Mapping the surface water storage variation in
densely impounded semi-arid NE Brazil with

satellite remote sensing approach

A Dissertation

Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of

Natural Sciences (Dr. rer. nat.)
to the Department of Earth Sciences

of Freie Universitat Berlin

by
Shuping Zhang

Berlin, July 2018






Supervisor: Prof. Dr. Bjorn Waske
Second examiner: Prof. Dr. Axel Bronstert

Date of defense: November 14", 2018






Abstract

Surface water bodies provide vital support to the society and fundamentally affect ecosystems
in various manners. Precise knowledge of the spatial extent of surface water bodies (e.g.
reservoirs) as well as of the quantity of water they store is necessary for efficient water
deployment and understanding of the local hydrology. Remote sensing provides broad
opportunities for surface water mapping. The main objectives of this thesis are: 1) delineating
surface water area of partly vegetated water bodies only from remote sensing data without
field data input; 2) obtaining the surface water storage, and 3) analyzing its spatio-temporal
variations for northeastern (NE) Brazil as a representative for a densely dammed semi-arid

region.

At first, I investigated the potential of digital elevation models (DEMs) generated from
TanDEM-X data, which were acquired during the low water level stage, for reservoirs’
bathymetry derivation. I found that the accuracy of such DEMs can reach one meter, both in
the absolute and relative respects. It has shown that DEMs derived from TanDEM-X data
have great potentials for representing the reservoirs’ bathymetry of temporally dried-out

reServoirs.

Subsequently, I targeted at developing a method for mapping the water surface beneath
canopy independent of field data for further delineation of the effective water surface. Instead
of the commonly used backscattering coefficients, I investigated the capability of the
Gray-Level Co-Occurrence Matrix (GLCM) texture index to distinguish different types of
Radar backscattering taking place in (partly) vegetated reservoirs. This experiment
demonstrated that different types of backscattering at the vegetated water surface show
distinct statistical characteristics on GLCM variance derived from TerraSAR-X satellite time
series data. Furthermore, with the threshold established based on the statistics of the
sub-populations dominated by different types of backscattering, the vegetated water surfaces
were effectively mapped, and the effective water surface areas were further delineated with an

accuracy of 77% to 95%.



Based on the investigation of the DEMs generated from TanDEM-X data, I derived the
formerly unknown bathymetry for 2 105 reservoirs of various sizes in four representative
regions of an overall area of 10 000 km?. The spatial distributions of surface water storage
capacities in the four regions were subsequently extracted from the combination of the
reservoir bathymetry and the water surface extents provided by RapidEye satellite time series.
Furthermore, the spatio-temporal variations of surface water storage were derived for the four
representative regions on an annual basis in the period of 2009-2017. This study showed that
1) The density of reservoirs in NE Brazil amounts to 0.04-0.23 reservoirs per km?, the
corresponding water surface and surface water storage are 1.18-4.13 ha/km? and 0.01-0.04
hm? m/km?, respectively; 2) On the spatial unit of 5x5 km?, the surface water storage in the
region constantly decreased due to a prolonged drought with a rate of 103 m*/year from 2009
to 2017, with a slight increase from 2016 to 2017 in a few reservoirs; 3) Local precipitation
deficit controls the variation of the overall surface water storage in the region. In this thesis I
demonstrated the great potential of the great potential of SAR and optical satellite time series
data for hydrological applications. The method I developed for delineating the effective water
extent from the vegetated reservoirs has shown high potential transferability for other similar
regions. The data gaps of bathymetry and surface waters storage capacity were filled for 2 105
reservoirs in NE Brazil. The results of the spatio-temporal variations of surface water storage
in four representative regions from 2009-2016 can support future water management and

improve hydrological prediction in NE Brazil.



Zusammenfassung

Oberflichengewdsser haben einen hohen Wert fiir die Gesellschaft und beeinflussen
Okosysteme grundlegend und in verschiedenster Weise. Kenntnisse der genauen Ausdehnung
der Wasseroberfldche und des Volumens der Gewisser (z.B. von Stauseen) sind wichtig fiir
eine effiziente Wassemutzung sowie fiir das Verstidndnis der lokalen Hydrologie. Fiir die
Kartierung von Oberfldchengewissern bietet die Fernerkundung sehr gute Moglichkeiten. Die
Hauptziele dieser Dissertation sind 1) die Bestimmung der Wasserflichenausdehnung von
teilweise mit Vegetation bedeckten Gewdéssern unter ausschlieflicher Nutzung
fernerkundlicher Daten ohne lokal erfasste Beobachtungen, 2) die Ableitung der
Gewdsservolumina, sowie 3) die Analyse ihrer raumzeitlichen Variation am Beispiel vom

semi-ariden Nordostbrasilien, das eine hohe Dichte an Stauseen aufweist.

Zunéachst untersuchte ich das Potenzial von aus TanDEM-X-Daten erstellten digitalen
Gelandemodellen (DGM) fiir die Ableitung der Bathymetrie von Stauseen. Solche DGMs
konnen eine Genauigkeit von bis zu einem Meter erreichen, sowohl absolut als auch relativ.
Die aus den TanDEM-X-Daten wéhrend der Niedrigwasserperiode abgeleiteten DGMs haben
damit ein grofles Potenzial fiir die zuverldssige Abbildung der Bathymetrie von zeitweilig

trocken fallenden Stauseen.

AnschlieBend entwickelte ich eine Methode zur Kartierung der effektiven
Gewisserflichenausdehnung von teilweise vegetationsbedeckten Stauseen unabhédngig von
Felddaten. Anstelle der hdufig verwendeten Streuungskoeffizienten untersuchte ich die
Eignung des Grauwertematrix (GLCM)-Texturindexes zur Unterscheidung zwischen
verschiedenen Arten der Radarsignalstreuung, die bei bewachsenen Stauseen auftreten. Dieses
Experiment verdeutlichte, dass unterschiedliches Streuverhalten der bewachsenen
Wasseroberfliche eindeutige statistische Merkmale der GLCM-Varianz in TerraSAR-X
Satellitenzeitreihendaten aufweist. Desweiteren wurden mittels Schwellwerten, die basierend
auf statistischen Kennwerten flir jede Art von Riickstreuverhalten festgesetzt wurden, die

bewachsene Gewisserflache kartiert und die effektive Ausdehnung der Wasseroberfldche mit



einer Genauigkeit von 77 bis 95% bestimmt.

Basierend auf dem von TanDEM-X-Daten abgeleiteten DGM habe ich fiir 2 105 Stauseen
unterschiedlicher Grofle in vier reprisentativen Regionen mit einer Gesamtflache von 10 000
km? die bislang weitestgehend unbekannte Bathymetrie abgeleitet. Mit Hilfe der
Wasserflichen, die aus RapidEye-Zeitreihen bestimmt wurden, und der genannten
Bathymetrien wurde die rdumliche Verteilung der Speicherkapazititen in Stauseen in den vier
Regionen berechnet. Weiterhin wurden raum-zeitliche Variationen der Wasservolumina fiir die
vier reprasentativen Regionen jdhrlich fiir den Zeitraum 2009-2017 analysiert. So konnte
gezeigt werden, dass 1) die Dichte an Stauseen in Nordostbrasilien bei 0,04-0,023 Stauseen
pro km? liegt, mit einer entsprechenden Wasserfliche von 1,18-4,13 ha/km? und einem
Wasservolumen von 0,01-0,04 hm® m/km?; 2) dass bei einer rdumlichen Auflosung von 5X 5
km? in den Jahren durch eine langanhaltende Diirre gekennzeichneten Jahren 2009-2017 das
Wasservolumen in der Region kontinuierlich gesunken ist mit einer Rate von 103 m?/Jahr mit
einer leichten Zunahme von 2016 bis 2017 in wenigen Stauseen; 3) dass ein lokales
Niederschlagsdefizit die Variation des gesamten Oberflichenwasservolumens in der Region
kontrolliert. In trockenen Jahren beschleunigte die Wasserentnahme aus groflen Stauseen die

Wasserverluste in diesen Gewassern.

In dieser Dissertation habe ich das Potenzial von SAR- und optischen
Satellitendatenzeitreihen fiir hydrologische Anwendungen aufgezeigt. Die Methode, die ich
zur Kartierung der Gewdsserfliche von teilweise vegetationsbedeckten Stauseen entwickelt
habe, ist potentiell iibertragbar auf andere dhnliche Regionen. Die Bathymetrie und die
Speicherkapazititen fiir 2 105 Stauseen schlieBen eine Datenliicke fiir die untersuchten
Regionen in Nordostbrasilien. Die abgeleitete raum-zeitliche Variation des Wasservolumens
kann zukiinftig das Wassermanagement unterstiitzen und die hydrologische Modellierung und

Vorhersage in Nordostbrasilien verbessem.
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1. Introduction

1. Introduction

1.1 Motivation

Surface water bodies, including lakes, reservoirs, wetland, flood plains, river etc. provide vital
support to the society and the ecosystem, affect local hydrology, and interact with local/global
climate. They supply water for domestic use, power generation, and agricultural irrigation
(Postel, 2000). From ecological perspective, surface water maintaining the local ecosystem and
ecological habitats. Water bodies of large number/density also interfere the local hydrological
transportation by changing the volume and time of rivers discharge to the oceans (Biemans et
al., 2011). By altering the green house emission (Rosenqvist et al., 2002), changing the
transporting pathway and varying the amount of carbon and nitrogen in the hydrological
systems (Bastviken et al., 2011; Tranvik et al., 2009), water bodies like reservoirs pose subtle
impact on the climate. Water bodies like lakes in semi-arid area are very sensitive to climate

condition, and their variation also indicate the climate change.

Knowledge on precise water surface and storage in water scarce area can improve the
efficiency of local water management. This knowledge also helps to understanding the local
and regional hydrology and its response to human activities like damming etc. Moreover, in
regions characterized by water redundancy or deficit, e.g. flooding or droughts, precise
information on water surface area and storage on real time scale can assist analyzing, predicting
and preventing water related hazards, and help to study the interaction between surface water,

climate condition and human interferences (Alsdorf and Lettenmaier, 2003; Koltun, 2001).
1.2 State of art in surface water mapping with remote sensing

Remote sensing images acquired by ground-, air- and space- borne instruments capture the
physical characteristic of ground objects of vast distribution. Given traditional in-situ water
body monitoring is labor- and time-costly, remote sensing data have provided broad
opportunities for studying water bodies of difficult access and/or wide spread. Along with the

increases in the temporal spatial and spectral resolutions, the ease in access, and the variety of



1. Introduction

remote sensing data, the application of remote sensing data and relevant approaches in water
body mapping have developed significantly (Lettenmaier et al., 2015; Palmer et al., 2015). As a
matter of fact, water environment mapping has entered a new era when remote sensing data and
techniques provide the mainstream approaches (Alsdorf et al., 2007; Hall et al., 2011,

Lettenmaier et al., 2015; Palmer et al., 2015; Van Dijk and Renzullo, 2011).

Water mapping is based on the characteristics of water environment captured by the remote
sensing images. The data commonly used for surface water mapping were provided by sensors
capturing the ground reflected solar light in the range of visible, infrared and microwave

windows (Figure 1.1).

Electromagnetic Spectrum - Wavelength in micrometres

]ﬁ}" ](l]’ ](l]" ](l]‘ ﬂ_lﬂl ﬂ_ll } llﬂ 1(|]0 HI}‘ HIP 1[|]-‘ I{I"J“ ]{I}"
Gamma Ray X Ray Ultra=violet Visible Infra-red Microwaves Radio Waves
400 480 540 580 700

Visible Spectrum - Wavelength in nanometres

Figure 1.1 The electromagnetic spectrum, image courtesy http://www.sat.dundee.ac.uk/spectrum.html

1.2.1 Physical characteristics of water environment in remote sensing data and relevant technique

Images acquired by optical sensor receiving solar light in visible and infrared range and the
images acquired with instrument receiving microwave signals are the commonly used data in
current remote sensing mapping. Therefore, in this study I mainly focused on investigating the
data acquired by optical sensors and microwave instruments for precise mapping of water

surface and surface water storage.
1.2.1.1 Water environment on Radar images

Microwave imagers map the ground surface with the received microwave pulses whose
wavelengths are on the order of centimeter to decimeter (Figure 1.1). A radio direction and
ranging (Radar) sensor is an active system which transmits microwave pulses towards the

2



1. Introduction

targets and receives the returned signals. Thus, mapping with Radar instruments is independent
of external illumination, for example from the sun. A SAR system synthesizes the effect of a
very long antenna from a single antenna, using the Doppler effect caused by the motion of the
platform which the SAR antenna mounts (Lillesand et al., 2008). SAR sensor usually provide
images of much higher spatial resolution than real aperture radars which constrained by the

length of the antenna.

Microwave pulses transmitted by a radar system can penetrate through the clouds, smoke and
haze. Therefore, the image acquisition with Radar sensors can take place at all weather
conditions (Ulaby and Long, 2014). Radar systems are side-looking system (Figure 1.2). The
backward reflection of the incident Radar pulses is called backscattering. The brightness of a
Radar image indicates the amplitude of pulses returned by ground objects. The amplitude of a
SAR image depends on the dielectric constant of the ground objects and the geometric relation
between the incident Radar pulses and the ground objects (Cover and Chris Oliver, 2004).
Usually, ground objects of large dielectric constants return more energy than that of small
dielectric constant. The amplitude component of Radar image is often converted to
backscattering coefficient for further mapping and analysis. In addition to the backscattering
amplitude, a Radar system also records the distance between the antennae and the mapped
ground objects by measuring the time of the returned signals (Lillesand et al., 2007). The
antenna—ground distance is recorded as the phase component of SAR data and expressed as the

times of the microwave’s wavelength.

The microwave pulses transmitted by a Radar sensor travel in the panel normal to the ground
surface, and this panel is called incidence panel. The geometrical relation between the
incidence panel and the panel along which the electric field vectors are distributed determines
the polarization of the microwave. A wave is horizontally polarized (also known as
perpendicularly polarized and denoted with H) if its electrical vector is perpendicular to the
incidence panel and vertically polarized (parallel polarized and denoted with V) if its electric

field vector is distributed in the incidence panel (Ulaby and Long, 2014). Radar pulses are often
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transmitted and received in single, dual or quadratic channels.

Figure 1.2 illustrates the interaction between the transmitted Radar signals and mapped water
environment. Three types of scattering take place on a vegetated water surface: specular
reflection, diffusive/volumetric scattering and double bounces, with their backscattering
amplitudes in the ascending order (Cohen et al., 2016; Ferrazzoli and Guerriero, 1995; Horritt
et al., 2003; Ormsby et al., 1985; Ramsey, 1995). Open water surface presents specular
reflection (SR) and barely returns any transmitted signals to the Radar sensors. On the water
surface vegetated by tree or features alike, the incident Radar pulses are reflected away from
the open water surface towards the tree trunk or similar features, and then returned to the
antenna with little attenuation. This process is so-called double bounces (Richards et al., 1987)
and allows for high backscattering from the water surfaces vegetated by plants like tree and
large emergent macrophytes (Hess et al., 1990; Richards et al., 1987). Volumetric scattering
(VS) takes place on the rough surfaces covered by plants of dense or closed canopy, for

instance, floating macrophytes.

\"~

\

Figure 1.2 The interaction between surface water environment with transmitted SAR pulses. a: specular

reflection; b: double bounces, and c: diffusive/volumetric scattering

1.2.1.2 InSAR technique

Interferometric SAR (InSAR) is a recent technique in the remote sensing domain which
employs SAR images pairwise and requires the image pair to map the same area with nearly

identical configurations (Bamler and Hartl, 1998; Rosen et al., 2000). Instead of the amplitude
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component, InSAR uses the phase component of SAR images (Bamler and Hartl, 1998; Rosen
et al., 2000) (Figure 1.3 A).

Figure 1.3 Illustration of an InSAR system, after Lillesand et al. (2008). A1 and A2 indicate the platforms
of the SAR sensors. B is the distance between the two sensors, R1 is the distance between the sensor on
Al and the ground object P, so is the relation between R2, A2 and P. The two sensors on Al and A2 can
map the ground surface simultaneously or with time lag of days

The phase component of a SAR image expresses the distance between SAR sensors and the
mapped ground objects in the cycle of 27. Usually, the phase is wrapped, and only shows the
fractional components in the range of —m to . It is later recovered to the complete cycles of
2m with a processing called unwrapping (Rosen et al., 2000) to express the phase difference
between adjacent pixels or the phase difference at the same location caused by ground
displacements. The wrapped phase () comprises of the phase contribution from the
topography of the mapped area (¢tqp,), atmospheric inconsistency in the signal paths in the
two acquisitions (Pg¢m), and orbital inaccuracy of the involved sensors ( ¢,,,) and noise
(bnoise) as shown in equation (1.1) (Bamler and Hartl, 1998; M.Kampes, 2006; Rosen et al.,
2000):

1.1
b= ¢topo + Gais + Parm T Porb T Proise (1.1

Among all the components, the mostly frequently adopted ones are the phased of the
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topography and ground displacement. DEMs can be generated from those SAR image pair by
converting the topography phase to the elevation with height of ambiguity (HoA) defined in
equation (1.2) (E et al., 2004; Small, 1998; Wegmiiller et al., 2009):

_ Ryisind A (1.2)

HoA
0 2B, ¢

Where HoA is the height of ambiguity, indicating the height of the ground corresponding to
the phase difference A@; A is the wavelength of SAR pulses, 6 is the incidence angle; R, is
the distance between the mapped ground and the sensors; B, is the distance between the two

sensors in the direction perpendicular to the path of SAR pulses.

In the case of surface deformation, e.g. earthquake, the displacement component is explicitly
extracted and converted to the surface motion magnitude with displace ambiguity defined in

equation (7.3) (Bamler and Hartl, 1998; M.Kampes, 2006; Rosen et al., 2000)

41 (1.3)
AD = ——4¢

AD 1is the displacement of the ground, and A« is the difference between the phases

contained in the image pair mapping the same area.

InSAR requires the signals from the pair of the image be consistent at the local scale. The

signal consistency is indicated by coherence (), expressed as the local correlation coefficient

as defined with equation (1.4) (Bamler and Hartl, 1998; Rosen et al., 2000):

<g,9, > (1.4)

y:
\/< |g11% ><|g|* >

Where g, is the SAR signal returned to the i antenna, and angular brackets represent the
averaging over the window where the coherence is calculated. The ground objects which return
identical SAR pulses to the SAR sensors will present coherence y = 1, and the objects which

fails to return similar pulses to the two sensors will present y = 0 (Rosen et al., 2000) The
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quality of an interferogram is determined by the coherence derived from the image pairs used

to generated the interferogram.

In a water environment, open water surface usually does not return (consistent) SAR pulse to
the sensors, and present coherence nearly 0. However, in the water surface vegetated by woody
plants or large emergent macrophyte, the double bounces between the water surface and the
tree trunks or similar features return strong and consistent SAR pulses back to the SAR sensors
thus present highly coherent. The ground displacement in equation (1.1)in this circumstance is

caused by the water level changes beneath the canopy (Alsdorf et al., 2000).
1.2.1.3 Water environment on optical spectral images

Optical sensors map the earth surface by capturing the visible and infrared solar light reflected
from the ground objects. In the light of wavelength in the range of 0.4-2.6 um, clear open water
shows distinct spectrum in comparison to other objects (Figure 1.1). The majority of the light in
the range of 0.4-0.7um which is transmitted to the open water surface is absorbed, and very
minimal proportion of it is reflected (Curran., 1985) (Figure 1.4). Open water absorbs nearly all
of the near infrared (0.7-1.3 um) and middle infrared (1.3-3.0 um) light transmitted to it. In
thermal infrared light, water presents dark. In contrast, green vegetation and soil reflect more
visible, near infrared and middle infrared light transmitted toward them (Figure 1.4). Green
plants present low reflectance in the visible light. The reflectance from green vegetation
significantly increases in the light of wavelength approximately 700 nm (red edge) (Weichelt et
al., 2014), and remain high in the near infrared light (Figure 1.4). Due to the strong absorption
of water in the vegetation (Szekielda, 1988), the reflectance from green vegetation decreases in
middle infrared light. The absorption of green leaves is positively related to the water content in
the vegetation and basal soil. The reflectance of soil and similar round object increases along

with the wavelength of the transmitted light in the range of 0.4-3.0 pm (Figure 1.4).

Atmospheric components (e.g. water vapor) whose molecule diameters are on the order of the

wavelength of optical light interfere the transmitting of the energy and alter the signals travel
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toward the optical sensors. Therefore, atmospheric correction is a very critical step in remote
sensing mapping with optical images (Gholizadeh et al., 2016; Lillesand et al., 2008). Similarly,
clouds, smoke and haze are additional factors that undermine the applicability of optical images

in terms of temporal continuity and spatial coverage.

60

1

Visible | Near- | Mid-infrared

Reflectance (%)

T T T T T T T T T T T
05 07 09 11 13 15 17 19 21 23 25
Wavelength (um)

Figure 1.4 The optical spectrum of water environment, after Hoffer (1978).

1.2.2 Missions and instruments

The data used for ground objects mapping can be provided by mapping instruments mounted
on ground-, air-, and space-platforms. However, this study only focuses on images acquired by
space-borne sensors, because space-borne data are acquired on routine schedules and

operational plans, while ground and airborne data are obtained mostly for experimental

purposes and constrained to specific sites.

1.2.2.1 SAR missions

Table 1.1 lists the main satellite SAR systems employed in water environment mapping.
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Table 1.1 Space-borne SAR missions that provide commonly used data for surface water environment mapping

Mission Operator Operation period Wavelength  Resolution  Polarization  Revisit
ERS-1& 2 ESA 1991-2011 C- 30 m HH 35d
ENVISAT ESA 2002-2008 C- 30 m HH 35d

RadarSat 1&2 CAS 1995- present C- 30m HH 24d
JERS -1 &2 JAXA 1992-1999 L- 26 m HH 44d
TerraSAR-X/ HH, VV,
TanDEM-X DLR 2011-present X- 1.5/3/6m HH-VV 11d
COSMO-SkyMed ASI 2007-present X- S5m HH 1-15d
Sentinel-1(A & B) ESA 2014-present C- 10/ HH, VV-VH  6-12d

TanDEM-X is a novel mission conceived to generate global DEM of high accuracy and
resolution with InSAR technique. The global TanDEM-X DEMs are expected to be of
resolution of 12 m, and accuracy of 10 m and 2 m, for absolute and relative, respectively (Fritz,
2012; Wessel et al., 2018). The data used for the mission ware acquired in bistatic cooperation
mode. During the data acquisition mode, the X- band SAR sensors mounting on two nearly
identical satellites simultaneously receive the echoes of SAR signals transmitted to the ground
by one of these satellites (Bamler and Hartl, 1998). As the two satellites fly less than one
kilometer apart, the signal paths are nearly identical, which emilinates the chance for the phase
controbution of atmospheric heterogeneity. The simultaneous mapping with the two satellites
does not allow for any contribution of ground deformation in the interferogram in equation (1.1)
(Krieger et al., 2007). In the TanDEM-X mission for global DEM generation, the same area on
the earth was mapped two to three time with TanDEM-X data acquired, with different satellite
flight distances, so as to secure the high accuracy of the final global DEM (Krieger et al., 2007).
As open water surface barely returns any SAR signals to the sensors, they often present
incoherent in the interferogram. This renders invalid the elevation of the areas covered by open
water in any acquisition of the TanDEM-X data mapping the region (TanDEM-X ground

segment, 2013).
1.2.2.2 Optical missions

Currently, the widely used optical images for land surface mapping are provided by sensors that

map the earth surface with multiple and hyperspectral instruments. The data are determined by
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the spectral span they cover and the number of bands of the images. The spectral range of
multi-spectral images already cover the water spectrum and the characteristic bands (Figure 1.4)
and provide enough spectral information for distinguishing open water surfaces from other
ground objects. Therefore, water surface mapping in terms of quantity has engaged mainly
multi-spectral images. The most commonly used multi-spectral sensors for water mapping and

their satellite platforms are listed in Table 1.2.

