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1 Summary 

 

Adoptive transfer of T cell receptor (TCR)-engineered T cells is a promising approach in cancer 

therapy but needs improvement for effective treatment of solid tumours. So far clinical 

approaches have focussed on CD8 T cells because of their cytotoxic function. However, the 

importance of CD4 T cells to induce tumour regression by giving essential help to CD8 T cells or 

by their own means has become apparent and suggests the use of CD4 T cells in adoptive T cell 

therapy. Regarding the development of TCRs for use in CD4 T cells, it is unclear, whether the 

human CD4 T cell repertoire against shared (self) tumour antigens has been shaped by tolerance 

mechanisms and lacks highly functional TCRs suitable for therapy. The aim of this study was to 

generate optimal-affinity major histocompatibility class II (MHC II)-restricted TCRs against the 

tumour-associated antigen NY-ESO and investigate whether such TCRs can be generated from 

the human TCR repertoire. TCRs were isolated from CD4 T cells of a human donor representing 

an antigen-positive host as well as from transgenic mice that express a diverse human TCR 

repertoire with HLA-DRA/DRB1*0401 restriction and are NY-ESO-negative, thus serving as 

antigen-negative and therefore non-tolerant source for TCRs. NY-ESO-reactive TCRs from the 

mice showed superior recognition of tumour cells and higher peptide sensitivity compared to 

TCRs from humans. We identified a candidate TCR, TCR-3598_2, which, transduced in CD4 T 

cells, caused tumour regression in combination with NY-ESO-redirected CD8 T cells in a mouse 

model of adoptive T cell therapy. A clinical version of TCR-3598_2 was tested for functionality 

in preparation of a clinical trial. These data suggest that MHC II-restricted TCRs against NY-

ESO from humanized non-tolerant mice are of optimal affinity unlike human-derived TCRs and 

that the combined use of MHC I- and II-restricted TCRs against NY-ESO can make adoptive T 

cell therapy more effective. 
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2 Zusammenfassung 

 

Der adoptive Transfer von T-Zell-Rezeptor (TZR)-veränderten T-Zellen ist ein 

vielversprechender Ansatz in der Krebstherapie, muss jedoch für eine effektive Behandlung von 

soliden Tumoren verbessert werden. Bisher haben sich klinische Ansätze aufgrund der 

zytotoxischen Funktion auf CD8-T-Zellen konzentriert. Die Bedeutung von CD4-T-Zellen für die 

Tumorabstoßung durch T-Zellhilfe für CD8-T-Zellen sowie durch eigene 

Zerstörungsmechanismen ist jedoch deutlich geworden und legt den Einsatz von CD4-T-Zellen in 

der adoptiven T-Zelltherapie nahe. Hinsichtlich der Entwicklung von therapeutischen TZRs für 

CD4-T-Zellen ist unklar, ob das menschliche CD4-T-Zellrepertoire gegen tumorassoziierte 

(Selbst-) Antigene durch Toleranzmechanismen geprägt ist und keine hochfunktionellen 

Therapie-geeigneten TZRs aufweist. Ziel dieser Studie war, Haupthistokompatibilitätskomplex 

(MHC) II-restringierte TZRs mit optimaler Affinität gegen das tumorassoziierte Antigen NY-

ESO zu generieren und zu untersuchen, ob solche TZRs aus dem humanen TZR-Repertoire 

generiert werden können. TZRs wurden aus humanen CD4-T-Zellkulturen sowie aus transgenen 

Mäusen isoliert, die ein diverses humanes TZR-Repertoire mit HLA-DRA/DRB1*0401 

Restriktion exprimieren und NY-ESO-negativ sind und somit als Quelle für nicht-tolerante TZRs 

dienen. NY-ESO-reaktive TZRs aus dem Mausmodell zeigten eine bessere Erkennung von 

Tumorzellen und eine höhere Peptidempfindlichkeit als TZRs aus humanen CD4-T-Zellkulturen. 

Wir identifizierten einen TZR-Kandidaten, TZR-3598_2, der, transduziert in CD4-T-Zellen, in 

Kombination mit NY-ESO-spezifischen CD8-T-Zellen in einem Mausmodell der adoptiven T-

Zelltherapie eine Tumorregression verursachte. Eine klinische Version des TZR-3598_2 wurde in 

Vorbereitung einer klinischen Studie auf Funktionalität getestet. Die Daten dieser Arbeit legen 

nahe, dass MHC II-restriktive TZRs gegen NY-ESO von humanisierten nicht-toleranten Mäusen 

eine optimale Affinität im Gegensatz zu humanen TZRs aufweisen und dass der kombinierte 

Einsatz von MHC I- und II-restringierten TZRs gegen NY-ESO die adoptive T-Zelltherapie 

effektiver machen kann. 
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3 Introduction 

 

3.1 T cells and the immune system 

The hallmark of the immune system is to distinguish between self and non-self. Through a 

complex interplay of effector cells and molecules, the immune system protects the host from 

external threats like pathogens. The vertebrate immune system can be divided into an innate and 

an adaptive immune system. Effector cells and molecules of the innate immune system rely on 

pattern recognition receptors, that are germ-line encoded and enable a rapid response to invading 

pathogens (Brubaker et al., 2015). In contrast, recognition by the adaptive immune system is 

mediated by antigen-receptors that are highly diverse through somatic recombination and 

recognize almost any antigen in a specific manner. T cells and B cells make up the effector cells 

of the adaptive immune system. Upon recognition of a pathogen, specific T cells and B cells 

expand, and an immune response develops in the course of several days to clear the infection. 

There are different subpopulations of T cells, mainly CD4 and CD8 T cells, which are determined 

by their CD4 or CD8 co-receptor expression. CD8 T cells, also called cytotoxic lymphocytes, kill 

infected host cells and are therefore important for protection against viruses. CD4 T cells are also 

called T helper (Th) cells, because they act primarily on other immune cells. They help CD8 T 

cell and B cell immune responses to develop and are thus important for protection against most 

pathogens. 

 

3.1.1 The T cell receptor 

The antigen receptor of T cells is the T cell receptor (TCR), which was discovered more than 30 

years ago (Hedrick et al., 1984; Yanagi et al., 1984). Each T cell expresses a unique TCR on its 

cell surface, which binds antigenic peptides presented on major histocompatibility (MHC) 

molecules on host cells. The first crystal structures of a TCR in complex with peptide-MHC 

showed a diagonal binding orientation of both molecules (Garboczi et al., 1996; Garcia et al., 

1996). The TCR is composed of a heterodimer of two polypeptides, which in most T cells 

consists of an α and β chain. A minor subset of T cells expresses TCRs composed of γ and δ 

chains (Chien et al., 2014). γδ T cells are rather associated with the innate immune system and 

will not be discussed here. The polypeptide α and β chains consist of a variable region and a 
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constant region. The constant regions contain cysteine residues to form an interchain disulphide 

bond and are anchored in the membrane. As the TCR has no intracellular signalling domain, it is 

found in a TCR complex together with CD3 and ζ chain, which recruit signalling proteins upon 

TCR engagement (Call et al., 2002). 

The variable regions of the TCR α and β chains are assembled during T cell development in the 

thymus by TCR gene rearrangement (Samelson et al., 1985). The variable region of the α chain is 

rearranged from many different variable (V) and joining (J) gene segments, the variable region of 

the β chain has a diversity (D) gene segment in addition. V, (D) and J segments are organized in 

the TCRα and β loci on chromosomes 14 and 7 in humans, respectively (Jones et al., 1985; 

Rowen et al., 1996). In addition to the combinatorial diversity by assembly of V, (D) and J genes, 

junctional diversity is created by addition or deletion of nucleotides at the junction when the gene 

segments are joined (Komori et al., 1993). This highly diverse region at the junction of V-J or V-

D-J gene segments is called the complementarity determining region 3 (CDR3) and forms the 

centre of the antigen-binding site of the TCR (Davis and Bjorkman, 1988). Recombination-

activating genes 1 and 2 (RAG-1 and RAG-2) are essential components for V(D)J recombination 

to take place. If one of them is not functional, T cells as well as B cells cannot develop due to the 

inability to properly rearrange antigen receptors and the host is devoid of lymphocytes 

(Mombaerts et al., 1992; Shinkai et al., 1992). 

 

3.1.2 MHC molecules 

MHC I and II genes are organized in the MHC locus together with many other genes important 

for antigen processing and presentation (Beck et al., 1999). There are three MHC I and three 

MHC II molecules encoded, HLA-A, B and C, and HLA-DR, DP and DQ, respectively. MHC I 

and II genes are highly polymorphic (Robinson et al., 2015). Each MHC molecule can bind a 

certain set of peptides that have a similar binding pattern by sharing similar anchor residues (Falk 

et al., 1991). In addition to the polymorphic nature of the MHC molecules, they are co-

dominantly expressed. Therefore, each individual can present a large but different set of peptides 

(Apanius et al., 1997).  

MHC I molecules consist of one α chain with three domains, α1, α2, and α3, and a smaller non-

polymorphic chain, the β2-microglobulin (β2m) (Bjorkman et al., 1987). MHC II molecules 

consist of one α chain and one β chain, each forming two domains, α1 and α2 and β1 and β2, 

respectively (Brown et al., 1993). In MHC I molecules the peptide-binding cleft is closed and 
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allows binding of peptides in the range of 8-11 amino acids. In contrast, the peptide-binding cleft 

in MHC II molecules is open and therefore peptide length is not constrained. Nested sets of 

peptides sharing a core region with different peptide lengths to the sides are found when eluted 

from MHC II (Rammensee, 1995). Although one TCR can recognize peptides on MHC II of 

different lengths, changes in the peptide flanking residues can alter TCR affinity (Cole et al., 

2012). 

MHC I molecules are loaded with peptides from mostly cytosolic and nuclear proteins that are 

degraded by the proteasome and transported into the endoplasmic reticulum by the transporter 

associated with antigen processing (TAP) (Neefjes et al., 2011). Newly synthesized MHC II 

molecules are bound to the invariant chain, which occupies the peptide-binding site of the MHC 

II molecule and targets the complex to late endosomal-lysosomal antigen-processing 

compartments. The invariant chain is cleaved by acidic proteases leaving a short fragment in the 

antigen-binding site, class II-associated invariant chain peptide (CLIP), which is exchanged for 

other peptides catalysed by the molecule HLA-DM (Neefjes et al., 2011). Although most 

peptides loaded on MHC II originate from proteins entering the antigen-binding compartment via 

the endocytic pathway, cytosolic or nuclear proteins can enter the antigen-binding compartment 

via macroautophagy (Schmid et al., 2007). 

 

3.1.3 T cell selection in the thymus 

T cell precursors migrate from the bone marrow to the thymus, where the so called thymocytes 

develop into mature T cells. By passing through a sequence of stages, the thymocytes rearrange 

their T cell receptor genes and undergo positive and negative selection to ensure restriction to the 

individual’s MHC molecules but prevent auto-reactivity. According to the affinity model, the 

strength of the interaction between the TCR and self-peptide-MHC complexes determines the 

fate of the thymocytes (Klein et al., 2014). For positive selection, the TCR must interact weakly 

with self-peptide MHC complexes to be protected from death by neglect. Is the interaction too 

strong, negative selection induces thymocytes to go into apoptosis (Klein et al., 2014). However, 

CD4 T cells with TCRs of too high affinity can differentiate into T regulatory cells (Tregs) 

instead of being negatively selected (Hsieh et al., 2012). Tregs specifically inhibit immune 

responses and thereby play a major role in maintaining self-tolerance. 

To enable effective negative selection of auto-reactive T cells, most proteins of the body are 

expressed by medullary thymic epithelial cells and presented to thymocytes (Gotter et al., 2004). 
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The transcription factor autoimmune regulator (Aire) is responsible to turn on peripheral genes in 

epithelial thymic cells and its dysfunction causes autoimmune manifestations in many organs of 

the body (Anderson et al., 2002; Nagamine et al., 1997). More recently, the transcription factor 

Fezf2 was found to turn on tissue-restricted antigens, which are not regulated by Aire (Takaba et 

al., 2015). Deletion of auto-reactive T cells, however, is not always complete (Su et al., 2013; Yu 

et al., 2015). CD8 T cells recognizing the Y chromosome-encoded H-Y antigen were found in 

males, but fewer numbers as compared to females (Yu et al., 2015). In addition to central 

tolerance created in the thymus by deleting auto-reactive thymocytes, peripheral tolerance can be 

induced when auto-reactive T cells have escaped negative selection in the thymus. Clonal anergy 

or deletion occurs when TCR engagement takes place in the absence of inflammatory signals 

(Mueller, 2010). 

 

3.2 Immune responses to cancer 

In a series of tumour transplantation experiments, it was shown that immunization with 

methylcholanthrene (MCA)-induced fibrosarcomas among inbred mice could protect from 

subsequent transplantation challenge using the same tumour (Prehn and Main, 1957). 

Immunization with normal tissues did not confer protection upon tumour challenge and mice 

immunized with tumour transplant did not reject skin-grafts. Therefore, anti-tumour immunity 

was elicited by unique rejection antigens of the tumour (Prehn and Main, 1957). 

 

3.2.1 Immunosurveillance 

While it became clear that T cells can recognize cancer cells, it is an ongoing debate, whether 

immune responses to naturally occurring tumours, as opposed to transplanted tumours, can be 

destructive (Blankenstein, 2007; Vesely and Schreiber, 2013). Immunosurveillance against virus-

induced cancers can be effective as demonstrated by the elevated risk of virus-induced cancers in 

immunocompromised individuals following organ transplantation (Engels et al., 2011). However, 

clear evidence for immunosurveillance of spontaneously occurring tumours is lacking. Although 

immune responses are often detected in cancer patients, by the time a tumour becomes clinically 

evident immune responses have obviously failed to prevent its outgrowth. Whether the immune 

system selects for less immunogenic tumour variants is unclear. Shedding light on this question, 

in a mouse model of sporadic cancer expressing SV40 T antigen as rejection antigen, it was 
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shown that tumours do not escape under immunological pressure but instead induce a state of 

profound tolerance (Willimsky and Blankenstein, 2005). Although strong immune responses 

were induced during cancer development, they were non-functional. In contrast, immunized mice 

remained tumour-free throughout their life, showing that in principle T cells are capable of 

rejecting the tumours but not when induced in the course of tumour development (Willimsky and 

Blankenstein, 2005). Unresponsive T cells with specificity for tumour antigens were also found 

in patients explaining the lack of benefit of endogenous immune responses (Lee et al., 1999).  

 

3.2.2 Checkpoint blockade 

In the clinical setting, attempts are made to break T cell tolerance induced by the tumour and 

make use of the endogenous anti-tumour immune response. Unresponsive T cells upregulate 

inhibitory receptors like PD-1 and CTLA-4, which can be blocked to unleash tumour-reactive T 

cells (Hirano et al., 2005; Leach et al., 1996). However, only a fraction of patients respond to 

immune checkpoint blockade, and responses are often limited in time (Schachter et al., 2017). T 

cells recognizing self-antigens of the tumour are subject to central tolerance and are therefore of 

low avidity (Aleksic et al., 2012). T cells recognizing mutant neo-antigens of the tumour can be 

of high avidity and are thought to mediate the effect of checkpoint blockade (Gubin et al., 2014; 

McGranahan et al., 2016). However, peripheral tolerance induced by the tumour may be 

irreversible and reduce the number of available tumour-reactive T cells (Philip et al., 2017). 

