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Chapter 1

Introduction

Diffusion is ubiquitous in nature. It takes place on the microscopic scale, such as the
diffusive motion of molecules [1] or the motion of proteins in biological cells [2] and
even on the ultra-macroscopic scale like the diffusion of galactic nuclei [3].

In other disciplines such as economics, the motion of stock prices and option pricing
for example are modeled based on diffusion equations [4,5]. In sociology, the field of
diffusion of innovations [6] seeks to understand at which rate and how innovations, like
information, ideas or technology, are spreading and attracting new individuals, and in
linguistics the concept of diffusion is used to understand the spreading of languages
[7].

In physics, and in particular in the context of biological systems on small length
scales up to the size of molecules and atoms, the diffusive motion manifests in a ran-
dom movement of particles and is, thus, very different from the macroscopic point of
view where the knowledge of an initial configuration predicts the smooth and continu-
ous behavior of the future state like the trajectory of a falling object in the gravitational
field of a planet. Judging from a macroscopic point of view it is remarkable that we do
not feel that we are actually embedded in an ocean of jittering molecules performing
seemingly random motions.

From a historical perspective until the beginning of the 19th century there was only
little knowledge about diffusion. It was Thomas Graham, who first studied the diffu-
sion in gases systematically [8, 9], followed by studies of James Clerk Maxwell, who
could accurately estimate the diffusion coefficient of carbon dioxide [10]. In between,
Adolph Fick, inspired by the work of Graham, postulated two diffusion laws [11]
which state that the diffusive flux points from areas with high concentration to areas
with low concentration with a rate that is proportional to the gradient of the concentra-
tion (Fick’s first law), and that the concentration changes in time under the influence
of diffusive motion (Fick’s second law) described in mathematical terms in modern
notation by

Oc(x,t) D@%(x, t)

ot ox?

(1.1)
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where ¢(x, t) is the concentration of the diffusing particle and D is the diffusion con-
stant.

Significant progress was achieved when Einstein and Smoluchowski embraced the
topic of diffusion at the beginning of the 20th century [12,13]. In particular, they ex-
amined the phenomena of Brownian motion, named after the Scottish botanist Robert
Brown, who first studied the motion of pollen grains supended in liquid water [14].
Einstein took a purely theoretical approach and concluded that if the existence of atoms
is true, then particles suspended in a viscous medium must undergo random irregular
motion due to collisions with other molecules. The ideas he developed could later be
used by Jean-Baptiste Perrin for his research on Brownian motion to prove the existence
of atoms in estimating the Boltzmann constant [15-17].

Smoluchowski derived a partial differential equation, known as the Smoluchowski
or Fokker-Planck equation, which describes the diffusive motion of a particle in a free-
energy landscape F'(z) with a position-dependent diffusivity profile D(x)

gtc(x,t) = 3(?13 (D(a:)eﬁF(‘r)aamc(x, t)eﬁF(z)> , (1.2)
where § = 1/(kgT) is the inverse thermal energy. The free energy reflects the local
affinity of the diffusing substance and describes how the substance partitions in equi-
librium, whereas the diffusivity describes the position-dependent rate at which the
substance diffuses in the absence of external forces. Note that this equation transforms
into Eq. (1.1) when the diffusivity and free energy become a constant. The Smolu-
chowski equation has been used in numerous systems such as protein folding with a
position-dependent diffusivity [18], diffusion of particles near interfaces [19] or even
in discplines outside the biomolecular domain such as decision-processes and market-
strategies [20,21].

Einstein’s and Smoluchowski’s approach is based on the time evolution of the en-
semble of trajectories governed by partial differential equations [22,23], whereas an-
other direction tackles the problem of describing individual trajectories by stochastic
differential equations [24,25], with the Langevin equation [26] as the most prominent
example. Both descriptions are equivalent and can be converted into each other based
on different approaches [22,27] and opened an entirely new field which is nowadays
known as the field of stochastic processes with applications in a multitude of disciplines.

In this thesis, we discuss diffusion processes on different scales and environments. In
particular, on the microscopic scale we analyze the diffusive motion of water molecules
in pure water and on the the mesoscopic scale we discuss the dynamics of drug diffu-
sion in human skin.

1.1 Water dynamics

In the experiment, Robert Brown performed in the beginning of the 19th century, not
only the pollen grains diffuse around in liquid water, but also the water molecules per-
form a diffusive motion on the microscopic scale. Needless to say, water plays a crucial
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role in many aspects of life [28,29]. The human body consists mainly of water [30],
where most of which is located inside the cells [31]. As a solvent it influences the struc-
ture of macromolecules [32], e.g in protein folding [33]. Undesired conformational
changes of a protein can lead to neurodegenerative diseases such as Huntington’s or
Alzheimer’s disease [34,35]. Water plays such an important role in life, that looking
for conditions of life beyond our planet is equivalent of looking for water on extrater-
restrial objects [36].

A water molecule H>O consists of an oxygen and two hydrogen atoms aligned such
that the HOH-angle is 104.45°. Compared to other molecules with similar size such
as methane CHy, oxygen difluoride OF,, or carbon dioxide CO;, a unique difference
emerges. At ambient conditions water is liquid, whereas for the other three substances
the boiling temperature is significantly below zero degrees Celsius. This is somewhat
surprising, since e.g. oxygen difluoride and water have almost the same geometry with
a bond angle of 103° for oxygen difluoride. The explanation lies in the fact that water
forms hydrogen bonds (H-bonds) which arise from the strong polarity of water due
to the larger electronegativity of the oxygen atom compared to the hydrogen atom.
Water can donate and accept two H-bonds so that in the ice phase a water molecule
participates in four bonds, whereas in the liquid phase the actual number is smaller,
since H-bonds are broken more often due to thermal fluctuations. In liquid water an
H-bond between two water molecules is only kept for a time span of picoseconds be-
fore it is broken and a new bond is formed with a new partner [37,38]. Hydrogen
bonds also control the properties of interfacial water such as the surface tension of wa-
ter at the air-water interface [39]. The H-bond network is altered in the presence of
solutes. For example, polar solutes adapt usually well into the existing water struc-
ture [40], whereas hydrophobic molecules are enclosed in a cavity by the surrounding
water molecules [41], which can even strengthen the H-bonds around the hydrophobic
molecule [42]. In general, whenever a charge redistribution in aqueous environments
occurs it is directly related to rearrangements of the H-bond network and, thus, to the
reorientation of individual H-bonds [43].

It is a long standing goal [44] to understand the underlying mechanism of H-bond
rearrangements in liquid water. Even the most simple process of breaking and forming
of an H-bond between two water molecules that are part of the bulk water system is
still not completely understood.

As a matter of fact, it is not easy to observe exchanges of H-bonds. On the exper-
imental side, techniques such as infrared pump-probe spectroscopy [45-48], nuclear
magnetic resonance (NMR) [49, 50], quasi-elastic neutron scattering [51,52], terahertz
spectroscopy [53], and dielectric spectroscopy [54] are used frequently to study the
individual motion of water molecules which are able to resolve motions up to the fs-
domain. On the theoretical side, molecular dynamics (MD) simulations provide an
elegant tool to study water dynamics, e.g. MD-simulation of water as shown in Fig.
1.1. Originally, MD-simulations were developed in the 1950’s [55] and have constantly
evolved to be capable of simulating large-size proteins [56]. In these simulations the
trajectories of each atom or molecule is calculated by solving Newton’s equations of
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Figure 1.1: Snapshot of a MD-simulation of SPC/E water at 7" = 300K.

motions numerically for a small time step. This process is continued iteratively to ob-
tain a trajectory for a given time span.

With the help of MD-simulations of bulk water it was proposed [57,58], that in half
of the H-bond breaking events a new H-bond is formed right after. And just about a
decade ago it has been suggested that the H-bond exchange occurs mainly via large-
angular jumps where a water rotates quickly from one acceptor to another [37,59].

Most certainly, MD-simulations opened new perspectives for the understanding of
water-reorientation dynamics, but the overwhelmingly large state space spanned by
only a couple of hundred water molecules, aside from far more complex systems like
membranes or proteins, is still hard to analyze. A variety of concepts have been es-
tablished such as replica-exchange, umbrella sampling or transition path sampling in
order to derive the free-energy landscape and the slow time scales [60-62] of biomolec-
ular processes. A prominent example, which has gained ample attraction within the
last decade, are Markov state models (MSM). The term Markov or Markovian refers to
the fact that the future configuration of the system depends solely on its current state,
hence it is independent of its past configuration [63].

Markov state models have been extensively used to understand the dynamics of a
solute, like in the context of protein folding [64—66] or ligand-binding processes [67,68],
but are rarely used to understand the dynamics of the solvent itself [69,70]. Further,
Markov state models allow to identify the slow processes in the large conformational
state space and can be regarded as a coarse-graining of the dynamics of the entire sys-
tem, which is achieved in projecting onto only a relatively small number of states, see
Fig. 1.2. MSMs can not only predict the stationary properties such as the free-energy
landscape, but also kinetic quantities and processes. The estimation is encapsulated in
a (i) reduction or discretization of the in general high-dimensional state space spanned
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Figure 1.2: The trajectory of the continuous dynamics (cyan dashed line) is projected onto a coarse-grained
discrete state space. The resulting process is a Markov jump processes, which approximates the original
continuous stochastic process.

by all momenta and positional degrees of freedom of all atoms, and (ii) a model which
describes the stochastic transitions between different states. The transitions are gov-
erned by a transition probability matrix 7;;(7) which describes the conditional prob-
ability to be in state j at time 7, given one started in state ¢ at time 0. The matrix is
estimated from a trajectory by counting transitions from one to another state described

by

Ty(r) = 20 (1.3)
> cik(T)
k=1

where N is the number of coarse-grained states, and ¢;;(7) is the observed number of
jumps from state ¢ to j after time 7 [71]. The stationary state can be easily deduced
from the matrix in terms of an eigenvalue problem

N
Zﬂ'i’Tij(T) :71']'7 (14)
=1

where 7; is the stationary distribution, the probability to be in state j. The free en-
ergy according to F; = —In(m;) can be calculated right away. The eigenvalues \; of
the transition matrix are directly related to the molecular relaxation time scales via
t; = —7/In(|\i(7)]), whereas the eigenvectors r; are related to structural reconfigura-
tions. This is at the heart of MSMs, the power to make the large amount of MD-data
interpretable, and to obtain relevant quantities from an MD-simulation.
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In this thesis we analyze trajectories from a classical molecular dynamics simulations
of SPC/E water [72] with a Markov state model. At first, we study a water trimer as
part of the entire bulk system. As a result, the associated smallest time scales corre-
spond to cooperative interchanges of H-bonds in the water trimer. Later we analyze
the switching event of one hydrogen bond between two water molecules and derive
the full transition network. The most probable pathway is a direct switch without an
intermediate state, which is well in agreement with previous studies [37,57-59]. How-
ever, a considerable fraction of transition paths proceeds along different intermediate
states that involve alternative H-bonds or unbound states.

1.2 Drug diffusion in human skin

Organism are constructed of functional biological units, called cells, typically of pm-
size, which contain materials such as the genome and the cytoskeleton [73]. On this
small length scale the regulated transport of molecules through cells comprises an es-
sential factor in a number of tasks a cell has to fulfill. The formation of distinct barriers
is another important feature of multicellular organisms, which can be found in differ-
ent sections of the human body such as the blood-brain barrier, mucosa membranes,
and the skin, which constitutes the largest organ in the human organism. An accu-
rate functioning of the skin barrier is provided when desired molecules can penetrate
through the barrier, whereas the transport of undesired substances is inhibited [74,75].
Thus it provides a great challenge for the development of drugs [76].

Human skin consists primarily of two layers: the epidermis and dermis [77], see Fig.
1.3. The epidermis, typically about 100 xm thick, prevents the skin from drying out
and serves as the main barrier against undesired materials. It is further divided into
the stratum corneum, the outmost 10-20 xm thick skin layer which consists of dried-out
dead skin cells, and plays a key role in the skin barrier function [78]. A damaged skin
barrier is considered the main element for skin diseases such as psoariasis or atopic
dermatitis [79,80]. The dermis located right underneath the epidermis contains blood
vessels and protects the body against stress and strain.

Since the processes of molecular diffusion in human skin take place in crowded en-
vironments, the motion of molecules is of stochastic nature. A variety of diffusion
models ranging from 1D to 3D-models incorporating different levels of cell geometries
have been established [81-86]. Their common denominator is directly related to Fick’s
law of diffusion [11].

In Chapter 3 and 4 we focus on diffusive dynamics on the mesoscale. In particular,
we discuss drug diffusion in human skin of the lipophilic glucocorticoid dexametha-
sone which is used to treat autoimmune or inflammatory disorders [87, 88].

Drug concentration profiles are derived from X-ray microscopy experiments at three
consecutive times, performed by the Riihl group (Chemistry department, FU Berlin).
The skin samples have been prepared by the Schifer-Korting/Hedtrich (Institute of
Pharmacy, FU Berlin) and Vogt/Blume-Peytavi group (Dermatology department, Charité
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epidermis ~ dermis

skin surface
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Figure 1.3: Schematic picture of skin. The stratum corneum located at the skin surface and part of the
epidermis plays an important role for the skin barrier function. The dermis, underneath the epidermis,
contains blood vessels and cushions the human body from stress.

Berlin). The analysis is based on the general 1D-diffusion equation (1.2) with experi-
mental concentration-depth profiles of dexamethasone in human skin as the only in-
put. We present a robust method based on a trust-region algorithm [89, 90] for nu-
merically inverting the general 1D-diffusion Eq. (1.2) to obtain the position-dependent
diffusivity and the free-energy profiles of the drug dexamethasone as a function of skin
depth without employing further assumptions, since the analysis is purely data-based.

As a result, we show that the skin barrier function depends on the combination of a
significantly reduced diffusivity of the drug dexamethasone in the stratum corneum,
whereas a pronounced free-energy barrier at the transition from the epidermis to the
dermis is revealed. With these two parameters we can predict the penetration into skin
and also check the model validity.

In Chapter 4 we compare concentration profiles of dexamethasone originating from
healthy and damaged human skin and discuss the robustness of the inversion method
introduced in Chapter 3. The resulting free-energy profiles of healthy and damaged
skin show almost no deviations, whereas the diffusivity profile of damaged skin is
significantly larger in the stratum corneum which results in an enhanced penetration
of dexamethasone into skin. The robustness analysis reveals that the inversion method
is stable and yields well-defined solutions when more than two concentration profiles
are used as input.







Chapter 2

Collective hydrogen-bond
rearrangements in liquid water

Bibliographic information. The content of this chapter is in preparation to be submitted
to a peer-reviewed journal (Ref. [i]).

2.1 Introduction

Water plays a key role for many biological, chemical, and physical processes [28]. On
the microscopic level, water dynamics involves the formation and breaking of hydro-
gen bonds (H-bonds) which is important for understanding protein [91, 92], ligand-
receptor [93], protein-surface [94], electrolyte [95,96], proton [97] and hydrophobic sol-
vation dynamics [98,99]. Despite the fundamental importance of water dynamics in
liquid water, the understanding of collective structural mechanisms remains challeng-
ing, such as the switching of a single H-bond from one accepting water molecule to
another [100,101].

The classical view introduced by Debye [44] describes the reorientation dynamics of
a water molecule as a diffusion process. According to this model, when an H-bond
is broken, the water molecule performs an angular Brownian motion until it finds a
new H-bond partner. Although this view provides to straightforwardly interpret the
water dielectric relaxation in the GHz regime [95,96], it was challenged based on two
theoretical advancements: Employing transition path sampling in conjunction with
classical molecular dynamics simulations, it was suggested that in roughly half of the
H-bond breaking events, a new H-bond with a different water molecule is formed right
after [58], partly confirming Stillinger’s switching-of-allegiance scenario of the local
hydrogen bonding dynamics [57].

More explicitly, it has been shown that the switch of an H-bond donor occurs typi-
cally through a rather abrupt angular jump [37,59,101], which is supported experimen-
tally by neutron scattering [102,103] and 2D-IR spectroscopy [47,104]. In particular, it
was demonstrated that the H-bond switch is a cooperative process that at least involves
three water molecules [37,59,101]. The prevalence of abrupt rotations suggests that non
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H-bonded configurations, also referred to as dangling H-bonds, are free-energetically
unstable and therefore should only appear as short-lived transient states that either re-
bond with its initial H-bond partner or quickly engage in a new H-bond with a different
partner, which indeed has been demonstrated in simulations and experiments [105].
Note that an abrupt angular change is not necessarily in conflict with Debye’s diffusive
model, since the presence of an angular free energy barrier quite naturally predicts a
transition path time that is much shorter than the H-bond life time [106-108] (see Re-
sults and Discussion Section for more details). Experimentally, H-bond network rear-
rangements can be studied by femtosecond IR spectroscopy and are characterized by
time scales ranging in the sub-picosecond to picosecond range [48,109-111], THz ab-
sorption studies reflect H-bond rearrangements in the sub-picosecond rage [112], while
photon echo peak shift studies demonstrate the existence of relaxation phenomena in
the 5 to 15 ps range [113]. So based on experimental results, H-bond restructuring
relaxation times span a broad range from a few picoseconds down to hundreds of fem-
toseconds.

Similar questions about the kinetics of H-bond changes also arise in isolated water
clusters at low temperatures [114-116], where concerted rotations of water molecules
have been observed experimentally and have been interpreted in terms of cooperative
H-bond switching. Clearly, in these low-temperature systems the dynamics is gov-
erned by quantum tunneling, not by thermally activated barrier crossing. Moreover,
and due to the small number of involved molecules and the absence of stochastic ef-
fects the possible pathways can for small clusters be enumerated exactly [115,116].

In contrast, water bonding kinetics in liquid water poses two problems that arise
from the coupling to a dynamic finite-temperature environment. Firstly, it is a priori
not clear what the minimum number of water molecules should be that would allow
to meaningfully define a dynamic restructuring of water, and secondly, the stochastic
coupling to a random liquid environment creates a multitude of thermally activated
competing pathways that connect given starting and final water structures.

In principle, MD simulations should be able to resolve questions related to local H-
bond kinetics and mechanisms unambiguously. However, even given such simulation
data, understanding H-bond kinetics and mechanisms is challenging for the human
analyst, since the relative conformation of only two water molecules is described by
a six-dimensional space (one separation coordinate, two relative angular coordinates
and three relative orientational coordinates). Consequently, the state space of three wa-
ter molecules, the minimal system where collective H-bond switching can be studied,
is 12-dimensional, which makes the direct observation of H-bond dynamics in simula-
tion trajectories prohibitively difficult. In this paper we demonstrate that Markov state
models (MSMs) [117-119] can provide an analysis framework to study water dynamics
in the complete continuum conformational space (spanned by positional and orienta-
tional angles and the relative separation) to classify competing dynamic normal modes
of H-bond rearrangements in an unbiased and complete fashion.

MSMs haven been proven useful to describe the slow dynamics in systems with
many degrees of freedom, for example protein folding [64,120], protein ligand-binding

10
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[121-123] and protein conformation changes [124,125]. There are only few studies in
which MSMs have been developed that account for solvent degrees of freedom [69,70],
mostly because the solvent diffusion makes it difficult to define the proper subspace
of relevant solvent degrees of freedom. As of yet, MSMs have not been used to an-
alyze the coupling between orientational and translational water degrees of freedom,
although this coupling has been demonstrated to be crucial for liquid water [126]. Here
we employ MSMs to analyze and understand the complex multi-dimensional solvent
dynamics without prior definition of what a hydrogen bond is. Indeed, the metastable
hydrogen-bonded water structures come out as eigenstates of the transition matrix es-
timated from the MD data. Based on classical simulation trajectories of liquid pure
water at ambient temperature 7" = 300 K, we first in the first part construct a MSM in
the full twelve-dimensional configurational space of three water molecules and show
that a few slow reconfiguration processes in the ps range can be distinguished and
analyzed in terms of the cooperative rearrangements of their H-bond patterns. These
slow processes are followed by a quasi-continuum of faster processes with character-
istic times below two picoseconds, which is consistent with the experimental finding
that water relaxation processes span a wide range of timescales. We next analyze an
individual H-bond switching event, defined as the process where a given central water
molecule acts as a donor and the accepting H-bond partner switches from one water
molecule to a different one. This H-bond switching event has been identified as a cen-
tral element of H-bond dynamics in liquid water and consequently it has been amply
studied [37,59,101]. By projection on H-bond states, we perform a full MSM analysis
of this H-bond switch scenario and provide the complete transition pathway network
and analyze the competing transition probabilities. Here we basically confirm that
H-bond switching mostly proceeds without intermediates [37,59,101], but also show
the strength of our approach by demonstrating the existence of a significant fraction
of H-bond switching events that involve intermediate states with alternative or weak
H-bonds.

