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Abstract

The behaviour of molecules is determined by rare events and these rare events matter.
For example, a large conformational change in a molecule can lead to complete
different behaviour of this molecule. But these rare events also affect the numerical
simulation of molecules. They can cause a high variance of certain estimators. This is
why it is important to develop effective and reliable numerical tools for the sampling
of these rare events.
The problems caused by rare events in the effective sampling of the different quan-
tities are caused by the stochastic behaviour of the dynamical system and a phe-
nomenon called metastability. Metastability means that a dynamical system remains
in a certain area for a comparatively long time before hopping rapidly into another
metastable area. Therefore, metastability is one of the most challenging problems
for effective sampling.
This thesis is about importance sampling strategies for metastable dynamical systems.
The main idea of this thesis is to decrease the metastability to get estimators with a
lower variance and reduce the sampling effort.
After an introduction and a presentation of the relevant theory we explore in Chapter
3 an idea of global optimization to decrease the metastability in the dynamical
system. We show how the approach can be used for sampling thermodynamic and
dynamic quantities and support the results with numerical experiments.
In Chapter 4 we use a local approach to decrease the metastability and thus build
an importance sampling scheme for dynamic quantities. We use the experience of
well-known MD algorithms to build good local perturbations. For the importance
sampling scheme the algorithms have to be assimilated and combined with a result
from stochastic analysis. The resulting algorithm is tested in different numerical
settings.
In Chapter 5 we consider two different methods (Gradient descent and Cross-Entropy
method) which have been proposed for finding the optimal perturbation in terms of
variance reduction. For the gradient descent we develop different gradient estimators
and for the Cross-Entropy method we develop a non-parametric representation of
the optimal perturbation. The results are supported by numerical examples.
The thesis finishes with a summary of our findings and an outlook on future re-
search.
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1Introduction

Molecular Dynamics simulation (MD) is a widely used tool in many different research
areas, e.g material sciences or computational drug design. It is used to perform
simulations to validate different claims or to predict certain phenomena. These
simulations can give interesting insights into specific behaviour of the molecule
beyond the experimental understanding. This can be used to understand certain
behaviour within the molecule very deeply and leads to the opportunity to design
molecules which have very special features; see e.g. [80]. In the last years MD has
become more and more important and this is why MD is sometimes called the third
way of science besides theory and experiments.
Even though Molecular Dynamics has brought some great achievements in the last
years there are still some unsolved problems. The simulations of a molecule involve
an integration over a very long time scale and a very large number of particles. To
capture the small bond vibrations one has to discretize the equations of motion at the
atomistic level in the order of one femtosecond (10−15). The time scale of interesting
phenomena is in the range of microseconds to hours (∼ 10−6 − 103) depending on
the application; see e.g.[78]. This shows that molecules have an inherent multi-scale
behaviour which arises from this variety of space and time scales and the interaction
between them. Furthermore, many phenomena emerge from a collective behaviour
of the particles and strongly depend on the number of particles and the time horizon.
This is why, for example stable, integration schemes for large systems are of interest
for the MD community. The latest results on this topic can be found in e.g. [55].
Apart from stable integration schemes and other problems the evaluation of different
quantities of interest is a problem. Due to the large time scale and the large number
of particles involved the quantities of interest cannot be calculated analytically. This
is why these quantities of interest are approximated by empirical averages. The
problem which arises in this approximation context is often called the sampling
problem and we will focus on this in the thesis.

Sampling Problem

The sampling problem arises from the fact that the interesting quantities, expressed
as averages, cannot be calculated analytically and thus have to be sampled. Due
to the analytically intractability of the large non-linear dynamical system these
quantities are approximated by empirical averages over a number of realizations
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of the underlying dynamical system. The quantities of interest in MD are either
thermodynamic quantities or dynamic quantities. Before explaining the different
quantities in more detail and also the different strategies which can be applied to
sample these, let us have a closer look what the difficulty of the sampling problem
is.

One of the main problems in the sampling of these dynamical systems is the dis-
crepancy between microscopic and macroscopic scales. The most important reason
of this discrepancy is related to a phenomenon which is called metastability and
the resulting rare events of the dynamical system. Metastability means the system
remains in some region of the configuration space for a long time (called metastable
set or metastable area) before it changes rapidly into another metastable set. This
metastable behaviour implies that the transitions between metastable sets are rare
events and thus not often observed. But these rare events are very important because
they characterize the dynamical system. Furthermore, metastability causes the slow
convergence of the empirical approximations of the interesting quantities.
When sampling metastable dynamical systems in order to observe the rare events
the metastable sets are explored in detail while the transition area is only explored
tenuously. So much of the sampling effort is used to investigate the metastable
sets. In order to observe the relevant transitions which are rare events a long time
has to be simulated to observe them. Therefore, the calculation of the different
quantities is very much affected by the rare events. Metastability is also the reason
that the approximation of the quantities of interest by empirical averages (also called
Monte Carlo methods) have a large variance. Furthermore, the large variance of the
empirical averages causes a large statistical error. Usually, the statistical error gets
worse the smaller the probability of the rare event is. Let us consider an example of
a metastable dynamical system to give an intuitive understanding before describing
the different quantities of interest in more detail.

Consider a particle moving in a bistable potential V (see 1.1). The time evolution of
the position of the particle, denoted by xt, is described by

dxt = −∇V (xt)dt+
√

2β−1dBt, x0 = x. (1.1)

A typical trajectory is shown in 1.1. The position of the particle shows a metastable
behaviour. It remains in the area around the left minimum for quite a long time
before it hops into the area around the right minimum. The time of the transition is,
compared to the time spent in the minimum, very short. The metastability arises
from a so-called energetic barrier. In order to migrate from one metastable region
into the other one a local maximum has to be crossed.
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Fig. 1.1: Typical trajectory of a metastable dynamical system (upper left), bistable potential
(upper right) and the resulting Boltzmann distribution (down middle).

On a more abstract level metastability is related to the multimodality of the un-
derlying probability given by the dynamics and the separation of the modes by
small probability regions. A multimodal distribution is a distribution with two or
more modes (see figure 1.1). Metastability now means that there are high probable
regions which are disconnected by low probable regions. In MD, for example, the
stable confirmation of a molecule corresponds to a state of low energy and thus of
high probability while a transition region corresponds to a state of high energy and
thus of low probability. For a conformational change the state of low energy has to
be left and a barrier has to be crossed. So observing a transition from one mode into
the other mode in a metastable dynamical system a region of low probability has to
be crossed.
In general there are two types of metastability: energetic and entropic. The energetic
metastability occurs when the dynamical system has to cross level sets of the poten-
tial function V . The entropic metastability occurs because of steric constraints. The
main difference between the energetic and entropic metastability can be seen when
the temperature in the system is changed. For the energetic metastability the typical
time scale to leave the metastable region grows exponentially when the temperature
decreases. For the entropic barrier the change of temperature is asymptotically
equivalent to a linear rescaling in time cf. [58].
Due to the strong influences of the metastability on the convergence of the estimators
it is at the heart of the numerical challenges. Let us now have a closer look at the
different quantities of interest in MD.
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Quantities of interest

After describing the main cause of the sampling problem we are going now to have a
closer look at the different quantities of interest and how the sampling is affected by
the metastability. In molecular dynamics there are two different kinds of quantities
which are of interest: thermodynamic quantities and dynamic quantities.

Thermodynamic quantities

Thermodynamic quantities are averages of observables of the dynamical system
at equilibrium with respect to the probability measure of the configuration space.
Consider a dynamical system which is only described by its position x. Furthermore,
let us consider an observable ϕ(x). Then the thermodynamic quantity is given by

Eν [ϕ] =
∫
D
ϕ(x)ν(x)dx (1.2)

where the probability measure is given by the Boltzmann-Gibbs measure

ν(x)dx = Z−1
ν exp(−βV (x))dx, Z−1

ν =
∫
D

exp(−βV (x))dx. (1.3)

Thermodynamic quantities are difficult to approximate because of the large state
space D which is included in this calculation. One possible strategy of sampling
these thermodynamic quantities is to replace the average over the state space by
an average over time. In order to do this it is necessary that the dynamical system
is ergodic with respect to the equilibrium probability measure (we will explain
ergodicity in the next chapter). The state space integral can then be expressed as a
time integral ∫

D
ϕ(x)ν(x)dx = lim

t→0

∫ t

0
ϕ(xs)ds. (1.4)

In general it is very hard for a large dynamical system to check that the system is
ergodic.
The main problem which is caused by metastability in order to sample thermody-
namic quantities is that the metastability hinders the state space exploration. As
already seen in the example the dynamical system will spend the most time of the
sampling in the metastable set. So to explore the state space sufficiently many long
time simulations have to be calculated. Even though expressing the thermodynamic
quantity as a time integral is very elegant, this approach does not overcome the slow
state space exploration due to metastability.

4 Chapter 1 Introduction



Dynamic quantities

The other quantities of interest in MD are dynamic quantities. These quantities are
given by an expectation over some path functional ϕ

EP[ϕ(x0:τ )] (1.5)

where x0:τ is a random trajectory (or a path) of length τ and P is a path measure.
Dynamical quantities, for example, are transition probabilities or exit times from
metastable sets. These quantities explicitly depend on the dynamical system. Let us
consider as an example the exit time from a metastable region S of the dynamical
system given in (1.1). The exit time is again a random variable defined as

τ = inf{t > 0,xt /∈ S}.

It is implicitly assumed that x0 ∈ S. In order to sample τ it is necessary to sample
paths (xt)0≤t≤τ . So calculating dynamic quantities is again a sampling problem.
The main problem in sampling dynamic quantities is that due to the metastability
the trajectory has to go through a low probability region. The dynamical system in
(1.1) is following a negative gradient descent. So for a small diffusion the system
will go into the next minimum and stay there until the random perturbation will kick
it out. If the diffusion is much smaller than the drift term it is unlikely to sample one
of these trajectories leaving the metastable set.

Difference

The main difference of the two quantities of interest is the probability measure and
the random variable which are considered. In the case of thermodynamic quantities
the x ∈ Rn are mircostates of the dynamical system. These are usually real valued
random variables e.g. positions of the atoms. The considered probability measure
is the Boltzmann-Gibbs measure defined on the configuration space as shown in
equation (1.2).
For dynamic quantities the random variables are paths of the dynamical system
x0:τ ∈ C([0, τ ] : Rn). The considered probability measure is the path measure
defined on the space of all possible trajectories namely the Wiener measure.
One general strategy to overcome the sampling problem is importance sampling
which is introduced in the next section.
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Importance sampling

In the literature one can find different approaches how the problems of rare event
sampling can be overcome, e.g control variates, splitting methods and importance
sampling; see [68] for details on all mentioned methods. We will mainly focus on
importance sampling because it is the tool used in this thesis.

