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We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian
are abruptly changed from being in an equilibrium phase A to a different phase B and back (A → B → A).
As prototype models, we consider the (integrable) transverse Ising field as well as the (nonintegrable) ANNNI
model. The return amplitude features nonanalyticities after the first quench through the equilibrium quantum
critical point (A → B), which is routinely taken as a signature of passing through a so-called dynamical quantum
phase transition. We demonstrate that nonanalyticities after the second quench (B → A) can be avoided and
reestablished in a recurring manner upon increasing the time T spent in phase B. The system retains an infinite
memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical
quantum phase transitions appear after the second quench.
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I. INTRODUCTION

In the last two decades we have witnessed an impres-
sive surge in experimental advances pushing the frontier of
realizing and controlling (effectively) closed nonequilibrium
quantum many-body systems [1–3]. This is of fundamental im-
portance, as the consequences of quantum many-body physics
are observably real in these systems as well as of practical
relevance as they might pave the way to quantum technologies
in the future.

Two quantities that have recently attracted a tremendous
amount of attention are the return amplitude [4],

G(t) = 〈�0|e−iHt |�0〉, (1)

and its related rate function,

l(t) = − 1

L
ln|G(t)|2. (2)

Here |�0〉 is some initial state, usually taken to be the ground
state of some Hamiltonian H0, while the subsequent time
evolution is governed by a different HamiltonianH , a setup that
is referred to as a quantum quench [5]. Intuitively, one might
think of the square of the return amplitude as the probability
of the ground state to return to itself under the time evolution
with H .

As has been pointed out by Heyl et al. [6], the rate func-
tion (2) in the transverse-field Ising chain shows nonanalytic
behavior at “critical times” t∗n , provided the quantum quench
has crossed the quantum critical point, i.e., if the ground
states of the Hamiltonians H0 and H belong to different
zero-temperature phases. The appearance of these critical
times signals the breakdown of a Taylor expansion in time.
Heyl et al. also pointed out the mathematical analogy of the
nonanalyticities in the rate function as well as the manifestation
of an equilibrium phase transition in the usual free energy, and

in doing so motivating the introduction of the term dynamical
quantum phase transition (DQPT) for the former.

One of the hallmarks of equilibrium quantum phase tran-
sitions is the inability to adiabatically connect the ground
state of one phase to the ground state of the other phase
(of different symmetry). Therefore, a nonanalyticity in the
ground-state energy is routinely encountered when passing
between the phases, irrespective of the path chosen to achieve
this crossing. In contrast, the robustness of DQPTs is much less
clear. The appearance of DQPTs often [7–9] but not always
[10–12] coincides with whether or not a quantum critical point
separates H and H0. Nevertheless, the further study of DQPTs
has attracted a lot of theoretical interest [13–38] as well as
successful efforts to realize DQPTs in ionic [39] and atomic
[40] systems in optical lattices.

In this paper, we add to this debate a surprising flexibility
in controlling DQPTs by performing double quenches (within
the free transverse-field Ising chain and a nonintegrable gen-
eralization thereof). We elaborate on how the appearance of
DQPTs can be tuned simply by increasing the time between
the first and second quench. In particular, we show that
the system can exhibit all four combinations of absence
or presence of nonanalyticities before and after the second
quench, respectively, as is illustrated for double quenches
in the transverse-field Ising chain in Fig. 1. This not only
suggests that the appearance of DQPTs is very fragile, but
also indicates an intriguing long-term memory of the system.
With this fragility in mind and motivated by recent experiments
[39], we comment on the relation between nonanalyticities in
the rate function and the time evolution of the magnetization.
We find that the correspondence of zeros in the magnetization
to the critical times t∗n , observed earlier for the transverse-field
Ising model [6], does not survive in the double-quench setup
(similarly to when integrability-breaking terms are included
[7] in a single-quench setup). This provides further evidence
that the correspondence found for a single quench in the free
case seems to be accidental.
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FIG. 1. Location of the critical times t∗
n in the t-T -plane for

a double quench between the PM → FM → PM phases of the
transverse-field Ising chain (quench parameters g0 = 1.5, g1 = 0.5
and g2 = 5.0). The dashed line marks the time t = T at which the
second quench is performed; the rate function l(t) is shown explicitly
in Fig. 3(a) for the quench times T J = 0.5,1,2 marked by dotted
lines. We stress that kinks at times t > T only occur for specific
quench durations.

