset provided by Boehringer Ingelheim Inc. were used as research 

datasets. 

The Pelletier model, which is based on only two physicochemical features, can provide good 

prediction results on CADs compounds with high pKa values and log P. However, those 

simple properties are not enough to fully explain PLD-inducers. Recent research reports have 

proved that not all CADs compounds can induce PLD and not all PLD-inducer are CADs. 

The SMARTS model proposed by Przybylak et al. considered 44 structural features capable 

of inducing PLD. Although this method improved statistical predictivity on the Goracci 

database compared with the Pelletier model, it does not offer better prediction performance 

than the Pelletier model on the independent test set. Since the SMARTS features were 

particularly chosen from available PLD datasets, the SMARTS model seemingly does not 

offer a good generality to properly predict proprietary dataset. In addition, our methods, 

DemPred and DemFeature-1 were used to predict the Goracci database and independent 

dataset, respectively. DemFeature-1 gives the best prediction performance compared with 

DemPred and other in silico methods. Our methods considered as many molecular descriptors 

as possible to build models and obtained excellent prediction results. Based on a comparison 

of results, it seems that for properly predicting PLD induction potential, which has complex 

induction mechanism, researchers need to consider more factors, not only a few simple 

features.  

The purpose of this research was not only to propose a good method to predict PLD, but also 

to demonstrate the prediction power of DemFeature-1. Comparing to other models, the 

predictive power of DemFeature-1 for predicting PLD in the Goracci database and the 

independent test set are comparable to the best results. DemFeature-1 is fully automated and 

no additional programming works is needed on the part of the users. Hence, DemFeature-1 

could be used as a general prediction platform for solving many (Q)SAR tasks in drug 

development.  
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4 Summary 

Drug development is a very complex project, which is not only high-cost and time-consuming 

but also has high failure rate. Therefore, the techniques of computer-aided drug design are 

very critical for pharmaceutical industry. (Q)SAR is a popular technique of computer-aided 

drug design. (Q)SRA models correlating biological activity with molecular structures can 

dramatically reducing development time; it can also drains on manpower and material 

resources, which would be impossible in a wet lab. On the other hand, (Q)SRA models also 

can be alternative methods to in vivo tests when consider the ethnic reasons.  

However, the implementation of (Q)SAR prediction techniques needs professional 

programming skills and related expert knowledge of mathematics. Those requests would 

hamper the majority of medical researchers if they start to develop a program from scratch. 

Hence, there is a demand for a powerful yet easy to operate (Q)SAR building software 

program for which users can simply customize their (Q)SAR model to a research target. 

Previously, our group has developed a (Q)SAR prediction package, DemPred, which has been 

used to solve various classification and regression problems such as prediction of human 

volume of distribution and clearance and predicting major histocompatibility complex II 

epitopes. In my doctoral research, based on the DemPred, we developed an updated prediction 

algorithm, DemFeature. The core of DemFeature is also a linear discrimination scoring 

function. In contrast to the DemPred, the distinct feature of DemFeature is that the it 

independently construct a specific training subset for each compound in the test set. It means 

that each compound in the test set would be predicted by a specific scoring function. The rule 

of constructing a training subset is referred to the similarity between the compounds in the 

training set and the compound to be predicted. DemFeature has two versions: DemFeature-1 

and DemFeature-2. DemFeatur-1 utilized a cutoff value to decide how similar compounds in 

training set can be selected to constitute the specific training subset for a compound to be 

predicted, while the DemFeature-2 gives a fixed number of training subset including most 

similar and most dissimilar compounds for a compound to be tested.  

In my doctoral research, two datasets were utilized to test prediction ability of DemFeature. 

The first one was a contest on Kaggle™ platform launched by Boehringer Ingelheim whose 

dataset is related to gentoxcitiy, an important property in drug development. The other one is 

drug-induced phospholipidosis, which is a side effect of drugs. Recent years, it has been 

interested in pharmaceutical research community for drug safety.  Compared with DemPred, 

the prediction performance of the DemFeature has been improved. The prediction results were 
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even better than some state of art prediction models on both cases. Therefore, DemFeature 

could be employed as a computer-aided tool used in the early stage of drug development.  
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4 Zusammenfassung 

Wirkstoffentwurf ist ein anspruchsvolles Thema, welches nicht nur zeit- und kostenintensiv 

ist, sondern auch eine hohe Misserfolgsquote aufweist.  Aus diesem Grund ist der 

computergestützte Wirkstoffentwurf sehr entscheidend in der Pharmaindustrie. (Q)SAR-

Modelle, welche biologische Aktivität von Molekülen aufgrund ihrer Struktur beschreiben, 

sind in der Lage, den Bedarf von Arbeitskräften und Materialien signifikant zu reduzieren. 

Zusätzlich bieten (Q)SAR-Modelle eine alternative Herangehensweise, falls in-vivo-Studien 

aus moralischen Gründen nicht in Frage kommen.  

 

Das Entwickeln von (Q)SAR-Vorhersagemethoden erfordert professionelle 

Programmierkenntnisse sowie tiefgehendes mathematisches Verständnis.  Diese 

Anforderungen erschweren Wissenschaftlern in der medizinischen Forschung die 

Entwicklung eigener Software. Aus diesem Grund, besteht ein hoher Bedarf an 

leistungsstarker und einfach zu benutzender Software zur Erstellung von (Q)SAR-Modellen. 

