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ABBREVIATIONS AND ACRONYMS 
 

ALDH Aldehyde dehydrogenase  

BCSCs Breast cancer stem cells 

bFGF Basic fibroblast growth factor 

CSCs Cancer stem cells 

DEAB Diethylaminobenzaldehyde 

DMEM Dulbecco's Modified Eagle's medium 

DMSO Dimethylsulfoxide 

DRI Dose-reduction index 

DSF Disulfiram 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 

ER Endoplasmic reticulum 

ERs Estrogen receptors 

FBS Fetal bovine serum 

GSH Glutathione 

H2O2 Hydrogen peroxide 

HER2 Human epidermal growth factor 2 
receptor 

HO• Hydroxyl free radicals 

HR+ Hormone-receptor positive 

MDC Monolayer-derived cells 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide 

NADPH Nicotinamide Adenine Dinucleotide 
Phosphate Hydrogen 
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O2•− Superoxide free radicals 

PBS Phosphate-buffered saline 

PRs Progesterone receptor 

ROS Reactive oxygen species 

SDC Spheroid-derived cells 

SDS Sodiumdodecylsulfate 

TNBCs Triple-negative breast cancers 
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Summary 
Background: Accumulating evidence has implicated ALDH+ cancer cells that exhibit many 

features of cancer stem cells as a cause of metastasis and recurrence in breast cancer because of 

their unique characteristics, including quiescent proliferation status, self-renewal capacity and 

pluripotency. Disulfiram (DSF), which is an inhibitor of ALDH, is inexpensive, accessible 

worldwide, and an approved drug. Investigation of the inhibitory effect of DSF and combination 

effect of DSF/cisplatin will potentially improve the therapeutic outcomes of patients. 

Methods: The cytotoxic effect of DSF on breast cancer cells was demonstrated by MTT assay. 

Spheroid formation, ALDH activity assay by FACS, and stemness-related transcription factor 

expression (Sox2, Oct3/4 and Nanog) by RT-PCT were performed to investigate the inhibitory 

effect on breast cancer stem cells. Cell sorting was used to further assess the effect of DSF on 

ALDH+/- cells. Cellular apoptosis, cell cycle, and intracellular reactive oxygen species (ROS) 

were detected by flow cytometry to further explore the mechanisms of DSF/cisplatin 

combination.  

Results: Disulfiram exhibited dose-dependent cytotoxicity on breast cancer cell lines in vitro. 1 

µM DSF was found to be adequate to inhibit spheroid formation. The average spheroid number 

decreased from 5 to 1 in MCF7, from 5 to 0 in MDA-MB-435S, and from 3 to 1 in SKB-R3 

compared with untreated control cells, respectively (P<0.05). The mRNA levels of Sox2, Oct3/4, 

and Nanog of SDCs after DSF treatment were all significantly decreased, and even lower than 

those observed in MDCs (P<0.05). DSF sensitized breast cancer cells for cisplatin treatment, and 

induced more cellular apoptosis when combined with cisplatin. DSF overcame cisplatin 

resistance in ALDH+ cells and yielded a synergistic effect in combination with cisplatin (CI<1). 

DSF/cisplatin enhanced the accumulation of more ROS than by single drug treatment. DSF 

showed a concentration-dependent and time-dependent effect on ROS accumulation. ROS 

production in ALDH+/- cells reached the same level after DSF treatment. 

Conclusion: Our findings provided strong evidence that DSF modulates ALDH activity and 

increases sensitivity to cisplatin treatment in breast cancer cells. Our results indicated that CSC-

mediated cisplatin-resistance in breast cancer could be abrogated by DSF. Thus, DSF, as a 

synergistic agent, could be considered to be investigated as a novel candidate adjuvant 

chemotherapeutic agent combined with cisplatin in breast cancer treatment. 
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Zusammenfassung 
Hintergrund: Mit zunehmender Evidenz werden ALDH+ Tumorzellen, die viele Eigenschaften 

mit Tumorstammzellen (CSC) teilen, als Ursache für Metastasierung und Rezidivierung bei 

Brustkrebspatientinnen identifiziert; wegen ihrer einzigartigen Eigenschaften, die proliferative 

Quieszenz, Fähigkeit zur Selbsterneuerung und Pluripotenz einschließen. Disulfiram (DSF), ein 

Inhibitor der ALDH, ist preiswert, weltweit verfügbar und ein zugelassenes Medikament. 

Untersuchungen zu den inhibitorischen Effekten von DSF und Kombinationen von 

DSF/Cisplatin könnten potentiell die therapeutischen Ergebnisse für Patienten verbessern.  

Methoden: Der zytotoxische Effekt von DSF auf Brustkrebszellen wurde mittels MTT Test 

gezeigt. Spheroidbildung, ALDH Aktivitätstest durch FACS Analyse und stemness-bezogene 

Transkriptionsfaktorexpression (Sox2, Oct3/4 und Nanog), gemessen durch RT-PCR, wurden 

zur Untersuchung des inhibitorischen Effekts auf Brustkrebsstammzellen durchgeführt. 

Zellsortierung wurde zur weiteren Bestimmung des Effekts von DSF auf ALDH+/- Zellen 

benutzt. Zelluläre Apoptose, Zellzyklus und intrazelluläre reaktive Sauerstoffspezies (ROS) 

wurden durchflusszytometrisch detektiert, um die Mechanismen von DSF/Cisplatin in 

Kombination zu untersuchen.   

Ergebnisse: DSF zeigte eine dosisabhängige Zytotoxizität auf Brustkrebszellen in vitro. 1 µM 

DSF war ausreichend, um Spheroidbildung zu inhibieren. Die durchschnittliche Spheroidanzahl 

sank von 5 auf 1 in MCF7, von 5 auf 0 in MDA-MB-435S und von 3 auf 1 in SKB-R3 Zellen im 

Vergleich zu unbehandelten Kontrollzellen. Die mRNA Menge von Sox2, Oct3/4 und Nanog der 

SDCs nach DSF Behandlung waren alle signifikant reduziert und sogar niedriger als die in 

MDCs beobachteten (P<0.05). DSF sensitivierte Brustkrebszellen für Cisplatinbehandlung und 

induzierte mehr zelluläre Apoptose in Kombination mit Cisplatin. DSF überwand 

Cysplatinresistenz in ALDH+ Zellen und erreichte einen synergistischen Effekt in Kombination 

mit Cisplatin (CI<1). DSF/Cisplatin verstärkte die Ansammlung von mehr ROS als jede der 

Substanzbehandlungen alleine. DSF zeigte einen konzentrations- und zeitabhängigen Effekt auf 

ROS Akkumulation. ROS Produktion in ALDH+/- Zellen erreichte die gleiche Höhe nach DSF 

Behandlung.  

Schlussfolgerung: Unsere Resultate liefern einen Beweis dafür, dass DSF die ALDH Aktivität 

moduliert und die Sensitivität für Cisplatin Behandlung bei Brustkrebszellen erhöht. Sie zeigen 

an, dass CSC-vermittelte Cisplatinresistenz in Brustkrebs durch DSF aufgehoben werden könnte. 

Demnach könnte DSF, als synergistisch wirkendes Medikament, für die Untersuchung als neuer 

Kandidat für eine adjuvante Chemotherapie in Kombination mit Cisplatin für Brustkrebstherapie 

in Betracht gezogen werden. 
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1. Introduction 
 
1.1 breast cancer treatment 
Breast cancer is reported to account for 29% of all new cancer cases and 14% of all cancer-

related deaths among women worldwide [1]. It is rare among men, comprising 1% of all breast 

cancer diagnoses in USA and less than 0.1% of cancer-related deaths in males [2].  

Although better therapeutic options and major improvements in public health and care have 

resulted in a dramatic reduction in mortality and a major increase in longevity, breast cancer 

mortality to incidence ratio is still around 0.31 [3]. The peak age of onset is around 40 to 50 

years in Asian and 60-70 years in the western countries [4]. Female sex, family history, early age 

at menarche, later menopause, first childbirth after age of 30 years, and multiparity are all major 

independent risk factors [5]. 

 

Treatment for early breast cancer usually includes surgery and adjuvant treatment, involving 

endocrine therapy, chemotherapy, radiotherapy, and targeted therapies in appropriate patients. 

Surgical resection is the most effective method to remove primary tumors and metastatic lymph 

nodes, so surgery is the major component of breast cancer treatment. Endocrine therapy has been 

used in patients with hormone-receptor positive (HR+) breast cancer since 1977 [6]. Estrogen 

and progesterone are the primary regulators for the growth and differentiation of breast tissue. 

They exert their cellular effects by binding to the estrogen receptors (ERs) and progesterone 

receptors (PRs) and activating these receptors [7]. Breast cancer could be classified based on the 

presence of ER, PR, and human epidermal growth factor 2 receptor (HER2). Approximately 

60% of all breast cancers express hormone receptor (HR+) [8]. The oncogene HER2 is 

overexpressed in around 20% of all cases and the remaining 20% are negative for the expression 

of ER, PR, and HER2, which are known as triple-negative breast cancers (TNBCs) [9, 10]. 

