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I Summary

I Summary

1 Summary in English

The kingdom of fungi comprises an enormous range of live styles and genetic variability. Different

genomics approaches offer possibilities to investigate species diversity and ecological function of

fungi. In this thesis I present improvements of metabarcoding methods for aquatic fungi and the

application of whole genome sequencing and transcriptome sequencing to an exclusively aquatic

fungus.

Beside the standard metabarcoding marker for fungi, the ITS (internal transcribed spacer) region,

the eukaryotic rRNA operon contains two other markers, the SSU (small subunit) and LSU (large

subunit), that are also often used for metabarcoding. When choosing a metabarcode there is a trade-

off between high variability for fine grain species delineation and high conservation for good primer

binding and high level  classification  of   novel  species,  which  are  not  represented  in  reference

databases.  In  the  work  presented  in  chapter  III,  we  investigated  the  possibility  to  use  the

information from the more conserved 5.8S sequence, that is part of many amplicons used for ITS2

sequencing. It is normally discarded, but we used it as a complementary marker to ITS2 and showed

that it can improve classification of novel species with an incomplete reference database. In chapter

IV this  is taken one step further by using third generation sequencing to sequence the full  ITS

region together with the more conserved SSU and LSU in the same amplicon. This gives us the

option  to  use  different  markers  with  different  databases  for  classification  in  parallel  and  to

circumvent the trade-off between high variability and high conservation.

Fungi  are  ecologically  very  important  decomposers  of  lignocellulose  from plant  biomass.  The

occurrence and expression of gene families for the degradation of lignin from lignocellulose has

been extensively studied with whole genome and transcriptome sequencing in terrestrial, but not in

aquatic  fungi.  In  the  work  presented  in  chapter  V,  we  used  whole  genome  and  transcriptome

sequencing  to  investigate  differential  gene  expression  in  the  exclusively  aquatic  fungus

Clavariopsis aquatica when grown on media with more and less lignin rich carbon sources and

investigated the expression patterns of peroxidases, laccases and other protein families involved in

plant biomass degradation. This observed up-regulation of laccases, peroxidases and genes from the

cytochrome  P450  super-family,  as  well  as  other  gene  families  involved  in  cellulose  and
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I Summary

hemicellulose  degradation,  strongly  suggests  that  C. aquatica is  able  to  modify  lignin  to  some

extent; perhaps in order to facilitate the utilization of lignocellulose as a carbon and energy source.

2 Zusammenfassung in Deutsch

Das  Königreich  der  Pilze  enthält  eine  enorme  Bandbreite  von  Lebensweisen  und  genetischer

Variabilität.  Verschiedene  genomische  Ansätze  bieten  die  Möglichkeit  die  Artenvielfalt  und

ökologisch  Funktion  von  Pilzen  zu  untersuchen.  In  dieser  Doktorarbeit  präsentiere  ich  die

Verbesserung  von  Metabarcodingmethoden  für  aquatische  Pilze  und  die  Anwendung  von

Ganzgenomsequenzierung und Transkriptomsequenzierung eines exklusive aquatischen Pilzes.

Neben dem Standard-Marker für Pilze, der ITS-Region (internal transcribed spacer), enthält das

eukaryotische  rRNA-Operon zwei  andere  Marker,  die  SSU (smal  subunit)  und die  LSU (large

subunit),  die  auch  als  Metabarcodingmarker  verwendet  werden.  Bei  der  Auswahl  eines

Metabarcodingmarkers  gibt  es einen Abwägung zwischen hoher  Variabilität  zu fein abgestuften

Speziesunterscheidung und hoher Konservierung für gute Primerbindung und zur Klassifizierung

von neuen Arten, die nicht in der Referenzdatenbank vertreten sind. In der Arbeit, die in Kapitel II

vorgestellt wird, untersuchten wir die Möglichkeit die Information des stärker konservierten 5.8S

Gens, das Teil vieler Amplikons ist, die zur ITS2-Sequenzierung verwendet werden, zu verwenden.

Er wird wird normalerweise verworfen, aber wir verwendeten es als ergänzenden Marker zu ITS2

und  konnten  zeigen,  dass  es  die  Klassifizierung  von  neuen  Arten  verbessert,  wenn  die

Referenzdatenbank unvollständig ist. In Kapitel III wird dies einen Schritte weiter getrieben indem

Sequenzierung der dritten Genration genutzt wurde um die komplette ITS-Region zusammen mit

den stärker konservierten SSU und LSU in einem Amplikon zu sequenzieren. Dies eröffnete uns die

Möglichkeit verschiedene Marker mit verschiedenen Datenbanken parallel zu verwenden und die

Abwägung zwischen hoher Variabilität und hoher Konservierung zu umgehen.

Pilze  sind  sind  ökologisch  sehr  wichtig  für  den  Abbau  von  Lignozellulose  aus  pflanzlicher

Biomasse. Das Vorkommen und die Expression von Genfamilien für den Abbau von Lignin aus

Lignozellulose  wurde  in  terrestrischen  Pilzen  bereits  umfangreich  mit  Genom-  und

Transkriptomsequenzierung untersucht,  jedoch nicht  in aquatischen Pilzen.  In der  Arbeit,  die in

Kapitel V vorgestellt wird, verwendeten wir Genom- und Transkriptomesequenzierung um in dem

exklusiv aquatischen Pilz Clavariopsis aquatica, der auf Substraten mit mehr oder weniger Lignin

kultiviert wurde, die Expressionsmuster von Peroxidasen, Laccasen und anderen Genfamilien, die
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am  Abbau  von  pflanzlicher  Biomasse  beteiligt  sind,  zu  untersuchen.  Die  beobachtete

Hochregulierung  von  Laccasen,  Peroxidasen,  Genen  der  Cytochrome  P450  Super-Familie  und

weiter  Genfamilien,  die  am Abbau von Zellulose und Hemizellulose beteiligt  sind,  deutet  stark

darauf  hin,  dass  C. aquatica in  der  Lage ist  Lignin  zu  einem gewissen  Grad  zu  modifizieren;

möglicherweise  um  die  Verwendung  von  Zellulose  und  Hemizellulose  als  Energie-  und

Kohlenstoffquelle zu ermöglichen.
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II Introduction

II Introduction
The kingdom of fungi comprises a  enormous range of live styles  and genetic variability.  Their

diversity in terms of existing species as well as function in ecosystems is far from fully explored.

Different genomics approaches offer possibilities to investigate different aspects of fungal diversity.

Metabarcoding  can  be  used  to  identify  different  fungi  from  the  environment,  whole  genome

sequencing and transcriptome sequencing to investigate the enzymatic abilities of a fungus and its

reaction to changes in the environment. In this thesis I present improvements of metabarcoding

methods for fungi and the application of whole genome sequencing and transcriptome sequencing.

The  focus  of  the  work  is  on  fungi  that  appear  in  aquatic  habitats,  that  are  especially  poorly

characterized  (Grossart  and Rojas-Jimenez,  2016).  Fungi that  spent significant  part  of their  life

cycle submerged in water are called aquatic fungi, but this group is not monophyletic (Shearer et al.,

2009) and in practice in many cases it will be not possible to distinguish them from fungi that were

washed or blown into the water and do not actually grow there.

Fungi  can  be  found all  over  the  plant  and often  occur  in  harsh  conditions  like  high  radiation

(Dadachova and Casadevall, 2008) or salinity (Vaupotic et al., 2008). Their live styles reach from

parasitic and pathogenic, over degradation of dead biomass to symbiotic relationships with other

organisms. Many fungi can opportunistically take more than one of these roles. About 8,000 fungi

are known plant pathogens (Nature Microbiology Editorial, 2017) like rusts, smuts and rots and a

number of human diseases, especially in immunocompromised patients, are caused by fungi. Fungi

can also be found as parasites of insects, nematodes and even other fungi. 

One of the most important form of fungal symbiosis is mycorrhiza, where fungi grow in symbiosis

with plant roots and benefit the plants nutrient uptake, while getting energy in form of sugar from

the plant. Another form of fungal symbiosis are lichens, that are symbiotic communities of fungi

and algae or cyanobacteria.

Fungi  also  play  an  important  role  as  decomposers  of  dead  biomass.  Especially  of  recalcitrant

materials like wood.  

The  number  of  fungal  species  is  topic  of  debate  and  estimations  range  from 1.5  to  5  million

(Blackwell,  2011;  Hawksworth,  1991).  New species  are  discovered  frequently  even among the

macroscopic mushrooms  (e.g.  Chakraborty et  al.,  2018;  Tibpromma et  al.,  2018;  Vizzini  et  al.,
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2018; Wang et al., 2018). Even the high level evolutionary relationships between fungi are not fully

resolved and tree underlying the taxonomic classification of fungi is still very much in flux. For

example over the course of the last twenty years the number of suggested phyla inside the kingdom

of fungi has changed from seven  (Hibbett et al.,  2007) to twelve  (Tedersoo et al.,  2017a). This

includes not only rearrangement of known orders into new phyla, but also the introduction of the

phylum Cryptomycota (also known as Rozellomycota)  (Jones et al., 2011a) in which few species

have been named so far, but that is believed to contain substantial genetic diversity  (Jones et al.,

2011b).

Cells of vascular plants have a cell wall that protects them from the outside and allows them to keep

up  high  osmotic  gradients.  These  cell  walls  consist  of  a  interwoven  matrix  of  different

carbohydrates. The main components are cellulose, hemicellulose and lignin. Cellulose is a linear

polymer  of  D-glucose  monomers  and  makes  up  the  biggest  proportion  of  the  cell  wall.

Hemicellulose  is  the  collective  name  for  different  polymers  of  different  sugars  like  xylose,

galactose,  mannose  and  others.  Unlike  cellulose  the  structure  of  hemicellulose  is  much  more

random with shorter chain length and branching chains. Lignin is a polymer of different phenolic

monomers, that is hydrophobic and very resistant to biodegradation.

Fungi are the only organisms that can degrade lignin to access cellulose and hemicellulose in wood

and other plant material. Wood decay by fungi is often separated into to categories. “White rot” in

which the lignin is fully degraded and white cellulose is exposed and “brown rot” in which the

lignin is modified making it possible for the fungus to degrade the cellulose and hemicellulose and

leaving the brown lignin behind. Lignin degradation in white rot is mostly facilitated by peroxidases

like  lignin  peroxidase,  manganese peroxidase  and versatile  peroxidase.  In  addition  other  lignin

modifying enzymes like laccase play an important role.

Many fungi species are microscopic and hard to classify by morphological features. Traditionally

fungi were identified and classified by their fruiting bodies and spores during sexual reproduction.

Fungi that do not sexually reproduce or where sexual reproduction could not be observed were

summarized  in  a  separated  phylum  called  Deuteromycota.  In  fact  the  International  Code  of

Botanical  Nomenclature  (ICBN) that  governs  the  naming of  fungi  specifically  allowed to  give

different names to the sexual reproductive stage (teleomorph) and the asexual stage (anamorph) of

the  same  fungus.  With  the  development  of  the  polymerase  chain  reaction  (PCR)  and  DNA
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sequencing,  studies  of  molecular  phylogeny  of  fungi  became  possible  and  showed  the

Deuteromycota  did  not  form monophyletic  clade  and  that  asexual  species  could  be  nested  in

sexually reproducing genera (Berbee and Taylor, 1992). This led to the change of the ICBN to no

longer allow two names for one fungus in 2011  (International Association for Plant Taxonomy,

2012).

Besides  being  useful  for  computing  molecular  phylogenetic  trees,  DNA  sequencing  and

amplification of defined stretches of DNA by PCR also allowed for identification of species by

short,  distinctive  parts  of  the  genome.  These  species  markers,  called  barcodes,  are  often  more

informative than morphological or functional features and can be more easily tested in modern

molecular  labs.  For  barcoding to  work one needs a  barcode (or  marker)  sequence,  that  can be

amplified from all species in question and is different for each species. For amplification there are

two constraints. Firstly the barcode gene or region must exist in all species in question. Secondly to

allow the design of primers that can bind for all studied species, the sequence of the barcode or at

least the sequence of flanking regions need to be conserved to a certain degree. For the barcode to

be different in every species one must choose a region that is not conserved between species and

ideally is not under stabilizing selective pressure. Obviously these two requirements, conservation

for primer binding and variability for species delineation, are in direct conflict. Either a trade off

between them has to be made when choosing a barcode or a sequence region can be found that has a

well  conserved structure with regions  of  high sequence  conservation  flanking a  region of  high

variability.

Like in bacteria the gene encoding the rRNA for the small ribosomal subunit (SSU or 18S) is used

as a marker in fungi. It is well conserved in all cellular organisms, but contains multiple regions

(called V1-V9) of higher variability. Although the variable regions show higher variability than the

rest of the gene they can not always resolve differences between closely related species (Cole et al.,

2014; Schoch et al., 2012). In most eukaryotes the SSU appears in an operon together with the two

genes for the rRNAs in the large ribosomal subunit, the 5.8S and the 28S (or LSU). Between the

SSU and the 5.8S, and between the 5.8S and the LSU genes, there are the two itergenic spacers

ITS1 and ITS2. These two spacers together with the 5.8S form the ITS region, that separates the

SSU and LSU. Since the two spacers are non-coding they show high variability. This fact together

with the conserved flanking regions of SSU and LSU makes the ITS region a good marker for
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fungi. In 2012 (Schoch et al., 2012) the ITS region was chosen as the official barcode for fungi, but

the SSU and the LSU are still often used (e.g. Davison et al., 2015; Jumpponen et al., 2015; Rojas-

Jimenez et al., 2017; Roy et al., 2017).

When using a DNA barcode for identification of more than a few species the need for a reference

database to compare to arises. General purpose sequence databases like GenBank can be used, but

often lack a rigorous enough curation and thus may contain errors and especially sequences that are

assigned to the wrong species. Because of its frequent use in bacteria several specialized databases

with SSU sequences have been established. The Ribosomal Database Project  (RDP, Cole et al.,

2014) database and the Greengenes  (DeSantis et al., 2006) database both contain SSU sequences

from bacteria and archaea but not from fungi. The SILVA database  (Quast et al., 2013) contains

SSU sequences from bacteria, archaea and fungi. In addition the RDP also provides a specialized

LSU database  with  fungal  sequences  and  SILVA has  a  specialized  LSU database  for  bacteria,

archaea and fungi. For fungi there is the UNITE database  (Kõljalg et al., 2013) with ITS region

sequences.  In  this  work  UNITE  was  chosen  as  reference  for  ITS  sequences  and  SILVA as  a

reference  for  SSU sequences,  since  they  are  the  only  database  with  fungal  sequences  for  the

respective marker. For LSU the RDP database was chosen as reference since they provide a better

curated dataset with less length differences. 

Originally barcoding was done with Sanger sequencing. It provides sequences of a length between

300-1000 bp. One of its limitations is that only one sequence can be present in the sample that is

sequenced. A mix of DNA molecules with different sequences will lead to mixed base signals in

sequencing and low quality sequence reads. Consequently investigated samples should only contain

one  species  or  DNA molecules  from  different  species  have  to  be  separated.  This  means  that

barcoding all species in an environmental sample (so called metabarcoding) with sanger sequencing

has to includes a time consuming cloning step and thus is not feasible for more than a few samples

and few dozen species per sample.

Second  generation  sequencing  (e.g.  Illumina/Solexa  and  Roche  454)  offers  the  possibility  to

sequence millions of molecules from the same sample. In addition by adding an index sequence to

the  DNA molecules  of  each  sample  during  sequencing  preparation,  multiple  samples  can  be

sequenced  at  once  and  separated  by  the  index  sequence  in  post  processing  to  be  analyzed
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independently. This advance in sequencing technology made it possible to easily barcode thousands

of species from one environmental sample. Especially Illumina sequencing with very low cost per

base pair sequenced, allows for large scale ecological studies. The drawback is the shorter sequence

read length (100 – 300 bp depending on the instrument). The sequence length that can be read can

be improved by an overlapping paired end design. A DNA molecule is sequenced with a given read

length from both sides and the length ratio between DNA molecule and reads is chosen such that the

two reads overlap in middle. Given the maximum read length of 300 bp and a minimal overlap

length to make sure that the two reads can be correctly joined, molecules up to 550 bp can be

sequenced  in  this  way.   This  reduced  sequence  length  means  that  the  full  ITS region  (300 to

1,200 bp) can not be used. Because most of the variability in the ITS region comes from the ITS1

and ITS2, while the 5.8S is more conserved, most studies use an amplicon containing the ITS1 or

ITS2 . The other drawback of second generation sequencing is a slightly higher error rate (0.1%,

(Goodwin et al., 2016)) compared to Sanger sequencing. Together with real intra-species variation,

that is more visible because of the much higher read number, this means that a certain amount of

sequence variability in the reads has be expected. To deal with this fact reads are normally clustered

into so called operational taxonomic units (OTUs). Of course ideally one OTU would correspond to

one species, but in practice this can not always be garantied.

With high throughput ecological studies the probability to encounter unknown species increases.

This is especially true for fungi where many species are not formally described and even fewer are

represented by sequences in the reference databases. Species that are unknown or not represented in

the database can not be identified by barcoding. In most cases a classification is still attempted for

these sequences by comparing them to known sequences and assigning them to a higher taxonomic

rank than species. This classification can be based on sequence comparison to the database or on

phylogenetic analysis. 

One  of  the  most  common  database  search  based  approaches  is  the  Naive  Bayesian  classifier

implemented by th RDP project (Wang et al., 2007). It pre-processes the database by investigating

the occurrence of subsequences of length k (kmers) in every reference sequence in each taxonomic

group.  When a query  sequence  is  classified,  the  kmers  in  it,  are  compared to  the  ones  in  the

database and from the result a likelihood for the sequence to come form a certain taxonomic group

is computed.  This  process is  repeated with different  subsets of all  possible kmers in the query

sequence to give a bootstrap value for the most likely assignment. 
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II Introduction

Another database search based method is the lowest common ancestor (LCA) approach (Huson et

al., 2007). First the query sequence is compared to the reference database by any alignment method

(blast search in most applications). A set of “good” hits is determined by certain requirements to the

alignment. From the taxonomic assignment of all these hits a classification is determined by finding

the lowest common ancestor in the tree that underlies the taxonomy. 

Phylogenetic classification approaches rely on a  multiple sequence alignment of sequences with

known  taxonomic  assignment  (database  sequences)  and  sequences  with  unknown  taxonomic

assignment  (query  sequences).  From  the  alignment  a  phylogenetic  tree  is  computed.  Query

sequences can then be assigned to the same taxonomic group as the database sequences they form a

monophyletic group with. 

In this work database search based approaches are applied, mainly because the standard barcode for

fungi, the  ITS region is too variable between all fungi to be properly aligned. Its high variability

also causes problems for database search based classification approaches. If a sequence from a new

species is to different from all the database sequences, it can be hard to determine to which of them

it is the closest.  Besides the problem of conservation for primer binding site,  this adds another

drawback to high variability barcodes like the ITS1 and ITS2. Barcodes with lower variability may

offer  the  possibility  to  classify  a  sequence  at  least  to  a  higher  taxonomic  rank,  when  an

identification to species level is not possible. 

There is trade off between alignable, more conserved barcodes, that can be used for phylogenetic

analysis and higher level taxonomic assignment of new species and high variability barcodes that

give the possibility to identify sequences to the species level. One idea to get around this is to

sequence one marker from the first category and one from the second category at the same time.

The easiest would be to amplify and sequence them as one sequence to keep the information that

they are from the same individual. The organization of the rRNA operon offers the opportunity to

sequence the ITS (as variable  marker)  together  with parts  of either  the SSU or  LSU (as  more

conserved marker).  When using Illumina sequencing this  is prevented by the short  read length.

Third generation sequencing technologies from Pacific Biosciences (PacBio) and Oxford Nanopore

offer significantly longer reads (>30 kbp) with reasonably high throughput. Their drawback lies in

higher error rates (>10%) that make them difficult to use for barcoding. 

For PacBio sequencing hairpin adapters are added to the double stranded DNA molecules, so that

they essentially form a single strand loop. If the original DNA molecule was short enough this loop
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might be read multiple times around. This multiple reads from the same molecule can be aligned

and consensus sequence can be computed. The error rate in the resulting sequences is comparable to

Illumina sequencing  (Travers et al.,  2010) and thus low enough to make barcoding viable. This

approach has shown promising results for bacteria (Franzén et al., 2015; Schloss et al., 2016; Singer

et al., 2016) where the full length 16S gave better results than the partial sequences normally used.

For fungi Terdesoo et al.  (Tedersoo et al., 2017b) sequenced parts of the rRNA operon and found

increased taxonomic resolution compared to using only the ITS1 or ITS2. 

Existing metabarcodes can not solve the trade-off between high variability and high conservation

and thus can either not reliably classify sequences to the species level or not reliably classify novel

species to any level. In the work presented in chapter III we investigated the possibility to use the

information  from  the  partial  5.8S  sequence,  that  is  part  of  many  amplicons  used  for  ITS2

sequencing. It is normally discarded, but we used it as a complementary marker to ITS2 and showed

that it can improve classification of novel species  with an incomplete reference database. In chapter

IV this  is taken one step further by using third generation sequencing to sequence the full  ITS

region together with the SSU and a big part of the LSU in the same amplicon. This gives us the

option  to  use  different  markers  with  different  databases  for  classification  in  parallel  and  to

circumvent the trade-off between high variability and high conservation.

Whole genome sequencing and mRNA sequencing (RNA-Seq) are two other methods, that became

only  feasible  with the  development  of  second generation  sequencing,  that  makes  it  possible  to

generate hundreds of millions of reads at a reasonable price. 

For genome squencing the DNA of an organism is fragmented into smaller pieces of a few hundred

base pairs and sequenced with second generation sequencing. The reads are then combine into so

called contigs (continues sequences) by specialized assembly algorithms. The contigs can ideally be

as  long  as  the  original  DNA molecules,  but  are  in  practice  often  shorter.  How successful  the

assembly is, depends on many factors, but mostly is a question of how well the genome is covered

by the reads. The assembly algorithms rely on overlaps between the reads to combine them, and on

redundancy in the reads to correct sequencing errors. This means that every base in the genome has

to be covered by multiple reads (ideally >30). 

From the genome sequence genes and proteins can be predicted with computational methods. These

methods use statistical models of gene structures and alignments of known proteins and transcripts
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from the same or closely related organism to predict the positions of exons, introns, and start and

stop  codons.  Although  these  predictions  are  not  completely  reliable,  protein  sequences  can  be

inferred based on them. To get a insight into possible functions, predicted proteins are compared to

databases of proteins and protein domains with known functions. Because the annotations produced

in this way are not very reliable the analysis often focuses on groups of genes with similar functions

or in a functional pathway, with the assumption that presence of multiple genes from one group,

gives a better signal than single genes. 

RNA-Seq is used to study expression of genes under certain conditions instead of only looking at

the static genome of a species. RNA that is extracted from tissue or a cell culture that was grown in

the condition, is reverse transcribed and fragmented. The fragments are than sequenced and the

reads are aligned to a reference genome or transcriptome to estimate the number of transcripts that

were present in the original sample. Because the absolute number of reads is dependent on many

factors and difficult  to compare between genes,  normally RNA from a treatment  and a control

condition are compared and the differential expression is analyzed. Because the expression level

between genes can vary strongly a high number (10 – 30 millions) of reads is necessary to also

capture expression of genes with a low number of transcripts. 

The  interpretation  of  the  results  is  difficult  especially  for  non-model  organisms,  because  the

function of genes is mostly unknown and functional annotation is difficult (see above).