Vorab wurde in unserer Arbeitsgruppe die Software-Bibliothek „DemPred“ entwickelt, 

welche benutzt wurde, um verschiedene Klassifikations- und Regressionsfragestellungen zu 

lösen. Beispiele sind die Vorhersage von Verteilungsvolumen im menschlichen Körper sowie 

Vorhersage von Epitopen des Haupthistokompatibilitätskomplexes. Während meiner 

Doktorarbeit habe ich, auf DemPred basierend, einen aktualisierten Algorithmus 

(„DemFeature“) entwickelt. Der Kern von DemFeature und auch DemPred ist eine lineare 

Bewertungsfunktion, welche zur Klassifizierung benutzt wird. Der wesentliche Unterschied 

zu DemPred ist die Fähigkeit von DemFeature für jede Verbindung aus den Testdaten einen 

eigenen Lerndatensatz erstellen zu können.  Das bedeutet, dass jede Verbindung in den 

Testdaten von einer spezifischen Scoring-Funktion vorhergesagt wird. Der Algorithmus zur 

Zusammenstellung des spezifischen Lerndatensatzes richtet sich nach der Ähnlichkeit der 

Verbindungen aus dem Lerndatensatz zu der Verbindung, für welche vorhergesagt wird. 

DemFeature beinhaltet zwei Versionen: DemFeature-1 und DemFeature-2. DemFeature-1 

verwendet einen Grenzwert bezüglich der Ähnlichkeit um zu entscheiden, ob eine 

Verbindung dem spezifischen Lerndatensatz zugeordnet wird. Im Unterschied dazu wird bei 

DemFeature-2 eine feste Anzahl von Verbindungen im spezifischen Lerndatensatz 

vorgegeben, so dass diesem nur die ähnlichsten und unähnlichsten Verbindungen zugeordnet 

werden.  
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In dieser Doktorarbeit wurden zwei Datensätze verwendet, um die Vorhersagekraft von 

DemFeature zu prüfen. Der eine Datensatz bezieht sich auf Genotoxizität, welche im 

Wirkstoffentwurf eine wichtige Rolle spielt, und resultiert aus einem, durch Boehringer 

Ingelheim gegründeten, Wettbewerb. Der zweite Datensatz konzentriert sich auf 

Nebenwirkungen von Medikamenten (arzneimittelbedingte Phospholipidose), welche in den 

letzten Jahren hinsichtlich Arzneimittelsicherheit für Wissenschaftler aus dem 

pharmazeutischen Bereich interessant geworden sind.  Verglichen mit DemPred konnte die 

Vorhersagekraft der generierten Modelle mit DemFeature verbessert werden. Die 

Vorhersagekraft übertraf sogar jene anderer aktueller Modelle zur Vorher. 
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 Appendix 1. 

The ID index of 1108 features     
The original number of features in the Kaggle competition is 1776. Using DemPred with the 
L1 approach with λ1=0.002, 1108 features remain.  

1 248 524 763 979 1159 1349 1630 

2 250 526 764 980 1160 1352 1631 

5 251 528 765 981 1162 1353 1638 

8 252 530 766 982 1163 1354 1639 

10 253 534 767 983 1164 1356 1641 

11 254 535 768 985 1165 1357 1642 

13 256 539 769 986 1166 1358 1644 

14 257 543 770 987 1167 1359 1645 

16 258 544 772 988 1168 1361 1648 

20 263 545 773 990 1169 1363 1649 

21 266 546 774 991 1170 1364 1652 

22 268 547 775 992 1172 1365 1656 

24 272 548 776 993 1173 1366 1657 

26 273 551 780 994 1174 1367 1659 

27 275 552 782 995 1175 1368 1660 

29 276 555 784 996 1176 1369 1663 

31 277 561 785 997 1178 1370 1667 

33 278 564 786 998 1179 1371 1669 

36 279 566 788 1001 1180 1372 1675 

37 280 568 791 1002 1182 1373 1676 

39 281 569 792 1003 1184 1374 1678 

40 282 570 793 1004 1185 1375 1682 

41 284 571 794 1005 1186 1376 1684 

42 287 573 795 1006 1187 1377 1686 

43 288 574 796 1007 1188 1378 1687 

44 289 575 797 1008 1190 1379 1692 

45 291 576 798 1009 1191 1380 1695 

46 292 577 799 1011 1192 1381 1696 

50 293 578 800 1012 1193 1382 1700 

51 294 579 801 1013 1194 1383 1701 

52 296 580 802 1014 1195 1384 1703 

54 297 585 804 1015 1196 1385 1704 

55 298 586 805 1016 1197 1386 1706 

57 300 588 806 1017 1198 1387 1707 

59 301 589 807 1018 1202 1388 1715 

63 303 591 808 1019 1203 1390 1727 

65 304 594 809 1021 1204 1391 1730 

66 307 596 810 1022 1205 1392 1731 

68 310 597 811 1023 1206 1393 1732 

71 311 598 813 1024 1207 1394 1734 
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72 312 599 819 1025 1208 1395 1735 