2.2 Methods

2.2.1 Markov state modeling

MSMs describe the complex dynamics of an arbitrary system by a Markovian stochas-
tic process. Relevant degrees of freedom are projected onto a finite number of discrete
states and the rates or transition probabilities between different states are described by
a transition probability matrix T. From this matrix transition times, transition paths
and their probabilities can be extracted [117,118,127]. First, the state space has to be
partitioned into IV states. This is not trivial for a diffusive system like liquid water,
since the relevant state space should ideally include only the subset of water molecules
that interact with each other, which obviously changes with time. We will later ex-
plain how we solve this problem by suitable projection. From a simulated trajectory
the V x N transition probability matrix T is calculated. The elements T;; describe the

11
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conditional probability of a transition from state ¢ to j within a fixed lag time 7 and are
estimated by T;;(7) = ¢;;(7)/ > ¢ij(7), where ¢;;(7) is the number of transitions from

J
state 4 to j within time 7 and ) ¢;;(7) is the number of transitions from ¢ to any other

state within time 7. The matri]x is defined in such a way that the sum of every row is
unity, thus, it conserves probability. We assume that the transition matrix is ergodic
(any state can be reached from any other state within a finite number of steps), which
yields a single eigenvector 7 with eigenvalue unity, the stationary distribution. For an
MD simulation in equilibrium the detailed balance assumption 7;7;; = 7;7}; holds.
If the N-dimensional vector p(t) describes the probability distribution at time ¢, the
probability at time ¢ + 7 follows from p(¢ + 7) = p(¢)T(7). The system is Markovian if
it fulfills the Chapman-Kolmogorov equation

T(nt) = T"(7). (2.1)
The spectral decomposition of the transition matrix according to

p(n7) = p(0)T"(7)

N
=Y e (p(0) )], (22)

where r; and 17" are the i—th right and left eigenvectors of the transition matrix, yields
characteristic time scales
% T

= — 2.

that are directly related to the eigenvalues \; and for a Markovian system are indepen-
dent of the lag time 7. Eq. (2.2) describes the evolution of the probability density dis-
tribution as a weighted superposition of exponentially decaying left eigenvectors. In a
nutshell, the construction of a Markov state model requires (i) clustering of the phase
space into N states, (ii) estimating the transition matrix from data, and (iii) checking
the validity of the Markov model by testing whether the implied time scales depend
on the lag time 7, see Sec. 2.5.1 for details.

From the transition matrix transition pathways can be extracted that lead from the
subspace of reactant states A to the subspace of product states B and pass through the
subspace of intermediate states I. The solution of the linear system of equations

a7+ Tuat ==Y T (24)

kel keB
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defines the committor probability ¢Z, which describes the probability of reaching B
before returning to A when being in state . The flux along the intermediate states 4
and j which contribute to transitions from A to B is

fij = mia; Tijq?, (2.5)

from which the reaction rate k4 follows as

N N
kap = Zfij/ (TZM%A> . (2.6)
i1

1€A

The set of states and fluxes creates a transition network, which can be decomposed into
individual transition pathways with different probabilities, see Sec. 2.5.2 for details.

2.2.2 Molecular dynamics simulations

The MSM is based on a molecular dynamics (MD) simulation of 895 SPC/E water
molecules in a cubic box of edge length L = 3 nm with periodic boundary conditions.
The trajectories are generated by GROMACS with a Berendsen weak coupling thermo-
stat and barostat with a relaxation time of ¢, = 1 ps for a fixed temperature of 7" = 300
K and a pressure of p = 1 bar. The time step of the MD simulation is 2 fs, every 20 fs
the positional coordinates of every water molecule are stored and the total simulation
time is 10 ns. The relative configuration of two water molecules is described by six
coordinates: we fix the reference water molecule O* in the coordinate center with its
two hydrogens in the z — y plane such that the dipole vector points in the x direction,
to describe the configuration of a second water molecule we then have three coordi-
nates for the rotation (o, 3, ), see Fig. 2.1A, and three coordinates for the translation in
spherical coordinates (R, ¢, 0), see Fig. 2.1B. The rotation is described by Euler angles
(o, B,7) in the (z, 2/, 2’)-convention: A rotation around the z-axis by the angle «, a rota-
tion around the new z-axis (z’) by the angle § and a following rotation by the angle v
around the new z-axis (z’), see Fig. 2.1A. Consequently, for three water molecules the
state space is 12-dimensional.

According to the distance-angle criterion [128], an H-bond exists if the distance be-
tween two oxygen atoms O* and O is R < 0.35 nm and the angle between the O*H*
and O*O? vectors is Z(0*0O% O*H*) < 30°. There are four ways in which two water
molecules can establish an H-bond, see Fig. 2.1C for our color coding which we use
throughout this paper. In the green and cyan configuration O% accepts an H-bond from
O*, whereas in the orange and red configuration O% donates an H-bond to O* via Hj
and Hj, respectively.
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Figure 2.1: (A) Euler angles are used for the rotational degrees of freedom and (B) spherical coordinates
for the translational degrees of freedom. The reference water O* is placed in the coordinate center such
that its two hydrogens are located in the  — y-plane and the dipole vector points along the z-axis. (C)
Sketch of different H-bond configurations between two waters. In the cyan configuration O* acts as a
donor via Hj to O in the green configuration it donates via H3 to O%. In the orange configuration O*
accepts an H-bond via Hf, whereas in the red configuration it accepts via HS.

2.3 Results and discussion

2.3.1 H-bond rearrangements from three-water MSM

We base our MSM on trajectories of three water molecules, denoted by O*, O?, and
OP, which are embedded in the liquid water environment. In order to select the set of
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considered water molecules we first determine the radial distribution function goo(R)
between water oxygens from which we derive the free energy

F(R) = —kgT In[goo(R)] — ksT' In(R?), 27)

depicted in Figs. 2.2A and B. The yellow and green domains correspond to the first
and second hydration shells that are separated by a barrier of about 1kg7". In previous
work we had determined the position-dependent relative diffusivity profile D(R) be-
tween two water molecules using the mean first-passage time (MFPT) method, which
maps the relative water dynamics onto the generalized Fokker-Planck equation [1].
Our results in Fig. 2.2C show that for small separations around R = 0.3 nm the dif-
fusivity D(R) is six times smaller than the bulk value. Previously we had associated
the decrease of D(R) with the presence of orthogonal degrees of freedom that we spec-
ulated to be related to water orientational dynamics. In Fig. 2.2C we also show the
diffusivity profile from our MSM model which results from a projection of the discrete
Markov state dynamics onto the separation coordinate R (see Sec. 2.5.3 for details). The
good agreement between the results from these two very different methods is a crucial
consistency check and in particular demonstrates that the slowed down translational
water dynamics in the first hydration shell is indeed caused by the collective motion of
water molecules that couples translational and orientational degrees of freedom.

We start recording the 12-dimensional trajectories for the three-water MSM as soon
as the radial separation between O* and O% R+, and between O* and ob, Rosop,
are both < 0.5 nm. We stop recording when one of the two waters leaves the cutoff
radius of 0.5 nm, see Fig. 2.3 for a sample trajectory and graphical definition of Ro+pa
and Rg.». We capture 320,000 trajectories with a total length of 1700 ns and use the
k-means++ algorithm [129] with 500 states to cluster states in the 12-dimensional state
space. We also varied the number of states in Sec. 2.5.4, but found no advantage of
using more than 500 clusters. The transition probability matrix T(7) is estimated for
a range of lag times 7 and the time scales ¢ are derived from the eigenvalues of each
eigenvector according to Eq. (2.3). In Fig. 2.4A we plot the time scales against the lag
time. The merging of time scales below 3 ps is caused by non-Markovian effects due to
inertial effects. In the range from 3 to 20 ps the time scales are only weekly dependent
on 7 and the dynamics can be approximately considered as Markovian, although this
is not strictly necessary for our normal mode analysis. The residual dependence on ™
in the intermediate time range originates from a combination of projection errors and
inertial effects, see [117] for an in-depth discussion. We observe that the slowest time
scales are fairly well separated from each other, which suggests a physical interpreta-
tion of the associated processes. For 7 > 20 ps the time scales merge again, which is
due to limited sampling at large lag times, see Sec. 2.5.5 for a discussion.

In order to understand the physical meaning of the different processes, we project
the 500 components of the eigenvectors onto the underlying 12-dimensional confor-
mational space of the three water molecules, for this we choose a lag time of 7 = 7
ps. In Sec. 2.5.6 we demonstrate that the interpretation of the resulting processes is
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Figure 2.2: (A) Radial distribution function goo (R) between water molecules. R = 0.5 nm has been chosen
as a cut-off for the selection of trajectories for the three-water MSM. (B) Free energy landscape F'(R). (C)
Radial diffusivity profile D(R) between two water molecules. The diffusivity profile calculated from the
MSM is consistent with the profile estimated from the mean first-passage time (MFPT) method.

not changed when the lag time is changed to 7 = 3 ps or to 7 = 15 ps. For clarity
we only show the projection onto the angle ¢ for O? and O°. The stationary distri-
bution, depicted in Fig. 2.5A, shows pronounced clustering in four bands, at which
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Figure 2.3: (A) Trajectories of the radial distances Ro«0: and Rn.op between the oxygen of the central
water and the oxygens of two neighboring water molecules. Trajectories are used for constructing the
MSM when both distances are smaller than 0.5 nm, this cutoff is denoted by broken horizontal lines.
Different colors mark different H-bonds according to the color coding in Fig. 2.1 and visualize H-bond
rearrangements. For example, around ¢ = 15 ps the O® water molecules changes from being a donor to
being an acceptor, while o changes from acceptor to donor. (B) Definition of the radial distances Ro+o-
and Ryeop.

the eigenvector amplitude and thus the distribution probability is markedly enhanced.
If we color the eigenvector components according to the H-bond color coding in Fig.
2.1C, we indeed see that these four bands correspond to the four different H-bonds
that can form between O* and O and between O* and OP. We stress that our Markov
model is constructed in an unbiased fashion and only based on the distances in the 12-
dimensional configurational space, but that the resulting state clusters can a posteriori
be straightforwardly associated with H-bonds.

The slowest process with a time scale t] = 6.1 ps is depicted in Fig. 2.5B. The eigen-
vector contains negative components, which describe a loss of probability, and positive
components, which describe a gain of probability, and thus corresponds to a transition
in configurational space. Interpretation of this transition is possible by projection on
H-bonds, visualized by our color coding: For O? the green and cyan H-bond configu-
rations (in which O* donates to O?) are predominantly negative, whereas the red and
orange H-bond configurations (in which O* accepts from O?) are positive. For O° we
observe the opposite, the red and orange configurations are negative and the green and
cyan configurations are positive. This means that the slowest time scale is caused by
a transition where in the initial configuration O® accepts an H-bond from O* and O°
donates an H-bond to O*, while in the final configuration O° accepts an H-bond from
O* and O? donates an H-bond to O*, as illustrated at the bottom of Fig. 2.5B (note that
the reverse process is of course described by the same eigenvector with a negative am-
plitude). This process thus describes the interchange of donor and acceptor position
of O% and OP and is named donor-acceptor interchange. This process is achieved by a
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Figure 2.4: (A) Plot of the five slowest time scales ¢; versus the lag time 7 for the three-water MSM. (B) Plot
of all time scales for fixed lag time 7 = 7 ps. The five slowest time scales are separated from a continuum.

concerted rotation of all three water molecules and occurs in the trajectory in Fig. 2.3
around ¢t = 15 ps, where water O? changes from red to cyan (donating — accepting),
whereas OP changes from cyan to red (accepting — donating). Note that this process
presumably involves other water molecules as well, which however will not modify
the extracted time scale and the eigenvector components shown in Fig. 2.5B. This ro-
bustness of our three-water MSM is vividly demonstrated by the fact that even a more
restricted two-water MSM yields the same time scales, as shown in Sec. 2.5.7.

The second slowest process with a time scale of t5 = 5.6 ps, depicted in Fig. 2.5C,
describes an acceptor-acceptor interchange. Here the dominant negative part of the
O? eigenvector in cyan describes an initial state where the central water O* donates
an H-bond, whereas O is initially described by the green configuration where the
central water O* also donates an H-bond. In the final configuration O* and O have
interchanged positions. Thus, this process is an acceptor-acceptor interchange, which
can be achieved by a single rotation of the central water O* by 180° around its dipole
axis. In the third slowest process with t; = 4.4 ps in Fig. 2.5D, both waters O? and
OP initially donate H-bonds to O* (negative orange and red eigenvector components),

18



2.3 Results and discussion

A xo stationary state B donor-acceptor interchange
5 Oa Ob 0.01 Oa
4 . -
. ‘ S . B 0005
3 5 esa .., i gg' A 3
R, f'a e o 4* X '-i z
L R 2 g P %
1 ?, o & ] ©
0 .
90 0 0 ° 90 0 90 "
o] ££=6.1 ps
Q b
N Vb initial o final »%a
s el ] — 21
v o gl e
C
L C o < ob
C acceptor-acceptor interchange | D double donor/acceptor interchange
0.0 . Oa Ob . 0.015 Oa Ob
TGN 0.005 % ‘ . g 0.01 .
8 a.m ¢ |5 L8 g s :
D, ‘S XA ¢ .
2-0.005 ! : ° 0 1{‘;* 3 ;{’% .?‘—
"% 0 w0 ol°] 90 0 90 00T o w0 o] © 0
£)=5.6 ps . ti=44ps
o o' @0 O‘ final
b W/
(0) —‘,& \.g o' & —v----e*v
L‘\e\ - C R e . = L‘\ 0
\_7\9'} final O \ o’ [ -
initial initial - o
0P

Figure 2.5: Equilibrium state and the three slowest hydrogen-bond interchange processes of the three-
water MSM. We show the projection of the eigenvector onto the angle ¢ for the water pairs O * —O and
O % —OP. Colored eigenvector components denote H-bonds according to the definition shown in (A). (A)
The equilibrium state consists of a combination of H-bonds between O* and the waters O and O°. (B)
The eigenvector associated with the slowest time scale ¢t = 6.1 ps describes a donor-acceptor interchange,
where O and O° interchange their roles as acceptor and donor. This process is achieved by a collective
rotation of all three waters O*, O%, and O. (C) Acceptor-acceptor interchange with a time scale of t5 = 5.6
ps. Here O* donates H-bonds to both waters O? and O via its two H-atoms in the initial and final states.
This process is achieved by a single rotation of the central water molecule O*. (D) Double donor/acceptor
interchange with a time scale of ¢3 = 4.4 ps. In the initial state O* accepts two H-bonds from O* and o°,

in the final state O* and O accept H-bonds from O*.

whereas in the final state both waters accept H-bonds from O* (predominantly positive
blue and cyan eigenvector components). This transition can be achieved by a concerted
rotation of all three water molecules and corresponds to a double donor/acceptor in-
terchange. The faster processes become more and more difficult to interprete since they
do not allow for a clear cut interpretation in terms of H-bond patterns.

We conclude that our three-water MSM unambiguously reveals the slowest H-bond
rearrangement patterns in a water trimer that is embedded in liquid water. The re-
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Chapter 2 Collective hydrogen-bond rearrangements in liquid water

sultant slowest time scales are in the range of 4 — 6 ps and thus considerably slower
than the typical librational time scale of tj;,, ~ 200 fs [38,47,130] or the reorientational
time scale of treorient ~ 2.5 ps it takes a H-bond donating water to switch from one to
a different acceptor [37,47,59,102,131]. This is not difficult to rationalize, since the
three processes presented in Fig. 2.5 involve the breaking and reformation of at least
two H-bonds. For the second slowest process with ¢5 = 5.6 ps in Fig. 2.5C the H-bond
arrangement can proceed via the rotation of a single water molecule, for the slowest
and third slowest processes in Fig. 2.5B and D the arrangement involves the concerted
reconfiguration of the entire water trimer. In photon-echo experiments [113] it was
found that a comparatively slow time scale in the 5 - 15 ps range exists that is related
to H-bond rearrangements. In agreement with these experiments, our findings suggest
an entire set of slow dynamic collective water modes that lie in this time range. It is
interesting that the single water rotation mode in Fig. 2.5C has almost the same time
scale as the other two concerted rotation transitions in Fig. 2.5B and D, and that all
three modes describe very different structural rearrangements of the H-bonding pat-
tern within the water trimer. This vividly demonstrates why the interpretation of the
microscopic water dynamics is so complex, even when simulation trajectories with full
configurational information are available. It would be hard to extract the dynamical
modes shown in Fig. 2.5 from the simulation trajectories without the MSM analysis.
In Sec. 2.5.7 we show that a restricted MSM for a water dimer gives quite similar slow
time scales but obviously does not allow to interpret the kinetic processes in terms of
collective H-bond reconfigurations. This shows that the resulting time scales of the wa-
ter MSM are robust with respect to the number of water molecules the MSM is based
upon.

2.3.2 Transition paths for H-bond acceptor switching

In the previous section, we analyzed the slowest elementary processes that occur in a
three-water MSM and showed that they correspond to the simultaneous breaking and
reforming of at least two H-bonds. In this section we consider a somewhat simpler
scenario, namely the switching of a single H-bond from one accepting water molecule
to a different accepting water molecule. In fact, the mechanism and the transition
pathway of this H-bond switching event have been challenging topics of research for
decades [57]. In [58] it has been shown via transition path sampling that in roughly
half of the cases when an H-bond is broken, a new H-bond forms right after. In [37,59]
it has been shown that this H-bond switch is dominated by an abrupt angular rotation
of the central water molecule that acts as a donor. Here we will bring these two find-
ings in harmony to each other and in particular will analyze the complete transition
network that describes the switching of a single H-bond acceptor.

In order to describe the switching event of a single H-bond acceptor by a MSM we
modify the selection rule for trajectories and project onto a much restricted set of states.
We now consider trajectories where O* is H-bonded to a water O? via its hydrogen
atom H7 initially and switches to a different water OP to which it forms an H-bond via
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Figure 2.6: Sample trajectories of H-bond switching events in terms of the radial distances Ro.o« and
Ry, ov between three water molecules. (A) At ¢ = 5 ps an H-bond (cyan color) between O* and O°
is formed for the first time. At ¢ = 13 ps this H-bond between O* and O® is broken and immediately
switches to OP. After this, O diffuses away from O* while O* and o stay H-bonded until the H-bond is
finally broken at ¢t = 34 ps. This process is an example for the direct transition path type I, see Fig. 2.7C.
(B) At t = 5 ps an H-bond (cyan color) between O* and O is formed for the first time. Att = 9 ps this
H-bond switches to O° and O* forms an alternative H-bond with O* where it accepts a different hydrogen
from O* (denoted by green color) until it diffuses away at ¢ = 16.5 ps. This process is an example of
transition path type V, see Fig. 2.7C. The color notation of H-bonds is defined in Fig. 2.1.

the same hydrogen H;. We start recording trajectories as soon as O* and O become H-
bonded under the condition that no H-bond between O* and OP exists and stop when
the H-bond between O* and OP is broken finally, see Fig. 2.6A and B for two example
trajectories.

We collect a total of 199,197 H-bond switching events and define four basis states
which describe the H-bond configuration between two water molecules. In the H-
bonded state, called H, the central water molecule O* forms an H-bond with water
molecule O* by donating its hydrogen H}, where the OX stands for water O® or OP.
In the unbound state, called U, there is no H-bond between O* and O* and the ra-
dial distance between the waters is Rp,ox > 0.35 nm, which exceeds the threshold
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Figure 2.7: (A) The four basis states describing the bonding state between O* and a second water molecule
O*. (B) Transition network for the H-bond acceptor switching, showing only the eight dominant path-
ways, the thickness of arrows indicates the net-flux. In the reactant state HU, O* acts as an H-bond donor
to O via Hj, while no H-bond with O is present and the distance between O* and O is larger than
0.35 nm. In the product state UH, O* acts as a H-bond donor to OP via the same hydrogen HY, while
no H-bond with O is present and the distance between O* and O” is larger than 0.35 nm. (C) Transition
pathwayss ordered by their probabilities. Pathways with probability lower than 0.5% are not shown.

separation for an H-bond. In the weakly bounded state, called w, there is no H-bond
because the angular criterion is not fulfilled, but the distance between the two waters
is Rp.ox < 0.35 nm. In the alternative H-bond state, called a, the water molecule O*
either accepts an H-bond from O* or it forms an H-bond with O* by donating its other
hydrogen Hj to O%, see Fig. 2.7A for an illustration of these four states. The combi-
nations of these four basis states yields 4 x 4 = 16 MSM cluster states for three water
molecules O*, 0%, and OP.

In the reactant state O* and O? are in state H whereas O* and OP are in state U,
which we denote as HU (i.e. the first letter denotes the bonding state between O* and
O? and the second letter denotes bonding state between O* and OP). The product state
is defined as UH where water molecules O* and OP have exchanged their roles, see
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Fig. 2.7B. The validity of the defined MSM for a lag time of 7 = 1 ps is discussed in Sec.
2.5.8. We calculate the committor probabilities according to Eq. (2.4), the transition rate
turns out to be kyy_uyyg = 0.24 ps_1 according to Eq. (2.6). This yields a reaction or
mean first-passage time of

Tmfp = 1/k7HU—>UH =4.2 ps. (28)

This mean first-passage time is smaller than the previously published estimate of the
H-bond life time of g5t = 6.5 to 7.0 ps [37,100], but larger than the previously cal-
culated H-bond switching time 715 switch = 3.3 ps, see Ref. [37,59] and Sec. 2.5.8. Note
that the difference between the H-bond life time and H-bond exchange time follows
from the fact that after an H-bond exchange another H-bond exchange can occur, lead-
ing back to the initially H-bonded configuration, see also Ref. [37] for details. As a
consequence, our reaction time 7, , includes the diffusion of O towards O* and of
O? away from O* and is therefore a bit larger than the H-bond switching time. The
resultant time scale is similar to the time it takes two water molecules to diffuse from
the first to the second hydration shell, which ranges between 4 to 12 ps depending on
the target distance in the second hydration shell, see Ref. [1].