The main idea of importance sampling is to sample the quantity of interest from a
different probability distribution and correct the error which has been introduced
because of this substitution. The resulting importance sampling estimator can again
expressed as an expectation and so Monte Carlo methods can be used again to
approximate these estimators (details are given in Chapter 2). Let us consider as
an example the importance sampling estimator for thermodynamic quantities. It is
given by

Eν [ϕ] =
∫
D
ϕ(x)

ν(x)

µ(x)
µ(x)dx (1.6)

where µ is now the new probability measure. We clearly see that this approach
only works if µ is never zero for any random variable where ν is positive. If this
assumption holds the two considered measures are said to be absolute continuous
with respect to each other. Since we are interested to reduce the variance the first
question which arises is how can we choose µ such that we have a variance reduction.
For this we have to calculate the variance of the empirical estimator denoted by
ϕ̄. We assume that the different simulations (say we have N simulations) of the
quantity of interest are independent from each other (we assume them to be i.i.d.).
The variance of the estimator is then 1/N times the variance of one realization of
the quantity of interest denoted by ϕ̄i. The variance is given by

NVar[ϕ̄i] =
∫
D

(
ϕ(x)

ν(x)

µ(x)
−Eν [ϕ]

)2
µ(x)dx

=
∫
D

(
ϕ(x)2ν(x)2

µ(x)
− 2Eν [ϕ]ϕ(x)ν(x) + Eν [ϕ]

2µ(x)

)
dx

=
∫
D

(
ϕ(x)2ν(x)2

µ(x)

)
dx−Eν [ϕ]

2

To find now the optimal bias in terms of variance reduction we see from the above
equation that we have to minimize the integral in the last expression. Doing this we
find ∫

D

(
ϕ(x)2ν(x)2

µ(x)

)
dx =

∫
D

(
ϕ(y)2ν(y)2

µ(y)2

)
µ(y)dy

≥
(∫
D

|ϕ(y)|ν(y)
µ(y)

µ(y)dy

)2
=

(∫
D
|ϕ(y)|ν(y)dy

)2
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where we have used Jensen’s inequality. For the minimization we can drop the
square. We know that we will only have equality if and only if the random variable
is almost surely constant. So the integral term will only be optimal for |ϕ(y)|ν(y)
being constant which can only be true if |ϕ(x)|ν(x)

µ(x) is almost surely constant. From
this we see that the optimal probability measure is given by

νopt(x) =
ϕ(x)ν(x)∫

D |ϕ(y)|ν(y)dy
. (1.7)

This optimal probability measure would lead to a zero variance estimator. Unfor-
tunately, the optimal probability measure depends on the quantity we would like
to sample. So from this short calculation we see the main dilemma of importance
sampling. In order to sample something without variance we have to know what we
want to sample.

Even though we have only shown the problems for importance sampling of ther-
modynamic quantities similar problems arise also for dynamic quantities and the
different probability measures. Furthermore, we will see in the next chapter that the
optimal bias for dynamic quantities, which would give a zero variance estimator can
be expressed as the solution of a non-linear partial differential equation.

Related Works

The problems of importance sampling are very well-known in the literature cf. [10]
or [68] and especially in the computational physics community many algorithms and
methods have been proposed to deal with the sampling problem in the MD context.
In this paragraph we are going to mention the related works which have been done
so far very briefly. We are going to elaborate the methods relying on importance
sampling ideas further in the next chapter and refer to other articles giving more
details about the other methods.

Thermodynamic quantities

Problems in sampling thermodynamic quantities caused by metastability have been
known for a long time in the computational physics community. Methods to over-
come these problems using biasing techniques are for example Metadynamics [53],
Varaitional approach [86], Adaptive Biasing Force [17], Hyperdynamics [89] or
Wang Landau [91]. All methods have in common that they introduce a bias which
reduces the metastability in the dynamical system. Since the bias changes the con-
figuration space also the equilibrium measure is changed. This is why importance
sampling techniques can be used to correct the sampling results.
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Another well-known technique for overcoming problems with metastability is sim-
ulated annealing [84]. The idea is to sample the dynamical system for a higher
temperature such that the system is less affected by the potential barriers. Due
to the fact that the Boltzmann distribution depends on the temperature the high
temperature sampling can be again related to a low temperature using importance
sampling approaches. Since both methods presented so far can use importance
sampling we will elaborate on these in the next chapter.
Also Replica exchange was invented to sample thermodynamic quantities and state
space exploration cf. [83] or [90]. The idea of this method is to interchange infor-
mation coming from a high temperature sampling with a low temperature sampling.
For this the system is sampled at different temperatures in parallel and every now
and then the positions of the atoms are changed. This way the low temperature
sampling can explore much more from the state space without artificial forcing and
there is no need to correct the sampling results. More details on replica exchange
are presented in chapter 3.

Dynamical quantities

The methods which have been designed for the sampling of dynamic quantities can
be divided into two classes, on the one hand splitting methods (like Forward Flux
Sampling [1], Adaptive Multilevel Splitting [13] or Milestoning [29]) and on the
other hand importance sampling e.g. [95]. The importance sampling approach can
be further divided into general approaches and approaches in the large deviation
context e.g. [20]. Let us quickly summarize the main ideas behind the different
approaches.
The main idea of the splitting method is to introduce intermediate levels in the
sampling. In this way only parts of the whole trajectory are sampled and the compu-
tational effort is focused on the low probable part of the trajectory. For more details
on the different methods see the above mentioned citations and the references
therein.
Importance sampling for path dependent quantities for stochastic differential equa-
tions has already been proposed by Milstein in 1954 [63]. Milstein suggested to
perturbed the drift term of the stochastic differential equation and correct the expec-
tation with the so-called Girsanov transformation. The Girsanov transformation or
Girsanov’s theorem gives an explicit way how the change of the drift term of the SDE
has an effect on the underlying path measure (we will present the theorem in chapter
2). Furthermore, Milstein showed that one can find a zero variance estimator, if
a solution of a associated Bellman equation is used as an additional drift. In the
continuous case this is related to the non-linear Hamilton-Jacobi-Bellman equation
(also presented later). But this connection also shows how difficult it is to design a
bias giving a zero variance estimator.

8 Chapter 1 Introduction



In [95] the method proposed by Milstein was combined with a dimensionality reduc-
tion technique. But in order to apply the method the equilibrium measure has to be
known. In [38] an optimization framework was proposed to find the optimal bias.
The optimal feedback control is projected into some space of ansatz functions so
only feedback controls of the form ut =

∑m
i=1 aibi(x) are considered. The problem

of finding the optimal bias can then be reformulated as an optimization problem of
finding the optimal weights ai. A detailed derivation of the optimization framework
can be found in Chapter 5.
In the large deviations context different methods have been proposed by [20, 22,
21, 23]. The here presented importance sampling schemes all rely on asymptotic
arguments that the noise of the dynamical system is going to zero. Since we are
going to develop importance sampling schemes which do not rely in these asymptotic
arguments we are going to briefly summarize this approach in the next chapter and
point to the relevant literature for details.

Research questions

From the above presentation we see that designing a good bias or a good method for
the effective sampling of different quantities of interest in MD is a difficult task. We
have also seen that different approaches have been presented in the literature but
there are still many open questions. In this thesis we address the following research
questions:

• Observation: The metastability is cased by the energetic or entropic barriers.

– Question: How can barriers which cause metastability be decreased
without apriori knowledge of the system?

– Question: Can this approach be used for the sampling of thermodynamic
or dynamic quantities?

• Observation: In the MD community much effort has been made to overcome
the problem of metastability for the sampling of thermodynamic quantities.

– Question: Can these algorithms be used for the sampling of path depen-
dent quantities?

• Observation: In theory there is a zero variance estimator. In the literature
an optimization framework was developed and two algorithms have been
proposed: the gradient descent method and Cross-Entropy method.

– Question: Is there an efficient way how the gradient can be calculated
or estimated for the gradient descent?

• Observation: There are other ways in the literature how function approxima-
tions can be realized e.g. Gaussian Process.
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– Question: Can we rephrase the Cross-Entropy method such that we can
connect the method with these approaches?

Structure of the thesis

This thesis is structured as followed. In Chapter 2 the relevant theory of the thesis
is given. We are going to summarize how molecular dynamics and stochastic dif-
ferential equations can be connected. After a brief presentation of some relevant
stochastic analysis, Monte Carlo methods and importance sampling are elaborated
further. We will have a closer look how the connection between optimal control and
importance sampling is derived and show how the previously presented well-known
MD methods for thermodynamic quantities can be connected to importance sam-
pling.
Chapter 3 addresses the first research question. In order to lower the barriers
of the dynamical system without apriori knowledge we are going to explore if a
global perturbation can be used to decrease the barriers. The idea is based on the
convolution approach of global optimization. After numerical tests that show the
decreased metastability we will show how the convolution approach can be used
for the sampling of thermodynamic quantities and integrate this approach into the
replica exchange algorithm. Furthermore, we will show that the convolution can
also be understood in the linear response theory. In the end of the chapter we are
going to use the approach for the sampling of dynamic quantities and support our
results with numerical tests.
Chapter 4 addresses the second research question. As we have already seen many dif-
ferent algorithms have been invented for the sampling of thermodynamic quantities.
This is why we use this algorithms in a assimilated way to change the barrier locally.
Combing these assimilated methods with Girsanov’s theorem we can build effective
importance sampling methods for the sampling of dynamic quantities. The resulting
algorithm is an importance sampling algorithm in path space and independent from
the used bias the estimator is unbiased. We show that Girsanov’s theorem can be
applied under some assumptions and that the method does not change the ergodicity
of the system. In the end of the chapter the algorithm is tested for different numerical
examples and we conclude with a discussion of our findings.
The last chapter is devoted to the optimization of the bias. As already mentioned
above there is a bias which would give a zero variance estimator. In the literature
there are two methods based on an optimization framework to approximate the
optimal bias. In the first part of the chapter we are going to address the third
research question and try to find good gradient estimators for the gradient descent
method. We first use the so-called Malliavin gradient descent approach to develop a
gradient descend in one-dimension and then develop two gradient estimators for
high-dimensional problems. We support our results with numerical tests. In the
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second part we address the research question four. For this we derive a kernelized
version of the Cross-Entropy method and show how this method can been interpreted
as a Gaussian Process approach. In the end another numerical example is given to
show the application of the method.
In the end we will have a summary and a discussion of the findings followed by an
outlook about future research.
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2Theory

In this chapter we are going to review the relevant theory for this thesis. In the first
part the relevant models for Molecular Dynamics Simulations and the connection
to stochastic differential equations are described. In the second part the theory
of stochastic processes is briefly summarized. Then the main idea of importance
sampling and the connection to optimal control is presented. In the end we present
some of the well-known methods for the effective sampling of thermodynamic and
dynamic quantities and discuss their connection to importance sampling.

2.1 From MD to SDEs

In MD molecules are considered to be mechanical systems. The most precise model
for mechanical systems at the smallest scales is given by quantum mechanics. In
quantum mechanics one considers the Schrödinger equation to describe behaviour of
matter. The equation cannot be solved analytically and even numerical solutions to
this equation are difficult because of the many dimensions involved in the calculation.
The most serious problem is the computational complexity which grows extremely
fast with the number of atoms which are involved in the simulation. Only Butane
has 34 electrons and 14 nuclei. This is why the quantum mechanics approach is only
used for very small molecules or in combination with a coarser model in which only
a specific region is investigated quantum-mechanically [55].

A classical model can be derived from the Schrödinger equation by using the Born-
Oppernheimer approximation [7]. For this one can assume that heavy nuclei dom-
inates the movement such that the relatively light electrons do not have to be
simulated. With this approximation the motion of molecules is only described on
an atomic level. But even this model can give enough inside information to study
interesting phenomena. The equations of motion are now equations of a classical
mechanical system given by Newton’s second law (force = mass × acceleration)

M
∂2

∂t2
p = −∇V (p) (2.1)

where M is a diagonal mass matrix, p is the position of the atoms and V is the
potential which models the atom-atom interaction. The interaction potential is
sometimes obtained by solution from the Schrödinger equation for fixed nuclei
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position cf. [55]. But since these calculations are very expensive, empirical potentials
are often used; see [55] or [58]. Furthermore, these potentials encode the physics of
the model because they model the atomic interaction of the particles in the system.

In the literature there are different descriptions of mechanical systems. In molecular
dynamics Hamiltonian mechanics is often used. In Hamiltonian mechanics the
dynamical system is described in position p and momenta q, also called phase space.
The total energy of a system is given by the sum of the kinetic energy and potential
energy

H(p, q) = 1
2q

TM−1q+ V (p). (2.2)

The evaluation of the system is given by

ṗ =M−1q q̇ = −∇V (p). (2.3)

Since the potential only describes the internal interactions of the atoms the equations
of motion model an energetically closed system. Furthermore, the total energy is
preserved under the dynamics. But in molecular dynamics an isolated molecular
system is only of partial interest. In general, it would be desirable to simulate a
system which is in contact with a heat bath to model energy transfer.

