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Chapter 1

Introduction

Mathematical modelling and computational simulations are important tools in many
scientific and practical engineering applications. However, simulation results may
differ from real observations, due to various uncertainties that may arise from model
inputs representing physical parameters and material properties, external loads, ini-
tial or boundary conditions. Therefore, the problem of identification, quantifica-
tion and interpretation of different uncertainties arising from mathematical models
and raw data is becoming increasingly important in computational and engineering
problems.

One example of a problem involving uncertainties that is often considered in the
literature (e.g. [29, 85, 86]) is the leakage of radioactive waste from a geological
repository to the groundwater. The movement of groundwater through soil and
rocks can be described by Darcy’s model for the flow of fluids through a porous
media

v = −A
η

(
∇u− ρg

)
in D, (1.1)

where v denotes the filtration velocity, A is the permeability tensor, η is the fluid
viscosity, u is the pressure, ρ is the fluid density, g is the field of external forces and
D ⊂ Rd, d = 1, 2, 3. The complete system of equations for incompressible fluids also
includes the incompressibility condition

∇ · v = 0 in D (1.2)

and appropriate boundary conditions. Equations (1.1) and (1.2) lead to the problem

−∇ · (A∇u) = f in D, (1.3)

with f := −ρ∇ · (Ag), complemented with appropriate boundary conditions as
before.

The permeability tensor A plays the role of a source of uncertainties in this problem.
Usually, the measurements for A are only available at a few spatial points and are
often inaccurate, which makes approximation of the tensor field quite uncertain.
One of the attempts to address this uncertainty problem is to model A as a random
field over a probability space, and to estimate averaged properties of the random
field, such as the mean and correlation function, from measurements. In this work
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we only consider scalar-valued permeability coefficients, i.e. A can be represented
as A = αI, where α is a scalar-valued random field and I is the unit tensor. In
practically relevant problems it is often the case that the correlation length of the
field α is significantly smaller than the size of the considered domain D, which leads
to a large number of random variables needed for an accurate parametrization of the
random field.

A quantity of interest for problems with random input data might be an approxima-
tion to the expected solution, or to the expectation or higher moments of an output
of interest defined by a functional of the random solution.

Various approaches have been developed in order to tackle the problem of uncer-
tainty quantification in different mathematical models that include random input
data, and in particular problems of the form (1.3). An overview of existing meth-
ods can be found in e.g. [67]. Polynomial chaos (e.g. [94, 95]) is a spectral method
utilizing orthogonal decompositions of the input data. This method exhibits a poly-
nomial dependence of its computational cost on the dimension of the probability
space where the uncertain input data is defined. Stochastic Galerkin methods (e.g.
[10, 70]) are an intrusive approach that utilizes ideas of the well known Galerkin
methods, originally developed for deterministic equations, for approximating so-
lutions in the probability space as well. Stochastic Galerkin methods appear to be a
powerful tool, however, they place certain restrictions on the random input data, e.g.
linear dependence of random fields on a number of independent random variables
with bounded support. Moreover, the computational cost of the methods depends
exponentially on the number of random variables parametrizing the random fields.
Stochastic collocation methods (e.g. [9]) are another approach that assumes depen-
dence of the random inputs on a number of random variables, however, it allows
this dependence to be nonlinear. Further, the random variables may be correlated
and have unbounded support. Stochastic collocation methods, as well as polyno-
mial chaos and stochastic Galerkin methods, suffer from the so-called “curse of di-
mensionality”, i.e. their performance depends on the dimension of the probability
space where the uncertain input data is defined. This restricts the application of all
three types of methods to problems where the input data can be parametrized by
few random variables.

A class of methods that are insensitive to the dimensionality of the probability spaces
are Monte Carlo (MC) methods. While the classical MC method is very robust and
extremely simple, its convergence is rather slow compared to the methods men-
tioned above. Sampling of stochastic data entails numerical solution of numer-
ous deterministic problems which makes performance the main weakness of this
method. Several approaches have been developed in order to improve efficiency of
the standard MC method. Utilizing deterministically chosen integration points in
MC simulations leads to quasi-Monte Carlo methods (e.g. [42, 63]) that exhibit an
improved order of convergence. A variance reduction technique known as multi-
level Monte Carlo (MLMC) method, first introduced by Heinrich for approximat-
ing high-dimensional integrals and solving integral equations in [53] and extended
further by Giles to integration related to stochastic differential equations (e.g. [40,
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41]), combines the MC method with multigrid ideas by introducing a suitable hi-
erarchy of subproblems associated with a corresponding mesh hierarchy. MLMC
methods allow a considerable improvement of efficiency compared to the classical
MC method and have become a powerful tool in a variety of applications. We refer
to the works on MLMC methods applied to elliptic problems with random coeffi-
cients [14, 28, 29, 87], random elliptic problems with multiple scales [2], random
parabolic problems [13] and random elliptic variational inequalities [16, 60].

The efficiency of MLMC applied to random partial differential equations (PDEs) was
further enhanced by a number of scientific groups working on different aspects of
the approach. Optimization of MLMC parameters and selection of meshes from
a given uniform mesh hierarchy reducing the computational cost of the MLMC
method were performed by Collier et al. [30] and Haji-Ali et al. [51]. The advan-
tages of MLMC and quasi-Monte Carlo methods were combined by Kuo et al. [64,
65]. Haji-Ali et al. [50] proposed a multi-index Monte Carlo method that can be
viewed as a generalization of MLMC, working with higher order mixed differences
instead of first order differences as in MLMC and reducing the variance of the hier-
archical differences. In some cases the multi-index Monte Carlo method allows an
improvement of the computational cost compared to the classical MLMC method,
see [50]. Further, the ideas of multi-index Monte Carlo were combined with the ideas
of quasi-Monte Carlo methods by Robbe et al. in [77]. Finally, multilevel ideas were
combined with stochastic collocation methods by Teckentrup et al. in [88].

Another approach to reduce the computational cost of MLMC methods is to use
adaptive mesh refinement techniques. Time discretization of an Itô stochastic dif-
ferential equation by an adaptively chosen hierarchy of time steps has been sug-
gested by Hoel et al. [54, 55] and a similar approach was presented by Gerstner and
Heinz [38], including applications in computational finance. Several works were
recently done in this direction for MLMC methods with application to random par-
tial differential equations. Eigel et al. [35] suggested an algorithm for constructing
an adaptively refined hierarchy of meshes based on expectations of pathwise lo-
cal error indicators and illustrated its properties by numerical experiments. Elfver-
son et al. [36] suggested a sample-adaptive MLMC method for approximating fail-
ure probability functionals and Detommaso et al. [33] introduced continuous level
Monte Carlo treating the level as a continuous variable as a general framework for
sample-adaptive level hierarchies. Adaptive refinement techniques were also com-
bined with a multilevel collocation method by Lang et al. in [66].

In this thesis we introduce a novel framework that utilizes the multilevel ideas and
allows for exploiting the advantages of adaptive finite element techniques. In con-
trast to the standard MLMC method, where levels are characterized by a hierarchy
of uniform meshes, we associate the MLMC levels with a chosen sequence of toler-
ances Toll , l ∈ N ∪ {0}. Each deterministic problem corresponding to a MC sample
on level l is then approximated up to accuracy Toll . This can be done, for example,
using pathwise a posteriori error estimation and adaptive mesh refinement tech-
niques. We emphasize the pathwise manner of mesh refinement in this case, which
results in different adaptively constructed hierarchies of meshes for different sam-
ples. We further introduce an adaptive MLMC finite element method for random
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linear elliptic problems based on a residual-based a posteriori error estimation tech-
nique. We provide a careful analysis of the novel method based on a generalization
of existing results, for deterministic residual-based error estimation, to the random
setting. We complement our theoretical results by numerical simulations illustrat-
ing the advantages of our approach compared to the standard MLMC finite element
method when applied to problems with random singularities. Parts of the material
in this thesis have been published in [61].

This thesis is organized as follows. Chapter 2 contains the formulation of random
elliptic variational equalities and inequalities, the two model problems that we con-
sider throughout the thesis. We postulate a set of assumptions for these problems
that guarantee the well-posedness of these problems and the regularity of solutions.
We further specify the quantities of interest derived from the random solutions to
the introduced problems and give some examples of random fields appearing in the
problem formulations.

In Chapter 3 we present an abstract framework for adaptive MLMC methods to-
gether with error estimates formulated in terms of the desired accuracy and upper
bounds for the expected computational cost of the methods.

The general theory presented in Chapter 3 is applied to MLMC finite element meth-
ods for random linear elliptic problems in Chapter 4. In the case of uniform re-
finement we recover the existing classical MLMC convergence results (e.g. [28, 87])
together with the estimates for the expected computational cost of the method. Then
we introduce an adaptive MLMC finite element method and formulate assumptions
for an adaptive finite element algorithm, which provide MLMC convergence and
desired bounds for the computational cost. Further, we introduce an adaptive algo-
rithm based on residual a posteriori error estimation and demonstrate that it fulfills
the assumptions stated for the adaptive MLMC finite element method.

In Chapter 5 we compare the performance of the classical uniform and the novel
adaptive MLMC finite element methods by presenting results of numerical simu-
lations for two random linear elliptic problems. Our numerical results show that
for problems with highly localized random input data, the adaptive MLMC method
achieves a significant reduction of computational cost compared to the uniform one.

Finally, in Chapter 6 we present a practically relevant problem of uncertainty quan-
tification in wear tests of knee implants. Since the mathematical problem that de-
scribes the wear tests is formulated on a 3-dimensional domain with a complex ge-
ometry, construction of an uniform mesh hierarchy required for the standard MLMC
finite element method appears to be problematic. The coarsest mesh in the hierar-
chy should resolve the geometry of the domain, whereas the finest mesh should be
computationally feasible in terms of size. The framework of adaptive MLMC meth-
ods is a natural choice in this situation. We apply an adaptive MLMC finite element
method utilizing hierarchical error estimation techniques to the pathwise problems
and estimate the expected mass loss of the implants appearing in the wear tests.
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Chapter 2

Random Variational Problems

In this chapter we introduce two problems that are considered throughout the thesis.
The random linear elliptic problem described in Section 2.2 is the primary problem
for the theoretical analysis presented in Chapter 4. The random variational inequal-
ity introduced in Section 2.3 is important for the practical application presented in
Chapter 6. Some comments on the existing analytical results for this type of problem
are stated in Chapter 4.

2.1 Notation

In what follows let D ⊂ Rd be an open, bounded, convex, polyhedral domain. The
space dimension d can take values 1, 2, 3.

Let Lp(D) denote the space of Lebesgue-measurable, p-integrable, real-valued func-
tions on D with the norm defined as

‖v‖Lp(D) :=


(∫

D
|v(x)|p dx

) 1
p

, if 1 ≤ p < ∞,

ess supx∈D |v(x)|, if p = ∞.

The Sobolev space Hk(D) := {v ∈ L2(D) : Dαv ∈ L2(D) for |α| ≤ k} ⊂ L2(D), k ∈
N∪ {0} consists of functions with square integrable weak derivatives of order |α| ≤
k, where α denotes the d-dimensional multi-index, and is a Hilbert space. The inner
product on Hk(D) is defined as

(v, w)Hk(D) :=
∫

D
∑
|α|≤k

Dαv(x) · Dαw(x) dx,

and induces the norm
‖v‖Hk(D) := (v, v)

1
2
Hk(D)

.

Note that L2(D) = H0(D).

With C∞
0 (D) denoting the space of infinitely smooth functions in D with compact

support, we denote its closure under the norm ‖ · ‖H1(D) by H1
0(D).
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We will also make use of the Sobolev spaces Wk,∞(D) defined by Wk,∞(D) := {v ∈
L∞(D) : Dαv ∈ L∞(D) for |α| ≤ k}, k ∈N with the norm

‖v‖Wk,∞(D) := max
0≤|α|≤k

ess sup
x∈D

|Dαv(x)|.

Let Ck(D), k ∈ N ∪ {0} denote the space of continuous functions which are k times
continuously differentiable with the norm

‖v‖Ck(D) := ∑
0≤|α|≤k

sup
x∈D
|Dαv(x)|.

For a real 0 < r ≤ 1 and k ∈ N ∪ {0} we introduce the Hölder space Ck,r(D)
equipped with the norm

‖v‖Ck,r(D) := ‖v‖Ck(D) + max
|α|=k

sup
x,y∈D
x 6=y

|Dαv(x)− Dαv(y)|
|x− y|r .

Let (Ω,A, P) be a probability space, where Ω denotes a non-empty set of events,
A ⊂ 2Ω is a σ-algebra on Ω and P : A → [0, 1] is a probability measure. The space
(Ω,A, P) is called separable if there exists a countable family (An)∞

n=1 of subsets ofA
such that the σ-algebra generated by the family (An)∞

n=1 coincides with A.

The expected value of a measurable random variable ξ : Ω→ R is defined as

E[ξ] :=
∫

Ω
ξ(ω)dP(ω),

and its variance is defined as

V[ξ] := E[(ξ −E[ξ])2].

Let B be a Banach space of real-valued functions on the domain D with norm ‖ · ‖B.
We endow the space B with the Borel sigma algebra to render it a measurable space.

A random field f : Ω→ B is called simple if it is of the form f = ∑N
n=1 ψAn vn, N ∈N,

where An ∈ A and vn ∈ B for all n = 1, . . . , N. Here ψA denotes the indicator
function of the set A, i.e. ψA(ω) = 1, if ω ∈ A, and ψA(ω) = 0, if ω /∈ A. A random
field f is called strongly measurable if there exists a sequence of simple functions fn,
such that limn→∞ fn = f pointwise in Ω.

For the given Banach space B, we introduce the Bochner-type space Lp(Ω,A, P; B)
of strongly measurable, p-integrable mappings f : Ω→ B with the norm

‖ f ‖Lp(Ω,A,P;B) :=


(∫

Ω
‖ f (·, ω)‖p

B dP(ω)

)1/p

, if 1 ≤ p < ∞,

ess supω∈Ω‖ f (·, ω)‖B, if p = ∞.
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In order to keep the notation short we use the abbreviation Lp(Ω; B) :=
Lp(Ω,A, P; B) and Lp(Ω) := Lp(Ω; R). We use the convention 1

∞ = 0 when talking
about the orders of Lp-spaces.

We will often restrict ourselves to a Hilbert space H and the Bochner space L2(Ω; H).
It is easy to see that L2(Ω; H) is also a Hilbert space with the scalar product

(v, w)L2(Ω;H) :=
∫

Ω
(v(·, ω), w(·, ω))H dP(ω), v, w ∈ L2(Ω; H).

The expected value of an H-valued random variable f is defined as

E [ f ] :=
∫

Ω
f (·, ω) dP(ω) ∈ H.

For positive quantities a and b we write a . b if the ratio a/b is uniformly bounded
by a constant independent of ω ∈ Ω. We write a ' b if a . b and b . a.

2.2 Random elliptic variational equalities

For a given ω ∈ Ω we consider the following random elliptic partial differential
equation subject to homogeneous Dirichlet boundary conditions

−∇ · (α(x, ω)∇u(x, ω)) = f (x, ω) for x ∈ D,
u(x, ω) = 0 for x ∈ ∂D.

(2.1)

Here α and f are a random coefficient and a source function respectively. We restrict
ourselves to homogeneous Dirichlet boundary conditions for ease of presentation.

We let real-valued random variables αmin and αmax be such that

αmin(ω) ≤ α(x, ω) ≤ αmax(ω) a.e. in D×Ω. (2.2)

If realizations of the random coefficient α are continuous, the random variables αmin
and αmax can be defined as

αmin(ω) := min
x∈D

α(x, ω), αmax(ω) := max
x∈D

α(x, ω), (2.3)

and are finite a.e. in Ω.

We impose the following assumptions on the random coefficient α and on the ran-
dom right hand side f . This set of assumptions is rather usual in the context of
random elliptic PDEs, similar ones were made e.g. in [28, 87].

Assumption 2.2.1. (i) αmin > 0 a.s. and 1
αmin
∈ Lp(Ω) for all p ∈ [1, ∞),

(ii) α ∈ Lp(Ω; W1,∞(D)) for all p ∈ [1, ∞),
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(iii) f ∈ Lp f (Ω; L2(D)) for some p f ∈ (2, ∞].

Remark 2.2.1. We notice that in order for Assumption (2.2.1) (ii) to make sense the
function α : Ω → W1,∞(D) must be Bochner-integrable. Therefore, it includes the
assumption that the mapping Ω 3 ω 7→ α(·, ω) ∈ W1,∞(D) is strongly measur-
able. Note that strong measurability of α implies its measurability, see [84, Lemma
9.12]. As for Assumption (2.2.1) (iii), it includes the assumption that the mapping
Ω 3 ω 7→ f (·, ω) ∈ L2(D) is measurable, which implies strong measurability, since
L2(D) is separable [84, Theorem 9.3].

Let us notice that Assumption 2.2.1 (ii) implies that αmax ∈ Lp(Ω) for all p ∈ [1, ∞).
It also implies that realisations of the random coefficient α are in W1,∞(D) a.s., which
together with convexity of the spatial domain D yields that they are a.s. Lipschitz
continuous [37, Theorem 4.5], [52, Theorem 4.1]. Assumption 2.2.1 (iii) implies that
realisations of the random right hand side f are a.s. in L2(D).

We will work with the weak formulation of problem (2.1). For a fixed ω ∈ Ω, it takes
the form of the random variational equality

u(·, ω) ∈ H1
0(D) : a(ω; u(·, ω), v) = `(ω; v), ∀v ∈ H1

0(D), (2.4)

where the bilinear and linear forms are given by

a(ω; u, v) :=
∫

D
α(x, ω)∇u(x) · ∇v(x) dx, `(ω; v) :=

∫
D

f (x, ω)v(x) dx. (2.5)

Assumption 2.2.1 (i-ii), the Poincaré and Cauchy-Schwarz inequalities ensure that
for all v, w ∈ H1

0(D) and almost all ω ∈ Ω there holds

ca(ω)‖v‖2
H1(D) ≤ a(ω; v, v), a(ω; v, w) ≤ αmax(ω)‖v‖H1(D)‖w‖H1(D),

where 0 < ca(ω) and αmax(ω) < ∞ a.s., i.e. the bilinear form a is a.s. pathwise coer-
cive and continuous with coercivity constant ca(ω) = αmin(ω)cD, where cD depends
only on D, and continuity constant αmax(ω).

Proposition 2.2.1. Let Assumption 2.2.1 hold, then the pathwise problem (2.4) admits a
unique solution u(·, ω) for almost all ω ∈ Ω and u ∈ Lp(Ω; H1

0(D)) for all p ∈ [1, p f ).

Proof. Assumption 2.2.1 in combination with the Lax-Milgram theorem [49, The-
orem 7.2.8] yields existence and uniqueness of the solution to (2.4) for almost all
ω ∈ Ω and it holds

‖u(·, ω)‖H1(D) ≤
1

ca(ω)
‖ f (·, ω)‖L2(D). (2.6)

Measurability of the mapping Ω 3 ω 7→ u(·, ω) ∈ H1
0(D) is provided by [73, The-

orem 1]. Assumption 2.2.1 (i, iii) together with (2.6) and Hölder’s inequality imply
‖u‖Lp(Ω;H1

0 (D)) < ∞ for all p ∈ [1, p f ), see cf. [28].

Regularity results similar to the following can be found e.g. in [42, 65].
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Proposition 2.2.2. Let Assumption 2.2.1 hold and u(·, ω) denote the solution to (2.4) for
some ω ∈ Ω. Then u(·, ω) ∈ H2(D) almost surely and there holds

‖u(·, ω)‖H2(D) .
(

1
αmin(ω)

+
‖α(·, ω)‖W1,∞(D)

α2
min(ω)

)
‖ f (·, ω)‖L2(D),

where the hidden constant depends only on D.

Proof. Since α(·, ω) ∈W1,∞(D) a.s. and the domain D is convex, the solution u(·, ω)
belongs to H2(D) for almost all ω ∈ Ω according to standard well known results
(see [20, 49]). Moreover, we have

‖∆u(·, ω)‖L2 ≤ 1
αmin(ω)

(
‖ f (·, ω)‖L2(D) + ‖∇α(·, ω)‖L∞(D)‖∇u(·, ω)‖L2(D)

)
.

Equivalence of the norms ‖v‖H2(D) and ‖∆v‖L2(D) for all v ∈ H2(D)∩H1
0(D) and (2.6)

imply the claim.

Remark 2.2.2. In the case when there exist real values αmin and αmax such that

0 < αmin ≤ α(x, ω) ≤ αmax < ∞ a.e. in D×Ω,

Assumption 2.2.1 (i) also holds for p = ∞. The arguments of Proposition 2.2.1 lead
in this case to u ∈ Lp(Ω; H1

0(D)) for all p ∈ [1, p f ] and Proposition 2.2.2 holds as
well. We complement the set of Assumptions in this case by letting p = ∞ in As-
sumption 2.2.1 (ii).

2.3 Random elliptic variational inequalities

For a given ω ∈ Ω let us consider the random obstacle problem subject to homoge-
neous Dirichlet boundary conditions

−∇ · (α(x, ω)∇u(x, ω)) ≥ f (x, ω) for x ∈ D,
u(x, ω) ≥ χ(x, ω) for x ∈ D,

(∇ · (α(x, ω)∇u(x, ω)) + f (x, ω)) (u(x, ω)− χ(x, ω)) = 0 for x ∈ D,
u(x, ω) = 0 for x ∈ ∂D.

(2.7)

Here α is a random coefficient, f is a random source function and χ is a random
obstacle function.

In addition to Assumption 2.2.1 we make the following assumption on the obstacle
function.

Assumption 2.3.1. (i) χ(x, ω) ≤ 0 a.e. in D×Ω,

(ii) χ ∈ Lp f (Ω; H2(D)), where p f is as in Assumption 2.2.1 (iii).
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For a fixed ω ∈ Ω the weak form of problem (2.7) takes the form

u(·, ω) ∈ K(ω) : a(ω; u(·, ω), v− u(·, ω)) ≥ `(ω; v− u(·, ω)), ∀v ∈ K(ω),
(2.8)

where
K(ω) := {v ∈ H1

0(D) : v ≥ χ(·, ω) a. e. in D},

and the bilinear and linear forms are defined as in (2.5).

Note that problem (2.8) can be reformulated such that χ = 0 by introducing the new
variable w = u− χ.

Similar to the linear case, well-posedness of the random variational inequality (2.8)
can be shown under Assumptions 2.2.1 and 2.3.1, see [60, Theorem 3.3, Remark 3.5].

Proposition 2.3.1. Let Assumptions 2.2.1 and 2.3.1 hold. Then the pathwise problem (2.8)
admits a unique solution u(·, ω) for almost all ω ∈ Ω and u ∈ Lp(Ω; H1

0(D)) for all
p ∈ [1, p f ).

Further, we have H2-regularity of the solutions to (2.8), see [60, Theorem 3.7, Remark
3.9] for the proof.

Proposition 2.3.2. Let Assumptions 2.2.1 and 2.3.1 hold and u(·, ω) denote the solution
to (2.8) for some ω ∈ Ω. Then u(·, ω) ∈ H2(D) almost surely and there holds

‖u(·, ω)‖H2(D) .
(

1
αmin(ω)

+
‖α(·, ω)‖W1,∞(D)

α2
min(ω)

)
‖ f (·, ω)‖L2(D),

where the hidden constant depends only on D.

Remark 2.3.1. If Assumption 2.2.1 is modified according to Remark 2.2.2, it is possi-
ble to show that u ∈ Lp(Ω; H1

0(D)) for all p ∈ [1, p f ] and Proposition 2.3.2 holds.

Problem (2.4) can be viewed as a special case of problem (2.8) with χ = −∞ and
K = H1

0(D), but we keep them separate for easier referencing.

2.4 Quantities of interest

We consider two types of quantities of interest for both problems (2.4) and (2.8). First
we seek the expectation of the solution

E[u] =
∫

Ω
u(·, ω) dP(ω). (2.9)

Secondly, we might be interested in some property of the solution derived by a mea-
surable functional Q(ω; u) : Ω × H1

0(D) → R that defines an output of interest.
We assume that for almost all ω ∈ Ω the functional Q(ω; ·) is globally Lipschitz
continuous.
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Assumption 2.4.1. (i) There exists a real-valued positive random variable CQ, such
that for almost all ω ∈ Ω there holds

|Q(ω; v)−Q(ω; w)| ≤ CQ(ω)‖v− w‖H1(D), ∀v, w ∈ H1
0(D).

(ii) CQ ∈ LpQ(Ω) for some pQ ∈ (2, ∞].

We then seek the expected value

E[Q(·; u)] =
∫

Ω
Q(ω; u(·, ω)) dP(ω), (2.10)

where u(·, ω) denotes the solutions to (2.4) or to (2.8) for ω ∈ Ω.

2.5 Log-normal random fields

Before we introduce log-normal random fields we give a brief introduction to uni-
formly bounded random fields.

Uniform random fields

Let α ∈ L2(Ω; L2(D)) be an uniformly bounded coefficient with the mean E[α], i.e.
there exist real values αmin, αmax such that

0 < αmin ≤ α(x, ω) ≤ αmax < ∞ a.e. in D×Ω,

Then the field α fulfills the stronger version of Assumption 2.2.1 (i), described in
Remark 2.2.2.

We assume that the probability space (Ω,A, P) is separable, which implies separa-
bility of L2(Ω) [23, Theorem 4.13] and L2(Ω; L2(D)) ∼= L2(Ω)⊗ L2(D) [85, Section
3.5]. We then assume that for each ω ∈ Ω the random field α(·, ω) can be represented
as the series

α(·, ω) = E[α] +
∞

∑
m=1

ξm(ω)ϕm, (2.11)

where (ϕm)m∈N is an orthogonal functions system in L2(D) and (ξm)m∈N are mutu-
ally independent random variables, distributed uniformly on the interval [− 1

2 , 1
2 ].

