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Abstract 

Surface water bodies provide vital support to the society and fundamentally affect ecosystems 

in various manners. Precise knowledge of the spatial extent of surface water bodies (e.g. 

reservoirs) as well as of the quantity of water they store is necessary for efficient water 

deployment and understanding of the local hydrology. Remote sensing provides broad 

opportunities for surface water mapping. The main objectives of this thesis are: 1) delineating 

surface water area of partly vegetated water bodies only from remote sensing data without 

field data input; 2) obtaining the surface water storage, and 3) analyzing its spatio-temporal 

variations for northeastern (NE) Brazil as a representative for a densely dammed semi-arid 

region. 

At first, I investigated the potential of digital elevation models (DEMs) generated from 

TanDEM-X data, which were acquired during the low water level stage, for reservoirs’ 

bathymetry derivation. I found that the accuracy of such DEMs can reach one meter, both in 

the absolute and relative respects. It has shown that DEMs derived from TanDEM-X data 

have great potentials for representing the reservoirs’ bathymetry of temporally dried-out 

reservoirs. 

Subsequently, I targeted at developing a method for mapping the water surface beneath 

canopy independent of field data for further delineation of the effective water surface. Instead 

of the commonly used backscattering coefficients, I investigated the capability of the 

Gray-Level Co-Occurrence Matrix (GLCM) texture index to distinguish different types of 

Radar backscattering taking place in (partly) vegetated reservoirs. This experiment 

demonstrated that different types of backscattering at the vegetated water surface show 

distinct statistical characteristics on GLCM variance derived from TerraSAR-X satellite time 

series data. Furthermore, with the threshold established based on the statistics of the 

sub-populations dominated by different types of backscattering, the vegetated water surfaces 

were effectively mapped, and the effective water surface areas were further delineated with an 

accuracy of 77% to 95%. 
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Based on the investigation of the DEMs generated from TanDEM-X data, I derived the 

formerly unknown bathymetry for 2 105 reservoirs of various sizes in four representative 

regions of an overall area of 10 000 km2. The spatial distributions of surface water storage 

capacities in the four regions were subsequently extracted from the combination of the 

reservoir bathymetry and the water surface extents provided by RapidEye satellite time series. 

Furthermore, the spatio-temporal variations of surface water storage were derived for the four 

representative regions on an annual basis in the period of 2009-2017. This study showed that 

1) The density of reservoirs in NE Brazil amounts to 0.04-0.23 reservoirs per km2, the 

corresponding water surface and surface water storage are 1.18-4.13 ha/km2 and 0.01-0.04 

hm3 m/km², respectively; 2) On the spatial unit of 5×5 km2, the surface water storage in the 

region constantly decreased due to a prolonged drought with a rate of 105 m3/year from 2009 

to 2017, with a slight increase from 2016 to 2017 in a few reservoirs; 3) Local precipitation 

deficit controls the variation of the overall surface water storage in the region. In this thesis I 

demonstrated the great potential of the great potential of SAR and optical satellite time series 

data for hydrological applications. The method I developed for delineating the effective water 

extent from the vegetated reservoirs has shown high potential transferability for other similar 

regions. The data gaps of bathymetry and surface waters storage capacity were filled for 2 105 

reservoirs in NE Brazil. The results of the spatio-temporal variations of surface water storage 

in four representative regions from 2009-2016 can support future water management and 

improve hydrological prediction in NE Brazil. 
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Zusammenfassung 

Oberflächengewässer haben einen hohen Wert für die Gesellschaft und beeinflussen 

Ökosysteme grundlegend und in verschiedenster Weise. Kenntnisse der genauen Ausdehnung 

der Wasseroberfläche und des Volumens der Gewässer (z.B. von Stauseen) sind wichtig für 

eine effiziente Wassernutzung sowie für das Verständnis der lokalen Hydrologie. Für die 

Kartierung von Oberflächengewässern bietet die Fernerkundung sehr gute Möglichkeiten. Die 

Hauptziele dieser Dissertation sind 1) die Bestimmung der Wasserflächenausdehnung von 

teilweise mit Vegetation bedeckten Gewässern unter ausschließlicher Nutzung 

fernerkundlicher Daten ohne lokal erfasste Beobachtungen, 2) die Ableitung der 

Gewässervolumina, sowie 3) die Analyse ihrer raumzeitlichen Variation am Beispiel vom 

semi-ariden Nordostbrasilien, das eine hohe Dichte an Stauseen aufweist.  

Zunächst untersuchte ich das Potenzial von aus TanDEM-X-Daten erstellten digitalen 

Geländemodellen (DGM) für die Ableitung der Bathymetrie von Stauseen. Solche DGMs 

können eine Genauigkeit von bis zu einem Meter erreichen, sowohl absolut als auch relativ. 

Die aus den TanDEM-X-Daten während der Niedrigwasserperiode abgeleiteten DGMs haben 

damit ein großes Potenzial für die zuverlässige Abbildung der Bathymetrie von zeitweilig 

trocken fallenden Stauseen.  

Anschließend entwickelte ich eine Methode zur Kartierung der effektiven 

Gewässerflächenausdehnung von teilweise vegetationsbedeckten Stauseen unabhängig von 

Felddaten. Anstelle der häufig verwendeten Streuungskoeffizienten untersuchte ich die 

Eignung des Grauwertematrix (GLCM)-Texturindexes zur Unterscheidung zwischen 

verschiedenen Arten der Radarsignalstreuung, die bei bewachsenen Stauseen auftreten. Dieses 

Experiment verdeutlichte, dass unterschiedliches Streuverhalten der bewachsenen 

Wasseroberfläche eindeutige statistische Merkmale der GLCM-Varianz in TerraSAR-X 

Satellitenzeitreihendaten aufweist. Desweiteren wurden mittels Schwellwerten, die basierend 

auf statistischen Kennwerten für jede Art von Rückstreuverhalten festgesetzt wurden, die 

bewachsene Gewässerfläche kartiert und die effektive Ausdehnung der Wasseroberfläche mit 
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einer Genauigkeit von 77 bis 95% bestimmt. 

Basierend auf dem von TanDEM-X-Daten abgeleiteten DGM habe ich für 2 105 Stauseen 

unterschiedlicher Größe in vier repräsentativen Regionen mit einer Gesamtfläche von 10 000 

km2 die bislang weitestgehend unbekannte Bathymetrie abgeleitet. Mit Hilfe der 

Wasserflächen, die aus RapidEye-Zeitreihen bestimmt wurden, und der genannten 

Bathymetrien wurde die räumliche Verteilung der Speicherkapazitäten in Stauseen in den vier 

Regionen berechnet. Weiterhin wurden raum-zeitliche Variationen der Wasservolumina für die 

vier repräsentativen Regionen jährlich für den Zeitraum 2009-2017 analysiert. So konnte 

gezeigt werden, dass 1) die Dichte an Stauseen in Nordostbrasilien bei 0,04-0,023 Stauseen 

pro km² liegt, mit einer entsprechenden Wasserfläche von 1,18-4,13 ha/km2 und einem 

Wasservolumen von 0,01-0,04 hm3 m/km2; 2) dass bei einer räumlichen Auflösung von 5×5 

km2 in den Jahren durch eine langanhaltende Dürre gekennzeichneten Jahren 2009-2017 das 

Wasservolumen in der Region kontinuierlich gesunken ist mit einer Rate von 105 m3/Jahr mit 

einer leichten Zunahme von 2016 bis 2017 in wenigen Stauseen; 3) dass ein lokales 

Niederschlagsdefizit die Variation des gesamten Oberflächenwasservolumens in der Region 

kontrolliert. In trockenen Jahren beschleunigte die Wasserentnahme aus großen Stauseen die 

Wasserverluste in diesen Gewässern. 

In dieser Dissertation habe ich das Potenzial von SAR- und optischen 

Satellitendatenzeitreihen für hydrologische Anwendungen aufgezeigt. Die Methode, die ich 

zur Kartierung der Gewässerfläche von teilweise vegetationsbedeckten Stauseen entwickelt 

habe, ist potentiell übertragbar auf andere ähnliche Regionen. Die Bathymetrie und die 

Speicherkapazitäten für 2 105 Stauseen schließen eine Datenlücke für die untersuchten 

Regionen in Nordostbrasilien. Die abgeleitete raum-zeitliche Variation des Wasservolumens 

kann zukünftig das Wassermanagement unterstützen und die hydrologische Modellierung und 

Vorhersage in Nordostbrasilien verbessern.  
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1. Introduction 

1.1 Motivation 

Surface water bodies, including lakes, reservoirs, wetland, flood plains, river etc. provide vital 

support to the society and the ecosystem, affect local hydrology, and interact with local/global 

climate. They supply water for domestic use, power generation, and agricultural irrigation 

(Postel, 2000). From ecological perspective, surface water maintaining the local ecosystem and 

ecological habitats. Water bodies of large number/density also interfere the local hydrological 

transportation by changing the volume and time of rivers discharge to the oceans (Biemans et 

al., 2011). By altering the green house emission (Rosenqvist et al., 2002), changing the 

transporting pathway and varying the amount of carbon and nitrogen in the hydrological 

systems (Bastviken et al., 2011; Tranvik et al., 2009), water bodies like reservoirs pose subtle 

impact on the climate. Water bodies like lakes in semi-arid area are very sensitive to climate 

condition, and their variation also indicate the climate change. 

Knowledge on precise water surface and storage in water scarce area can improve the 

efficiency of local water management. This knowledge also helps to understanding the local 

and regional hydrology and its response to human activities like damming etc. Moreover, in 

regions characterized by water redundancy or deficit, e.g. flooding or droughts, precise 

information on water surface area and storage on real time scale can assist analyzing, predicting 

and preventing water related hazards, and help to study the interaction between surface water, 

climate condition and human interferences (Alsdorf and Lettenmaier, 2003; Koltun, 2001). 

1.2 State of art in surface water mapping with remote sensing 

Remote sensing images acquired by ground-, air- and space- borne instruments capture the 

physical characteristic of ground objects of vast distribution. Given traditional in-situ water 

body monitoring is labor- and time-costly, remote sensing data have provided broad 

opportunities for studying water bodies of difficult access and/or wide spread. Along with the 

increases in the temporal spatial and spectral resolutions, the ease in access, and the variety of 
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remote sensing data, the application of remote sensing data and relevant approaches in water 

body mapping have developed significantly (Lettenmaier et al., 2015; Palmer et al., 2015). As a 

matter of fact, water environment mapping has entered a new era when remote sensing data and 

techniques provide the mainstream approaches (Alsdorf et al., 2007; Hall et al., 2011; 

Lettenmaier et al., 2015; Palmer et al., 2015; Van Dijk and Renzullo, 2011). 

Water mapping is based on the characteristics of water environment captured by the remote 

sensing images. The data commonly used for surface water mapping were provided by sensors 

capturing the ground reflected solar light in the range of visible, infrared and microwave 

windows (Figure 1.1). 

 

Figure 1.1 The electromagnetic spectrum, image courtesy http://www.sat.dundee.ac.uk/spectrum.html 

1.2.1 Physical characteristics of water environment in remote sensing data and relevant technique 

Images acquired by optical sensor receiving solar light in visible and infrared range and the 

images acquired with instrument receiving microwave signals are the commonly used data in 

current remote sensing mapping. Therefore, in this study I mainly focused on investigating the 

data acquired by optical sensors and microwave instruments for precise mapping of water 

surface and surface water storage. 

1.2.1.1 Water environment on Radar images 

Microwave imagers map the ground surface with the received microwave pulses whose 

wavelengths are on the order of centimeter to decimeter (Figure 1.1). A radio direction and 

ranging (Radar) sensor is an active system which transmits microwave pulses towards the 
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targets and receives the returned signals. Thus, mapping with Radar instruments is independent 

of external illumination, for example from the sun. A SAR system synthesizes the effect of a 

very long antenna from a single antenna, using the Doppler effect caused by the motion of the 

platform which the SAR antenna mounts (Lillesand et al., 2008). SAR sensor usually provide 

images of much higher spatial resolution than real aperture radars which constrained by the 

length of the antenna. 

Microwave pulses transmitted by a radar system can penetrate through the clouds, smoke and 

haze. Therefore, the image acquisition with Radar sensors can take place at all weather 

conditions (Ulaby and Long, 2014). Radar systems are side-looking system (Figure 1.2). The 

backward reflection of the incident Radar pulses is called backscattering. The brightness of a 

Radar image indicates the amplitude of pulses returned by ground objects. The amplitude of a 

SAR image depends on the dielectric constant of the ground objects and the geometric relation 

between the incident Radar pulses and the ground objects (Cover and Chris Oliver, 2004). 

Usually, ground objects of large dielectric constants return more energy than that of small 

dielectric constant. The amplitude component of Radar image is often converted to 

backscattering coefficient for further mapping and analysis. In addition to the backscattering 

amplitude, a Radar system also records the distance between the antennae and the mapped 

ground objects by measuring the time of the returned signals (Lillesand et al., 2007). The 

antenna–ground distance is recorded as the phase component of SAR data and expressed as the 

times of the microwave’s wavelength. 

The microwave pulses transmitted by a Radar sensor travel in the panel normal to the ground 

surface, and this panel is called incidence panel. The geometrical relation between the 

incidence panel and the panel along which the electric field vectors are distributed determines 

the polarization of the microwave. A wave is horizontally polarized (also known as 

perpendicularly polarized and denoted with H) if its electrical vector is perpendicular to the 

incidence panel and vertically polarized (parallel polarized and denoted with V) if its electric 

field vector is distributed in the incidence panel (Ulaby and Long, 2014). Radar pulses are often 
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transmitted and received in single, dual or quadratic channels. 

Figure 1.2 illustrates the interaction between the transmitted Radar signals and mapped water 

environment. Three types of scattering take place on a vegetated water surface: specular 

reflection, diffusive/volumetric scattering and double bounces, with their backscattering 

amplitudes in the ascending order (Cohen et al., 2016; Ferrazzoli and Guerriero, 1995; Horritt 

et al., 2003; Ormsby et al., 1985; Ramsey, 1995). Open water surface presents specular 

reflection (SR) and barely returns any transmitted signals to the Radar sensors. On the water 

surface vegetated by tree or features alike, the incident Radar pulses are reflected away from 

the open water surface towards the tree trunk or similar features, and then returned to the 

antenna with little attenuation. This process is so-called double bounces (Richards et al., 1987) 

and allows for high backscattering from the water surfaces vegetated by plants like tree and 

large emergent macrophytes (Hess et al., 1990; Richards et al., 1987). Volumetric scattering 

(VS) takes place on the rough surfaces covered by plants of dense or closed canopy, for 

instance, floating macrophytes. 

 

Figure 1.2 The interaction between surface water environment with transmitted SAR pulses. a: specular 

reflection; b: double bounces, and c: diffusive/volumetric scattering 

1.2.1.2 InSAR technique 

Interferometric SAR (InSAR) is a recent technique in the remote sensing domain which 

employs SAR images pairwise and requires the image pair to map the same area with nearly 

identical configurations (Bamler and Hartl, 1998; Rosen et al., 2000). Instead of the amplitude 
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component, InSAR uses the phase component of SAR images (Bamler and Hartl, 1998; Rosen 

et al., 2000) (Figure 1.3 A). 

 

Figure 1.3 Illustration of an InSAR system, after Lillesand et al. (2008). A1 and A2 indicate the platforms 

of the SAR sensors. B is the distance between the two sensors, R1 is the distance between the sensor on 

A1 and the ground object P, so is the relation between R2, A2 and P. The two sensors on A1 and A2 can 

map the ground surface simultaneously or with time lag of days 

The phase component of a SAR image expresses the distance between SAR sensors and the 

mapped ground objects in the cycle of 2𝜋. Usually, the phase is wrapped, and only shows the 

fractional components in the range of −𝜋 to 𝜋. It is later recovered to the complete cycles of 

2𝜋 with a processing called unwrapping (Rosen et al., 2000) to express the phase difference 

between adjacent pixels or the phase difference at the same location caused by ground 

displacements. The wrapped phase ( ϕ)  comprises of the phase contribution from the 

topography of the mapped area (ϕ𝑡𝑜𝑝𝑜), atmospheric inconsistency in the signal paths in the 

two acquisitions (ϕ𝑎𝑡𝑚), and orbital inaccuracy of the involved sensors ( ϕ𝑜𝑟𝑏) and noise 

(ϕ𝑛𝑜𝑖𝑠𝑒) as shown in equation (1.1) (Bamler and Hartl, 1998; M.Kampes, 2006; Rosen et al., 

2000): 

𝜙 = 𝜙𝑡𝑜𝑝𝑜 +  𝜙𝑑𝑖𝑠 +  𝜙𝑎𝑡𝑚 +  𝜙𝑜𝑟𝑏 +  𝜙𝑛𝑜𝑖𝑠𝑒  (1.1) 

Among all the components, the mostly frequently adopted ones are the phased of the 
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topography and ground displacement. DEMs can be generated from those SAR image pair by 

converting the topography phase to the elevation with height of ambiguity (HoA) defined in 

equation (1.2)  (E et al., 2004; Small, 1998; Wegmüller et al., 2009):  

𝐻𝑜𝐴 =  
𝑅𝑑𝜆𝑠𝑖𝑛𝜃

2𝐵⊥
𝛥𝜑  

(1.2) 

Where 𝐻𝑜𝐴 is the height of ambiguity, indicating the height of the ground corresponding to 

the phase difference Δφ; 𝜆 is the wavelength of SAR pulses, 𝜃 is the incidence angle;  𝑅𝑑 is 

the distance between the mapped ground and the sensors; 𝐵⊥ is the distance between the two 

sensors in the direction perpendicular to the path of SAR pulses. 

In the case of surface deformation, e.g. earthquake, the displacement component is explicitly 

extracted and converted to the surface motion magnitude with displace ambiguity defined in 

equation (1.3) (Bamler and Hartl, 1998; M.Kampes, 2006; Rosen et al., 2000) 

∆𝐷 = −
4𝜋

𝜆
𝛥𝜑 

(1.3) 

∆𝐷  is the displacement of the ground, and  Δφ  is the difference between the phases 

contained in the image pair mapping the same area. 

InSAR requires the signals from the pair of the image be consistent at the local scale. The 

signal consistency is indicated by coherence (𝛾), expressed as the local correlation coefficient 

as defined with equation (1.4) (Bamler and Hartl, 1998; Rosen et al., 2000): 

𝛾 =  
< 𝑔1 𝑔2

∗ >

√< |𝑔1|2 >< |𝑔2|2 >
   

(1.4) 

Where 𝑔1 is the SAR signal returned to the 𝑖th antenna, and angular brackets represent the 

averaging over the window where the coherence is calculated. The ground objects which return 

identical SAR pulses to the SAR sensors will present coherence 𝛾 = 1, and the  objects which 

fails to return similar pulses to the two sensors will present 𝛾 = 0 (Rosen et al., 2000) The 
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quality of an interferogram is determined by the coherence derived from the image pairs used 

to generated the interferogram. 

In a water environment, open water surface usually does not return (consistent) SAR pulse to 

the sensors, and present coherence nearly 0. However, in the water surface vegetated by woody 

plants or large emergent macrophyte, the double bounces between the water surface and the 

tree trunks or similar features return strong and consistent SAR pulses back to the SAR sensors 

thus present highly coherent. The ground displacement in equation (1.1)in this circumstance is 

caused by the water level changes beneath the canopy (Alsdorf et al., 2000). 

1.2.1.3 Water environment on optical spectral images 

Optical sensors map the earth surface by capturing the visible and infrared solar light reflected 

from the ground objects. In the light of wavelength in the range of 0.4-2.6 µm, clear open water 

shows distinct spectrum in comparison to other objects (Figure 1.1). The majority of the light in 

the range of 0.4-0.7µm which is transmitted to the open water surface is absorbed, and very 

minimal proportion of it is reflected (Curran., 1985) (Figure 1.4). Open water absorbs nearly all 

of the near infrared (0.7-1.3 µm) and middle infrared (1.3-3.0 µm) light transmitted to it. In 

thermal infrared light, water presents dark. In contrast, green vegetation and soil reflect more 

visible, near infrared and middle infrared light transmitted toward them (Figure 1.4). Green 

plants present low reflectance in the visible light. The reflectance from green vegetation 

significantly increases in the light of wavelength approximately 700 nm (red edge) (Weichelt et 

al., 2014), and remain high in the near infrared light (Figure 1.4). Due to the strong absorption 

of water in the vegetation (Szekielda, 1988), the reflectance from green vegetation decreases in 

middle infrared light. The absorption of green leaves is positively related to the water content in 

the vegetation and basal soil. The reflectance of soil and similar round object increases along 

with the wavelength of the transmitted light in the range of 0.4-3.0 µm (Figure 1.4). 

Atmospheric components (e.g. water vapor) whose molecule diameters are on the order of the 

wavelength of optical light interfere the transmitting of the energy and alter the signals travel 
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toward the optical sensors. Therefore, atmospheric correction is a very critical step in remote 

sensing mapping with optical images (Gholizadeh et al., 2016; Lillesand et al., 2008). Similarly, 

clouds, smoke and haze are additional factors that undermine the applicability of optical images 

in terms of temporal continuity and spatial coverage. 

1.2.2 Missions and instruments 

The data used for ground objects mapping can be provided by mapping instruments mounted 

on ground-, air-, and space-platforms. However, this study only focuses on images acquired by 

space-borne sensors, because space-borne data are acquired on routine schedules and 

operational plans, while ground and airborne data are obtained mostly for experimental 

purposes and constrained to specific sites. 

1.2.2.1 SAR missions 

Table 1.1 lists the main satellite SAR systems employed in water environment mapping. 

 

Figure 1.4 The optical spectrum of water environment, after Hoffer (1978). 
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Table 1.1 Space-borne SAR missions that provide commonly used data for surface water environment mapping 

Mission Operator Operation period Wavelength Resolution Polarization Revisit 

ERS-1& 2 ESA 1991-2011 C- 30 m HH 35 d 

ENVISAT ESA 2002-2008 C- 30 m HH 35 d 

RadarSat 1&2 CAS 1995- present C- 30 m HH 24d 

JERS -1 &2 JAXA 1992-1999 L- 26 m HH 44d 

TerraSAR-X/ 

TanDEM-X 
DLR 2011-present X- 1.5/3/6m 

HH, VV, 

HH-VV 
11d 

COSMO-SkyMed ASI 2007-present X- 5 m HH 1-15 d 

Sentinel-1(A & B) ESA 2014-present C- 10/ HH, VV-VH 6-12d 
 

TanDEM-X is a novel mission conceived to generate global DEM of high accuracy and 

resolution with InSAR technique. The global TanDEM-X DEMs are expected to be of 

resolution of 12 m, and accuracy of 10 m and 2 m, for absolute and relative, respectively (Fritz, 

2012; Wessel et al., 2018). The data used for the mission ware acquired in bistatic cooperation 

mode. During the data acquisition mode, the X- band SAR sensors mounting on two nearly 

identical satellites simultaneously receive the echoes of SAR signals transmitted to the ground 

by one of these satellites (Bamler and Hartl, 1998). As the two satellites fly less than one 

kilometer apart, the signal paths are nearly identical, which emilinates the chance for the phase 

controbution of atmospheric heterogeneity. The simultaneous mapping with the two satellites 

does not allow for any contribution of ground deformation in the interferogram in equation (1.1) 

(Krieger et al., 2007). In the TanDEM-X mission for global DEM generation, the same area on 

the earth was mapped two to three time with TanDEM-X data acquired, with different satellite 

flight distances, so as to secure the high accuracy of the final global DEM (Krieger et al., 2007). 

As open water surface barely returns any SAR signals to the sensors, they often present 

incoherent in the interferogram. This renders invalid the elevation of the areas covered by open 

water in any acquisition of the TanDEM-X data mapping the region (TanDEM-X ground 

segment, 2013). 

1.2.2.2 Optical missions 

Currently, the widely used optical images for land surface mapping are provided by sensors that 

map the earth surface with multiple and hyperspectral instruments. The data are determined by 
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the spectral span they cover and the number of bands of the images. The spectral range of 

multi-spectral images already cover the water spectrum and the characteristic bands (Figure 1.4) 

and provide enough spectral information for distinguishing open water surfaces from other 

ground objects. Therefore, water surface mapping in terms of quantity has engaged mainly 

multi-spectral images. The most commonly used multi-spectral sensors for water mapping and 

their satellite platforms are listed in Table 1.2. 

Table 1.2 Space-borne optical missions that provide commonly used data for surface water mapping 

satellites Sensors Operation period No. band Wavelength range Resolution Revisit 

NOAA/TIROS AVHRR 1978–present 5 0.58 - 12.50 µm 1 km/0.5km 1 d 

Terra MODIS 1999- present 36 0.44 -14.4 µm 200/500/1000 m 1-2 d 

Landsat (1-8) 

MSS 

TM 

ETM 

OLI 

1972–1993 

1982–1999 

1993–present 

2015- present 

4-6 

8 

8 

11 

0.500 – 1.0 µm 

0.450 – 2. 35 µm 

0.45 - 2.35 µm 

0.435 - 12.51 µm 

0.433-12.5µm 

60 

30/15m 

30/15m 

30/15m/100m 

16 d 

CBERS-1/2 CCD 1999-present 5 0.510 – 0.890 µm 80/120m 26 d 

TERRA ASTER 1999-present 15 0.2-11.65 µm 15/30/90m 16 d 

IKONOS Pan/MSI 1999-present 4 0.440 – 0.900 µm 1/4m 3 d 

RapidEye Multispectral 2008-present 5 0.440 – 0.850 µm 5 m 5 d 

SPOT 
Pan/MS/SWI 

Multispectral 
1986-present 5 0.450 – 0.890  m 5/10/20m 1 d 

Sentinel-2 

(A & B) 
MSI 2015-present 13 0.43-2.19 µm 12 m 5 d 

 

1.2.3 Mapping water surface 

1.2.3.1 Open water surface 

Based on the distinct characteristics of open water presented in the optical spectrum (Figure 

1.4), the near infrared bands of optical images have been applied for open water surface 

mapping. Indices like normalized differential water index (NDWI) (McFeeter, 1996), modified 

NDWI (MNDWI) (Xu, 2006) and water index (WI) (Ouma and Tateishi, 2006) have been 

developed, and widely applied to derive water masks on various spatial and temporal scale 

(Birkett, 2000; Jain et al., 2006; Pekel et al., 2016; Pope et al., 1992; Smith, 1997; Song et al., 

2013; Verpoorter et al., 2014; Wolski et al., 2017). With the supports of recent supercomputing 
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cloud platforms like Google Earth Engine (Gorelick et al., 2017), the change trends of each 

pixel in open water surface in the decadal span have been depicted with Landsat archive 

(Donchyts et al., 2016; Pekel et al., 2016). 

On a SAR image, the areas occupied by calm open water often present dark due to the specular 

reflection (Figure 1.2) and can be easily distinguished from other ground objects. Algorithms 

like Otsu or minimum error algorithm were used to delineate open water surface from SAR 

images (Kittler and Illingworth, 1986; Otsu, 1979). Based on these algorithms, methods like 

splitting and segmentation of SAR image were developed for flooding mapping with both the 

amplitude and backscattering coefficient of SAR image (Martinis et al., 2015; Schlaffer et al., 

2015). A number of global water masks have been established from different SAR data sets 

(Santoro et al., 2015; Westerhoff et al., 2013). Further approaches for open water delineation 

from SAR image include the automatic method developed by Horritt et al. (2001) and the fast 

processing algorithms developed by Gstaiger et al. (2012) and Martinis et al. (2015). In 

addition to backscattering coefficient derived from the amplitude of SAR images, the potential 

of InSAR coherence for open water surface mapping was demonstrated by Dellepiane et al. 

( 2000a) and Refice et al. (2014), based on the coherence loss over open waters (Alsdorf, 2002; 

Dellepiane et al., 2000b; Kim et al., 2017). The TanDEM-X mission even yielded a global open 

water mask based on the InSAR coherence (Wendleder et al., 2013). 

Besides, combining SAR data from ERS and optical images from AVHRR, Prigent et al. (2007) 

and Papa et al., (2010) revealed the inter-annual variability of global surface water on monthly 

scale from 1993-2004, at the resolution of 25 km2 and 0.25 degree. Like mapping open water 

with optical remote sensing data, mapping open water surfaces from SAR images has evolved 

to the operational level. 

1.2.3.2 Water surface beneath canopy 

Water is the key constitution of wetland, marshland and mangrove etc., and a large portion of 

water surfaces there underlies the vegetation canopy. Therefore, in these landscapes open water 
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often could not express the complete water surface. Using open water surface to represent the 

inundated area can cause underestimate of the actual water surface (Li et al., 2015b, 2015a). 