Table 1.2 Space-borne optical missions that provide commonly used data for surface water mapping

satellites Sensors Operation period  No. band Wavelength range Resolution Revisit
NOAA/TIROS AVHRR 1978—present 5 0.58 - 12.50 um 1 km/0.5km 1d
Terra MODIS 1999- present 36 0.44 -14.4 um 200/500/1000 m 1-2d
0.500 — 1.0 um
MSS 1972-1993 4-6 60
0.450 —2. 35 um
™ 1982-1999 8 30/15m
Landsat (1-8) 0.45-2.35 pm 16d
ETM 1993—present 8 30/15m
0.435-12.51 um
OLI 2015- present 11 30/15m/100m
0.433-12.5um
CBERS-1/2 CCD 1999-present 5 0.510—-0.890 pm 80/120m 26d
TERRA ASTER 1999-present 15 0.2-11.65 pm 15/30/90m 16d
IKONOS Pan/MSI 1999-present 4 0.440 — 0.900 um 1/4m 3d
RapidEye Multispectral 2008-present 0.440 — 0.850 um 5m 5d
Pan/MS/SWI
SPOT ) 1986-present 5 0.450-0.890 m 5/10/20m 1d
Multispectral
Sentinel-2
MSI 2015-present 13 0.43-2.19 pm 12m 5d
(A &B)

1.2.3 Mapping water surface
1.2.3.1 Open water surface

Based on the distinct characteristics of open water presented in the optical spectrum (Figure
1.4), the near infrared bands of optical images have been applied for open water surface
mapping. Indices like normalized differential water index (NDWI) (McFeeter, 1996), modified
NDWI (MNDWI) (Xu, 2006) and water index (WI) (Ouma and Tateishi, 2006) have been
developed, and widely applied to derive water masks on various spatial and temporal scale
(Birkett, 2000; Jain et al., 2006; Pekel et al., 2016; Pope et al., 1992; Smith, 1997; Song et al.,

2013; Verpoorter et al., 2014; Wolski et al., 2017). With the supports of recent supercomputing
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cloud platforms like Google Earth Engine (Gorelick et al., 2017), the change trends of each
pixel in open water surface in the decadal span have been depicted with Landsat archive

(Donchyts et al., 2016; Pekel et al., 2016).

On a SAR image, the areas occupied by calm open water often present dark due to the specular
reflection (Figure 1.2) and can be easily distinguished from other ground objects. Algorithms
like Otsu or minimum error algorithm were used to delineate open water surface from SAR
images (Kittler and Illingworth, 1986; Otsu, 1979). Based on these algorithms, methods like
splitting and segmentation of SAR image were developed for flooding mapping with both the
amplitude and backscattering coefficient of SAR image (Martinis et al., 2015; Schlaffer et al.,
2015). A number of global water masks have been established from different SAR data sets
(Santoro et al., 2015; Westerhoff et al., 2013). Further approaches for open water delineation
from SAR image include the automatic method developed by Horritt et al. (2001) and the fast
processing algorithms developed by Gstaiger et al. (2012) and Martinis et al. (2015). In
addition to backscattering coefficient derived from the amplitude of SAR images, the potential
of InSAR coherence for open water surface mapping was demonstrated by Dellepiane et al.
(2000a) and Refice et al. (2014), based on the coherence loss over open waters (Alsdorf, 2002;
Dellepiane et al., 2000b; Kim et al., 2017). The TanDEM-X mission even yielded a global open

water mask based on the INSAR coherence (Wendleder et al., 2013).

Besides, combining SAR data from ERS and optical images from AVHRR, Prigent et al. (2007)
and Papa et al., (2010) revealed the inter-annual variability of global surface water on monthly
scale from 1993-2004, at the resolution of 25 km? and 0.25 degree. Like mapping open water
with optical remote sensing data, mapping open water surfaces from SAR images has evolved

to the operational level.
1.2.3.2 Water surface beneath canopy

Water is the key constitution of wetland, marshland and mangrove etc., and a large portion of

water surfaces there underlies the vegetation canopy. Therefore, in these landscapes open water
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often could not express the complete water surface. Using open water surface to represent the
inundated area can cause underestimate of the actual water surface (Li et al., 2015b, 2015a).
Therefore, mapping the water surface under canopy is another important part of water surface
mapping (Alsdorf and Lettenmaier, 2003). Image acquired by both SAR and optical sensors

were investigated and applied in mapping the water surface beneath the vegetation canopy.

Since 1990s, massive studies have investigated the performance of different SAR images
mapping in large flood plains, coastal wetlands, marsh lands and mangrove (Hess et al., 1990,
1995; Lucas et al., 2007; O’Grady and Leblanc, 2014; Pope et al., 1997; Ramsey, 1995; Wang
et al., 1995). Significant findings have been drawn as follows: 1) Three types of scattering take
place in vegetated water surfaces, namely, specular reflectance from calm open water, double
bounce between the water surface and the trees truck or features alike (Richards et al., 1987),
and diffusive/volumetric scattering transmitted SAR impulses on canopy of the dense
vegetation (Cohen et al., 2016; Wang et al., 1995); 2) The smaller the incidence angle the SAR
pules are transmitted, the stronger the SAR signals ,i.e. higher backscattering, returned are
(Lang et al., 2008).The images acquired with incidence angle between 20-50 degree can
distinguish the water surface beneath the canopy (Lang et al., 2008); 3) The images acquired
with HH-polarization are more efficient than images of VV- polarization in detecting water
surface beneath canopy (Hess et al., 1995; Pope et al., 1992; Wedler and Kessler, 1981). SAR
pulses of VV- polarization mostly interact with the canopy of the vegetation (Bourgeau-Chavez
et al., 2001; Henry et al., 2006; Hess et al., 1995; Lang and Kasischke, 2008; Wang et al., 1995);
4). The penetration depth is positively related to the SAR pulses wavelength. Images acquired
in C- and X- band are more suitable for mapping the water surface in herbaceous wetland and
marshland. The images acquired in L- band data are more suitable for mapping flood plains
which are often covered by woody plants or forests (Hess et al., 1995; Novo et al., 1998); 5)
Canopy closure and plant height determine the amplitude of the backscattering from vegetation
(Cohen et al., 2016; P. A. Townsend, 2001; Zalite et al., 2013); 6) The backscattering in the

non-forested wetlands is negatively related to the water level (Kasischke et al., 2009); 7) In the
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wetlands dominated by herbaceous plants, the backscattering is positively related to the

moisture of basal soil (Kasischke et al., 2009).

In addition to the above findings, many studies investigated the temporal evolution of the
vegetated waters with SAR images. Hydrological cycles on multi-temporal, seasonal and
annual frequencies were revealed for flood plains of large rivers like Amazon, Nile and
Roanoke River (Hess et al., 2003; P. A. Townsend, 2001; Townsend, 2002; Wilusz et al., 2017)
and coastal wetlands in Florida etc. (Kasischke et al., 2003); Betbeder et al. (2015) established
that late winter, spring and beginning of summer are the most relevant seasons for mapping the
wetland vegetation. With multiple temporal RADARSAT-2 data of full polarimetry, Zhao et al.,
(2014) mapped the season inundation and vegetation dynamics in a flood plain in northeastern
China, and demonstrated the importance of quad-polarimetric information for floodplain
monitoring. Wilusz et al. (2017) used the training data from published studies, and classified

the flooded forest in Sudd wetland on multiple time stamps.

Similarly, in the mapping of landscape like wetlands and flood plains with optical data which
were mainly oriented to mapping the vegetation condition in these landscapes, water surface
beneath canopy were also yielded as part of the output (Dronova et al., 2015; Wang et al., 2012;
Ward et al., 2014). In addition, models were developed from optical images or by integrating
auxiliary data like the Lidar measurements or DEM (Feng et al., 2012; Lang and McCarty,
2009; Rosenqvist et al., 2002), and subsequently applied to obtain the inundation at different
times in the same sites (Huang et al., 2014; Jin et al., 2017; O’Connell et al., 2017; Ordoyne
and Friedl, 2008). The modelling methods can be transferred to different time stamps, but only

for the sites where the mode was established.

SAR and optical images (Table 1.1 and Table 1.2) were often combined to map vegetated
waters. For example, Bwangoy et al. (2010a) mapped the wetlands in Congo basin with
combined JERS-1 and Landsat data, and proved the usefulness of multi-source data in

characterizing wetland land cover. Ward et al., (2014) mapped the seasonal inundation patterns
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of Alligator River flood plain by combining ALOS PALSAR and Landsat images. In the
inundation mapping with the combination of RadarSat-1 & 2 and SPOT, Toeyrae et al. (2001)
found that the SAR data acquired in small incidence angle yield better classification results;
Gala and Melesse (2012) proved that the combination of Landsat, Radarsat-1 and Lidar data

can improve the mapping results of wet area in prairie.

However, those studies above were conducted mainly with supervised classification approaches
with field data as input (Amesen et al., 2013; Dronova et al., 2015; Hess et al., 1995; Kasischke
et al., 2003; Martinez and Letoan, 2007; P. Townsend, 2001; Wang et al., 2012, 1995; Ward et
al., 2014);. The methods used include random forest, support vector machine, maximum
likelihood or object orientated approaches (Dronova et al., 2015; Kasischke et al., 1997; Wang
et al., 2012; Ward et al., 2014). Nearly all these studies employed training data acquired from
the field at approximately the same time as the image acquisitions. Often substantial field data
are necessary for high credibility of the results. As these flooded landscapes are difficult to
access for field data collection or classes identifications, the classification-based inundation
mapping is rather labor-expensive and limited to a few time stamps. In addition, a priori classes
of landscapes are also required for the classification. Moreover, the water conditions and
vegetation status in these landscapes often change along the seasons. Therefore, the
prerequisites of field data and a priori classes render the classification-oriented approaches site—

specific, training data constrained, and not transferable to other sites or time.

At present, there are few field data independent approaches available for the detection of water
surface beneath the canopy along time series. As the green plants on land and in water present
similar spectrum on multiple spectral images (Figure 1.4), spectrum based approaches with the
assistance of field data often fail to distinguish these two types of vegetation (Toeyrae et al.,
2001). However, Carter (1982) suggested that the flood extent can be efficiently detected with
optical images acquired during the leaf-off season when the terrestrial plants show less green
vegetation spectrum. Therefore, it is possible to map the inundations in wetlands using the

vegetation spectrum in optical images (Domenikiotis et al., 2003; Feng et al., 2012; Powell et
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al., 2014; Zhao et al., 2011, 2014). However, the gaps in the leaf-on season still remain open,
and there is often a latent between the real time water extent and the vegetation response

(Powell et al., 2014).

Texture indices derived from SAR images shows the structure properties of ground objects on a
SAR image, and were proved to be efficient for mapping urban area which is characterized by
double bounces (Ban et al., 2014; Dell’Acqua and Gamba, 2003; Stasolla and Gamba, 2008).
Only a few studies have investigated the potential of texture of SAR images for mapping
vegetated water surface. Pulvirenti et al. (2011) applied morphological processing on
multi-temporal COSMO-SkyMed images to obtain structure elements of the data, and further
mapped the inundation evolution at a flooding event concerning water surface beneath canopy.
This study demonstrated the potential of texture (structure properties) of SAR images for

mapping water surface beneath the canopy without field data.
1.2.3.3 Summary

Overall, mapping global and/or regional open water with remote sensing data has been efficient.
Due to the weather independent acquisition and the canopy penetration of the SAR images, it is
more efficient to map water surface beneath canopy with SAR data than with optical data. The
performance of the SAR data is jointly determined by the data properties (e.g. wavelength,
polarization, and incidence angle) and the condition of vegetation (i.e. species, canopy structure,
phenology stage) and water (i.e. water depth). Mapping vegetated water surface with the
combination of optical and SAR data can yield results of improved accuracies. However, the
majority of current methods heavily reply on the field data, thus are site-specific and of low
transferability (Bwangoy et al., 2010; Gala and Melesse, 2012; Ward et al., 2014). Therefore,
there is a need for methods of high transferability along time and study sites. Moreover,
majority of the study engaging SAR data adopted backscattering coefficients of the SAR
images. The potential of texture indices for mapping water surface beneath canopy are not

adequately investigated.
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1.2.4 Surface water storage extraction and bathymetry derivation

Surface water storage is the amount of surface water stored in lakes, river, reservoirs and
wetland etc. Surface water storage of these hydrological units can provide important input for
the regional water management, hydrological modelling optimization, predicting and warning
water related hazards. However, surface water storage is difficult to obtain from remote sensing
images, as it usually requires the depth or morphology of the water body which are challenging
to obtain. Up to now, studies on deriving the surface water volumetric variation and storage

from remote sensing are rather rare, particularly for the latter one (Lettenmaier et al., 2015).
1.2.4.1 Water volumetric variation

Radar altimetry mission were originally designed to monitor the sea level and ice/glacier, by
obtaining their surface elevation in point wise measurements distributed along the flight tracks
on the ground (Vignudelli et al., 2009; Zwally et al., 2002). However, the altimetry
measurement along tracks over inland water can also provide valid surface elevation and reflect
the inland water level variations. In addition to the in-situ gauge of water levels, altimetry
instruments can also virtually gauge large river and lakes (Birkett, 1998, 1994). For example,
water level variations were derived for large rivers from the altimetry measurements from
missions like TOPEX/POSEIDON (T/P), ERS-2 ENVISat, and ICESat (Birkett, 1998, 1994;
Birkett et al., 2002; da Silva et al., 2010; Hall et al., 2011; Koblinsky et al., 1993; Maillard et
al., 2015; Medina et al., 2008; Michailovsky and Bauer-Gottwein, 2014; Morris et al., 1994;
Phan et al., 2012; Wang et al., 2013). Furthermore, synergizing the altimetry measurements of
water levels and the surface areas derived from optical and/or SAR images can yield the water
storage variation in large lakes etc. (Duan and Bastiaanssen, 2013; Frappart et al., 2005; Gao,
2015; Gao et al., 2012; Jiang et al., 2017; Munyaneza et al., 2009; Singh et al., 2012; Song et
al., 2014, 2013; Zhang et al., 2006). However, the point-wise altimetry measurements are only
reliable when averaged over the entire open water surface. Therefore, the application of
altimetry data for water level derivation requires wide open water surface. In addition, the

footsteps of altimetry measurement are often on the order of hundred meters to kilometers
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(Vignudelli et al., 2009; Zwally et al., 2002). As a result, altimetry measurements often fail to
provide water levels for small water bodies, and this fact constrains the application of altimetry

data on large water bodies.

Double bounces taking place in the water surface vegetated by woody wetland or flooded forest
can return consistent SAR signals to the antenna. Based on this, water level variation in these
landscapes can be derived with InSAR from the images mapping the area of interest at different
water levels (Alsdorf et al., 2000). Therefore, water level/depth variation in floodplain,
wetland/ marsh land and mangrove have been obtained with InSAR from SAR images acquired
with different sensors listed in Table 1.1 (Kim et al., 2014, 2009, 2017; Lee et al., 2015;
Wdowinski et al., 2008; Xie et al., 2015; Yoon et al., 2013; Yuan et al., 2017). Furthermore,
Yuan et al. (2017) intergrated the InSAR derived water levels to estimate the water storage
capacity of Congo floodplain. However, for the water level retrieval with InSAR technique,
reasonably large area of the water body should be vegetated to produce strong double bounces
(Alsdorf et al., 2000). Another shortage of applying InSAR in water level derivation is that
InSAR technique can only derive relative water levels. Therefore, attributing the absolute
values for the water levels with contemporary altimetry or gauge measurements is necessary. In
the case of employing altimetry measurements, wide open water surface should be
simultaneously available for credible altimetry measurements (Yuan et al., 2017). As a result,

only large wetlands and floodplains meet these requirements.

In addition, integrating water level measurements and surface water area is only capable of
estimating partial water volume variation, but not waters storage estimation, as the large water
bodies rarely fall empty and become available for mapping the least water status of the

landscapes.
1.2.4.2 Mapping bathymetry with remote sensing

Bathymetry can assist estimating the surface water storage. However, obtaining bathymetry in

field surveys with acoustic instruments, Lidar sensors and Ground penetrating radars is
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labor-costly, particularly when the study is on regional scale and covers a large number of
water bodies (Feurer et al., 2008). Various mechanisms and data sets have been investigated to
derive bathymetry. Majority of those investigations were conducted in coastal areas, and some

of them were experimentally transferred to study inland water bodies (Feurer et al., 2008).

Shallow submarine topography was found to be visible on real aperture radar and SAR images
acquired under moderate wind (De Loor and Loor, 1981). Strong tidal currents formed under
this weather condition interact with the submarine topography. This varies the currents
velocities in return, and further causes modulated local Bragg scatters which determine the sea
surface backscatters on SAR images (Alpers and Hennings, 1984). Based on this mechanism,
bathymetry have been investigated and successfully mapped for some coastal areas (Alpers and
Hennings, 1984; Bell, 1999; Brusch et al., 2011; Vogelzang et al., 1992). However, the
application of this mechanism relies on the strong currents in open sea under certain wind
condition (wind speed > 3 m/s) (Reichert et al., 1998), and requires some external depth
measurements (Brusch et al., 2011). But inland water bodies often could not form strong tides
due to the interferences of surrounding terrestrial landscapes. Therefore, this mechanism and its

variants are not applicable for the bathymetry derivation for inland water bodies.

The reflectance of coastal substrate in the range of optical spectrum is attenuated by water
when the light travels through the water columns (Legleiter et al., 2004; Lyzenga, 1985; Philpot,
1989). The deeper the substrate lies, the longer the travel path of the light is, and the more
reflectance is attenuated. Based on this theory, physical and analytical models were constructed
to derive water depth and subsequently the bathymetry (Legleiter and Roberts, 2009)(Lee et al.,
1999; Lyzenga, 1985; Philpot, 1989). Those models and their variants have been applied on
multispectral (e.g. Landsat) and hyperspectral images (e.g. Hyperion) to primarily derive
bathymetry for coastal waters (Ayana et al., 2015; Brando et al., 2009; Dekker et al., 2011; Lee
et al., 2007; Pacheco et al., 2015; Sandidge and Holyer, 1998). However, those model-based
methods for bathymetry retrievals prefer clear water (Pacheco et al., 2015), and are often

constrained to shallow waters (< 20 m), as the reflectance of substrate situated deeper than that
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are very likely completely absorbed by the water column. Moreover, the presence of vegetation
and sun glint are the crucial factors that impede the application of these methods (Feurer et al.,

2008).

Because inland waters are usually of higher turbidity than coastal waters turbid, due to the
frequent recharge, discharge and human disturbance, and of high chances being vegetated.
These substrate optics based approaches do not show high applicability in inland water bodies
(Feurer et al., 2008). However, Sneed and Hamilton, (2007) adapted the physical model which
was originally constructed by Philpot (1989) for coastal waters, derived water depth and the
water volume for the super glacier lakes in Greenland on multi-temporal scale using ASTER.
Their study were followed by Williamson et al., (2017) developed a fast algorithm for such
study using MODIS data. Their studies addressed the importance of sediments absence in the
water and the homogeneous substrate (Sneed and Hamilton, 2007; Williamson et al., 2017). In
addition, the water depths derived for the super glacier lakes are less than 10 meters. Moreover,
the potentials of the optical spectrum of river bed for the stream bathymetry derivation were
also investigated (Legleiter et al., 2004; Legleiter and Overstreet, 2012; Legleiter and Roberts,
2009, 2005). It was found that deriving bathymetry for rivers from optical images (mainly
hyperspectral data) is feasible, but the accuracy of the estimated depth is affected by the
channel morphology and the spatial resolution of the optical images adopted (Legleiter and
Roberts, 2005). On average, the bathymetry derived for rivers with gravel base are
approximately at one meter (Legleiter and Overstreet, 2012), with maximal depth at five meters

(Legleiter and Overstreet, 2012).

Other studies on the inland lake bathymetry recovery include attributing elevations to lake
contours derived from MODIS images at different levels, and interpolated those isoclines to the
lake bathymetry (Feng et al., 2011). But this approach requires existing elevation/depth
measurements of the lake bottom at least along a few transactions to attribute the water extents
yielded from the image data. In addition, the water surface areas should be delineated with high

accuracy. However, in many inland water bodies, the vegetation covers a reasonably large area
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of the water surface, purely adopting open water can caused underestimated water surfaces.
1.2.4.3 DEMs representing bathymetry and assisting surface water body storage estimation

As the bathymetry of a water body is determined by the substrate morphology, the DEM
covering under water topography can represent lake/reservoir bathymetry, and subsequently
assist estimating the surface water storage. For example, Avisse et al. (2017) assumed
inaccessible lakes in Syria were empty during the acquisition of SRTM DEM in February 2002,
and obtained the water level-area-volume relations for these water bodies with this DEM.
Based on these water level-area-volume relations and the water surfaces provided by Landsat
images mapping areas in the last 30 years, they further derived the surface water storage in
these water bodies on temporal scale (Avisse et al., 2017). However, this application works
under the condition that the water bodies were empty during the mission of SRTM DEM in
2002. Furthermore, assuming the surrounding topography is determinant to lakes’ bathymetry,
Messager et al. (2016) built up statistic models from the surrounding topography on SRTM
DEM and the geometries of the water bodies, and estimated the water storage in the global
natural lakes. However, the water bodies they studied are limited to the natural lakes of size >
10 km?. Moreover, the storage functions they derived for small water bodies are overall of poor

accuracies (Messager et al., 2016).

1.2.4.4 Potentials of single-pass TanDEM-X for reservoir bathymetry derivation and surface

water storage extraction

In addition to the global DEM generation, the data acquired by the TanDEM-X constellations
were used to generate DEM with single-pass interferometry, and applied for biomass estimation
(Schlund et al., 2013), volcanos variation investigation (Kubanek et al., 2015; Rossi et al.,
2016), and rice paddies mapping (Rossi and Erten, 2015) etc. The high qualities of such DEMs
and the prominent performance of their applications have demonstrated the capability of
such-derived DEMs in morphological representation (Kubanek et al., 2015; Rossi et al., 2016;

Rossi and Erten, 2015; Schlund et al., 2015), and also suggested their great potentials for
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deriving bathymetry for reservoirs of various size and large number.
1.3 Study area

Among the global dryland, NE Brazil is a typical example of regions suffering from long-term
water scarcity, poor water management, vulnerable water supply and inadequately knowledge

on regional hydrology.
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Figure 1.5 The location and the reservoir distributions in NE Brazil

The climate in NE Brazil is characterized with pronounced wet and dry seasons. Most of the
precipitation takes place from January to June, indicating this time period as the wet season; the
dry season spans from July to December. The average annual precipitation is approx. 600 mm,
and the potential evapotranspiration exceeds 2000 mm per annum (INMET, 2018). Since the
19" century, over 30 000 reservoirs have been constructed in NE Brazil to support the local
water supply (SIRH/Ce, 2015) (Figure 1.5). Overall, about 100 large reservoirs in this region
undergo regular in-situ monitoring (SIRH/Ce, 2015). In contrast, a large number of small to

medium reservoirs and those at remote areas are poorly managed and most of them do not have
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any inventory data (SIRH/Ce, 2015). Meanwhile, poor management results in severe
eutrophication in the reservoirs, and many of them are vastly covered by various macrophytes.
Despite the large number of reservoirs, the region is vulnerable to frequent droughts. Up to now,
the surface water storage and its variation characteristics in this region are still little-known.
However, this knowledge is critical for effective water management and understanding regional

hydrology.
1.4 Objectives

As summarized above, water mapping with remote sensing data has evolved from 2D (i.e.
water surface) to 3D (i.e. water depth and storage/volume). The temporal scale of water
mapping has developed from a few timestamps to continuous time series. Simultaneously, the
spatial scale of mapped water bodies expanded from discrete test sites to regional, continental
and global scale. The complexity of mapped surface waters bodies has developed from open
water surface to the vegetated waters. However, the major gaps in the available surface water
mapping still exist and lie in transferable methods for the mapping of water surface beneath

canopy and in the delineation of surface water storage.

