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Josephson effect in a Weyl SNS junction
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We calculate the Josephson current density j (φ) for a Weyl superconductor–normal-metal–superconductor
junction for which the outer terminals are superconducting Weyl metals and the normal layer is a Weyl (semi)metal.
We describe the Weyl (semi)metal using a simple model with two Weyl points. The model has broken time-reversal
symmetry, but inversion symmetry is present. We calculate the Josephson current for both zero and finite
temperature for the two pairing mechanisms inside the superconductors that have been proposed in the literature,
zero-momentum BCS-like pairing and finite-momentum FFLO-like pairing, and assuming the short-junction
limit. For both pairing types we find that the current is proportional to the normal-state junction conductivity,
with a proportionality coefficient that shows quantitative differences between the two pairing mechanisms. The
current for the BCS-like pairing is found to be independent of the chemical potential, whereas the current for the
FFLO-like pairing is not.
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I. INTRODUCTION

A Weyl semimetal, a semimetal in which conduction
and valence bands have nondegenerate touching points, is a
paradigm of gapless topological matter [1,2]. Weyl semimetals
were initially proposed theoretically, but meanwhile they have
been observed experimentally in a range of materials [3–20].
Electrons in a Weyl semimetal with momentum and energy in
the vicinity of the band touching points are described by an
effective low-energy theory which has the same form as the
Weyl Hamiltonian of massless relativistic particles.

Already before their experimental discovery, the question
of possible forms of superconductivity in Weyl semimetals was
considered theoretically [21–27]. Weak attractive interactions
were found to lead to unconventional superconducting states
in Weyl (semi)metals, even if the chemical potential is not at
the nodal point. (That situation is sometimes referred to as a
“Weyl metal”.) Examples of superconducting phases that were
predicted are Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like
states in which the Cooper pairs have a finite momentum,
or a more standard Bardeen-Schrieffer-Cooper (BCS)-like
state in which the Cooper pairs have zero momentum, but
the spectrum proves to have nodal points. Recently, the
experimental observation of a superconducting phase has been
reported for the compounds MoTe2 [28] and TaP [29], which
are believed to be a Weyl metal in the normal state, although
the nature of the observed superconducting phase is not known
yet.

In this article we theoretically investigate the Josephson ef-
fect in a Weyl superconductor–normal-metal–superconductor
(SNS) junction in which the superconducting terminals are
such superconducting Weyl metals and the normal spacer
layer is a Weyl (semi)metal, too. A possible realization of
such a structure could consist of three layers of essentially
the same Weyl semimetal, but with different doping levels,
such that the more strongly doped outer layers have entered
the superconducting phase, whereas the weakly doped central
layer remains normal. For a simple but generic model of two
Weyl cones [24]—the minimal model for a Weyl semimetal,

since Weyl cones always have to come in pairs—we calculate
the temperature dependence of the Josephson current and the
current-phase relationship for both types of pairing. Our work
complements studies by Kanna et al., who also consider the
Josephson effect for an SNS junction in which the normal
spacer is a Weyl semimetal, but with conventional BCS super-
conductors for the outer terminals [30], and by Kim et al., who
study four-terminal junctions with mixed Weyl superconductor
and conventional superconductor contacts [31].

A Weyl semimetal can be considered a three-dimensional
generalization of graphene, a system for which the Josephson
effect has received abundant experimental attention [32–40].
Indeed, we find that the theory of the Josephson effect in a Weyl
(semi)metal-based Josephson junction closely resembles the
theory for the Josephson effect in graphene [41,42], but only
for the case of FFLO-like pairing, and is also similar to the the-
ory of Josephson junctions on the surface of three-dimensional
topological insulators [43,44]. The case of BCS-like pairing
is different, however, in the sense that the normalized critical
Josephson current is effectively independent of the chemical
potential.

The remainder of this article is organized as follows: Our
model will be explained in detail in Sec. II, closely following
Refs. [24,45]. We calculate the Josephson current using the
scattering approach, which is explained in Sec. III. A summary
of the results is given in Sec. IV and we conclude in Sec. V.
The appendix contains details of the calculation.