Thus, one of the reasons for patients not responding to checkpoint blockade may be the lack of 

available tumour-reactive T cells of high avidity. 

 

3.2.3 Tumour antigens 

Tumour antigens are any molecules on cancer cells that can be recognized by T cells (Schreiber, 

2013). Tumour antigens can be divided into two main classes, self-antigens and tumour-specific 

antigens. Self-antigens are non-mutated and encoded in the genomes of all cells but show higher 

or predominant expression in cancer cells (Offringa, 2009). Because self-antigens are not cancer-

specific, they are also referred to as tumour-associated antigens. One subgroup are overexpressed 

proteins such as HER2/neu or Wilms tumour protein 1, which are expressed on normal tissues 

but to a much higher extent in cancer cells (Call et al., 1990; Coussens et al., 1985). Furthermore, 

differentiation antigens are expressed in specific cell lineages and consequently in tumours 

originating from these tissues. Examples are CD19 on B cells or several melanocyte-specific 
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differentiation antigens, such as gp100 and MART-1 (Bakker et al., 1994; Kawakami et al., 

1994). Cancer-testis antigens are self-antigens that are highly expressed in spermatocytes in the 

testis and can be reactivated in cancer cells (Scanlan et al., 2002). Following the identification of 

the first member of this group, MAGE-A1, many more were discovered including BAGE, 

GAGE, NY-ESO and BORIS (Boel et al., 1995; Chen et al., 1997; Loukinov et al., 2002; Van 

den Eynde et al., 1995; van der Bruggen et al., 1991). A great advantage of tumour-associated 

antigens as immunotherapy targets is that they are often shared between tumours. However, 

expression on normal tissues carries the risk of on-target toxicities (Johnson et al., 2009). In 

contrast, tumour-specific antigens are derived from mutations in the tumour and are usually truly 

tumour-specific. Although mutations that give a growth advantage to the tumour (cancer-driver 

mutations) can be recurrently found, they are often individual-specific and thus more difficult to 

target than shared tumour-associated antigens (Vogelstein et al., 2013). Because of the advances 

made in high-throughput sequencing, tumour-specific mutations as immunotherapy targets have 

gained more attention in recent years (Blankenstein et al., 2015). Moreover, proteins from 

oncogenic viruses expressed in cancer cells are tumour-specific antigens and can serve as good 

targets for immunotherapy (Tashiro and Brenner, 2017).  

 

3.3 Adoptive T cell therapy 

3.3.1 Unmodified T cells 

First evidence for the therapeutic effect of adoptive T cell therapy (ATT) came from allogeneic 

stem cell transplantation for the treatment of chronic myeloid leukaemia (Odom et al., 1978). The 

graft-versus-leukaemia effect, the removal of residual leukemic cells, is attributed to T cells 

within the donor graft, as T cell depletion in the transplant caused increased risk of relapse 

(Horowitz et al., 1990). Furthermore, transplants from identical twins increased the risk for 

relapse leading to the assumption that T cells recognize minor histocompatibility antigens 

presented on the leukemic cells (Goulmy, 2004; Horowitz et al., 1990). Unfortunately, the 

clinical benefit of allogeneic stem cell transplantation is limited by graft-versus-host disease, 

which is often associated with the graft-versus-leukaemia effect. 

Furthermore, ATT was applied to treat viral infections, which are common in 

immunocompromised patients following stem cell or organ transplantation. In vitro expanded 

CD8 T cells specific for cytomegalovirus or Epstein-Barr virus (EBV) could prevent virus 
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reactivation and the EBV-associated lymphoproliferative disease (Heslop et al., 1996; Riddell et 

al., 1992). Because the generation of virus-specific T cell lines for each individual patient is 

laborious and not possible if the donor lacks viral immunity, banks of multi-virus-specific T cell 

lines have been generated for common HLA antigens that can be given to partially MHC-

matched patients (Leen et al., 2013; Tzannou et al., 2017). 

Efforts have been made to implement ATT for treating non-virus induced cancers. To mobilise 

endogenous tumour-reactive T cells that are muted by tolerance, tumour infiltrating lymphocytes 

(TILs) can be expanded ex vivo and infused back into the patient (Dudley et al., 2005). This 

approach has been widely applied in metastatic melanoma and achieves responses in 

approximately half of the patients with some complete regressions (Dudley et al., 2005). TILs 

from complete responders were shown to contain T cells with specificities against non-mutated 

self-antigens as well as mutated neo-antigens (Lu et al., 2014; Lu et al., 2013; Tran et al., 2014; 

Veatch et al., 2018). As T cells recognizing self-antigens are usually of low avidity and therapy 

responses correlate with predicted neo-antigen load (Lauss et al., 2017), neo-antigen specific T 

cells are thought to mediate the therapeutic effect of TILs. TILs can be expanded non-specifically 

or specifically by stimulation with autologous tumour cells or with cells expressing tumour-

derived epitopes (Dudley et al., 2010; Dudley et al., 2005; Tran et al., 2016). Nevertheless, T cell 

specificities are difficult to control and depend on the presence and functionality of the accessible 

TILs. Therapy success is difficult to predict and cancer entities that have lower mutational burden 

and/or less T cell infiltration may not qualify for TIL therapy. 

 

3.3.2 Engineered T cells 

TCR gene therapy allows the production of high numbers of tumour-reactive T cells by genetic 

engineering of patients’ T cells. Great clinical success has been achieved in treating 

haematological malignancies with T cells engineered with a chimeric antigen receptor (CAR) 

targeting CD19 (Maude et al., 2014). CARs are synthetic receptors that possess the antigen-

binding domain of an antibody and an intracellular signalling domain. Similar to antibodies and 

unlike TCRs, CARs recognize cell surface proteins, which is advantageous regarding no 

requirement for a TCR-matched MHC expression in the patient. However, solid tumours usually 

do not have a unique surface marker and may be better targeted by TCRs that recognize 

intracellular tumour antigens presented on MHC. 
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3.3.3 CD4 T cells in adoptive T cell therapy 

So far, clinical trials of ATT using TCR-engineered T cells could not achieve comparable success 

to the CAR studies targeting CD19 in haematological malignancies. One underlying reason may 

be that TCR gene therapy trials have mainly focussed on CD8 T cells. However, solid tumours 

may require CD4 T cell help to constitute a full immune response able to achieve major clinical 

effects. 

Experiments with mouse models showed the importance of CD4 T cells for anti-tumour 

immunity already long ago (Greenberg et al., 1981). In an adoptive chemoimmunotherapy study 

CD8-depleted T cells eliminated MHC II-negative leukaemia in mice without the need for 

cytolytic activity (Greenberg et al., 1981; Greenberg et al., 1985). Rejection of MHC II-negative 

tumours by CD4 T cells was also confirmed in other murine tumour models and shown to be 

mediated by interferon (IFN)γ functioning on host cells and not cancer cells (Mumberg et al., 

1999; Perez-Diez et al., 2007; Qin and Blankenstein, 2000). In a mouse model of transplantable 

melanoma, tumour rejection by CD4 T cells was IFNγ-dependent as well, but was mediated by 

direct lysis of MHC II-positive cancer cells (Muranski et al., 2008; Quezada et al., 2010). 

Furthermore, CD4 T cells exert helper function to support CD8 T cells and several cancer models 

require both CD4 and CD8 T cells for improved efficacy of ATT (Arina et al., 2017; Bos and 

Sherman, 2010; Li et al., 2017). T cell help was shown in a mouse model of insulinoma, in which 

CD4 T cells were necessary to recruit CD8 T cells to the tumour site and enhance their cytolytic 

function (Bos and Sherman, 2010). In a mouse model of ATT of established large tumours, CD4 

T cells could prevent or reverse antigen-positive tumour relapse that could not be controlled by 

CD8 T cells alone (Arina et al., 2017). Furthermore, the cooperation of CD4 and CD8 T cells can 

achieve bystander elimination of antigen-loss variants, which are a common problem in the clinic 

(Rapoport et al., 2015; Schietinger et al., 2010). The different mechanisms by which CD4 T cells 

exert tumoricidal effects may reflect the versatility of CD4 T cells, which can differentiate into 

different subpopulations to integrate different types of immune responses (Geginat et al., 2014). 

Interestingly, intratumoural CD4 T cells recognizing neo-antigens were found in several patients 

(Linnemann et al., 2015). Concordantly, two cases of successful TIL therapy were attributed to 

neo-antigen-specific CD4 T cells within the TIL product (Tran et al., 2014; Veatch et al., 2018). 

In another case study, a patient with metastatic melanoma experienced a durable clinical response 

following treatment with expanded NY-ESO-specific CD4 T cell clones, which could however 

not be reproduced in more patients (Hunder et al., 2008; Muranski and Restifo, 2009). Together, 
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these clinical data, as well as the referenced mouse models encourage further application of CD4 

T cells in treatment of cancer. 

However, it has to be noted that CD4 T cells can also negatively influence immune responses. 

CD4 T cells differentiated into Tregs are important to control exaggerated immune responses and 

prevent autoimmunity (Suri-Payer et al., 1998). Because of this immune regulatory property, 

Tregs can hinder anti-tumour immunity. This was shown in a mouse model of transplantable 

melanoma, in which only adoptive transfer of tumour-reactive CD8 T cells in conjunction with 

Treg-depleted CD4 T cells but not undepleted CD4 T cells resulted in cancer regression (Antony 

et al., 2005). Infiltration of Tregs are frequently found in tumour tissue and are implicated in 

suppression of T cell activation (Curiel et al., 2004; Woo et al., 2002). 

 

3.3.4 Clinical studies using engineered T cells 

First TCR gene therapy trials have targeted the melanocyte differentiation antigen MART-1 

(Johnson et al., 2009; Morgan et al., 2006). In the first trial, a low-affinity TCR DMF4 was used 

to treat metastatic melanoma, but only marginal responses were seen in two of 17 patients 

(Morgan et al., 2006). In a next clinical trial, TCRs recognizing MART-1 (DMF5) or gp100 with 

higher affinity were used. Although objective responses of 19% and 30%, respectively, were 

seen, both TCRs recognized normal melanocytic cells resulting in toxicities in the skin, eye and 

ear (Johnson et al., 2009). On-target off-tumour toxicity was also seen when three patients were 

treated with a high-affinity TCR targeting carcinoembryonic antigen (Parkhurst et al., 2011). This 

shows that appropriate TCR affinity is crucial to achieve anti-tumour effects but at the same time 

results in on-target off-tumour toxicity, if the target antigen is not exclusively expressed by the 

tumour. In two clinical trials targeting the cancer-testis antigen MAGE-A3, off-target toxicities to 

cardiac and brain tissue, respectively, caused fatal toxicities (Linette et al., 2013; Morgan et al., 

2013). Both TCRs were affinity-matured to increase their potency, suggesting that in vitro 

maturation increases the risk for off-target toxicity by circumventing negative selection in the 

thymus. In two clinical trials, the cancer-testis antigen NY-ESO was targeted in melanoma or 

synovial sarcoma and multiple myeloma (Rapoport et al., 2015; Robbins et al., 2015). Although 

an affinity-matured TCR was used, no toxicities were observed but objective responses were seen 

in 61%, 55% and 80% in sarcoma, melanoma and myeloma patients, respectively (Rapoport et 

al., 2015; Robbins et al., 2015; Robbins et al., 2008). Lack of toxicity is in line with the absence 

of NY-ESO expression in normal tissues aside from germ cells and thymus (Chen et al., 1997; 
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Gotter et al., 2004). However, one fatal severe adverse event caused by bone marrow failure was 

reported following TCR gene therapy using the same affinity-matured TCR against NY-ESO 

(Mackall et al., 2017). Moreover, it has to be noted that in the myeloma study, patients received 

high-dose chemotherapy and autologous stem cell therapy prior to the engineered T cells, making 

interpretation on efficacy of the engineered T cells difficult. However, an inverse correlation of 

NY-ESO expression (or LAGE-1, containing the targeted epitope) and engineered T cell 

persistence suggests efficacy of the T cell therapy (Rapoport et al., 2015). 

 

3.3.5 Critical factors for T cell gene therapy 

Several studies have shown that anti-tumour efficacy and on-target off-tumour toxicity cannot be 

separated if the antigen is expressed in normal tissues (Johnson et al., 2009; Morgan et al., 2006; 

Parkhurst et al., 2011). This was confirmed in a mouse model of ATT, in which TCR affinities 

against gp100209-217 correlated equally with anti-tumour and autoimmune activity (Zhong et al., 

2013). Therefore, selection of a target antigen whose expression is restricted to cancer cells is of 

utmost importance to prevent toxicity. 

Furthermore, human and mouse studies have shown that only TCRs of higher affinity can reach 

anti-tumour efficacy (Johnson et al., 2009; Morgan et al., 2006; Obenaus et al., 2015; Zhong et 

al., 2013). It was suggested that TCR affinity should be at least Kd=10 µM (Zhong et al., 2013). 

We defined optimal-affinity TCRs as TCRs that can be found in immune responses to foreign 

antigens, such as viral antigens (Obenaus et al., 2015). Virus-specific TCRs have an affinity 

around 10 µM (Aleksic et al., 2012). However, T cell avidity does not only depend on TCR 

affinity but also on TCR density on the T cell surface, why it is difficult to draw a strict line of 

required TCR affinity. Moreover, the interaction of the TCR and the peptide-MHC complex is 

not only dependent on TCR affinity but also on the affinity of the peptide to MHC. It was shown 

that only high-affinity peptides serve as rejection epitopes leading to relapse-free tumour 

regression (Engels et al., 2013). Further, mouse studies showed that tumour rejection or relapse 

following ATT can be dependent on the strength of antigen expression (Leisegang et al., 2016a; 

Spiotto et al., 2004). Only high antigen expression caused tumour rejection, which in one mouse 

model correlated with antigen cross-presentation by tumour stroma (Spiotto et al., 2004).  

Together, TCR affinity to peptide-MHC complex, peptide affinity to MHC and abundance of the 

target antigen are important factors for success of ATT. As the ideal situation, high TCR and 

peptide-MHC affinities and homogenously high antigen expression, may only rarely be fulfilled, 



Introduction 

 

 13 

combination therapies such as targeting more than one antigen and/or combined use of CD4 and 

CD8 T cells may be required for tumour rejection. 

 

3.4 Aims of this doctoral thesis 

Based on the importance of CD4 T cells in anti-tumour immune responses, the aim of the present 

project was to generate MHC II-restricted TCRs for the use in ATT. As target antigen we 

employed the shared tumour antigen NY-ESO to allow for broad application of potential 

therapeutic TCRs (Chen et al., 1997). To raise optimal-affinity TCRs against NY-ESO, human 

TCR gene loci/chimeric MHC II transgenic (ABabDR4) mice were employed (Ito et al., 1996; Li 

et al., 2010). Moreover, we asked, whether the human repertoire can be used as a source for 

MHC II-restricted TCRs against NY-ESO. 

 

3.4.1 NY-ESO as target for ATT 

NY-ESO is a tumour-associated antigen that was found by serological expression cloning 

(SEREX) from an oesophageal cancer (Chen et al., 1997). In addition to oesophageal cancer, 

NY-ESO expression was found in a variety of cancers including melanoma, breast cancer and 

prostate cancer. Moreover, NY-ESO is expressed highly in male germ cells and to some extent in 

ovary and/or placenta (Chen et al., 1997). Besides expression in the thymus, trace amounts of 

NY-ESO mRNA have been found in somatic tissues including liver and pancreas, but the 

relevance of this finding is unclear (Gotter et al., 2004; Sato et al., 2005). Absence of NY-ESO 

expression in normal tissues is suggested by lack of toxicity in two clinical studies in which NY-

ESO was targeted by ATT (Rapoport et al., 2015; Robbins et al., 2015). 