An appropriated model is given in the statistical physics framework. The molecular
system in equilibrium in contact with a heat bath generates a probability density
function

µ(dp, dq) = Z−1 exp(−βH(p, q))dqdp, Z =
∫

exp(−βH)

where H is the Hamiltonian given in (2.2), β = 1
kBT

> 0 called the inverse tempera-
ture and Z <∞ is the normalization constant [58].

Due to the energy preservation of the Hamiltonian mechanics the system is not
ergodic cf. [79]. So in order to sample the canonical distribution the environment
or solvent has to be taken into account. The environment is necessary to model the
energy transfer which enables the system to explore the entire state space. But it also
inflates up the system size which has to be simulated. However, to simulate a system
that is too large is in general not possible. There are several ideas to overcome this
problem like thermostats and other techniques cf. [55].

Another approach is to replace the deterministic molecular model in a solvent by
a stochastic model where the energy transfer from the solvent is modelled as a
stochastic force. The usage of stochastic models is natural in MD because finite
Hamiltonian models suppress microscopic interaction between the molecular system
and the environment due to simplification cf. [55]. Furthermore, the results are
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more reliable, the computational difficulty is reduced and ergodicity can be achieved;
see e.g. [55]. A partial justification for modelling mechanical systems by stochastic
differential equations can be given by deriving the Langevin equation for a small
simple mechanical model which is in contact with a heat bath. There are different
approaches in the literature e.g [69, 76] or [96]. We are going to summarize the
approach presented in [69] to motivate the connection between MD and SDEs.

Let us consider a one-dimensional particle in contact with a heat bath which is
assumed to be a system with infinite heat capacity at temperature β−1. We assume
the system to be at thermodynamic equilibrium at time t = 0. We will model the
heat bath as a system of infinitely many harmonic oscillators. We know that a
collection of harmonic oscillators can be expressed as a Hamiltonian system with a
corresponding Boltzmann-Gibbs distribution. An extension of the finite dimensional
system of harmonic oscillators can be done by considering the wave equation. This
wave equation can be seen as a infinite-dimensional Hamiltonian system. But the
extension of the Boltzmann-Gibbs distribution into a infinite dimensional space has
to be done carefully because the Lebesgue measure does not exist in this infinite
dimensional space. However, the Hamiltonian of the wave equation is a quadratic
function such that the corresponding Boltzmann-Gibbs distribution is Gaussian and
by considering a Hilbert space the theory holds.
We assume that the dynamical system (the particle coupled to the heat bath) is
described by the Hamiltonian

H(p, q,ϕ, θ) = H(p, q) +HHB(ϕ, θ) +HI(p, θ) (2.4)

where H is the Hamiltonian for the particle in position p and momenta q, HHB is
the Hamiltonian of the heat bath (wave equation) given by

HHB(ϕ, θ) = 1
2

∫
R

(
|ϕ(x)|2 + | ∂

∂x
θ(x)|2

)
dx (2.5)

where (ϕ, θ) is a field and HI denotes the interaction of the particle and the heat
bath. Furthermore, we assume that the coupling of the heat bath and the particle is
only through the position and θ.
Assuming that the particle is moving in a confining potential V (p) (a definition is
given later) the Hamiltonian is given by

H(p, q) = q2

2 + V (p). (2.6)

For the coupling we assume that is is linear given by

HI(p, θ) =
∫

R
θ(x)ρ(x− p)dx (2.7)
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where ρ is the so-called charge density; see [69] and the references therein for
details. Since the position of the particles does not change too much because it is
moving in a confining potential we can use a Taylor expansion. This together with a
integration by party gives

HI(p, θ) ≈ p
∫

R

∂

∂x
θ(x)ρ(x)dx. (2.8)

Putting all this together we get

H(p, q,ϕ, θ) ≈ q2

2 + V (p) +
1
2

∫
R

(
|ϕ(x)|2 + | ∂

∂x
θ(x)|2

)
dx

+ p

∫
R

∂

∂x
θ(x)ρ(x)dx (2.9)

as the Hamiltonian of the particle couple to a infinite heat bath. From this we can
derive the equations of motion

ṗ = q q̇ = −V ′(p)−
∫

R

∂

∂x
θ(x)ρ(x)dx (2.10)

∂

∂t
θ = ϕ

∂

∂t
ϕ =

∂2

∂x2 θ+ p
∂

∂x
ρ. (2.11)

From this we can solve the equations for the field (2.11) and substitute the solution
into the equations for the particle (2.10) in order to derive a closed-form equation
for the particle. After a lengthy calculation which we are going to skip one can
derive a so-called generalized Langevin equation (GLE) which is a stochastic integro-
differential equation given by

p̈ = −V ′(p)−
∫ t

0
γ(t− s)ṗ(s)ds+ F (t) (2.12)

where F (t) is a mean-zero stationary Gaussian process with autocorrelation function.
The GLE for the particle is Newton’s equation of motion augmented by a linear
dissipation term which depends on the history of the particle and a stochastic forcing.
The noise term is Gaussian and stationary because we have assumed that the heat
bath is at equilibrium at time t = 0. The GLE is equivalent to the full Hamiltonian
dynamics with random initial conditions distributed according to the Boltzmann-
Gibbs measure on the Hilbert space [69]. But due to the history-dependent term in
the integral the GLE is not an easy model to work with. However, the GLE approach
is a very appealing approach for high-dimensional dynamical systems and this is
why it is still a very lively field of research; cf. [40] and the references therein.
In the second step we can approximate the non-Markovian GLE by the Langevin
equation. For this one considers a vanishing correlation time of γ(t) → δ(t). This
corresponds to a localization of the coupling in the full Hamiltonian system ρ(x)→
δ(x).
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The Langevin dynamics is given by

dpt =M−1qtdt (2.13)

dqt = −V ′(pt)dt− γM−1qtdt+
√

2γβ−1M1/2dBt (2.14)

where q is the momentum of the system and p is the position, γ > 0 is the so-called
friction term, V is an interaction potential describing the atom-atom interaction and
M−1 is the mass matrix.
From the Langevin equation one can derive an even more simplified model by
considering a large γ limit or scale γ with the inverse of the mass (replace γ by
γM−1) which is also known as the zero mass limit. For this derivation we are
going to follow the presentation in [55]. We assume that the inertial dynamics is
dominated by collisional effects. Furthermore we assume that the acceleration can
be neglected and we denote u =M−1q. The Langevin equation reduces to

dpt = utdt 0 = −V ′(pt)dt− γMutdt+
√

2γβ−1M1/2dBt.

By solving now the second equation for u we find

dpt = −γM−1V ′(pt)dt+
√

2γ−1β−1M1/2dBt (2.15)

The transition from Langevin to overdamped Langevin is often referred to as Kramers-
to Smoluchowski- limit.
The case γ = 1 and M = I where I is the identity matrix is often considered for
simplification. The above model is called the overdamped Langevin equation which
is also known as ‘Brownian Dynamics’. The multidimensional formula is given by

dxt = −∇V (xt)dt+
√

2β−1dBt, x0 = x. (2.16)

Above, xt denotes the state of the system at time t ≥ 0, β > 0 is a scaling factor
for the noise associated with the temperature and the Boltzmann constant, often
called the inverse temperature, and Bt is a standard n-dimensional Brownian motion
with respect to the probability measure P on some probability space (Ω, P,F), and
V : Rn → R is a sufficiently smooth (e.g. C∞) potential for technical reasons. This
simplified stochastic model is going to be the root model of this thesis.
This change of model also introduces a change of the point of view on molecular
dynamics. One does not consider a time evolution of a partial differential equation
(PDE) any more now, one considers paths in some finite-dimensional Euclidean
space.

Let us next give a brief introduction into molecular potentials for completeness.
Since the topic of molecular potentials is a research field on its own we just want to
present the main idea without going into too much detail.
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Molecular potentials
The potential describes the energy of a molecule. It consists of a sum of different
interatomic potentials which describe the interaction within 2, 3 or 4 atoms

V (pi, pj , pk, pl) =
∑
i,j
Vshort(pi, pj) +

∑
i,j,k

Vinter(pi, pj , pk) +
∑
i,j,k,l

Vlong(pi, pj , pk, pl)

where pi is the position vector of atom i. A typical expression given in a detailed
way may satisfy

V (pi, pj , pk, pl) =
∑
bonds

1
2kb(pij − p0)

2 +
∑
angles

1
2ka(θ− θ0)

2

∑
torsion

Un
2 (1 + cos(nφ− φ0)) +

∑
LJ

4εij
(
σ2
ij

p2
ij

− σij
pij

)6
+
∑
elec

rirj
pij

where p0, θ0,Un,φ0, ε,σ, r are bound specific constants, pij = ‖pi − pj‖ is the dis-
tance between two atoms, φ is an angle spanned between three atoms and θ is an
angle spanned within four atoms. The different interatomic potentials are designed
to mimic a certain behaviour which was observed in experiments. The parameters
have to be adjusted to match the properties of the system known from experiments
or quantum mechanical modelling. So the behaviour of the molecule is a complex
interplay of all different atomic interactions; see e.g. [78], [85] or [33] for further
details.

2.2 Stochastic differential equations

As we have seen in the first section molecular dynamics can be described by stochastic
models. We have seen how the root model for this thesis, namely the overdamped
Langevin equation, was derived. The overdamped Langevin equation is a stochastic
differential equation (SDE). In the next paragraph we are going to give a brief
summary about the theory of SDEs, Monte Carlo methods and the connection of
importance sampling in paths space and optimal control.

2.2.1 Properties of SDEs

Consider a stochastic differential equations in a more general form satisfying

dxt = b(t,xt)dt+ σ(t,xt)dBt, x0 = x (2.17)

where b(·, ·) and σ(·, ·) are some Borel-measurable functions and Bt is a standard
Brownian motion with respect to the probability measure P on some probability
space (Ω, P,F). The function b is called the drift term of the SDE and σ is called the
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diffusion term. Uniqueness and existence of the SDE are given under some Lipschitz
condition on the drift and the diffusion as we will see in the next theorem.

Theorem 1 ([67]). Let T > 0 and b(·, ·) : [0,T ]×Rn → Rn, σ(·, ·) : [0,T ]×Rn →
Rn be measurable functions satisfying

|b(t,x)|+ |σ(t,x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0,T ]

for some constant C, (where |σ|2 =
∑
|σi,j |2) and such that

|b(t,x)− b(t, y)|+ |σ(t,x)− σ(t, y)| ≤ D(1 + |x− y|); x, y ∈ Rn, t ∈ [0,T ]

for some constant D. Let Z be a random variable which is independent of the σ-algebra
generated by Bs, s > 0 and such that

E[|Z|2] <∞.

The 2.17 with x0 = Z has a t-continuous solution.

For the model (2.16) this means that we have a strong solution, if the gradient
of the potential is locally Lipschitz continuous. The considered diffusion term is
always Lipschitz continuous because for the considered model it is state and time
independent.

The SDE (2.17) is associated with a differential operator given by

L = b · ∇+
1
2σσ

T : ∇2 (2.18)

which is called the infinitesimal generator of the process xt. We will consider
generators to be defined on appropriate dense subsets of the domain of the generator
such as C∞ functions with compact support or whose derivatives grow at most
polynomially.
In the following lemma the link between (2.17) and (2.18) is made explicitly

Lemma 1 ([58]). Let ϕ be a compactly supported C∞ function. Then

∂

∂t
[Ex[ϕ(xt)]]

∣∣∣∣
t=0

= Lϕ(x) (2.19)

where the expectation is taken over the Brownian paths.