II. MODEL

We consider a slab of normal Weyl (semi)metal with two
Weyl points of opposite chirality at momenta ±K0 for −L/2 <

z < L/2, sandwiched between two superconducting regions,
which are modeled as heavily doped Weyl semimetals—also
called “Weyl metals”—with superconducting order; see Fig. 1.
Without loss of generality we may assume that the positions of
the Weyl points are in the px–pz plane, K0 = K0(ez cos α +
ex sin α) and that the Weyl point at K0 has positive chirality.
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FIG. 1. (Left) Sketch of the geometry under consideration: An
intrinsic Weyl (semi)metal for −L/2 < z < L/2 is sandwiched
between doped, superconducting Weyl metals for z < −L/2 and
z > L/2. (Right) Schematic of the momentum space with two “Weyl
cones” at momenta ±K0. The angle between K0 and the z axis is
denoted α.

Reference [24] has proposed a two-band Hamiltonian that
describes this situation, and we also adopt this Hamiltonian
for our present calculations. The normal-state Hamiltonian h±
for momenta k = ±K0 + q in the vicinity of ±K0 reads [24]

h±(q) = h̄v[q1σ1 + q2σ2 ∓ q3σ3]

+ V0θ (|z| − L/2) − μ, (1)

where v is the Fermi velocity, μ the chemical potential,

q1 = qx cos α − qz sin α,

q2 = qy, (2)

q3 = qz cos α + qx sin α,

and, similarly, σ1 = σx cos α − σz sin α, σ2 = σy , σz =
σz cos α + σx sin α. The potential V0 is a large negative
potential offset realizing the high carrier density in the
superconducting regions at z < −L/2 and z > L/2 [45].
The Hamiltonian (1) has broken time-reversal symmetry.
However, it has inversion symmetry, h−(q) = σzh+(−q)σz,
which ensures that both Weyl points are at the same energy.

In Weyl semimetals there are two possible superconducting
pairings [21–25,45]. For the BCS-like pairing the Cooper
pairs have zero momentum and zero spin; they combine
electrons from Weyl points with opposite chirality. For
the FFLO-like pairing the Cooper pairs have zero spin and
finite momentum ±2K0, and consist of two electrons of
the same chirality. The FFLO-like pairing is energetically
favorable for a lattice model with weak attractive interactions
underlying the continuum Hamiltonian (1) [24,25], although
other models point to the BCS-like paired state as the
superconducting ground state [21,23], so that we must consider
both pairing forms here. If both time-reversal symmetry and
inversion symmetry are broken, the degeneracy between the
two Weyl points may be lifted, and the FFLO-like pairing is
the only pairing form allowed by symmetry [21].

The Bogoliubov-de Gennes Hamiltonian for four-
component Nambu vectors [ψ↑(r),ψ↓(r),ψ†

↓(r), − ψ
†
↑(r)]

reads [45]

HB =
(

h+(−i∇ − K0) �(z)
�(z)∗ −h−(−i∇ − K0)

)
, (3)

for the BCS-like pairing, where we used that q = −i∇ ∓ K0

at the Weyl point ±K0, and that σyh
∗
−(−i∇ + K0)σy =

h−(−i∇ − K0). In this case a doubling of the Hilbert space
is not necessary, since the BCS-like pairing involves electrons
at different Weyl points. On the other hand, the FFLO-like
pairing involves electrons at the same Weyl node, so that
doubling of the Hilbert space is necessary and there are
separate Bogoliugov-de Gennes Hamiltonians HF,± for each
Weyl node,

HF,± =
(

h±(−i∇ ∓ K0) �(z)e±2iK0·r

�(z)∗e∓2iK0·r −h±(−i∇ ± K0)

)
. (4)

The superconducting order parameter �(z) is zero for −L/2 <

z < L/2, and it is set to �(z) = �0e
−iφ/2 for z < −L/2 and

�(z) = �0e
iφ/2 for z > L/2, corresponding to a difference φ

between the phases of the superconducting order parameters.
We consider the short junction limit L � ξ = h̄v/�0, which
allows us to neglect the energy dependence of the momenta
in the normal region −L/2 < z < L/2. The potential offset
V0 for the superconducting regions is chosen to be large and
negative, but still small enough that the linearized description
around each Weyl cone continues to apply.