The  proteins  present  in  a  genome  and  especially  their  up-  or  down-regulation  under  certain

circumstances can be used to get insight into interaction of organisms with their environment and

their role in the ecosystem. For example different research questions concerning the role of fungi as

pathogens (e.g. Dobon et al., 2016; Galidevara et al., 2016), symbionts  (Joneson et al., 2011; e.g.

Perotto et al., 2014) have been studied with RNA-Seq. One question that has gotten considerable

attention, because of its ecological importance as well as the potential commercial applications in

biofuel productions, is the role of fungi as degraders of biomass (e.g. Ries et al., 2013; Yang et al.,

2012).

In the chapter V we used whole genome sequencing and RNA-Seq to investigate the differential

expression of the aquatic fungus Clavariopsis aquatica when grown on media with more and less
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recalcitrant carbon sources and investigated the expression patterns of peroxidases, laccases and

other protein families involved in plant biomass degradation.
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1 Abstract

The  kingdom  Fungi  comprises  an  enormous  amount  of  evolutionary  diversity.  Current

estimates range from 1.5 – 6 million species within 12 phyla. The large majority of species

are  not  described  and  those  that  are  often  require  specialist  identification.  The  internal

transcribed spacer (ITS) region of the rRNA operon is widely used as a DNA barcode for

fungi in metabarcoding studies. However in the absence of a sufficiently similar  reference

sequence, query sequences may be classified simply as fungi. Many DNA metabarcoding

studies sequence a part of the 5.8S region located between ITS1 and ITS2, when sequencing

the ITS2. We performed an  in silico analysis of 5.8S and ITS sequences from the UNITE

database  and  found  that  while  the  5.8S  region  was  too  conserved  for  species-level

identification,  it  outperformed ITS for producing higher  level  classifications,  even in the

absence of closely related reference data. We then developed an automated pipeline for the

combined analysis of 5.8S and ITS2, whereby data from both regions, derived from a single

DNA metabarcode sequence that is widely used in fungal diversity studies, were used to

classify fungi. To evaluate the pipeline, we amplified  part of the 5.8S gene together with

ITS2 from sediment and water samples from freshwater lakes. 86% of the OTUs from these

samples could be classified at least to the class level with the 5.8S while with the ITS2 only

46% could be classified to this level. In many studies the part of the 5.8S is sequenced to

provide a conserved primer binding site, but it is discarded before the analysis. We show that

it can be used to complement ITS2 data and help with high level taxonomic classification for

sequences  where  ITS2 is  failing  to  give  any classification.  This  is  especially  helpful  in

understudied environments like freshwater lakes, where database coverage is poor.
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2 Introduction

The kingdom of Fungi contains an enormous diversity of species and life styles.  Estimations

of the number of species range from 1.5 to 6 million (Hawksworth, 1991; Taylor D. Lee et

al.,  2014) of  which  only  a  small  fraction  (<144,000,

http://www.speciesfungorum.org/Names/Names.asp,  accessed  May  2018)  have  been

formally  described.  The  evolutionary  relationships  between  fungal  species  are  far  from

resolved  even  at  higher  taxonomic  ranks.  Even  giving  the  number  of  phyla  inside  the

kingdom of fungi is therefore difficult. The classification of fungi by Hibbett et al. (Hibbett

et al., 2007) in 2007 names seven phyla. In 2011 Blackwell gave the number of phyla as

“about  10”  (Blackwell,  2011).  And  after  the  recent  definition  of  the  new  phylum

Cryptomycota (or Rozellomycota) (Corsaro et al., 2014; Jones et al., 2011; Lara et al., 2010),

a study by Tedersoo et al. (2017a) speaks of 12 phyla in the introduction, but also indicates

that  there  may  be  more  phyla  to  find  and  shows  that  “all  fungal  phyla  accommodate

previously  unrecognized  fungal  groups”.  The  UNITE  database  (Kõljalg  et  al.,  2013)

currently (version 7.2, 2017-12-01) lists 18 phyla, including preliminary named phyla GS01

and GS19.

Schoch et al.  (Schoch et al., 2012) proposed the internal transcribed spacer (ITS) region of

the eukaryotic rRNA operon as a universal fungal DNA barcode. The ITS region is ca. 300 -

1,200 bp and is located between the 18S (SSU) and 28S (LSU) rRNA genes. It contains the

two highly variable spacers, ITS1 and ITS2, that are separated by the less variable 5.8S gene

(Nilsson  et  al.,  2008).  Subsequently,  a  community-curated  reference  database  (UNITE ,

Kõljalg et al., 2013) was established for ITS  sequences of fungi. 

Advances in sequencing technologies have enabled a shift to DNA metabarcoding surveys of

environmental samples, whereby sample throughput is much higher and whole communities

can be studied without the need for isolation and culture of single species. A trade-off is that

sequences  from  high-throughput  methods  are  shorter  than  those  produced  by  Sanger

sequencing, traditionally used for DNA barcoding. Illumina sequencers are most commonly

used and have a read length < 300 bp. Even with an overlapping paired-end design, the
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maximum length for a continuously read sequence is approximately 550 bp. As a result,  it is

not feasible to sequence the whole ITS region and most studies focus on either the ITS1 or

ITS2 (Miller et al., 2016; Tedersoo et al., 2014; Wurzbacher et al., 2017).

The ability  of short  DNA metabarcodes  to  identify fungal  taxa in  mixed samples  varies

among studies. An in silico test with 8,967 ITS sequences from a range of fungal phyla

(Porras-Alfaro et al., 2014) reported that > 90% of test data (ITS1 91%; ITS2 93%) were

identified to the correct genus. In a mock community of 24 Dikarya species, both ITS1 and

ITS2 sequences  of  different  species  could  be  clustered  into  operational  taxonomic  units

(OTUs)  and classified  correctly  (Tedersoo et  al.,  2015).  Classification  of  ITS sequences

obtained from environmental samples has proven more challenging in many studies. Rime et

al.  (2015) report that 5% of the ITS2 OTUs from soil samples could not be classified to

Phylum (i.e. only to kingdom fungi). Wurzbacher et al. (2017) found that with ITS2, 25% of

fungal OTUs in permafrost thaw ponds could not be assigned to phylum. In a study of fungi

in decaying wood Yang et al. (2016) found that 19 - 25% of OTUs could not be classified to

phylum.

A potential reason for the inability of ITS DNA metabarcodes to classify a  proportion of

fungi from environmental samples, even to higher taxonomic levels, is the high variability of

the marker sequence. While high variability among taxa is an important criterion for any

marker  to  be  able  to  distinguish  groups,  the  variability  may  hinder  classification  of

evolutionarily  more  distant  taxa   because  the  high  divergence  can  make  it  difficult  to

establish homology and thereby identify a closest match. This may be especially problematic

in less studied habitats such as freshwater, where a high variety of early diverging fungal

lineages thrive (Grossart et al., 2016) and for which sequences from closely related species

are often not available in reference databases. In this case, classification to any taxonomic

level becomes impossible. 

Interestingly, many fungal DNA metabarcoding studies amplify the ITS2 region using  the

primer pair ITS3/ITS4 (White et al., 1990), which includes a region of the 5.8S rRNA gene

that is normally discarded before analysis (Bálint et al., 2014; Lindahl et al., 2013). The 5.8S
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rRNA gene has a much lower substitution rate compared to either ITS (Nilsson et al., 2008)

and  here  we  tested  whether  this  more conserved  region  could  provide  higher  level

classification  in  cases  where  ITS2  could  not.  The  5.8S  rRNA gene  has  been  used  for

phylogenetic classification in cases where the ITS1 or ITS2 did not give any classification in

low throughput studies of fungi  (Neubert et al., 2006; Roose-Amsaleg et al., 2004). The fact

that the 5.8S gene is included in the ITS reference database UNITE, gives a taxonomy that

can  be  used  in  analysis  of  the  5.8S,  and  makes  comparison  with  the  ITS1  and  ITS2

uncomplicated.

We investigated the use of 5.8S as complementary marker for higher taxonomic ranks using

in situ environmental samples and by performing an in silico analysis of sequences in the

UNITE database. We classified query sequences at different taxonomic ranks using the 5.8S,

ITS1 and ITS2 and examined how classification worsened as the reference database was less

complete.  Specifically,  we  excluded  all  other  sequences  from individuals  of  the  same

species, genus, or family. We observed that ITS1 and ITS2 are clearly superior for species-

level classifications when the reference database is complete, but that 5.8S outperforms both

at  higher  level  taxonomic  assignments  with  a  incomplete  database.  We  develop  and

implement  an automated pipeline to  analyze amplicons that  contain both 5.8S and ITS2

rRNA gene regions, typical of most fungal DNA metabarcoding studies. The two markers are

independently analyzed while keeping track of which two marker sequences come from the

same molecule to combine the result into a final classification. A test on sediment and water

samples  from  20  freshwater  lakes  showed  that  the  5.8S  sequence  added  phylum  level

classifications for most (74%) of the 64% of our ITS2 OTUs that were unclassified at that

level  with  ITS2  alone.  The  current  version  of  the  pipeline  can  be  found  at

www.github.com/f-heeger/two_marker_metabarcoding.

3 Methods

Classification Approaches
For the in silico as well as lake community analyses, we used a lowest common ancestor

(LCA)  classification  based  on  database  search  results  similar  to  the  one  employed  in
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MEGAN (Huson et al., 2007). First a database search of each sequence is performed against

the UNITE database. For each sequence hits with an e-value below a minimum value are

considered. Any hit with an identity or query coverage below a certain threshold or a bitscore

lower  than  a  certain  fraction  of  the  best  score  for  that  sequence  is  excluded.  For  the

remaining hits the lowest common ancestor in the taxonomic tree that underlies UNITE is

determined  in  the  following  way:  For  each  level  in  the  taxonomic  tree,  starting  from

kingdom, classifications of all hits are compared. If the classification at this level of 90% or

more of the hits are the same, it will be accepted as the classification on this level for the

query sequence. Otherwise the lowest common ancestor is found and the query will only be

classified to the last level,  where a 90% majority was achieved. During this process any

classifications of “undetermined” or “unclassified” are ignored.

ITS2 sequences were additionaly classified with the RDP (Wang et al., 2007) classifier to

make  sure  the  LCA approach  we  implemented  here  gives  results  comparable  to  widely

applied tools.  We used the classifier trained for use in the PIPITS pipeline  (Gweon et al.,

2015) on ITS sequences from the current version (7.2, 2017-12-01) of UNITE.

Testing the effects of an incomplete reference database
For the  in silico evaluation of how an incomplete reference database affects classification

with different rRNA markers,  we  created a dataset whereby the correct assignment of each

query sequence was known, and where a sequence from the same species, genus and family

was also available.  This  allowed us  to  test  whether  classifications  at  a  given rank were

correct, even when all other sequences for the species, genus, or family were removed. An

additional  criterion  was  that  ITS1,  ITS2,  and  5.8S  had  to  be  available  to  allow  for

comparison between the markers.  We created such a dataset in the following way: Fungal

ITS1,  5.8S  and ITS2  sequences  were  extracted  from sequences  in  the  UNITE database

(version  7.2,  2017-12-01)  using  ITSx  with  default  parameters  (Bengtsson-Palme  et  al.,

2013). Sequences that satisfied the following three criteria were selected: i) all three markers

could be detected by ITSx, ii) a species-level classification was available in UNITE, and iii)

at least one other sequence was available for the same species, genus, and family. There were

5,802 sequences that satisfied these criteria and from these we chose a random subset of 100

sequences for our evaluation.
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Marker sequences (ITS1, ITS2, 5.8S) were classified independently with the LCA approach

using the UNITE database as reference. For 5.8S and ITS2, the classification was run with

range of parameter values for minimum identity, minimum coverage, top bit score fraction

cutoff,  as  well  as  LCA majority  stringency.  This  was  done  to  investigate  the  parameter

stability  of  the  approach.  The  effect  of  missing  database  coverage  was  tested  by  first

classifying  query  sequences   using  the  complete  reference  database,  and  in  subsequent

iterations classifying the same query after removal of sequences from the same species, same

genus, same family as the query. To asses the necessity of classifying the 5.8S and ITS2

independently the combined fragment of 5.8S and ITS2 was also classified with the LCA

approach. The resulting classifications were compared with the classifications given in the

UNITE database to determine correct and wrong classifications at each taxonomic level. 

5.8S reference data set
As reference dataset for classification of 5.8S sequences we used the 5.8S sequences that

were extracted from UNITE with ITSx (above) and complemented them with (non-fungal)

5.8S sequences from the 5.8S rRNA family (RF00002) of the Rfam database (Kalvari et al.,

2018). Identical sequences were reduced to one representative with vsearch (Rognes et al.,

2016). For each representative a taxonomic assignment was determined by generating a LCA

from the classifications of all sequences it represents. For RFAM sequences classified as

fungi any classification at lower rank was ignored and priority was given to the taxonomy

information from the UNITE database.

Description of the pipeline
The pipeline was implemented as a workflow with snakemake (Köster and Rahmann, 2012)

and  has  four  main  stages:  1)  initial  read  processing,  2)  5.8S  classification,   3)  ITS2

classification and 4) final classification (Fig. 1). 
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(1)  Initial  read  processing  starts  by  producing

quality  plots  with  FastQC  (version  0.11.2,

Andrews). The presence of the forward or reverse

primer in the first 25 bp of the respective read is

checked with flexbar (version v2.5_beta, Roehr et

al.,  2017).  Quality  trimming  with  Trimmomatic

(version  0.35,  Bolger  et  al.,  2014) consists  of  a

sliding window trimming with a window size of 8

and a minimum Phred score of 20 and removal of

trailing bases with a Phred quality < 20, followed

by the removal of sequences with a length < 200

and an average Phred score (after trimming) < 30.

Next  forward and reverse  read  of  each pair  are

joined  with  Pear   (version  0.9.6,  Zhang  et  al.,

2014).  By  default  the  minimum  overlap  for

merging is set to 10. Pairs that can not be merged

or are  shorter  than 150bp or  longer  than 550bp

after merging are discarded. Merged sequences are

dereplicated  with  vsearch.  Potential  chimeras

(including  “suspicious”  sequences)  are  removed

with vsearch in  de novo chimera detection mode

with  default  parameters.  The  5.8S  and  ITS2

sequences  are  extracted  with  ITSx  with  default

parameters.  Partially  recognized  5.8S  sequences  are  accepted.  The  5.8S  and  the  ITS2

sequences are independently classified in stage 2 and 3 respectively.

(2)  5.8S  classification starts  with  removal  of  the  forward  primer  and  sequences  with

ambiguous bases are discarded using cutadapt (version 1.9.1, Martin, 2011). Sequences are

dereplicated with vsearch. After that sequences are classified by a similarity search against

our combined 5.8S reference dataset with lambda  (version 0.9.3, Hauswedell et al., 2014)
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followed  by  a  LCA classification  as  described  in  the  Classification  Approaches section

(above).

(3) ITS2 classification starts with dereplication of ITS2 sequences with vearch. Clustering

into OTUs is done with swarm2 (version 2.1.6, Mahé et al., 2015). OTUs are classified by

similarity search and LCA the same way as 5.8S sequences (above).

(4) The final classification combines the classifications from stage 2 and 3. For each read in

an ITS2 OTU cluster all 5.8S sequences with their classifications are collected. The 5.8S

classifications are combined with the same LCA approach explained above. The resulting

classification  is  compared to  the  ITS2 classification.  If  5.8S and ITS2 classification  are

concordant, but the ITS2 is classified to a lower taxonomic rank, the ITS2 classification is

accepted.  Sequences  that  are  unclassified  with  ITS2  will  automatically  take  the  5.8S

classifications. All conflicting classifications can either be marked (default) or resolved by

the user by giving priority to one of the markers.

Test with reads from freshwater lake samples
We tested the pipeline on an unpublished data set (Bourne E.C. et al. unpublished) of water 

and sediment samples, taken in October and November 2014 from the littoral zone of 20 

freshwater lakes in North-West Germany. In six lakes additional sediment and water samples

were taken from the pelagic zone. The standard primer pair ITS3/ITS4 (White et al., 1990) 

was used to amplify a 350-500 bp amplicon consisting of the full ITS2 and ca. 130 bp of the 

5'-end of the 5.8S gene. Amplicons were sequenced with overlapping 300 bp paired-end 

reads on an Illumina MiSeq.

4 Results

Analysis of the classification of query sequences with an increasingly incomplete reference

database  (Fig.  2)  showed  a  clear  difference  among  markers.  When  no  sequences  were

removed from the reference database, ITS1 classified 90% of queries to species and  ITS2

classified 88%. There were  no wrong classifications in either marker (Fig.  2). In contrast,
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5.8S classified 5% of queries to species rank and  < 60% of sequences were classified to

Order. However, the removal of all sequences  from the same species, genus, or family had

an  increasingly  detrimental  effect  on  the  classification  success  of  both  ITS1  and  ITS2

sequences (Fig. 2). Wrong classifications become more frequent and classifications at higher

ranks were less successful; even the removal of only the species (i.e. other species in the

genus still present in the database) cause a distinct drop in successful classification of ITS1

and ITS2 at the Kingdom, Phylum, and Class ranks (Fig.  2). In contrast, the kingdom and

phylum rank classifications of  5.8S sequences were not notably affected by the removal of

reference sequences, with classification at the class rank only dropping from 80% to 70%

(Fig. 2).
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The LCA classification was performed with different parameters for ITS2 and 5.8S to test

parameter stability. The stringency parameter had no strong influence on ITS2 classifications

(Appendix  1,  Suppl.  Fig.  1).  Lowering  the  minimum  identity  and  minimum  coverage

parameters both increase correct as well as wrong classifications (Appendix 1, Suppl. Fig. 2

and  3).  Lower  values  for  the  top  bitscore  fraction  parameter  caused  more  wrong  ITS2

classifications without increasing the number of correct classifications (Appendix 1, Suppl.

Fig.  4).  Minimum  identity  and  minimum  coverage  had  no  strong  influence  on  5.8S
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classifications (Appendix 1, Suppl. Fig.  5 and 6), although for the latter a very high value

(100%) resulted in more wrong classifications.  The top bitscore fraction parameter  gave

more correct 5.8S classifications for values <= 5%, but at the cost of an increased number of

wrong classifications  (Appendix 1,  Suppl.  Fig. 7). Finally  a  low value (<=85%) for  the

stringency parameter gave higher number of wrong 5.8S assignments, while a to high value

(100%) caused a decrease in correct

assignments  (Appendix  1,  Suppl.

Fig. 8). 

Comparison with RDP classifications

(Appendix 1, Suppl. Fig. 9) showed

that  the  LCA  approach  gives

comparable  results  to  the  RDP

classifier  (trained  on  the  UNITE

database)  for  our  data.  The

comparison  between  independent

classification of ITS2 and 5.8S with

the  classification  of  a  combined

fragment  of  both  regions  showed,

that  in  the  combined  fragment  the

addition  of  the  5.8S  improved

classification  at  higher  ranks

(kingdom and phylum), but not same

level  as  for  independent  5.8S

classification.

The environmental data set from 20

freshwater lakes (water and sediment

samples)  consisted  of  13.6  million

read  pairs.  Our  analysis  pipeline

generated  17,514  non-singleton

OTUs,  11,278  of  which  were

classified  as  fungi.  Of the fungal  OTUs,  46% (ca.  37% of  reads)  were classified to  the
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phylum rank or lower using only ITS2 for classification. Using 5.8S for classification in

addition provided phylum-level classifications for 86% of OTUs (ca. 81% of reads), or 74%

of OTUs with unknown phylum according to ITS2 (Fig.  3). Of these fungi that were only

classified with 5.8S, nearly half  (48%) were from the phylum Chytridiomycota (Fig.  3).

Furthermore the additional data from the RFAM database also allows for a broad overview

of the non-fungal classes amplified in the experiment.There was a classification conflict for

only one OTU. The 5.8S classification was arthropoda, whereas the ITS2 classification was

ascomycota.  This was caused by a miss-classification of  SH200261.07FU in the UNITE

database.

5 Discussion

We implemented a modular pipeline for the processing of fungal DNA metabarcoding data

that uses the taxonomic information from the 5.8S gene to complement the more standard

ITS2 region. This allowed us to classify a substantially greater number of OTUs than ITS2

alone, in particular for less well studied, basal fungi.

As soon as the species is missing from the database, the ability of ITS to identify the query to

any level decreases, with even Kingdom or Phylum being better identified with 5.8S.

The in silico analysis of the ITS1, ITS2 and 5.8S sequences in the UNITE database indicated

that both ITS1 and ITS2 are very good marker sequences given a database containing the

exact same sequence. In our test cases no sequences were assigned to the wrong species and

very few were unclassified. This result is somewhat biased because we used only species

with clear species identification in UNITE and available sequences from the same species,

genus and family. When we removed all sequences assigned to the same species as the query

from the  database,  not  only  was  the  algorithm obviously  not  able  to  assign  the  correct

species,  but  also  the  ability  to  classify  the  genus  correctly  dropped  to  65%,  although

sequences  from other  species  in  the  same genus  were  in  the  database.  Even for  higher

taxonomic ranks (phylum, class) the removal caused assignment problems. Simulating novel

genera or families by removing the respective sequences from the database increased the

effect even more. This is most likely the reason that  many fungal OTUs remain unclassified

in environmental studies that focus on poorly studied environments like freshwater (Grossart
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et al., 2016). New species, genera or families that do not any reference sequences available

could  even  be  unidentified  at  the  kingdom  rank,  leading  to  fungal  diversity  being

underestimated.  The  result  from  our  environmental  test  data  set  showed  that  many

Chytridiomycota could not be identified to the phylum level by ITS2. They are a group that

is not well represented in the UNITE database (Frenken et al., 2017) and thus it is possible

that we sequenced some species which are not represented in the database with a sequence

from the same genus or family causing the classification to fail completely as shown in the

in silico analysis. This could lead to a severe bias if we look at the proportion of fungal phyla

in our data. Based on the ITS2 alone we would have estimated (based on proportion of reads)

the percentage of Chytridoimycota to be  3% while the 5.8S classifications show that the

actual  proportion  is  an  order  of  magniture  higher  (32%).  Similarly,  the  percentage  of

Rozellomycota (also know as Cryptomycota) would change from 0.1% to 3%.

Although the ITS2 metabarcode allows for the high identification accuracy when perfect

reference data is available, it  also causes problems to find high enough similarity to any

sequence when no closely related species is represented in the database. This is were the

5.8S  sequence  can  help  to  classify  OTUs  at  least  to  a  higher  taxonomic  rank.  In  our

environmental data, the 5.8S was especially helpful in splitting the results into fungal and

non-fungal sequences when it comes to early diverging lineages or lineages that belong to

the Top 50 unknown fungal lineages (Nilsson et al., 2016). However, it should be made clear

that the 5.8S would be of limited use as a DNA barcode on its own, or to delineate OTUs,

but it should rather be seen as a complementary information, that can be obtained together

with ITS2 data. In this respect it is important to note that the employed primer pair has been

used for over 20 years now (White et al., 1990) and is generally one of the most frequently

employed primer set  for fungal surveys in the environment.  We hope this  will  make the

suggested approach, highly interesting for the whole fungal scientific community. Our proof

of concept implementation of a LCA based classification and combination of ITS2 and 5.8S

classification performs comparable to the commonly used RDP classifier on our test dataset

and was not very sensitive to parameter choice. Unlike using a single “best” (e.g. lowest e-

value) blast hit for identification which can easily lead to wrong assignments if the query

species is missing from the database, our approach uses a certain proportion of top blast hits
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to try and quantify the uncertainty of our assignment by choosing a higher taxonomic rank.