The rest of this paper is organized as follows: Section II
gives a general introduction to the physical systems studied,
the observables calculated, and the methods used. Section III
summarizes our main results about the controllability of DQPT
in both the transverse-field Ising model and the axial next-
nearest-neighbor Ising (ANNNI) chain. In Sec. IV we analyze
the connection between nonanalyticities in the rate function
and the magnetization. Finally, in Sec. V we close with a
concluding summary.

II. SETUP, MODEL, AND METHODS

A. Setup

We compute the return amplitude (1) and its corresponding
rate function (2) for a time-dependent Hamiltonian H (t) that
models a double quantum quench

H (t) =

⎧⎪⎨
⎪⎩

H0, t < 0,

H1, 0 � t � T ,

H2, T < t.

(3)

As before, |�0〉 is the ground state of an initial Hamiltonian
H0.

B. Model

Specifically, we consider the following one-dimensional
Hamiltonian:

H (�,g) = −J
∑

i

[
σ z

i σ z
i+1 + �σz

i σ z
i+2 + gσx

i

]
, (4)

where σ
x,y,z

i denotes Pauli matrices acting at site i. We assume
J > 0 and g � 0, while � can be positive or negative. For
� = 0, one recovers the transverse-field Ising chain, which can
be mapped to a system of free fermions and hence be solved
exactly. The Ising chain exhibits a quantum phase transition
[41] at gc = 1, which separates a ferromagnetic (FM) phase

for g < 1 from a paramagnetic (PM) phase for g > 1. In the
thermodynamic limit, the FM possesses two degenerate ground
states |±〉 with 〈σ z

i 〉 �= 0, while the PM ground state with
〈σ z

i 〉 = 0 is unique.
For finite next-nearest-neighbor interactions � �= 0, one

obtains the ANNNI chain [42,43]. The model can be mapped to
a system of interacting fermions with interaction strength ∝ �,
which can no longer be solved exactly. The phase diagram of
this model has been studied by several methods [44–49]. In
addition to the FM and PM it also possesses two additional
phases at large, repulsive values of the interaction � > 1.

For the rest of this paper, we will keep J fixed; our double
quench is thus entirely determined by the three pairs of the
values (�m,gm),m = 0,1,2, together with Hm = H (�m,gm).

C. Analytical approach

For the analytical approach we consider a chain of length
L with periodic boundary conditions on the spin variables,
σa

L+1 = σa
1 . Furthermore, we restrict ourselves to double

quenches in the transverse-field Ising model (�m = 0), for
which exact results can be obtained. To this end, we map
the model to noninteracting fermions via a Jordan-Wigner
transformation (see, e.g., Ref. [50], which we follow in our
notation). In the fermionic language, the Hamiltonian can be
diagonalized straightforwardly,

H (� = 0,g) =
∑

k

εk(g)

(
η
†
k(g)ηk(g) − 1

2

)
, (5)

where

εk(g) = 2J
√

1 + g2 − 2g cos k, (6)

and η
†
k(g) and ηk(g) are fermionic creation and annihilation

operators. Depending on the filling fraction, the fermions fulfill
either antiperiodic boundary conditions with the momenta
quantized as half-integer multiples of 2π/L, or periodic
boundary conditions with the momenta quantized as integer
multiples of 2π/L. The antiperiodic case is usually referred to
as the Neveu-Schwarz (NS) sector, while the periodic one is
known as the Ramond (R) sector, respectively.