For FFLO-like pairing the excitation spectrum of the
superconductor is gapped, with excitation gap,

�F = �0. (5)

For BCS-like pairing the quasiparticle spectrum in the two
superconducting regions has two nodes, turning the supercon-
ducting regions into “Weyl superconductors” [21,23–25]. In
the limit that the potential offset V0 is large and negative,
effectively only momenta along the z axis need to be
considered, for which the excitation gap is [24,25]

�B = �0| sin α|; (6)

see also the appendix.

III. SCATTERING APPROACH

The Josephson current and the Andreev bound state ener-
gies are calculated following the approach of Refs. [46–48],
which describe the normal spacer layer and the supercon-
ducting interface in terms of their reflection and transmission
matrices. For the normal spacer layer these are the reflection
matrices S−− and S++ for reflection of excitations incident
from the negative and positive z direction, respectively, as well
as the transmission matrices S−+ and S+−; see Fig. 2. For the
superconducting interfaces one needs the reflection matrices
R± that describe normal and Andreev reflection at the interface
at z = ±L/2. Since the wave numbers qx and qy parallel to
the interface are conserved, all reflection and transmission
matrices are diagonal in qx and qy . They do, however, retain a
2 × 2 matrix structure to accommodate for the particle and hole
degrees of freedom. The reflection and transmission matrices
of the normal spacer layer are diagonal with respect to the
particle and hole degrees of freedom; the reflection matrices
R± mix particle and hole degrees of freedom.

064511-2



JOSEPHSON EFFECT IN A WEYL SNS JUNCTION PHYSICAL REVIEW B 95, 064511 (2017)

FIG. 2. Definition of the scattering matrices R+, R−, S++, S+−,
S−+, and S−− for a Josephson junction.

For the Josephson current density j (φ) one then finds [48]

j (φ) = − 4ekBT

h̄

d

dφ

∫
dqxdqy

(2π )2

∞∑
m=0

ln det A(qx,qy,φ; iωm),

(7)

where

A =
(
1 0
0 1

)
−

(
R− 0
0 R+

)(
S−− S−+
S+− S++

)
, (8)

where 1 is the 2 × 2 matrix unit matrix in particle-hole
space and iωm = i(2m + 1)πkBT the (imaginary) energy
the scattering matrices have to be evaluated at. The dependence
on the superconducting phase difference φ enters through the
reflection matrices R± for the two superconducting interfaces.
In the short-junction limit we may neglect the dependence of
the normal-spacer scattering matrix S on the energy iωm. The
energies of the Andreev bound states can be found from the
same matrix A, from the condition det A(qx,qy,φ; ε) = 0, with
real energy |ε| < �0.

The calculation of the scattering matrices R and S
appearing in Eq. (8) proceeds by wave-function matching and
is described in detail in the appendix. We here list the results
for det A for the cases of BCS-like and FFLO-like pairing,

det AF = 4e2iγF

[
ε2

�2
F

− 1 + q2
z sin2(φ/2)

q2
z + q2

⊥ sin2(qzL)

]
, (9)

det AB = 4e2iγB

[
ε2

�2
B

− sin2 ϕ + q2
z ( sin2(φ/2) − cos2 ϕ)

q2
z + q2

⊥ sin2(qzL)

]
,

(10)

where q2
⊥ = q2

x + q2
y , q2

z = (μ/h̄v)2 − q2
⊥, tan ϕ = qy/qx , and

γF,B = − arccos
iωm

�F,B
. (11)

For the Andreev bound states the condition
det A(qx,qy,φ; ε) = 0 then gives

ε2 = �2
F

[
1 − q2

z sin2(φ/2)

q2
z + q2

⊥ sin2(qzL)

]
(12)

for the case of FFLO-like pairing and

ε2 = �2
B

[
sin2 ϕ − q2

z ( sin2(φ/2) − cos2 ϕ)

q2
z + q2

⊥ sin2(qzL)

]
(13)

for BCS-like pairing. The zero-temperature Josephson current
can also be calculated from the φ dependence of the Andreev

bound state energy,

j (φ) = −2e

h̄

∫
dqxdqy

(2π )2

∂ε

∂φ
, (14)

where ε is the positive root of Eq. (12) or (13).