Endocrine therapy, such as tamoxifen, which is an antiestrogen drug, remains the first effective 

systemic treatment for female patients with hormone receptor-positive breast cancer [11]. 

However, when the disease becomes metastatic, all patients eventually develop endocrine 

resistance and require chemotherapy [12], which mainly includes cytotoxic agents, such as 

taxanes and cisplatin. In addition, according to the International Expert Consensus on the 

primary breast cancer treatment, radiation therapy is indicated in patients with four or more 

positive nodes to reduce the risk of local breast recurrence. However, in older patients and 

patients with substantial comorbidity following breast conserving surgery, radiation therapy 

should be avoided [13]. Patients with TNBCs tend to display an aggressive phenotype. There are 
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no standard targeted therapies to treat their disease, and only a limited amount of cytotoxic 

agents is available [14]. 

 

1.2 Chemotherapy resistance in breast cancer 
Numerous chemotherapeutic drugs have been approved as adjuvant treatment of all breast cancer 

subtypes including TNBCs. Unfortunately, response rates for first-line chemotherapies are 

approximately 30%-70% [15], and most patients treated with these drugs eventually develop 

resistance, often leading to enhanced disease progression and poor prognosis. 

 

Drug resistance is a major factor for the failure of chemotherapy treatment. Resistance can be 

manifested as a result of decreased drug activity. Resistance to chemotherapy can be primary or 

acquired. Primary drug resistance occurs prior to drug exposure, with tumor insensitivity to 

initial treatment. Acquired drug resistance occurs during or after the course of therapy. 

Empirically, the time to relapse after initial chemotherapy is counted in 6-month blocks. When 

the disease-free interval time is less than 6 months or even between 6-12 months, intrinsic or 

acquired drug resistance appears to be the culprit behind tumor progression [16]. 

 

A number of mechanisms are thought to be involved in the development of tumor chemotherapy 

resistance, including increased activity of drug efflux pumps or reduced drug influx pumps; 

activation of mechanisms that repair drug-induced DNA damage; activation of detoxifying 

proteins; and disruptions in apoptotic signaling pathways [17]. Thus, there is a significant need 

for new agents that are not susceptible to common tumor-resistance mechanisms, to overcome 

chemotherapy resistance in breast cancer. 

 

1.3 Breast CSCs 
The cancer stem cells (CSCs) hypothesis was first proposed for human leukemia based on the 

observation that a small fraction of cells could generate leukemia in severe combined immune-

deficient mice, while the majority of tumor cells failed to engraft [18]. This small population of 

cells, termed cancer stem cells (CSCs), retain the ability to self-renew and differentiate to 

repopulate the entire tumor. Studies have suggested that they are responsible for tumor initiation, 

growth, recurrence, and for resistance to chemotherapy and radiation therapy [19,20].  
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The concept of breast cancer stem cells (BCSCs) proposes they arise from either mammary stem 

cells or progenitor cells [21,22]. Much supporting evidence shows similar phenotypic features 

and cell surface markers which are related to those specific cells originating from the same 

lineage in the differentiation hierarchy [23]. The population of BCSCs shares specific properties 

highly similar to normal mammary stem cells or partially differentiated mammary progenitor 

cells [24]. They have the ability to undergo self-renewal and differentiation, giving rise to non-

tumorigenic progeny that makes up the bulk of the tumor, resistance to conventional therapy 

which leads to generation of more CSCs and tumor relapse. Muhammad Al-Hajj et al. 

prospectively identified and isolated the tumorigenic cells from the non-tumorigenic cancer cells 

from eight of nine patients based on cell surface marker expression. As few as 100 cells with 

CD44+CD24−/lowLineage− were able to form tumors in mice, whereas tens of thousands of 

cells with alternate phenotypes failed to form tumors. Furthermore, the tumorigenic 

subpopulation could be serially passaged: each time cells within this phenotype generated 

additional CD44+CD24−/lowLineage− tumorigenic cells, as well as the mixed populations of 

non-tumorigenic cells present in the initial tumor with diverse phenotypic features [25]. 

The discovery of stem cells in breast cancer has a great impact on cancer biology research and 

cancer drug discovery. As current chemotherapeutic agents may not completely eliminate CSCs, 

there is a need for novel compounds targeting breast CSCs to treat breast cancer and control 

recurrence and metastasis. 

 
1.4 BCSC markers and ALDH1 
 
A series of BCSC markers were identified to define the BCSC subpopulation, including CD44, 

CD24, CD166, CD47, CD133, EpCAM, and ALDH1 [26]. It was validated that the BCSCs 

isolated from cell lines and primary tumors by these specific markers were able to reconstitute 

the parent tumors in xenografts [27]. These markers are helpful in identifying characteristics of 

cells. Among these markers, the CD44+/CD24−/low phenotype, which was first documented in 

2003, is a commonly used marker to characterize BCSCs [25]. CD44 is a cell surface adhesion 

molecule that mediates cell-cell and cell-extracellular matrix (ECM) interactions, whereas CD24 

is a small glycoprotein involved in negatively regulating the activity of chemokine receptor 

CXCR4, which can mediate breast cancer metastasis [27]. Therefore, breast cancer cells with 

increased CD44 expression and decreased CD24 expression should possess an effective ability to 

induce malignant progression. However, there is a debate over the relationship between 

CD44+/CD24−/low phenotype and tumorigenicity. Experiments showed that 
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CD44+/CD24− cells could not always form tumor cells [28]. In another study, patients with 

CD44−/CD24+ status, rather than CD44+/CD24−, were identified with worse prognosis in breast 

cancer [29]. 

 

The controversy of CD44+/CD24− cells calls for better BCSC markers. ALDH1 has come to the 

forefront as a BCSC marker. ALDH1 play important roles in retinoid signaling, acetaldehyde 

metabolism, and reactive oxygen species (ROS). ALDH1 activity can be assessed by the 

ADELFLUOR assay. An ALDEFLUOR-positive subpopulation isolated from human breast 

tumors was highly enriched in tumorigenic capacity [30]. Tumor cells with higher ALDH1 

activity have also been reported with increased capacity to form spheroids in breast cancer [31]. 

In addition, ALDH1 positive cells display stem-like behavior such as differentiation, tumor cell 

self-protection, expansion, and chemotherapy resistance [32]. Given the capacity of BCSCs to 

generate bulk primary tumor, it is expected that novel, potent and ALDH1-specific inhibitors 

could enter experimental and clinical assessment in breast cancer therapy in coming years. This 

suggests that the combination of ALDH1-specific targeted agents and individualized therapies of 

breast cancer may be more effective therapeutic strategies in breast cancer and improve the 

clinical outcome. 

 
1.5 Anti-cancer activity of Disulfiram  
 
Disulfiram (DSF), a member of the dithiocarbamate family, has been a FDA-approved drug in 

clinical treatment of alcohol dependence for over 60 years. Initially, the compound had been 

used in the process of rubber manufacturing.  In 1937, workers who were regularly exposed to 

DSF exhibited flu-like symptoms when they ingested alcohol [33]. DSF was approved for short-

term and long-term treatment of alcoholism under physician supervision since 1948 [34]. 

 
Over the past years, however, increasing evidence indicates that DSF possesses a great potential 

for the treatment of human cancers. DSF’s anticancer activity has been demonstrated in various 

cancer types [35-38]. It has been proven that DSF reacts with redox-sensitive sulfhydryl groups 

(thiols) which are characterized by the presence of sulfhydryl groups (-SH) at their active center, 

to further contribute to antioxidant defense mechanisms [39, 40]. ALDH enzymes contain 

sulfhydryl groups. Thus, the key of DSF’s anticancer action relates to its ability to target 

aldehyde dehydrogenase (ALDH), and inhibit proteasome activity in cancer cells by forming 

complexes with metal ions. Considering that the pharmacokinetics of DSF is well-established 
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and a safety profile has been verified for decades, this agent is an attractive “old” drug that has 

great potential for novel developments in breast cancer treatment [41]. However, the 

mechanisms of DSF action on cancer stem cells have not been fully explained. In addition, DSF 

may also support current chemotherapy that is in dire need of novel treatments that could reduce 

adverse side effects due to high drug doses. Therefore, further investigations are needed to 

establish dosing schedules and chemotherapeutic combinations which will generate the greatest 

response in breast tumor cells. 

 

1.6 Drug combination 
 
Ever since the earliest days of recorded medical history, drug combinations have been used for 

treating diseases and reducing suffering. During the past century, attempts have been made to 

quantitatively measure the dose-effect relationships of each drug alone and its combinations and 

to determine whether or not a given drug combination would gain a synergistic effect [42]. These 

applications are most noticeable in the areas of anti-cancer drug research. In drug combinations, 

different drugs may target on different targets, or different cell subpopulations simultaneously. 

Drugs with different mechanisms could also be combined to enhance the effect of single drugs 

and to treat cancer cells more effectively [43, 44]. 