The 16 states and the fluxes defined by Eq. (2.5) create a transition network, which
can be decomposed into competing pathways that are characterized by different tran-
sition probabilities, see Sec. 2.5.2 for the detailed derivation. We show the complete
transition network in Fig. 2.7B. The thickness of the arrows indicates the net flux. States
which contribute with a net flux close to zero have been omitted, as a consequence of
this the transition network in Fig. 2.7B shows only 11 of the 16 possible states defined
by the MSM. As the most important result, we find that competing pathways for the
H-bond switching exist. The main transition pathway I with a probability of 46.6%
is the direct transition path HU—UH, where O* switches its donating hydrogen from
O? to O without an intermediate state (on the time scale set by the lag time of 7 = 1
ps)- The transition pathways III and IV involve the weakly bound state w, where O%
or O is in an intermediate state found at a separation R < 0.35 nm. The three transi-
tion pathways I, I1I, and IV sum up to about two thirds of all possible transitions, they
describe a direct H-bond switch between the two accepting water molecules and thus
correspond to the pathway described by Laage et al. [37,59] and indeed constitute the
predominant pathway for H-bond switching in agreement with [58].

However, the second important pathway II consists of a short-lived intermediate
state which can be of the ww, wU, Uw, or UU type, and has a probability of 26.2%. The
other group of pathways, V,VI, and VII, involve intermediate states where O* forms
an alternative H-bond with O or OP, they sum up to a total probability of 5.0%. An
example of a trajectory of type IV is shown in Fig. 2.6B, where the O? water does not
immediately diffuse away from O* after breaking its initial H-bond with O*, but rather
stays H-bonded to O* via an alternative H-bond. Together, all pathways where the H-
bond does not switch directly from O to OP make up about one third of all switches,
and thus are not negligible. Clearly, by extracting averaged coordinates during H-
bond switches from simulation trajectories or by looking at dominant transition path
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Chapter 2 Collective hydrogen-bond rearrangements in liquid water

ways from transition path sampling, such subdominant alternative pathways are easily
overlooked.

2.4 Conclusions

We use Markov state modeling for the analysis of liquid water structurual dynamics
based on classical molecular dynamics simulations. In the first part we consider water
dynamics in the full 12-dimensional continuum space of a water trimer that is em-
bedded in liquid water and identify the slowest dynamic processes and relate them to
dynamical rearrangements of H-bond patterns. The three slowest processes consist of
the breaking and reforming of at least two H-bonds and correspond to donor-acceptor,
acceptor-acceptor and double donor/acceptor interchanges. Interestingly, the second
slowest process, the acceptor-acceptor interchange, corresponds to the rotation of a sin-
gle water molecule, while the donor-acceptor and double donor/acceptor interchanges
involve the concerted rotation of all three water molecules. This means that slow water
processes consist of either collective (like the slowest and third-slowest process in Fig.
2.5B and C) or single-water reorientation processes (like the second-slowest process in
Fig. 2.5C). In the second part we formulate the MSM in a much restricted state space
that results from a prior H-bond projection. Using transition path analysis we clas-
sify all possible pathways describing the H-bond switching from one accepting water
molecule to a second accepting water molecule. The dominant transition pathways
correspond to a direct transition to the new H-bond acceptor without a broken H-bond
as an intermediate state, which make up about 66% of all transitions and have been
investigated before [37,58,59]. A non-H-bonded intermediate occurs in the transition
pathway in about 26% of all transitions while in 5% of all transitions an alternative
H-bond arrangement occurs in the intermediate state. We conclude that the dominant
transition pathways we find for the single H-bond switch are consistent with previous
results but that MSMs allow to draw a more complete picture of the H-bond reconfig-
uration dynamics.

In previous quantum calculations the concerted breaking and reforming of H-bonds
in isolated water clusters at zero temperature has been characterized [114-116]. These
studies suggest that H-bond rearrangements are local and do not involve more than
three water molecules [115]. Nevertheless, it would be interesting to extend MSMs to
tetramers or pentamers in order to check whether concerted H-bond rearrangements
that involve more than three water molecules exist in the liquid state. Our simulation
trajectories are obtained from classical force field simulations and neglect the quantum
nature of nuclei motion, which is an acceptable approximation at the time scale we are
probing [132,133]. Effects from suboptimal force fields are presumably more critical,
which is an issue we leave for future studies.

As a final note we would like to discuss whether the occurrence of abrupt angular
jumps is in conflict with Debye’s diffusive model. As briefly mentioned in the intro-
duction, the presence of an angular free energy barrier predicts a transition path time
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that is much shorter than the H-bond life time [106-108]. Explicitly, the mean-first pas-
sage time to cross a harmonic barrier of angular width L is for large barrier height U
given by [108]

JTL2eU kBT

o ymhe T 29
Tm fp 8D(U/kpT)3/? 29)

where D is the effective angular diffusion constant along the angular reaction coordi-
nate. In contrast, the transition path time, that means the actual duration of the path
that crosses the barrier, is for large barrier height U given by [108]

_ V/TL*In(2¢"U/kpT)
T TT8DU kT

(2.10)

where v = 0.577 is the Euler gamma constant, and only logarithmically depends on
the barrier height. The ratio of the transition path and the mean-first passage time is
given by [106]

In(2e"U/kgT)(U/kpT)"/?
Ttp/Tmfp = ﬁeU/k:BT

(2.11)

which for a rescaled barrier height U/kgT = 4 takes a value of 7,/ ¢, = 0.05. This
means that even for a moderate barrier height the angular transition is rather short and
thus abrupt compared with the hydrogen bond life time, which does not invalidate the
Debye diffusive picture but rather shows that free-energetic barrier effects must be
taken into account.

2.5 Supporting Information

2.5.1 Constructing Markov state models

Markov state models allow to describe the complex dynamics occurring in a MD-
simulation by a Markov chain - a stochastic process without memory effects. In order
to achieve this, the entire dynamics is projected onto a number of discrete states where
fast processes are projected out. The rates or transition probabilities between different
states are governed by a transition probability matrix

Tnw Tz - Tin
To1 Toe -+ Ton

T(r)=| . . - (212)
Tni Tn2 -+ Tnn

where the elements T;;(7) describe the conditional probability of a transition from state
i to j within a lag time 7. Once this matrix has been estimated, different processes,
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Chapter 2 Collective hydrogen-bond rearrangements in liquid water

transition paths, and probabilities can be extracted and ordered by the time scale ¢* of
each process. We give a brief overview of the concept of Markov state models in this
section and refer the reader to [117,118,127] for more details.

The phase space Q(q, q) of a system consisting of N atoms yields a 6 N-dimensional
state space spanned by the positional q and momentum q degrees of freedom. The
process {x;}+cr, Wwhere x; = x¢(q, q), describes a trajectory in phase space, which is
completely deterministic when considering a MD-simulation in the NVE ensemble and
knowing the initial configuration. Solving the Liouville equation

ap - _Z[aﬂa OH 0 213

ot 0q; 9g; 0q; 0 qi

for a given Hamiltonian H yields the complete information at any time ¢. We further
assume the process is homogeneous in time and reversible, in particular it fulfills de-
tailed balance. The evolution within time 7 is given by the formal solution of Eq. 2.13

p(a,a,t+7) =e“"p(a,q,t) = P(1)p(q, 4, ) (2.14)

where the propagator P(7) = €™ contains the entire information about the dynamics

of the system. The propagator can be estimated by a projection onto a low-dimensional
and finite state space, where usually all momentum degrees of freedom are neglected,
see Fig. 2.8 for an illustration. The projection is typically not exact anymore, but the
dynamics one is interested in will not be changed significantly if the projection is per-
formed suitably. Since we simplified the dynamics from continuous to discrete state
space the propagator P(7) reduces to the transition matrix

P(1) = T(7). (2.15)

This matrix is defined such a way, that the sum of every row is 1, which describes the
conservation of probability. This kind of matrix is called row-stochastic. The evolution
of a density distribution reads then as

pl(t+7)=pl () T(r), (2.16)

where p’' denotes the transpose of p and the phase space density p is reduced to a
(normalized) probability vector p(7). Eq. 2.16 implies the following identity

T(nt) =T"(7) (2.17)

known as the Chapman-Kolmogorov equation. Whenever a stochastic process fulfills Eq.
(2.17) the process is Markovian and depends only on the current configuration. The
transition matrix is estimated by

oy _Gi(T)
Tij(7) Se(n)’ (2.18)
J
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Figure 2.8: Clustering of state space. Schematic trajectory in 6N-dimensional phase state space. Here, the
entire state space has been partitioned into only five clusters which cover the complete state space.

where c¢;; is the frequency of jumps from state i to j within time 7 and ) ¢;;(7) is the
J

frequency of jumps from ¢ to any other state j within lag time 7.
Once a transition matrix has been estimated, a spectral decomposition yields differ-

ent time scales and processes associated to these time scales.

Spectral decomposition
The eigenvectors and eigenvalues of the transition matrix provide useful information

about the processes that govern the system dynamics. For a V x N matrix we always

(2.19)

can obtain a left 1 and a right r eigenvector to the same eigenvalue:
(2.20)

rI‘I‘Z‘ :)\iri
17T =17 )\,

where the i denotes the i-th eigenvector. Further it is assumed that the matrix is diag-

onalizable and we define the following vectors and matrices.
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A 0
A= = diag(A1,...,An) (2.21)
0 AN
R = (I‘1 oo I‘N) (222)
lT
1
L=|:|, (2.23)
1Z
N

where A is the diagonalized matrix of T, containing all eigenvalues on the diagonal.
R contains all right eigenvectors, and L all left eigenvectors. The decomposition of the
transition matrix is then given by

T =RAR™! (2.24)
=L 'AL (2.25)
—RAL (2.26)

N
=> Ar ol (2.27)
=1

where we used RR™! = LL~! = RL = 1. With this decomposition we are able to
describe the evolution of the probability density distribution as the superposition of
eigenvectors

p(n7) = p(0)T"(7)

N
=Y e T(p(0)-r)lf, (2.28)

where we used T" = RA"L. Thus, the evolution is given by summing every left
eigenvector weighted by a scalar (p(0) - r;) and the n-th power of each eigenvalue. We
assume the matrix fulfills detailed balance

mili; = Ty, (2.29)

where 7 is the stationary distribution of T, which is the (normalized) left eigenvector
to A = 1. Every other eigenvalue is real-valued in the interval

—l<A<1. (2.30)
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The eigenvectors reveal information about the processes. From Eq. (2.28) we can
read off the time scale of each process, which is directly related to the eigenvalue

nTt

A7) = enn(Ai(r)) — o7 (2.31)

For a perfect Markov state model this time scale is independent of the lag time 7, since

O = am = ) mve)
= _m(/\:?ﬁ = t;(nT) = const., (2.32)

where we used \"(7) = A(n7) which follows directly from the Chapman-Kolmogorov
Eq. (2.17). The fact, that the time scale should be independent of the lag time, is a
useful tool to check if Eq. (2.17) is fulfilled, since it is rather cumbersome to compare
transition matrices estimated at different lag times. However, when estimating transi-
tion matrices by counting transitions from one state to another, the time scales are not
necessarly independent of the lag time since the model relies crucially on the defined
state space and the sampling. In particular, (i) for small lag times the inertia of the
massive particles dominates and leads to non-Markovian effects, (ii) insufficient selec-
tion/projection of states can lead to memory effects as well, and (iii) for large lag times,
typically larger than the largest time scale, sampling issues arise, see also Sec. 2.5.5.

In a nutshell the steps for the construction of a Markov state model can be summa-
rized as follows.

i) Clustering. First, the state space needs be clustered into a predefined number
N of clusters. For this a cluster center needs to be assigned. Every point of the
trajectory which is inside the cluster will be assigned to the cluster center. There
are numerous methods how to cluster. A prominent algorithm we use is called
k-means++ [129], where the functional

N
T=Y 3" lIxy— all? (2.33)

=1 X;j ESZ‘

is minimized, x; represents the j-th component of the trajectory, y; is the i-th
cluster center of a total of N cluster centers and S; represents the i-th cluster. If the
data contains variables of incomparable units then the data can be standardized
before performing the clustering.

ii) Estimation. The transition matrix is estimated from a long or many short trajec-
tories by

oy Gis(T)
T35(7) Seiy(n)’ (2.34)
J
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where ¢;;(7) is the frequency of jumps from state i to j within lag time 7 and
>~ ¢;(7) is the frequency of jumps from i to any state within time 7.
J

iif) Markovianity check. The system can be assumed Markovian when fulfilling the
Chapman-Kolmogorov equation Eq. (2.17). This is conveniently achieved by
estimating transition matrices for different lag times 7 and calculating the slowest
time scales t7. The Markovianity is given when ¢ becomes independent of the
lag time.

2.5.2 Transition paths

The concept of transition path theory (TPT), allows us to derive the probability to ob-
serve a certain transition pathway for a reactant and product state.

We derive the key quantities in order to find every possible pathways and its associ-
ated probability. We follow the excellent derivation in [64,134,135].

Given is the N x N transition matrix T(7) defined in Eq. (2.12) and the set of all clus-
ter states Ng,st, consisting of in total N states, which are partitioned into the subsets
A, B, and I, where

A = reactant state
B = product state
I = intermediate states.

Transitions occur from the reactant state A to product state B, where a transition path
could go directly from A to B or cross intermediate states i € I. We are interested
in finding every possible transition path and its associated probability. An important
quantity is the committor probability ¢”, which describes the probability that when
being in state ¢, the system will rather reach the product state B than recurring to
the reactant state A. The committor probabilities are derived by solving the following
system of linear equations

a7+ Tiaf == Tip. (2.35)
kel keB

By definition ¢ = 0ifi € Aand ¢” = 1ifi € B. The probability that the system comes
from A rather than from B when being in state i is described by the backward commit-
tor ¢i*. For systems obeying detailed balance the backward- and forward-committor
fulfill

P+t =1 (2.36)

The committor ¢” increases gradually when moving closer to the product state B. The
flux f;; is defined as the probability flux that contributes to transitions from A to B,
given by

fij = miai Tiq?, (2.37)
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which describes the rate to find the system in state i (7;) which was previously in the
reactant state A (¢/') and moves to state j (T3) and then reaches rather the product state
B than going back to A (qf” )- When being on a pathway from A to B recrossing events
could occur

1= —i.... (2.38)
The net flux given by

7 = max{0, fij — fji} (2.39)

considers only a single transition from one to another state (no recrossing). The set
of states and net fluxes between the states form a transition network, which is flux-
conserving, the total flux K leaving A must be equal to the flux entering B and is given

by
K=Y Y mTyq. (2.40)

i€A jgZA
For all intermediate states I Kirchhoff’s law is fulfilled

> (fij = fii) =0. (2.41)
Jjel
When knowing the total flux K we are able to estimate the reaction rate from A — B
as

K
kap = — (2.42)

Ty TFz'%A
i=1

where 7 is the lag time of the transition matrix and [V is the number of states. Thus the
mean first-passage time is

Tmip = 1/kap. (2.43)

Decomposing pathways

The net-fluxes of the full or coarse-grained model are based on individual pathways
that connect A and B.

In order to find the probability to observe a certain transition path, we need to de-
compose the net-flux network.

We define a pathway as a path starting in A and ending in B. The set of all possible
pathways is W. A pathway w without recrossing events is called a reaction pathway.

An important parameter along a reaction pathway w is its minimal net-flux

c(w)= min {f]}. (2.44)

e=(i,j)ew
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The bottleneck of a reaction pathway are the two states b; and b, which are connected
by the minimal net-flux

(b1, bo) = arg e:r(ggglew{fﬁ}- (2.45)

As a consequence, the best reaction pathway is characterized by a maximum of all
minimal net-fluxes and is therefore called ¢max(w). This pathway is in general not
unique since the bottleneck could belong to another reaction pathway as well. The
dominant reaction pathways Wp € YV are defined by all pathways

Wp ={w e W :c(w) = cmax}, (2.46)

with the same cpax. Thus, the bottleneck divides the dominant reaction pathways into
two sets

Wp =W (L) x W(R), (2.47)
such that every reaction pathway can be decomposed into

w=(ig,. iy, =bi,by =, ir,) (2.48)

wL WR

The representative dominant reaction pathway w* € Wp is defined as

* . B
w® = arg max min = 2.49
ngWD e=(i,j)Ew {fw } ( )
(4,5)#(b1,b2)

and describes the reactant pathway which is most likely to be observed.

In order to calculate the probability of all other pathways, the net-flux cmax is re-
moved from the flux network only along the reaction pathway w* such that a reduced
transition network is created

B __ fZB — Cmax; if(i,j) € w*
fij = .

2, otherwise

(2.50)

The net-flux fg is called the residual net-flux. Identifying the dominant reaction path-
way of the reduced network will lead to the next most likely transition path. This pro-
cess is continued until the full flux K has been subtracted, comprised in the following
algorithm

i) Compute the representative dominant reaction pathway
ii) Update the flux network in calculating the residual net-flux

iii) Iterate until the entire flux K has been subtracted
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The result is an ordered list of all reactant transition pathways
(w},ws, .., w) (2.51)
for every possible reaction pathways such that

o ch>cl), 0<i<j<M
SN0

L4 Zcmax:K
=1

The probability to observe a certain path is given by

* CSril)ax
P(u;) = 222, (2.52)

2.5.3 Free-energy and diffusivity profiles from 2-water MSM

With a MSM, the free-energy and diffusivity profile acting between water molecules
can be extracted from the transition matrix. The relative water dynamics is assumed to
be governed by the Fokker-Planck equation in three dimensions [1]

%P(r,t} -V (e‘BU(r)D(r) v e‘ﬁU(r)P(r,t)D , (2.53)

where P(r,t) is the probability to find the two waters at a certain separation r at time
t, U(r) describes the effective pair potential, D(r) the relative diffusivity tensor, and
p = 1/kgT. The diffusivity tensor takes a diagonal form

D 0 0
D=|0 D, 0 (2.54)
0 0 Dy

when introducing spherical coordinates R, ¢, §, where we neglected the orientation of
the second water molecule. The angular degrees of freedom can be integrated out

2

p(R,t) = / do / dpsin(¢p)R*P(R, $,0,1), (2.55)
0

0

which results in the following partial differential equation for the probability to find
the waters at distance R at time ¢

9 _ 9 |2 sur) 0 sumP(R,1)
8tp(R’t) =R [R e D(R) SR¢ 2 |- (2.56)
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We define a free energy F' = U — 2kgT'In(R) to recover the usual form of the one-
dimensional diffusion equation

3} 0 0
—BF(R) BF(R)
o p(R,t) = 7 | D(R) 3R¢ p(R,t)| . (2.57)
From simulations the free energy F(R) = —kgT In(p(R)) can be obtained easily by

Boltzmann inversion of the equilibrium distribution (p(R)) which equals the equilib-
rium distribution of the Markov model

(p(R)) = 7(R). (2.58)

For the numerical solution of the diffusion Eq. (2.57) we discretize Eq. (2.57) in space
and time, which leads to the form of a Master equation

pi(t + At) — pi(t)
At

=Wii1pi—1(t) + Wiiza1pit1(t)
+ mei (t) (259)

For the transition rates we use [136]

D; + Dj F;, — F; . L
Wi — ! th j=i+1l 2.60
I 7 9(AR? © ( % 5T ) Wit g = (260
and W;; = —W;_1; — W41, which satisfies concentration conservation and detailed

balance. The concentration profile p;(t) at time ¢t = nAt follows from Eq. 2.59 as

N
Z [(T+ AtW)™], . p;(0) = > el p;(0) (2.61)

where I is the identity matrix and W is the rate matrix defined in Eq. (2.60). The
continuous limit A¢ — 0in Eq. (2.61) has been taken in order to express the n-th power
by the matrix exponential. That way the transition matrix T can be expressed by the
matrix exponential of the rate matrix W via

T(t) = W, (2.62)

The rate matrix W contains the free-energy and diffusivity profile as given by Eq.
(2.60). From a Markov state model the free-energy profile can be easily obtained from
the normalized left eigenvector with eigenvalue A = 1. The calculation of the diffusiv-
ity profile is more subtle. We estimate the diffusivity profile from mean first-passage
times which are calculated from an absorbing transition matrix. This is described in
detail in the next section.
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Absorbing Markov chains

The concept of absorbing Markov chains is described in Ref. [137]. Consider a transi-
tion matrix T with entries 7;; and k absorbing states. If at least one state is absorbing,
then T;; = 1 and the transition matrix can be rewritten as

_(Q R
T_<0 1)’ (2.63)

where I denotes the identity matrix of order k. The submatrix Q is of square form and
corresponds to the transient states. The residual matrix R is in general not of square
from but non-negative. The n-th power of the transition matrix takes the form

n __ Qn Rn
T_<0 1)’ (2.64)
where
R,=I+Q+...+ Q" HR. (2.65)

The inverse of (I — Q) ! is called the fundamental matrix
N=I-Q '=1+Q+Q>+... (2.66)

and describes how many times the process will be in transient state j before being
absorbed when initially located in a transient state <.