IV. RESULTS

We present results for the Josephson current density
normalized by the normal-state conductivity σN of the junction.
The normal-state conductivity, defined as the conductance
per unit cross-sectional area, is calculated from the Landauer
formula (see Ref. [49] for the corresponding result in two
dimensions),

σN = 2e2

h

∫
dqxdqy

(2π )2
T (qx,qy), (15)

where the transmission probability,

T (qx,qy) = q2
z

q2
z + q2

⊥ sin2(qzL)
, (16)

as shown in the appendix.
For normal transport through the junction, two regimes may

be distinguished: transport that is dominated by propagating
modes or by evanescent modes. In the former case one has
|μ|L/h̄v 
 1 and the integral in Eq. (15) is dominated by q⊥ <

|μ|/h̄v, corresponding to real qz. The junction conductivity is

σN = μ2e2

6π2h̄3v2
. (17)

In the latter case the integral in Eq. (15) is dominated by q⊥ >

|μ|/h̄v, which corresponds to imaginary qz, and the junction
conductivity is [50,51]

σN = e2 ln 2

2π2h̄L2
. (18)

The Josephson current density j (φ) can be calculated from
the results presented above and in the previous section. We
were, however, not able to perform the integrations over the
transverse momenta qx and qy in closed form, except for the
high-temperature limit kBT 
 �0, for which we find

jF,B(φ) = �2
F,BσN

2πekBT
sin φ (19)

for FFLO-like pairing (F) and BCS-like pairing (B). For
temperatures kBT � �0, including zero temperature, we have
to resort to a numerical evaluation of the Josephson current
density. Figure 3 shows the current-phase relationship for
zero temperature and kBT = �0, normalized to the normal
junction conductivity σN, for the two limiting cases |μ|/h̄v �
1 and |μ|/h̄v 
 1. Figure 4 shows the critical current density
jc = maxφ j (φ), again normalized to the normal junction
conductivity σN, as a function of μL/h̄v, i.e., interpolating
between the evanescent-mode dominated regime and the
propagating-mode dominated regime. Despite the vastly dif-
ferent conductivities in the two regimes [compare Eqs. (17)
and (18)], the ratio jc/σN shows a rather weak dependence on
μL/h̄v, especially in the case of BCS-like pairing and/or high
temperatures.
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FIG. 3. Current-phase relationship for the Josephson current
density j (φ), normalized by the normal-state junction conductivity
σN. The top and bottom panels are for FFLO-like and BCS-like
pairing, whereas the left and right panels are for the limits |μ| 
 h̄v

and |μ| � h̄v, respectively. The solid curves are for zero temperature;
the dashed curves are for kBT = �0.

V. CONCLUSION

In this article, we have calculated the Josephson current
through a thin normal-state Weyl (semi)metal slab. The
superconducting terminals are modeled as strongly doped
Weyl metals, and we considered both BCS-like and FFLO-like
pairing mechanisms in the superconductors. The results for the
FFLO-like pairing are qualitatively similar to results obtained
previously by Titov and Beenakker for graphene, [41] up to
numerical prefactors. The results for BCS-like pairing are
quantitatively different. We find that the zero-temperature
Josephson current density remains of order σN�0 throughout
the entire parameter range, where σN is the normal-state
junction conductivity and �0 the superconducting gap.

A Weyl semimetal is known to have rather anomalous
transport properties at the Weyl point μ = 0: A normal-state
conductance that scales proportional to W 2/L2 for a sample
of width W and length L, so that the conductance of a
cubic sample is effectively size independent [50,51]. (For
comparison, in a conventional diffusive metal the conductance
is proportional to L for a cubic sample in three dimensions.)
Our at first sight somewhat unspectacular result that the
Josephson current scales proportional to the normal-state con-
ductivity throughout the entire parameter range we considered
means that this anomalous scaling with system size L also
extends to the Josephson effect. This conclusion is consistent
with the short-junction limit taken in our calculations, since
the condition for evanescent-mode dominated transport is
automatically satisfied in this limit for the typical energies of
the Andreev bound states that mediate the Josephson current.