The expression of NY-ESO in medullary thymic epithelial cells may lead to deletional tolerance 

of high-avidity T cells against NY-ESO (Gotter et al., 2004). This could be one of the reasons 

why spontaneous anti-NY-ESO immunoglobulin (Ig)G antibody and CD4 responses in cancer 

patients do not lead to a clinical benefit and why NY-ESO immunization strategies as cancer 

treatment failed (Fourcade et al., 2014; Gnjatic et al., 2003; Takeoka et al., 2017; Zeng et al., 

2000). Furthermore, the treatment success achieved in one patient with expanded NY-ESO-

specific CD4 T cell clones could not be reproduced in eight other patients (Hunder et al., 2008; 

Muranski and Restifo, 2009). Thus, it proves probable that the intrinsic immune response to NY-
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ESO cannot be harnessed for cancer therapy. However, due to its restricted expression pattern, 

NY-ESO may be a good target for adoptive therapy using high-avidity T cells. 

 

3.4.2 ABabDR4 mouse model 

As highly functional TCRs may not be found in the human repertoire due to NY-ESO expression 

in the thymus and concomitant tolerance induction (Gotter et al., 2004), ABabDR4 mice were 

used for TCR generation (Chen et al., 2017; Ito et al., 1996; Li and Blankenstein, 2013; Li et al., 

2010). ABabDR4 mice were generated by crossing HLA-DRA-IE/HLA-DRB1*0401-IE (HLA-

DR4-IE)-chimeric MHC II-transgenic mice (DR4 mice) with human TCR gene loci-transgenic 

mice (ABab mice) (Ito et al., 1996; Li et al., 2010). DR4 mice were engineered to express a 

chimeric MHC II molecule which consists of the antigen-binding domains from the human HLA-

DR4 and the membrane-proximal domains from the murine I-Ed to enable murine CD4-binding 

(Ito et al., 1996). DR4 mice mounted a specific CD4 T cell response to heamagglutinin307-319 

upon immunization and develop experimental allergic encephalomyelitis symptoms when 

immunized with HLA-DR4 epitopes from myelin basic protein or proteolipid protein (Ito et al., 

1996). ABabDR4 mice were shown by deep sequencing to rearrange a diverse repertoire of 

human TCRs (Chen et al., 2017). Interestingly, TCR diversity of CD4 T cells from ABabDR4 

mice, in which both TCRs and MHC II are human, was higher than from ABabHHD mice, in 

which TCRs are human but MHC II from mouse. This suggests that human TCR genes and 

human MHC co-evolved (Chen et al., 2017). Importantly, ABabDR4 mice express a TCR 

repertoire which was not influenced by NY-ESO-specific tolerance, as mice do not express 

homologous sequences to the HLA-DR4-restricted NY-ESO epitope used in this project. In 

ABabDR4 mice, NY-ESO is a foreign antigen. 

 

3.4.3 Steps to be taken 

First, the ABabDR4 mouse model was characterized in terms of MHC II expression and the 

ability to mount CD4 T cell responses. Next, immunogenicity of the chosen HLA-DR4-restricted 

NY-ESO epitope in the ABabDR4 mice was shown. TCRs isolated from immunized ABabDR4 

mice were compared in functional assays to TCRs isolated from in vitro primings of human CD4 

T cells to investigate which source is appropriate to derive optimal-affinity TCRs against NY-

ESO. To analyse whether clinical application of the chosen TCR candidate can be safe, it was 

tested for off-target toxicity. Finally, in vivo functionality was tested in a mouse model of ATT 



Introduction 

 

 15 

and a clinical version of the chosen TCR candidate was analysed for comparability to the 

preclinical version used in the development phase. 
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4 Materials & Methods 

 

4.1 Cell lines 

The human melanoma cell lines FM-82, FM-56 (both NY-ESO+, HLA-DR4+), FM-3 (NY-ESO-, 

HLA-DR4+) and FM-6 (NY-ESO+, HLA-DR4-) were provided by the European Searchable 

Tumour Cell Bank and Database (ESTDAB). Jurkat 76/CD4 cells are TCR-deficient and were 

generated by introducing human CD4 into the Jurkat 76 clone (Heemskerk et al., 2003). The 

murine cell line T.54ζ17 is TCR-deficient and expresses human CD4 and murine ζ chain 

(58/CD4 cells) (Kieback et al., 2016). The cell line K562/DR4 was generated by transducing 

K562 cells with HLA-DRA and HLA-DRB1*0401. All cell lines were cultured in RPMI 

supplemented with 10% fetal calf serum (FCS; PAN Biotech) and 1x antibiotic-antimycotic. The 

retroviral packaging cell lines 293GP-GLV (GALV cells) and Plat-E (producing amphotropic and 

ecotropic retroviral vectors, respectively) were cultured in DMEM supplemented with 10% FCS 

(Ghani et al., 2009; Morita et al., 2000). The panel of EBV–transformed lymphoblastoid B cell 

lines (LCLs) were cultured in RPMI supplemented with 10% FCS, 1x antibiotic-antimycotic, 1 

mM sodium pyruvate and 1x non-essential amino acids. All cell culture reagents were purchased 

from Life Technologies unless otherwise indicated. 

 

4.2 Mouse strains 

All animal experiments were performed according to national guidelines and were approved by 

the responsible national institute (Landesamt für Gesundheit und Soziales, Berlin, Germany). All 

mouse strains were housed at the animal facility of the Max Delbrück Centrum for Molecular 

Medicine under specific-pathogen-free conditions. DR4 mice express a mouse/human chimeric 

MHC II molecule, HLA-DR4-IE, and are deficient for mouse MHC II molecules (Ito et al., 

1996). They were purchased from Taconic. ABabDR4 mice are transgenic for the entire human 

TCRα and β loci and a mouse/human chimeric MHC II molecule, HLA-DR4-IE, while neither  

mouse TCRs nor mouse MHC II molecules are expressed (Chen et al., 2017). They were 

generated by crossing human TCR loci-transgenic mice (ABab) and DR4 mice (Ito et al., 1996; 

Li et al., 2010).   DR4xRag-/-   mice were  generated  by  crossing  DR4  mice  with  Rag-/-  mice. 
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Table 1 

Table 1. Genotyping of ABabDR4 mice. Displayed are PCR primers used to detect the transgenes 

human TCRα and TCRβ loci (hTCRa, hTCRb), HLA-DRA-IE (DR4A), HLA-DRB1*0401-IE (DR4B), as 

well as knockouts of mouse TCRα and TCRβ constant regions (mTCRa, mTCRb) and I-A β-chain (I-Ab). 

 

 

Primers Gene/product Product size PCR 

program 

Forward/reverse 

primer sequences 5’→ 

3’ 

hTCRa Human 

TRAV10 

221 bp standard atggcaaaaaccaagtggag/ 

tttgctttgtgtctgcatcc 

hTCRb Human 

TRBV19 

691 bp standard cacattaggccaggagaagc/ 

cctgcttagtggctgagtgg 

mTCRa WT Mouse TCRα 

constant region 

164 bp standard actgtgctggacatgaaagc/ 

ccatagatttgagccaggagg 

mTCRb WT Mouse TCRβ 

constant region 

229 bp standard tgagccatcaaaagcagaga/ 

gaagtggttgcaaggattgt 

mTCRa KO Knockout in 

mouse TCRα 

constant region 

180 bp standard taccggtggatgtggaatgt/ 

actgtgctggacatgaaagc 

mTCRb KO Knockout in 

mouse TCRβ 

constant region 

248 bp standard taccggtggatgtggaatgt/ 

ttctagacccccacctagagc 

DR4A DRA-IE 

transgene 

1276 bp elongation 1 

min 30 sec 

gggaagcagggggactatgac/ 

ttagggcaatgacttcgtagg 

DR4B DRB1*0401-IE 

transgene 

419 bp standard tgaaagcggtgcgtgctgtttaa/ 

cacccgctccgtcccgttgaa 

I-Aneo 

(N752S/AbBE2R2) 

Knockout in I-

A β-chain 

~ 940 bp standard gatggattgcacgcaggttct/ 

tctgcacaccgtgtccagct 

I-Ab Knockout in I-

A β-chain 

(primers 

flanking 

neomycin 

cassette) 

226 bp in WT 

(haplotype b) 

1376 bp in I-

Abneo 

elongation 1 

min 30 sec 

tttcgtgtaccagttcatgg/ 

gtagttgtgtctgcacaccg 

EaDel2 I-E α chain with 

or without 

disrupting 

deletion 

1035 bp in 

B6 

~ 1720 in 

Balb/c 

elongation 1 

min 43 sec 

annealing at 

62°C 

ctagcccactgcaaaaggag/ 

gatgagggcttctgtgttgtc 
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OTIIxRag+/- and P14xRag-/- mice express transgenic TCRs with specificity for ovalbumin323-339 

presented on I-Ab and lymphocytic choriomeningitis virus glycoprotein33-41 presented on H2-Db, 

respectively (Barnden et al., 1998; Pircher et al., 1989). Mice were genotyped by polymerase 

chain reaction (PCR) using DNA isolated from ear biopsies by alkaline lysis. 300 µl 0.05 M 

NaOH were added to the ear biopsy and incubated at 95°C for one hour. For neutralization, 30 µl 

of stopping solution were added containing 1 M Tris-Cl and 10 mM EDTA at pH 8.0. PCR 

reactions were performed in a total volume of 10 µl, using 1 µl lysed DNA, 0.1 µl Taq DNA 

polymerase (FastStart, Roche), 0.2 mM dNTPs and 0.5 µM primers. Thermocycling conditions 

for standard PCR were as follows: 1) Initial denaturation step at 95°C for 5 min, 2) denaturation 

at 95°C for 30 sec, 3) annealing at 63°C for 40 sec, 4) elongation at 72°C for 1 min 10 sec, 5) 35 

cycles steps 2)-4), 6) final elongation at 72°C for 10 min. Table 1 lists PCR primers used for 

genotyping of ABabDR4 mice. 

 

4.3 Immunization of mice 

ABaBDR4, DR4 and C57BL/6 mice were taken for immunization at 6-16 weeks of age. For 

peptide immunization, 100 µg of the NY-ESO peptide 116-135 (LPVPGVLLKEFTVSGNILTI, 

NY-ESO116, GenScript) or Pan-DR binding peptide (AK(X)VAAWTLKAA, (X) = 

cyclohexylalanine; Padre, Biomatik; Alexander et al., 1994) and 50 µg CpG (CpG 1826, 

MOLBIOL) were prepared in 200 µl 1:1 emulsion of incomplete Freund’s adjuvant and 

phosphate-buffered saline (PBS) and injected s.c. into the flank of the mouse. Immunizations 

were repeated with at least 4-week intervals. For DNA immunizations, the Helium Gene Gun 

system from Biorad was used. A mixture of pcDNA3.1 vectors containing NY-ESO cDNA or 

granulocyte macrophage colony-stimulating factor cDNA were precipitated on gold microcarriers 

of 1 µm diameter at a DNA loading rate of 2 µg/mg gold. For cartridge preparation, the 

DNA/microcarrier suspension in 0.05 mg/ml polyvinylpyrrolidone in Ethanol (both Sigma) was 

loaded into Gold-Coat tubing using a Tubing Prep Station (Biorad). Using Helium pressure, 

DNA from two cartridges was delivered into the shaved skin at the abdomen of the mouse. 

 

4.4 Evaluation of immune response 

CD4 T cell responses were analysed in peripheral blood or cells from spleen and draining lymph 

nodes one week after immunizations. 200 µl blood or cells from spleen and draining lymph nodes 
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were lysed by 1 ml or 3 ml ammonium-chloride-potassium lysing buffer (ACK buffer; 155 mM 

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) for 2 min followed by two washes with PBS containing 

2% FCS. Cells were resuspended with mouse T cell medium (mTCM; RPMI supplemented with 

10% FCS, 1x antibiotic-antimycotic, 1 mM sodium pyruvate, 1x non-essential amino acids, 1 

mM HEPES, 50 µM β-mercaptoethanol) and cultured with 1 g/ml NY-ESO116 peptide, Padre or 

a peptide from nonstructural protein 3 (NS3) from hepatitis C virus 

(YAAQGYKVLVLNPSVAAT) as negative control or 4x105 dynabeads T activator CD3/28 

(Invitrogen) as positive control overnight. One third of the blood sample or 1x106 splenocytes 

were applied per well of a 96-well plate. After 2 hrs of incubation, Brefeldin A (Becton 

Dickinson (BD) GolgiPlug) was added to the cultures and intracellular IFNγ staining was carried 

out for analysis (see flow cytometry). 

 

4.5 In vitro expansion of NY-ESO-reactive CD4 T cells from ABabDR4 mice 

For in vitro expansion of NY-ESO-reactive CD4 T cells, cells from spleen and draining lymph 

nodes from mice 10-14 days after the last immunization were prepared and meshed through a 

sieve to yield a single cell suspension. Without prior lysis of erythrocytes, but counting only 

peripheral blood mononuclear cells (PBMC), 1,5x107 cells per well were cultured in a 24-well 

plate in mTCM (supplemented with 20 U/ml IL-2) and in presence of 10-8 M or indicated 

concentration of NY-ESO116 or dynabeads T activator CD3/CD28 at a ratio of 1:1. After one 

week, expansion of NY-ESO-reactive CD4 T cells was analysed by peptide restimulation and 

intracellular IFNγ staining as described. The next day, cells were stained by tetramer and sorted 

by flow cytometry.  

 

4.6 Mouse IFNγ secretion assay 

For T cell isolation, spleen and draining lymph nodes were prepared from mice 10-14 days after 

the last immunization as single cell suspension. Following lysis of erythrocytes by ACK buffer, 

1x106 cells per well were cultured 8 hrs in a 96-well plate in mTCM in presence of 0.5 µM NY-

ESO116 or Padre or 1x106 dynabeads T activator CD3/28 (Invitrogen) as negative and positive 

control, respectively. The responding cells were labelled by Mouse IFNγ Secretion Assay 

(Milteny) as follows. Cultured cells were harvested and washed twice with magnetic-activated 
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cell sorting (MACS) buffer (PBS, 0.5%, bovine serum albumin, 2 mM EDTA). Cells were 

stained by IFNγ Catch Reagent for 5 min, then diluted with warm mTCM and incubated 45 min 

on a rotator at 37°C. After two washes with MACS buffer, cells were stained by IFNγ Detection 

Antibody and anti-mCD4 and anti-mCD3. Prior to cell sorting by flow cytometry, 7-AAD (BD) 

was added to the sample for exclusion of dead cells. 

 

4.7 In vitro priming of human CD4 T cells 

To expand human NY-ESO-reactive CD4 T cells, peripheral blood leukocytes (PBLs) from a 

HLA-DR4+ donor were enriched for CD4 by magnetic separation using a negative selection kit 

(Milteny). Subsequently, the enriched CD4 T cells were stained with TRBV2-PE antibody 

(Beckman Coulter, clone IMMU 546) and enriched by anti-PE microbeads by magnetic 

separation over a LS column yielding 68% TRBV2+ CD4 T cells. 1,9x106 TRBV2-enriched CD4 

T cells were cultured with 2,5x106 irradiated (30 Gy) autologous CD4- cells as feeder cells and in 

presence of 2 M NY-ESO116 in human T cell medium (hTCM; RPMI supplemented with 10% 

FCS, 1x antibiotic-antimycotic, HEPES 1 mM, 10 U/ml IL-2). After 14 days, NY-ESO-reactive 

CD4 T cells were stained by tetramer and sorted by flow cytometry. 