We are interested in calculating the first-passage time distribution fi(j"), describing
the probability of being absorbed in state j after exactly n steps when being initially in
state ¢.

Without loss of generality we consider only one absorbing state and the absorbing

transition matrix reads as
_(Q r
T = (OT E (2.67)
(n

Let p; j) denote the probability to reach the absorbing state j within n-steps. Then the
first-passage time distribution after n-steps is the difference of the probability of being
absorbed within n steps subtracted by the probability of being absorbed within n — 1
steps

(n) _  (n) _ (n—1)
fii " =pij —py (2.68)

It follows from Eq. (2.65) that

£ =1, —r, 1 = Q" 'r, (2.69)

35



Chapter 2 Collective hydrogen-bond rearrangements in liquid water

which defines the first-passage-time distribution as a vector, where every component
describes the probability of being absorbed in exactly n steps when initially being in
state i. The mean first-passage time, the first moment of (", can be calculated by

P36
n=0

o0
=2 Q"
n=0

=(1+2Q+3Q*+..)r

—(1+Q+Q*+..)-14+Q+Q*>+..)r

=N?r

=N1, (2.70)
where 1 is a vector containing only ones. Further, we used Nr = 1 which follows

directly from Eq. (2.65). Since N can be extracted easily from a transition matrix, the
mean first-passage time can be calculated right away from Eq. (2.70).

Diffusivity extraction

We come back to our transition matrix introduced in Eq. (2.62) and expand the matrix
for small lag time ¢, which results in

T(t) ~ T+ tW + O(W?). (2.71)

The matrix Q is given by Q = W't, where the dimension of W' is reduced by one in
truncating the last row and column of W. This makes it possible to invert W'¢. For the
fundamental matrix we can write then

1

N~ [I-I+Wh)] =Wt (2.72)

Together with Eq. (2.70) we obtain the following identity for the mean first-passage
times

(WH)r = —1 (2.73)

The action of the matrix W’ on the mean first-passage vector 7 can also be expressed
by
(W't)r =8d = —1, (2.74)

where d is the diffusivity vector

d=(Dy,...,D, )" (2.75)
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which corresponds to the values of the mean diffusion constant between two dis-
cretized bins

P, - DitDia

i 2.
> 276)
The components of the matrix S are given by
_ t _Fy-F
Sip = (T(QAR?Q) e EpT 2.77)
1 — 1)t _Fioith
Si—1; = (T(AlR);_) e 2kpT (2.78)
T _Fina—F
Sii = (Tzz-AlR);—z)t e 2kpT (2.79)
Zt _ Fng1—Fn
Sn—1n-1= _(ATT)Q e BT (2.80)
When we invert S we obtain the diffusivity vector
d=-S""'1. (2.81)

However, this inversion might be singular or ill-posed, which occurs e.g. when two
neighboring mean first-passage times are almost equivalent or the when the sampling
is insufficient. This problem can controlled when regularizing the original problem.
The Tikhonov regularization of Eq. (2.81) yields the following least-square problem

min{||Sd + 1|3 + [|Ad]3}, (2.82)

where A > 0 is the regularization parameter. The explicit solution to Eq. 2.82 is given
by

—d = (87s + \?1)~ 1871, (2.83)
This can be rewritten when S is described by its singular value decomposition
S=UxVv?l, (2.84)

where the columns of U are called the left-singular vectors, the orthonormal eigen-
vectors of SST, and the columns of V are the right-singular vectors, the orthonormal
eigenvectors of S”'S. The diagonal of X carries the (positive) singular values o; which
are the square roots of the positive eigenvalues of the symmetric matrix STS. Using
the definition of the singular value decomposition for S we obtain

—d = [(UsVD)TUsvT + )21 (usv) 71
— VI(ETs + X1)v] T veTuTt
— V=TS + 27 =TUT1

N . o1 On T
= Vdiag (J%+)\2,...,0721+>\2)U 1. (2.85)
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We see that for singular values close to zero, the regularization parameter A\ > 0 assures
an invertible matrix S.

Diffusivity profile

Finally we are able to calculate the diffusivity profile. We record trajectories from a MD
simulation (same as main text) for pairs of waters, where only the distance R between
the two oxygen atoms is stored. We start recording as soon as the radial distance be-
tween the two oxygen atoms is R < 1.4 nm and stop when the distance becomes larger
than R > 1.4 nm. In total, more than 7 million trajectories are recorded. We equally
cluster within the range from Rpyin = 0.23 nm to Rmax = 1.4 nm with a spatial resolu-
tion of AR = 0.01 nm and estimate the transition matrix.

We calculate the mean first-passage times according to Eq. (2.70) from the transition
matrix T(¢t = 7.0 ps) for a lag time of t = 7 ps and plot the results in Fig. 2.9A for
different choices of the absorbing target position R;. There is a maximum in the mean
first-passage time at about R = 0.26 nm. For smaller separations the dynamics cannot
be described by a one-dimensional diffusion equation since it would result in a nega-
tive diffusivity according to Eq. (2.74), where a stritly decreasing mean first-passage
time is demanded.

The free energy is estimated from the normalized left eigenvector with eigenvalue
A = 1via F; = —kgT In(m;), see Fig. 2.9B. There is a barrier of AF' = 1 kgT for crossing
from the first to the second hydration shell, for larger separations a decreasing free
energy F' < —In(R) is observed. At about a separation distance of R = 1.0 nm the
free energy increases again. This is caused due to limited sampling at a lag time that is
larger than the time resolution of the data. The diffusivity profile has been calculated
according to Eq. (2.85). Due to the maximum in the mean first-passage times, the
matrix S becomes singular. Therefore we choose a small regularization parameter of
A = 0.001 to ensure invertibility.

The calculated diffusivity profile shows a pronounced minimum in the first hydra-
tion shell with a minimum value of Dy, ~ 0.8 nm?/ns. Up to R = 0.8 nm the dif-
fusivity profile is in good agreement to the results obtained previously from the mean
first-passage method presented in [1]. For R > 1.0 nm it starts to deviate caused by the
increase of the free energy due to limited sampling.

Lag-time sensitivity

We discuss the resulting free-energy and diffusivity profile when the lag time is varied.

We estimate transition matrices for lag times of ¢ = [0.1,1,2,3,7,10] ps and calcu-
late the resulting free-energy and diffusivity profiles according to Eq. (2.83), which are
plotted in Fig. 2.10. We see a strong dependence on the chosen lag time for the dif-
fusivity, whereas the free-energy profile shows only deviations for separation values
of R > 1.0 nm which are characterized by a slight increase at larger lag times. At a
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Figure 2.9: (A) Mean first-passage times for different target separations R; obtained from the transition
matrix estimated at a lag time of ¢ = 7 ps. (B) Free-energy profile obtained from the (left) eigenvector
with eigenvalue A = 1. (C) Diffusivity profile obtained from Eq. (2.81) (blue lines) compared with profile
estimated previously by the mean first-passage time method (red lines) [1].

lag time of t = 0.1 ps the largest diffusivities are obtained. The diffusivity approaches
the values obtained from the round-trip method for lag times ¢ > 3 ps. This result is
at first sight suprising since the estimation of the diffusivity profile according to Eq.
(2.74) holds strictly in the limit ¢ — 0, since the identity between the rate matrix W’
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Figure 2.10: (A) Free energy estimated for different lag times. The increase at R > 1.0 nm is due to
insufficient sampling at large lag times. (B) Diffusivity profiles estimated for different lag times according
to Eq. (2.85).

and mean first-passage times in Eq. (2.74) results from a linear expansion of T'(¢).

We summarize that a MSM reproduces observables such as the free-energy and dif-
fusivity profiles in agreement with other methods such as the mean first-passge time
method [1].

2.5.4 Varying the number of clusters

We next discuss the behavior of the time scales when different numbers of clustes are
used while the number of trajectories is kept constant. The clusters have been calcu-
lated by the k-means++ algorithm [129] for cluster numbers of 10, 100, 500, 1000, and
2000. We plot the behavior of the slowest time scale ¢} in Fig. 2.11.

With increasing cluster number the time scales are shifted upwards. For larger clus-
ter numbers the change is smaller. For cluster numbers > 500 the lag time plot stays
rather invariant.
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Figure 2.11: Slowest time scale behavior for different number of cluster centers in the three-water MSM.

2.5.5 Lag-time dependency from reduced data sets

In this section we discuss the behavior of the time scales when fewer data is used to
estimate the transition matrix of the Markov model. We use the 320.000 trajectories of
the three-water MSM (see main text) with a total length of approximately 1700 ns and
a time resolution of 0.1 ps corresponding to 17 - 10° data points.

The full trajectory is separated into (1.7,17,170, 1700) ns slices corresponding to ap-
proximately 0.1%,1%,10% and 100% of the full data. We use n = 500 clusters and
estimate the cluster states by the k-means++ algorithm and construct the transition
matrix of the Markov model. We study the behavior of the slowest time scale in Fig.
2.12.

For a data reduction to 0.1% (blue line) no constant domain is visible and the time
scale increases exponentially for 7 > 3 ps. In the case when 1% of data is used (cyan
line) the Markovianity breaks apart for 7 ~ 10 ps and for the other two cases (green
and orange) at 7 ~ 15 and 20 ps respectively. The black horizontal line denotes the time
scale of the considered process t7 ~ 6.1 ps. The dashed vertical lines indicate the lag
time at which the time scale estimate becomes unreliable. It can be derived as follows.

Assume we estimate a transition matrix by counting transitions from one to another
state via

Ty(r) = ™) (2.86)
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Figure 2.12: Behavior of the slowest time scale ¢] of the three-water MSM when the input data is reduced.

We assume there is a sampling error o when estimating an eigenvalue

A = dest + 0. (2.87)
This then yields for the time scale
-
= . 2.88
In[Aest + 0] (2.88)

For increasing lag times the eigenvalue eventually becomes smaller than the sampling
error

A< o (2.89)

so that the estimated eigenvalue is dominated by the sampling error, which yields for
the time scale

- ——. 2.90
t In(o) 290)

The critical threshold for the lag time is therefore given by
Tait & —t" -Ino (2.91)

We can estimate the error o by associating the absolute error with the standard devia-
tion, which in general decays for a number of N data points as

(2.92)

2l
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where N is the number of data points. Let us for simplicity assume that each state of

the total n = 500 states has been visited equally. Then the number of visits per cluster

is approximately N/n =~ ) ¢;;. This would imply a standard deviation for the error of
J

an element of the transition matrix of
1
o~ (2.93)

V' N/n.

The calculated critical lag times are depicted in Tab. 2.1. We can see that these values

length ‘ 1.7 ns ‘ 17 ns ‘ 170 ns ‘ 1700 ns
data points | 1.7-10* | 17-10% | 170 - 10* | 1700 - 10
o 0.17 0.05 0.02 0.005

Terit 10.8ps | 178 ps | 24.8 ps 31.8 ps

Table 2.1: Critical lag time. Estimation error of the transition matrix and critical lag time.

define an upper boundary before the time scales start increasing. Obviously, increasing
the amount of data does not significantly increase the shift of the critical lag time 7cyit.
As a rule of thumb, an increase of the amount of data by a factor of 10, would only
increase the critical lag time by approximately the time scale, since

Terit = —17° - ln(lON/n)_%
1
= —t* - [In(N/n) 2 — 5 In(10)]
~ —t* In(N/n)"2 +t* (2.94)

Especially for small time scales the increase of data has only a small effect of extending
the Markovian plateau.

2.5.6 Eigenvector analysis at different lag times for three-water MSM

In the main text, we used a lag time of 7 = 7 ps for the three water model. We now show
that if we change the lag time to 7 = 3 ps and to 7 = 15 ps, the interpretation of the
eigenvectors does not change, see Fig. 2.13. The slowest process describes exactly the
same process if we choose 7 = 3 ps or 7 = 15 ps, which holds also for the 2nd slowest
process. Therefore, a variation of the lag time does not influence the interpretation and
time ordering of the processes.

2.5.7 H-bond rearrangements from two-water MSM

The two-water MSM captures the slow dynamics of two water molecules O* and O% in
the 6-dimensional state space. The same MD-simulation as in the main text is used and
the model trajectories are selected in the following way. Whenever the radial distance
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Figure 2.13: Slowest and second slowest process in the three-water MSM. The interpretation of the eigen-
vectors at different lag times does not change.

between the two oxygen atoms is R < 0.5 nm the relative position between these two
water molecules is recorded as a 6-dimensional trajectory by three Euler angles and
three spherical coordinates. In total, we captured 872,853 trajectories suming up to a
total trajectory length of 1250 ns which are used as input for the MSM. A typical trajec-
tory can be seen in Fig. 2.14, where the recording starts at a separation value of R < 0.5
nm and ends at a separation value of R > 0.5 nm. The cyan, green, red, and orange
colors correspond to different kinds of H-bonds which are explained in the main text.
We cluster the 6-dimensional state space, for which we use the k-means++ algorithm
implemented in PyEmma [129,138] with 500 cluster centers. The time scale behavior is
shown in Fig. 2.15A. For small lag times 7 < 1 ps the time scales increase rapidly. Two
factors are limiting the convergence to a constant plateau for small lag times. The first
one is due to inertial effects, since velocities are ignored in our Markov state model. The
second one arises from the finite number of clusters, which also introduces memory ef-
fects. For 7 > 1 ps the time scales separate and the slope of the time scales decreases.
However, a perfectly constant plateau, as implied by Eq. (2.32), is not observed, which
indicates that the dynamics in the 6-dimensional state space is not purely Markovian
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Figure 2.14: Trajectory of two water molecules. Typical time series of the radial distance R between two
water molecules. The colors mark different H-bond configurations between O* and O°.
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Figure 2.15: (A) Plot of the five slowest time scales t; versus the lag time time 7 for the two-water MSM.
(B) Plot of all time scales for a fixed lag time 7 = 7 ps. The first three time scales separate from the
continuum of the faster time scales.

due to the two factors stated above. Nevertheless, we can clearly separate different
time scales and thus discern the processes associated to these different time scales. For
T > 20 ps the time scales begin to merge again and cannot be distinguished anymore.
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This is caused by insufficient statistics at lag times which exceed the largest time scale
of the MSM. We discuss the behavior of time scale merging at large lag times in Sec. SI
2.5.5.

We choose the lag time of 7 = 7 ps, as in the three-water MSM, marked by a dashed
line in Fig. 2.15A and plot also the other time scales for the chosen lag time in Fig.
2.15B. The three slowest time scales can be separated from the continuum of all other
time scales and will be discussed here.

Eigenvector analysis

The first eigenvector 7 is associated to the eigenvalue A = 1 and thus corresponds
to the stationary distribution. We projected each component of the 500-dimensional
stationary distribution vector on the Euler and spherical coordinates, see Fig. 2.16.
In each of the 6 plots there are 500 dots, each representing the equilibrium value of
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Figure 2.16: Equilibrium state of the two-water MSM. We show the projection of the eigenvector onto the
Euler angles (¢, 5,7) and onto the spherical coordinates (R, ¢, ). The colors denote different H-bonds
between O* and O°.

the associated coordinate we project on. Additionally, we mark the type of H-bond
between O* and O? by different colors, see main text for color definition, whereas the
black dots indicate non H-bonded configurations.

The projection on the Euler angles in Fig. 2.16A,B,C provides no intuitive under-
standing of the configurations, but when we turn our focus on the three spherical co-
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Figure 2.17: (A) The eigenvector associated with the slowest time scale ¢t = 7.3 ps describes a donor-
acceptor interchange, where O* and O® interchange their roles as acceptor and donor. (B) Acceptor-
acceptor interchange with a time scale of t5 = 6.1 ps. Here O* donates an H-bond to O% via one of its
hydrogen atoms, whereas in the final state O* provides the H-bond through its other hydrogen atom. (C)
Acceptor-acceptor interchange with a time scale of t5 = 5.8 ps. This process is very similar to the second
slowest process, where the role of O* and O* are interchanged. (D) Fifth slowest process with ¢35 = 2.7
ps. Water O does not change its H-bonded state to O*, but performs an angular rotation of A = 70°
observable in the 3-coordinate of the Euler angles.

ordinates we can see interpretable structures. In the plot in Fig. 2.16D, we see that it is
very likely to find a configuration for small separation values, whereas with increasing
distance the probability to find the two water molecules decreases. The ¢-coordinate
Fig. 2.16E clearly shows that the four peaks are associated to the four H-bond config-
urations defined in the main text. In the cyan and green configuration at ¢ ~ £55°,
O* donates an H-bond to O%, whereas in the red and orange configurations O* accepts
an H-bond from O?. In the #-coordinate in Fig. 2.16F, the green and cyan configu-
ration are peaked at § ~ 90°, whereas the red and orange ones are spread out over
the entire f-range. We conclude that H-bonds can be most clearly discerned from the
¢-coordinate.
The slowest process in the MSM is given by the largest time scale, which here is
1 = 7.3 ps as indicated by the blue line in Fig. 2.15A. We examine the corresponding
eigenvector by projecting on the spherical coordinates, see Fig. 2.17A.
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Similar to the three-water MSM, the slowest process describes a donor-acceptor in-
terchange. We can see how all green and cyan configurations (O* donates to O%) carry
negative components in the eigenvector, which describes a loss of probability, whereas
the red and orange configurations (O? donates to O¥) carry positive components in
the eigenvector. Thus, this process describes the interchange of donor and acceptor
roles between O* and O%. The process could also be interpreted the other way around,
since an eigenvector can always be multiplied by a negative number, which would
then result in an acceptor-donor interchange. This process can thus be regarded as a
subprocess of the three-water MSM.

The second slowest process t5 = 6.1 ps describes an acceptor-acceptor interchange
similar as found for the three-water MSM. Water O% accepts initially an H-bond from
O* through Hj, whereas in the final state the H-bond to O? is provided through H3,
see Fig. 2.17B. An equivalent picture is seen in the third slowest process with almost
the same time scale of t§ = 5.8 ps, where O® provides an H-bond to O* with one of its
hydrogen atom and finally donates through the other hydrogen atom, see Fig. 2.17C.

All faster processes are characterized by time scales of t* < 2.7 ps, see Fig. 2.15B. The
interpretation of the eigenvectors becomes more difficult and not every eigenvector
has a simple physical interpretation. We discuss the 5th slowest process with t; = 2.7
ps and project on the Euler and spherical coordinates, see Fig. 2.17D. Every of the
four possible H-bond configurations is homogenously distributed for a fixed ¢-angle,
which indicates that the initial and final H-bonded positions are not changed. When
we examine the Euler angle 3, a change is observable. For g < 100° the states are
negative, whereas for 5 > 100° the states are positive. The other two Euler angles are
spread out almost equally on the negative and positive domain. We can calculate the
angular change Af as the difference of the positive mean -value and the negative
mean [-value according to

_ 2l Ole)  Ylire-(1-6(w) oo
A= > li-O(c) S - (1-6(¢)) 707, (2.95)

where [; is the i—th component of the considered eigenvector, ¢; is the i-th cluster cen-
ter for 5, and © denotes the Heaviside function. Interestingly, this value of A3 = 70°
is already close to the angle of 68° that Laage et al. [37,59] derived for the average
reorientation jump angle when an H-bond donating water molecule changes its accep-
tor water. This could indicate that this process is associated to an angular rotation O%
performs to provide a H-bond to another water while staying H-bonded to O*.