For the Weyl (semi)metal we have used a model with
inversion symmetry, but with broken time-reversal symmetry,
first proposed by Cho et al. [24]. Since then other models have
been put forward, some of which have different symmetries
for the (normal) Weyl semimetal or for the superconduct-

FIG. 4. Critical current jc normalized to normal-state junction
conductivity σN, as a function of μL/h̄v. The top and bottom panels
are for FFLO-like and BCS-like pairing, respectively. The different
curves are for tempertures kBT/�0 = 0, 0.2, 0.5, 0.7, and 1.0 (top to
bottom inside each panel).

ing order, including possible magnetic phases [21,25–27].
Another interesting outlook is to tilt the Weyl semimetal
dispersion [52]—this is a generic feature of condensed matter
Weyl realizations due to the lack of forbidding symmetries
and is responsible for unusual transport characteristics [53].
A tilt of the spectrum also leads to an increased density of
states which is favorable for the onset of superconductivity
and, in fact, the previously mentioned compound MoTe2 [28]
is a realization of an “over-tilted” so-called type-II Weyl
semimetal [54]. It is a most intriguing question to extend
the present calculations to the mentioned models possessing
different symmetry properties, to see whether the Josephson
effect can be used as an effective tool to distinguish between
the different scenarios.
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APPENDIX

In this appendix we report the detailed calculation of the
determinants det AF and det AB reported in Eqs. (9) and (10)
of the main text.

Before calculating the scattering matrices, we first perform
a gauge transformation that removes the large momentum K0

from the Bogoliubov-de Gennes equation. For the case of BCS-
like pairing, this is the transformation,

HB → H̃B = eiK0·rHBe−iK0·r,

which results in the Bogoliubov-de Gennes Hamiltonian,

H̃B =
(

h+(−i∇) − μ �(z)∗
�(z) μ − h−(−i∇)

)
. (A1)

For the FFLO-like pairing, we transform

HF,± → H̃F,± = e±iσzK0·rHFe
∓iσzK0·r,

which gives

H̃F,± =
(

h±(−i∇) − μ �(z)
�(z)∗ μ − h±(−i∇)

)
. (A2)

We also note that h+(−i∇) is independent of the angle α

between the momentum K0 of the Weyl point and the z axis,
whereas

σxe
iασy h−(−i∇)e−iασy σx = h+(−i∇), (A3)

where h+ describes a Weyl node mirror-reflected in the xz

plane (i.e., with qy → −qy). As a result, for FFLO-like pairing
the two Weyl nodes will contribute equally to the supercurrent,
and it is sufficient to calculate the contribution for H̃F,+. For
BCS-like pairing we perform the rotation (A3) for the hole
block only, which leads to the transformed Bogoliubov-de
Gennes Hamiltonian,

H̃B =
(

h+(−i∇) − μ �̃(z)
�̃(z)∗ μ − h+(−i∇)

)
, (A4)

with

�̃(z) = �(z)σx cos α − �(z)σz sin α. (A5)

After this rotation the α dependence is moved to the super-
conducting order parameter �̃(z). In the limit |V0| → ∞ of a
heavily doped superconductor the term proportional to σx in
the superconducting order parameter �̃(z) can be neglected,
since it couples states with a large momentum difference. In
this limit the replacement �̃(z) → −σz�B can be made.