75 313 601 820 1026 1209 1398 1737 

77 314 602 821 1027 1210 1399 1739 

78 315 603 823 1030 1212 1401 1740 

79 317 604 825 1031 1213 1402 1746 

80 319 605 826 1032 1214 1404 1751 

81 320 606 829 1033 1215 1405 1753 

82 321 608 830 1034 1217 1407 1755 

83 322 609 831 1035 1218 1408 1758 

84 323 610 832 1036 1219 1410 1759 

86 324 611 833 1037 1221 1411 1760 

90 327 612 834 1039 1222 1412 1762 

91 328 615 835 1040 1223 1414 1766 

92 329 619 837 1043 1224 1415 1768 

94 330 620 838 1045 1225 1416 1769 

98 331 622 839 1046 1226 1417 1770 

99 336 625 844 1047 1227 1418 1772 

100 338 629 845 1049 1228 1419 1773 

101 342 632 846 1050 1229 1420  

103 343 634 847 1051 1231 1421  

105 344 635 851 1053 1232 1422  

107 346 636 857 1055 1233 1423  

108 348 637 858 1057 1234 1424  

109 350 641 859 1058 1236 1426  

110 351 642 860 1059 1237 1429  

112 352 643 861 1060 1238 1430  

113 354 644 862 1061 1239 1431  

116 356 645 865 1062 1240 1432  

118 358 647 868 1063 1241 1434  

119 359 648 870 1064 1242 1435  

121 364 649 871 1065 1243 1436  

123 365 650 872 1066 1245 1437  

124 366 651 873 1067 1246 1438  

127 367 652 875 1068 1247 1439  

128 369 653 878 1070 1249 1441  

129 370 655 880 1071 1250 1442  

132 371 656 881 1072 1251 1443  

134 372 657 882 1073 1252 1444  

136 373 658 883 1074 1254 1445  

140 374 659 884 1075 1255 1451  

143 375 660 885 1076 1256 1454  

144 376 661 886 1078 1258 1455  

145 378 663 887 1079 1261 1456  

146 379 664 888 1080 1262 1460  
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149 382 668 889 1081 1264 1463  

150 383 669 894 1082 1265 1466  

151 384 670 895 1085 1266 1468  

152 390 671 896 1086 1267 1472  

154 391 673 897 1087 1268 1473  

156 393 674 899 1088 1270 1474  

159 394 675 900 1089 1271 1475  

162 397 676 901 1090 1272 1476  

166 400 677 902 1091 1273 1477  

170 401 678 903 1092 1274 1478  

171 405 679 904 1093 1275 1479  

172 406 680 905 1094 1276 1486  

174 408 681 906 1095 1277 1487  

175 409 685 907 1096 1278 1488  

176 410 688 909 1098 1280 1490  

178 411 689 910 1099 1281 1496  

179 412 690 911 1100 1282 1497  

181 413 691 913 1101 1283 1499  

182 414 693 914 1102 1284 1506  

184 416 695 916 1103 1286 1507  

185 417 696 917 1104 1287 1508  

186 419 697 921 1105 1289 1510  

188 421 698 922 1106 1290 1513  

189 423 700 923 1107 1291 1516  

192 427 701 924 1109 1292 1517  

194 428 702 926 1110 1293 1525  

195 430 703 928 1111 1294 1526  

196 431 704 931 1113 1295 1538  

197 432 705 934 1114 1296 1547  

198 433 706 937 1115 1297 1552  

199 435 707 938 1116 1298 1554  

200 436 709 939 1117 1299 1555  

201 439 710 940 1120 1301 1558  

202 440 714 941 1121 1302 1560  

204 441 716 942 1122 1303 1563  

206 443 717 943 1124 1304 1564  

207 444 718 944 1125 1305 1568  

208 447 722 945 1126 1306 1570  

212 450 723 946 1127 1307 1571  

217 452 725 948 1128 1308 1572  

218 455 726 949 1129 1309 1575  

219 458 727 952 1130 1310 1576  

220 461 728 953 1131 1312 1583  

222 462 729 955 1132 1313 1585  
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223 463 730 956 1133 1314 1590  

225 469 731 957 1134 1316 1591  

227 470 732 958 1135 1317 1593  

228 472 733 959 1137 1318 1595  

230 478 734 960 1138 1319 1596  

231 484 735 961 1139 1320 1597  

232 488 740 962 1142 1322 1599  

233 490 741 963 1143 1323 1601  

234 491 742 964 1144 1325 1602  

235 495 743 965 1145 1326 1604  

236 498 744 966 1146 1327 1605  

237 501 745 967 1147 1328 1608  

238 502 746 969 1149 1330 1613  

239 503 748 970 1150 1333 1616  

240 504 750 971 1151 1334 1617  

241 506 751 972 1152 1335 1618  

242 507 753 973 1153 1336 1622  

243 508 754 974 1154 1338 1623  

244 510 755 975 1155 1339 1625  

245 511 756 976 1156 1343 1627  

246 517 758 977 1157 1345 1628  

247 523 761 978 1158 1348 1629  
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Appendix 2.  