 

There are several possible favorable outcomes for drug combinations. Firstly, the efficacy of the 

therapeutic effect could be increased in combinations. Secondly, the dosage of each drug in 

combinations could be decreased to reduce toxicity, while increasing or at least maintaining the 

same efficacy. Thirdly, selective synergism or efficacy synergism could be provided against 

target during drug combination. Fourthly, the development of drug resistance  

in patients could be minimized or slowed down [43, 44]. For these therapeutic benefits, drug 

combinations have been widely used and became the leading choice for treating cancers. 

 

1.7 ROS in cancer cells and in CSCs 
 
Reactive oxygen species (ROS) are broadly defined as oxygen-containing chemical species with 

reactive properties, including the superoxide (O2•−) and hydroxyl (HO•) free radicals as well as 

non-radical molecules such as hydrogen peroxide (H2O2) [45]. In biological systems, cellular 

metabolism is balanced by ROS generation systems and ROS elimination systems to maintain a 

stable redox state for ensuring cell survival and functions. ROS generation systems include the 
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mitochondrial respiratory chain, the endoplasmic reticulum (ER), and hypoxia and so on [45-47]. 

ROS scavenging systems are mainly glutathione (GSH) and Nicotinamide Adenine Dinucleotide 

Phosphate Hydrogen (NADPH), and tumor suppressor genes and ALDH [48-50]. Once this 

balance is destroyed, excess amount of ROS causes oxidative damage of lipids, nucleic acids, 

and amino acids which will lead to cellular dysfunction and death [51]. 

 

Cancer cells have a high demand for ATP due to rapid growth and limited availability of 

nutrients, and thus have large consumption of oxygen, and high levels of oxidative stress, 

resulting in the accumulation of ROS. Many types of cancer cells have been proven with 

increased levels of ROS compared with their normal counterparts [52,53]. A diversity of 

mechanisms is involved in this ROS increase in cancer cells, including mitochondrial 

dysfunction, aberrant metabolism, the activation of oncogenes, and inflammatory cytokines and 

others [54-57]. 

 

CSCs are hypothesized to have low levels of intracellular ROS compared with cancer cells. 

Experiments have shown that CD44+CD24-/lowLin- BCSC-enriched populations contain 

significantly lower levels of ROS than their non-tumorigenic progeny [58]. Since cancer cells 

with increased levels of ROS are likely to be more vulnerable to further ROS increase, lower 

levels of ROS in CSCs would protect them from endogenous and exogenous ROS-mediated 

damage, and maintain their functions such as radiotherapy and chemotherapy resistance. Lower 

ROS levels in CSCs are usually associated with increased expression of scavenger, including 

GSH and ALDH which could protect CSCs against oxidative stress induced by alcohol, UV 

radiation, and some chemotherapeutic agents.  
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2 Aim of the study 
The objective of this thesis was to investigate the inhibitory effect of DSF on breast cancer cells, 

the combination effect of DSF/cisplatin, and the possible mechanisms for the enhanced toxicity 

of this combination. Therefore, the following aims were pursued: 

 

1. To investigate the inhibitory effect of DSF on breast cancer stem cells.  

 

2. To assess the potential synergism of DSF in combination with cisplatin in breast cancer cell 

lines. 

 

3. To investigate the effect of DSF on CSC-mediated cisplatin-resistant cells. 

 

4. To explore the potential cytotoxicity mechanisms for DSF/cisplatin combination in vitro by 

cell cycle and ROS analysis. 
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3 Materials  
3.1 Laboratory Equipment and Materials 
 

Axiovert 40 CFL Carl Zeiss, Jena, Germany 

BD FACSCalibur System   BD Bioscience, Heidelberg, Germany 

Freezer, -80°C    Heraeus, Hanau, Germany 

Incubator, HERA cell 150 Heraeus, Hanau, Germany 

Multicentrifuge Heraeus, Hanau, Germany 

Nanodrop Peqlab, Erlangen, Germany 

Pipettes     Eppendorf AG, Hamburg, Germany 

Smart SpecTM Plus Spectrophotometer BioRad, München, Germany 

Thermocycler Eppendorf AG, Hamburg, Germany 

Vortexer Scientific Industries, N.Y., USA 

BD FalconTM Cell Culture Flasks BD Bioscience, Franklin Lakes, USA 

BD FalconTM Propylene Conical Tubes BD Bioscience, Franklin Lakes, USA 

BD FalconTM Tissue Culture Dish 

(100*200mm)  

BD Bioscience, Franklin Lakes, USA 

Cell Culture Plates (6-, 24-, 96-well) BD Bioscience, Franklin Lakes, USA 

Ultra-Low Attachment Cell Culture Plate  Corning, NY, USA 

40 µm Cell strainer Corning, NY, USA 

BD FACSAriaII SORP BD Bioscience, Heidelberg, Germany 

Multiskan FC Microplate Photometer Thermo Scientific, MA, USA 

 

3.2 Chemicals and Reagents 
Agarose Biozym, Oldendorf, Germany 

BD FACSflowTM 

Chloroform                               

BD Sciences, Franklin Lakes, USA 

Biochrom, Berlin, Germany 

Dimethylsulphoxide (DMSO) Sigma-Aldrich, Deisenhofen, Germany 

Ethanol, 70% Biochrom, Berlin, Germany 

Epidermal Growth Factor (EGF) Biochrom, Berlin, Germany 

Fetal bovine serum (FBS) Gibco BRL, Karlsruhe, Germany 

Fibroblast Growth Factor-basic (bFGF) 

Isopropanol 

Biochrom, Berlin, Germany 

Biochrom, Berlin, Germany 
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Penicillin/Streptomycin Biochrom, Berlin, Germany 

Phosphate-buffered saline (PBS) without 

Mg2+/Ca2+ 

Biochrom, Berlin, Germany 

Trypsin/EDTA Solution Biochrom, Berlin, Germany 

TRIzol reagent Sigma-Aldrich, Deisenhofen, Germany 

  

3.3 Cell Culture Media and Kits 
Dulbecco’s modified Eagle’s Medium 

with GlutaMAXTM-I (DMEM) 

Invitrogen, Heidelberg, Germany 

 

Quantum 263 medium   PAA, Cölbe, Germany 

RPMI 1640 Invitrogen, Heidelberg, Germany 

 

ALDEFLUOR assay Kit StemCell Technologies, Köln, Germany 

FLUOS-conjugated annexin-V and  

Propidium iodide Kit 

Roche, Mannheim, Germany 

 

Mitosox Red Kit    Thermo Fisher Scientific, MA, USA 

Power SYBR Green Master Mix  Thermo Fisher Scientific, MA, USA  

High-Capacity cDNA Reverse 
Transcription Kit 

Thermo Fisher Scientific, MA, USA 

Cell Proliferation Kit I (MTT) Roche, Mannheim, Germany 

  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 



	
17	

4 Methods  
 
4.1 Cell lines and drugs 
The breast cancer cell lines MCF-7, SKB-R3 and MDA-MB-435S were cultured in DMEM 

medium with L-glutamine supplemented with 10% fetal bovine serum (heat-inactivated at 56°C 

for 30 min) and 1% penicillin/streptomycin in a humidified incubator at 37°C and 5% CO2. All 

of our experiments were performed on cultures that were 70% confluent. Free DSF was 

dissolved in dimethylsulfoxide (DMSO) at a stock concentration of 10 mM, stored at −20°C. 

Cisplatin was kept at a stock concentration of 3.3 mM at room temperature. All drugs were 

diluted into working concentrations in corresponding cell culture medium before use. 

 

4.2 MTT assay 

Adherent monolayer cells were first expanded in 75 cm2 culture flasks in standard medium until 

70% confluency. Cells were washed twice with PBS without Ca2+/Mg2+ and detached using 3 ml 

Trypsin/EDTA for around 5 minutes until all the cells were detached. The reaction was stopped 

by addition of 2 ml of complete culture medium. The solution was poured into a 15 ml Falcon 

tube and centrifuged at 1500 rpm for 5 min. Cells were washed again twice with PBS without 

Ca2+/Mg2+, followed by resuspension in DMEM medium and diluted at a concentration of 4×104 

cells/ml. Then a single-cell suspension was prepared. 

 

Cells were seeded in 96-well plates at a density of 3000 cells per well in 100 µl drug-free 

medium and incubated overnight. Serial dilutions of DSF or cisplatin working concentrations 

were prepared with cell culture medium. Cell culture medium in 96-well plate was removed 

gently and 100 µl fresh medium with various drug concentrations was added. Each drug 

concentration was in triplicate. Cells without any drug treatment were used as controls. The 96-

well plate was placed in the cell culture incubator for 72 h. After 72 h incubation, 10 µl of MTT 

labeling reagent (Cell Proliferation Kit I (MTT)) was added to each well, including controls, and 

the 96-well plate was then incubated at 37°C for 4 h. When the purple precipitate was clearly 

visible under the microscope after 4 h incubation, 100 µl solubilizition solution (Cell Proliferation 

Kit I (MTT)) was added to all wells, including controls, and mixed gently, incubated at 37°C 

overnight. 

The solution absorbance was measured at a wavelength of 590 nm using a Multiskan FC 

Microplate Photometer (Thermo Scientific). Cellular relative viability was calculated as the 
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percentage of drug-treated cells from drug-free control cells. All experiments were performed in 

triplicate. Dose response curves and IC50 were calculated using GraphPad Prism 5.04. 