Nevertheless we found substantial amount of wrong assignments in the  in silico analysis,

when the database was not complete (Fig. 2).

Although the  short  read  sequencers  are  currently  most  efficient  in  producing a  massive

amount of data, new technologies are now available that allow to extent the length of the

investigated barcode or amplicon. The potential of long read sequencers made researchers

already switch to longer fragments such as full length 16S sequences for bacteria (Mosher et

al., 2014; Schloss et al., 2016; Singer et al., 2016) a fragment spanning the full ITS region

(Schlaeppi et al., 2016; Tedersoo et al., 2017b). Longer amplicons with multiple gene regions

can be analyzed in a similar way as shown here. A combination of markers possibly each

with  their  own  advantages  can  be  set  up  with  respective  reference  databases  and

classification priority rules, gaining an even higher confidence level with each incorporated

marker region. In chapter two of this thesis, this idea was applied to the full eukaryotic rRNA

operon  using  the  SSU,  ITS  region,  and  LSU  as  markers,  which  were  independently

classified.
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1 Abstract

DNA metabarcoding  is  widely  used  to  study  prokaryotic  and  eukaryotic  microbial  diversity.

Technological constraints limit most studies to marker lengths below 600 bp. Longer sequencing

reads of several thousand bp are now possible with third-generation sequencing. Increased marker

lengths provide greater taxonomic resolution and allow for phylogenetic methods of classification,

but  longer reads may be subject to higher  rates of sequencing error and chimera formation.  In

addition, most bioinformatics tools for DNA metabarcoding were designed for short reads and are

therefore unsuitable.  Here we used Pacific  Biosciences circular consensus sequencing (CCS) to

DNA-metabarcode environmental samples using a ca. 4,500 bp marker that included most of the

eukaryote  SSU and  LSU rRNA genes  and  the  complete  ITS  spacer  region.  We developed  an

analysis pipeline that reduced error rates to levels comparable to short-read platforms. Validation

using  a  mock  community  indicated  that  our  pipeline  detected  98% of  chimeras  de  novo.  We

recovered 947 OTUs from water and sediment samples in a natural lake, 848 of which could be

classified to phylum,  397 to genus, and 330 to species. By allowing for the simultaneous use of

three global databases (Unite, SILVA, RDP LSU), long-read DNA metabarcoding provided better

taxonomic resolution than any single marker. We foresee the use of long reads enabling the cross-

validation  of  reference  sequences  and  the  synthesis  of  ribosomal  rRNA gene  databases.  The

universal nature of the rRNA operon and our recovery of >100 non-fungal OTUs indicate that long-

read DNA metabarcoding holds promise for studies of eukaryotic diversity more broadly.

2 Introduction

DNA-metabarcoding is widely us ed in the study of microbial communities from all three major

domains of life (Wurzbacher et al., 2016), whereby one or more marker regions in the genome are
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PCR-amplified  and  sequenced  using  a  next-generation  sequencing  (NGS)  platform.  Reads  are

quality-filtered  and sequences  are  clustered  according  to  sequence  similarity  into  putative  taxa

(Operational  Taxonomic  Units  =  OTUs).  OTUs  are  then  classified  using  marker-specific,  and

sometimes  taxon-specific  databases.  DNA metabarcoding  has  become  a  commonly  used  tool

because it provides an estimate of biodiversity, including that of taxa that cannot be cultured, and

identification relies on relatively stable genetic information rather than often variable and subtle

phenotypic characters. Limitations of the method include the fact that marker regions and PCR

primers must be selected a priori to detect the taxa of interest, and that the variability of the marker

region, and how well the taxa are represented within a given reference database, determine how

well the members of an assemblage can be identified (Nilsson et al., 2018). 

There is a fundamental trade-off between using a marker that is conserved enough to be amplified

across a broad range of taxa,  but variable enough to distinguish among closely related species.

Marker length also has consequences for how many OTUs can be identified, and to what taxonomic

resolution  (Porras-Alfaro  et  al.,  2014).  Shorter  markers  within  a  given  locus  may include  less

genetic variation than longer markers, reducing the ability to distinguish closely related species

(Singer  et  al.,  2016).  One consequence  is  that  highly  variable  regions  are  often  used  as  DNA

metabarcoding markers. While variable regions may increase taxonomic resolution in groups for

which  reference  sequences  are  available,  sequence  homology  can  be  difficult  or  impossible  to

establish.  This  precludes  phylogeny-based  analyses  and  can  result  in  the  complete  failure  of

classifying OTUs at any taxonomic level (Lindahl et al., 2013).

More recent (i.e. third-generation sequencing) technologies can provide much longer (several kbp)

sequencing reads  (Goodwin et al., 2016); however, their use in studies of environmental samples

remains limited. The few existing studies, using full-length (~1.5 kbp) bacterial 16S (Franzén et al.,

2015; Schloss et al., 2016; Singer et al., 2016) and parts of the eukaryotic rRNA operon including

ITS  (up  to  2.6 kbp)  (Schlaeppi  et  al.,  2016;  Tedersoo  et  al.,  2017),  have  reported  increased

taxonomic resolution. The Pacific Biosciences (PacBio) RSII platform generates reads of >50 kbp

by Single Molecule Real Time (SMRT) Sequencing. Single pass error rates of 13-15% (Goodwin et

al., 2016) limit their value in DNA metabarcoding because species identification is unreliable at

those levels of uncertainty. However, the circular consensus sequencing (CCS) version of SMRT

sequencing greatly reduces the error rate. In CCS, double stranded DNA amplicon molecules are

circularized by the ligation of hairpin adapters. The sequencing polymerase is then able to pass

around the molecule and read the same insert multiple times  (Travers et al., 2010). The repeated
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reads of the same amplicon molecule, together with the random nature of sequencing error, can then

be used to reduce the final error rate to <1% (Goodwin 2016) by generating consensus sequences. 

Beside the higher per base cost a primary reason why long-read approaches have not been applied

to DNA metabarcoding is the fact that most of the existing bioinformatic tools have been optimized

for the analysis of data from short-read technologies (e.g., Illumina). It is thus unclear how well

they will perform on PacBio CCS reads. Longer sequences have more errors because even high-

quality reads with low error rates will accumulate more total errors as a function of length. The

types of errors in PacBio reads also differ from that of short-read technologies, with CCS reads

tending to have more insertions and deletions, compared to substitutions more common in short-

read data. Schloss et al. (2016) explored the error profile and steps that can be taken when targeting

the 16S for a bacterial mock community, and environmental samples. They found that the error rate

of CCS reads of their longest amplicon (V1-V9) was only 0.68% and could be further reduced to

0.027% by pre-clustering at 99% similarity. Chimera formation rate may also be increased in longer

markers since longer  amplicons may suffer  premature elongation terminations,  leading to  more

possibilities for the resulting incomplete amplicons to act as primers in the next PCR cycle and thus

more chimeras to be formed (see also Laver et al., 2016). Existing algorithms commonly used to

detect chimeras are not optimized for long reads and may therefore fail to detect chimeras.

Fungi are ecologically important eukaryotes, having diverse roles in carbon and nutrient cycling,

occupying  a  range  of  niches,  including  as  decomposers,  parasites  and  endophytes,  and  are

ubiquitous in terrestrial and aquatic habitats alike  (e.g. Tedersoo et al., 2014; Wurzbacher et al.,

2016). Microbial fungal communities are increasingly studied with DNA metabarcoding (e.g. Roy

et al., 2017), taking advantage of the increased detection of taxa without the need to culture and the

reduced cost  of  sequencing that  has  permitted  ever  deeper  read  depth  The broad  phylogenetic

diversity  of  fungi  has  the  consequence  that  fungal  DNA metabarcoding  studies  typically  use

markers that vary depending on the taxonomic group of interest and the resolution desired. Different

regions of the eukaryotic rRNA operon have been widely utilized for barcoding fungi due to its

universality, and the fact that short stretches have been able to provide reasonable power for fungal

identification. Within this region, the most commonly applied barcode is the internal transcribed

spacer (ITS) (Schoch et al., 2012). This comprises the ITS1, the 5.8S rRNA gene and the ITS2, and

depending on the lineage, varies from 300 to 1,200 bp in length. In fungal DNA metabarcoding, the

ITS2 region is widely used to assess fungal diversity in environmental samples (Blaalid et al., 2013;

Kõljalg et  al.,  2013);  however,  it  is  not as successful in identifying taxa as the full  length ITS
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(Tedersoo et al., 2017). For early diverging fungal lineages, such as those found in many aquatic

habitats (Monchy et al., 2011; Rojas-Jimenez et al., 2017; Wurzbacher et al., 2016), sequences from

the small subunit (SSU) rRNA gene (18S) can provide affiliation of higher taxonomic ranks, but are

often not variable enough to distinguish among species  (Cole et al., 2014). The LSU region has

higher variability, and therefore resolution, than the SSU, and is often used for identification of

specific  fungal  groups  (e.g.  Glomeromycota  and  Chytridiomycota)  lacking  ITS  reference

sequences.  Databases have been established for all  three different markers, e.g.  UNITE for ITS

(Kõljalg et al., 2013), SILVA for SSU (Quast et al., 2013), and RDP for LSU (Cole et al., 2014).

Nevertheless,  database  coverage  remains  poor  for  several  fungal  lineages,  for  example

Glomeromycota  (Ohsowski  et  al.,  2014),  Chytridridiomycota  (Frenken  et  al.,  2017),  and

Cryptomycota,  and  for  species  from  less-studied  habitats  such  as  aquatic,  indoor,  and  marine

environments.

We examined fungal diversity of field-collected samples from a temperate lake using SMRT CCS of

a long (ca. 4,500 bp) DNA metabarcode that included the three major regions of the eukaryotic

rRNA operon (SSU, ITS, LSU) in a single sequencing read (Fig.  4). We first sequenced cultured

isolates  comprising  a  broad  phylogenetic  range  and  a  mock  community  to  derive  rates  of

sequencing error and chimera formation. We then developed a new bioinformatics pipeline designed

for  full  length  rRNA operon  amplicons.  We found  error  rates  to  be  comparable  to  short-read

approaches after filtering with our pipeline, and chimera-formation rates to be comparable to those

found in studies with shorter amplicons. We identified 947 OTUs from environmental samples, 848

of which could be classified to phylum, 486 to family, 397 to genus and 330 to species. By allowing

for the simultaneous use of three databases, long-read DNA metabarcoding provided much better

taxonomic resolution than possible with a single-marker, single-database approach. The universal
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nature of the rRNA operon and our recovery of >100 non-fungal OTUs indicate that long-read DNA

metabarcoding holds promise for future studies of eukaryotic diversity in general.

3 Materials and Methods

Isolates, Mock community, and Environmental samples
Isolates  of  sixteen  fungal  species  (Table  1)  were  combined  to  form a  mock  community.  This

community  was  used  to  test  PCR and  library  preparation  protocols  that  were  later  applied  to

environmental  samples,  and to  quantify  the  efficiency of  de novo and  reference-based chimera

detection in our long-read bioinformatics pipeline described below. Environmental samples  were

collected  from  Lake  Stechlin,  an  oligo-mesotrophic  lake  in  North-East  Germany  (53.143°  N

13.027° E) in October 2014. Littoral water samples (30 L total) were collected and pooled from

surface water in the shallow zone along three 10 m transects, located within 5 m of the lake shore or

reed belt. Pelagic water samples (30 L total) were collected from the deeper zone of the lake by

pooling samples taken at multiple depths (0-65 m) at one point, using a Niskin-bottle (Hydro-Bios,

Kiel,  Germany).  A subsample (2 L) of each (littoral  and pelagic) was filtered through 0.22-µm

Sterivex filters  (Merck Millipore, Darmstadt, Germany) using a peristaltic pump (GT-EL2 Easy

Load II,  UGT,  Müncheberg,  Germany).  Excess  water  was expelled  using  a  sterile  syringe  and

parafilm used to seal the ends. Sediment samples were collected from four locations in each zone

(littoral,  pelagic)  using  a  PVC sediment  corer  (63  mm diameter)  on  a  telescopic  bar  (Uwitec,

Mondsee, Austria).  The uppermost 2 cm from each sediment core were pooled in the field and

divided into 2 ml subsamples for storage. Sterivex filters and sediment subsamples were frozen in

liquid Nitrogen in the field and returned to the laboratory for long-term storage at -80°C.
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DNA extraction 
Genomic  DNA was  extracted  from  fungal  isolates  using  three  different  methods  (Table  1).

Environmental DNA was extracted from water and sediment samples using a modified phenol-

chloroform method (after Nercessian et al., 2005). Frozen Sterivex cartridges were broken open and

sterilized forceps were used to transfer half of the fragmented filter into each of two 2-ml tubes.

Sediment samples were thawed and aliquoted into two 2-ml tubes, each containing 200 mg. Beads

(0.1 and 1.0 mm zirconium, and 3x 2.5mm glass beads, Biospec, Bartlesville, USA) were added to

0.3 volume of the tube. For cell lysis and extraction, the following reagents were added: 0.6 ml

CTAB extraction buffer (5% CTAB-120 mM phosphate buffer), 60 µl 10% sodium dodecyl sulfate,
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Table 1: Isolates used and their contribution to the mock community.

Taxon Code Isolate DNA pooled
(ng)

% of mock
community

Clavariopsis aquatica CA DSM 29862† 60 7.6

Chytridiomycota CHY1 CHY1‡ 60 7.6

Cladosporium sp. Csp1 KR4‡ 20 2.5

Clonostachys rosea CR DSM 29765§ 60 7.6

Cystobasidium laryngis CL CBML 151a§ 5 0.6

Cladosporium herbarum CH KR13‡ 20 2.5

Exobasidium vaccinii EV DSM 5498§ 60 7.6

Leucosporidium scottii LS CBML 203§ 60 7.6

Metschnikowia reukaufii MR DSM 29087§ 60 7.6

Mortierella elongata ME CBML 271§ 60 7.6

Penicillium brevicompactum PB KR5‡ 80 10.2

Phanerochaete chrysosporium PC DSM 1547§ 60 7.6

Phoma sp. Psp1 KR1‡ 3 0.4

Saccharomyces cerevisiae SC DSM 70449§ 60 7.6

Trichoderma reesei TR DSM 768† 60 7.6

Ustilago maydis UM DSM 14603† 60 7.6
† extracted using Qiagen Dneasy Plant Mini Kit
‡ extracted using peqGOLD Tissue DNA Mini Kit
§ extracted using MasterPure Yeast DNA Purification kit
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60 µl 10% N-lauroyl sarcosine, followed by 0.6 ml of phenol:chloroform-isoamyl alcohol (25:24:1).

Samples were vortexed immediately to homogenise and then ground for 1.5 min at 30 Hz (Retsch

mill, Retsch GmbH, Haan, Germany) with short breaks for cooling on ice. Samples were incubated

for 1 hr at 65 °C, with occasional mixing, and then centrifuged at 17,000 g for 10 minutes. The

upper aqueous phase was transferred to a new tube and mixed with an equal volume of chloroform-

isoamyl alcohol (24:1), centrifuged at 17,000 g for 10 min and the upper aqueous phase transferred

to a new tube. Nucleic acids were precipitated with 2 volumes of PEG/NaCl (30% PEG 6000 in 1.6

M NaCl) for 2 h. Samples were centrifuged at 16,000 g for 45 min, and the supernatant discarded.

The nucleic acid pellet was washed twice by the addition of 1 ml ice-cold 70% ethanol, centrifuged

at 17,000 g for 15 min, and the supernatant discarded and following removal of ethanol traces,

eluted in 50 µl nuclease-free water. Subsamples were pooled to give 100 µl nucleic extract per

sample. RNA was removed by the addition of 0.5 µl (5 µg) RNase A (10 mg/ml DNase and protease

free, ThermoFisher Scientific, Waltham, US) to 80 µl of the pooled sample, incubated at 37 °C for

30 min, and cleaned using the PowerClean Pro DNA Clean-Up kit (MoBio Laboratories, Carlsbad,

USA). DNA was quantified in triplicate using a Qubit HS dsDNA Assay (Invitrogen, Carlsbad,

USA) and gel-checked for quality. 

PCR and chimera formation tests
Approximately 4,500 bp of the eukaryotic rRNA operon (Fig. 4), including SSU, ITS1, 5.8S, ITS2,

and  LSU  (partial)  regions,  was  PCR-amplified  using  the  primers  NS1_short  (5’-

CAGTAGTCATATGCTTGTC-3’)  and  RCA95m  (5’-ACCTATGTTTTAATTAGACAGTCAG-3’)

(Wurzbacher et al., 2018). Symmetric (reverse complement) 16-mer barcodes were added to the 5’

ends of primers following the PacBio manufacturer's guidelines on multiplexing SMRT sequencing.

We aimed to minimize chimera formation by minimizing the number of PCR cycles performed per

sample. Cycle numbers were chosen after amplifying all samples with a variable number of cycles

(13-30) and identifying the exponential  phase of PCR  (Lindahl et  al.,  2013) according to  band

visibility on an agarose gel. Based on these results, we used 15-20 cycles to amplify isolates (3-8 ng

template  DNA),  13-30  cycles  for  mock  community  samples  (2-20  ng),  and  22-26  cycles  for

environmental samples (10 ng). Barcodes were allocated to the different PCR conditions tested as

shown in supplemental table 1 (Appendix 2). All standard PCRs were conducted in 25 µl reactions

using 0.5 µl Herculase II Fusion enzyme (Agilent Technologies, Cedar Creek, USA), 5 µl of 5x

PCR buffer, 0.62 µl each primer (10 uM), 0.25 µl dNTPs (250 mM each), 0.3 µl BSA (20mg/ml

BSA,  ThermoFisher  Scientific,  Waltham,  US)  on  a  SensoQuest  labcycler  (SensoQuest  Gmbh,
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Göttingen, Germany) with 2 min denaturation at 95 °C, 13-30 cycles (see above) of 94 °C for 30

sec, 55 °C for 30 sec and 70 °C for 4 min, and a final elongation at 70 °C for 10 min. Multiple PCR

reactions (up to 50) were required for each environmental sample to ensure sufficient product for

library  preparation  (1  µg  purified  PCR product).  We  also  included  a  two-step  emulsion  PCR

(emPCR) of the mock community in order to test whether emPCR could reduce chimera formation

rate by the physical isolation of DNA template molecules (Boers et al., 2015). The Micellula DNA

Emulsion kit (Roboklon GmbH, Berlin) was used for a two-step PCR: a first amplification of 25

cycles, with 2µl of the cleaned template used in a second 25 cycle PCR.

Library preparation and Sequencing 
Replicate  PCRs  were  pooled  back  to  sample  level,  and  products  were  cleaned  with  0.45  x

CleanPCR SPRI beads  (CleanNa,  Waddinxveen,  Netherlands),  pre-cleaned according to  PacBio

specifications (C. Koenig,  pers. comm.),  quantified twice using a Qubit  HS dsDNA Assay, and

quality-checked  on  an  Agilent® 2100  Bioanalyzer  System (Agilent  Technologies,  Santa  Clara,

USA). Samples were then pooled into libraries before being quality-checked on an Agilent® 2100

Bioanalyzer following PacBio guidelines (Pacific Biosciences,  Inc.,  Menlo Park,  CA, USA) for

amplicon template library preparation and sequencing. 

SMRTbell™  template  libraries  were  prepared  according  to  the  manufacturer’s  instructions

following the Procedure & Checklist – Amplicon Template Preparation and Sequencing (Pacific

Biosciences).  Briefly,  amplicons  were  end-repaired  and  ligated  overnight  to  hairpin  adapters

applying components from the DNA/Polymerase Binding Kit P6 (Pacific Biosciences). We included

enough DNA from each sample to obtain the required library concentration (37 ng µl-1) for end-

repair.  Reactions  were  carried  out  according  to  the  manufacturer´s  instructions.  Conditions  for

annealing of sequencing primers and binding of polymerase to purified SMRTbell™ template were

assessed with the Calculator in RS Remote (Pacific Biosciences). SMRT sequencing was carried out

on the PacBio RSII (Pacific Biosciences) taking one 240-minutes movie. 

In  total,  we  ran  8  libraries  and  27  SMRT  cells.  Three  of  the  isolates  (Trichoderma  reesei,

Clonostachys rosea,  and a species belonging to the phylum Chytridiomycota) were sequenced on

one SMRT cell  to  test  the  protocol  for  CCS.  The remaining 13 isolates  and one  of  the  mock

community  conditions  (30  PCR  cycles)  were  prepared  as  part  of  the  libraries  containing  the

environmental samples (Appendix 1, Table 1), which were each run on three SMRT cells. Mock

community samples and the emPCR sample were pooled in equimolar ratio and sequenced using

two SMRT cells.
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Demultiplexing  and  extraction  of  subreads  from SMRT cell  data  was  performed  applying  the

RS_ReadsOfInsert.1  protocol  included  in  SMRTPortal  2.3.0  with  minimum  2  full  passes  and

minimum  predicted  accuracy  of  90%.  Barcodes  were  provided  as  FASTA files  and  barcode

extraction was performed in a symmetric manner with a minimum barcode score of 23 within the

same protocol. Mean amplicon lengths of 3800 – 4500 kbp were confirmed. Demultiplexed reads

were downloaded from the SMRT Portal as fastq files for further analysis. 

Long-read metabarcoding pipeline
We developed  an  analysis  pipeline  for  PacBio  CCS  reads  using  the  python  workflow  engine

snakemake  (version  3.5.5,  Köster  and  Rahmann,  2012).  Our  pipeline  combines  steps  directly

implemented in python with steps that use external tools. The implementation is available on github

(https://github.com/f-heeger/long_read_metabarcoding) and parameters used for the external tools

can be found in the supplemental methods (Appendix 2, supplemental info 1). 

Read Processing stage –  Reads longer  than  6,500 bp were excluded to remove chimeric  reads

formed during adapter ligation and reads containing double-inserts due to failed adapter recognition

during the CCS generation. Reads shorter than 3,000 bp were removed to exclude incompletely

amplified sequences and other artifacts. Reads were then filtered by a maximum mean predicted

error rate of 0.004 that was computed from the Phred scores. Reads with local areas of low quality

were removed if  predicted mean error  rate  was > 0.1 in  any sliding  window of  8 bp.  cutadapt

(version 1.9.1, Martin, 2011) was used to remove forward and reverse amplification primers and

discard sequences in which primers could not be detected. Random errors were reduced by pre-

clustering  reads  from each sample  at 99% similarity  using  the  cluster_smallmem command  in

vsearch (version 2.4.3, Rognes et al., 2016). Reads were sorted by decreasing mean quality prior to

clustering to ensure that high quality reads were used as cluster seeds. vsearch was configured to

produce a consensus sequence for each cluster.