Let us assume that the law of xt at time t admits a density ρ with respect to the
Lebesgue measure (see [58] for details). Then xt is distributed according to ρ(t,x)dx.
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The initial distribution will be denoted as ρ(0,x)dx = ρ0(x). It is wel- known in the
literature that ρ satisfies the Fokker-Planck equation

∂

∂t
ρ(t,x) = L†ρ(t,x), ρ(0,x) = ρ0(x) (2.20)

where L† denotes the L2 adjoint of the operator L which is given by

L† = −div(b·) + 1
2∇

2 : (σσT ). (2.21)

Under some assumptions on the drift (see below), the long-term evolution of the
law of the process (2.17) will converge to a equilibrium state. This equilibrium
distribution is also called the stationary or invariant distribution.

Definition 1 ([69]). A potential V is called confining if lim|x|→∞ V (x) = +∞ and

exp(−βV (x)) ∈ L1(Rn) (2.22)

for all β ∈ R+.

Proposition 1 ([69]). Let V be a smooth confining potential. The unique invariant
distribution of the process (2.16) is the Gibbs distribution

ρβ(x) =
1
Z

exp(−βV (x)) (2.23)

where the normalization factor Z is the partition function

Z =
∫

Rn
exp(−βV (x))dx. (2.24)

Furthermore, the process (2.16) with the generator L = −∇V∇+ β−1∇2 is ergodic.

Ergodicity means that for an ergodic dynamical system the average over long-time
trajectories is the same as the average over phase space averages with respect to the
underlying probability measure. The ergodicity of the dynamics implies that

lim
t→∞

∫ t

0
ϕ(xs)ds =

∫
Ω
ϕ(x)ρβ(x)dx (2.25)

holds in a well-defined limit for some observable ϕ.
Ergodicity is a very important aspect for many methods developed in MD. In general
observables which are averages with respect to the invariant distribution are very
hard to calculate because of the high dimension of the state space. Often the invariant
distribution is approximated by an empirical mean which is only sufficiently accurate
for long-time samplings as we have seen in the introduction. In this way it is possible
to calculate ensemble averages as averages over trajectories.
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Another connection of SDEs and PDEs is given by the Feynam-Kac formula. The
formula expresses solutions of certain PDEs as averages over paths of stochastic
processes. Thus it is possible to solve PDEs by simulating SDEs.

Theorem 2 ([58]). Let S be a C∞ bounded domain of Rn and let f : S → Rn,
v0 : S → Rn and ϕ.∂S → R be three C∞ functions. Let v(t, y) be a smooth solution
(e.g. C1 in t and C2 in y ) to the boundary value problem

∂tv = Lv+ fv for t ≥ 0, y ∈ S

v = ϕ on ∂S

v(0, y) = v0(y).

The smooth solution can be expressed as a conditional expectation E[·|x0 = x] = Ex[·]

v(t, y) = Ex
[
ϕ(xτS ) exp

(∫ τS

0
f(xs)ds

)
11τS<t

]
+Ex

[
v0(xt) exp

(∫ t

0
f(xs)ds

)
11τS≥t

]
,

where (xt)t≥0 is the process satisfying (2.16) and τS is the first exit time of (xt)t≤0

from S
τS = inf{t ≥ 0,xt /∈ S}. (2.26)

Proof. Fix a time t > 0 and consider u(s, y) = v(t− s, y) for s ∈ [0, t]. The function
u satisfies

∂su+Lu+ fu = 0 s ∈ [0, t], y ∈ S,

u = ϕ on ∂S

u(t, y) = v0(y).

We now use Itô calculus on u(s,xs) exp(
∫ s

0 f(xr)dr) for all s ∈ [0, min(τS , t)]. In
order to calculate the stochastic differential we are going to consider the function as
z(s)u(s,xs) with z(s) = exp(

∫ s
0 f(xr)dr) and so the differential is given by

d(z(s)u(s,xs)) = zdu+ udz + dudz. (2.27)

By normal differentiation
dz(s) = z(s)f(xs)ds. (2.28)

By Itô’s Lemma
du(s,xs) = (∂su+Lu)ds+ σ∇udBt. (2.29)
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The term dzdu can be neglected because it goes to zero very quickly (it is often
written dudz = 0) cf. [67]. Thus the stochastic differential is given by

u(s,xs) exp(
∫ s

0
f(xr)dr) =

u(0,x0) +
∫ s

0
(∂su(s,xs) +Lu(s,xs))z(s)ds+ σ∇u(s,xs)z(s)dBs + z(s)f(xs)u(s,xs)ds

After rearranging terms we see

= u(0,x0) +
∫ s

0
(∂su(s,xs) +Lu(s,xs) + f(xs)u(s,xs))z(s)ds+ σ∇u(s,xs)z(s)dBs

= u(0,x0) +Ms

where
Ms =

∫ s

0
σ∇u(s,xs)z(s)dBs

is a local martingale. And since u and f are C∞ and xr lives in the bounded domain
S up to time min(τS , t), we conclude that

v(t, y) = u(0, y) =Ex
[
u(min(τS , t),xmin(τS ,t)) exp

(∫ min(τS ,t)

0
f(xr)dr

)]
=Ex

[
11τS<tu(τS ,xτS ) exp

(∫ τS

0
f(xr)dr

)]
+Ex

[
11τS≥tu(t,xt) exp

(∫ t

0
f(xr)dr

)]
=Ex

[
11τS<tϕ(τS ,xτS ) exp

(∫ τS

0
f(xr)dr

)]
+Ex

[
11τS≥tv0(xt) exp

(∫ t

0
f(xr)dr

)]
.

This concludes the proof.

Example
Let us consider the mean exit time of a process satisfying (2.17) from a domain S.
Assume that x0 ∈ S the first exit time

τS = inf{t ≥ 0 : xt 6∈ S}. (2.30)

Now defining the mean first exit time as

τ (x) = Ex[τS ] = E[inf{t ≥ 0 : xt 6∈ S}|x0 = x ∈ S ] (2.31)
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It is possible to derive from the general formulation of the Feynman-Kac formula that
the mean first exit time can be calculated by solving a boundary value problem

Lτ = −1, x ∈ D

τ = 0 x ∈ ∂D

where L is the generator of the diffusion process (2.16) cf. [69].

The last theorem of this section is Girsanov’s theorem. The theorem is significant
for the importance sampling strategies in path space presented later in this thesis.
The theorem states that changing the drift of an Itô diffusion with a non-degenerate
diffusion coefficient does not change the law of the process dramatically. The new
law will be absolutely continuous with respect to the old law and the Radon-Nikodym
derivative can be calculated explicitly. We will formulate a proposition based on
Girsanov’s theorem such that it is easier to see why it can be used for importance
sampling and give a brief summary of the proof. A discrete derivation of the theorem
can be found in the appendix; see Appendix 7.

Theorem 3 ([67]). Let xt ∈ Rn and yt ∈ Rn be an Itô diffusion and an Itô process,
reprecisely, of the from

dxt = b(t,xt)dt+ σ(t,xt)dBt, t ≤ T , x0 = x

dyt = (c(t,ω) + b(t,xt))dt+ σ(t, yt)dBt, t ≤ T , y0 = x

where b : Rn → R and σ : Rn → Rn×m satisfy the necessary condition such that
existence and uniqueness can be guaranteed. Suppose there exists a process u(t,ω) such
that

σ(yt)u(t,ω) = c(t,ω) (2.32)

and we assume that u satisfies Novikov’s condition

EP

[
exp

(1
2

∫
u2(s,ω)ds

)]
<∞. (2.33)

Then we define

Mt = exp
(
−
∫ t

0
u(s,ω)dBs −

1
2

∫
u2(s,ω)ds

)
, t ≤ T , (2.34)

B̂t =
∫ T

0
u(s,ω)ds+Bt, t ≤ T (2.35)

and a new probability measure Q

dQ(ω) =MT (ω)dP(ω) on FT (2.36)
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where FT is the filtration given by Bt. Then we can define a new stochastic process

dyt = b(yt)dt+ σ(yt)dB̂t. (2.37)

Therefore, the Q-law of yxt is the same as the P-law of xxt ; t ≤ T .

Let us formulate a proposition of this theorem such that it is easier to see why
Girsanov’s theorem can be used for importance sampling.

Proposition 2. Let xt ∈ Rn and yt ∈ Rn be an Itô diffusion and an Itô process of the
form

dxt = b(xt)dt+ σ(xt)dBt, t ≤ T , x0 = x (2.38)

dyt = (u(yt) + b(yt))dt+ σ(yt)dBt, t ≤ T , y0 = x (2.39)

where b : Rn → Rn and σ : Rn → Rn×m satisfy Lipschitz conditions such that we can
guarantee uniqueness and existence of the solution and the time T <∞. Furthermore,
we define for an adapted measurable process a : Rn → R the stochastic process

Mt = exp(−
∫ t

0
a(ys)dBs −

1
2

∫ t

0
a(ys)

2ds), (2.40)

for all t ∈ [0,T ] and σ(ys)a(ys) = u(ys). Then, given that Novikov’s condition

E[exp(1
2

∫ T

0
|a(yt)|2dt)] <∞ (2.41)

holds, for any function f ∈ C0(Rn) and any stopping time τ adapted to the filtration
FT (the filtration associated to the Brownian motion B in (2.38) and (4.7)) we have

Ex
P[f(x0:τ )] = Ex

P[Mτf(y0:τ )]. (2.42)

Proof. We are going to give a short sketch of the proof here for completeness.

We define a new probability measure

dQ :=MTdP on FT .

Then,

B̂t :=
∫ t

0
a(ys)ds+Bt t ≤ T

is a Brownian motion with respect to Q, and in terms of B̂t the process yt can be
represented by

dyt = b(yt)dt+ σ(yt)B̂t, y0 = x, t ≤ T .
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Therefore, the Q-law of yt with y0 = x is the same as the P-law of xt with x0 = x

for t ≤ T . This follows directly from the weak uniqueness of solutions of stochastic
differential equations (see [67] p.71 Lemma 5.3.1). Due to the absolute continuity
of the two probability measures Q and P, we can use a change of measure to rewrite
the expectation. Thus, for any function f ∈ C0(Rn) and any stopping time τ ≤ T

which is adapted to the filtration FT we can write

EP[f(x0:τ )] = EQ[f(y0:τ )] = EP[Mτf(y0:τ )]

which gives us the desired result.

By setting b(·) = −∇V (·) and σ =
√

2β−1 we have the metastable SDE model (2.16)
and can use proposition 2 to reduce the metastability in the dynamical system.

Furthermore, it is possible to derive another reweighting formula (2.40), if u(·) is
of gradient form (u(·) = ∇v(·)). Then, one can use Itô’s formula and calculate
another expression for the stochastic integral term in (2.40) as it is done in [58]
p.838. Applying Itô’s formula to v we get

v(yT )− v(y0) =
∫ T

0

1
β
∇2v(ys)−∇V (ys) · ∇v(ys) + |∇v(ys)|2ds

+
√

2β−1
∫ T

0
∇v(ys)dBs (2.43)

where ∇2 is the Laplacian. Now rearranging terms we get a new expression for the
stochastic integral which can be used in (2.40) to derive

MT = exp
( 1

2β−1 (v(yT )− v(y0))+

1
2β−1

∫ T

0

(
∇V (ys) · ∇v(ys) +

1
2 |∇v(ys)|

2 − β−1∇2v(ys)ds

))
. (2.44)

This expression is still stochastic because ys is a stochastic process. From the first
point of view it seems that this term could be treated more easily numerically
compared to the stochastic integral. We will investigate this in the numerical
examples shown in Chapter 4 and 5.

2.2.2 Sampling methods and Monte-Carlo

Since only a few stochastic differential equations can be solved analytically numerical
methods have to be used. An overview about different numerical methods is given
in [48]. We give a short overview about the most popular methods.
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The best-known numerical method for stochastic differential equations is the Euler-
Maruyama method. The method is an explicit 1

2 order method.