The initial state for the double-quench protocol is given
by the unique ground state of the fermionic model |0,g0〉,
which lies in the NS sector for any finite system. For g0 > 1
this corresponds to the unique PM ground state of the Ising
model. We stress, however, that in the FM phase 0 � g < 1
the fermionic ground state corresponds to a superposition of
the magnetic states |±〉 [50].

The fermionic modes which diagonalize the Hamiltonian at
different values of the transverse field are related via

ηk(g1) = cos
θk(g2) − θk(g1)

2
ηk(g2)

+ i sin
θk(g2) − θk(g1)

2
η
†
−k(g2), (7)

where the Bogoliubov angle θk(g) is determined from

eiθk (g) = g − eik√
1 + g2 − 2g cos k

. (8)
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Using the relations (7) together with the fact that the initial
state is the vacuum state, ηk(g0)|0,g0〉 = 0, the rate function
for the return probability for times t < T is found to be [4]

l(t) = − 1

π

∫ π

0
dk ln

∣∣∣∣ cos2 θk(g1) − θk(g0)

2

+ sin2 θk(g1) − θk(g0)

2
e−2iεk(g1)t

∣∣∣∣, (9)

while for times t > T we obtain

l(t) = − 1

π

∫ π

0
dk ln

∣∣Ak + Bk e−2iεk(g2)t
∣∣ + 2 ln 2. (10)

The coefficients Ak and Bk depend on all quench parameters
and are explicitly given by

Ak = 1 + cos[θk(g0) − θk(g1)] + cos[θk(g0) − θk(g2)]

+ cos[θk(g1) − θk(g2)] + (1 − cos[θk(g0) − θk(g1)]

+ cos[θk(g0) − θk(g2)]−cos[θk(g1)−θk(g2)])e−2iεk(g1)T ,

(11)

Bk = (1 + cos[θk(g0) − θk(g1)] − cos[θk(g0) − θk(g2)]

− cos[θk(g1) − θk(g2)])e2iεk(g2)T

+(1 − cos[θk(g0) − θk(g1)] − cos[θk(g0) − θk(g2)]

+ cos[θk(g1) − θk(g2)])e−2i[εk(g1)−εk(g2)]T . (12)

D. DMRG approach

In addition to the analytical approach discussed above,
we employ the density matrix renormalization group [51–53]
(DMRG) to study the double-quench setup. The reason for
this is twofold: (1) The DMRG allows us to study quenches
within the Ising chain that start from a polarized state, which
is not a ground state of the fermionic model. Such quenches
feature nontrivial dynamics of the magnetization and will be
investigated in Sec. IV in detail. (2) One can treat the ANNNI
chain [� �= 0 in Eq. (4)] which cannot be solved analytically;
we will demonstrate that the picture described in Sec. III A
persists in such a nonintegrable model.

At the technical level, we employ an infinite-system DMRG
algorithm that is set up directly in the thermodynamic limit.
We first determine the ground state using an evolution in
imaginary time and then carry out a real-time evolution to
compute the rate function l(t). The discarded weight is kept
constant during the latter, which leads to a dynamic increase
of the bond dimension. We performed every calculation
using various different values of the discarded weight in
order to ensure convergence. Further details of the numerical
implementation can be found in Ref. [7].

III. RESULTS

A. General observations

Let us first recall [6] how DQPTs manifest for single
quenches (i.e., T = ∞) within the Ising chain (�m = 0). If
the quench crosses the critical point g = 1, the rate function
(2) exhibits kinks in its time evolution, while such nonanalytic
behavior is not observed if both g0 and g1 belong to the same

phase. (Note, however, that for other models the appearance of
DQPTs is no longer tied to the fact whether or not the quench
crossed a critical point [11].)

For the double-quench setup, we will demonstrate below
that the appearance or absence of DQPTs not only depends
on the values of the quench parameters but also dramatically
on the time T between the first and the second quench. This
entails a remarkable degree of controllability of the DQPTs.
In fact, all four possible combinations for the absence or
presence of kinks for times t < T (after the first quench) and
t > T (after the second quench) can be realized. Strikingly, the
existence of nonanalytic behavior in the rate function after the
second quench can be tuned in a highly nonmonotonic fashion,
where in a recurring manner the DQPTs can be suppressed and
reinstated by increasing T .