OTU  clustering  and  classification  stage  –  Chimeras  were  detected  and  removed  with  the

uchime_denovo command in vsearch. Based on tests using mock community samples (see below),

we determined this was a suitable method of chimera detection following the read processing stage

(above). Only sequences that were classified as non-chimeric were used for further analysis. The

rRNA genes (SSU, LSU, 5.8S) and internal transcribed spacers (ITS1, ITS2) in each read were

detected using ITSx  (version 1.0.11, Bengtsson-Palme et al.,  2013). To generate OTUs, the ITS

region (ITS1, 5.8S, ITS2) was clustered using vsearch at 97% similarity. SSU and LSU sequences

were then placed into clusters according to how their corresponding ITS was clustered. OTUs were
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taxonomically classified using the most complete available database for each marker. For the ITS

we used the general FASTA release of the UNITE database (version 7.1, 20.11.2016, only including

singletons set as RefS, Kõljalg et al., 2013); for the SSU we used the truncated SSU release of the

SILVA database (version 128, Quast et al., 2013), excluding database sequences with quality scores

below 85 or Pintail chimera quality below 50; and for the LSU we used the RDP LSU data set

(version 11.5, Cole et al., 2014). The ITS, SSU and LSU regions of the representative sequence of

each OTU were locally aligned to the database using lambda  (version 1.9.2, Hauswedell  et al.,

2014).  For  LSU  and  SSU  the  alignment  parameters  had  to  be  modified  to  allow  for  longer

alignments (see Appendix 2, supplemental info 1). From the alignment results, a classification was

determined by filtering the best matches and generating a lowest common ancestor (LCA) from

their classifications as follows. For each query sequence, matches were filtered by a maximum e-

value (10-6), a minimum identity (80%) and a minimum coverage of the shorter of the query or

database sequence (85%). For the SSU and LSU, non-overlapping matches between each query and

database  sequence  were  combined.  For  each  query  sequence,  a  cutoff  for  the  bit  score  was

established representing 95% of the value for the best match, above which all matches for that given

sequence were considered.  For the SSU and LSU, bit scores were normalized by the minimum

length of query and database sequences to account for the varying lengths of database sequences. To

determine the LCA from the remaining matches, their classifications were compared at all levels of

the taxonomic hierarchy starting at kingdom (highest) and ending at species (lowest) level. For each

OTU, the classifications of all matches at a given taxonomic rank were compared and if >90% of

them were  the  same then this  was  accepted.  If  <90% were  the  same then the  OTU remained

unclassified at this and all lower ranks.

Error rates based on isolate sequences
Isolate sequences were processed using the Read Processing stage of the pipeline (described above)

in  order  to  generate  error-corrected  consensus  sequences  from  pre-clusters.  The  consensus

sequences of the largest pre-cluster for each isolate were > 99 % identical to the Sanger sequencing

data obtained from the same isolate (not shown), with most differences found in bases that were of

low quality in the Sanger sequence data. We therefore used the consensus sequence of the largest

cluster for each isolate as a reference for that species in all further analysis. CCS reads from each

isolate  were  then  aligned  with  the  respective  consensus  sequence  using  blasr  (github  comit

16b158d, Chaisson and Tesler, 2012) to estimate error rates of CCS reads. Sequences after filtering

steps were also compared in order to estimate remaining errors.
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Evaluating chimera detection 
De novo and reference-based chimera classifications were compared as a way of estimating the

reliability of de novo chimera calls. The CCS reads from the mock community samples were tested

for chimeras with vsearch once in de novo mode (uchime_denovo) and once with a reference-based

approach (uchime_ref). For the de novo approach, reads were processed with the Read Processing

stage of the pipeline (above) to generate error-corrected sequences from pre-clusters. Cluster sizes

resulting from the pre-clustering step were used as sequence abundances. For the reference-based

approach, a reference file was created from the consensus sequence of the largest cluster for each

isolate sample. A random subset of reads (100 sequences, 1.3% of the data) was generated from the

mock community sample with the highest chimera rate and the most reads (30 PCR cycles). The

subset  of  reads  was  aligned to  the  consensus  sequences  from the  isolate  samples  and visually

inspected for chimeras in Geneious  (version 7.1.9, Kearse et al., 2012). These “manual” chimera

calls were then used to verify reference-based chimera classifications for these reads. Chimeras

identified by the reference-based approach were used to compute the chimera formation rate under

different PCR conditions. 

Mock community classification
We tested classification with the DNA metabarcoding pipeline using the mock community sample

with the most reads (30 PCR cycles). In the pipeline, chimeras were classified de novo and OTU

classification was performed using the public databases. We manually classified the same OTUs

using consensus sequences from our isolate samples as reference. For each read, chimeras were

detected  with  a  reference-based approach  using  vsearch  and the  classification  of  the  read  was

determined by mapping reads to the isolate sample sequences with blasr. To better understand the

resolution that can be expected from the different regions of the rRNA operon, each region (SSU,

ITS1,  5.8S,  ITS2,  LSU)  was  clustered  independently.  Chimeras  were  first  removed  using  the

reference-based approach with our isolate sequences as references. The different regions in each

read were separated with ITSx, dereplicated and clustered at 97%. 

Environmental community classification
Sequences from the environmental samples from Lake Stechlin were processed with the full rRNA

metabarcoding  pipeline  described  above.  Chimeras  were  detected  using  the  de  novo approach,

which we conclude provides a very good diagnosis of chimeras based on our validation using the

mock community to compare de novo and reference-based approaches (see Results). The resulting
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classifications obtained with SSU, ITS, and LSU markers were then compared at each taxonomic

level. OTUs with only one read (singletons) were excluded from this comparison.

4 Results

Sequencing resulted in a total number of 233,176 CCS reads, which were submitted to the NCBI

Sequence Read Archive (SRR6825218 - SRR6825222). 215,720 of these reads were within the

targeted  size  range  of  3,000 –  6,500 bp (Table  2).  After  stringent  filtering  using  average-  and

window- quality criteria, 69,342 reads remained that contained an identifiable amplification primer

sequence (Table  2). Pre-clustering of isolate samples with the metabarcoding pipeline resulted in

one large (> 80 reads) pre-cluster for each sample.  Besides these big clusters,  six samples had

additional  very small  (< 3 reads)  clusters.  For isolates  sequenced on two different  SMRT-cells,

consensus sequences of the large pre-clusters were identical across cells except for  S. cerevisiae

where a T homopolymer in the ITS2 was 6 bases long in one consensus and 7 in the other and U.

maydis which shows a SNP in the LSU. Consensus sequences of large clusters were used as reference

for further analysis and submitted to gene bank (MH047187 - MH047202). The mean sequencing

error rate of quality-filtered CCS reads, based on comparison to the consensus sequences of the

large clusters (taken to be our reference for each isolate), was 0.2216% (SD 0.1621%). Deletions

were by far the most common error (0.1756%), with insertions and substitutions much lower (Table

3).
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Chimera formation and detection
Using  reference-based  chimera  detection  in  the  mock  community,  chimera  formation  rate  (i.e.

sequences classified as chimeras or as unsure) rose from <2% of sequences at 13-18 PCR cycles to

16.3% at 30 cycles (Fig.  5). The emPCR (25 cycles) resulted in 4.4% of sequences classified as

chimeric (Fig. 5), compared to 14.1% for 25 cycles under standard PCR conditions. Template DNA

amounts played no measurable role in chimera formation rate, with 2, 8 and 20 ng of DNA all
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Table 2: Number of sequencing reads remaining after each step in the bioinformatics pipeline for

each sample type.

Analysis step Isolates Mock
community

Environmental
samples

Total

Raw CCS 46,740 60,448 125,988 233,176

Length-filtered 44,595 53,730 117,395 215,720

Average quality-
filtered

18,532 16,054 48,778 83,364

Window quality-
filtered

16,353 11,263 43,385 71,001

Primer-filtered 16,082 10,891 42,369 69,342

Table 3: Error rates in CCS reads computed by mapping to consensus sequences of isolates.

Analysis
step

Substitutions
mean (SD)

Insertions
mean (SD)

Deletions
mean (SD)

Total 
mean (SD)

Raw CCS 0.0453%
(0.1277%)

0.3140%
(0.6108%)

0.8650%
(1.1960%)

1.2243%
(1.5575%)

Filtered 0.0080%
(0.0273%)

0.0380%
(0.0476%)

0.1756%
(0.1550%)

0.2216%
(0.1621%)
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resulting in <2% chimeric sequences (18 cycles). Manual inspection of 100 randomly chosen isolate

sequences classified 16 of these as chimeras. Reference-based detection identified 15 of these as

chimeric and one as “suspicious”. Of the 84 confirmed as non-chimeric by manual inspection, the

reference-based algorithm classified 82 (97.6%) as non-chimeric and 2 as “suspicious”.  De novo

chimera detection (i.e., in the absence of a reference) classified 98.6% of the reads in the sample in

the same way as using the reference-based approach.

Mock community classification
The five marker regions (SSU, ITS1, 5.8S, ITS2, LSU) clearly distinguished 8 of the 14 isolates we

could recover within the mock community, but revealed cases of intra-specific variation as well as

overlap among recognized species (Fig.  6). Seven species were clearly distinguished at  all  five

markers, i.e. formed a single cluster for each region (Fig.  6).  Metschnikowia reukaufii produced

multiple clusters for ITS1 and ITS2, as expected based on previous reports of extraordinarily high

rRNA operon variation in this genus  (Lachance et al., 2002; Sipiczki et al., 2013).  Clavariopsis

aquatica and  Phoma sp.  were  separated  by  all  regions  except  SSU.  Trichoderma  reesei and
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Clonostachys rosea were separated by ITS1, ITS2, and LSU but not with SSU and 5.8S genes.

Cladosporium herbarum and  Cladosporium sp. were differentiated only with the ITS2, although

one of the two clusters was mixed (Fig.  6). OTU clustering resulted in 16 non-singleton OTUs.

Twelve OTUs consisted of sequences from one species as well as a few chimeric sequences, one

contained  sequences  from  Cladosporium herbarum  and  the  other  Cladosporium sp.,  and  three

smaller OTUs were entirely made up of chimeric sequences (Table  4).  Mortierella elongata and

Cystobasidium laryngis did not appear in any OTUs, although we did observe low read abundance

(<10 reads) of these species prior to quality filtering in some of the mock community samples.

OTUs were classified to varying taxonomic ranks by the three different genetic markers (Table 4).

The SSU gene provided mainly order- and family-level classifications,  the ITS region provided

family- to species-level classifications, and the LSU gene provided genus-level classifications in

some  cases  and  higher  level  classifications  in  others.  The  Metschnikowia  reukaufii OTU  was

classified to different species by ITS (M. cibodasensis) and LSU (M. bicuspidata). Different genus-

level classifications by ITS and LSU for the Chytrid species were the result of different taxonomies

used in the UNITE and the RDP databases. The best match in both databases was  Globomyces

pollinis-pini,  but  the  higher  classification  at  higher  ranks  differs  among  the  databases.  Similar

discrepancies  caused by differences  in  database  taxonomy also occurred for  some of  the  other

species. Other than that classifications by all three markers were consistent with each other and with

the manual classification.
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Classification method

OTU Size Manual SSU ITS LSU

11 6 Clavariopsis aquatica Pleosporales (Order) Clavariopsis aquatica Pleosporales (Order)

6 44 Chytridiomycota Chytridiomycetes (Class) Globomyces (Genus) Rhizophydium (Genus)

4 344 Cladosporium sp. + 
Cladosporium herbarum

Cladosporium (Genus) Cladosporium (Genus) Davidiella (Genus)

5 140 Clonostachys rosea Hypocreales (Order) Bionectriaceae (Family) Hypocreales (Order)

1 4165 Metschnikowia reukaufii Saccharomycetales (Order) Metschnikowia cibodasensis Metschnikowia bicuspidata

2 1096 Leucosporidium scottii Basidiomycota (Phylum) Leucosporidiaceae (Family) Leucosporidium (Genus)

3 719 Saccharomyces cerevisiae Saccharomycetaceae (Family) Saccharomyces (Genus) Saccharomyces (Genus)

7 37 Penicillium brevicompactum Trichocomaceae (Family) Penicillium (Genus) Fungi (Kingdom)

8 34 Ustilago maydis Ustilaginaceae (Family) Ustilaginaceae (Family) Ustilago maydis

9 20 Exobasidium vaccinii Exobasidiales (Order) Exobasidium vaccinii Exobasidium (Genus)

10 21 Phanerochaete chrysosporium Agaricomycetes (Class) Phanerochaete sp. Agaricomycetes (Class)

12 5 Phoma sp. Pleosporales (Order) Pleosporales Incertae sedis (Family) Didymellaceae (Family)

13 5 Trichoderma reesei Hypocreaceae (Family) Trichoderma (Genus) Hypocreaceae (Family)

14 3 chimeric Saccharomycetales (Order) Nectriaceae (Family) Metschnikowia bicuspidata

16 3 chimeric Saccharomycetales (Order) Metschnikowia cibodasensis unknown

17 9 chimeric Saccharomycetales (Order) Metschnikowia cibodasensis Bionectria (Genus)

Table 4: Mock-community OTU classification with our analytical pipeline. Manual classifications were made by comparison to full-length reference

sequences. rRNA gene region classifications were made based on reference sequences in SILVA (SSU), UNITE (ITS) and RDP (LSU) databases. Size

indicates the number of reads
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Environmental community classification
OTU clustering of the environmental samples produced  947 non-singleton OTUs, of which 799

(84%) were classified as fungi by at least one of the three markers (SSU, ITS, LSU). The SSU

database  also  allowed identification  of  non-fungal  sequences,  and 112 OTUs were  assigned to

Metazoa, 10 to Discicristoidea, 2 to Stramenopiles, 2 to Alveolata and 1 to Chloroplastida. The 200

most abundant fungal OTUs (91% of fungal reads; 61% of total reads) were consistently classified

to phylum level by all three markers except for 9 cases in which SSU and LSU gave different

classifications for the same OTU (Fig. 7). There were no conflicts between SSU and ITS, although

the SILVA and UNITE databases use different names for the phylum Cryptomycota/Rozellomycota

(Fig. 7). Classification at the phylum level was most successful with SSU (188 reads, i.e., 94% of

the 200 most abundant fungal OTUs). Fewer OTUs were classified to phylum with LSU (126, 63%)

and ITS regions (36, 18%). Classification to the species level was most successful with LSU (55,

27.5%) and less successful for ITS (20, 10%) and SSU (13, 6.5%) (Fig. 7). 

Extended  to  all  947  OTUs,  the  results  were  similar.  SSU  provided  the  most  classifications,

especially for higher taxonomic ranks, and ca. 20% of these were classified the same using the ITS

(Fig. 8 A) and ca. 66% were classified the same by LSU (Fig. 8 B). ITS classifications matched

those of SSU (Fig. 8 C) and LSU (Fig. 8 D) at ranks from kingdom to class. At family, genus and

species rank, most OTUs that were classified by ITS were not classified by SSU (Fig. 8 C) and

many were classified differently by LSU (Fig. 8 D). At higher taxonomic rank (kingdom to class),

OTUs classified by LSU were classified the same way as by SSU. But more than 50% were either

not assigned to any taxon or were classified differently by SSU at lower ranks (order to species;

Fig. 8 E). Most OTUs classified by the LSU were not classified by ITS at kingdom to class ranks (>

60%),  although those that  were,  were  classified  the same.  At the  order  to  species  rank,  OTUs

classified by both LSU and ITS were rare and differences between the markers were more common

(Fig. 8 F).
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Figure  7: Classification specificity of the 200 most abundant fungal OTUs for the three different regions (SSU, ITS, LSU). The three rows give

classifications by the three different regions. Each OTUs classification is given by a bar in each row. The height of  the bar represents level of

classification. Bars are colored by phylum.
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5 Discussion

Long sequencing reads have the potential to provide many benefits for DNA metabarcoding. These

include taxonomic assignment of OTUs at lower taxonomic levels (Franzén et al., 2015; Porter and

Golding,  2011),  the  use  of  homology-based classification  and phylogenetic  reconstruction  (e.g.

Tedersoo  et  al.,  2017),  and  higher  sequencing  quality  for  standard-length  DNA barcodes  in

reference  databases  (Hebert  et  al.,  2018).  Disadvantages  of  long  reads  include  lower  sequence

quality (D’Amore et al., 2016; Glenn, 2011), a possible increase in the rate of chimera formation,
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and the fact that most bioinformatics tools are optimized for shorter reads. Here we produced DNA

metabarcodes  nearly  twice  as  long  as  any  used  to  date  (ca.  4,500 bp),  comprising  the  whole

eukaryotic rRNA operon (SSU, ITS, LSU). We combined circular consensus sequencing with our

newly developed bioinformatics pipeline and obtained error rates comparable to short-read Illumina

sequencing (D’Amore et al., 2016; Glenn, 2011). The use of multiple markers allowed us to use the

ITS region for OTU delineation (clustering) and automated species-level taxonomic classifications

for environmental OTUs with both ITS and LSU sequences. Finally, the inclusion of the SSU rRNA

gene into the analyses allowed us to classify OTUs that were not represented in ITS and LSU

databases,  including  many  fungi  that  belong  to  basal  lineages  and  are  common  in  freshwater

habitats (Rojas-Jimenez et al., 2017; Wurzbacher et al., 2016).

Challenges of long reads
A significant challenge in using longer reads for DNA-metabarcoding of mixed samples is the fact

that most bioinformatics tools have been designed for the analysis of short sequences (typically

200-600 bp).  Although  we  obtained  very  high-quality  CCS  reads,  the  higher  indel  rate  and

accumulation of errors in long reads requires analyses that differ from that of more commonly used

sequencing platforms like Illumina. For example the clustering algorithm applied by swarm (Mahé

et al., 2015) relies on a low total number of errors per sequence (ideally 1 error). In long sequences,

even with low error rates, the total number of errors are higher, makeing it unfeasible to use this

algorithm. Other widely used clustering tools like uclust (Edgar, 2010) or vsearch use heuristics to

choose starting points for clustering. Reads are first de-replicated and those with the most identical

copies are used as cluster starting points. This could not be applied to our data set because the

comparably high nucleotide deletion rate and the long read length made almost all reads unique. 

In the future it might be beneficial to develop specialized software for clustering and correcting

PacBio long range amplicons. Here we used heuristic clustering starting with high quality reads and

with  a  high  similarity  threshold  (99%),  and  a  consecutive  consensus  calling  for  correction  of

random sequencing errors. This also gave us clusters of highly similar sequences, that we could use

for chimera detection and OTU clustering instead of the groups of identical reads resulting from de-

replication, that are normally used for these steps.

One of  the  problems in  any study applying PCR to mixed samples  is  chimera formation.  Our

comparison of  de novo and reference-based chimera detection found them to produce the same

classifications in > 98% of cases. This indicates that de novo chimera classification in our long-read

pipeline provided a good estimate of chimera formation rate and is suitable for data sets where no
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complete  reference  database  is  available.  We can  therefore  be  confident  in  our  results  for  the

environmental  samples,  even  where  no  reference  sequences  were  available  in  databases.

Interestingly, a manual inspection of conflicting read assignments in the independent clustering of

the  different  regions  (data  not  shown)  found  a  few cases  (9  of  6,585  reads  in  the  one  mock

community sample) of chimeras that could not be detected. Neither reference-based nor  de novo

approaches detected these chimeras because 3’ and 5’ ends were both from the same species, and

only  the  central  section  originated  from  a  second  species.  Most  chimera  detection  software,

including vsearch, model chimeras from two origins i.e.,  different 3' and 5' ends, but not more.

These methods would then fail to identify chimeras if the 3' and 5' ends are from the same species

and a second species is in the middle, as we observed. Although this was very rare in our data (0.1%

of reads investigated), it created small OTUs made up almost entirely of these complex chimeras in

our mock community (OTU 14, 16 and 17, see Table 4). As a general rule, chimeras are most likely

to be found associated with the most frequent sequences in a PCR sample (e.g. Sommer et al., 2013)

and this is also true for the complex chimeras we observed here. In fact, all three chimeric OTUs

found in our mock community involved the species with the most read abundance, Metschnikowia

reukaufii. DECIPHER (Wright et al., 2012) is one tool that may detect these chimeras, but requires

a complete reference database of possible parent sequences and is therefore unsuitable for use with

environmental samples (for which reference sequences are difficult to obtain) and long reads.

We also attempted to minimize chimera formation in the laboratory, by exploring the influence of

reduced  PCR  cycle  numbers,  emulsion  PCR,  and  template  concentration.  Although  we  were

initially concerned that our ca.  4,500 bp amplicon length would lead to higher chimera formation

rates during PCR, the mock community sample that was amplified with the highest cycle number

(30) formed chimeras at a rate within the range reported by short-read studies (ca. 4-36%, Ahn et

al., 2012; Qiu et al., 2001). We observed reduced chimera formation with fewer cycles which is also

consistent with short-read studies  (D’Amore et al., 2016; Lahr and Katz, 2009; Qiu et al., 2001).

Unlike  other  studies  (D’Amore  et  al.,  2016;  Lahr  and Katz,  2009) we did  not  find  a  notable

influence of DNA template concentration in our samples, possibly because at 18 cycles all reactions

were still in the exponential phase, before depletion of reagents (see below). Chimera formation

rates in our mock community may underestimate rates in environmental samples because the lower

species richness in the mock community may have led to reduced chimera formation  (Fonseca et

al., 2012). However, the chimera rate detected by de novo chimera detection in our environmental

data was < 1%, i.e., even lower than the de novo detection rate in the less diverse mock community
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samples. Chimera formation occurs primarily during the saturation phase of a PCR, when a large

amount of PCR product has accumulated and the template:primer ratio increases (Judo et al., 1998).

For  a  given  cycle  number,  the  amount  of  accumulated  product  may  differ  between  the

environmental and mock community samples, because although a similar amount of template DNA

was used in mock community (8 ng) and environmental (10 ng) samples, the amount of template

available for primer binding might be lower in the latter because they also contain non-fungal DNA.

Environmental samples may also contain more PCR inhibitors (Schrader et al., 2012), which would

reduce PCR efficiency and delay the saturation phase to a higher cycle number in environmental

samples  compared to  the  mock community.  Optimization  of  DNA extraction  and amplification

could make lower PCR cycle numbers feasible and thus further reduce the problem of chimera

formation. Our emPCR results also indicate that this might be a promising way of reducing chimera

formation when more PCR cycles are required.

Classification 
Although the ITS region has been proposed as a standard barcode for fungi (Schoch et al., 2012)

other regions of the rRNA operon remain popular choices as fungal barcodes  (Roy et al., 2017;

Stielow et al.,  2015; Wurzbacher et al.,  2016). Compared to rRNA genes, ITS1 and ITS2 often

exhibit higher interspecific variability and thus can provide greater species delineation power (i.e.,

more OTUs) than SSU and (in most fungal groups) LSU (Schoch et al., 2012). Indeed we found that

isolate species of the same genus (Cladosporium) and even from the same order (Hypocreales) and

sub-division (Pezizomycotina) could not be separated by the SSU (Fig. 6), and that the use of ITS

resulted more often in classification to species level than SSU and LSU in Dikarya (Fig. 7). At the

same  time,  the  often  higher  variability  of  ITS  also  means  that  for  new  species  that  are  not

represented  in  the  database  it  can  be  more  difficult  to  find  comparable  sequences  and thus  to

identify them to any level. In these cases, longer sequencing reads that include more conserved

regions with a stable evolutionary rate are likely to be helpful in making classifications based on

sequence similarity as we did here or, by phylogenetic methods  (e.g. Tedersoo et al., 2017). The

phylum Chytridiomycota, which is often found in aquatic environments and was highly abundant in

our environmental samples, is underrepresented in sequences databases (Frenken et al., 2017). We

observed many OTUs from this phylum that could not be classified with the ITS at all, while the

SSU  provided  at  least  class  or  family  rank  classifications  and  the  LSU  often  even  provided

classifications at species rank (Fig. 7).
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For  the  classification  of  the  mock  community,  the  different  degrees  of  taxonomic  resolution

provided by the different markers were clear. The mock community consisted of species that are

represented in the reference databases with sequences that were identical or very similar to the

sequence  that  we  found.  In  these  cases,  ITS  was  a  superior  marker  region,  since  its  greater

variability allowed for higher resolution classification. While almost all classifications were correct,

those obtained for ITS went down to at least family rank in all cases, and even to species rank for a

third of the OTUs. LSU and SSU both provided far fewer specific classifications. Using the LSU

marker,  species  levels  classifications  could  be  obtained  for  some OTUs,  but  others  were  only

classified to higher taxonomic ranks (up to kingdom). Using the SSU marker, classification results

were  obtained  between  the  ranks  of  order  and  family.  In  our  environmental  samples,  the

disadvantage of ITS becomes clear. If no closely related reference sequence was available, sequence

similarity to any sequence in the database was too low to classify the sequence even to a higher

taxonomic rank. In these cases, SSU and LSU markers provided at least classification at family or

class level, while many OTUs stayed completely unclassified with the ITS.