Therefore, mapping the water surface under canopy is another important part of water surface 

mapping (Alsdorf and Lettenmaier, 2003). Image acquired by both SAR and optical sensors 

were investigated and applied in mapping the water surface beneath the vegetation canopy. 

Since 1990s, massive studies have investigated the performance of different SAR images 

mapping in large flood plains, coastal wetlands, marsh lands and mangrove (Hess et al., 1990, 

1995; Lucas et al., 2007; O’Grady and Leblanc, 2014; Pope et al., 1997; Ramsey, 1995; Wang 

et al., 1995). Significant findings have been drawn as follows: 1) Three types of scattering take 

place in vegetated water surfaces, namely, specular reflectance from calm open water, double 

bounce between the water surface and the trees truck or features alike (Richards et al., 1987), 

and diffusive/volumetric scattering transmitted SAR impulses on canopy of the dense 

vegetation (Cohen et al., 2016; Wang et al., 1995); 2) The smaller the incidence angle the SAR 

pules are transmitted, the stronger the SAR signals ,i.e. higher backscattering, returned are 

(Lang et al., 2008).The images acquired with incidence angle between 20-50 degree can 

distinguish the water surface beneath the canopy (Lang et al., 2008); 3) The images acquired 

with HH-polarization are more efficient than images of VV- polarization in detecting water 

surface beneath canopy (Hess et al., 1995; Pope et al., 1992; Wedler and Kessler, 1981). SAR 

pulses of VV- polarization mostly interact with the canopy of the vegetation (Bourgeau-Chavez 

et al., 2001; Henry et al., 2006; Hess et al., 1995; Lang and Kasischke, 2008; Wang et al., 1995); 

4). The penetration depth is positively related to the SAR pulses wavelength. Images acquired 

in C- and X- band are more suitable for mapping the water surface in herbaceous wetland and 

marshland. The images acquired in L- band data are more suitable for mapping flood plains 

which are often covered by woody plants or forests (Hess et al., 1995; Novo et al., 1998); 5) 

Canopy closure and plant height determine the amplitude of the backscattering from vegetation 

(Cohen et al., 2016; P. A. Townsend, 2001; Zalite et al., 2013); 6) The backscattering in the 

non-forested wetlands is negatively related to the water level (Kasischke et al., 2009); 7) In the 
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wetlands dominated by herbaceous plants, the backscattering is positively related to the 

moisture of basal soil (Kasischke et al., 2009). 

In addition to the above findings, many studies investigated the temporal evolution of the 

vegetated waters with SAR images. Hydrological cycles on multi-temporal, seasonal and 

annual frequencies were revealed for flood plains of large rivers like Amazon, Nile and 

Roanoke River (Hess et al., 2003; P. A. Townsend, 2001; Townsend, 2002; Wilusz et al., 2017) 

and coastal wetlands in Florida etc. (Kasischke et al., 2003); Betbeder et al. (2015) established 

that late winter, spring and beginning of summer are the most relevant seasons for mapping the 

wetland vegetation. With multiple temporal RADARSAT-2 data of full polarimetry, Zhao et al., 

(2014) mapped the season inundation and vegetation dynamics in a flood plain in northeastern 

China, and demonstrated the importance of quad-polarimetric information for floodplain 

monitoring. Wilusz et al. (2017) used the training data from published studies, and classified 

the flooded forest in Sudd wetland on multiple time stamps. 

Similarly, in the mapping of landscape like wetlands and flood plains with optical data which 

were mainly oriented to mapping the vegetation condition in these landscapes, water surface 

beneath canopy were also yielded as part of the output (Dronova et al., 2015; Wang et al., 2012; 

Ward et al., 2014). In addition, models were developed from optical images or by integrating 

auxiliary data like the Lidar measurements or DEM (Feng et al., 2012; Lang and McCarty, 

2009; Rosenqvist et al., 2002), and subsequently applied to obtain the inundation at different 

times in the same sites (Huang et al., 2014; Jin et al., 2017; O’Connell et al., 2017; Ordoyne 

and Friedl, 2008). The modelling methods can be transferred to different time stamps, but only 

for the sites where the mode was established. 

SAR and optical images (Table 1.1 and Table 1.2) were often combined to map vegetated 

waters. For example, Bwangoy et al. (2010a) mapped the wetlands in Congo basin with 

combined JERS-1 and Landsat data, and proved the usefulness of multi-source data in 

characterizing wetland land cover. Ward et al., (2014) mapped the seasonal inundation patterns 
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of Alligator River flood plain by combining ALOS PALSAR and Landsat images. In the 

inundation mapping with the combination of RadarSat-1 & 2 and SPOT, Toeyrae et al. (2001) 

found that the SAR data acquired in small incidence angle yield better classification results; 

Gala and Melesse (2012) proved that the combination of Landsat, Radarsat-1 and Lidar data 

can improve the mapping results of wet area in prairie. 

However, those studies above were conducted mainly with supervised classification approaches 

with field data as input (Arnesen et al., 2013; Dronova et al., 2015; Hess et al., 1995; Kasischke 

et al., 2003; Martinez and Letoan, 2007; P. Townsend, 2001; Wang et al., 2012, 1995; Ward et 

al., 2014);. The methods used include random forest, support vector machine, maximum 

likelihood or object orientated approaches (Dronova et al., 2015; Kasischke et al., 1997; Wang 

et al., 2012; Ward et al., 2014). Nearly all these studies employed training data acquired from 

the field at approximately the same time as the image acquisitions. Often substantial field data 

are necessary for high credibility of the results. As these flooded landscapes are difficult to 

access for field data collection or classes identifications, the classification-based inundation 

mapping is rather labor-expensive and limited to a few time stamps. In addition, a priori classes 

of landscapes are also required for the classification. Moreover, the water conditions and 

vegetation status in these landscapes often change along the seasons. Therefore, the 

prerequisites of field data and a priori classes render the classification-oriented approaches site–

specific, training data constrained, and not transferable to other sites or time. 

At present, there are few field data independent approaches available for the detection of water 

surface beneath the canopy along time series. As the green plants on land and in water present 

similar spectrum on multiple spectral images (Figure 1.4), spectrum based approaches with the 

assistance of field data often fail to distinguish these two types of vegetation (Toeyrae et al., 

2001). However, Carter (1982) suggested that the flood extent can be efficiently detected with 

optical images acquired during the leaf-off season when the terrestrial plants show less green 

vegetation spectrum. Therefore, it is possible to map the inundations in wetlands using the 

vegetation spectrum in optical images (Domenikiotis et al., 2003; Feng et al., 2012; Powell et 
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al., 2014; Zhao et al., 2011, 2014). However, the gaps in the leaf-on season still remain open, 

and there is often a latent between the real time water extent and the vegetation response 

(Powell et al., 2014). 

Texture indices derived from SAR images shows the structure properties of ground objects on a 

SAR image, and were proved to be efficient for mapping urban area which is characterized by 

double bounces (Ban et al., 2014; Dell’Acqua and Gamba, 2003; Stasolla and Gamba, 2008). 

Only a few studies have investigated the potential of texture of SAR images for mapping 

vegetated water surface. Pulvirenti et al. (2011) applied morphological processing on 

multi-temporal COSMO-SkyMed images to obtain structure elements of the data, and further 

mapped the inundation evolution at a flooding event concerning water surface beneath canopy. 

This study demonstrated the potential of texture (structure properties) of SAR images for 

mapping water surface beneath the canopy without field data. 

1.2.3.3 Summary 

Overall, mapping global and/or regional open water with remote sensing data has been efficient. 

Due to the weather independent acquisition and the canopy penetration of the SAR images, it is 

more efficient to map water surface beneath canopy with SAR data than with optical data. The 

performance of the SAR data is jointly determined by the data properties (e.g. wavelength, 

polarization, and incidence angle) and the condition of vegetation (i.e. species, canopy structure, 

phenology stage) and water (i.e. water depth). Mapping vegetated water surface with the 

combination of optical and SAR data can yield results of improved accuracies. However, the 

majority of current methods heavily reply on the field data, thus are site-specific and of low 

transferability (Bwangoy et al., 2010; Gala and Melesse, 2012; Ward et al., 2014). Therefore, 

there is a need for methods of high transferability along time and study sites. Moreover, 

majority of the study engaging SAR data adopted backscattering coefficients of the SAR 

images. The potential of texture indices for mapping water surface beneath canopy are not 

adequately investigated.  
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1.2.4 Surface water storage extraction and bathymetry derivation 

Surface water storage is the amount of surface water stored in lakes, river, reservoirs and 

wetland etc. Surface water storage of these hydrological units can provide important input for 

the regional water management, hydrological modelling optimization, predicting and warning 

water related hazards. However, surface water storage is difficult to obtain from remote sensing 

images, as it usually requires the depth or morphology of the water body which are challenging 

to obtain. Up to now, studies on deriving the surface water volumetric variation and storage 

from remote sensing are rather rare, particularly for the latter one (Lettenmaier et al., 2015). 

1.2.4.1 Water volumetric variation 

Radar altimetry mission were originally designed to monitor the sea level and ice/glacier, by 

obtaining their surface elevation in point wise measurements distributed along the flight tracks 

on the ground (Vignudelli et al., 2009; Zwally et al., 2002). However, the altimetry 

measurement along tracks over inland water can also provide valid surface elevation and reflect 

the inland water level variations. In addition to the in-situ gauge of water levels, altimetry 

instruments can also virtually gauge large river and lakes (Birkett, 1998, 1994). For example, 

water level variations were derived for large rivers from the altimetry measurements from 

missions like TOPEX/POSEIDON (T/P), ERS-2 ENVISat, and ICESat (Birkett, 1998, 1994; 

Birkett et al., 2002; da Silva et al., 2010; Hall et al., 2011; Koblinsky et al., 1993; Maillard et 

al., 2015; Medina et al., 2008; Michailovsky and Bauer-Gottwein, 2014; Morris et al., 1994; 

Phan et al., 2012; Wang et al., 2013). Furthermore, synergizing the altimetry measurements of 

water levels and the surface areas derived from optical and/or SAR images can yield the water 

storage variation in large lakes etc. (Duan and Bastiaanssen, 2013; Frappart et al., 2005; Gao, 

2015; Gao et al., 2012; Jiang et al., 2017; Munyaneza et al., 2009; Singh et al., 2012; Song et 

al., 2014, 2013; Zhang et al., 2006). However, the point-wise altimetry measurements are only 

reliable when averaged over the entire open water surface. Therefore, the application of 

altimetry data for water level derivation requires wide open water surface. In addition, the 

footsteps of altimetry measurement are often on the order of hundred meters to kilometers 
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(Vignudelli et al., 2009; Zwally et al., 2002). As a result, altimetry measurements often fail to 

provide water levels for small water bodies, and this fact constrains the application of altimetry 

data on large water bodies. 

Double bounces taking place in the water surface vegetated by woody wetland or flooded forest 

can return consistent SAR signals to the antenna. Based on this, water level variation in these 

landscapes can be derived with InSAR from the images mapping the area of interest at different 

water levels (Alsdorf et al., 2000). Therefore, water level/depth variation in floodplain, 

wetland/ marsh land and mangrove have been obtained with InSAR from SAR images acquired 

with different sensors listed in Table 1.1 (Kim et al., 2014, 2009, 2017; Lee et al., 2015; 

Wdowinski et al., 2008; Xie et al., 2015; Yoon et al., 2013; Yuan et al., 2017). Furthermore, 

Yuan et al. (2017) intergrated the InSAR derived water levels to estimate the water storage 

capacity of Congo floodplain. However, for the water level retrieval with InSAR technique, 

reasonably large area of the water body should be vegetated to produce strong double bounces 

(Alsdorf et al., 2000). Another shortage of applying InSAR in water level derivation is that 

InSAR technique can only derive relative water levels. Therefore, attributing the absolute 

values for the water levels with contemporary altimetry or gauge measurements is necessary. In 

the case of employing altimetry measurements, wide open water surface should be 

simultaneously available for credible altimetry measurements (Yuan et al., 2017). As a result, 

only large wetlands and floodplains meet these requirements. 

In addition, integrating water level measurements and surface water area is only capable of 

estimating partial water volume variation, but not waters storage estimation, as the large water 

bodies rarely fall empty and become available for mapping the least water status of the 

landscapes. 

1.2.4.2 Mapping bathymetry with remote sensing 

Bathymetry can assist estimating the surface water storage. However, obtaining bathymetry in 

field surveys with acoustic instruments, Lidar sensors and Ground penetrating radars is 
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labor-costly, particularly when the study is on regional scale and covers a large number of 

water bodies (Feurer et al., 2008). Various mechanisms and data sets have been investigated to 

derive bathymetry. Majority of those investigations were conducted in coastal areas, and some 

of them were experimentally transferred to study inland water bodies (Feurer et al., 2008). 

Shallow submarine topography was found to be visible on real aperture radar and SAR images 

acquired under moderate wind (De Loor and Loor, 1981). Strong tidal currents formed under 

this weather condition interact with the submarine topography. This varies the currents 

velocities in return, and further causes modulated local Bragg scatters which determine the sea 

surface backscatters on SAR images (Alpers and Hennings, 1984). Based on this mechanism, 

bathymetry have been investigated and successfully mapped for some coastal areas (Alpers and 

Hennings, 1984; Bell, 1999; Brusch et al., 2011; Vogelzang et al., 1992). However, the 

application of this mechanism relies on the strong currents in open sea under certain wind 

condition (wind speed > 3 m/s) (Reichert et al., 1998), and requires some external depth 

measurements (Brusch et al., 2011). But inland water bodies often could not form strong tides 

due to the interferences of surrounding terrestrial landscapes. Therefore, this mechanism and its 

variants are not applicable for the bathymetry derivation for inland water bodies. 

The reflectance of coastal substrate in the range of optical spectrum is attenuated by water 

when the light travels through the water columns (Legleiter et al., 2004; Lyzenga, 1985; Philpot, 

1989). The deeper the substrate lies, the longer the travel path of the light is, and the more 

reflectance is attenuated. Based on this theory, physical and analytical models were constructed 

to derive water depth and subsequently the bathymetry (Legleiter and Roberts, 2009)(Lee et al., 

1999; Lyzenga, 1985; Philpot, 1989). Those models and their variants have been applied on 

multispectral (e.g. Landsat) and hyperspectral images (e.g. Hyperion) to primarily derive 

bathymetry for coastal waters (Ayana et al., 2015; Brando et al., 2009; Dekker et al., 2011; Lee 

et al., 2007; Pacheco et al., 2015; Sandidge and Holyer, 1998). However, those model-based 

methods for bathymetry retrievals prefer clear water (Pacheco et al., 2015), and are often 

constrained to shallow waters (< 20 m), as the reflectance of substrate situated deeper than that 
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are very likely completely absorbed by the water column. Moreover, the presence of vegetation 

and sun glint are the crucial factors that impede the application of these methods (Feurer et al., 

2008). 

Because inland waters are usually of higher turbidity than coastal waters turbid, due to the 

frequent recharge, discharge and human disturbance, and of high chances being vegetated. 

These substrate optics based approaches do not show high applicability in inland water bodies 

(Feurer et al., 2008). However, Sneed and Hamilton, (2007) adapted the physical model which 

was originally constructed by Philpot (1989) for coastal waters, derived water depth and the 

water volume for the super glacier lakes in Greenland on multi-temporal scale using ASTER. 

Their study were followed by Williamson et al., (2017) developed a fast algorithm for such 

study using MODIS data. Their studies addressed the importance of sediments absence in the 

water and the homogeneous substrate (Sneed and Hamilton, 2007; Williamson et al., 2017). In 

addition, the water depths derived for the super glacier lakes are less than 10 meters. Moreover, 

the potentials of the optical spectrum of river bed for the stream bathymetry derivation were 

also investigated (Legleiter et al., 2004; Legleiter and Overstreet, 2012; Legleiter and Roberts, 

2009, 2005). It was found that deriving bathymetry for rivers from optical images (mainly 

hyperspectral data) is feasible, but the accuracy of the estimated depth is affected by the 

channel morphology and the spatial resolution of the optical images adopted (Legleiter and 

Roberts, 2005). On average, the bathymetry derived for rivers with gravel base are 

approximately at one meter (Legleiter and Overstreet, 2012), with maximal depth at five meters 

(Legleiter and Overstreet, 2012). 

Other studies on the inland lake bathymetry recovery include attributing elevations to lake 

contours derived from MODIS images at different levels, and interpolated those isoclines to the 

lake bathymetry (Feng et al., 2011). But this approach requires existing elevation/depth 

measurements of the lake bottom at least along a few transactions to attribute the water extents 

yielded from the image data. In addition, the water surface areas should be delineated with high 

accuracy. However, in many inland water bodies, the vegetation covers a reasonably large area 
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of the water surface, purely adopting open water can caused underestimated water surfaces. 

1.2.4.3 DEMs representing bathymetry and assisting surface water body storage estimation 

As the bathymetry of a water body is determined by the substrate morphology, the DEM 

covering under water topography can represent lake/reservoir bathymetry, and subsequently 

assist estimating the surface water storage. For example, Avisse et al. (2017) assumed 

inaccessible lakes in Syria were empty during the acquisition of SRTM DEM in February 2002, 

and obtained the water level-area-volume relations for these water bodies with this DEM. 

Based on these water level-area-volume relations and the water surfaces provided by Landsat 

images mapping areas in the last 30 years, they further derived the surface water storage in 

these water bodies on temporal scale (Avisse et al., 2017). However, this application works 

under the condition that the water bodies were empty during the mission of SRTM DEM in 

2002. Furthermore, assuming the surrounding topography is determinant to lakes’ bathymetry, 

Messager et al. (2016) built up statistic models from the surrounding topography on SRTM 

DEM and the geometries of the water bodies, and estimated the water storage in the global 

natural lakes. However, the water bodies they studied are limited to the natural lakes of size > 

10 km2. Moreover, the storage functions they derived for small water bodies are overall of poor 

accuracies (Messager et al., 2016). 

1.2.4.4 Potentials of single-pass TanDEM-X for reservoir bathymetry derivation and surface 

water storage extraction 

In addition to the global DEM generation, the data acquired by the TanDEM-X constellations 

were used to generate DEM with single-pass interferometry, and applied for biomass estimation 

(Schlund et al., 2013), volcanos variation investigation (Kubanek et al., 2015; Rossi et al., 

2016), and rice paddies mapping (Rossi and Erten, 2015) etc. The high qualities of such DEMs 

and the prominent performance of their applications have demonstrated the capability of 

such-derived DEMs in morphological representation (Kubanek et al., 2015; Rossi et al., 2016; 

Rossi and Erten, 2015; Schlund et al., 2015), and also suggested their great potentials for 
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deriving bathymetry for reservoirs of various size and large number. 

1.3 Study area  

Among the global dryland, NE Brazil is a typical example of regions suffering from long-term 

water scarcity, poor water management, vulnerable water supply and inadequately knowledge 

on regional hydrology. 

 

Figure 1.5 The location and the reservoir distributions in NE Brazil 

The climate in NE Brazil is characterized with pronounced wet and dry seasons. Most of the 

precipitation takes place from January to June, indicating this time period as the wet season; the 

dry season spans from July to December. The average annual precipitation is approx. 600 mm, 

and the potential evapotranspiration exceeds 2000 mm per annum (INMET, 2018). Since the 

19th century, over 30 000 reservoirs have been constructed in NE Brazil to support the local 

water supply (SIRH/Ce, 2015) (Figure 1.5). Overall, about 100 large reservoirs in this region 

undergo regular in-situ monitoring (SIRH/Ce, 2015). In contrast, a large number of small to 

medium reservoirs and those at remote areas are poorly managed and most of them do not have 
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any inventory data (SIRH/Ce, 2015). Meanwhile, poor management results in severe 

eutrophication in the reservoirs, and many of them are vastly covered by various macrophytes. 

Despite the large number of reservoirs, the region is vulnerable to frequent droughts. Up to now, 

the surface water storage and its variation characteristics in this region are still little-known. 

However, this knowledge is critical for effective water management and understanding regional 

hydrology. 

1.4 Objectives 

As summarized above, water mapping with remote sensing data has evolved from 2D (i.e. 

water surface) to 3D (i.e. water depth and storage/volume). The temporal scale of water 

mapping has developed from a few timestamps to continuous time series. Simultaneously, the 

spatial scale of mapped water bodies expanded from discrete test sites to regional, continental 

and global scale. The complexity of mapped surface waters bodies has developed from open 

water surface to the vegetated waters. However, the major gaps in the available surface water 

mapping still exist and lie in transferable methods for the mapping of water surface beneath 

canopy and in the delineation of surface water storage. 

In this thesis, I worked both on the mapping of water surface beneath canopy and water storage 

extraction. I chose NE Brazil as the study area, as it represents the regions suffering from 

long-term water scarcity, poor water management, vulnerable water supply and inadequately 

knowledge on regional hydrological characteristics. Moreover, many reservoirs were vastly 

covered by macrophytes, forming large water surface beneath the canopy. 

This thesis aimed to investigate the above two aspects by following the guidance of the 

following research questions: 

Based on the performance of TanDEM-X data for global DEM, is it possible to derive the 

reservoirs bathymetry with the DEM generated from TanDEM-X data acquired during the low 

water level? If yes, how is the performance of the data set in this aspect? 

Is it possible to distinguish the different types of backscattering on the SAR images without 
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field data? If yes, can this help map vegetated water surface in reservoirs in a training data 

independent approach which can be transferred in different area and time? 

Integrating the answers to the above two questions, how is the surface water storage distributed 

spatially in the region? How does the surface water storage vary along time? Is there any 

factors affecting the surface water storage distribution in NE Brazil? 

1.5 Research outline 

The above questions were answered in the following three studies: 

The DEMs generated from single-pass TanDEM-X data were investigated for their potentials 

for reservoir bathymetry derivation. In this study, I found that the accuracies of such DEMs 

over the test site Madalena region can achieve one meter, both in the absolute and relative 

respects. The DEMs derived from the TanDEM-X data acquired during low water level stage 

have high potentials for representing the reservoirs bathymetry. (It is Chapter 2 and published 

as: Shuping Zhang et al, 2016. Bathymetric survey of water reservoirs in north-eastern Brazil 

based on TanDEM-X satellite data. Science of the Total Environment, 571, pp. 575-593) 

Subsequently, I used time series of TerraSAR-X (TSX) data from 2014-2015 to investigate the 

capability of GLCM texture of distinguishing the different types of backscattering taking places 

in nine vegetated reservoirs in the Madalena catchment. This study demonstrated that different 

types of backscattering in the vegetated water surface show distinct statistical characteristics on 

GLCM variance of SAR images. In addition, I derived the abundance of individual types of 

backscattering in each reservoir with linear unmixing on a temporal scale. Furthermore, the 

water surfaces beneath vegetation were delineated by segmenting different types of 

backscattering, independent of field data. The accuracies of the delineated water surfaces are 

77%-95%. (It is Chapter 3 and published as: Shuping Zhang et al. (2018): Effective water 

surface mapping in macrophyte-covered reservoirs in NE Brazil based on TerraSAR-X time 

series. International Journal of Applied Earth Observation and Geoinformation, 69, pp. 41-55) 

In the last part of the thesis, with the DEMs generated from the TanDEM-X data acquired in 



1. Introduction 

 

24 

 

October-December 2015, I derived the bathymetry for 2 105 reservoirs of various sizes in four 

representative regions covering an overall area of 10 000 km2. Based on this bathymetry data, I 

extracted the spatial distributions of surface water storage capacities in the four regions. 

Furthermore, the spatio-temporal variations of surface water storages in the four regions were 

revealed and analyzed on annual frequency in the period of 2009-2017. (It is Chapter 4, 

Shuping Zhang et al. The spatial-temporal variation of surface water storage in reservoirs in 

NE Brazil using remote sensing approaches. Submitted to Remote Sensing of Environment). 

 



2. Bathymetric survey of water reservoirs with TanDEM-X data 

 

25 

 

2. Bathymetric survey of water reservoirs in northeastern Brazil based on 

TanDEM-X satellite data 

Abstract: Water scarcity in the dry season is a vital problem in dryland regions such as 

northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of 

various sizes. However, inventory data for these reservoirs is often limited due to the expense 

and time required for their acquisition via field surveys, particularly in remote areas. Remote 

sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys 

for water resource management. 

In this study single pass TanDEM-X data acquired in bistatic mode were used to generate 

digital elevation models (DEMs) in the Madalena catchment, northeastern Brazil. Validation 

with differential global positioning system (DGPS) data from field measurements indicated an 

absolute elevation accuracy of approximately one meter for the TanDEM-X derived DEMs 

(TDX DEMs). The DEMs derived from TanDEM-X data acquired at low water levels show 

significant advantages over bathymetric maps derived from field survey, particularly with 

regard to coverage, evenly distributed measurements and replication of reservoir shape. 

Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free 

of emergent and submerged macrophytes, independent of water depth (e.g. >10 m), water 

quality and even weather conditions. Thus, the method is superior to other existing bathymetric 

mapping approaches, particularly for inland water bodies. The proposed approach relies on 

(nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that 

show considerable water levels variations. However, comparisons between TDX DEM and the 

bathymetric map derived from field surveys show that the amount of water retained during the 

dry phase has only marginal impact on the total water volume derivation from TDX DEM. 

Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods 

constitute a useful and efficient data source for deriving reservoir bathymetry and show great 

potential in large scale application. 
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Keywords: Bathymetric mapping, TanDEM-X, semiarid area, northeastern Brazil 

2.1 Introduction 

Reservoirs play an important role in global water supply. They often serve power generation 

and water supply for industry, agriculture and domestic use (Agostinho et al., 2015). However, 

reservoirs also cause anthropogenic interference with the terrestrial water cycle and 

surrounding environments (Gunnison, 1985; Vörösmarty and Sahagian, 2000), and also reflect 

the human disturbance to the local water resources (Feng et al., 2014; Palanques et al., 2014). 

Reservoir monitoring is therefore crucial for assessing their effects on regional hydrology and 

for water management. While reservoirs of strategic importance, typically large ones, are in 

many cases regularly monitored, remote and/or small reservoirs often lack adequate attention 

and monitoring although they also play a relevant role in regional water supply, hydrology and 

the local ecology of semiarid areas (Agostinho et al., 2015; Češljar and Stevović, 2015). 

Networks of dense reservoirs can significantly contribute to hydrology, sedimentology, 

geochemistry, and ecology in regional drainage systems and thus impact local water availabilty 

(Lima Neto et al., 2011; Smith et al., 2002; Warnken and Santschi, 2004). Studying the 

characteristics of remote and/or small reservoirs is, therefore, essential for gaining knowledge 

about local water availability and regional hydrology, and for efficient water management. 

The topography beneath water bodies, usually shown with bathymetric maps, is fundamental 

inventory data. Water body substrate can influence the reflectance from water surfaces, and is 

thus an important factor to consider in water quality related studies (Lee et al., 1998; 

Maritorena et al., 1994; Mouw et al., 2015). Conventionally, a bathymetric map is obtained in 

field surveys by measuring the underwater topography using sonar sensors or depth meters 

mounted on boats (Becker et al., 2009). Alternatively, the bathymetry of water bodies can be 

derived by measuring a series of GPS points when they are (partly) dried out. However, results 

from conventional field bathymetric surveys are point- or swath-based and require further 

processing, such as interpolation (Becker et al., 2009; Costa et al., 2009), which introduces 
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uncertainties in the bathymetry map (Wechsler, 2006). Field investigation is labor intensive, 

time consuming and thus expensive, and often not feasible for large scale investigations. 

Remote sensing technologies have shown great potential for water body detection and 

monitoring (Alsdorf and Lettenmaier, 2003; Alsdorf et al., 2007; Palmer et al., 2015). 