Let us assume that E[α] ∈W1,∞(D) and that (ϕm)m∈N ⊂W1,∞(D). If we have

∞

∑
m=1
‖ϕm‖W1,∞(D) < ∞,

then the expansion defined in (2.11) converges uniformly in W1,∞(D) for all ω ∈ Ω
(see [80, Section 2.3]). If we in addition assume that ‖∇α‖L∞(D) ∈ L∞(Ω), then the
uniform random field α also satisfies the stronger version of Assumption 2.2.1 (ii),
described in Remark 2.2.2.
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Log-normal random fields

The so-called log-normal fields are of the form α(x, ω) = exp(g(x, ω)) for some Gaus-
sian field g : D × Ω → R. Note that g ∈ L2(Ω; L2(D)). We again assume that
(Ω,A, P) is separable, which implies L2(Ω; L2(D)) ∼= L2(Ω)⊗ L2(D). Without loss
of generality we restrict ourselves to Gaussian random fields with zero mean, i.e.
E[g] = 0. We also assume that g fulfills

E[
(

g(x, ·)− g(x′, ·)
)2
] ≤ Cg|x− x′|2βg , ∀x, x′ ∈ D, (2.12)

with some positive constants βg and Cg.

The two-point covariance function of the Gaussian field g is defined as

rg(x, x′) := E[g(x, ·)g(x′, ·)], x, x′ ∈ D.

It can be shown (cf. [67, Section 2.1.1]) that under the above mentioned assumptions
on the random field g the function rg is continuous on D× D and∫

D

∫
D

r2
g(x, x′) dx dx′ < ∞.

We further restrict ourselves to random fields with isotropic covariance functions,
i.e.

rg(x, x′) = kg(|x− x′|), x, x′ ∈ D, (2.13)

for some kg ∈ C(R+).

The following result is known as the Kolmogorov continuity theorem and provides
regularity of path realizations of the fields g and α, see [42, Proposition 1].

Proposition 2.5.1. Assume that a Gaussian random field g fulfills (2.12) with constants
βg ∈ (0, 1] and Cg > 0, and its covariance function fulfills (2.13). Then there exists a
version of g denoted by g̃ (i.e. g̃(x, ·) = g(x, ·) a.s. for all x ∈ D), such that g̃(·, ω) ∈
C0,t(D) for almost all ω ∈ Ω and for any 0 ≤ t < βg ≤ 1. Moreover, α̃(·, ω) :=
exp(g̃(·, ω)) ∈ C0,t(D) for almost all ω ∈ Ω.

We will identify α and α̃ with each other. Proposition 2.5.1 provides Hölder conti-
nuity of realizations of the log-normal field α. Therefore, the definition (2.3) makes
sense for this type of random field. According to [27, Proposition 2.2], 1

αmin
, αmax ∈

Lp(Ω) for all p ∈ [1, ∞). Since αmin > 0 a.s. by definition of log-normal fields, it
provides the validity Assumption 2.2.1 (i).

We introduce now the Karhunen-Loève (KL) expansion, which serves the purpose
of parametrizing a log-normal field by a set of Gaussian random variables, and give
some of its properties. We cite [4, 27, 39, 67, 80] for details.

Since the covariance function rg is positive definite and symmetric by definition, and
continuous and hence square-integrable under the above mentioned assumptions,
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the linear covariance operator with the kernel rg, defined as

C : L2(D)→ L2(D), (Cv)(x) :=
∫

D
rg(x, x′)v(x′) dx′,

is symmetric, positive semi-definite and compact on L2(D). According to standard
results from the theory of integral operators (see e.g. [32, Chapter 3]), its eigenvalues
(λm)m∈N are real, non-negative and can be ordered in decreasing order

λ1 ≥ λ2 ≥ · · · → 0,

and there holds
∞

∑
m=1

λ2
m < ∞.

The eigenfunctions (ϕm)m∈N form an orthonormal basis of L2(D).

According to Mercer’s theorem [4, Theorem 3.3.1], the covariance function (2.13)
admits the spectral decomposition

rg(x, x′) =
∞

∑
m=1

λm ϕm(x)ϕm(x′), x, x′ ∈ D,

which converges uniformly in D× D.

The field g can be then expanded into the KL series (see [39, Section 2.3.1] for details),
i.e. for all x ∈ D

g(x, ω) =
∞

∑
m=1

√
λmξm(ω)ϕm(x) in L2(Ω),

and the series converges uniformly almost surely [85, Theorem 11.4]. The sequence
(ξm)m∈N consists of random variables defined as

ξm :=
1√
λm

(g, ϕm)L2(D), m ∈N.

The variables (ξm)m∈N have zero mean, unit variance and are mutually uncorre-
lated. Since the field g is Gaussian, the variables (ξm)m∈N are also Gaussian and
mutually independent.

For each ω ∈ Ω the KL expansion of the realization α(·, ω) of a log-normal field then
takes the form

α(·, ω) = exp
( ∞

∑
m=1

√
λmξm(ω)ϕm

)
. (2.14)

If we assume that (ϕm)m∈N ⊂W1,∞(D) and

∞

∑
m=1

√
λm‖ϕm‖W1,∞(D) < ∞,
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then the expansion defined in (2.14) converges in W1,∞(D) a.s. (see [80, Section 2.4]).
If we additionally assume that ‖∇α‖L∞(D) ∈ Lp(Ω) for all p ∈ [1, ∞), Assump-
tion 2.2.1 (ii) also holds.

Remark 2.5.1. Pathwise evaluations of log-normal random fields with the Matèrn
covariance function, given by

rg(|x− x′|) = σ2 21−ν

Γ(ν)
(√

2ν
|x− x′|

λC

)νKν

(
2
√

2ν
|x− x′|

λC

)
,

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second
kind, ν is the smoothness parameter, σ2 is the variance and λC is the correlation
length, belong to C1(D) a.s. (see [42, Remark 4]) when ν > 1.

The KL expansion, truncated after a finite number of terms NKL ∈ N, is known to
provide the optimal finite representation of the random field g in the sense of the
following proposition, see [92, Theorem 1.2.2].

Proposition 2.5.2. Among all truncated expansions with NKL ∈ N terms approximating
the random field g that take the form

gNKL(x, ω) =
NKL

∑
m=1

√
λmξm(ω)φm(x),

where (φm)m∈N is a system of mutually orthogonal functions in L2(D), the KL expansion
minimizes the integrated mean square error∫

D
E
[( ∞

∑
m=NKL+1

√
λmξmφm(x)

)2
]

dx.
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Chapter 3

Abstract Adaptive Multilevel
Monte Carlo Methods

In this chapter we introduce abstract multilevel Monte Carlo methods for approxi-
mating the expected solution to variational equalities of the form (2.4) or variational
inequalities of the form (2.8), and for approximating expected outputs of interest
for these problems. We present a set of assumptions for the spatial pathwise ap-
proximations to the solutions, together with convergence results and bounds for
the expected computational cost of the MLMC methods provided by these assump-
tions. The framework presented in this chapter extends the range of methods that
can be utilized for constructing the pathwise approximations to adaptive finite ele-
ment methods, as will be shown in Chapter 4.

We let Assumption 2.2.1 hold for both types of problem. In addition we let Assump-
tion 2.3.1 hold for problem (2.8). Then, according to Propositions 2.2.1 and 2.3.1, the
solutions u to problems (2.4) and (2.8) belong to Lp(Ω; H1

0(D)) for all p ∈ [1, p f ),
where p f is defined in Assumption 2.2.1 (iii). Particularly, since p f ∈ (2, ∞], we have
u ∈ L2(Ω; H1

0(D)).

We omit the dependence of u on the spatial variable and use the notation u(ω) for
u(·, ω) in this chapter.

3.1 Approximation of the expected solution

In this section we construct an approximation to the expected value E[u] introduced
in Section 2.4. We concentrate here on the discretization in the stochastic domain and
only make some assumptions on the approximation in the spatial domain; the latter
will be discussed in detail in Chapter 4. We use multilevel Monte Carlo methods for
integration in the stochastic domain.

In order to introduce the multilevel Monte Carlo method we first define the Monte
Carlo estimator

EM[u] :=
1
M

M

∑
i=1

ui ∈ L2(Ω; H1
0(D)), (3.1)
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where ui, i = 1, . . . , M, denote M ∈ N independent, identically distributed (i.i.d.)
copies of u.

The following lemma provides a representation for the Monte Carlo approximation
error, see [14, 16, 61].

Lemma 3.1.1. The Monte Carlo approximation EM[u] defined in (3.1) of the expectation
E[u] satisfies

‖E[u]− EM[u]‖2
L2(Ω;H1

0 (D))
= M−1V[u],

where
V[u] := E[‖u‖2

H1(D)]− ‖E[u]‖2
H1(D).

Proof. Since the (ui)
M
i=1 are i.i.d., we have

‖E[u]− EM[u]‖2
L2(Ω;H1

0 (D))
= E

∥∥∥∥∥E[u]− 1
M

M

∑
i=1

ui

∥∥∥∥∥
2

H1(D)


= E

∥∥∥∥∥ 1
M

M

∑
i=1

(E[u]− ui)

∥∥∥∥∥
2

H1(D)


= 1

M2 ∑M
i=1 E

[
‖E[u]− ui‖2

H1(D)

]
=

1
M

E
[
‖E[u]− u‖2

H1(D)

]
= 1

M

(
E[‖u‖2

H1(D)
]− ‖E[u]‖2

H1(D)

)
.

Remark 3.1.1. It is easy to see that

V[u] = E[‖u‖2
H1(D)]− ‖E[u]‖2

H1(D) ≤ E[‖u‖2
H1(D)] = ‖u‖

2
L2(Ω;H1

0 (D))
.

We will use this relation later for proving convergence of multilevel Monte Carlo
methods.

Now, we introduce spatial approximations for u(ω), ω ∈ Ω. We do not specify
how these approximations can be constructed and only state a set of assumptions
for them.

For given initial tolerance Tol0 > 0 and reduction factor 0 < q < 1 we define a
sequence of tolerances by

Toll := qToll−1, l ∈N. (3.2)

For each fixed ω ∈ Ω we introduce a sequence of approximations ũl(ω), l ∈ N ∪
{0} to the solution u(ω) and assume the following properties.
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Assumption 3.1.1. For all l ∈ N ∪ {0} the mappings Ω 3 ω 7→ ũl(ω) ∈ H1
0(D)

are measurable, and there exists Cdis ∈ L2(Ω) such that for almost all ω ∈ Ω the
approximate solutions ũl(ω) satisfy the error estimate

‖u(ω)− ũl(ω)‖H1(D) ≤ Cdis(ω)Toll .

Note that Assumption 3.1.1 implies

‖u− ũl‖L2(Ω;H1
0 (D)) ≤ ‖Cdis‖L2(Ω)Toll , (3.3)

for all l ∈N∪ {0}.

Given a random variable ζ, we shall denote the computational cost for evaluating ζ
by Cost(ζ).

Assumption 3.1.2. For all l ∈ N ∪ {0} the approximations ũl(ω) to the solutions
u(ω), ω ∈ Ω can be evaluated at expected computational cost

E[Cost(ũl)] ≤ CcostTol−γ
l

with constants γ, Ccost > 0 independent of l and ω.

Now, we are ready to introduce the inexact multilevel Monte Carlo approximation
to E[u]. For an L ∈N we define

EL[ũL] :=
L

∑
l=0

EMl [ũl − ũl−1], (3.4)

where ũ−1 := 0 and Ml ∈N, l = 0, . . . , L. Note that the numbers of samples Ml may
be different for different l, and that the samples on different levels are independent.

The following proposition presents a basic identity for the approximation error of
the MLMC estimator, see [16].

Proposition 3.1.1. The multilevel Monte Carlo approximation (3.4) of the expected solution
E[u] with Ml ∈N, l = 0, . . . , L, satisfies

‖E[u]− EL[ũL]‖2
L2(Ω;H1

0 (D))
= ‖E[u− ũL]‖2

H1(D) +
L

∑
l=0

M−1
l V[ũl − ũl−1]. (3.5)
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Proof. Since the expectations on different levels are estimated independently, we
have∥∥∥E[u]− EL[ũL]

∥∥∥2

L2(Ω;H1
0 (D))

= ‖E[u]−E[ũL]‖2
L2(Ω;H1

0 (D)) + ‖E[ũL]− EL[ũL]‖2
L2(Ω;H1

0 (D))

= ‖E[u− ũL]‖2
H1(D) +

∥∥∥∥∥ L

∑
l=0

(E− EMl )[ũl − ũl−1]

∥∥∥∥∥
2

L2(Ω;H1
0 (D))

= ‖E[u− ũL]‖2
H1(D) +

L

∑
l=0
‖(E− EMl )[ũl − ũl−1]‖2

L2(Ω;H1
0 (D))

= ‖E[u− ũL]‖2
H1(D) +

L

∑
l=0

M−1
l V[ũl − ũl−1].

Proposition 3.1.1 shows that the error of the multilevel Monte Carlo estimator has
two components, one of which depends on the discretization of the random solu-
tions and the second one represents the sampling error and includes a variance-like
operator.

We finally state a convergence theorem for the inexact multilevel Monte Carlo meth-
ods described in this section. The proof follows the same steps as the proofs of
similar results [29, 41], see also [61].

Theorem 3.1.1. Let Assumptions 3.1.1-3.1.2 hold. Then for any Tol > 0 there exists an
L ∈N and a sequence of integers {Ml}L

l=0 providing

‖E[u]− EL[ũL]‖L2(Ω;H1
0 (D)) ≤ Tol,

and the estimator EL[ũL] can be evaluated at expected computational cost

E[Cost(EL[ũL])] =


O(Tol−2), γ < 2,
O(L2Tol−2), γ = 2,
O(Tol−γ), γ > 2,

where the constants depend only on q, γ, Ccost, Tol0, ‖u‖L2(Ω;H1
0 (D)) and ‖Cdis‖L2(Ω).

Proof. We set L to be the smallest integer such that L ≥ logq(Tol−1
0 2−1/2‖Cdis‖−1

L2(Ω)
Tol),

which ensures TolL ≤ 2−1/2‖Cdis‖−1
L2(Ω)

Tol < TolL−1. Proposition 3.1.1, together with
Jensen’s inequality, Remark 3.1.1, the Cauchy-Schwarz and triangle inequalities, the
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choice of L and (3.3), provides

‖E[u]− EL[ũL]‖2
L2(Ω;H1

0 (D))
= ‖E[u− ũL]‖2

H1(D)
+

L

∑
l=0

M−1
l V[ũl − ũl−1]

≤ (E[‖u− ũL‖H1(D)])
2 +

L

∑
l=0

M−1
l ‖ũl − ũl−1‖2

L2(Ω;H1
0 (D))

≤ ‖u− ũL‖2
L2(Ω;H1

0 (D))
+

L

∑
l=0

M−1
l (‖ũl − u‖L2(Ω;H1

0 (D)) + ‖u− ũl−1‖L2(Ω;H1
0 (D)))

2

≤ 1
2 Tol2 + M−1

0 (‖Cdis‖L2(Ω)Tol0 + ‖u‖L2(Ω;H1
0 (D)))

2

+(1 + q−1)2‖Cdis‖2
L2(Ω) ∑L

l=1 M−1
l Tol2

l .

Now, we choose M0 to be the smallest integer such that

M0 ≥ C0Tol−2,

where C0 := 4(‖Cdis‖L2(Ω)Tol0 + ‖u‖L2(Ω;H1
0 (D)))

2. We choose the values for Ml , l =
1, . . . L differently for different values of γ.

For γ < 2 we set Ml to be the smallest integer such that

Ml ≥ C1q
γ+2

2 lTol−2, l = 1, . . . , L,

with C1 := 4‖Cdis‖2
L2(Ω)

((1− q
2−γ

2 )−1 − 1)(1 + q−1)2Tol2
0 . Then we have

‖E[u]−EL[ũL]‖2
L2(Ω;H1

0 (D))
≤

1
2 Tol2 + 1

4 Tol2 + Tol2(1 + q−1)2‖Cdis‖2
L2(Ω)C

−1
1 Tol2

0

L

∑
l=1

q
2−γ

2 l ≤ Tol2.

For γ = 2 we set Ml to be the smallest integer such that

Ml ≥ C2Lq2lTol−2, l = 1, . . . , L,

with C2 := 4‖Cdis‖2
L2(Ω)

(1 + q−1)2Tol2
0 . Then the error can be bounded as follows

‖E[u]−EL[ũL]‖2
L2(Ω;H1

0 (D))
≤

1
2 Tol2 + 1

4 Tol2 + Tol2(1 + q−1)2‖Cdis‖2
L2(Ω)C

−1
2 Tol2

0 ≤ Tol2.

Finally, for γ > 2 we choose Ml to be the smallest integer such that

Ml ≥ C3q
2−γ

2 Lq
γ+2

2 lTol−2, l = 1, . . . , L,
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with C3 := 4‖Cdis‖2
L2(Ω)

(1− q
γ−2

2 )−1(1 + q−1)2Tol2
0 . Then

‖E[u]−EL[ũL]‖2
L2(Ω;H1

0 (D))
≤

1
2 Tol2 + 1

4 Tol2 + Tol2(1 + q−1)2‖Cdis‖2
L2(Ω)C

−1
3 Tol2

0

L

∑
l=0

q
γ−2

2 l ≤ Tol2.

We set Tol−1 := 0 and utilize Assumption 3.1.2, then the expected computational
cost of the MLMC estimator is bounded by

E[Cost(EL[ũL])] ≤ Ccost

L

∑
l=0

Ml(Tol−γ
l + Tol−γ

l−1) ≤ Ccost(1 + qγ)
L

∑
l=0

MlTol−γ
l .

Now, we denote C̃i := max{C0, Ci}, i = 1, 2, 3 and consider different values of γ.

For γ < 2 we have

E[Cost(EL[ũL])] ≤ Ccost(1 + qγ)(C̃1Tol−γ
0 Tol−2

L

∑
l=0

q
2−γ

2 l +
L

∑
l=0

Tol−γ
l ) ≤

Ccost(1 + qγ)(C̃1Tol−γ
0 (1− q

2−γ
2 )−1Tol−2 + 2

γ
2 q−γ‖Cdis‖γ

L2(Ω)
(1− qγ)−1Tol−γ),

for γ = 2

E[Cost(EL[ũL])] ≤ Ccost(1 + q2)(C̃2Tol−2
0 L(L + 1) + 2q−2‖Cdis‖2

L2(Ω)(1− q2)−1)Tol−2,

and for γ > 2

E[Cost(EL[ũL])] ≤ Ccost(1 + qγ)(C̃3Tol−2
0 Tol−γ2

γ−2
2 q2−γ‖Cdis‖γ−2

L2(Ω)

L

∑
l=0

q
γ−2

2 l

+
L

∑
l=0

Tol−γ
l ) ≤

Ccost(1 + qγ)(C̃3Tol−2
0 2

γ−2
2 q2−γ‖Cdis‖γ−2

L2(Ω)
(1− q

γ−2
2 )−1

+ 2
γ
2 q−γ‖Cdis‖γ

L2(Ω)
(1− qγ)−1)Tol−γ.

Remark 3.1.2. If we let the stronger set of assumptions described in Remark 2.2.2
hold, it is enough to assume p f ∈ [2, ∞] in order for Theorem 3.1.1 to hold.
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3.2 Approximation of the expected output of interest

In this section we approximate the expected output of interest E[Q(u)] defined in (2.10).
As in the previous section, we concentrate on the approximation in the stochastic do-
main using the multilevel Monte Carlo method.

The Monte Carlo approximation to E[Q(u)] is defined by

EM[Q(u)] :=
1
M

M

∑
i=1

Q(ui), (3.6)

where, again, M ∈N and ui, i = 1, . . . , M are i.i.d. copies of u.

It is well known and easy to verify that the Monte Carlo approximation (3.6) has the
properties

E[EM[Q(u)]] = E[Q(u)], V[EM[Q(u)]] = M−1V[Q(u)]. (3.7)

We follow the previous section and assume that for each ω ∈ Ω we possess se-
quences of approximations ũl(ω), l ∈ N ∪ {0} which fulfill the following assump-
tion.

Assumption 3.2.1. For all l ∈ N ∪ {0} the mappings Ω 3 ω 7→ ũl(ω) ∈ H1
0(D)

are measurable, and there exists Cdis ∈ Lpdis(Ω) for some pdis ∈ [2, p f ) such that for
almost all ω ∈ Ω the approximate solutions ũl(ω) satisfy the error estimate

‖u(ω)− ũl(ω)‖H1(D) ≤ Cdis(ω)Toll .

Note that Assumption 3.2.1 implies

‖u− ũl‖Lp(Ω;H1
0 (D)) ≤ ‖Cdis‖Lp(Ω)Toll , (3.8)

for all p ∈ [1, pdis] and for all l ∈N∪ {0}.

We also assume that the approximations ũl(ω) satisfy Assumption 3.1.2 and that the
cost of computing the quantity of interest Q(ũl(ω)) is negligible compared to the
cost of computing the function ũl(ω) for all l ∈N∪ {0} and ω ∈ Ω.

For a given L ∈ N we introduce the multilevel Monte Carlo approximation to
E[Q(u)] as

EL[Q(ũL)] :=
L

∑
l=0

EMl [Q(ũl)−Q(ũl−1)], (3.9)

where we set Q(ũ−1) := 0 and Ml ∈N, l = 0, . . . , L. Again, the numbers of samples
Ml may be different for different levels l.

We are interested in the so-called mean square error (MSE) defined as follows

e2(EL[Q(ũL)]) := E

[(
E[Q(u)]− EL[Q(ũL)]

)2
]

.
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The following proposition states a basic representation for the MSE of the MLMC
estimator, see e.g. [29].

Proposition 3.2.1. The multilevel Monte Carlo approximation (3.9) of the expected output
of interest E[Q(u)] with Ml ∈N, l = 0, . . . , L, satisfies

e2(EL[Q(ũL)]) = (E[Q(u)−Q(ũL)])
2 +

L

∑
l=0

M−1
l V[Q(ũl)−Q(ũl−1)]. (3.10)

Proof. Using (3.7), (3.9) and independence of samples on different levels we have

e2(EL[Q(ũL)]) = (E[Q(u)]−E[Q(ũL)])
2 + V[EL[Q(ũL)]]

= (E[Q(u)−Q(ũL)])
2 +

L

∑
l=0

V[EMl [Q(ũl)−Q(ũl−1)]]

= (E[Q(u)−Q(ũL)])
2 +

L

∑
l=0

M−1
l V[Q(ũl)−Q(ũl−1)].

We are now ready to state a convergence theorem for the inexact multilevel Monte
Carlo methods, for approximating the expected output of interest introduced in Sec-
tion 2.4.

Theorem 3.2.1. Let Assumption 2.4.1 hold and p f ∈ (2 pQ
pQ−2 , ∞]. Further, let Assumption

3.2.1 hold with pdis = 2 pQ
pQ−2 and let Assumption 3.1.2 hold. Then for any Tol > 0 there

exists an L ∈N and a sequence of integers {Ml}L
l=0, such that

e(EL[Q(ũL)]) ≤ Tol,

and the estimator EL[Q(ũL)] can be evaluated at expected computational cost

E[Cost(EL[Q(ũL)])] =


O(Tol−2), γ < 2,
O(L2Tol−2), γ = 2,
O(Tol−γ), γ > 2,

where the constants depend only on q, γ, Ccost, Tol0, ‖u‖Lpdis (Ω;H1
0 (D)), ‖Cdis‖Lpdis (Ω),

‖CQ‖LpQ (Ω).

Proof. We set L to be the smallest integer such that
L ≥ logq(Tol−1

0 2−1/2‖CQ‖−1
LpQ (Ω)

‖Cdis‖−1
Lpdis (Ω)

Tol), which ensures

TolL ≤ 2−1/2‖CQ‖−1
LpQ (Ω)

‖Cdis‖−1
Lpdis (Ω)

Tol < TolL−1. Proposition 3.2.1, together with
the Cauchy-Schwarz, triangle and Hölder’s inequalities, (3.8), Assumption 2.4.1 and
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the choice of L, yields

e2(EL[Q(ũL)]) = (E[Q(u)−Q(ũL)])
2 +

L

∑
l=0

M−1
l V[Q(ũl)−Q(ũl−1)]

≤ ‖Q(u)−Q(ũL)‖2
L2(Ω) +

L

∑
l=0

M−1
l ‖Q(ũl)−Q(ũl−1)‖2

L2(Ω)

≤ ‖Q(u)−Q(ũL)‖2
L2(Ω) +

L

∑
l=0

M−1
l

(
‖Q(ũl)−Q(u)‖2

L2(Ω)

+ ‖Q(u)−Q(ũl−1)‖2
L2(Ω)

)2

≤ ‖CQ‖2
LpQ (Ω)

‖Cdis‖2
Lpdis (Ω)Tol2

L

+ (1 + q−1)2‖CQ‖2
LpQ (Ω)

‖Cdis‖2
Lpdis (Ω)

L

∑
l=0

M−1
l Tol2

l

≤ 1
2

Tol2 + M−1
0 ‖CQ‖2

LpQ (Ω)
(‖Cdis‖Lpdis (Ω)Tol0 + ‖u‖Lpdis (Ω;H1

0 (D)))
2

+ (1 + q−1)2‖CQ‖2
LpQ (Ω)

‖Cdis‖2
Lpdis (Ω)

L

∑
l=1

M−1
l Tol2

l .

Finally, we choose M0 to be the smallest integer such that

M0 ≥ C0Tol−2,

where C0 := 4‖CQ‖2
LpQ (Ω)

(‖Cdis‖Lpdis (Ω)Tol0 + ‖u‖Lpdis (Ω;H1
0 (D)))

2. We also set Ml to
be the smallest integers such that

Ml ≥


C1q

γ+2
2 lTol−2, γ < 2,

C2Lq2lTol−2, γ = 2,

C3q
2−γ

2 Lq
γ+2

2 lTol−2, γ > 2,

for l = 1, . . . , L, where

C1 := 4‖CQ‖2
LpQ (Ω)

‖Cdis‖2
Lpdis (Ω)((1− q

2−γ
2 )−1 − 1)(1 + q−1)2Tol2

0 ,

C2 := 4‖CQ‖2
LpQ (Ω)

‖Cdis‖2
Lpdis (Ω)(1 + q−1)2Tol2

0 ,

C3 := 4‖CQ‖2
LpQ (Ω)

‖Cdis‖2
Lpdis (Ω)(1− q

γ−2
2 )−1(1 + q−1)2Tol2

0 .