39 structural patterns used in SMARTS model. The SMARTS features were designed by 
Przybylak et al., which were published in their article: How does the quality of 
phospholipidosis data influence the predictivity of structural alerts? Journal of Chemical 
Information and Modeling.,2014, 54(8), pp 2224-2232 DOI: 10.102/ci500233k. 
Note: There are several typo errors in original publication. According to the suggestions from 

Dr. Jörg Bentzien of Boehringer-Ingelheim Inc., we have corrected them in this table. 

structural group SMARTS pattern 

primary amine [NH2][CX4;!R][CX4] 

 [NH2][CX4](C)(C)(C) 

 [NH2][C;R]([C;R][OH])[C;R][OH] 

 [NH2][C;R]([CH;R])[C;R]O 

 [NH2]CC1OCCCC1 

 [NH2][C;R]([C;R])[C;R](O)[O;R] 

 [NH2]c1c(Br)cc(Br)cc1 

 [NH]-C([NH2])c1ccccc1 

  [NH]-C([NH2])[NH]C[NH] 

secondary amine c[CX4;!R][CX4;!R][NH][CH2][CH3] 

 [C;!R][NH][C;R]([C;R])c 

 [C;!R][C;!R][C;!R][NH][C;!R][C;!R]c 

 c1[cH1]c[cH1][cH1]c1[NH]c1[cH1][cH1][cH1][cH1]c1 

 c[CH2][NH][C;!R][C;R] 

 [CH3][NH][CH2;!R][CH2;!R] 

 [CH3][NH][C;R]([C;R][OH])[C;R][OH] 

 [CX4;!R][NH][CX4;!R][CX4;!R][CX4;!R]Oc1c2ccccc2ccc1 

 [CX4][NH][CX4;R] 

  c[OX2][CX4;!R][CX4;!R]([OH])[CX4;!R][NH][CH]([CH3])[CH3]a 

tertiary amine [CX4;!R][N;!+]([CX4;!R])[CX4;!R][CX4] 

 [CH3][N;!+]([CH3])[CH2][CH]=C(c)c 

 [CH3][N;!+]([CH3])[CX4;R][CX4;R]([OH])[CX4;R][OX2;R]a 

  [CH3][N;!+]([CH3])[CX4;R][CX4;R]([CH3])[OX2;R]a 

cyclic amine [nH]1n = ccc1 

 cO[CH2][CH2][N;!+]1CCCC1 

 [CH3][N;!+]1CC[N;!+]([C;!R])CC1 

 [NH;R][C;R](C)[C;R]cc[C;R] 

 [NH]1C(C)CCCC1 

 [N;!+]1[CH2][CH2][CH]([NH])[CH2][CH2]1 

 [N;!+]1[CH2][CH2]C(c2ccc(Cl)cc2)[CH2][CH2]1 

 [n]c[OH]a 

 c[N;R][CX4;R][CX4;R][N;R][CX4]a 

  [CH3][N;R!+]([CX4;R])[CX4;R]a 

aromatic system cN([CX4][CX4][CX4][NX3;!R])c 

 cN([CX4][CX4][NX3])c 
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 cN([CX4][CX4][CX4;R][N;R])c 

 c1ccccc1[CH2]c1ccccc1 

  c[CH]([N;R])c 

ring system [R;a] 

  [R;!a] 

acidic groups [#6,#1]C(=O)[OH] 

 [CH](=O)[OH] 

 [#6]N(=O)=O 

  [#6][N+](=O)[O-] 
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Appendix 3.  

prediction results for the 330 compounds of the Goracci PLD dataset 
Gorraci PLD dataset54, of which pipermide has been removed leading to 330 remaining 
compounds.  

The Gorraci PLD dataset uses the dataset sources  
T: Tomizawa et al. (2006); P: Pelletier et al. (2007); V: Vitovic et al. (2008);  
H: Hanumegowda et al. (2010); F: Fisher et al. (2012); L: Lowe et al. (2010)  
O: Orogo et al. (2012)  
 
a: Dataset sources to which this compound belongs to.  
b: compound generates PLD (+1) or not (-1).  
c: Confirmed (yes) by transmission electron microscopy (TEM) or not (unclear) as stated in 

the above mentioned literature.  
d: The Gorraci PLD dataset was divided into five subset (1, 2, 3, 4, 5). The four subsets, 

which do not contain the compound to be predicted, were used for training. The subset 
number containing the compound to be predicted is listed.  

 

compound name 
dataset 

source
a
 

PLD 

property
b
 

confirmed by 

TEM
c
 

subset
d
 

predicted 

value
e
 

1-Chloroamitriptyline P,L,O 1 yes 1 1.0691 

Acetylcysteine O -1 unclear 1 -1.5109 

Acitretin O -1 unclear 1 -0.5405 

Amlodipine H -1 unclear 1 0.0848 

Anagrelide 
hydrochloride 

O -1 unclear 1 0.1477 

Aripiprazole O 1 yes 1 0.0571 

Bepotastine besilate O 1 yes 1 0.2431 

Bromocriptine mesylate O -1 unclear 1 -0.0711 

Budesonide O -1 unclear 1 -0.6546 

Bupivacaine V,O -1 unclear 1 0.7957 

Calcitriol O -1 unclear 1 0.1848 

Carisoprodol O -1 unclear 1 -0.3827 

Ceftazidime P,L,O -1 yes 1 -1.7492 

Chloroquine T,P,V,H,L,F,O 1 yes 1 1.0623 

Cimetidine T,V,H,L,O -1 yes 1 -1.2898 

Clofibrate P,L,O -1 yes 1 -0.4146 

Clomipramine T,P,V,H,L,F,O 1 yes 1 1.1704 

Deferoxamine (desferal) P,L,O -1 yes 1 -1.7229 

Dexamethasone O -1 unclear 1 -1.0615 

Diazepam V,H,L,F,O -1 yes 1 0.2892 

Diclofenac P,H,L,O -1 yes 1 -0.336 

Didanosine O -1 unclear 1 -0.9397 

Dirithromycin O 1 yes 1 1.1455 

Disobutamide P,L,O 1 yes 1 0.0196 

Erlotinib O -1 unclear 1 -0.1547 

Estradiol acetate O -1 unclear 1 -0.6177 
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Fenfluramine T,P,V,H,L,O 1 yes 1 0.1798 