 

4.8 TCR isolation 

From all T cell sorts (yielding between 500-10,000 cells), total RNA was extracted (RNeasy 

Micro Kit, Qiagen) and 5’rapid amplification of cDNA ends (RACE) PCR was performed using 

the SMARTer RACE cDNA Amplification Kit (Clontech). Following cDNA synthesis 

performed according to the Clontech user manual, 5’RACE PCR was performed in a 50 µl 

volume, with 0.5 µl Phusion High-Fidelity DNA polymerase (New England Biolabs), 10 mM 

dNTPs, 1x universal primer mix (Clontech) and 0.5 µM reverse primer. As reverse primers, 

5’cggccactttcaggaggaggattcggaac3’ (for TCRα chain) and 5’ccgtagaactggacttgacagcggaagtgg3’ 

(for TCRβ chain) were used. Thermocycling conditions applied were as follows: 1) initial 

denaturation step at 98°C 2 min, 2) 5 cycles containing a denaturation step at 98°C 30 sec and an 

annealing/elongation step at 72°C for 45 sec, 3) 5 cycles containing denaturation at 98°C 30 sec, 

annealing at 70°C 20 sec, elongation at 72°C 45 sec, 4) 25 cycles containing denaturation at 98°C 

20 sec, annealing at 68°C 20 sec, elongation at 72°C 45 sec, 5) final elongation at 72°C 5 min. 
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The RACE PCR products were purified from an electrophoresis gel and cloned into TOPO 

vectors (Zero Blunt TOPO PCR cloning Kit) to transform competent E. coli. Depending on 

clonality, 6-32 clones per TCR chain were analysed and the most frequent TCRαβ chain pairs 

were tested for function. 

 

4.9 Generation of pMP71 vectors for TCR expression 

If the isolated TCR chains were not clonal, they were cloned as single TCR chains into the 

retroviral vector pMP71-PRE (pMP71) for combinatorial expression to identify functional 

TCRαβ pairs (Engels et al., 2003). For this, the variable TCR region was amplified from a TOPO 

vector and equipped by overlapping extension PCR with the murine constant region amplified 

from the codon-optimized TCR-3600. The generated product was purified, digested and ligated 

into the pMP71 vector. Table 2 lists the primers used for cloning of single TCR chains. 

Functional TCRαβ pairs were synthesized as expression cassettes containing codon-optimized 

TCRβ and TCRα chains linked by the porcine teschovirus-1-derived self-cleaving peptide P2A 

(Leisegang et al., 2008). Constant regions were murinized (Cohen et al., 2006). The synthesized 

expression cassette (GeneArt) was cloned into pMP71. TCR-5712 differs from TCR-3600 only in 

one amino acid and was generated from TCR-3600 by PCR-induced mutagenesis. A clinical 

version of TCR-3598_2 was synthesized containing human constant regions with amino acid 

exchanges at 9 positions corresponding to the murine constant regions and an additional 

disulphide bond (Cohen et al., 2007; Sommermeyer and Uckert, 2010). 

 

4.10 Retroviral transduction 

4.10.1 Human T cells 

Virus supernatant for retroviral transduction of human cells was produced by transfecting GALV 

cells (Ghani et al., 2009) with the retroviral vector pMP71 (Engels et al., 2003) containing a TCR 

expression cassette or a single TCR chain using Lipofectamine2000 transfection reagent (Thermo 

Fisher Scientific). Viral supernatant was harvested after 48 and 72 hrs following transfection and 

used directly for transducing target cells or were stored at -80°C for later use. PBMCs were 

isolated from blood using Pancoll Separating Medium (PAN Biotech) and were depleted of CD8 

T cells  by magnetic separation over a LS column using  CD8 microbeads (Milteny).  1x106 CD8- 
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Table 2 

Primers for amplification of variable regions 

Name Sequence 5’→ 3’ 

TRAV9-2_Not1 (fwd) gcattgcggccgccatgaactattctccaggcttagtatc 

TRAV12-3_Not1 (fwd) gcattgcggccgccatgatgaaatccttgagagttttac 

TRAV13-1_Not1 (fwd) attgcggccgccatgacatccattcgagctg   

TRAV20_Not1 (fwd) attgcggccgccatggagaaaatgttggagtgtgc 

TRAV21_Not1 (fwd) attgcggccgccatggagaccctcttgggcc     

TRAV36_Not1 (fwd) attgcggccgccatgatgaagtgtccacaggc           

TRAV38_Not1 (fwd) attgcggccgccatgacacgagttagcttgctg          

TRBV2_Not1 (fwd) gcattgcggccgccatggatacctggctcgtatgc 

TRBV_15_Not1 (fwd) gcattgcggccgccatgggtcctgggcttctc 

V(D)J_alpha_rvs agctggtacacggcaggctcggggttctg      

V(D)J_beta_rvs (if TRAC2) accttggggggggtcacgtttctcagatcc  

J1-1_ms_beta_rvs (if TRAC1) ggtcacgtttctcagatcctctacaactgtgagtctggtgcc 

J1-2_ms_beta_rvs (if TRAC1) ggtcacgtttctcagatcctctacaacggttaacctggtcc  

J1-3_ms_beta_rvs (if TRAC1) ggtcacgtttctcagatcctctacaacagtgagccaacttccc 

J1-5_ms_beta_rvs (if TRAC1) ggtcacgtttctcagatcctctaggatggagagtcgagtcc  

J1-6_ms_beta_rvs (if TRAC1) ggtcacgtttctcagatcctctgtcacagtgagcctggtcc  

Primers for amplification of mouse constant regions 

Name Sequence 5’→ 3’ 

alpha_ms_fwd      atatccagaaccccgagcctgccgtgtacc     

beta_ms_fwd      ggatctgagaaacgtgaccccccccaaggt  

TCR3600_beta_EcoR1_rvs actgaattctcagctgttcttcttcttgaccatgg 

huTCR3600_rvs     caggaattctcatcagctggaccac 

huTCR3600_Mfe1_rvs     agtgcaattgtcagctggaccacagc          

Table 2. Primers used for cloning of single TCR chains. Displayed are PCR primers used to generate 

single TCR chains equipped with murine constant regions by overlap extension PCR. 
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depleted PBMCs per well were activated on anti-CD3 (OKT3)/anti-CD28 (CD28.2; both BD 

Pharmingen)-coated 24-well plates in 1 ml hTCM (supplemented with 300 U/ml IL-2). The first 

transduction was performed 2 days after T cell activation by spinoculating the T cells with 1 ml 

virus supernatant for 90 min at 32°C and 800 g. The second transduction was performed the 

following day on virus-pre-loaded retronectin (Takara)-coated plates. Non-tissue-treated 6-well 

plates were coated with 1 ml retronectin (25 µg/ml in PBS) per well at 4°C overnight, blocked 30 

min with 2% bovine serum albumin (Sigma-Aldrich) in PBS at 37°C and spinoculated with 3 ml 

virus supernatant per well for 2 hrs at 32°C and 2000g. Following removal of the virus 

supernatant, T cells were transferred and spinoculated for 30 min at 800g. After expanding the T 

cells for one week, they were cultured in hTCM (supplemented with 30 U/ml IL-2) for 3 days 

before using them in in vitro experiments or freezing them for later use. Jurkat 76/CD4 cells were 

transduced twice on two subsequent days by spinoculating 5x105 cells with 1 ml virus 

supernatant per well in a 24-well plate for 90 min. For transduction of combinations of single 

TCR chains, virus supernatants were mixed. 

 

4.10.2 Mouse T cells 

Virus supernatant for retroviral transduction of mouse cells was produced by transfecting Plat-E 

cells as described for the GALV cells. TCR-transgenic mice were used as T cell donors. For CD4 

T cells, spleen and lymph nodes from OTIIxRag+/- mice were prepared and subjected to magnetic 

separation of CD4 T cells by negative selection (Milteny). 1x106 isolated CD4 T cells per well 

were activated on an anti-CD3/anti-CD28-coated 24-well plate in 1 ml mTCM (supplemented 

with 30 U/ml IL-2). The first transduction was performed 48 hrs after T cell activation by 

spinoculating the T cells with 1 ml virus supernatant for 90 min at 32°C and 800g. The following 

day the transduction was repeated. After the second transduction CD4 T cells were cultured in 

mTCM supplemented with IL-15 and IL-27 (each 50 ng/ml). For CD8 T cells, spleens from 

P14xRag-/- were prepared and activated by soluble anti-CD3/anti-CD28 (1 µg/ml/0.1 µg/ml) in 

mTCM. One day after T cell activation, the first transduction was performed on virus-pre-loaded 

retronectin-coated 24-well plates. The coating procedure was as described for transduction of 

human T cells but using 1 ml virus supernatant per well. 1x106 activated T cells with 4x105 

dynabeads T activator CD3/CD28 per well were spinoculated for 30 min at 32°C and 800g. A 

second transduction was performed by adding 1 ml virus supernatant and spinoculating the cells 

under the same conditions but 90 min. Afterwards, CD8 T cells were cultured in mTCM 
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supplemented with IL-15 (50 ng/ml). One day (CD4 T cells) or 2 days (CD8 T cells) following 

the second transduction, surface staining was carried out to determine transduction efficiency and 

the T cells were used for ATT or frozen for later use in in vitro assays. 58/CD4 cells were 

transduced twice on two subsequent days by spinoculating 5x104 cells with 100 µl virus 

supernatant per well in a 96-well plate for 90 min. 

 

4.11 Co-culture experiments 

All co-culture experiments with human cells were performed by incubating 1x104 transduced 

CD4 T cells with 5x104 target cells in round bottom 96-well plates for 16-18 hrs. Transduction 

efficiencies were in the range of 30-70% and T cells were calculated accordingly. IFN or IL-2 

was measured in the supernatant by enzyme-linked immunosorbent assay (ELISA; BD OptEIA) 

according to the user manual but applying half volumes throughout the protocol. 50 ng/ml 

Phorbol 12-myristate 13-acetate (PMA) and 5 µg/ml Ionomycin were added to T cells alone as 

positive control. NY-ESO peptides (LPVPGVLLKEFTVSGNILTI, NY-ESO116-135 or 

PGVLLKEFTVSGNIL, NY-ESO119-133) were added at 10-6 M or at indicated concentrations. 

Alanine-exchanged NY-ESO119 peptides (all Genscript, >95% purity) were added at 10-7 M. 

Peptides containing the TCR 3598_2 recognition motif -L-K-E-F- (JPT Peptide Technologies, 

unpurified) were added to the co-culture at 10-6 or 10-7 M as indicated. HLA-DR and HLA-ABC 

blocking antibodies (L243, W6/32; Biolegend) were added to the target cells at 20 g/ml and 

incubated at least 1 hr prior to adding the T cells. Statistic tests and bar charts were made with 

GraphPad Prism (version 7). 

 

4.12 Flow cytometry 

The following antibodies were used for staining at 1:100 ratio and purchased from BioLegend 

unless otherwise indicated: anti-I-Ek-FITC (17-3-3), anti-I-Ad-PE (AMS-32.1), anti-I-Ab-FITC 

(AF6-120.1), anti-mCD4-FITC (RM4-5), anti-mCD4-BV421 (RM4-5), anti-mCD8-PECy7 (53-

6.7, Beckton Dickinson (BD)), anti-mCD3-PE (145-2C11; 1:200), anti-mIL-2-APC (JES6-5H4), 

anti-mIFN-BV421 (XMG1.2), anti-mTCRβ chain-APC (H57-597), anti-hCD4-PE/Cy7 (OKT4), 

anti-hCD3-APC (SK7), anti-hTRBV2-FITC (IMMU 546, 1:20, Beckman Coulter), anti-HLA-

DR-APC (L243). 
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Immune responses of immunized ABabDR4 mice were analyzed by intracellular IFN staining of 

peptide-restimulated blood samples in a 50 µl volume. After Fc blocking for 15 min at 4°C (anti-

mCD16/32, clone 93, Biolegend), cells were washed with PBS and stained with LIVE/DEAD™ 

Fixable Aqua Dead Cell Stain Kit (1:1000 in PBS, Life technologies) for 30 min at 4°C. After 

two washes cells were fixed (BD Cytofix/Cytoperm), washed twice (BD Perm/Wash buffer) and 

stained with antibodies for 30 min at 4°C. Before measuring, cells were washed with BD 

Perm/Wash buffer and resuspended in PBS. 

For tetramer staining, cells were incubated in hTCM containing 10 µg/ml DR4/NY-ESO116 

tetramer or DR4/CLIP87-101 control tetramer for 1 hr at 37°C. Subsequently, antibodies were 

directly added and the cells were incubated 30 min on ice. After two washes with PBS, cells were 

analysed. PE-labelled DR4/NY-ESO116 and DR4/CLIP87-101 tetramers were obtained through the 

NIH Tetramer Facility. 

Adoptively transferred T cells were analysed in 50 or 100 µl peripheral blood. Antibodies were 

added into the blood sample and after 20 min at room temperature, 500 µl of erythrocyte lysing 

solution (BD) was added. After 2 minutes the cells were washed with PBS and the pellet was 

resuspended with 150 µl PBS. The entire sample was analysed by flow cytometry and the number 

of T cells were calculated according to 50 or 100 µl peripheral blood. Significance testing (t test) 

was performed with GraphPad Prism (version 7). 

FACSAriaTM II was used for sorting of cells and FACSCanto II or LSRFortessa were used to 

acquire cells for analysis (all BD). Flow cytometry data were analysed with FloJo version 10.1.  

 

4.13 Western blot 

5x106-1x107 cells were used for protein extraction with cell lysis buffer (Mammalian Cell Lysis 

Kit, Sigma). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed with 50 ug protein per sample, which was heated before at 70°C for 10 min in lithium 

dodecyl sulfate sample buffer and sample reducing agent. Samples were run in a 10% 

polyacrylamide gel (bis-tris) in 2-morpholinoethanesulfonic acid SDS running buffer at 140 V for 

1 hr. Proteins were blotted onto a methanol-activated polyvinylidene difluoride (PVDF) 

membrane in transfer buffer for 45 min at 20 V (all buffer and components from Novex, Life 

Technologies). Subsequently, the membrane was incubated in blocking buffer (PBS, 5% milk 

powder, 0,05% Tween20) for 1 hr at room temperature and then incubated with anti-NY-ESO 
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antibody 1:750 (E978, Sigma) at 4°C overnight. After washing the membrane 3 times in PBST 

(PBS, 0,05% Tween20), it was incubated with goat anti-mouse IgG conjugated to horse radish 

peroxidase (HRP; Santa Cruz Biotechnology) 1:5000 in blocking buffer for 1 hr. Following 3 

washes with PBST, the membrane was analysed by applying Western blotting Luminol Reagent 

(Santa Cruz) and chemiluminescence was detected by Lumi-Imager F1 (Roche). For loading 

control, actin was analysed after incubation of the membrane with anti-actin-HPR (AC-15, 

Sigma) 1:30000 for 1 hr at room temperature and 3 PBST washes. 