The rest of the proof is then almost identical to the proof of Theorem 3.1.1.

Remark 3.2.1. If we let the stronger set of assumptions described in Remark 2.2.2
hold, it is enough to assume p f ∈ [2 pQ

pQ−2 , ∞] in order for Theorem 3.1.1 to hold.
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Chapter 4

Multilevel Monte Carlo Finite
Element Methods

In this chapter we introduce and investigate two multilevel Monte Carlo methods
that fit into the framework described in Chapter 3. We first overview well estab-
lished multilevel Monte Carlo finite element methods [2, 14, 16, 28, 60, 87] and then
introduce a novel method that combines the ideas of MLMC and adaptive finite ele-
ment methods and present a theoretical analysis for this method. We concentrate on
the elliptic variational equalities introduced in Section 2.2, i.e.

u(·, ω) ∈ H1
0(D) : a(ω; u(·, ω), v) = `(ω; v), ∀v ∈ H1

0(D), (4.1)

where the bilinear and linear forms are defined in (2.5). We let Assumption 2.2.1
hold throughout the chapter. The analysis presented in this chapter simplifies in a
transparent way when elliptic problems that fulfill the set of stronger assumptions
discussed in Remark 2.2.2 are considered.

4.1 Notation

We consider partitions of the spatial domain D ⊂ Rd into non-overlapping subdo-
mains. We require these subdomains to be simplices, i.e. line segments if d = 1,
triangles if d = 2, or tetrahedra if d = 3. The union of such subdomains is labelled
T . We denote a simplex by T and call it an element.

We call a partition T admissible if any two elements in T are either disjoint or their
intersection is a vertex or a complete edge (d = 2, 3) or a complete face (d = 3).
Admissibility of a mesh means that this mesh does not contain hanging nodes, i.e.
nodes that not only exist in element corners, but also on element edges or faces, see
Figure 4.1. In the case d = 1 any partition is admissible.

Let E denote the set of interior nodes in the case d = 1, the set of interior edges in
the case d = 2 and the set of interior faces in the case d = 3. For any E ∈ E , d > 1
we set hE := |E| 1

d−1 , where | · | denotes the (d− 1)-dimensional Lebesgue measure.
In what follows we call an E ∈ E a face for all values of d.
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FIGURE 4.1: An example of a hanging node (•).

We define the shape parameter of a mesh T as

CT :=


max

T1,T2∈T
T1∩T2 6=∅

hT1

hT2

, d = 1,

max
T∈T

diam(T)
hT

, d = 2, 3,

where diam(·) denotes the Euclidean diameter of an element, hT := |T| 1d and | · |
denotes the d-dimensional Lebesgue measure. We call a partition shape-regular if
its shape parameter is bounded from above. In the case d = 2, shape-regularity of a
partition means that the smallest angles of all elements in this partition stay bounded
away from zero.

Note that if a 2- or 3-dimensional partition T is shape-regular then for any T1, T2 ∈ T
such that T1 ∩ T2 6= ∅, and for any E1, E2 ∈ E such that E1 ∩ E2 6= ∅, the ratios

hT1
hT2

,
hE1
hE2

and
hEi
hTj

, where i, j ∈ {1, 2}, are bounded from above and below by constants

dependent only on CT .

We call a sequence of nested partitions T0 ⊂ T1 ⊂ . . . shape-regular if CTk ≤ Γ < ∞,
k ∈N∪ {0} for some Γ only dependent on T0.

We further denote the union of elements sharing a face E ∈ E and sharing at least
one vertex with T ∈ T by φE and φT respectively.

Finally, let |T | denote the number of elements in a given partition T .

4.2 Uniform multilevel Monte Carlo finite element methods

In this section we introduce well established multilevel Monte Carlo finite element
methods, based on a hierarchy of uniform meshes [2, 14, 16, 28, 60, 87], and trace
how they fit into the framework described in Chapter 3.

We start by deriving spatial approximations of solutions to the pathwise weak prob-
lem (4.1). We consider a sequence of partitions (T(k))k∈N∪{0} of the spatial domain
D into simplices. We assume that T(0) is admissible and shape-regular and (T(k))k∈N

is constructed by consecutive refinement by bisection [68, 76] preserving shape-
regularity, i.e. there exist Γ > 0, such that CT(k) ≤ Γ for all k ∈ N ∪ {0}. We also



4.2. Uniform multilevel Monte Carlo finite element methods 27

have
hk = 2−k b

d h0, k ∈N, (4.2)

where hk := maxT∈T(k) hT, k ∈ N ∪ {0} and b ≥ 1 denotes the number of bisections
applied to each element.

Remark 4.2.1. “Red” refinement [12, 15] can also be utilized for uniform mesh re-
finement, which leads to (4.2) with b = d.

We now define a sequence of nested first order finite element spaces

S(0) ⊂ S(1) ⊂ · · · ⊂ S(k) ⊂ . . . ,

where
S(k) := {v ∈ H1

0(D) ∩ C(D) : v|T ∈ P1(T), ∀T ∈ T(k)}, (4.3)

whereP1(T) denotes the space of linear polynomials on T. Since the meshes (T(k))k∈N∪{0}
are shape-regular, and the dimensions of the spaces S(k) coincide with the numbers
of interior vertices in the corresponding meshes, the relation dimS(k) ' |T(k)| holds
for all k ∈ N ∪ {0}, where the constants depend only on the shape-regularity pa-
rameter Γ.

We consider the pathwise approximations u(k)(·, ω) ∈ S(k), k ∈ N ∪ {0}, character-
ized by

u(k)(·, ω) ∈ S(k) : a(ω; u(k)(·, ω), v) = `(ω; v), ∀v ∈ S(k), ω ∈ Ω, (4.4)

where the bilinear form a and the linear form ` are as in (2.5).

Analogously to the infinite dimensional case, for almost all ω ∈ Ω the variational
equation (4.4) admits a unique solution u(k)(·, ω) according to the Lax-Milgram the-
orem and there holds

‖u(k)(·, ω)‖H1(D) ≤
1

ca(ω)
‖ f (·, ω)‖L2(D). (4.5)

Furthermore, we have u(k) ∈ Lp(Ω; S(k)) for all p ∈ [1, p f ), where p f is defined in
Assumption 2.2.1 (iii), and in particular the solution mapping Ω 3 ω 7→ u(k)(ω) ∈
S(k) ⊂ H1

0(D) is measurable.

The finite element solutions admit the following a priori error estimate.

Lemma 4.2.1. The error estimate

‖u(·, ω)− u(k)(·, ω)‖H1(D) ≤ Cun(ω)hk (4.6)

holds for almost all ω ∈ Ω, where

Cun(ω) := cun

(
αmax(ω)

αmin(ω)

) 1
2
(

1
αmin(ω)

+
‖α‖W1,∞(D)

α2
min(ω)

)
‖ f (·, ω)‖L2(D) > 0,

and cun > 0 depends only on D and the mesh shape-regularity parameter Γ.
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Proof. Assumption 2.2.1 provides a.s. H2-regularity of pathwise solutions u(k)(·, ω),
see Proposition 2.2.2. According to well known results ([20, 49], see also [28, Lemma
3.7, Lemma 3.8]), we have

‖u(·, ω)− u(k)(·, ω)‖H1(D) ≤ hkcun

(
αmax(ω)

αmin(ω)

) 1
2

‖u(·, ω)‖H2(D),

where cun > 0 depends only on D and the mesh shape-regularity parameter Γ. In-
corporating the estimate from Proposition 2.2.2 yields the claim of the lemma.

Finiteness of ‖Cun‖Lp(Ω) for all p ∈ [1, p f ) follows from Assumption 2.2.1 and several
applications of Hölder’s inequality, see Proposition C.0.6 for details.

We can choose T(0) such that h0 = Tol0 and define an uniform MLMC hierarchy
according to

S0 := S(0), u0 := u(0),

Sl := S(kl), ul := u(kl), l ∈N,
(4.7)

where kl is the smallest integer such that

2−
b
d kl ≤ ql , (4.8)

and 0 < q < 1 is the reduction factor from (3.2). The choice (4.7) and Lemma 4.2.1
provide the a priori estimate

‖u(·, ω)− ul(·, ω)‖H1(D) ≤ Cun(ω)Toll , (4.9)

for the finite element solutions ul(·, ω), ω ∈ Ω.

Remark 4.2.2. It is possible to weaken Assumption 2.2.1 (ii) and extend the MLMC
method to the case where the realizations of the random coefficient α are only Hölder
continuous, as it was done in [28, 87]. However, we adhere to this stronger assump-
tion and the resulting estimates in order to be able to compare the results of this and
the following sections.

Usually, the solutions ul(·, ω) are computed only approximately. We denote the al-
gebraic approximations of ul(·, ω) by ũl(·, ω) and require that for almost all ω ∈ Ω
and all l ∈N∪ {0} the approximations ũl(ω) fulfill

‖ul(·, ω)− ũl(·, ω)‖H1(D) ≤ Toll . (4.10)

This can be achieved by performing sufficiently many steps of any iterative solver
(e.g. [20, 22]) for elliptic problems that converges for almost all ω ∈ Ω.

Finally, measurability of Ω 3 ω 7→ ũl(·, ω) ∈ Sl is inherited from ul for all l ∈
N ∪ {0}. Assumptions 3.1.1 and 3.2.1 then follow from (4.9), (4.10), the triangle
inequality and Proposition C.0.6 with Cdis = Cun + 1 and any pdis ∈ [2, p f ).
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Remark 4.2.3. In practical applications the coefficient α is often represented as a se-
ries (e.g. (2.11) or (2.14)) that needs to be truncated in order to be feasible for numer-
ical simulations; this leads to an additional truncation error. Furthermore, in order
to solve problem (4.4) one typically needs to approximate the integrals appearing in
the bilinear and the linear forms by some quadrature, because the exact evaluation is
generally impossible. This again leads to an additional error. In this and the follow-
ing sections we do not take into account the quadrature and the truncation errors.
Instead, we cite [28, 86], where some analysis is done for these types of error.

Multigrid methods [20, 22] have linear complexity in the dimension of the finite
element spaces for computing a approximate solution at a mesh level k. Thus, they
have linear complexity in |T(k)|, i.e.

Cost(ũ(k)(ω)) ≤ CMG(ω)|T(k)|

for all k ∈ N ∪ {0} and almost all ω, where CMG depends only on Γ, αmin, αmax. We
make the following assumption.

Assumption 4.2.1. E[CMG] < ∞.

For uniform meshes, |T(kl)| is bounded by h−d
kl

and thus by Tol−d
l , up to a constant

that depends only on D. Thus, the multigrid methods satisfy Assumption 3.1.2 with
γ = d and a constant Ccost that depends only on D, Γ and E[CMG].

We are finally ready to state convergence theorems for the uniform MLMC-FE meth-
ods. The following theorem follows from Theorem 3.1.1 and the results presented in
this section.

Theorem 4.2.1. Let Assumption 2.2.1 hold, u(·, ω), ω ∈ Ω denote the solutions to prob-
lem (4.1) and ũl(·, ω), ω ∈ Ω denote the algebraic approximations to the finite element
solutions defined in (4.7), that fulfill (4.10). Finally, let a multigrid method be used for
the iterative solution of the pathwise discretized problems of the form (4.4) and let Assump-
tion 4.2.1 hold. Then for any Tol > 0 there exists an L ∈ N and a sequence of integers
{Ml}L

l=0 providing
‖E[u]− EL[ũL]‖L2(Ω;H1

0 (D)) ≤ Tol,

and the estimator EL[ũL] can be evaluated at expected computational cost

E[Cost(EL[ũL])] =


O(Tol−2), d < 2,
O(L2Tol−2), d = 2,
O(Tol−γ), d > 2,

where the constants depend only on q, d, Γ, D, Tol0, E[CMG], ‖u‖L2(Ω;H1
0 (D)) and ‖Cun‖L2(Ω).

Finally, the following theorem follows from Theorem 3.2.1 and the results presented
in this section.

Theorem 4.2.2. Let Assumption 2.2.1 hold, u(·, ω), ω ∈ Ω denote the solutions to prob-
lem (4.1) and ũl(·, ω), ω ∈ Ω denote the algebraic approximations to the finite element so-
lutions defined in (4.7), that fulfill (4.10). Let Assumption 2.4.1 hold and p f ∈ (2 pQ

pQ−2 , ∞].
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Finally, let a multigrid method be used for the iterative solution of the pathwise discretized
problems of the form (4.4) and let Assumption 4.2.1 hold. Then for any Tol > 0 there exists
an L ∈N and a sequence of integers {Ml}L

l=0, such that

e(EL[Q(ũL)]) ≤ Tol,

and the estimator EL[Q(ũL)] can be evaluated at expected computational cost

E[Cost(EL[Q(ũL)])] =


O(Tol−2), d < 2,
O(L2Tol−2), d = 2,
O(Tol−γ), d > 2,

where the constants depend only on q, d, Γ, D, Tol0, E[CMG], ‖CQ‖LpQ (Ω), ‖u‖Lpun (Ω;H1
0 (D)),

‖Cun‖Lpun (Ω) and pun = 2 pQ
pQ−2 .

Remark 4.2.4. Note that using duality arguments (see e.g. [28, 87]) it is possible to
obtain pathwise estimates of the kind

|Q(ω; u(·, ω))−Q(ω; ul(·, ω))| ≤ CQ(ω)Cdis(ω)Tolα
l ,

where α ≥ 1, for almost all ω ∈ Ω, when uniform MLMC hierarchies are used.
Therefore, it is possible to obtain a sharper error bound for the uniform MLMC-FE
methods for approximation of expected outputs of interest (see e.g. [28, Theorem
4.1]).

Remark 4.2.5. Similar arguments can be used for analysing the uniform MLMC-FE
methods for the variational inequality (2.8). Assumptions 2.2.1 and 2.3.1, together
with application of an iterative solver [31, 44, 59, 69, 89] that converges for almost all
ω ∈ Ω for computing ũl(ω), provide Assumptions 3.1.1 and 3.2.1 for problem (2.8),
see [60, 61] for details. Assumption 3.1.2 does not hold for non-linear problems in
general. For problem (2.8) the expected computational cost for computing ũl for all
l ∈N∪ {0} can be bounded by

E[Cost(ũl)] ≤ Ccost(1 + log(Tol−d
l ))µTol−d

l . (4.11)

Standard monotone multigrid (STDMMG) methods [59, 69] provide (4.11) under
certain assumptions with µ = 4 in d = 1 space dimension, with µ = 5 in d = 2
space dimensions, and a suitable constant Ccost independent of l, see [60, Section 4.5],
[11, Corollary 4.1]. In spite of computational evidence, no theoretical justification of
mesh-independent convergence rates seem to be available for d = 3. The logarithmic
term in the cost in (4.11) results in a logarithmic term in the bound for the cost of
MLMC method, see [61, Theorem 3.2].

4.3 Adaptive multilevel Monte Carlo finite element methods

In this section we introduce an adaptive version of multilevel Monte Carlo methods
and show how they fit into the framework described in Section 3. We consider a
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sequence of nested finite element spaces (S(k)(ω))k∈N∪{0}, defined as in (4.3), associ-
ated with a corresponding sequence of partitions (T(k)(ω))k∈N∪{0}, which, for each
fixed ω ∈ Ω, is obtained by successive adaptive refinement of a given admissible
and shape-regular partition T(0)(ω) = T(0) with corresponding mesh size h0. We set

S(0)(ω) = S(0), ω ∈ Ω.

For each fixed ω ∈ Ω we apply an adaptive algorithm providing a hierarchy of sub-
spaces S(k)(ω) and corresponding approximations u(k)(·, ω), solutions of the prob-
lem

u(k)(·, ω) ∈ S(k)(ω) : a(ω; u(k)(·, ω), v) = `(ω; v), ∀v ∈ S(k)(ω), (4.12)

where the bilinear form a and the linear form ` are defined in (2.5).

As shown before, problem (4.12) admits a unique solution u(k)(·, ω) according to the
Lax-Milgram theorem for almost all ω ∈ Ω and there holds

‖u(k)(·, ω)‖H1(D) ≤
1

ca(ω)
‖ f (·, ω)‖L2(D). (4.13)

In what follows we assume convergence of the pathwise adaptive algorithm con-
trolled by an a posteriori error estimator.

Assumption 4.3.1. For all k ∈N∪ {0} and almost all ω ∈ Ω we have

‖u(·, ω)− u(k)(·, ω)‖H1(D) ≤ Cad(ω)ηT(k)(ω)(u(k)(·, ω)), (4.14)

where Cad ∈ Lpad(Ω) for some pad ∈ [2, p f ) and ηT(k)(ω)(u(k)(·, ω)) is an a posteriori
error estimator that satisfies

ηT(k)(ω)(u(k)(·, ω))
k→∞−−→ 0.

Note that this assumption suits the requirements for both MLMC methods presented
in Chapter 3, although for the MLMC methods for approximation of the expected
solutions we only need pad = 2.

We can choose T(0) and corresponding S(0) such that

h0 =
‖Cad‖Lpad (Ω)

‖Cun‖Lpad (Ω)
Tol0, (4.15)

which, according to Lemma 4.2.1, yields

‖u(·, ω)− u(0)(·, ω)‖H1(D) ≤ Cun(ω)
‖Cad‖Lpad (Ω)

‖Cun‖Lpad (Ω)
Tol0. (4.16)
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Then, having an algorithm that fulfills Assumption 4.3.1 at hand, we can define a
hierarchy of subspaces and corresponding solutions according to

S0(ω) := S(0), u0(·, ω) := u(0)(·, ω),

Sl(ω) := S(kl(ω))(ω), ul(·, ω) := u(kl(ω))(·, ω), l ∈N,
(4.17)

for almost all ω ∈ Ω, where kl(ω) is the smallest natural number such that

ηT(kl (ω))(ω)(u(kl(ω))(·, ω)) ≤ Toll , (4.18)

and Toll is chosen according to (3.2). Condition (4.18) together with (4.14) provides

‖u(·, ω)− ul(·, ω)‖H1(D) ≤ Cad(ω)Toll . (4.19)

In contrast to the uniform case, Assumption 4.3.2 is not provided by [73, Theorem
1] for l ∈ N as in Proposition 2.2.1 in the adaptive case, because solutions ul(·, ω)
are sought in random spaces Sl(ω). Therefore, we shall assume that the solutions
corresponding to the levels l ∈N are measurable.

Assumption 4.3.2. For all l ∈ N the solution map Ω 3 ω 7→ ul(·, ω) ∈ H1
0(D) is

measurable.

Using the arguments from Section 4.2, we also require that for almost all ω ∈ Ω
the approximations ũl(·, ω) to ul(·, ω) fulfill (4.10), which again can be achieved by
iterative solvers [20, 22] converging for almost all ω ∈ Ω.

As in the uniform case, measurability of Ω 3 ω 7→ ũl(·, ω) ∈ H1
0(D) is inherited

from ul . Assumptions 3.1.1 and 3.2.1 follow then from (4.10), (4.16), (4.19) and the

triangle inequality with Cdis(ω) = max{Cun(ω)
‖Cad‖Lpad (Ω)

‖Cun‖Lpad (Ω)
, Cad(ω)}+ 1.

We will leave Assumption 3.1.2 open for now, because, although multigrid meth-
ods can be applied for solving pathwise discretized problems with computational
cost bounded by CMG(ω)|T(kl(ω))(ω)|, there is no obvious relation between Toll and
|T(kl(ω))(ω)| and it has to be investigated further.

We now state convergence theorems for the adaptive MLMC-FE methods. The fol-
lowing theorem follows from Theorem 3.1.1 and the results presented in this section.

Theorem 4.3.1. Let Assumption 2.2.1 hold and u(·, ω), ω ∈ Ω denote the solutions to
problem (4.1). Let Assumption 4.3.1 hold and ũl(·, ω), ω ∈ Ω denote the algebraic ap-
proximations to the finite element solutions defined in (4.17), that fulfill (4.10). Finally, let
Assumptions 4.3.2 and 3.1.2 hold. Then for any Tol > 0 there exists an L ∈ N and a
sequence of integers {Ml}L

l=0 providing

‖E[u]− EL[ũL]‖L2(Ω;H1
0 (D)) ≤ Tol,
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and the estimator EL[ũL] can be evaluated at expected computational cost

E[Cost(EL[ũL])] =


O(Tol−2), γ < 2,
O(L2Tol−2), γ = 2,
O(Tol−γ), γ > 2,

where the constants depend only on q, γ, Ccost, Tol0, E[CMG], ‖u‖L2(Ω;H1
0 (D)) and ‖Cad‖L2(Ω).

The following theorem follows from Theorem 3.2.1 and the results presented in this
section.

Theorem 4.3.2. Let Assumptions 2.2.1 hold and u(·, ω), ω ∈ Ω denote the solutions to
problem (4.1). Let Assumption 2.4.1 hold, p f ∈ (2 pQ

pQ−2 , ∞] and Assumption 4.3.1 hold

with pad = 2 pQ
pQ−2 . Further, let ũl(·, ω), ω ∈ Ω denote the algebraic approximations to the

finite element solutions defined in (4.17), that fulfill (4.10). Finally, let Assumptions 4.3.2
and 3.1.2 hold. Then for any Tol > 0 there exists an L ∈ N and a sequence of integers
{Ml}L

l=0, such that
e(EL[Q(ũL)]) ≤ Tol,

and the estimator EL[Q(ũL)] can be evaluated at expected computational cost

E[Cost(EL[Q(ũL)])] =


O(Tol−2), γ < 2,
O(L2Tol−2), γ = 2,
O(Tol−γ), γ > 2,

where the constants depend only on q, γ, Ccost, Tol0, E[CMG], ‖u‖Lpad (Ω;H1
0 (D)), ‖Cad‖Lpad (Ω),

‖CQ‖LpQ (Ω).

In the following subsections we describe adaptive algorithms based on a posteriori
error estimation that can be used for adaptive multilevel Monte Carlo methods. We
provide an example of such algorithms that in combination with multigrid methods
ensures the validity of Assumptions 4.3.1, 4.3.2 and 3.1.2.

4.3.1 Adaptive algorithms based on pathwise a posteriori error estima-
tion

In this section we present the concept of adaptive algorithms based on a posteriori
error estimation. We closely follow [25] where a general framework for adaptive
algorithms based on a set of axioms for the utilized error estimators is introduced.
The following standard loop is the basis for a general adaptive algorithm.

solve estimate mark refine

FIGURE 4.2: Standard loop for a general adaptive algorithm.
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We consider an a posteriori error estimator that can be represented as

ηT(k)(ω)(u(k)(·, ω)) =
(

∑
T∈T(k)(ω)

ηT(u(k)(·, ω))2
) 1

2
, (4.20)

where
ηT(·) : S(k)(ω)→ [0, ∞) for all T ∈ T(k)(ω)

are local error contributions that can be used as refinement indicators.

If Assumption 4.3.1 holds, Algorithm 1 almost surely provides adaptive solutions
u(k)(·, ω), such that ‖u(·, ω)− u(k)(·, ω)‖H1(D) ≤ Cad(ω)ε for any ε > 0.

Algorithm 1 Pathwise Adaptive Finite Element Algorithm

1: Input: T(0), ω, θ ∈ (0, 1], ε
2: Initialize T(0)(ω) := T(0)
3: for k = 0, 1, . . . do
4: Compute finite element solution u(k)(·, ω)
5: Compute ηT(u(k)(·, ω)) for all T ∈ T(k)(ω)
6: if ηT(k)(ω)(u(k)(·, ω)) ≤ ε then
7: stop algorithm
8: end if
9: Determine setM(k)(ω) ⊂ T(k)(ω) of minimal cardinality such that

θη2
T(k)(ω)(u(k)(·, ω)) ≤ ∑

T∈M(k)(ω)

η2
T(u(k)(·, ω)) (4.21)

10: Refine at least the elements T ∈ M(k)(ω) to generate T(k+1)(ω)
11: end for
12: Output: u(k)(·, ω) or Q(u(k)(·, ω)), k = 0, 1, . . . , kend

Condition (4.21) is known as the Dörfler marking strategy [34] with parameter θ and
it is the essential component of the part mark in the loop presented in Figure 4.2. The
parameter θ may depend on ω if desired. We will discuss the parts estimate and
refine in more detail in the next sections.

Remark 4.3.1. In practical realizations of Algorithm 1 the subsets M(k)(ω), k =
0, 1, . . . may be required to be only of almost optimal cardinality, i.e. they should ful-
fill |M(k)(ω)| ≤ Cmin|S(k)(ω)|, where S(k)(ω), k = 0, 1, . . . are the sets of minimal
cardinality. In this case we assume that Cmin > 0 is independent of ω and k for all
ω ∈ Ω and k ∈ N ∪ {0}. Determining a set of true minimal cardinality in Algo-
rithm 1 in general requires sorting the local error contributions which results in log-
linear complexity, whereas a set of almost minimal cardinality can be determined in
linear complexity, see [82, Section 5].
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4.3.2 Mesh refinement

For the step refine of the refinement loop we need to provide a procedure for con-
structing the mesh T(k+1) from the current mesh T(k). We omit the dependence of
meshes on ω ∈ Ω for brevity here. We restrict ourselves to the newest vertex bisec-
tion refinement technique [17, 26, 82, 83] for d = 2, 3 and the extended bisection for
d = 1 presented in [8].

Let us now consider the set of admissible refinements of the initial partition T(0)

T := {T : T is admissible refinement of T(0)},

obtained by the fixed types of refinement for different values of d

Each step refine consists of two substeps. The first substep produces the mesh
T(k+ 1

2 )
, where the subset M(k) ⊂ T(k) is refined. The second step which is called

closure aims at eliminating hanging nodes that appeared after the first substep, i.e.
closure provides T(k+1) ∈ T.