Fenofibrate T,P,V,L,O -1 yes 1 -0.2765 

Fenoterol L,O -1 yes 1 0.0955 

Fluticasone propionate O -1 unclear 1 -1.0527 

Fosinopril O -1 unclear 1 -0.2655 

Gemfibrozil P,H,L,O -1 yes 1 -0.6949 

Gentamicin-C1a P,L 1 yes 1 0.7291 

Guaifenesin O -1 unclear 1 -0.4351 

Hydroxyurea P,L,O -1 yes 1 -1.8584 

Iloprost O -1 unclear 1 -0.7258 

Ipratropium O -1 unclear 1 0.9656 

Isosorbide mononitrate O -1 unclear 1 -0.4382 

Levothyroxine sodium O -1 unclear 1 1.6869 

Metformin P,L,O -1 yes 1 -1.113 

Metoclopramide O -1 unclear 1 -0.5525 

Midodrine O -1 unclear 1 -0.5548 

Montelukast sodium O -1 unclear 1 -0.0786 

Naloxone hydrochloride 
dihydrate 

O -1 unclear 1 -1.0766 

Nelfinavir mesylate O -1 unclear 1 -0.2311 

Physostigmine P,L,O -1 yes 1 -0.2885 

Prenylamine L,O 1 yes 1 0.1991 

Proguanil O -1 unclear 1 0.4175 

Promazine V,L,F,O 1 unclear 1 0.8273 

Propafenone 
hydrochloride 

O -1 unclear 1 -0.0037 

Rifabutin O 1 yes 1 -0.167 

Rifampin P,H,L,O -1 yes 1 -0.5247 

RMI-10.393 P,L,O 1 yes 1 0.221 

Rolitetracycline P,H,L,O -1 yes 1 -0.962 

SDZ 200-125 P,L,O 1 yes 1 0.579 

Simvastatin O -1 unclear 1 -0.3162 

Stilbamidine P,L,O 1 yes 1 0.2184 

Sulindac P,H,L,O -1 yes 1 -0.3314 

Tiagabine O -1 unclear 1 -0.1135 

Tramadol hydrochloride O -1 unclear 1 -0.4898 

Trimipramine H,L,O 1 unclear 1 1.0494 

Valproic acid 
(valproate) 

T,P,V,H,L,F,O -1 yes 1 -1.4324 

Warfarin T,V,H,O -1 yes 1 -0.8676 

WY-14643 (pirinixic 
acid) 

P,L -1 yes 1 -0.3969 

Zidovudine T,P,H,L,O -1 yes 1 -1.2384 

Zimelidine T,P,H,L,O 1 yes 1 0.6298 

1-Chloro-10-11-
dehydroamitriptyline 

P,L,O 1 yes 2 0.9263 

3-Methylcholanthrene P,L,O -1 yes 2 0.4975 
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Adefovir dipivoxil O -1 unclear 2 -0.9381 

Alosetron hydrochloride O -1 unclear 2 -0.1612 

ANIT (1-naphthyl 
isothiocyanate) 

P,L,O -1 yes 2 0.3656 

Anticoman P,L,O -1 yes 2 -0.2322 

Atazanavir O -1 unclear 2 -0.2644 

Atovaquone O -1 unclear 2 -0.3506 

Azacosterol (20-
25diazacholesterol) 