Summarizing, in the two-water MSM we can distinguish different processes, which
are associated to breaking and forming of H-bonds. These time scales deviate slightly
from the time scales in the 3-water MSM, but the observed processes correspond to
subprocesses of the processes observable in the three-water MSM. Therefore, the three-
water MSM can be regarded as a product of two two-water MSMs.
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2.5.8 Validity of MSM for H-bond acceptor switching

We discuss the validity of the model described in Sec. IIIB in the main text. In Fig.
2.18A we plot all time scales estimated from the Markov state model. The three slowest
time scales begin to saturate for ¢ > 1 ps. On the one hand a small lag time is important
to reduce the effect of spurious transitions when applying transition path theory, but on
the other hand the lag time should not be too small since the ballistic motion of water
dominates in this regime. In fact, the crossover from ballistic to the Markovian regime
occurs when the mean squared displacement changes its scaling from oc t* to x t,
which occurs for a diffusing water molecule in our set-up at about ¢t = 0.2 ps, see Fig.
2.18C. In Fig. 2.18B we plot the mean first-passage time of the switching event where
O* switches its H-bond from O* to O°. The blue line corresponds to the mean first-
passage time obtained directly from the MD-trajectory. For small lag times this yields
a mean first-passage time of Tnh{[flg ~ 3.3 ps which is equivalent to the reorientation
time estimated by Laage et. al. in Ref. [37]. With increasing lag time the mean first-
passage time increases, caused by recrossing effects that occur. The red line in Fig.
2.18B corresponds to the mean first-passage time estimated from the transition matrix
according to Eq. (2.70) and is equivalent to the mean first-passage time estimated from
Eq. (2.43) and shows a stronger dependence of the chosen lag time. Our choice of the
lag time of ¢ = 1 ps ensures that the deviation between these two methods of extracting
the mean first-passage time is minimal.
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Figure 2.18: (A) Lag times from MSM for H-bond switching. Markovianity is approximately obtained for
t > 1 ps. (B) Mean first-passage times estimated directly from MD-trajectory (blue) and from the transi-
tion matrix (red). (C) Mean squared displacement for two diffusing water molecules, which indicates a
crossover from ballistic to diffusive motion at ¢ ~ 0.2 ps.
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Chapter 3

Data-based modeling of drug
penetration relates human skin
barrier function to the interplay of
diffusivity and free-energy profiles

Parts of this chapter have previously been published. Reprinted with permission from
Ref. [ii]. Copyright 2017 by the National Academy of Science.

3.1 Introduction

Multicellular organisms exhibit numerous structurally distinct protective barriers, such
as the blood-brain barrier, intestinal, mouth and respiratory mucosa, and the skin,
the largest human organ. These barriers are generally designed to keep foreign ma-
terial out and in some cases to allow the highly regulated transfer of certain desired
molecules,

consequently, they present a severe challenge for drug delivery [74,75,139]. The
in-depth understanding of barrier function is not only required for controlled drug
delivery, but is also of central interest in medicine, drug development and biology.

Human skin can be broadly divided into two layers, see Fig. 3.1A, the epidermis
with a thickness of about 100 um, which prevents water loss and the entrance of harm-
ful microorganisms or irritants, and the dermis, which is typically 2 mm thick, contains
blood vessels and protects the body from mechanical stress [140].

The epidermis is further divided into the stratum corneum (SC), the 10 ym - 20 ym
thick outermost layer consisting of dried-out dead skin cells, the corneocytes, and the
viable epidermis (VE). In the stratum granulosum (SG), which is part of the VE, skin
cells (keratinocytes) are gradually flattened and transformed into corneocytes when
migrating toward the SC.

The SC is structurally similar to a brick wall [141]: The bricks are the corneocytes,
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while the mortar is the intercellular matrix, which is composed of stacked lipid bilay-
ers. Several models for the permeation of drugs through skin exist, which incorporate
the skin structure on different levels of complexity. In the simplest models the stratified
skin structure is reflected by 1D layers with different diffusivities and partition coeffi-
cients [81-84,142], in more detailed models the 3D SC structure is accounted for [85,86].
In all models a certain skin structure and various transport parameters are assumed,
which a posteriori are adjusted such as to reproduce experimental permeabilites or
concentration-depth profiles inferred from tape-stripping studies [85,86]. For a de-
tailed overview of skin-diffusion models and a historical outline see Refs. [143,144].

We describe here a data-based modeling approach, i.e., which does not make any
model assumptions, and as the only input requires drug concentration depth profiles
in the skin at three consecutive times. Our approach, which we test for the lipophilic
anti-inflammatory glucocorticoid dexamethasone (DXM) in ex vivo human skin, is very
general and can be used for all kinds of permeation barriers. This drug is chosen since
soft X-ray absorption spectromicroscopy allows to generate 2D absolute concentration
profiles of unlabeled DXM in thin skin slabs with a resolution below 100 nm [145, 146].

We start with the general 1D diffusion equation, which describes the evolution of a
1D concentration profile ¢(z, t) in space and time and depends on the position-dependent
free-energy profile F'(z) and the diffusivity profile D(z)

gc(z,t) = é?az <D(z)eBF(Z)aazc(z,t)eﬁF(z)> , (3.1)
where 8 = 1/(kgT) is the inverse thermal energy. The free-energy profile F'(z) re-
flects the local affinity and determines how the substance, in our specific case DXM,
partitions in equilibrium, namely ceq(z) o e #F(). The diffusivity profile D(z) is a
local measure of the velocity at which the substance diffuses in the absence of external
forces. The diffusion equation not only describes passive and active particle transport
in structured media, it has in the past also been used for modeling marketing strate-
gies [20], decision making [21] and epigenetic phenotype fluctuations [147]. The impor-
tance of a spatially varying diffusivity profile D(z) has been recognized for the relative
diffusion of two particles [148], trans-membrane transport [149], particle diffusion at
interfaces [19,150], protein folding [18,151-153] and multidimensional diffusion [154].
The 1D diffusion equation can be solved analytically only in simple limits, for general
F(z) and D(z) profiles the solution ¢(z,t) must be numerically calculated.

The inverse problem, i.e. extracting F'(z) and D(z) from simulation or experimen-
tal data, is much more demanding and has recently attracted ample theoretical atten-
tion. With one notable exception [155], most inverse approaches need single-particle
stochastic trajectories and are not suitable to extract information from concentration
profiles [19,148,149,156-158]. For the typical experimental scenario, where a few con-
centration profiles at different times are available, we here present a robust method that
yields the F'(z) and D(z) profiles with minimal numerical effort and for general open
boundary conditions (see Material and Methods). We demonstrate our method using
experimental 1D concentration-depth profiles of DXM (obtained by the Riihl group,
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Figure 3.1: (A) Schematic epidermal skin structure. (B) Normalized 2D-transmission intensity profiles
from X-ray scanning microscopy at photon energy 530.1 eV after 10, 100, and 1000 min penetration time.
The profiles allow one to distinguish different skin layers, schematically indicated by white dividing lines,
and demonstrate the skin sample variation. While the SC has a rather uniform thickness, the VE thickness
varies considerably between the three samples.

FU Berlin), a medium-size drug molecule that in water is only poorly soluble [159].
Starting the drug penetration by placing a 1.5% DXM formulation in hydroxethyl cel-
lulose (HEC) gel on top of excised human skin at time zero (performed by our col-
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laborators from the Schifer-Korting /Hedtrich (Institute of Pharmacy, FU Berlin) and
Vogt/Blume-Peytavi group (Dermatology department, Charité Berlin)), 2D concentra-
tion profiles of DXM in the epidermal skin layer are obtained after penetration times
of 10, 100, and 1000 min using soft X-ray absorption-spectromicroscopy [145,146] (see
Material and Methods).

In order to determine both the free-energy profile F'(z) and the diffusivity profile
D(z) in the epidermal skin layer as well as the diffusive DXM properties in the drug-
containing HEC gel and in the dermis, we need three experimental concentration pro-
files recorded at different times as input. We demonstrate that both the diffusivity
profile D(z), which dominates drug penetration for short times, and the free-energy
profile F'(z), which dominates long-time drug concentration profiles, are needed to
describe drug penetration quantitatively.

Our analysis reveals that skin barrier function results from an intricate interplay of
different skin layer properties: While the entrance of lipophilic DXM into the SC is
free-energetically favored, the drug diffusivity in the SC is about thousand times lower
than in the VE and thus slows down the passage of DXM through the SC. In addition, a
pronounced free-energy barrier from the epidermis to the dermis prevents DXM from
penetrating into the lower dermal layers. In essence, the epidermis has a high affinity
for the lipophilic drug DXM, which together with the low diffusivity in the SC effi-
ciently prevents DXM penetration into the dermis.

3.2 Results and discussion

3.2.1 Experimental concentration profiles

Figure 3.1B shows 2D absorption profiles recorded by our collaborators from the Riihl
group (FU Berlin) at photon energy 530.1 eV for penetration times of 10, 100, and 1000
min. This photon energy selectively excites DXM [145]. The skin-depth coordinate z is
shifted such that the outer skin surface is aligned to z = 0. The color codes the trans-
mitted intensity, with blue indicating low and yellow high transmission, and allows
insights into the skin structure. Note that the three profiles originate from different
skin samples from the same donor, since the analysis of the identical skin sample for
different penetration times is not possible [146]. Accordingly, these three samples have
been chosen for maximal similarity of the SC and VE thicknesses.

The region below z < 0 um is the Epon resin employed for skin embedding. For
all three samples, the layered structure from z ~ 0 um to z =~ 10 pum is the SC, while
the VE extends from a depth of about z ~ 10 um to a variable depth ranging from
z ~ 50 um to z ~ 80 um. Within the VE oval-shaped keratinocyte nuclei are discerned,
which move gradually toward the SC where they differentiate and flatten into corneo-
cytes. The dermis, separated from the VE by the basal layer and the basal membrane,
is clearly distinguished from the VE by the different transmission intensity. Note that
the variation of the VE thickness across different samples is an inherent property of
skin and must be kept in mind in the analysis. From the ratio of the 2D transmission
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Figure 3.2: (A) 1D experimental DXM concentration profiles at three different penetration times (black
circles) and cubic smoothing splines (black lines) are compared with theoretical predictions based on
the diffusion equation (red lines). Vertical dividing lines indicate skin layers and are based on the 2D
transmission intensity profiles in Fig. 3.1B. (B) Free-energy profile F'(z) and (C) diffusivity profile D(z)
derived from the experimental concentration profiles. F'(z) is low in the entire epidermis (SC and VE)
compared to HEC gel and to the dermis and exhibits a small but significant gradual increase in the SC
(see inset), the epidermis thus exhibits lipophilic affinity. D(z) is low in the SC and increases by a factor of
1000 in the VE, where it is close to the free-solution value. The low diffusivity in the stratum granulosum
(SG) in the depth range 10 um < z < 15 um could indicate the presence of tight junctions. In the gel
and beyond z = 80um (indicated by a vertical broken line) the F'(z) and D(z) profiles are approximated
as constant. (D) Integrated amount of DXM in the epidermis Cep; from experiments (black circles) and
theory (red line), showing a maximum at penetration time ¢ ~ 6 X 10* s = 1000 min (see inset) before it
relaxes to the predicted stationary value indicated by a horizontal broken line.

profiles at photon energies of 530.1 eV and 528.0 eV the 2D concentration profiles of
DXM are determined [145,146] (see Sec. 3.4.1 and Figs. 3.5 and 3.6 for details).

Our aim is not to describe DXM diffusion at the cellular level, for which 3D con-
centration profiles at different penetration times of the same sample would be needed,
our goal rather is to model the 1D diffusion of DXM from HEC gel on the skin surface
through the epidermis into the deeper skin layers. For this, we laterally average the
experimental 2D concentration profiles, the resulting 1D concentration data are shown
in Fig. 3.2A (filled circles). We base our modeling on cubic smoothing spline fits (black
lines) in the range 0 < z < 80 um, disregarding residual DXM in the Epon resin for
z < 0 pm as well as the range z > 80 um where only a single concentration profile
is available. It is seen that already after 10 min penetration DXM has entered the SC.
After 100 min penetration DXM is found in the VE, while the concentration in the SC
has not changed much. The difference between the 100 min and the 1000 min profiles
is seen to be rather small.
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3.2.2 Extracting free-energy and diffusivity profiles

Feeding the three experimental DXM concentration profiles in the depth range 0 < z <
80 um after 10, 100, and 1000 min penetration time into our inverse solver for the dif-
fusion equation, we derive the best estimates for the F'(z) and D(z) profiles shown in
Fig. 3.2B and C; in the gel and in the dermis, due to the absence of experimental data,
we approximate F'(z) and D(z) to be constant. The error bars reflect the standard devi-
ation of the estimates that pass the error threshold o < 0.6 ug/(cm?um) (see Material
and Methods for more details).

The free energy F(z) in Fig. 3.2B, approximated to be constant in the gel and set to
Fye1 = 0, exhibits a jump down by AFge/sc ~ —8.6 k]/mol at the boundary between
gel and SC. This is in line with the lipophilic character of DXM which prefers to be
in the lipid-rich SC compared to the HEC gel formulation. In the SC, the free energy
increases rather smoothly by ~ 1.5 k] /mol over a range of 10 ym (see inset of Fig. 3.2B),
reflecting a significant structural change across the SC that sustains the steep water
chemical potential gradient across the SC [160]. In the depth range 10 yum < z < 50
pm, which corresponds to the VE, the free energy is rather constant. In the range 50
pm < z < 80 um the free energy slightly increases again, which reflects the decreasing
DXM concentration in the experimental profiles in Fig. 3.2A for 100 min and 1000
min. Comparison with the transmission intensity profiles in Fig. 3.1B reveals that
this free energy increase is caused by the transition from the epidermis to the dermis,
which due to skin sample variations is smeared out over a broad depth range of 50 ym
< z < 80 pm. The free-energy jump of AFyg/dgerm ~ 20.5 kJ/mol at z = 80um reflects a
pronounced barrier for DXM penetration into the dermis related to the different DXM
affinity to the dermis compared to the VE. Due to data scattering this value constitutes a
lower bound, as is explained in Sec. 3.4.5 and Fig. 3.7. In fact, the free-energy difference
between the HEC gel and the dermis, AFgej/derm =~ 16.2 kJ/mol =6.4 kpT, is quite
close to the free-energy difference derived from the maximal DXM solubility in water,
cH,0 = 89 mg/L at 25°C[161], and the DXM solubility in HEC gel cge) = 15 g/L, via the
partition coefficient according to kT In(cgel/cH,0) = 5.1kpT. The free-energy profile
thus identifies the dermis as essentially water-like, while the epidermis is a sink with
high lipophilic affinity, in line with previous conclusions [162].

The constant diffusivity in HEC gel turns out to be Dy ~ 16 um?/s and drops in
the SC by a factor of roughly 80 to Dsc = 0.2 um?/s, see Fig. 3.2C. The diffusivity
maintains such a low value up to a depth of z = 15 um, where it abruptly increases.
For z > 15 um D(z) exhibits a rather constant value of Dyg ~ 400 um? /s, which is sig-
nificantly larger than the value in HEC gel and somewhat smaller than the estimated
diffusion constant of dexamethasone in pure water Dy,o ~ 680 um? /s [159]. We ten-
tatively associate the layer 10 um < z < 15 pum, where the diffusivity is as low as in the
SC but which structurally is distinct from the SC and belongs to the VE, with the stra-
tum granulosum (SG). Note that the SG, which is known to be located right below the
SC, is not visible in the transmission profiles in Fig. 3.1B, The SG barrier function has
been shown to be due to tight junctions [163-166], in line with the low local diffusivity
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in this region displayed in Fig. 3.2C.

Summarizing, four distinct features are revealed by our analysis, (i) a low diffusivity
in the SC, (ii) a low diffusivity in a thin layer just below the SC which we associate
with the SG, (iii) a sudden drop in free energy from the gel to the SC and a slight but
significant free-energy increase in the SC, and (iv) a pronounced free-energy barrier
from the epidermis to the dermis. We stress that these features in the free-energy and
diffusivity profiles are not put in by way of our analysis method, but rather directly
follow from the experimental concentration profiles. We note in passing that the steep
increase of the diffusivity at the boundary from the putative SG (with Dsg ~ 1 um?/s)
to the VE (with Dyg ~ 400 um?/s) is nothing one could directly identify from the
experimental concentration profiles shown in Fig. 3.2A.

3.2.3 Predicting concentration profiles

In Fig. 3.2A we demonstrate that the numerical solutions of the diffusion equation (red
lines), based on the free-energy and diffusivity profiles F'(z) and D(z) in Fig. 3.2B+C,
reproduce the experimental concentration profiles very well (black lines). Small devia-
tions are observed for the drug-concentration profile after 10 min penetration time, the
agreement is almost perfect for the 100 and 1000 min profiles. This not only means that
our method for extracting F'(z) and D(z) from concentration profiles works, we also
conclude that the diffusion equation (3.1) describes the concentration time evolution in
skin very well.

We define the time-dependent integral DXM amount that has penetrated into the
epidermis over the distance range 0 < z < 80 um as

80um
Cepi = /0 c(z)dz. (3.2)

wm

In Fig. 3.2D we compare the experimental data for Cep; (filled circles), which are di-
rectly obtained by integrating over the experimental concentration profiles in Fig. 3.2A,
with the theoretical prediction based on the diffusion equation and the determined
F(z) and D(z) profiles (red line). Note the logarithmic time scale that extends from
t=1stot =108s~3 ys. According to the experimental protocol, at time ¢ = 0
the entire amount of DXM, corresponding to a surface concentration of 600ug/cm?,
is located in the gel and thus Cep; is zero. With increasing time, the theoretically pre-
dicted Cep; increases gradually and reaches a maximum of Cepi = 471.9 ug/cm? at
t ~ 6 x 10 s = 1000 min, at which time only ~ 1.2 g/cm? DXM have penetrated into
the dermis (see Sec. 3.4.4 for details). In the long-time limit, which is reached above
t ~ 107 s ~ 115 days, as seen in the inset of Fig. 3.2D, theory predicts the equilibrium
value C’ggi = 465.0 ug/cm?, denoted by a horizontal broken line. In this hypothetical
limit, longer than the exfoliation time of skin which is 30 - 40 days, theory predicts that
~ 10.0 ug/cm? DXM have penetrated into the dermis, while ~ 125.0 g /cm? DXM still
reside in the gel (see Sec. 3.4.4 for the full calculation). Note that in vivo, dermal blood
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Figure 3.3: Comparison of theoretical DXM concentration profiles for a wide range of different penetration
times. At time zero the drug is entirely in the gel. Already at t=1 s DXM penetrates into the SC. At
intermediate times t=1 min and t=10 min the VE is gradually filled, while at longer times t=1000 min and
t=7 d the profile below the epidermis approaches the stationary profile (indicated by a dotted curve).

perfusion is crucial and could be easily taken into account in a generalized diffusion
model by an additional reaction term.

The theoretically predicted curve for Cep; in Fig. 3.2D agrees well with the experi-
mental data, which is not surprising in light of the good agreement of the concentration
profiles in Fig. 3.2A. This indicates that also the short- and long-time DXM penetration
amounts, which are difficult to extract experimentally, are straightforwardly obtained
from our model.

In Fig. 3.3 we show calculated DXM concentration depth profiles for a wide range of
times. We here also plot the predicted concentration profiles in the gel and below the
epidermis, for which no experimental data is available. We see that for short penetra-
tion times the concentration profile in HEC gel is inhomogeneous, so the simplifying
assumption of a constant concentration in the gel becomes invalid. Interestingly, al-
ready at ¢ = 1 s DXM enters the SC. The 1000 min profile is indistinguishable from
the stationary profile in the HEC gel and the epidermis, while below the epidermis,
extending from z = 80 um to z = 2 cm, even after 7 days the stationary (flat) concen-
tration profile has not yet been reached (note the inhomogeneous depth scale and the
logarithmic concentration scale). Not surprisingly, molecular diffusion over a macro-
scopic length scale of 2 cm takes a long time.

3.2.4 Checking model validity

We check the robustness of our diffusion model by comparison with two simplified
models. In the constant-F model we restrict the free energy in the epidermis to be con-
stant (with the diffusivity still being a variable function), while in the constant-D model
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Figure 3.4: Comparison of the restricted constant-F (blue lines) and the constant-D model (green lines)
with the full model (red lines) and experimental concentration profiles (black lines) in terms of the (A)
free energy, (B) diffusivity and (C) concentration profiles. The constant-F model fails to predict the ex-
perimental long-time concentration profiles for penetration times 100 min and 1000 min, the constant-D
model fails to predict the short-time concentration profile 10 min.

we restrict the diffusivity in the epidermis to be constant (with the free energy being a
variable function). This means that the number of adjustable model parameters drops
from 162 in the full model down to 83, otherwise we use the same methods for finding
inverse solutions of the diffusion equation as before (see Material and Methods).

The free-energy profiles of the constant-F (blue) and the constant-D models (green)
in Fig. 3.4A are rather similar and differ not much from the full model result (red),
in particular, the free energy jumps from the HEC gel to the SC and from the VE to
the dermis come out roughly the same. The diffusivity profile of the constant-F model
in Fig. 3.4B is again similar to the full model, while the constant-D model obviously
misses the diffusivity jump from the SC to the VE region.

When we look at the predicted DXM concentration profiles in Fig. 3.4A we clearly
see the short-comings of the restricted models: The constant-F model (blue lines) cor-
rectly predicts the short-time behavior including the 10 min profile, but fails severely
for the long penetration time 1000 min which is close to the stationary equilibrium
limit. In contrast, the constant-D model (green line) produces a concentration profile
for 1000 min that is indistinguishable from the full model and thus describes the ex-
perimental profile very nicely, while it fails at the short penetration time of 10 min.
The comparison of the full model with the restricted models demonstrates that both
the free-energy and the diffusivity profiles are needed in order to correctly describe
the experimental concentration profiles over the entire penetration time range from 10
min to 1000 min. We also understand from this comparison that the diffusivity profile
is important at penetration times up to 10 min, while the free-energy profile is required
to describe the long-time and the equilibrium behavior accurately.