For future reference, we label the four cases mentioned
above as follows: The rate function shows (i) no nonanalytici-
ties at all, (ii) no nonanalyticities for t < T but kinks for t > T ,
(iii) nonanalyticities for t < T but not for t > T , and (iv) kinks
both for t < T and t > T . The general observation that the
appearance and absence of kinks can be tuned by varying T is
condensed in Fig. 1, which shows the critical times t∗n at which
the rate function is nonanalytic in dependence of the time T for
a typical set of parameters g0 = 1.5, g1 = 0.5, and g2 = 5.0
in the Ising model (see Sec. III B for more details). Increasing
T , we find recurring, discrete sets of lines of t∗n (solid lines
in Fig. 1) which extend into the regime t > T . This illustrates
that the appearance and vanishing of DQPTs after the second
quench can be tuned by changing T . For a given value of T ,
the critical times t∗n at which rate function l(t) shows kinks
are determined by the crossing points of vertical lines in Fig. 1
with the solid ones. Tokens of the classes (i)–(iv) defined above
are thus, e.g., T J = 0.5,1,2,3.5, respectively. The recurring
appearance and suppression of DQPTs after the second quench
suggests an intriguing fragility of the concept (in contrast to
the quite robust equilibrium quantum phase transitions) and
gives rise to the high susceptibility to tuning outlined above.

B. Analytic results for the Ising chain

The analytic results presented in Sec. II C allow us to obtain
a complete understanding of the appearance of DQPTs for
the transverse-field Ising chain. For times t < T , our setup is
equivalent to the sudden quench protocol which was originally
studied by Heyl et al. [6], who realized that the rate function
l(t) will show nonanalyticities at specific times t∗n which are
determined by a vanishing argument of the logarithm in Eq. (9).
This happens if the quench crosses the quantum critical point,
and the times t∗n are located at [6]

t∗n = π

2εk∗(g1)
(2n + 1), n ∈ N0. (13)

Here, the critical momentum k∗ is obtained from the condition

cot2 θk∗ (g1) − θk∗(g0)

2
= 1 (14)

and explicitly given by k∗ = arccos[(1 + g0g1)/(g0 + g1)].
Depending on the value of T , one may thus observe a finite
number of kinks before the second quench, as also shown in
Fig. 1.
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FIG. 2. Modulus ρk = |Ak/Bk| for a double quench in the
transverse-field Ising chain with quench parameters g0 = 1.5, g1 =
0.5, and g2 = 5.0, and different quench times T . Generically we find
either (a) no solution to (16), (b) one solution at k = k∗, or (c) two
solutions k = k∗

1,2. Only the latter case results in critical times given
by (17), at which the rate function shows nonanalytic behavior.

The situation becomes considerably more involved for
times t > T , since Eq. (10) depends on all quench parameters
g0, g1, and g2 as well as the quench time T . To make our
analysis more transparent, we will fix the values of the
transverse field and discuss the dependence on T , also in
light of the fact that this parameter can be directly controlled
in experiments. As discussed above, nonanalyticities in the
rate function (10) will appear whenever the argument of the
logarithm vanishes,

Ak

Bk

+ e−2iεk(g2) = ρke
iϕk + e−2iεk(g2) = 0. (15)

The main difference to the case t < T is that due to the time
evolution until t = T , the coefficient Ak/Bk = ρke

iϕk is now
no longer real but in general complex. It is thus reasonable
to introduce the modulus ρk and the phase ϕk , for which the
condition (15) implies

ρk = 1. (16)

For double quenches starting and ending in the same phase
(e.g., g0,g2 > 1, g1 < 1), we generically find one of the three

cases shown in Fig. 2: (a) There is no momentum for which
Eq. (16) is satisfied; this is, for example, the case for quench
times T J � 0.9 or 2.97 � T J � 3.92 for the parameters
shown in Fig. 1. The time evolution of the rate function is
then completely analytic for all t > T . (b) There is one critical
momentum k∗ with ρk∗ = 1, while for all other momenta we
have ρk > 1. As we will discuss below, there are also no
nonanalyticities in the time evolution in this case. (c) There are
two critical momenta k∗

1 and k∗
2 at which Eq. (16) is satisfied.