In this thesis, I worked both on the mapping of water surface beneath canopy and water storage
extraction. I chose NE Brazil as the study area, as it represents the regions suffering from
long-term water scarcity, poor water management, vulnerable water supply and inadequately
knowledge on regional hydrological characteristics. Moreover, many reservoirs were vastly

covered by macrophytes, forming large water surface beneath the canopy.

This thesis aimed to investigate the above two aspects by following the guidance of the

following research questions:

Based on the performance of TanDEM-X data for global DEM, is it possible to derive the
reservoirs bathymetry with the DEM generated from TanDEM-X data acquired during the low

water level? If yes, how is the performance of the data set in this aspect?

Is it possible to distinguish the different types of backscattering on the SAR images without
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field data? If yes, can this help map vegetated water surface in reservoirs in a training data

independent approach which can be transferred in different area and time?

Integrating the answers to the above two questions, how is the surface water storage distributed
spatially in the region? How does the surface water storage vary along time? Is there any

factors affecting the surface water storage distribution in NE Brazil?
1.5 Research outline
The above questions were answered in the following three studies:

The DEMs generated from single-pass TanDEM-X data were investigated for their potentials
for reservoir bathymetry derivation. In this study, I found that the accuracies of such DEMs
over the test site Madalena region can achieve one meter, both in the absolute and relative
respects. The DEMs derived from the TanDEM-X data acquired during low water level stage
have high potentials for representing the reservoirs bathymetry. (It is Chapter 2 and published
as: Shuping Zhang et al, 2016. Bathymetric survey of water reservoirs in north-eastern Brazil

based on TanDEM-X satellite data. Science of the Total Environment, 571, pp. 575-593)

Subsequently, I used time series of TerraSAR-X (TSX) data from 2014-2015 to investigate the
capability of GLCM texture of distinguishing the different types of backscattering taking places
in nine vegetated reservoirs in the Madalena catchment. This study demonstrated that different
types of backscattering in the vegetated water surface show distinct statistical characteristics on
GLCM variance of SAR images. In addition, I derived the abundance of individual types of
backscattering in each reservoir with linear unmixing on a temporal scale. Furthermore, the
water surfaces beneath vegetation were delineated by segmenting different types of
backscattering, independent of field data. The accuracies of the delineated water surfaces are
77%-95%. (It is Chapter 3 and published as: Shuping Zhang et al. (2018): Effective water
surface mapping in macrophyte-covered reservoirs in NE Brazil based on TerraSAR-X time

series. International Journal of Applied Earth Observation and Geoinformation, 69, pp. 41-55)

In the last part of the thesis, with the DEMs generated from the TanDEM-X data acquired in
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October-December 2015, I derived the bathymetry for 2 105 reservoirs of various sizes in four
representative regions covering an overall area of 10 000 km?. Based on this bathymetry data, I
extracted the spatial distributions of surface water storage capacities in the four regions.
Furthermore, the spatio-temporal variations of surface water storages in the four regions were
revealed and analyzed on annual frequency in the period of 2009-2017. (It is Chapter 4,
Shuping Zhang et al. The spatial-temporal variation of surface water storage in reservoirs in

NE Brazil using remote sensing approaches. Submitted to Remote Sensing of Environment).
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2. Bathymetric survey of water reservoirs in northeastern Brazil based on
TanDEM-X satellite data

Abstract: Water scarcity in the dry season is a vital problem in dryland regions such as
northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of
various sizes. However, inventory data for these reservoirs is often limited due to the expense
and time required for their acquisition via field surveys, particularly in remote areas. Remote
sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys

for water resource management.

In this study single pass TanDEM-X data acquired in bistatic mode were used to generate
digital elevation models (DEMSs) in the Madalena catchment, northeastern Brazil. Validation
with differential global positioning system (DGPS) data from field measurements indicated an
absolute elevation accuracy of approximately one meter for the TanDEM-X derived DEMs
(TDX DEMSs). The DEMs derived from TanDEM-X data acquired at low water levels show
significant advantages over bathymetric maps derived from field survey, particularly with
regard to coverage, evenly distributed measurements and replication of reservoir shape.
Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free
of emergent and submerged macrophytes, independent of water depth (e.g. >10 m), water
quality and even weather conditions. Thus, the method is superior to other existing bathymetric
mapping approaches, particularly for inland water bodies. The proposed approach relies on
(nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that
show considerable water levels variations. However, comparisons between TDX DEM and the
bathymetric map derived from field surveys show that the amount of water retained during the
dry phase has only marginal impact on the total water volume derivation from TDX DEM.
Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods
constitute a useful and efficient data source for deriving reservoir bathymetry and show great

potential in large scale application.
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Keywords: Bathymetric mapping, TanDEM-X, semiarid area, northeastern Brazil
2.1 Introduction

Reservoirs play an important role in global water supply. They often serve power generation
and water supply for industry, agriculture and domestic use (Agostinho et al., 2015). However,
reservoirs also cause anthropogenic interference with the terrestrial water cycle and
surrounding environments (Gunnison, 1985; Vordosmarty and Sahagian, 2000), and also reflect
the human disturbance to the local water resources (Feng et al., 2014; Palanques et al., 2014).
Reservoir monitoring is therefore crucial for assessing their effects on regional hydrology and
for water management. While reservoirs of strategic importance, typically large ones, are in
many cases regularly monitored, remote and/or small reservoirs often lack adequate attention
and monitoring although they also play a relevant role in regional water supply, hydrology and
the local ecology of semiarid areas (Agostinho et al., 2015; Cesljar and Stevovi¢, 2015).
Networks of dense reservoirs can significantly contribute to hydrology, sedimentology,
geochemistry, and ecology in regional drainage systems and thus impact local water availabilty
(Lima Neto et al., 2011; Smith et al., 2002; Warnken and Santschi, 2004). Studying the
characteristics of remote and/or small reservoirs is, therefore, essential for gaining knowledge

about local water availability and regional hydrology, and for efficient water management.

The topography beneath water bodies, usually shown with bathymetric maps, is fundamental
inventory data. Water body substrate can influence the reflectance from water surfaces, and is
thus an important factor to consider in water quality related studies (Lee et al., 1998;
Maritorena et al., 1994; Mouw et al., 2015). Conventionally, a bathymetric map is obtained in
field surveys by measuring the underwater topography using sonar sensors or depth meters
mounted on boats (Becker et al., 2009). Alternatively, the bathymetry of water bodies can be
derived by measuring a series of GPS points when they are (partly) dried out. However, results
from conventional field bathymetric surveys are point- or swath-based and require further

processing, such as interpolation (Becker et al., 2009; Costa et al., 2009), which introduces
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uncertainties in the bathymetry map (Wechsler, 2006). Field investigation is labor intensive,

time consuming and thus expensive, and often not feasible for large scale investigations.

Remote sensing technologies have shown great potential for water body detection and
monitoring (Alsdorf and Lettenmaier, 2003; Alsdorf et al., 2007; Palmer et al., 2015).
Compared to widespread remote sensing applications for studies on water surface, quality and
volume variation, remote sensing applications in bathymetry studies are relatively few, and they
use various approaches. In real aperture radar images acquired under moderate wind and strong
tidal current conditions, shallow submarine ground was found to be visible (Loor, 1981), which
is the case in synthetic aperture radar (SAR) images as well. The velocities of strong tidal
current vary as they interact with the sea bottom topography, and thus is modulated, which
causes variation in the local Bragg scattering determining the sea surface roughness and
backscatters on SAR images (Alpers and Hennings, 1984a). Based on simulated SAR data,
experiments have been conducted and models were successfully developed to investigate the
bathymetric characteristics of shallow coastal areas (Alpers and Hennings, 1984b; Vogelzang et
al., 1992). However, some external depth measurements and minimum wind conditions are
compulsory for this approach, e.g. wind speed > 3 m/s (Reichert et al., 1998). Moreover,
complex image mechanism involves a variety of not well-known parameters in the reversion
model, leading these methods into simple scenarios (Romeiser et al., 2000). The above
interaction of strong sea currents and the underlying topography also changes the wavelength
or velocity of the near-shore currents. From the simulated velocity or the wavelength of the
currents and the current direction mapped by SAR images, the dispersion of the underwater
topography, and thus the bathymetry, was retrieved for the studied coastal areas (Bell, 1999;
Brusch et al., 2011). However, this approach requires knowledge about the frequency of the
waves, which is usually estimated from SAR images or other data sources (Bell, 1999; Brusch
et al., 2011). Relying on the strong currents in open sea under certain wind condition, the SAR
based methods mentioned above are inadequate for deriving the bathymetry of inland water

bodies. Airborne Light Detection and Ranging (LiDAR) is an effective tool for obtaining an
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accurate bathymetry. The data so acquired have been used as ground-truth for validating
bathymetric maps derived from spaceborne satellite images (Lyzenga, 1985; Pacheco et al.,
2015). However, data acquisition with LiDAR is relatively costly and thus usually limited to
small scale studies. Moreover, the turbidity of water bodies and submerged objects (e.g.
macrophytes) pose an impact on the results (Guenther et al., 2000). Based on spectral
reflectance from water bodies, empirical and modified semi-analytical models have been
developed (Lee et al., 1999; Lyzenga, 1985). Bathymetric mapping of coastal areas using
optical data such as Landsat, SPOT and airborne hyperspectral images yields bathymetric maps
with accuracies in the order of one meter (Brando et al., 2009; Jay and Guillaume, 2014; Lafon
et al., 2002; Lee et al., 1999; Pacheco et al., 2015; Sandidge and Holyer, 1998). Detectable
water surface reflectance is the basis of these methods. However, atmospheric condition,
substrate type, water depth, clearness, turbidity, constituents, etc. and the variations of these
parameters have narrowed the range of waters in which to apply these approaches (Brando et
al., 2009; Lafon et al., 2002; Lee et al., 1999; Philpot, 1989; Ustin, 2004), The methods are
most suitable under cloud-free conditions as well as for clear and shallow water bodies (e.g. ten
meters). Besides, most remote sensing methods for bathymetric mapping focus on coastal areas,
while the number of studies targeting inland water bodies is relatively limited. Arsen et al.
(2013) and Feng et al. (2011) derived bathymetric maps for large reservoirs from the water
contours extracted for the reservoirs from the time series of Landsat images. They attributed the
elevations of the water contour from satellite altimetry data or field elevation measurement
along transects of these contours, and then interpolated the bathymetric maps of the studied
lake from these isolines. The significantly changing inundation areas in the targeted lakes, the
frequent mapping of these areas, and availability of precise elevation data are the major
prerequisites of this approach. However, the long time series of cloud-free images are not
always feasible to archive the changes in the inundation. Due to the large distance between
footprints of altimetric measurements, only limited altimetry data are available for dense and/or

small reservoirs. Taking ICESat data for example, its 150 m inter-footprint along the tracks and
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about seven km inter-tracks distances make it insufficient for bathymetric mapping in areas
with dense and small water bodies. In addition, clouds reduce the feasibility of using

spaceborne optical images and altimetry data for ground mapping.

Interferometric SAR (InSAR) offers an alternative technique for bathymetric surveys of inland
waters in semiarid areas, by generating a DEM over low-water-level reservoirs (Amitrano et al.,
2014a, 2014b). InSAR is a powerful technique for DEM generation and land surface
displacement investigations (Bamler and Hartl, 1998; Rosen et al., 2000). The Shuttle Radar
Topography Mission (SRTM) DEMs generated from airborne C- and X- band SAR data are
successful examples of DEM generation via InSAR (Farr et al., 2007). Regional DEMs have
been derived via repeat-pass interferometry from SAR data, such as ERS data, and from a
combination of ERS and ENVISAT ASAR data (E et al., 2004; Small, 1998; Wegmiiller et al.,
2009). However, DEMs generated from these data are characterized by relatively coarse
resolutions and low accuracies (Wechsler, 2006). The removal of atmospheric disturbance and
temporal decorrelation should be considered when applying repeat-pass interferometry

(Crosetto, 2002).

TanDEM-X is a novel mission launched in June 2010 and conceived to generate consistent,
high resolution DEMs with worldwide coverage. In this mission the two X-band SAR images
used for DEM generation are acquired at slightly different incidence angles by two nearly
identical satellites flying less than 1 km apart. In the bistatic cooperation mode, the SAR
sensors mounted on the two satellites simultaneously receive the echoes of SAR signals
transmitted to the ground by one of these satellites, the so-called master satellite. The paths of
the signal obtained by the sensors on board the two satellites are nearly identical and the time
lag between the two receivors are very slight resulting from the small distance between the two
satellite (Krieger et al., 2007). Therefore, the interferograms generated from SAR data acquired
in this mode are free of atmospheric disturbance and temporal decorrelation of the ground. Two
to three global coverages with TanDEM-X data acquired with different satellite flight distances,

so-called baselines, were employed to secure the high accuracy of the final global DEM,
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particularly for areas characterized by difficult terrains (Krieger et al., 2007). As a result, areas
covered by water which produced incoherencies in the interferogram in any of the global
coverages are inconsistent in the multiple coverages and masked out from the final global DEM
product (TanDEM-X ground segment, 2013). Nevertheless, the single pass TanDEM-X data
acquired in bistatic mode are still of high orbital accuracy and resolution, allowing for their
application in various land surface related studies (Karila et al., 2015; Kubanek et al., 2015;
Moreira et al., 2004; Rossi and Erten, 2015; Schlund et al., 2013). DEMs generated from single
pass TanDEM-X data for water-free areas in the reservoir have potential for recovering the
corresponding topography. Having involved only single pass TanDEM-X data, the generated
DEMs are expected to be more comparable to the intermediate TanDEM-X DEM (IDEM)
rather than the final global TanDEM-X DEM, the former having been improved through
inclusion of flood extents for flood modelling (Mason et al., 2016). Obtained from single pass
TanDEM-X images acquired during low water level, these TDX DEMs will show much smaller
water area than the global TanDEM-X DEM in this region does. Moreover, TDX DEM from
single pass interferometry is expected to be free of seasonal changes that exist in the global

TanDEM-X DEM due to the multiple coverages of TanDEM-X data involved.

This study aims to map the bathymetry of reservoirs in a study site in the federal state of Ceara,
northeastern Brazil, and to compare the results with the bathymetric maps derived from field
surveys. Numerous dams of various sizes have been constructed in NE Brazil to assure a water
supply during the dry season (SIRH/Ce, 2015; Sugunan, 1997). In most cases, inventory data
for these remote and/or small reservoirs are missing or out of date due to siltation (Lima Neto
et al.,, 2011; SIRH/Ce, 2015). In this study, we generated DEMs from single pass bistatic
TanDEM-X data acquired during the dry season, i.e., at low water level, to reveal the
bathymetric information for the reservoirs of interest. DGPS data measured in the field were
used to assess the accuracy of the output TDX DEMs. The TDX DEMs selected to reflect the

reservoirs' bathymetry are further compared to the bathymetric maps derived from field survey.
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2.2 Study area

Numerous reservoirs have been constructed in northeastern Brazil to supply water for both
urban and rural communities. However, the water demand is not always met, especially in the
drought spells. Different projects and organizations on the country, state and local municipality
levels have resulted in inconsistent monitoring of these water bodies (SIRH/Ce, 2015). In
general, reservoirs supported by the state or the nation are regularly monitored and maintained
because of their strategic importance. But the numerous small and/or remote reservoirs
constructed to support the population in rural areas are hardly monitored or studied (IBGE,

2015), thus little information is available about their parameters.
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Figure 2.1 Location of the Madalena catchment and the studied reservoirs. A: Location of Ceara state in
Brazil; B: Location of the Madalena catchment in Ceara state; C: Reservoirs of interest in the presented
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study and the surrounding elevations.

The study site consists of the 124 km? Madalena catchment, located in the rural central Ceara
(Figure 2.1). The climate is characterized by pronounced wet and dry seasons (Figure 2.1 A),
putting this area in the drought polygon of northeastern Brazil. January to July is the wet season;
the dry season extends from August to December (Figure 2.1 A). The average annual
precipitation is ~ 600 mm and the potential evaporation exceeds 2000 mm per annum. The
elevation of the catchment ranges from 100 to 700 m. Caatinga, an endemic seasonal shrubby
forest landscape type in northeastern Brazil with very few trees (Bullock et al., 1995), is the
dominant land cover. The crystalline bedrock does not have potentials for groundwater storage
or supply. Since the 1930s, 13 reservoirs have been constructed in this catchment to support
households in the adjacent settlements. All these reservoirs support the local inhabitants by
supplying water for domestic consumption, livestock farming and irrigation. Throughout the
year, water levels in the reservoirs fluctuate significantly. In dry years, such as 2012, 2013 and
2015, most reservoirs in this area are empty by the end of the dry season, as presented in Figure
2.2 B-F. The reservoirs in the Madalena catchment are not included in the regular state
monitoring program. Reservoir monitoring in this catchment was started only recently by the
Federal University of Ceard. So far, only Marengo, Sao Joaquim and Sao Nicolau reservoirs
have been investigated in terms of bathymetry. This study focuses on five reservoirs in the
Madalena catchment, namely Marengo, Sao Joaquim, Sdo Nicolau, Raiz and Mel, and one

large reservoir, Fogareiro, in the adjacent area (Figure 2.1).

32



2. Bathymetric survey of water reservoirs with TanDEM-X data

200

2012 A
2013
2014
2015
Mean (1988-2015)

9 10 11 12

150
1
OEREO

Precipitation (mm)
100

50
1

Month

Figure 2.2 Precipitation at Madalena (A) and overview of reservoirs in the Madalena catchment in the dry
season, B: Raiz, C: Marengo, D: Sdo Joaquim, E: Sdo Nicolau, F: Me

2.3 Data and method

Different remote sensing datasets and field data were employed in this study. TanDEM-X data
were the basic data source for DEM generation. In addition, the SRTM DEM was included in
the DEM generation after it was calibrated with ICESat data. Finally, multispectral RapidEye
images served in the extraction of the water area-to-volume relationship. Various field data (e.g.
DGPS data and field bathymetric measurements) were used to evaluate the performance of the

proposed approach and the final results.
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DEMs were generated from bistatic TanDEM-X data via single-pass interferometry. The
coherence of the interferogram was investigated to study the real-time extent of the water
retained in the reservoirs. The water area-to-volume relationship for several reservoirs was
derived both from TDX DEM and bathymetric maps derived from field survey.

2.3.1 Data
2.3.1.1 TanDEM-X data

Three TanDEM-X stripmap data sets acquired from a descending orbit in bistatic mode with
single polarization HH were used in this study (Table 2.1). The TanDEM-X data were supplied
by the German Aerospace Center (DLR) in co-registered single look slang range complex
(COSSC) format. The average coherence of the three data sets is above 0.80 (Table 2.1) and
much higher than the overall coherence of TanDEM-X data for the generated global DEM
(Martone et al., 2012). Each TanDEM-X scene covers an area of 50 X30 km? (TanDEM-X

ground segment, 2012).

Table 2.1 Parameters of the TanDEM-X data sets

TanDEM-X TanDEM-X TanDEM-X
2011-07-05 2014-02-16 2014-03-21
Height of
ambiguity (HoA) 46.49 46.72 33.70
(m/2pi)
Effective baseline
115.69 112.22 155.32
(m)
Average
0.87 0.87 0.86
coherence
Scene center
33.76 33.71 33.70

incidence angle

2.3.1.2 SRTM DEM V4.1

A void-filled and mosaicked SRTM DEM V4.1 with 90 m resolution was obtained from the

Consortium for Spatial Information (CGIAR-CSI). The EGM86 geoid was subtracted from the
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SRTM DEM, so the SRTM DEM employed is based on the WGS84 ellipsoid.
2.3.1.3 ICESat data

The Ice, Cloud, and land Elevation Satellite (ICESat) mission which was operated from 2003 to
2009, provides data for terrestrial and the oceanic studies. The data are available from the
National Snow and Ice Data Center (NSIDC). Based on the consideration that C- band SRTM
DEM and the X- band TanDEM-X data mostly express the surface elevation of the ground with
shallow penetration, the Geoscience Laser Altimetry System 14 (GLAS 14) on board ICESat
was chosen. GLAS 14 measured the elevation of the ground surface, with an accuracy of ~ 15

cm (Zwally et al., 2002). The ICESat data used in this study is from the Release 34.
2.3.1.4 RapidEye images

Two tiles of RapidEye images (level 3A) with resolution of five m acquired on 2009-11-11 over
the study area were selected to derive the nominal maximal water extents of reservoirs.
Exceptionally, RapidEye image acquired on 2014-08-02 presents the largest water extent for
the Sao Nicola reservoirs. The RapidEye images (level 3A) acquired on 2014-01-23 were also
employed to represent the real time status of the reservoirs in late January 2014. The RapidEye
images were co-registered based on DGPS data within a locational accuracy of one pixel, i.e.,

five meters, before water extent delineation.
2.3.1.5 Field data

In May-June 2014, a total of 26 ground-truth points distributed throughout the TanDEM-X
scene were measured in the field with differential GPS using the post-processing positioning
method. Open and vegetation-free places, similar to the water-free reservoir bottom, were
chosen for the measurement. The accuracies of the DGPS points are at 10 centimeter-level in
the vertical direction and centimeter-level in the horizontal direction. The final geographic

coordinate system is based on WGS84.

Bathymetric data from the field were available for Marengo (2012), Sao Joaquim (2011), and

Sdo Nicolau (2014) reservoirs. Bathymetric measurements in the field were obtained via a
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depth-meter mounted on a boat, with the assistance of a handheld GPS contributing the
coordinates of the measurements. Consequently, the field measurements are a series of points
with horizontal five meters accuracy from the handheld GPS, and vertical decimeter accuracy
from the depth meter. The point measurements were interpolated via ordinary Kriging methods
using a spherical model, resulting in raster files with pixel spacing of 10 m. During the field
campaign for the bathymetric survey, the water extents of the reservoirs were determined with a
handheld GPS by walking along the shorelines. On 2014-02-23 the water extents of the
reservoirs were acquired in the same way. Thus, the accuracy of the field water extents is
approximately five meters. Currently, these field measurements are the only available
bathymetric data for reference purposes

2.3.2 Methods
2.3.2.1 SRTM DEM calibration

In the global TanDEM-X DEM generation, the differential interferogram was obtained by
removing the phase of earth represented by the ellipsoid, and the absolute phase was estimated
via the radargrammetric measurements with the pair of TanDEM-X sensors (Rossi et al., 2012).

In this study, the calibrated SRTM DEM was used.