A robustness check by comparison with results obtained from a reduced data set is
shown in Sec. 3.4.6 and Fig. 3.8, from which we conclude that the model is able to cor-
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rectly predict concentration profiles even for times at which limited data is provided.

3.2.5 Conclusions

A method for deriving free-energy and diffusivity profiles from experimental concen-
tration profiles at three different penetration times of drugs in human skin is presented.
The approach is generally applicable to all kinds of barrier situations and different dif-
fusors whenever spatially resolved concentration profiles at different times are avail-
able and can also be generalized to higher dimensions. For the specific example of
dexamethasone penetrating into human skin, our results demonstrate that both dif-
fusivity and free-energy profiles are important to describe the skin barrier: The inho-
mogeneous free-energy profile is essential to correctly describe the long-time concen-
tration profiles, while the diffusivity profile is needed for reproducing the short-time
drug penetration. Epidermal skin barrier function against the permeation of DXM is
shown to rely on the combination of two key properties, namely a low diffusivity in
the SC and a low free energy (i.e. high solubility) in the entire epidermis. Each of these
properties by itself severely reduces the DXM permeation through the epidermis, but
it is the combination that leads to the exceptionally low and slow DXM transport into
the dermis.

The design of efficient drug delivery methods through the epidermis thus meets two
challenges: First, the low diffusivity in the SC needs to be overcome. Secondly, the free-
energy barrier from the epidermis, which we show to have pronounced lipophilic affin-
ity, to the hydrophilic dermis severely slows down the permeation of lipophilic drugs.
The remedy could consist of modified drugs with balanced lipophilic-hydrophobic
character such that the epidermis-dermis affinity barrier is small or even absent. To
aid the design of such drugs, similar studies shall be undertaken for compounds with
varying lipophilicity and molecular weight.

3.3 Materials and methods

3.3.1 Experimental concentration profiles

The experimental studies use ex vivo human 2-cm-thick abdominal skin samples and
were detailed previously [145,146] and performed by the Riihl, Schifer-Korting /Hedptrich,
and Vogt/Blume-Peytavi group. The skin surface was exposed to a 0.4 mm thick
layer of a 70% ethanol HEC gel formulation containing DXM with a concentration
of Cgel(t = 0) = 1.5 mg/(cm?mm) for penetration times of 10, 100, and 1000 min at
a temperature of 305 K in a humidified chamber at the saturation point. After gently
removing the HEC gel, samples were subsequently treated in a 2.5% glutaraldehyde
in 0.1 M Na-cacodylate buffer and with K4[(Fe(CN)g] and OsOy for lipid and DXM fix-
ation, dehydrated, embedded in epoxy resin, sliced into sections of 350 nm thickness,
and placed on silicon nitride membranes of 100 nm thickness. X-ray microscopy stud-
ies were performed at the synchrotron radiation facility BESSY II (Berlin, Germany) in
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a scan depth range of 100 ym with a step width of 200 nm. The photon energy was
tuned in order to probe exclusively DXM at 530.1 eV via the O 1s — 7* transition [146].
This allows us to derive the absolute local DXM concentration by using Beer-Lambert’s
law, see [145,146] for details.

3.3.2 Numerical solution and inversion of diffusion equation

For the numerical solution the diffusion equation (3.1) is discretized in space and time
and takes the form of a Master equation [136]

C; (t -+ At) — ¢ (t)
At

=Wii—1ci—1(t) + Wiiga1cip1(t) + Wiici(t), (3.3)

where At is the time discretization step. We match different spatial discretization
schemes: Since experimental concentration data is available at ym-resolution in the
epidermis up to a skin depth of 80 ym, we use an equidistant discretization with
Az =1 pm in the range 0 < z < 80 um. For the transition rates we use [136]

D; + D; F,— F;
Wi = ——2 J ith j=i+1 3.4
1,7 2(AZ)2 eXp( ZkBT ) wi J ? ( )
and W;; = —W;_1; — Wi41,;, which satisfies concentration conservation and detailed

balance. We thus have 2 x 80 = 160 parameters from the discretized F(z) and D(z)
profiles in the epidermal layer. In the HEC gel, which serves as the DXM source during
the penetration, no experimental concentration data is available. We discretize the HEC
gel with seven sites and a total thickness of 0.4 mm, as in the experiment. We discretize
the dermis and the subcutaneous layer, for which also no experimental concentration
data is available, with 15 sites and a total thickness of 2 cm, as in the experiment. The
total number of discretization sites is N = 102. The free energies Fye and Fyerm and the
diffusivities Dge and Dyerm in the HEC gel and the sub-epidermal layer are assumed to
be constant and are treated as free fitting parameters. Reflective boundary conditions
are used at the upper gel surface and at the lower sub-dermal boundary, as appropriate
for the experimental conditions. The total number of parameters is reduced from 164
to 162 due to the fact that only free-energy differences and diffusivity sums of neigh-
boring sites enter Eq. (3.4). For more details see Sec. 3.4.2. The concentration profile
ci(t) at time ¢ = nAt follows from Eq. (3.3) as

N

N
=D (14 AtW)"); . ¢;(0) = > elWe;(0) (3.5)

Jj=1 Jj=1

where W is the rate matrix defined in Eq. (3.4) and the continuous limit Az — 0 has
been taken in order to express the n-th power by the matrix exponential. Equation
(3.5) can be used to numerically solve the diffusion equation for any initial distribution
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¢j(t = 0) and diffusivity and free-energy profiles D(z) and F(z). In order to deter-
mine D(z) and F(z) based on experimental concentration profiles at different times,
we minimize the squared sum of deviations

Ndata N 2

Z Ndata Z eXP Z etzwcj(o) > (3.6)
j=1

pkl

where N4 is the number of experimental concentration data per profile and N, = 3
is the number of experimental concentration profiles. We use N = 73 data points
for the 10 min profile and N§ta = Ngata — 80 data points for the 100 and 1000 min
profiles, taken from the smoothed splines (black lines) in Fig. 3.2A. The total num-
ber of 233= 73+80+80 input data points is necessarily higher than the number of 162
free-energy and diffusivity parameters we need to determine. The profile ¢;(t = 0) cor-
responds to the initial condition where DXM is homogeneously distributed in the gel
only. For minimization of the error function Eq. (3.6) we use the trust-region iteration
approach [90, 167]; see Sec. 3.4.3 for details. As an initial guess for the minimiza-
tion we use a flat free-energy profile and choose random values for D(z) in the range
[1071,...,10%|um?/s. We perform 1000 runs with different initial values for D(z) with
a maximal number of 250 iterations per run. For our results, we only use the best 1%
solutions with a residual error o < 0.6 ug/(cm?um). A perfect solution with an error
of o = 0 is never observed, which reflects that our equation system is overdetermined
and at the same time input concentration profiles come from different skin samples.
In the constant-F and constant-D models we obtains errors o < 1.6 ug/(cm?um) and
o < 0.9 pug/(cm?um) for the best 1% of the solutions, significantly larger than for the
full model.

3.4 Supporting Information

3.4.1 DXM concentration profiles from X-ray microscopy

The DXM concentration profiles are generated by soft X-ray absorption spectromi-
croscopy, which is a label-free technique that yields 2D absolute concentration profiles
in thin skin slabs with a lateral resolution below 100 nm [145].

In the sample after 1000 min penetration time the SC is not aligned perpendicularly
with respect to the z-axis, as seen in Fig. 3.5A. Therefore, we first apply an affine
transformation and shear the 2D profile until the SC is perpendicular to the z-axis, the
resulting aligned 2D transmission intensity profile is shown in Fig. 3.5B.

Absolute DXM concentration profiles are derived from the transmission intensity
profiles at two different photon energies as described before [145]. The resulting 2D
DXM concentration profiles at three different penetration times are shown in Fig. 3.6.
For the theoretical analysis we average the 2D concentration profiles along the lateral
position x. The resulting 1D concentration profiles are shown in Fig. 3.2.
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Figure 3.5: (A) 2D transmission intensity profile at photon energy E = 530.1 eV after 1000 min penetration
time taken directly from X-ray microscopy. The SC is not aligned perpendicularly to the z-axis. (B)
Aligned 2D intensity profile after shearing along the z-axis.

To import the experimental data into the inverse diffusion-equation modeling, we
apply cubic smoothing splines. This is accomplished by minimizing the sum

Ngata
> Alelzi) = es20)® + (1= A) (es(zim1) — 2¢s(20) + es(2i41))? (37
i=1

for the 10, 100, and 1000 min profiles, where NV, ,fata is the number of data points in the k-
th data set, ¢(z) is the experimental 1D-concentration profile and ¢;(z) is a cubic spline
function which serves as an estimator for ¢(z). The smoothing parameter \ is set to
A = 0.02, which leads to a sufficient smoothing of the cubic splines, as seen in the main
text. We used the cubic smoothing spline function implemented in Matlab.

3.4.2 Variable discretization of the 1D diffusion equation

For modeling of the diffusion, we separate the total system into three layers, the HEC
gel, the epidermis and the layer underneath that includes the dermis and parts of the
subcutaneous fat layer. Experimental measurements are only available within the epi-
dermis over a thickness of ~ 80 um. The HEC gel layer and the sub-epidermal layer
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Figure 3.6: Experimental 2D concentration profiles obtained after 10, 100, and 1000 min penetration time.
The 1000 min profile has been sheared to achieve perpendicular orientation of the SC with respect to
the z-axis. In the 10 and 100 min profiles the inhomogeneous distribution of DXM within the SC is well
observed.

(which is called dermis in the remainder for brevity) have thicknesses of 0.4 mm and 2
cm, respectively. We use a constant discretization width of 1 ym for the epidermis and
variable discretization width in the HEC gel and the dermis. Note that the free energy
and the diffusivity are assumed to be constant in the HEC gel and in the dermis. For
constant free energy and diffusivity the diffusion equation reduces to
oc(t, z) ?c(t, 2)
=D . 3.8

ot 072 (3.8)
We derive a discretized version of Eq. 3.8 for a non-uniform discretization of the spatial
coordinate z. Let A; = z; — %1 be the distance between two discretization points.
Performing a Taylor expansion up to second order yields

Oc(z;) N 1A2 0%c(z;)

c(zip1) = c(zi) + A1 a2 58t 52 + O(A?H) (3.9)
N ol Oc(zi) | 1, 50%c(2i) 3
c(zz—l) = C(ZZ) AY 02 + QAZ 922 + O(Az ) (3.10)
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Multiplying the first equation with A; and the second equation with A;;; and adding
both equations gives for the second derivative

0%c(z;) 1 1
D —2D 1 — —————c;
022 (Az‘+1(Ai+1 + Ai)c AL A
1
PN S— 3.11
Ai(Aj1 + Az’)c ) G.11)
= Wiir1cit1 + Wiici + Wii_1ci-1, (3.12)
from which we can read off the rates
1
Wit = 2D 3.13
i JAVERY VAVERTE WAV (3.13)
1
S ——2D— 3.14
W Ajyr- A ( )
1
Wii1 =2D (3.15)

Ai(Ai1 + D)

Using Eq. 3.12 we numerically solve the diffusion equation for variable discretization
widths in areas of constant free energy and diffusivity. In areas of non-constant free
energy and diffusivity but equidistant discretization width, we use the discretization
given in the main text.

3.4.3 Trust-region optimization for constrained non-linear problems

In order to obtain the profiles for the free energy F'(z) and diffusivity D(z) from the
given experimental concentration profiles, we introduce the sum of the squared resid-
uals

2

1 Np 1 Ngata N
= 5 2 a2 | 6T - eV e 0) (3.16)
Pr=1""% i=1 =1
=R'R=ri+r5+...+r,. (3.17)

where R(x) is the residual vector containing the errors of the predicted and observed
concentrations as a function of x = x(F1, . . ., FNpyram»> D15 - - - s DNparar)- The vector x has

2Nparam and the residual vector has Ny, = Z]kvi 1V, ,fata components.
In order to minimize Eq. 3.17 we approximate o2 by a 1st order Taylor expansion

o?(x+d)=Q(d) ~ R (x+ d)R(x +d) (3.18)

with R(x + d) = R(x) + Jr(x)d, where J describes the Jacobian of R at x and gives
for Q

Q(d) = 0?(x) + (ITR(x))" d + %dTJTJd, (3.19)
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with JTR(x) denoting the gradient of o%(x) and J7J approximating the Hessian of
0?(x). In order to obtain a new approximation in the next iteration step x™ ! = x™+d,
we trust the approximation Q(d) only within a trust-region radius A™ depending on
the current iteration step m. We state the following trust-region problem

Find min Q(d) under the constraint ||[D~'d| < A™, (3.20)

where D is a scaling matrix that transforms constraints we assume on the solution
space of x or d into an unconstrained problem d,.. = D~'d. Note that two kinds of
constraints are introduced: (i) one comes from restricting the parameter space x to a
subspace of x and the other constraint (ii) comes from minimizing the function Q(d)
only within a trust-region A. How accurate 02(x) is approximated by Q(d) can be
estimated by the reduction value

pm — T0) —o*(x+d). (3.21)

o?(x) — Q(d)

where the numerator describes the actual reduction, and the denominator the pre-
dicted reduction. If r is close to 1 the approximation is good and the step x™ + d is
accepted with an increase of the trust-region A™. If the approximation is bad then
x™*1 = x™ and the trust-region will be decreased.

Finding the minimum of Q(d) within the trust-region radius A could be done by
applying the Gauss-Newton or steepest-descend algorithm to ) which would involve
solving a linear system. We use a so-called dogleg strategy for trust region problems
which is a hybrid of Gauss-Newton and steepest descent. At first, we calculate the
steepest descent direction and find the steepest point - the Cauchy point - along that
direction within the trust-region radius. From the Cauchy point we calculate the vector
pointing to the Gauss-Newton point. The intersection between that vector and the trust
region boundary is the new point x™!. We assume no constraints for F but constrain
D to D € (0,10%] um?/s where the upper bound is four times larger than the diffusion
constant of DXM in water. 1,000 runs with 250 iterations per run are performed where
only the best 1% of solutions are kept for further analysis. We use the trust-region
reflective routine implemented in Matlab.

3.4.4 Calculating the DXM penetration amount from estimated F'(z) and
D(z) profiles

The penetrated amount in the epidermis at time ¢ is calculated by

80um

Cepi(t) = / c(z,t)dz, (3.22)

Opm

where c(z,t) is approximated by eﬁ};vcj(O). This yields at time ¢ = 1000 min an epi-
dermal DXM amount of ~ 471.9 ug/cm?. The amount in the dermis at the same time
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follows as
2cm
Cderm (t = 1000min) = / c(2)dz ~ 1.2ug/cm?. (3.23)
80um
In the stationary long-time limit the distribution of DXM can be calculated from the

free energy alone. The integrated amount of DXM in the dermis in the long-time limit
is determined by

2cm
1
Cd = 600ug/cm? - 7 / e PP@ dy ~10.0ug/cm?, (3.24)
80um

where the normalization factor is given by

2cm
Z = / e PR gy, (3.25)

—400pum

Analogously, the stationary amount in the epidermis follows as Cta = 465.0 pg/cm?

epi
and in the gel as C;gl ~ 125.0 pug/cm?.

3.4.5 Estimate of free-energy barrier height between epidermis and dermis

In Fig. 3.7A the error o of the residual is plotted as a function of the free-energy bar-
rier height AFyg/4erm between viable epidermis and dermis. The error decreases with
increasing barrier height and reaches a minimum value of o ~ 0.57 ug/(cm?um), in-
dicated by a horizontal broken line, for a barrier height of AFyg/derm = 20.5 kJ/mol.
For larger barrier height the error stays roughly constant, we conclude that the value
AFyE/derm = 20.5 kJ/mol constitutes a lower bound for the free-energy barrier be-
tween the viable epidermis and the dermis.

The influence of a varying values of AFyg/derm 0N the DXM concentration profile in
the epidermis is for 1000 min penetration time shown in Fig. 3.7B. For small values
of AFyEg/derm the predicted concentration profile is much lower than the experimental
profile, which is shown by a dotted line. Only the profiles for AFyg/germ = 15 kJ/mol
(green line) and AFyg/derm = 20.5 kJ/mol (red line) get close to the experimental pro-
file.

The same conclusion can be drawn from the integrated DXM amount in the epider-
mis, which is shown in Fig. 3.7C. For low free-energy barrier AFyg/derm the integrated
DXM amount is much lower than the experimental one since DXM easily penetrates
into the dermis. This can in particularly be seen for AFyg/germ = 0, 5,10 kJ/mol, for
which most of the DXM will have penetrated into the dermis and below. We conclude
that a sufficient barrier height is crucial in order to hinder DXM penetration into the
dermis.
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Figure 3.7: Effect of varying free-energy barrier height A Fyg/germ between VE and dermis (A) Residual
error o as a function of AFyg/derm. The minimal error o = 0.571 pg/(cm®um) is indicated by a dashed
horizontal line, which is reached for a free-energy barrier of AFyg/germ = 20.5 kJ/mol, which is indi-
cated by a vertical broken line. (B) 1000-min concentration profiles calculated for different barrier heights
AFVE/derm- (C) Integrated amount of DXM in epidermis for different barrier heights AFyg/derm.

3.4.6 Bootstrapping analysis

In the following we do not use the full experimental data set to derive the underlying
free-energy and diffusivity profiles. Instead, we reduce the input data set for one pen-
etration time. As described in the main text, there are 164 free-energy and diffusivity
parameters we need to estimate. The total number of experimental concentration input
data points is 73 + 80 4 80 = 233. For a least-square algorithm it is important that the
number of input data points is equal or larger than the number of unknown param-
eters, otherwise the matrix J7J is not invertible and the Gauss-Newton step cannot
be performed. If we would omit the entire 10 min profile, which consists of 73 data
points, we would end up with 160 input data points and thus an underdetermined
system. The same holds for omitting the 100 min and 1000 min sample. Therefore, we
will not omit an entire profile, but rather omit every data point of that profile except
the data in the SC, which contributes with 12 data points.

The minimization protocol is the same as used in the main text: 1,000 runs with 250
iterations, a constant free-energy landscape and arbitrarily chosen diffusivity values D
in the interval [1071, ..., 10%] um?/s are used as initial guess. Only the best 1% of solu-
tions with the smallest error o are considered. In Fig. 3.8 the estimated free-energy and
diffusivity profiles and the predicted concentration profiles are shown. When reduc-
ing the 10 min input data set, we still get accurate results for the concentration profile
in the SC, but a higher concentration in the viable epidermis is predicted at 10 min
penetration time. For 100 and 1000 min penetration time the prediction is very accu-
rate when compared with the experimental data. The error is calculated to be o = 0.7
pg/(cm?um) and thus is only slightly higher than for the case with complete input
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data, leading to an error of o = 0.6 ug/(cm?um).

When reducing the 100 min input data set, there is good agreement for the profiles at
10 min and 1000 min penetration time, but the 100 min profile understandably shows
larger deviations. The error is o = 0.7 ug/(cm?um).

When reducing the 1000 min input data set in the minimization procedure, the agree-
ment for the 10 min profile and the 100 min profile is good with an error of o = 0.7
pg/(cm?pm), but as one would expect, the deviations at a penetration time of 1000 min
are larger.

The free-energy profiles for all three reduced input data sets are quite similar to each
other.

All diffusivity profiles for the reduced 10, 100, and 1000 min input data sets show
very similar profiles, especially in the SC region. Only the profile for the reduced 10
min data set shows deviations in the SG, where the diffusivity is predicted to be of
the same magnitude as in the VE, which explains why more substance has penetrated
through the SC into the VE. We conclude that even with reduced input data, the es-
timated free-energy and diffusivity profiles reproduce the experimental concentration
profiles at different times in a satisfactory manner.

69






Chapter 4

Data-based modeling of drug
diffusion in healthy and damaged
human skin

Bibliographic information. The content of this chapter is in preparation to be submitted
to a peer-reviewed journal (Ref. [iii]).

4.1 Introduction

Organisms contain numerous structurally distinct protective barriers. The largest such
barrier is the skin, which is designed to keep most substances out, but allows at the
same time desired substances to penetrate [74,75,139]. The full understanding of the
barrier function of skin is considered a key objective in medicine and drug develop-
ment. A corrupted skin barrier is considered the main cause for skin diseases such as
psoriasis or atopic dermatitis [80,168].

The structure of human skin can be broadly divided into two layers, the epidermis
with a thickness of about 80 - 100 ym, which prevents water loss and provides a barrier
against pathogens of all kinds, and the dermis, about 2 mm thick, which protects the
human body against mechanical stress and contains hair follices and lymphatic and
blood vessels [140], see Fig. 4.1A for a schematic drawing. The epidermis is further
divided into the stratum corneum (SC), the 10 - 20 pm thick outermost layer consist-
ing of stratified layers of flattened dead cells (corneocytes), and the viable epidermis
(VE). The SC constitutes a key element in the skin barrier function. The structure of
the SC has been described as being similar to a wall made of bricks and mortar. The
bricks correspond to the corneocytes, whereas the mortar corresponds to the intercel-
luar matrix containing lipid bilayers [169]. In the stratum granulosum (SG), located
right underneath the SC and being part of the VE, protein-rich keratinocytes transform
into corneocytes.