One of the important properties of the chosen mesh refinement types is that they
allow the following closure estimate for partitions produced by Algorithm 1.

|T(k)| − |T(0)| ≤ Cmesh

k−1

∑
i=0
|M(i)|, (4.22)

where the constant Cmesh > 0 depends only on T(0). Since T(0) is chosen indepen-
dently of ω in Algorithm 1, the constant Cmesh does not depend on ω either. This
property means that the cumulative number of elements added by closure is con-
trolled by the total number of marked elements. This result has been shown for
d = 1 in [8] and for d = 2 in [57]. In the case d = 3 this result can be found
in [83] under the assumption of appropriate labelling of faces of the initial partition
T(0). It is, however, not clear whether such a labelling exists for an arbitrary initial
mesh. Property (4.22) plays an important role in convergence proofs for adaptive
algorithms. This result also holds when b > 1 number of refinements are applied to
each marked element in one refinement step, see [26].

The newest vertex bisection technique in the cases d = 2, 3 guarantees that all el-
ements that arise during refinement can be classified into a finite set of similarity
classes that only depend on the initial partition T(0), see [83]. This implies that the
class of partitions T is shape-regular, i.e.

CT ≤ Γ, ∀T ∈ T,

with a fixed Γ > 0 that depends only on T(0). An analogous result can be found for
the extended bisection technique for d = 1 in [8].
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4.3.3 Pathwise residual-based a posteriori error estimation

In this section we introduce residual-based a posteriori error estimation [5, 17, 26,
62, 72] adapted to the random problem (4.1). Following the framework developed
in [25], we show a set of properties of the residual error estimators that provide
sufficient conditions for convergence of the adaptive Algorithm 1 based on this type
of error estimation when the mesh refinement introduced in Section 4.3.2 is utilized.
Furthermore, these properties allow one to derive the order of convergence of the
algorithm; this is done in Section 4.3.5.

All results presented in this section are generalizations of existing results for residual-
based error estimation for deterministic linear elliptic problems to random problems
of the form (4.1).

In this section we denote the first order finite element space defined on a mesh T ∈ T

as in (4.3) by ST and consider the finite element solution uT (·, ω) of the problem

uT (·, ω) ∈ ST : a(ω; uT (·, ω), v) = `(ω; v), ∀v ∈ ST , ω ∈ Ω, (4.23)

with the bilinear form a and the linear form ` as in (2.5).

Let us introduce the so-called energy norm ‖ · ‖a induced by the bilinear form a(ω; ·, ·)
defined in (2.5), given by

‖v‖a := a(ω; v, v)
1
2

for a function v ∈ H1
0(D).

The energy norm is a common norm used in the literature on finite element methods
for elliptic PDEs and it is equivalent to the H1-norm on H1

0(D). Pathwise ellipticity
of the bilinear form a implies this property in the case when the energy norm satisfies
upper and lower bounds with random coefficients, i.e. when

c1/2
a (ω)‖v‖H1(D) ≤ ‖v‖a ≤ α1/2

max(ω)‖v‖H1(D), u ∈ H1
0(D) (4.24)

holds for all ω ∈ Ω.

Recall that according to Assumptions 2.2.1 (ii, iii), for almost all ω ∈ Ω the pathwise
realizations α(·, ω) are Lipschitz continuous and f (·, ω) ∈ L2(D).

We start by introducing basic results that help to derive the residual error estima-
tor. These results are well-known and we cite [5] and [90] for the proofs in the case
α(x, ω) = 1 in D ×Ω. We provide, however, the more general result here for com-
pleteness.
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Proposition 4.3.1. Let T ∈ T. Then almost surely, it holds that

c1/2
a (ω)

αmax(ω)
sup

w∈H1
0 (D)

‖w‖H1(D)
=1

( ∫
D

f (x, ω)w dx−
∫

D
α(x, ω)∇uT (x, ω) · ∇w dx

)

≤ ‖u(·, ω)− uT (·, ω)‖a

≤ 1
c1/2

a (ω)
sup

w∈H1
0 (D)

‖w‖H1(D)
=1

( ∫
D

f (x, ω)w dx−
∫

D
α(x, ω)∇uT (x, ω) · ∇w dx

)
.

Proof. Let v ∈ H1
0(D). Then by (4.24) we have

‖v‖2
a =

∫
D

α(x, ω)∇v · ∇v dx ≤ sup
w∈H1

0 (D)
‖w‖H1(D)

=1

∫
D

α(x, ω)∇v · ∇w dx ‖v‖H1(D)

≤ 1
c1/2

a (ω)
sup

w∈H1
0 (D)

‖w‖H1(D)
=1

∫
D

α(x, ω)∇v · ∇w dx ‖v‖a.

Continuity of a(ω; ·, ·) and (4.24) provide

sup
w∈H1

0 (D)
‖w‖H1(D)

=1

∫
D

α(x, ω)∇v · ∇w dx ≤ αmax(ω) sup
w∈H1

0 (D)
‖w‖H1(D)

=1

‖v‖H1(D)‖w‖H1(D)

= αmax(ω)‖v‖H1(D) ≤
αmax(ω)

c1/2
a (ω)

‖v‖a.

Now, setting v := u(·, ω)− uT (·, ω) and using the identity∫
D

α(x, ω)∇(u(x, ω)− uT (x, ω)) · ∇w dx

=
∫

D
f (x, ω)w dx−

∫
D

α(x, ω)∇uT (x, ω) · ∇w dx, ∀w ∈ H1
0(D),

we obtain the result of the proposition.

According to Proposition 4.3.1, the energy norm of the error is, up to ω-dependent
multiplicative constants, bounded from above and below by the norm of the residual
in the dual space of H1

0(D).

We denote the outer unit normal to the boundary ∂T of an element T ∈ T by nT.
We also assign a unit normal of arbitrary orientation to every face E ∈ E and denote
it by nE. Let us now introduce the following L2-representation of the residual. For
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almost all ω ∈ Ω and any w ∈ H1
0(D) there holds∫

D
f (x, ω)w dx−

∫
D

α(x, ω)∇uT (x, ω) · ∇w dx

=
∫

D
f (x, ω)w dx− ∑

T∈T

∫
T

α(x, ω)∇uT (x, ω) · ∇w dx

=
∫

D
f (x, ω)w dx− ∑

T∈T

{ ∫
∂T

α(x, ω)∇uT (x, ω) · nTw dx

−
∫

T
∇ · (α(x, ω)∇uT (x, ω))w dx

}
(4.25)

= ∑
T∈T

∫
T

(
f (x, ω) +∇ · (α(x, ω)∇uT (x, ω))

)
w dx

− ∑
E∈E

∫
E

JE(α(x, ω)∇uT (x, ω)) · nEw dx

= ∑
T∈T

∫
T

RT(ω; uT (x, ω))w dx + ∑
E∈E

∫
E

RE(ω; uT (x, ω))w dx,

where
RT(ω; v) := ( f (·, ω) +∇ · (α(·, ω)∇v))|T, T ∈ T , (4.26)

RE(ω; v) := −(JE(α(·, ω)∇v) · nE)|E, E ∈ E , (4.27)

are the element and the jump residuals for a function v ∈ ST respectively. Here
JE(·) stands for the jump across the interior face E in direction of the unit normal nE
associated to this face, defined as

JE(v)(x) := lim
t→0+

v(x− tnE)− lim
t→0+

v(x + tnE), x ∈ E.

Note that the expression JE(·) · nE does not depend on the orientation of nE.

Now, we define a residual-based error estimator that takes the form (4.20) with local
contributions given by

η2
T(ω; v) = h2

T‖RT(ω; v)‖2
L2(T) + hT‖RE(ω; v)‖2

L2(∂T∩D). (4.28)

Note that ηT(ω; ·), T ∈ T depend on ω because of the random functions α and f
that enter the definition.

Monotonicity of the local mesh sizes provides monotonicity of the error estimator,
i.e.

ηT̃ (ω; v) ≤ ηT (ω; v), ω ∈ Ω, (4.29)

for any v ∈ ST , where T̃ ∈ T is a refinement of T .

The following result provides reliability of the error estimator. We again cite [5] and
[90] for proofs for the deterministic Poisson problem.
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Lemma 4.3.1. Let T ∈ T, then there holds

‖u(·, ω)− uT (·, ω)‖H1(D) ≤ cad
1

αmin(ω)
ηT (ω; uT (·, ω)) (4.30)

for almost all ω ∈ Ω, where cad > 0 depends only on Γ, D and the dimension d.

Proof. We omit the dependence of u and uT on their arguments here for brevity.
We fix a w ∈ H1

0(D) and let IT : H1
0(D) → ST be the quasi-interpolation opera-

tor defined in (A.1). Then, using Galerkin orthogonality [49, Relation (8.2.3)], the
Cauchy-Schwarz inequalities for integrals and sums and the properties of the quasi-
interpolation operator (A.2)-(A.3) we have:∫

D
f (x, ω)w dx−

∫
D

α(x, ω)∇uT · ∇w dx

=
∫

D
f (x, ω)(w− IT w) dx−

∫
D

α(x, ω)∇uT · ∇(w− IT w) dx

= ∑
T∈T

∫
T

RT(ω; uT )(w− IT w) dx + ∑
E∈E

∫
E

RE(ω; uT )(w− IT w) dx

≤ ∑
T∈T
‖RT(ω; uT )‖L2(T)‖w− IT w‖L2(T) + ∑

E∈E
‖RE(ω; uT )‖L2(E)‖w− IT w‖L2(E)

. ∑
T∈T
‖RT(ω; uT )‖L2(T)hT‖w‖H1(φT) + ∑

E∈E
‖RE(ω; uT )‖L2(E)h

1
2
T‖w‖H1(φT)

≤
{

∑
T∈T

h2
T‖RT(ω; uT )‖2

L2(T) + ∑
E∈E

hT‖RE(ω; uT )‖2
L2(E)

} 1
2

·
{

∑
T∈T
‖w‖2

H1(φT)
+ ∑

E∈E
‖w‖2

H1(φT)

} 1
2
,

where the hidden constant depends only on Γ.

Observe that the shape-regularity of T implies{
∑

T∈T
‖w‖2

H1(φT)
+ ∑

E∈E
‖w‖2

H1(φT

} 1
2
. ‖w‖H1(D),

where the hidden constant depends only on Γ and the dimension d and takes into
account that every element is counted several times.

Combining these estimates with the equivalence of the error in the energy norm and
the residual stated in Proposition 4.3.1, we obtain

‖u(·, ω)− uT (·, ω)‖a .
1

α1/2
min(ω)

ηT (ω; uT (·, ω)), (4.31)

which together with (4.24) yields the claim of the lemma.

Lemma 4.3.1 together with Assumption 2.2.1 (i) provides the first requirement of
Assumption 4.3.1, since 1

αmin
∈ Lp(Ω) for all p ∈ [1, ∞).



40 Chapter 4. Multilevel Monte Carlo Finite Element Methods

We are also interested in a stronger result than provided by Lemma 4.3.1. The fol-
lowing lemma states the so-called discrete reliability of the error estimator.

Lemma 4.3.2. For all refinements T̃ ∈ T of a partition T ∈ T the localized upper bound

‖uT̃ (·, ω)− uT (·, ω)‖2
H1(D) ≤

C2
rel

α2
min(ω)

∑
T∈T \T̃

η2
T(ω; uT (·, ω)) (4.32)

holds for almost all ω ∈ Ω, where Crel > 0 depends only on Γ, D and the dimension d.

Proof. The claim of the lemma is a direct consequence of [26, Lemma 3.6]. According
to the proof of this result, we have

a(eT̃ (·, ω), eT̃ (·, ω)) ≤ Crel

(
∑

T∈T \T̃
η2

T(ω; uT (·, ω))

) 1
2

‖∇eT̃ (·, ω)‖L2(T \T̃ ),

where the constant Crel depends only on Γ and we denote eT̃ (·, ω) := uT̃ (·, ω) −
uT (·, ω). Together with coercivity of the bilinear form a(ω; ·, ·), it implies the claim
of the lemma.

The first and second parts of the following lemma provide stability of the error esti-
mator on non-refined elements and a reduction property on refined elements respec-
tively. Both of these properties are important for the convergence of the adaptive
algorithm.

Lemma 4.3.3. Let T̃ ∈ T be a refinement of a partition T ∈ T, then for almost all ω ∈ Ω

(i) for all subsets S ⊆ T ∩ T̃ of non-refined element domains it holds

∑
T∈S

η2
T∈T̃ (ω; uT̃ (·, ω))− (1 + δ) ∑

T∈S
η2

T∈T (ω; uT (·, ω))

≤ (1 + δ−1)C2
stab‖α(·, ω)‖2

W1,∞(D)‖uT̃ (·, ω)− uT (·, ω)‖2
H1(D), (4.33)

(ii) for the refined element domain it holds

∑
T∈T̃ \T

η2
T(ω; uT̃ (·, ω))− (1 + δ)ρred ∑

T∈T \T̃
η2

T(ω; uT (·, ω))

≤ (1 + δ−1)C2
stab‖α(·, ω)‖2

W1,∞(D)‖uT̃ (·, ω)− uT (·, ω)‖2
H1(D), (4.34)

where δ > 0 is arbitrary, 0 < ρred < 1 and the constant Cstab > 0 depends only on Γ , h0
and the dimension d.

Proof. The proof is based on the proofs of corresponding deterministic results in [26,
Proposition 3.3, Corollary 3.4].
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First, we show that for any T ∈ T , T ∈ T and for any two discrete functions v, w ∈
ST there holds

η2
T(ω; v)− (1 + δ)η2

T(ω; w) ≤ (1 + δ−1)Λ‖α(·, ω)‖2
W1,∞(D)‖v− w‖2

H1(φT)
, (4.35)

where δ > 0, and Λ > 0 is a constant that depends only on Γ and h0.

Using the triangle and Young’s inequalities we obtain

η2
T(ω; v) ≤ (1 + δ)η2

T(ω; w)

+ (1 + δ−1)
(

h2
T‖∇ ·

(
α(·, ω)∇(v− w)

)
‖2

L2(T) + hT‖RE(ω; v− w)‖2
L2(∂T∩D)

)
(4.36)

with any δ > 0.

Now, we show the bounds for the second term on the right hand side in (4.36). Since
v− w ∈ ST , we have

‖∇ ·
(
α(·, ω)∇(v− w)

)
‖L2(T) = ‖∇α(·, ω) · ∇(v− w)‖L2(T)

≤ ‖∇α(·, ω)‖L∞(T)‖∇(v− w)‖L2(T).
(4.37)

Let T′ be a neighbour of T with a common face E, then using the inverse inequal-
ity (A.12), we obtain

‖RE(ω; v− w)‖L2(E) = ‖(α(·, ω)∇(v− w)|T − α(·, ω)∇(v− w)|T′) · nE‖L2(E)

. ‖α(·, ω)‖L∞(T)

(
h−

1
2

T ‖∇(v− w)‖L2(T) + h−
1
2

T′ ‖∇(v− w)‖L2(T′)

)
(4.38)

with the hidden constant dependent only on Γ.

Substituting (4.37) and (4.38) into (4.36) we obtain (4.35).

Now, we apply (4.35) to functions uT̃ and uT (we again skip the arguments of the
functions for brevity) over T ∈ T̃ ∩ T , sum over a subset S of non-refined elements
and use the finite overlap property of patches φT. Then we obtain

∑
T∈S

η2
T∈T̃ (ω; uT̃ )− (1 + δ) ∑

T∈S
η2

T∈T̃ (ω; uT )

≤ (1 + δ−1)C2
stab‖α(·, ω)‖2

W1,∞(D)‖uT̃ − uT ‖2
H1(D), (4.39)

where the constant Cstab > 0 depends on Λ and the dimension d. Recall that

ηT∈T̃ (ω; uT ) = ηT∈T (ω; uT ),
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for any T ∈ S . Incorporating this relation into (4.39) we obtain (i). Note that in a
similar way one can obtain a relation symmetric to (i), i.e.

∑
T∈S

η2
T∈T (ω; uT )− (1 + δ) ∑

T∈S
η2

T∈T̃ (ω; uT̃ )

≤ (1 + δ−1)C2
stab‖α(·, ω)‖2

W1,∞(D)‖uT̃ − uT ‖2
H1(D), (4.40)

which holds for all S ∈ T ∩ T̃ .

Analogously we obtain

∑
T∈T̃ \T

η2
T(ω; uT̃ )− (1 + δ) ∑

T∈T̃ \T
η2

T(ω; uT )

. (1 + δ−1)‖α(·, ω)‖2
W1,∞(D)‖uT̃ − uT ‖2

H1(D) (4.41)

with the hidden constant that depends only on Λ and the dimension d. For an el-
ement T ∈ T \ T̃ we define the set T̃T := {T′ ∈ T̃ : T′ ⊂ T}. Since uT ∈ ST ,
RE(uT ) = 0 in the interior of T. Therefore,

∑
T′∈T̃T

η2
T′(ω; uT ) ≤ 2−

b
d η2

T(ω; uT ), (4.42)

because refinement by bisection provides hT′ = 2−
b
d hT.

Finally, (4.41) and (4.42) imply (ii), where ρred = 2−
b
d .

Lemma 4.3.4. Let u(k)(·, ω), k ∈ N ∪ {0}, ω ∈ Ω be the solutions obtained by Algo-
rithm 1 with the residual error estimator defined in (4.26)-(4.28), then there holds

N

∑
i=k
‖u(i+1)(·, ω)− u(i)(·, ω)‖2

H1(D) ≤
Cqo

α2
min(ω)

η2
T(k)(ω)(ω; u(k)(·, ω)), (4.43)

for any k, N ∈N∪ {0}, N > k, where the constant Cqo > 0 depends only on Γ, D and the
dimension d.

Proof. For any i ∈ N ∪ {0} and almost all ω ∈ Ω, Galerkin orthogonality [49, Rela-
tion (8.2.3)] provides

‖u(·, ω)− u(i+1)(·, ω)‖2
a = ‖u(·, ω)− u(i)(·, ω)‖2

a − ‖u(i+1)(·, ω)− u(i)(·, ω)‖2
a.
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Then, utilizing (4.24) and (4.31) we have

ca(ω)
N

∑
i=k
‖u(i+1)(·, ω)− u(i)(·, ω)‖2

H1(D) ≤
N

∑
i=k
‖u(i+1)(·, ω)− u(i)(·, ω)‖2

a

=
N

∑
i=k

(
‖u(·, ω)− u(i)(·, ω)‖2

a

− ‖u(·, ω)− u(i+1)(·, ω)‖2
a

)
≤ ‖u(·, ω)− u(k)(·, ω)‖2

a

.
1

αmin(ω)
η2
T(k)(ω)(ω; u(k)(·, ω)),

which concludes the proof.

Lemmas 4.3.1-4.3.4 are the analogues of the deterministic conditions for a posteriori
error estimators presented as axioms in [25]. According to [25], the properties of an
error estimator stated in the axioms, together with the mesh refinement described in
section 4.3.2, are sufficient for convergence of the adaptive Algorithm 1. Therefore,
we are finally ready to state the convergence theorem.

Theorem 4.3.3. For all 0 < θ ≤ 1, Algorithm 1 with the residual error estimator defined
in (4.26)-(4.28) and mesh refinement described in Section 4.3.2 converges almost surely in
the sense that there exist 0 < ρconv(ω) < 1 and Cconv(ω) > 1 such that

η2
T(k+j)(ω)(ω; u(k+j)(·, ω)) ≤ Cconv(ω)ρ

j
conv(ω)η2

T(k)(ω)(ω; u(k)(·, ω)), ∀k, j ∈N∪ {0}

for almost all ω ∈ Ω, where ρconv(ω) and Cconv(ω) depend only on Γ, h0, d, b, D, θ,
αmin(ω) and ‖α(·, ω)‖W1,∞(D).

Proof. Lemmas 4.3.1, 4.3.3 and 4.3.4 provide the sufficient conditions for [25, Theo-
rem 4.1 (i)] which states the convergence.

Theorem 4.3.3 yields the second requirement of Assumption 4.3.1, i.e.

ηT(k)(ω)(ω; u(k)(·, ω))
k→∞−−→ 0, which together with Lemma 4.3.1 provides the follow-

ing result.

Theorem 4.3.4. For all 0 < θ ≤ 1, Algorithm 1 with the residual error estimator defined
in (4.26)-(4.28) and mesh refinement described in Section 4.3.2 fulfills Assumption 4.3.1
with Cad = cad

1
αmin

and all pad ∈ [2, p f ), where cad depends only on Γ, D and d.

Proof. Theorem 4.3.3, Lemma 4.3.1 and Assumption 2.2.1 (i) provide the result of the
theorem.

Following [5, 17] we now introduce oscillations of a function v ∈ ST and list some
of their properties that will be required for showing the order of convergence of
Algorithm 1. Let π

p
m denote the operator of Lp−best approximation onto the set of
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polynomials of order ≤ m over a domain that will be clear from the context. Then
we can define oscillations of v ∈ ST by

osc2
T(ω; v) := h2

T‖(id− π2
m)(RT(ω; v))‖2

L2(T) + hT‖(id− π2
n)(RE(ω; v))‖2

L2(∂T∩D),

osc2
T (ω; v) := ∑

T∈T
osc2

T(ω; v),

where m, n ∈N∪{0} are fixed approximation orders. As well as the error indicators
ηT (ω; ·), T ∈ T, the oscillation terms oscT (ω; ·), T ∈ T depend on ω through the
random functions α and f . Observe that

oscT(ω; v) ≤ ηT(ω; v) (4.44)

for all T ∈ T , T ∈ T, almost all ω ∈ Ω and any v ∈ ST .

Now we are ready to introduce the lower bound, or efficiency, for the H1-error. We
cite [5, 90] for proofs of the bound for the deterministic Poisson problem that serve
as basis for the proof of the following lemma.

Lemma 4.3.5. For any partition T ∈ T and almost all ω ∈ Ω there holds

ηT (ω; uT (·, ω)) . αmax(ω)‖u(·, ω)− uT (·, ω)‖H1(D) + oscT (ω; uT (·, ω)), (4.45)

where the hidden constant depends only on Γ, the dimension d and the approximation orders
m, n.

Proof. In this proof we again omit the arguments of the functions u and uT for
brevity. We fix an arbitrary element T ∈ T and insert the function
wT := π2

m(RT(ω; uT ))ψT, where ψT is the element bubble function defined in (A.4)
with supp wT ⊂ T, into the L2- representation of the residual (4.25) as a test function.
Then we have ∫

T
RT(ω; uT )wT dx =

∫
T

α(x, ω)∇(u− uT ) · ∇wT dx.

We add
∫

T(π
2
m−id)(RT(ω; uT ))wT dx on both sides and obtain

∫
T

(
π2

m(RT(ω; uT ))
)2

ψT dx =
∫

T
α(x, ω)∇(u− uT ) · ∇wT dx

−
∫

T
(id− π2

m)(RT(ω; uT ))wT dx. (4.46)

Properties (A.6)-(A.7) of the bubble function ψT and the Cauchy-Schwarz inequality
imply

∫
T

(
π2

m(RT(ω; uT ))
)2

ψT dx & ‖π2
m(RT(ω; uT ))‖2

L2(T), (4.47)
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∫
T

α(x, ω)∇(u− uT ) · ∇wT dx ≤ ‖α(·, ω)∇(u− uT )‖L2(T)‖∇wT‖L2(T)

. αmax(ω)h−1
T ‖u− uT ‖H1(T)‖π2

m(RT(ω; uT ))‖L2(T), (4.48)

∣∣∣ ∫
T
(id− π2

m)(RT(ω; uT ))wT dx
∣∣∣ ≤ ‖(id− π2

m)(RT(ω; uT ))‖L2(T)‖wT‖L2(T)

≤ ‖(id− π2
m)(RT(ω; uT ))‖L2(T)‖π2

m(RT(ω; uT ))‖L2(T), (4.49)

where the hidden constants depend only on the shape-regularity Γ and the order m.

Relations (4.46)-(4.49) provide

hT‖π2
m(RT(ω; uT ))‖L2(T) . αmax(ω)‖u−uT ‖H1(T)+ hT‖(id−π2

m)(RT(ω; uT ))‖L2(T).
(4.50)

Now, we fix an arbitrary face E ∈ E and insert wE := π2
n(RE(ω; uT ))ψE, where

ψE is the face bubble function defined in (A.5), into the L2- representation of the
residual (4.25) as a test function, which gives∫

E

(
π2

n(RE(ω; uT ))
)2

ψE dx =
∫

φE

α(x, ω)∇(u− uT ) · ∇wE dx

− ∑
T∈φE

∫
T

π2
m(RT(ω; uT ))wE dx

− ∑
T∈φE

∫
T
(id− π2

m)(RT(ω; uT ))wE dx

−
∫

E
(id− π2

n)(RE(ω; uT ))wE dx.

(4.51)

Properties (A.8)-(A.10) of the face bubble function ψE and the Cauchy-Schwarz in-
equality imply

∫
E

(
π2

n(RE(ω; uT ))
)2

ψE dx & ‖π2
n(RE(ω; uT ))‖2

L2(E), (4.52)

∫
φE

α(x, ω)∇(u− uT ) · ∇wE dx

. αmax(ω)h−
1
2

E ‖u− uT ‖H1(φE)‖π
2
n(RE(ω; uT ))‖L2(E), (4.53)

∣∣∣ ∑
T∈φE

∫
T

π2
m(RT(ω; uT ))wE dx

∣∣∣
. h

1
2
E‖π

2
n(RE(ω; uT ))‖L2(E) ∑

T∈φE

‖π2
m(RT(ω; uT ))‖L2(T), (4.54)
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∣∣∣ ∑
T∈φE

∫
T
(id− π2

m)(RT(ω; uT ))wE dx
∣∣∣

. h
1
2
E‖π

2
n(RE(ω; uT ))‖L2(E) ∑

T∈φE

‖(id− π2
m)(RT(ω; uT ))‖L2(T), (4.55)

∣∣∣ ∫
E
(id− π2

n)(RE(ω; uT ))wE dx
∣∣∣

≤ ‖(id− π2
n)(RE(ω; uT ))‖L2(E)‖π2

n(RE(ω; uT ))‖L2(E), (4.56)

where the hidden constants depend only on the shape-regularity Γ and the orders
m, n.