In order to derive TDX DEMs of high absolute accuracy, the introduced SRTM DEM should be
as reliable as possible. Due to the rolling baseline during data acquisition, SRTM DEM contain
long wavelength shifts up to 10 m on the scale of a thousand kilometers, varying globally
(Braun and Fotopoulos, 2007; Huber et al., 2009; Rodriguez et al., 2006). Eighty-four points at
bare land were selected from GLAS 14 data of the ICESat mission to calibrate this offset. The
area covered by a TanDEM-X scene is ~ 30 km wide, only a few percent of the spatial range of
the offset in the SRTM DEM. The offset of the SRTM DEM is expressed in the form of Y=
aX+b. At this 30-versus-10-thousand-km scale, the constant component b is regarded as more
critical than component a, the linear gradient. Therefore, only b is calculated and removed here.

The component b of the SRTM DEM offset calculated for the study area is 2.75 m, very close
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to the results in Huber et al. (2009). After the offset removal, the calibrated SRTM DEM was
then transformed from the cartographic coordinate system into the SAR slant coordinate

expressed in column and row.
2.3.2.2 DEM generation with single pass interferometry

DEM generation from single pass bistatic TanDEM-X data was realized using the modules
DIFF&GEO and ISP in GAMMA software (Werner et al., 2000). The procedures for DEM
generation from bistatic TanDEM-X data were conducted in GAMMA. The workflow followed
in this study is illustrated in Figure 2.3. The DEM generation starts with interferogram
generation from TanDEM-X images, since the data were already co-registered before delivery.
The TanDEM-X data were multi-looked by 65 or 4x5 to get a square pixel of 10 m spacing

and a high signal-to-noise ratio (SNR).

Because the TanDEM-X data were acquired in bistatic mode, atmospheric disturbance is
disregarded. The very short duration of data acquisition, 50-200 s, hardly allows any ground
deformation. Thus the phase information in the interferogram only refers to the systematic
characteristics of the instruments and the ground objects. With the orbit data of the TanDEM-X
master image the unwrapped phase of the earth in this area was simulated from the calibrated
SRTM DEM. During the simulation, the uncalibrated SRTM DEM was resampled to the same
pixel spacing as the multi-looked TanDEM-X data. A differential interferogram was obtained
by subtracting this simulated unwrapped phase from the interferogram derived from
TanDEM-X data. The adaptive filter described by Goldstein and Werner (1998) was applied to
remove the phase noise from the differential interferogram and to ensure a smoother
interferogram. We applied the commonly used Minimum Cost Flow (MCF) procedure for
phase unwrapping. A few unwrapping errors were produced at the marginal area of the scene

due to the sharp terrain there, but they do not influence the overall phase unwrapping.
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validations of reservoirs bathymetry.

During TanDEM-X data acquisition the bias in baseline estimation causes error in DEMs both

in the across-track and azimuth directions (Gonzalez and Bachmann, 2010; Gruber et al., 2012;

Krieger et al., 2007). But only the component of cross track error in the line of sight matters, as

it causes a noticeable displacement of a few meters and a tilt at the slope of a few cnn/km in
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range in the final DEM (Gonzalez and Bachmann, 2010; Gruber et al., 2012). To remove this
effect, a 2D linear surface was estimated using the least-squares error criterion (Werner et al.,
2000), and subsequently subtracted from the unwrapped phase, resulting in the de-ramped
phase in Figure 2.3 with the effect of bias in baseline estimation eliminated. Afterwards, the
sum of the calibrated SRTM DEM and the height map which originated from the unwrapped
phase via HoA was geocoded with Range Doppler methods defined in Goblirsch and Pasquali
(1996). The path delay introduced by the troposphere was not considered in geocoding, which
might cause an inaccuracy of around 2.6 m in the horizontal direction according to TanDEM-X

payload ground segment (2012), but this was considered acceptable for a pixel spacing of 10 m.
2.3.2.4 Water area from coherence map

Due to the specular reflectance of open and still water surfaces, hardly any SAR pulses
transmitted towards this type of water are reflected back to the sensors. Moreover, water
usually decorrelates in a time lag of tens of ms (Bamler and Hartl, 1998; Wendleder et al.,
2013), while the along-track lag of less than 50 ms between the two TanDEM-X receivers
cooperating in bistatic mode is beyond this limit. Consequently, open and still water often
presents low SNR in SAR images and small coherence in the interferogram derived from the
bistatic TanDEM-X data. Coherence has been used to detect flooding and generate water masks
(Nico et al., 2000; Wendleder et al., 2013). Thresholds of 0.2 on the coherence map, and 0.23
on the coherence map together with a threshold of 4 applied on digital numbers, have been used
to extract masks for open water (Rossi and Erten, 2015; Wendleder et al., 2013), but the
validation with real time field data was infeasible for these studies. However, rather than open
water, it is effective water area that is of interest in this study. A few herbaceous plants growing
along or in the waters could potentially lead to the increased coherence values of waters, which
can alter the elevation on TDX DEM in these areas. Therefore, in order to achieve a more
reliable DEM to represent the reservoir bathymetry, it is necessary to overestimate the area of
open water. We did this by increasing the aforementioned thresholds which were used in the

studies for open water mask. The coherence map of TanDEM-X data was derived from the
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non-filtered differential interferogram, taking the slope of phase into consideration. After
comparing the water extents acquired in the field on 2014-02-23 with the polygons derived
from coherence of interferogram 2014-02-16 obtained with different thresholds (Figure 2.4 C),
areas where coherence < 0.6 were regarded as water. This threshold is within the tolerance of
the average coherence of the TanDEM-X scene list in Table 1. The threshold of coherence < 0.6
can efficiently overestimate the possible waters, even exclude the water free area outside of the

reservoir as shown in Figure 2.4 C-D.

Introducing the coherence map derived from TanDEM-X interferograms into the workflow
makes the retrieval of reservoirs’ bathymetry less dependent on external field data of water
extents. However, the threshold used for water mask should be accordingly adjusted for further

application, depending on the vegetation presence and purpose of research, etc.

The RapidEye images on 2014-01-23 show that the terrestrial vegetation in this area is still dry,
and green vegetation only grows along the waterlines (Figure 2.4 C), despite the fact that the
wet season had already started and some rainfall was recorded in the three weeks before the

image acquisition (Figure 2.4 C A).
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Figure 2.4 Comparisons of water extent in Marengo and Sdo Joaquim. A) and C): water extent in
Marengo and S&o Joaquim on 2009-11-11 overlaid on the RapidEye image acquired on 2014-01-23
(band combination: RGB: 543); B): and D): Subset of Marengo and Sao Joaquim in A and C. Water
extent on 2014-02-23 from field, and polygons of water extents defined by different thresholds on
coherence of TanDEM-X data 2014-02-16 overlaid on RapidEye image on 2014-01-23. CC stands for
the coherence. The large discrepancy between the CC_0.6 and the SJ 20140223 located at the mudflat
which is water free but cannot be accessed by walking, and the very narrow water way which is too
narrow to be delineated from the coherence map.

2.3.2.5 Extraction of water area-to-volume relationship

The area-to-volume relationship expresses how the water volume in the reservoir varies with
respect to the surface area of the water. Comparisons of the relationship shown in bathymetric
maps derived from field survey and TDX DEM over the reservoir provide insights on the
difference of the two approaches in bathymetric surveying. Before extracting the water
area-to-volume relationship from TDX DEM 2014-02-16, the overestimated area of water in
the reservoirs (coherence < 0.6) was attributed to the smallest surrounding elevation value. The
flat terrain in the Madalena region barely introduces SAR shadows within the reservoir areas.

The ten meters pixel spacing of the TDX DEM:s is almost three times as wide as the dams. As a
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result of averaging, the elevations of narrow dams shown on the DEMs, line C in Figure 2.5
was lower than their actual heights, line D in Figure 2.5. Due to the unavailability of spillway
elevations, the upper limits of the water level for each reservoir were determined by the average
elevation underlying the maximal water extents captured in RapidEye archive. Water extents
were manually digitalized as polygons from the RapidEye images, considering the appearance
of macrophytes floating on the water surface or emerging at the shorelines during data

acquisition.

N\ Stored water === Waterlevel Topo on DEM

I Retained water Real shape of dam

Figure 2.5 Illustration of reservoir profile in TDX DEM 2014-02-16. A, B, C and D stand for the possible

water levels.

Water areas and volumes in the reservoirs were calculated with 0.5 m water level intervals

using equation (2.1)

where V; is the volume of water stored in the reservoir when the elevation of water level is at
H;. The starting point of H; is 4 in Figure 2.5 in the case of empty reservoirs, or B in Figure
2.5 in the case of reservoirs with retained water. The upper limit of H; is D in Figure 2.5, and
it is determined by water areas in RapidEye images on 2009-11-11. n is the number of pixels
forming the water surface at water level H;, Ejis the elevation of the j™ pixel in the TDX DEM.
Ao is the area of one pixel, 100 m? here with pixel spacing of 10 m. V; is the volume of
retained water during the TanDEM-X data acquisition. When the water level changes from A in

Figure 2.5 V, is 0 hm?. In reservoirs where water was retained, the water level changed from B
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in Figure 2.5; V, is calculated from bathymetric maps derived from field survey.

The accuracy of the volume at water level H; was calculated based on the accuracies of the
TanDEM-X derived DEM by summing up the errors of each water column represented by one

pixel (equation (2.2)):

oAgn 2.2
4, = (%) 100% 22
Vi
where 4; is the accuracy of the volume (%) at water level H;, and o is the absolute accuracy

of the DEM in meters, established with DGPS data from field measurements.
2.4 Results

The three TDX DEMs were compared among one another and their accuracies were established
with DGPS data. The areas of the water retained in the reservoirs were calculated from the
coherence maps of the TanDEM-X data. The TDX DEM and bathymetric maps derived from
field survey were compared at the following three aspects: the overall coverage, the distribution
of measurements in the reservoir, profiles of bathymetric information for shape replication, and
the water area-to-volume relationship derived from the two datasets.

2.4.1 Validation of the TDX DEMs

The TDX DEMs were compared to one another (Figure 2.6 A-C). In the two maps comparing
the TDX DEMSs in 2011 and 2014 (Figure 2.6 A-B), only at a few places was the elevation
difference beyond the range of +2 to -2 m, which can be attributed to the land use changes, e.g.
bushes degradation and the ground mass changes like new dam constructions. The remained
areas show elevation differences within the range of -2 m and +2 m, with a standard deviation
below 1 m and mean at zero meter. Most of the differences are in the range of -1 m to +1 m,
particularly in the difference map for TDX DEM 2014-02-16 and TDX DEM 2014-03-21. The
comparison map of TDX DEM 2011-07-05 and TDX DEM of 2014-03-21 (Figure 2.6 B) is
slightly smoother than the one for TDX DEM 2011-07-05 and TDX DEM 2014-02-16.

Acquired within an interval of 33 days, TDX DEM 2014-02-16 and TDX DEM 2014-03-21
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have closer elevation overall, and the elevation differences are mostly in the range of -1 to +1
m (Figure 2.6 C) , smaller than the elevation difference in other two comparisons maps. Due to
the flat terrain in this region, water bodies are the majority of the areas marked to be incoherent
in Figure 2.6. The rest of the incoherent areas, i.e. hollow areas not overlaid by water bodies,

indicate the locations where the terrain affects the TDX DEMs.

In the comparisons of the SRTM DEM with the TDX DEMs (Figure 2.6 D-F) similar spatial
patterns are shown at the pixel size of 90 m. No obvious directional trend is noticed for the
comparison between SRTM DEM and the TDX DEMs. The mean of the elevation differences
are approximately -2.8 m (Figure 2.6 D-F), very close to the removed offset of -2.75 m,
implying that the offset removal from the SRTM DEM is reasonable. The standard deviations
of the differences reach 1.5 m, much larger than the values in the comparisons of the TDX
DEMs, which might be evidence that the TDX DEMSs have better relative accuracy than the

SRTM DEM.
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Figure 2.6 Comparison of the TDX DEMs and between the TDX DEMs and SRTM DEM. A): The result
of subtraction of TDX DEM 2014-02-16 from TDX DEM 2011-07-05; B) the result of subtraction of
TDX DEM 2014-03-21 from TDX DEM 2011-07-05; C) The result of subtraction of TDX DEM
2014-02-16 from TDX DEM 2014-03-21; D) The result of subtraction of SRTM DEM from TDX DEM
2011-07-05; E) The result of subtraction of SRTM DEM from TDX DEM 2014-02-16; F) The result of
subtraction of SRTM DEM from TDX DEM 2014-03-21. Areas with coherence of less than 0.6 in either
of the three interferograms were eliminated and displayed as holes in the comparison images as no-value

areas.

2.4.2 Accuracy assessment

In the validation with DGPS data and DEMs derived from TanDEM-X data (Figure 2.7), nearly
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all absolute elevation differences are in the range of +2 m to -2 m. Point No.7 was measured on
a typical 3-4 m wide dam in the area. The elevation based on DGPS measurements at this point
is the real elevation of the dam. The values from the three DEMs are the results of averaging
neighboring lower ground and the dam and are therefore lower than the real values. Systematic

offset among these three data sets are not significant (Figure 2.7).
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Figure 2.7 The validation of the TDX DEMs with DGPS data. The value of each plotted point was
obtained by the subtraction of DGPS measurement from the corresponding elevation of the TDX DEMs
pixels at the same locations. Positive values mean the TDX DEMs have higher values than from DGPS
measurement, and vice versa. The measurements enclosed by the red rectangle were taken on the top of an
approximately three meters high dam.

The accuracies of the three TDX DEMs were calculated according to Rosen et al. (2000) by
referring to DGPS data (Table 2.2). The relative accuracies of the three TDX DEMs are slightly
better than the absolute ones (Table 2.2). Both relative and absolute accuracies of the TDX
DEMs in this study are better than the reported 2 m and 10 m in relative and absolute
accuracies for the Global TanDEM-X DEM (TanDEM-X ground segment, 2013). The TDX
DEM 2014-03-21 from TanDEM-X data with a long baseline and a small HoA (Table 2.1)
yields overall better accuracy than do the other two TDX DEMs. However, the magnitude of
the differences is very little and at the decimeter level the accuracies are comparable (Table

22).
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Table 2.2 Vertical accuracies of the TDX DEMSs generated in this study (m).

TDX DEM TDX DEM TDX DEM
2011-07-05 2014-03-21 2014-02-16
Absolute
1.21 1.06 1.16
Validation with DGPS accuracy
data Relative
1.16 1.01 1.03
accuracy

Note: the values in the table are all provided at a confidence level of 95%.

The similarities between TDX DEMs from different TanDEM-X data demonstrated the stability
of the workflow applied in this study for DEM generation. Inter-year land cover and seasonal
changes can also be observed from these comparisons. The comparison of TDX DEMs and
their accuracies proved the potentials of the TanDEM-X data for generation of the highly
accurate DEM. Comparison between uncalibrated SRTM DEM and TDX DEMs shows that the
offset removal was reasonable.

2.4.3 Water extents

During the acquisitions of the three TanDEM-X data sets for TDX DEM generation there were
different amounts of water in the reservoirs. On 2014-02-16 the extents of retained water in the
reservoirs were the smallest. TDX DEM 2014-02-16 was therefore chosen to reveal the
bathymetry of reservoirs in the Madalena catchment, despite its slightly lower accuracy than
the other two TDX DEMs. Table 3 shows the surface areas of retained water obtained from the
field survey on 2014-02-23, and the water areas delineated from the coherence map of
TanDEM-X data for 2014-02-16. With 7 days’ time lag, the water areas from field data and
coherence map defined by threshold coherence < 0.6 were nearly the same (Table 2.3). It
demonstrates that the threshold of coherence < 0.6 is suitable for removing the effect of water
retained in the reservoirs, despite the small area of mudflat around the open water displayed in
Figure 2.4 C. In the case of Sdo Nicolau, the areas of the water remained during the field trip on

2014-02-23 and during the overpasses of the TanDEM-X satellites on 2014-02-16 were nearly
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0.00 km2, even after the overestimation of water surface. Thus, the arcas of water in Sao
Nicolau were represented with NA in Table 2.3, to indicate that nearly no water remained in the

reservoirs on 2014-02-23 and 2014-02-16.

Table 2.3 Water areas in reservoirs in the Madalena catchment (km?).

Reservoir Marengo Sdo Joaquim  Sdo Nicolau Raiz Mel

Water area on

2014-02-23 0.64 0.16 NA 0.01 0.01
(field survey)
Water area on
2014-02-16 (coherence 0.63 0.16 NA 0.01 0.01
<0.6)

2.4.4 Bathymetric map validation

Because no other bathymetric data were available for the reservoirs in the Madalena catchment,
the bathymetric maps derived from field survey were used to compare against the TDX DEM
2014-02-16 in the reservoirs. The available field measurements reveal the depths of the
surveyed waters, not the absolute elevations of reservoirs’ bottom. In order to enable the
comparison of bathymetries derived with the two approaches, we calculated the mean elevation
of the TDX DEM 2014-02-16 pixels which underlie the con-current waterline (extent) during
the field measurements. The field measurements were then aligned to the TDX DEM
2014-02-16 by subtracting them from this mean elevation. As a result, both the field
measurements and TDX DEM 2014-02-16 present the elevations of the reservoirs’ bottom. This
is enough to illustrate how the same reservoir on TDX DEM 2014-02-16 morphologically
varies from it on the bathymetric map derived from field survey. However, some uncertainties
probably still exist in the absolute elevations converted from the field measurements as the
mean elevation we employed may not be the real absolute elevation due to the accuracy of
TDX DEM 2014-02-16. Therefore, the validations of TDX DEM 2014-02-16 in the terms of
the bathymetric mapping were conducted only at a morphological aspect in the overall

reservoir scale, to see the coverage and shape differences reflected by the two datasets.
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Considering the absence of the precise reference elevation for the field bathymetric
measurements, we did not directly compare the individual field measurements and

corresponding pixels on TDX DEM 2014-02-16.
2.4.4.1 Bathymetric map comparison

For the purpose of resevoir bathymetry mapping, the DEMs generated from TanDEM-X data
acquired between the end of the dry season and the beginning of the wet season are preferred.
On the one hand, this is after the intensive evaporation in the dry season and before the wet
season when the reservoirs are usually refilled. At this time water-free areas in reservoirs are
usually at a maximum and the inundation area reaches the minimum. On the other hand, at this
time the perennial acquatic plants in the inundation are expected to diminish due to the absence
of water, and the possible elevation contribution/disturbance from these plants is minimal. For
example, in the Madalena catchment, the occupation of macrophytes in the reservoirs was

marginal in the dry season at the limited area of water surfaces (Figure 2.2 and Figure 2.4 C).

Figure 2.8 shows the reservoirs in the Madalena catchment on bathymetric maps derived from
field survey and on TDX DEM 2014-02-16. Only reservoirs with available field bathymetric
measurements are presented here. The reservoir areas were extracted from TDX DEM
2014-02-16 with the maximal water extents recorded in the RapidEye archive (i.e. RapidEye
image on 2009-11-11 for the majority of the reservoirs and RapidEye image on 2015-08-02 for
Sado Nicolau). Before the extraction, a buffer of 40 m was added to the reservoirs’ extents to
better illustrate the reservoirs bathymetry on the TDX DEM 2014-02-16. Only for Sao Nicolau
was a buffer of 100 meter applied, considering that the maximal extent recorded in RapidEye
archive for this reservoir was smaller than the water extent in June 2014 when the field
bathymetric survey was conducted. The water extents acquired in the field on 2014-02-23 were
overlaid on both bathymetric maps. Bathymetric maps derived from field survey and TDX
DEM 2014-02-16 were compared at the spatial scale. As the five meters accuracy of the

handheld GPS is below the pixel spacing of TDX DEM:s (ten meters), no horizontal uncertainty
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was considered in the comparison between TDX DEM 2014-02-16 and the bathymetric maps

derived from field survey.

At the time of the field campaign for bathymetric survey in Marengo and S3o Joaquim, the
water in the reservoirs was not at the maximum, i.e., as at 2009-11-11. Bathymetric maps
derived from field survey for these two reservoirs, therefore, cannot cover the complete extent
of the reservoirs (Figure 2.8). The depths of most branches of the two reservoirs were not
measured during the field campaigns, although they were inundated (Figure 2.8). On TDX
DEM 2014-02-16, areas free of water including the branches were fully covered with
continuous measurements in Marengo and Sao Joaquim. The elevation of the lowest areas
occupied by the retained water is left unknown (Figure 2.8) . Attributing these areas with the
minimum surrounding values results in the flat-bottom shapes for the two reservoirs on TDX
DEM 2014-02-16. In general, on TDX DEM 2014-02-16 the topography inside the reservoirs
Marengo and Sao Joaquim is smoother and gentler than shown in bathymetric maps derived

from field survey (Figure 2.8).

51



2. Bathymetric survey of water reservoirs with TanDEM-X data

39°34'30"W

39°34'0"W

39°33'30"W

5°3'0"S |

5°3'30"S

- Field measurement Field bathymetry (m)
[ water 20091111

39°33'0"W

o 243373

S 236.97

500 1,000
v

39°32'0"W

5°0'0"S

5°1'0"S

- Field Measurement
Clwater 20091111
Field bathymetry (m)
wr 26527

K 247.092
0 750 1,500
[

39°32'0"W

TN

4°57'30"S A

4°58'0"S

4°58'30"S |

[CJWater 2014-08-02

+ Field measurement
Field Bathymetry (m)
w 275.052

K 266.831

0 250

500
M

4°58'30"S |

39°34'30"W

39°34'0"W

39°33'30"W

5°3'0"S |

5°3'30"S

— Track AB TDX DEM (m)
[Iwater 20140223 gy 254.46

N

-
ATRLTF

= 500 1,000
Water 20091111 | |
ater K4 2389 M
39°33'0"W 39°32'0"W
T B
5°0'0"S
—Track AB
5°1'0"S ---Track CD
[CIWater 20140223
[Cwater 20091111
TDX_DEM (m)
w 276.439
K< 254.633
0 750 1,500
[ ]
39°32'0"W 39°31'30"W
— B
4°57°30"S | A
4°58'0"S [

[CIWater 2014-08-02
— Track AB

=== Track CD

—: Track EF

TDX DEM {m)

wr 284.764

4 267.181
0 250

500
M

Figure 2.8 Comparisons of the bathymetric maps derived from field surveys (left column) and the TDX DEM
2014-02-16 (right column) for Sdo Joaquim Reservoir (top row), Marengo Reservoir (middle row) and Sdo Nicolau
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Reservoir (bottom row).

In Sao Nicolau, the emergent macrophytes at the northern part impeded the collection of depth
measurements from a boat. A vast area of vegetation left only a narrow channel for the boat to
pass through and survey the reservoir bathymetry (Figure 2.8). As a result of interpolation from
sparse field measurements, the shape of the reservoir at the northern part is steep in bathymetric
maps derived from field survey, particularly in the northern part. On TDX DEM 2014-02-16,
Sao Nicolau could be completely mapped because it was empty during the TanDEM-X image

acquisition (Figure 2.8).

Overall, TDX DEM 2014-02-16 results in a continuous bathymetric map for the reservoirs
investigated with evenly distributed measurements of pixels. The bathymetric maps derived
from field surveys are based on the point-wise field measurements, which are in many cases
unevenly distributed due to the inaccessibility caused by either the shallowness of the waters or
the obstruction of the emergent macrophytes at these areas. Derived from data acquired in the
dry season, TDX DEM 2014-02-16 mapped the majority of the reservoirs with an accuracy of
about one meter while bathymetric maps derived from field surveys were constrained by the
water extents at that time which were in many cases not at the maximum and, thus, only part of

the reservoirs were surveyed.
2.4.4.2 Profiles of bathymetric maps derived from field survey and TDX DEM 2012-02-16

Figure 2.9 shows the comparison between bathymetric maps derived from field survey and
TDX DEM 2014-02-16 in the three reservoirs along the tracks marked in Figure 2.8. The
performance of two bathymetric mapping approaches in preserving the reservoirs shapes are

presented in this subsection.