Over the last decades numerous drug-diffusion models have been developed at dif-
ferent levels of complexity [81-86, 142]. Recently, we introduced a data-based model-
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ing approach based on the 1D general diffusion equation, where as the only input drug
concentration depth profiles at consecutive times are needed in order to determine all
parameters of the model [170]. The diffusion equation describes the evolution of a
1D-concentration profile ¢(z,t) as a function of depth z and time and depends on the
position-dependent free-energy and diffusivity profiles F'(z) and D(z),

%c(z,t) = % <D(z)e_f3F(Z)ic(z,t)eﬁF(z)> , 4.1)
where § = 1/(kpT) is the inverse thermal energy.

The free-energy profile F'(z) describes the local affinity and determines how the sub-
stance, in our specific case dexamethasone (DXM), partitions in the long-time limit,
described by the equilibrium concentration profile ceq(2) o e #F(*). The diffusivity
profile D(z) is a local measure of the rate at which the drug would diffuse in a flat
free-energy landscape. The model is very general and can be used to describe the dif-
fusion of molecular solutes including water and ions, but also nanoparticles, bacteria,
and viruses.

The diffusion equation is used in a variety of different applications such as mod-
eling of marketing strategies [20], decision processes [21], and epigenetic phenotype
fluctuations [147]. The position-dependent diffusivity profile D(z) has been shown
to be important for e.g. protein-folding dynamics [18, 151-153], particle diffusion at
interfaces [19,150], and membrane transport [148].

In general the diffusion equation can be solved analytically only in very simple lim-
its, whereas for general F'(z) and D(z) the solution ¢(z,t) must be calculated numer-
ically. The inverse problem, i.e. extracting F'(z) and D(z) from simulation or exper-
imental concentration profiles, is much more demanding, since inverse problems are
generically ill-posed, in the sense that the solution is not unique and sensitive to the
noise of the input data [171,172].

In this paper we pursue two goals: (i) We compare free-energy and diffusivity pro-
files derived from drug concentration profiles in healthy and damaged skin and (ii) we
present a critical test of the robustness of the method to extract free-energy and diffu-
sivity profiles from experimental concentration profiles. For this, we use concentration-
depth profiles at three distinct penetration times of the lipophilic antiinflammatory glu-
cocorticoid dexamethasone (DXM) in ex vivo human skin. This drug has been chosen
since it is frequently used for inflammatory skin diseases [87] and can be detected by
label-free X-ray microscopy [145,146,173].

The paper is structured as follows.

In Sec. 4.2 we compare results for healthy and damaged skin. We find that the free-
energy profiles for healthy and damaged skin are very similar, whereas the diffusivity
in the SC is about 200 times larger in damaged skin compared to healthy skin, which
results in an enhanced drug penetration at short times and leads to a corrupted skin
barrier function. This is an interesting result, as it shows that skin barrier disfunction
is primarly a transport property and is not reflected in the equilibrium distribution of
molecular solutes.
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In Sec. 4.3 we discuss the robustness of our inversion method, based on the con-
centration profiles of DXM originating from healthy skin. We analyze the behavior of
the resulting free-energy and diffusivity profiles when the amount of input data (i.e.
the concentration profiles) and the amount of output parameters (i.e. the free-energy
and diffusivity profiles) are reduced. As a result, we find that solutions obtained from
only one measured concentration profile as input are not robust, whereas for more than
one profile the inverse problem becomes well-posed and the resulting free-energy and
diffusivity profiles are robust and stable.

After concluding in Sec. 4.4, we briefly describe the experimental set-up in Sec. 4.5
to obtain concentration profiles of DXM in human skin. Here we also provide a de-
scription of our inversion method for the generalized diffusion equation and introduce
a regularization scheme for our inversion method.

4.2 Results and discussion

4.2.1 Concentration profiles

Our analysis is based on published experimental concentration profiles [170,173]. In
the experimental studies 2-cm-thick abdominal ex vivo human skin samples are ob-
tained from a healthy female donor as a byproduct of plastic surgery. At time ¢t = 0
a 0.4 mm thick layer of a 70% ethanol HEC gel formulation containing DXM with a
concentration of cgei(t = 0) = 1.5 mg/ (cm?mm) was applied to the surface of excised
human skin for penetration times of 10, 100, and 1000 min at a temperature of 7' = 305
K. 2D-concentration profiles of DXM in skin were obtained by soft X-ray scanning mi-
croscopy. The damaged skin was prepared from a healthy skin sample by perform-
ing 30 tape-stripping procedures [174,175] before the HEC gel formulation has been
applied on the skin surface. In such a tape-stripping procedure an adhesive tape is
pushed onto the skin and then peeled off, which removes and disrupts parts of the SC.
A disrupted skin barrier is related to many skin diseases such as psoriasis or atopic
dermatitis [80].

In Fig. 4.1B we show 1D DXM concentration profiles for damaged and healthy skin
after 10 min penetration time. For healthy skin DXM is only observable in the SC,
whereas for damaged skin DXM has already entered the viable epidermis. We will later
see that this difference of the penetration behavior is primarly caused by a modification
of the diffusive properties of the SC layer and not so much by a change of the free
energy profile.

4.2.2 Free-energy and diffusivity profiles

On the basis of 1D DXM concentration profiles at three distinct penetration times,
namely 10, 100, and 1000 min, we compare the free-energy and diffusivity profiles
for healthy and damaged skin.

73



Chapter 4 Data-based modeling of drug diffusion in healthy and damaged human

skin
A HEC gel - epidermis ~ 80 pm ~dermis/subcut.
~0.4 mm viable epidermis layer ~2 cm
TR T O
pecde o4 yj‘ o X iy
DXM - \;% 0 j‘i {\ %
source Ul ; 0f %
| |
Wk
: .. T i . T .l T T d T d k.
B = 10-min penetration profile . hgg}%%esk?n in
=10} 1
= A e
8 5¢ .. “I .......o-.t 0 g0’ ¢ oo,
\%? .;. O..“.... ©e .a...o
— L L ° o® ® '... vee®® .-
O of Wit e e S e o T e
0 10 20 30 40 50 60 70 80
C z skin depth [pm]
7 sites 80 sites 15 sites
F gel and Dgel F and D Fderm and Dderm
constant variable constant

Figure 4.1: (A) Sketch of the human skin structure. The 0.4 mm thick HEC gel layer acts as the DXM source.
(B) Laterally averaged 1D concentration-depth profiles of DXM for damaged (red) and healthy skin (blue)
[173]. (C) Discretization scheme used in the numerical analysis. The gel is discretized with seven equally
spaced sites, the epidermal layer with 80 equally spaced sites, and the dermis and subcutaneous layer
with 15 equally spaced sites.

In Fig. 4.2A we plot the concentration-depth profiles of damaged (red dots) and
healthy skin (blue dots). Note that all (six) profiles originate from the same donor but
from different samples, since an analysis with the same sample at different penetration
times is not possible. The position of the outer skin surface of the skin is shifted such
that it is located at z = 0 um.

For all skin samples the SC is located between z = 0 um and z ~ 7...10 um, which
can be inferred from the point at which the DXM concentration stops decreasing and
exhibits a rather constant concentration which then marks the beginning of the VE. The
VE extends from z =~ 10 um to a variable depth ranging from z ~ 30 yum to z ~ 80 pm.
Note, that the different thickness of the VE is an inherent property of human skin [77].
With increasing skin depth in the VE the concentration starts to decrease again, which
marks the transition to the water-rich dermis.

In the 10-min profile in Fig. 4.2A DXM has only penetrated into the SC for healthy
skin, whereas for damaged skin DXM has entered already the VE. In the 100 and 1000-
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Figure 4.2: (A) Experimental input data of damaged (red dots) and healthy skin (blue dots) together with
estimated profiles obtained from minimizing Eq. (4.9) from damaged (red) and healthy skin (blue). Only
the first 28 pum of the 1000-min profile of damaged skin have been considered in the analysis due to
the different position of the dermis in the other profiles. (B) Free-energy and (C) diffusivity profiles
for damaged skin (red dots) compared with healthy skin (blue dots). The most significant difference is
observable in the diffusivity profile for damaged skin, which is about a factor of 200 larger in the SC
compared to healthy skin. (D) The penetrated amount Cepi in the epidermis for damaged skin reaches a
maximum already after t = 2-10° s, whereas for healthy skin the maximum is reached only after ¢ ~ 2-10*
s.

min profile of healthy skin DXM is found in the VE with only minor differences be-
tween the penetration times. The concentration of DXM in the 1000-min profile of
damaged skin drops significantly at about z = 30 ym which marks the beginning of
the dermis.

In order to obtain the free-energy and diffusivity profiles of damaged and healthy
skin we feed each set of profiles, at penetration times 10, 100, and 1000 min, into Eq.
(4.9), which sums the deviations between the measured and the predicted concentra-
tion profiles, and minimize the residual error o by following the minimization pro-
tocol described in Sec. 4.5. The healthy skin samples contribute with 73, 80, and 80
data points for penetration times 10, 100, and 1000 min yielding in total 233 input data
points, whereas the damaged skin samples contribute with 80, 80, and 28 data points
yielding a total of 188 input data points. Note that we only use the first 28 data points
of the 1000-min profile of damaged skin, because of the apparently shifted position of
the dermis for this skin sample.

The predicted concentration profiles for damaged skin (red lines) in Fig. 4.2A accu-
rately describe the input data, for the 1000-min sample only up to z = 28 um due to
the different location of the dermis. The predicted profiles for healthy skin (blue lines)
describe the input data accurately for all three profiles, see Fig. 4.2A.

The free-energy profile of damaged skin (red dots), depicted in Fig. 4.2B, is very sim-
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ilar to the one obtained from healthy skin (blue dots). We set the free energy in the gel
for healthy and damaged skin to a constant Fie = 0. There is a negative jump between
gel and SC of Fgejysc = —3.5 kg1, equivalent for healthy and damaged skin, which
reflects the fact that the lipophilic drug DXM resides rather in the lipid-rich SC than in
the HEC gel. For both healthy and damaged skin, the free energy increases sligthly in
the SC, which reflects the structural change within the SC. In the VE, the free energy
of healthy and damaged skin stays rather constant up to z = 50 ym before it increases
slightly up to z = 80 um, which reflects the decreasing concentration profiles in this
range, see Fig. 42A. At z = 80 um there is a large free-energy barrier of F\},‘El/ derm = 84

kgT for healthy skin and F\‘}Erj‘d erm = (-7 kT for damaged skin, which is related to the
different affinity of DXM to the water-rich dermis. Consequently, the free-energy dif-
ference between gel and dermis comes out as Fé‘eell/ derm = 6-5 kT and Fgeﬁr/“derm =5.8
kgT for healthy and damaged skin, respectively, which is very close to the free-energy
difference derived from the maximal solubility of DXM in water, cij,0 = 89mg/L at 25
°C [161], and the maximal solubility in HEC gel, cy,0 = 15g/L, which yields the parti-
tion coefficient kg7In(cgel/cH,0) ~ 5.1 kpT'. This underlines the hydrophilic character
of the dermis and the lipophilic character of the viable epidermis. Overall, we note

only small deviations in the free-energy profiles between healthy and damaged skin.

The average diffusivity in the SC of healthy skin turns out to be in average D2 ~

0.15 yum? /s and maintains such a low value up to a depth of z = 15 ym. For z > 15 um
the diffusivity is rather constant and about Dyg ~ 400 um? /s, which is sligthly smaller
than the diffusivity of DXM in water Dpy/H,0 = 680 um? /s [159]. The low diffusivity
in the range from z = 10 gm up to z = 15 pm can be connected to the presence of the
SG, since the diffusivity is as low as in the SC, but the concentration profiles in this
range are distinct from the concentration profiles in the range from z = 0 ym up to
z = 10 pm, see Fig. 4.2A. We point out that the SG is part of the VE and located right
underneath the SC. The diffusivity barrier in the SG is known to be caused by tight
junctions [163,164,166] and, thus, we tentatively relate the low diffusivity in the SG to
the presence of tight junctions.

The diffusivity profile of damaged skin deviates significantly from healthy skin for
depths below z = 15 pm. In the SC up to about z = 7 um, the mean diffusivity is about
40 pym?/s and thus significantly larger compared to healthy skin. At z > 7 pum the
diffusivity increases abruptly to ~ 300 um? /s and this value is maintained throughout
the entire VE. Therefore, we tentatively locate the boundary between SC and VE at
z =~ 7 um. The diffusivity in the dermis comes out as Dgermn = 300 um?/s and is the
same for healthy and damaged skin.

Surprisingly, the diffusivity in the gel turns out to be nglm ~ 152 ym?/s for dam-
aged skin and Dggll ~ 16 um? /s for healthy skin. Basically, both gel diffusivities should
be the same due to the same gel preparation procedure for healthy and damaged skin.
The reason for the different gel diffusivities is due to the absence of experimental con-
centration profiles in the gel. Therefore, the diffusivity in the gel will be adjusted such
a way to reproduce the experimental concentration profiles in the epidermis. In or-
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der to more accurately determine the actual gel diffusivity, experimental concentration
profiles of DXM in the HEC gel would be needed.

For damaged skin, the enhanced penetration of DXM into the epidermis is most
clearly visualized by the integrated amount of DXM in the epidermal layer up to z = 80
pm, defined as

Cepi = / c(z)dz. (4.2)

Opm

The maximum for healthy skin is reached after about ¢ ~ 2 - 10* s, whereas for
damaged skin it is already reached after t ~ 2-10? s, thus, describing roughly a 10-fold
increase of the DXM penetration speed into human skin, see Fig. 4.2D.

Concluding, for healthy skin the following results are obtained from our data-based
modeling approach: A low diffusivity in the SC and a low diffusivity in the layer un-
derneath the SC that we associate with the SG is observable. In the free energy we
reveal a sudden drop at the transition from gel to SC with a slight increase of the free
energy in the SC, and a distinct free-energy barrier at the transition from epidermis to
dermis.

The free-energy profile for damaged skin shows the same features as for healthy skin,
but the diffusivity profile deviates substantially from healthy skin with a much larger
diffusivity in the SC, which results in a much faster penetration of DXM into skin. This
means that skin damage is primarily manifested in the short-time penetration behav-
ior, which is governed by the diffusivity profile, while the long-time limit penetration
and in particular the equilibrium DXM distribution is rather similar for healthy and
damaged skin.

4.3 Robustness of model

4.3.1 Estimate of noise amplitude of input data

We estimate the noise amplitude of the experimental input data for healthy skin from
the residual between the raw input data c; * (t;) and the smoothed input data c(x)
obtained from cubic smoothing splines [176,177], see Fig. 4.3A. For this we minimize

Ndata

k
DSOS =)+ (1= A) (¢ — 26 + Gi1)” (4.3)
i=1

for the 10, 100, and 1000-min profiles with smoothing parameter A = 0.1, where c¢; is
a cubic spline function. We use the cubic smoothing spline algorithm implemented in
Matlab.
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Figure 4.3: (A) (Left) Smoothed experimental DXM concentration profiles (red lines) obtained from
smoothing cubic splines at three consecutive penetration times. The blue dots represent the raw experi-
mental input data for healthy skin. (Right) Residual error per data point relative to the cubic smoothing
spline. (B) Table containing the noise amplitude of every single profile and combinations of profiles.
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The absolute squared error we calculate for each profile via

Ndata
1 g 2
&, = W Z (P (te) — 5 (k)™ (4.4)
i=1
We obtain for the 10-min profile §1gmin = 0.56 pg/(cm?um), $100min = 0.86 pg/(cm?pum)
for the 100-min profile, and 100omin = 1.30 ug/ (cm?pm) for the 1000-min profile, see
table in Fig. 4.3B . The averaged error over the three profiles is

- 1
Oall = \/ 3 (0Fomin + 9To0min + 97000min)
= 0.96/g/(cm?;im) (4.5)

and describes an estimate of the noise amplitude of the input data.

4.3.2 Output-parameter reduction

In this section, we analyze the behavior of the solution when the number of output
parameters, that means the resolution of the extracted free-energy and diffusivity pro-
files, in the epidermal layer is reduced, whereas the number of input-parameters, i.e.
the resolution of the concentration profiles, is unchanged.

The analysis is based on the 10, 100, and 1000-min profiles of healthy skin, consisting
of 73, 80, and 80 data points, yielding a total of 233 input data points, which we feed
into our inverse solver defined by Eq. (4.9). We follow the minimization protocol
described in Sec. 4.5.1.

We discuss four cases. In the first case (blue lines in Fig. 4.4), we use the raw input
profiles cpr (tr) with an output-parameter resolution A,y equivalent to the resolution
of the input data Aj, =1 pm. This results in Ny, = 164 parameters to estimate (80
parameters in the epidermis, 1 in the gel, 1 in the dermis/subcutaneous layer for D
and F).

In the second case (orange lines in Fig. 4.4), we use the raw input profiles and an
output-parameter resolution of Ay = 10 pm, resulting in Ny = 20 parameters to
estimate. In the third case (green lines in Fig. 4.4), we use the raw input profiles and
an output-parameter resolution of Ay, = 80 um, resulting in Ny = 6 parameters to
estimate.

The set-up in the fourth case (red lines in Fig. 4.4) is equivalent to the first case with
Aoyt = 1 pm, but instead of the raw input data, we use the smoothed profiles c(t;)
described in the previous section.

The resulting residual errors oeyp defined in Eq. (4.9) are plotted in Fig. 4.4D as a
function of the output parameter resolution Ayy:. The dashed line indicates the aver-
aged noise amplitude &,;; = 0.96 ;g /(cm?um) defined in Eq. (4.5).

As a result, the residual errors oeyp of all different cases are larger than the noise
amplitude of the input data. This implies a regularized solution and hence a Tikhonov-
regularization according to Eq. (4.11) is not needed.
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Figure 4.4: Output-parameter reduction. (A) Experimental concentration profiles of healthy skin (black
dots) for different penetration times. Input data is described accurately for all cases except for Aoyt = 80
pm (green lines). (B) Free-energy profiles F'(z) and (C) diffusivity profiles D(z) derived for different
output-parameter resolutions. The smoothed (red) and non-smoothed (blue) free-energy and diffusivity
profiles at Aqe = 1 pum agree very well to each other and underline the robustness of the inversion
method, since the slightly different input profiles lead to the same underlying output parameters. The
orange profile (Aout = 10 pm) shows deviations in the diffusivity profile in the SG and the green profile
(Aout = 80 pm) deviates significantly compared with the other three cases. (D) Numerical errors for
different values of output-parameter resolution Ayy. Every result is larger than the noise amplitude
San = 0.96ug/(cm®um) (dashed line) and implies a regularized solution.

The experimental profiles are depicted in Fig. 4.4A. For an output-parameter res-
olution of Ayt = 1 um the input data is fitted accurately, see red and blue lines in
Fig. 4.4A. For Ayt = 10 pum the 100- and 1000-min profiles are described accurately,
whereas deviations in the SC at penetration time ¢ = 1000 min occur. This arises from
the constraint of only one fitting parameter for the free energy in the SC which leads
to a flat profile in the SC. When assuming only one fitting parameter for F and D in
the entire epidermis (Ayy: = 80 pm) the data is fitted less accurately. Especially in the
1000-min profile (green line) in Fig. 4.4A, a constant profile in the entire epidermal
layer is obviously in contradiction to the input data.

When we compare the free-energy and diffusivity profiles in Fig. 4.4B and C orig-
inating from smoothed (red) and raw input data (blue) for Ay = 1 pum, we observe
only minor deviations between the profiles. This fact underlines the robustness of the
inversion method, since small differences of the input data result in small changes of
the output parameters, which is an indicator of a well-posed problem.

For the case of a parameter resolution Ayt = 10 m, see orange lines in Fig. 4.4B and
C, the free-energy and diffusivity profiles are similar to the results for Agyt = 1 pm with
the difference that the diffusivity at z = 10 um reaches already the diffusivity value in
the epidermal layer ~ 400 pum? /s, whereas for Agy: = 1 um the value is reached at
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z =15 pm.

For an output-parameter resolution of Ayt = 80 pm, see green lines in Fig. 4.4B and
C, the free energy is similar to the ones for finer discretizations, whereas the diffusivity
profile deviates significantly in the viable epidermis, which is smaller by a factor of
1000 leading to an insufficient description of the input data in Fig. 4.4A.

From the parameter reduction analysis we conclude that a coarser model up to
Aoyt = 10 pm still describes the input data well compared to the full parameteriza-
tion on the resolution-level of the input data (red and blue curves in Fig. 4.4). For a
significantly coarser output-parameter resolution (Ayy: = 80 um) the deviations be-
tween predicted results and experimental data increase markedly.