 

4.14 Mouse model of adoptive T cell therapy of cancer 

A fibroblast line originating from a TREloxPstoploxPTagLuc transgenic mouse (Tet-TagLuc cells, 

Anders et al., 2011) was retrovirally transduced with HLA-A2 harbouring the murine H-2Db α3 

domain and fused to human β2m (HHD, Pascolo et al., 1997) and full-length NY-ESO with 

mCherry reporter expression from IRES to create Tet-TagLuc-NY-ESO-HHD cells. A cell clone 

(Tet-TagLuc-NY-ESO-HHD clone 1) was used for subcutaneous tumour challenge of 

DR4xRag2-/- recipient mice. After 30 days, tumours were palpable and the mice were treated with 

1x106 CD4 T cells from OTIIxRag+/- mice transduced with TCR-3598_2 and/or 1x106 CD8 T 

cells from P14xRag1-/- mice transduced with TCR-ESO (Obenaus et al., 2015). As controls, CD4 

and CD8 T cells were transduced with TCR-1367 recognizing MAGE-A1 on HLA-A2 (Obenaus 

et al., 2015). Tumour volumes were determined two or three times per week and were calculated 

by multiplying the three dimensions of the tumour divided by two.  

To isolate CD11b+ stromal cells, tumour pieces were incubated on a rotator at 37°C in RPMI 

containing 1 mg/ml collagenase II (Gibco), 1 mg/ml dispase II and 10 µg/ml DNase I (Roche). 

After one hour, 1x trypsin-EDTA (Gibco) was added for further incubation of 30 min. The 

filtered cell suspension was stained with anti-CD11b-PE (M1/70, BioLegend) and isolated 

following the user manual for anti-PE microbeads (Milteny). 

Co-culture of TCR 3598_2-transduced CD4 T cells and CD11b+ stromal cells was performed 

with 1x105 cells each. 2x105 dynabeads T activator CD3/CD28 or NY-ESO116 peptide were 

added as positive control. IFN was measured in the supernatant by ELISA (BD OptEIA) after 16 

hrs of incubation. 
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5 Results 

5.1 ABabDR4 mice expressed HLA-DR4 and mounted specific CD4 T cell responses 

First, ABabDR4 mice were analysed for expression of MHC II molecules to confirm expression 

of the transgene HLA-DR4-IE and absence of any murine MHC II molecules. HLA-DR4-IE was 

expressed on B cells from ABabDR4 mice to a similar extent as compared to DR4 mice (Figure 

1A). The intrinsic I-Eb β chain, which does not come to the surface because of the non-functional 

I-Eb α chain in mice with C57BL/6 genetic background, could theoretically bind to HLA-DRA-IE 

(Lawrance et al., 1989). However, as published for the DR4 mice, no I-E was detected above 

background on B cells from ABabDR4 or DR4 mice (Figure 1A; Ito et al., 1996). AKR/J mice, 

which express I-E molecules of the k haplotype, served as a positive control, as the antibody 

binds to both k and b haplotype (Figure 1A). Moreover, absence of the murine MHC II molecule 

I-A was confirmed by surface staining of B cells and blood samples from C57BL/6 and Balb/c 

mice were taken as positive controls for b and d haplotype, respectively (Figure 1A). Finally, 

absence of the functional I-E α chain was confirmed by PCR, showing a shorter band harbouring 

the destructive deletion as for C57BL/6 mice, while the longer band from the intact chain was 

seen for Balb/c mice (Figure 1B).  

To analyse whether ABabDR4 mice can mount a CD4 T cell immune response, they were 

immunized with a Pan-DR binding peptide (Padre), a chemically modified peptide binding to 

most HLA-DR and several mouse MHC II molecules including I-Ab in C57BL/6 mice 

(Alexander et al., 1994). Upon Padre restimulation of spleen and lymph node cells from an 

immunized ABabDR4 mouse, small percentages of CD4 T cells produced IFNγ and/or IL-2 

(Figure 1C). This immune response was similar to the one seen for C57BL/6 mice, while the 

immune response of DR4 mice was smaller. Anti-CD3/CD28 activator beads and an irrelevant 

peptide from NS3 from hepatitis C virus served as positive and negative control, respectively 

(Figure 1C). 

Taken together, ABabDR4 mice expressed exclusively DR4 as MHC II molecule and were able 

to mount a specific immune response. Consequently, ABabDR4 mice may serve as good model 

to raise human TCRs in a non-human host. 
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Figure 1 ABabDR4 mice expressed HLA-DR4-IE and mounted a specific CD4 T cell response. (A) 

Peripheral blood leukocytes from ABabDR4, DR4, AKR/J, C57BL/6 and Balb/c mice were stained for 

HLA-DR and I-Ek/b and/or for I-Ad and I-Ab. Plotted cells were gated on lymphocytes and CD19+ cells. 

(B) Tail DNA from indicated mouse strains were used for PCR with primers that flank a deletion present 

in the non-functional IEb α chain that is present in C57BL/6 but not in Balb/c genetic background. (C) 

Splenocytes from ABabDR4, DR4 and C57BL/6 mice immunized twice with Pan-DR-binding peptide 

(Padre) were pulsed with Padre, anti-CD3/CD28 activator beads or irrelevant peptide (NS3 peptide) and 

were stained intracellularly after overnight incubation. Plotted cells were gated on lymphocytes, CD3 and 

CD4 positive cells. The results shown are representative of three mice. 
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5.2 NY-ESO116-135 was immunogenic and naturally processed in ABabDR4 mice 

To elicit T cell responses against NY-ESO, we immunized ABabDR4 mice with the 20-mer 

peptide NY-ESO116-135 (NY-ESO116), that has been described as immunogenic in a HLA-DR4 

restriction setting (Zeng et al., 2000). As NY-ESO116 has no sequence homology in the mouse, 

the T cell repertoire is not influenced by any tolerance mechanisms (Figure 2A). A distinct CD4 

T cell response to NY-ESO116 but not to an irrelevant peptide (Padre) appeared upon peptide 

restimulation of blood from immunized ABabDR4 mice (Figure 2B, top). To confirm natural 

processing of the NY-ESO116 epitope, ABabDR4 mice were immunized with NY-ESO full length 

DNA. Similarly, CD4 T cells responded specifically to NY-ESO116 (Figure 2B, bottom). To 

expand NY-ESO-reactive CD4 T cells, one-week in vitro cultures of splenocytes were prepared 

in presence of different peptide concentrations. Most efficient expansion of NY-ESO-reactive 

CD4 T cells occurred at a concentration of 10-8 M NY-ESO116, which was applied in further 

expansion cultures (Figure 2C). 

 

5.3 NY-ESO-reactive TCRs were isolated from ABabDR4 mice 

To isolate NY-ESO-reactive TCRs, splenocytes from NY-ESO116 peptide or NY-ESO DNA-

immunized ABabDR4 mice were used. First, NY-ESO-reactive CD4 T cells were labelled by the 

IFNγ capture method and isolated by flow cytometry (Figure 3A). Two predominant TCRα and 

three predominant β chains were identified, which were matched by combinatorial expression 

and subsequent DR4/NY-ESO116 tetramer staining and revealed TCR-3598 and TCR-3598_2 

(Figure 3B). Three subsequent TCR isolations were conducted from DR4/NY-ESO116 tetramer 

stained and sorted cells after one-week in vitro expansion and yielded one predominant TCRα 

and β chain combination each, TCRs 3600, 5712 and 5713 (Figure 3C). As ABabDR4 mice were 

boosted several times, narrowing down the T cell response to few clones that may be of optimal 

affinity is an expected outcome (Savage et al., 1999). 

Of note, all identified TCRβ chains used the TRBV2 gene segment (Figure 4A). To confirm that 

the immune response to NY-ESO116 is dominated by the TRBV2 gene segment, we stained 

peptide-restimulated splenocytes of an immunized ABabDR4 mouse for TRBV2 and IFN. 

Exclusively TRBV2+ CD4 T cells responded to NY-ESO116 (Figure 4B). Human PBLs were 

retrovirally transduced with the TCRs containing mouse constant regions (Cohen et al., 2006) and 

stained with DR4/NY-ESO116 tetramer (Figure 4C). In the TCR-3598_2-transduced sample not 
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all TCR+ CD4 T cells bound the DR4/NY-ESO116 tetramer. This phenomenon was also 

observed in transduced Jurkat/CD4 cells, that do not express endogenous TCRs (Figure 3B) and 

was therefore not due to formation of mixed TCR dimers composed of endogenous and 

transduced TCR chains but at least partly, to inefficient tetramer binding. Taken together, five 

different NY-ESO-reactive TCRs were identified from four immunized ABabDR4 mice. 

  

 

 

Figure 2 NY-ESO116-135 was immunogenic and naturally processed in ABabDR4 mice. (A) The amino 

acid sequence of NY-ESO116 and the closest homologous sequence in mice are displayed. (B) Peripheral 

blood leukocytes (PBLs) from an ABabDR4 mouse immunized with NY-ESO116 peptide (upper row) or 

NY-ESO DNA (lower row) were pulsed with NY-ESO116 or Padre as irrelevant peptide and were stained 

intracellularly after overnight incubation. The results shown are representative of >10 (upper row) and 

three (lower row) mice. (C) Splenocytes from an immunized ABabDR4 mouse were cultured one week in 

presence of different concentrations of NY-ESO116 as indicated. Following peptide restimulation, 

intracellular cytokine staining was carried out. Plotted cells are gated on lymphocytes and CD3+ cells. 
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Figure 3 Labelling of NY-ESO-reactive CD4 T cells from immunized ABabDR4 mice for TCR 

isolation. (A) NY-ESO116-reactive PBLs were stained for CD4 and labelled by the IFNγ capture method 

following NY-ESO116 restimulation. Cells were gated on lymphocytes, CD3+ cells and live cells. (B) Two 

TCRα and three TCRβ chains isolated from NY-ESO116-reactive CD4 T cells shown in (A) were 

expressed in different combinations in TCR-deficient Jurkat76/CD4 cells and stained for CD3 and with 

DR4/NY-ESO116 tetramer. (C) NY-ESO116-reactive PBLs were stained by DR4/NY-ESO116 tetramer 

following a one-week culture period in the presence of 10-8 M NY-ESO116 (TCRs 3600 and 5712) or 

αCD3/CD28 beads (TCR-5713). 

5.4 NY-ESO-reactive TCRs were isolated from human CD4 T cells 

To compare the NY-ESO-reactive TCRs derived from ABabDR4 mice with TCRs from human 

individuals, in whom NY-ESO is a self-protein potentially leading to a skewed CD4 T cell 

repertoire, we isolated TCRs from human CD4 T cells. Based on the dominant TRBV2 gene 

segment usage of the NY-ESO-reactive CD4 T cells in ABabDR4 mice (Figure 4), we enriched 

human PBLs from a HLA-DR4+ donor for CD4 T cells expressing TRBV2 and cultured them in 

the presence of NY-ESO116 peptide. CD4 T cells depleted of TRBV2+ cells were cultured alike as 
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control. After 2 weeks, more than two percent of the CD4 T cells of two similar in vitro cultures 

stained for DR4/NY-ESO116 tetramer, while this was not the case for the TRBV2 depleted 

fraction (Figure 5A). From both cultures, DR4/NY-ESO116 tetramer+ CD4 T cells were sorted by 

flow cytometry and TCR sequences were isolated. In total, six functional TCRs were identified 

by combinatorial expression of single TCR and  chains and subsequent DR4/NY-ESO116 

tetramer staining (Figure 5B, C). Single chains were considered for combinatorial expression, if 

they occurred at least twice in a total of more than 30 sequenced clones per TCR chain. Five 

TCRs, named NY1-NY5, were chosen for further analyses (Figure 6A). CD4 T cells transduced 

with those TCRs were stained with DR4/NY-ESO116 tetramer (Figure 6B). Thus, human-derived 

NY-ESO-reactive TCRs were isolated to be compared in functional assays to the ABabDR4-

derived TCRs. 

 

 

Figure 4 NY-ESO-reactive TCRs from ABabDR4 mice. (A) V and J gene segments and CDR3 regions 

of α and β chains of functional TCRs are shown that were isolated from the NY-ESO116-reactive CD4 T 

cells labelled either by the IFNγ capture method (Cap) or by DR4/NY-ESO116 tetramer (Tet) as shown in 

Figure 3. The percentages refer to the frequency in total isolated TCRα or β sequences. (B) Splenocytes 

from an ABabDR4 mouse immunized with NY-ESO DNA were pulsed with Padre as irrelevant peptide or 

NY-ESO116 and stained intracellularly after 6 hours of incubation. Plotted cells were gated on 

lymphocytes, CD3+ and CD4+ and live cells. (C) Human CD4 T cells were transduced with the NY-ESO-

reactive TCRs listed in (A) and stained with DR4/NY-ESO116 tetramer. Plotted cells were gated on 

lymphocytes, live cells and CD3+ cells. 
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Figure 5 In vitro expansion of NY-ESO-reactive human CD4 T cells. (A) PBLs from a HLA-DR4+ 

donor were enriched for CD4 T cells expressing the TCRβ variable segment 2 (TRBV2) and cultured in 

the presence of 2 μM NY-ESO116 and irradiated CD4- cells as feeders. The CD4+ fraction depleted of 

TRBV2+ cells was cultured alike as control. After two weeks, NY-ESO116-reactive cells were stained with 

DR4/NY-ESO116 tetramer and sorted by flow cytometry for isolation of the TCR chains. Two similar in 

vitro cultures are shown (1 and 2). Displayed cells were gated on lymphocytes, live, CD3+ and CD4+ and 

CD8- cells. (B, C) TCRα and β chains isolated from PBL in vitro cultures shown in (A) were expressed in 

different combinations in TCR-deficient 58 cells and stained for CD3 and with DR4/NY-ESO116 tetramer. 

TCR NY0 was not considered in further experiments, because initial tetramer staining technically failed. 

 

 

 

Figure 6 NY-ESO-reactive TCRs from CD4 T cells of a human donor (A) V and J gene segments and 

CDR3 regions of α and β chains of functional TCRs identified by combinatorial expression as shown in 

Figure 5 are listed. TCRs NY1-3 and TCRs NY4-5 were isolated from two similar in vitro cultures. The 

percentages refer to the frequency in the total isolated TCRα or β sequences. (B) Human CD4 T cells were 

transduced with the NY-ESO-reactive TCRs listed in (A) and stained with DR4/NY-ESO116 tetramer. The 

untransduced sample is the same as shown in Figure 4C since experiments in Figure 6B and 4C were 

performed in parallel. Plotted cells were gated on lymphocytes, live cells and CD3+ cells. 
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5.5 ABabDR4-derived TCRs recognized NY-ESO more efficiently than human-derived 

TCRs 

First, the TCRs were tested for function by co-culturing TCR-transduced CD4 T cells with NY-

ESO116-loaded or NY-ESO-transduced cell lines. To enhance MHC II expression, melanoma cell 

lines were pre-treated with IFN, yielding HLA-DR-expression comparable to the untreated LCL 

BSM (Figure 7A). NY-ESO protein expression by the transduced or naturally expressing 

melanoma cell lines was confirmed by Western Blot (Figure 7B). All TCRs recognized the HLA-

DR4+ melanoma cell line FM3 loaded with NY-ESO116 (Figure 7C, left). However, the NY-ESO-

transduced lines FM3 and BSM (both HLA-DR4+) were recognized by all ABabDR4-derived 

TCRs, but not or to a lesser extent by the human-derived TCRs (Figure 7C, right). The 

recognition of the NY-ESO-transduced lines was blocked by HLA-DR antibody, confirming 

HLA-DR4-mediated recognition. Taken together, TCRs from both settings were able to 

recognize loaded NY-ESO116, but ABabDR4-derived TCRs did better in recognizing processed 

NY-ESO in transduced cell lines. 