The independent clustering of the different regions (SSU, ITS1, 5.8S, ITS2 and LSU) of the rRNA

operon (Fig.  5) also showed the higher resolution of ITS1 and ITS2, which were the only regions

that separate almost all species from each other. On the other hand, for  Metschnikowia reukaufii

they formed multiple clusters for one species. This is most likely the result of high variability of

rRNA operon copies in Metschnikowia (Lachance et al., 2002; Sipiczki et al., 2013) in combination

with the short ITS1 and ITS2 sequences (70 bp and 75 bp, respectively) which mean that very few

(3) differences already constitute an identity difference of 3%.

Classification conflicts and synergies
The conflicts we observed between classifications based on different marker regions and databases

can provide insights into a number of interesting problems. In some cases, they may either represent

uncertainty in classification using at least one of the markers, or genuine chimeric reads. In other

cases they may highlight incompatibility between the taxonomies used by the databases, or even

errors in the databases (see also Nilsson et al., 2006). Many conflicts resulted from differences in

naming  convention  and  taxonomic  placement  in  the  different  databases.  Multiple  OTUs  were

classified with LSU and the RDP database to the more recently defined orders Rhizophydiales

(Letcher et al., 2006) and Lobulomycetales  (Simmons et al., 2009), but were classified with SSU

and the SILVA database as Chytridiales, the older classification for these new orders. A similar

effect can be seen for the orders in the class Agaricomycetes. Three OTUs were assigned to the
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family  Lachnocladiaceae  which  belongs  to  the  order  Russulales  according  to  SILVA and  to

Polyporales according to RDP. Finally, one OTU was assigned to the genus Jahnoporus using the

LSU marker. According to the RDP database this genus belongs to the order Russulales while in

SILVA it  belongs to  the order  Polyporales.  Other  conflicts  showed that  minor  problems in the

databases can lead to major differences in classification. In our environmental data, several high

(read) abundance OTUs were classified as Chytridiomycota with SSU but as Blastocladiomycota

with LSU. Closer inspection of the LSU alignments indicated that for many of these OTUs, only the

second best hit was to a Blastocladiomycota, while the best match was, in fact, Rhizophlyctis rosea.

The latter is a Chytridiomycota, but has no classification beyond kingdom in the RDP database file

we used and was thus ignored for classification. In addition, the second best hit which was used for

classification  is  to  a  sequence  from  the  genus  Catenomyces which  belongs  to  the  phylum

Blastocladiomycota  according  to  RDP,  but  according  to  SILVA  belongs  to  the  phylum  of

Chytridiomycota. Thus a minor error in the database file, in combination with inconsistencies in the

taxonomy used by different databases, can lead to completely different classifications when using

different markers.

These conflicts in classification clearly highlight problems with the databases, but classifications

using three different markers from the same molecule, as obtained from the full rRNA operon, can

help us to evaluate how confident we can be in our classification. A classification that is supported

by three markers, with largely independent databases, can be considered more trustworthy than one

that is only supported by one, or even shows conflicts when using different markers. In addition,

long DNA barcodes could be used to create synergies between the databases and to support short

read studies. For example, if a sequence was classified to the same family by SSU (SILVA) and

LSU (RDP), the ITS region could be added to the Unite database (even if it is not classified to the

species level) to help future studies that use ITS markers. The possibility to sequence SSU, ITS and

LSU at the same time therefore offers the opportunity to contribute to different databases in parallel,

with the future potential to generate a new reference data set with nearly full-length rRNA operon

sequences.

Conclusions
We used a DNA metabarcode nearly twice the length of any used to date and created a long-read

(ca. 4,500 bp) bioinformatics pipeline that results in rates of sequencing error and chimera detection

that are comparable to typical short-read analyses. The approach enabled the use of three different

rRNA  gene  reference  databases,  thereby  providing  significant  improvements  in  taxonomic
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classification over any single marker. While ITS is likely to remain a short-metabarcode region of

choice for some time, a clear limitation of ITS is that its high variability, in combination with the

incompleteness of databases, often lead to classification failing. In these cases, the other rRNA

markers are beneficial. In particular, classification based on SSU or LSU were superior in more

basal fungal groups. The universal nature of the rRNA operon and our recovery of >100 non-fungal

OTUs  indicate  that  the  method  could  also  be  suitable  for  more  general  studies  of  eukaryotic

biodiversity.

6 Acknowledgements

We thank  Lars  Ganzert,  Katrin  Premke,  and Robert  Taube (IGB) for  help with field sampling,

Keilor Rojas and Silke Van den Wyngaert (IGB) for providing isolates, Christian Wurzbacher (Univ.

Gothenberg,  now  TU  Munich)  for  providing  primers,  and  Nicole  Heyer  and  Simone  Severitt

(DSMZ)  for  help  with  sequencing.  Research  was  partially  funded  by  the  Leibniz  Association

Pakt/SAW project “MycoLink” (SAW-2014-IGB-1).

7 Author Contribution

F.H., E.CB., C.B., A.Y., J.O., C.J.M. and M.T.M. conceived and designed the overall study design.
E.C.B. designed and performed molecular laboratory work.  F.H. designed and implemented the
analysis  pipeline  and  carried  out  analysis.  B.B.  and  C.S.  advised  on  sequencing  strategy  and
performed library preparation and sequencing. E.C.B, C.B. and A.Y. chose and cultivated isolates
for the mock community.  F.H., E.C.B., C.J.M. and M.T.M. wrote the first draft, and all authors
contributed to the final manuscript.

8 References

Ahn, J.-H., Kim, B.-Y., Song, J., and Weon, H.-Y. (2012). Effects of PCR cycle number and DNA
polymerase  type  on  the  16S  rRNA gene  pyrosequencing  analysis  of  bacterial  communities.  J
Microbiol. 50, 1071–1074.

Bengtsson-Palme, J., Ryberg Martin, Hartmann Martin, Branco Sara, Wang Zheng, Godhe Anna,
Wit  Pierre,  Sánchez‐García  Marisol,  Ebersberger  Ingo,  Sousa  Filipe,  et  al.  (2013).  Improved
software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and
other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution
4, 914–919.

Blaalid, R., Kumar, S., Nilsson, R.H., Abarenkov, K., Kirk, P.M., and Kauserud, H. (2013). ITS1
versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13, 218–224.

Boers,  S.A., Hays,  J.P.,  and Jansen, R. (2015).  Micelle PCR reduces chimera formation in 16S
rRNA profiling of complex microbial DNA mixtures. Scientific Reports 5.

66



IV Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments

Chaisson, M.J., and Tesler, G. (2012). Mapping single molecule sequencing reads using basic local
alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics  13,
238.

Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A.,
Kuske,  C.R.,  and  Tiedje,  J.M.  (2014).  Ribosomal  Database  Project:  data  and  tools  for  high
throughput rRNA analysis. Nucleic Acids Res 42, D633–D642.

D’Amore, R., Ijaz, U.Z., Schirmer, M., Kenny, J.G., Gregory, R., Darby, A.C., Shakya, M., Podar,
M.,  Quince,  C.,  and  Hall,  N.  (2016).  A comprehensive  benchmarking  study  of  protocols  and
sequencing platforms for 16S rRNA community profiling. BMC Genomics 17, 55.

Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics
26, 2460–2461.

Fonseca, V.G., Nichols, B., Lallias, D., Quince, C., Carvalho, G.R., Power, D.M., and Creer, S.
(2012). Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic
analyses. Nucleic Acids Res 40, e66–e66.

Franzén,  O.,  Hu, J.,  Bao, X.,  Itzkowitz,  S.H.,  Peter,  I.,  and Bashir,  A. (2015).  Improved OTU-
picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering.
Microbiome 3.

Frenken, T., Alacid Elisabet, Berger Stella A., Bourne Elizabeth C., Gerphagnon Mélanie, Grossart
Hans‐Peter, Gsell Alena S., Ibelings Bas W., Kagami Maiko, Küpper Frithjof C., et al.  (2017).
Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental
Microbiology 19, 3802–3822.

Glenn, T.C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources
11, 759–769.

Goodwin, S., McPherson, J.D., and McCombie, W.R. (2016). Coming of age: ten years of next-
generation sequencing technologies. Nature Reviews Genetics 17, 333–351.

Hauswedell, H., Singer, J., and Reinert, K. (2014). Lambda: the local aligner for massive biological
data. Bioinformatics 30, i349-355.

Hebert,  P.D.N., Braukmann, T.W.A.,  Prosser,  S.W.J.,  Ratnasingham, S., deWaard,  J.R., Ivanova,
N.V., Janzen, D.H., Hallwachs, W., Naik, S., Sones, J.E., et al. (2018). A Sequel to Sanger: amplicon
sequencing that scales. BMC Genomics 19, 219.

Judo, M.S., Wedel,  A.B., and Wilson, C. (1998). Stimulation and suppression of PCR-mediated
recombination. Nucleic Acids Res 26, 1819–1825.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper,
A., Markowitz, S., Duran, C., et al. (2012). Geneious Basic: An integrated and extendable desktop
software platform for the organization and analysis  of sequence data.  Bioinformatics  28,  1647–
1649.

67



IV Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments

Kõljalg,  U.,  Nilsson R.  Henrik,  Abarenkov Kessy,  Tedersoo Leho,  Taylor  Andy F.  S.,  Bahram
Mohammad, Bates Scott T., Bruns Thomas D., Bengtsson‐Palme Johan, Callaghan Tony M., et al.
(2013). Towards a unified paradigm for sequence‐based identification of fungi. Molecular Ecology
22, 5271–5277.

Köster,  J.,  and  Rahmann,  S.  (2012).  Snakemake—a  scalable  bioinformatics  workflow  engine.
Bioinformatics 28, 2520–2522.

Lachance, M.-A., Bowles, J.M., and Starmer, W.T. (2002). Metschnikowia santaceciliae, Candida
hawaiiana,  and  Candida  kipukae,  three  new  yeast  species  associated  with  insects  of  tropical
morning glory. FEMS Yeast Research 3, 97–103.

Lahr,  D.J.G.,  and  Katz,  L.A.  (2009).  Reducing  the  impact  of  PCR-mediated  recombination  in
molecular  evolution  and  environmental  studies  using  a  new-generation  high-fidelity  DNA
polymerase. BioTechniques 47, 857–866.

Laver, T.W., Caswell, R.C., Moore, K.A., Poschmann, J., Johnson, M.B., Owens, M.M., Ellard, S.,
Paszkiewicz, K.H., and Weedon, M.N. (2016). Pitfalls of haplotype phasing from amplicon-based
long-read sequencing. Sci Rep 6.

Letcher,  P.M.,  Powell,  M.J.,  Churchill,  P.F.,  and  Chambers,  J.G.  (2006).  Ultrastructural  and
molecular  phylogenetic  delineation  of  a  new  order,  the  Rhizophydiales  (Chytridiomycota).
Mycological Research 110, 898–915.

Lindahl,  B.D., Nilsson, R.H., Tedersoo, L.,  Abarenkov, K., Carlsen,  T., Kjøller, R., Kõljalg,  U.,
Pennanen,  T.,  Rosendahl,  S.,  Stenlid,  J.,  et  al.  (2013).  Fungal  community  analysis  by  high-
throughput sequencing of amplified markers--a user’s guide. New Phytol. 199, 288–299.

Mahé, F.,  Rognes, T.,  Quince,  C., Vargas,  C. de,  and Dunthorn, M. (2015). Swarm v2: highly-
scalable and high-resolution amplicon clustering. PeerJ 3, e1420.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.Journal 17, 10–12.

Monchy, S., Sanciu, G., Jobard, M., Rasconi, S., Gerphagnon, M., Chabé, M., Cian, A., Meloni, D.,
Niquil, N., Christaki, U., et al. (2011). Exploring and quantifying fungal diversity in freshwater lake
ecosystems  using  rDNA  cloning/sequencing  and  SSU  tag  pyrosequencing.  Environmental
Microbiology 13, 1433–1453.

Nercessian,  O.,  Noyes,  E.,  Kalyuzhnaya,  M.G.,  Lidstrom,  M.E.,  and Chistoserdova,  L.  (2005).
Bacterial Populations Active in Metabolism of C1 Compounds in the Sediment of Lake Washington,
a Freshwater Lake. Appl Environ Microbiol 71, 6885–6899.

Nilsson, R.H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K.-H., and Kõljalg, U. (2006).
Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective.
PLOS ONE 1, e59.

Nilsson, R.H., Taylor, A.F.S., Adams, R.I., Baschien, C., Bengtsson-Palme, J., Cangren, P., Coleine,
C., Daniel, H.-M., Glassman, S.I., Hirooka, Y., et al. (2018). Taxonomic annotation of public fungal

68



IV Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments

ITS  sequences  from  the  built  environment  –  a  report  from  an  April  10–11,  2017  workshop
(Aberdeen, UK). MycoKeys 28, 65–82.

Ohsowski,  B.M.,  Zaitsoff,  D.P.,  Öpik,  M.,  and Hart,  M.M. (2014).  Where  the  wild  things  are:
looking for uncultured Glomeromycota. New Phytologist 204, 171–179.

Porras-Alfaro,  A.,  Liu,  K.-L.,  Kuske,  C.R.,  and Xie,  G.  (2014).  From genus to  phylum:  large-
subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies
influenced by database composition. Appl. Environ. Microbiol. 80, 829–840.

Porter,  T.M.,  and  Golding,  B.G.  (2011).  Are  similarity‐  or  phylogeny‐based  methods  more
appropriate  for  classifying  internal  transcribed  spacer  (ITS)  metagenomic  amplicons?  New
Phytologist 192, 775–782.

Qiu,  X.,  Wu, L.,  Huang, H.,  McDonel,  P.E.,  Palumbo,  A.V.,  Tiedje,  J.M.,  and Zhou, J.  (2001).
Evaluation of PCR-Generated Chimeras,  Mutations,  and Heteroduplexes  with 16S rRNA Gene-
Based Cloning. Appl Environ Microbiol 67, 880–887.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O.
(2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Res 41, D590–D596.

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open
source tool for metagenomics. PeerJ 4, e2584.

Rojas-Jimenez, K., Wurzbacher, C., Bourne, E.C., Chiuchiolo, A., Priscu, J.C., and Grossart, H.-P.
(2017). Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal
communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Sci Rep 7.

Roy,  J.,  Reichel,  R.,  Brüggemann,  N.,  Hempel,  S.,  and  Rillig,  M.C.  (2017).  Succession  of
arbuscular  mycorrhizal  fungi  along  a  52-year  agricultural  recultivation  chronosequence.  FEMS
Microbiol Ecol 93.

Schlaeppi, K., Bender,  S.F., Mascher,  F.,  Russo, G., Patrignani, A., Camenzind, T.,  Hempel,  S.,
Rillig,  M.C.,  and  van  der  Heijden,  M.G.A.  (2016).  High-resolution  community  profiling  of
arbuscular mycorrhizal fungi. New Phytol. 212, 780–791.

Schloss,  P.D.,  Jenior,  M.L.,  Koumpouras,  C.C.,  Westcott,  S.L.,  and  Highlander,  S.K.  (2016).
Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4,
e1869.

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., and
Consortium, F.B. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal
DNA barcode marker for Fungi. PNAS 109, 6241–6246.

Schrader,  C.,  Schielke,  A.,  Ellerbroek,  L.,  and Johne,  R.  (2012).  PCR inhibitors  –  occurrence,
properties and removal. Journal of Applied Microbiology 113, 1014–1026.

69



IV Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski,
B.,  and  Ideker,  T.  (2003).  Cytoscape:  A  Software  Environment  for  Integrated  Models  of
Biomolecular Interaction Networks. Genome Res 13, 2498–2504.

Simmons, D.R., James, T.Y., Meyer, A.F., and Longcore, J.E. (2009). Lobulomycetales, a new order
in the Chytridiomycota. Mycological Research 113, 450–460.

Singer,  E.,  Bushnell,  B.,  Coleman-Derr,  D.,  Bowman,  B.,  Bowers,  R.M.,  Levy,  A.,  Gies,  E.A.,
Cheng,  J.-F.,  Copeland,  A.,  Klenk,  H.-P.,  et  al.  (2016).  High-resolution  phylogenetic  microbial
community profiling. The ISME Journal 10, 2020–2032.

Sipiczki, M., Pfliegler, W.P., and Holb, I.J. (2013). Metschnikowia Species Share a Pool of Diverse
rRNA Genes  Differing  in  Regions  That  Determine  Hairpin-Loop  Structures  and  Evolve  by
Reticulation. PLOS ONE 8, e67384.

Sommer, S.,  Courtiol,  A., and Mazzoni, C.J. (2013). MHC genotyping of non-model organisms
using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout.
BMC Genomics 14, 542.

Stielow, J.B., Lévesque, C.A., Seifert, K.A., Meyer, W., Iriny, L., Smits, D., Renfurm, R., Verkley,
G.J.M., Groenewald, M., Chaduli, D., et al. (2015). One fungus, which genes? Development and
assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35, 242–
263.

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-
Palacios, A.M., Thu, P.Q., Suija, A., et al. (2014). Global diversity and geography of soil fungi.
Science 346, 1256688.

Tedersoo,  L.,  Ave,  T.-K.,  and  Anslan  Sten  (2017).  PacBio  metabarcoding  of  Fungi  and  other
eukaryotes: errors, biases and perspectives. New Phytologist 217, 1370–1385.

Travers, K.J., Chin, C.-S., Rank, D.R., Eid, J.S., and Turner, S.W. (2010). A flexible and efficient
template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38, e159.

Wright, E.S., Yilmaz, L.S., and Noguera, D.R. (2012). DECIPHER, a Search-Based Approach to
Chimera Identification for 16S rRNA Sequences. Appl. Environ. Microbiol. 78, 717–725.

Wurzbacher, C., Warthmann, N., Bourne, E., Attermeyer, K., Allgaier, M., Powell, J.R., Detering,
H.,  Mbedi,  S.,  Grossart,  H.-P.,  and  Monaghan,  M.T.  (2016).  High habitat-specificity  in  fungal
communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MC 16, 17–44.

Wurzbacher,  C.,  Larsson,  E.,  Bengtsson-Palme,  J.,  Van  den  Wyngaert,  S.,  Svantesson,  S.,
Kristiansson,  E.,  Kagami,  M.,  and  Nilsson,  R.H.  (2018).  Introducing  ribosomal  tandem repeat
barcoding for fungi.

70



IV Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments

71



V Identification of enzymes for lignocellulose degradation in Clavariopsis aquatica

V Identification of enzymes for lignocellulose 
degradation in Clavariopsis aquatica

Felix Heeger, Elizabeth C. Bourne, Christian Wurzbacher, Elisabeth Funke, Anna Lipzen,

Igor Grigoriev, Vivian Ng, Guifen He, Dietmar Schlosser, Michael T. Monaghan

1 Abstract

Fungi  are  ecologically  very  important  decomposers  of  lignocellulose.  Besides  “white  rot”  and

“brown  rot”  Basideomycota  which  use  different  peroxidases,  laccases  and  proteins  of  the

cytochorme P450 super-family  to  degrade  lignin  to  access  cellulose  and hemicellulose,  limited

lignin  modification  capabilities  have  also  been  reported  for  terrestrial  Ascomycota.  Here  we

investigated the presence of proteins for  the modification of lignin and its   constituents  in  the

genome of the exclusively aquatic Ascomycota (hymphomycete) Clavariopsis aquatica. In addition

we measured differential gene expression of C. aquatica when grown on lignocellulosic substrates

compared  to  growth  on  a  sugar  rich  substrate.  We  found  differential  expression  of  potential

peroxidases, laccases and cytochrome P450s, as well as significant over representation of proteins

for  cellulose  and  hemicellulose  degradation  among  the  differential  expressed  genes.  This

observation strongly suggests that C. aquatica is able to modify lignin to some extent; perhaps in

order to facilitate the utilization of lignocellulose as a carbon and energy source.

2 Introduction

Fungi are ecologically very important decomposers of lignocellulose, which is the main component

of plant cell walls. Lignocellulose contains cellulose, hemicellulose, and lignin. Lignin, the most

recalcitrant among these polymeres, is composed of phenylpropanoid monomer units and appears in

the highest proportion in wood. Wood decay is prominently exclusively mediated by fungi from the

phylum  of  Basidiomycota,  and  of  these,  only  the  so  called  white  rot  fungi  are  able  to  fully

mineralize lignin, while brown rot fungi can only modify it to some extent. White rot fungi express

multiple groups of lignin modifying enzymes like laccases and peroxidases (Lundell, Mäkelä, and

Hildén 2010). Studies of full genomes of white and brown rot fungi show that the two groups are

neither monophyletic nor easily separated by their protein repertoire (Riley et al. 2014; Floudas et

al. 2012). 

73



V Identification of enzymes for lignocellulose degradation in Clavariopsis aquatica

In other plant material that is not as lignin rich as wood other fungi can also degrade cell walls and

play an important role in plant matter degradation. One such example is leaf litter, that is submerged

in  streams,  where  the  most  abundant  species  are  aquatic  hyphomycetes  from  the  phylum

Ascomycota (Duarte et al. 2015; Kubicek and Druzhinina 2007; Voříšková and Baldrian 2013). It is

generally accepted, that aquatic hyphomycetes can degrade cellulose and hemicellulose from plant

litter, while their ability do degrade lignin is limited at best (Gessner et al. 2007; Krauss et al. 2011).

The comparative study of genomes of white and brown rot fungi has given insights into the protein

families  that  are  important  for  wood  degradation  (Riley  et  al.  2014;  Floudas  et  al.  2012;

Frommhagen et al. 2017) and the study of gene expression during wood degradation (e.g. Yang et

al. 2012; Tang et al. 2013) offers even more fine grain insights into which proteins are produced.

Studies of terrestrial Ascomycota have shown that they also possess and express genes for cellulose

and hemicellulose degradation (Ries et al. 2013). 

Clavariopsis  auquatica is a  typical  aquatic  Ascomycote  (hyphomycete)  colonizing  leaf  litter  in

streams  (Iqbal and Webster 1973; Suberkropp and Klug 1976). This fungus has previously been

reported  to  biotransform  environmental  pollutants  such  as  nonylphenol  and  polycyclic  musk

fragrances in a cometabolic manner, hereby involving both extracellular laccase and intracellular

oxidation reactions indicative for the action of cytochrome P450 systems  (Junghanns et al. 2005;

Krauss et al. 2011; M. Martin 2011; C. Martin et al. 2007).  

Our  aims  in  this  study  were  to  search  for  these  previously  described  proteins  and  to  identify

peroxidases known to act on ligoncellulose components in other fungi. In addition we examined

over representation of CAZy and KEGG annotations in differentially expressed genes in an effort to

identify critical fungal pathways that may be involved in carbon decomposition. We assembled its

genome and identified multiple laccases and peroxidases, as well as enzymes of the cytochrome

P450 super-family.