Together with (4.50), relations (4.51)-(4.56) provide

h
1
2
E‖π

2
n(RE(ω; uT ))‖L2(E) . αmax(ω)‖u− uT ‖H1(φE)

+ hE ∑
T∈φE

‖(id− π2
m)(RT(ω; uT ))‖L2(T) + h

1
2
E‖(id− π2

n)(RE(ω; uT ))‖L2(E). (4.57)

Finally, (4.50) and (4.57), the triangle and Young’s inequalities, shape-regularity of
the mesh T and the finite overlap property of patches φE, E ∈ E prove the lemma.

Another property of the oscillations that is used later for deriving the order of con-
vergence of the adaptive method is presented in the following proposition.

Proposition 4.3.2. For all T ∈ T , T ∈ T and v, w ∈ ST there almost surely holds

oscT(ω; v) . oscT(ω; w) + hT‖α(·, ω)‖W1,∞(T)‖v− w‖H1(φT), (4.58)

where the hidden constant depends only on Γ and the dimension d.

Proof. We closely follow the derivation of (4.35) (see [26, Proposition 3.3]). The tri-
angle inequality together with linearity of L2−projections provide

oscT(ω; v) ≤ oscT(ω; w) + hT‖(id− π2
m)
(
∇ · (α(·, ω)(v− w))

)
‖L2(T)

+ h
1
2
T‖(id− π2

n)RE(ω; v− w)‖L2(∂T∩D). (4.59)

We use (A.13) in order to obtain the following estimate

‖(id−π2
m)
(
∇· (α(·, ω)(v−w))

)
‖L2(T) ≤ ‖(id−π∞

m )∇α(·, ω)‖L∞(T)‖∇(v−w)‖L2(T)

≤ ‖∇α(·, ω)‖L∞(T)‖∇(v− w)‖L2(T). (4.60)
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Using the inverse inequality (A.12), (A.14) and shape-regularity of T we have

‖(id− π2
n)RE(ω; v− w)‖L2(E)

. ‖(id− π∞
n )α(·, ω)‖L∞(T)

(
h−

1
2

T ‖∇(v− w)‖L2(T) + h−
1
2

T′ ‖∇(v− w)‖L2(T′)

)
≤ h

1
2
T‖∇α(·, ω)‖L∞(T)‖∇(v− w)‖L2(φE),

(4.61)

where T′ is the neighbour of T with a common face E.

Now, (4.60) and (4.61) substituted into (4.59) prove the claim of the proposition.

Remark 4.3.2. All pathwise results in this subsection hold not only for globally Lip-
schitz realizations α(·, ω), ω ∈ Ω, but also for realizations that are only piecewise
Lipschitz over T0, as well as for non-convex spatial domains D.

4.3.4 Measurability of solutions

In this section we address the question of measurability of the solution mappings
Ω 3 ω 7→ ul ∈ H1

0(D) for l ∈N.

We first show measurability of the mappings Ω 3 ω 7→ u(k)(·, ω) ∈ S(k)(ω) ⊂
H1

0(D), where u(k)(·, ω), k ∈N denote the solutions obtained by Algorithm 1.

Lemma 4.3.6. The mappings Ω 3 ω 7→ u(k)(ω) ∈ S(k)(ω) ⊂ H1
0(D) are measurable for

all k ∈N.

Proof. According to the result of [48, Theorem 2.3], which is obtained for a more
general case of variational inequalities but also holds in the special case we con-
sider, measurability of the set-valued mappings Ω 3 ω 7→ S(k)(ω) ⊂ H1

0(D) implies
measurability of the mappings Ω 3 ω 7→ u(k)(·, ω) ∈ S(k)(ω) ⊂ H1

0(D) for all
k ∈ N. In this case the mappings Ω 3 ω 7→ ηT(k)(ω)(ω; u(k)(·, ω)) ∈ [0, ∞) are
also measurable, because the ηT(k)(ω)(ω; u(k)(·, ω)) have an explicit formula defined
in (4.26)-(4.28) that includes only deterministic manipulations applied to measur-
able functions. Note that the element sizes hT(ω), T ∈ T(k)(ω) are random, but are
determined by the spaces S(k)(ω).

Taking into account that S(0) is constant for all ω ∈ Ω and that the corresponding
set-valued map is trivially measurable, by induction it suffices to show that Ω 3
ω 7→ S(k)(ω) ⊂ H1

0(D) implies measurability of Ω 3 ω 7→ S(k+1)(ω) ⊂ H1
0(D) for

any k ∈N∪ {0}.

Given T, we can define a vector of all elements (Ti)i∈N, such that any partition
T ∈ T can be represented as T =

⋃
i∈N TieT

i (T ), where eT(T ) = (eT
i (T ))i∈N is
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the indicator vector defined as

eT
i (T ) :=

{
1, if Ti ∈ T ,
0, else.

Let (λi)i∈N denote the collection of all finite element basis functions corresponding
to all partitions T ∈ T, i.e. for every T the finite element space S(T ) can be repre-
sented as S(T ) = span{λiei(S(T )), i ∈ N}, where e(S(T )) = (ei(S(T )))i∈N is the
indicator vector defined as

ei(S(T )) :=

{
1, if λi ∈ S(T ),
0, else.

Since any S(k)(ω), k ∈N∪ {0}, ω ∈ Ω can be represented as
S(k)(ω) = span{λiei(S(k)(ω)), i ∈N}, in order for the mapping Ω 3 ω 7→ S(k)(ω) ⊂
H1

0(D) to be measurable, it suffices to show that the indicator vector e(S(k)) is mea-
surable. Notice that there is a deterministic one-to-one correspondence between the
indicator vectors e(S(k)) and eT(T(k)). Therefore, it suffices to show measurability of
the latter.

Summarizing, having measurability of eT(T(k)) we would like to show measurability
of eT(T(k+1)). Without loss of generality we assume that for all ω ∈ Ω the elements
in eT(T(k)(ω)) are ordered according to the decreasing order of corresponding
ηTi(ω; u(k)(·, ω)), where ηTi(ω; u(k)(·, ω)) are set to 0 for Ti /∈ T(k)(ω).

Each refinement step providing a mesh T(k+1)(ω) given T(k)(ω), ω ∈ Ω, consists of
two substeps. The first substep is based on the Dörfler marking and the second sub-
step performs closure. Let us denote the uniform refinement of T(k)(ω) by T un

(k) (ω).
The indicator vector eT(T un

(k) ) inherits its measurability from the eT(T(k)), because it
is obtained in a deterministic procedure. Now, we denote the refinement of T(k)(ω)

obtained by adaptive refinement based on the Dörfler marking by T D
(k)(ω). The co-

efficients of eT(T D
(k)(ω)) can be represented as

eT
i (T D

(k)(ω)) = eT
i (T un

(k) (ω))

(
H1

(
θη2
T(k)(ω)(u(k)(·, ω))−

m

∑
j=1

η2
Tj
(u(k)(·, ω))

)
+ H1

( m

∑
j=1

η2
Tj
(u(k)(·, ω))− θη2

T(k)(ω)(u(k)(·, ω))
)

· H0

(
θη2
T(k)(ω)(u(k)(·, ω))−

m−1

∑
j=1

η2
Tj
(u(k)(·, ω))

))
,
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where m is such that Ti ⊂ Tm and H0(·) and H1(·) are piecewise constant functions,
defined as

H0(z) =

{
1, if z > 0,
0, if z ≤ 0,

H1(z) =

{
1, if z ≥ 0,
0, if z < 0.

(4.62)

Since all components of eT(T D
(k)) can be represented as compositions, sums and mul-

tiplications of measurable functions, they are measurable themselves. Finally, in the
closure step we obtain the refinement T(k+1)(ω) from the T D

(k)(ω). Since closure is
a deterministic procedure, the coefficient vector eT(T(k+1)) inherits its measurability
from eT(T D

(k)), which concludes the proof.

Now, we are able to show measurability of the mappings Ω 3 ω 7→ ul(·, ω) ∈
H1

0(D), where ul(·, ω) are the solutions chosen according to (4.18).

Theorem 4.3.5. The mappings Ω 3 ω 7→ ul(·, ω) ∈ H1
0 are measurable for all l ∈ N, i.e.

Assumption 4.3.2 holds.

Proof. According to Lemma 4.3.6, the mappings Ω 3 ω 7→ u(k)(·, ω) ∈ S(k)(ω),
where u(k)(·, ω), k ∈ N denote the solutions obtained by Algorithm 1, are measur-
able. Moreover, the mappings Ω 3 ω 7→ ηT(k)(ω)(ω; u(k)(·, ω)) ∈ [0, ∞), k ∈ N

are also measurable (see the proof of Lemma 4.3.6). The solutions ul , l ∈ N can be
represented as a sum of multiplications and compositions of measurable functions

ul =
∞

∑
k=1

u(k)H1(ηT(k−1)
(·; u(k−1))− Toll)H0(Toll − ηT(k)(·; u(k))),

where H0(·) and H1(·) are defined in (4.62), and, therefore, the mappings Ω 3 ω 7→
ul(·, ω) ∈ H1

0 are measurable.

Hence, we showed that Algorithm 1 with the residual error estimator defined in
(4.26)-(4.28) fulfills Assumption 4.3.2. The only missing property required for the
adaptive MLMC methods introduced in this chapter is a bound for the computa-
tional cost, i.e. Assumption 3.1.2.

4.3.5 Convergence order of the adaptive algorithm

In this section we analyse the order of convergence of Algorithm 1 when the residual-
based error estimation introduced in Section 4.3.3 is used. Since mesh refinement in
the algorithm is steered by the error estimator for a fixed ω ∈ Ω, the convergence
in terms of the number of elements in the resulting meshes is closely related to the
behaviour of the estimator ηT (ω; uT (·, ω)). The best possible convergence order
0 < s < ∞ obtained by adaptive mesh refinement can be characterized by

|ηTopt(ω; uTopt(·, ω))|Bs := sup
N∈N

min
T ∈T(N)

NsηT (ω; uT (·, ω)),
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where T(N) := {T ∈ T : |T | − |T0| ≤ N}, N ∈N.

The condition |ηTopt(ω; uTopt(·, ω))|Bs < ∞ implies ηTopt(ω)(ω; uTopt(ω)(·, ω)) = O(N−s)

for the optimal triangulations Topt(ω) ∈ T(N), where the constant in O(·) may,
however, depend on ω ∈ Ω.

The following theorem shows quasi-optimal convergence of the adaptive Algorithm 1,
i.e. if the decay order s is achieved when the optimal meshes are chosen, this order
will be realized by the adaptive Algorithm 1. This result is adopted from [25, Theo-
rem 4.1].

Theorem 4.3.6. Algorithm 1 with the residual error estimator defined in (4.26)-(4.28), mesh
refinement described in Section 4.3.2 and any Dörfler marking parameter θ(ω) that fulfills

0 < θ(ω) < θ∗(ω) :=
(

1 + C2
stabC2

rel

‖α‖2
W1,∞(D)

α2
min(ω)

)−1
, provides almost surely quasi-optimal

convergence of the estimator in the sense

|ηTopt(ω; uTopt(·, ω))|Bs .
ηT(k)(ω)(ω; u(k)(·, ω))(
|T(k)(ω)| − |T(0)|

)−s . Copt(ω)|ηTopt(ω; uTopt(·, ω))|Bs

(4.63)

for all k ∈ N, s > 0, where Copt(ω) := 1 +
(

1
θ(ω)

+
‖α‖2

W1,∞(D)

α2
min(ω)θ2(ω)

)s+ 1
2
, the hidden constant

in the left inequality depends only on the bisection depth b and the hidden constant in the
right inequality depends only on b, s, d, h0, Cmesh, Cmin, Γ and D.

Proof. We follow the deterministic results in [25], the random analogues of which
are presented in Appendix B. We fix an arbitrary ω ∈ Ω and k ∈N. The proof holds
for almost all ω ∈ Ω.

We suppose that the right hand side of (4.63) is finite, otherwise the upper bound
holds trivially.

We choose θ0(ω) :=
(

1 + C2
stabC2

rel

‖α‖2
W1,∞(D)

α2
min(ω)

)−1
(1− δ−1) < 1 with some δ > 1. Then

Proposition B.0.1, together with the discrete reliability (4.32) and stability (4.33) of
the error estimator, implies that there exist a κ(ω) > 0, such that the implication

η2
T̃ (ω; uT̃ (·, ω)) ≤ κ(ω)η2

T(k)(ω)(ω; u(k)(·, ω)) =⇒

θη2
T(k)(ω)(ω; u(k)(·, ω)) ≤ ∑

T∈T(k)(ω)\T̃
η2

T(ω; u(k)(·, ω)) (4.64)

holds for all 0 < θ ≤ θ0 and all refinements T̃ ∈ T of T(k)(ω). Moreover, κ(ω) can
be represented as (see the proof of Proposition B.0.1)

κ(ω) =
1− θ0

(
1 + (1 + δ−1)C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

)
1 + δ

, (4.65)

and it holds that 0 < κ(ω) < 1.
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Substituting θ0 into (4.65), we can see that

κ(ω) =
(1 + δ)

(
1 + C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

)
δ−1 + δ−2C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

≥ δ2(1 + δ).

This, together with the monotonicity (4.29) of the error estimator guaranteed by
Proposition B.0.2, ensures that there exists a certain refinement T̃ ∗(ω) ∈ T of T(k)(ω)

for which the set of refined elements T(k)(ω) \ T̃ ∗(ω) ⊆ T(k)(ω) satisfies

|T(k)(ω) \ T̃ ∗(ω)| ≤ c0(ω)|ηTopt(ω; uTopt(·, ω))|
1
s
Bs

η
− 1

s
T(k)(ω; u(k)(·, ω)), (4.66)

where the constant c0(ω) depends only on κ(ω) and s. Since κ(ω) is bounded from
above and below by constants independent of ω, c0(ω) is uniformly bounded from
above by a constant that we denote by c0,max. By Proposition B.0.2, the set T(k)(ω) \
T̃ ∗(ω) also satisfies the Dörfler marking condition (4.21) for all 0 < θ ≤ θ0(ω).
Therefore, we have

|M(k)(ω)| . |T(k)(ω) \ T̃ ∗(ω)|, (4.67)

where the hidden constants depend only on Cmin from Remark 4.3.1.

Utilizing the closure estimate (4.22), together with (4.66) and (4.67), we then have

|T(k)(ω)| − |T(0)| .
k−1

∑
i=0
|M(i)(ω)| . |ηTopt(ω; uTopt(·, ω))|

1
s
Bs

k−1

∑
i=0

η
− 1

s
T(i)(ω)

(ω; u(i)(·, ω)),

(4.68)
where the hidden constants depend only on Cmesh, Cmin, c0,max and s.

The stability (4.33) and reduction (4.34) properties of the error estimator imply (see
Proposition B.0.3) the estimator reduction

η2
T(k+1)(ω)(ω; u(k+1)(·, ω)) ≤ ρ1η2

T(k)(ω)(ω; u(k)(·, ω))+ c1(ω)‖u(k+1)(·, ω)−u(k)(·, ω)‖2,
(4.69)

for all k ∈N∪ {0} with constants

ρ1 := (1 + δ̃)(1− (1− ρred)θ) > 0, c1(ω) := 2(1 + δ̃−1)C2
stab‖α‖2

W1,∞(D) > 0,

where δ̃ > 0 can be chosen sufficiently small such that ρ1 < 1, and 0 < θ ≤ θ0(ω).
We fix δ̃ = (1−ρred)θ

2(1−(1−ρred)θ)
, then

0 < ρ1 = 1− 1
2
(1− ρred)θ < 1, c1(ω) = 2

(
2θ−1(1− ρred)

−1− 1
)
C2

stab‖α‖2
W1,∞(D) > 0.

According to Proposition B.0.4, the estimator reduction (4.69) implies

∞

∑
i=k+1

η2
T(i)(ω)(ω; u(i)(·, ω)) ≤ c2(ω)η2

T(k)(ω)(ω; u(k)(·, ω)), (4.70)
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where

c2(ω) :=
(

ρ1 + c1(ω)
Cqo

α2
min(ω)

)
(1− ρ1)

−1

= 2(1− ρred)
−1θ−1 − 1 + 8CqoC2

stab(1− ρred)
−2θ−2

‖α‖2
W1,∞(D)

α2
min(ω)

− 4CqoC2
stab(1− ρred)

−1θ−1
‖α‖2

W1,∞(D)

α2
min(ω)

.

(4.71)

In turn, (4.70) implies (see Proposition (B.0.5)) that

k−1

∑
i=0

η−1/s
T(i)(ω)

(ω; u(i)(·, ω)) ≤ c3(ω)η−1/s
T(k)(ω)

(ω; u(k)(·, ω)), (4.72)

where c3(ω) := (1 + c2(ω))1/2s(1− (1 + c−1
2 (ω))−1/2s)−1 = (1+c2(ω))

1
s

(1+c2(ω))1/2s−c1/2s
2 (ω)

.

By using monotonicity properties of the function x1/2s, which is convex/concave for
different values of s, one can show that

c3(ω) ≤
{

2s(1 + c2(ω))1+ 1
2s , s ≥ 1

2 ,

2s(1 + c2(ω))
1
s c1− 1

2s
2 (ω), s < 1

2 .

Now, combining (4.72) with (4.68), we obtain

|T(k)(ω)| − |T(0)| . c3(ω)|ηTopt(ω; uTopt(·, ω))|1/s
Bs

η−1/s
T(k)(ω)

(ω; u(k)(·, ω)).

Note that since c2(ω) > 1, there holds

cs
3(ω) .

{
(1 + c2(ω))s+ 1

2 , s ≥ 1
2 ,

1 + cs+ 1
2

2 (ω), s < 1
2 .

(4.73)

Substituting (4.71) into (4.73) one can derive that cs
3(ω) . Copt(ω) for any s > 0.

Hence, we obtained the upper bound in the statement of the theorem.

To prove the lower bound in (4.63) we now suppose that the middle part of (4.63) is
finite, otherwise the bound holds trivially. Let N ∈ N be arbitrary, and let k be the
largest integer such that T(k)(ω) ∈ T(N). Then, by definition of T(N) and properties
of refinement by bisection, we have

N < |T(k+1)(ω)| − |T(0)| < 2b|T(k)(ω)| − |T(0)|,

which leads to

min
T ∈T(N)

NsηT (ω; uT (·, ω)) . (|T(k)(ω)| − |T(0)|)sηT(k)(ω)(ω; u(k)(·, ω)),



4.3. Adaptive multilevel Monte Carlo finite element methods 53

which concludes the proof.

Let us notice that θ∗ in Theorem 4.3.6 depends on ω ∈ Ω and in general does not
have a uniform lower bound. In what follows we fix

θ(ω) :=

(
1 + C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

)−1

(1− δ−1), (4.74)

for some δ > 1.

According to the reliability property (4.30) of the error estimator, the convergence
order of the estimator directly implies at least the same convergence order for the
error. However, according to the efficiency property (4.45), overestimation may oc-
cur and the error may decay faster than the estimator. The following proposition
provides a relation between convergence of the error estimator ηT (ω; uT (·, ω)) and
convergence of the so-called total error (see [26]) that includes the H1−error and the
oscillations.

Proposition 4.3.3. For a given T ∈ T there a.s. holds

ηT (ω; uT (·, ω)) . inf
v∈S(T )

(Ceq(ω)‖u(·, ω)− v‖H1(D) + oscT (ω; v)), (4.75)

inf
v∈S(T )

(‖u(·, ω)− v‖H1(D) + oscT (ω; v)) .
(

1
αmin(ω)

+ 1
)

ηT (ω; uT (·, ω)), (4.76)

where Ceq(ω) := α3/2
max(ω)

α1/2
min(ω)

+
(

α1/2
max(ω)

α1/2
min(ω)

+ 1
)
‖α(·, ω)‖W1,∞(D).

Proof. We follow the deterministic result in [25, Theorem 4.4]. The efficiency (4.45),
oscillations property (4.58), Céa’s lemma [28, Lemma 3.8] and triangle inequality
provide (4.75). Indeed,

ηT (ω; uT (·, ω)) . αmax(ω)‖u(·, ω)− uT (·, ω)‖H1(D) + oscT (ω; uT (·, ω))

.
α3/2

max(ω)

α1/2
min(ω)

‖u(·, ω)− v‖H1(D) + ‖α(·, ω)‖W1,∞(D)‖v− uT (·, ω)‖H1(D) + oscT (ω; v)

.
α3/2

max(ω)

α1/2
min(ω)

‖u(·, ω)− v‖H1(D) + ‖α(·, ω)‖W1,∞(D)

(
α1/2

max(ω)

α1/2
min(ω)

+ 1
)
‖v− u(·, ω)‖H1(D)

+ oscT (ω; v),

for all v ∈ S(T ).

The reliability (4.30) and (4.44) imply (4.76).

According to Proposition 4.3.3, the condition |ηTopt(ω; uTopt(·, ω))|Bs < ∞ is equiva-
lent to |u(·, ω), α(·, ω), f (·, ω)|As < ∞, where

|u, α, f |As := sup
N∈N

min
T ∈T(N)

inf
v∈S(T )

Ns(‖u− v‖H1(D) + oscT (ω; v)).



54 Chapter 4. Multilevel Monte Carlo Finite Element Methods

Note that the approximation class As := {(u, α, f ) : |u, α, f |As < ∞} involves
non-linear interactions between u and the functions f , α through the oscillations.
Therefore, characterization of this class is far from trivial and is still available only
partly in the literature, see Remark 4.3.4 below.

Although Theorem 4.3.6 provides quasi-optimal convergence of the error estima-
tors, one does not always know what the optimal order is. The following theorem
states that convergence of the adaptive finite element method is at least as good as
convergence of the uniform one.

Theorem 4.3.7. For all k ∈ N and almost all ω ∈ Ω, Algorithm 1 with the residual error
estimator defined in (4.26)-(4.28) and mesh refinement described in Section 4.3.2 produces
T(k)(ω) and corresponding u(k)(·, ω), ηT(k)(ω)(ω; u(k)(·, ω)), such that

ηT(k)(ω)(ω; u(k)(·, ω)) . CH2(ω)
(
|T(k)(ω)| − |T(0)|

)− 1
d ,

where CH2(ω) := Copt(ω)

(
αmax(ω)Cun(ω) +

(
1 +

‖α‖W1,∞(D)

αmin(ω)

)
‖ f (·, ω)‖L2(D)

)
.

Proof. According to Theorem 4.3.6 we have

ηT(k)(ω)(ω; u(k)(·, ω)) . Copt(ω)
(
|T(k)(ω)| − |T(0)|

)−s|ηTopt(ω; uTopt(·, ω))|Bs

= Copt(ω)
(
|T(k)(ω)| − |T(0)|

)−s sup
N∈N

min
T ∈T(N)

NsηT (ω; uT (·, ω)).

The efficiency (4.45) of the error estimator provides

sup
N∈N

min
T ∈T(N)

NsηT (ω; uT (·, ω)) ≤ sup
N∈N

min
T ∈T(N)

Ns(αmax(ω)‖u(·, ω)−uT (·, ω)‖H1(D)

+ oscT (ω; uT (·, ω))
)
. (4.77)

We choose the Tun ∈ T of minimal cardinality obtained by uniform refinement of
T(0) such that |Tun| ≥ N, then Lemma 4.2.1 yields

‖u(·, ω)− uTun(·, ω)‖H1(D) . Cun(ω)N−1/d. (4.78)

Using the oscillations property (4.58) with v = uTun(·, ω), w = 0 and (4.5) we have

oscTun(ω; uTun(·, ω)) . hun
(
‖(id− π2

m) f (·, ω)‖L2(D) + ‖α‖W1,∞(D)‖uTun(·, ω)‖H1(D)

)
. N−

1
d

(
1 +
‖α‖W1,∞(D)

αmin(ω)

)
‖ f (·, ω)‖L2(D). (4.79)

Since Tun ∈ T(N), combining (4.77)-(4.79) we have

sup
N∈N

min
T ∈T(N)

N
1
d ηT (ω; uT (·, ω)) . αmax(ω)Cun(ω)+

(
1+
‖α‖W1,∞(D)

αmin(ω)

)
‖ f (·, ω)‖L2(D),

which proves the theorem.
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Returning to the multilevel Monte Carlo method, one can show using Theorem 4.3.7
that Assumption 3.1.2 holds with the appropriate constants when the adaptive Algo-
rithm 1 with residual-based error estimation and multigrid methods are used. Note
that Algorithm 1 includes the computation of the solutions and error estimators for
all k = 0, . . . , kl(ω).

Algorithm 1 terminates when the condition (4.18) is fulfilled, which implies

ηT(kl (ω))(ω)(u(kl(ω))(·, ω)) ≤ Toll < ηT(kl (ω)−1)(ω)(u(kl(ω)−1)(·, ω)). (4.80)

Incorporating the result of Theorem 4.3.7, we obtain

Toll < CH2(ω)
(
|T(kl(ω)−1)(ω)| − |T(0)|

)− 1
d ,

which yields

|T(kl(ω))(ω)| < 2b|T(kl(ω)−1)(ω)| < 2b|T(0)|+ 2bCd
H2(ω)Tol−d

l .

According to (4.15), the uniform partition T(0) fulfills |T(0)| ' Tol−d
0 , with the hid-

den constant that depends only on the size of the domain D, the dimension d,
‖Cad‖Lpad (Ω) and ‖Cun‖Lpad (Ω). Then, taking into account that Tol−d

0 < Tol−d
l for

all l ∈ N, we have
|T(kl(ω))(ω)| . (1 + Cd

H2(ω))Tol−d
l . (4.81)

Theorem 4.3.7 also yields the relation

|T(k)(ω)| . |T(0)|+ Cd
H2(ω)η−d

T(k)(ω)
(u(k)(·, ω)),

for all k ∈ N ∪ {0}, which, in combination with the convergence stated in Theo-
rem 4.3.3, relation (4.80) and properties of geometric series, provides

kl(ω)−1

∑
k=0

|Tk(ω)| ≤ kl(ω)|T(0)|+ Cd
H2(ω)Cd/2

conv(ω)η−d
T(kl (ω)−1)

(u(kl(ω)−1)(·, ω))

·
kl(ω)−1

∑
k=0

ρ
d(kl(ω)−k−1)/2
conv (ω)

≤ kl(ω)|T(0)|+ Cd
H2(ω)Cd/2

conv(ω)(1− ρd/2
conv(ω))−1Tol−d

l .
(4.82)

The definition of the residual-based estimator (4.26)-(4.28), together with the triangle
and Young’s inequalities and (4.5), provides

ηT(0)(u(0)(·, ω)) . C0(ω) :=
(

1 +
‖α‖W1,∞(D)

αmin(ω)

)
‖ f (·, ω)‖L2(D), (4.83)

where the hidden constant depends only on h0, D and the dimension d. Since
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Copt(ω) > 1 for all ω ∈ Ω (see Theorem 4.3.6), we have C0(ω) < CH2(ω) by defini-
tion of CH2(ω).