 

4.3 Spheroid formation assay 
First, an ultra-low attachment plate had to be prepared. Agarose was dissolved in PBS at a 

concentration of 1.5% (w/v). Then, 8 ml of 1.5% agarose was filled into a 75 cm2 cell culture 

plate. The plate was gently swirled to make sure that all the agarose covered the inner bottom of 

the plate entirely without any bubbles. Agarose was allowed to solidify and cool down to room 

temperature for 20 minutes. An ultra-low attachment plate was prepared. 

 

Then, a single-cell suspension was prepared as described above and diluted at a concentration of 

5×103 cells/ml in serum-free Quantum 263 medium, supplemented with 10ng/ml EGF and 10 

ng/ml b-FGF. 10-12 ml of the cell suspension was transferred into ultra-low attachment cell 

culture plates. The plates were incubated in a cell culture incubator with 5% CO2 at 37°C. Half 

of the medium was replaced every 3 days. Movement of the plates was minimized, particularly 

during spheroid initiation. Cells were allowed to grow for 5-8 days to form spheroids. 

 

4.4 Spheroid formation inhibitory assay 
To get spheroid-derived cells (SDCs), all spheroids were collected into a 40 µm cell strainer 

(Corning). They were then washed into a 50 ml Falcon tube with PBS, and centrifuged at 1500 

rpm for 5 min. Medium was aspirated and spheroids were dissociated into single cells using 500 

µl tryspin/EDTA at 37°C and 5% CO2 for 5 min, followed by washing with PBS twice. Single 

cells were filtered through a 40 µm cell strainer and re-seeded into a 96-well ultra-low 

attachment plate at a density of 100 cells or 200 cells in 100 µl serum-free Quantum 263 medium 

per well (100 cells per well for MCF-7 and SKB-R3 cell lines; 200 cells per well for MDA-MB-

435S cell line). Cells were exposed to DSF (1 µM or 5 µM) and cultured for 10 days. Cells 

without DSF exposure were used as controls. Spheroids with 100 µm or more in diameter were 

counted and photographed at 50-fold* magnification after 10 days in cell culture. 

 

4.5 Flow cytometric analysis of ALDH activity and cell sorting 
ALDH activity was measured by quantifying the ALDH-mediated intracellular retention of 

fluorescent compound BODIPY-aminoacetate (BAA-) using flow cytometry-based methods. 

Briefly, spheroids were collected with a 40 µm cell strainer, disaggregated into single cells by 
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Trypsin/EDTA digestion, and diluted into a single cell suspension (4*104/ml). All the single cells 

were incubated with ALDH substrate BAAA for 30 min at 37°C following the manufacturer’s 

instructions of ALDEFLUOR assay Kit. Tested cells were exposed to DSF (10 µM). Cells 

treated with diethylaminobenzaldehyde (DEAB) which is a specific ALDH inhibitor, were used 

as controls to establish the baseline fluorescence and define the cut-off threshold for 

ALDEFLUOR-positive cells. 

 

For FACS sorting, SDCs were suspended in PBS buffer at a concentration of 1×107 cells/ml and 

sorted on an BD FACSAria II SORP cell sorter (BD Biosciences). The sorted cells were treated 

with DSF or cisplatin, and relative cellular viability was done by MTT. The sorting gates were 

established with negative controls which were treated with DEAB. 

 

4.6 Flow cytometric analysis of the cell cycle  
Cells were seeded in 24-well plates at a density of 3×104 cells in 1 ml medium per well. After 

overnight incubation, cells were treated by indicated concentration of DSF, or cisplatin, or 

DSF/cisplatin combination for 72 h. Each concentration was in triplicate. Cells without treatment 

were used as controls. All the cells were harvested after 72 h treatment and a single cell 

suspension was prepared as described above. 

 

Cells were washed twice with PBS, re-suspended in 100 µl PBS, and fixed by addition of 900 µl 

70% ethanol at 4°C overnight. Cells were washed twice with PBS and centrifuged at 3000 rpm 

for 5 min. The cells were then incubated with RNaseA and propidium iodide for 30 min in the 

dark at room temperature. The final concentration was 100 µg/ml for RNaseA and 50 µg/ml for 

propidium iodide.  

 

Analysis of cell cycle distribution was performed using flow cytometric analysis of DNA 

staining. The data from 10000 cells for each sample were collected by FACS Scan and DNA 

content and cell cycle was analyzed. FlowJo software (Treestar, Ashland, OR, USA) was used to 

quantitate the percentage of cells in each cell cycle phase. 

 

4.7 Flow cytometric analysis of cellular apoptosis 
 

Cells were cultured and treated at the indicated concentration of DSF, or cisplatin, or 

DSF/cisplatin combination as described above. The Annexin-V-FLUOS labelling solution was 
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prepared following the manufacturer’s instructions of the FLUOS-conjugated annexin-V and 

propidium iodide Kit (Roche). Cells were washed with PBS twice and re-suspended in 100 µl of 

Annexin-V-FLUOS labelling solution at a density of 1×106 cells/ml. Cells were incubated in the 

dark at room temperature for 15 min. 

 

Apoptosis and necrosis were evaluated using FL3 (PI) and FL1 (Annexin-V) by FACS analysis. 

The percentage of cells was determined in four quadrants: live cells, (Annexin-V−/PI-, 

lower/lower/left quadrant); early apoptotic cells (Annexin-V+/PI−, lower/right quadrant); late 

apoptotic cells (Annexin-V+/PI+, upper/right quadrant); and necrotic cells (Annexin-V−/PI+, 

upper/left quadrant), respectively. 

 

4.8 RNA extraction 
For monolayer: Medium was removed from culture dish. 1 ml of TRIzol reagent was added 

directly to the cells per 10 cm2 of culture dish surface area. The cells were lysed directly in the 

culture dish by pipetting up and down several times. The lysed cells were transferred into a new 

Eppendorf tube. For spheroids: The cells were harvested by 40 µm cell strainer. Cells were 

centrifuged at 1500 rpm for 5 min after cell counting. The supernatant was removed and 1 ml of 

TRIzol was added per 106 cells. The cells were lysed by pipetting up and down several times 

before being transferred into an Eppendorf tube.  

 

Total RNA was extracted using TRIzol Reagent following the protocol below. Chloroform (0.2 

ml per 1 ml of TRIzol reagent) was added. The tube was shaken vigorously by hand for 15 

seconds and incubated on ice for 15 min. The tube was centrifuged at 12000 rpm for 15 min at 

4°C. Then the mixture was separated into 3 phases: the lower organic phase containing protein; 

an interphase containing DNA; and the upper aqueous phase containing RNA. The upper 

aqueous phase was carefully transferred to a new clean tube. 0.5 ml of isopropanol was added 

into the new tube with the aqueous phase per 1 ml of TRIzol used. The mixture was mixed 

gently by inverting the tube and incubated on ice for 10 min. The tube was centrifuged at 12000 

rpm for 10 min at 4°C. The supernatant was removed and the RNA pellet in the tube was washed 

with 1 ml 75% ethanol per 1 ml of TRIzol used in the sample preparation. The sample in the tube 

was mixed gently by inverting the tube a few times. The tube was centrifuged at 14000 rpm at 

4°C for 5 min, and the supernatant was removed. The RNA pellet was air-dried for 10-15 min, 

and resuspended in DEPC-treated water. 
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4.9 Reverse transcription and quantitative real-time PCR 

Total RNA (1 µg) was converted to cDNA by RT-PCR following the manufacturer’s instructions 

of a High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). qRT-PCR was 

carried out using Power SYBR Green Master mix (Thermo Fisher Scientific) and run on a 

StepOne System (Thermo Fisher Scientific). PCR conditions were as follows: 95°C for 15 min, 

40 cycles of 95°C for 2 min, 95°C for 15 sec and 72°C for 1 min. Stemness-related nuclear 

transcription factor mRNA of Sox2, Oct3/4, and Nanog were determined in the present study. 

Reactions were carried out in triplicate with RT controls. GAPDH was used as a reference gene. 

Data were analyzed using the modified delta-delta Ct method. 

Primer sequences for Oct3/4, Sox2, and Nanog were as follows:  
 
Oct3/4      FWD: 5’-GACAGGGGGAGGGGAGGAGCTAGG-3’ 
                 REV: 5’-CTTCCCTCCAACCAGTTGCCCCAAAC-3’  
Sox2         FWD: 5’- GGGAAATGGGAGGGGTGCAAAAGAGG-3’ 
                 REV: 5’-TTGCGTGAGTGTGGATGGGATTGGTG-3’ 
Nanog      FWD: 5’-AATACCTCAGCCTCCAGCAGATG-3’ 
                 REV: 5’-TGCGTCACACCATTGCTATTCTTC-3’ 
 

4.10 DSF/cisplatin combination treatment 
 

To explore the combination effect of DSF and cisplatin which is the first-line anti-tumor drug, 

breast cancer cells were treated with DSF alone, or cisplatin alone, or DSF/cisplatin combination 

for 72 h in 96-well plates. The range of dosage of each drug was selected to cover the 

concentrations below and above the IC50 values. The combination ratio was designed at a 

constant ratio of approximately IC50 concentration for each drug, so that the contribution of the 

effect by each drug to the combination would be equal [43,44]. 