Because of the various and sometimes multiple functions of these protein families and the frequent

occurrence of their members in many different forms, the function of the identified genes can not

easily be inferred from their sequence alone. To get further insights into which of them are involved

in plant cell wall degradation, we also investigated changes in gene expression during cultivation of

C. aquatica on two different plant materials, and also in dependence on its growth stage. Common

alder (Alnus glutinosa) leaves were used, because they represent a possible natural substrate of the

fungus in rivers. Wheat straw was applied as another natural lignocellulosic substrate typically not

found in C. aquatica habitats. It typically possesses a clearly higher cellulose (~40%, Bjerre et al.
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1996;  Alemdar  and  Sain  2008) content  than  alder  leaves  (5-15%,  Chauvet  1987;  Lecerf  and

Chauvet  2008) and  also contains a  substantial  proportion of lignin  (9-22%, Bjerre  et  al.  1996;

Alemdar  and  Sain  2008).  As  a  control  medium,  we  used  malt  extract,  a  mainly  sugar-based

substrate being essentially devoid of phenolic and further aromatic constituents. The growth phase

has previously been shown to play an important role in laccase regulation (Solé et al. 2012). Liquid

culturing  with  milled  plant  material  allows  for  clear  differentiation  between  exponential  and

stationary  growth phase  and was  applied  in  this  study.  To investigate  more  natural  conditions,

additional cultures were grown on solid substrate (i.e. not milled).

The aim of our study was to provide insights into major protein families expressed by C. aquatica

during colonization of differently composed natural lignocellulosic substrates, and their potential

functions in carbohydrate and hydrocarbon metabolism. To our knowledge this is the first combined

genome and gene expression study of an exclusively aquatic fungus.

3 Methods

Cultivation
Liquid cultivations of C. aquatica were carried out in 500-mL flasks containing 200 mL of medium.

For  cultivation  on  alder  leaves  and  wheat  straw,  10  g/L milled  alder  leaves  and  wheat  straw,

respectively (particle size about 2-4 mm), were autoclaved (121°C, 20 min) twice and suspended in

a  nitrogen-limited  medium  previously  described  for  manganese  peroxidase  production  in

Stropharia rugosoannulata (glucose, which was used as a carbon source in the original medium

composition, was omitted) (Schlosser and Höfer 2002). Control cultures were grown on liquid malt

extract medium (1% malt extract, w/v; pH 5.6-5.8)  (Solé et al. 2012). The flasks were inoculated

with 5 mL of a mycelial suspension of the fungus prepared in sterile water (Junghanns et al. 2005).

Fungal cultures were agitated at 120 rpm and incubated at 14°C in the dark. Flasks were harvested

after 7 (trophophase) and 20 days of cultivation (stationary gowth phase)  (Junghanns et al. 2005;

Solé et al. 2012), and kept frozen at -80°C until RNA extraction. 

For cultivation on solid wheat straw, 100-mL-flasks were supplemented with 2 g (dry mass) of

milled wheat straw (about 2-4 mm particle size) and 8 mL of tap water, and autoclaved (121°C, 20

min) twice. The flasks were inoculated with 6 mycelia-containing agar plugs (derived from the edge

of  C.  aquatica colonies  on  malt  agar  plates;  (Junghanns  et  al.  2005)),  and  incubated  without
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agitation at 14°C in the dark. Flasks were harvested after 26 days of cultivation, and kept frozen at

-80°C until RNA extraction.

Genome Sequencing
Whole genome shotgun reads of the  C. aquatica genome were available from an earlier project

(Wurzbacher  C.,  unpublished).  Briefly,  DNA was subjected to  a  NexteraXT library preparation

(Illumina Inc.) and sequenced on a MiSeq instrument with the v3 chemistry (Illumina Inc.), after

library verification with a Nano Kit (Illumina Inc.).

RNA Sequencing
Frozen material from each sample was ground to a fine powder using an RNase-cleaned and pre-

cooled pestle and mortar and liquid Nitrogen, with a small spatula of Zirconium beads (Biospec,

USA) added for additional friction. RNA extraction followed protocol 8 from (Johnson et al. 2012),

using the CTAB-based extraction buffer from protocol 3. Briefly, for each sample c.  500 mg of

ground,  frozen  tissue  was  added  to  1.4  ml  pre-heated  (65  °C)  CTAB  buffer,  vortexed  until

thoroughly mixed, incubated at 65 °C for 10-15 min, and centrifuged at 13,000 g for 3 min. The

supernatant  was  transferred  to  a  new  2  ml  tube  for  two  rounds  of  chloroform:isoamyl  (24:1)

extraction,  a  single  phenol-chloroform extraction (5:1,  pH 4.5),  and a  final  chloroform:isoamyl

(24:1) extraction. Following centrifugation, the upper phase was transferred to a new 2 ml tube.

Purification was performed using the RNeasy® Mini Kit (Qiagen, Germany), with on-column DNA

digestion  (RNase-free  DNase  set,  Qiagen),  following  the  manufacturer’s  guidelines.  RNA was

eluted using 30 µl of elution buffer added directly to the membrane and spun at 13,000 g for 1 min.

Total RNA was quantified using the QuantiFlour RNA system (Promega, USA), The presence of

DNA was checked using the QuantiFlour DNA system, and samples with remaining DNA (D1, D3,

D4) underwent an additional post-extraction DNAse I treatment. Integrity of the RNA was assessed

with the Agilent RNA 6000 Nano Kit and Agilent 2100 Bioanalyzer (Agilent Technologies, USA)

following  manufacturer’s  guidelines.  The  RNA integrity  (RIN)  value  was  determined  for  each

sample as the ratio of the large to small ribosomal RNA subunits, and used as a proxy of the overall

quality of the RNA sample. We also assessed the quality of the overall trace by eye. Samples with

RIN values greater than 6 and determined to have good quality on the trace were sent on dry ice for

sequencing. Multiple extractions were performed for each sample and pooled to obtain sufficient

RNA for sequencing (minimum 2 µg per sample). 
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RNA library  preparation and sequencing was performed at  the  DOE Joint  Genome Institute  in

Walnut  Creek,  CA,  USA.  Stranded  cDNA libraries  were  generated  using  the  Illumina  Truseq

Stranded RNA LT kit. mRNA was purified from 1 ug of total RNA using magnetic beads containing

poly-T oligos. mRNA was fragmented and reverse-transcribed using random hexamers and SSII

(Invitrogen) followed by second strand synthesis. The fragmented cDNA was treated with end-pair,

A-tailing, adapter ligation, and 8 cycles of PCR. qPCR was used to determine the concentration of

the libraries. Libraries were sequenced on the Illumina Hiseq.

Genome Assembly
Reads were digitally normalized with khmer (0.7.1, Crusoe et al. 2015). In a first step, reads were

normalized to a coverage of 20  (Brown et al. 2012). After removal of low-abundance kmers  (Q.

Zhang et al. 2014), another round of normalization to a coverage of 5 was applied (see Appendix 1,

Supplemental Info 1) and only read pairs where none of the reads was removed were used for

assembly. Assembly was performed with velvet (version 1.2.10, Zerbino and Birney 2008) and run

with different kmer lengths k (see Appendix 1,  Supplemental Info 1 for details)  and k=27 was

chosen, because it  resulted in the highest N50 score. To estimate genome completeness we ran

BUSCO  (version 3.0.2, Simão et al. 2015) with the pezizomycotina reference set of single-copy

genes. The  clean command of the funannotate pipeline  (version 1.2.0, Palmer 2018) was used to

remove contigs shorter than 500 bp and redundant contigs.

Genome Annotation
Transcripts were assembled de novo from RNA-Seq data with Trinity (version 2.5.1, Grabherr et al.

2011). Trinity was configured to use trimmomatic for trimming and do digital normalization (see

Appendix 1, Supplemental Info 1 for further details). Normalized RNA-Seq reads as produced by

Trinity were mapped to the genome contigs with Star  (version 2.5.3a, Dobin et al.  2013) using

default  parameters.  The  mapped  reads  were  used  to  generate  a  genome-guided  assembly  with

Trinity (see Appendix 1, Supplemental Info 1 further details). The pasa pipeline  (version 2.2.0,

Haas et al. 2003) was used to combine  de novo and genome guided assembled transcripts into a

single gff file as evidence for annotation (Apendix 3, Supplemental Info 1).  The resulting gff file

together with genome-guided assembled transcripts and mapped reads were used as input for the

predict command of the funannotate pipeline. The update command of funannotate was then used to

add UTR annotations. The predicted protein sequences were used as input for Interproscan  (version

5.27, Jones et al.  2014) to generate Interpro  (Finn et al.  2017) as well as Gene Ontology  (GO,

Ashburner et al. 2000; The Gene Ontology Consortium 2017) annotations. The annotate command
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of the funannotate pipeline was used to combine Interproscan results CAZy (Lombard et al. 2014)

annotations from dbCAN (version 6.0, Yin et al. 2012). 

In addition to the annotations from the funannotate pipeline (above),  proteins were assigned as

either secreted or not secreted using signalP (version 4.1, Petersen et al. 2011) and to KEGG (Kyoto

Encyclopedia of Genes and Genoms, Kanehisa et  al.  2016) pathways via assignment to KEGG

Orthology  groups  (see  snakemake  workflow  for  details)  with  the  BlastKOALA web  service

(Kanehisa, Sato, and Morishima 2016). 

Besides  general  genome  annotation,  we  specifically  searched  for  gene  families  known  to  be

involved  in  lignin  degradation.  We  performed  a  blast  search  against  the  newly  assembled

C. aquatica genome described above  to check for five previously described partially sequenced

laccase genes  (Solé et al. 2012). In addition we identified multicopper oxidases by assignment to

the CAZy family AA1. They were further classified by blast search in the Laccase and Multicopper

Oxidase Engineering  Database  (version  6.4,  Sirim et  al.  2011).  We identified  possibly  relevant

peroxidases by annotation with the Interpro family IPR001621 (Fungal ligninase) and verified the

resulting  proteins  by  annotation  with  the  Peroxiscan  web service  (accessed  May 15th 2018)  of

PeroxiBase  (Fawal et al. 2013). Proteins possibly belonging to the cytochrome P450 family were

identified by annotation with the Interpro family IPR001128 (Cytochrome P450).

Differential Expression and MGSA Analysis
Read counts per gene were generated with RSEM (version 1.3, Li and Dewey 2011) using default

parameters. All of the following analyses were implemented as a snakemake (version 3.5.4, Köster

and  Rahmann  2012) workflow  that  can  be  found  at  www.github.com/f-

heeger/caquatica_expression. RSEM output files were combined into a single read count matrix

with  the  merge_RSEM_output_to_matrix.pl script  from  Trinity.  Differential  gene  expression

between different samples was modeled with the DESeq2 (version 1.10.1, Love, Huber, and Anders

2014) R package. Genes with an adjusted p-value < 0.05 and an absolute log2 fold change > 1 were

considered to be differential expressed.

Multiple Gene Set Activation (MGSA) analysis uses a Bayesian network approach to predict  a

probability  of  activation  for  sets  of  genes  for  each  comparison  (e.g.,  straw –  alder)  based  on

differentially expressed genes (Bauer, Gagneur, and Robinson 2010; Bauer, Robinson, and Gagneur

2011). We defined gene sets in three ways for the MGSA analysis using three different annotations:

(1) all genes annotated with one GO term, (2) all genes assigned to one CAZy family, and (3) all

genes assigned to one KEGG pathway. The activation probability cut off , above that a gene set is
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considered to be “activated”, is ultimately arbitrary. The authors of the method suggest to use 0.5

(Bauer, Gagneur, and Robinson 2010), reasoning that this means the gene set is “more likely to be

on than to be off”. We chose a slightly more conservative cutoff of 0.6. We note that activation is a

statistical  term  here  indicating  that  differential  expression  of  genes  in  these  sets  can  be  best

explained  by some form of  regulation  of  these  sets,  given  the  Bayesian  model  underlying  the

MGSA analysis. 

4 Results

Genome Assembly and Annotation
We obtained 29.25 million read pairs and assembled them into 2,650 non-redundant contigs (longer

than 500bp) with a N50 score of 30,079 bp and a total length of 34.18 Mb. These included complete

single copies of 94.8% of the expected single-copy genes, indicating good completeness of our

assembly. A total of 12,100 proteins were predicted by the funnanotate pipeline, of which 6,128

(50.64%) were annotated with at least one GO term, 2,322 (19.19%) were assigned to at least one

KEGG pathway, and 572 (4.73%) to at least one CAZy family. 5,724 (47.31%) proteins did not

receive any annotation from these databases. 

All five of the previously described laccase gene sequences (Solé et al. 2012) were present in our

genome, with nucleotide identity >98%. Based on annotation with CAZy auxiliary activity family

AA1, we identified all five known laccases and eight additional multicopper oxidases. They all

exhibited a high degree of similarity (53-100% pairwise amino acid identity) for conserved sites of

laccase genes  (Kumar et  al.  2003) in a multiple alignment (data not shown). Of the previously

described laccases one (lcc2) was classified as belonging to the “Basidomycete Laccase” super

family by blast search against the  Laccase and Multicopper Oxidase Engineering Database. The

other four were assigned to the super family “Ascomycete MCO”. Of the newly identified potential

multicopper oxidases five were assigned to “Ascomycete MCO” as well, while the other three were

classified as “Fungal Ferroxidase” and will not be considered further. 

Based on annotation with the Interpro family IPR001621, we identified 6 peroxidases, which were

all verified as Class II peroxidases by Peroxiscan and identified as Asco Class II type A (2 cases),

Asco Class II type B (1 case) and Asco Class II type C (3 cases) peroxidases. 

A total  of  137 proteins  were  identified  as  belonging  to  the  cytochrome P450  super-family  by

annotation with the Interpro family IPR001128.

79



V Identification of enzymes for lignocellulose degradation in Clavariopsis aquatica

RNA-Sequencing and Differential Expression
We obtained 317.18 million RNAseq reads in total with > 14 million reads for each sample (see

table 5), which were deposited in the NCBI Sequence Read Archive under the IDs PRJNA440444 -

PRJNA440457. 75.27% (SD 1.33%) of the reads for each sample could be mapped to  the newly

assembled  C. aquatica genome with RSEM. Two samples (liquid culture,  exponential phase on

straw) had considerably more reads than the rest (50.50 and 57.49 million). Sub-sampling to 17

million (rounded mean number of reads in the other samples) reads and re-running RSEM mapping

and differential expression analysis with DESeq2 showed only minor differences (97.55% genes

with the same expression status). Because of this result and considering that read count per sample

is accounted for in the DESeq2 model, we used all original reads for further analyses. We modeled

differential expression between recalcitrant and rich media (wheat straw versus malt extract and

alder  versus  malt  extract),  and  for  wheat  straw  between  growth  phases  (stationary  versus

exponential) and method of culture (solid culture versus exponential growth in liquid culture and

solid culture versus stationary growth in liquid culture).

Growth on straw in solid culture compared to stationary growth on straw in liquid culture had the

most differentially expressed genes, while stationary compared to exponential growth on straw in

liquid culture had the least (see table  6). The differentially expressed genes when growing on the
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Table 5: C. aquatica samples grown under different conditions.  

sample code culture medium growth phase number of reads

A3 liquid wheat straw exponential 50,666,214
A4 liquid wheat straw exponential 57,490,827
A6 liquid wheat straw stationary 16,839,738
A7 liquid wheat straw stationary 17,367,382
A9 liquid wheat straw stationary 17,584,532
B1 liquid alder leaves exponential 17,922,153
B3 liquid alder leaves exponential 16,700,439
B5 liquid alder leaves exponential 14,857,484
D1 liquid malt extract exponential 17,796,408
D3 liquid malt extract exponential 17,863,281
D4 liquid malt extract exponential 19,469,408
E2 solid wheat straw NA* 16,859,013
E3 solid wheat straw NA* 16,904,004
E4 solid wheat straw NA* 18,861,228
* Growth phases appear simultaneously in solid culture and were not separated.
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alder leaves and wheat straw compared to the control medium showed a significant (fisher exact test

p<10-192) overlap. 

The five known laccase genes as well as the eight newly identified laccase-like genes showed no

consistent  pattern  of  up-  or  down-regulation  for  growth on alder  or  straw (Fig. 9).  Of  the  six

identified putative Class II peroxidases, two were up-regulated on straw (type C and type A) and

one  was  down-regulated  on  straw  (type  B).  For  growth  on  alder  no  significant  differential

expression could be found for the putative peroxidases (Fig. 9). Of the 137 possible cytochrome

P450 proteins 33 were up- and 18 down-regulated in straw, and 20 were up- and 24 down-regulated

on alder (Fig. 9).
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Table 6: Number of up- and down-regulated genes for different comparisons

comparison differential expression

condition 1 condition 2 up-

regulated

down-

regulated
exponential  growth  on  wheat  straw
in liquid culture 

exponential  growth  on  malt  extract in
liquid culture 

1,430 1,570

exponential growth on alder leaves in
liquid culture 

exponential  growth  on  malt  extract in
liquid culture 

1,033 1,462

exponential  growth on wheat  straw
in liquid culture 

stationary  growth on  wheat  straw  in
liquid culture 

1,380 883

growth  on  wheat  straw  in  solid
culture 

exponential  growth on  wheat  straw  in
liquid culture 

2,731 2,328

growth  on  wheat  straw  in  solid
culture 

stationary  growth on  wheat  straw  in
liquid culture 

2,683 2,478
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Gene Set Activation
We found multiple activated GO terms, KEGG pathways and CAZy families for all comparisons

(Appendix  3,  Supplemental  Table  1-3).  The  only  exception  was  the  comparison  between

exponential  growth  on  alder  leaves  and  on  malt  extract  where  no  active  CAZy  family  was

identified. We concentrate here on the differential expression between exponential growth on wheat

straw and on malt extract, and between exponential growth on alder leaves and on malt extract,

because they are the most relevant when investigating biomass degradation (Fig. 9).
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comparison

number of genes 
up-regulated

number of genes 
down-regulated

20 20

KEGG map04146 
(Peroxisome)

KEGG map00640 
(Propanoate metabolism)

KEGG map00052 
(Galactose metabolism)

KEGG map00040 
(Pentose and glucuronate interconversions)

KEGG map00500 
(Starch and sucrose metabolism)

CAZy GH11 
(xylanase)

CAZy GH10 
(xylanase)

CAZy GH7 
(glucanase and cellobiohydrolase)

CAZy GH5 
(glucanase / cellulase, xylanase, glucosidase etc.) 

CAZy CE1 
(acetyl xylan esterase)

Cytochrome P450

Peroxidases

Multicopper Oxidases

CAZy AA9 
(LPMOs)

alder vs. malt

straw vs. malt

Figure  9:  Number  of  up-  and  down-regulated  genes  in  different  gene  groups  for  the

comparison between wheat straw vs. malt  extract (yellow) and between alder leaves vs.

malt extract (green).
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From the six CAZy families that were predicted to be regulated for growth on straw (table 7), three

(CE1, GH10 and GH11) were linked to xylane and thus hemicellulose degradation (J. Zhang et al.

2011) and two (GH7 and GH5_5) were linked to glucan and cellulose degradation.  The CAZy

family predicted to be regulated with the most genes was AA9 which contains lytic polysaccharide

monooxygenases (LPMOs) acting among other  on cellulose to  prepare it  for  further  enzymatic

degradation and has been shown to degrade hemicellulose as well (Agger et al. 2014).  Investigation

of the expression of the genes assigned to these groups in the C. aquatica genome showed that for

growth on straw they were almost all strongly up-regulated, while for growth on alder in most cases

(except for GH10) there was no or only weak up regulation. For each of the families CE1 and GH7

there was one of the assigned genes, that was not up-regulated. This was also the only gene in these

families predicted (by signalP) to be not secreted.

The non significant (Fisher's exact test, p=0.0512) overlap between predicted activation of KEGG

pathways (table 8) for growth on alder and straw contained the two pathways map00040 (Pentose

and glucuronate interconversions) and map00052 (Galactose metabolism). The up-regulation of the

Pentose and glucuronate interconversions pathway was mostly caused by the up-regulation of the

genes on the path from pectin to glycerol and regulation of some genes involved in conversion of

Xylose to Ribulose. The up-regulated enzymes in the Galactose metabolism catalyze conversion of

galactose into glucose. The pathway map00500 (Starch and sucrose metabolism) was only predicted

to  be  regulated  for  growth  on straw by the  MGSA analysis.  Most  of  the  regulated  genes  are

involved in cellulose degradation into glucose, but there is also down regulation of conversion of

maltose into glucose. Although this pathway was not predicted to be regulated for growth on alder,

many  of  the  gene  showed  differential  expression  as  well  for  that  comparison.  Two interesting

pathway  predicted  to  be  activated  for  growth  on  alder,  but  not  on  straw  were  map04146

(Peroxisome) and map00640 (Propanoate metabolism). In map04146, besides multiple genes that

are important for structure and function of the peroxisome, genes involved in the β-oxidation in the

peroxisome were up-regulated. In map00640 genes for the degradation of propanoate through the β-

oxidation into Acetyl-CoA were up-regulated. 