P,L,O 1 yes 2 -0.115 

Benzamide (BZ-1) L,O 1 unclear 2 0.1369 

Bicalutamide P,L,O -1 yes 2 -1.0079 

Capsaicin O -1 unclear 2 -0.5048 

Carbamazepine P,H,LO -1 yes 2 0.1996 

Carbidopa O -1 unclear 2 -0.726 

Carbon tetrachloride P,L,O -1 yes 2 -0.0707 

Chloroform P,L,O -1 yes 2 -0.9616 

Chlorpromazine T,P,V,H,L,F,O 1 yes 2 0.005 

Citalopram T,P,H,L,F,O 1 yes 2 0.1185 

Clociguanil T,L,O 1 unclear 2 0.149 

Cloforex L,O 1 yes 2 -0.1563 

Codeine sulfate O -1 unclear 2 -0.7478 

Dibekacin P,L,O 1 yes 2 0.9283 

Diflunisal P,L,O -1 yes 2 -0.3135 

Donepezil (aricept) P,L,O -1 yes 2 0.1765 

Dronedarone O 1 yes 2 0.2059 

Emtricitabine O -1 unclear 2 -1.033 

Galactosamine P,L,O -1 yes 2 -0.2486 

Gentamicin-C2 P,L 1 yes 2 0.95 

Glimepiride O -1 unclear 2 -0.1993 

Hydrazine P,L,O -1 yes 2 -2.2344 

Hydromorphone 
hydrochloride 

O -1 unclear 2 -1.1231 

Hydroxychloroquine H 1 unclear 2 0.6748 

Hydroxyzine P,V,H,L,F,O 1 yes 2 0.7408 

IA3 P,L,O 1 yes 2 0.3116 

Ibuprofen O -1 unclear 2 -0.7828 

Imipramine T,P,V,H,L,F,O 1 yes 2 1.0869 

Ketotifen O 1 yes 2 0.0703 

Levalbuterol tartrate O -1 unclear 2 -0.7215 

Methadone P,H,L,O -1 yes 2 -0.5551 

Methapyrilene P,H,L,O -1 yes 2 -0.3604 

Mianserin T,V,H,L,O 1 unclear 2 0.4106 

Midazolam O 1 yes 2 0.4057 

N-deacetyl-
ketoconazole (DAKC) 

P,V,H,L,O 1 unclear 2 0.425 

Nortriptyline T,V,L,O 1 yes 2 0.7357 
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Oxamniquine O -1 unclear 2 -0.3197 

Perhexiline T,P,V,H,L,F,O 1 yes 2 -0.3907 

Phentermine L,O 1 yes 2 0.1673 

Pindolol O 1 yes 2 0.1554 

Quinacrine V,H,L,F,O 1 yes 2 0.842 

Sapropterin 
dihydrochloride 

O 1 yes 2 -0.495 

Sildenafil citrate O -1 unclear 2 -0.088 

Streptomycin F -1 unclear 2 0.7814 

Sumatriptan L,O -1 yes 2 0.4923 

Tamoxifen T,P,V,H,L,F,O 1 yes 2 0.7092 

Telbivudine O -1 unclear 2 -1.0636 

Temozolomide O -1 yes 2 -0.913 

Tetrabenazine O -1 unclear 2 -0.0154 

Tetracycline T,V, H, L, O -1 yes 2 -1.1793 

Thioacetamide T,P,V,L,O -1 yes 2 -0.7919 

Tiapride O -1 unclear 2 -0.6138 

Tinidazole O -1 unclear 2 -0.9285 

Tripelennamine L,O 1 unclear 2 0.2121 

Trospectomycin P,L,F,O 1 yes 2 0.9734 

Ursodiol O 1 yes 2 -1.1014 

Voriconazole O -1 unclear 2 -0.9644 

Zolpidem tartrate O -1 unclear 2 -0.2405 

Abacavir P,H,L,O -1 yes 3 -0.2329 

ABT-518 formamide L,O -1 yes 3 -0.811 

ABT-770 (parent) L,O -1 yes 3 -1.0854 

Acetaminophen T,P,V,H,L,O -1 yes 3 -0.5231 

Acetylsalicylic acid P,L,O -1 yes 3 -1.3426 

Acyclovir O -1 unclear 3 -0.8649 

Aliskiren hemifumarate O -1 unclear 3 -0.0619 

Allopurinol L,O 1 unclear 3 -0.8627 

Ambroxol L,O 1 yes 3 0.658 

Amikacin P,H,L,F,O 1 yes 3 0.5082 

Amine metabolite of 
ABT-770 

L,O 1 yes 3 -0.5775 

Amiodarone T,P,V,H,L,F,O 1 yes 3 0.4927 

Atropine T,V,H,L,O 1 yes 3 -0.1579 

AY-9944 P,L,O 1 yes 3 0.3728 

Beclomethasone 
dipropionate 

O -1 unclear 3 -0.8569 

Bepridil O 1 yes 3 0.4507 

Betahistine O -1 unclear 3 -0.0195 

Bisacodyl O -1 unclear 3 -0.381 

Caffeine P,L,O -1 yes 3 -1.2237 

Chlorphentermine T,P,L,F,O 1 yes 3 0.9891 

Chlortetracycline P,H,L,O -1 yes 3 -1.0473 
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Ciprofibrate P,L,O -1 yes 3 -1.2695 

Clindamycin P,L,O 1 yes 3 -0.1951 

Clomacran (SKF-
14336-D) 

P,L,O 1 yes 3 0.7651 

Clopidogrel bisulfate O -1 unclear 3 -0.5958 

Colchicine P,L,O -1 yes 3 -0.6219 

Demeclocycline P,H,L,O -1 yes 3 -1.0671 

Dextromethorphan 
hydrobromide 

O -1 unclear 3 -0.1626 

Digoxin O -1 unclear 3 0.4842 

Doxorubicin V,L,O -1 yes 3 -1.0553 

Drospirenone O -1 unclear 3 -0.3813 

Emetine P,L,O 1 yes 3 -0.2413 

Fesoterodine O -1 unclear 3 -0.848 

Fluoxetine T,P,V,H,L,F,O 1 yes 3 -0.3216 

Indoramin P,H,L,O 1 yes 3 -0.202 

Letrozole O -1 unclear 3 -0.6394 

Linezolid O -1 unclear 3 -0.6873 

Lysergide (or Lysergic-
acid-diethylamide) 