Now, combining (4.80) and the result of Theorem 4.3.3, we have

Tol2
l ≤ Cconv(ω)ρ

kl(ω)−1
conv (ω)η2

T(0)(u(0)(·, ω)),

which together with (4.83) yields

kl(ω)− 1 ≤ logρconv(ω)

(
C−1

conv(ω)η−2
T(0)(u(0)(·, ω))Tol2

l

)
< logρconv(ω)

(
C−1

conv(ω)C−2
H2 (ω)Tol2

l

)
<

2
d

ln(ρ−1
conv(ω))−1Cd/2

conv(ω)Cd
H2(ω)Tol−d

l .

(4.84)

We again utilize multigrid methods [20, 22] for computing the approximations ũ(k)(ω)
to the solutions u(k)(ω), ω ∈ Ω, k ∈ N ∪ {0}. The multigrid methods have linear
complexity in |T(k)(ω)| at the mesh level k, i.e.

Cost(ũ(k)(ω)) ≤ CMG(ω)|T(k)(ω)|, (4.85)

for all k ∈ N ∪ {0} and almost all ω ∈ Ω, where CMG depends only on Γ, αmin and
αmax. The error estimators can be computed with the cost

Cost(ηT(k)(u(k)(·, ω))) ≤ Cη |T(k)(ω)|, (4.86)

where Cη depends only on the dimension d. Then, utilizing (4.81), (4.82), (4.84),
(4.85) and (4.86), we have

Cost(ũl(ω)) ≤ CMG(ω)|T(kl(ω))(ω)|+
(
Cη + CMG(ω)

) kl(ω)−1

∑
k=0

|T(k)(ω)|

.
(

CMG(ω)(1 + Cd
H2(ω)) + (Cη + CMG(ω))(1 + Cd

H2(ω)Cα(ω))
)

Tol−d
l ,

(4.87)

where Cα(ω) := ln(ρ−1
conv(ω))−1Cd/2

conv(ω) + Cd/2
conv(ω)(1− ρd/2

conv(ω))−1.

Note that the random variables CMG and Cα depend only on αmin, αmax, ‖α‖W1,∞(D)

and some deterministic constants. We make the following assumption in order to
be able to bound the expected computational cost for computing solutions ul(·, ω),
ω ∈ Ω for all l ∈N∪ {0}.
Assumption 4.3.3. CMG, Cα ∈ Lp(Ω) for all p ∈ [1, ∞).

We are then ready to state the following theorem.

Theorem 4.3.8. Let Algorithm 1 with the residual error estimator defined in (4.26)-(4.28),
mesh refinement described in Section 4.3.2 and
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0 < θ(ω) < θ∗(ω) :=
(

1 + C2
stabC2

rel

‖α‖2
W1,∞(D)

α2
min(ω)

)−1
be utilized for constructing the path-

wise hierarchies of spaces S(k)(ω), k ∈ N ∪ {0}, let Assumption 4.3.3 hold and p f ∈
(max{d, 2}, ∞]. Then multigrid methods applied for iterative solution of the pathwise dis-
cretized problems of the form (4.12) fulfill Assumption 3.1.2 with γ = d and a constant Ccost
that does not depend on l ∈N∪ {0} and ω ∈ Ω.

Proof. According to Proposition C.0.7, ‖Cd
H2(ω))‖Lp(Ω) < ∞ for all p ∈ [1, p f

d ). Then
relation (4.87), Assumption 4.3.3 and Hölder’s inequality imply

E[Cost(ũl(ω))] .
(

Cη + E[CMG] + ‖CMG‖Lp1 (Ω)‖Cd
H2(ω))‖Lp(Ω)

+ Cη‖Cα‖Lp1 (Ω)‖Cd
H2(ω))‖Lp(Ω)

+ ‖CMG‖Lp2 (Ω)‖Cα‖Lp3 (Ω)‖Cd
H2(ω))‖Lp(Ω)

)
Tol−d

l ,

where p ∈ [1, p f
d ), p1 = p

p−1 , 1
p2
+ 1

p3
= 1

p and the hidden constant depends only on
b, d, D, h0, Γ, ‖Cad‖Lpad (Ω) and ‖Cun‖Lpad (Ω). This concludes the proof.

As it is seen in the proof of Theorem 4.3.8, it is possible to weaken Assumption 4.3.3
and only assume that CMG ∈ LpMG(Ω) and Cα ∈ Lpα(Ω) for some pMG, pα ∈ (1, ∞).
For the sake of simplicity however, we have chosen to use Assumption 4.3.3.

Remark 4.3.3. If we let the stronger set of assumptions described in Remark 2.2.2
hold, CMG, Cα ∈ L∞(Ω) and it is enough to assume p f ∈ [d, ∞] in Theorem 4.3.8.

According to Theorem 4.3.8, in order to have Assumption 3.1.2 fulfilled for adaptive
MLMC methods described in this section, we need to strengthen Assumption (2.2.1)
(iii). Particularly, in order to have the result of Theorem 4.3.2 we need to require
p f > max{2 pQ

pQ−2 , d}.

Although Assumption 3.1.2 is fulfilled for both classical and adaptive finite element
methods, the constant Ccost corresponding to one of the methods might be larger
than the constant corresponding to the other. This depends on properties of the ran-
dom solutions. If the random solutions exhibit locally rapidly changing properties,
the adaptive finite element method might perform better than the classical uniform
method.

Remark 4.3.4. In case when the functions α(·, ω) are piecewise polynomials over T0
(not fulfilled for log-normal fields), it is possible to characterize the class As in terms
of standard approximation classes [26, Lemma 5.3]

As := {u ∈ H1
0(D) : sup

N∈N

min
T ∈T(N)

inf
v∈S(T )

Ns‖u− v‖H1(D)},

Ãs := { f ∈ L2(D) : sup
N∈N

min
T ∈T(N)

Ns‖(id− π2
m) f ‖L2(D)}.

The class As can, in turn, be characterized by some particular Besov spaces in the
case d = 2, see [17, 18]. Therefore, the theory of adaptive methods presented in this
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thesis can be extended in this case to a larger class of problems, which is beyond the
scope of this work.

Remark 4.3.5. In the case when one is interested in an expected output of inter-
est and this output is described by a linear continuous functional, it is possible to
improve both the theoretical guarantees and practical performance of the adaptive
MLMC-FE method by utilizing goal-oriented error estimation [46, 71, 75]. Based on
the results in [71] it is likely possible to extend the results presented in this section
to adaptive FE algorithms based on goal-oriented error estimation. Some numerical
results for a method combining the MLMC ideas and pathwise goal-oriented error
estimation are shown in [33].

Remark 4.3.6. All results in this section are presented for problem (4.1). As for prob-
lem (2.8), there exist convergent adaptive FE methods based on residual error esti-
mation [21] and hierarchical error estimation [81] for variational inequalities. The
order of convergence is, however, still an open question in both approaches, which
makes the analysis of the computational cost of the methods difficult.

To summarise, we have shown that our assumptions required for convergence of
the adaptive MLMC-FE methods introduced in Section 4.3 can be fulfilled by Al-
gorithm 1 with the residual-based error estimator defined in (4.26)-(4.28) and mesh
refinement described in Section 4.3.2. Theorem 4.3.4 provides the validity of As-
sumption 4.3.1. Theorem 4.3.5 shows that Assumption 4.3.2 is fulfilled. Finally, As-
sumption 3.1.2 holds under Assumption 4.3.3, according to Theorem 4.3.8.

4.4 Level dependent selection of sample numbers

The multilevel Monte Carlo methods described in Sections 3.1 and 3.2 cannot be im-
plemented according to Theorems 3.1.1 and 3.2.1, because the numbers of samples
on each level introduced in the proofs and the spatial error estimation depend on
constants that are usually not available in practice. We will follow the heuristic ap-
proach suggested by Giles in [41, 40] and give two versions of the multilevel Monte
Carlo algorithms corresponding to Sections 3.1 and 3.2 respectively.

Approximation of the expected solution

The algorithm is based on the identity (3.5) and aims at approximating E[u] up to a
tolerance Tol, i.e

‖E[u]− EL[ũL]‖L2(Ω;H1
0 (D)) ≤ Tol. (4.88)

Utilizing (3.5), one can achieve (4.88), for example, requiring

‖E[u− ũL]‖H1(D) ≤
Tol√

2
, (4.89)

L

∑
l=0

M−1
l V[ũl − ũl−1] ≤

Tol2

2
. (4.90)
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It is not possible to verify (4.89) directly because it includes the unknown u. We
assume that for each l ∈N and for almost all ω ∈ Ω there holds

‖ũl+1(ω)− ũl(ω)‖H1(D) ≤ q‖ũl(ω)− ũl−1(ω)‖H1(D), (4.91)

where q is as in (3.2). Then, utilizing Jensen’s inequality, the triangle inequality
and (4.91), we have

‖E[u− ũL]‖H1(D) ≤ E[‖u− ũL‖H1(D)] = E[‖∑∞
l=L+1(ũl − ũl−1)‖H1(D)]

≤ E[∑∞
l=L+1 ‖ũl − ũl−1‖H1(D)] ≤ (q−1 − 1)−1E[‖ũL − ũL−1‖H1(D)].

Therefore, in practical computations, condition (4.89) can be replaced by

E[‖ũL − ũL−1‖H1(D)] ≤ (q−1 − 1)
1√
2

Tol. (4.92)

In order to ensure (4.90) and define the number of samples on different levels we
solve the following optimization problem

minMl ∑L
l=0 MlE[Nl ],

s.t. ∑L
l=0 M−1

l V[ũl − ũl−1] = Tol2/2,
(4.93)

treating the Ml as continuous variables, where Nl(ω) = dimSl(ω).

The solution of this problem is given by

Mopt
l = 2Tol−2

L

∑
i=0

√
V[ũi − ũi−1]E[Ni]

√
V[ũl − ũl−1]

E[Nl ]
. (4.94)

We replace E and V in (4.92) and (4.94) by computable sample approximations EM
and VM obtained from M samples and obtain

EML [‖ũL − ũL−1‖H1(D)] ≤ (q−1 − 1)
1√
2

Tol, (4.95)

Mopt
l = 2Tol−2

L

∑
i=0

√
VMi [ũi − ũi−1]EMi [Ni]

√
VMl [ũl − ũl−1]

EMl [Nl ]
. (4.96)

Now, we are ready to list the multilevel Monte Carlo algorithm for approximating
the expected solution, see Algorithm 2.

Note that in the uniform case there is no need to compute the average partition
sizes in (4.96), because they are constant for each level. Furthermore, evaluation of
samples in Algorithm 2 in the adaptive case is performed by applying Algorithm 1.



60 Chapter 4. Multilevel Monte Carlo Finite Element Methods

Algorithm 2 Adaptive MLMC algorithm for expected solution

1: Input: T0, q, Tol, Minit
2: Initialize L := 1, set Ml := Minit, l = 0, 1
3: while not converged do
4: Evaluate required samples
5: Compute / update VMl [ũl − ũl−1], l = 0, . . . , L
6: Compute optimal Mopt

l , l = 0, . . . , L according to (4.96)
7: Evaluate additional samples
8: Check convergence according to (4.95)
9: if not converged then

10: Set L := L + 1 and ML := Minit
11: end if
12: end while
13: Compute EL[ũL] according to (3.4)
14: Output: EL[ũL]

Approximation of the expected output of interest

The algorithm for approximating the expected output of interest is based on the
identity (3.10) and aims at approximating the mean root square error e(EL[Q(ũL)])
up to the tolerance Tol, which can be done by enforcing the inequalities

|E[Q(u)−Q(ũL)]| ≤
Tol√

2
, (4.97)

L

∑
l=0

M−1
l V[Q(ũl)−Q(ũl−1)] ≤

Tol2

2
. (4.98)

We make an assumption similar to (4.91), namely that for each l ∈N and for almost
all ω ∈ Ω there holds

|Q(ũl+1)−Q(ũl)| ≤ q|Q(ũl)−Q(ũl−1)|. (4.99)

Then, condition (4.97) can be replaced by

E[|Q(ũL)−Q(ũL−1)|] ≤ (q−1 − 1)
1√
2

Tol. (4.100)

We ensure condition (4.98) by solving the optimization problem

minMl ∑L
l=0 MlE[Nl ],

s.t. ∑L
l=0 M−1

l V[Q(ũl)−Q(ũl−1)] = Tol2/2.
(4.101)
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The solution is given by

Mopt
l = 2Tol−2

L

∑
i=0

√
V[Q(ũi)−Q(ũi−1)]E[Ni]

√
V[Q(ũl)−Q(ũl−1)]

E[Nl ]
. (4.102)

We replace E in (4.100) and (4.102) by a computable sample approximation EM with
M samples. Abusing the notation we use VM to denote a sample approximation of
V with M samples here and use this approximation in (4.102). Therefore, we have

EML [|Q(ũL)−Q(ũL−1)|] ≤ (q−1 − 1)
1√
2

Tol, (4.103)

Mopt
l = 2Tol−2

L

∑
i=0

√
VMi [Q(ũi)−Q(ũi−1)]EMi [Ni]

√
VMl [Q(ũl)−Q(ũl−1)]

EMl [Nl ]
. (4.104)

The multilevel Monte Carlo algorithm for approximating the expected output of
interest is listed in Algorithm 3.

Algorithm 3 Adaptive MLMC algorithm for expected output of interest

1: Input: T0, q, Tol, Minit
2: Initialize L := 1, set Ml := Minit, l = 0, 1
3: while not converged do
4: Evaluate required samples
5: Compute / update VMl [Q(ũl)−Q(ũl−1)], l = 0, . . . , L
6: Compute optimal Mopt

l , l = 0, . . . , L according to (4.104)
7: Evaluate additional samples
8: Check convergence according to (4.103)
9: if not converged then

10: Set L := L + 1 and ML := Minit
11: end if
12: end while
13: Compute EL[Q(ũL)] according to (3.9)
14: Output: EL[Q(ũL)]

Again, the partition sizes in (4.104) are constant for each level in the uniform case,
therefore the averages do not need to be computed. In the adaptive case, Algorithm 1
is used for evaluation of the samples in Algorithm 3.
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Chapter 5

Numerical Experiments

In this chapter we investigate the MLMC methods presented in Sections 4.2 and 4.3
from a numerical perspective. We use the algorithms presented in Section 4.4.

5.1 Poisson problem with random right-hand side

We first consider the Poisson problem

u(·, ω) ∈ {w ∈ H1(D) : γD(w) = uD(·, ω) a.e. on ∂D} :

a(ω; u(·, ω), v) = `(ω; v), ∀v ∈ H1
0(D), (5.1)

where D = (−1, 1)2 and γD denotes the trace map that associates w ∈ H1(D) to
the restriction γD(w) in H1/2(∂D). The bilinear and the linear forms are defined as
in (2.5) with the coefficient α(x, ω) = 1 and the uncertain source term

f (x, ω) = e−β|x−Y(ω)|2(4β2|x−Y(ω)|2 − 4β). (5.2)

The uncertain inhomogeneous boundary condition is given by

uD(x, ω) = e−β|x−Y(ω)|2 , x ∈ ∂D, ω ∈ Ω.

Here β is a positive constant and Y = (Y1, Y2)> is a random vector which compo-
nents are uniformly distributed random variables Y1, Y2 ∼ U (−0.25, 0.25). For each
ω ∈ Ω the pathwise solution to (5.1) is given by

u(x, ω) = e−β|x−Y(ω)|2 , x ∈ D. (5.3)

The stronger version of Assumption 2.2.1 described in Remark 2.2.2 is satisfied for
this problem. Therefore, the solution is unique and we have spatial regularity in
the sense that u(·, ω) ∈ H2(D) for almost all ω ∈ Ω. However, u(·, ω) exhibits
a peak at (Y1(ω), Y2(ω)) ∈ D that becomes more pronounced with increasing β,
thus leading to a larger constant Cun in the uniform error estimate (4.6). We have
p f = ∞ and Cun, Cad ∈ L∞(Ω) in this toy problem. We are interested in the expected
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solution E[u] and compare the performance of MLMC finite element methods based
on uniform and adaptive refinements for β = 10, 50, 150.

Pathwise adaptive refinement is performed as described in Section 4.3, with the ex-
act finite element solution replaced by an approximation provided by an iterative
method to be described below. Since selection of T(0) according to (4.15) is difficult
in practice, we choose the initial partition T(0) that consists of 128 congruent triangles
for both uniform and adaptive MLMC and set

Tol0 := ‖ηT(0)(·; u(0))‖L2(Ω),

where we approximate the L2(Ω)-norm by a Monte Carlo method with 1000 sam-
ples. We choose Toll according to (3.2) with q = 1

2 . This choice guarantees

‖u− ul‖L2(Ω;H1
0 (D)) ≤ ‖Cad‖L∞(Ω)Toll

for all l ∈ N ∪ {0} in the adaptive case. The accuracy criterion (4.18) then takes the
form

ηT(kl (ω))(ω)(ω; u(kl(ω))(·, ω)) ≤ Toll = ql‖ηT(0)(·; u(0))‖L2(Ω), (5.4)

and is used as the stopping criterion on each level in the adaptive MLMC method.

Discretized equations of the form (4.4) and (4.12) are solved iteratively by the classi-
cal multigrid method with Gauß-Seidel smoothing. The accuracy condition (4.10) is
replaced by the stopping criterion

‖ũj
l(·, ω)− ũj−1

l (·, ω)‖H1(D) ≤ σalgToll , (5.5)

where ũj
l denotes the j-th multigrid iterate and σalg = 0.001 is a safety factor that

accounts for estimating the algebraic error ‖ul(·, ω)− ũl(·, ω)‖H1(D) by ‖ũj
l(·, ω)−

ũj−1
l (·, ω)‖H1(D).

The implementation was carried out in the finite element software environment
DUNE [19]. As a mesh manager we utilized the module dune-alugrid [6]. We used
the dune-subgrid module [45] for the evaluation of the sum of different approximate
evaluations of ul(ω) on different grids. Due to the incompatibility of dune-subgrid
and refinement by bisection implemented in dune-alugrid we utilized local “red”
mesh refinement [12, 15] with hanging nodes [43, Section 3.1]. Our results show,
however, that the adaptive Algorithm 1 converges also when this type of refinement
is used.

We used the Dörfler marking strategy (4.21) with θ = 0.5.

For all simulations we set the initial number of samples Minit = 50.

The cost for the evaluation of ũl(·, ω) ∈ Sl in the uniform case is set to the corre-
sponding number of unknowns Nl = dim Sl multiplied by the number of multigrid
iterations ν(ũl(·, ω)) performed for computing the solution that fulfills (5.5), i.e.

Costun(ũl(·, ω)) = Nlν(ũl(·, ω)) + Nl−1ν(ũl−1(·, ω)).
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FIGURE 5.1: Errors achieved by uniform and adaptive MLMC against
Tol−1 for the Poisson problem with random right-hand side.

Let us notice that in the adaptive case seeking a solution that satisfies (5.4) is an
iterative process and involves solving the problem (4.12) for all k = 0, . . . , kl(ω). We
therefore set the cost for the evaluation of ũl(·, ω) ∈ Sl(ω) to be

Costad(ũl(·, ω)) =
kl(ω)

∑
k=0

Nk(ω)ν(ũ(k)(·, ω)),

where Nk(ω) = dim S(k)(ω) and ν(ũ(k)(·, ω)) is the number of multigrid iterations
performed for computing different ũ(k)(·, ω), k = 0, . . . , kl(ω). We note that this
definition of the cost does not take into account the cost of computing the error esti-
mators and mesh handling. The computational cost for the adaptive MLMC method
with L levels is then given by

Cost(EL[ũL]) =
L

∑
l=0

Ml

∑
i=1

kl(ω)

∑
k=0

Nk,i(ω)ν(ũ(k),i(·, ω)), (5.6)

which reduces to

Cost(EL[ũL]) = N0

M0

∑
i=1

ν(ũ0,i(·, ω))+

L

∑
l=1

(
Nl

Ml

∑
i=1

ν(ũl,i(·, ω)) + Nl−1

Ml

∑
i=1

ν(ũl−1,i(·, ω))
)

in the case of uniform refinement.

Figure 5.1 illustrates the convergence properties of uniform and adaptive MLMC
methods for different values of β by showing the realised error against the inverse
of the required tolerance Tol. Here, the error ‖E[u]− EL[ũL]‖L2(Ω;H1

0 (D)) is approx-
imated by a Monte Carlo method utilizing M = 10 independent realizations of
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FIGURE 5.2: The values of VMl [ul − ul−1] against levels l for Tol =
0.05 (left) and the optimal number of samples against levels l for
Tol = 0.05, 0.2 (right) for uniform and adaptive MLMC for the Pois-

son problem with random right-hand side with β = 150.

‖E[u]−EL[ũL]‖H1(D). For all values of β, both uniform and adaptive MLMC match
the required accuracy Tol as indicated by the dotted line, thus confirming our the-
oretical results (cf. Theorems 4.2.1 and 4.3.1) also in this slightly more general case
of random boundary conditions. Due to limited memory resources the accessible
accuracy of the uniform MLMC is exceeded by the adaptive MLMC for β = 150.

We now investigate the corresponding computational effort in terms of required
numbers of samples and mesh sizes. Figure 5.2 (left) shows an example of the values
of V[ul − ul−1], approximated by sample averages with Ml samples, against levels
l for uniform and adaptive MLMC with Tol = 0.05 and β = 150. We illustrate the
results only for one value of β, because the qualitative behaviour of the values is the
same for all values of β considered in this section. For both methods the values of
VMl [ul − ul−1] decrease as Tol2

l indicated by the dotted line, in agreement with the
theoretical results (see Remark 3.1.1). We also see that the values of VMl [ul − ul−1]
corresponding to the levels of the adaptive MLMC are smaller than the ones corre-
sponding to the levels of the uniform MLMC for almost all values of l. The effect of
this difference is seen on the right side of Figure 5.2 showing the optimal numbers
of MLMC samples Ml (sometimes smaller than Minit), computed according to (4.96),
against the corresponding levels l = 0, . . . , L. We note that the optimal numbers
of samples corresponding to Tol = 0.05 are obtained from the same runs of uni-
form and adaptive MLMC methods as the results on the left side of the figure. We
see that the numbers of samples required for the adaptive MLMC are smaller than
for the uniform MLMC. Moreover, in this particular example the adaptive MLMC
requires fewer levels than the uniform method. This indicates that the values of
EML [‖ũL − ũL−1‖H1(D)] (see (4.95)) for the adaptive MLMC method are smaller com-
pared to the values for the uniform MLMC method. We also present the optimal
numbers of samples corresponding to Tol = 0.2, to illustrate that this effect applies
to other values of Tol as well.
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TABLE 5.1: Average number of unknowns on different levels of uni-
form and adaptive MLMC with Tol = 0.05 for the Poisson problem

with random right-hand side, β = 10.

l 0 1 2 3 4 5
uniform 289 1089 4225 16641 66049 263169
adaptive 289 811 1837 7255 30057 124199

TABLE 5.2: Average number of unknowns on different levels of uni-
form and adaptive MLMC with Tol = 0.05 for the Poisson problem

with random right-hand side, β = 50.

l 0 1 2 3 4 5 6
uniform 289 1089 4225 16641 66049 263169 1050625
adaptive 289 440 1042 2568 8541 34137 141349

Tables 5.1, 5.2 and 5.3 report on the average mesh sizes or, equivalently, the average
number of the unknowns Nl,i(ω) among i = 1, . . . , Ml , on the levels l = 0, . . . , L for
one run of the uniform and one run of the adaptive MLMC methods with Tol = 0.05
for β = 10, 50, and 150. The mesh sizes in the adaptive MLMC for all values of β
are considerably smaller than for the uniform MLMC and this difference becomes
more noticeable for larger values of β. Even though most of the work in MLMC
methods is performed on coarser levels, this already indicates a gain of efficiency
by adaptive mesh refinement. Note that the adaptive MLMC reached the desired
tolerances already on level L = 6 in the case β = 150.

Figure 5.3 presents an example of partitions and corresponding solutions obtained
for one sample and different levels in uniform and adaptive MLMC methods. It is
clearly seen that adaptive meshes are better suited for problems with locally chang-
ing behaviour of solutions.

Finally, we expect from Theorems 4.2.1 and 4.3.1 that the average computational cost
of both uniform and adaptive MLMC asymptotically behaves like O(L2Tol−2). Fig-
ure 5.4 shows the average of Cost(EL[ũL]), as defined in (5.6), against the inverse of
the required accuracy Tol together with the asymptotic behaviour (dotted line). The
average cost behaves as O(Tol−2) for both uniform and adaptive MLMC methods,
which is better than predicted. As in Figure 5.1, the average is taken over M = 10
runs. Observe that the adaptive MLMC always outperforms uniform MLMC and
that the gain increases with β. These experiments confirm that adaptive MLMC can
substantially reduce the computational cost in the presence of random singularities.