Euler-Maruyama
Suppose we have an initial value problem for the SDE given in (2.16). In order to
calculate the solution we discretize the time interval [0,T ] into n ∈ N timesteps
0 = t1 < t2 . . . < tn = T with tk = k∆t, k = 1, . . . n and ∆t = T

n . Furthermore, we
discretize the stochastic differential

∆Bk = Btk+1 −Btk , k = 0, . . . ,n− 1. (2.45)

It follows that the ∆Bk are independent normally distributed with mean 0 and
variance ∆t. Then the SDE (2.16) can be approximated by

dx̂k+1 = dx̂k + b(∆t, x̂k)∆t+ σ(∆t, x̂k)∆Bk, x̂ = x0 k = 0, . . . ,n− 1. (2.46)

Convergence results can be found in e.g. [39] or [48] and the references therein.

Examples for higher order methods are Milstein [63] or Runge Kutta methods [48].
The Milstein method can only be used in the case in which the diffusion term is state
dependent because it requires a derivative of the diffusion term. For SDE without
state dependent diffusion the Milstein method boils down to an Euler-Maruyama
method. But higher order schemes for these SDEs have been developed in [77], for
example.
For the case that the SDE is only used as a sampling device for the stationary
distribution it has been shown that a slight variation of the Euler-Maruyama has
better properties cf. [55].

2.3 Monte Carlo and Importance sampling

As we have already seen in the introduction many quantities of interest in MD are
expressed as expectations. For examples, thermodynamic quantities are given as

Eν [ϕ] =
∫
D
ϕ(x)ν(x)dx

where ϕ is some function expressing the quantity of interest and ν(x)dx is the
Boltzmann-Gibbs measure on the considered space D. Since these expectations
cannot be calculated analytically we approximate them by a Monte Carlo estimator.
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For these different realizations of the quantity of interest are generated independently
and at random from the distribution and their average (empirical mean) is taken

Eν [ϕ] ≈
1
N

N∑
i=1

ϕ(xi) := κN (ϕ) (2.47)

where xi are samples from the distribution ν(x). By the strong law of large numbers
we have that the absolute error will go to zero

P
(

lim
N→∞

|κN (ϕ)−Eν [ϕ] | < 0
)
= 1 (2.48)

cf. [68]. If we further assume that the quantity of interest has finite variance
Var(ϕ) <∞ one can show for the i.i.d. sampling that the Monte Carlo estimator is
unbiased

lim
N→∞

E[µN ] = lim
N→∞

1
N

N∑
i=1

E[ϕ(xi)] = Eν [ϕ] (2.49)

cf. [68]. But often the variance of these Monte Carlo estimators behaves badly,
especially if the quantity of interest is a rare event. In order to improve the Monte
Carlo estimator one can take more samples but if the sampling is computationally
expensive the Monte Carlo approximation also gets very costly. This is why other
strategies have been suggested in the literature, e.g. stratified sampling, control
variates or importance sampling. In this thesis we are going to focus on importance
sampling; see [68] and the references therein for details on the other methods.
The importance sampling strategy is to sample the quantity of interest from a
different distribution and then correct the wrong sampling. The fundamental theory
for doing this is given by the following theorem.

Theorem 4 ([25]). Let µ and ν be probability distributions on the probability space Ω.
If µ is absolutely continuous with respect to ν, then there exists an almost everywhere
strictly positive function ρ on Ω, such that for any function f for which Eµ[f ] exists
and is finite,

Eν [f ] = Eµ[fρ], (2.50)

where
Eµ[fρ] =

∫
Ω
f(x)ρ(x)µ(dx).

The function ρ is called the ‘Radon-Nikodym derivative’ or likelihood ratio of ν with
respect to µ and is denoted by dν

dµ .

The resulting importance sampling estimator can be again written as an expecta-
tion

Eν [ϕ] =
∫
D
ϕ(x)

ν(x)

µ(x)
µ(x)dx = Eµ

[
ϕ
∂ν

∂µ

]
. (2.51)
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The importance sampling estimator can now again be approximated by a Monte
Carlo estimator

Eµ

[
ϕ
∂ν

∂µ

]
≈ 1
N

N∑
i=1

ϕ(xi)
ν(xi)

µ(xi)
(2.52)

where now xi ∼ µ(x)dx. Because of the absolute continuity we find

Eµ

[ϕ(x)µ(x)
ν(x)

]
=
∫
D

ϕ(x)ν(x)

µ(x)
µ(x)dx

=
∫
D
ϕ(x)ν(x)dx = Eν

[
ϕ(x)

]
.

In principle the importance sampling estimator should satisfy two properties. First
it should be easy to sample from the importance sampling distribution ν(x)dx and
second the variance of the resulting estimator should be lower than the variance of
the original Monte Carlo estimator. In general, there is no guarantee that it is easy
to sample from the importance sampling distribution and that sampling from any
other distribution decreases the variance of the sampling. As we have already seen
in the introduction the optimal distribution in terms of variance reduction depends
on the quantity itself. This is why the design of a nefficient importance sampling
distribution is sometimes called the ’art of importance sampling’.
From the literature it is well-known that Monte Carlo is not affected by the di-
mension. The convergence of Monte Carlo methods scales with 1/

√
N . But for

importance sampling the likelihood ratio reveals a dimension effect. The variance of
the likelihood ratio grows exponentially with the dimension [68].
We have only presented the idea of importance sampling for thermodynamic quanti-
ties for simplicity. All of the here presented theory is also valid for the sampling of
dynamic quantities. The main difference are the measures and the spaces which are
considered but the general framework of importance sampling is the same. This is
why we do not discuss the framework again for dynamical quantities but show the
connection to importance sampling of dynamic quantities and optimal control in the
SDE context in the next section.

2.4 Importance sampling and optimal control

The general idea for importance sampling in path space is equivalent to the already
presented idea of importance sampling. Instead of sampling with respect to the
difficult probability measure one tries to sample with respect to another probability
measure which is easier to sample. As we have already seen in the case of two
stochastic processes the Radon-Nikodym derivative is explicitly given by Girsanov’s
theorem. One can show that there exists an optimal change of drift (also called
change of measure). This optimal change of measure results in a zero variance
estimator. Furthermore, the optimal change of drift is the solution of an optimal
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control problem. Thus, in order to find the optimal change of drift a Hamilton-
Jacobi-Bellman (HJB) equation has to be solved. In this section we derive the HJB
equation for the optimal bias by using the explicit formula of the Radon-Nikodym
derivative and the Feynman-Kac relation following [58].
The connection of optimal control and variance reduction for Monte Carlo methods
was first proposed by [63]. Milstein developed the discrete version of the optimal
control approach. He proposes to use Girsanov’s theorem and add an additional
drift to the SDE. He then derives that there exists an optimal drift which satisfies the
Bellman equation, such that the variance of the estimators is zero.

We consider the SDE given by (2.17) with deterministic starting conditions x0 ∈ S
in some sufficiently smooth and bounded set S . We are interested in observables of
the

I = Ex
P

[
exp

(∫ τ

0
f(xs)ds+ g(xτ )

)]
(2.53)

for some given functions f : S → R and g : S → R and the stopping time

τ = inf{t ≥ 0,xt ∈ T } (2.54)

where T is some given target set (e.g. T = Sc the complement of a bounded set).
On the one hand these observables can be used to describe free energy cf. [12] and
interesting quantities like exit times or transition probabilities and on the other hand
these observables can be connected to stochastic control theory [58]. For example,
choosing g = 0 and f = λ then I is the moment generating function of the exit time.
Typically I is approximated by a Monte Carlo estimator

I ≈ 1
N

N∑
i=1

In (2.55)

where In are independent realizations of (2.53). If the drift term is metastable, it
is very hard to sample trajectories which reach the target set. Furthermore, the
statistical error √

Var(In)
I

2
(2.56)

grows, if the probability we are trying to estimate is very small. In order to reduce
the variance of the estimator an importance sampling technique is used. For this we
sample the biased dynamics

dyt = −∇(V + V̄ )(yt)dt+
√

2β−1dBt, y0 = x (2.57)

where V̄ : S → R is a C∞ biasing potential. In order to correct the expectations
calculated from the biased dynamics we use the Radon Nikodym derivative from
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Girsanov’s theorem. As we have seen the importance sampling estimator constructed
with Girsanov’s theorem is unbiased

I = E[IV̄ ] (2.58)

where

IV̄ = exp
(∫ τ̄

0
f(ys)ds+ g(yτ )

)
× exp

( 1√
2β−1

∫ τ̄

0
∇V̄ (ys)dBs −

1
4β−1

∫ τ̄

0
|∇V̄ |2(ys)ds

)
(2.59)

with τ̄ being the stopping time

τ̄ = inf{t ≥ 0, yt ∈ T }. (2.60)

So Girsanov’s theorem provides a way of importance sampling in path space for
any bias potential which satisfies the conditions of Girsanov’s theorem. Using
the alternative expression of the Girsanov weight given in equation (2.44) and
rearranging terms we find an expression for the stochastic integral in (2.59). Using
the above formula we find a second formula for the estimator

IV̄ = exp
(∫ τ

0
f(ys)ds+ g(yτ ) +

1
2β−1 (V̄ (yτ )− V̄ (x0))

)
( 1√

2β−1

∫ τ̄

0
∇V (ys) · ∇V̄ (ys) +

1
2 |∇V̄ |

2(ys)− β−1∇2V̄ (ys)ds

)

We will now derive the bias potential which gives a zero variance estimator. Let us
consider the bias

V̄ = −2β−1 log u (2.61)

where x ∈ S
u(x) = Ex

P

[
exp

(∫ τ

0
f(xs)ds+ g(xτ )

)]
. (2.62)

Recall that (xs)s≥0 satisfies (2.17) with x0 = x. From the Feynman-Kac formula the
function u : S → R satisfies a partial differential equation

Lu+ fu = 0 in S

u = exp(g) on ∂S

where L is the infinitesimal generator of (2.17). Therefore we know that V̄ =

−2β−1 log u satisfies

∇V∇V̄ − β−1∇2V̄ +
1
2 |∇|

2 + 2β−1f = 0 in S (2.63)

V̄ = −2β−1g on ∂S (2.64)
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Using the biasing potential V̄ = −2β−1 log u we obtain

IV̄ = exp
(
g(yτ ) +

1
2β−1 (V̄ (yτ )− V̄ (x0)

)
= exp

(
− 1

2β−1V̄ (x0)

)
= u(x0) = I.

From the above equation we see that the estimator IV̄ is almost surely a zero variance
estimator. Thus, the estimator is optimal in terms of bias. As always in importance
sampling the optimal result requires the quantity which we want to calculate from
the very beginning.
The above result shows on the one hand that it is quite difficult to construct the
optimal bias because it is a solution of a non-linear PDE. On the other hand by
approximating the optimal bias we can use it to bias the dynamics to get better
estimators (better in terms of variance). The closer the approximation is to the real
solution the better is the associated Monte Carlo procedure. More details on the
connection of importance sampling and optimal control in the MD context can be
found in [58] and on stochastic optimal control in [30, 37].

2.5 Related works

In the last part of the theory chapter we are going to mention some related works for
describing the metastability in a dynamical system and algorithms for the efficient
sampling of quantities. At first we are going to give a brief summary about math-
ematical ways how metastability can be described. Then we are going to present
the importance sampling approach based on large deviation context and at the end
we are going to summarize the different algorithmic approaches for the efficient
sampling of thermodynamic quantities.

Mathematical approaches to metastability

Large deviations
The modern mathematical approach to metastability was given by M. Freidlin and
A. Wentzell in the late 1960s. Freidlin and Wentzell introduced the theory of large
deviations on path space to analyse the long-term behaviour of a deterministic
dynamical system perturbed by a weak stochastic noise. Their approach is often
called the pathwise approach to metastability. The main advantage of this approach
is that it gives very detailed information on the metastable behaviour. By minimizing
an action functional, which is called the rate function, crossing times and other
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information can be determined. Identifying and controlling the rate function are
non trivial and thus limits the application; see e.g. [32] for details.