 
After 72 h of treatment, cells were all subjected to MTT assay. Quantitative analysis was 

performed to determine synergism or antagonism in the combination which is based on 

CompuSyn software of Chou and Martin [43,44]. CI ＜ 1, ＝1, and ＞1 indicate synergism, 

additive effect, and antagonism, respectively. CI ＜ 0.1, CI 0.1-0.3, CI 0.3-0.7, CI 0.7-0.85, CI 

0.85-0.9 and CI 0.90-1.10 indicate very strong synergism, strong synergism, synergism, 

moderate synergism, slight synergism, and nearly additive effects. Dose-reduction index (DRI) 
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values is a measure of how many fold the dose of each drug in a synergistic combination may be 

reduced at a given effect level when compared with the doses of each drug alone [8]. 

 

4.11 Flow cytometric of analysis of ROS 
 

Mitochondrial ROS were measured following the manufacturer’s instructions of MitoSOX Red 

kit (Thermo Fisher Scientific). Briefly, cells (3 × 104 cells/well) were seeded in a 24-well 

attachment plate and incubated overnight. After 24 h plating, cells were treated with the 

indicated drug for 30 min at 37°C. All the cells were harvested and washed twice with warm 

PBS. MitoSOX Red Reagent was prepared at a final working concentration of 5 µM with fresh 

medium. Cells were incubated with MitoSOX Red Reagent for 15 minutes at 37°C, and then 

washed gently three times with warm buffer. Mean fluorescence intensity was determined by 

flow cytometry. Samples without MitoSOX Red Reagent were used as the background. Samples 

treated with MitoSOX Red Reagent, but without any drug treatment, were used as controls. 

Mean fluorescence intensity was determined and all samples were normalized to untreated 

control samples. 
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5 Results 
5.1 Disulfiram exhibits dose-dependent cytotoxicity on breast cancer cell lines 

in vitro 
To explore the inhibitory effect of DSF in vitro, we initially examined the cytotoxicity of DSF on 

three breast cancer cell lines by MTT assay. As shown in Figure 1, no significant cytotoxicity 

(percentage of cytotoxicity ＞ 20％) was observed when cells were exposed to 0.04 µM, 0.2 µM, 

1 µM, or 5 µM DSF in MDA-MB-435S and SKB-R3 cell lines. In MCF-7 cell line, DSF showed 

slight cytotoxicity at the concentration of 0.04 µM, 0.2 µM, or 1 µM, and a moderate cytotoxicity 

at a 5 µM concentration. However, there was a significant decrease in cellular relative viability 

when the concentration of DSF was increased to 25 µM. The results indicated that DSF exhibited 

its cytotoxicity on the investigated breast cancer cell lines in a dose-dependent manner and at 

higher concentrations. For further exploration of the inhibitory effects on spheroid formation and 

the expression of stemness-related markers in the following experiments, the concentration of 

DSF was chosen at concentrations lower than 5 µM which per se did not kill many cells 

investigated during the observation period. 

 

 
 

Figure 1: Cytotoxicity of DSF on breast cancer cell lines. MCF-7, MDA-MB-435S, and SKB-
R3 cells were treated with different concentrations (0.04 µM – 25 µM) of DSF for 72 h. Cellular 
viability was analyzed by MTT assay. Results are mean ± SD (n = 3) of one representative 
experiment out of three. 
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5.2 DSF inhibits spheroid formation in breast cancer cell lines 
 
Spheroid formation assay is a well-accepted assay to enrich for cells exhibiting positivity for 

established stem cell markers. The outgrowth of spheroids from anchorage dependent cell lines 

and their size reflects the proliferative potential of stem cells.  

 

In order to study the inhibitory effect of chemical compounds and their combinations, the 

concentration used should not be cytotoxic per se. According to Figure 1, we chose a DSF 

concentration of 1 µM or 5 µM, and observed the ability of breast cancer cell lines to from 

spheroids. Spheroid-derived cells were treated with 1 µM or 5 µM DSF in a 96-well ultra-low 

attachment plate (100 cells in 0.2 ml medium/well) for 7-10 days and photographed at 50 × 

magnification. Cells without drug treatment were used as controls. Spheroids were counted in 

when the diameter of spheroids was more than 100 µm. 

 

As shown in Figure 2A and Figure 2B, 1 µM and 5 µM of DSF were found to be adequate to 

inhibit spheroid formation while avoiding too much cytotoxicity on cellular growth. The results 

showed that the number of spheroids significantly decreased when cells were exposed to 1 µM 

DSF (the average spheroid number decreased from 5 to 1 in MCF7, from 5 to 0 in MDA-MB-

435S, and from 3 to 1 in SKB-R3). In addition, the individual size of the forming spheroids was 

also was reduced in all cell lines not reaching the cut off of 100 µM. No growth of spheroids was 

observed when the cells were exposed to 5 µM DSF in any of the three cell lines investigated. 

This demonstrated that at this concentration, despite very low direct toxicity, a stemness 

inhibitory effect could be achieved. 
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A 

 
B 

 
 
 
Figure 2: Spheroid formation assay on breast cancer cell lines.   
A) Cells were cultured in 96-well ultra-low attachment plates without or with 1 µM or 5 µM 
DSF for 10 days and photographed (magnification 50 ×).  
B) Cells were exposed to DSF for 10 days, and spheroids with ≥ 100 µm in diameter were 
counted, and their numbers per well (n=8) were plotted. One representative of three independent 
experiments is shown. 
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5.3 Stemness-related markers are overexpressed in SDCs 
We measured ALDH enzymatic activity of the SDCs of the three breast cancer cell lines and 

their parental MDCs to investigate the presence of a stem cell-like population using the 

ALDEFLUOR assay. As is shown in Figure 3, all SDCs had an increased proportion of ALDH-

positive cells as compared to parental MDCs by FACS analysis. The proportion in this 

representative experiment increased from 10.8% to 46.1% in MCF-7, from 12.4% to 36.1% in 

MDA-MB-435S, from 27.1% to 31.3% in SKB-R3 cell line, in MDC and SDC, respectively. 

Next, we investigated mRNA expression of nuclear transcription factors (TF) Sox2, Oct3/4, and 

Nanog by which CSCs also share the stemness characteristics of embryonic stem cells. The 

mRNA levels detected by RT-PCR of Sox2, Oct3/4, and Nanog were all found to increase in 

SDCs of all three cell lines from 2-fold to almost 7-fold as compared to MDCs (Fig. 4). The 

results indicated that spheroids could enrich cancer stem cells and non-adherent 3D sphere 

models are reasonable to be used for evaluating stem cell activities in these breast cancer cell 

lines. 

 

5.4 DSF inhibits ALDH activity in breast cancer cell lines 
 
To determine the effective targeting of DSF on stem cells, ALDH activity in both MDCs and 

SDCs exposed to DSF (10 µM) was analyzed by ALDEFLUOR assay. As shown in Figure 3, the 

proportion of ALDH positive cells was decreased in both MDCs and SDCs after exposure to 

DSF: from 10.8% to 0.04% in MDCs and from 46.1% to 0.472% in SDCs in the MCF-7 cell 

line; from 12.4% to 0 in MDCs and from 36.1% to 0.02% in SDCs in the MDA-MB-435S cell 

line; and from 27.1% to 0 in MDCs and from 31.3% to 1.21% in SDCs in the SKB-R3 cell line. 

Importantly, the inhibitory effect of DSF was even stronger than the one of DEAB in both MDCs 

and SDCs. These results proved that DSF could target cancer stem cell characteristics in the 

investigated cell lines by inhibiting ALDH enzymatic activity. 
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Figure 3: Flow cytometric analysis of ALDH activity in breast cancer cell lines.   
MDC (M) and SDC (S) were exposed to DSF (10 µM), or control medium (ALDH) and ALDH 
activity was detected by ALDEFLUOR assay. Cells treated with diethylaminobenzaldehyde 
(DEAB), which is a specific ALDH inhibitor, were used as controls to establish the baseline 
fluorescence and define the cut-off for ALDEFLUOR-positive cells. One representative of three 
experiments is shown. 
 