Next, we sought to determine, whether the NY-ESO-reactive TCRs could recognize naturally 

NY-ESO-expressing melanoma cell lines. To this end we co-cultured TCR-transduced CD4 T 

cells with IFN-pre-treated melanoma cell lines that naturally express NY-ESO and/or HLA-

DR4. Four of five ABabDR4-derived TCRs (3598_2, 3600, 5712, 5713) recognized the NY-ESO 

and HLA-DR4-expressing melanoma cell lines FM56 and FM82, while two of the human-

derived TCRs (NY2 and NY3) recognized, albeit weakly, the melanoma cell line FM56 (Figure 

7D). Again, HLA-DR antibody blocked recognition. As expected, the NY-ESO-negative cell 

line FM3 and the HLA-DR4-negative cell line FM6 were not recognized and addition of 

PMA/Ionomycin elicited IFN secretion in all TCR-transduced CD4 T cells (Figure 7D). 

To further characterize the TCRs, we tested TCR-transduced CD4 T cells in a peptide titration 

assay by co-culturing them with K562/HLA-DR4 cells that were loaded with decreasing amounts 

of NY-ESO119. All ABabDR4-derived and two human-derived TCRs showed recognition up to  

10-10 M, while three human-derived TCRs were less sensitive and showed recognition up to a 

peptide concentration of 10-9 M (Figure 8). ABabDR4-derived TCRs elicited higher maximal 

IFNγ concentrations than the human-derived TCRs. Taken together, ABabDR4-derived TCRs 

recognized more efficiently NY-ESO-transduced cell lines and naturally NY-ESO-expressing 

melanoma cell lines and were more sensitive in a peptide titration assay compared to the human-

derived TCRs. 
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Figure 7 ABabDR4-derived TCRs recognized NY-ESO+ melanoma cell lines more efficiently than 

human-derived TCRs. (A) Melanoma cell lines pre-treated with IFNγ and the LCL BSM were stained 

for HLA-DR (dark shading) or isotype control (light shading) and measured by flow cytometry. (B) 

Protein lysates from cell lines used for co-culture experiments in (C) and (D) were assessed for presence 

of NY-ESO protein. -Actin was stained as protein loading control. (C, D) TCR-transduced CD4 T cells 

were co-cultured with the LCL BSM (HLA-DR4+) and the melanoma cell lines FM3 (NY-ESO-, HLA-

DR4+), FM6 (NY-ESO+, HLA-DR4-), FM82 and FM56 (both NY-ESO+, HLA-DR4+). Cell lines FM3-NY 

and BSM-NY were transduced to express NY-ESO, BSM-mCh was transduced with mCherry as control. 

NY-ESO116 (NY116), PMA and Ionomycin (P/I) and blocking antibodies αHLA-DR or αHLA-ABC were 

added where indicated. After overnight incubation IFNγ or IL-2 was measured in the supernatant. Mean 

values of intra-assay duplicates with standard deviation are shown. The results are representative of three 

independent experiments performed with PBLs from different donors. 
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Figure 8 ABabDR4-derived TCRs were more sensitive to NY-ESO than human-derived TCRs. 

TCR-transduced CD4 T cells were co-cultured with K562/DR4 cells loaded with decreasing 

concentrations of NY-ESO119 (NY119). After overnight incubation, IFNγ was measured in the 

supernatant. The data were fitted in three-parameter dose-response curves. The results are representative 

of three independent experiments performed with PBLs from different donors. 

 

5.6 ABabDR4-derived TCR-3598_2 showed no alloreactivity or cross-reactivity  

As in the ABabDR4 mouse only one MHC II allele is present and in the human individual only a 

limited number of MHC alleles, we investigated the NY-ESO-reactive TCRs for potential MHC 

alloreactivity. For this, TCR-transduced CD4 T cells were co-cultured with a panel of 14 LCLs 

expressing different MHC I and II molecules (Appendix 1). The threshold for reactivity was set 

to 500 pg/ml IL-2 in the supernatant, the highest background observed in this assay. Four 

ABabDR4-derived TCRs (TCRs 3598, 3600, 5712, 5713) and one human-derived TCR (TCR-

NY4) reacted to two or more LCL (Figure 9). Which MHC molecule was recognized by the 

cross-reactive TCRs was not further analysed. The ABabDR4-derived TCR 3598_2 did not react 

to any LCL. 
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Figure 9 The ABabDR4-derived TCR-3598_2 showed no alloreactivity. TCR-transduced CD4 T cells were co-cultured with a panel 

of LCLs expressing different MHC class I and II molecules (Appendix 1). As positive control PMA and Ionomycin (P/I) were added to 

the T cells. After overnight incubation IL-2 was measured in the supernatant. Background is indicated by the dotted line. Mean values of 

intra-assay duplicates with standard deviation are shown. In the grid below, cross-reactions to LCLs are summarized. The results are 

representative of three independent experiments performed with PBLs from different donors. 
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For further analysis of potential cross-reactivity, we identified the recognition motifs of the NY-

ESO-reactive TCRs. The 15-mer NY-ESO119 was sequentially mutated to alanine at each position 

and recognition by the TCRs was tested at a concentration of 10-7 M (Figure 10A). In total, nine 

different recognition motifs were identified from the 10 TCRs. While all TCRs required the 

lysine in the 6th position, all but TCR-5713 required the glutamic acid in the 7th position and all 

but TCR-NY5 required the phenylalanine in the 8th position. Of note, there was no clear-cut 

difference in recognition by the ABabDR4-derived and the human-derived TCRs. 

As in the ABabDR4 mouse, TCRs are negatively selected on mouse and not human self-peptides, 

peptides that are not present in the mouse are potentially cross-reactive. As TCR-3598_2 did not 

show alloreactivity in the LCL co-culture, it was further tested with peptides containing its 

recognition motif (X-X-X-X-L-K-E-F-X-X-X-X-X-X-X). Peptides were included if they had a 

predicted IC50 binding affinity to HLA-DR4 of below 500 nM and are present in the human but 

not the mouse proteome (Appendix 2). From the 50 peptides fulfilling these criteria, one peptide, 

X-ray radiation resistance-associated protein 1 (XRRA1)729-743 was recognized by TCR-3598_2 

at 10-6 M but not 10-7 M (Figure 10B). To exclude that this cross-reaction is relevant in a 

physiological setting where XRRA1 must be processed and loaded onto MHC II, TCR-3598_2-

transduced CD4 T cells were co-cultured with full length XRRA1-transduced HLA-DR4+ BSM. 

XRRA1-transduced BSM were recognized only when loaded externally with NY-ESO116 (Figure 

10C). NY-ESO-transduced BSM were recognized as expected. Thus, no relevant cross-reactivity 

of TCR-3598_2 was detected. 

 

5.7 NY-ESO-specific MHC I- and II-restricted TCRs synergize in tumour regression 

To confirm the functionality of TCR-3598_2 in an in vivo setting, we set up a model of ATT in 

which tumour-bearing mice were treated with NY-ESO-specific CD4 and CD8 T cells in 

combination. One month after DR4xRag-/- mice received a subcutaneous injection of 

fibrosarcoma cells (Tet-TagLuc-NY-ESO-HHD clone 1), tumours were palpable and the mice 

were treated with TCR-3598_2-transduced CD4 T cells and CD8 T cells transduced with a TCR 

recognizing NY-ESO157-165 on HLA-A2, named TCR-ESO (Obenaus et al., 2015). Thus, in this 

model CD8 T cells recognize only cancer cells via HHD (HLA-A2-H-2Db chimeric) but not 

cross-presented antigen by tumour stroma cells, while CD4 T cells recognize only cross-

presented antigen by stroma cells, since HHD is only present on the cancer cells and HLA-DR4 is 
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Figure 10 The ABabDR4-derived TCR-3598_2 showed no cross-reactivity. (A) TCR-transduced CD4 

T cells were co-cultured with K562/DR4 cells that were loaded with NY-ESO119 containing single alanine 

exchanges at 10-7 M. After overnight incubation, IFNγ was measured in the supernatant. An amino acid 

was rated as recognition site when the response to the respective alanine exchanged peptide was less than 

one third as compared to the unchanged NY-ESO119-133 at a peptide concentration of 10-7 M. (B) TCR-

3598_2-transduced CD4 T cells were incubated with K562/DR4 cells loaded with 50 different peptides 

(Appendix 2) containing the recognition motif L-K-E-F. Peptides were included if they had a predicted 

IC50 binding affinity to HLA-DR4 of below 500 nM and are present in the human but not the mouse 

proteome. After overnight incubation IFNγ was measured in the supernatant. (C) TCR-3598_2-transduced 

CD4 T cells were incubated with the HLA-DR4+ BSM transduced to express XRRA1 (XR) or NY-ESO 

(NY). NY-ESO116 was added where indicated. Displayed are IL-2 levels in the supernatant after overnight 

incubation. Mean values of three independent experiments with standard deviation (A) or mean values of 

intra-assay duplicates with standard deviation (B, C) are shown. The results are representative of two 

independent experiments performed with PBLs from different donors (B, C). 
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only present on the host cells. As controls, NY-ESO-specific CD4 or CD8 T cells alone or CD4 

and CD8 T cells expressing an irrelevant TCR were given. In group 1, which received NY-ESO-

specific CD4 T cells alone, tumour growth slowed down, while in group 2, which received NY-

ESO-specific CD8 T cells alone, 4 out of 10 tumours regressed (Figure 11A). In the control 

group 4, which received CD4 T cells transduced with an irrelevant TCR together with NY-ESO-

specific CD8 T cells, 5 out of 8 tumours regressed, while all tumours grew out in the groups 5 

and 6, which received a combination of both irrelevant CD4 and CD8 T cells or no T cells, 

respectively. Only in group 3, which received a combination of NY-ESO-specific CD4 and CD8 

T cells, all tumours (10/10) regressed (Figure 11A). 

Analysis of T cells in peripheral blood of the treated mice revealed a higher number of TCR-

transduced CD8 T cells in group 3, which received NY-ESO-specific CD4 and CD8 T cells in 

combination, compared to all other groups (Figure 11B). Numbers of TCR-transduced CD4 T 

cells were higher in groups 1 and 3, which received TCR-3598_2-transduced CD4 T cells, 

compared to groups 4 and 5, which received irrelevant CD4 T cells (Figure 11B). 

Finally, we analysed cross-presentation of NY-ESO by macrophages to CD4 T cells. To this end 

we co-cultured TCR-3598_2-transduced CD4 T cells with CD11b+ stromal cells purified from a 

control-treated tumour (group 5). The TCR-3598_2-transduced CD4 T cells recognized the 

CD11b+ stromal cells, while this was not the case for untransduced CD4 T cells (Figure 11C). 

Externally loaded NY-ESO116 stimulated abundant IFNγ secretion by TCR-3598_2-transduced 

CD4 T cells and αCD3/CD28-activating beads stimulated IFNγ secretion in the untransduced 

CD4 T cells as well. Thus, in vivo functionality of TCR-3598_2 was confirmed in a mouse model 

of ATT. 

 

5.8 A clinical version of TCR-3598_2 displayed comparable function 

For future clinical application, the fully mouse constant region (mc) of the TCR candidate TCR-

3598_2 was exchanged for a human constant region containing 9 amino acids from the mouse 

sequence referred to as minimally murinized constant region (mmc) (Sommermeyer and Uckert, 

2010). Moreover, additional cysteine bridges were included (Cohen et al., 2007). Surface 

expression   of   TCR-3598_2   mc  and   mmc   were   comparable   with   slightly   higher   mean 

fluorescence intensity for the TCR- 3598_2 mc as judged by v staining of transduced human T 

cells  (Figure 12A).   Staining  of  DR4/NY-ESO116   tetramer  of  both  versions  was  only  partly  
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Figure 11 TCR-3598_2-transduced CD4 T cells in combination with TCR-ESO-transduced CD8 T 

cells caused tumour regression. (A) Tumour-bearing mice were treated with TCR-3598_2-transduced 

CD4 T cells and/or TCR-ESO-transduced CD8 T cells at day 30, when the transplanted tumours were 

palpable. TCR-1367-transduced CD4 and/or CD8 T cells were injected as controls where indicated (CD4-

/CD8-irrelevant). Shown are tumour sizes days after tumour cell injection. (B) Adoptively transferred 

TCR-transduced (Vβ+) CD8 and CD4 T cells were detected in blood 9 days after treatment. Group 

numbers refer to (A). Results from two independent experiments were combined (A, B) t test *P< 0.05, 

**P<0.01. (C) CD11b+ stromal cells isolated from isolated tumour material were recognized by TCR-

3598_2-transduced CD4 T cells. As positive controls, CD11b+ stromal cells were loaded with NY-ESO116 

or anti-CD3/CD28 activator beads were added to the T cells. Mean values of intra-assay duplicates with 

standard deviation are shown. The results are representative of two independent experiments. 

 

 

 



Results 

 

 43 

 

 

Figure 12 TCR-3598_2 mc and TCR-3598_2 mmc displayed similar functionality. (A) Human CD4 T 

cells were transduced with TCR-3598_2 mc or TCR-3598_2 mmc and stained for CD4, TRBV2 and 

DR4/NY-ESO116 tetramer. Numbers in brackets are mean fluorescence intensity. Plotted cells were gated 

on lymphocytes (top) and CD4+ cells (bottom) (B) TCR-transduced CD4 T cells were co-cultured with 

K562/DR4 cells loaded with decreasing concentrations of NY-ESO119 (NY119). After overnight 

incubation, IFNγ was measured in the supernatant. The data were fitted in three-parameter dose-response 

curves. Mean values of intra-assay duplicates with standard deviation are shown. (C) TCR-transduced 

CD4 T cells were co-cultured with IFNγ-pretreated melanoma cell lines or PMA and Ionomycin (P/I) as 

positive control. After overnight incubation, IFNγ was measured in the supernatant. The results are 

representative of two experiments performed with PBLs from different donors. 

 

 

- 
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positive as observed previously (Figure 12A, 3B, 4C). To compare functionality of TCR-3598_2 

mc and mmc, peptide sensitivity and recognition of melanoma cell lines were tested. TCR-

3598_2 mc displayed slightly higher peptide sensitivity (Figure 12B). Recognition of NY-ESO-

transduced melanoma cell line FM3 and naturally NY-ESO-expressing melanoma cell lines FM-

56 and FM82 was similar (Figure 12C). Overall, TCR-3598_2 mc and mmc displayed similar 

functionality. 
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7 Discussion 

In this doctoral thesis, TCRs against NY-ESO were isolated from transgenic mice expressing a 

diverse repertoire of human TCRs as well as from human T cells. We observed a better 

performance of TCRs derived from the mice serving as non-tolerant host compared to TCRs 

derived from a human donor regarding recognition of melanoma cell lines and peptide sensitivity. 

The combined use of a chosen MHC II-restricted TCR candidate from the non-tolerant repertoire 

together with an MHC I-restricted NY-ESO-specific TCR from a non-tolerant repertoire achieved 

tumour regression in a mouse model of ATT. 