Compared to widespread remote sensing applications for studies on water surface, quality and 

volume variation, remote sensing applications in bathymetry studies are relatively few, and they 

use various approaches. In real aperture radar images acquired under moderate wind and strong 

tidal current conditions, shallow submarine ground was found to be visible (Loor, 1981), which 

is the case in synthetic aperture radar (SAR) images as well. The velocities of strong tidal 

current vary as they interact with the sea bottom topography, and thus is modulated, which 

causes variation in the local Bragg scattering determining the sea surface roughness and 

backscatters on SAR images (Alpers and Hennings, 1984a). Based on simulated SAR data, 

experiments have been conducted and models were successfully developed to investigate the 

bathymetric characteristics of shallow coastal areas (Alpers and Hennings, 1984b; Vogelzang et 

al., 1992). However, some external depth measurements and minimum wind conditions are 

compulsory for this approach, e.g. wind speed > 3 m/s (Reichert et al., 1998). Moreover, 

complex image mechanism involves a variety of not well-known parameters in the reversion 

model, leading these methods into simple scenarios (Romeiser et al., 2000). The above 

interaction of strong sea currents and the underlying topography also changes the wavelength 

or velocity of the near-shore currents. From the simulated velocity or the wavelength of the 

currents and the current direction mapped by SAR images, the dispersion of the underwater 

topography, and thus the bathymetry, was retrieved for the studied coastal areas (Bell, 1999; 

Brusch et al., 2011). However, this approach requires knowledge about the frequency of the 

waves, which is usually estimated from SAR images or other data sources (Bell, 1999; Brusch 

et al., 2011). Relying on the strong currents in open sea under certain wind condition, the SAR 

based methods mentioned above are inadequate for deriving the bathymetry of inland water 

bodies. Airborne Light Detection and Ranging (LiDAR) is an effective tool for obtaining an 
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accurate bathymetry. The data so acquired have been used as ground-truth for validating 

bathymetric maps derived from spaceborne satellite images (Lyzenga, 1985; Pacheco et al., 

2015). However, data acquisition with LiDAR is relatively costly and thus usually limited to 

small scale studies. Moreover, the turbidity of water bodies and submerged objects (e.g. 

macrophytes) pose an impact on the results (Guenther et al., 2000). Based on spectral 

reflectance from water bodies, empirical and modified semi-analytical models have been 

developed (Lee et al., 1999; Lyzenga, 1985). Bathymetric mapping of coastal areas using 

optical data such as Landsat, SPOT and airborne hyperspectral images yields bathymetric maps 

with accuracies in the order of one meter (Brando et al., 2009; Jay and Guillaume, 2014; Lafon 

et al., 2002; Lee et al., 1999; Pacheco et al., 2015; Sandidge and Holyer, 1998). Detectable 

water surface reflectance is the basis of these methods. However, atmospheric condition, 

substrate type, water depth, clearness, turbidity, constituents, etc. and the variations of these 

parameters have narrowed the range of waters in which to apply these approaches (Brando et 

al., 2009; Lafon et al., 2002; Lee et al., 1999; Philpot, 1989; Ustin, 2004), The methods are 

most suitable under cloud-free conditions as well as for clear and shallow water bodies (e.g. ten 

meters). Besides, most remote sensing methods for bathymetric mapping focus on coastal areas, 

while the number of studies targeting inland water bodies is relatively limited. Arsen et al. 

(2013) and Feng et al. (2011) derived bathymetric maps for large reservoirs from the water 

contours extracted for the reservoirs from the time series of Landsat images. They attributed the 

elevations of the water contour from satellite altimetry data or field elevation measurement 

along transects of these contours, and then interpolated the bathymetric maps of the studied 

lake from these isolines. The significantly changing inundation areas in the targeted lakes, the 

frequent mapping of these areas, and availability of precise elevation data are the major 

prerequisites of this approach. However, the long time series of cloud-free images are not 

always feasible to archive the changes in the inundation. Due to the large distance between 

footprints of altimetric measurements, only limited altimetry data are available for dense and/or 

small reservoirs. Taking ICESat data for example, its 150 m inter-footprint along the tracks and 
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about seven km inter-tracks distances make it insufficient for bathymetric mapping in areas 

with dense and small water bodies. In addition, clouds reduce the feasibility of using 

spaceborne optical images and altimetry data for ground mapping. 

Interferometric SAR (InSAR) offers an alternative technique for bathymetric surveys of inland 

waters in semiarid areas, by generating a DEM over low-water-level reservoirs (Amitrano et al., 

2014a, 2014b). InSAR is a powerful technique for DEM generation and land surface 

displacement investigations (Bamler and Hartl, 1998; Rosen et al., 2000). The Shuttle Radar 

Topography Mission (SRTM) DEMs generated from airborne C- and X- band SAR data are 

successful examples of DEM generation via InSAR (Farr et al., 2007). Regional DEMs have 

been derived via repeat-pass interferometry from SAR data, such as ERS data, and from a 

combination of ERS and ENVISAT ASAR data (E et al., 2004; Small, 1998; Wegmüller et al., 

2009). However, DEMs generated from these data are characterized by relatively coarse 

resolutions and low accuracies (Wechsler, 2006). The removal of atmospheric disturbance and 

temporal decorrelation should be considered when applying repeat-pass interferometry 

(Crosetto, 2002). 

TanDEM-X is a novel mission launched in June 2010 and conceived to generate consistent, 

high resolution DEMs with worldwide coverage. In this mission the two X-band SAR images 

used for DEM generation are acquired at slightly different incidence angles by two nearly 

identical satellites flying less than 1 km apart. In the bistatic cooperation mode, the SAR 

sensors mounted on the two satellites simultaneously receive the echoes of SAR signals 

transmitted to the ground by one of these satellites, the so-called master satellite. The paths of 

the signal obtained by the sensors on board the two satellites are nearly identical and the time 

lag between the two receivors are very slight resulting from the small distance between the two 

satellite (Krieger et al., 2007). Therefore, the interferograms generated from SAR data acquired 

in this mode are free of atmospheric disturbance and temporal decorrelation of the ground. Two 

to three global coverages with TanDEM-X data acquired with different satellite flight distances, 

so-called baselines, were employed to secure the high accuracy of the final global DEM, 



2. Bathymetric survey of water reservoirs with TanDEM-X data 

 

30 

 

particularly for areas characterized by difficult terrains (Krieger et al., 2007). As a result, areas 

covered by water which produced incoherencies in the interferogram in any of the global 

coverages are inconsistent in the multiple coverages and masked out from the final global DEM 

product (TanDEM-X ground segment, 2013). Nevertheless, the single pass TanDEM-X data 

acquired in bistatic mode are still of high orbital accuracy and resolution, allowing for their 

application in various land surface related studies (Karila et al., 2015; Kubanek et al., 2015; 

Moreira et al., 2004; Rossi and Erten, 2015; Schlund et al., 2013). DEMs generated from single 

pass TanDEM-X data for water-free areas in the reservoir have potential for recovering the 

corresponding topography. Having involved only single pass TanDEM-X data, the generated 

DEMs are expected to be more comparable to the intermediate TanDEM-X DEM (IDEM) 

rather than the final global TanDEM-X DEM, the former having been improved through 

inclusion of flood extents for flood modelling (Mason et al., 2016). Obtained from single pass 

TanDEM-X images acquired during low water level, these TDX DEMs will show much smaller 

water area than the global TanDEM-X DEM in this region does. Moreover, TDX DEM from 

single pass interferometry is expected to be free of seasonal changes that exist in the global 

TanDEM-X DEM due to the multiple coverages of TanDEM-X data involved. 

This study aims to map the bathymetry of reservoirs in a study site in the federal state of Ceará, 

northeastern Brazil, and to compare the results with the bathymetric maps derived from field 

surveys. Numerous dams of various sizes have been constructed in NE Brazil to assure a water 

supply during the dry season (SIRH/Ce, 2015; Sugunan, 1997). In most cases, inventory data 

for these remote and/or small reservoirs are missing or out of date due to siltation (Lima Neto 

et al., 2011; SIRH/Ce, 2015). In this study, we generated DEMs from single pass bistatic 

TanDEM-X data acquired during the dry season, i.e., at low water level, to reveal the 

bathymetric information for the reservoirs of interest. DGPS data measured in the field were 

used to assess the accuracy of the output TDX DEMs. The TDX DEMs selected to reflect the 

reservoirs' bathymetry are further compared to the bathymetric maps derived from field survey. 
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2.2 Study area 

Numerous reservoirs have been constructed in northeastern Brazil to supply water for both 

urban and rural communities. However, the water demand is not always met, especially in the 

drought spells. Different projects and organizations on the country, state and local municipality 

levels have resulted in inconsistent monitoring of these water bodies (SIRH/Ce, 2015). In 

general, reservoirs supported by the state or the nation are regularly monitored and maintained 

because of their strategic importance. But the numerous small and/or remote reservoirs 

constructed to support the population in rural areas are hardly monitored or studied (IBGE, 

2015), thus little information is available about their parameters. 

 

Figure 2.1 Location of the Madalena catchment and the studied reservoirs. A: Location of Ceará state in 

Brazil; B: Location of the Madalena catchment in Ceará state; C: Reservoirs of interest in the presented 
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study and the surrounding elevations. 

The study site consists of the 124 km2 Madalena catchment, located in the rural central Ceará 

(Figure 2.1). The climate is characterized by pronounced wet and dry seasons (Figure 2.1 A), 

putting this area in the drought polygon of northeastern Brazil. January to July is the wet season; 

the dry season extends from August to December (Figure 2.1 A). The average annual 

precipitation is ~ 600 mm and the potential evaporation exceeds 2000 mm per annum. The 

elevation of the catchment ranges from 100 to 700 m. Caatinga, an endemic seasonal shrubby 

forest landscape type in northeastern Brazil with very few trees (Bullock et al., 1995), is the 

dominant land cover. The crystalline bedrock does not have potentials for groundwater storage 

or supply. Since the 1930s, 13 reservoirs have been constructed in this catchment to support 

households in the adjacent settlements. All these reservoirs support the local inhabitants by 

supplying water for domestic consumption, livestock farming and irrigation. Throughout the 

year, water levels in the reservoirs fluctuate significantly. In dry years, such as 2012, 2013 and 

2015, most reservoirs in this area are empty by the end of the dry season, as presented in Figure 

2.2 B-F. The reservoirs in the Madalena catchment are not included in the regular state 

monitoring program. Reservoir monitoring in this catchment was started only recently by the 

Federal University of Ceará. So far, only Marengo, São Joaquim and São Nicolau reservoirs 

have been investigated in terms of bathymetry. This study focuses on five reservoirs in the 

Madalena catchment, namely Marengo, São Joaquim, São Nicolau, Raiz and Mel, and one 

large reservoir, Fogareiro, in the adjacent area (Figure 2.1). 
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Figure 2.2 Precipitation at Madalena (A) and overview of reservoirs in the Madalena catchment in the dry 

season, B: Raiz, C: Marengo, D: São Joaquim, E: São Nicolau, F: Me 

2.3 Data and method 

Different remote sensing datasets and field data were employed in this study. TanDEM-X data 

were the basic data source for DEM generation. In addition, the SRTM DEM was included in 

the DEM generation after it was calibrated with ICESat data. Finally, multispectral RapidEye 

images served in the extraction of the water area-to-volume relationship. Various field data (e.g. 

DGPS data and field bathymetric measurements) were used to evaluate the performance of the 

proposed approach and the final results. 
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DEMs were generated from bistatic TanDEM-X data via single-pass interferometry. The 

coherence of the interferogram was investigated to study the real-time extent of the water 

retained in the reservoirs. The water area-to-volume relationship for several reservoirs was 

derived both from TDX DEM and bathymetric maps derived from field survey. 

2.3.1 Data 

2.3.1.1 TanDEM-X data 

Three TanDEM-X stripmap data sets acquired from a descending orbit in bistatic mode with 

single polarization HH were used in this study (Table 2.1). The TanDEM-X data were supplied 

by the German Aerospace Center (DLR) in co-registered single look slang range complex 

(COSSC) format. The average coherence of the three data sets is above 0.80 (Table 2.1) and 

much higher than the overall coherence of TanDEM-X data for the generated global DEM 

(Martone et al., 2012). Each TanDEM-X scene covers an area of 50×30 km² (TanDEM-X 

ground segment, 2012). 

Table 2.1 Parameters of the TanDEM-X data sets 
 

 TanDEM-X 

2011-07-05 

TanDEM-X 

2014-02-16 

TanDEM-X 

2014-03-21 

Height of 

ambiguity (HoA) 

(m/2pi) 

46.49 46.72 33.70 

Effective baseline 

(m) 
115.69 112.22 155.32 

Average 

coherence 
0.87 0.87 0.86 

Scene center 

incidence angle 
33.76 33.71 33.70 

2.3.1.2 SRTM DEM V4.1 

A void-filled and mosaicked SRTM DEM V4.1 with 90 m resolution was obtained from the 

Consortium for Spatial Information (CGIAR-CSI). The EGM86 geoid was subtracted from the 
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SRTM DEM, so the SRTM DEM employed is based on the WGS84 ellipsoid. 

2.3.1.3 ICESat data 

The Ice, Cloud, and land Elevation Satellite (ICESat) mission which was operated from 2003 to 

2009, provides data for terrestrial and the oceanic studies. The data are available from the 

National Snow and Ice Data Center (NSIDC). Based on the consideration that C- band SRTM 

DEM and the X- band TanDEM-X data mostly express the surface elevation of the ground with 

shallow penetration, the Geoscience Laser Altimetry System 14 (GLAS 14) on board ICESat 

was chosen. GLAS 14 measured the elevation of the ground surface, with an accuracy of ~ 15 

cm (Zwally et al., 2002). The ICESat data used in this study is from the Release 34. 

2.3.1.4 RapidEye images 

Two tiles of RapidEye images (level 3A) with resolution of five m acquired on 2009-11-11 over 

the study area were selected to derive the nominal maximal water extents of reservoirs. 

Exceptionally, RapidEye image acquired on 2014-08-02 presents the largest water extent for 

the Sao Nicola reservoirs. The RapidEye images (level 3A) acquired on 2014-01-23 were also 

employed to represent the real time status of the reservoirs in late January 2014. The RapidEye 

images were co-registered based on DGPS data within a locational accuracy of one pixel, i.e., 

five meters, before water extent delineation. 

2.3.1.5 Field data 

In May-June 2014, a total of 26 ground-truth points distributed throughout the TanDEM-X 

scene were measured in the field with differential GPS using the post-processing positioning 

method. Open and vegetation-free places, similar to the water-free reservoir bottom, were 

chosen for the measurement. The accuracies of the DGPS points are at 10 centimeter-level in 

the vertical direction and centimeter-level in the horizontal direction. The final geographic 

coordinate system is based on WGS84. 

Bathymetric data from the field were available for Marengo (2012), São Joaquim (2011), and 

São Nicolau (2014) reservoirs. Bathymetric measurements in the field were obtained via a 
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depth-meter mounted on a boat, with the assistance of a handheld GPS contributing the 

coordinates of the measurements. Consequently, the field measurements are a series of points 

with horizontal five meters accuracy from the handheld GPS, and vertical decimeter accuracy 

from the depth meter. The point measurements were interpolated via ordinary Kriging methods 

using a spherical model, resulting in raster files with pixel spacing of 10 m. During the field 

campaign for the bathymetric survey, the water extents of the reservoirs were determined with a 

handheld GPS by walking along the shorelines. On 2014-02-23 the water extents of the 

reservoirs were acquired in the same way. Thus, the accuracy of the field water extents is 

approximately five meters. Currently, these field measurements are the only available 

bathymetric data for reference purposes 

2.3.2 Methods 

2.3.2.1 SRTM DEM calibration 

In the global TanDEM-X DEM generation, the differential interferogram was obtained by 

removing the phase of earth represented by the ellipsoid, and the absolute phase was estimated 

via the radargrammetric measurements with the pair of TanDEM-X sensors (Rossi et al., 2012). 

In this study, the calibrated SRTM DEM was used. 

In order to derive TDX DEMs of high absolute accuracy, the introduced SRTM DEM should be 

as reliable as possible. Due to the rolling baseline during data acquisition, SRTM DEM contain 

long wavelength shifts up to 10 m on the scale of a thousand kilometers, varying globally 

(Braun and Fotopoulos, 2007; Huber et al., 2009; Rodriguez et al., 2006). Eighty-four points at 

bare land were selected from GLAS 14 data of the ICESat mission to calibrate this offset. The 

area covered by a TanDEM-X scene is ~ 30 km wide, only a few percent of the spatial range of 

the offset in the SRTM DEM. The offset of the SRTM DEM is expressed in the form of Y= 

aX+b. At this 30-versus-10-thousand-km scale, the constant component b is regarded as more 

critical than component a, the linear gradient. Therefore, only b is calculated and removed here. 

The component b of the SRTM DEM offset calculated for the study area is 2.75 m, very close 
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to the results in Huber et al. (2009). After the offset removal, the calibrated SRTM DEM was 

then transformed from the cartographic coordinate system into the SAR slant coordinate 

expressed in column and row. 

2.3.2.2 DEM generation with single pass interferometry 

DEM generation from single pass bistatic TanDEM-X data was realized using the modules 

DIFF&GEO and ISP in GAMMA software (Werner et al., 2000). The procedures for DEM 

generation from bistatic TanDEM-X data were conducted in GAMMA. The workflow followed 

in this study is illustrated in Figure 2.3. The DEM generation starts with interferogram 

generation from TanDEM-X images, since the data were already co-registered before delivery. 

The TanDEM-X data were multi-looked by 6×5 or 4×5 to get a square pixel of 10 m spacing 

and a high signal-to-noise ratio (SNR). 

Because the TanDEM-X data were acquired in bistatic mode, atmospheric disturbance is 

disregarded. The very short duration of data acquisition, 50-200 s, hardly allows any ground 

deformation. Thus the phase information in the interferogram only refers to the systematic 

characteristics of the instruments and the ground objects. With the orbit data of the TanDEM-X 

master image the unwrapped phase of the earth in this area was simulated from the calibrated 

SRTM DEM. During the simulation, the uncalibrated SRTM DEM was resampled to the same 

pixel spacing as the multi-looked TanDEM-X data. A differential interferogram was obtained 

by subtracting this simulated unwrapped phase from the interferogram derived from 

TanDEM-X data. The adaptive filter described by Goldstein and Werner (1998) was applied to 

remove the phase noise from the differential interferogram and to ensure a smoother 

interferogram. We applied the commonly used Minimum Cost Flow (MCF) procedure for 

phase unwrapping. A few unwrapping errors were produced at the marginal area of the scene 

due to the sharp terrain there, but they do not influence the overall phase unwrapping. 
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Figure 2.3 Workflow followed in this study. The blocks enclosed with dash line indicate the major steps undertaken in the 

study, i.e. the SRTM DEM calibration, the TDX DEM generation, water mask generation, geocoding of the TDX DEM and 

validations of reservoirs bathymetry. 

During TanDEM-X data acquisition the bias in baseline estimation causes error in DEMs both 

in the across-track and azimuth directions (González and Bachmann, 2010; Gruber et al., 2012; 

Krieger et al., 2007). But only the component of cross track error in the line of sight matters, as 

it causes a noticeable displacement of a few meters and a tilt at the slope of a few cm/km in 
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range in the final DEM (González and Bachmann, 2010; Gruber et al., 2012). To remove this 

effect, a 2D linear surface was estimated using the least-squares error criterion (Werner et al., 

2000), and subsequently subtracted from the unwrapped phase, resulting in the de-ramped 

phase in Figure 2.3 with the effect of bias in baseline estimation eliminated. Afterwards, the 

sum of the calibrated SRTM DEM and the height map which originated from the unwrapped 

phase via HoA was geocoded with Range Doppler methods defined in Goblirsch and Pasquali 

(1996). The path delay introduced by the troposphere was not considered in geocoding, which 

might cause an inaccuracy of around 2.6 m in the horizontal direction according to TanDEM-X 

payload ground segment (2012), but this was considered acceptable for a pixel spacing of 10 m. 

2.3.2.4 Water area from coherence map 

Due to the specular reflectance of open and still water surfaces, hardly any SAR pulses 

transmitted towards this type of water are reflected back to the sensors. Moreover, water 

usually decorrelates in a time lag of tens of ms (Bamler and Hartl, 1998; Wendleder et al., 

2013), while the along-track lag of less than 50 ms between the two TanDEM-X receivers 

cooperating in bistatic mode is beyond this limit. Consequently, open and still water often 

presents low SNR in SAR images and small coherence in the interferogram derived from the 

bistatic TanDEM-X data. Coherence has been used to detect flooding and generate water masks 

(Nico et al., 2000; Wendleder et al., 2013). Thresholds of 0.2 on the coherence map, and 0.23 

on the coherence map together with a threshold of 4 applied on digital numbers, have been used 

to extract masks for open water (Rossi and Erten, 2015; Wendleder et al., 2013), but the 

validation with real time field data was infeasible for these studies. However, rather than open 

water, it is effective water area that is of interest in this study. A few herbaceous plants growing 

along or in the waters could potentially lead to the increased coherence values of waters, which 

can alter the elevation on TDX DEM in these areas. Therefore, in order to achieve a more 

reliable DEM to represent the reservoir bathymetry, it is necessary to overestimate the area of 

open water. We did this by increasing the aforementioned thresholds which were used in the 

studies for open water mask. The coherence map of TanDEM-X data was derived from the 
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non-filtered differential interferogram, taking the slope of phase into consideration. After 

comparing the water extents acquired in the field on 2014-02-23 with the polygons derived 

from coherence of interferogram 2014-02-16 obtained with different thresholds (Figure 2.4 C), 

areas where coherence < 0.6 were regarded as water. This threshold is within the tolerance of 

the average coherence of the TanDEM-X scene list in Table 1. The threshold of coherence < 0.6 

can efficiently overestimate the possible waters, even exclude the water free area outside of the 

reservoir as shown in Figure 2.4 C-D. 

Introducing the coherence map derived from TanDEM-X interferograms into the workflow 

makes the retrieval of reservoirs’ bathymetry less dependent on external field data of water 

extents. However, the threshold used for water mask should be accordingly adjusted for further 

application, depending on the vegetation presence and purpose of research, etc. 

The RapidEye images on 2014-01-23 show that the terrestrial vegetation in this area is still dry, 

and green vegetation only grows along the waterlines (Figure 2.4 C), despite the fact that the 

wet season had already started and some rainfall was recorded in the three weeks before the 

image acquisition (Figure 2.4 C A). 
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Figure 2.4 Comparisons of water extent in Marengo and São Joaquim. A) and C): water extent in 

Marengo and São Joaquim on 2009-11-11 overlaid on the RapidEye image acquired on 2014-01-23 

(band combination: RGB: 543); B): and D): Subset of Marengo and São Joaquim in A and C. Water 

extent on 2014-02-23 from field, and polygons of water extents defined by different thresholds on 

coherence of TanDEM-X data 2014-02-16 overlaid on RapidEye image on 2014-01-23. CC stands for 

the coherence. The large discrepancy between the CC_0.6 and the SJ_20140223 located at the mudflat 

which is water free but cannot be accessed by walking, and the very narrow water way which is too 

narrow to be delineated from the coherence map. 

2.3.2.5 Extraction of water area-to-volume relationship 

The area-to-volume relationship expresses how the water volume in the reservoir varies with 

respect to the surface area of the water. Comparisons of the relationship shown in bathymetric 

maps derived from field survey and TDX DEM over the reservoir provide insights on the 

difference of the two approaches in bathymetric surveying. Before extracting the water 

area-to-volume relationship from TDX DEM 2014-02-16, the overestimated area of water in 

the reservoirs (coherence < 0.6) was attributed to the smallest surrounding elevation value. The 

flat terrain in the Madalena region barely introduces SAR shadows within the reservoir areas. 

The ten meters pixel spacing of the TDX DEMs is almost three times as wide as the dams. As a 
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result of averaging, the elevations of narrow dams shown on the DEMs, line C in Figure 2.5 

was lower than their actual heights, line D in Figure 2.5. Due to the unavailability of spillway 

elevations, the upper limits of the water level for each reservoir were determined by the average 

elevation underlying the maximal water extents captured in RapidEye archive. Water extents 

were manually digitalized as polygons from the RapidEye images, considering the appearance 

of macrophytes floating on the water surface or emerging at the shorelines during data 

acquisition. 

 

Figure 2.5 Illustration of reservoir profile in TDX DEM 2014-02-16. A, B, C and D stand for the possible 

water levels. 

Water areas and volumes in the reservoirs were calculated with 0.5 m water level intervals 

using equation (2.1) 

𝑉𝑖 =  ∑ (𝐻
𝑖

− 𝐸𝑗)𝐴0 +  𝑉0
𝑛
𝑗            (2.1) 

where 𝑉𝑖 is the volume of water stored in the reservoir when the elevation of water level is at 

𝐻𝑖. The starting point of 𝐻𝑖 is A in Figure 2.5 in the case of empty reservoirs, or B in Figure 

2.5 in the case of reservoirs with retained water. The upper limit of 𝐻𝑖 is D in Figure 2.5, and 

it is determined by water areas in RapidEye images on 2009-11-11. n is the number of pixels 

forming the water surface at water level 𝐻𝑖, 𝐸𝑗is the elevation of the jth pixel in the TDX DEM. 

A0 is the area of one pixel, 100 m2 here with pixel spacing of 10 m. 𝑉0 is the volume of 

retained water during the TanDEM-X data acquisition. When the water level changes from A in 

Figure 2.5 𝑉0 is 0 hm3. In reservoirs where water was retained, the water level changed from B 
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in Figure 2.5; 𝑉0 is calculated from bathymetric maps derived from field survey. 

The accuracy of the volume at water level 𝐻𝑖 was calculated based on the accuracies of the 

TanDEM-X derived DEM by summing up the errors of each water column represented by one 

pixel (equation (2.2)): 

𝛥𝑖 = (
𝜎𝐴0𝑛

𝑉𝑖
) 100%                                             

(2.2) 

where 𝛥𝑖 is the accuracy of the volume (%) at water level 𝐻𝑖 , and σ is the absolute accuracy 

of the DEM in meters, established with DGPS data from field measurements. 

2.4 Results 

The three TDX DEMs were compared among one another and their accuracies were established 

with DGPS data. The areas of the water retained in the reservoirs were calculated from the 

coherence maps of the TanDEM-X data. The TDX DEM and bathymetric maps derived from 

field survey were compared at the following three aspects: the overall coverage, the distribution 

of measurements in the reservoir, profiles of bathymetric information for shape replication, and 

the water area-to-volume relationship derived from the two datasets. 

2.4.1 Validation of the TDX DEMs 

The TDX DEMs were compared to one another (Figure 2.6 A-C). In the two maps comparing 

the TDX DEMs in 2011 and 2014 (Figure 2.6 A-B), only at a few places was the elevation 

difference beyond the range of +2 to -2 m, which can be attributed to the land use changes, e.g. 

bushes degradation and the ground mass changes like new dam constructions. The remained 

areas show elevation differences within the range of -2 m and +2 m, with a standard deviation 

below 1 m and mean at zero meter. Most of the differences are in the range of -1 m to +1 m, 

particularly in the difference map for TDX DEM 2014-02-16 and TDX DEM 2014-03-21. The 

comparison map of TDX DEM 2011-07-05 and TDX DEM of 2014-03-21 (Figure 2.6 B) is 

slightly smoother than the one for TDX DEM 2011-07-05 and TDX DEM 2014-02-16. 

Acquired within an interval of 33 days, TDX DEM 2014-02-16 and TDX DEM 2014-03-21 
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have closer elevation overall, and the elevation differences are mostly in the range of -1 to +1 

m (Figure 2.6 C) , smaller than the elevation difference in other two comparisons maps. Due to 

the flat terrain in this region, water bodies are the majority of the areas marked to be incoherent 

in Figure 2.6. The rest of the incoherent areas, i.e. hollow areas not overlaid by water bodies, 

indicate the locations where the terrain affects the TDX DEMs. 

In the comparisons of the SRTM DEM with the TDX DEMs (Figure 2.6 D-F) similar spatial 

patterns are shown at the pixel size of 90 m. No obvious directional trend is noticed for the 

comparison between SRTM DEM and the TDX DEMs. The mean of the elevation differences 

are approximately -2.8 m (Figure 2.6 D-F), very close to the removed offset of -2.75 m, 

implying that the offset removal from the SRTM DEM is reasonable. The standard deviations 

of the differences reach 1.5 m, much larger than the values in the comparisons of the TDX 

DEMs, which might be evidence that the TDX DEMs have better relative accuracy than the 

SRTM DEM. 
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2.4.2 Accuracy assessment 

In the validation with DGPS data and DEMs derived from TanDEM-X data (Figure 2.7), nearly 

 

Figure 2.6 Comparison of the TDX DEMs and between the TDX DEMs and SRTM DEM. A): The result 

of subtraction of TDX DEM 2014-02-16 from TDX DEM 2011-07-05; B) the result of subtraction of 

TDX DEM 2014-03-21 from TDX DEM 2011-07-05; C) The result of subtraction of TDX DEM 

2014-02-16 from TDX DEM 2014-03-21; D) The result of subtraction of SRTM DEM from TDX DEM 

2011-07-05; E) The result of subtraction of SRTM DEM from TDX DEM 2014-02-16; F) The result of 

subtraction of SRTM DEM from TDX DEM 2014-03-21. Areas with coherence of less than 0.6 in either 

of the three interferograms were eliminated and displayed as holes in the comparison images as no-value 

areas. 