4.3.3 Input-parameter reduction

In this section, we vary the amount of input data. Throughout this section we only use
the raw unsmoothed input data and an output-parameter resolution of Ayy; = 4 um
which results in Nyt = 44 output parameters to estimate (22 for F' and 22 for D). We
start with the 10-min profile as the only input which contributes with 73 data points.
We follow the minimization protocol described in Sec. 4.5.1. For the residual error we
obtain aéggﬁ“ = 0.47pug/(cm?pm). This error is lower than the noise level of the 10-min
profile 1omin = 0.561g/(cm?um) and implies according to Eq. (4.12) an unregularized
solution. This becomes clear when considering the resulting concentration profiles
(solid green lines) in Fig. 4.5A. The input data is described well at ¢ = 10 min, but
no accurate description for the 100 and 1000-min profile is provided. The underlying
free-energy and diffusivity profiles show large-scale oscillatory behavior, see Fig. 4.5B
and C. The diffusivity in the VE jumps between five orders of magnitude and the free
energy exhibits large jumps in the VE as well.

Therefore, we seek to find a Tikhonov-regularized solution by minimizing Eq. (4.11).
The best residual errors ag_gg‘m(a) as a function of the regularization parameter « are
shown in Fig. 4.5D (green dots). For a > 0.15 the residual error is larger than the
noise amplitude and for @ < 0.10 the residual error is below the noise amplitude.
According to Eq. (4.12) we choose the value of o = 0.15 since it marks the optimal
trade-off between an over and under-fitting of the input data. The resulting 10-min
profile (dotted green line) matches the input data well, see Fig. 4.5A, but to no surprise
the 100 and 1000-min profiles are still not described accurately, since information at
these times is not included. However, the free-energy and diffusivity profile show a
smoother appearance, but still with significant deviations compared to the full-data
description (blue lines).

We conclude that, it is not possible in general to determine a reasonable parame-
ter set from only one measured concentration profile assuming that the concentration
profile ¢;(t = 0) at t = 0 is given.

Next, we use the 10 and 1000-min profiles, which cover the short and long-time lim-
its. The profiles contribute with 73 and 80 data points. The residual error aé%ooomin(a)
obtained from minimizing Eq. (4.11) does not fall below the noise amplitude d1¢,1000min
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Figure 4.5: (A) Raw input data of healthy skin (black dots) and calculated profiles from estimated output
parameters free energy and diffusivity. The green profiles, where the 10-min profile is the only input,
describe the unregularized (solid green line) and a regularized Tikhonov-solution (dotted green line).
Both profiles fit the 10-min profile but large deviations in the 100 and 1000-min profiles arise. When the
10 and 1000-min profiles are used as input (orange lines), the 10 and 1000-min data is fitted well, but
a small underestimation of the 100-min profile is observable. When all three profiles are used all input
profiles are fitted accurately. (B) The unregularized free energy and diffusivity (solid green line) of the
10-min profile show large oscillatory behavior, whereas the Tikhonov-regularized profiles (dotted green
line) are smoother, but still provide no reasonable physical interpretation. In the other cases the resulting
profiles are very similar. (C) Residual errors oexp(a) obtained from minimizing Eq. (4.11) as a function
of the regularization parameter . The residual of the 10-min profile falls below the noise amplitude
of the profile. Thus, a single-input profile results in an unregularized solution. When considering the
10 and 1000-min profile the residual is of the order of the noise amplitude and thus regularized. And
when considering all three profiles, the residual becomes larger than the noise amplitude which is also a
regularized solution.

for every considered «, see orange dots in Fig. 4.5D. Thus, a Tikhonov-regularization
is not required and we discuss the results for & = 0. By considering the resulting con-
centration profiles (orange lines in Fig. 4.5A) we see that the 10 and 1000-min profiles
are fitted accurately, but the 100-min profile is slightly underestimated.

For the case where all three profiles are considered (blue lines) with a = 0, the input
data is fitted accurately in every profile, the resulting free-energy and diffusivity pro-
files in Fig. 4.5B and C are also well in agreement to the ones in Fig. 4.4B and C (blue
lines). The residual error is always larger than the noise amplitude, see Fig. 4.5D.

We conclude that the inversion method with only one profile, shown by the green
curves in Fig. 4.5, is ill-posed, whereas for more than one profile the inversion problem
constitutes a regularized and well-posed problem, thus, the solution is robust.
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4.4 Conclusions

In this paper, we pursued two goals. In the first part, we extracted the free-energy and
diffusivity profiles from experimental concentration profiles of the antiinflammatory
drug dexamethasone (DXM) in healthy and damaged skin. The estimated free-energy
profiles in healthy and damaged skin are very similar, thus, the equilibrium concen-
tration profiles in the long-time limit, which are governed by the free-energy profiles,
are predicted to not differ in healthy and damaged skin. In contrast, the diffusivity
profiles are significantly different. In fact, the diffusivity in the SC of damaged skin
is larger by a factor of 200 compared to healthy skin and gives rise to an accelerated
drug penetration into human skin, which dominates in the short-time limit. The larger
diffusivity in the SC is the main indicator of a perturbed skin barrier function in the
SC.

In the second part, we examined the robustness of our inversion method by which
we determined the free-energy and diffusivity profiles of the 1D generalized diffusion
equation based on concentration profiles at distinct times as input and discussed the
validity of the model. For this, we investigated the effects of a reduction of the output
and input parameters and conclude that the inversion method we presented in this
paper is robust. Thus, our method is generally applicable to situations where concen-
tration profiles are available.

In the future, a multi-dimensional inversion method incorporating the geometry of
the cellular structure of the SC could provide a clearer understanding of penetration
pathways. Further, an application of our inversion method to other penetrating sub-
stances, particularly hydrophilic substances, could provide better insights into general
mechanisms of dug penetration in skin.

4.5 Model and simulation details

4.5.1 Numerical solution and inversion of diffusion equation

For the numerical solution, we discretize the diffusion equation (4.1) in space and time,
which gives rise to a Master equation [136]

C; (t + At) — G (t)
At

= Wi,z’—lcz’—l(t> + Wi,i+1ci+1<t) + Wz‘,iCi (t), (4.6)

where At is the time discretization step. For the transition rates we use [136]

D;+ D; F; — F; . o
W, . = -+ —J — J with =7=x1 4.7
W7 A2 P ( 2T ) o= (47)
where the condition W; ; = —W;_1 ; — Wj41; is fulfilled, which implies conservation of

concentration and detailed balance. We employ an inhomogeneous spatial discretiza-
tion scheme. Since the experimental input data is available at Aj, =1 um-resolution in
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the epidermal layer up to 80 um, we use an equidistant discretization with Az = A;, =
1 pm in the range 0 < z < 80 um. In the HEC gel, which acts as the DXM source
during the penetration, no experimental concentration data is available and we there-
fore discretize the HEC gel with only seven sites for the total thickness of 400 m. We
also discretize the dermis and the subcutaneous layer, for which also no experimental
concentration data is available, with 15 sites with a total thickness of 2 cm. This leads
to a total number of N = 102 discretization sites, see Fig. 4.1C.

We employ different output-parameter discretizations Ayt in the epidermal layer
for the free energy and diffusivity, in particular when we discuss the robustness of the
model in Sec. 4.3. For the comparison between healthy and damaged skin in Sec. 4.2
the output parameter resolution Ay in the epidermal layer is equivalent to the input
parameter resolution, Aoyt = Ain = 1 pm, which yields 80 parameters for the free
energy and 80 parameters for the diffusivity, giving rise to a total of 160 parameters in
the epidermis.

The free energies Fye| and Fyerm and the diffusivities Dgej and Dgerm in the HEC gel
and the sub-epidermal layer are assumed to be constant, see Fig. 4.1C, and are treated
as free fitting parameters. According to the experimental set-up we employ reflective
boundary conditions at the upper gel surface and at the lower sub-dermal boundary.

The concentration profile ¢;(t) at time t = nAt follows from Eq. (4.6) as

N

= (1 +AtwW)" Ze (4.8)
7=1

where W is the rate matrix introduced in Eq. (4.7) and we have taken the continuous
limit At — 0 and n — oo to express the n-th power by the matrix exponential.

Equation (4.8) can be used to numerically solve the diffusion equation (4.1) for arbi-
trary diffusivity D(z) and free-energy profiles F'(z). As initial distribution c;(t = 0),
we assume that DXM is homogeneously distributed in the gel only. If we want to de-
termine the parameters D(z) and F'(z) based on experimental concentration profiles at
consecutive times, we seek to minimize the residual error (squared sum of deviations)
defined as

Ndata N 2

W
exp Z Ndata Z exp Zeff} Gy (0) ) (49)
j=1

where N2t is the number of experimental concentration data per profile and N is the
number of experimental concentration profiles.

For the minimization of the residual error, Eq. (4.9), we use the trust-region algo-
rithm [90,167]. We adapt the following minimization protocol: As an initial guess we
use a flat free energy profile and choose random values for the diffusivity D(z) in the
range [1071, ..., 10%] um?/s. We perform 400 runs with different initial values for D(z)
with a maximal number of 250 iterations per run, where we only use the best 1% of the
resulting solutions for F'(z) and D(z).

84



4.5 Model and simulation details

4.5.2 Regularization of the inverse problem

Usually one solves partial differential equations such as the diffusion equation in Eq.
(4.1) for the concentration ¢;(t) at time ¢ for given free-energy F'(z) and diffusivity pro-
files D(z), an initial condition ¢;(t = 0), and boundary conditions. This is an example
of a well-posed problem. However, the inverse problem, where profiles at different
times are given, but the underlying free energy and diffusivity are unknown, can be
ill-posed in the sense that the solution is not unique or sensitive to noise present in the
input data.

One way to overcome issues arising from an ill-posed problem is to seek a regular-
ized solution, for which numerous approaches exist [171,178-182]. The general idea is
to introduce an additional term in the functional in Eq. (4.9) that renders the problem
well-defined. This can be achieved by introducing the penalty term

Nout/2_1 Nout/2_1
Cpen= 2. (Fj—F)’+ Y (Dj—Djr)? (4.10)
J=1 J=1

where N,y is the total number of output parameters. This penalty term ensures smooth-
ness of the output parameters, namely the free energy F'(z) and diffusivity profile D(z),
and is added to Eq. (4.9) and controlled by the regularization parameter a € [0, c0)
yielding the regularized expression

Ufeg = ngp + Ocagen. (4.11)
This regularization scheme is called Tikhonov-regularization [172]. For small « the
weight is shifted to o—gxp which can result in an over-fitting of the input data. In con-
trast, when « is large the actual input data has less weight and the minimization tends
toward flat profiles, resulting in an under-fitting of the input data.

The choice of « is typically based on heuristic arguments [183-188]. For non-linear
problems, as in Eq. (4.9), a discrepancy principle has been proven useful [189-191].
This principle describes a selection rule for the regularization parameter a = «(¢) as a
function of the estimated noise amplitude § of the input data c; * (#;). The rule is given
in terms of the inequality

Texp(ar) > 6, (4.12)

where oexp () is the residual error of the regularized solution obtained by minimizing
Eq. (4.11). Eq. (4.12) demands that the residual error gexp () should be larger than the
actual noise amplitude of the input data.
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Chapter 5

Summary and Outlook

In this thesis we pursue a description of diffusion processes on both the microscopic
and mesoscopic level.

In Chapter 2, we analyze the structural dynamics in liquid water. Based on classi-
cal molecular dynamics simulations of SPC/E water, we investigate water dynamics
in the 12-dimensional continuum space of a water trimer. Using Markov state mod-
eling, we identify different processes and time scales, and relate them to rearrange-
ments of hydrogen-bond (H-bond) configurations. The slowest processes are identified
as donor-acceptor, acceptor-acceptor, and double donor/acceptor interchanges, which
describe the breaking and forming of at least two H-bonds. Thus, slow water kinetics
consists either of single-water or collective reorientations of water molecules.

Using a projection onto H-bond states, we derive a Markov state model in a much re-
stricted state space and analyze the switching of an H-bond from one accepting water
molecule to a second accepting water molecule. From this, we decompose all possi-
ble H-bond switching pathways using transition path analysis. The main transition
pathways correspond to a direct switch between H-bond acceptors without a broken
H-bond as an intermediate state, making up about 2/3 of all possible transitions. The
other 1/3 of all possible transitions splits into non-H-bond intermediate states (~ 26%)
and in alternative (=~ 5%) H-bond rearrangements as intermediate states. The domi-
nant transition pathways we find for the single H-bond switch are consistent with pre-
vious results [37,58,59], but the analysis by a Markov state model allows to describe
a more complete picture of the H-bond rearrangement dynamics. Quantum calcula-
tions for isolated clusters at zero temperature [114-116] suggested that H-bond rear-
rangements are local and do not involve more than three water molecules. Therefore,
an analysis of tetra- or pentamers using Markov state models would be interesting
to check if H-bond rearrangements involving more than three water molecules in the
liquid phase exist. We point out that in our simulation trajectories are obtained from
classical force field simulations, which neglect quantum effects, and provide an accept-
able approximation at the time scale we are investigating [132,133].

In Chapter 3, based on the general 1D diffusion equation, we derive a data-based
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method for extracting free-energy and diffusivity profiles from experimental concen-
tration profiles using the example of the drug dexamethasone. For this we numerically
invert the diffusion equation by solving a corresponding least-square problem. The
approach is generally applicable to various diffusing substances whenever spatially-
resolved concentration profiles at different times are available. For the specific ex-
ample of concentration depth profiles of dexamethasone in human skin measured at
three consecutive penetration times (10, 100, and 1000 min), our results show that both
the free-energy and diffusivity profiles are needed to accurately model the skin bar-
rier and experimental input profiles. In particular, the free-energy profile is essential
to correctly describe the long-time concentration profiles, while the diffusivity profile
is needed to reproduce the short-time behavior. Our method reveals that epidermal
skin barrier function against the permeation of dexamethsone relies on the combina-
tion of two aspects, namely a low diffusivity in the stratum corneum (the outermost
skin layer) and a low free energy in the entire epidermal layer. Each of these proper-
ties by itself severely reduces the permeation of dexamethasone through the epider-
mis and, thus, reflects the exceptionally slow transport of the drug dexamethasone
into the dermis (the layer underneath the epidermis). This constitutes two major chal-
lenges for the design of drug delivery methods. Firstly, the free-energy barrier from
the lipophilic epidermis to the hydrophilic dermis slows down the permeation rate of
lipophilic drugs such as dexamethasone, and secondly, the low diffusivity in the stra-
tum corneum needs to be overcome. A promising approach would consist of a mod-
ified drug with amphiphilic character in order to effectively remove the free-energy
barrier from epidermis to dermis.

In Chapter 4, we also consider drug transport in skin and pursue two goals. Namely,
a comparison between the extracted free-energy and diffusivity profiles from experi-
mental concentration profiles of dexamethasone in healthy and damaged skin, and the
examination of the robustness of our inversion method presented in Chapter 3. The re-
sulting free-energy profiles in damaged and healthy skin show almost no differences.
This implies that the long-time limit of the concentration profiles originating from dam-
aged and healthy skin is the same. On the other hand, the diffusivity profiles deviate
significantly between healthy and damaged skin. In particular, the diffusivity in the
stratum corneum of damaged skin is larger by a factor of 200 compared to healthy skin
and gives rise to an accelerated drug penetration into human skin. This feature is only
reflected in the short-time limit. Therefore, the skin barrier dysfunction is mainly a
transport property. In the second part of this chapter, we examine the robustness of
our inversion method. For this, we investigate the effects of coarse-graining the output
parameters, namely the free-energy and diffusivity profiles, as well as a reduction of
the input parameters, namely the number of concentration profiles. We find that the
inversion method we presented in Chapter 3 is robust, so that our method is generally
applicable to systems in which concentration profiles are analyzed.

In the future, a multi-dimensional inversion method incorporating the geometry of
the cellular structure of the stratum corneum could provide a clearer understanding
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of penetration pathways. Further, an application of our inversion method to other
penetrating substances, particularly hydrophilic and amphiphilic substances, could
provide better insights into general mechanisms of drug penetration in skin. The
free-energy and diffusivity profiles obtained in such studies could then be used in
coarse-grained diffusion modeling, in order to obtain a more complete understanding
of locally-resolved skin properties.
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Abstract

In biological systems, the interaction of a particle with its environment leads to diffu-
sive motion. This kind of motion can be observed on various length and time scales.
In this thesis we develop methods for the description of biological diffusion processes
across many length scales.

On the microscopic level, we investigate the normal modes of the local hydrogen
bond dynamic rearrangement in liquid water from molecular dynamics simulations
using Markov state models. For three water molecules, we find five well-separated
slow dynamic modes with relaxation times in the 2 - 6 ps range. The eigenstates of these
processes are shown to correspond to different collective interchanges of hydrogen
bond donors and acceptors. We derive the complete transition network for the switch-
ing of one hydrogen bond between two acceptor water molecules. The most probable
pathway corresponds to a direct switch without an intermediate state, whereas a con-
siderable fraction of paths proceeds along alternative routes that involve different in-
termediate states with short-lived alternative hydrogen bonds or weakly bound states.

On the mesoscopic level, based on experimental concentration depth profiles of the
anti-inflammatory drug dexamethasone in human skin, we model the time-dependent
drug penetration by the 1D general diffusion equation that accounts for spatial vari-
ations in diffusivity and free energy. We develop a robust method to numerically in-
vert the diffusion equation and thereby obtain the diffusivity and the free-energy pro-
files of the drug as a function of skin depth without further model assumptions. For
dexamethasone, skin barrier function is shown to rely on the combination of a sub-
stantially reduced drug diffusivity in the stratum corneum (the outermost epidermal
layer), dominant at short times, and a pronounced free-energy barrier at the transition
from the epidermis to the dermis underneath, which determines the drug distribution
in the long-time limit. We finally pursue a comparison between healthy and dam-
aged human skin. The resulting free-energy profiles for damaged and healthy skin are
essentially the same, whereas the diffusivity profile of damaged skin exhibits a signif-
icantly enhanced diffusivity within the first 10 um of the upper skin layer. Therefore,
the skin barrier dysfunction is primarily a transport property, and does not modify the
equilibrium distribution of molecular solutes.
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Kurzfassung

In biologischen Systemen fiihrt die Wechselwirkung eines Partikels mit seiner Umge-
bung zu diffusivem Verhalten. Diese Art der Bewegung kann auf verschiedenen Langen-
und Zeitskalen beobachtet werden. In dieser Arbeit werden Methoden fiir die Beschrei-
bung von biologischen Diffusionsprozessen auf unterschiedlichen Langenskalen en-
twickelt.

Auf der mikroskopischen Ebene werden die Normalmoden dynamischer Neuanord-
nungen lokaler Wasserstoffbriickenbindungen in fliissigem Wasser aus MD-Simulation-
en mithilfe von Markov-State-Modellen untersucht. Fiir ein Drei-Wasser-System, finden
wir fiinf klar unterscheidbare langsame dynamische Moden mit Relaxationszeiten im
Bereich von 2 - 6 ps. Die Zustdnde dieser Prozesse korrespondieren zu kollektiven Aus-
tauschen von Wasserstoffbriickenbindungen zwischen den Wassermolekiilen. Wir bes-
timmen das komplette Ubergangsnetzwerk fiir den Wasserstoffbriickenwechsel zwis-
chen zwei Akzeptor-Wassermolekiilen. Einem direkten Ubergang ohne einen inter-
medidren Zustand entspricht der wahrscheinlichste Pfad, wohingegen ein nicht zu
vernachladssigender Anteil {iber Pfade geht, die verschiedene intermediédre Zustdande
mit kurzlebigen alternativen Wasserstoffbriickenbindungen oder schwach gebunde-
nen Zustdanden enthalten.

Auf der mesoskopischen Ebene modellieren wir die zeitabhéngige Penetration des
entziindungshemmenden Medikaments Dexamethason mithilfe der eindimensionalen
allgemeinen Diffusionsgleichung mit ortsaufgeloster Diffusivitdt und Freier Energie.
Dazu werden experimentelle Konzentrationsprofile von Dexamethason in menschlicher
Haut verwendet. Wir entwickeln eine robuste Methode um die Diffusionsgleichung
numerisch zu invertieren und dadurch das Diffusivitdts- und Freie-Energie-Profil des
Medikaments ohne weitere Annahmen ortsaufgeldst zu erhalten. Fiir Dexamethason
stellt sich heraus, dass die Hautbarrierefunktion auf einer Kombination einer deutlich
reduzierten Diffusivitdt im Stratum Corneum (der duflersten epidermalen Hautschicht),
dominant auf der Kurzzeitskala, und einer ausgezeichneten Freie-Energie-Barriere am
Ubergang von der Epidermis zur Dermis beruht, die die Verteilung im Langzeitlimes
charakterisiert. Dariiber hinaus vergleichen wir gesunde mit geschddigter Haut. Die
sich ergebenden Freie-Energie-Profile sind in beiden Fillen gleich, wohingegen die Dif-
fusivitdt von geschadigter Haut in den ersten 10 Mikrometern der obersten Hautschicht
deutlich hoher ist. Es ergibt sich, dass die Dysfunktion der Hautbarriere hauptséchlich
eine Transporteigenschaft ist und die Gleichgewichtsverteilung von diffundierenden
Partikeln nicht beeinflusst.
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