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Abbreviations

CCSVT Chemical Closed- Space Vapor Transport
CBM Conduction Band Minimum
CVT Chemical Vapor Transport
CSVT Close- space Vapor Transport
DAP Donor- Acceptor Pair recombination
EDX Energy Dispersive X-ray analysis
ERDA Elastic Recoil Detection Analysis
ESR Electron Spin Resonance
FB Free-to-Bound transitions
FE Free Exciton
FFT Fast Fourier Transformation
FWHM Full Width at one Half of the Maximum
GI- XRD Grazing incidence X ray Di¤raction
JCPDS Joint Comittee on the Powder Di¤raction

Spectra
LO Longitudinal Optical photon
PL Photoluminescence
PVD Physical Vapor Deposition
TEM Transmission Electron Microscopy
SNMS Secondary Neutral Mass Spectroscopy
SLG Soda Lime Glass
SRIM Stopping and Range of Ions in Matter
RTP Rapid Thermal Process
UV- PL Ultra- Violet Photoluminescence
VBM Valence Band Maximum
XRD X ray Di¤raction
XRF X- ray Fluorenscence Analysis
ZSW Zentrum für Solarenergie und Wassersto¤

Forschung Stuttgart Germany.
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energies, at 10 K and 20mW using two di¤erent excitation line of the Ar+ laser at

351.1 nm and 514 nm. The UV spectrum is normalized by a 9.83 factor.
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38. Figure 6.2: ESR signal at g =2.003 measured at T = 5K. The solid line is the result
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