2. Bathymetric survey of water reservoirs with TanDEM-X data 

 

47 

 

all absolute elevation differences are in the range of +2 m to -2 m. Point No.7 was measured on 

a typical 3-4 m wide dam in the area. The elevation based on DGPS measurements at this point 

is the real elevation of the dam. The values from the three DEMs are the results of averaging 

neighboring lower ground and the dam and are therefore lower than the real values. Systematic 

offset among these three data sets are not significant (Figure 2.7). 

The accuracies of the three TDX DEMs were calculated according to Rosen et al. (2000) by 

referring to DGPS data (Table 2.2). The relative accuracies of the three TDX DEMs are slightly 

better than the absolute ones (Table 2.2). Both relative and absolute accuracies of the TDX 

DEMs in this study are better than the reported 2 m and 10 m in relative and absolute 

accuracies for the Global TanDEM-X DEM (TanDEM-X ground segment, 2013). The TDX 

DEM 2014-03-21 from TanDEM-X data with a long baseline and a small HoA (Table 2.1) 

yields overall better accuracy than do the other two TDX DEMs. However, the magnitude of 

the differences is very little and at the decimeter level the accuracies are comparable (Table 

2.2). 

 

 

Figure 2.7 The validation of the TDX DEMs with DGPS data. The value of each plotted point was 

obtained by the subtraction of DGPS measurement from the corresponding elevation of the TDX DEMs 

pixels at the same locations. Positive values mean the TDX DEMs have higher values than from DGPS 

measurement, and vice versa. The measurements enclosed by the red rectangle were taken on the top of an 

approximately three meters high dam. 
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The similarities between TDX DEMs from different TanDEM-X data demonstrated the stability 

of the workflow applied in this study for DEM generation. Inter-year land cover and seasonal 

changes can also be observed from these comparisons. The comparison of TDX DEMs and 

their accuracies proved the potentials of the TanDEM-X data for generation of the highly 

accurate DEM. Comparison between uncalibrated SRTM DEM and TDX DEMs shows that the 

offset removal was reasonable. 

2.4.3 Water extents 

During the acquisitions of the three TanDEM-X data sets for TDX DEM generation there were 

different amounts of water in the reservoirs. On 2014-02-16 the extents of retained water in the 

reservoirs were the smallest. TDX DEM 2014-02-16 was therefore chosen to reveal the 

bathymetry of reservoirs in the Madalena catchment, despite its slightly lower accuracy than 

the other two TDX DEMs. Table 3 shows the surface areas of retained water obtained from the 

field survey on 2014-02-23, and the water areas delineated from the coherence map of 

TanDEM-X data for 2014-02-16. With 7 days’ time lag, the water areas from field data and 

coherence map defined by threshold coherence < 0.6 were nearly the same (Table 2.3). It 

demonstrates that the threshold of coherence < 0.6 is suitable for removing the effect of water 

retained in the reservoirs, despite the small area of mudflat around the open water displayed in 

Figure 2.4 C. In the case of São Nicolau, the areas of the water remained during the field trip on 

2014-02-23 and during the overpasses of the TanDEM-X satellites on 2014-02-16 were nearly 

Table 2.2 Vertical accuracies of the TDX DEMs generated in this study (m). 

 
TDX DEM 

2011-07-05 

TDX DEM 

2014-03-21 

TDX DEM 

2014-02-16 

Validation with DGPS 

data  

Absolute 

accuracy 
1.21 1.06 1.16 

Relative 

accuracy 
1.16 1.01 1.03 

 

Note: the values in the table are all provided at a confidence level of 95%. 
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0.00 km2, even after the overestimation of water surface. Thus, the areas of water in São 

Nicolau were represented with NA in Table 2.3, to indicate that nearly no water remained in the 

reservoirs on 2014-02-23 and 2014-02-16. 

Table 2.3 Water areas in reservoirs in the Madalena catchment (km²). 
 

Reservoir Marengo São Joaquim São Nicolau Raiz Mel 

Water area on  

2014-02-23 

(field survey) 

0.64 0.16 NA 0.01 0.01 

Water area on 

2014-02-16 (coherence 

< 0.6) 

0.63 0.16 NA 0.01 0.01 

2.4.4 Bathymetric map validation 

Because no other bathymetric data were available for the reservoirs in the Madalena catchment, 

the bathymetric maps derived from field survey were used to compare against the TDX DEM 

2014-02-16 in the reservoirs. The available field measurements reveal the depths of the 

surveyed waters, not the absolute elevations of reservoirs’ bottom. In order to enable the 

comparison of bathymetries derived with the two approaches, we calculated the mean elevation 

of the TDX DEM 2014-02-16 pixels which underlie the con-current waterline (extent) during 

the field measurements. The field measurements were then aligned to the TDX DEM 

2014-02-16 by subtracting them from this mean elevation. As a result, both the field 

measurements and TDX DEM 2014-02-16 present the elevations of the reservoirs’ bottom. This 

is enough to illustrate how the same reservoir on TDX DEM 2014-02-16 morphologically 

varies from it on the bathymetric map derived from field survey. However, some uncertainties 

probably still exist in the absolute elevations converted from the field measurements as the 

mean elevation we employed may not be the real absolute elevation due to the accuracy of 

TDX DEM 2014-02-16. Therefore, the validations of TDX DEM 2014-02-16 in the terms of 

the bathymetric mapping were conducted only at a morphological aspect in the overall 

reservoir scale, to see the coverage and shape differences reflected by the two datasets. 
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Considering the absence of the precise reference elevation for the field bathymetric 

measurements, we did not directly compare the individual field measurements and 

corresponding pixels on TDX DEM 2014-02-16. 

2.4.4.1 Bathymetric map comparison 

For the purpose of resevoir bathymetry mapping, the DEMs generated from TanDEM-X data 

acquired between the end of the dry season and the beginning of the wet season are preferred. 

On the one hand, this is after the intensive evaporation in the dry season and before the wet 

season when the reservoirs are usually refilled. At this time water-free areas in reservoirs are 

usually at a maximum and the inundation area reaches the minimum. On the other hand, at this 

time the perennial acquatic plants in the inundation are expected to diminish due to the absence 

of water, and the possible elevation contribution/disturbance from these plants is minimal. For 

example, in the Madalena catchment, the occupation of macrophytes in the reservoirs was 

marginal in the dry season at the limited area of water surfaces (Figure 2.2 and Figure 2.4 C). 

Figure 2.8 shows the reservoirs in the Madalena catchment on bathymetric maps derived from 

field survey and on TDX DEM 2014-02-16. Only reservoirs with available field bathymetric 

measurements are presented here. The reservoir areas were extracted from TDX DEM 

2014-02-16 with the maximal water extents recorded in the RapidEye archive (i.e. RapidEye 

image on 2009-11-11 for the majority of the reservoirs and RapidEye image on 2015-08-02 for 

São Nicolau). Before the extraction, a buffer of 40 m was added to the reservoirs’ extents to 

better illustrate the reservoirs bathymetry on the TDX DEM 2014-02-16. Only for São Nicolau 

was a buffer of 100 meter applied, considering that the maximal extent recorded in RapidEye 

archive for this reservoir was smaller than the water extent in June 2014 when the field 

bathymetric survey was conducted. The water extents acquired in the field on 2014-02-23 were 

overlaid on both bathymetric maps. Bathymetric maps derived from field survey and TDX 

DEM 2014-02-16 were compared at the spatial scale. As the five meters accuracy of the 

handheld GPS is below the pixel spacing of TDX DEMs (ten meters), no horizontal uncertainty 
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was considered in the comparison between TDX DEM 2014-02-16 and the bathymetric maps 

derived from field survey. 

At the time of the field campaign for bathymetric survey in Marengo and São Joaquim, the 

water in the reservoirs was not at the maximum, i.e., as at 2009-11-11. Bathymetric maps 

derived from field survey for these two reservoirs, therefore, cannot cover the complete extent 

of the reservoirs (Figure 2.8). The depths of most branches of the two reservoirs were not 

measured during the field campaigns, although they were inundated (Figure 2.8). On TDX 

DEM 2014-02-16, areas free of water including the branches were fully covered with 

continuous measurements in Marengo and São Joaquim. The elevation of the lowest areas 

occupied by the retained water is left unknown (Figure 2.8) . Attributing these areas with the 

minimum surrounding values results in the flat-bottom shapes for the two reservoirs on TDX 

DEM 2014-02-16. In general, on TDX DEM 2014-02-16 the topography inside the reservoirs 

Marengo and São Joaquim is smoother and gentler than shown in bathymetric maps derived 

from field survey (Figure 2.8). 
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Figure 2.8 Comparisons of the bathymetric maps derived from field surveys (left column) and the TDX DEM 

2014-02-16 (right column) for São Joaquim Reservoir (top row), Marengo Reservoir (middle row) and São Nicolau 
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Reservoir (bottom row). 

In São Nicolau, the emergent macrophytes at the northern part impeded the collection of depth 

measurements from a boat. A vast area of vegetation left only a narrow channel for the boat to 

pass through and survey the reservoir bathymetry (Figure 2.8). As a result of interpolation from 

sparse field measurements, the shape of the reservoir at the northern part is steep in bathymetric 

maps derived from field survey, particularly in the northern part. On TDX DEM 2014-02-16, 

São Nicolau could be completely mapped because it was empty during the TanDEM-X image 

acquisition (Figure 2.8). 

Overall, TDX DEM 2014-02-16 results in a continuous bathymetric map for the reservoirs 

investigated with evenly distributed measurements of pixels. The bathymetric maps derived 

from field surveys are based on the point-wise field measurements, which are in many cases 

unevenly distributed due to the inaccessibility caused by either the shallowness of the waters or 

the obstruction of the emergent macrophytes at these areas. Derived from data acquired in the 

dry season, TDX DEM 2014-02-16 mapped the majority of the reservoirs with an accuracy of 

about one meter while bathymetric maps derived from field surveys were constrained by the 

water extents at that time which were in many cases not at the maximum and, thus, only part of 

the reservoirs were surveyed. 

2.4.4.2 Profiles of bathymetric maps derived from field survey and TDX DEM 2012-02-16 

Figure 2.9 shows the comparison between bathymetric maps derived from field survey and 

TDX DEM 2014-02-16 in the three reservoirs along the tracks marked in Figure 2.8. The 

performance of two bathymetric mapping approaches in preserving the reservoirs shapes are 

presented in this subsection. 

In São Joaquim at the area indicated as water on TDX DEM 2014-02-16, the elevation on 

bathymetric map derived from field survey fluctuates slightly and remained of nearly the same 

magnitude (Figure 2.9 A). In São Joaquim the maximal depth unmeasured by TDX DEM 

2014-02-16 is about one meter (A). The long diameter of the unmapped areas is approximately 
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500 m, but the mapped value is 3 000 m. The total depth of the reservoir is eight meters. 

In Marengo the north–south transect passes through an island at 500 m in the profile of TDX 

DEM 2014-02-16, where an elevation jump is displayed (Figure 2.9 B). But the morphology of 

this island is not shown in bathymetric maps derived from field survey (Figure 2.9 B). On the 

west-east transection of the bathymetric map derived from field survey in Marengo, an 

elevation difference is shown at ~ 250 m in the inundation area (Figure 2.9 C). But this 

variation is not visible in the north-south transect of bathymetric map derived from field survey 

or in TDX DEM 2014-02-16 (Figure 2.9 B). This could be due to the appearance of submerged 

plants, a few tree stumps or even artifacts in the point-wise measurements. This is because solid 

objects that were above the water surface on 2014-02-16 and larger than one pixel would 

present high coherence in the interferogram and be displayed accordingly in TDX DEM 

2014-02-16. The maximal unmeasured depth of the inundated areas in Marengo is 

approximately five meters, but the mapped maximal depth of the reservoir is 10 m (Figure 2.9 

A-C). On 2014-02-16 the longer diameter of the unmapped Marengo area is on the order of 2 

000 m, while that of the mapped area is 7 000 m. Combining the bathymetric map derived from 

field survey and the TDX DEM 2014-02-16, the total depth of Marengo is 15 m. 

No water retention appeared in São Nicolau on 2014-02-16, thus the profiles from the 

bathymetric map derived from field survey and TDX DEM 2014-02-16 are expected to show a 

similar shape for the reservoir. However, the bathymetric map derived from field survey and 

TDX DEM 2014-02-16 show significantly different shapes for the reservoir Figure 2.9 D-F). 

On the TDX DEM 2014-02-16 São Nicolau is seen as open and wide, and the gradient is 

gradual while the bathymetric map derived from field survey casts a rather narrower shape for 

this reservoir (Figure 2.9 D and E) with abrupt topographic fluctuations (Figure 2.9 F). The 

areas with large bathymetric discrepancies are located at the boundary and the center of the 

reservoirs (Figure 2.9 D-F). For the central area (Figure 2.9 D), the discrepancy was probably 

caused by submerged vegetation or stumps. At the boundary region, the shallow waters were 

inaccessible and there is thus a lack of field measurements. Consequently, the bathymetric map 
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derived from field survey for these areas was interpolated from a few relatively distant 

measurements and thus shown as flat (Figure 2.9 E and F). The bathymetric map derived from 

field survey in São Nicolau does not completely replicate the shape of the reservoir. São 

Nicolau was empty on 2014-02-16, and the entire reservoir bottom was therefore mapped by 

TanDEM-X data and presented high coherence. As a result, for those areas with a large 

bathymetric discrepancy, the TDX DEM 2014-02-16 should reflect a more reliable shape for 

São Nicolau. The interference of macrophytes on the field bathymetric survey during the wet 

season was avoided. 

In general, in the profiles of São Joaquim, Marengo and São Nicolau reservoirs (Figure 2.9 A-F) 

the flat features on TDX DEM 2014-02-16 indicate the areas of water retention during the 

TanDEM-X data acquisition. Elevations of these areas were attributed from the minimal 

elevation of the adjacent pixels. On the profiles of bathymetric maps derived from field survey 

in these reservoirs, the flat features are mainly at the shallow areas adjacent to the reservoirs’ 

boundaries (Figure 2.9 B-F). At boundary areas, the bathymetric maps were interpolated from 

the elevations of the bank that were far away from the depth measurements in the water. Large 

population of emergent macrophytes which hindered the access of field measurement have 

probably contributed to this effect, e.g. in São Nicolau. 
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Figure 2.9 Profiles of TDX DEM 2014-02-16 and bathymetric maps derived from field survey (BMFS in the sub-figures) in 

three reservoirs in the Madalena catchment. The track in São Joaquim goes from west to east, track A in Marengo from 

south to north, track B goes from west to east (see Figure 2.8). Track A in São Nicolau goes from south (dam) to north (tail 

zone), while track B and C spans from west to east. The distance between neighboring samples is 20 m. 

In summary, the profile comparisons of the TDX DEM and the bathymetric maps derived in 

field surveys evidently show differences in reservoir shapes cast by these two approaches, in 

addition to the coverage difference. Absence of field measurements at shallow boundaries leads 
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to fake flat shapes for the reservoir for these areas on thus derived bathymetric maps. TDX 

DEM 2014-02-16 can retrieve the bathymetry for the areas with fine structures such as the 

island, tails and branches. In reservoirs with few submerged macrophytes, TDX DEM 

2014-02-16 and bathymetric maps derived from field survey cast similar shapes at the areas 

where TanDEM-X data and the field measurements overlap, e.g. Marengo and São Joaquim. 

However, in the case of the densely vegetated reservoir, i.e. São Nicolau, submerged 

macrophytes, stumps or even artifacts in the field measurements at high water level stage 

misshapes the reservoir on the bathymetric maps derived from field surveys. By mapping the 

dry bottoms of the reservoirs, TDX DEM 2014-02-16 is free of the influence from submerged 

macrophytes, stumps and shallow depth, and thus presents reliable shapes for the reservoirs. 

2.4.4.3 Water area-to-volume relationship 

The inundation area and the corresponding volume are the main inventory data for the 

reservoirs in the quantitative assessment of available water. The volume of the water under 

certain water area in a reservoir is usually estimated from a bathymetric map. In this study, the 

relationship between water area and corresponding reservoir volume was extracted both from 

TDX DEM 2014-02-16 and bathymetric maps derived from field survey. We employed this 

parameter to investigate the effect of different bathymetric maps in the water area-to-volume 

relationship extracted from them. Figure 2.10 shows the water area-to-volume relationship for 

São Joaquim, Marengo, São Nicolau and Fogareiro. 

In São Joaquim, the comparison of the water area-to-volume relationship is limited to the 

coverage of the bathymetric maps derived from field survey. Within the spatial range of 

bathymetric maps derived from field survey, the water area-to-volume relationships extracted 

from both data sources for this reservoir yield nearly the same water volumes (Figure 2.10 A). 

The unmapped area of São Joaquim on TDX DEM 2014-02-16 was occupied by water during 

TanDEM-X data acquisition, but it barely impacted the water area-to volume relationship. 

According to TDX DEM 2014-02-16, Marengo can expand to a larger area than the 
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bathymetric map derived from field survey. For the same area of water in Marengo, the 

bathymetric map derived from field survey indicates a larger water volume in the reservoir than 

TDX DEM 2014-02-16 does (Figure 2.10 B). At the initial stage of the relationship the retained 

water with maximal unmeasured depth of about five meters and diameter of nearly 2 000 m is 

the main cause (Figure 2.10 B). The volume of the unmeasured water can be obtained from the 

initial difference of the relationship. As the water area increases, the difference between the 

bathymetric map derived from field survey and TDX DEM 2014-02-16 becomes larger for 

Marengo. Fewer measurements near the boundaries of bathymetric map derived from field 

survey cast a narrower shape for the reservoir than shown in TDX DEM 2014-02-16. As a 

result, on this narrow bathymetric map of Marengo the corresponding water volume increases 

more quickly than the water area does when the water level rises (Figure 2.10 B). The flat 

features caused by the lack of field measurements in shallow waters impact the water 

area-to-volume relationship significantly in Marengo, but the impact of macrophytes may be 

ignored. 

According to the TDX DEM 2014-02-16, the water area in the reservoir São Nicolau can 

expand to a similar extent as the bathymetric map derived from field survey, larger than the 

maximum of water extent recorded in the RapidEye archive. The water area-to-volume 

relationship extracted both from the bathymetric map derived from field survey and TDX DEM 

2014-02-16 show significant differences (Figure 2.10 C). For the same water areas, the 

bathymetric map derived from field survey implies a larger water storage for the reservoir than 

TDX DEM 2014-02-16 does (Figure 2.10 C). Due to the different shapes casted by the two 

bathymetry datasets (e.g. Figure 2.10 D), a much shallower water depth on TDX DEM 

2016-02-16 will occupy the same water area as that under a higher water level on the 

bathymetric map derived from field survey. Therefore, under the same water area the water 

stored in the reservoir calculated from TDX DEM 2014-02-16 is less than that obtained from 

bathymetric map derived from field survey (Figure 2.9 D). This phenomenon becomes more 

significant as the water area increases, resulting from the narrow morphology of the reservoir 
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caused by the lack of field measurements in the boundary areas. In this reservoir, as no water 

retained on 2014-02-16, no contribution from it was observed for the water area-to-volume 

relationship derived from TDX DEM 2014-02-16 for São Nicolau. In contrast, the emergent 

and submerged macrophytes and at shallow areas and the lack of field measurements in the 

boundary area have notably impacted the bathymetric maps derived from field surveys (Figure 

2.10 D-F), as well as the water area-to volume relationship extracted from it. 

A comparison of water area-to-volume relationships was also conducted for Fogareiro (Figure 

2.10 D). The field data were collected during a topography survey before the construction of 

the reservoir, with the relative elevation given. As no water was filled during the field survey, 

no effect of macrophytes or shallow water depth will exist. TDX DEM 2014-02-16 is expected 

to indicate similar shapes as the bathymetric map derived from field survey. The water 

area-to-volume relationships extracted from the bathymetric map derived from field survey and 

TDX DEM 2014-02-16 are very similar and with a stable discrepancy as the water area 

increases. The volume difference of ~ 10 hm³ between the two relationships stands for the 

volume of water retained in Fogareiro on 2014-02-16. In the TDX DEM 2014-02-16, ~ 1/6 of 

the area was unmapped and ~5% of the corresponding volume was not derived. 

The effect of remained water and shape difference were shown in this subsection. The 

contribution of the water retained during TanDEM-X data acquisition was determined by the 

initial differences between the water area-to-volume relationships extracted from TDX DEM 

2014-02-16 and bathymetric maps derived from field surveys. The unmapped areas in TDX 

DEM 2014-02-16 only impact the water area-to-volume relationships derived from them for the 

larger reservoirs such as Forgareiro. The volume of the water under the unmapped area is 

marginal in comparison to the volume under the area which was mapped by TDX DEM 

2014-02-16. As the water area increases, the effect of misshaping caused by the lack of field 

measurements in the shallow areas emerges and increases. For the shallow reservoir São 

Nicolau, which was empty on 2014-02-16 but densely vegetated during field bathymetric 

survey in the wet season, the impact of shape differences between TDX DEM 2014-02-16 and 
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bathymetric map derived from field (Figure 2.10 D-F) is significant. Having mapped the dry 

bottom of these reservoir with continuously distributed pixels, TDX DEM 2014-02-16 reveals 

more reliable shapes and water area-to-volume relationships for reservoirs Marengo, São 

Nicolau and São Joaquim, as compared to bathymetric maps derived from field surveys. 

 

Figure 2.10 Comparisons of the water area-to-volume relationship based on TDX DEM 2014-02-16 and 

bathymetric maps derived from field survey (BMFS in the figures). The field water area-to-volume data of 

Fogareiro was provided by COGERH with water level step of 2.5 m. Other field bathymetric maps were 

acquired from the interpolation of the field depth measurements as stated in the data section 

2.4.5 Water volume 

The volume of water stored in the reservoirs in the Madalena catchment and in Fogareiro at 

their maximal water extents as archived by RapidEye data is listed in Table 2.4, disregarding 
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the small amount of retained water. Among these five reservoirs, Marengo and São Joaquim 

play the major role in water storage. From the water area-to-volume relationship derived from 

bathymetric maps derived from field survey, the volumes of water retained in Marengo, São 

Joaquim and Fogareiro on 2014-02-16 were ~0.92 hm³, ~0.00 hm³ and ~10 hm³, respectively, 

corresponding to 5.09%, 0.02%, and 5.00% of the achievable total storage capacities. These 

values were calculated from the relationships when the area equals the first value on the water 

area-to-volume relationship derived from TDX DEM 2014-02-16. 

Table 2.4 Areas and volumes of water stored in the reservoirs under the maximal water extent archived. 
 

 Marengo 
São 

Joaquim 

São 

Nicolau 
Raiz Mel 

Madalena 

catchment 
Fogareiro 

Area (km2) 3.37 1.30 0.57 0.28 0.09 5.61 24.31 

Ratio of area to total % 60.07 23.17 10.11 4.93 1.65 - - 

Volume (hm3) 18.58 5.53 1.31 1.04 0.20 26.14 178.23 

Volume accuracy (%) 21.8 29.3 59.4 33.6 53.3 - 15.83 

Volume ratio of total % 71.08 21.15 5.01 3.98 0.77 100 - 

DEM generated from TanDEM-X data with single pass interferometry can reach an accuracy of 

about one meter. Despite the accuracy of individual measurements, shallow water depth, 

incomplete water coverage, uneven distribution of the field measurements, the presence of 

dense emergent and/or submerged macrophytes and artifacts in the field survey can all 

undermine the quality of bathymetric maps derived from field survey. Contrastingly, the TDX 

DEMs can map all the coherent areas (coherence > 0.6 in this study) under the TanDEM-X 

image coverage with evenly distributed pixels, including the water-free areas. The evenly 

distributed measurements of SAR data in water-free areas replicates the more reliable shape for 

the reservoirs in the TDX DEM, and thus reflects the more reliable water area-to-volume 

relationship. As for the water remaining in some reservoirs, its contribution to the reservoir 

volume is very slight in the case of the Madalena catchment area, compared to the total 

volumes. 
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2.5 Discussion 

In this study, DEMs were separately generated from three bistatic TanDEM-X data sets with 

single-pass interferometry. The TDX DEMs were compared with one another, validated with 

field DGPS data, and their accuracies were assessed. Among the three TDX DEMs, TDX DEM 

2014-02-16 shows the smallest water areas in the reservoirs thus was selected to reveal the 

reservoir topography. It is then compared to bathymetric maps derived from field survey. 

The elevation differences between the TDX DEMs range from -2 m to +2 m with mean at zero 

meter, which demonstrates the reliability of the TDX DEM generation workflow. Land use 

changes in the three years between the data collections (i.e. 2011 and 2014) and seasonal 

differences (February, March and July) are regarded as the cause for these elevation differences 

in the range of one to two meters. According to Krieger et al. (2007), vegetation five meters 

high could introduce an elevation error of 1-1.5 m in the TDX DEMs. In 2011 the TanDEM-X 

data were acquired in the wet season when the canopy of the vegetation is closed, and more 

volume decorrelation is possible. This might explain the elevation variation beyond the range 

of -2 m to +2 meter in the comparison of maps of DEMs from TanDEM-X data acquired in 

2011 and 2014. TDX DEM 2014-02-16 and TDX DEM 2014-03-21, which were respectively 

generated from TanDEM-X images acquired 33 days apart, show overall smaller differences 

from each other (i.e. mostly within -1 to +1 m) (Figure 2.6 C).  

The results in Table 2 show that the accuracies of the TDX DEMs in the Madalena catchment 

area are of the order of one meter, higher than the overall accuracies of the global TanDEM-X 

DEM (TanDEM-X ground segment, 2013). This is probably because the overall accuracies of 

the global TanDEM-X DEM were given based on the global scale, covering multiple ground 

topographies and land uses. In addition, TanDEM-X data acquired in different seasons are used 

for the global DEM generation. On the other hand, the accuracy derived in this study may only 

apply to the TDX DEMs from bistatic TanDEM-X data over this specific area, which is 

characterized by relatively flat terrain (Figure 2.1 C) and covered by deciduous shrubs. It is 
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possible that the same processing of data with similar acquisition for other areas will yield TDX 

DEMs with a certain difference, depending on the specific terrain and land cover. Field DGPS 

data were collected from bare land without tree coverage, similar to the situation at the bottom 

of water-free reservoirs. Thus, the accuracy is assumed to be acceptable for water volume 

assessment in reservoirs. 

We used the generated TDX DEM in the reservoirs areas to reveal the reservoir bathymetry. 

The approximate one-meter accuracy of the TDX DEMs is slightly worse than the 0.89 m of 

the bathymetric map derived by Pacheco et al. (2015) and 0.67 m by Brando et al. (2009) from 

spectral reflectance of water columns. Although mainly applied in coastal regions, methods 

based on spectral characteristics can map inland water bathymetry. However, the accuracy of 

the bathymetric maps derived with such methods varies with the water turbidity/clarity (Brando 

et al., 2009), and so do the accuracies of the bathymetric mapping from LiDAR measurements 

(Guenther et al., 2000). In contrast, the accuracies of TDX DEM are relatively stable within the 

TanDEM-X scene, and thus in the study catchment. 

Moreover, derivation of bathymetric maps from optical remote sensing requires images 

acquired in cloud-free conditions and is constrained limited water depths e.g. 4-13 m (Brando 

et al., 2009; Lafon et al., 2002; Pacheco et al., 2015; Sandidge and Holyer, 1998). Even though, 

these methods are capable of mapping large-scale coastal areas within the retrievable water 

depth, in spite of the smaller test sites of kilometers. LiDAR measurements can also map water 

bathymetry with very high accuracy and resolutions smaller than one meter, but their 

application in bathymetric mapping is often constrained into the small scale of sub-kilometers. 

The expense is another factor that concerns its application for large scale mapping. In contrast 

to those methods, DEMs, which are derived from TanDEM-X data acquired in the dry seasons 

with minimum water retention, can map the water-free areas in all the reservoirs under its 

coverage, independent of weather conditions, water quality (i.e. turbidity, etc.) and depth. For 

example, TDX DEM 2014-02-16 maps the São Nicolau with a complete depth of seven meters, 

the major part of Marengo with depth around ten meters and the majority of Fogareiro. 
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Shallow areas and fine structures of reservoirs (e.g. branches and tails) in northeastern Brazil 

are usually vegetated by macrophytes and thus not accessible for field measurements. As a 

result, sparse and inadequate field measurements in these areas can cause inaccurate, misshapen 

bathymetric maps for the reservoirs, e.g. São Nicolau and Marengo (Figure 2.9). Considering 

their usually small sizes, reservoir branches are prone to problems in terms of mixed-pixels 

when the data of coarse resolution such as Landsat are used. With the high spatial resolution of 

the TanDEM-X data, very detailed reservoir bathymetry can be derived with evenly distributed 

pixels on TDX DEM. Furthermore, compared to bathymetric maps interpolated from 

water/land borders extracted from time series of images (Arsen et al., 2013; Feng et al., 2011), 

TDX DEM is free of misclassification effects. 