Spectral approach
An axiomatic approach to metastability was introduced by Davis in the 1980s based
on the spectral properties of the generator of the dynamical system (he considered a
reversible Markov process). He showed that the related process exhibits a metastable
behaviour if the spectrum has a cluster of very small real eigenvalues which are
separated by a comparatively wide gap from the rest of the spectrum. Under some
further assumptions on the corresponding eigenfunctions he showed that the state
space can be decomposed into metastable sets and that the motion of the Markov
process between these sets is slow. The limitation of this approach is that it is difficult
to verify the necessary assumption on the spectrum; see e.g. [19] for details.

Potential theory
The potential-theoretic approach was introduced in 2001 by Bovier et al. Instead of
identifying the paths between the metastable sets, the metastability is interpreted as
a sequence of visits of the path to different metastable sets. In this way, it focuses on
the analysis of the hitting probabilities and hitting times based on potential theory.
From a different point of view this approach tries to understand the metastable
behaviour of the Markov process to the study of equilibrium potentials and capacities
in networks; see e.g. [8] for details.

Quasi-stationary distribution
Another tool of partial differential equations for studying metastable behaviour
are quasi-stationary distributions (QSD). The quasi-stationary distribution can be
used to analyse the exit event from a metastable set S. The QSD describes the
long term behaviour of the process conditioned to not leaving S. It is attached
to the metastable set by the first eigenvector of the Fokker-Planck operator with
homogeneous Dirichlet boundary conditions on ∂S. This technique is also known
as the Fleming-Viot process and can be used to analyse algorithms like the Replica
exchange method ; see e.g. for details [57].

Log Sobolev inequalities
The metastability can also be described by the rate of convergence of the law
converging to the stationary distribution. The rate of convergence is described by the
relative entropy of the time evolution of the probability measure and the equilibrium
probability measure. The relative entropy of the law at time t and the stationary
distribution is bounded by the relative entropy of the starting distribution and the
stationary distribution times an exponential factor depending on some constant R.
In general, one can say that the smaller R the more metastable the dynamical system.
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Determining the sharp estimates of the constant R is actually very challenging; see
e.g. [57] for details.

Importance sampling in the large deviations context

Large deviation arguments have become a very important tool for importance
sampling strategies and the efficient design of Monte Carlo algorithms; see e.g. [3].
For example, exponential change of measure have been proposed for an efficient rare
event sampling. Considering the connection between optimal control and importance
sampling different strategies were developed in the large deviation context; see e.g.
[20, 22, 21]. By a scaling of diffusion a first order Hamilton-Jacobi-Bellman can
be derived. Based on this first order HJB equation Dupuis et al. derive importance
sampling schemes for different situations. For this the temperature is sent to zero
(β−1 →∞). The resulting first order HJB equation is given by

∇V · ∇V̄ +
1
2 |∇V̄ |

2 + f̄ = 0 in S

V̄ = −ḡ on ∂S

where ∇V̄ is used to bias the drift of the considered system. These ideas have also
been developed for applications in Molecular Dynamics by [88]. In their work van
den Eijden and Weare proposed a technique based on the solution of the deterministic
control problem associated to the sampling problem for dynamical quantities.
Furthermore, advanced importance sampling strategies for MD relevant situations
have been studied in [23]. Here an importance sampling scheme for resting points
was developed. The numerical examples of the article show that the importance
sampling scheme constructed for this situation is better than the scheme which does
not take the resting point into account. In order to build such importance sampling
scheme a lot of knowledge on the dynamical system is necessary, but this results in a
better variance reduction.
In [82] K. Spiliopoulos developed a performance measure for importance sampling
scheme related to small noise diffusion processes which give the possibility to
compare the different importance sampling schemes analytically.

Algorithms to overcome metastability

In the MD community more algorithmic approaches to overcome problems with
metastability for thermodynamic quantities have been proposed. We summarize the
some well-known methods and show, if and why they can be seen as importance
sampling schemes. In the end of this section we present a method which was
proposed for the sampling of dynamic quantities.
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Due to the many interacting particles in the molecule the function V is unknown.
So in order to calculate thermodynamic quantities the stationary distribution has to
be approximated. In order to do this the function V has to be explored effectively.
But again the exploration of the function V is difficult because of the many minima
and the resulting metastable behaviour. In order to overcome these problems many
algorithms have been developed in the past years. These algorithms which have been
designed for this problem are often called enhanced sampling techniques. Many of
these methods are based on ideas from importance sampling (see e.g. [60]) but also
other ideas and techniques are used in enhanced sampling approaches; see e.g. [6,
59, 15] and the references therein for details.

Adaptive methods
Adaptive methods are quite popular methods which have been designed to enhance
the sampling of stationary distributions. There are three very popular examples:
the histogram approach by [91], the adaptive biasing force method [18] and Meta-
dynamics [53]. All these methods share the same principle which is to modify
the potential (or the force and thus implicitly the potential) in order to remove or
decrease the metastability. These algorithms are often applied on a so-called reac-
tion coordinate which is a low-dimensional representation of the high-dimensional
dynamical system. Adaptive methods can be seen as adaptive importance sampling
methods since the stationary distribution is determined by the potential as we have
seen in (1.2). So changing the potential with a biasing potential U will also result in
a different distribution function

ν(x) =
1
ZU

exp
(−(V (x) + U(x))

kBT

)
where ZU is the new partition function for the modified potential. So the Radon-
Nikodym derivative between the original and the perturbed distribution is given
by

ν(x)

µ(x)
=

1
Z exp

(
−V (x)
kBT

)
1
ZU

exp
(
−(V (x)+U(x))

kBT

) =
ZU
Z

exp
(
U(x)

kBT

)
.

The biasing potential can be calculated based on the history of the trajectory. In
this way the biasing potential can be made problem dependent. This makes adap-
tive methods interesting for problems for which no apriori information about the
dynamical system is available. There has been lots of research for adaptive methods
in the last years. For example, convergence results have been found for variants of
Metadynamics [53] or adaptive biasing force [18]. This area is still a very active
field and new ideas have been proposed recently; see e.g. [86] or [87] and the
references therein.
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Simulated annealing
In simulated annealing the temperature of the simulated system is changed; see
[45]. As we have seen the temperature has an impact on the stationary distribution
such that the change of temperature changes the stationary distribution. This can
be interpreted as change of measure and this is why the method can be seen as
an importance sampling method for thermodynamic quantities. The stationary
distribution for a system at temperature T1 is given by

ν(x) =
1
Z

exp
(−V (x)

kBT1

)
.

Suppose we do a second sampling with temperature T2, then one can relate the two
different measures by a Radon Nikodym derivative

ν(x)

µ(x)

exp
((

1
T1
− 1

T2

)
V (x)
kB

)
∫

exp
((

1
T1
− 1

T2

)
V (x)
kB

)
dx

. (2.65)

The quantity of interest for the temperature T1 can be calculated by sampling
the dynamical system for temperature T2 and reweight with the Radon Nikodym
derivative (2.65).

Replica exchange
In the case of Replica exchange methods, e.g. [83], a different strategy than
importance sampling is used. The method is designed for the effective sampling of
thermodynamic quantities and stationary distributions. The main idea of this method
is to start different trajectories with different temperatures and to interchange the
current position of the trajectories according to some rule. Often a Metropolis
Hastings rule is used as the rule to interchange the current positions. In such a way
the low-temperature trajectory visits states which it would not have visited without
these switchings. If the dynamical system is ergodic the thermodynamic quantities
of the system can be sampled in this way.
From a theoretical point of view one could built an importance sampling scheme with
different temperatures involved. If, for example, a temperature replica exchange is
applied, then this can be interpreted as a multistage simulated annealing, and in
principle one could compute the reweighting factors for each trajectory segment.
However, one has to track the interchange of the trajectories very precisely in order
to correctly reweight the trajectory segments. A similar strategy has been proposed
by [61].

Multilevel Splitting
Multilevel splitting is a technique to sample path dependent quantities in contrast to
the techniques presented before. The main idea of multilevel splitting techniques
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like adaptive multilevel splitting is to decompose the whole path which has to be
sampled into much smaller parts. The intermediate sampling goals are much easier
to reach and thus the sampling is much faster. Furthermore, the sampling of the
different parts can be parallelized. Famous examples are e.g [13] or [24] but many
other approaches exist.
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3Convolution approach

As we have seen in the introduction metastability which is caused by the energetic or
entropic barriers has an impact on both thermodynamic quantities and on dynamical
quantities. Therefore, one of the main research questions is how these barriers and
thus the metastability can be decreased. If information about the dynamical system
and the location of the metastable sets are available, local techniques can be used as
we will see in the next chapter. If this is not the case, a lot of sampling effort has
to be used to explore the state space of the system to get this relevant information.
Especially for the sampling of thermodynamic quantities this is necessary because
the stationary distribution which depends on the whole state space has to be known
to calculate them. In order to approximate the equilibrium distribution the state
space has to be explored such that the empirical approximation is sufficient. So
decreasing the metastability of the dynamical system without apriori knowledge
will help to explore the state space more rapidly and thus reduce the sampling
effort. To do so we propose a global perturbation of the potential by a convolution.
The main idea of this approach is to sample a slightly perturbed dynamical system
in which the metastability is reduced. The intuition of this method is that the
convolution first smoothes out the small minima which hinder the trajectory from
moving in the potential freely. The convolution also decreases the large barriers
such that the metastability is decreased and thus the sampling is accelerated. Since
the metastability of the system is affected globally, the convolution approach can
be used for effective sampling of the state space. Furthermore, the perturbation
of the potential also has an impact on the equilibrium distribution and we can use
importance sampling techniques for the sampling of thermodynamic quantities.
The convolution approach can be especially helpful for dynamical systems with an
entropic barrier. Normally simulated annealing techniques are used to overcome
barriers. But for entropic barriers these techniques fail since these barriers are
not affected by the temperature or, even worse, a higher temperature increases
the barrier. Since the convolution approach changes the potential directly and
is independent from any system parameter, it will have an effect on the entropic
barrier.

The convolution approach is motivated by an idea of global optimization. In global
optimization one is interested to find the global minimum of a function with many
local minima. The general strategy following the steepest descent until one has
found a possible candidate fails. Gradient descent methods will often get stuck in
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a local minimum not finding the global minimum. The convolution is used here
to smooth out the local minima and thus find the global minimum. This approach
is often combined with a restart technique. The convolution approach in global
optimization was introduced in a series of papers [49] and [64] etc. The authors
used a convolution with a Gaussian kernel. This convolution is connected to the
heat equation because the fundamental solution can be expressed in this way.
Recently, the convolution approach was applied in the field of deep learning. In deep
learning weights of a neuronal network have to be optimized. This can be phrased
as a optimization problem and the objective function is often high-dimensional and
thus finding the global minimum is difficult. It is often too expensive to evaluate
the full gradient and thus the gradient is only evaluated on some smaller subspace
(or mini batch) or stochastic gradient methods are used. If a stochastic gradient
descent method is used, the gradient descent can be modelled as an overdamped
Langevin equation. This is why problems with metastability also occur in this
research area. The convolution approach was used in order to overcome these
metastability problems in the optimization of deep neuronal networks and was
compared to other approaches cf. [14].