In Sdo Joaquim at the area indicated as water on TDX DEM 2014-02-16, the elevation on
bathymetric map derived from field survey fluctuates slightly and remained of nearly the same
magnitude (Figure 2.9 A). In Sdo Joaquim the maximal depth unmeasured by TDX DEM

2014-02-16 is about one meter (A). The long diameter of the unmapped areas is approximately
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500 m, but the mapped value is 3 000 m. The total depth of the reservoir is eight meters.

In Marengo the north—south transect passes through an island at 500 m in the profile of TDX
DEM 2014-02-16, where an elevation jump is displayed (Figure 2.9 B). But the morphology of
this island is not shown in bathymetric maps derived from field survey (Figure 2.9 B). On the
west-east transection of the bathymetric map derived from field survey in Marengo, an
elevation difference is shown at ~ 250 m in the inundation area (Figure 2.9 C). But this
variation is not visible in the north-south transect of bathymetric map derived from field survey
or in TDX DEM 2014-02-16 (Figure 2.9 B). This could be due to the appearance of submerged
plants, a few tree stumps or even artifacts in the point-wise measurements. This is because solid
objects that were above the water surface on 2014-02-16 and larger than one pixel would
present high coherence in the interferogram and be displayed accordingly in TDX DEM
2014-02-16. The maximal unmeasured depth of the inundated areas in Marengo is
approximately five meters, but the mapped maximal depth of the reservoir is 10 m (Figure 2.9
A-C). On 2014-02-16 the longer diameter of the unmapped Marengo area is on the order of 2
000 m, while that of the mapped area is 7 000 m. Combining the bathymetric map derived from

field survey and the TDX DEM 2014-02-16, the total depth of Marengo is 15 m.

No water retention appeared in Sao Nicolau on 2014-02-16, thus the profiles from the
bathymetric map derived from field survey and TDX DEM 2014-02-16 are expected to show a
similar shape for the reservoir. However, the bathymetric map derived from field survey and
TDX DEM 2014-02-16 show significantly different shapes for the reservoir Figure 2.9 D-F).
On the TDX DEM 2014-02-16 Sdo Nicolau is seen as open and wide, and the gradient is
gradual while the bathymetric map derived from field survey casts a rather narrower shape for
this reservoir (Figure 2.9 D and E) with abrupt topographic fluctuations (Figure 2.9 F). The
areas with large bathymetric discrepancies are located at the boundary and the center of the
reservoirs (Figure 2.9 D-F). For the central area (Figure 2.9 D), the discrepancy was probably
caused by submerged vegetation or stumps. At the boundary region, the shallow waters were

inaccessible and there is thus a lack of field measurements. Consequently, the bathymetric map
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derived from field survey for these areas was interpolated from a few relatively distant
measurements and thus shown as flat (Figure 2.9 E and F). The bathymetric map derived from
field survey in S& Nicolau does not completely replicate the shape of the reservoir. Sao
Nicolau was empty on 2014-02-16, and the entire reservoir bottom was therefore mapped by
TanDEM-X data and presented high coherence. As a result, for those arcas with a large
bathymetric discrepancy, the TDX DEM 2014-02-16 should reflect a more reliable shape for
Sao Nicolau. The interference of macrophytes on the field bathymetric survey during the wet

season was avoided.

In general, in the profiles of Sao Joaquim, Marengo and Sao Nicolau reservoirs (Figure 2.9 A-F)
the flat features on TDX DEM 2014-02-16 indicate the areas of water retention during the
TanDEM-X data acquisition. Elevations of these areas were attributed from the minimal
elevation of the adjacent pixels. On the profiles of bathymetric maps derived from field survey
in these reservoirs, the flat features are mainly at the shallow areas adjacent to the reservoirs’
boundaries (Figure 2.9 B-F). At boundary areas, the bathymetric maps were interpolated from
the elevations of the bank that were far away from the depth measurements in the water. Large
population of emergent macrophytes which hindered the access of field measurement have

probably contributed to this effect, e.g. in Sdo Nicolau.
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zone), while track B and C spans from west to east. The distance between neighboring samples is 20 m.

In summary, the profile comparisons of the TDX DEM and the bathymetric maps derived in

field surveys evidently show differences in reservoir shapes cast by these two approaches, in

addition to the coverage difference. Absence of field measurements at shallow boundaries leads

56



2. Bathymetric survey of water reservoirs with TanDEM-X data

to fake flat shapes for the reservoir for these areas on thus derived bathymetric maps. TDX
DEM 2014-02-16 can retrieve the bathymetry for the areas with fine structures such as the
island, tails and branches. In reservoirs with few submerged macrophytes, TDX DEM
2014-02-16 and bathymetric maps derived from field survey cast similar shapes at the areas
where TanDEM-X data and the field measurements overlap, e.g. Marengo and Sao Joaquim.
However, in the case of the densely vegetated reservoir, i.e. Sdo Nicolau, submerged
macrophytes, stumps or even artifacts in the field measurements at high water level stage
misshapes the reservoir on the bathymetric maps derived from field surveys. By mapping the
dry bottoms of the reservoirs, TDX DEM 2014-02-16 is free of the influence from submerged

macrophytes, stumps and shallow depth, and thus presents reliable shapes for the reservoirs.
2.4.4.3 Water area-to-volume relationship

The inundation area and the corresponding volume are the main inventory data for the
reservoirs in the quantitative assessment of available water. The volume of the water under
certain water area in a reservoir is usually estimated from a bathymetric map. In this study, the
relationship between water area and corresponding reservoir volume was extracted both from
TDX DEM 2014-02-16 and bathymetric maps derived from field survey. We employed this
parameter to investigate the effect of different bathymetric maps in the water area-to-volume
relationship extracted from them. Figure 2.10 shows the water area-to-volume relationship for

Sao Joaquim, Marengo, Sdo Nicolau and Fogareiro.

In Sdo Joaquim, the comparison of the water area-to-volume relationship is limited to the
coverage of the bathymetric maps derived from field survey. Within the spatial range of
bathymetric maps derived from field survey, the water area-to-volume relationships extracted
from both data sources for this reservoir yield nearly the same water volumes (Figure 2.10 A).
The unmapped area of S& Joaquim on TDX DEM 2014-02-16 was occupied by water during

TanDEM-X data acquisition, but it barely impacted the water area-to volume relationship.

According to TDX DEM 2014-02-16, Marengo can expand to a larger area than the
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bathymetric map derived from field survey. For the same area of water in Marengo, the
bathymetric map derived from field survey indicates a larger water volume in the reservoir than
TDX DEM 2014-02-16 does (Figure 2.10 B). At the initial stage of the relationship the retained
water with maximal unmeasured depth of about five meters and diameter of nearly 2 000 m is
the main cause (Figure 2.10 B). The volume of the unmeasured water can be obtained from the
initial difference of the relationship. As the water area increases, the difference between the
bathymetric map derived from field survey and TDX DEM 2014-02-16 becomes larger for
Marengo. Fewer measurements near the boundaries of bathymetric map derived from field
survey cast a narrower shape for the reservoir than shown in TDX DEM 2014-02-16. As a
result, on this narrow bathymetric map of Marengo the corresponding water volume increases
more quickly than the water area does when the water level rises (Figure 2.10 B). The flat
features caused by the lack of field measurements in shallow waters impact the water
area-to-volume relationship significantly in Marengo, but the impact of macrophytes may be

ignored.

According to the TDX DEM 2014-02-16, the water area in the reservoir Sdo Nicolau can
expand to a similar extent as the bathymetric map derived from field survey, larger than the
maximum of water extent recorded in the RapidEye archive. The water area-to-volume
relationship extracted both from the bathymetric map derived from field survey and TDX DEM
2014-02-16 show significant differences (Figure 2.10 C). For the same water areas, the
bathymetric map derived from field survey implies a larger water storage for the reservoir than
TDX DEM 2014-02-16 does (Figure 2.10 C). Due to the different shapes casted by the two
bathymetry datasets (e.g. Figure 2.10 D), a much shallower water depth on TDX DEM
2016-02-16 will occupy the same water area as that under a higher water level on the
bathymetric map derived from field survey. Therefore, under the same water area the water
stored in the reservoir calculated from TDX DEM 2014-02-16 is less than that obtained from
bathymetric map derived from field survey (Figure 2.9 D). This phenomenon becomes more

significant as the water area increases, resulting from the narrow morphology of the reservoir

58



2. Bathymetric survey of water reservoirs with TanDEM-X data

caused by the lack of field measurements in the boundary areas. In this reservoir, as no water
retained on 2014-02-16, no contribution from it was observed for the water area-to-volume
relationship derived from TDX DEM 2014-02-16 for Sdo Nicolau. In contrast, the emergent
and submerged macrophytes and at shallow areas and the lack of field measurements in the
boundary area have notably impacted the bathymetric maps derived from field surveys (Figure

2.10 D-F), as well as the water area-to volume relationship extracted from it.

A comparison of water area-to-volume relationships was also conducted for Fogareiro (Figure
2.10 D). The field data were collected during a topography survey before the construction of
the reservoir, with the relative elevation given. As no water was filled during the field survey,
no effect of macrophytes or shallow water depth will exist. TDX DEM 2014-02-16 is expected
to indicate similar shapes as the bathymetric map derived from field survey. The water
area-to-volume relationships extracted from the bathymetric map derived from field survey and
TDX DEM 2014-02-16 are very similar and with a stable discrepancy as the water area
increases. The volume difference of ~ 10 hm?® between the two relationships stands for the
volume of water retained in Fogareiro on 2014-02-16. In the TDX DEM 2014-02-16, ~ 1/6 of

the area was unmapped and ~5% of the corresponding volume was not derived.

The effect of remained water and shape difference were shown in this subsection. The
contribution of the water retained during TanDEM-X data acquisition was determined by the
initial differences between the water area-to-volume relationships extracted from TDX DEM
2014-02-16 and bathymetric maps derived from field surveys. The unmapped areas in TDX
DEM 2014-02-16 only impact the water area-to-volume relationships derived from them for the
larger reservoirs such as Forgareiro. The volume of the water under the unmapped area is
marginal in comparison to the volume under the area which was mapped by TDX DEM
2014-02-16. As the water area increases, the effect of misshaping caused by the lack of field
measurements in the shallow areas emerges and increases. For the shallow reservoir Sdo
Nicolau, which was empty on 2014-02-16 but densely vegetated during field bathymetric

survey in the wet season, the impact of shape differences between TDX DEM 2014-02-16 and
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bathymetric map derived from field (Figure 2.10 D-F) is significant. Having mapped the dry

bottom of these reservoir with continuously distributed pixels, TDX DEM 2014-02-16 reveals

more reliable shapes and water area-to-volume relationships for reservoirs Marengo, Sao

Nicolau and S0 Joaquim, as compared to bathymetric maps derived from field surveys.
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Figure 2.10 Comparisons of the water area-to-volume relationship based on TDX DEM 2014-02-16 and
bathymetric maps derived from field survey (BMFS in the figures). The field water area-to-volume data of
Fogareiro was provided by COGERH with water level step of 2.5 m. Other field bathymetric maps were

acquired from the interpolation of the field depth measurements as stated in the data section

2.4.5 Water volume

The volume of water stored in the reservoirs in the Madalena catchment and in Fogareiro at

their maximal water extents as archived by RapidEye data is listed in Table 2.4, disregarding
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the small amount of retained water. Among these five reservoirs, Marengo and Sao Joaquim
play the major role in water storage. From the water area-to-volume relationship derived from
bathymetric maps derived from field survey, the volumes of water retained in Marengo, Sao
Joaquim and Fogareiro on 2014-02-16 were ~0.92 hm?, ~0.00 hm?® and ~10 hm’, respectively,
corresponding to 5.09%, 0.02%, and 5.00% of the achievable total storage capacities. These
values were calculated from the relationships when the area equals the first value on the water

area-to-volume relationship derived from TDX DEM 2014-02-16.

Table 2.4 Areas and volumes of water stored in the reservoirs under the maximal water extent archived.

Sao Séo ) Madalena )
Marengo . . Raiz Mel Fogareiro
Joaquim  Nicolau catchment
Area (km?) 3.37 1.30 0.57 0.28 0.09 5.61 24.31

Ratio of area to total % 60.07 23.17 10.11 4.93 1.65 - -

Volume (hm?) 18.58 5.53 1.31 1.04 0.20 26.14 178.23

Volume accuracy (%) 21.8 29.3 59.4 33.6 533 - 15.83

Volume ratio of total % 71.08 21.15 5.01 3.98 0.77 100 -

DEM generated from TanDEM-X data with single pass interferometry can reach an accuracy of
about one meter. Despite the accuracy of individual measurements, shallow water depth,
incomplete water coverage, uneven distribution of the field measurements, the presence of
dense emergent and/or submerged macrophytes and artifacts in the field survey can all
undermine the quality of bathymetric maps derived from field survey. Contrastingly, the TDX
DEMs can map all the coherent areas (coherence > 0.6 in this study) under the TanDEM-X
image coverage with evenly distributed pixels, including the water-free areas. The evenly
distributed measurements of SAR data in water-free areas replicates the more reliable shape for
the reservoirs in the TDX DEM, and thus reflects the more reliable water area-to-volume
relationship. As for the water remaining in some reservoirs, its contribution to the reservoir
volume is very slight in the case of the Madalena catchment area, compared to the total

volumes.
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2.5 Discussion

In this study, DEMs were separately generated from three bistatic TanDEM-X data sets with
single-pass interferometry. The TDX DEMs were compared with one another, validated with
field DGPS data, and their accuracies were assessed. Among the three TDX DEMs, TDX DEM
2014-02-16 shows the smallest water areas in the reservoirs thus was selected to reveal the

reservoir topography. It is then compared to bathymetric maps derived from field survey.

The elevation differences between the TDX DEMs range from -2 m to +2 m with mean at zero
meter, which demonstrates the reliability of the TDX DEM generation workflow. Land use
changes in the three years between the data collections (i.e. 2011 and 2014) and seasonal
differences (February, March and July) are regarded as the cause for these elevation differences
in the range of one to two meters. According to Krieger et al. (2007), vegetation five meters
high could introduce an elevation error of 1-1.5 m in the TDX DEMs. In 2011 the TanDEM-X
data were acquired in the wet season when the canopy of the vegetation is closed, and more
volume decorrelation is possible. This might explain the elevation variation beyond the range
of -2 m to +2 meter in the comparison of maps of DEMs from TanDEM-X data acquired in
2011 and 2014. TDX DEM 2014-02-16 and TDX DEM 2014-03-21, which were respectively
generated from TanDEM-X images acquired 33 days apart, show overall smaller differences

from each other (i.e. mostly within -1 to +1 m) (Figure 2.6 C).

The results in Table 2 show that the accuracies of the TDX DEMs in the Madalena catchment
area are of the order of one meter, higher than the overall accuracies of the global TanDEM-X
DEM (TanDEM-X ground segment, 2013). This is probably because the overall accuracies of
the global TanDEM-X DEM were given based on the global scale, covering multiple ground
topographies and land uses. In addition, TanDEM-X data acquired in different seasons are used
for the global DEM generation. On the other hand, the accuracy derived in this study may only
apply to the TDX DEMs from bistatic TanDEM-X data over this specific area, which is

characterized by relatively flat terrain (Figure 2.1 C) and covered by deciduous shrubs. It is
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possible that the same processing of data with similar acquisition for other areas will yield TDX
DEMs with a certain difference, depending on the specific terrain and land cover. Field DGPS
data were collected from bare land without tree coverage, similar to the situation at the bottom
of water-free reservoirs. Thus, the accuracy is assumed to be acceptable for water volume

assessment in reservoirs.

We used the generated TDX DEM in the reservoirs areas to reveal the reservoir bathymetry.
The approximate one-meter accuracy of the TDX DEMs is slightly worse than the 0.89 m of
the bathymetric map derived by Pacheco et al. (2015) and 0.67 m by Brando et al. (2009) from
spectral reflectance of water columns. Although mainly applied in coastal regions, methods
based on spectral characteristics can map inland water bathymetry. However, the accuracy of
the bathymetric maps derived with such methods varies with the water turbidity/clarity (Brando
et al., 2009), and so do the accuracies of the bathymetric mapping from LiDAR measurements
(Guenther et al., 2000). In contrast, the accuracies of TDX DEM are relatively stable within the

TanDEM-X scene, and thus in the study catchment.

Moreover, derivation of bathymetric maps from optical remote sensing requires images
acquired in cloud-free conditions and is constrained limited water depths e.g. 4-13 m (Brando
et al., 2009; Lafon et al., 2002; Pacheco et al., 2015; Sandidge and Holyer, 1998). Even though,
these methods are capable of mapping large-scale coastal areas within the retrievable water
depth, in spite of the smaller test sites of kilometers. LIDAR measurements can also map water
bathymetry with very high accuracy and resolutions smaller than one meter, but their
application in bathymetric mapping is often constrained into the small scale of sub-kilometers.
The expense is another factor that concerns its application for large scale mapping. In contrast
to those methods, DEMs, which are derived from TanDEM-X data acquired in the dry seasons
with minimum water retention, can map the water-free areas in all the reservoirs under its
coverage, independent of weather conditions, water quality (i.e. turbidity, etc.) and depth. For
example, TDX DEM 2014-02-16 maps the Sdo Nicolau with a complete depth of seven meters,

the major part of Marengo with depth around ten meters and the majority of Fogareiro.
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Shallow areas and fine structures of reservoirs (e.g. branches and tails) in northeastern Brazil
are usually vegetated by macrophytes and thus not accessible for field measurements. As a
result, sparse and inadequate field measurements in these areas can cause inaccurate, misshapen
bathymetric maps for the reservoirs, e.g. Sdo Nicolau and Marengo (Figure 2.9). Considering
their usually small sizes, reservoir branches are prone to problems in terms of mixed-pixels
when the data of coarse resolution such as Landsat are used. With the high spatial resolution of
the TanDEM-X data, very detailed reservoir bathymetry can be derived with evenly distributed
pixels on TDX DEM. Furthermore, compared to bathymetric maps interpolated from
water/land borders extracted from time series of images (Arsen et al., 2013; Feng et al., 2011),

TDX DEM is free of misclassification effects.

Macrophytes have an impact on the performance of the bathymetric maps derived for inland
waters. Massive aquatic grasses can disturb the spectral reflectance from the water surface.
According to Dierssen et al., (2003), the magnitude of the retrieved bottom reflectance, which
is used to derive ocean bathymetry, is highly correlated to the seagrass leaf area index (12 =
0.88). Stumps and submerged macrophytes affect the point-wise bathymetric mapping with
LiDAR (Guenther et al., 2000) and field depth measurements by reflecting the wrong depth of
waters being measured. In the TDX DEM over the reservoirs, the extent of the vegetation in
waters can be minimized by acquiring the TanDEM-X data in the dry season. As for the effect
of those macrophytes growing in and/or along the waters retained during the TanDEM-X image,
overestimating the extent of retained water from coherence map can eliminate it. However, this
is the case only for reservoirs with water retention during the TanDEM-X data acquisition in
the dry season. For empty reservoirs it is not even necessary. In this study, we did not consider
the impact of macrophytes in water on the TDX DEM, as we are relying on TDX DEM simply

to study the bathymetry of the dry part of the reservoirs.

We extracted the water area-to-volume relationship for the reservoirs from both TDX DEM
2014-02-16 and the bathymetric maps derived from field survey. These relationships were used

to further investigate the effect of the retained water and other factors influencing the field

64



2. Bathymetric survey of water reservoirs with TanDEM-X data

measurements. Dense submerged macrophytes and the lack of measurements at shallow areas
of the reservoirs can significantly affect the water area-to-volume relationship from bathymetric
map derived from field surveys. As TDX DEM 2014-02-16 mapped the reservoirs in the dry
season when hardly any vegetation emerged in the reservoirs, water area-to-volume
relationships obtained from TDX DEM 2014-02-16 for the reservoir were found to be more
reliable. Compared to the reservoir storage curves obtained from time series of optical images
(Peng et al. 2006) and the volumes estimated for big reservoirs from MODIS data and altimetry
data (Zhang et al., 2014), the effect of misclassification for water/land border extraction is
eliminated by extracting the inundation area with the same water level intervals (i.e. 0.5 m)
from TDX DEM 2014-02-16. The extraction of water area-to-volume relationship from TDX
DEM is less dependent on the number of optical images available in the archive. According to
Heine et al. (2014), the water areas in reservoirs in another catchment in the Ceara state do not
vary spatially synchronously. This is very likely also the case in the Madalena catchment. Once
the water extents in the reservoirs are obtained from remote sensing images for a certain time,
the total water volume stored in the Madalena catchment at that time can be derived from the
water area-to-volume relationships of the reservoirs. If applied on a regional scale such as for
Cearéa State, this method can help in understanding the dynamic amount of water stored in the
region or in a large hydrological unit and in managing local water resources. For example, with
the maximal water extent recorded in the RapidEye data archive, the potential water storage in
the Madalena catchment reservoirs was estimated to be 26.14 hm?, disregarding the retained

water.

The corresponding accuracies of the estimated water volume was retrieved for each reservoir
using equation (2.2), independent of field measurements. This also quantifies the accuracies of
the water storages estimated for the reservoirs, if it is applied in the water volume related study
or for water resources management. Despite the presence of retained water, the water volumes
estimated from TDX DEM 2014 -02-16 are higher than those derived from bathymetric maps

derived from field survey, thanks to the excellent performance of TDX DEM 2014-02-16 in the
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reservoirs mapping (Figure 2.8 and Figure 2.9).

However, an empirical threshold value of 0.6 was adopted in this study to overestimate the
water area. Although within the tolerance of the overall coherences of the interferograms
derived from the TanDEM-X images used, this value is site-specific and much higher than
those adopted in other studies for open water masking. Therefore, when applying this approach
in other areas, it may be necessary to introduce some adjustments on the threshold of the
coherence according to the local conditions such as the type and coverage of aquatic vegetation.
Alternatively, reliable information on real-time water extents obtained from other sources is
also an option. In addition, the maximal water extents recorded in the RapidEye data archive
are possibly not the real upper limit of water extent in the reservoirs. The storage capacities
estimated here for the reservoirs might be slightly lower than the real values. This limitation
can hopefully be improved by introducing the real elevations of the spillways or the real
maximum inundation area delineated based on a longer time-series of images with frequent
data acquisition. Finally, in this study the coordinates of the field measurements were given by
the handheld GPS, and their accuracy is approximately five meters and thus well below the
pixel spacing of the TDX DEMs. However, when the accuracy of the handheld GPS is in the
order of the pixel spacing of the TDX DEMs, the similarity between the accuracy of GPS and

pixel spacing needs to be considered in the comparison.
2.6 Conclusion and outlook

The DEMs generated from TanDEM-X data with single pass interferometry can achieve
approximately one-meter absolute accuracy in the Madalena region in north-eastern Brazil. We
used this TDX DEM acquired in the dry reservoirs to represent the bathymetry for the
reservoirs. Compared to bathymetric maps derived from field survey data, the TDX DEMs have
shown advantages for the reservoir bathymetric survey with respect to the larger coverage, even
distribution of measurements, and independence of the disturbance from macrophytes in the

wet season. TDX DEMs were found to better replicate the reservoirs’ shapes and to provide
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more reliable water area-to-volume relationships for the reservoirs. The water retained during
TanDEM-X image acquisition was found to have little impact on the derived reservoir
bathymetry and water volumes for the reservoirs. TDX DEMs allow an efficient reservoir

bathymetric survey, especially in remote areas.