Macrophytes have an impact on the performance of the bathymetric maps derived for inland 

waters. Massive aquatic grasses can disturb the spectral reflectance from the water surface. 

According to Dierssen et al., (2003), the magnitude of the retrieved bottom reflectance, which 

is used to derive ocean bathymetry, is highly correlated to the seagrass leaf area index (r2 = 

0.88). Stumps and submerged macrophytes affect the point-wise bathymetric mapping with 

LiDAR (Guenther et al., 2000) and field depth measurements by reflecting the wrong depth of 

waters being measured. In the TDX DEM over the reservoirs, the extent of the vegetation in 

waters can be minimized by acquiring the TanDEM-X data in the dry season. As for the effect 

of those macrophytes growing in and/or along the waters retained during the TanDEM-X image, 

overestimating the extent of retained water from coherence map can eliminate it. However, this 

is the case only for reservoirs with water retention during the TanDEM-X data acquisition in 

the dry season. For empty reservoirs it is not even necessary. In this study, we did not consider 

the impact of macrophytes in water on the TDX DEM, as we are relying on TDX DEM simply 

to study the bathymetry of the dry part of the reservoirs. 

We extracted the water area-to-volume relationship for the reservoirs from both TDX DEM 

2014-02-16 and the bathymetric maps derived from field survey. These relationships were used 

to further investigate the effect of the retained water and other factors influencing the field 
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measurements. Dense submerged macrophytes and the lack of measurements at shallow areas 

of the reservoirs can significantly affect the water area-to-volume relationship from bathymetric 

map derived from field surveys. As TDX DEM 2014-02-16 mapped the reservoirs in the dry 

season when hardly any vegetation emerged in the reservoirs, water area-to-volume 

relationships obtained from TDX DEM 2014-02-16 for the reservoir were found to be more 

reliable. Compared to the reservoir storage curves obtained from time series of optical images 

(Peng et al. 2006) and the volumes estimated for big reservoirs from MODIS data and altimetry 

data (Zhang et al., 2014), the effect of misclassification for water/land border extraction is 

eliminated by extracting the inundation area with the same water level intervals (i.e. 0.5 m) 

from TDX DEM 2014-02-16. The extraction of water area-to-volume relationship from TDX 

DEM is less dependent on the number of optical images available in the archive. According to 

Heine et al. (2014), the water areas in reservoirs in another catchment in the Ceará state do not 

vary spatially synchronously. This is very likely also the case in the Madalena catchment. Once 

the water extents in the reservoirs are obtained from remote sensing images for a certain time, 

the total water volume stored in the Madalena catchment at that time can be derived from the 

water area-to-volume relationships of the reservoirs. If applied on a regional scale such as for 

Ceará State, this method can help in understanding the dynamic amount of water stored in the 

region or in a large hydrological unit and in managing local water resources. For example, with 

the maximal water extent recorded in the RapidEye data archive, the potential water storage in 

the Madalena catchment reservoirs was estimated to be 26.14 hm³, disregarding the retained 

water. 

The corresponding accuracies of the estimated water volume was retrieved for each reservoir 

using equation (2.2), independent of field measurements. This also quantifies the accuracies of 

the water storages estimated for the reservoirs, if it is applied in the water volume related study 

or for water resources management. Despite the presence of retained water, the water volumes 

estimated from TDX DEM 2014 -02-16 are higher than those derived from bathymetric maps 

derived from field survey, thanks to the excellent performance of TDX DEM 2014-02-16 in the 
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reservoirs mapping (Figure 2.8 and Figure 2.9). 

However, an empirical threshold value of 0.6 was adopted in this study to overestimate the 

water area. Although within the tolerance of the overall coherences of the interferograms 

derived from the TanDEM-X images used, this value is site-specific and much higher than 

those adopted in other studies for open water masking. Therefore, when applying this approach 

in other areas, it may be necessary to introduce some adjustments on the threshold of the 

coherence according to the local conditions such as the type and coverage of aquatic vegetation. 

Alternatively, reliable information on real-time water extents obtained from other sources is 

also an option. In addition, the maximal water extents recorded in the RapidEye data archive 

are possibly not the real upper limit of water extent in the reservoirs. The storage capacities 

estimated here for the reservoirs might be slightly lower than the real values. This limitation 

can hopefully be improved by introducing the real elevations of the spillways or the real 

maximum inundation area delineated based on a longer time-series of images with frequent 

data acquisition. Finally, in this study the coordinates of the field measurements were given by 

the handheld GPS, and their accuracy is approximately five meters and thus well below the 

pixel spacing of the TDX DEMs. However, when the accuracy of the handheld GPS is in the 

order of the pixel spacing of the TDX DEMs, the similarity between the accuracy of GPS and 

pixel spacing needs to be considered in the comparison. 

2.6 Conclusion and outlook 

The DEMs generated from TanDEM-X data with single pass interferometry can achieve 

approximately one-meter absolute accuracy in the Madalena region in north-eastern Brazil. We 

used this TDX DEM acquired in the dry reservoirs to represent the bathymetry for the 

reservoirs. Compared to bathymetric maps derived from field survey data, the TDX DEMs have 

shown advantages for the reservoir bathymetric survey with respect to the larger coverage, even 

distribution of measurements, and independence of the disturbance from macrophytes in the 

wet season. TDX DEMs were found to better replicate the reservoirs’ shapes and to provide 
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more reliable water area-to-volume relationships for the reservoirs. The water retained during 

TanDEM-X image acquisition was found to have little impact on the derived reservoir 

bathymetry and water volumes for the reservoirs. TDX DEMs allow an efficient reservoir 

bathymetric survey, especially in remote areas. 

One might argue that the demand for adequate TanDEM-X data, i.e., ideally acquired during 

dry season without remaining water, is a limitation of the approach. However, our results 

demonstrate that the retained water during data acquisition has little impact on the derived 

reservoir bathymetry as well as on estimated water volumes. Moreover, the high repetition rate 

of TanDEM-X supports the acquisition of adequate data. However, the approach is limited to 

areas with significant water volumetric fluctuation and temporarily exposed reservoir bottoms. 

Flat terrain is also an important factor to ensure a high accuracy of the TDX DEMs and thus, 

the derived reservoirs’ bathymetric maps. In this study, the water areas were overestimated with 

an empirical threshold on the coherence map. For a more efficient water masking, other 

suitable approaches would be worth investigating. 

The proposed approach is particularly interesting for regions that are characterized by a very 

high number of water bodies, such as our study site in Ceará. Contrary to a remote 

sensing-based approach, common bathymetry mapping would result in very time and cost 

consuming field surveys. In general, the approach can support regional water, sediment and 

ecological management in any dryland areas with similar conditions. However, when applied in 

large areas of several thousand square kilometers, the terrain and land cover heterogeneity need 

to be considered to obtain a high overall DEM accuracy. 
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3. Mapping effective water surface in macrophyte-covered reservoirs in NE 

Brazil based on TerraSAR-X time series 

Abstract: Water supplies in northeastern Brazil strongly depend on the numerous surface water 

reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of 

these reservoirs, particularly the large number of small ones, remain inadequately known. Remote 

sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread 

presence of macrophytes in most of the reservoirs often impedes the delineation of the effective 

water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is 

essential for understanding, managing, and modelling the local and regional water resources.  

In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the 

effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were 

obtained by segmenting the backscattering coefficients of TSX images with minimum error 

thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence 

matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations 

dominated by different types of scattering along the TSX time series. By referring to the statistics 

and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was 

segmented to map the vegetated water surfaces. The effective water surface areas that include the 

vegetation-covered waters as well as calm open water in the reservoirs were mapped with 

accuracies > 77%. The temporal and spatial change patterns of water surfaces in the nine 

reservoirs over a period of two consecutive dry and wet seasons were derived. 

Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the 

main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, 

the approach employed in this study shows great potential in monitoring water surfaces of 

different complexity and macrophyte coverage. The effective water surface areas obtained for the 

reservoirs can provide valuable input for efficient water management and improve the 

hydrological modelling in this region. 
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semiarid region, northeastern (NE) Brazil 

3.1 Introduction 

Knowledge of water bodies covered by vegetation and their water dynamics is vital for 

understanding local to regional ecology and hydrology (Alsdorf et al., 2000; Capon, 2003; Colloff 

and Baldwin, 2010; Roshier et al., 2002). In the semiarid region in NE Brazil, aquatic vegetation 

abundantly present in many surface water reservoirs as an indicator of water quality variation. 

Mapping these water bodies by field survey is labor consuming and challenging due to the 

impediment of dense macrophytes on the accessibility to these areas. 

Available satellite data have continuously increased and opened up substantial opportunities for 

water surface mapping from space (Douglas E. Alsdorf et al., 2007; Alsdorf and Lettenmaier, 2003; 

Palmer et al., 2015). Based on the spectral characteristics of water bodies, optical images have 

been widely used to map the open water characteristics and their changes (Donchyts et al., 2016; 

Mohammadi et al., 2017; Pekel et al., 2016). Due to its independence of sun illumination and thus 

weather, Synthetic aperture Radar (SAR) data have been increasingly applied in the mapping and 

monitoring of water surfaces and water environments. Calm open water surfaces, acting as 

specular reflectors, reflect away nearly all the incident SAR pulses and thus appear black in SAR 

images. Based on this characteristic, various methods have been developed for mapping open 

water surfaces such as flooding using SAR data sets. SAR data acquired with different 

polarizations, wavelengths and incidence angles etc. were also investigated (Eilander et al., 2014; 

Horritt et al., 2003; Klemenjak et al., 2012; Li et al., 2014; Martinis et al., 2015a; Schlaffer et al., 

2015; Wendleder et al., 2013). 

However, in landscapes like wetlands, marsh lands and alike, open water always fail to represent 

the complete water surface, as in these areas a large proportion of the water surface is often 

covered by vegetation. Therefore, it can be challenging to map the effective water surface, 

consisting of open water and vegetation covered water surfaces. In many studies spectral indices 
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such as vegetation and water indices were used to map the inundations in wetlands (Ahamed and 

Bolten, 2017; Feng et al., 2012; Gonzalez-Dugo et al., 2014; Li et al., 2015a; Thomas et al., 2015). 

Based on spectral indices and LiDAR data, Lang and McCarty (2009) developed a model to 

describe the characteristics of inundation in wetlands. This model has been applied to map the 

inundations in wetlands with optical data (Huang et al., 2014; Jin et al., 2017). However, 

vegetation indices tend to overestimate the water surface, when the surrounding terrestrial 

vegetation shows similar spectral characteristics during the leaf-on seasons (Toeyrae et al., 2001). 

Therefore the inundation mapping with spectral vegetation characteristics is often limited to the 

leaf-off season (Huang et al., 2014; Jin et al., 2017). Employing water indices could introduce 

underestimation of the effective water surfaces, as the vegetated waters are not taken into account. 

Cloud coverage poses another obstruction to the application of optical data. Capable of penetrating 

vegetation canopy, SAR data have served as a powerful alternative for mapping waters beneath 

vegetation. On vegetated water surfaces the incident SAR pulses bounce between the water 

surface and the vertical tree trunks or standing stalks of emergent plants and reflect more SAR 

pulses back to the sensors than the surroundings. Therefore, vegetated water surfaces appear much 

brighter than the surroundings on a SAR image (Hess et al., 1990; Richards et al., 1987; Silva et 

al., 2008). Based on this knowledge, mapping of water surfaces beneath vegetation has been 

undertaken with various SAR data in circumstances including flooded forests, wetlands and marsh 

land (Hess et al., 1995; Kim et al., 2014; Lang et al., 2008; Lee et al., 2012; Marti-Cardona et al., 

2013, 2010; Pulvirenti et al., 2013; Schlaffer et al., 2017). Descriptive studies have established the 

characteristics of difference species at different stages and canopy density (Dobson et al., 1995; 

Hess et al., 1995; Kim et al., 2014). Supervised and object-oriented classification approaches have 

been frequently adopted with assistance of substantial field data (Bourgeau-Chavez et al., 2001; 

Evans and Costa, 2013). Models have been developed and applied to understand the SAR 

backscatters of flooded forests (Cohen et al., 2016; Kasischke et al., 2003). It has been 

demonstrated that double bounces, specular reflectance, and volumetric scattering  in the canopy 

constitute the backscatters of flooded forests in SAR images (Cohen et al., 2016; Hess et al., 1990). 
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The brightness of flooded forest is proved to be related to the height and canopy density of the 

vegetation (Cohen et al., 2016). However, the majority of these studies tend to target at few 

timestamps with in-situ data available. Suitable for mapping short-term events like flooding, yet, 

these studies are not applicable for long-term mapping of effective water surfaces in environments 

like wetlands and marshlands. Moreover, knowledge of few scenarios is not sufficient to recover 

the temporal development in the targeted water environment. The compositions of the vegetation 

in a water environment are complex and vary among study sites and throughout seasons. 

Therefore, the studies on mappings of waters beneath vegetation with SAR backscatters are rather 

site-specific and strongly dependent on available field data. As acquiring continuous and extensive 

field data is not realistic, a field data independent approach is necessary for a continuous 

monitoring with multi-temporal remote sensing data. 

Studies have proved that including texture information can enhance the image analysis in the 

aspects of ground object identification and land use classification (Ban et al., 2014; Esch et al., 

2013; Proctor et al., 2013; Stasolla and Gamba, 2008; Uhlmann and Kiranyaz, 2014). Among 

these studies, urban area mapping has achieved prominent results due to the fundamental 

characteristic of double bounces between the buildings and the ground (Ban et al., 2014; Esch et 

al., 2013). Analogous to the interaction between the penetrating SAR pulses and plant trunks or 

stalks, double /multiple bounces are expected from the water surface covered by vegetation. 

Therefore, it is worth investigating the potential of texture indices for mapping the water surface 

covered by vegetation. Moreover, to the authors’ best knowledge, SAR texture indices have rarely 

been used to map the vegetated water surfaces. 

In northeastern (NE) Brazil, many reservoirs are covered by macrophytes to various extents. 

In-situ monitoring of the effective water surfaces is often infeasible, due to the large number of the 

reservoirs and the remoteness of the region. However, knowledge of the effective water surfaces in 

reservoirs is vital for efficient water management. 

In this study we investigated the potential of multi-temporal TSX data and GLCM texture for 
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mapping the effective water surfaces in reservoirs. The approach which includes mapping of both 

open water surfaces and the vegetated water surfaces was applied to nine reservoirs. In-situ data 

were used to validate the results. The effective water surfaces were mapped for marginally and 

largely vegetated reservoirs over two consecutive dry and wet seasons, i.e., considering reservoirs 

under various conditions in terms of water levels, macrophyte growth stages and terrestrial 

vegetation coverage. 

3.2 Study area 

Since the 19th century, numerous reservoirs have been constructed in NE Brazil. Monitoring these 

water bodies has been inconsistent, resulting from managements by different country, federal state 

and local municipality organizations (SIRH/Ce, 2015). In general, large reservoirs supported by 

the federal state and country are regularly monitored and maintained because of their strategic 

importance. In contrast, numerous reservoirs of small to medium size and/or at remote areas are 

poorly monitored (SIRH/Ce, 2015). However, those relatively small reservoirs actually play an 

eminent role in the runoff retention in the upstream parts of the catchments and act as the only 

water suppliers to the population in rural areas (Peter et al., 2014). 

The Madalena region is in the central part of the federal state of Ceará (Figure 3.1). The local 

climate is semiarid with pronounced wet and dry seasons. From January to June is the wet season 

when the major precipitation events take place; the dry season spans from July to December. The 

average annual precipitation is approx. 600 mm, and the potential evaporation exceeds 2000 mm 

per annum. Caatinga, an endemic seasonal shrubby forest landscape in NE Brazil (Bullock et al., 

1995), is the dominant land cover. The unevenly distributed precipitation in the wet and dry 

seasons, the intensive evaporation and water consumption have led to significant fluctuations in 

the water levels in the reservoirs throughout the year. This is a typical phenomenon for the 

reservoirs in NE Brazil. Reservoir monitoring in the Madalena catchment was undertaken only 

recently by the Federal University of Ceará (UFC), basically by means of in-situ investigation in a 

few accessible reservoirs. So far, there are only few remote sensing studies aiming at reservoir 
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mapping in this region, e.g. Zhang et al. (2016) or for a similar area (Heine et al., 2014). 

Reservoirs in this region are covered by macrophytes to various extents. In some reservoirs, even 

the majority of the water surfaces are covered. Pistia stratiotes L., Salvinia auriculata, Nymphaea 

alba, Ludwigia helminthorrhiza and Lemna valdiviana are the most frequently noticed floating 

macrophytes in those reservoirs. The frequently found emergent macrophytes are Paspalidium 

geminatum, Oxycarium cubense, Paspalum vaginatum and Polygonum ferrugineum. In the 

Madalena region, floating macrophytes are mainly found in the reservoirs Paus Branco, Nova Vida 

1, Nova Vida 2, and one anonymous reservoir labeled as NN1 (Figure 3.1). As this investigation 

only considers the macrophytes that intervene the interaction between the water surface and 

incident SAR pulses, submerged macrophytes are excluded from the scope of this study. 

 

Figure 3.1 Location of the study area. A: location of the State of Ceará in Brazil, B: location of the 

Madalena catchment in the State of Ceará, C: locations of the studied and the neighbouring reservoirs. 

This study focuses on nine reservoirs, namely Marengo, São Joaquim, São Nicolau, Raiz, Mel, 

Paus Branco, Nova Vida 1, Nova Vida 2 and NN1 (Figure 3.1) with respective areas of 3.39 km2, 
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1.20 km2, 0.49 km2, 0.25 km2, 0.09 km2, 0.81 km2, 0.62 km2, 0.21 km2, and 0.65 km2. Because in 

the Madalena catchment São Nicolau is the only reservoir that was noticeably covered by 

macrophytes, the reservoirs Nova Vida 1, Nova Vida 2, Paus Branco and NN1 with substantial 

vegetation appearance were included. Those reservoirs consist of two types, with and without 

significant presence of macrophytes. Figure 3.2 shows some field views on the macrophytes 

coverage in both the marginally and largely vegetated reservoirs in the Madalena region. 
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Figure 3.2 Field impressions of macrophyte coverages in the reservoirs Marengo (A), Sao Joaquim (B) São Nicolau 

(C), Nova Vida 2 (D), Nova Vida 1 (E) and Paus Branco (F). 
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3.3 Data and method 

3.3.1 Data 

Overall 37 TSX data sets were acquired to cover the study area from February 2014 to September 

2015 (17 images in 2014 and 20 in 2015). The TSX data were acquired in the strip map mode with 

HH polarization. Each TSX scene covers an area of 30×50 km². The delivered TSX data were 

processed to be Enhanced Ellipsoid Corrected (EEC), with radiometric enhancement. Further data 

parameters are listed in Table 3.1. The nominal revisit time of TSX satellites is 11 days. Due to the 

conflicts between data acquisitions for the TSX and the TanDEM-X data missions, there are two 

one-month gaps in the time series. A few failures in data downlink also resulted in small gaps in 

the time series. 

Table 3.1 The parameters of the TSX data employed in the study. 

Orbital 

direction 

Over pass time 

(UTC00) 

Incidence angle 

(degree) 

Pixel spacing 

(m) 

Resolution 

(m) 
Orbit Beam 

No. of 

acquisitions 

Descending 8:25 30.0 2.75 7 110 007 37 
 

A total of 11 acquisitions of RapidEye satellite images, delivered in level 3A, were employed in 

the study (Figure 3.3). Frequent cloud cover in the rainy season constrained the majority of 

RapidEye data in the dry season. RapidEye images were used to delineate the floating macrophyte 

areas, as well as to illustrate the results. 

In-situ water contours were obtained with a Garmin X handheld GPS by walking along the 

accessible water/bank borders. Water contours collection was conducted at five dates (Figure 3.3). 

However, dense terrestrial vegetation and emergent macrophytes have impeded access to the 

reservoir shorelines in the wet seasons and caused the unavailability of in-situ data at some of the 

five dates for some reservoirs. 
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Figure 3.3 Illustration of the satellite data acquisition and in-situ data collection 

3.3.2 Method 

3.3.2.1 Background and assumption 

Mainly three types of scattering take place on a vegetated water surface: specular reflection, 

diffusive/volumetric scattering and double/multiple bounces, with the strength in an ascending 

order (Cohen et al., 2016; Ferrazzoli and Guerriero, 1995; Horritt et al., 2003; Ormsby et al., 1985; 

Ramsey, 1995) All other types of scattering are formed on rougher surfaces can return SAR pulses 

of various intensities. In a macrophyte-covered reservoir in NE Brazil illustrated in Figure 3.4 A, 

open water surfaces present the specular reflection (SR); the water surfaces vegetated by large 

emergent macrophytes with penetrable canopies present double bounces (DB), and multiple 

bounces (MB) as the density increases; volumetric scatterings (VS) take place on the rough 

surfaces covered by dense plants, including vegetated banks, water surfaces covered by floating 

macrophytes or emergent macrophytes of closed canopy. All these scatterings are present in a 

reservoir both sole and combined forms. Specifically, banks covered by both tall and short 

terrestrial plants can present the combined scattering of the double bounce and the volumetric 

scattering (DB+VS). Water surfaces vegetated by very sparse short vegetation and the bald bank 

caused by over grazing can present the combined scattering of specular refection and volumetric 

scattering (VS + SR). In total, we expect the above six types of scattering in the reservoirs in NE 

Brazil. 

Both of the vegetation conditions on the bank and in water evolve along with the season. For 
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example, the density and height of emergent macrophytes in the wet season differ from that in the 

dry season (Lee et al., 2012). The area ratio of bank to water also varies as the water surface 

expands or retreats. Moreover, variations in the water levels may alter the length of transmission 

paths and the strength of the returned SAR pulses (Kasischke et al., 2003; Kim et al., 2014; Kevin 

O. Pope et al., 1997; Pulvirenti et al., 2011). The consequence of these factors is that, within the 

extent of a macrophyte-covered reservoir, the proportions of different types of scattering vary 

throughout the year. Because the scattering taking place in a pixel is independent from that in the 

neighboring pixels as illustrated in Figure 3.4 A, a sufficiently small subset of the reservoir can 

represent the sub-population dominated by scattering of a certain type (Figure 3.4 C-F). For the 

same reason, the distribution of the backscattering on a SAR image is the linear sum of all the 

sub-populations. 

Let’s assume that each sub-population (i.e., surface dominated by one type of scattering within a 

reservoir) is characterized by a specific backscattering measure, the backscattering distribution of 

the entire reservoir can be described by a linear sum of the backscatter sub-populations: 

𝐻 = ∑ 𝐻𝑖 ∗
𝑛

𝑖=1
𝑃𝑖 

(3.1) 

where H is the distribution of the population of backscattering index (e.g. backscattering 

coefficient, intensity, and texture indices) in the entire reservoir, excluding open water; 𝐻𝑖 is the 

distribution of the 𝑖𝑡ℎ  backscattering index sub-population dominated by one scattering 

illustrated in Figure 3.4 A, excluding the open water; 𝑃𝑖 is the proportion of the corresponding 

sub-population 𝐻𝑖 and ∑ 𝑃𝑖  = 1𝑛
𝑖=1 ; and 𝑛 is the number of the total sub-populations. 

As double and multiple bouncing mainly take place in the vegetated water surface, if the 

sub-populations dominated by these two types of scattering can be distinguished from the rest, 

then the vegetated water surface can be delineated for a reservoir from an image. 
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Figure 3.4. Different SAR scattering and the proportions of the sub-populations dominated by them in different types of 

reservoirs in different seasons. A. Different SAR scattering resulting from interactions between the incident SAR pulses and 

ground objects within the reservoirs: From the weakest backscattering intensity to the strongest are: f, SR on calm open water 

surface ; e, DB from the vegetated waters; d, the MB on the water surfaces vegetated by the macrophytes of increased canopy 

closure; c, DB + VS on the bank covered by dense vegetation; b, VS on the densely vegetated surfaces in reservoir; a, VS + 

SR on bare land and the water surface sparsely vegetated by short grass-like macrophytes. Sub-plots C – F illustrate the 

seasonal variation of the proportions of the sub-populations dominated by different types of scatterings, excluding open 

waters which barely return any SAR signals. 

3.3.2.2 Remote sensing data preprocessing 

One RapidEye image without cloud presence was selected as the master image and laterally 

shifted to 26 DGPS points measured in the field at identifiable locations The rest of the RapidEye 

images were co-registered to the master image using AROSICS software developed by Scheffler 

et al. (2017). The co-registration accuracy is one pixel. The images of the TSX time series were 

co-registered with the same approach. 

Radiometric calibration was subsequently conducted on the TSX data by following the instruction 

for TSX calibration provided by DLR (Infoterra an EADS Astrium company, 2008). The TSX data 

were calibrated to the sigma naught in decibel (dB). The TSX images of backscattering 

coefficients were subsequently filtered in a moving window of 3×3 pixels with adaptive Lee filter 

(Lee, 1980). 
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Figure 3.5 The workflow followed in the study. 

3.3.2.3 Mapping open waters 

In contrast to calm open water surfaces which barely return any transmitted SAR pulses to the 

sensor, the non-open water areas with rougher surfaces can reflect more transmitted SAR pulses 

back to the sensors and appear bright in a SAR image. The distribution of a population formed by 

these two sources of comparable sizes will present bimodality, i.e. with a significant valley in 

between. A minimum error thresholding algorithm developed by Kittler and Illingworth (1986) to 

effectively segment populations of bimodality, has been proved to be successful and fast in open 

water and water related change delineation (Bazi et al., 2005; Martinis et al., 2015a). Splitting the 

image of potential bimodality was one effective approach to mitigate the population size contrast 

between open waters and the surroundings, and to unveil the bimodality of the distribution 

(Martinis et al., 2015a; Schlaffer et al., 2017). Therefore, the TSX backscatters in each reservoir 

were subset 2×2 with two times of iteration, considering the relatively small size of the reservoirs. 

Segmentation thresholds were obtained for the subsets which fulfill the bimodality, i.e. a valley 
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and a local minimum exist in the distribution (Schilling et al., 2002). In this study the local 

minimum was constrained into the interval of -25 dB and -10 dB to avoid the effect of interference 

of extreme values. Each TSX image was segmented with the mean of the thresholds derived for its 

subsets to obtain the raw open water mask. 

3.3.2.4 Mapping vegetation covered waters 

The masks of floating macrophytes obtained from RapidEye data are expected to indicate standing 

waters, as floating macrophytes can only survive on water surfaces. In a RapidEye image, floating 

macrophytes appear remarkably brighter than emergent macrophytes and riparian vegetation. By 

referring to the brightness and greenness, the masks of floating macrophytes were digitized from 

the RapidEye images. A manual approach was chosen to avoid the potential contamination of 

terrestrial plants or emergent macrophytes under drought stress. The masks of floating 

macrophytes were resampled to the same pixel spacing as the TSX data. For a specific data set in 

the TSX time series, the floating macrophyte mask from RapidEye data acquired on the date 

closest to the TSX acquisition was chosen and adopted to assist the effective water surface 

delineation. 

GLCM texture indices mean, variance, homogeneity, contrast, dissimilarity, second moment, and 

entropy (Conners et al., 1984; Haralick et al., 1973) were calculated in all directions in a sliding 

window of 3×3 pixels on the amplitude of TSX time series. In accordance to other studies e.g., 

Hagensieker et al, ( 2017), Nyoungui et al. (2002) and Sarker et al. (2013), GLCM should be 

derived without any speckle filtering. We chose the GLCM texture to do the analysis, because the 

GLCM approach produces more texture indices and potentially can reflect integral texture 

characteristics of the vegetated water surfaces. The TSX data were acquired and delivered in a 

depth of 16-bit (Fritz and Eineder, 2013). In order to be comparative to SAR data delivered with 

different bit depths, TSX data were scaled to 8-bit before the GLCM indices calculation. 