To fix the basis for the calculation of the scattering matrices,
we add an “ideal lead”—a short segment of highly doped
normal-state Weyl semimetal—at z = ±L/2. This segment
is described by the normal-state Hamiltonians h±, including
the potential offset proportional to V0. For this ideal lead, the
flux-normalized spinors for left and right moving particlelike
states are

uR =
(

1
0

)
, uL =

(
0
1

)
. (A6)

We have suppressed the dependence on the transverse coordi-
nates x and y, which is ∝ eiqxx+iqyy throughout. Similarly, the
spinors for holelike states are

vR =
(

0
1

)
, vL =

(
1
0

)
. (A7)

Since we are interested in the short-junction limit only, it
is sufficient to find the scattering matrix of the normal region
−L/2 < z < L/z for energy ε = 0. Hereto we parametrize

q = μ

h̄v
, q⊥ =

√
q2

x + q2
y , (A8)

and

qx = q sin θ cos ϕ, qy = q sin θ sin ϕ, qz = q cos θ. (A9)

Note that θ is complex if q2
x + q2

y > q2. The electron wave
function at the Weyl point K0 is a linear combination of the
two (unnormalized) basis states,(

sin(θ/2)
eiϕ cos(θ/2)

)
e−iqzz ,

(
cos(θ/2)

eiϕ sin(θ/2)

)
eiqzz.

Imposing continuity of the wave function at z = −L/2 and z =
L/2 we then find the transmission and reflection amplitudes,

s±±(ϕ,θ ) = e∓iϕq⊥ sin(qzl)

q sin(qzl) + iqz cos(qzL)
,

s±∓(ϕ,θ ) = iqz

q sin(qzL) + iqz cos(qzL)
. (A10)

The normal-state transmission probability T (qx,qy) of Eq. (16)
is T (qx,qy) = |s+−(qx,qy)|2. For FFLO-like pairing the reflec-
tion and transmission amplitudes for holes are the complex
conjugates of the reflection and transmission amplitudes for
the electrons, so that we find

Sττ ′(ϕ,θ ) =
(

sττ ′(ϕ,θ ) 0
0 sττ ′(ϕ,θ )∗

)
, (A11)

for τ,τ ′ = ±. For BCS-like pairing an additional reflection
in the xz plane has to be performed for the reflection and
transmission amplitudes for the holes,

Sττ ′(ϕ,θ ) =
(

sττ ′(ϕ,θ ) 0
0 sττ ′(−ϕ,θ )∗

)
. (A12)

We now calculate the reflection matrices for reflection off
the heavily doped superconducting regions z < −L/2 and
z > L/2. We first consider the case of FFLO-like pairing.
Abbreviating

q0 = μ − V0

h̄v
, (A13)

and taking the limit V0 → −∞, the basis spinors for z > L/2
take the simple form,

⎛
⎜⎝

eiφ/2

0
eiγF

0

⎞
⎟⎠eiq0z−κFz ,

⎛
⎜⎝

0
eiφ/2

0
e−iγF

⎞
⎟⎠e−iq0z−κFz,

where

γF = − arccos
ε

�F
, κF = 1

h̄v

√
�2

F − ε2. (A14)
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For z < −L/2 the basis spinors are

⎛
⎜⎝

e−iφ/2

0
e−iγF

0

⎞
⎟⎠eiq0z+κFz ,

⎛
⎜⎝

0
e−iφ/2

0
eiγF

⎞
⎟⎠e−iq0z+κFz.

For BCS-like pairing the last (fourth) entry of these basis
vectors has to be multiplied by −1 and the coefficients γF and
κF have to be replaced by γB and κB, respectively, with

γB = − arccos
ε

�B
, κB = 1

h̄v

√
�2

B − ε2. (A15)

Matching wave functions at the interfaces at z = ±L/2 we
find the reflection matrices,

R+ =
(

0 eiγ+iφ/2

eiγ−iφ/2 0

)
,

R− =
(

0 eiγ−iφ/2

eiγ+iφ/2 0

)
, (A16)

for FFLO-like pairing and

R+ =
(

0 −eiγ+iφ/2

eiγ−iφ/2 0

)
,

R− =
(

0 eiγ−iφ/2

−eiγ+iφ/2 0

)
, (A17)

for BCS-like pairing. Note that these matrices represent perfect
Andreev reflection. Normal reflection at the superconducting
interfaces is included in the normal-layer scattering matri-
ces (A11) and (A12).