TABLE 5.3: Average number of unknowns on different levels of uni-
form and adaptive MLMC with Tol = 0.05 for the Poisson problem

with random right-hand side, β = 150.

l 0 1 2 3 4 5 6 7
uniform 289 1089 4225 16641 66049 263169 1050625 4198401
adaptive 289 364 638 1553 4832 17758 67596
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FIGURE 5.3: Examples of partitions Tl and solutions ul corresponding
to one sample and different levels in uniform and adaptive MLMC
methods with Tol = 0.05 for the Poisson problem with random right-

hand side, β = 150.
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5.2 Poisson problem with log-normal coefficient and random
right-hand side

In this section we consider the problem

u(·, ω) ∈ H1
0(D) : a(ω; u(·, ω), v) = `(ω; v), ∀v ∈ H1

0(D) (5.7)

with D = (0, 1)2 in d = 2 space dimensions. The bilinear and the linear forms are
again defined as in (2.5). We consider a log-normal coefficient α(x, ω) = exp g(x, ω),
where g(x, ω) is a Gaussian random field with zero mean and exponential covari-
ance function

rg(x, x′) = exp
(
−‖x− x′‖1

λC

)
, (5.8)

where‖ · ‖1 denotes the l1-norm in R2 and λC is the correlation length. We fix
λC = 0.3. The field α is parametrized with the KL expansion. We follow [29],
where analytical eigenvalues and eigenfunctions are found for the covariance op-
erator with the kernel defined by (5.8). We truncate the KL expansion after 40 terms.
The uncertain source term f is defined as in (5.2) with β = 150 and Y = (Y1, Y2)>,
where Y1, Y2 ∼ U (0.25, 0.75).

Assumption 2.2.1 (i) is satisfied for this problem, we also have Lipschitz continuity of
pathwise realizations of α, but we need to assume its Bochner integrability indicated
in Assumption 2.2.1 (ii). Assumption 2.2.1 (iii) is fulfilled with p f = ∞. As in the
previous section, the solution is unique and we have spatial regularity in the sense
that u(·, ω) ∈ H2(D) for almost all ω ∈ Ω.

As it is mentioned in Remark 4.2.4, it is possible to obtain a sharper bound for the
error provided by the uniform MLMC than presented in this thesis, using duality
arguments. The similar error bound shown for the adaptive method is, however,
sharp. Improving the error bound for the adaptive MLMC method engaging dual-
ity arguments would require goal-oriented error estimation, which stayed out of the
scope of this work. However, for some functionals, such as some particular norms
of the pathwise solutions, one can expect the adaptive method to perform at least as
well as the uniform one. In this section we consider the expected output of interest
E[Q(u)], where Q(u) = ‖u‖L2(D). This output of interest formally fulfills Assump-
tion 2.4.1 with CQ = 1 and pQ = ∞, since

|Q(u)−Q(v)| = |‖u‖L2(D) − ‖v‖L2(D)| ≤ ‖u− v‖L2(D) ≤ ‖u− v‖H1(D), (5.9)

for any u, v ∈ H1
0(D). We are interested in comparing the performance of MLMC

finite element methods based on uniform and adaptive refinements.

As in the previous section, pathwise adaptive refinement is performed as described
in Section 4.3 with the exact finite element solution replaced by an approximation
provided by an iterative method to be described below. The initial partition T0 con-
sists of 32 congruent triangles for both uniform and adaptive MLMC and

Tol0 := ‖ηT(0)(·; u(0))‖L2(Ω),



70 Chapter 5. Numerical Experiments

0 1 2 3 4 5 6
level l

10−5

10−4

10−3

10−2

10−1

E
M

l[
|Q

(u
l)
−

Q
(u

l−
1)
|] O(Tol2

l )

uniform
adaptive

FIGURE 5.5: The values of EMl [|Q(ul)−Q(ul−1)|] against levels l for
Tol = 0.0001 for uniform and adaptive MLMC for the problem with

log-normal coefficient and random right-hand side.

where we again approximate the L2(Ω)-norm by a Monte-Carlo method with 1000
samples. The accuracy criterion (4.18) then takes the form of (5.4) with Toll defined
according to (3.2) with q = 1

2 .

The discretized equations of the form (4.4) and (4.12) are solved iteratively by the
classical multigrid method with Gauß-Seidel smoothing and the stopping criterion
(5.5).

For this example we used bisection refinement implemented in dune-alugrid with
2 bisections applied to each element that is marked for refinement, for both the uni-
form and adaptive methods.

Recall that, according to Theorem 4.3.8, the value of θ for the Dörfler marking strat-
egy (4.21) that guarantees convergence of the adaptive algorithm (Algorithm 1) is
random and depends on ‖α‖W1,∞(D) and αmin(ω). However, we chose θ = 0.5 to be
constant for the results below, for simplicity.

For all simulations we set the initial number of samples to be Minit = 50.

We define the computational cost for MLMC methods with L levels by (5.6), as in
the previous section.

Figure 5.5 illustrates the behaviour of the expected value of |Q(ul) − Q(ul−1)| ap-
proximated by a sample average EMl , against levels l corresponding to uniform and
adaptive MLMC with Tol = 0.0001. Although, according to (5.9) we have

|Q(ul(ω))−Q(ul−1(ω))| ≤ ‖ul(ω)− ul−1(ω)‖H1(D)

≤ ‖ul(ω)− u(ω)‖H1(D) + ‖u(ω)− ul−1(ω)‖H1(D)

≤ Cdis(ω)(1 + q−1)Toll

(5.10)
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FIGURE 5.6: The values of VMl [Q(ul)− Q(ul−1)] against levels l for
Tol = 0.0001 (left) and the optimal number of samples against levels
l for Tol = 0.0001, 0.0004 (right) for uniform and adaptive MLMC for
the problem with log-normal coefficient and random right-hand side.

for almost all ω ∈ Ω, which implies E[|Q(ul) − Q(ul−1)|] = O(Toll), we actually
observe that E[|Q(ul)− Q(ul−1)|] behaves as O(Tol2

l ). This, however, corresponds
to the behaviour, predicted in the uniform case in [86, Proposition 4.4.], where the
duality arguments are taken into account

Figure 5.6 (left) shows the values of V[Q(ul) − Q(ul−1)] approximated by sample
averages VMl (we emphasize that we abuse the notation, denoting both sample ap-
proximations to V and V by VMl in this chapter) against levels l for uniform and
adaptive MLMC with Tol = 0.0001. Since

V[Q(ul)−Q(ul−1)] ≤ E[(Q(ul)−Q(ul−1))
2],

the relation (5.10) yields that V[Q(ul)− Q(ul−1)] = O(Tol2
l ). However, our numer-

ical results presented in Figure 5.5 show that a stronger result than (5.10) can be ob-
tained and a faster convergence of V[Q(ul)−Q(ul−1)] can be expected. We observe
in Figure 5.6 (left) that for both methods the values of VMl [Q(ul)−Q(ul−1)] decrease
asO(Tol4

l ), as indicated by the dotted line. This behaviour complies with the numer-
ical results reported in Figure 5.5. We also see that the values of VMl [Q(ul)−Q(ul−1)]
corresponding to the levels of adaptive MLMC are smaller than the ones correspond-
ing to the levels of uniform MLMC for almost all values of l. Figure 5.6 (right) shows
the optimal numbers of MLMC samples Ml , computed according to (4.104), against
the corresponding levels l = 0, . . . , L for two different values of Tol. We see that the
numbers of samples required for adaptive MLMC are in most cases smaller than the
numbers required for uniform MLMC.

Table 5.4 presents the average mesh sizes corresponding to different levels l = 0, . . . , L
for uniform and adaptive MLMC methods with Tol = 0.0001. As in the previous sec-
tion (see Figure 5.3) we observe a considerable reduction of mesh sizes correspond-
ing to the adaptive MLMC method, compared to the uniform MLMC method.
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TABLE 5.4: Average number of unknowns on different levels of uni-
form and adaptive MLMC with Tol = 0.0001 for the problem with

log-normal coefficient and random right-hand side.

l 0 1 2 3 4 5 6
uniform 81 289 1089 4225 16641 66049 263169
adaptive 81 146 344 1118 4324 15280 61369

level 1 level 3 level 5
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FIGURE 5.7: Examples of partitions Tl and solutions ul correspond-
ing to one sample and different levels for the uniform and adaptive

MLMC methods applied to the problem (5.7) with Tol=0.0001.
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FIGURE 5.8: Average computational cost of uniform and adaptive
MLMC against Tol−1 for the problem with log-normal coefficient and

random right-hand side.

Figure 5.7 illustrates an example of partitions and corresponding solutions obtained
for one sample and different levels in uniform and adaptive MLMC methods, which
again demonstrates the advantage of adaptive mesh refinement.

Finally, according to Theorems 4.2.2 and 4.3.2 the average computational cost of
both uniform and adaptive MLMC asymptotically behaves as O(L2Tol−2). How-
ever, since we observe a faster convergence of the values V[Q(ul) − Q(ul−1)], ac-
cording to e.g. [28, Theorem 4.1] we can expect that the computational cost behaves
like O(Tol−2). Figure 5.8 plots the average of Cost(EL[ũL]) as defined in (5.6) over
M = 10 realizations against the Tol−1, together with the asymptotic behaviour (dot-
ted line), which corresponds to the predicted one. Again, adaptive MLMC outper-
forms uniform MLMC, which confirms its advantages in the presence of random
singularities.
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Chapter 6

Uncertainty Quantification in Wear
Tests of Knee Implants

In this chapter we present a practically relevant problem that includes uncertain
parameters and apply the adaptive MLMC method introduced in Section 4.3 for
quantification of uncertainties.

6.1 Motivation

Total knee replacement surgery is one of the common and every day performed op-
erations in Germany. The knee implants used in such surgeries consist of two parts.
During the surgery the two implant parts are attached to two bones, namely to the
femur and the tibia, replacing the femoro-tibial joint of the human knee. The mate-
rial properties of the two implant components differ: the femur part is much harder
than the tibial plateau, which is usually made of a soft polyethylene. The repeated
contact of implant components during knee movements causes the soft material to
be worn down, and small polyethylene particles from the tibial component to de-
tach themselves. The detached particles stay in the knee joint which might lead to
inflammation and osteolysis [47] which necessitates secondary surgery.

In order to be able to predict the amount of material abrading during daily activities
and to keep this amount under the critical values, in vitro testing of the implants is
required before they are approved for the market. Such tests are performed in knee
wear testing machines, see Figure 6.1. An implant design process might include
numerous in vitro tests, each of which is very time consuming (one test might last
up to several months) and costly.

Computer simulations of the wear tests can help to accelerate the implant design
process. Some of the mechanical tests that must be performed before an implant is
approved for use can be replaced by numerical simulations. The run times for these
simulations are expected to be considerably less than the time needed for the corre-
sponding mechanical tests. Moreover, the simulations do not require real implants
but only their geometry and they can be run unsupervised on a computer, which
considerably decreases the expenses required for the implant design.
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FIGURE 6.1: A knee wear testing machine, digital
photograph, Questmed GmbH, accessed 6 June 2018,

<http://www.questmed.de/>.

Several mathematical models for the numerical simulation of the wear tests have
been developed in the recent years (e.g. [1, 24, 74]). We concentrate here on the
model developed in [24] for a load-controlled testing gait cycle for normal walking,
precisely described in the document [56] published by the International Standards
Organisation. One of the open problems that appear in the setup of wear tests and,
therefore, also in the numerical simulations, is that the initial positioning of the two
implant parts with respect to each other is not specified in [56] and is, therefore, a
source of uncertainty. It is also not always possible to ensure the precise application
of the external forces prescribed in [56]. Additionally, some model parameters might
have to be estimated and are, hence, not precise. In this thesis we address these
problems by introducing a random formulation of the problem that describes the
tests and apply the adaptive MLMC method for approximating the expected wear.

6.2 Mathematical model

In this section we introduce a mathematical model for one type of mechanical wear
tests, described in [56]. During the tests the implant parts (see Figure 6.2) are placed
into a knee wear testing machine, where external forces are applied to the tibial
part in order to imitate the stresses incurred during normal walking. Each such test
consists of five million gait cycles. The loads applied to the implants during one gait
cycle are given in [56] for 100 time steps. The mass loss of the tibial component is
monitored during the tests.
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FIGURE 6.2: Femoral (upper) and tibial (lower) components of the
knee implants.

We first introduce the deterministic model developed in [24] and then extend it to a
random framework that takes into account the uncertainties in the initial position of
the implant parts, in the applied forces and in the model parameters.

The femoral and tibial components are modelled as linear elastic bodies. The femoral
part is made of a much harder material than the tibial component, and it is reason-
able to assume that it behaves as a rigid body. Nevertheless, it is modelled as an
elastic body as well, because, as mentioned in [24], the rigid body assumption leads
to only little computational savings. Since the deformation of the implant compo-
nents remains small, the linearised model of elasticity is chosen. Furthermore, a
quasi-static approach, assuming that the forces applied to a system vary slowly over
time, is utilized. As a result, at each moment of time the contact of two bodies can
be described by a system of static equations.

We cite [58, 78] for more detailed introductions to deterministic contact problems.
Let us denote the domain occupied by the femoral component by D1 and the do-
main occupied by the tibial part by D2. The domains D1 and D2 are bounded, open,
connected subsets of R3. The boundaries of the domains ∂D1 and ∂D2 are assumed
to be piecewise Lipschitz continuous. The boundary ∂D1 is partitioned into three
open disjoint parts

∂D1 = ΓD ∪ Γ1,N ∪ Γ1,C,

and the boundary ∂D2 is partitioned into open disjoint parts

∂D2 = ΓR ∪ Γ2,N ∪ Γ2,C.

Dirichlet boundary conditions are prescribed on ΓD, Neumann conditions on Γ1,N ,
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Γ2,N and Robin type conditions on ΓR. The boundary parts Γ1,C and Γ2,C are the
contact boundaries, which is where the contact is expected to occur. More precisely,
while the actual zone of contact is an unknown of the problem, the model contains
the assumption that it is a subset of Γ1,C ∪ Γ2,C.

Under applied loads, the two bodies deform and take on new configurations. The
deformation of the bodies is specified in linear elasticity by their displacement func-
tions u1 : D1 → R3 and u2 : D2 → R3.

We consider a homogeneous, isotropic, linearised Saint Venant–Kirchhoff material,
i.e the strain-displacement relation corresponding to the small strain assumption is
defined as ε(u) := 1/2(∇u + (∇u)>) and the constitutive equation for the stress
tensor is given by σ(u) = Cε(u), where C is the forth-order Hooke tensor. The
linearised elastic equilibrium for the displacement u := (u1, u2) is given by

−div σ(u) = 0 in D := D1 ∪ D2,
u = 0 on ΓD,

σ(u)n + Ku = fR on ΓR,
σ(u)n = 0 on ΓN := Γ1,N ∪ Γ2,N ,

(6.1)

where n denotes the outer unit normal field on ∂D, K is the stiffness tensor and
fR ∈ (L2(ΓN))

3 is the Neumann load.

In order to model contact between the two bodies, this system is supplemented by a
non-penetration constraint on Γk,C, k ∈ {1, 2}. We introduce a homeomorphism Φ :
Γ1,C → Γ2,C which we call the contact mapping. It forms an a priori identification of
points on Γ1,C and Γ2,C which may come into contact with each other. We take Φ to be
the normal projection of Γ1,C onto Γ2,C and assume that Γ1,C and Γ2,C are chosen such
that construction of Φ is possible. The contact mapping allows to define the initial
gap function g : Γ1,C → R with g(x) := |Φ(x)− x| and the relative displacement

[u]Φ := u1|Γ1,C − u2|Γ2,C ◦Φ,

where ◦ denotes function composition. The non-penetration condition for two bod-
ies in the framework of small deformations then takes the form

[u]Φ · n1 ≤ g on Γ1,C, (6.2)

where n1 is the outer unit normal to ∂D1.

We set
H1

D(D) := {v ∈ H1(D) : γD(v) = 0 a.e. on ΓD},

where γD denotes the trace map that associates v ∈ H1(D) to the restriction γD(v)
in H1/2(ΓD).

The variational formulation of the two-body contact problem (6.1)-(6.2) then takes
the form

u ∈ K : a(u, v− u) ≥ `(v− u), ∀v ∈ K , (6.3)
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FIGURE 6.3: Transformation of domains.

with the bilinear form

a(v, w) :=
∫

D
ε(v) : C : ε(w) dx +

∫
ΓR

(Kv)w dx, v, w ∈ (H1(D))3,

the linear form
`(v) :=

∫
ΓR

fRv dx, v ∈ (H1(D))3

and the set of admissible displacements

K := {v ∈ (H1
D(D))3 : [v]Φ · n1 ≤ g, a.e. on Γ1,C}.

We note that K is a closed and convex subset of (H1
D(D))3.

Let us now extend the problem formulation (6.3) to the case when the domains and
the external forces are random.

We first assume that we have measurable mappings Ω 3 ω 7→ µω ∈ SE(3) and
Ω 3 ω 7→ fR(ω) ∈ (L2(µωΓR))

3, where SE(3) is the group of all 3-dimensional
rigid body transformations and by µωΓR we denote the boundary transformed by
the rigid body motion µω.

We now assume that the position of the tibial component is random and perturbed
by a rigid body transformation µω, i.e. it occupies the domain D̂2(ω), where D̂2 =
µωD2. For convenience of notation we define µω as

µω =

{
id , if x ∈ D1,
µω, if x ∈ D2,

where id is the identity transformation. Then D̂(ω) = µωD and D1 = D̂1 = µωD1.
We note that ∂D = µ−1

ω ∂D̂(ω), ΓD = µ−1
ω Γ̂D(ω) and ΓR = µ−1

ω Γ̂R(ω). In what
follows we denote Γk,N(ω) := µ−1

ω Γ̂k,N(ω), Γk,C(ω) := µ−1
ω Γ̂k,C(ω), k ∈ {1, 2} and

note that the sets Γk,N and Γk,C now also depend on ω ∈ Ω, because the contact area
is random.
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We apply standard techniques in order to formulate the random problem on the
reference domain D. The random bilinear form is defined as

a(ω; v, w) :=
∫

D
εω(v) : C : εω(w) dx +

∫
ΓR

(Kv)w dx v, w ∈ (H1(D))3, (6.4)

where εω(v) := 1/2(Jµ(ω)−>∇v+∇v> Jµ(ω)−1) and Jµ(ω) is the Jacobian matrix of
the transformation µω. We note that Jµ(ω) is an orthogonal matrix with determinant
1, because µω and the identity are rigid body transformations.

The linear form is defined as

`(ω; v) :=
∫

ΓR

fR(ω) ◦ µωv dx, v ∈ (H1(D))3. (6.5)

We introduce the contact mapping Φω : Γ̂1,C(ω) → Γ̂2,C(ω) and the corresponding
initial gap function gω : Γ̂1,C(ω) → R with gω(x) := |Φω(x) − x|. The relative
displacement with respect to Φω is then defined as

[u]Φω
:= u1|Γ1,C(ω) − u2|Γ2,C(ω) ◦ µ−1

ω ◦Φω ◦ µω.

Then the random variational pathwise formulation for a given ω ∈ Ω reads

u(·, ω) ∈ K(ω) : a(ω; u(·, ω), v− u(·, ω)) ≥ `(ω; v− u(·, ω)), ∀v ∈ K(ω) ,
(6.6)

where

K(ω) := {v ∈ (H1
D(D))3 : [v]Φω · n̂1(ω) ◦ µω ≤ gω ◦ µω, a.e. on Γ1,C(ω)},

and n̂1(ω) is the outer normal to ∂D̂1(ω).

Again, for each fixed ω ∈ Ω the set of admissible displacements K(ω) is a closed
and convex subset of (H1(D))3.

The problem is, therefore, formulated as a random variational inequality, similar to
the one introduced in Section 2.3. We do not perform any theoretical analysis for the
problem (6.6). We assume this problem is well-posed.

Given partitions T(k)(ω)k∈N∪{0} of the domain D for a fixed ω ∈ Ω, we denote the

first order finite element subspace of (H1
D(D))3 defined on T(k)(ω) by S(k)(ω) for

any k ∈ N ∪ {0}. Discretization of the problem (6.6) in a space S(k) ⊂ H1
D(D),

together with the mortar approach introduced in [93] for the variationally consistent
discretization of the non-penetration condition, leads to the problem

u(k)(·, ω) ∈ Kk(ω) : a(ω; u(k)(·, ω), v−u(k)(·, ω)) ≥ `(v−u(k)(·, ω)), ∀v ∈ Kk(ω),
(6.7)

where

Kk(ω) := {v ∈ S(k)(ω) : λd([v]Φω · n̂1(ω) ◦µω) ≤ λd(gω ◦µω), ∀λd ∈ Mk(Γ1,C(ω))},
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the bilinear and the linear forms are defined as in (6.4)-(6.5) and Mk(Γ1,C(ω)) is the
dual mortar basis corresponding to the space S(k)(ω), see [93] for the definition and
details.

Quantity of interest

The quantity of interest in the simulations of the mechanical tests is the expected
wear or, in other words, the expected mass loss of the tibial component. Given a
solution u(·, ω) to (6.6) for fixed ω ∈ Ω, we utilize Archard’s wear law [7] as a
model for the wear. In the quasi-static context the wear depth on the contact surface
is given by [24]

w(u(·, ω)) = kp(u(·, ω))s(u(·, ω)), (6.8)

where k is a material constant, p(u) = − 1
3 tr(σ(u)) is the pressure and s is the sliding

distance, i.e. the relative movement of the two implant components. The model
parameter k can be estimated from experimental data. Due to uncertainties that
appear in the estimation, we model k as a random variable.

The total mass loss is then given by

Qwear(u(·, ω)) =
∫

Γ2,C(ω)
w(u(·, ω)) dx,

and we are interested in E[Qwear(u)]. We assume that Qwear fulfills Assumption 2.4.1.

In order to approximate E[Qwear(u)] we apply a slightly modified version of the
adaptive MLMC-FE method introduced in Section 4.3. It is sometimes difficult to
achieve a balance between the statistical and the discretization errors in (3.10) when
trying to bound the mean square error of an MLMC-FE method. One of the possible
reasons is that high resolution meshes required for balancing the statistical error are
not computationally feasible. This is also the case in the simulations of the wear
tests. Therefore, instead of the bound for the MSE of the form

e(EL[Qwear(ũL)]) ≤ Tol

we aim at the bound

α(E[Qwear(u)−Qwear(ũL)])
2 + (1− α)

L

∑
l=0

M−1
l V[Qwear(ũl)−Qwear(ũl−1)] ≤ Tol2

(6.9)
with some α ∈ [0, 1]. Note that α = 0 corresponds to the case when we are only
interested in the discretization error and in the case α = 1 we are only interested in
the statistical error of the applied MLMC method.
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FIGURE 6.4: Illustration of the components characterizing the trans-
formation µω.

6.3 Numerical results

Finally, we report on some implementation details and numerical results for approx-
imating the expected wear.

The values of the material parameters that define the tensor C (i.e. Young’s modu-
lus and Poisson ratio) are taken from [3]. The tensor K and the boundary patches ΓD
and ΓR for the femur and tibial components are defined in [56] and discussed in more
detail in [24]. We define the random load fR by perturbing the values given in [56],
which we denote by fiso

R , for each time step. We set fR = fR(fiso
R , ξ1, ξ2, ξ3, ξ4, ξ5, ξ6),

where ξi ∼ U (ai, bi), i = 1, . . . , 6 and the values ai, bi, i = 1, . . . , 6 are chosen such
that the direction and the absolute value of fiso

R are perturbed in a suitable range. The
maximum absolute deviation of |fR| around E[|fR|] = |fiso

R | is set to 1 · 10−2|fiso
R |. The

first component that defines the transformation µω is a random translation of the tib-
ial (lower) component of the implant in the XY-plane. The values of the vector that
defines the translation are uniformly distributed within a circle with radius 3. The
second component that defines µω is a rotation with respect to the axis illustrated in
Figure 6.4. The values of the angle that defines the rotation are uniformly distributed
on the interval (−3π · 10−2, 3π · 10−2). Thus, we set µω = µω(ξ7, ξ8, ξ9), where
ξi ∼ U (ai, bi) with suitable ai, bi, i = 7, . . . , 9. A value for the coefficient k from (6.8)
can be found in [74]. However, it is not clear, whether this value was obtained from
laboratory experiments, from numerical simulations, or from some other source. We,
therefore, set k = ξ10[mm3/Nm], where ξ10 ∼ U (1.75 · 10−7, 2.25 · 10−7) and E[k]
equals the value presented in [74].

Since solving the discrete problem (6.7) for a fixed ω ∈ Ω for every of the 100 time
steps for five million gait cycles is a computationally demanding task, we divide the
wear test into 10 blocks. For each of the blocks the finite element solution and the
corresponding wear are computed for the first cycle and then the wear is extrapo-
lated for the remaining cycles as described in [24]. For each of the cycle batches the
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FIGURE 6.5: Initial meshes for the femoral (left) and the tibial (right)
components of the knee implants.

geometry of the tibial component is updated according to the computed depth of the
wear.

The geometry of the bodies in our simulations corresponds to the commercially sold
implant “Genius Pro (Fixed Bearing, PCL retaining)”. The tetrahedral domain par-
titions consisted of 8745 elements for the femoral component and 5038 elements for
the tibial component, see Figure 6.5.

The implementation of the deterministic solver producing the values of the wear
for a fixed ω ∈ Ω given partitions of the domains D1 and D2 was done in DUNE

[19]. This implementation was provided by Ansgar Burchardt and Oliver Sander
(co-authors of the article [24]), together with the initial partitions that resolve the
geometry of the implants. The code was parallelized using OpenMP, allowing for
the computation of 100 independent time steps of each cycle in parallel.

The implementation was further extended by adaptive mesh refinement, producing
the hierarchies T(k)(ω) based on hierarchical error estimation as presented in [78].
We used a heuristic approach for the refinement that was performed once for one
whole gait cycle of the wear tests, based on the error indicators averaged over all
time steps in the cycle. The refinement for the next cycle was then started from the
last refined mesh obtained from the current cycle and not from the initial mesh. This
approach allowed for some unnecessary computations to be eliminated. Since the
wear only appears on the softer tibial component, the mesh corresponding to the
femoral part of the implant was not refined. We used “red-green” mesh refinement
as implemented in dune-uggrid [79] and set the Dörfler marking parameter θ = 0.2.
We assume that the adaptive algorithm based on hierarchical error estimation and
the described heuristics fulfills Assumption 4.3.1.