 
 
5.5 DSF inhibits stemness properties of SDCs 
 
As we have shown that SDCs express higher levels of stemness-related nuclear transcription 

factors (TF) Sox2, Oct3/4, and Nanog in all three breast cancer cell lines, we further investigated 

the inhibitory effect of DSF on the stemness of SDCs by testing the expression of these CSC 

markers by qRT-PCR. As is shown in Figure 4, after DSF (1 µM) exposure for 48 h, mRNA 

levels of Sox2, Oct3/4, and Nanog in SDCs were all significantly decreased, and even lower than 

those observed in MDCs. This reduction was not accompanied by an obviously strong cytotoxic 

effect at this concentration, arguing against CSC depletion in cell lines MDA-MB-435S and 

SKB-R3, while in MCF-7, some cytotoxicity was noted. Further, the expression of these markers 

recovered swiftly when the cells were recultured in DSF-free medium for a further 48 h. 
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Figure 4: Quantitative RT-PCR analysis of mRNA expression of stemness-related 
transcription factors. The expression of stemness-related TF in MDC, SDC, DSF (1 µM, 48 h)-
treated SDC, and SDC treated by DSF (1 µM, 48 h, followed by a phase to reculture in DSF-free 
medium for a further 48 h) was detected by qRT-PCR. M: MDC; S: SDC. One representative of 
three experiments is shown. 
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5.6 The combination of treatment with cisplatin and DSF induces more 
apoptosis  
 
As DSF inhibited the stemness of CSCs, we wanted to further explore if DSF as an adjuvant 

treatment could be combined with a conventional chemotherapeutic agent like cisplatin, which 

rather targets the non-stemness cancer cells, to induce more apoptosis. Cells were exposed to 

DSF (1 µM) alone, cisplatin (5 µM) alone, or DSF (1 µM) plus cisplatin (5 µM) for 48 h, and the 

apoptotic status was evaluated using Annexin-V/PI staining by FACS analysis. The results 

revealed that generally more apoptosis was induced when cells were exposed to the combination 

treatment than either single drug alone. Both necrotic and apoptotic cell death was enhanced by 

both DSF and cisplatin treatment alone. As shown in Figure 5, the early and late apoptosis and 

necrosis together increased from 45.9% by treatment with cisplatin alone to 61.6% by the 

cisplatin/DSF combination treatment in MCF-7 cells, from 19.1% to 42.3% in MDA-MB-435S 

cells, and from 18.3% to 25.2% in SKB-R3 cells, respectively. Our results revealed that the 

combination of treatment with cisplatin and DSF induced more cellular apoptosis. 

 
Figure 5: Flow cytometric analysis of apoptosis assay.   
Cells were exposed to DSF (1 µM), Cisplatin (5 µM), or DSF (1 µM) plus Cisplatin (5 µM) for 
48 h and the percentage of apoptotic cells was determined by Annexin-V/PI dual staining by 
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flow cytometric analysis.The Percentage of cells was determined in the four quadrants: live cells, 
(Annexin-V−/PI-, lower/left quadrant); early apoptotic cells (Annexin-V+/PI−, lower/right 
quadrant); late apoptotic cells (Annexin-V+/PI+, upper/right quadrant); and necrotic cells 
(Annexin-V−/PI+, upper/left quadrant), respectively. One representative of three experiments is 
shown. 
 

5.7 DSF sensitizes breast cancer cells for cisplatin treatment 
 
To determine whether DSF sensitizes for cisplatin treatment, all cells were treated with cisplatin 

alone or with cisplatin combined with DSF at a relatively low concentration (MCF-7: 0.3 µM; 

MDA-MB-435S and SKB-R3: 2 µM). We chose DSF at this concentration to avoid the cytotoxic 

effects exerted by DSF alone. An MTT assay was performed after 72 h exposure to the drugs. As 

shown in Figure 6, cisplatin/DSF combination treatment significantly reduced cell viability 

compared with cisplatin-treated cells (P<0.05). Cell viability dropped by 50% in MCF-7 cell 

line, 20%-30% in MDA-MB-435S cell line and SKB-R3 cell lines. These results indicate that 

DSF sensitizes breast cancer cells to cisplatin treatment even at a concentration where DSF is not 

toxic by itself. 

 
Figure 6: DSF sensitizes breast cancer cells for cisplatin treatment. MCF-7, MDA-MB-435S 
and SKB-R3 cells were treated with cisplatin alone or with cisplatin/DSF (2 µM) combination at 
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indicated concentrations for 72 h, followed by MTT assay for cellular viability. All data 
presented are representative of three independent experiments. 
 

5.8 DSF overcomes cisplatin resistance in ALDH+ cells 
 
Since DSF is an irreversible inhibitor of ALDH [59], and stem-like ALDH+ cells may play a role 

in cisplatin resistance [60], we next studied whether DSF combined with cisplatin could 

overcome cisplatin resistance. MCF-7 cells were flow-sorted with the ALDEFLUOR kit to 

isolate ALDH+ and ALDH- populations. ALDH+ and ALDH- cells were treated with different 

concentrations of cisplatin with/without DSF for 72 h, and were then subjected to an MTT assay. 

As shown in Figure 7, there was a significant difference in cellular viability between ALDH+ 

cells and ALDH- cells when they were treated with cisplatin alone. ALDH+ cells were more 

resistant to cisplatin treatment compared with ALDH- cells. However, when a low concentration 

of DSF (0.3 µM) was added, cellular viability decreased significantly (approx. 40%-50%) 

compared with cells treated with cisplatin alone, and there was no difference between ALDH+ 

cells and ALDH- cells, indicating that both ALDH+ cells and ALDH- cells were equally 

sensitive to DSF/cisplatin combination treatment. These results confirmed the potential efficacy 

of DSF in overcoming the cisplatin resistance on ALDH+ cells in this experimental setting. 

 

 

 
 

Figure 7: DSF overcomes cisplatin resistance of ALDH+ cells. ALDH+/- cells from MCF-7 
were treated with (A) cisplatin alone, (B)cisplatin/DSF or DSF at indicated concentrations for 72 
h. Cellular viability was determined by MTT assay. Cells without any drug treatment were used 
as controls. Each concentration was in triplicate. * P＜0.05. 
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5.9 DSF and cisplatin combined act synergistically 
The combination index (CI) value was used as a quantitative measurement based on the mass-

action law of the degree of drug interaction in terms of synergism and antagonism for a given 

endpoint of the effect measurement [42]. CI ＜ 0.1, CI 0.1-0.3, CI 0.3-0.7, CI 0.7-0.85, CI 0.85-

0.9 and CI 0.90-1.10 indicate very strong synergism, strong synergism, synergism, moderate 

synergism, slight synergism, and nearly additive effects [42,43]. As shown in Table 1, the 

combination of DSF and cisplatin yielded a synergistic effect in all three tested cell lines at a 

broad concentration range from IC50 to IC90. Especially in MCF-7 cells, the CI value was 0.16 at 

the IC90 level, and even less than 0.1 at IC50 and IC75 levels, indicating that a strong or very 

strong synergism was present. Synergism and moderate synergism were shown on MDA-MB-

435S and SKB-R3 cells, respectively. And the dosage of each drug was reduced by 2-fold to 

several hundred-fold when compared with the dosage of each drug alone while maintaining the 

equal cytotoxic effect in combinations due to their synergistic effect. 

 

 

Table 1: Computer-simulated CI and DRI values for drug combinations at different levels 
of inhibition 

 
Cis + DSF 

Combination 
Combination Index  

at 
Dose-Reduction Index at 

IC50 IC75 IC90 IC50 IC75 IC90 
MCF-7 0.0023 0.014 0.16 454.89a 

13586.7b 
84.67 
382.40 

15.76 
10.76 

MDA-MB-435S 0.35 0.36 0.38 2.96 
66.36 

2.81 
115.65 

2.67 
201.56 

SKB-R3 0.64 0.75 0.88 2.34 
4.78 

1.85 
4.82 

 1.47 
 4.87 

 
a) fold reduction compared to single dose cisplatin 
b) fold reduction compared to single dose DSF 
 
 
 
5.10 Cisplatin arrests the cell cycle in G2 phase while DSF has no effect on cell 
cycle distribution 
To explore the potent mechanism of DSF, cisplatin, and the combination, the distribution of cells 

in different phases of the cell cycle was evaluated after drug treatment. Cells were treated with 

DSF (1 µM), or cisplatin (1 µM, 5 µM) or the cisplatin/DSF combination for 72 h and cells cycle 
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distribution was analyzed by flow cytometry. As shown in Figure 8, in the MCF-7 cell line, a 

large sub-G1 peak appeared, indicating much apoptosis was induced because of the very strong 

synergistic effect. Therefore, an analysis of the cell cycle was not possible in this case, as the cell 

cycle phases disappeared and could no longer be identified. Thus, cell cycle distribution here 

was analyzed on SKB-R3 and MDA-MB-435S cell lines. MAD-MB-435S cells treated with 1 

µM DSF showed no striking changes in cell cycle distribution (G1/S/G2 phase: 1 µM DSF vs. 

control= 49.9%/ 13.7%/ 23% vs. 54.8%/ 11.5%/ 20.7%). However, cells treated with 1 µM 

cisplatin had the cell cycle arrested in G2 phase as compared to the non-drug treated control cells 

(G2 phase: 1 µM cisplatin vs. control = 42.4% vs. 20.7%). Higher concentration of cisplatin at 5 

µM induced stronger cell cycle arrest in the G2 phase (5 µM cisplatin vs. control = 45.4% vs. 

20.7%) when compared to 1 µM cisplatin treatment. Similar results were also observed in the 

SKB-R3 cell line. These data suggested that cisplatin induced a cell cycle arrest in G2 phases 

which may further retard or prevent cell proliferation, while DSF had no effect on cell cycle 

distribution. 