One might argue that the demand for adequate TanDEM-X data, i.e., ideally acquired during
dry season without remaining water, is a limitation of the approach. However, our results
demonstrate that the retained water during data acquisition has little impact on the derived
reservoir bathymetry as well as on estimated water volumes. Moreover, the high repetition rate
of TanDEM-X supports the acquisition of adequate data. However, the approach is limited to
areas with significant water volumetric fluctuation and temporarily exposed reservoir bottoms.
Flat terrain is also an important factor to ensure a high accuracy of the TDX DEMs and thus,
the derived reservoirs’ bathymetric maps. In this study, the water areas were overestimated with
an empirical threshold on the coherence map. For a more efficient water masking, other

suitable approaches would be worth investigating.

The proposed approach is particularly interesting for regions that are characterized by a very
high number of water bodies, such as our study site in Ceard. Contrary to a remote
sensing-based approach, common bathymetry mapping would result in very time and cost
consuming field surveys. In general, the approach can support regional water, sediment and
ecological management in any dryland areas with similar conditions. However, when applied in
large areas of several thousand square kilometers, the terrain and land cover heterogeneity need

to be considered to obtain a high overall DEM accuracy.
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3. Mapping effective water surface in macrophyte-covered reservoirs in NE

Brazil based on TerraSAR-X time series

Abstract: Water supplies in northeastern Brazil strongly depend on the numerous surface water
reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of
these reservoirs, particularly the large number of small ones, remain inadequately known. Remote
sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread
presence of macrophytes in most of the reservoirs often impedes the delineation of the effective
water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is

essential for understanding, managing, and modelling the local and regional water resources.

In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the
effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were
obtained by segmenting the backscattering coefficients of TSX images with minimum error
thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence
matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations
dominated by different types of scattering along the TSX time series. By referring to the statistics
and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was
segmented to map the vegetated water surfaces. The effective water surface areas that include the
vegetation-covered waters as well as calm open water in the reservoirs were mapped with
accuracies > 77%. The temporal and spatial change patterns of water surfaces in the nine
reservoirs over a period of two consecutive dry and wet seasons were derived.
Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the
main sources of errors in the such-derived effective water surfaces. Independent from in-situ data,
the approach employed in this study shows great potential in monitoring water surfaces of
different complexity and macrophyte coverage. The effective water surface areas obtained for the
reservoirs can provide valuable input for efficient water management and improve the

hydrological modelling in this region.
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Keywords: TerraSAR-X, GLCM variance, effective water surface, macrophyte-covered reservoirs,

semiarid region, northeastern (NE) Brazil
3.1 Introduction

Knowledge of water bodies covered by vegetation and their water dynamics is vital for
understanding local to regional ecology and hydrology (Alsdorf et al., 2000; Capon, 2003; Colloff
and Baldwin, 2010; Roshier et al., 2002). In the semiarid region in NE Brazil, aquatic vegetation
abundantly present in many surface water reservoirs as an indicator of water quality variation.
Mapping these water bodies by field survey is labor consuming and challenging due to the

impediment of dense macrophytes on the accessibility to these areas.

Available satellite data have continuously increased and opened up substantial opportunities for
water surface mapping from space (Douglas E. Alsdorf et al., 2007; Alsdorf and Lettenmaier, 2003;
Palmer et al., 2015). Based on the spectral characteristics of water bodies, optical images have
been widely used to map the open water characteristics and their changes (Donchyts et al., 2016;
Mohammadi et al., 2017; Pekel et al., 2016). Due to its independence of sun illumination and thus
weather, Synthetic aperture Radar (SAR) data have been increasingly applied in the mapping and
monitoring of water surfaces and water environments. Calm open water surfaces, acting as
specular reflectors, reflect away nearly all the incident SAR pulses and thus appear black in SAR
images. Based on this characteristic, various methods have been developed for mapping open
water surfaces such as flooding using SAR data sets. SAR data acquired with different
polarizations, wavelengths and incidence angles etc. were also investigated (Eilander et al., 2014;
Horritt et al., 2003; Klemenjak et al., 2012; Li et al., 2014; Martinis et al., 2015a; Schlaffer et al.,

2015; Wendleder et al., 2013).

However, in landscapes like wetlands, marsh lands and alike, open water always fail to represent
the complete water surface, as in these areas a large proportion of the water surface is often
covered by vegetation. Therefore, it can be challenging to map the effective water surface,

consisting of open water and vegetation covered water surfaces. In many studies spectral indices
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such as vegetation and water indices were used to map the inundations in wetlands (Ahamed and
Bolten, 2017; Feng et al., 2012; Gonzalez-Dugo et al., 2014; Li et al., 2015a; Thomas et al., 2015).
Based on spectral indices and LiDAR data, Lang and McCarty (2009) developed a model to
describe the characteristics of inundation in wetlands. This model has been applied to map the
inundations in wetlands with optical data (Huang et al., 2014; Jin et al.,, 2017). However,
vegetation indices tend to overestimate the water surface, when the surrounding terrestrial
vegetation shows similar spectral characteristics during the leaf-on seasons (Toeyrae et al., 2001).
Therefore the inundation mapping with spectral vegetation characteristics is often limited to the
leaf-off season (Huang et al., 2014; Jin et al., 2017). Employing water indices could introduce
underestimation of the effective water surfaces, as the vegetated waters are not taken into account.
Cloud coverage poses another obstruction to the application of optical data. Capable of penetrating
vegetation canopy, SAR data have served as a powerful alternative for mapping waters beneath
vegetation. On vegetated water surfaces the incident SAR pulses bounce between the water
surface and the vertical tree trunks or standing stalks of emergent plants and reflect more SAR
pulses back to the sensors than the surroundings. Therefore, vegetated water surfaces appear much
brighter than the surroundings on a SAR image (Hess et al., 1990; Richards et al., 1987; Silva et
al., 2008). Based on this knowledge, mapping of water surfaces beneath vegetation has been
undertaken with various SAR data in circumstances including flooded forests, wetlands and marsh
land (Hess et al., 1995; Kim et al., 2014; Lang et al., 2008; Lee et al., 2012; Marti-Cardona et al.,
2013, 2010; Pulvirenti et al., 2013; Schlaffer et al., 2017). Descriptive studies have established the
characteristics of difference species at different stages and canopy density (Dobson et al., 1995;
Hess et al., 1995; Kim et al., 2014). Supervised and object-oriented classification approaches have
been frequently adopted with assistance of substantial field data (Bourgeau-Chavez et al., 2001;
Evans and Costa, 2013). Models have been developed and applied to understand the SAR
backscatters of flooded forests (Cohen et al., 2016; Kasischke et al., 2003). It has been
demonstrated that double bounces, specular reflectance, and volumetric scattering in the canopy

constitute the backscatters of flooded forests in SAR images (Cohen et al., 2016; Hess et al., 1990).
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The brightness of flooded forest is proved to be related to the height and canopy density of the
vegetation (Cohen et al., 2016). However, the majority of these studies tend to target at few
timestamps with in-situ data available. Suitable for mapping short-term events like flooding, yet,
these studies are not applicable for long-term mapping of effective water surfaces in environments
like wetlands and marshlands. Moreover, knowledge of few scenarios is not sufficient to recover
the temporal development in the targeted water environment. The compositions of the vegetation
in a water environment are complex and vary among study sites and throughout seasons.
Therefore, the studies on mappings of waters beneath vegetation with SAR backscatters are rather
site-specific and strongly dependent on available field data. As acquiring continuous and extensive
field data is not realistic, a field data independent approach is necessary for a continuous

monitoring with multi-temporal remote sensing data.

Studies have proved that including texture information can enhance the image analysis in the
aspects of ground object identification and land use classification (Ban et al., 2014; Esch et al.,
2013; Proctor et al., 2013; Stasolla and Gamba, 2008; Uhlmann and Kiranyaz, 2014). Among
these studies, urban area mapping has achieved prominent results due to the fundamental
characteristic of double bounces between the buildings and the ground (Ban et al., 2014; Esch et
al., 2013). Analogous to the interaction between the penetrating SAR pulses and plant trunks or
stalks, double /multiple bounces are expected from the water surface covered by vegetation.
Therefore, it is worth investigating the potential of texture indices for mapping the water surface
covered by vegetation. Moreover, to the authors’ best knowledge, SAR texture indices have rarely

been used to map the vegetated water surfaces.

In northeastern (NE) Brazil, many reservoirs are covered by macrophytes to various extents.
In-situ monitoring of the effective water surfaces is often infeasible, due to the large number of the
reservoirs and the remoteness of the region. However, knowledge of the effective water surfaces in

reservoirs is vital for efficient water management.

In this study we investigated the potential of multi-temporal TSX data and GLCM texture for
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mapping the effective water surfaces in reservoirs. The approach which includes mapping of both
open water surfaces and the vegetated water surfaces was applied to nine reservoirs. In-situ data
were used to validate the results. The effective water surfaces were mapped for marginally and
largely vegetated reservoirs over two consecutive dry and wet seasons, i.e., considering reservoirs
under various conditions in terms of water levels, macrophyte growth stages and terrestrial

vegetation coverage.

3.2 Study area

Since the 19'" century, numerous reservoirs have been constructed in NE Brazil. Monitoring these
water bodies has been inconsistent, resulting from managements by different country, federal state
and local municipality organizations (SIRH/Ce, 2015). In general, large reservoirs supported by
the federal state and country are regularly monitored and maintained because of their strategic
importance. In contrast, numerous reservoirs of small to medium size and/or at remote areas are
poorly monitored (SIRH/Ce, 2015). However, those relatively small reservoirs actually play an
eminent role in the runoff retention in the upstream parts of the catchments and act as the only

water suppliers to the population in rural areas (Peter et al., 2014).

The Madalena region is in the central part of the federal state of Ceara (Figure 3.1). The local
climate is semiarid with pronounced wet and dry seasons. From January to June is the wet season
when the major precipitation events take place; the dry season spans from July to December. The
average annual precipitation is approx. 600 mm, and the potential evaporation exceeds 2000 mm
per annum. Caatinga, an endemic seasonal shrubby forest landscape in NE Brazil (Bullock et al.,
1995), is the dominant land cover. The unevenly distributed precipitation in the wet and dry
seasons, the intensive evaporation and water consumption have led to significant fluctuations in
the water levels in the reservoirs throughout the year. This is a typical phenomenon for the
reservoirs in NE Brazil. Reservoir monitoring in the Madalena catchment was undertaken only
recently by the Federal University of Ceara (UFC), basically by means of in-situ investigation in a

few accessible reservoirs. So far, there are only few remote sensing studies aiming at reservoir
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mapping in this region, e.g. Zhang et al. (2016) or for a similar area (Heine et al., 2014).

Reservoirs in this region are covered by macrophytes to various extents. In some reservoirs, even

the majority of the water surfaces are covered. Pistia stratiotes L., Salvinia auriculata, Nymphaea

alba, Ludwigia helminthorrhiza and Lemna valdiviana are the most frequently noticed floating

macrophytes in those reservoirs. The frequently found emergent macrophytes are Paspalidium

geminatum, Oxycarium cubense, Paspalum vaginatum and Polygonum ferrugineum. In the

Madalena region, floating macrophytes are mainly found in the reservoirs Paus Branco, Nova Vida

1, Nova Vida 2, and one anonymous reservoir labeled as NN1 (Figure 3.1). As this investigation

only considers the macrophytes that intervene the interaction between the water surface and

incident SAR pulses, submerged macrophytes are excluded from the scope of this study.
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Figure 3.1 Location of the study area. A: location of the State of Ceard in Brazil, B: location of the

Madalena catchment in the State of Ceara, C: locations of the studied and the neighbouring reservoirs.

This study focuses on nine reservoirs, namely Marengo, Sdo Joaquim, Sdo Nicolau, Raiz, Mel,

Paus Branco, Nova Vida 1, Nova Vida 2 and NN1 (Figure 3.1) with respective areas of 3.39 km?,
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1.20 km?, 0.49 km?, 0.25 km?, 0.09 km?, 0.81 km?, 0.62 km?, 0.21 km?, and 0.65 km?. Because in
the Madalena catchment Sao Nicolau is the only reservoir that was noticeably covered by
macrophytes, the reservoirs Nova Vida 1, Nova Vida 2, Paus Branco and NN1 with substantial
vegetation appearance were included. Those reservoirs consist of two types, with and without
significant presence of macrophytes. Figure 3.2 shows some field views on the macrophytes

coverage in both the marginally and largely vegetated reservoirs in the Madalena region.
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Figure 3.2 Field impressions of macrophyte coverages in the reservoirs Marengo (A), Sao Joaquim (B) Sao Nicolau
(C), Nova Vida 2 (D), Nova Vida 1 (E) and Paus Branco (F).
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3.3 Data and method
3.3.1 Data

Overall 37 TSX data sets were acquired to cover the study area from February 2014 to September
2015 (17 images in 2014 and 20 in 2015). The TSX data were acquired in the strip map mode with
HH polarization. Each TSX scene covers an area of 30x50 km? The delivered TSX data were
processed to be Enhanced Ellipsoid Corrected (EEC), with radiometric enhancement. Further data
parameters are listed in Table 3.1. The nominal revisit time of TSX satellites is 11 days. Due to the
conflicts between data acquisitions for the TSX and the TanDEM-X data missions, there are two
one-month gaps in the time series. A few failures in data downlink also resulted in small gaps in

the time series.

Table 3.1 The parameters of the TSX data employed in the study.

Orbital Over pass time Incidence angle  Pixel spacing  Resolution ) No. of
o Orbit Beam o
direction (UTC00) (degree) (m) (m) acquisitions
Descending 8:25 30.0 2.75 7 110 007 37

A total of 11 acquisitions of RapidEye satellite images, delivered in level 3A, were employed in
the study (Figure 3.3). Frequent cloud cover in the rainy season constrained the majority of
RapidEye data in the dry season. RapidEye images were used to delineate the floating macrophyte

areas, as well as to illustrate the results.

In-situ water contours were obtained with a Garmin X handheld GPS by walking along the
accessible water/bank borders. Water contours collection was conducted at five dates (Figure 3.3).
However, dense terrestrial vegetation and emergent macrophytes have impeded access to the
reservoir shorelines in the wet seasons and caused the unavailability of in-situ data at some of the

five dates for some reservoirs.
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Figure 3.3 Illustration of the satellite data acquisition and in-situ data collection

3.3.2 Method
3.3.2.1 Background and assumption

Mainly three types of scattering take place on a vegetated water surface: specular reflection,
diffusive/volumetric scattering and double/multiple bounces, with the strength in an ascending
order (Cohen et al., 2016; Ferrazzoli and Guerriero, 1995; Horritt et al., 2003; Ormsby et al., 1985;
Ramsey, 1995) All other types of scattering are formed on rougher surfaces can return SAR pulses
of various intensities. In a macrophyte-covered reservoir in NE Brazil illustrated in Figure 3.4 A,
open water surfaces present the specular reflection (SR); the water surfaces vegetated by large
emergent macrophytes with penetrable canopies present double bounces (DB), and multiple
bounces (MB) as the density increases; volumetric scatterings (VS) take place on the rough
surfaces covered by dense plants, including vegetated banks, water surfaces covered by floating
macrophytes or emergent macrophytes of closed canopy. All these scatterings are present in a
reservoir both sole and combined forms. Specifically, banks covered by both tall and short
terrestrial plants can present the combined scattering of the double bounce and the volumetric
scattering (DB+VS). Water surfaces vegetated by very sparse short vegetation and the bald bank
caused by over grazing can present the combined scattering of specular refection and volumetric
scattering (VS + SR). In total, we expect the above six types of scattering in the reservoirs in NE

Brazil.

Both of the vegetation conditions on the bank and in water evolve along with the season. For
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example, the density and height of emergent macrophytes in the wet season differ from that in the
dry season (Lee et al., 2012). The area ratio of bank to water also varies as the water surface
expands or retreats. Moreover, variations in the water levels may alter the length of transmission
paths and the strength of the returned SAR pulses (Kasischke et al., 2003; Kim et al., 2014; Kevin
O. Pope et al., 1997; Pulvirenti et al., 2011). The consequence of these factors is that, within the
extent of a macrophyte-covered reservoir, the proportions of different types of scattering vary
throughout the year. Because the scattering taking place in a pixel is independent from that in the
neighboring pixels as illustrated in Figure 3.4 A, a sufficiently small subset of the reservoir can
represent the sub-population dominated by scattering of a certain type (Figure 3.4 C-F). For the
same reason, the distribution of the backscattering on a SAR image is the linear sum of all the

sub-populations.

Let’s assume that each sub-population (i.e., surface dominated by one type of scattering within a
reservoir) is characterized by a specific backscattering measure, the backscattering distribution of

the entire reservoir can be described by a linear sum of the backscatter sub-populations:

n 3.1
H = z Hi * Pi ( )
i=1

where H is the distribution of the population of backscattering index (e.g. backscattering
coefficient, intensity, and texture indices) in the entire reservoir, excluding open water; H; is the
distribution of the i*" backscattering index sub-population dominated by one scattering
illustrated in Figure 3.4 A, excluding the open water; P; is the proportion of the corresponding

sub-population H; and }]-; P; = 1;and n is the number ofthe total sub-populations.

As double and multiple bouncing mainly take place in the vegetated water surface, if the
sub-populations dominated by these two types of scattering can be distinguished from the rest,

then the vegetated water surface can be delineated for a reservoir from an image.
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Figure 3.4. Different SAR scattering and the proportions of the sub-populations dominated by them in different types of
reservoirs in different seasons. A. Different SAR scattering resulting from interactions between the incident SAR pulses and
ground objects within the reservoirs: From the weakest backscattering intensity to the strongest are: f, SR on calm open water
surface ; e, DB from the vegetated waters; d, the MB on the water surfaces vegetated by the macrophytes of increased canopy
closure; ¢, DB + VS on the bank covered by dense vegetation; b, VS on the densely vegetated surfaces in reservoir; a, VS +
SR on bare land and the water surface sparsely vegetated by short grass-like macrophytes. Sub-plots C — F illustrate the
seasonal variation of the proportions of the sub-populations dominated by different types of scatterings, excluding open

waters which barely return any SAR signals.

3.3.2.2 Remote sensing data preprocessing

One RapidEye image without cloud presence was selected as the master image and laterally
shifted to 26 DGPS points measured in the field at identifiable locations The rest of the RapidEye
images were co-registered to the master image using AROSICS software developed by Scheffler
et al. (2017). The co-registration accuracy is one pixel. The images of the TSX time series were

co-registered with the same approach.

Radiometric calibration was subsequently conducted on the TSX data by following the instruction
for TSX calibration provided by DLR (Infoterra an EADS Astrium company, 2008). The TSX data
were calibrated to the sigma naught in decibel (dB). The TSX images of backscattering
coefficients were subsequently filtered in a moving window of 3x3 pixels with adaptive Lee filter

(Lee, 1980).
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Figure 3.5 The workflow followed in the study.

3.3.2.3 Mapping open waters

In contrast to calm open water surfaces which barely return any transmitted SAR pulses to the
sensor, the non-open water areas with rougher surfaces can reflect more transmitted SAR pulses
back to the sensors and appear bright in a SAR image. The distribution of a population formed by
these two sources of comparable sizes will present bimodality, i.e. with a significant valley in
between. A minimum error thresholding algorithm developed by Kittler and Illingworth (1986) to
effectively segment populations of bimodality, has been proved to be successful and fast in open
water and water related change delineation (Bazi et al., 2005; Martinis et al., 2015a). Splitting the
image of potential bimodality was one effective approach to mitigate the population size contrast
between open waters and the surroundings, and to unveil the bimodality of the distribution
(Martinis et al., 2015a; Schlaffer et al., 2017). Therefore, the TSX backscatters in each reservoir
were subset 2x2 with two times of iteration, considering the relatively small size of the reservoirs.

Segmentation thresholds were obtained for the subsets which fulfill the bimodality, i.e. a valley
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and a local minimum exist in the distribution (Schilling et al., 2002). In this study the local
minimum was constrained into the interval of -25 dB and -10 dB to avoid the effect of interference
of extreme values. Each TSX image was segmented with the mean of the thresholds derived for its

subsets to obtain the raw open water mask.
3.3.2.4 Mapping vegetation covered waters

The masks of floating macrophytes obtained from RapidEye data are expected to indicate standing
waters, as floating macrophytes can only survive on water surfaces. In a RapidEye image, floating
macrophytes appear remarkably brighter than emergent macrophytes and riparian vegetation. By
referring to the brightness and greenness, the masks of floating macrophytes were digitized from
the RapidEye images. A manual approach was chosen to avoid the potential contamination of
terrestrial plants or emergent macrophytes under drought stress. The masks of floating
macrophytes were resampled to the same pixel spacing as the TSX data. For a specific data set in
the TSX time series, the floating macrophyte mask from RapidEye data acquired on the date
closest to the TSX acquisition was chosen and adopted to assist the effective water surface

delineation.

GLCM texture indices mean, variance, homogeneity, contrast, dissimilarity, second moment, and
entropy (Conners et al., 1984; Haralick et al., 1973) were calculated in all directions in a sliding
window of 3x3 pixels on the amplitude of TSX time series. In accordance to other studies e.g.,
Hagensieker et al, ( 2017), Nyoungui et al. (2002) and Sarker et al. (2013), GLCM should be
derived without any speckle filtering. We chose the GLCM texture to do the analysis, because the
GLCM approach produces more texture indices and potentially can reflect integral texture
characteristics of the vegetated water surfaces. The TSX data were acquired and delivered in a
depth of 16-bit (Fritz and Eineder, 2013). In order to be comparative to SAR data delivered with

different bit depths, TSX data were scaled to 8-bit before the GLCM indices calculation.

Principal Component Analysis (PCA) was applied on the stack of all calculated GLCM indices to

reduce the number of variables and obtain the most relevant features. The PCA results showed that
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the GLCM variance is the primary feature constituting the first PC. For all the data used in the
study the absolute loadings of GLCM variance were larger than 0.97 (Figure 3.6 A). The first PC
has explained most of the variance, over 90% for all the reservoirs on all the datasets (Figure 3.6
B). Therefore, the GLCM variance was used as the sole input for further delineation of
macrophyte-covered water surfaces. This indicates that regarding GLCM, variance is the most
adequate parameter to explain most of the local complexity and heterogeneity of SAR scattering in
the reservoirs in comparison to other GLCM texture indices. Since the time series of TSX data on
EEC level has undergone multi-looking, the remaining heterogeneity contribution of SAR speckle

is regarded to be very small and thus ignored.