Principal Component Analysis (PCA) was applied on the stack of all calculated GLCM indices to 

reduce the number of variables and obtain the most relevant features. The PCA results showed that 
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the GLCM variance is the primary feature constituting the first PC. For all the data used in the 

study the absolute loadings of GLCM variance were larger than 0.97 (Figure 3.6 A). The first PC 

has explained most of the variance, over 90% for all the reservoirs on all the datasets (Figure 3.6 

B). Therefore, the GLCM variance was used as the sole input for further delineation of 

macrophyte-covered water surfaces. This indicates that regarding GLCM, variance is the most 

adequate parameter to explain most of the local complexity and heterogeneity of SAR scattering in 

the reservoirs in comparison to other GLCM texture indices. Since the time series of TSX data on 

EEC level has undergone multi-looking, the remaining heterogeneity contribution of SAR speckle 

is regarded to be very small and thus ignored. 

We assumed that the GLCM variance sub-populations dominated by individual types of scattering 

in Figure 3.4 (A) follow normal distributions (Figure 3.4 B). After the open waters were masked 

off, each TSX image over a reservoir was subset by 4×4 to derive the modes and standard 

deviations of the GLCM variance distributions of the subsets. The modes of all the TSX data 

subsets cluster at the values of 0.5, 3.5, 6.5, 8.0 and 12.0, while the range of the standard deviation 

spans relatively large (Figure 3.6). We attributed this phenomenon to the impurity of the scattering 

in the squared subsets. More specifically, more than one type of scattering take place in the subset 

and contributes to the standard deviation but only one type of scattering dominates and presents 

the mode for the subset distribution. Kmeans clustering was applied with centers at 0.5, 3.5, 6.5, 

8.0 and 12.0 to generalize the modes. Meanwhile, the minima of the standard deviations 

corresponding to the same modes were regarded as the standard deviation of the sub-populations. 

At last, five sub-populations were derived, with their mean values at 0.8, 3.3, 6.7, 8.6 and 11.8 and 

standard deviations at 0.62, 1.73, 2.69, 3.35 and 4.03. The local variance of the SAR 

backscattering in a GLCM calculation window is positively related to the amount and amplitude 

of the scattering with high backscattering which is further positively related to the smoothness of 

the surface. Referring to Figure 3.4 (a) and the observation on the subset modes of the nine 

reservoirs (Figure 3.6) (i.e. subsets with large means tend to appear in largely vegetated reservoirs), 

we attributed the five sub-populations to be respectively dominated by scattering A-E illustrated in 
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Figure 3.4 (a), namely, VS+ SR, VS, DB + VS, MB, DB. The neighboring sub-populations 

overlap with each other at the tail parts. 

In order to validate the confidences of the assumption in Figure 3.4 and the credibility of the 

above attribution of the sub-populations, we applied linear unmixing using these five 

sub-populations to derive the proportions of the sub-populations in the reservoirs along the TXS 

data time series. Linear unmixing is a widely applied approach in the remote sensing domain to 

obtain the proportions of spectral endmembers e.g. vegetation and soil in remotely sensed optical 

images on the pixel level (Asner and Heidebrecht, 2002; Bian et al., 2017; Roberts et al., 1998; 

Shi and Wang, 2014). It has also been applied on the sediments and on chemicals of runoff to 

derive the contribution of different sediments and waters sources (Barros Grace et al., 2008; 

Dietze et al., 2012; James and Roulet, 2006). In this study, the distribution of GLCM variance of 

individual TSX acquisition within an individual reservoir is analogous to the spectrum of one 

pixel in the case of unmixing optical remote sensing data (Adams et al., 1995; Roberts et al., 

1998). Thus, the linear unmixing was implemented on the reservoir level instead of on the pixel 

level which is the case in the linear unmixing of optical images. In this study it is assumed that the 

GLCM variance distribution in a reservoir consists of the linear sum of the distributions of 

sub-populations (i.e., the endmembers when unmixing optical remote sensing data) with 

corresponding proportions (Figure 3.4). Linear unmixing was conducted on the time series of the 

GLCM variance distributions to derive the proportions of the sub-populations in the reservoirs on 

each TXS acquisition. The proportions of the sub-populations in a reservoir were obtained by 

nonnegative least squares algorithm (Lawson and Hanson., 1974). 

The unmixing approach was implemented as below: 

𝐴 =   ∑ 𝑃𝑖

𝑛

𝑖=1

𝐴𝑖  + 𝜖  

(3.2) 

with the constraint: 
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∑ 𝑃𝑖  = 1

𝑛

𝑖=1

 

(3.3) 

In this study, A is the density of a value, say 𝑀, in GLCM variance distribution 𝐻; 𝑃𝑖 is the 

proportion of sub-population 𝐻𝑖; 𝐴𝑖 is the density of  𝑀 in the 𝑖th sub-population 𝐻𝑖; 𝜖 is the 

residue failed to be expressed by either of the sub-population 𝐻𝑖. 

𝑀 ~ 𝑁(𝜇𝑖  , 𝜎𝑖
2)  𝑤ℎ𝑒𝑛 𝑀 ∈  𝐻𝑖      (3.4) 

𝜇𝑖 and 𝜎𝑖  are the mean and the standard deviation of the sub-population 𝐻𝑖, respectively; 𝜇𝑖 

results from the Kmeans clustering, and 𝜎𝑖 is the minimum of standard deviations corresponding 

to 𝜇𝑖. The distribution 𝐻𝑖 is simulated with 5000 samples from the given 𝜇𝑖  and 𝜎𝑖. 

The sub-populations dominated by multiple scattering and the double scattering with high local 

GLCM variance are expected to be more in the largely vegetated reservoirs than in the marginally 

vegetated ones. The sub-populations dominated by volumetric scattering on the bank with small 

GLCM variance prevail in the marginally vegetated reservoirs. By comparing the differences 

between the two types of reservoirs, we can distinguish the scattering coming from the vegetated 

waters from that originating from the bank by the following threshold: 

𝑇 =   (𝑀𝑎𝑥𝑏 + 𝑀𝑖𝑛𝐼)/2 (3.5) 

𝑀𝑎𝑥𝑏 is the mean of the sub-population which possess the largest mode among those taking place 

on the bank, and 𝑀𝑖𝑛𝐼 is the mean of the sub-population that has the smallest mode among those 

prevailing in the vegetated water surfaces. In this study, we attributed the sub-population with 

means at 0.8, 3.3, 6.7, to take place on the bank, and the sub-populations with means at 8.6 and 

11.8 on water. Thus, Maxb is 6.7, MinI is 8.6, and the threshold 7.6 was used to distinguish the 

water surfaces producing DB and MB from the other scatterings in the reservoirs. In reality, the 

optimal threshold might vary slightly from the T due to the varying sizes of sub-populations. But it 

should be very close to the value of 7.6 in the case of the studied reservoirs based on the 

calculated GLCM texture. 
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Figure 3.6 Results of the PCA on the GLCM texture for all acquisitions over the reservoirs in the study. MEA, VAR, HOM, 

CON, DIS, ENT and SM refer to the seven GLCM texture indices: mean, variance, homogeneity, contrast, dissimilarity, 

entropy and second moment. MAR MEL, NN1, NV1, NV2, PB, RAI, SJ and SN are the abbreviations of the reservoirs 

Marengo, MEL, NN1, Nova Vida 1, Nova Vida 2, Paus Branco, Raiz, São Joaquim and São Nicolau. 
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3.3.2.5 Derivation of effective water surface 

The masks of open waters, floating macrophytes and water surfaces vegetated by emergent 

macrophytes were stacked into one layer. The morphological closing with a square window of size 

5×5 pixels, and the gap filling were subsequently applied on the derived water masks. 

3.4 Results 

In this section, we present the dominant scattering types as output of linear unmixing along the 

times series, the effective water surfaces obtained for marginally and largely vegetated reservoirs, 

the spatial and temporal changes in the open and effective water surfaces in Nova Vida 1 as an 

example of results in this aspect, the temporal changes in the areas of open and effective water 

surfaces in the nine reservoirs. The accuracies of the effective water surfaces based on available 

in-situ data are presented in the end of the section. 
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3.4.1 Proportions of the sub-populations dominated by different types of scattering 

Along the time series, the five sub-populations showed the seasonal trajectories of different 

scattering in all the nine reservoirs (Figure 3.7). The assumed sub-populations dominated by DB 

and MB are mainly present in the largely vegetated reservoirs i.e. São Nicolau, NN1, Paus Branco, 

Nova Vida1 and Nova Vida 2, and in the small and marginally vegetated reservoirs Raiz and Mel. 

In the marginally vegetated reservoirs, they tend to account for large proportions with abrupt 

fluctuations in the raining season and none in the dry season (Figure 3.7). The sub-population 

dominated by DB + VS had analogous proportions in both types of reservoirs, and showed 

significant seasonal trends, i.e. more in the wet season than in the dry season. In contrast, the 

sub-populations dominated by VS + SR are mainly present in the reservoirs Marengo, São 

Joaquim and São Nicolau. In the marginally vegetated reservoir São Joaquim, this sub-population 

plays a dominant role in the dry season. This sub-population showed nearly stable proportions in 

the largely vegetated reservoirs São Nicolau and marginally vegetated reservoir Marengo 

throughout the time series. 

In summary, the sub-populations dominated by DB and MB tend to prevail in the vegetation 

covered reservoirs, while the sub-populations dominated by DB + VS prevail on the bank in the 

wet season. Marginally vegetated reservoirs of large size are characterized by scattering of low 

GLCM variance. Largely vegetated reservoirs show more scattering of large GLCM variance. The 

marginally vegetated reservoirs show common seasonal characteristics, so do the largely vegetated 

reservoirs. This means the previous attribution of the sub-populations in section 3.2.1 is 

reasonable. 
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Figure 3.7 Proportions of the GLCM variance sub-populations dominated by different types of scatterings in each 

reservoir along the TSX time series. 

Figure 3.8 presents the RMSE of the modelled results for all the reservoirs and all acquisitions, 

and the correlations of the simulated and the observed proportions of all GLCM variance values. 

RMSE are lower than 0.1 and correlation coefficients are larger than 0.7 with a mean at 0.9, which 

indicates the confidence of the modelling. Therefore, the threshold of 7.6 used to distinguish the 

scattering on the bank and the scattering on the vegetated water surfaces is regarded to be 

reasonable. 
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Figure 3.8 The RMSE of the modelled results for each reservoir and correlation coefficients of the modelled 

values and the value from TSX time series images. The unit for both RMSE and COR is 1. 

3.4.2 Effective water surfaces 

3.4.2.1 Reservoirs with little macrophyte coverage 

There are only few macrophytes growing along the waterlines in Marengo (Figure 3.9). The open 

water surface coincides well with the in-situ data (Figure 3.9 A-B). Very narrow waterways at the 

tail part of Marengo indicate the mudflat that was inaccessible during the field surveys or too 

narrow to show in the SAR data. The parallax, the inherent nature of SAR data, barely caused any 

visible mismatching between the remote sensing results and in-situ data in this reservoir. However, 

these two factors suggest that the accuracy of open water from SAR data, though high, can never 

reach 100%. This phenomenon was also noticed in São Joaquim, Mel, and Raiz. 
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Figure 3.9 Waters mapped from TSX data for the reservoir Marengo. Blue polygons denote the open water surfaces, 

violet polygons indicate the effective water surfaces, and green polygons the in-situ water surface. (A) The backgrounds 

are the backscattering coefficient of TSX data; (B) the same data overlaid on the RapidEye data acquired on 2014-02-23 

3.4.2.2 Reservoirs with large macropyte coverage 

Paus Branco is one of the reservoirs vastly covered by macrophytes of various species. The results 

in Figure 3.10 A-B were derived from TSX acquired on 2015-07-07 in the end of the wet season. 

The results from this TSX data indicate the close-to-the-effective water surface. Floating 

macrophytes, i.e. the bright green area in RapidEye data (Figure 3.10 B), show similar 

backscatters to the terrestrial part (Figure 3.10 A). A few similar cases were also noticed on data 

acquired for Nova Vida 2 and NN1. Waters under emergent macrophytes which are at the 

senescence stage and do not show greenness are also mapped for Paus Branco from SAR data 

(Figure 3.10 A-B).  

The reservoir Nova Vida 1 is also widely vegetated by macrophytes, and in-situ data are thus 

difficult to attain. The only available in-situ data were acquired on 2014-06-15 and cover parts of 

the reservoir, thus only used to indicate the effective water surface at that time in the reservoir. All 

the areas of high backscatters and variance and adjacent to the open water surface were correctly 
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delineated as water areas (Figure 3.10 C). On the RapidEye acquired in the wet season the 

terrestrial vegetation shows similar spectral characteristics to the macrophytes in waters (Figure 

3.10 B). But TSX data were able to distinguish aquatic vegetation from the terrestrial and yield 

accurate water surfaces (Figure 3.10 B). 

 

Figure 3.10 The final water surfaces delineated for the reservoir Paus Branco and Nova Vida 1. A: the water surfaces 

extracted from TSX data acquired on 2015-07-07 (violet), and in-situ data on 2015-07-18 (green polygons). 

Background is the backscatters of TSX image acquired on 2015-07-07; B: same data overlaid on the RapidEye data 

acquired on 2015-06-18. C: Water surfaces for the reservoir Nova Vida 1 from TSX data acquired on 2014-06-17 

(violet) and from field (dots) on 2014-06-15. The background is the backscatter of TSX 2014-06-15. D, and the same 
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results overlaid on the RapidEye image acquired on 2014-06-09. 

3.4.3 Spatial-temporal changes in effective water surfaces 

Figure 3.11 shows, as an example, the temporal changes in the open water and the effective water 

surfaces delineated for the reservoir Nova Vida 1. Only few bare grounds which present similar 

backscatters to calm open waters remained (Figure 3.11 A). Both the open and effective water 

surfaces in the reservoir have retreated towards the outlet. The general changes in the open and 

effective water surfaces are reasonable from the spatial perspective. Open water surfaces only 

represent part of the total ones in the reservoirs (Figure 3.11 A and B). Few exceptional 

overestimates of effective water surfaces were obtained for the dates in the wet seasons (Figure 

3.11 B). 

 

Figure 3.11 Temporal-spatial changes in open water surfaces (A) and effective waters surfaces (B) in the reservoir Nova 

Vida 1. 

Figure 3.12 shows the profiles of the open and effective water surfaces in all the nine studied 

reservoirs along the time series. In the largest reservoir Marengo where the vegetation coverage 

over water surface is minimal the open water surface can denote the effective water surface. The 
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only significant overestimate in Marengo coincides with the effective water estimate anomalies in 

other reservoirs. Water surfaces in São Joaquim whose water free bottom frequently was used as 

crop field, and two small reservoir Raiz and Mel are marginally vegetated, but often overestimated 

in our study, particularly in the wet season of 2014 (Figure 3.12). The area differences between 

open and effective water surface are significant in the largely vegetated reservoirs São Nicolau, 

Nova Vida 1, Nova Vida 2, Paus Branco and NN1 (Figure 3.12). The open and effective water 

surfaces show similar change trends along the time series (. Most of the overestimates were 

obtained for TSX data acquired in the wet season, e.g. January to June. Despite of overestimates, 

the seasonal changes are remarkable both in open and the effective water surfaces. 

The following trends can be obtained for the nine studied reservoirs: all the water surfaces in the 

reservoirs decreased during the studied period; São Joaquim, Raiz and Mel became empty in 

October 2014, occasionally collected little water and eventually fell empty in 2015; Nova Vida 2 

turned dry in July 2015; São Nicolau and Nova Vida 1 became dry in December 2015. The 

vegetated water surfaces in Nova Vida 1 were largely in 2014 but became little in 2015 till the 

reservoirs dried up; Marengo, Paus Branco and NN1 are the only three reservoirs that still had 

water by the end of the studied period. 
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Figure 3.12 The change trends of the open waters and the effective waters in all studied reservoirs. Abbreviations 

MAR, SJ, MEL, RAI, NN1, NV1, NV2, SN and PB refers to the reservoir Marengo, São Joaquim, Mel, Raiz, 

NN1, Nova Vida 1, Nova Vida 2, São Nicolau and Paus Branco, respectively. DOY indicates the day starting from 

2014-01-01. 
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3.4.4 Accuracy assessment 

In Table 3.2 the accuracies of the water surfaces delineated for three selected reservoirs are listed. 

Marengo represents reservoirs with little vegetation coverage, whereas Paus Branco and São 

Nicolau represent the reservoirs with heavy vegetation coverage. 

In the reservoirs with little vegetation coverage, the in-situ data include some small areas of wet 

soil adjacent to the open waters, particularly at the tail of the reservoir. These wet soil spots are the 

main cause of low accuracies. The high producer’s accuracies demonstrate that open waters 

represent the overall waters of reservoir Marengo and reservoirs alike. 

Table 3.2 Accuracies of the delineated water surfaces for representative reservoirs (%). 

Date of in-situ 

data collection 

User’s accuracy Producer’s accuracy Overall accuracy 

Marengo 
São 

Nicolau 

Paus 

Branco 
Marengo 

São 

Nicolau 

Paus 

Branco 
Marengo 

São 

Nicolau 

Paus  

Branco 

2014-02-27 90.24 * - 99.56 * - 99.93 * - 

2014-05-26 - 81.38 - - 94.73 - - 94.80 - 

2014-11-29 84.99 83.77 - 99.46 87.55 - 99.94 91.54 - 

2015-01-12 83.29 - - 99.30 - - 99.93 - - 

2015-03-30 87.53 83.11 - 96.69 89.68 - 99.68 95.97 - 

2015-07-07 84.39 82.43 97.56 98.94 76.29 57.65 99.92 92.93 77.11 
 

* indicates that the reservoir was empty at the overpass of the TSX satellites; - indicates that there was no 

match of in-situ data and TSX data. 

More in-situ data were available for São Nicolau in comparison with Paus Branco, and the overall 

accuracy for this reservoir is > 90%. Fewer in-situ data were available for Paus Branco and some 

of them fall into the gaps in the TSX time series. For Paus Branco on 2015-07-07, the overall 

accuracy is > 77.11%. At the end of the wet season, the wet soil adjacent to the water was falsely 

included and led to a low producer’s accuracy (Figure 3.10 A-B). 

3.5 Discussion 

This study investigated the potential of GLCM textural information for mapping 

macropyte-covered water surfaces. Open water surfaces were derived by segmenting the SAR 
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backscattering coefficient with minimum error algorithm. Linear unmixing approach was 

implemented to obtain the proportions of the sub-populations dominated by different types of SAR 

scattering in a reservoir. The SAR texture index, i.e. GLCM variance, was subsequently 

segmented to discriminate the scattering on vegetated water surfaces from the double or multiple 

bouncing on emergent macrophytes covered waters. The effective water surfaces were delineated 

for nine reservoirs in the TSX data time series which mapped the reservoirs of diverse 

macrophytes status and water areas. The accuracies of the final water areas in the reservoirs were 

assessed. Despite the confidence in the results derived for reservoirs under various conditions (e.g. 

vegetation coverage and type, seasons of the acquisition), the performance of the approach is still 

affected by precipitation, topography, and the macrophyte canopy closure. 

3.5.1 Impact of precipitation 

The presence and changes of wet soil in the reservoirs affected the proportions of the 

sub-populations dominated by different types of scattering and the delineated effective water 

surfaces. The dielectric constants of wet soil rises as soil moisture increases (Shoshany et al., 2000; 

Troch, 1996; Ulaby and Long, 2014). However, it reaches the maximum when soil moisture is 

approx. 50% - 60% (Shoshany et al., 2000; Troch, 1996; Ulaby and Long, 2014), probably 

because soil with moisture > 60% may be dominated by the scattering characteristics of water 

rather than that of soil. It is the case on SAR imagery acquired during or shortly after heavy 

rainfall events when the surfaces of the ground and vegetation remain oversaturated. This converts 

the high GLCM variance on the vegetated waters in dry condition to the low GLCM variance, 

interestingly like sparsely vegetated banks but not bare banks (Figure 3.7), and thus introduces an 

underestimation in the effective water surfaces in the largely vegetated reservoirs like Paus Branco 

and Nova Vida 1 (Figure 3.10). As time passes, the characteristics of the wet objects emerge. The 

intensity of backscattering from wet soil can be equivalent to the double/multiple bounces from 

the macrophyte covered water surfaces (Shoshany et al., 2000; Troch, 1996), the thresholds 

obtained for GLCM variance cannot discriminate these two sources of scattering. Therefore, both 

are attributed as double/multiple bounces from the macrophyte-covered water surfaces, resulting 
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in an overestimation of sub-population dominated by double bounce and multiple bounces, as well 

as the effective water surfaces. The effect of wet soil surfaces appears as abrupt fluctuations in the 

water surface time series (Figure 3.7 and Figure 3.12). The effect of oversaturated soil was noticed 

in largely vegetated reservoirs after heavy rainfall events (Figure 3.7 and Figure 3.12). The effect 

of enhanced GLCM variance of wet soil presents more in the wet season when the soil surface is 

covered by little vegetation (Figure 3.7 and Figure 3.12), e.g. in the beginning of the wet season. 

Solely with SAR data it is difficult to distinguish the effect of precipitation in the wet season. 

Since optical data usually suffer from the clouds cover during precipitation and from the confusion 

of terrestrial plant in sunny days, optical data hardly possess any potential in solving this problem. 

However, combining SAR data acquired before the precipitation data from other SAR senor with 

similar configuration can be a solution to this issue. SAR data with different polarization also hold 

potential in tackling this problem. 

3.5.2 Impact of topography 

Due to the foreshortening effect, slopes facing the satellite show SAR backscattering intensity as 

high as those from the double or multiple bounces (Ford et al., 1983). These fore slopes account 

for large area proportions in the two smallest reservoirs Mel and Raiz, and mistakenly contribute 

more to the sub-populations dominated by double/multiple bounces and to the water areas 

delineated than that in the large reservoirs. Except those from the wet reservoir bottom in the wet 

season, nearly all the mistaken areas of the water in these two reservoirs result from the effect of 

topography, as there are barely any macrophytes growing in these two reservoirs. The effect of 

topography is difficult to tackle in the case of small reservoirs but can be ignored in the case of 

large reservoirs. 

3.5.3 The effect of macrophyte canopy closure 

Closed canopies pose a strong obstruction in mapping water surface below the canopy using SAR 

data (Hess et al., 1990; Silva et al., 2008). Field observation revealed two sources of closed 

canopies in the reservoirs: the floating macrophytes and the seasonally varying emergent 
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macrophytes. These two sources of closed canopy have increased the proportions of volumetric 

scattering which mostly take place on vegetated banks. 

Floating macrophytes, which are frequently present with high canopy density in some reservoirs, 

separate open waters from waters vegetated by emergent macrophytes (Figure 3.10 B). Dense 

floating macrophytes usually show similar backscatter and texture to the terrestrial part of the 

reservoirs (Figure 3.10 A), because barely any SAR pulses can penetrate and return through their 

nearly closed canopy. This phenomenon tends to be present in the deep dry season when the 

nutrients in the water accumulate, macrophytes prosper and their canopy density increases. 

Therefore, floating macrophytes were manually delineated from optical RapidEye data to indicate 

their locations and extents in the corresponding SAR data. By doing so, the deterioration of 

floating macrophytes on the effective water surfaces in this study was mitigated. However, in 

further studies in different areas optical remote sensing data suitable for floating macrophytes 

derivation in terms of spatial and temporal resolution can also be adopted, possibly in combination 

with SAR data to further explore the synergies in effective water surface mapping. For example, it 

is also worthwhile to investigate SAR data of acquired with different polarization, wavelength or 

spatial resolution. Drifting as local winds blow, the floating macrophytes are probably the reason 

for slight fluctuation in the open water surfaces detected in the reservoirs Paus Branco, Nova Vida 

2 and NN1 (Figure 3.12) where reasonable coverage of floating macrophytes such as water 

lettuces were noticed. 

Studies have shown that SAR scattering decreases with increasing leaf area index (LAI) or even 

become absent with the closed canopy of wetland and mangrove (Durden et al., 1995; Krohn et al., 

1983). Some gaps in the delineated effective water surfaces coincide with certain places in Paus 

Branco and Nova Vida 2 where emergent macrophytes grow, typically sedges such as Oxycarium 

cubense, as confirmed by observations in the field. This may be explained as when the canopies of 

the emergent macrophytes developed denser, the scattering transferred from double or multiple 

bounces into volumetric scattering and failed to show large variance. The closed canopies thus can 
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deteriorate the user’s accuracy of the effective water surfaces derived for reservoirs with large 

coverage of emergent macrophytes. The incidence angle of the TSX data in this study is 30 degree, 

within the suitable range of incidence angles of 15 - 40 degrees, for mapping water surfaces 

beneath vegetation (Hess et al., 1990; Marti-Cardona et al., 2010). Cohen et al.(2016) found that it 

is not possible to detect the water/flooded area beneath boreal forest with X- band data if the 

canopy closeness is over 80%, even if it is acquired in competent incidence angles. Therefore, the 

canopy closure of the emergent macrophytes beneath which the water failed to be mapped is 

probably also > 80%. Vice versa, those water surfaces detectable with GLCM variance in the nine 

studied reservoirs is likely covered by canopy closure less than 80%. 

Very sparse grass-like macrophytes cannot alter scattering sufficiently to introduce large GLCM 

variance but can only elevate the scattering slightly. This might result from the fact that the 

sub-population VS + SR are present in the reservoirs São Nicolau throughout 2014. 

3.5.4 Effective water surface map 

Compared to the open water mapping with SAR data and optical data (Li et al., 2015b, 2014; 

Martinis et al., 2015b; Pekel et al., 2016), this study derived not only the open water surfaces, but 

also those covered by vegetation. The temporal changes of the effective water surfaces were 

obtained with high accuracies with few exceptions caused by precipitation events. The parameters 

in the presented study were defined by referring to the intrinsic texture characteristics of the 

studied reservoirs. The same criterion was applied to all nine reservoirs with 37 TSX data sets. 

In terms of the range of the study period, this study covers a two-year period, and revealed the 

seasonal variations of sub-populations dominated by different types of scattering and changes in 

the open and effective water surfaces for this period. This implies that in terms of study period the 

approach of the study is superior to the inundation mappings with spectral vegetation indices e.g. 

NDVI and NDWI or classification with in-situ data on a few timestamps (Bourgeau-Chavez et al., 

2001; Feng et al., 2012; Voormansik et al., 2014; Ward et al., 2014; L. Zhao et al., 2014). 
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Moreover, the proposed approach only employed remotely sensed data, while no in-situ data were 

used to generate the final maps. In-situ data were only used to validate of the results of effective 

water surfaces. Therefore, the approach can be applied to similar areas for an operational 

monitoring over a long period. 

However, from the data perspective, polarimetric SAR data and indices derived from them 

probably also hold great potential to provide more insights in the contributions of different 

scattering sources and to automatically delineate the effective water surfaces in terms of 

operational mappings. When available in a suitable temporal and spatial resolution, SAR and 

optical satellite data are seen as synergetic data sources for future effective water surface mapping 

of inland water bodies. For example, the synergy of data acquired by Sentinel-1 & 2 missions act 

as candidate of great potentials in this aspect. 

3.6 Conclusion 

In the presented study, a method was proposed for mapping the effective water surface areas in 

macrophyte-covered reservoirs with time series of TSX data. The approach was applied to 

different reservoirs of varying complexity and throughout two consecutive dry and wet seasons. A 

detailed evaluation, including the use of in-situ data, demonstrated that the approach is robust and 

holds potential for mapping vegetation covered water surfaces or flooded vegetation. In most 

cases, the overall accuracies of the effective water surfaces of vegetation covered reservoirs were > 

77%. However, precipitation, closed canopy and bare grounds were found to be the main causes 

for the reduced mapping accuracy. The approach can easily be applied to multi-temporal data, and 

thus, allows for mapping the spatial-temporal variation of the effective water surface throughout 

the seasons and years. Finally, the approach is independent of in-situ data. Overall, the proposed 

approach proofs useful for effective water surface mapping and seems particularly relevant in the 

context of operational monitoring systems. 
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4. The spatio-temporal variation of surface water storage in dense reservoirs 

in NE Brazil, using remote sensing approaches 

Abstract: Knowledge on the surface water storage is vital for local/regional water resource 

management, and for prediction/warning of water related hazard. In NE Brazil, the majority of 

the reservoirs lack this information. In this study, bathymetry of 2 105 reservoirs in four regions 

of total area 10 000 km2 in NE Brazil were derived with very high-resolution digital elevation 

model (DEM) generated from TanDEM-X data. Based on the reservoirs’ bathymetry and a time 

series of RapidEye satellite images acquired in the period of 2009-2017, the temporal and 

spatial distribution characteristics of surface water storage in the four regions were obtained. 