The discretized equations of the form (6.7) were solved using the interior point
solver implemented in IPOPT [91]. This solver is not optimal in the sense of com-
putational cost, which behaves only like O(N2

k (ω)), where Nk(ω) = dim(S(k)(ω)),
k ∈ N ∪ {0}. We take this into account when computing the numbers of samples
corresponding to different levels.
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FIGURE 6.6: An adaptively refined mesh corresponding to the tibial
component of the knee implant with the values of |ul(ω)|[m], ω ∈ Ω,

l = 2.

We utilized Algorithm 3 for the adaptive MLMC-FE method, where condition (4.103)
is replaced by

EML [|Qwear(ũL)−Qwear(ũL−1)|] ≤ (q−1 − 1)
1√
2α

Tol

and the formula for the number of samples (4.104) is replaced by

Mopt
l = 2(1− α)Tol−2

L

∑
i=0

√
VMi [Qwear(ũi)−Qwear(ũi−1)]EMi [N

2
i ]

·
√

VMl [Qwear(ũl)−Qwear(ũl−1)]

EMl [N
2
l ]

,

which ensures (6.9).

We set
Tol0 := ‖ηT0(·; u0)‖L2(Ω),

where the L2(Ω)-norm was approximated by a Monte Carlo method with 100 sam-
ples. The values of Toll were chosen according to (3.2) with q = 1

2 . We assume that
the solutions ul(ω), ω ∈ Ω, l ∈N∪ {0} fulfill Assumption 4.3.2.

The initial number of samples was set to Minit = 50, the tolerance Tol = 0.8 and the
parameter α = 0.01. The resulting adaptive MLMC method consisted of L = 3 levels
with M0 = 339, M1 = 286, M2 = 206, M3 = 113.

The computations corresponding to different samples on different levels were run in
parallel on the hybrid x86 and GPU cluster Allegro at Freie Universität Berlin with
MLMC post-processing.
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FIGURE 6.7: Wear mean and standard deviation over cycle numbers
obtained by the adaptive MLMC method.

Figure 6.6 presents an adaptively constructed mesh and the corresponding absolute
value of the solution obtained for one sample by the adaptive algorithm based on
hierarchical error estimation described in this section. We see that the areas with
higher absolute values of displacement are adaptively refined.

Finally, Figure 6.7 illustrates the expected total wear measured in milligrams over
5 million cycles obtained by the adaptive MLMC method. We present the MLMC
approximation of the wear mean Ewear := EL[Qwear(ũL] together with the standard
deviation σwear := (VM[Qwear(ũL)])

1
2 , where VM is a sample based approximation of

the variance. The mean wear lies in the range of results obtained in [24] with dif-
ferent meshes. Hence, providing estimates of the uncertainty, the results presented
in Figure 6.7 complement the results presented in [24], where single deterministic
problems were solved.

In this chapter, we successfully applied the adaptive MLMC method for uncertainty
quantification to a practically relevant problem. Since application of the uniform
MLMC method is computationally infeasible for the considered problem due to the
dimensionality and the complicated geometry of the spatial domains, this demon-
strates a wider applicability of the adaptive MLMC method.





87

Appendix A

Appendix

In this appendix we list some results from the finite element theory that are used in
some of the proofs in Section 4.3.3.

Quasi-interpolation operator

For a partition T ∈ T we denote the set of its interior vertices by Nint. For any
p ∈ Nint let λp ∈ S(T ) denote the first order nodal basis function associated to this
vertex.

The quasi-interpolation operator IT : L1(D)→ S(T ) is then defined as

IT v := ∑
p∈Nint

λp
1
|φp|

∫
φp

v dx, (A.1)

where φp denotes the union of elements of T sharing the vertex p ∈ Nint and | · |
denotes the d-dimensional Lebesgue measure.

For all v ∈ H1
0(D) and all T ∈ T the quasi-interpolation operator satisfies the fol-

lowing local estimates

‖v− IT v‖L2(T) ≤ c1hT‖v‖H1(φT), (A.2)

‖v− IT v‖L2(∂T) ≤ c2h
1
2
T‖v‖H1(φT), (A.3)

where the constants c1, c2 > 0 only depend on the shape-regularity parameter CT of
T , see [90].

Bubble functions

For any element T ∈ T we define the element bubble function as

ψT := αT ∏
p∈T

λp, αT =

{
27, if T is a triangle,
256, if T is a tetrahedron.

(A.4)
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The face bubble function is defined for any face E ∈ E as

ψE := βE ∏
p∈E

λp, βE =

{
4, if E is a line segment,
27, if E is a triangle.

(A.5)

For every polynomial degree k ∈ N ∪ {0} the following inverse estimates hold for
all polynomials ϕ of degree k

c1,k‖ϕ‖L2(T) ≤ ‖ψ
1
2
T ϕ‖L2(T), (A.6)

‖∇(ψT ϕ)‖L2(T) ≤ c2,kh−1
T ‖ϕ‖L2(T), (A.7)

c3,k‖ϕ‖L2(E) ≤ ‖ψ
1
2
E ϕ‖L2(E), (A.8)

‖∇(ψE ϕ)‖L2(φE) ≤ c4,kh−
1
2

E ‖ϕ‖L2(E), (A.9)

‖ψE ϕ‖L2(φE) ≤ c5,kh
1
2
E‖ϕ‖L2(E), (A.10)

where the constants c1,k, c2,k, c3,k, c4,k, c5,k > 0 depend only on the degree k and the
shape-regularity parameter CT of T , see [5].

Inverse inequalities

Let T ∈ T and E ∈ T, then for all v ∈ S(T ) there holds,

‖∇v‖L2(T) ≤ c3h−1
T ‖v‖L2(T), (A.11)

‖∇v‖L2(E) ≤ c4h−
1
2

T ‖∇v‖L2(T), (A.12)

where the constants c3, c4 > 0 depend only on the shape-regularity of T, see [20].

Properties of Lp-best approximation operator

Let T ∈ T , v ∈ L∞(T) and ϕ be a polynomial of order n ∈ N ∪ {0}. Let π
p
m denote

the operator of Lp−best approximation onto the set of polynomials of order ≤ m,
where m ≥ n, over T. Then there holds

‖(id− π2
m)(vϕ)‖L2(T) ≤ ‖(id− π∞

m−n)v‖L∞(T)‖ϕ‖L2(T). (A.13)

For all v ∈ L∞(T) and m ∈N∪ {0} there holds

‖(id− π2
m)v‖L∞(T) ≤ hT‖∇v‖L∞(T), (A.14)

see [26] for both results.
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Appendix

In this appendix we list some of the results from [25] adapted to the residual error es-
timators defined in (4.26)-(4.28) for the solution of the random problem (2.4). These
results are used in the proof of Theorem 4.3.6. Our goal is to trace how the appearing
constants depend on ω ∈ Ω. In the case when the dependency of the constants is
explicitly stated in the original results in [25], we list the random versions of these
results without proofs. For some of the results we only sketch some parts of the
original proofs concerning the constants. We adopt the notations of the Section 4.3
here.

The following proposition follows from [25, Proposition 4.12], the discrete reliabil-
ity (4.32) and the stability property (4.33) of the residual error estimator.

Proposition B.0.1. Let T ∈ T, then for almost all ω ∈ Ω and for all 0 < θ0 < θ∗(ω) :=(
1 + C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

)−1
there exists some 0 < κ(ω) < 1 that depends only on Cstab,

Crel, αmin(ω), ‖α‖W1,∞(D) and θ0, such that the implication

η2
T̃ (ω; uT̃ (·, ω)) ≤ κ(ω)η2

T (ω; uT (·, ω)) =⇒
θη2
T (ω; uT (·, ω)) ≤ ∑

T∈T \T̃
η2

T(ω; uT (·, ω)) (B.1)

holds for all 0 < θ ≤ θ0 and all refinements T̃ ∈ T of T .

Proof. We omit the arguments of uT and uT̃ for brevity.

Let us fix a 0 < θ0 < θ∗(ω) and define κ(ω) as

κ(ω) =
1− θ0

(
1 + (1 + δ−1)C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

)
1 + δ

. (B.2)
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Relation (4.40) provides

η2
T (ω; uT ) = ∑

T∈T \T̃
η2

T(ω; uT ) + ∑
T∈T ∩T̃

η2
T∈T (ω; uT )

≤ ∑
T∈T \T̃

η2
T(ω; uT ) + (1 + δ) ∑

T∈T ∩T̃
η2

T∈T̃ (ω; uT̃ )

+ (1 + δ−1)C2
stab‖α(·, ω)‖2

W1,∞(D)‖uT̃ − uT ‖2
H1(D)

with any δ > 0.

Incorporating (4.32), together with the assumption of the implication (B.1), we obtain

η2
T (ω; uT ) ≤ (1 + δ)κ(ω)η2

T (ω; uT )+(
1 + (1 + δ−1)C2

stabC2
rel

‖α‖2
W1,∞(D)

α2
min(ω)

)
∑

T∈T \T̃
η2

T(ω; uT ). (B.3)

Definition of κ(ω), (B.2) and (B.3) provide the result of the implication (B.1) for all
θ ≤ θ0.

Note that for each θ0 the parameter δ can be chosen sufficiently large, such that
0 < κ(ω) < 1.

The following proposition follows from [25, Lemma 4.14] and the monotonicity of
the residual error estimator (4.29).

Proposition B.0.2. Let ‖ηTopt(ω; uTopt(·, ω))‖Bs < ∞, T ∈ T and assume that for an
ω ∈ Ω the implication

η2
T̃ (ω; uT̃ (·, ω)) ≤ κ(ω)η2

T (ω; uT (·, ω)) =⇒
θ0(ω)η2

T (ω; uT (·, ω)) ≤ ∑
T∈T \T̃

η2
T(ω; uT (·, ω))

holds for a particular choice of 0 < κ(ω), θ0(ω) < 1 and all refinements T̃ ∈ T of T . Then
there exists a certain refinement T̃ ∗(ω) ∈ T of T , such that

|T \ T̃ ∗(ω)| ≤ c0(ω)‖ηT opt(ω; uT opt(·, ω))‖
1
s
Bs

η
− 1

s
T (ω; uT (·, ω)), (B.4)

where c0(ω) depends only on κ(ω) and s. The set T \ T̃ ∗(ω) also satisfies the Dörfler
marking (4.21) for all 0 < θ ≤ θ0(ω).

The following proposition follows from [25, Lemma 4.7] and the stability (4.33) and
the reduction (4.34) properties of the residual error estimator.
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Proposition B.0.3. Let u(k)(·, ω), k ∈ N ∪ {0}, ω ∈ Ω be the solutions obtained by
Algorithm 1 with the residual error estimator defined in (4.26)-(4.28), then there holds

η2
T(k+1)(ω)(ω; u(k+1)(·, ω)) ≤ ρ1η2

T(k)(ω)(ω; u(k)(·, ω))

+ c1(ω)‖u(k+1)(·, ω)− u(k)(·, ω)‖2
H1(D), (B.5)

where

ρ1 := (1 + δ)(1− (1− ρred)θ) > 0, c1(ω) := 2(1 + δ−1)C2
stab‖α‖2

W1,∞(D) > 0,

with sufficiently small δ > 0 such that ρ1 < 1.

The following proposition follows from [25, Proposition 4.10], Proposition B.0.3,
(4.43) and the reliability property (4.32) of the residual error estimator.

Proposition B.0.4. Let u(k)(·, ω), k ∈ N ∪ {0}, ω ∈ Ω be the solutions obtained by
Algorithm 1 with the residual error estimator defined in (4.26)-(4.28), then there holds

∞

∑
i=k+1

η2
T(i)(ω)(ω; u(i)(·, ω)) ≤ c2(ω)η2

T(k)(ω)(ω; u(k)(·, ω)), (B.6)

for all k ∈N, where c2(ω) :=
(

ρ1 + c1(ω)
Cqo

α2
min(ω)

)
(1− ρ1)

−1.

Proof. The estimator reduction (B.5) together with the property (4.43) implies

N

∑
i=k+1

η2
T(i)(ω)(ω; u(i)(·, ω)) ≤

N

∑
i=k+1

(
ρ1η2
T(i−1)(ω)(ω; u(i−1)(·, ω)) + c1(ω)‖u(i)(·, ω)− u(i−1)(·, ω)‖2

H1(D)

)
≤

N

∑
i=k+1

ρ1η2
T(i−1)(ω)(ω; u(i−1)(·, ω)) + c1(ω)

Cqo

α2
min(ω)

η2
T(k)(ω)(ω; u(k)(·, ω)).

Taking the limit N → ∞ and rearranging some terms lead to

(1− ρ1)
∞

∑
i=k+1

η2
T(i)(ω)(ω; u(i)(·, ω)) ≤

(
ρ1 + c1(ω)

Cqo

α2
min(ω)

)
η2
T(k)(ω)(ω; u(k)(·, ω)),

which concludes the proof.

Finally, the last proposition follows from [25, Lemma 4.9] and Proposition B.0.4.

Proposition B.0.5. Let u(k)(·, ω), k ∈ N ∪ {0}, ω ∈ Ω be the solutions obtained by
Algorithm 1 with the residual error estimator defined in (4.26)-(4.28), then for all s > 0
there holds

k−1

∑
i=0

η−1/s
T(i)(ω)

(ω; u(i)(·, ω)) ≤ c3(ω)η−1/s
T(k)(ω)

(ω; u(k)(·, ω)), (B.7)
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for all k ∈N, where c3(ω) := (1 + c2(ω))1/2s(1− (1 + c−1
2 (ω))−1/2s)−1.

Proof. According to the proof of [25, Lemma 4.9], the result of Proposition B.0.4 im-
plies that

η2
T(k+i)

(ω; u(k+i)(·, ω)) ≤ c4(ω)ρi
4(ω)η2

T(k)(ω; u(k)(·, ω)) (B.8)

holds for all i, k ∈ N ∪ {0}, where 0 < ρ4(ω) := (1 + c−1
2 (ω))−1 < 1 and c4(ω) :=

1 + c2(ω) > 0. In turn, (B.8) implies (B.7) with c3(ω) = c4(ω)1/2s(1− ρ1/2s
4 (ω))−1,

which concludes the proof.
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Appendix

In this appendix we show that some constants obtained in Chapter 4 are finite and
are, therefore, well defined.

Proposition C.0.6. Let Assumption 2.2.1 hold, then the Cun defined in Lemma 4.2.1 fulfills
‖Cun‖Lp(Ω) < ∞ for all p ∈ [1, p f ), where p f is as in Assumption 2.2.1 (iii).

Proof. By the definition of Cun, it can be represented as

Cun(ω) = Cα,1(ω)‖ f (·, ω)‖L2(D), (C.1)

where

Cα,1(ω) .
(

αmax(ω)

αmin(ω)

) 1
2
(

1
αmin(ω)

+
‖α‖W1,∞(D)

α2
min(ω)

)
.

Assumptions 2.2.1 (i-ii), Hölder’s and the triangle inequalities imply that Cα,1 ∈
Lq(Ω) for all q ∈ [1, ∞). Indeed, we have∥∥∥∥∥
(

αmax

αmin

) 1
2
(

1
αmin

+
‖α‖W1,∞(D)

α2
min

)∥∥∥∥∥
Lq(Ω)

≤
∥∥∥∥αmax

αmin

∥∥∥∥ 1
2

Lq(Ω)

∥∥∥∥∥ 1
αmin

+
‖α‖W1,∞(D)

α2
min

∥∥∥∥∥
L2q(Ω)

≤

‖αmax‖
1
2
L2q(Ω)

∥∥∥∥ 1
αmin

∥∥∥∥ 1
2

L2q(Ω)

(∥∥∥∥ 1
αmin

∥∥∥∥
L2q(Ω)

+ ‖α‖L4q(Ω;W1,∞(D))

∥∥∥∥ 1
αmin

∥∥∥∥2

L8q(Ω)

)
< ∞

for all finite q ≥ 1. Then (C.1) and Hölder’s inequality lead to

‖Cun‖Lp(Ω) ≤ ‖Cα,1‖Lq(Ω) ‖ f ‖Lp f (Ω;L2(D)),

where 1
p = 1

q +
1
p f

, which provides the claim of the proof.

Proposition C.0.7. Let Assumption 2.2.1 hold and let p f > d, then the CH2 from Theorem
4.3.7 fulfills ‖Cd

H2‖Lp(Ω) < ∞ for all p ∈ [1, p f
d ).

Proof. By the definition of CH2 , it can be represented as

CH2(ω) = Cα,2(ω)‖ f (·, ω)‖L2(D), (C.2)
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where, using the formula for θ(ω), (4.74) and the relation s = 1
d , we have

Cα,2(ω) .
(

1 +
(

1 +
‖α‖2

W1,∞(D)

α2
min(ω)

+
‖α‖4

W1,∞(D)

α4
min(ω)

+
‖α‖6

W1,∞(D)

α6
min(ω)

) 1
d+

1
2
))
·

(
1 +
‖α‖W1,∞(D)

αmin(ω)
+
‖α‖3/2

W1,∞(D)

α3/2
min(ω)

+
‖α‖5/2

W1,∞(D)

α5/2
min(ω)

)
.

Assumptions 2.2.1 (i-ii), Hölder’s and the triangle inequalities imply that Cd
α,2 ∈

Lq(Ω) for all q ∈ [1, ∞) and d = 1, 2, 3 (see the proof of Proposition C.0.6 for a
similar implication). Then (C.2) and Hölder’s inequality lead to

‖Cd
H2‖Lp(Ω) ≤

∥∥∥Cd
α,2

∥∥∥
Lq(Ω)

‖ f ‖d
Lsd(Ω;L2(D)),

where 1
p = 1

q +
1
s and p < s, since q can take any finite values larger than 1. Since

f ∈ Lp(Ω) for p ≤ p f , we require sd ≤ p f , which implies p < s ≤ p f
d .
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Zusammenfassung
Die Quantifizierung von Unsicherheiten ist heutzutage ein wichtiger Teil in vie-
len Anwendungen aus der Mathematik, da mathematische Modelle oft unbekannte
Parameter erhalten, die im Allgemeinen nicht genau durch Experimente bestimmt
werden können. In dieser Arbeit beschäftigen wir uns mit Problemen, denen el-
liptische partielle Differentialgleichungen mit zufälligen hoch-dimensionalen Koef-
fizienten zu Grunde liegen. Wir interessieren uns für Annäherungen von dem Er-
wartungswert von der Problemslösung oder einem Output des Interesses, welcher
durch ein Lipschitz-kontinuierliches Funktional von der Lösung gegeben ist.

Monte Carlo Methoden sind Sampling Verfahren, deren Rechenkosten dimensions-
unabhängig sind. Deswegen sind diese in Kombination mit den Methoden der
Finiten Elemente für die in dieser Arbeit betrachteten Probleme gut geeignet. Allerd-
ings, ist die Konvergenz von den Monte Carlo Methoden langsam und deswegen
werden für eine hohe Genauigkeit viele Stichproben benötigt. Da jede Stichprobe
einer partiellen Differentialgleichungen entspricht, deren Lösung oft kostspielig ist,
sind die Rechenkosten von den Monte Carlo Finite Elemente Methoden die Haupt-
schwäche von diesen Verfahren. Multilevel Monte Carlo Finite Elemente Methoden,
in denen die Stichproben auf Ebenen einer Gitterhierarchie verteilt werden, erben
die Vorteile von den Monte Carlo Methoden, sind jedoch viel effizienter, da ihre
theoretischen Rechenkosten assymptotisch mit den Rechenkosten für ein determin-
istisches Problem, das einer Stichprobe entspricht, vergleichbar sind.

In dieser Arbeit stellen wir eine Verallgemeinerung von den multilevel Monte Carlo
Verfahren vor, in welcher die Ebenen durch eine Abfolge von Toleranzen charak-
terisiert sind. Wir präsentieren ein abstraktes Framework für das neue so-genannte
adaptive multilevel Monte Carlo Verfahren, zusammen mit einer Reihe von Annah-
men, die zur Konvergenz und zu optimalen Rechenkosten des Verfahrens führt. Wir
zeigen weiter, dass das klassische multilevel Monte Carlo Finite Elemente Verfahren
als Sonderfall von dem neuen adaptiven Verfahren betrachtet werden kann. Der
Ansatz des neuen Verfahrens ermöglicht außerdem die Anwendung von a poste-
riori Fehlerschätztechniken, welche die Lösung von den deterministischen Proble-
men der Stichproben beschleunigen können. Wir präsentieren eine adaptive mul-
tilevel Monte Carlo Finite Elemente Methode für lineare elliptische Probleme, die
auf a posteriori Residuum-Fehlerschätzung basiert. In einer theoretischen Analyse
zeigen wir dann, dass dieses Verfahren alle Annahmen des abstrakten Frameworks
erfüllt. Vorgeführte numerische Beispiele demonstrieren die Vorteile von der neuen
adaptiven multilevel Monte Carlo Finite Elemente Methode im Vergleich mit dem
klassischen Verfahren.

Schließlich, präsentieren wir die Ergebnisse einer Anwendung des neuartigen adap-
tiven Verfahrens für die Quantifizierung von Unsicherheiten in Abriebtests von Knie-
implantaten und demonstrieren damit dessen breitere Anwendbarkeit.
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List of Abbreviations

a.e. almost everywhere
a.s. almost surely
i.i.d. independent identically distributed
FE Finite Element
KL Karhunen-Loève
MC Monte Carlo
MLMC Multilevel Monte Carlo
MLMC-FE Multilevel Monte Carlo – Finite Element
MSE Mean Square Error
PDE Partial Differential Equation
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List of Symbols

‖ · ‖a energy norm 36

As approximation class 53
A σ-algebra on Ω 6
a(ω; ·, ·) bilinear form 8

Bs approximation class 49
b number of bisections 27

Cad ω-dependent constant in (4.14) 31
Cconv ω-dependent constant in Theorem 4.3.3 43
Ccost constant in Assumptions 3.1.2 17
Cdis ω-dependent constant in Assumptions 3.1.1 and 3.2.1 17
Ceq ω-dependent constant in (4.75) 53
CH2 ω-dependent constant in Theorem 4.3.7 54
Ck(D) space of k times continuously differentiable functions 6
Ck,r(D) Hölder space 6
Cmesh constant in (4.22) 35
CMG ω-dependent multigrid constant 29
Cmin constant in Remark 4.3.1 34
Copt ω-dependent constant in (4.63) 50
Cqo constant in (4.43) 42
Crel constant in (4.32) 40
Cstab constant in (4.33) and (4.34) 40
CT shape-regularity parameter of T 26
CQ ω-dependent Lipschitz constant in Assumption 2.4.1 11
Cun ω-dependent constant in (4.6) 27
Cη constant in (4.86) 56
Cost(·) computational cost 17
ca ω-dependent coercivity constant 8

D spatial open, bounded, convex, polyhedral domain 5
d space dimension 5

E[·] expected value 6
E set of interior faces of T 25

This is an incomplete list of symbols that appear in Chapters 2-4.
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E face in E 25
EL[·] MLMC estimator 17
EM[·] MC estimator 15

f random source function 7

Hk(D) Sobolev space 5
H1

0(D) Sobolev space with zero trace on ∂D 5
hE size of E ∈ E 25
hk maximum element size of T(k) 27
hT size of T ∈ T 26

kl refinement level corresponding to uniform MLMC level l 28
kl(ω) refinement level corresponding to adaptive MLMC level l 32

Lp(D) Lebesgue space 5
Lp(Ω; B) Bochner space of B-valued random variables 7
Lp(Ω) Bochner space of R-valued random variables 7
`(ω; ·) linear form 8

M(k)(ω) set of marked elements defined in Algorithm 1 34

nE arbitrary unit normal to E 37
nT outer unit normal to ∂T 37

oscT (ω; ·) oscillations associated with mesh T 44
oscT(ω; ·) oscillations associated with element T 44

P probability measure 6
pad Lebesgue space order for Cad 31
pdis Lebesgue space order for Cdis 21
p f Lebesgue space order for f 8
pQ Lebesgue space order for CQ 11

Q(ω; ·) functional that defines an output of interest 10
q MLMC tolerance reduction factor 16

RT(ω; ·) element residual 38
RE(ω; ·) jump residual 38

S(k) first order finite element space defined on T(k) 27
S(k)(ω) first order finite element space defined on T(k)(ω) 31
Sl finite element space corresponding to uniform MLMC level l 28
Sl(ω) finite element space corresponding to adaptive MLMC level l 32
ST first order finite element space defined on T 36



101

T set of admissible refinements of T(0) 35
T partition of D 25
|T | number of elements in T 26
T(k) k times uniformly refined partition of T(0) 26
T(k)(ω) k times adaptively refined partition of T(0) 31
Topt optimal partition 49
T element of T 25
Toll MLMC tolerance 16

u(ω; ·) ∈ H1
0(D), solution to a random PDE 8, 10

u(k)(ω; ·) ∈ S(k) or ∈ S(k)(ω), finite element solution 27, 31
ul(ω; ·) ∈ Sl or ∈ Sl(ω), finite element solution 28, 32
ũl(ω; ·) approximation to u(ω; ·) in abstract MLMC 16
ũl(ω; ·) algebraic approximation to ul(ω; ·) 28
uT (ω; ·) ∈ ST , finite element solution 36

V[·] variance 6
V[·] variance-like operator 16

Wk,∞(D) Sobolev space 6

α random coefficient 7
αmax ω-dependent upper bound of α 7
αmin ω-dependent lower bound of α 7

Γ shape-regularity parameter for sequence T0 ⊂ T1 ⊂ . . . 26
γ order in Assumption 3.1.2 17

ηT (·) error estimator corresponding to partition T 31
ηT (ω; ·) residual-based error estimator corresponding to partition T 38
ηT(·) error indicator corresponding to element T 34
ηT(ω; ·) residual-based error indicator corresponding to element T 38

θ Dörfler marking parameter 34

ξ real-valued random variable 6

φE union of elements sharing face E ∈ E 26
φT union of elements sharing at least one vertex with T ∈ T 26

ρconv ω-dependent constant in Theorem 4.3.3 43
ρred ω-dependent constant in (4.34) 40

Ω set of events 6
ω event from Ω 6
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