L,O 1 unclear 3 -0.4549 

Meclizine P,L,F,O 1 yes 3 0.6897 

Methazolamide O -1 unclear 3 -0.872 

Methylphenidate O -1 unclear 3 -0.1498 

Moxifloxacin 
hydrochloride 

O -1 unclear 3 -1.0893 

Naltrexone O -1 unclear 3 -1.3316 

Nitisinone O -1 unclear 3 -0.9493 

Omeprazole magnesium O -1 unclear 3 -1.224 

Oxycodone O -1 unclear 3 -1.1387 

Paliperidone O -1 unclear 3 0.1861 

Palonosetron O -1 unclear 3 0.1142 

Phenacetin P,H,L,O 1 yes 3 -0.648 

Phenobarbital (5-ethyl-
5-phenylbarbituric acid) 

P,H,L,F,O -1 yes 3 -0.617 

Pilocarpine 
hydrochloride 

O -1 unclear 3 -0.9969 

Piroxicam P,H,L,O -1 yes 3 -0.7916 

Prasugrel hydrochloride O -1 unclear 3 -0.6939 

Prednisolone acetate O -1 unclear 3 -1.1378 

Promethazine L,O 1 unclear 3 0.2815 

Quinidine T,V,H,L,O 1 unclear 3 0.8026 

Rasagiline mesylate O -1 unclear 3 -0.797 

Salmeterol xinafoate O -1 unclear 3 -0.5446 

Sirolimus O 1 yes 3 0.9071 

Spectinomycin L,O 1 unclear 3 0.843 

Spinosyn A O 1 yes 3 0.7229 

Spinosyn D O 1 yes 3 0.594 
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Tapentadol 
hydrochloride 

O -1 unclear 3 -0.7757 

Telithromycin O 1 yes 3 0.6697 

Vinblastine L,O -1 yes 3 -0.1958 

Zoledronic acid O -1 unclear 3 -1.0596 

1-Phenylpiperazine V,O -1 unclear 4 0.0998 

2,3-deoxycytidine T -1 unclear 4 -0.9507 

2,3-dideoxyinosine T -1 unclear 4 -0.8298 

6-Hydroxydopamine P,L 1 yes 4 -0.7859 

ABT-518 (parent) L,O -1 yes 4 -0.9837 

Amineptine P,H,L,O -1 yes 4 0.3629 

Amitriptyline T,P,V,H,L,O 1 yes 4 0.9578 

Amodiaquine P,H,L,O 1 yes 4 0.6686 

Ampicillin T,V,O -1 yes 4 -0.9483 

Atenolol T,V,H,O -1 yes 4 -0.4169 

Atomoxetine 
hydrochloride 

O -1 unclear 4 0.4008 

Azaserine P,L,O -1 yes 4 -1.0007 

Azimilide 
dihydrochloride 

L,O 1 yes 4 0.0046 

Azithromycin T,H,L,O 1 yes 4 0.7072 

Chlorcyclizine T,P,L,F,O 1 yes 4 0.9561 

Chloroquine mustard L,O 1 yes 4 0.9157 

Clotrimazole troches O -1 unclear 4 0.1879 

Cocaine O 1 unclear 4 0.2263 

Cyclizine P,H,L,F,O 1 yes 4 0.7867 

Cyproterone acetate P,L,O -1 yes 4 -0.8447 

Darifenacin O -1 unclear 4 0.0006 

Desvenlafaxine 
succinate 

O -1 unclear 4 -0.1953 

DMP-777 L,O 1 unclear 4 -0.1722 

Doxazosin mesylate O -1 unclear 4 -0.595 

Doxycycline P,H,L,O -1 yes 4 -0.9619 

Dronabinol O -1 unclear 4 -0.3365 

Erythromycin T,P,V,H,L,F,O 1 yes 4 0.5817 

Ethyl loflazepate (ethyl 
flucozepate) 

P,L,O 1 yes 4 -0.4705 

Etoposide P,L,O -1 yes 4 -0.5392 

Etravirine O -1 unclear 4 -0.0993 

Fenisorex (R-800) P,L,O 1 yes 4 0.1472 

Fluconazole O -1 unclear 4 -0.8701 

Fluvoxamine L,O 1 unclear 4 0.1824 

Furosemide T,V,H,L,O -1 yes 4 -0.5799 

Haloperidol V,H,L,F,O 1 yes 4 0.2662 

Homochlorcyclizine P,L,O 1 yes 4 0.9869 

Isoniazide T,V,H,O -1 yes 4 -0.7226 

L-Ethionine P,L,O -1 yes 4 -1.1625 
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Levodopa O 1 yes 4 -0.9954 

Levofloxacin (and 
ofloxacin) 