Furthermore, the surface water storages derived from field monitoring were employed to 

validate the surface water storage yield by remote sensing approaches. Our study found that: 1) 

DEM derived from TanDEM-X acquired in the deep dry season can reveal the full bathymetry 

for 90% of the reservoirs; 2) NE Brazil is densely dammed with number of reservoirs 

0.04-0.23/km2, surface water area 0.78-4.13 ha/km2, and storage 0.01-0.23 hm3/km2; 3) Among 

all the reservoirs, those < 10 ha account for the most of the water body population but 

contribute the least to the regional surface water storage; 4) From 2009 to 2017 the overall 

surface water storage decreased at the rate of 105 m3/year on the scale of 5×5 km; 5) The 

decrease of surface water storage in the period of 2009-2017 showed high spatial heterogeneity. 

Our study has filled the data gap of the reservoir bathymetry and surface water storage capacity 

for the 2 105 reservoirs in NE Brazil. The high consistence between the surface water storage 

yield by remote sensing and that from in-situ measurements demonstrated the potential of 

monitoring the surface water storage with remote sensing. In addition, the surface water 

storages derived for these reservoirs on annual frequency for the past eight years can act as a 

reference for future water management and serve in optimizing hydrological modelling and 

validation in the regions. 

Keywords: Bathymetry, surface water storage, dense reservoir, TanDEM-X, RapidEye, 

northeastern (NE) Brazil 
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4.1 Introduction 

Surface water support the society in terms of supplying domestic water consumption, irrigation 

etc. In water scarce area, the knowledge on the water quantity is important for the 

local/regional water resource management, deployment, and prediction. Surface water also 

determines the status of wildlife habitats in landscape like wetland. On global scale, there is a 

necessity to know the spatial and temporal surface water availability (D E Alsdorf et al., 2007). 

Remote sensing data and relevant approaches have accounted for a majority part of the studies 

in deriving surface water quantity and their variations. Based on the physical characteristic of 

water in the visible spectrum and the interaction of water surface with transmitted synthetic 

aperture radar (SAR) pulses, water surfaces have been mapped on regional and the global 

scales (Donchyts et al., 2016; Fluet-Chouinard et al., 2015; Melrose et al., 2012; Papa et al., 

2010; Pekel et al., 2016; Song et al., 2014; Vörösmarty and Sahagian, 2000; Westerhoff et al., 

2013). Various data sets and approaches have been applied in those studies. The changes of 

water surface along multiple dates or continuous time series have also been revealed (Song et 

al., 2014; Tulbure and Broich, 2013). However, the water surface and its variation could not 

provide sufficient knowledge on the precise water quantity. Efficient water management and 

decision making require precise knowledge on surface water storage. 

Water volumetric variations in large lakes were depicted by combining water surfaces derived 

from satellite images and water level changes provided by altimetry measurements (Birkett, 

2000; Duan and Bastiaanssen, 2013; Jiang et al., 2017; Smith and Pavelsky, 2009; Zhang et al., 

2014). However, due to the large footprints of the altimetry measurements and wide 

inter-measurements distance (Zwally et al., 2002), such-derived water volumetric variations are 

constrained to large lakes (Birkett, 2000; Duan and Bastiaanssen, 2013; Jiang et al., 2017; 

Zhang et al., 2014). Therefore, these approaches are not applicable for regions characterized by 

(dense) small water bodies such as reservoirs. In addition, most of those studies revealed only 

partial volumetric variation of surface water, instead of the storage capacity variation. 
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A few studies estimated surface water storage with remote sensing approaches. With water 

surface derived from remote sensing images, water storage in lakes and reservoirs were derived 

from empirical or aggregated relations between the water surface and storage (Jiang et al., 2017; 

Ran and Lu, 2012). However, empirical water storage functions or those aggregated over many 

water bodies can potentially yield large inaccuracy in the estimated surface water storage. In 

addition, Yuan et al. (2017) estimated the surface water storage in Congo basin from the water 

level-storage function fitted from the water levels obtained for the region with InSAR 

technique. 

In areas without available water storage functions, the surface water storage can be derived 

from bathymetry which is the morphology of the water bodies. Up to now, various mechanisms 

have been investigated to derive bathymetry from remote sensing data and further to extract the 

surface water storage. Current studies on bathymetry retrieval mainly investigated shallow 

coastal areas, based on the attenuated substrate reflectance on optical image or the Bragg 

scattering of waves which are modulated by submarine topography and captured by SAR 

images (Brusch et al., 2011; De Loor and Loor, 1981; Dierssen et al., 2003; Jay and Guillaume, 

2014; Pacheco et al., 2015; Shuchman et al., 1985). The approaches adopted in these studies 

require certain conditions in the regards of clarity, depth , vastness of open water surface, and 

wind speed (> 3 m/s) (Dierssen et al., 2003; Jay and Guillaume, 2014; Reichert et al., 1998), 

which inland water bodies do not frequently fulfill. However, Sneed and Hamilton (2007) and 

Williamson et al. (2017) have adapted the physicl model developed by Philpot (1989) for 

coastal batymetry derivation, and obtained the water volumes of glacier lakes in Greenland 

using ASTER and  MODIS data, respectively. Even though, their studies still depend on the 

absence of sediment in those lakes formed on pure ice (Sneed and Hamilton, 2007). Moreover, 

Feng et al., (2011) attributed elevation measured along transactions to the isoclines yielded by 

MODIS data, and derived bathymetry for Poyang lake. Furthermore, the DEM derived from 

remote sensing images mapping the water bodies at low water stage can represent the 

bathymetry for them. Assuming the reservoirs were empty during the flights of SRTM DEM 
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mission in 2002, Avisse et al. (2017) adopted SRTM DEM to represent the bathymetry of a few 

inaccessible reservoirs in Syria, and derived the water storage variation in those water bodies 

along time series. Furthermore, Messager et al., (2016) developed a number of statistic models 

to model the global water storage, by referring to the surrounding topography of the water 

bodies represent by SRTM DEM. However, their models were constrained to natural lakes, and 

showed poor performance on water bodies smaller than 10 km2 (Messager et al., 2016). 

Interferometry SAR (InSAR) is a very effective technique for the DEM generation and ground 

displacement mapping (Bamler and Hartl, 1998; Rosen et al., 2000; Small, 1998). The 

TanDEM-X satellites are new generation of SAR constellations designed to generate a global 

DEM of high resolution and accuracy (Krieger et al., 2007; A. Moreira et al., 2004). DEMs 

derived from single pass TanDEM-X data have been used to study volcanic morphological 

changes, forest biomass estimate, and reservoir bathymetry retrieval etc.(Karila et al., 2015; 

Kubanek et al., 2015; Rossi et al., 2016; Schlund et al., 2013; Zhang et al., 2016). Among all 

these studies, Zhang et al. (2016) found that the accuracy of the DEMs derived from single pass 

TanDEM-X data can reach one meter at the areas of gentle terrain, and demonstrate great 

potential for representing reservoirs bathymetry. If derived from the very water level stage and 

covering a large area, those DEMs can provide bathymetry for regional water bodies. 

Integrating those DEMs with images of very high resolution (VHR) which provide the 

historical water surfaces can potentially reveal the historical surface water storage changes on a 

regional scale. 

In the semiarid northeastern Brazil water supply mainly comes from the numerous reservoirs of 

various sizes. The surface water storages in the reservoirs remarkably concern the residents and 

authorities due to the frequently occurring droughts. However, most of the reservoirs in the 

region do not have inventory data to support efficient water management or deployments. 

There is no record about the spatio-temporal characteristics of the surface water storage in the 

region. In this study, we aimed to investigate the temporal and spatial surface water storage 

characteristics in four representative regions of total area of 10 000 km2, comprising of 2 105 
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reservoirs of various sizes. We derived the reservoir bathymetry from TanDEM-X data using 

single-pass interferometry. Subsequently, with the water surface area yielded by RapidEye 

images acquired in the period of 2009-2017, surface water storages were obtained for the four 

regions on annual frequency. We further analyzed the spatial-temporal variation in the surface 

water storage and validated it with data from field observations. 

4.2 Data and method 

4.2.1 Study area 

The climate in NE Brazil is semiarid with pronounced wet and dry seasons. From January to 

June is the wet season when the major precipitation events take place; the dry season spans 

from July to December. The average annual precipitation is approx. 600 mm, and the potential 

evaporation exceeds 2000 mm per annum (INMET, 2018). Caatinga, an endemic seasonal 

shrubby forest with sparse distribution of trees, is the main land cover in NE Brazil (Bullock et 

al., 1995). 

Since the 19th century, numerous reservoirs have been constructed in NE Brazil to support the 

local water consumption in the regards of domestic utilization etc. (SIRH/Ce, 2015). Despite 

the large number of reservoirs and the seemingly enlarged water supply, the region is still 

vulnerable to frequent droughts. In-situ monitoring of these water bodies has been inconsistent, 

resulting from the managements undertaken by different country, federal state and local 

municipality organizations, and only covers a very small fraction of the total water bodies 

(SIRH/Ce, 2015). Specifically, a few of large reservoirs supported by the federal state and 

country are regularly monitored and maintained owing to their so-called strategic importance. 

In contrast, numerous reservoirs of small to medium size and those at remote areas barely 

receive any attention (SIRH/Ce, 2015). Due to the large number and relatively small size of the 

reservoirs (SIRH/Ce, 2015), the past abundant studies on the regional and global water 

mapping failed to provide inventory data for most of the reservoirs, or to depict the historical 

surface water storage in the region. Up to now, only a few remote sensing studies have aimed at 
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mapping the reservoirs in these regions , regardless the size of the reservoirs, e.g. (Heine et al., 

2014; Zhang et al., 2018, 2016). As a result, the regional surface water storage and the variation 

characteristics are still unknown for NE Brazil. However, the knowledge is the critical input for 

effective water management/deployment, and further studies on regional hydrology. 

From the vast range of NE Brazil, we selected four representative regions comprising the 

catchments of Bengue, Madalena, Pentecoste and Sangue (Figure 4.1). The four regions cover 

areas of 4114, 1575, 5140 and 4539 km2, and consist of reservoirs of 160, 256, 657 and 1007 

supporting the adjacent towns and/or settlements (Figure 4.1). 

 

Figure 4.1 Locations of the studied regions. A) The location of the four regions in the federal state of Ceará, Brazil; B-E The 

distribution of the reservoirs, drainage network and settlements in the four regions 
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4.2.2 Data 

We used TanDEM-X data to derive the DEM and further represent the reservoirs’ bathymetry. 

RapidEye time series provided the annual maximal inundation for the reservoirs. Precipitation 

data, simulated evaporation and soil moisture were employed to reflect the meteorological 

changes in the regions. Data acquired by the in-situ measurement were used to validate the 

surface water storage derived from remote sensing data. 

4.2.2.1 TanDEM-X data 

The four study areas are covered by ten TanDEM-X geometries in descending orbits (Figure 

4.1 A). In October-December 2015 when it was the deep dry season of the year, 59 single pass 

TanDEM-X scenes were acquired in bistatic mode, mapping each of the four regions two to 

three times with slightly different height of ambiguity (HoA) (Table 4.1). TanDEM-X data were 

delivered in the format of Co-registered Single look Slant Complex (COSSC), the same format 

as used for global DEM generation within the TanDEM-X mission (Duque et al., 2012). The 

mean coherence of each TanDEM-X scenes is above 0.8, and further parameters of the COSSC 

TanDEM-X data are list in Table 4.1. 

Table 4.1 The details of the TanDEM–X data used in this study. 
 

Catchment Bengue Madalena Sangue Pentecoste 

Date of 

acquisition 

(MM/DD) 

10/14 

10/25 

11/05 

11/16 

12/30 

11/25/ 

12/08/ 

12/19 

10/14 

10/25 

11/05 

11/16 

11/27 

12/08 

12/19 

11/09 

10/20 

10/31 

11/11 

11/22 

12/03 

12/14 

 

11/27 

12/08 

12/19 

10/14 

10/25 

11/05 

11/16 

12/30 

Incidence 

angle (degree) 
40.57 38.42 37.08 33.72 29.9 46.69 45.23 33.74 29.9 31.33 

Height of 

ambiguity 

76 

75 

76 

70 

63 

57 

59 

60 

58 

57 

58/ 

53 

42 

43 

44 

99 

98 

100 

86 

86 

84 

85 

51 

52 

53 

50 

49 

50 

45 

47 

4.2.2.2 RapidEye images 

The five RapidEye satellites visit the same area on the earth once a day. Such short revisit time 
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ensures that the entire representative regions were mapped at least once a year, considering the 

frequent clouds presence in NE Brazil. It is rather difficult for data from other optical missions, 

such as Landsat images with revisit cycle of 16 days. The time series of RapidEye images 

covers the period 2009- 2017, and the images were primarily from the dry season. The four 

regions were covered by 20 tiles of 3A RapidEye tiles (resolution 5 m) (Figure 4.1). In this 

study, only those images of cloud coverage less than 10% were adopted. In total, approximately 

300 scenes of RapidEye images from 20 tiles were used. 

4.2.2.3 Maximal water mask 

Pekel et al. (2016) derived the historical maximal water surface on global scale from Landsat 

archive, by employing an expert system comprising of a sequential decision trees. As their 

study combined images from long time series, the water surface products are regarded to be of 

high credibility. In this study, the maximal water masks from their study served in the following 

procedures: 1) constraining the bathymetry extent for individual reservoir mapped; 2) filtering 

out potential clouds and shadows in the water mask delineated from individual RapidEye image. 

Prior to the applications, a buffer was applied to the maximal water mask of each reservoirs to 

leave space for any possible underestimation of the water surfaces, due to the 16 days revisit of 

Landsat satellites used. The buffer distance is 1/3 of the radius of the circle which covers the 

equivalent area to the maximal water mask of the reservoirs. 

4.2.2.4 Global TanDEM-X DEM 

Five tiles of the global TanDEM-X DEM covering the four regions were used to validate the 

DEMs generate from TanDEM-X data in this study. The TanDEM-X data employed in the 

global TanDEM-X DEM mission were acquired in two phases characterized with slightly 

different acquisition baselines. As calm open water surface presents incoherent in an 

interferogram, the areas occupied by open water on either of the TanDEM-X acquisitions were 

indicated as invalid (TanDEM-X ground segment, 2013). The resolution of the final DEM data 

is 12 m (TanDEM-X ground segment, 2013), and the absolute and relative accuracy of the 
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DEM are 10 m and 2 m, respectively (TanDEM-X ground segment, 2013). The global 

TanDEM-X DEM is so far the best DEM data set for the region for the validation purpose. 

4.2.2.5 Tropical Rainfall Measuring Mission (TRMM) data 

Product from TRMM has been widely used for drought monitoring from climatological 

perspective (AghaKouchak et al., 2015; Immerzeel et al., 2009; Penatti Costa et al., 2015; 

Sahoo et al., 2011). Monthly precipitation data which is the TRMM 3B34 product were 

obtained from NASA data center to indicate the climatological background of the study area 

over the period of 2009 -2017. The data were processed with Version 7 TRMM Multi-Satellite 

Precipitation Analysis (Tropical Rainfall Measuring Mission (TRMM), 2018).The resolution of 

the data is 0.25°. 

4.2.2.6 Simulated evaporation and soil moisture data 

Global Land Data Assimilation System (GLDAS) employs advanced land surface modeling 

like Noah, CLM, VIC, and Mosaic land surface models and data assimilation techniques to 

yield optimal 1979-present fields of land surface states and fluxes in near-real time on global 

scale (Rodell et al., 2004). The system integrates observation-based precipitation, downward 

radiation products and the best available analyses from atmospheric data assimilation systems. 

The surface climatological results produced by GLDAS include snow cover, snow water 

equivalent, soil moisture, surface temperature, and leaf area index. The high-quality, global 

land surface fields provided by GLDAS support several current and proposed predictions on 

weather and climate, water resources applications, and water cycle investigations. The data 

used in this study are the Noah model yielded monthly evapotranspiration and 0-10 cm soil 

moisture, with resolution of 0.25 degree and temporal range of 2009-2017. 

4.2.2.7 In situ data 

Water Resources Management Company of Ceará (COGERH) monitors the strategic reservoirs 

in the federal state of Ceará as the state water agency. For most of the reservoirs it monitors, 

GOGERH conducts the topography survey before the reservoir construction, and thus obtains 
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the reservoir bathymetry and the water level-area-storage relations (COGERH, 2018). In 

addition, GOGERH routinely collects the daily water level measurements for these reservoirs. 

In this study, the water level-area-storage relations and the daily water levels were provided for 

the three reservoirs Fogareiro, Sousa and Caracas (Figure 4.1). The water level measurements 

for the first two reservoirs range from 2009-01-01 to 2017-12-31, and for the reservoir Caracas 

the available water level measurements range from 2009-01-01 to 2012-02-27. 

4.2.3 Method 

4.2.3.1 Reservoirs bathymetry derivation 

DEMs were generated from each of the TanDEM-X scenes with single pass interferometry by 

following the workflow in Zhang et al. (2016), with the offset removal reserved. The 

interferometry was realized in GAMAM software (Werner et al., 2000). Among the DEMs 

generated from TanDEM-X in the same geometry, the one with least HoA were selected and 

mosaicked with its counterpart from other geometries for further bathymetry derivation. On 

such-derived DEMs, the areas of coherence less than 0.6 were regarded as open water and/or 

areas deteriorated by rough terrains. The elevations of these areas were replaced with the 

minimum of the surrounding elevation. As a result, in the reservoir where open water retained 

during the acquisitions of TanDEM-X data the elevations of the pixels at the open water surface 

represent the contemporary water level. 

In the study of Zhang et al. (2016), the generated DEMs were validated only for Madalena 

region. However, the data used in this study have different HoAs, and this study covers four 

regions of slightly different topography. Therefore, instead of directly adopting the accuracies 

established by Zhang et al. (2016) for the single region, we validated the DEMs generated in 

this study with the global TanDEM-X DEM. Before the validation, invalid areas in either of the 

two DEM data sets were masked out. Specifically, areas of coherence less than 0.6 indicate the 

invalid elevation in the DEMs generated in the study, and the data quality maps delivered 

together with global TanDEM-X DEM position the invalid elevation in the product. The DEM 
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validation was conducted within the buffered zones of the maximal water mask. The reasons of 

undertaking the evaluation in this manner are: 1) the bathymetry is only inside the reservoir; 2) 

the areas far away from the drainage network are possibly characterized by terrains not relevant 

to the reservoir bathymetry. The absolute accuracy and the relative accuracy were established 

according to Rosen et al. (2000). 

4.2.3.2 Water surfaces from RapidEye images 

Top of atmospheric reflectance was obtained for each RapidEye image. For each RapidEye tile 

a cloud-free reference image was selected and subsequently shifted to match the topography 

represented by the DEM generated in the study. The process was conducted in ARCGIS (ESRI, 

2011) with the assistance of visual inspection. All RapidEye images from the same tile were 

co-registered to the corrected reference image with algorithm AROSICS (Scheffler et al., 

2017). 

Water surfaces were delineated from each RapidEye image in the time series. In the leaf-off 

season, vegetation zone in water bodies like wetland show distinct spectrum from terrestrial 

objects (Carter, 1982). Based on this, water surface beneath the vegetation were obtained with 

normalized differential vegetation index (NDVI) (Zhao et al., 2011). In this study, the areas 

where normalized differential water index (NDWI) > 0 were denoted as open water, and the 

areas of NDVI > 0.4 as the water surface covered by vegetation, i.e. emergent and floating 

macrophytes in the reservoirs. From individual RapidEye image, open water and vegetation 

zone in the adjacency were obtained separately, and then aggregated to produce water surface 

captured by this image. Subsequently, a filtering with the buffered maximum water mask was 

applied to eliminate the possible contamination of clouds, shadow etc. Water surface from 

RapidEye images acquired in the same year were aggregated to mitigate the data gaps caused 

by the constrained of 10% clouds coverage. This water surface represents the complete 

maximal water surface that any optical archive can provide in the length of the time series 

2009-2017 for all the reservoirs in the four regions. Only data in the dry season were used 
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considering availability of the data, and also that the water availability is more concerning in 

the dry season than in the wet season. Ultimately, the water surfaces of high resolution were 

generated for the four regions on annual frequency. 

4.2.3.3 Water storage extraction 

The surface water storages were derived from the DEM using the water surface from the 

RapidEye images. Before the surface water storage extraction, the DEMs were resampled to the 

same pixel size as the RapidEye images. The co-current water level was determined by the 

mean of the elevation underlying the water/land borders, i.e. the water extent derived from 

RapidEye data set. The surface water storage in a reservoir was obtained as shown by the 

equation below: 

𝑉 =  ∑ ( 𝐻𝑖 − 𝐻𝑤)𝐴
𝑛

𝑖=1
  𝑤𝑖𝑡ℎ 𝐻𝑖 > 𝐻𝑤  (4.1) 

where 𝑉 is the water storage corresponding to the water surface extracted from RapidEye 

images mapping the reservoir in a certain year; 𝐻𝑖 is the elevation of the pixel beneath the 

water surface yield from the RapidEye images mapping that reservoir in that year; 𝐻𝑤 is the 

co-current water level of the reservoir; 𝑛 is the total number of the water surface pixels; 𝐴 is 

the pixel area of the RapidEye images. 

The accuracy of the extracted storage is defined as: 

𝛿𝑉 = 0.95𝑛  ∑ (𝛿𝐸𝑖𝐴𝐷𝐸𝑀)
𝑛

𝑖= 1
 (4.2) 

Where 𝛿𝐸𝑖 is the relative accuracy established for the pixel Number 𝑖 on the DEM generated 

in this study, 0.95 is the confidence level at which the DEM accuracy was established. 𝐴𝐷𝐸𝑀 is 

the pixel area of the DEMs generated in this study. 

4.2.3.4 Gridding 

In order to eliminate the impact of reservoirs size difference on the illustration of the results on 
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spatial scale, we presented the derived results relevant to the surface water storage in a grid 

form. The size of grid cell was set to be 5×5 km based on the following concerns: 1) to respect 

the dense distribution of water bodies in the regions, as overlarge grid cells may introduce the 

overlaid effect of the large and the neighboring small reservoirs. 2) The medium reservoirs in 

the region are about 2-3 km long, the grid cell should respect the size of the reservoirs. The 

overall extent of the grid was determined by the RapidEye tiles covering the four study areas. 

The parameters attributed to the grid cells include maximal surface water storage in the period 

2009-2017, storage/area ratio, annual surface water storage, and the change rate of surface 

water storage in the same period. The maximal surface water storage of the grid cell is the sum 

of the maximal surface water storage of the reservoirs whose geometric centroids fall in the 

extent of the grid cell. The annual surface water storage of the grid cell was attributed in the 

same manner. Storage/area ratio of the grid cell was calculated based on its maximal area and 

maximal surface water storage. The temporal change rate of surface water storage was fitted 

grid cell-wise in the four regions. 

4.3 Results 

In this section, we presented the results on the assessment of the DEM generated for reservoir 

bathymetry representation, the spatial distribution of surface water storage, and the temporal 

variation of the surface water storage on overall and local scales in the four regions. 

4.3.1 Reservoir bathymetry from TanDEM-X DEM 

4.3.1.1 TDX DEM validation 

The DEMs generated from TanDEM-X data were validated against the global TanDEM-X 

DEM product. The absolute accuracies of DEM are in the range of 3-6 m, and the relative ones 

are in the range of 1-5 m (Table 4.2). DEMs from the same geometry have nearly the same 

absolute and relative accuracies. The DEMs of the largest relative accuracies are in the Bengue 

region. 
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Table 4.2 The accuracy of the DEMs generated in the study  
 

 Bengue Madalena Sangue Pentecoste 

Date of 

acquisition 

(MM/DD) 

10/14 

10/25 

11/05 

11/16 

12/30 

11/25 

12/08 

12/19 

10/14 

10/25 

11/05 

11/16 

11/27 

12/08 

12/19 

11/09 

10/20 

10/31 

11/11 

11/22 

12/03 

12/14 

11/27 

12/08 

12/19 

10/14 

10/25 

11/05 

11/16 

12/30  

absolute 

accuracy 

(m) 

6.09 

6.12 

6.01 

5.99 

5.36 

5.24 

5.24 

5.02 

4.10 

4.10 

4.09 

4.18 

3.30 

3.35 

3.45 

3.28 

3.31 

3.74 

3.32 

3.33 

3.20 

3.14 

5.02 

5.76 

5.71 

6.00 

5.98 

5.19 

5.82 

5.08 

Relative 

accuracy 

(m) 

5.11 

5.14 

5.10 

5.00 

4.2 

4.24 

4.2/ 

4.0 

2.47 

2.48 

2.45 

2.59 

1.84 

1.50 

1.79 

2.30 

2.35 

2.38 

2.36 

2.01 

2.41 

2.39 

2.93 

2.57 

2.46 

1.66 

1.64 

2.66 

2.49 

2.01 

4.3.1.2 Impact of remaining water on derived reservoir bathymetry 

Figure 4.2 shows the areal percentages of the remaining water in the reservoirs during the 

acquisitions of TanDEM-X data in the four regions. The remaining water surfaces indicate the 

area where the bathymetry derivation failed. The majority of the reservoirs (65%-92%) were 

empty during October-December 2015, with remaining water accounting for approximate 0% 

of the reservoir’s maximal area. In only few reservoirs (~ 5%) the areal ratios of the remained 

water were larger than 50% (Figure 4.2). In fact, the reservoirs with large area of remaining 

water were the very small ones. Some the large ones which were often monitored by the local 

authorities were empty or have remaining water surface less than 50% during the TanDEM-X 

data acquisition (Figure 4.2). This indicates: 1) DEM generated in this study can effectively 

represent the full bathymetry for the majority of the reservoirs in the region; 2) these regions 

have suffered from a severe drought in October-December 2015. 
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Figure 4.2 The areal percentage of water remained in the four regions. The second and third ticks on the 

Y-axis of the scatterplots are at the position of 10 ha and 50 ha, corresponding to the classes of the reservoirs. 

4.3.2 Spatial characteristics of water surface storage 

4.3.2.1 Composition of surface water in the four regions 

Table 4.3 shows the overall constitution of water bodies in the four regions. In total, there are 2 

105 reservoirs in the four regions and classified into four classes according to their sizes 

(Figure 4.3). In general, the small reservoirs (<10 ha) account for the largest proportion of the 

reservoir population but contribute the least to the regional surface water storage, vice versa. 

For example, the small reservoirs (< 10 ha) account for 87%-94% of the water bodies, 4%-29% 

of surface water storage. Large reservoirs (>10 ha) account for 5%-13% of the water bodies but 



4.The spatio-temporal variation of surface water storage in dense reservoirs 

 

118 

 

contributed 68%-95% of surface water storage (Table 4.3). 

The regions are impounded with high density. On average, there is 0.04-0.23 reservoir in every 

square kilometer. The water surface correspond to this density is 0.23-3.35 hectare (ha) /km2, 

and the correspondng surface water storage is 0.01-0.17 hm3/km2. Among the four regions, the 

Bengue region is the least densely impounded, and the Sangue region is the most densely 

dammed. Madalen and Pentecoste have similar overall reservoir densities ( Table 4.3). 

The surface water storage capacities in the regions Bengue, Madalena, Pentecoste and Sangue 

are 26.00, 358.92, 218.94, 190.07 hm3, respectively. The Madalena region is the smallest 

among the four regions (Figure 4.1), but it potentially stores the most surface water (Table 4.3). 

The regions Pentecoste and Sangue have very large numbers of the reservoir and the water 

surface, but relatively fewer surface waters storage capacity than the Madalena region (Table 

4.3). 
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Table 4.3 The potential contribution of reservoirs to the region water resource in the four regions. 
 