Close to these momenta, the function ρk is linear, which implies
nonanalytic behavior of the rate function at times

t∗i,n = π

2εk∗
i
(g2)

(2n + 1) − ϕk∗
i

2εk∗
i
(g2)

, (17)

where i = 1,2 and n ∈ N0. The phase shifts ϕk∗
i

originate from
the time evolution for t < T . We note that while the individual
sets {t∗i,n}, i = 1,2 are periodic in time, due to the differing
values of the prefactor π/[2εk∗

i
(g2)] the complete set of critical

times {t∗1,n} ∪ {t∗2,n} is not periodic. In principle there may be
more than two momenta at which (16) is satisfied, each of them
giving rise to a set of critical times determined by (17).

The link between the cases (a)–(c) discussed here and the
general cases (i)–(iv) introduced in Sec. III A is as follows:
Depending on whether or not the critical times (13) appear up
to T , the cases (a) and (b) result in the general cases (i) or (iii).
Similarly, case (c) leads to cases (ii) or (iv).

Furthermore, the analytic result (10) allows us to analyze the
behavior of the rate function close to the critical times (17). We
expand the integrand around k = k∗

i and t = t∗i,n. As illustrated
in Fig. 2(c), ρk is linear near k∗

i , ρk ≈ 1 + a(k − k∗
i ), a ∈ R,

and thus we can approximate the rate function as follows:

l(t) ≈ − 1

2π

∫ π

0
dk ln

[
a2(k − k∗

i )2 + (2εk∗
i
(g2)δt)2

]

≈ δt = |t − t∗i,n|. (18)

This linear behavior seems to be a general feature of DQPTs;
it was previously observed after quenches across the quantum
critical point in the transverse-field Ising model [14] as well as
the quantum Potts chain [28].

Finally, let us comment on the case where there is precisely
one critical momentum k∗, as shown in Fig. 2(b). At this value,
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FIG. 3. Rate function l(t) for a double quantum quench within the transverse-field Ising chain (�m = 0) for different quench times T and (a)
quenches between the PM → FM → PM phases, and (b) quenches between the FM → PM → FM phases starting from a mixed FM state. We
compare the exact analytical results derived in Sec. III B with those obtained from a DMRG calculation. By varying T , one can systematically
tune the appearance and suppression of DQPTs after the second quench. The different possible cases are discussed in Sec. III A.
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FIG. 4. Rate function for a double-quench PM → FM → PM
with different quench times T for the ANNNI model. The results
were obtained using DMRG.

the modulus ρk is no longer linear in k − k∗. Instead, we
observe that when approaching the critical quench duration
Tc (given by TcJ ≈ 0.9005 for the parameters of Fig. 2) from
above, the critical momenta k∗

1,2 and thus the times t∗1,n and
t∗2,n approach each other, and eventually the kinks in the rate
function simply disappear.

C. Numerical results for the ANNNI chain

We start by benchmarking our DMRG data for the Ising
chain against the analytic results of Sec. II C. Figure 3 shows the
rate function for two quenches starting from (a) the PM ground
state and (b) the mixed FM ground state that corresponds to
the NS state in the fermionic language. By varying the quench
time T , one can realize each of the different cases discussed
in Sec. III A. For example, for a quench starting in the mixed
FM ground state [Fig. 3(b)], there are DQPTs for T J = 0.1
(case i), for T J = 0.19, kinks appear only for t > T (case ii;
not shown in the figure), for T J = 0.3, there are kinks only
for t < T (case iii), and for T J = 0.21, kinks appear for both
t < t and t > T (case iv). In all cases, the DMRG data agree
perfectly with the exact result.