We assumed that the GLCM variance sub-populations dominated by individual types of scattering
in Figure 3.4 (A) follow normal distributions (Figure 3.4 B). After the open waters were masked
off, each TSX image over a reservoir was subset by 4x4 to derive the modes and standard
deviations of the GLCM variance distributions of the subsets. The modes of all the TSX data
subsets cluster at the values 0f 0.5, 3.5, 6.5, 8.0 and 12.0, while the range of the standard deviation
spans relatively large (Figure 3.6). We attributed this phenomenon to the impurity of the scattering
in the squared subsets. More specifically, more than one type of scattering take place in the subset
and contributes to the standard deviation but only one type of scattering dominates and presents
the mode for the subset distribution. Kmeans clustering was applied with centers at 0.5, 3.5, 6.5,
8.0 and 12.0 to generalize the modes. Meanwhile, the minima of the standard deviations
corresponding to the same modes were regarded as the standard deviation of the sub-populations.
At last, five sub-populations were derived, with their mean values at 0.8, 3.3, 6.7, 8.6 and 11.8 and
standard deviations at 0.62, 1.73, 2.69, 3.35 and 4.03. The local variance of the SAR
backscattering in a GLCM calculation window is positively related to the amount and amplitude
of the scattering with high backscattering which is further positively related to the smoothness of
the surface. Referring to Figure 3.4 (a) and the observation on the subset modes of the nine
reservoirs (Figure 3.6) (i.e. subsets with large means tend to appear in largely vegetated reservoirs),

we attributed the five sub-populations to be respectively dominated by scattering A-E illustrated in
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Figure 3.4 (a), namely, VS+ SR, VS, DB + VS, MB, DB. The neighboring sub-populations

overlap with each other at the tail parts.

In order to validate the confidences of the assumption in Figure 3.4 and the credibility of the
above attribution of the sub-populations, we applied linear unmixing using these five
sub-populations to derive the proportions of the sub-populations in the reservoirs along the TXS
data time series. Linear unmixing is a widely applied approach in the remote sensing domain to
obtain the proportions of spectral endmembers e.g. vegetation and soil in remotely sensed optical
images on the pixel level (Asner and Heidebrecht, 2002; Bian et al., 2017; Roberts et al., 1998;
Shi and Wang, 2014). It has also been applied on the sediments and on chemicals of runoff to
derive the contribution of different sediments and waters sources (Barros Grace et al., 2008;
Dietze et al., 2012; James and Roulet, 2006). In this study, the distribution of GLCM variance of
individual TSX acquisition within an individual reservoir is analogous to the spectrum of one
pixel in the case of unmixing optical remote sensing data (Adams et al., 1995; Roberts et al.,
1998). Thus, the linear unmixing was implemented on the reservoir level instead of on the pixel
level which is the case in the linear unmixing of optical images. In this study it is assumed that the
GLCM variance distribution in a reservoir consists of the linear sum of the distributions of
sub-populations (i.e., the endmembers when unmixing optical remote sensing data) with
corresponding proportions (Figure 3.4). Linear unmixing was conducted on the time series of the
GLCM variance distributions to derive the proportions of the sub-populations in the reservoirs on
each TXS acquisition. The proportions of the sub-populations in a reservoir were obtained by

nonnegative least squares algorithm (Lawson and Hanson., 1974).

The unmixing approach was implemented as below:

(3.2)

n
A= ZPiAi + €

i=1

with the constraint;

85



3. Mapping efective water surface in macrophyte-covered reservoirs

n (3.3)
Pi =1
i=1
In this study, A is the density of a value, say M, in GLCM variance distribution H; P; is the

proportion of sub-population H;; A; is the density of M in the ith sub-population H;; € is the

residue failed to be expressed by either of the sub-population H;.

M "’N([,li,O'iz) when M € Hi (34)

u; and o; are the mean and the standard deviation of the sub-population H;, respectively; u;
results from the Kmeans clustering, and og; is the minimum of standard deviations corresponding

to w;. The distribution H; is simulated with 5000 samples from the given y; and o;.

The sub-populations dominated by multiple scattering and the double scattering with high local
GLCM variance are expected to be more in the largely vegetated reservoirs than in the marginally
vegetated ones. The sub-populations dominated by volumetric scattering on the bank with small
GLCM variance prevail in the marginally vegetated reservoirs. By comparing the differences
between the two types of reservoirs, we can distinguish the scattering coming from the vegetated

waters from that originating from the bank by the following threshold:
T = (Maxy, + Min;)/2 (3.5)

Max, is the mean of the sub-population which possess the largest mode among those taking place
on the bank, and Min; is the mean of the sub-population that has the smallest mode among those
prevailing in the vegetated water surfaces. In this study, we attributed the sub-population with
means at 0.8, 3.3, 6.7, to take place on the bank, and the sub-populations with means at 8.6 and
11.8 on water. Thus, Maxy, is 6.7, Min; is 8.6, and the threshold 7.6 was used to distinguish the
water surfaces producing DB and MB from the other scatterings in the reservoirs. In reality, the
optimal threshold might vary slightly from the T due to the varying sizes of sub-populations. But it
should be very close to the value of 7.6 in the case of the studied reservoirs based on the

calculated GLCM texture.
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Figure 3.6 Results of the PCA on the GLCM texture for all acquisitions over the reservoirs in the study. MEA, VAR, HOM,
CON, DIS, ENT and SM refer to the seven GLCM texture indices: mean, variance, homogeneity, contrast, dissimilarity,
entropy and second moment. MAR MEL, NN1, NV1, NV2, PB, RAI, SJ and SN are the abbreviations of the reservoirs
Marengo, MEL, NN1, Nova Vida 1, Nova Vida 2, Paus Branco, Raiz, Sdo Joaquim and Sao Nicolau.
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3.3.2.5 Derivation of effective water surface

The masks of open waters, floating macrophytes and water surfaces vegetated by emergent
macrophytes were stacked into one layer. The morphological closing with a square window of size

5x5 pixels, and the gap filling were subsequently applied on the derived water masks.

3.4 Results

In this section, we present the dominant scattering types as output of linear unmixing along the
times series, the effective water surfaces obtained for marginally and largely vegetated reservoirs,
the spatial and temporal changes in the open and effective water surfaces in Nova Vida 1 as an
example of results in this aspect, the temporal changes in the areas of open and effective water
surfaces in the nine reservoirs. The accuracies of the effective water surfaces based on available

in-situ data are presented in the end of the section.
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3.4.1 Proportions of the sub-populations dominated by different types of scattering

Along the time series, the five sub-populations showed the seasonal trajectories of different
scattering in all the nine reservoirs (Figure 3.7). The assumed sub-populations dominated by DB
and MB are mainly present in the largely vegetated reservoirs i.e. Sao Nicolau, NN1, Paus Branco,
Nova Vidal and Nova Vida 2, and in the small and marginally vegetated reservoirs Raiz and Mel.
In the marginally vegetated reservoirs, they tend to account for large proportions with abrupt
fluctuations in the raining season and none in the dry season (Figure 3.7). The sub-population
dominated by DB + VS had analogous proportions in both types of reservoirs, and showed
significant seasonal trends, i.e. more in the wet season than in the dry season. In contrast, the
sub-populations dominated by VS + SR are mainly present in the reservoirs Marengo, Sao
Joaquim and Sao Nicolau. In the marginally vegetated reservoir Sao Joaquim, this sub-population
plays a dominant role in the dry season. This sub-population showed nearly stable proportions in
the largely vegetated reservoirs Sdao Nicolau and marginally vegetated reservoir Marengo

throughout the time series.

In summary, the sub-populations dominated by DB and MB tend to prevail in the vegetation
covered reservoirs, while the sub-populations dominated by DB + VS prevail on the bank in the
wet season. Marginally vegetated reservoirs of large size are characterized by scattering of low
GLCM variance. Largely vegetated reservoirs show more scattering of large GLCM variance. The
marginally vegetated reservoirs show common seasonal characteristics, so do the largely vegetated
reservoirs. This means the previous attribution of the sub-populations in section 3.2.1 is

reasonable.
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Figure 3.7 Proportions of the GLCM variance sub-populations dominated by different types of scatterings in each
reservoir along the TSX time series.

Figure 3.8 presents the RMSE of the modelled results for all the reservoirs and all acquisitions,
and the correlations of the simulated and the observed proportions of all GLCM variance values.
RMSE are lower than 0.1 and correlation coefficients are larger than 0.7 with a mean at 0.9, which
indicates the confidence of the modelling. Therefore, the threshold of 7.6 used to distinguish the
scattering on the bank and the scattering on the vegetated water surfaces is regarded to be

reasonable.
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Figure 3.8 The RMSE of the modelled results for each reservoir and correlation coefficients of the modelled
values and the value from TSX time series images. The unit for both RMSE and COR is 1.

3.4.2 Effective water surfaces

3.4.2.1 Reservoirs with little macrophyte coverage

There are only few macrophytes growing along the waterlines in Marengo (Figure 3.9). The open
water surface coincides well with the in-situ data (Figure 3.9 A-B). Very narrow waterways at the
tail part of Marengo indicate the mudflat that was inaccessible during the field surveys or too
narrow to show in the SAR data. The parallax, the inherent nature of SAR data, barely caused any
visible mismatching between the remote sensing results and in-situ data in this reservoir. However,
these two factors suggest that the accuracy of open water from SAR data, though high, can never

reach 100%. This phenomenon was also noticed in Sdo Joaquim, Mel, and Raiz.
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Figure 3.9 Waters mapped from TSX data for the reservoir Marengo. Blue polygons denote the open water surfaces,
violet polygons indicate the effective water surfaces, and green polygons the in-situ water surface. (A) The backgrounds
are the backscattering coefficient of TSX data; (B) the same data overlaid on the RapidEye data acquired on 2014-02-23

3.4.2.2 Reservoirs with large macropyte coverage

Paus Branco is one of the reservoirs vastly covered by macrophytes of various species. The results
in Figure 3.10 A-B were derived from TSX acquired on 2015-07-07 in the end of the wet season.
The results from this TSX data indicate the close-to-the-effective water surface. Floating
macrophytes, i.e. the bright green area in RapidEye data (Figure 3.10 B), show similar
backscatters to the terrestrial part (Figure 3.10 A). A few similar cases were also noticed on data
acquired for Nova Vida 2 and NNI1. Waters under emergent macrophytes which are at the
senescence stage and do not show greenness are also mapped for Paus Branco from SAR data

(Figure 3.10 A-B).

The reservoir Nova Vida 1 is also widely vegetated by macrophytes, and in-situ data are thus
difficult to attain. The only available in-situ data were acquired on 2014-06-15 and cover parts of
the reservoir, thus only used to indicate the effective water surface at that time in the reservoir. All
the areas of high backscatters and variance and adjacent to the open water surface were correctly
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delineated as water areas (Figure 3.10 C). On the RapidEye acquired in the wet season the
terrestrial vegetation shows similar spectral characteristics to the macrophytes in waters (Figure
3.10 B). But TSX data were able to distinguish aquatic vegetation from the terrestrial and yield

accurate water surfaces (Figure 3.10 B).
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Figure 3.10 The final water surfaces delineated for the reservoir Paus Branco and Nova Vida 1. A: the water surfaces
extracted from TSX data acquired on 2015-07-07 (violet), and in-situ data on 2015-07-18 (green polygons).
Background is the backscatters of TSX image acquired on 2015-07-07; B: same data overlaid on the RapidEye data
acquired on 2015-06-18. C: Water surfaces for the reservoir Nova Vida 1 from TSX data acquired on 2014-06-17
(violet) and from field (dots) on 2014-06-15. The background is the backscatter of TSX 2014-06-15. D, and the same
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results overlaid on the RapidEye image acquired on 2014-06-09.

3.4.3 Spatial-temporal changes in effective water surfaces

Figure 3.11 shows, as an example, the temporal changes in the open water and the effective water

surfaces delineated for the reservoir Nova Vida 1. Only few bare grounds which present similar

backscatters to calm open waters remained (Figure 3.11 A). Both the open and effective water

surfaces in the reservoir have retreated towards the outlet. The general changes in the open and

effective water surfaces are reasonable from the spatial perspective. Open water surfaces only

represent part of the total ones in the reservoirs (Figure 3.11 A and B). Few exceptional

overestimates of effective water surfaces were obtained for the dates in the wet seasons (Figure
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Figure 3.11 Temporal-spatial changes in open water surfaces (A) and effective waters surfaces (B) in the reservoir Nova

Vida 1.

Figure 3.12 shows the profiles of the open and effective water surfaces in all the nine studied

reservoirs along the time series. In the largest reservoir Marengo where the vegetation coverage

over water surface is minimal the open water surface can denote the effective water surface. The
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only significant overestimate in Marengo coincides with the effective water estimate anomalies in
other reservoirs. Water surfaces in S3o Joaquim whose water free bottom frequently was used as
crop field, and two small reservoir Raiz and Mel are marginally vegetated, but often overestimated
in our study, particularly in the wet season of 2014 (Figure 3.12). The area differences between
open and effective water surface are significant in the largely vegetated reservoirs Sdo Nicolau,
Nova Vida 1, Nova Vida 2, Paus Branco and NN1 (Figure 3.12). The open and effective water
surfaces show similar change trends along the time series (. Most of the overestimates were
obtained for TSX data acquired in the wet season, e.g. January to June. Despite of overestimates,

the seasonal changes are remarkable both in open and the effective water surfaces.

The following trends can be obtained for the nine studied reservoirs: all the water surfaces in the
reservoirs decreased during the studied period; Sao Joaquim, Raiz and Mel became empty in
October 2014, occasionally collected little water and eventually fell empty in 2015; Nova Vida 2
turned dry in July 2015; Sao Nicolau and Nova Vida 1 became dry in December 2015. The
vegetated water surfaces in Nova Vida 1 were largely in 2014 but became little in 2015 till the
reservoirs dried up; Marengo, Paus Branco and NNI1 are the only three reservoirs that still had

water by the end of the studied period.
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Figure 3.12 The change trends of the open waters and the effective waters in all studied reservoirs. Abbreviations
MAR, SJ, MEL, RAI, NN1, NV1, NV2, SN and PB refers to the reservoir Marengo, Sao Joaquim, Mel, Raiz,
NNI1, Nova Vida 1, Nova Vida 2, Sdo Nicolau and Paus Branco, respectively. DOY indicates the day starting from
2014-01-01.
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3.4.4 Accuracy assessment

In Table 3.2 the accuracies of the water surfaces delineated for three selected reservoirs are listed.
Marengo represents reservoirs with little vegetation coverage, whereas Paus Branco and Sao

Nicolau represent the reservoirs with heavy vegetation coverage.

In the reservoirs with little vegetation coverage, the in-situ data include some small areas of wet
soil adjacent to the open waters, particularly at the tail of the reservoir. These wet soil spots are the
main cause of low accuracies. The high producer’s accuracies demonstrate that open waters

represent the overall waters of reservoir Marengo and reservoirs alike.

Table 3.2 Accuracies of the delineated water surfaces for representative reservoirs (%).

o User’s accuracy Producer’s accuracy Overall accuracy
Date of in-situ
) Sao Paus Sao Paus Sao Paus
data collection =~ Marengo ) Marengo ) Marengo .
Nicolau  Branco Nicolau  Branco Nicolau Branco
2014-02-27 90.24 * - 99.56 * - 99.93 * -
2014-05-26 - 81.38 - - 94.73 - - 94.80 -
2014-11-29 84.99 83.77 - 99.46 87.55 - 99.94 91.54 -
2015-01-12 83.29 - - 99.30 - - 99.93 - -
2015-03-30 87.53 83.11 - 96.69 89.68 - 99.68 95.97 -
2015-07-07 84.39 82.43 97.56 98.94 76.29 57.65 99.92 92.93 77.11

* indicates that the reservoir was empty at the overpass of the TSX satellites; - indicates that there was no

match of in-situ data and TSX data.

More in-situ data were available for Sao Nicolau in comparison with Paus Branco, and the overall
accuracy for this reservoir is > 90%. Fewer in-situ data were available for Paus Branco and some
of them fall into the gaps in the TSX time series. For Paus Branco on 2015-07-07, the overall
accuracy is > 77.11%. At the end of the wet season, the wet soil adjacent to the water was falsely

included and led to a low producer’s accuracy (Figure 3.10 A-B).

3.5 Discussion

This study investigated the potential of GLCM textural information for mapping

macropyte-covered water surfaces. Open water surfaces were derived by segmenting the SAR
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backscattering coefficient with minimum error algorithm. Linear unmixing approach was
implemented to obtain the proportions of the sub-populations dominated by different types of SAR
scattering in a reservoir. The SAR texture index, i.e. GLCM variance, was subsequently
segmented to discriminate the scattering on vegetated water surfaces from the double or multiple
bouncing on emergent macrophytes covered waters. The effective water surfaces were delineated
for nine reservoirs in the TSX data time series which mapped the reservoirs of diverse
macrophytes status and water areas. The accuracies of the final water areas in the reservoirs were
assessed. Despite the confidence in the results derived for reservoirs under various conditions (e.g.
vegetation coverage and type, seasons of the acquisition), the performance of the approach is still

affected by precipitation, topography, and the macrophyte canopy closure.
3.5.1 Impact of precipitation

The presence and changes of wet soil in the reservoirs affected the proportions of the
sub-populations dominated by different types of scattering and the delineated effective water
surfaces. The dielectric constants of wet soil rises as soil moisture increases (Shoshany et al., 2000;
Troch, 1996; Ulaby and Long, 2014). However, it reaches the maximum when soil moisture is
approx. 50% - 60% (Shoshany et al., 2000; Troch, 1996; Ulaby and Long, 2014), probably
because soil with moisture > 60% may be dominated by the scattering characteristics of water
rather than that of soil. It is the case on SAR imagery acquired during or shortly after heavy
rainfall events when the surfaces of the ground and vegetation remain oversaturated. This converts
the high GLCM variance on the vegetated waters in dry condition to the low GLCM variance,
interestingly like sparsely vegetated banks but not bare banks (Figure 3.7), and thus introduces an
underestimation in the effective water surfaces in the largely vegetated reservoirs like Paus Branco
and Nova Vida 1 (Figure 3.10). As time passes, the characteristics of the wet objects emerge. The
intensity of backscattering from wet soil can be equivalent to the double/multiple bounces from
the macrophyte covered water surfaces (Shoshany et al., 2000; Troch, 1996), the thresholds
obtained for GLCM variance cannot discriminate these two sources of scattering. Therefore, both

are attributed as double/multiple bounces from the macrophyte-covered water surfaces, resulting
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in an overestimation of sub-population dominated by double bounce and multiple bounces, as well
as the effective water surfaces. The effect of wet soil surfaces appears as abrupt fluctuations in the
water surface time series (Figure 3.7 and Figure 3.12). The effect of oversaturated soil was noticed
in largely vegetated reservoirs after heavy rainfall events (Figure 3.7 and Figure 3.12). The effect
of enhanced GLCM variance of wet soil presents more in the wet season when the soil surface is

covered by little vegetation (Figure 3.7 and Figure 3.12), e.g. in the beginning of the wet season.

Solely with SAR data it is difficult to distinguish the effect of precipitation in the wet season.
Since optical data usually suffer from the clouds cover during precipitation and from the confusion
of terrestrial plant in sunny days, optical data hardly possess any potential in solving this problem.
However, combining SAR data acquired before the precipitation data from other SAR senor with
similar configuration can be a solution to this issue. SAR data with different polarization also hold

potential in tackling this problem.
3.5.2 Impact of topography

Due to the foreshortening effect, slopes facing the satellite show SAR backscattering intensity as
high as those from the double or multiple bounces (Ford et al., 1983). These fore slopes account
for large area proportions in the two smallest reservoirs Mel and Raiz, and mistakenly contribute
more to the sub-populations dominated by double/multiple bounces and to the water areas
delineated than that in the large reservoirs. Except those from the wet reservoir bottom in the wet
season, nearly all the mistaken areas of the water in these two reservoirs result from the effect of
topography, as there are barely any macrophytes growing in these two reservoirs. The effect of
topography is difficult to tackle in the case of small reservoirs but can be ignored in the case of

large reservoirs.
3.5.3 The effect of macrophyte canopy closure

Closed canopies pose a strong obstruction in mapping water surface below the canopy using SAR
data (Hess et al., 1990; Silva et al., 2008). Field observation revealed two sources of closed

canopies in the reservoirs: the floating macrophytes and the seasonally varying emergent
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macrophytes. These two sources of closed canopy have increased the proportions of volumetric

scattering which mostly take place on vegetated banks.

Floating macrophytes, which are frequently present with high canopy density in some reservoirs,
separate open waters from waters vegetated by emergent macrophytes (Figure 3.10 B). Dense
floating macrophytes usually show similar backscatter and texture to the terrestrial part of the
reservoirs (Figure 3.10 A), because barely any SAR pulses can penetrate and return through their
nearly closed canopy. This phenomenon tends to be present in the deep dry season when the
nutrients in the water accumulate, macrophytes prosper and their canopy density increases.
Therefore, floating macrophytes were manually delineated from optical RapidEye data to indicate
their locations and extents in the corresponding SAR data. By doing so, the deterioration of
floating macrophytes on the effective water surfaces in this study was mitigated. However, in
further studies in different areas optical remote sensing data suitable for floating macrophytes
derivation in terms of spatial and temporal resolution can also be adopted, possibly in combination
with SAR data to further explore the synergies in effective water surface mapping. For example, it
is also worthwhile to investigate SAR data of acquired with different polarization, wavelength or
spatial resolution. Drifting as local winds blow, the floating macrophytes are probably the reason
for slight fluctuation in the open water surfaces detected in the reservoirs Paus Branco, Nova Vida
2 and NN1 (Figure 3.12) where reasonable coverage of floating macrophytes such as water

lettuces were noticed.

Studies have shown that SAR scattering decreases with increasing leaf area index (LAI) or even
become absent with the closed canopy of wetland and mangrove (Durden et al., 1995; Krohn et al.,
1983). Some gaps in the delineated effective water surfaces coincide with certain places in Paus
Branco and Nova Vida 2 where emergent macrophytes grow, typically sedges such as Oxycarium
cubense, as confirmed by observations in the field. This may be explained as when the canopies of
the emergent macrophytes developed denser, the scattering transferred from double or multiple

bounces into volumetric scattering and failed to show large variance. The closed canopies thus can
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deteriorate the user’s accuracy of the effective water surfaces derived for reservoirs with large
coverage of emergent macrophytes. The incidence angle of the TSX data in this study is 30 degree,
within the suitable range of incidence angles of 15 - 40 degrees, for mapping water surfaces
beneath vegetation (Hess et al., 1990; Marti-Cardona et al., 2010). Cohen et al.(2016) found that it
is not possible to detect the water/flooded area beneath boreal forest with X- band data if the
canopy closeness is over 80%, even if it is acquired in competent incidence angles. Therefore, the
canopy closure of the emergent macrophytes beneath which the water failed to be mapped is
probably also > 80%. Vice versa, those water surfaces detectable with GLCM variance in the nine

studied reservoirs is likely covered by canopy closure less than 80%.

Very sparse grass-like macrophytes cannot alter scattering sufficiently to introduce large GLCM
variance but can only elevate the scattering slightly. This might result from the fact that the

sub-population VS + SR are present in the reservoirs Sao Nicolau throughout 2014.
3.5.4 Effective water surface map

Compared to the open water mapping with SAR data and optical data (Li et al., 2015b, 2014;
Martinis et al., 2015b; Pekel et al., 2016), this study derived not only the open water surfaces, but
also those covered by vegetation. The temporal changes of the effective water surfaces were
obtained with high accuracies with few exceptions caused by precipitation events. The parameters
in the presented study were defined by referring to the intrinsic texture characteristics of the

studied reservoirs. The same criterion was applied to all nine reservoirs with 37 TSX data sets.

In terms of the range of the study period, this study covers a two-year period, and revealed the
seasonal variations of sub-populations dominated by different types of scattering and changes in
the open and effective water surfaces for this period. This implies that in terms of study period the
approach of the study is superior to the inundation mappings with spectral vegetation indices e.g.
NDVI and NDWI or classification with in-situ data on a few timestamps (Bourgeau-Chavez et al.,

2001; Feng et al., 2012; Voormansik et al., 2014; Ward et al., 2014; L. Zhao et al., 2014).