 

5.11 Cell cycle arrest in the DSF/cisplatin combination is due to cisplatin  
To investigate the mechanism of the toxicity induced by the DSF/cisplatin combination, cell 

cycle distribution was assessed. As shown in Figure 8, SKB-R3 cells treated with DSF (1 

µM)/cisplatin (1 µM) displayed a significant cell cycle arrest in G2 phases as compared to 

control cells (combination vs. control = 39.4% vs. 21.2%). The cell cycle distribution in the DSF 

(1 µM)/cisplatin (1 µM) combination was similar with cisplatin (1 µM) treatment alone 

(combination vs. cisplatin alone = G1: 35.8% vs. 42.9%; S: 16.1% vs. 15.5%; G2: 39.4% vs 

30.9%). Also, cells treated with DSF (1 µM)/cisplatin (5 µM) exhibited a significant cell cycle 

arrest in G2 phases, and cell cycle distribution in the DSF (1 µM)/cisplatin (5 µM) combination 

was similar to 5 µM cisplatin treatment alone (combination vs. cisplatin alone = G1: 8.95% vs. 

5.79%; S: 36% vs. 32.1%; G2: 38.7% vs 54%). Similar results were observed on MDA-MB-

435S cell line. These results indicated that cell cycle changes in the combination treatment were 

due to the effect of cisplatin.  
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Figure 8: Cell cycle analysis by FACS. Cells were treated with DSF (1 µM), or cisplatin (1 µM, 
5 µM), or cisplatin/DSF combination for 72 h, DNA content distribution was analyzed using 
flow cytometry. Gated numbers marked in figures are the percentage of G0/G1, S, G2/M phases. 
CIS: Cisplatin; DSF: Disulfiram. 
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5.12 ROS accumulation by DSF is concentration-dependent and time-
dependent 
ROS are involved in cancer development and metastasis. We have shown that DSF inhibits 

ALDH activity which normally acts as a ROS scavenger to protect cells against oxidative stress. 

Thus, it is important to further investigate if the underlying mechanisms of DSF toxicity are 

based on ROS production. 

 

Firstly, we examined different concentrations of DSF and a DSF/cisplatin combination with 

short time treatment. All cells were treated with DSF (10 µM, 100 µM), or cisplatin (10 µM, 100 

µM) or the cisplatin/DSF combinations for 4 h, intracellular ROS activity was analyzed by flow 

cytometry. As shown in Figure 9, there was no ROS generated when the cells were treated with 

10 µM DSF for 4 h compared with no drug treated control cells in all three cell lines. ROS was 

generated in all three cell lines when the concentration of DSF increased to 100 µM. 

Interestingly, no ROS was generated by cisplatin during the 4 h treatment period. These data 

indicated that ROS was quickly generated by DSF at high concentrations, which may cause an 

instant and short-term cytotoxicity to cancer cells. 

 

Since it’s hard to generate ROS by DSF treatment at low concentration in a short time frame, we 

next performed the time course experiment with relatively low concentration of DSF at 10 µM. 

All three breast cancer cells were treated with DSF (10 µM), cisplatin (10 µM), or the DSF (10 

µM)/cisplatin (10 µM) combination for 10 h, 20 h, and 56 h, respectively. As shown in Figure 

10, after 10 h exposure, there was no ROS generation in either DSF treated-cells, cisplatin 

treated-cells, not even in the DSF/cisplatin combination treated-cells in MCF-7 and SKB-R3 cell 

lines. Detectable ROS was generated only in DSF/cisplatin combination in the MDA-MB-435S 

cell line. After 20 h exposure, ROS was generated in DSF treated-cells in MCF-7 and SKB-R3 

cell lines, as well as in DSF/cisplatin combination-treated cells in three cell lines. However, 

when the cells were treated with the indicated drugs for 56 h, apparently an increasing amount of 

ROS was generated in DSF-treated cells and cisplatin-treated cells as well as DSF/cisplatin 

combination treated-cells in all three cell lines. These results indicated that ROS accumulated by 

DSF at low concentration is time-dependent. 

 

5.13 DSF/cisplatin enhances the generation of ROS as compared to single 
drug treatment 
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Since ROS is generated by DSF treatment at high concentration in a short time frame, or at low 

concentrations over a longer time period, we were next interested in the ROS generation by the 

DSF/cisplatin combination and the contribution of each drug in the combination for ROS 

generation. As shown in Figures 9 and 10, cells exposed to DSF/cisplatin generated more ROS 

than by each single drug treatment, no matter whether the treatment was short- or long- time 

treatment. Interestingly, as shown in the last column in Figure 9, when cells were treated with 

high concentrations of DSF (100 µM)/cisplatin (100 µM) for 4 h, the ROS generation curve in 

the drug combination is quite similar to DSF alone, indicating that ROS generation in short-term 

treatment in the combination is mainly due to high concentrations of DSF. However, both DSF 

and cisplatin contributed to the total ROS generation in combinations when cells were exposed 

to drugs for 56 h (Figure 10). 

 
 

Figure 9: ROS production during short term in drug-treated cells. Cells were exposed to 
DSF (10 µM,100 µM), or cisplatin (10 µM,100 µM), or combinations for 4 h before they were 
harvested for ROS measurement by flow cytometry. CIS: Cisplatin. M: monolayer-derived cells. 
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Figure 10: Time course of ROS production by FACS. Cells were exposed to DFS, or cisplatin 
or combinations for 10 h, 20 h, and 56 h. Red lines represent the untreated control cells and blue 
lines represent drug-treated cells. CIS: Cisplatin; DSF: Disulfiram. 
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5.14 Cell cycle and ROS generation in ALDH+/- cells 
To further explore whether DSF has different effects on ALDH+ and ALDH- cells, both ALDH+ 

cells and ALDH- cells were treated with DSF (0.3 µM) and cisplatin (2 µM), respectively. The 

effect of cisplatin on cell cycle change and the effect of DSF on ROS generation was observed. 

As shown in Figure 11A, ALDH- cells were more sensitive to cisplatin treatment, with G0/G1 

decreasing from 58.3% to 39.5% and G2 increasing from 25.7% to 42.6%. ALDH+ cells were 

more resistant to cisplatin treatment, with G0/G1 decreasing only from 65.1% to 55.4% and G2 

increasing from 24.3% to 30%. As shown in Figure11B, ALDH- cells contain higher levels of 

ROS due to rapid metabolism, while ALDH+ cells are more quiescent with lower levels of ROS. 

ROS generation was increased in both ALDH+ and ALDH- cells when they were treated with 

DSF compared to non-drug-treated control cells. ROS production by ALDH+ cells and ALDH- 

cells reached the same level after DSF treatment. Concerning the relative increase, ALDH+ cells 

showed a greater increase than ALDH- cells, as they contain lower basic levels of ROS.  
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Figure 11: Cell cycle analysis and ROS production of ALDH+ and ALDH- cells by FACS. 
A) The effect of cisplatin (2 µM, 72 h) on cell cycle change on ALDH+/- cells. B) The effect of 
DSF (0.3 µM, 72 h) on ROS production on ALDH+/- cells. a) ALDH+/- control; b) ALDH+ 
DSF/control; c) ALDH- DSF/control; d) ALDH+/- DSF. 
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6 Discussion 
 
Breast cancer is the second leading cause of cancer death in women worldwide [1]. Despite the 

impressive clinical improvements of breast cancer therapies, mortality for breast cancer patients 

is mostly related to late diagnosis and resistance to systemic therapy, leading to metastasis and 

recurrence. One of the main obstacles that hinder therapeutic success in breast cancer is the 

presence of subpopulations of cancer stem cells (CSCs) that are undifferentiated and self-

renewing, and that are held responsible for tumorigenicity and drug resistance [61,62]. Because a 

majority of anti-cancer drugs target actively dividing cells, quiescent CSCs remain relatively 

unaffected and may be the cause for relapse, progression, and dissemination of cancer. 

Therefore, a more efficient anti-cancer therapy is expected to be targeting also CSCs.  

 

Different approaches have been used to identify and isolate CSCs. We decided to enrich for 

CSCs by spheroid culture models. Spheroids are three-dimensional clusters of cultured tumor 

cells which simulate the tumor in vivo better than adherently growing cells [63]. A wealth of 

experiments have shown that SDC exhibit stem cell properties and display the phenotype of 

CSCs in different tumor types [64-66]. Here, we also provided evidence that SDC showed a 

higher proportion of ALDH positivity in all three breast cancer cell lines investigated. In addition 

to ALDH, the expression of stemness-related transcription factors Oct3/4, Sox2, and Nanog was 

also 2-fold to 7-fold higher in SDC as compared to MDC. Our results are in agreement with 

results from other labs which also report that there is an enrichment of CSCs according to ALDH 

and stemness-related transcription factor expression by anchorage-independent culture 

techniques and thus spheroid cell culture models could be used for evaluating characteristics of 

CSCs [67, 68]. 

 
In this study, we firstly confirmed that DSF itself exhibits dose-dependent cytotoxicity in the 

three breast cancer cell lines investigated. We also demonstrated that the ALDH level was 

significantly higher in SDCs than in MDCs. The ALDH activity was significantly inhibited by 

DSF in SDCs, supporting a role for DSF in treatment of the ALDH positive subpopulation. 