 

7.1 Functionality of ABabDR4 mice 

In this study, ABabDR4 mice were taken as source for HLA-DR4-restricted TCRs from a non-

tolerant repertoire of T cells. ABabDR4 mice are a similar model to ABabHHD mice, which were 

generated for TCR isolation from CD8 T cells (Li et al., 2010; Obenaus et al., 2015). While 

ABabHHD mice are transgenic for the mouse/human chimeric MHC I molecule HHD (peptide 

binding site from HLA-A2) and do not express mouse MHC I molecules, ABabDR4 mice are 

transgenic for the mouse/human chimeric HLA-DR4-IE molecule and could be confirmed herein 

not to express any mouse MHC II molecule. Functionality of HLA-DR4-IE has previously been 

shown in DR4 mice by immunization and induction of autoimmune disease in case of 

autoantigens (Ito et al., 1996; Touloukian et al., 2000; Zeng et al., 2000). Ability of ABabDR4 

mice to elicit CD4 T cell responses was shown herein by immunization with Padre and NY-

ESO116, confirming functional CD4 T cell immunity in this model. Thus, ABabDR4 mice are a 

useful tool to isolate human TCRs from a non-human host that can be immunized. 

Although all three mouse strains, ABabDR4, DR4 and C57BL/6 mice, responded to 

immunization with Padre, responses of DR4 mice were smaller. This phenomenon we could 

observe for other HLA-DR4 epitopes as well (Chen et al., 2017). We suggested that an 

incompatibility of the mouse V genes to the human HLA-DR4 accounted for less efficient 

immune responses seen in DR4 mice compared to ABabDR4 mice (Chen et al., 2017). In 

ABabDR4 mice, human TCRs selected on human MHC II showed higher diversity and longer 

CDR3 length in the beta chain compared to ABabHHD mice, in which human TCRs are selected 

on mouse MHC II (Chen et al., 2017). Therefore, aside from the advantage to derive fully human 
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TCRs from a non-human host, matching human TCRs with human MHC II as in ABabDR4 mice 

gives rise to a more diverse repertoire of TCRs to isolate from. 

 

7.2 NY-ESO-reactive TCRs from ABabDR4 mice 

7.2.1 Efficiency of immunizations 

Since NY-ESO has no homologue in ABabDR4 mice, they served as non-tolerant repertoire for 

NY-ESO-reactive TCRs. NY-ESO116 peptide immunization was very efficient with only rare 

non-responders but elicited small responses in the range of 1-2% of CD4 T cells. NY-ESO-

responding cells were expanded efficiently in one-week in vitro cultures in presence of the NY-

ESO116 peptide. Interestingly, 10-8 M peptide concentration yielded most IFNγ-secreting cells 

upon peptide restimulation. It can be hypothesized that higher or lower concentrations caused T 

cell exhaustion or inefficient stimulation, respectively. DNA immunization elicited larger 

immune responses after several boosts, however was not efficient leaving many non-responders. 

Together, eliciting anti-NY-ESO CD4 T cell responses by immunization for subsequent TCR 

isolation was well feasible. 

 

7.2.2 Differences in TCR isolation technique 

The NY-ESO-reactive TCRs-3598 and 3598_2 were derived from cells labelled by IFNγ capture 

assay from one single immunized ABabDR4 mouse without prior in vitro expansion. In contrast, 

from DR4/NY-ESO116 tetramer-labelled cells in all three cases only one predominant TCRαβ pair 

was derived. Two of these TCRs (TCR-3600 and TCR-5712) were expanded in the presence of 

low concentration of NY-ESO116, which may be one reason for deriving a monoclonal T cell 

repertoire. However, because DR4/NY-ESO116 tetramer staining of non-cultured T cells failed, 

for the third TCR isolation, T cells were expanded non-specifically by anti-CD3/CD28 activator 

beads, which likewise gave rise to only one predominant TCRαβ pair. Therefore, DR4/NY-

ESO116 tetramer may not bind all NY-ESO116-reactive T cells efficiently. In line with this, TCR-

3598_2 isolated from the IFNγ-labelled T cells binds DR4/NY-ESO116 tetramer only weakly. 

This TCR may have been missed if T cells were labelled by DR4/NY-ESO116 tetramer for TCR 

isolation. Therefore, TCR isolation from IFNγ capture-labelled CD4 T cells may reveal more 

TCRs than from DR4/NY-ESO116 tetramer+ CD4 T cells. 
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7.2.3 DR4/NY-ESO116 tetramer binding 

Failure of MHC II tetramers to bind all appropriate T cells has been reported in the literature 

(Sabatino et al., 2011; Van Hemelen et al., 2015). The question is, whether TCR functionality 

correlates with tetramer binding. In one study, tetramer-positive and tetramer-negative T cell 

clones showed similar proliferation in response to peptide stimulation (Van Hemelen et al., 

2015). However, peptide was added at high concentration (3 µM) making conclusion regarding 

TCR affinity difficult. On the other side, tetramer-negative T cells have been associated with 

lower affinity TCRs and tetramer staining has been used as correlate for T cell avidity (Falta et 

al., 2005; Sabatino et al., 2011). Nevertheless, TCR-3598_2, which bound only weakly to 

DR4/NY-ESO116 tetramer, showed high peptide sensitivity and recognized melanoma lines 

efficiently. High occurrence of mixed transgenic and endogenous TCRαβ heterodimers could be 

ruled out by inefficient tetramer binding in Jurkat67 cells, which do not express endogenous TCR 

chains (Heemskerk et al., 2003). Thus, DR4/NY-ESO116 tetramer binding intensity cannot be 

taken as direct measure of TCR functionality. 

It must be noted that the DR4/NY-ESO116 tetramer used herein was fully human and not human-

mouse chimeric as the HLA-DR4 molecule in the ABabDR4 mice to enable co-receptor binding 

of murine CD4 while preserving HLA-DR4-restricted antigen-binding. The fully human 

DR4/NY-ESO116 tetramer therefore binds only to the TCR and not the murine CD4 co-receptor. 

Whether this is the decisive factor for inefficient tetramer binding of mouse T cells is 

questionable as CD4 binding to MHC is weak and is believed not to stabilize the TCR-pMHC 

interaction in contrast to CD8 (Wooldridge et al., 2005; Xiong et al., 2001). Apart from the 

tetramer staining for TCR isolation from ABabDR4 mice, human T cells or lines expressing 

human CD4 were stained. 

Of note, TCR-3600 and TCR-5712, both derived from in vitro cultures in presence of NY-ESO116 

peptide, have a very similar β chain with only one amino acid difference and an identical α chain. 

On DNA level, however, CDR3 regions of the α chains were different, so that cross-

contamination during the TCR isolation process can be ruled out. Rather, in vitro culturing in 

presence of NY-ESO116 peptide raised very similar TCRs. Similar functionality of both TCRs 

could also be seen by an identical TCR binding motif, alloreactivity to the same LCLs and similar 

recognition capacity of NY-ESO.  
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7.2.4 TCR sequence characteristics 

CD4 T cell responses against NY-ESO116 in ABabDR4 mice were dominated by TRBV2 usage. 

As TRBV2 is not overrepresented in the ABabDR4 TCRβ repertoire, TRBV2 seems to play a 

predominant role in NY-ESO116 recognition (Chen et al., 2017). Interestingly, overrepresentation 

of TRBV2 has also been observed for HLA-DR52/NY-ESO119-143 tetramer positive cells from 

NY-ESO vaccinated patients and human PBL in vitro primings (Poli et al., 2013). Although 

HLA-DR52 and HLA-DR4 have 91% homology, it is unclear whether the dominant use of 

TRBV2 for recognition of NY-ESO on both MHC II molecules is due to similar binding of 

CDR2 or 3 regions of TRBV2 to the MHC. Speaking against this, TCR-3598_2 did not recognize 

NY-ESO116 on HLA-DR52 and several other closely homologous HLA-DR molecules (data not 

shown). On the other side, recognition of a similar NY-ESO epitope, NY-ESO119-134, on multiple 

HLA-DR molecules was shown for two T cell clones (Kudela et al., 2007). Thus, only less 

specific TCRs may recognize NY-ESO on multiple MHC molecules due to binding of CDR2 or 3 

regions of the TCR to a homologous region in the MHC II molecules. 

 

7.3 TCRs from human T cells 

7.3.1 TCR sequence characteristics 

Six NY-ESO-reactive TCRs were identified from human T cells of a healthy donor. In the in 

vitro primings, only the TRBV2+ fraction of CD4 T cells expanded. This suggests that dominant 

usage of TRBV2 by NY-ESO116-reactive TCRs, as observed in the ABabDR4 mice, holds true 

for human T cells as well. As the human T cells were not primed by vaccination prior to in vitro 

culture, deriving a polyclonal repertoire of NY-ESO-reactive T cells was expected. Based on the 

conserved usage of TRBV2 of NY-ESO-reactive T cells, chain centricity could be hypothesized, 

in which one TCR chain confers antigen specificity with large tolerance for partner chains. 

However, combinatorial expression of the isolated TCR chains from the in vitro primings did not 

produce any conflicting results concerning TCRαβ pairing. Thus, α and β chains together confer 

specificity to the NY-ESO-reactive TCR without chain centricity of the β chain. Such chain 

centricity can be seen for example in TCRs recognizing the melanocyte differentiation antigen 

MART-126-35 on HLA-A2 (Nakatsugawa et al., 2015; Pinto et al., 2014). These TCRs 

predominantly use TRAV12-2, whose CDR1 and 2 play a dominant role in binding the MART-

126-35 peptide and HLA-A2 and tolerate many different β chains as partners (Cole et al., 2009; 
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Nakatsugawa et al., 2015; Pinto et al., 2014). Thus, TRBV2 dominance was observed for NY-

ESO116-reactive TCRs of human origin, but α chains were not interchangeable, suggesting no 

strong chain centricity of the β chain. 

 

7.3.2 NY-ESO specific CD4 T cell precursors  

The six NY-ESO-reactive TCRs isolated herein were derived from two in vitro primings from 

human T cells from the same blood sample. Nevertheless, TCR sequences derived from both 

cultures did not overlap, suggesting that the expanded T cell clones grew from single precursors. 

Calculating from the starting number of CD4 T cells and identified TCRs, the precursor 

frequency of NY-ESO116-reactive T cells can be estimated to at least 0.6 in 1x106 CD4 T cells. It 

can be assumed that the real frequency is higher, as only well expanded clones were identified by 

the TCR isolation procedure used herein. CD4 T cell precursors with specificity to self or non-

self were reported to range between 1 and 10 in 1x106 CD4 T cells (Su et al., 2013). CD4 T cell 

precursor frequency with specificity for a similar NY-ESO epitope presented on HLA-

DRA/DRB1*0302 was estimated to 10 in 1x106 (Poli et al., 2013). 

 

7.4 CD4 T cell tolerance to NY-ESO 

The results showing better performance of the MHC II-restricted TCRs from the non-tolerant 

repertoire extend a finding in a similar mouse model transgenic for the human TCR gene loci and 

HLA-A2 (ABabHHD mice), in which we have shown that a TCR raised against the HLA-A2 

epitope NY-ESO157-165 is of higher functional activity than 1G4, a TCR obtained from a 

melanoma patient (Obenaus et al., 2015). 

It is important to note that CD4 T cell tolerance as well as immunity has been observed for 

different self-antigens in mouse models. While the CD4 T cell repertoire against 

carcinoembryonic antigen (CEA) was shown to be tolerant, this was not the case for the CD4 T 

cell repertoire against p53 (Bos et al., 2005; Lauwen et al., 2008). Abundance of the antigen and 

availability for MHC II presentation might explain why the uniformly expressed but tightly 

regulated p53 does not lead to tolerance formation, while this is the case for the transgenic 

protein CEA, which was also shown to be expressed in the thymus (Lauwen et al., 2008). Using 

Cre-recombinase as an artificial tissue-restricted self-antigen, it was shown that CD4 T cell 

tolerance is not deletional and can be broken upon immune challenge (Legoux et al., 2015). In 
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this study, however, no cre-expression was detected in the thymus. As NY-ESO expression has 

been detected in the thymus (Gotter et al., 2004), a likely outcome is tolerance formation, which 

is supported by our data herein. 

NY-ESO116-reactive CD4 T cells from a human donor were expanded in vitro in presence of NY-

ESO116 peptide. Prompt expansion of NY-ESO-reactive CD4 T cells in culture was also observed 

in other reports and is in line with occasionally observed anti-NY-ESO IgG and CD4 T cell 

responses in cancer patients (Gnjatic et al., 2003; Poli et al., 2013; Wada et al., 2014). Lower 

functional activity of the NY-ESO116-reactive TCRs isolated from the human PBL herein 

suggests that CD4 T cell tolerance to NY-ESO is present in humans and that remaining CD4 T 

cells are of lower avidity. Considering CD8 and CD4 T cell tolerance to NY-ESO, it is not 

surprising that immune responses occurring naturally or evoked by vaccination did not lead to 

sustained clinical success (Fourcade et al., 2014; Takeoka et al., 2017).  

 

7.5 Recognition of melanoma lines 

ABabDR4-derived TCRs recognized HLA-DR4/NY-ESO+ melanoma cell lines. Presentation of 

endogenous antigens does not comply with the classical antigen presentation pathway in which 

exogenous antigens are endocytosed and loaded onto MHC II but can occur through a process 

termed macroautophagy (Schmid et al., 2007). However, it is unclear how relevant 

macroautophagy for antigen presentation on MHC II is for cancer cells, which are not 

professional antigen-presenting cells. NY-ESO+ melanoma cell lines have been recognized by 

CD4 T cells in several cases (Fonteneau et al., 2016; Matsuzaki et al., 2015; Zhao et al., 2006). 

However, tumour recognition was either very weak (Zhao et al., 2006) or antigen processing was 

shown to occur in an unexpected way by intercellular antigen transfer of the melanoma cells and 

hence according to the classical MHC II processing pathway or by using the MHC I processing 

machinery for loading of a 10-mer peptide on HLA-DP4 (Fonteneau et al., 2016; Matsuzaki et 

al., 2014). Melanoma cell lines used herein were pre-treated with IFNγ, which in addition to 

upregulating MHC II on the surface can also enhance the MHC II processing machinery. By 

which mechanism antigen processing occurred was not object of investigation. In general, to 

which extent direct recognition of cancer cells by CD4 T cells plays a role for tumour rejection is 

uncertain as MHC II-negative tumour cells can be rejected by CD4 T cells in mouse models 

(Greenberg et al., 1981; Mumberg et al., 1999; Qin and Blankenstein, 2000). 
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7.6 Alternative approaches to isolate TCRs against tumour-associated antigens 

In the case of tumour-associated antigens, which are self-antigens, T cell tolerance can be 

expected as observed for NY-ESO herein. To derive TCRs of higher affinity, which cannot be 

found in the autologous repertoire, several alternative approaches have been used. 

 

7.6.1 HLA-transgenic mice 

HLA-transgenic mice can be immunized with human tumour-antigens, which are not 

homologous in the mouse to derive higher affinity TCRs from responding T cells (Johnson et al., 

2009; Parkhurst et al., 2009). However, the resulting TCRs are fully murine, which bears the risk 

of immunogenicity and consequently low half-life of the infused T cells expressing the TCR in 

the patient (Davis et al., 2010). Moreover, incompatibility of murine V genes and human MHC in 

the HLA-transgenic mice may lead to adjustment to shorter CDR3 regions of the TCRs, 

increasing the risk of cross-reactivity (Gavin and Bevan, 1995; Huseby et al., 2008). Therefore, 

isolating TCRs from mice that do not only express human HLA molecules but also the human 

TCRαβ loci as described herein may be superior. 

 

7.6.2 Affinity maturation 

To increase the affinity of TCRs isolated from the autologous human repertoire, artificial affinity 

maturation has been applied (Linette et al., 2013; Morgan et al., 2013; Robbins et al., 2008). 