  Bengue Madalena Pentecoste Sangue 

  Total 
Percentage 

(%) 
Total 

Percentage 

(%) 
Total 

Percentage 

(%) 
Total 

Percentage 

(%) 

Number 

< 1 79 49.06 91 35.41 202 31.42 503 48.13 

1 - 10 69 42.86 132 51.36 361 56.14 488 46.70 

10 - 50 11 6.83 22 8.56 64 9.95 46 4.40 

> 50 2 1.24 12 4.67 16 2.49 8 0.77 

In total 161 100 257 100 643 100 1044 100 

 
Density 

(/km2) 
0.04 - 0.16 - 0.13 - 0.23 - 

Area 

(ha) 

< 1 36.75 4.80 67.39 1.04 131.34 2.16 321.28 5.63 

1 - 10 181.33 23.70 727.70 11.17 1483.52 24.38 1981.41 34.70 

10- 50 209.99 27.45 817.15 12.55 1724.56 28.34 1301.78 22.80 

> 50 337.03 44.05 4898.43 75.24 2745.95 45.12 2105.81 36.88 

In total 765.09 100 6510.67 100 6085.38 100 5710.28 100 

 
Density 

(ha/km2) 
1.86 - 4.13 - 1.18 - 1.25 - 

Surface 

water 

storage 

(hm3) 

< 1 0.28 1.06 0.64 0.18 1.10 0.50 2.89 1.52 

1 - 10 3.17 12.19 14.96 4.17 27.66 12.64 32.40 17.05 

10- 50 5.95 22.90 28.14 7.84 55.42 25.31 37.63 19.80 

> 50 16.60 63.84 315.16 87.81 134.76 61.55 117.15 61.63 

In total 26.00 100 358.92 100 218.94 100 190.07 100 

 
Density 

(hm3/km 2) 
0.01 - 0.23 - 0.04  0.04 - 

4.3.2.2 Spatial characteristic of surface water storage within regions 

Figure 4.3 shows the spatial distributions of surface water storage in the four regions on the 

scale of 5×5 km grid. A few gaps present in the grids over the four regions (Figure 4.3). This 

coincides with the result in Table 4.3, and indicates that the regions are densely impounded. 

Among the four representative regions, Sangue is most densely impounded, followed by 

Pentecoste, Madalena and Bengue (Figure 4.3). 

Reservoirs in the majority of the grid cells are of surface water storage 104-107 m3 and 
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distributed in the upper and middle streams of the drainage systems. Reservoirs at the outlets 

claim the largest surface water storage, ranging from 107 to 109 m3 (Figure 4.3). However, 

reservoirs of storages up to 107 m3 were also constructed in the upper and middle reaches of the 

Madalena, Pentecoste and Sangue regions (Figure 4.3). The distributions of surface water 

storage in the four regions show high spatial heterogeneity. 

For the grid cells in all the representative regions, the accuracies of the maximal surface water 

storage are in the range of 0-250 m3 (Figure 4.3 B, E, H and K), which is very high in 

comparison to the estimated maximal surface water storage (Figure 4.3 A, D, G and J). For the 

majority of the reservoirs, the accuracies of surface water storage are 0-20 m3, including those 

of surface water storage up to 1010 m3 (Figure 4.3 B, E, H and K). 

The storage/area ratio of a grid cell is related to the morphology of reservoir whose centroid 

falls in the grid cell and positions the areas where discrepancies may take place between the 

water resource estimated from area and volume. Overall, larger storage/area ratios present in 

grid cells of large surface water storage, with few exceptions in the upstream of the regions 

(Figure 4.3 C, F, I and L). 
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Figure 4.3 The spatial distribution of maximal surface water storage, area, and the ratio of maximal water storage and area 

in the 5×5 km grids over the four regions. The gaps in the grids indicate that no reservoir’s centroid falls in those grid 

cells. Black squares indicate the cells selected to show the temporal variation of local surface water storage. 
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4.3.3 Temporal variation of surface water storage 

4.3.3.1 Temporal variations of precipitation deficit and surface soil moisture 

The four regions have similar precipitation deficits (i.e. precipitation - evaporation) over the 

period of 2009-2017 (Figure 4.4 A). The Bengue region presented the smallest soil moisture, 

and the other three regions had similar and higher soil moisture than the Bengue region (Figure 

4.4 B). The change directions of the precipitation deficit and the soil moisture were well 

synchronized (Figure 4.4 A-B). Two significant drops took places in the precipitation deficit 

and soil moisture in all the four regions in 2005-2007 and 2012-2015. In addition, both the 

precipitation deficit and the soil moisture presented a drastic sub-drop in 2010. The soil 

moisture in the four regions showed faster recoveries than the precipitation deficit. For example, 

after the drop at 2012, the precipitation deficit remained very low and even showed further 

decreased in 2016, but the soil moisture in all the four regions tended to resume already in 2013, 

and in 2017 it nearly reached its magnitude during 2009-2013. 

 

Figure 4.4 Temporal variations in the annual mean precipitation deficit (A) and the annual mean soil 

moisture (B) in the four regions in the period of 2009-2017. 

4.3.3.2 Temporal variation of overall surface water storage in the regions 

From 2009 to 2017, the total number, area and storage of water bodies decreased continuously 

in the Madalena, Pentecoste, and Sangue regions, but with slightly different trajectories. 

In Bengue, the total number of water body reached the minimum in 2013 and resumed in 2014. 

Surface water area and storage showed continuous decrease, slightly fluctuated in 2016, and 
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increased in 2017 (Figure 4.5). Surface water storage showed a slight increase in 2010. In total, 

the amount of the surface water lost in the region during last eight years was 220 ha by area and 

12 hm3 by volume. The reservoirs 10-50 ha responded to the precipitation deficit increase in 

2013/2014. 

In the Madalena region, the number of water body showed an overall decrease from 2009 to 

2017, and a fluctuation in 2014. In 2017, the number of the reservoirs resumed to 

approximately 150. The area and storage of surface water showed drastic and continuous 

decreases in the period 2009-2016, and then a slight resilience in 2016/2017. From 2009 to 

2017, this region lost surface water of approximately 6 000 ha by area and approximately 300 

hm3 by volume. 

In Pentecoste, the number, area and storage of surface water bodies showed continuous 

decreases until 2017, and the decreases accelerated from 2010. From 2009 to 2017 the total 

water loss in this region was approximately 4 000 ha by area, and approximately 200 hm3 by 

volume (Figure 4.5). 

In the Sangue region (Figure 4.5), the number, area and storage of surface water showed first 

slight increases in 2011, and then continuous decreased. From 2016 to 2017, there was a slight 

increase in the number and area, but not in water storage. By the year of 2017, the loss of 

surface water in the region was approximately 6 000 ha by area and approximately 110 hm3 by 

volume. 

In summary, the changes of the reservoirs numbers in the four regions were mainly reflected by 

the reservoirs < 10 ha, and the reservoirs >10 ha, particularly those > 50 ha, reflect the changes 

in the water surface and the storage in the four regions. 
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Figure 4.5 Temporal variations in the total number, area and storage of water bodies in the four regions. 

4.3.3.3 Spatial heterogeneity of temporal variation of surface water storage 

The overall variation of surface water storage in the four representative regions in the period 

2009-2017 showed that 2010, 2013, and 2015 could be the critical years in the temporal 

dynamics of surface water in NE Brazil (Figure 4.5). Therefore, the surface water storages in 

the three years were selected to show their spatial characteristics in the four regions (Figure 4.6) 

and indicate the spatial characteristics of surface water storage variation in NE Brazil. 

In the Bengue region, while the overall surface water storage decreased in the period of 

2009-2017 (Figure 4.6), the reservoirs in the upstream of the region dried up first (Figure 4.6 

A-C). Dramatic decrease were shown from 2011 to 2013. From 2013 to 2015 the surface water 

storage showed slight spatial change (Figure 4.5 B-C). Some small reservoirs in the midstream 

and upstream which were empty in 2013 were refilled in 2015. Meanwhile, the surface water 
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storage in the reservoir at the outlet showed a significant drop between 2010 and 2015 (Figure 

4.6 A-C). 

In the Madalena region, from 2010 to 2013 the dry-up appeared mainly in the reservoirs in the 

upper and middle reach. Most of the reservoirs in the upper and middle reaches experienced 

decrease-and-refill process. Some small reservoirs in the upper and middle streams were 

refilled in 2015. Barely some surface water presented in the lower reach of the region in 2015. 

All the large reservoirs undertook significant water loss and present their minimal surface water 

storages in 2015. Large reservoirs undertook remarkable water loss. Some relatively large 

reservoirs in the catchment even become empty by 2015. 

In the Pentecoste region, as the overall surface water storage decrease during the period of 

2009-2017 (Figure 4.5 C, F and I), dry-up presented in reservoirs in the upstream of the 

catchment in 2013 and intensified in 2015. A few small reservoirs which were dry in 2013 were 

refilled with little water in 2015 (Figure 4.6 D-F). Significant decrease of surface water storage 

took place in all the reservoirs during the period, particularly in the largest one (Figure 4.6 

D-F). 

Very drastic loss of surface water took place in the entire Sangue region in the period of 

2010-2013 (Figure 4.6 J-L). From 2013 to 2015 the surface water storage in the region 

remained very little (Figure 4.6 K-L). The region presented fewer empty reservoirs than other 

three regions, as only a few areas at the upstream of the catchment presented no water in 2015. 
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Figure 4.6 The spatial distributions of surface water storages in the four regions in 2010, 2013 and 2015. Gray grid cells 

indicate that no surface water appeared in that grid cells in the corresponding years 

Figure 4.7 shows the change trajectories of the surface water storage along the time series in 

the highlighted grid cells in Figure 4.3. The surface water storage in the areas selected from 
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Bengue region have relatively small storages and responded to the decrease in precipitation 

deficit in the region in 2012/2013. Some reservoirs even dried up in 2013 and were refilled in 

2015/2016 (Figure 4.7 A and E). In Madalena region the surface water storages in individual 

reservoirs have decreased since 2009, and the decrease rate accelerated in 2013 (Figure 4.7 B 

and F). A few reservoirs in the region slightly responded to the increase in the precipitation 

deficit from 2014/2015 and showed increased surface water storage (Figure 4.7 ). All the 

reservoirs in the grid cells selected from the Pentecoste region showed decreased surface water 

storage (Figure 4.7 C and G). From 2010, the decrease rates of surface water storage in the 

large reservoirs in the region accelerated in 2010. The surface water storage in the small 

reservoirs (< 10 ha) remained rather stable or decreased slowly (Figure 4.7 G). From 2016 on, 

gentle increases presented both in the small and the large reservoirs which were in the middle 

stream of the catchment from 2016 on (Figure 4.7 C). The surface water storage in the grid 

cells selected from Sangue region showed slight increases from 2009 to 2011 and drastic 

decreases from 2011 (Figure 4.7 ). 

The slightly different trajectories (Figure 4.7 ) indicate the heterogeneous interactions between 

the reservoirs recharge and local water depletion. The large reservoirs supporting the nearby 

towns showed dramatic and continuous decreases and responded to the increases in the local 

precipitation deficit. Small reservoirs responded instantly to the local precipitation deficit 

variations. 
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Figure 4.7 The change trajectory of the water storage in reservoirs in the grids indicted in Figure 4.3 in the four regions. ID in the 

legend means the position of the cell in the grid covering the region. The grid in the top left has the smallest grid ID and the bottom 

right has the largest one. The sub-figures E-H present the zoom-ins of sub-figures A-D, and focus on the small reservoirs 

4.3.3.4 The year of minimum surface water storage 

As the reservoirs in the four regions took different trajectories (Figure 4.7 ), the year of 

minimum surface storage in each subset are depicted (Figure 4.8), regardless the seasonal 

variation. When extracting the year of the minimal surface water storage for the reservoirs in 

the grid cells, if the reservoirs in the grid cells had reached their minima more than once, 

including dry-up, the first occurrence was taken. 

In Bengue region most of the reservoirs which are small than 10 ha reached the (first) storage 

minimum in 2012/2013, and these at the outlets and a few in the catchment presented the 

storage minima in 2017 (Figure 4.8 A). The majority of the reservoirs in the upper reach of 

Madalena region presented their storage minima in 2012/2013, and those in the downstream 

showed their minima in 2015/2016 (Figure 4.8 B), following the change trend of overall 
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surface water storage in Figure 4.5. In the mapped area of the Pentecoste region, the minimal 

storage occurred in all the years in the times series, without clear spatial clustering (Figure 4.8 

C). In Sangue region, the reservoirs in middle stream and the boundary areas of the catchment 

presented storage minima in 2012/2013. The rest of the region reached their minima in the 

surface water storage in 2016/2017 (Figure 4.8 D) when the precipitation deficit in the region 

showed its minimum of the past eight years (Figure 4.4). 

 

Figure 4.8 The year of lowest surface water storage in the four regions 

4.3.3.5 The change rate of surface water storage 

The surface water storages in the four regions have shown overall decreases in the period of 

2009-2017, with few exceptional areas in the Madalena and Bengue regions (Figure 4.9). 

Moreover, the decrease trend presented spatial heterogeneity, suggesting unevenly distributed 

water depletion stress. The water loss in the areas where large reservoirs are located was the 
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most significant and up to -108m3/year (Figure 4.9). It suggests that large reservoirs undertake 

more water extraction pressure than other reservoirs. In contrast, small reservoirs show less 

significant water loss over the time series. For most the areas, the change rate of surface water 

storage from 2009 to 2017 lies at approximately -105 m3/year in the spatial range of 5×5 km 

(Figure 4.9). A few areas in the upper/middle reaches of Bengue, Madalena and Pentecoste 

regions where mainly the small reservoirs were constructed even showed increased surface 

water storages (Figure 4.9 A-C). 

4.3.4 Validation surface water storage with in-situ data 

The surface water storages derived with remote sensing images are compared to those derived 

from inventory data and in-situ measurements (Figure 4.10). The surface water storages derived 

 

Figure 4.9 The spatial distribution of water storage changes in the regions. The signs in the legend define the 

change direction, namely, -10 means the surface water storage decreased by 1010 m3/year and 10 means it 

increased by 1010 m3/year. 
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from annual water masks were attributed to all the days in the dry season, namely, in that year 

all the days after 1st July have the same surface water storage. The surface water storages of 

those days correlate to the maximal water surface captured by the RapidEye images in the dry 

season of that year. Meanwhile, for the first half of the year the surface water storage in the 

reservoirs were not estimated. During the validation, the surface water storages derived in this 

study were regarded to be consistent with the results derived from in-situ measurement, if the 

two results for the same year meet each other in the range of the year. 

Overall, in the reservoir Fogareiro, Sousa, and Caracas, the surface water storages derived in 

this study match well with that obtained from in-situ measurements, and the two results showed 

the similar patterns (Figure 4.10). For the reservoir Caracas, the remote sensing derived surface 

water storage can fill the gaps where the in-situ measurements were not available (Figure 4.10 

C). 

 

Figure 4.10 Comparison of surface water storage derived in this study with in-situ measurements. The reservoir Fogareiro is in 

Madalena region, and the reservoir Sousa and Caracas are in the Pentecoste region (Figure 4.1). 

4.4 Discussion 

4.4.1 TanDEM-X derived DEM and reservoir bathymetry 

TanDEM-X data acquired during the low water level were used to generate DEM and represent 

the bathymetry for reservoirs in four representative regions in NE Brazil. With accuracy of 2-5 

m relative, the bathymetry is the best for the reservoirs in the region on such scale in 

comparison other existing DEMs such as SRTM DEM which was adopted by Avisse et al. 



4.The spatio-temporal variation of surface water storage in dense reservoirs 

 

132 

 

(2017). However, the accuracy were established by referring to the global TanDEM-X DEM 

whose accuracy is at 10 m for absolute and two meters in relative aspect (Wessel et al., 2018). 

So the actual accuracy of the bathymetry is possibly better than the established in the study, and 

potentially can reach the accuracy established by Zhang et al. (2016) for the region Madalena. 

The large absolute accuracy can be attributed to the SRTM DEM which was used to remove the 

majority phase of the earth. The relative are probably related to the roughness of the local 

terrain. The difference between the DEM generated in this study and global DEM can be partly 

attributed to the land cover (Wessel et al., 2018). As the region is covered by shrubby forest and 

the TanDEM-X data used for the global DEM product were acquired regardless the time of the 

year, while the data used for bathymetry representation were derived in the deep dry season 

when the canopy were open. On the other hand, the baseline of the TanDEM-X used for the 

DEM generation are very large in comparison to the data used by Zhang et al. (2016), and such 

yielded DEM are insensitive to the micro-topography around the reservoirs edges. Therefore, 

the slight topography variation along the reservoirs may have also contributed to the inaccuracy 

of the DEM generated in this study. Derived from TanDEM-X recently acquired, the reservoirs’ 

bathymetry serves as the most up to date data for these reservoirs. These data of high resolution 

and accuracy have filled the data gap for the region, ensured the precise estimate on the water 

storage, as shown in Figure 4.3, and thus provided valuable information for water management 

in the semiarid northeastern Brazil with high reservoir density. 

4.4.2 Bathymetry, surface water storage capacity and spatial-temporal variation of regional reservoirs 

In this study we derived the bathymetry for 2 105 reservoirs on regional scale. This data set has 

enabled to extract the water storage and depict its variations on spatio-temporal scale. Based on 

this bathymetric data, the potential water storage capacities in the representative regions 

Bengue, Madalena, Pentecoste and Sangue were estimated to be 26.00, 358.92, 218.94, 190.07 

hm3, respectively (Table 4.3). These data were derived purely from remote sensing data of high 

resolutions and accuracies. The surface water storages estimated in the study were of high 

confidence as they were directly derived from the high accuracy topography inside the 
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reservoirs instead of the surrounding topography as Messager et al. (2016) did. Covering 

reservoirs smaller than 10 km2 whose surface water storage have been poorly estimated by 

Messager et al. (2016), this study provided detailed and complete inventory data for the 

reservoirs in the regions. 

In comparison to those studies only focusing on the volumetric variation in a few large lakes 

(Duan and Bastiaanssen, 2013; Gao et al., 2012; Zhang et al., 2014), this study derived nearly 

decadal variation of surface water storage for 2 105 reservoirs of various sizes distributed in 

four regions of total area of approximately 10 000 km2 (Figure 4.1, Figure 4.3 and Figure 4.4). 

The results from this study can be directly used for validating/optimizing hydrological 

modelling etc. Instead of the total water storage derived from GRACE data which include wet 

soil and potential ground water (Melo et al., 2016), this study yielded surface water storage. 

These data sets are the first unprecedented results on such scale for the regional and local water 

authorities. They can potentially improve the water management for the region and provide 

insight for the surface water storage characteristic in the entire dryland in NE Brazil. 

The validation of the surface water storage with that obtained from in-situ measurements 

demonstrated the reliably of the surface water storage derived in the study (Figure 4.10). It also 

implied the potential of future remote sensing monitoring of the reservoirs in the representative 

areas (Figure 4.10 C). 

4.4.3 Controlling factors of the surface water storage change 

4.4.3.1 Climate 

The surface water storage in NE Brazil had dropped since 2010. The similar trends were also 

found from the total water storage derived from GRACE data in the reservoirs in southern 

Brazil (Melo et al., 2016).This result indicates that the drought from 2010 to 2017 was probably 

a continent-wise drought. The same drought was also noticed in Amazon region revealed by the 

total water storage deficit (Thomas et al., 2014). Humphrey et al. (2017) used total water 

storage change derived from GRACE data and found that there is a sub-decadal water storage 
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variation corresponding to the climate on the global scale. 

In this study, the climatological changes in the four representative regions were depicted with 

the local precipitation deficit (Figure 4.4 A). The precipitation deficit showed significant 

overall decrease from 2009 to 2017, with slight increase in 2014-2015. The overall surface 

water storages in the four regions have decreased from 2009 to 2017. Majority of areas in the 

region presented the minimal surface water storage 2015 (Figure 4.5 and Figure 4.7), which 

indicates the water scarcity in 2015 is the most severe in the region in the period of 2009-2017. 

Small reservoirs (< 10 ha) and a few relatively large ones (> 10 ha) constructed in the middle or 

upper stream also responded to the increase of precipitation deficit in 2016/2017 (Figure 4.7 B, 

C, F and G). Very likely, the overall surface water storage in the entire NE Brazil also 

responded in the same manner to the precipitation deficit changes (Figure 4.4 A). In Sangue, 

the number, area, and storage of reservoirs slightly increased in 2011 (Figure 4.5). No 

RapidEye images were acquired for the regions Bengue, Madalena, and Pentecoste in 2011. 

However, if the data were available for the three regions in 2011, the surface water storage 

there would probably show similar change directions, as the precipitation deficit in the three 

regions also show similar fluctuations (Figure 4.4). 

4.4.3.2 Land use 

Weng et al. (2017) found that land use/cover change impact the water availability in Amazon 

region. The land cover in NE Brazil is mainly Caatinga, the shrub forest, with very sparse 

farming fields distributed in between (Bullock et al., 1995). However, the federal state Ceará in 

NE Brazil is hardly farm industry oriented. Field observation found that the existing fields are 

small patches used by individual households for self-supply. They are often distributed on the 

exposed reservoirs bottom due to the terrain and barren soil outside of the reservoirs. Therefore, 

we do not regard significant impact from the land use to the water consumption heterogeneity 

in the four representative regions. 
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4.4.3.3 Human activities 

The large reservoirs were mainly constructed in the vicinity of the towns which demand large 

amount of water (Figure 4.1). According to the federal census, there is no significant growth in 

the population in the four regions (IBGE, 2015). Therefore, the contribution of population 

growth to the continuously decreased surface water storage is regarded to be ignorable for the 

four regions. 

In the four regions the large number of small ones (< 10 ha) do not contribute significantly to 

the regional surface water storage (Table 4.3 and Figure 4.5). In contrast, the few large 

reservoirs (> 10 ha), particularly those > 50 ha, provide more than 90% of the surface water 

storage (Table 4.3 and Figure 4.5). However, with the high spatial density, wide distribution in 

the region and small storage/area ratios (Table 4.3, Figure 4.5 and Figure 4.6), small reservoirs 

probably have contributed to and maintained the surface soil moisture. For example, reservoirs 

density the Bengue region is the least (Table 4.3), so is the soil moisture in this region (Figure 

4.4 B), while the other three regions are of similar reservoir densities as well as soil moisture 

(Table 4.3 and Figure 4.4 B). This may also explain why the soil moisture recovered so swiftly 

in the region, while the precipitation deficit remained very low from 2012 in the region (Figure 

4.4). 

The small reservoirs of high densities in the upstream collect the runoff, and reduce the refill of 

the large reservoirs downstream, particularly to the large reservoirs downstream and outlets of 

the regions (Figure 4.3). This phenomenon is more significant in dry years than year of normal 

precipitation deficit, as very often there is no overflow from small reservoirs. However, the 

water demand from the nearby towns/settlements remain the same all the years and the water 

extraction from the reservoir stay constant, regardless the precipitation deficit. This caused the 

accelerated decrease in the surface water storage in these water bodies in the dry years (Figure 

4.5 and Figure 4.7). 

In addition, the inhabitants in the regions are supported by different reservoirs. Those in the 
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towns rely on the large reservoirs which are often situated at the outlets of the catchments. 

While the inhabitants in the scatters settlements in the rural area are supported by those 

relatively small reservoirs. As the relatively small reservoirs dry up due to the limited recharge 

from precipitation and runoff, the water consumption of the remote settlements is supplied by 

the large reservoirs through mobile water tanks. Therefore, the overlaid effect of decreased 

regional precipitation deficit and the concentrated water demand from the nearby 

settlements/towns accelerated the decrease in surface water storage of large reservoirs. 

Therefore, the variations of the total surface storage in the representative regions are controlled 

by overall precipitation deficit in the regions. The small reservoirs (< 10 ha) and a few large 

reservoirs (> 10 ha) constructed in the upstream responded to the short-term variation in the 

regional precipitation deficit. The intensive water withdrawal from the large reservoirs in the 

dry season caused accelerated decrease in the surface water storage in these reservoirs. 

4.5 Conclusion and outlooks 

4.5.1 Conclusions 

The bathymetry of high accuracy was derived for 2 105 reservoirs, regardless of the reservoir 

size. The bathymetry enabled the derivation of annual surface water storage in the four regions 

from 2009 to 2017. 

Nearly decadal surface water storage changes were derived for the reservoirs in the four 

representative regions of densely impoundments in NE Brazil. From 2009 to 2017, the surface 

water storages in the four regions constantly decreased by an average rate of 105 m3/year in the 

spatial unit of 5×5 km. The four representative regions, very likely the NE Brazil region as well, 

have suffered from constant drought during this period. 

Small reservoirs (< 10 ha) account for a large portion of the overall water body population but 

contributed marginally to the regional water surface and storage. Wide-spread small reservoirs 

secured the soil moisture. 

The responses of surface water storage in different reservoirs have shown high spatial 
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heterogeneity, as a result of different water consumption pressure. Overall change trend of 

regional precipitation deficit determined the variation of total surface water storage in the 

regions. The small reservoirs and a few large reservoirs in the upstream responded instantly to 

the short-term variation in the regional precipitation deficit in the dry season. Larger reservoir 

at the outlets of the regions undertake overlaid water extraction both from the nearby towns and 

remote settlements and showed accelerated decrease in surface water storage. 

4.5.2 Outlook 

The study derived the variation of surface water storage for four representative regions on 

annual frequency due to the limitation of data availability. In the future, incorporating high 

resolution data from SAR sensor e.g. Sentinel-1 constellations could yield inter annual or 

seasonal surface water storage for the region. For delineation of water surface in vegetated 

reservoirs over wide spread regions and along time series, the method developed by Zhang et 

al., (2018) can be used. In addition, US-French SMOT (to be launched in 2020) will provide 

both water surface and levels for rivers of 100 m wide and open water bodies of size 250×250 

m (Lettenmaier et al., 2015). With those data sets the surface storage in the representative 

regional can also be derived along time.  
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5. Conclusions and outlooks 

5.1 Conclusions 

• Single-pass TanDEM-X data can yield DEMs of resolution 10 m and accuracy of 1 m (both 

absolute and relative). If derived from of TanDEM-X data acquired from low water, such 

DEMs can represent reservoirs bathymetry with high credibility. 

• In the respect of texture index GLCM variance, different types of scattering in the 

vegetated reservoirs cluster with distinct statistical characteristics which can be derived 

based on their spatial independence. The spatial abundance of the sub-populations 

dominated by different types of backscattering can be derived by linearly unmixing the 

GLCM variance of the SAR texture images without any input training data. 

• The uniform threshold determined based on the sub-populations dominated by each type of 

backscattering can effectively delineate the water surface beneath canopy. The accuracies 

of such derived effective water surfaces are 77%-95%. This method can delineate the 

effective inundation independent of training data for time series data and show high 

transferability to other study areas or mapping time. 

• For the 2 105 reservoirs in four regions of total area of 10 000 km2 the bathymetry and 

storage capacity were derived. The spatio-temporal distribution of surface water storage 

was revealed for the four representative regions on annual frequency from 2009 to 2017. 

The surface water storage in the four regions decreased in a rate of 105 m3/year from 2009 

to 2015 and increased slightly from 2016 to 2017 the water storage. The year 2015 was the 

driest year in the last eight years for NE Brazil. It is the first time the surface water storage 

has been established on spatio-temporal scale. The data derived in the study can effective 

support the regional water management and hydrological modeling/validation for the 

mapped regions. 
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5.2 Outlook 

5.2.1 Toward mapping water surface beneath canopy independent of training data 

The wet soil caused by precipitation is the vital factor that affects the water surface derived in 

chapter 3. Therefore, in further investigation is necessary in this respect to mitigate the effect of 

wet soil. Among all the possible approaches, considering the multiple temporal effect of the 

bare soil would be one option. As rainfalls only take place randomly, surface wetness of the 

bare soil would decrease in a few days, particularly in region of high evapotranspiration like 

NE Brazil and become unable to produce high backscattering in next visit of the same SAR 

sensors. For the future mapping of water surface in this case Sentinel-1 data is a strong 

candidate. 

5.2.2 Future missions and deriving surface water storage in an extended time span 

In chapter 4, I adopted the time series of RapidEye images to delineate the water surface, 

instead of other operationally available data such as Landsat and Sentinel-1 data. This is 

because of the following reasons: 1) Despite its global coverage, high resolution, and long 

mapping history, Landsat archive cannot ensure complete annual or monthly water surface on 

the regional scale due to the long revisit time (Table 1.1). Inspections on the monthly water 

mask provided by Pekel et al. (2016) showed that there were always some water area not 

mapped due to clouds/haze impediment, even in the dry season. 2) Sentinel-1 data archive 

covers the region only 2015-present, and the period of 2015-2017 coincides with the deep 

drought in the region, as shown in chapter 4. However, future water surfaces consisting of the 

open water and the water surface beneath the vegetation can be delineated from Sentinel-1 data 

set on 12 days frequency. Such derived water surface areas can potentially be used to extract 

the surface water storage in the four regions on sub-monthly or seasonal frequency. 

Alternatively, the US French Surface Water Ocean Topography (SWOT) (launch planned in 

2020) will provide a very good opportunity for monitoring surface water storage of high 

resolution. This mission aims to provide the terrestrial water storage in global scale on 
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sub-monthly, seasonal, and annual time scales (Rodríguez, 2016). This mission will derive both 

water level and water surface for rivers wider than 100 m and lakes of area larger than 250 m2 

using a Ku-band radar instrument (Rodríguez, 2016). The dynamic surface water storage on the 

regional scale will be characterized on real time scale. 
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