The chapter is structured as follows. First, we present the motivating idea from
Scheraga’s original work. We are going to present then different approximations
schemes for the convolution of high-dimensional potentials. The presentation of
the different approximation schemes is accompanied by one-dimensional examples
visualizing the intuition of the convolution approach and how the metastability
is affected. After this we are going to show results for the application of the
approach to Butane. Butane is especially interesting because the high-dimensional
dynamical system can be fully expressed in a one-dimensional reaction coordinate.
We used this example to understand if the convolution in the high-dimensional space
influences the metastability in the low-dimensional reaction coordinate. Furthermore,
we would like to understand in this example how the metastability is influenced
by the convolution. After this very general investigation we use the convolution
approach for rapid state space exploration and the sampling of thermodynamic
quantities. For this we are going to integrate the convolution approach in the Replica
exchange algorithm. Normally, different temperatures are used in the Replica
exchange method and we propose that different convolution parameters can also
be used in order to generate more information about the dynamical system under
investigation. Then, we are going to explore how the convolution approach can
be combined with importance sampling. As the convolution changes the potential
the equilibrium distribution also changes. So by quantifying the difference of
the different Boltzmann-Gibbs distributions we can build an importance sampling
estimator for thermodynamic quantities. In the following section we integrate the
convolution approach into the Linear Response theory. The Linear Response theory
is a way to describe the reaction of a dynamic system on a small external force. Our
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result can be used to quantify the impact of the convolution on thermodynamic
quantities. In the last part of the chapter we are going to use the global perturbation
to sample dynamic quantities. First, we develop an extrapolation scheme for mean
first exit times and then generalize the approach to other dynamic quantities. A
short summary and a discussion concludes the chapter.

3.1 Decreasing metastability by convolution

In this section we are going to explore how the convolution approach decreases
metastability. This global approach can be extremely useful, if there is no information
about the dynamic system under investigation available. In this section we are
going to investigate how the metastability changes under the convolution of the
potential. Furthermore, we show how the convolution can be realized, if it cannot
be calculated analytically. The different approximation schemes are accomplished
with one-dimensional numerical examples to show the decreasing impact of the
convolution approach. In the second part of this section we apply the approach to
the high-dimensional example of Butane. We used Butane because the dynamics of
Butane can be expressed in a one-dimensional reaction coordinate by describing the
whole system only with the dihedral angle. With our numerical examples we would
like to understand how the convolution of the high-dimensional interaction potential
influences the dynamic in the low-dimensional reaction coordinate. We will stick
to the numerical testing of the convolution approach because of two reasons. First,
there are different definitions in the literature how metastability can be determined
for a dynamical system. Each of the definitions has other assumptions and so it is
unclear if all of these definitions are equivalent. The second reason is the analytical
difficulty. Let us consider for example the Log Sobolev constants as a measure
of metastability as suggested in [57]. It is very difficult to precisely calculate the
constant even for a small system and mostly impossible to calculate it for a large
system like Butane. Let us first have a look at the motivating example of Scheraga’s
work before showing the different approximation schemes and the one-dimensional
examples.

Scheraga was the first who applied the convolution approach in MD [71]. His
aim was to find the global minimum of a potential. In his article a transformation
is proposed to destabilize any potential well. He motivates his approach with a
one-dimensional example by considering the function V ∈ C2 : R→ R. He proposes
the following transformation operator given by

V [1](x) := V (x) + ξV ′′(x) for ξ > 0. (3.1)
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He argues that this transformation operator does not change the inflection point
since V ′′ = 0 but the convex part of the function goes up and the concave part goes
down. So the existing extrema are destabilized and barriers are lowered (barrier =
max V - min V in some closed connected subset). A repetition of this transformation
leads to the idea to use a convolution with Gaussian kernel which can easily be
generalized to a multidimensional setting; see [71] or [49] for details. This kind of
convolution is also known as smoothing and satisfies

Vλ(x) = (4πλ)
−n

2

∫
Rn
V (y) exp

(
− (x− y)2

2λ2

)
dy. (3.2)

From now on we will use Vλ(x) to denote the convolution of the function V .

It is known from the literature that the equation (3.2) is the fundamental solution of
the heat equation; see e.g. [26]. So the transformation can be also expressed as PDE
given by

∇2Vλ(x) =
∂

∂λ
Vλ(x), V0(x) = V (x) (3.3)

where∇2 is the Laplacian and λ is normally referred to as ’time’. The main difference
between the heat equation and the here introduced convolution approach is that
we will not consider λ as time since we are not interested in the λ evolution of the
potential. The key idea of the convolution approach is to solve the convolution for a
fixed parameter λ and use the resulting potential for sampling and this is why we will
call λ the smoothing parameter. We assume that a higher smoothing parameter has a
bigger impact on the metastability; see Figure 3.1. Furthermore, we are interested in
quantities of the unconvoluted potential and so we are interested in λ→ 0. Because
of this one could now get the impression that we are interested in solving the heat
equation backwards in ’time’. But this is not true here. The boundary condition is
set to V0(x) = V (x) and is thus well-defined. Solving the heat equation backwards
in time is actually a hard inverse problem; cf. [26].

We have seen in equation (3.2) that in order to convolute the potential either a
heigh-dimensional integral or a PDE has to be solved. Both ways of calculating
the convolution are difficult and thus limit the application of this approach. So
before investigating the influence of the convolution on the metastability let us
summarize different approaches how the convolution can be efficiently realized
for high-dimensional problems. Furthermore, we are going to test the different
approximation schemes for one-dimensional examples to show the intuition of the
convolution approach.
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Approximation schemes

In this section we are summarizing different approaches from the literature how
the convolution of the high-dimensional potential can be approximated efficiently.
In total we are going to present three different methods. The first can be applied,
if the potential is a polynomial function. The convolution can then be written in
an explicit form. The second approach is a Monte Carlo approach. Monte Carlo
is the standard technique to approximate high-dimensional integrals. The third
approach is based on the introduction of an additional fast variable and the usage
of a homogenization method. All the methods will be tested at an example which
indicates that the approximation of the convolution has the decreasing impact on
the dynamical system.

Polynomial case
Let us first explore the case that the potential is of polynomial form. The convolution
can then be calculated in an explicit way and in fact this method is not an approxi-
mation. But its application is limited to polynomial potential. The result was first
proposed by [49] in the context of global optimization.

Theorem 5. Consider a polynomial function v : Rn → R of the form

v(x) =
∑

i1,i2...id
ai1,i2...idx

i1
1 x

i2
2 . . . x

in
n . (3.4)

Then the convolution is given by the following formula

vλ(x) =
∑

i1,i2...id
ai1,i2...idWi1(x1,λ)Wi2(x2,λ) . . .Win(xn,λ) (3.5)

where

Wn(x,λ) =
bn/2c∑
k=0

ai1,i2...id
n!

k!(n− 2k)!λ
kxn−2k. (3.6)

Proof. [49] Since the convolution is the fundamental solution of the heat equation

∇2Vλ(x) =
∂

∂λ
Vλ(x), V0(x) = v(x) (3.7)

then the solution can be expressed as

Vλ(x) = exp(λ∇2)v(x) = Πn
j=1 exp(λ(∂2/∂x2

j ))v(x)

=
∑

i1,i2...id
ai1,i2...idΠn

j=1 exp(λ(∂2/∂x2
j ))x

ij
j

=
∑

i1,i2...id
ai1,i2...idWi1(x1,λ)Wi2(x2,λ) . . .Win(xn,λ)
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where the Wn(x,λ) is a finite sum

Wn(x,λ) = exp(λ(∂2/∂x2))xn =
∞∑
k=0

λk

k!
(∂2k/∂x2k)xn

=
bn/2c∑
k=0

n!
k!(n− 2k)!λ

kxn−2k

Example
The following example shows clearly how the barrier is decreased and how the low
probability region which is connecting the two metastable states is raised.

Consider the one-dimensional asymmetric bistable potential given by

V (x) = 8x4 − 44/3x3 + 2x2 + 11/3x+ 1. (3.8)

The convolution can be calculated by (3.5) and is given by

Vλ(x) = V (x) + 96(λ2/2)2 + (4− 88x+ 96x2)(λ2/2). (3.9)
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Fig. 3.1: left: Potentials for different smoothing parameters, in blue the original poten-
tial is shown. right: Resulting Boltzmann distributions for different smoothing
parameters. The inverse temperature β = 3

One clearly sees that the area around the minimum is raised while the area around
the local maximum is decreased. So the barrier heights decrease for bigger smooth-
ing parameters. The stationary distribution of a stochastic process which satisfies
(2.16) is given by the Boltzmann distribution which depends on the potential. So
the convolution also has an impact on the stationary distribution. The resulting
Boltzmann distributions of the convoluted potentials show that the probability of the
metastable states is lowered. Furthermore, the probability of the transition region
increases. So it is more likely that a transition occurs in the convoluted potential as
in the original potential. All of the results for the one-dimensional example show the
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decreasing effect of the convolution on the metastability. Let us consider a typical
trajectory following equation (2.16) and a time evolution of a trajectory moving in
the convoluted potential to indicate that the sampling in a convoluted potential is
easier.

We sample one trajectory of length 1000000 time steps in the original potential and
in the smoothed potential in order to approximate the stationary distribution. The
temperature was set to β = 5 and the temporal discretization was dt = 0.001. A
standard Euler-Mayurama scheme was used for the numerical approximation of the
SDE. The starting point of the SDE was chosen x0 = −0.25 for all simulations.
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Fig. 3.2: Histogram of the sampled region in the original potential (left) and the sampled
region for the convoluted potential (right).
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Fig. 3.3: Evolution of the trajectory in the original potential (left) and evolution of the
trajectory in the convoluted potential (right).

This example shows that the barrier is decreased by the convolution and so the
transition region is better explored compared to the sampling in the original potential.
The histogram of the convoluted potential shows much more visits in the transition
region and less visits in the metastable regions. Comparing the visualization of
the typically trajectories we see that in the sampling of the convoluted potential
much more transitions occur and that the exploration of the metastable sets is wider
compared to the sampling in the original potential.
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Monte Carlo approximation
The convolution integral can also be interpreted as an expectation and so one can use
a Monte Carlo approximation method to approximate the integral. The integral

Vλ(x) = (4πλ)
−n

2

∫
Rn
V (y) exp

(
− ‖x− y‖2λ2

)
dy (3.10)

is an expectation with respect to a normal distribution N (x,λ). So using a standard
Monte Carlo method the integral can be approximated by

Vλ(x) ≈
1
M

M∑
i=1

V (x+ εi) (3.11)

where ε are Gaussian random variables with mean x and variance λ. So in order to
evaluate this sum we have to explore the neighbourhood of the point x. But this can
be done very sufficiently by drawing Gaussian random variables from the Gaussian
density with mean x and variance λ. The evaluation of the potential at all of these
sampling points can become very costly, if many sampling points are used (large
M). For a small number of sampling points the approximation can be computed
very efficiently.

Let us again consider a typical time evolution of a trajectory in the original potential
and in the convoluted potential. This time we are going to use a symmetric bistable
potential given by

V (x) =
1
2 (x

2 − 1)2. (3.12)

We again sample one trajectory of length 1000000 in the original potential and in
the smoothed potential in order to approximate the stationary distribution. The
temperature was set to β = 5 and the temporal discretization was dt = 0.001. A
standard Euler-Mayurama scheme was used for the numerical approximation of the
SDE. The starting point of the SDE was chosen x0 = −1 for all simulations. We used
N = 20 to approximate the convoluted potential.
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Fig. 3.4: Histogram of the sampled region in the original potential (left) and the sampled
region for the convoluted potential (right).
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Fig. 3.5: Evolution of the trajectory in the original potential (left) and evolution of the
trajectory in the convoluted potential (right).

Similar to the previous example of the asymmetric bistable potential we see that
the barrier is also decreased in the Monte Carlo approximation of the convolution.
Again the transition region is better explored compared to the sampling in the
original potential. The histogram of convoluted potential shows much more visits
in the transition region and less visits in the metastable regions. Comparing the
visualization of the typical trajectories we see that in the sampling of the convoluted
potential a lot more transitions occur and that the exploration of the metastable sets
is wider compared to the sampling in the original potential.