The activated GO terms (table 9) were mostly connected to metabolism, but not specific enough to

lead  to  any  further  conclusions.  GO terms  predicted  as  regulated  for  the  comparison  between

growth on wheat straw versus growth on malt extract had a significant overlap (Fisher's exact test,
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p<10-15) with GO terms predicted to  be regulated for  the comparison between growth on alder

leaves versus growth on malt extract.
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Table 7: CAZy families predicted to be active by MGSA analysis. For comparison growth on straw compared to growth on malt extract

condition CAZy

Family

activity genes  with  this

annotation in the genome

differentially

expressed  genes

with this annotation

activation

probability

straw-malt AA9 AA9  (formerly  GH61)  proteins  are  copper-dependent  lytic  polysaccharide
monooxygenases  (LPMOs);  cleavage  of  cellulose  chains  with  oxidation  of
various  carbons  (C-1,  C-4  and  C-6)  has  been  reported  several  times  in  the
literature; 

49 35 1

straw-malt CE1 acetyl xylan esterase; cinnamoyl esterase; feruloyl esterase; carboxylesterase; S-
formylglutathione  hydrolase;  diacylglycerol  O-acyltransferase;  trehalose  6-O-
mycolyltransferase 

10 9 0.9882

straw-malt GH11 endo-β-1,4-xylanase; endo-β-1,3-xylanase 6 6 0.96

straw-malt GH7 endo-β-1,4-glucanase;  reducing  end-acting  cellobiohydrolase;  chitosanase;
endo-β-1,3-1,4-glucanase  

7 6 0.877

straw-malt GH10 endo-1,4-β-xylanase;  endo-1,3-β-xylanase;  tomatinase;  xylan
endotransglycosylase 

4 4 0.7582

straw-malt GH5_5 endo-β-1,4-glucanase  /  cellulase;  endo-β-1,4-xylanase;  β-glucosidase;  β-
mannosidase; β-glucosylceramidase; glucan β-1,3-glucosidase; licheninase; exo-
β-1,4-glucanase / cellodextrinase; glucan endo-1,6-β-glucosidase; mannan endo-
β-1,4-mannosidase;  cellulose  β-1,4-cellobiosidase;  steryl  β-glucosidase;
endoglycoceramidase;  chitosanase;  β-primeverosidase;  xyloglucan-specific
endo-β-1,4-glucanase;  endo-β-1,6-galactanase;  hesperidin 6-O-α-L-rhamnosyl-
β-glucosidase;  β-1,3-mannanase;  arabinoxylan-specific  endo-β-1,4-xylanase;
mannan transglycosylase 

5 5 0.6948



Table  8: KEGG pathways  predicted to be active by MGSA analysis. For comparison growth on straw compared to growth on malt extract, and

growth on alder compared to malt extract

condition KEGG
pathway ID

KEGG pathway name genes  with  this  annotation  in
the genome

differentially expressed genes
with this annotation

activation
probability

alder-malt ko00040 Pentose and glucuronate interconversions 35 19 1

alder-malt ko01120 Microbial metabolism in diverse environments 246 92 1

alder-malt ko04146 Peroxisome 54 35 1

alder-malt ko00280 Valine, leucine and isoleucine degradation 49 26 1

alder-malt ko00640 Propanoate metabolism 28 12 0.9992

alder-malt ko00460 Cyanoamino acid metabolism 26 13 0.9868

alder-malt ko00906 Carotenoid biosynthesis 4 4 0.9804

alder-malt ko04978 Mineral absorption 7 4 0.9438

alder-malt ko00052 Galactose metabolism 30 12 0.7968

alder-malt ko04920 Adipocytokine signaling pathway 9 4 0.6656

alder-malt ko04260 Cardiac muscle contraction 12 4 0.6062

straw-malt ko00500 Starch and sucrose metabolism 65 31 1

straw-malt ko00040 Pentose and glucuronate interconversions 35 19 1

straw-malt ko03008 Ribosome biogenesis in eukaryotes 64 23 1

straw-malt ko00330 Arginine and proline metabolism 38 18 0.9978

straw-malt ko00520 Amino sugar and nucleotide sugar metabolism 49 17 0.967

straw-malt ko00980 Metabolism of xenobiotics by cytochrome P450 28 14 0.9512

straw-malt ko00630 Glyoxylate and dicarboxylate metabolism 40 21 0.9136

straw-malt ko00920 Sulfur metabolism 17 8 0.9056

straw-malt ko00052 Galactose metabolism 30 15 0.897

straw-malt ko00350 Tyrosine metabolism 50 20 0.838

straw-malt ko00770 Pantothenate and CoA biosynthesis 23 11 0.7994

straw-malt ko00910 Nitrogen metabolism 21 9 0.6518

straw-malt ko01220 Degradation of aromatic compounds 32 17 0.6144



Table 9: GO terms  predicted to be active by MGSA analysis. For comparison growth on straw compared to growth on malt extract, and growth on

alder compared to malt extract

condition GO ID GO name genes  with  this  annotation  in  the

genome

differentially  expressed  genes

with this annotation

activation

probability

alder-malt GO:0016491 oxidoreductase activity 506 205 1

alder-malt GO:0005975 carbohydrate metabolic process 226 72 1

alder-malt GO:0071949 FAD binding 55 29 1

alder-malt GO:0055085 transmembrane transport 513 165 1

alder-malt GO:0055114 oxidation-reduction process 768 283 1

alder-malt GO:0008152 metabolic process 387 158 1

alder-malt GO:0008080 N-acetyltransferase activity 49 19 0.9998

alder-malt GO:0006508 proteolysis 132 39 0.7976

straw-malt GO:0008080 N-acetyltransferase activity 49 22 1

straw-malt GO:0016491 oxidoreductase activity 506 192 1

straw-malt GO:0005975 carbohydrate metabolic process 226 117 1

straw-malt GO:0003824 catalytic activity 610 198 1

straw-malt GO:0016787 hydrolase activity 165 54 1

straw-malt GO:0071949 FAD binding 55 31 1

straw-malt GO:0006508 proteolysis 132 53 1

straw-malt GO:0055085 transmembrane transport 513 188 1

straw-malt GO:0055114 oxidation-reduction process 768 279 1

straw-malt GO:0000981 RNA polymerase II  transcription factor  activity,
sequence-specific DNA binding

217 66 0.9982

straw-malt GO:0042254 ribosome biogenesis 15 9 0.634
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5 Discussion

We found that of 10 possible laccases three were up-regulated on wheat straw and two on alder

leaves, with showing increased expression on both. This result is in line with findings of an earlier

study (Solé et al. 2012) reporting differently regulated laccase genes in C. aquatica in response to

metals, xenobiotics and lignocellulose breakdown products, as well as the fungal growth stage. The

difference between alder and wheat straw could either indicate that different laccases act on these

substrates, or that different laccases are involved at different stages of fungal growth and substrate

decomposition in case that our samples were not at the same stage (although taken at the same

time). We identified six potential peroxidases from the C. aquatica genome, that were assigned to

the  class II  of  the  non  animal  peroxidase  superfamily  by  Peroxiscan.  This  class  also  contains

peroxidases known to be involved in lignin degradation like lignin peroxidase (LiP), manganese

peroxidase (MnP), and versatile peroxidase (VP) (Hammel and Cullen 2008). Two of the putative

peroxidases identified in our study, were up-regulated on straw, but not on alder. To our knowledge,

the  expression  of  active  peroxidase  enzymes  has  not  yet  been  reported  for  C.  aquatica.  Their

activation  on  the  lignin  rich  wheat  straw  could  indicate  that  they  are  involved  in  the

biotransformation  of  certain,  perhaps  phenolic  lignin  constituents;  possibly  contributing  to

detoxification of such compounds. The third group of enzymes that we specifically investigated

were cytochrome P450 family. Because the classification of these enzymes could not be further

specified it is not clear which of the more than 100 enzymes from this family we found, could be

acting  on  aromatic  compounds  created  by  lignin  degradation,  or  on  aliphatic  compounds  from

waxes of the cuticula.  The observed up-regulation of  some of  these putative cytochrome P450

monooxygenases  on straw (33) and alder (20) could indicate such functions.

We could only detect clear activation of CAZy families for the growth on straw.  The activated

families all have cellulose and hemicellulose degrading activity as expected on this substrate. The

two classical glycoside hydrolase families (GH7 and GH11) that  showed the highest activation

probabilities have been reported to be induced by growth on straw in other fungi (Ries et al. 2013).

Besides  two  other   glycoside  hydrolase  families  (GH10  and  GH5)  act  on  cellulose  and

hemicellulose main chain bonds, we also found up regulation of the CE1 family that contains acetyl
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xylan esterases, that cleave hemicellulose side chains and of the AA9 family that contains LPMOs

that act on cellulose and hemicellulose. LPMOs have been discovered to boost the conversion of

lignocellulose via oxidation. The AA9 is a large family and in our case 34 genes that were up-

regulated on straw have been assigned to it. Most of the targets and the specific functions of the

variety of LPMOs are not yet clarified (Vaaje-Kolstad et al. 2017), but it has been shown that they

cleave cellulose as well as hemicellulose components (Frommhagen et al. 2015).  Most of the up-

regulated proteins in the above mentioned CAZy families are predicted to be secreted. Together this

indicates that  C. aquatica performs extracellular degradation of cellulose and hemicellulose when

grown on wheat straw. On alder leaves none of the CAZy families were predicted as active and very

few of the genes in them were differentially expressed compared to growth on malt.

In contrast to this difference the overall differential expressed genes on straw and alder showed a

significant overlap and regulated KEGG pathways overlapped by two as well. The genes in these

two  KEGG  pathways  (map00040  and  map00052)  were  for  enzymes  involved  in  xylose  and

galactose degradation and many of the gene for degradation of cellulose into glucose (map00500)

were up regulated on both substrates as well (although many more were up-regulated on straw). For

growth on straw this shows a clear process of extracellular cleavage of cellulose and hemicellulose

followed by utilisation of the monomers as carbon sources. 

It is surprising, that we could only identify the activation of genes for the down stream process, but

not for the initial degradation of the polymers when C. aquatica was grown on alder. One possible

explanation is the different composition of the two substrates. Wheat straw contains more cellulose

(~40%) and lignin (9-22%) (Bjerre et al. 1996; Alemdar and Sain 2008), while the cellulose (5 –

15%) and lignin (6-20%) content in alder leaves are lower  (Lecerf and Chauvet 2008; Chauvet

1987).  Accordingly  it  is  possible  that  this  leads  to  a  lower  expression  of  cell  wall  degrading

enzymes when C. aquatica is grown on alder leaves.  In addition it  is  possible that alder leaves

contain  other  carbon  sources  that  can  be  utilised  by  C. aquatica.  The  propanoate  metabolism

(map0640) was predicted to be activated for growth on alder and the up-regulated enzymes were

involved in propanoate degradation via the β-oxidation pathway found in other fungi (Otzen et al.

2014). Potentially propanoate could be produced from wax-related fatty acids in the alder leaves

(for example from cutin and suberin) not present in wheat straw, or from aliphatic side chains of

sterols.

Gene expression of  C. aquatica on both lignocellulose containing materials showed indication of

cellulose and hemicellulose degradation. Especially the enzymes for extracellular depolymerization
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were  more  clearly  up-regulated  on  the  more  cellulose  rich  wheat  straw.  Multiple  laccases,

peroxidases  and  putative  cytochrome  P450  monooxygenases  were  identified  in  the  genome  of

C. aquatica.  The  expression of  several  of  them was increased  on the lignocellulose  containing

substrates. This observation strongly suggests that  C. aquatica is able to modify lignin to some

extent; perhaps in order to facilitate the utilisation of lignocellulose as a carbon and energy source.

It further emphasizes a role of C. aquatica in the breakdown of xenobiotic envionmental pollutants

when dwelling in its natural riverine habitat.
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The two aspects of this thesis are diversity and function of aquatic fungi. The aim was to apply

genomics  approaches  to  these  aspects  and  improve  upon  certain  points  of  the  methods  where

necessary.

To study species diversity directly from the habitat metabarcoding can be used. Metabarcoding is

already widely used to study terrestrial fungi and has also been applied to study aquatic fungi. In a

metabarcoding project a barcode region has to be chosen a prior based on different factors. The two

properties mostly considered are the ability to amplify the barcode from all species that should be

studied and the difference between intra-species variability (that should be low) and inter-species

variability  (that  should  be  high).  These  were  also  the  criteria  to  choose  the  ITS region as  the

standard marker for fungi  (Schoch et  al.,  2012).  In general the rRNA markers showed the best

amplification success and of them the ITS region had the best capability to separate reads from

different species into OTUs. For ecologically meaningful analysis the OTUs need to be assigned to

taxonomic groups (ideally species). This is difficult for fungi, because only small proportion of

existing fungi is described and even less are represented in reference database. Aquatic fungi are

especially poorly studied and therefore database coverage is especially low for them.

The first aspect that the thesis tackled was to quantify the effect of incomplete databases for the ITS

region. In chapter III the problem of incomplete databases is demonstrated by the in silico analysis

of the sequences of the UNITE database. Missing reference sequences from the same species, genus

or family not only led to the inability to classify the sequence to that level, but also caused problems

in  higher  level  classification.  In  an  understudied  group like  aquatic  fungi  this  leads  to  a  high

proportion of sequences not even being classified to the phylum rank and fungal sequence not being

identified as such as can be seen in the the test on fresh water lakes in chapter III. 

This means that the choice of barcode comes with an additional crucial trade-off when many novel

species are expected. A very variable marker like the ITS1 or ITS2 has the advantage of being able

to identify sequences to the species level, if a sequence from the same species is in the database, but

might  fail  to  classify novel  species  to  any meaningful  level,  when that  is  not  the case.  A less

variable region like the 5.8S, the SSU or the LSU can give better classifications for novel species,

but will  not be able to classify sequences to the species level.  A possible solution,  that can be
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implemented with Illumina sequencing is to use a part of the 5.8S as complementary marker to the

ITS2. This was implemented and tested in chapter III.

When the ITS region was suggested as standard barcode for fungi by Schoch et al., this was done on

the  basis  of  using  the  whole  ITS  region.  Because  of  the  read-length  constraints  of  Illumina

sequencing most  studies  now focus  on  only  the  ITS1 or  only  the  ITS2.  With  third  generation

sequencing this  restriction no longer applies.  On the one hand full  ITS region sequencing at  a

reasonable cost and sufficiently high throughput is possible. On the other hand we can go one step

further and include the SSU, the LSU or both into an amplicon. In chapter two we used an amplicon

of the full eukaryotic rRNA operon for barcoding of fungal fresh water communities. This has the

advantage that information from all three regions and the according databases can be used, but also

comes with the problem how to integrate this information. Because all three parts of the rRNA

operon have been used as independent markers, there are different databases for them. An approach

using the full operon can benefit from the independent confirmation fro three datanase, but also

needs to deal with the differences. Considering the frequent changes in the taxonomy of fungi it is

unsurprising, that the taxonomies underlying the three databases used in chapter IV, are different.

SILVA and RDP both use trees that have been computed from the sequences in the database and in

the  case of  SILVA manually  curated  (Munoz et  al.,  2011).  UNITE until  recently  used  the tree

underlying  Index  Fugorum  (www.indexfungorum.org),  but  has  now  also  started  to  use

classifications from a big phylogenetic study by Tedersoo et al.  (2017a). Differences between the

taxonomies are substantial. For example at any taxonomic rank more than 60% of taxa are unique

between RDP and SILVA  (Balvočiūtė and Huson, 2017).  Projects  like the Open tree taxonomy

(Rees  and  Cranston,  2017) are  making  efforts  towards  unifying  the  taxonomies  and  linking

corresponding taxa from different databases to each other. This would make direct comparisons of

classifications from the different databases possible. Classifications that are confirmed by more than

one of the rRNA markers would higher confidence.

In chapter two we used a primer pair to amplify almost the full rRNA operon. This amplicon has a

length of around 4.5kb and is much longer than what is normally used for barcoding. We were

concerned that a long amplicon would form more PCR chimeras. We did not find any evidence that

given a reasonable number of PCR cyles the chimera rate is higher than in short read studies, but

chimera formation during PCR is influenced by so many factors, that it would need a far more
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comprehensive study to investigate the influence that amplicon length has on chimera formation

rates.  Another  drawback of  the very  long amplicon would  be a  possible  amplification bias  for

shorter sequences (Shagin et al., 1999), this is another factor that would need to be studied in more

detail.

Lastly, the long amplicon length also poses a challenge for sequencing. For the CCS to significantly

reduce the error rate of PacBio reads, multiple “passes” are needed  (Travers et  al.,  2010). This

means  the  polymerase  enzyme  has  to  pass  around  the  circular  single-stranded  DNA molecule

multiple times. With an amplicon length of 4.5kb this means that for example to get three passes a

raw reads length of 13.5 kb is necessary even when ignoring the hairpin adapters. In our study we

could solve this problem with very stringent quality filtering, but at the cost of removing many

reads that did not have enough passes and as a result a too high error rate.

Considering all these problems of the very long amplicon used in chapter two, it might be advisable

to use a shorter amplicon for metabarcoding. One possibility would be to use only the ITS region

and the SSU reducing the length of the amplicon almost by half. This would combine the most

conserved with the most variable region and thus hopefully give the full advantage of both similar

to the approach in chapter III. The drawback would be that fungal groups that have so far been

identified mainly by the LSU could be less we classified. Another option would be to use primers

that amplify less of the SSU and LSU or to use the ITS and the LSU  (Schlaeppi et  al.,  2016;

Tedersoo et al., 2017b). Third generation sequencing has opened up different possibilities and our

results in chapter two show it has great potential to improve metabarcoding for fungi and other

eukaryotes.

Besides  PacBio  the  other  the  big  vendor  of  third  generation  sequencing  technology  is  Oxford

Nanopore. Nanopore reads come with a very similar base error rate (~13%) as PacBio and do not

offer the possibility to do CCS. This would make them very hard to use for metabarcoding, because

the error rate is higher than the typical OTU clustering thresholds of 3%. Besides for metabarcoding

we also used PacBio to barcode isolate samples in chapter IV. It has already been suggested that

PacBio CSS could replace Sanger sequencing for single isolate barcoding (Hebert et al., 2018). For

a shorter barcode (~800 bp), like the ones sequenced with Sanger up to now, more CCS passes than

we used in chapter IV can be expected reducing error rates below the ones of Sanger sequencing.

For  this  application Nanopore error  rates  are  also  not  prohibitive,  because  a  consensus  can be
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generated from all reads from one sample if only one species is present. With the MinIon Oxford

Nanopore also provides a cheaper sequencing option than PacBio that could be used for barcoding

in the future (Srivathsan et al., 2018; Wurzbacher et al., 2018).

Because  of  the  high  number  of  novel  species  that  are  regularly  encountered  in  metabarcoding

studies and the fact that many of them can not easily be cultured, the number of formally described

species has not kept up with the number of species known only from their barcode sequences. The

official naming of a species requires a type specimen which is hard to obtain for environmental

species that have not been cultured. It has been suggested, that it  should be possible to name a

fungal species based on a barcode  sequence as type material (Hawksworth et al., 2016) to be able

to attract more attention and research interest to new species  (Ryberg and Nilsson, 2018). Longer

barcode sequences that can be sequenced with third generation sequencing from pure cultures or the

environment with high accuracy could make it easier to make the case that a barcode sequence is

sufficient as type material.

Overall third generation sequencing holds a lot  of promise for barcoding and metabarcoding in

fungi. It opens up the possibility to sequence the whole rRNA operon in a metbarcoding study,

which will make it possible to use information from the databases for SSU, ITS and LSU, that have

so far been developed completely independently. It could even offer synergies where a sequence

that can be assigned by one database, but not by the other can be added to the database that it is

missing from with the taxonomic information from the one where it was found. 

The possibility to sequence longer amplicons also could make it possible to find new markers, that

were so far not feasible to sequence, because the were to long for Illumina. 

The second topic of the thesis was besides the diversity of aquatic fungi was their function in the

ecosystem. Specifically their role as degraders of plant biomass. Genome sequencing and RNA-Seq

have been extensively used on terrestrial fungi, but to our knowledge the study presented in chapter

V is  the first  time these methods are  applied in  combination to  an exclusively aquatic  fungus.

Aquatic fungi that degrade lignocellulose could have specific adaptations to the aquatic lifestyle, in

which extra cellular enzyms have to act fast before they are diluted. This possibility together with

the  fact  that  they  can  be  easily  cultured  in  liquid  form  makes  them interesting  for  industrial

applications like the creation of biofuels from plant waste materials. Out study design in chapter V
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was not appropriate to get any insights in enzyme kinetics, but gives a first overview of proteins

present, and acting on lignocellulose in an exclusively aquatic Ascomycote. This presents a starting

point to further investigate the enzymatic capability of aquatic fungi and compare them to terrestrial

counter parts. Whole genome comparisons of terrestrial and aquatic fungi could give insights in

adaptations to the aquatic lifestyle and answer the question if there is any evolutionary separation

between groups of aquatic and terrestrial fungi.

The so called “reproducibility crisis” started in 2011 with an article that showed that many wide

spread practices in psychological science can lead to significant results in the absence of a real

effect (Simmons et al., 2011). It soon “spread” to other disciplines with doubt about the adherence

to good scientific practices in medical science being raised  (Begley and Ioannidis, 2015) and a

study showing that many big studies could not be reproduced (Prinz et al., 2011). For genomics the

focus  of  reproducibility  has  so far  been on data  availability  (Drew et  al.,  2013;  Ioannidis  and

Khoury,  2011).  This  is  obviously  a  good point,  because  access  to  the  raw data  is  a  necessary

condition to be able to reproduce any computational analysis. On the other hand the data alone are

not sufficient. Especially in analysis that consist of many steps with different software tools, the

way from raw data to the final result can be very complicated. Unfortunately in many articles the

computational analysis is considered less relevant than sampling or laboratory procedures. Often

not even the minimum requirement of giving software versions and parameters is met (Nekrutenko

and Taylor, 2012). Like laboratory procedures computational analyses can consist of many often

minute steps. In theory analyses on a computer have the possibility to be perfectly reproducible.

Every step that is taken can be written down as a unambigous command that was given to the

computer and that is expected to give the same result if repeated. In practice the conditions under

which the command is given make a big difference. The software versions have to be exactly the

same and every step that was taken to create the input data has to be exactly reproduced. Even if the

software versions are known getting the exact version of a software to run on the system one has

available  is  not  always  easy.  One  possible  solutions  is  to  generate  complete  self  contained

computing  environments  with  a  virtual  machine  (e.g.  VirtualBox,  www.virtualbox.org)  or  a

container  format  like  docker  (www.docker.com).  These  are  tools  that  have  been developed for

computer system administration, when faced with the similar problem to create a exactly defined

environment for a software to run in. Another more light wait method is the  utilization of work

flow engines like Galaxy (Goecks et al., 2010) or snakemake (Köster and Rahmann, 2012).
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For the analyses in this thesis I used snakemake work flows, that are deposited on github. Especially

for chapter IV I followed an approach where the figures that are presented should be automatically

created form the raw data. This is the case for figures 2, 4 and 5 from that chapter, which can be

produced by downloading the workflow files from github and running one command. This makes it

convenient to reproduce the figures from the data and more importantly guaranties, that every step

in my analysis is documented in the from of program code. For figure 3 this was not possible since

the last step of creating the figure was done manually in Cytoscape. The problem of acquiring and

installing the correct software versions is still given, but since the code that does the analysis is

available any step can be investigated down to the lowest level.
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3 Supplemental Figure 3

4 Supplemental Figure 4
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5 Supplemental Figure 5

6 Supplemental Figure 6
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7 Supplemental Figure 7

8 Supplemental Figure 8
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9 Supplemental Figure 9
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1 Supplemental Info 1: Pipeline steps

The following is  a  list  of  the  main  rules  in  the  PacBio  metabarcoding workflow with  a  short
description of what is done in each step. 

getFullCls

For each pre-cluster, representative sequences get a classification. This can be either  i) CHIMERA
if the reference base chimera detection called this as chimeric (Y) or possibly chimeric (?),  ii)
UNKNOWN if the sequence was not called as chimeric, but not match to an isolate consensus
sequence was found or iii) the name of species, this is given by the highest scoring match to a
isolate consensus sequence for non-chimeric sequences.

fullMapping

Run  blasr  to  map  representatives  of  non-chimeric  pre-clusters  against  the  isolate  consensus
sequences. The following parameters are used: -m 5 to get tabular output, --bestn 50 to get a
maximum of 50 hits for each query and --minPctSimilarity 90 to get only hits with at least
90% identity.

removeChimeraRef

Run vsearch to remove chimeras with reference based approach. The --uchime_ref parameter
is used to run the reference based chimera detection algorithm and the --db parameter to give the
isolate consensus sequences selected by the getFullRef rule as reference sequenes.

getFullRef

For each isolate sample get the consensus sequence of the biggest pre-cluster. Will give an error if
there are more than one pre-cluster with 10 or more reads for one sample. Compares sequences for
replicates  of  each  species  (if  available)  and  writes  a  warning to  the  log  file  if  a  difference  is
encountered.

getCorrectCls

Get “correct” classifications for reads in each OTU according to mappings to isolate consensus
sequences. Each OTU might have multiple species with read numbers listed.

classifyLSU

Classify OTUs by matches of LSU sequences to the RDP LSU database. See main methods section
for details and parameters.

alignToRdp

Run lambda to get local alignments of each OTU LSU representative to the RDP LSU database.
Lambda is run with the following parameters:  --output-columns "std qlen slen" to
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get query length and subject length along with the default columns in the output table (these are
used for coverage computation later),  -p blastn to run in blastn (nucleotide vs nucleotide)
mode,  -nm 5000 to  get  more matches per query sequence (this  is  important due to the high
number of similar sequences in the database), -b -2 to the square root of the query length as width
for the banded alignment optimization (because higher indel rate and, even more important, uneven
insertion/deletion ratio cause the alignment to leave the band), -x 40 to reduce the x-drop value
which can cause alignments to be terminated prematurely and -as F to disable adaptive seeding
which  normally  is  used  to  reduce  number  of  hits.  Parameters  were  optimized  to  allow  for
alignments for all mock community species.