However, by circumventing negative selection physiologically taking place in the thymus, cross-

reactivity of the generated TCRs is a risk. Two MAGE-A3-reactive TCRs with enhanced 

affinities led to fatal toxicities in clinical trials due to cross-reactivity (Linette et al., 2013; 

Morgan et al., 2013). Therefore, a method that allows thymic selection as by isolating TCRs from 

humanized mice herein presumably keeps the risk of cross-reactivity lower. 

 

7.6.3 TCRs from T regulatory cells 

In other reports, MHC II-restricted TCRs were isolated from human Tregs thereby avoiding the 

repertoire hole that may have been imposed by tolerance (Yao et al., 2016). In the human T cell 

primings herein, Tregs were not depleted. However, expansion of Tregs is unlikely under the 

given culture conditions including low IL-2. We cannot exclude that high-affinity TCRs against 

NY-ESO can be isolated from human Tregs, as CD4 T cells recognizing self-antigens can 

develop into Tregs instead of being negatively selected (Hsieh et al., 2012). However, the 
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advantage of the ABabDR4 mouse as TCR source is the natural selection for the fittest 

clonotypes upon repeated immunizations with sufficient long intervals, thus generating highly 

functional TCRs presumably of optimal affinity. 

 

7.6.4 Allogeneic T cell primings 

Another alternative approach to circumvent the problem of T cell tolerance to self-antigens is to 

prime T cells in an alloreactive setting, in which the MHC molecule presenting the tumour 

antigen is non-self (Kumari et al., 2014; Wilde et al., 2012). T cells recognizing tumour antigens 

on non-self MHC molecules are not deleted in the thymus by negative selection and may be a 

source of high-affinity TCRs. However, a drawback is the high proportion of primed T cells that 

recognize the MHC molecule independent of the presented peptide. Although TCRs can be 

analysed for cross-reactivity, decreased specificity may be a general problem of TCRs generated 

by alloreactive primings and may not always be detected. 

 

7.7 Off-target toxicity of isolated TCRs 

7.7.1 Alloreactivity 

Several NY-ESO TCRs isolated from mouse or human in the present study showed alloreactivity 

towards one or more LCLs. Since the TCRs originate from individuals that bear only a limited 

number of MHC molecules and it has been shown that up to 10% of T cells from a naive 

polyclonal repertoire are alloreactive, this finding is plausible but underscores the need for 

thorough alloreactivity testing (Suchin et al., 2001). The presence of more MHC molecules in the 

thymus is thought to lead to a higher number of T cells affected by negative selection and thereby 

less alloreactive T cells (Ni et al., 2014). Hence, the reason for more alloreactive ABabDR4-

derived TCRs in comparison to human-derived TCRs in this study may be that ABabDR4 mice 

express only one MHC II molecule. However, HLA-A2-restricted TCRs generated in ABabHHD 

mice against several antigens including MAGE-A1 and NY-ESO, did not show frequent 

alloreactivity, although these mice express only one MHC I (Obenaus et al., 2015 and 

unpublished data). Whether the frequent alloreactivity in TCRs isolated from ABabDR4 mice is a 

feature found primarily in MHC II-restricted TCRs or related to the NY-ESO specificity will 

become clear when further TCRs against different antigens will be isolated from ABabDR4 mice. 

It has to be noted that in principle the risk of alloreactivity applies to all TCRs that are derived 
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from a (partly) HLA-mismatched donor, as seen herein by the alloreactivity of one human-

derived TCR against NY-ESO. 

 

7.7.2 Cross-reactivity 

The chosen TCR candidate for clinical application, TCR-3598_2, was analysed for cross-

reactivity by testing epitopes present in the human but not mouse proteome containing its 

recognition motif as identified by alanine scan. One peptide was found to be recognized, but only 

at high concentration. Further analysis revealed this recognition to be irrelevant, because the 

epitope was not processed and presented. The relevance of cross-reactivity analysis by alanine 

scan was tragically exemplified by a clinical trial targeting MAGE-A3 by a patient-derived and 

affinity-matured TCR, in which cross-reactivity to an unrelated protein caused fatal cardiac 

toxicity (Linette et al., 2013). The cross-reactive epitope from the protein titin was later detected 

by alanine scan revealing that the epitope contained the TCR recognition motif (Cameron et al., 

2013). In a recent report, however, cross-reactivity of a TCR against the minor histocompatibility 

antigen HA-2 was only found by a scanning approach using a combinatorial peptide library, in 

which 180 peptide pools are applied to test all possible amino acid combinations (Bijen et al., 

2018). The cross-reactive peptide differed in 5 amino acid positions and could not be detected by 

alanine scan. Therefore, although more laborious, scanning with a combinatorial peptide library 

should be applied in the future to identify cross-reactive TCRs best possible. 

 

7.8 Mouse model of ATT 

7.8.1 Synergy of CD4 and CD8 T cells 

ABabDR4-derived TCR-3598_2-transduced CD4 T cells in combination with TCR-ESO-

transduced CD8 T cells caused regression of palpable tumours in a mouse model of ATT. The 

combined treatment was more effective than treatment with CD4 or CD8 T cells alone. 

Therefore, their synergistic effect was necessary to achieve efficient tumour regression and the in 

vivo functionality of the herein isolated TCR-3598_2 was confirmed. 

Synergy of CD4 and CD8 T cell lines with specificity for NY-ESO has been shown to delay 

tumour growth in a xenograft mouse model (Matsuzaki et al., 2015). In this model, the CD4 T 

cells see an 8-9-mer peptide that is presented on MHC II of the xenografted cancer cells, but 

cross-presentation of NY-ESO cannot occur in a xenograft model (Matsuzaki et al., 2014; 
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Matsuzaki et al., 2015). However, recognition of cross-presented antigen was shown to be crucial 

for tumour rejection and required for bystander elimination of antigen-negative cancer cells 

(Schietinger et al., 2010; Spiotto et al., 2004). Therefore, improved recognition of cross-presented 

antigen may be one feature of CD4 and CD8 T cell synergy. TCR-3598_2-transduced CD4 T 

cells recognized re-isolated tumour stromal cells, showing that specific recognition of cross-

presented antigen was implicated in the anti-tumour effect of the CD4 T cells in the model used 

herein. Synergy of CD4 and CD8 T cells with specificity for model antigens has been shown in 

several models (Arina et al., 2017; Bos and Sherman, 2010; Li et al., 2017; Schietinger et al., 

2010). It has become apparent that CD4 T cells, to synergize with CD8 T cells, must be specific 

and act locally at the tumour site, because non-specific CD4 T cells that gave help to CD8 T cells 

only during priming did not improve the outcome (Bos and Sherman, 2010; Schietinger et al., 

2010). Local activity at the tumour site of the specific CD4 T cells in the tumour model used 

herein can be assumed as they recognized re-isolated tumour stromal cells. Moreover, CD8 T cell 

numbers in the blood were higher in the group that received the combined treatment of CD4 and 

CD8 T cells. Therefore, CD4 T cells also induced proliferation and/or survival of the CD8 T 

cells. 

 

7.8.2 Efficacy of CD4 or CD8 T cells alone 

Transfer of NY-ESO-specific CD4 T cells alone delayed tumour growth but did not lead to 

tumour regression. Most in vivo models in which CD4 T cells alone can eradicate transplanted 

tumours either involve very early treatment on day 0 or 1 following tumour injection (Mumberg 

et al., 1999; Perez-Diez et al., 2007) or treatment in conjunction with chemotherapy 5 days after 

tumour injection (Greenberg et al., 1981). In one model, CD4 T cells can reject large B16 

tumours, however only if treated with radiotherapy and anti-CTLA-4 or Th17-differentiation of 

the CD4 T cells prior to infusion (Muranski et al., 2008; Quezada et al., 2010). Following the 

transduction protocol for CD4 T cells used herein, it can be assumed that CD4 T cells have a Th1 

phenotype, which is supported by their ability to secrete IFNγ upon stimulation with CD11b+ 

stromal cells. It would be interesting to investigate, whether Th17 differentiation of the CD4 T 

cells together with tumour irradiation improves the outcome in the model used herein, in which 

the antigen is seen only by cross-presentation and not on the cancer cells. Together, failure to 

reject tumours by CD4 T cells alone was not surprising, as tumours established for one month 

and were not sensitized by radiotherapy or chemotherapy prior to ATT. 
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Transfer of NY-ESO-specific CD8 T cells alone or with irrelevant CD4 T cells caused tumour 

regression only in part of the mice. Although CD8 T cells have been shown to reject even large 

established tumours, this was the case when the target was a strong model antigen or when the 

target was overexpressed as trimer minigene (Anders et al., 2011; Leisegang et al., 2016b; 

Schreiber et al., 2012). The Tet-TagLuc cells used in the present study were engineered to 

express the target antigen NY-ESO as full-length protein, which resembles more the physiologic 

situation than a trimer minigene. Moreover, in this model CD8 T cells cannot recognize cross-

presented antigen on stromal cells because of absence of HLA-A2 in the host mice. Insufficient 

rejection by CD8 T cells alone was therefore not unexpected. 

 

7.8.3 Limitations of the model 

Although NY-ESO-specific CD4 and CD8 T cells in combination caused tumour regression 

initially, antigen-negative variants started to outgrow 2-8 weeks following treatment (data not 

shown). Thus, recognition of cross-presented antigen by CD4 T cells in addition to CD8 T cells 

allowed tumour regression in the first place but did not eradicate antigen-loss variants unlike 

other models (Arina et al., 2017; Schietinger et al., 2010). Irradiation or chemotherapy 

concomitantly with ATT may increase the extent of cross-presentation to CD4 T cells thereby 

compensating for the lack of cross-presentation to CD8 T cells and preventing relapse of antigen-

loss variants. 

While the positive results of the mouse model are an indicator for efficacy of the therapy, safety 

cannot be studied in full, because off-target and on-target toxicity may not be comparable to 

humans due to species-specific protein expression. For safety, in vitro assays help to estimate the 

risk of toxicity. 

Although a preclinical mouse model is very useful to evaluate whether a therapy is promising and 

should be tested in patients, it can never exactly reflect the real situation. A clinical trial will 

reveal how successful the developed therapy can be. 

 

7.9 Translation into the clinic 

The NY-ESO-specific TCR-3598_2 derived from the ABabDR4 mouse model showed a 

favourable safety profile with no detectable alloreactivity or cross-reactivity but high functional 
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activity towards NY-ESO, which could be confirmed in an in vivo setting. Therefore TCR-

3598_2 is a promising candidate for clinical application. 

 

7.9.1 Clinical version of TCR-3598_2 

To analyse the isolated NY-ESO-reactive TCRs, they were expressed with murine constant 

regions to increase correct pairing of introduced α and β chains and moreover enable staining of 

TCR expression in human cells by anti-mTCRβ (Cohen et al., 2006). However, immunogenicity 

of the mouse constant regions in a human host may lead to low persistence and consequently low 

efficacy of the TCR-engineered T cells. Antibodies against murine variable regions were 

observed in patients treated with murine TCRs against gp100 or p53 (Davis et al., 2010). 

Therefore, for future clinical application the fully murine constant regions (mc) were exchanged 

for minimally murinized human constant regions (mmc) containing an additional disulphide bond 

to decrease immunogenicity but maintain improved pairing and expression (Cohen et al., 2007; 

Sommermeyer and Uckert, 2010). Both versions of TCR-3598_2, mc and mmc, showed 

comparable functionality with only slightly reduced surface expression and peptide sensitivity of 

TCR-3598_2 mmc. TCR-3598_2 mmc is therefore the version of choice for clinical application. 

 

7.9.2 Clinical application of combined CD4 and CD8 T cells therapy 

Although ATT of solid tumours has achieved objective responses in clinical trials, efficacy must 

be improved, because responses in the majority of patients were short-lived (Rapoport et al., 

2015; Robbins et al., 2015). Low persistence of adoptive T cells and/or outgrowth of antigen-

negative cancer cells, as has been observed in earlier clinical trials, may be prevented by giving 

antigen-specific CD4 T cells in addition to CD8 T cells to induce a more comprehensive anti-

cancer response. The results of the in vivo model herein clearly demonstrated that the 

combination of NY-ESO-specific CD4 and CD8 T cells was more effective than treating with 

CD4 or CD8 T cells only. Therefore, to improve efficacy in ATT, combination of CD4 and CD8 

T cells is a promising approach to test in a first clinical trial. 

Eligible patients for the combined CD4 and CD8 T cell therapy developed herein need to be 

positive for HLA-DR4 and HLA-A2. As the allele frequencies for HLA-DR4 and HLA-A2 are 

approximately 8% and 30%, respectively, only approximately 5% of patients are expected to 

have this haplotype (Schmidt et al., 2009). To be able to recruit enough patients for a clinical 

study, cancer entities should be chosen that display high expression rate of NY-ESO. NY-ESO is 
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expressed in a variety of carcinoma entities, however only in a minor fraction of each (Kerkar et 

al., 2016; Park et al., 2016). In contrast, high expression rates were reported in sarcomas with 

76% of synovial sarcoma and >89% of myxoid/round cell liposarcomas with mostly homogenous 

expression pattern of NY-ESO (Hemminger et al., 2013; Lai et al., 2012; Pollack et al., 2012). 

Therefore, synovial sarcoma and myxoid/round cell liposarcoma would be ideal candidates for a 

first clinical trial of combined NY-ESO-specific CD4 and CD8 T cell therapy. 
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8 Abbreviations 

 

7-AAD 7-amino-actinomycin D 

ACK Ammonium-chloride-potassium 

APC  Allophycocyanin 

ATT  Adoptive T cell therapy 

AIRE  Autoimmune regulator 

β2m  β2-microglubulin 

CAR  Chimeric antigen receptor 

CD  Cluster of differentiation 

cDNA  Complementary DNA 

CDR  Complementarity determining region 

CEA  Carcinoembryonic antigen 

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 

DNA  Deoxyribonucleic acid 

dNTP  Deoxynucleoside triphosphate 

EBV  Epstein-Barr virus 

EDTA  Ethylenediaminetetraacetic acid 

ELISA  Enzyme-linked immunosorbent assay 

FCS  Fetal calf serum 

FITC  Fluorescein isothiocyanate 

HLA  Human leucocyte antigen 

HHD  HLA-A2-H-2Db chimeric molecule 

hTCM  Human T cell medium 

IC50  Half maximal inhibitory concentration 

IFNγ  Interferon γ 

Ig  Immunoglobulin 
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IL  Interleukin 

LCL  Lymphoblastoid B cell line 

MACS  Magnetic-activated cell sorting 

MCA  Methylcholanthrene 

MHC  Major histocompatibility 

mTCM  Mouse T cell medium 

NS3  Nonstructural protein 3 

Padre  Pan-DR-binding peptide 

PBL  Peripheral blood leukocyte 

PBMC  Peripheral blood mononuclear cells 

PCR  Polymerase chain reaction 

PD-1  Programmed cell death protein 1 

PE  Phycoerythrin 

PBS  Phosphate-buffered saline 

RAG  Recombination-activating gene 

TAP  Transporter associated with antigen processing 

CLIP  Class II-associated invariant chain peptide 

s.c.  Subcutaneously 

SEREX Serological expression cloning 

RACE  Rapid amplification of cDNA ends 

TCR  T cell receptor 

Th  T helper 

TRAV  T cell receptor α variable region 

TRBV   T cell receptor β variable region 

TIL  Tumour infiltrating lymphocyte 

WT  Wild type 

XRRA1 X-ray radiation resistance-associated protein 1 
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