101



3. Mapping efective water surface in macrophyte-covered reservoirs

Moreover, the proposed approach only employed remotely sensed data, while no in-situ data were
used to generate the final maps. In-situ data were only used to validate of the results of effective
water surfaces. Therefore, the approach can be applied to similar areas for an operational

monitoring over a long period.

However, from the data perspective, polarimetric SAR data and indices derived from them
probably also hold great potential to provide more insights in the contributions of different
scattering sources and to automatically delineate the effective water surfaces in terms of
operational mappings. When available in a suitable temporal and spatial resolution, SAR and
optical satellite data are seen as synergetic data sources for future effective water surface mapping
of inland water bodies. For example, the synergy of data acquired by Sentinel-1 & 2 missions act

as candidate of great potentials in this aspect.
3.6 Conclusion

In the presented study, a method was proposed for mapping the effective water surface areas in
macrophyte-covered reservoirs with time series of TSX data. The approach was applied to
different reservoirs of varying complexity and throughout two consecutive dry and wet seasons. A
detailed evaluation, including the use of in-situ data, demonstrated that the approach is robust and
holds potential for mapping vegetation covered water surfaces or flooded vegetation. In most
cases, the overall accuracies of the effective water surfaces of vegetation covered reservoirs were >
77%. However, precipitation, closed canopy and bare grounds were found to be the main causes
for the reduced mapping accuracy. The approach can easily be applied to multi-temporal data, and
thus, allows for mapping the spatial-temporal variation of the effective water surface throughout
the seasons and years. Finally, the approach is independent of in-situ data. Overall, the proposed
approach proofs useful for effective water surface mapping and seems particularly relevant in the

context of operational monitoring systems.
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4. The spatio-temporal variation of surface water storage in dense reservoirs

in NE Brazil, using remote sensing approaches

Abstract: Knowledge on the surface water storage is vital for local/regional water resource
management, and for prediction/warning of water related hazard. In NE Brazil, the majority of
the reservoirs lack this information. In this study, bathymetry of 2 105 reservoirs in four regions
of total area 10 000 km? in NE Brazil were derived with very high-resolution digital elevation
model (DEM) generated from TanDEM-X data. Based on the reservoirs’ bathymetry and a time
series of RapidEye satellite images acquired in the period of 2009-2017, the temporal and
spatial distribution characteristics of surface water storage in the four regions were obtained.
Furthermore, the surface water storages derived from field monitoring were employed to
validate the surface water storage yield by remote sensing approaches. Our study found that: 1)
DEM derived from TanDEM-X acquired in the deep dry season can reveal the full bathymetry
for 90% of the reservoirs; 2) NE Brazil is densely dammed with number of reservoirs
0.04-0.23/km?, surface water area 0.78-4.13 ha/km?, and storage 0.01-0.23 hm?/km?; 3) Among
all the reservoirs, those < 10 ha account for the most of the water body population but
contribute the least to the regional surface water storage; 4) From 2009 to 2017 the overall
surface water storage decreased at the rate of 103 m’/year on the scale of 5x5 km; 5) The
decrease of surface water storage in the period of 2009-2017 showed high spatial heterogeneity.
Our study has filled the data gap of the reservoir bathymetry and surface water storage capacity
for the 2 105 reservoirs in NE Brazil. The high consistence between the surface water storage
yield by remote sensing and that from in-situ measurements demonstrated the potential of
monitoring the surface water storage with remote sensing. In addition, the surface water
storages derived for these reservoirs on annual frequency for the past eight years can act as a
reference for future water management and serve in optimizing hydrological modelling and

validation in the regions.

Keywords: Bathymetry, surface water storage, dense reservoir, TanDEM-X, RapidEye,
northeastern (NE) Brazil
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4.1 Introduction

Surface water support the society in terms of supplying domestic water consumption, irrigation
etc. In water scarce area, the knowledge on the water quantity is important for the
local/regional water resource management, deployment, and prediction. Surface water also
determines the status of wildlife habitats in landscape like wetland. On global scale, there is a

necessity to know the spatial and temporal surface water availability (D E Alsdorfet al., 2007).

Remote sensing data and relevant approaches have accounted for a majority part of the studies
in deriving surface water quantity and their variations. Based on the physical characteristic of
water in the visible spectrum and the interaction of water surface with transmitted synthetic
aperture radar (SAR) pulses, water surfaces have been mapped on regional and the global
scales (Donchyts et al., 2016; Fluet-Chouinard et al., 2015; Melrose et al., 2012; Papa et al.,
2010; Pekel et al., 2016; Song et al., 2014; Vorosmarty and Sahagian, 2000; Westerhoff et al.,
2013). Various data sets and approaches have been applied in those studies. The changes of
water surface along multiple dates or continuous time series have also been revealed (Song et
al., 2014; Tulbure and Broich, 2013). However, the water surface and its variation could not
provide sufficient knowledge on the precise water quantity. Efficient water management and

decision making require precise knowledge on surface water storage.

Water volumetric variations in large lakes were depicted by combining water surfaces derived
from satellite images and water level changes provided by altimetry measurements (Birkett,
2000; Duan and Bastiaanssen, 2013; Jiang et al., 2017; Smith and Pavelsky, 2009; Zhang et al.,
2014). However, due to the large footprints of the altimetry measurements and wide
inter-measurements distance (Zwally et al., 2002), such-derived water volumetric variations are
constrained to large lakes (Birkett, 2000; Duan and Bastiaanssen, 2013; Jiang et al., 2017;
Zhang et al., 2014). Therefore, these approaches are not applicable for regions characterized by
(dense) small water bodies such as reservoirs. In addition, most of those studies revealed only

partial volumetric variation of surface water, instead of the storage capacity variation.
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A few studies estimated surface water storage with remote sensing approaches. With water
surface derived from remote sensing images, water storage in lakes and reservoirs were derived
from empirical or aggregated relations between the water surface and storage (Jiang et al., 2017,
Ran and Lu, 2012). However, empirical water storage functions or those aggregated over many
water bodies can potentially yield large inaccuracy in the estimated surface water storage. In
addition, Yuan et al. (2017) estimated the surface water storage in Congo basin from the water
level-storage function fitted from the water levels obtained for the region with InSAR

technique.

In areas without available water storage functions, the surface water storage can be derived
from bathymetry which is the morphology of the water bodies. Up to now, various mechanisms
have been investigated to derive bathymetry from remote sensing data and further to extract the
surface water storage. Current studies on bathymetry retrieval mainly investigated shallow
coastal areas, based on the attenuated substrate reflectance on optical image or the Bragg
scattering of waves which are modulated by submarine topography and captured by SAR
images (Brusch et al., 2011; De Loor and Loor, 1981; Dierssen et al., 2003; Jay and Guillaume,
2014; Pacheco et al., 2015; Shuchman et al., 1985). The approaches adopted in these studies
require certain conditions in the regards of clarity, depth , vastness of open water surface, and
wind speed (> 3 m/s) (Dierssen et al., 2003; Jay and Guillaume, 2014; Reichert et al., 1998),
which inland water bodies do not frequently fulfill. However, Sneed and Hamilton (2007) and
Williamson et al. (2017) have adapted the physicl model developed by Philpot (1989) for
coastal batymetry derivation, and obtained the water volumes of glacier lakes in Greenland
using ASTER and MODIS data, respectively. Even though, their studies still depend on the
absence of sediment in those lakes formed on pure ice (Sneed and Hamilton, 2007). Moreover,
Feng et al., (2011) attributed elevation measured along transactions to the isoclines yielded by
MODIS data, and derived bathymetry for Poyang lake. Furthermore, the DEM derived from
remote sensing images mapping the water bodies at low water stage can represent the

bathymetry for them. Assuming the reservoirs were empty during the flights of SRTM DEM
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mission in 2002, Avisse et al. (2017) adopted SRTM DEM to represent the bathymetry of a few
inaccessible reservoirs in Syria, and derived the water storage variation in those water bodies
along time series. Furthermore, Messager et al., (2016) developed a number of statistic models
to model the global water storage, by referring to the surrounding topography of the water
bodies represent by SRTM DEM. However, their models were constrained to natural lakes, and

showed poor performance on water bodies smaller than 10 km? (Messager et al., 2016).

Interferometry SAR (InSAR) is a very effective technique for the DEM generation and ground
displacement mapping (Bamler and Hartl, 1998; Rosen et al., 2000; Small, 1998). The
TanDEM-X satellites are new generation of SAR constellations designed to generate a global
DEM of high resolution and accuracy (Krieger et al., 2007; A. Moreira et al., 2004). DEMs
derived from single pass TanDEM-X data have been used to study volcanic morphological
changes, forest biomass estimate, and reservoir bathymetry retrieval etc.(Karila et al., 2015;
Kubanek et al., 2015; Rossi et al., 2016; Schlund et al., 2013; Zhang et al., 2016). Among all
these studies, Zhang et al. (2016) found that the accuracy of the DEMs derived from single pass
TanDEM-X data can reach one meter at the areas of gentle terrain, and demonstrate great
potential for representing reservoirs bathymetry. If derived from the very water level stage and
covering a large area, those DEMs can provide bathymetry for regional water bodies.
Integrating those DEMs with images of very high resolution (VHR) which provide the
historical water surfaces can potentially reveal the historical surface water storage changes on a

regional scale.

In the semiarid northeastern Brazil water supply mainly comes from the numerous reservoirs of
various sizes. The surface water storages in the reservoirs remarkably concern the residents and
authorities due to the frequently occurring droughts. However, most of the reservoirs in the
region do not have inventory data to support efficient water management or deployments.
There is no record about the spatio-temporal characteristics of the surface water storage in the
region. In this study, we aimed to investigate the temporal and spatial surface water storage

characteristics in four representative regions of total area of 10 000 km?, comprising of 2 105
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reservoirs of various sizes. We derived the reservoir bathymetry from TanDEM-X data using
single-pass interferometry. Subsequently, with the water surface area yielded by RapidEye
images acquired in the period of 2009-2017, surface water storages were obtained for the four
regions on annual frequency. We further analyzed the spatial-temporal variation in the surface

water storage and validated it with data from field observations.

4.2 Data and method

4.2.1 Study area

The climate in NE Brazil is semiarid with pronounced wet and dry seasons. From January to
June is the wet season when the major precipitation events take place; the dry season spans
from July to December. The average annual precipitation is approx. 600 mm, and the potential
evaporation exceeds 2000 mm per annum (INMET, 2018). Caatinga, an endemic seasonal
shrubby forest with sparse distribution of trees, is the main land cover in NE Brazil (Bullock et

al., 1995).

Since the 19" century, numerous reservoirs have been constructed in NE Brazil to support the
local water consumption in the regards of domestic utilization etc. (SIRH/Ce, 2015). Despite
the large number of reservoirs and the seemingly enlarged water supply, the region is still
vulnerable to frequent droughts. In-situ monitoring of these water bodies has been inconsistent,
resulting from the managements undertaken by different country, federal state and local
municipality organizations, and only covers a very small fraction of the total water bodies
(SIRH/Ce, 2015). Specifically, a few of large reservoirs supported by the federal state and
country are regularly monitored and maintained owing to their so-called strategic importance.
In contrast, numerous reservoirs of small to medium size and those at remote areas barely
receive any attention (SIRH/Ce, 2015). Due to the large number and relatively small size of the
reservoirs (SIRH/Ce, 2015), the past abundant studies on the regional and global water
mapping failed to provide inventory data for most of the reservoirs, or to depict the historical

surface water storage in the region. Up to now, only a few remote sensing studies have aimed at
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mapping the reservoirs in these regions , regardless the size of the reservoirs, e.g. (Heine et al.,
2014; Zhang et al., 2018, 2016). As a result, the regional surface water storage and the variation
characteristics are still unknown for NE Brazil. However, the knowledge is the critical input for

effective water management/deployment, and further studies on regional hydrology.

From the vast range of NE Brazil, we selected four representative regions comprising the
catchments of Bengue, Madalena, Pentecoste and Sangue (Figure 4.1). The four regions cover
areas of 4114, 1575, 5140 and 4539 km?, and consist of reservoirs of 160, 256, 657 and 1007

supporting the adjacent towns and/or settlements (Figure 4.1).
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Figure 4.1 Locations of the studied regions. A) The location of the four regions in the federal state of Cear4, Brazil; B-E The
distribution of the reservoirs, drainage network and settlements in the four regions
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4.2.2 Data

We used TanDEM-X data to derive the DEM and further represent the reservoirs’ bathymetry.
RapidEye time series provided the annual maximal inundation for the reservoirs. Precipitation
data, simulated evaporation and soil moisture were employed to reflect the meteorological
changes in the regions. Data acquired by the in-situ measurement were used to validate the

surface water storage derived from remote sensing data.
4.2.2.1 TanDEM-X data

The four study areas are covered by ten TanDEM-X geometries in descending orbits (Figure
4.1 A). In October-December 2015 when it was the deep dry season of the year, 59 single pass
TanDEM-X scenes were acquired in bistatic mode, mapping each of the four regions two to
three times with slightly different height of ambiguity (HoA) (Table 4.1). TanDEM-X data were
delivered in the format of Co-registered Single look Slant Complex (COSSC), the same format
as used for global DEM generation within the TanDEM-X mission (Duque et al., 2012). The
mean coherence of each TanDEM-X scenes is above 0.8, and further parameters of the COSSC

TanDEM-X data are list in Table 4.1.

Table 4.1 The details of the TanDEM—X data used in this study.

Catchment Bengue Madalena Sangue Pentecoste
10/14 10/14 11/09  11/22 10/14
Date of 11/25/ 11/27 11/27
o 10/25 10/25 10/20  12/03 10/25
acquisition 12/30  12/08/ 12/08 12/08 12/30
11/05 11/05 10/31  12/14 11/05
(MM/DD) 12/19 12/19 12/19
11/16 11/16 11/11 11/16
Incidence
40.57 3842 37.08 33.72 299 46.69 4523 | 33.74 299 31.33
angle (degree)
76 58 99 50
) 57 42 86 51
Height of 75 57 98 49
o 63 59 43 84 52 47
ambiguity 76 58/ 100 50
60 44 85 53
70 53 86 45
4.2.2.2 RapidEye images

The five RapidEye satellites visit the same area on the earth once a day. Such short revisit time
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ensures that the entire representative regions were mapped at least once a year, considering the
frequent clouds presence in NE Brazil. It is rather difficult for data from other optical missions,
such as Landsat images with revisit cycle of 16 days. The time series of RapidEye images
covers the period 2009- 2017, and the images were primarily from the dry season. The four
regions were covered by 20 tiles of 3A RapidEye tiles (resolution 5 m) (Figure 4.1). In this
study, only those images of cloud coverage less than 10% were adopted. In total, approximately

300 scenes of RapidEye images from 20 tiles were used.
4.2.2.3 Maximal water mask

Pekel et al. (2016) derived the historical maximal water surface on global scale from Landsat
archive, by employing an expert system comprising of a sequential decision trees. As their
study combined images from long time series, the water surface products are regarded to be of
high credibility. In this study, the maximal water masks from their study served in the following
procedures: 1) constraining the bathymetry extent for individual reservoir mapped; 2) filtering
out potential clouds and shadows in the water mask delineated from individual RapidEye image.
Prior to the applications, a buffer was applied to the maximal water mask of each reservoirs to
leave space for any possible underestimation of the water surfaces, due to the 16 days revisit of
Landsat satellites used. The buffer distance is 1/3 of the radius of the circle which covers the

equivalent area to the maximal water mask of the reservoirs.
4.2.2.4 Global TanDEM-X DEM

Five tiles of the global TanDEM-X DEM covering the four regions were used to validate the
DEMs generate from TanDEM-X data in this study. The TanDEM-X data employed in the
global TanDEM-X DEM mission were acquired in two phases characterized with slightly
different acquisition baselines. As calm open water surface presents incoherent in an
interferogram, the areas occupied by open water on either of the TanDEM-X acquisitions were
indicated as invalid (TanDEM-X ground segment, 2013). The resolution of the final DEM data

is 12 m (TanDEM-X ground segment, 2013), and the absolute and relative accuracy of the
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DEM are 10 m and 2 m, respectively (TanDEM-X ground segment, 2013). The global

TanDEM-X DEM is so far the best DEM data set for the region for the validation purpose.
4.2.2.5 Tropical Rainfall Measuring Mission (TRMM) data

Product from TRMM has been widely used for drought monitoring from climatological
perspective (AghaKouchak et al., 2015; Immerzeel et al., 2009; Penatti Costa et al., 2015;
Sahoo et al.,, 2011). Monthly precipitation data which is the TRMM 3B34 product were
obtained from NASA data center to indicate the climatological background of the study area
over the period of 2009 -2017. The data were processed with Version 7 TRMM Multi-Satellite
Precipitation Analysis (Tropical Rainfall Measuring Mission (TRMM), 2018).The resolution of

the data is 0.25°.
4.2.2.6 Simulated evaporation and soil moisture data

Global Land Data Assimilation System (GLDAS) employs advanced land surface modeling
like Noah, CLM, VIC, and Mosaic land surface models and data assimilation techniques to
yield optimal 1979-present fields of land surface states and fluxes in near-real time on global
scale (Rodell et al., 2004). The system integrates observation-based precipitation, downward
radiation products and the best available analyses from atmospheric data assimilation systems.
The surface climatological results produced by GLDAS include snow cover, snow water
equivalent, soil moisture, surface temperature, and leaf area index. The high-quality, global
land surface fields provided by GLDAS support several current and proposed predictions on
weather and climate, water resources applications, and water cycle investigations. The data
used in this study are the Noah model yielded monthly evapotranspiration and 0-10 cm soil

moisture, with resolution of 0.25 degree and temporal range of 2009-2017.
4.2.2.7 In situ data

Water Resources Management Company of Ceard (COGERH) monitors the strategic reservoirs
in the federal state of Ceara as the state water agency. For most of the reservoirs it monitors,

GOGERH conducts the topography survey before the reservoir construction, and thus obtains
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the reservoir bathymetry and the water level-area-storage relations (COGERH, 2018). In
addition, GOGERH routinely collects the daily water level measurements for these reservoirs.
In this study, the water level-area-storage relations and the daily water levels were provided for
the three reservoirs Fogareiro, Sousa and Caracas (Figure 4.1). The water level measurements
for the first two reservoirs range from 2009-01-01 to 2017-12-31, and for the reservoir Caracas
the available water level measurements range from 2009-01-01 to 2012-02-27.

4.2.3 Method
4.2.3.1 Reservoirs bathymetry derivation

DEMs were generated from each of the TanDEM-X scenes with single pass interferometry by
following the workflow in Zhang et al. (2016), with the offset removal reserved. The
interferometry was realized in GAMAM software (Wemer et al., 2000). Among the DEMs
generated from TanDEM-X in the same geometry, the one with least HoA were selected and
mosaicked with its counterpart from other geometries for further bathymetry derivation. On
such-derived DEMs, the areas of coherence less than 0.6 were regarded as open water and/or
areas deteriorated by rough terrains. The elevations of these areas were replaced with the
minimum of the surrounding elevation. As a result, in the reservoir where open water retained
during the acquisitions of TanDEM-X data the elevations of the pixels at the open water surface

represent the contemporary water level.

In the study of Zhang et al. (2016), the generated DEMs were validated only for Madalena
region. However, the data used in this study have different HoAs, and this study covers four
regions of slightly different topography. Therefore, instead of directly adopting the accuracies
established by Zhang et al. (2016) for the single region, we validated the DEMs generated in
this study with the global TanDEM-X DEM. Before the validation, invalid areas in either of the
two DEM data sets were masked out. Specifically, areas of coherence less than 0.6 indicate the
invalid elevation in the DEMs generated in the study, and the data quality maps delivered

together with global TanDEM-X DEM position the invalid elevation in the product. The DEM
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validation was conducted within the buffered zones of the maximal water mask. The reasons of
undertaking the evaluation in this manner are: 1) the bathymetry is only inside the reservoir; 2)
the areas far away from the drainage network are possibly characterized by terrains not relevant
to the reservoir bathymetry. The absolute accuracy and the relative accuracy were established

according to Rosen et al. (2000).
4.2.3.2 Water surfaces from RapidEye images

Top of atmospheric reflectance was obtained for each RapidEye image. For each RapidEye tile
a cloud-free reference image was selected and subsequently shifted to match the topography
represented by the DEM generated in the study. The process was conducted in ARCGIS (ESR],
2011) with the assistance of visual inspection. All RapidEye images from the same tile were
co-registered to the corrected reference image with algorithm AROSICS (Scheffler et al.,

2017).

Water surfaces were delineated from each RapidEye image in the time series. In the leaf-off
season, vegetation zone in water bodies like wetland show distinct spectrum from terrestrial
objects (Carter, 1982). Based on this, water surface beneath the vegetation were obtained with
normalized differential vegetation index (NDVI) (Zhao et al., 2011). In this study, the areas
where normalized differential water index (NDWI) > 0 were denoted as open water, and the
areas of NDVI > 0.4 as the water surface covered by vegetation, i.e. emergent and floating
macrophytes in the reservoirs. From individual RapidEye image, open water and vegetation
zone in the adjacency were obtained separately, and then aggregated to produce water surface
captured by this image. Subsequently, a filtering with the buffered maximum water mask was
applied to eliminate the possible contamination of clouds, shadow etc. Water surface from
RapidEye images acquired in the same year were aggregated to mitigate the data gaps caused
by the constrained of 10% clouds coverage. This water surface represents the complete
maximal water surface that any optical archive can provide in the length of the time series

2009-2017 for all the reservoirs in the four regions. Only data in the dry season were used
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considering availability of the data, and also that the water availability is more concerning in
the dry season than in the wet season. Ultimately, the water surfaces of high resolution were

generated for the four regions on annual frequency.
4.2.3.3 Water storage extraction

The surface water storages were derived from the DEM using the water surface from the
RapidEye images. Before the surface water storage extraction, the DEMs were resampled to the
same pixel size as the RapidEye images. The co-current water level was determined by the
mean of the elevation underlying the water/land borders, i.e. the water extent derived from
RapidEye data set. The surface water storage in a reservoir was obtained as shown by the

equation below:
n
V= z (H; — H,)A with H; > H,, (41)
i=1

where V' is the water storage corresponding to the water surface extracted from RapidEye
images mapping the reservoir in a certain year; H; is the elevation of the pixel beneath the
water surface yield from the RapidEye images mapping that reservoir in that year; H,, is the
co-current water level of the reservoir; n is the total number of the water surface pixels; A is

the pixel area of the RapidEye images.

The accuracy of the extracted storage is defined as:

n

5V = 0.95" Z (Eipg) (4.2)
i=

Where §E; is the relative accuracy established for the pixel Number i on the DEM generated
in this study, 0.95 is the confidence level at which the DEM accuracy was established. Apgy is

the pixel area of the DEMs generated in this study.
4.2.3.4 Gridding

In order to eliminate the impact of reservoirs size difference on the illustration of the results on
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spatial scale, we presented the derived results relevant to the surface water storage in a grid
form. The size of grid cell was set to be 5x5 km based on the following concerns: 1) to respect
the dense distribution of water bodies in the regions, as overlarge grid cells may introduce the
overlaid effect of the large and the neighboring small reservoirs. 2) The medium reservoirs in
the region are about 2-3 km long, the grid cell should respect the size of the reservoirs. The
overall extent of the grid was determined by the RapidEye tiles covering the four study areas.
The parameters attributed to the grid cells include maximal surface water storage in the period
2009-2017, storage/area ratio, annual surface water storage, and the change rate of surface
water storage in the same period. The maximal surface water storage of the grid cell is the sum
of the maximal surface water storage of the reservoirs whose geometric centroids fall in the
extent of the grid