We then find that

det AF = 1 + e4iγF − 2e2iγF
q2

z cos φ + q2
⊥ sin2(qzL)

q2
z + q2

⊥ sin2(qzL)
, (A18)

det AB = 1 + e4iγB

− 2e2iγB
q2

z cos φ − q2
⊥ cos(2ϕ) sin2(qzL)

q2
z + q2

⊥ sin2(qzL)
, (A19)

which is the same as the results (9) and (10) of the main text.
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Guéron, Phys. Rev. B 86, 115412 (2012).

[38] A. Shailos, W. Nativel, A. Kasumov, C. Collet, M. Ferrier, S.
Guéron, R. Deblock, and H. Bouchiat, Europhys. Lett. 79, 57008
(2007).

[39] X. Du, I. Skachko, and E. Y. Andrei, Phys. Rev. B 77, 184507
(2008).

[40] N. Mizuno, B. Nielsen, and X. Du, Nat. Commun. 4, 2716
(2013).

[41] M. Titov and C. W. J. Beenakker, Phys. Rev. B 74, 041401
(2006).

[42] C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
[43] C. T. Olund and E. Zhao, Phys. Rev. B 86, 214515 (2012).
[44] P. Ghaemi and V. P. Nair, Phys. Rev. Lett. 116, 037001 (2016).
[45] W. Chen, L. Jiang, R. Shen, L. Sheng, B. G. Wang, and D. Y.

Xing, Europhys. Lett. 103, 27006 (2013).
[46] C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
[47] C. W. J. Beenakker, in Transport Phenomena in Mesoscopic

Systems, edited by H. Fukuyama and T. Ando (Springer,
Berlin/Heidelberg, 1992), pp. 235–253.

[48] P. W. Brouwer and C. W. J. Beenakker, Chaos Soliton Fract 8,
1249 (1997).

[49] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J.
Beenakker, Phys. Rev. Lett. 96, 246802 (2006).

[50] P. Baireuther, J. M. Edge, I. C. Fulga, C. W. J. Beenakker, and
J. Tworzydło, Phys. Rev. B 89, 035410 (2014).

[51] B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer, Phys.
Rev. Lett. 113, 026602 (2014).

[52] E. J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M.
Udagawa, Phys. Rev. Lett. 114, 016806 (2015).

[53] M. Trescher, B. Sbierski, P. W. Brouwer, and E. J. Bergholtz,
Phys. Rev. B 91, 115135 (2015).

[54] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer,
X. Dai, and B. A. Bernevig, Nature (London) 527, 495
(2015).