Importantly, a suppressive effect of DSF on the stemness of ALDH+ CSC, as shown by 

inhibition in a sphere formation assay. In addition, several stemness-related nuclear transcription 

factors associated with breast CSCs including Oct3/4, Sox2, and Nanog were also higher 

expressed in SDCs than MDCs. Our results are in agreement with previous reports that the 

expression of stemness transcription factors Sox2, Oct3/4, and Nanog, was increased in CSCs 
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and contributes to plasticity, self- renewal, and stemness [69]. Notably, DSF at 1 µM markedly 

suppressed the mRNA level of Oct3/4, Sox2, and Nanog in SDC. Their mRNA expression levels 

were even lower in SDCs than in MDCs after DSF exposure. We speculate that the deceased 

expression of CSC markers could be due to two reasons: firstly, CSC were specifically killed, 

resulting in the reduction of stemness transcription factor positive cells in the population, or 

secondly stemness factor transcription by CSC was inhibited by DSF while the cells were still 

alive. In order to discriminate these options, we re-cultured the cells for two more days in drug-

free fresh medium after DSF exposure. We found that the expression of CSC markers quickly 

recovered after this phase, and in most cases returned to the original level of SDCs. Since DSF is 

an irreversible inhibitor of ALDH [70], the results indicate that the stem cells were not killed in 

these conditions but the stemness characteristics of cells were rather inhibited. These results are 

consistent with our data from the spheroid formation assay. The number of spheroids were 

reduced remarkably when cells were exposed to 1 µM DSF, and the capacity to form spheroids 

was completely inhibited when cells were exposed to 5 µM DSF, indicating that both 

concentrations of 1 µM and 5 µM DSF inhibited the stemness of CSCs in the absence of overt 

cytotoxic effects. 

 

Next, we explored the combination effect of DSF and cisplatin. Cisplatin is currently one of the 

most effective chemotherapeutic agents used for breast cancer treatment. Cisplatin unfolds its 

cytotoxicity by binding to nuclear DNA and thereby interferes with the normal DNA replication 

mechanisms [71]. However, there are two unsolved obstacles related to the utilization of 

cisplatin: resistance and toxicity [72]. Resistance or insensitivity of tumor cells to cisplatin 

treatment is an essential reason for relapse. The combination of cisplatin with other 

chemotherapeutic drugs has obtained satisfactory clinical results, but also caused greater toxicity 

for patients.  

 

This study demonstrated that the combination treatment of cisplatin and DSF induced more 

cellular apoptosis than each individual treatment. What’s more, the results showed that DSF 

sensitizes breast cancer cell lines to cisplatin treatment. This obvious chemo-sensitizing effect of 

DSF was observed in this study even at its low concentration that does not display any 

cytotoxicity on its own. Our results have also shown that ALDH+ cells were more resistant to 

cisplatin treatment than ALDH- cells. This is in agreement with studies from other labs which 

demonstrated that cancer cells expressing stem cell markers are highly resistant to radio- and 

chemotherapy [73]. Based on these results, we examined the resistance-reversing effect of DSF 
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in this study. Our results showed that both ALDH+ cells and ALDH- cells exhibited equal 

sensitivity to DSF/cisplatin combination treatment, indicating that DSF overcomes cisplatin 

resistance of ALDH+ cells. One explanation could be that ALDH activity of ALDH+ cells is 

inhibited by DSF, leaving ALDH+ cells and ALDH- cells equally sensitive to DSF and cisplatin 

treatment. 

 

Next, we used a quantitative method to determine the combination effect of DSF and cisplatin. 

The results showed that DSF and cisplatin yielded a synergistic effect at broad effect levels 

ranging from IC50 to IC90 in all three breast cancer cell lines. The highest degree of synergism 

was observed in the MCF-7 cell line. The CI value was 0.16 at IC90 level, and even less than 0.1 

at IC50 and IC75 levels, indicating a strong or very strong synergism. Due to this synergistic 

effect, the dosage of each drug may be reduced by 2-fold or even hundred-fold while 

maintaining the equal cytotoxicity when they are combined. This synergistic effect in a 

DSF/cisplatin combination may provide many therapeutic benefits in clinical treatment regimens 

against breast cancers. The most important consequence is that it could increase or at least 

maintain the same efficacy but decrease the dosage of each drug to reduce toxicity, thereby 

potentially reducing the toxicity toward normal tissues. 

 

To explore the possible mechanism of DSF and cisplatin in combination treatment, cell cycle 

analysis and ROS generation was determined in this study. Studies have shown that cisplatin 

induces cross-linking of DNA [71], therefore inducing a G2/M arrest. Our results also showed 

that cisplatin arrested cell cycle distribution in the G2 phase. However, DSF had no significant 

effect on cell cycle distribution. In DSF/cisplatin combination treated cells, cell cycle 

distribution was very similar to that in cisplatin single treatment, indicating that cell cycle arrest 

in DSF/cisplatin combination was mainly due to the cisplatin effect. 

 
As we have shown that DSF inhibits ALDH activity which normally acts as a ROS scavenger to 

protect cells against oxidative stress, we further explored the relationship between ROS 

generation and DSF concentration and exposure time. The results showed that DSF induced ROS 

accumulation in a dose-dependent manner. Higher concentration of DSF could induce more ROS 

accumulation in cells. Interestingly, high concentration of DSF could also induce ROS 

accumulation in a very short time, indicating that DSF can cause instant killing of cells [74]. In 

the DSF/cisplatin combination treatment at high concentration in a short time period, DSF was 

responsible for most of the ROS accumulation. Low concentration of DSF needed longer time to 
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induce cells to accumulate ROS, and both DSF and cisplatin contributed to the ROS 

accumulation at lower concentration drug combinations.  
 
The effect of cisplatin on cell cycle distribution and the effect of DSF on ROS accumulation was 

further determined after cell sorting. The results indicated that ALDH+ cells showed cancer 

stem-like properties, with low levels of ROS, while ALDH- cells were more proliferating with 

higher levels of ROS due to rapid metabolism. Upon treatment. more ROS accumulated in 

ALDH+ cell, reaching the same levels of ROS in ALDH- cells, finally. These results indicated 

that DSF showed, at least, equal cytotoxic  it to ALDH+/- cells. However, concerning the 

relative increase, ALDH+ cells showed a greater increase than ALDH- cells, as they contain 

lower basic levels of ROS, indicating that ALDH+ cells might be more sensitive to DSF 

treatment. 

 

In considerin ins  all results we obtained in this study, we summarize the possible mechanisms 

for the synergistic effect of DFS and cisplatin combination as follows: 1) DSF suppresses ALDH 

activity and stemness of CSCs, reverses cisplatin resistance on ALDH+ cells, and sensitizes 

cisplatin-resistant CSCs population to cisplatin treatment, consequently improving the ability of 

cisplatin to kill resistant or less sensitive cancer cells. This is in agreement with a study by 

Wantong Song et al. [75] that DSF improved the effectiveness of cisplatin in resistant lung 

cancer cell lines. 2) DSF and cisplatin exert their cytotoxicity based on different mechanisms. 

DSF induces cellular apoptosis by accumulation of ROS, including instant killing and delayed 

cytotoxicity, while cisplatin induces apoptosis based on the DNA damage, leading to the cell 

cycle distribution changes, and increased ROS generation during longer treatment periods. 3) 

Cisplatin and DSF exert their cytotoxicity on different targeted cell types. The conventional 

chemotherapy agent cisplatin targets proliferating cells with little effect on CSCs, while DSF is 

equally cytotoxic to both proliferating cells and ALDH+ “stem-like” cells and renders CSC more 

sensitive to cisplatin. One other scenario could be that DSF by inhibiting ALDH activity, renders 

ALDH+/- cells equally sensitive to cisplatin cytotoxicity. This is in agreement with results from 

other labs demonstrating that DSF targets ALDH-positive cells in breast cancer [76, 77]. 

 

Taken together, this study provides evidence that cells with CSC-like properties exists in SDC 

from breast cancer cell lines. These cells are characterized by increased ALDH activity and a 

higher level of stemnness-related transcription factor expression. We demonstrated that DSF 
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effectively inhibited ALDH positive cell populations and targeted CSC-ALDH to further inhibit 

the stemness of CSCs, and in turn, induced more cellular apoptosis by combination with the 

conventional anti-cancer agent cisplatin. Results from the present study demonstrated significant 

cisplatin-sensitizing effects of DSF on breast cancer cell lines, a cisplatin resistance-reversing 

effect, and a synergistic effect, described the possible mechanisms of the enhanced efficacy of 

the DSF/cisplatin combination. Because of the sensitizing and synergistic effects of the drug 

combination, DSF may be used as a novel adjuvant and be incorporated into conventional 

regimens to improve the effectivity of targeted chemotherapy for breast cancer treatment in 

future. However, more research is needed to further verify the inhibitory effects of DSF in 

animal experiments on xenotransplanted tumor models, and for clinical trials the safe application 

and effective dose of DSF in patients, as well as the pharmacologic limitations such as first-pass-

effects have to be further defined. 
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