L,O -1 yes 4 -0.7022 

Lidocaine T,V,H,L,O 1 yes 4 -0.661 

LY-281389 L,O 1 unclear 4 0.7747 

Meloxicam O -1 unclear 4 -0.9852 

Memantine L,O 1 yes 4 0.8083 

Menadione L,O -1 yes 4 -0.6907 

Mycophenolate sodium O -1 unclear 4 -0.8131 

Naproxen sodium O -1 unclear 4 -0.8145 

Netilmicin P,L,O 1 yes 4 0.7975 

Nevirapine O 1 yes 4 -0.2987 

Nicotinic acid; Niacin O -1 unclear 4 -0.7772 

Nitazoxanide O -1 unclear 4 -0.9742 

Norethindrone acetate O -1 unclear 4 -0.8985 

Noxiptiline T,L,O 1 yes 4 0.6832 

Paraquat P,L,O 1 yes 4 -0.1925 

Paroxetine 
hydrochloride 

H,O 1 yes 4 0.1948 

Propranolol T,V,H,L,F,O 1 yes 4 0.1306 

Quinine T,H 1 yes 4 0.871 

Rabeprazole O -1 unclear 4 -0.6755 

Ranitidine V,H,O 1 unclear 4 -0.8943 

Saquinavir O -1 unclear 4 -0.6681 

Selegiline hydrochloride O -1 unclear 4 -0.4875 

Tadalafil O -1 unclear 4 -0.151 

Tenofovir disoproxil 
fumarate 

O -1 unclear 4 -0.9605 

Thioridazine T,V,H,L,O 1 yes 4 0.8444 

Tipranavir O -1 unclear 4 -0.6639 

Verapamil V,O 1 yes 4 -0.0477 

17-alpha-
Ethynylestradiol 

P,L,O -1 yes 5 -1.0824 

4-Cyano-5-
chlorophenyl-
amidinourea 

L,O 1 yes 5 -1.0003 

ABT-770 formamide L,O -1 yes 5 -0.0007 

AC-3579 P,L,O 1 yes 5 0.2469 

Alfuzosin hydrochloride O -1 unclear 5 -0.7373 

Alprostadil O -1 unclear 5 -0.4404 

Amantadine V,L,O 1 yes 5 0.8089 

Amoxicillin H,O -1 unclear 5 -1.0027 

Bilirubin L,O 1 yes 5 -1.1661 

Boxidine P,L,O 1 yes 5 0.7614 

Bromhexine L,O 1 yes 5 0.975 

Celecoxib O -1 unclear 5 -0.2744 

Clemastine fumarate O 1 yes 5 0.7858 
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Clonidine hydrochloride O -1 unclear 5 -0.7522 

Clozapine P,V,H,L,F,O 1 yes 5 0.8349 

Coralgil P,L,O 1 yes 5 0.5358 

Dantrolene P,L,O -1 yes 5 -0.0826 

Dasatinib O -1 unclear 5 -0.2288 

Desipramine V,H,LO 1 unclear 5 0.6808 

Desloratadine O 1 unclear 5 0.6368 

Doxapram P,H,L,O -1 yes 5 -0.1706 

Efavirenz O -1 unclear 5 -0.4596 

Ethambutol 
hydrochloride 

O -1 unclear 5 -0.5313 

Everolimus O 1 yes 5 1.0409 

Famotidine T,P,V,H,L -1 yes 5 -0.7893 

Fexofenadine O -1 unclear 5 -0.1114 

Flecainide L,O -1 yes 5 0.2733 

Flucytosine O -1 unclear 5 -0.3424 

Gatifloxacin 
hydrochloride 

O -1 unclear 5 -0.836 

Gemifloxacin mesylate O -1 unclear 5 -0.6061 

Gentamicin C1 P,L,O 1 yes 5 1.067 

Hypoglycin-A P,L,O -1 yes 5 -0.6713 

Iprindole T,P,L,F,O 1 yes 5 0.473 

Isoproterenol O -1 unclear 5 -0.4269 

Ketoprofen V,O -1 unclear 5 -0.8353 

Labetalol T,V,H,L,O 1 yes 5 -0.4471 

Lamivudine O -1 unclear 5 -0.975 

Levonorgestrel O -1 unclear 5 -0.8581 

Maprotiline T,P,V,H,L,F,O 1 yes 5 0.0813 

Mesoridazine T,L,O 1 unclear 5 0.615 

Methotrexate P,L,O -1 yes 5 -1.1029 

Methyldopa P,H,L,O -1 yes 5 -0.0713 

Morphine sulfate O -1 unclear 5 -0.9271 

Nizatidine O -1 unclear 5 0.1184 

Norchlorcyclizine P,L,O 1 yes 5 0.7261 

Oseltamivir phosphate O -1 unclear 5 -0.3941 

Oxymetholone O -1 unclear 5 -0.2078 

Pentamidine T,V,H 1 yes 5 0.2411 

PNU-177864 L,O 1 yes 5 -0.2742 

Procainamide L,O -1 yes 5 -0.3167 

Prochlorperazine 
maleate 

O -1 unclear 5 1.0158 

Rifaximin O -1 unclear 5 -0.8211 

Rosuvastatin calcium O -1 unclear 5 -0.9243 

Sertindole H 1 unclear 5 0.6397 

Sertraline H,L,O 1 unclear 5 0.4496 

Spirapril O -1 unclear 5 -0.8447 
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Sulfamethoxazole L,O -1 yes 5 -0.762 

Tilorone T,P,L,F,O 1 yes 5 0.67 

Tobramycin P,H,L,O 1 yes 5 0.9099 

Tolterodine tartrate O -1 unclear 5 -0.1532 

Triparanol T,P,L,O 1 yes 5 0.5609 

Valganciclovir 
hydrochloride 

O -1 unclear 5 -0.6818 

Varenicline tartrate O 1 yes 5 0.2259 

Zalcitabine O -1 unclear 5 -0.8841 

Zileuton P,L,O -1 yes 5 -0.5166 

Zonisamide O 1 yes 5 -0.9573 
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