Our general results, which we discussed in Sec. III A, were
mainly based on the analytic solution of the transverse-field
Ising model. It is important to show that the main conclusions
are robust against breaking the integrability of this model and
are therefore expected to hold in generic quantum many-body
systems. To this end, in Fig. 4 we report results on the ANNNI
model with finite �, which, to the best of our knowledge, is
not integrable. We show that in complete analogy to the free
(integrable) case, the behavior of the rate function l(t) can be
flexibly controlled by changing T ; we explicitly demonstrate
the appearance of the three cases: (i) no nonanalyticities (T J =
0.4, red solid curve online), (ii) no nonanalyticities for t < T

but kinks for t > T (T J = 0.8, blue solid curve online), and
(iii) nonanalyticities for t < T but no kinks for t > T (T J =
1.1, orange solid curve online). While we cannot rule out that a
different phenomenology emerges at larger times inaccessible
to the DMRG, the data of Fig. 4 indicate that flexible control
of the appearance of DQPTs is possible even in nonintegrable
models; one can suppress and reestablish DQPTs at will.

IV. RELATION BETWEEN DQPTS AND MAGNETIZATION

By a remarkable experimental effort, the authors of Ref.
[39] succeeded in directly measuring the rate function in a
string of up to ten calcium ions, which are used to simulate
long-ranged Ising models. Although a system of ten ions is
admittedly small, the work established a connection between
the theory of DQPTs and the nonequilibrium physics expected
in real quantum simulators. In Ref. [39] also the magnetization
was addressed for a quench starting from a FM polarized state,
which is arguably a more natural quantity than the rate function.
It was shown that the times where the magnetization vanishes
are tied to the critical times t∗n where kinks in the rate function
show up. In Ref. [6], a similar connection was observed for
the transverse-field Ising chain in the thermodynamic limit.
In contrast, it was previously demonstrated that such a direct
relation does not carry over to the nonintegrable case such as
the ANNNI model [7]. This begs the question whether or not
such a relationship between zeros in the magnetization and the
critical times in the rate function exists for more general setups.

For the double quench, we observe that this is not the case
(similarly to what is found for single quenches in nonintegrable
models), suggesting that the correspondence is not robust (even
for free models). In Fig. 5, we explicitly compare the rate
function and the magnetization for a double quench starting
from a FM polarized state of the transverse-field Ising model.
The data was obtained using the DMRG method. One can
explicitly see that the kinks in l(t) at times t > T after the
second quench are in general not related to the zeros in the
magnetization. This is most prominent in the T J = 0.58 curve
(dashed blue curve online), where the rate function for times
t > T shows repeated kinks, while the magnetization vanishes
at a completely different time scale.
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FIG. 5. (a) The same as in Fig. 3(b), but starting from a polarized
FM state. (b) Behavior of the magnetization |〈σ z(t)〉| during this type
of quench. The data was computed using DMRG. We show that the
times at which the magnetization vanishes are in general not tied to the
critical times t∗

n where kinks in the rate function show up (in contrast
to the transverse-field Ising chain).

184302-5



D. M. KENNES, D. SCHURICHT, AND C. KARRASCH PHYSICAL REVIEW B 97, 184302 (2018)

V. CONCLUSION

In this paper, we have studied the phenomenon of DQPTs
after double quantum quenches A → B → A between two
equilibrium phases A and B. We have calculated the rate
function analytically for the free transverse-field Ising chain.
By varying the time T spent in phase B, one can control at
will and in a recurring manner whether or not DQPTs occur
after the second quench. All four possible combinations of the
appearance and absence of nonanalyticities before and/or after
the second quench can be realized if T is tuned. A similar
picture emerges using finite-time DMRG numerics for the
ANNNI model, which is a nonintegrable generalization of the
Ising chain. Moreover, we demonstrated that even for the free
transverse-field Ising chain there is no relationship between
the critical times after the second quench and the zeros of

the magnetization. In conclusion, our results show that the
appearance of DQPTs is very fragile against the details of the
quench setup.
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