064511-7

https://doi.org/10.1103/PhysRevB.93.094517
https://doi.org/10.1103/PhysRevB.93.094517
https://doi.org/10.1103/PhysRevB.93.094517
https://doi.org/10.1103/PhysRevB.93.094517
https://doi.org/10.1103/PhysRevB.86.214514
https://doi.org/10.1103/PhysRevB.86.214514
https://doi.org/10.1103/PhysRevB.86.214514
https://doi.org/10.1103/PhysRevB.86.214514
https://doi.org/10.1103/PhysRevB.89.014506
https://doi.org/10.1103/PhysRevB.89.014506
https://doi.org/10.1103/PhysRevB.89.014506
https://doi.org/10.1103/PhysRevB.89.014506
https://doi.org/10.1103/PhysRevB.86.054504
https://doi.org/10.1103/PhysRevB.86.054504
https://doi.org/10.1103/PhysRevB.86.054504
https://doi.org/10.1103/PhysRevB.86.054504
https://doi.org/10.1103/PhysRevLett.114.096804
https://doi.org/10.1103/PhysRevLett.114.096804
https://doi.org/10.1103/PhysRevLett.114.096804
https://doi.org/10.1103/PhysRevLett.114.096804
https://doi.org/10.1038/ncomms11038
https://doi.org/10.1038/ncomms11038
https://doi.org/10.1038/ncomms11038
https://doi.org/10.1038/ncomms11038
http://arxiv.org/abs/arXiv:1611.02548
https://doi.org/10.1103/PhysRevB.93.121409
https://doi.org/10.1103/PhysRevB.93.121409
https://doi.org/10.1103/PhysRevB.93.121409
https://doi.org/10.1103/PhysRevB.93.121409
https://doi.org/10.1103/PhysRevB.93.214511
https://doi.org/10.1103/PhysRevB.93.214511
https://doi.org/10.1103/PhysRevB.93.214511
https://doi.org/10.1103/PhysRevB.93.214511
https://doi.org/10.1038/nature05555
https://doi.org/10.1038/nature05555
https://doi.org/10.1038/nature05555
https://doi.org/10.1038/nature05555
https://doi.org/10.1016/j.ssc.2007.02.044
https://doi.org/10.1016/j.ssc.2007.02.044
https://doi.org/10.1016/j.ssc.2007.02.044
https://doi.org/10.1016/j.ssc.2007.02.044
https://doi.org/10.1143/JPSJ.81.094707
https://doi.org/10.1143/JPSJ.81.094707
https://doi.org/10.1143/JPSJ.81.094707
https://doi.org/10.1143/JPSJ.81.094707
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1103/PhysRevB.94.115435
https://doi.org/10.1038/ncomms8130
https://doi.org/10.1038/ncomms8130
https://doi.org/10.1038/ncomms8130
https://doi.org/10.1038/ncomms8130
https://doi.org/10.1103/PhysRevB.86.115412
https://doi.org/10.1103/PhysRevB.86.115412
https://doi.org/10.1103/PhysRevB.86.115412
https://doi.org/10.1103/PhysRevB.86.115412
https://doi.org/10.1209/0295-5075/79/57008
https://doi.org/10.1209/0295-5075/79/57008
https://doi.org/10.1209/0295-5075/79/57008
https://doi.org/10.1209/0295-5075/79/57008
https://doi.org/10.1103/PhysRevB.77.184507
https://doi.org/10.1103/PhysRevB.77.184507
https://doi.org/10.1103/PhysRevB.77.184507
https://doi.org/10.1103/PhysRevB.77.184507
https://doi.org/10.1038/ncomms3716
https://doi.org/10.1038/ncomms3716
https://doi.org/10.1038/ncomms3716
https://doi.org/10.1038/ncomms3716
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/PhysRevB.74.041401
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1103/PhysRevB.86.214515
https://doi.org/10.1103/PhysRevB.86.214515
https://doi.org/10.1103/PhysRevB.86.214515
https://doi.org/10.1103/PhysRevB.86.214515
https://doi.org/10.1103/PhysRevLett.116.037001
https://doi.org/10.1103/PhysRevLett.116.037001
https://doi.org/10.1103/PhysRevLett.116.037001
https://doi.org/10.1103/PhysRevLett.116.037001
https://doi.org/10.1209/0295-5075/103/27006
https://doi.org/10.1209/0295-5075/103/27006
https://doi.org/10.1209/0295-5075/103/27006
https://doi.org/10.1209/0295-5075/103/27006
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1016/S0960-0779(97)00018-0
https://doi.org/10.1016/S0960-0779(97)00018-0
https://doi.org/10.1016/S0960-0779(97)00018-0
https://doi.org/10.1016/S0960-0779(97)00018-0
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevB.89.035410
https://doi.org/10.1103/PhysRevB.89.035410
https://doi.org/10.1103/PhysRevB.89.035410
https://doi.org/10.1103/PhysRevB.89.035410
https://doi.org/10.1103/PhysRevLett.113.026602
https://doi.org/10.1103/PhysRevLett.113.026602
https://doi.org/10.1103/PhysRevLett.113.026602
https://doi.org/10.1103/PhysRevLett.113.026602
https://doi.org/10.1103/PhysRevLett.114.016806
https://doi.org/10.1103/PhysRevLett.114.016806
https://doi.org/10.1103/PhysRevLett.114.016806
https://doi.org/10.1103/PhysRevLett.114.016806
https://doi.org/10.1103/PhysRevB.91.115135
https://doi.org/10.1103/PhysRevB.91.115135
https://doi.org/10.1103/PhysRevB.91.115135
https://doi.org/10.1103/PhysRevB.91.115135
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768