classifySSU

Classify OTUs by matches of SSU sequences to the SILVA database. See main methods section for
details and parameters.

alignToSilva

Run lambda  to  get  local  alignments  of  each  OTU SSU representative  to  the  SILVA database.
Lambda is run with the following parameters:  --output-columns "std qlen slen" to
get query length and subject length along with the default columns in the output table (these are
used for coverage computation later),  -p blastn to run in blastn (nucleotide vs nucleotide)
mode,  -nm 20000 to get more matches per query sequence (this is important due to the high
number of similar sequences in the database), -b -2 to th square root of the query length as width
for the banded alignment optimization (because higher indel rate and, even more important, uneven
insertion/deletion ratio cause the alignment to leave the band), -x 30 to reduce the x-drop value
which can cause alignments to be terminated prematurely and -as F to disable adaptive seeding
which  normally  is  used  to  reduce  number  of  hits.  Parameters  were  optimized  to  allow  for
alignments of all mock community species.

classifyITS

Classify  OTUs by matches  to  the  UNITE database.  See  main  methods  section  for  details  and
parameters.

alignToUnite

Run lambda to get local alignments of each OTU representative to the UNITE database. Lambda is
run with default parameters except for: --output-columns "std qlen slen" to get query
length and subject length along with the default columns in the output table (these are used for
coverage computation later) and -p blastn to run in blastn (nucleotide vs nucleotide) mode. 

otuCluster

Run vsearch to cluster OTUs at 97% identity threshold.  The following parameters are used for
vsearch: --cluster_size to choose cluster seeds by descending pre-cluster size (according to
size annotation), --relabel otu to name OTUs with out and running number instead of using
the  first  sequence  as  a  name,  --sizein --sizeout to  read  and  write  size  annotation,
--iddef 0 to use the identity definition of CD-Hit (see vsearch manual),  --id 0.97 to use
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97% identity threshold and --minsl 0.9 to only accept alignments of at least 90% coverage for
similarity  computation.  In  addition  --centroids is  used  to  output  a  representative  centroid
sequence for each OTU.

itsx

Run ITSx to separate the different regions of the rRNA operon. The following parameters were set
for ITSx:  -t . to use HMM models from all available taxonomic groups,  --save_regions
SSU,ITS1,5.8S,ITS2,LSU to save separate files for all different regions of the rRNA operon,
--complement F to not allow reverse-complement detection (all sequences were orientated in
forward direction in the primerFilter rule), --partial 500 to allow for partial matches (we do
not have complete SSU and LSU sequences in the amplicon) and -E 1e-4 to allow for HMM
hits with slightly lower e-values (this was optimized to make sure that all rRNA
operons in the mock community species were recognized).

removeChimera

Run vsearch to remove chimeras in  de novo mode. Vsearch is run with the  –uchime_denovo
parameter. All parameters for the chimera detection algorithm are left at default values. Vsearch
automatically uses size annotations form the pre-clustering step for its greedy algorithm.

preCluster

Run vsearch to create pre-clusters at 99% identity threshold. The following parameters are used for
vsearch:  --usersort --cluster_smallmem to  choose  cluster  seeds  in  the  order  the
sequences are sorted in the input file,  --relabel to name pre-clusters according to the given
scheme instead of using the first sequence as a name,  --sizeout to add size annotation to the
output, --iddef 0 to use the identity definition of CD-Hit (see vsearch manual), --id 0.99 to
use 99% identity threshold and --minsl 0.9 to only accept alignments of at least 90% coverage
for similarity computation. In addition  --consout is used to generate consensus sequences for
each pre-cluster.

prepPrecluster

Reads are sorted by descending mean quality (see qualityFilter rule for computation). This helps to
use high quality reads as cluster seeds for pre-clusters in the next step.

filterPrimer

Primers  are  found  and  cut  with  cutadapt.  Cutadapt  is  run  with  default  parameters  except  for
--trimmed-only to only retain reads were the primer was found and  -O 10.   Cutadapt is
configured to search for both the forward and the reverse primer at the start of the sequence. For
sequences where the forward primer was found, the reverse-complemented reverse primer is search
at the end of the sequence with an additional run of cutadapt. Accordingly for sequences where the
reverse primer was found, the reverse-complemented forward primer is searched at the end of the
sequence  with  another  run  of  cutadapt.  In  the  end  sequences  with  forward-reverse  primer
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combination and reverse-complemented sequences with reverse-forward primer combination are
concatenated into one file. 

windowQualFilter

For overlapping windows of size 8 the mean error rate is computed from the Phred scores with the
same formula as in the qualityFilter rule (except that S is the substring in the windiw instead of the
whole sequence). If any window in a sequence has a mean error rate of 0.9 or higher the sequence is
removed. 

qualityFilter

Mean error rate per sequence is computed from the Phred score given in the fastq file with the

formula: ∑
10−q /10

length (S )
 with q being the quality values of sequence S. Sequences with an error rate of

0.4% or more are written to a separate file (not further used).  

lengthFilter

Sequences with length above 6,500 or below 3,000 are printed to separate files (not used further).

filterSilva

Filter SILVA sequences by the quality and pintail (chimera probability) values given in the database.
Only sequences with a quality value of at least 85 and pintail value of at least 50 are retained.

2 Supplemental Table 1

114



VIII Appendix 2

115

Table 10: PCR conditions for chimera tests and resulting chimera formation rates

Barcode used Conditions Template input
(ng)

No.  PCR
cycles

chimera
formation rate

first runs 0009 emulsion PCR first PCR: 
25ng, scale up 
PCR: 2ng

25, 25 4.44%

0018 standard PCR 8ng 13 0.21%

0027 standard PCR 8ng 15 0.00%

0056 standard PCR 8ng 18 1.36%

0075 standard PCR 8ng 25 14.14%

0095 standard PCR 2ng 18 0.60%

0034 standard PCR 20ng 18 0.29%

additional runs 0018 standard PCR 8ng 30 16.27%
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1 Supplemental Info 1

Digital normalization was done with the khmer package with the following steps and parameters:

1. interleave-reads.py

2. normalize-by-median.py -C 20 -k 20 -N 4 -x 2.5e8

3. filter-abund.py clavariopsis.kh

4. normalize-by-median.py -C 5 -k 20 -N 4 -x 1e8

5. extract-paired-reads.py

Genome assembly was done was done with velvet with the digitally normalized read with the

following commands:

1. velveth -fastq.gz -shortPaired

2. velvetg -ins_length 900 -exp_cov 140 -cov_cutoff 50

De Novo transcriptome assembly was done with Trinity with the following command:

Trinity --seqType fq --max_memory 100G --single $INDATA --CPU 12

--trimmomatic --normalize_reads --SS_lib_type R

Genome guided  transcriptome assembly was done with Trinity with the following command:

Trinity  --genome_guided_bam  $INDATA  --genome_guided_max_intron

1000 --max_memory 30G --CPU 12

The PASA pipeline was run with the following commands:

1. cat Trinity.fasta Trinity-GG.fasta > ${TRANSCRIPTS}

2. accession_extractor.pl < Trinity.fasta > tdn.accs

3. Launch_PASA_pipeline.pl  -c  alignAssembly.conf  -C  -R  -g  $

{GENOME}  -t  ${TRANSCRIPTS}  --ALIGNERS  blat,gmap  --TDN

tdn.accs  --transcribed_is_aligned_orient  --MAX_INTRON_LENGTH

3000

4. build_comprehensive_transcriptome.dbi  -c  alignAssembly.conf

-t ${TRANSCRIPTS} --min_per_ID 95 --min_per_aligned 30
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condition CAZy Family activity genes with this annotation in

the genome
differentially  expressed  genes  with
this annotation

activation
probability

alder-straw AA9 AA9  (formerly  GH61)  proteins  are  copper-
dependent  lytic  polysaccharide  monooxygenases
(LPMOs);  cleavage  of  cellulose  chains  with
oxidation of various carbons (C-1, C-4 and C-6) has
been reported several times in the literature; 

49 35 1

alder-straw CE1 acetyl xylan esterase; cinnamoyl esterase; feruloyl
esterase;  carboxylesterase;  S-formylglutathione
hydrolase;  diacylglycerol  O-acyltransferase;
trehalose 6-O-mycolyltransferase 

10 9 0.9826

alder-straw GH11 endo-β-1,4-xylanase; endo-β-1,3-xylanase 6 6 0.935

alder-straw GH7 endo-β-1,4-glucanase;  reducing  end-acting
cellobiohydrolase;  chitosanase;  endo-β-1,3-1,4-
glucanase  

7 6 0.8518

alder-straw GH131 broad  specificity  exo-β-1,3/1,6-glucanase  with
endo-β-1,4-glucanase activity;

4 4 0.7446

alder-straw GH10 endo-1,4-β-xylanase;  endo-1,3-β-xylanase;
tomatinase; xylan endotransglycosylase 

4 4 0.7428

alder-straw GH5_5 endo-β-1,4-glucanase  /  cellulase;  endo-β-1,4-
xylanase;  β-glucosidase;  β-mannosidase;  β-
glucosylceramidase;  glucan  β-1,3-glucosidase;
licheninase;  exo-β-1,4-glucanase  /  cellodextrinase;
glucan  endo-1,6-β-glucosidase;  mannan  endo-β-
1,4-mannosidase;  cellulose  β-1,4-cellobiosidase;
steryl  β-glucosidase;  endoglycoceramidase;
chitosanase;  β-primeverosidase;  xyloglucan-
specific  endo-β-1,4-glucanase;  endo-β-1,6-
galactanase;  hesperidin  6-O-α-L-rhamnosyl-β-

5 5 0.6984



glucosidase;  β-1,3-mannanase;  arabinoxylan-
specific  endo-β-1,4-xylanase;  mannan
transglycosylase 

solid-liquidExp GH7 endo-β-1,4-glucanase;  reducing  end-acting
cellobiohydrolase;  chitosanase;  endo-β-1,3-1,4-
glucanase  

7 7 0.937

solid-liquidExp AA9 AA9  (formerly  GH61)  proteins  are  copper-
dependent  lytic  polysaccharide  monooxygenases
(LPMOs);  cleavage  of  cellulose  chains  with
oxidation of various carbons (C-1, C-4 and C-6) has
been reported several times in the literature; 

49 26 0.813

solid-liquidExp GH72 β-1,3-glucanosyltransglycosylase 7 6 0.7628

solid-liquidExp AA7 glucooligosaccharide oxidase; chitooligosaccharide
oxidase 

25 14 0.6684

solid-liquidExp GH3 β-glucosidase;  xylan  1,4-β-xylosidase;  β-
glucosylceramidase;  β-N-acetylhexosaminidase;  α-
L-arabinofuranosidase;  glucan  1,3-β-glucosidase;
glucan  1,4-β-glucosidase;  isoprimeverose-
producing oligoxyloglucan hydrolase;  coniferin β-
glucosidase;  exo-1,3-1,4-glucanase;  β-N-
acetylglucosaminide phosphorylases 

19 11 0.6038

solid-liquidSta AA9 AA9  (formerly  GH61)  proteins  are  copper-
dependent  lytic  polysaccharide  monooxygenases
(LPMOs);  cleavage  of  cellulose  chains  with
oxidation of various carbons (C-1, C-4 and C-6) has
been reported several times in the literature; 

49 33 1

solid-liquidSta GH7 endo-β-1,4-glucanase;  reducing  end-acting
cellobiohydrolase;  chitosanase;  endo-β-1,3-1,4-
glucanase  

7 7 0.9634

solid-liquidSta CE16 acetylesterase   active  on  various  carbohydrate
acetyl esters

5 5 0.847



solid-liquidSta AA12 The  pyrroloquinoline  quinone-dependent
oxidoreductase  activity  was  demonstrated  for  the
CC1G_09525 protein of Coprinopsis cinerea. 

6 5 0.745

solid-liquidSta GH55 exo-β-1,3-glucanase; endo-β-1,3-glucanase 4 4 0.7364

solid-liquidSta GH11 endo-β-1,4-xylanase; endo-β-1,3-xylanase 6 5 0.7024

stat-exp CE8 pectin methylesterase 6 5 0.6276

straw-malt AA9 AA9  (formerly  GH61)  proteins  are  copper-
dependent  lytic  polysaccharide  monooxygenases
(LPMOs);  cleavage  of  cellulose  chains  with
oxidation of various carbons (C-1, C-4 and C-6) has
been reported several times in the literature; 

49 35 1

straw-malt CE1 acetyl xylan esterase; cinnamoyl esterase; feruloyl
esterase;  carboxylesterase;  S-formylglutathione
hydrolase;  diacylglycerol  O-acyltransferase;
trehalose 6-O-mycolyltransferase 

10 9 0.9882

straw-malt GH11 endo-β-1,4-xylanase; endo-β-1,3-xylanase 6 6 0.96

straw-malt GH7 endo-β-1,4-glucanase;  reducing  end-acting
cellobiohydrolase;  chitosanase;  endo-β-1,3-1,4-
glucanase  

7 6 0.877

straw-malt GH10 endo-1,4-β-xylanase;  endo-1,3-β-xylanase;
tomatinase; xylan endotransglycosylase 

4 4 0.7582

straw-malt GH5_5 endo-β-1,4-glucanase  /  cellulase;  endo-β-1,4-
xylanase;  β-glucosidase;  β-mannosidase;  β-
glucosylceramidase;  glucan  β-1,3-glucosidase;
licheninase;  exo-β-1,4-glucanase  /  cellodextrinase;
glucan  endo-1,6-β-glucosidase;  mannan  endo-β-
1,4-mannosidase;  cellulose  β-1,4-cellobiosidase;
steryl  β-glucosidase;  endoglycoceramidase;
chitosanase;  β-primeverosidase;  xyloglucan-
specific  endo-β-1,4-glucanase;  endo-β-1,6-
galactanase;  hesperidin  6-O-α-L-rhamnosyl-β-

5 5 0.6948



glucosidase;  β-1,3-mannanase;  arabinoxylan-
specific  endo-β-1,4-xylanase;  mannan
transglycosylase 

2 Supplemental Table 2

condition KEGG
pathway ID

KEGG pathway name genes with this annotation in the
genome

differentially  expressed  genes  with
this annotation

activation
probability

alder-malt ko00040 Pentose and glucuronate interconversions 35 19 1

alder-malt ko01120 Microbial metabolism in diverse environments 246 92 1

alder-malt ko04146 Peroxisome 54 35 1

alder-malt ko00280 Valine, leucine and isoleucine degradation 49 26 1

alder-malt ko00640 Propanoate metabolism 28 12 0.9992

alder-malt ko00460 Cyanoamino acid metabolism 26 13 0.9868

alder-malt ko00906 Carotenoid biosynthesis 4 4 0.9804

alder-malt ko04978 Mineral absorption 7 4 0.9438

alder-malt ko00052 Galactose metabolism 30 12 0.7968

alder-malt ko04920 Adipocytokine signaling pathway 9 4 0.6656

alder-malt ko04260 Cardiac muscle contraction 12 4 0.6062

alder-straw ko00500 Starch and sucrose metabolism 65 32 1

alder-straw ko01120 Microbial metabolism in diverse environments 246 96 1

alder-straw ko04146 Peroxisome 54 33 1

alder-straw ko00040 Pentose and glucuronate interconversions 35 16 0.9972



alder-straw ko00190 Oxidative phosphorylation 73 25 0.9796

alder-straw ko00520 Amino sugar and nucleotide sugar metabolism 49 18 0.974

alder-straw ko00770 Pantothenate and CoA biosynthesis 23 10 0.9574

alder-straw ko04142 Lysosome 40 13 0.955

alder-straw ko00330 Arginine and proline metabolism 38 17 0.9466

alder-straw ko00906 Carotenoid biosynthesis 4 4 0.9202

alder-straw ko00600 Sphingolipid metabolism 21 11 0.8762

alder-straw ko00910 Nitrogen metabolism 21 6 0.8466

alder-straw ko00780 Biotin metabolism 9 5 0.7978

alder-straw ko00740 Riboflavin metabolism 11 5 0.7602

alder-straw ko04978 Mineral absorption 7 4 0.727

alder-straw ko00380 Tryptophan metabolism 40 21 0.702

alder-straw ko05130 Pathogenic Escherichia coli infection 13 5 0.6742

alder-straw ko00640 Propanoate metabolism 28 13 0.6634

solid-
liquidExp

ko00970 Aminoacyl-tRNA biosynthesis 40 28 0.9998

solid-
liquidExp

ko01230 Biosynthesis of amino acids 116 58 0.9152

solid-
liquidExp

ko00520 Amino sugar and nucleotide sugar metabolism 49 28 0.8352

solid-
liquidExp

ko03030 DNA replication 32 27 0.7924



solid-
liquidExp

ko03008 Ribosome biogenesis in eukaryotes 64 31 0.7612

solid-
liquidExp

ko00280 Valine, leucine and isoleucine degradation 49 26 0.7048

solid-
liquidExp

ko04111 Cell cycle - yeast 75 43 0.6586

solid-
liquidExp

ko01524 Platinum drug resistance 29 18 0.6358

solid-
liquidExp

ko03050 Proteasome 35 18 0.6236

solid-
liquidSta

ko03008 Ribosome biogenesis in eukaryotes 64 38 1

solid-
liquidSta

ko00500 Starch and sucrose metabolism 65 38 0.997

solid-
liquidSta

ko00040 Pentose and glucuronate interconversions 35 25 0.9964

solid-
liquidSta

ko03030 DNA replication 32 22 0.983

solid-
liquidSta

ko00970 Aminoacyl-tRNA biosynthesis 40 22 0.9042

solid-
liquidSta

ko00052 Galactose metabolism 30 20 0.882

solid-
liquidSta

ko00564 Glycerophospholipid metabolism 39 22 0.8494

solid-
liquidSta

ko00770 Pantothenate and CoA biosynthesis 23 15 0.7834

solid- ko00965 Betalain biosynthesis 17 12 0.6102



liquidSta

stat-exp ko00040 Pentose and glucuronate interconversions 35 21 1

stat-exp ko03010 Ribosome 99 29 1

stat-exp ko01120 Microbial metabolism in diverse environments 246 60 0.9772

stat-exp ko00280 Valine, leucine and isoleucine degradation 49 17 0.9676

stat-exp ko00520 Amino sugar and nucleotide sugar metabolism 49 12 0.8906

stat-exp ko00620 Pyruvate metabolism 41 11 0.8554

stat-exp ko00260 Glycine, serine and threonine metabolism 47 11 0.845

stat-exp ko00250 Alanine, aspartate and glutamate metabolism 31 9 0.7604

stat-exp ko01110 Biosynthesis of secondary metabolites 355 94 0.7382

straw-malt ko00500 Starch and sucrose metabolism 65 31 1

straw-malt ko00040 Pentose and glucuronate interconversions 35 19 1

straw-malt ko03008 Ribosome biogenesis in eukaryotes 64 23 1

straw-malt ko00330 Arginine and proline metabolism 38 18 0.9978

straw-malt ko00520 Amino sugar and nucleotide sugar metabolism 49 17 0.967

straw-malt ko00980 Metabolism of xenobiotics by cytochrome P450 28 14 0.9512

straw-malt ko00630 Glyoxylate and dicarboxylate metabolism 40 21 0.9136

straw-malt ko00920 Sulfur metabolism 17 8 0.9056

straw-malt ko00052 Galactose metabolism 30 15 0.897

straw-malt ko00350 Tyrosine metabolism 50 20 0.838



straw-malt ko00770 Pantothenate and CoA biosynthesis 23 11 0.7994

straw-malt ko00910 Nitrogen metabolism 21 9 0.6518

straw-malt ko01220 Degradation of aromatic compounds 32 17 0.6144

3 Supplemental Table 3

condition GO ID GO name genes  with  this  annotation  in
the genome

differentially  expressed
genes with this annotation

activation probability

alder-malt GO:0016491 oxidoreductase activity 506 205 1

alder-malt GO:0005975 carbohydrate metabolic process 226 72 1

alder-malt GO:0071949 FAD binding 55 29 1

alder-malt GO:0055085 transmembrane transport 513 165 1

alder-malt GO:0055114 oxidation-reduction process 768 283 1

alder-malt GO:0008152 metabolic process 387 158 1

alder-malt GO:0008080 N-acetyltransferase activity 49 19 0.9998

alder-malt GO:0006508 proteolysis 132 39 0.7976

alder-straw GO:0016491 oxidoreductase activity 506 211 1

alder-straw GO:0003824 catalytic activity 610 212 1

alder-straw GO:0016787 hydrolase activity 165 57 1

alder-straw GO:0071949 FAD binding 55 28 1

alder-straw GO:0006508 proteolysis 132 53 1

alder-straw GO:0055114 oxidation-reduction process 768 301 1



alder-straw GO:0055085 transmembrane transport 513 176 0.9952

alder-straw GO:0005975 carbohydrate metabolic process 226 110 0.988

solid-
liquidExp

GO:0005524 ATP binding 497 231 1

solid-
liquidExp

GO:0005515 protein binding 749 314 1

solid-
liquidExp

GO:0003824 catalytic activity 610 256 1

solid-
liquidExp

GO:0055085 transmembrane transport 513 230 1

solid-
liquidExp

GO:0055114 oxidation-reduction process 768 341 0.9992

solid-
liquidExp

GO:0006508 proteolysis 132 68 0.9848

solid-
liquidExp

GO:0005975 carbohydrate metabolic process 226 115 0.9762

solid-
liquidExp

GO:0005634 nucleus 389 180 0.9716

solid-
liquidExp

GO:0016787 hydrolase activity 165 77 0.913

solid-
liquidExp

GO:0016491 oxidoreductase activity 506 231 0.8836

solid-
liquidExp

GO:0003676 nucleic acid binding 294 130 0.6472

solid- GO:0003824 catalytic activity 610 283 1



liquidSta

solid-
liquidSta

GO:0005975 carbohydrate metabolic process 226 125 0.9898

solid-
liquidSta

GO:0055114 oxidation-reduction process 768 335 0.9868

solid-
liquidSta

GO:0008152 metabolic process 387 180 0.9798

solid-
liquidSta

GO:0055085 transmembrane transport 513 264 0.975

solid-
liquidSta

GO:0006508 proteolysis 132 66 0.8306

stat-exp GO:0003824 catalytic activity 610 164 1

stat-exp GO:0055114 oxidation-reduction process 768 232 1

stat-exp GO:0016491 oxidoreductase activity 506 153 0.9988

stat-exp GO:0071949 FAD binding 55 21 0.9874

stat-exp GO:0005975 carbohydrate metabolic process 226 67 0.9518

stat-exp GO:0055085 transmembrane transport 513 113 0.8948

straw-malt GO:0008080 N-acetyltransferase activity 49 22 1

straw-malt GO:0016491 oxidoreductase activity 506 192 1

straw-malt GO:0005975 carbohydrate metabolic process 226 117 1

straw-malt GO:0003824 catalytic activity 610 198 1

straw-malt GO:0016787 hydrolase activity 165 54 1



straw-malt GO:0071949 FAD binding 55 31 1

straw-malt GO:0006508 proteolysis 132 53 1

straw-malt GO:0055085 transmembrane transport 513 188 1

straw-malt GO:0055114 oxidation-reduction process 768 279 1

straw-malt GO:0000981 RNA  polymerase  II  transcription  factor  activity,
sequence-specific DNA binding

217 66 0.9982

straw-malt GO:0042254 ribosome biogenesis 15 9 0.634
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