Slow fast system
The convolution of the potential can also be realized by introducing an artificial fast
variable and using homogenization techniques [70]. We will give a brief summary
of the theory and then present a one-dimensional example as a proof of concept.

We introduce an artificial fast dynamical system

dxs = −∇V (xs − ys)ds+
√

2β−1dBs (3.13)

dys = −
1
εγ
ysds+

1√
εα
dBs (3.14)

In this case it follows that in the limit α → 0 the dynamical system xs in (3.13)
converges to

dXs = h̄(Xs)ds+
√

2β−1dBs (3.15)

where h̄ is the homogenized vector field for X is defined as the average against
the invariant measure of ys. So if we choose the equation of motion of ys such
that the invariant distribution for the fast variable is ρ∞(y,X) = Gα−1γ(y) then the
homogenized dynamics is given by

dXs = −∇V (Xs) ∗Gα−1γds+
√

2β−1dBs (3.16)
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The resulting dynamics system corresponds to a Gaussian averaging of the gradients
[14, 70].

Example
We test the approximation scheme based on the homogenization in a one-dimensional
setting. We simulate a stochastic process satisfying (2.16) in a symmetric bistable
potential V as given in the previous example.

We sample one trajectory of length 1000000 time steps in the original potential and
in the smoothed potential in order to approximate the stationary distribution. The
temperature was set to β = 5 and the temporal discretization was dt = 0.001. A
standard Euler-Mayurama scheme was used for the numerical approximation of the
SDE. The starting point of the SDE was chosen x0 = −1 for all simulations. The
smoothing parameter was set to α = 50 in the simulation of the convoluted potential.
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Fig. 3.6: Histogram of the sampled region in the original potential (left) and the sampled
region for the convoluted potential (right).
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Fig. 3.7: Evolution of the trajectory in the original potential (left) and evolution of the
trajectory in the convoluted potential (right).

Similar to the previous examples we see that the approximation of the convolution
by this approach decreases the barrier. Again the transition region is better explored
compared to the sampling in the original potential. The histogram of the convoluted
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potential shows a lot more visits in the transition region and less visits in the
metastable regions. Comparing the visualization of the typical trajectories we see
that in the sampling of the convoluted potential a lot more transitions occur and
that the exploration of the metastable sets is wider compared to the sampling in the
original potential.

So far we have seen different approximations for the convolution which are indepen-
dent from the dimension of the potential. Furthermore, we have shown different
one-dimensional examples, all showing that the convolution has a decreasing impact
on the barriers and so the metastability of the dynamical system is decreased. Let us
next have a look on an application of the approach on a high-dimensional potential.
Before presenting the results we are going to introduce the transfer operator because
the eigenvalues of this operator are a numerical tool to describe the metastability of
a system.

Spectral Gap and Eigenvalues
In the numerical community the eigenvalues of the transfer operator and the spectral
gap are often used to indicate the metastability, e.g. [42]. Heuristically the number
of eigenvalues close to one show how many metastable sets the dynamical system
has. So in order to investigate if the convolution influences the metastability we are
going to look at the eigenvalues of the transfer operators for different convolutions.
But first we are briefly going to introduce the transfer operator; see e.g. [79] for
further details.

The transfer operator T : L1(µ)→ L1(µ) is an operator that propagates probability
densities µ. Since for large molecular systems the operator is analytically intractable,
different approximation schemes are used. One approximation was introduced in
[79] and is given by

T τ := exp (τL) (3.17)

where τ is a so-called lag time and L is the generator of the considered dynamical
system. The transfer operator describes how the dynamical system evolves in time τ .
For the above one-dimensional example the generator can be approximated by a finite
difference scheme. So the transfer operator can be approximated very accurately.
For high-dimensional systems the transfer operator is usually approximated by
discretizing the state space into the metastable regions; see for example [79] and
the reference therein for details.

Let us again consider the potential of the last one dimensional example and the
resulting transfer operator. To see how the convolution influences the metastability
we are going to investigate the behaviour of the eigenvalues under the convolution.
The eigenvalues for the convoluted potentials are shown in figure 3.8.
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Fig. 3.8: Eigenvalues of the transfer operator for different convolution parameters λ

The eigenvalues are decreasing for a larger smoothing parameter for the bistable
system. The larger the smoothing parameter, the lower the second eigenvalue is. Due
to this behaviour of the second eigenvalue we can conclude that the metastability
is decreased. By looking at the behaviour of the potential this is exactly what we
would expect; see 3.1. The bistable system would turn into a system with only one
metastable state for very high smoothing parameters. So if the convolution is done
in this way that the metastability is decreased, but the number of metastable states
is conserved, the sampling will get enhanced and not too much information about
the original system is lost.

Example: Butane

In order to test the convolution approach for a high-dimensional system we test the
approach for Butane. This work was done by Lisa Brust in her master thesis under
my supervision [9]. We will only present parts of the master thesis here to show that
the convolution approach can be applied for high-dimensional sampling problems.
The details of the shown simulation can be found in [9].

Butane is a small molecule consisting of 4 Carbon atoms and 10 Hydrogen atoms. So
the full potential function is in a 42 dimensional space. Butane has three metastable
states which can be expressed in a one-dimensional reaction coordinate (torsion
angle). For the simulations the Matlab package trajlab was used. For simplification
we only considered the backbone for the simulations taking the Hydrogen atoms
into account by changing the mass of the Carbon atoms. For all simulations the same
random number generator was used for better comparison of the results.
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To investigate the effect of the convolution on the metastability we simulated long
term trajectories of Butane to approximate the stationary distribution of the torsion
angle for different smoothing parameters. In the first experiment the whole poten-
tial was convoluted. Furthermore, the transfer operator was approximated such
that we could calculate its eigenvalues and investigate their behaviour under the
convolution.

Comparing the resulting projected stationary distribution of the torsion angle one
can see that the convolution of the whole potential has a decreasing effect on the
metastability.

Fig. 3.9: Stationary distribution for different smoothing parameters approximated by a long
term simulation. The left figure shows the stationary distribution for λ = 0.15, the
middle figure shows the stationary distribution for λ = 0.3 and the right figure the
stationary distribution for λ = 0.4 is shown.

The projected stationary distributions of the convoluted potential of Butane show
a similar behaviour as the distributions of the one-dimensional example. So the
convolution of the whole potential has an effect on the metastability. Furthermore,
one can also see that a larger smoothing parameter has a larger impact on the
metastability. The left figure shows the resulting distribution for the smoothing
parameter λ = 0.15. The distribution shows three separated modes which are all
more or less equally likely. The middle figure shows the distribution for λ = 0.3. Here
one also sees three different modes but the two outer modes are not so often visited.
Since the same random number generator was used, it gives the impression that the
metastability of these states has really changed. Comparing the transition regions
with each other one also sees that they are more often visited if the smoothing
parameter is larger. The right figure shows the resulting distribution for λ = 0.4.
The distribution only has one mode. So the two outer states, which were metastable
before, are now not metastable any longer. The two outer metastable states are not
as often visited as in the less convoluted potentials.

As we have seen Butane has three metastable states. Comparing the eigenvalues
of the transfer operator one sees the decreasing impact of the convolution because
the second and the third eigenvalue are lowered. One also sees that a larger
smoothing parameter has a larger impact on the metastability since the eigenvalues
are lower. All in all, these results show that the convolution approach can influence
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Fig. 3.10: Eigenvalues of the resulting transfer operator for differently smoothed potentials.
The transfer operator has been approximated by the algorithm Metastable.

the metastability of a high-dimensional system. Furthermore, the results indicate
that the metastability is decreased and thus the exploration of the state space is
faster than in the original potential.

In a second test we wanted to see if convoluting only certain interatomic interactions
of the potential can also have an effect on the metastability. In order to investigate
this we only convoluted the potential describing the torsion angle and calculated
long-term trajectories to approximate the stationary distribution. We also compared
the different trajectories with each other to see if more transitions were observed.
To have a better comparison of the individual trajectories the same random numbers
for each individual simulation were used.

Comparing the individual trajectories shows that the convolution increases the
number of transitions in other metastable regions. It seems that the convolution
lowers the barriers and the trajectory can move more freely in the state space. But
the metastability of the deepest minimum is also increased. This can be seen by the
time which the trajectory spends in the middle metastable state. While the time
which was spent in the outer metastable states was reduced the time spent in the
middle metastable state increases. This again indicates the effect of the convolution
on the metastability. It seems that the convolution enables the trajectory to explore
the state space more freely. In the convoluted potential more transitions can be
observed.

Comparing the stationary distributions for the resulting potentials we observe similar
effects as in the example before. For different smoothing parameters the modes of the
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Fig. 3.11: Time evaluation of different trajectories simulated for different smoothing pa-
rameters; λ = 0 (upper left), λ = 0.1 (upper right), λ = 0.3 (lower left), λ = 0.5
(lower right)

Fig. 3.12: Stationary distributions for different smoothing parameters. λ = 0.15 (left)
λ = 0.3 (middle), λ = 0.4 (right)

stationary distribution are getting closer together. So the transition region is visited
more often. This indicates that more transitions will occur during the sampling. One
can also observe the tendency of the stationary distribution to become unimodal for
a high smoothing parameter.

In this section we have seen that the global change of the potential by a convolution
has a decreasing effect on the metastability. We have also seen that the convolution
when performed in a moderate manner (with a small smoothing parameter) does not
change the dynamic systems too much. So the simulation of the convoluted potential
can approximate certain insights of the original dynamical system, e.g. the number
of minima in the system. Since the metastability is decreased, the exploration of the
system is faster compared to a plain simulation of the dynamical system and a lot
more transitions can be observed. However, we are sampling not the original system
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and so it is not possible to really sample thermodynamic quantities. This is why we
are going to consider in the next section how the convolution approach can be used
for the sampling of thermodynamic quantities of the original system.

3.2 Convolution for thermodynamic quantities

In this section we are going to show how the convolution approach can be used
for the sampling of thermodynamic quantities. In order to do this we are going to
integrate the convolution approach into well-known sampling algorithms from MD.
First, we are going to show how the convolution approach can be integrated into
the replica exchange algorithm. Replica exchange is a method for efficient state
space exploration and the sampling of stationary distributions. As we saw in the
preliminary examples the convolution influences the barrier heights and thus simpli-
fies the state space exploration similar to annealing techniques. But in contrast to
the annealing techniques the convolution approach directly influences the potential.
This is why the convolution approach could be superior to the annealing techniques
when entropic barriers are present. Entropic barriers are not really affected by an
increasing temperature and thus simulated annealing techniques do not really help
in this situation.
Second, we are going to combine the convolution approach with the importance
sampling idea for thermodynamic quantities. We have already seen that the con-
volution has an impact on the stationary distribution and so we can use similar
importance sampling strategies as presented in Chapter 2.

3.2.1 Replica exchange

In this paragraph we are going to connect the convolution approach and the Replica
exchange algorithm. The Replica exchange algorithm is a very well-known algo-
rithm in the MD community. The algorithm which is sometimes called the ’parallel
tempering method’ is a Monte Carlo method which was invented for the efficient
sampling of potentials with many local minima. As we saw earlier the local minima
tend to slow down the exploration of the state space. To overcome these problems
the algorithms resemble simulated annealing techniques and exchange information
from the high temperature sampling into the low temperature sampling. We are
going to introduce Replica exchange before showing how the convolution approach
can be integrated.

We are interested in sampling the state space of a system at low temperature. Due to
the metastability the sampling is very inefficient; see, for example, figure 3.17). The
idea of Replica exchange is now to use some information of the system at a different
thermodynamic state to explore the state space more efficiently. The main idea is
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to swap the atom positions of the different systems every now and then. To control
the swapping of the positions a Metropolis Hastings ratio is used. This ensures
detailed balance in the swapping and thus that the reverse swapping is equally
likely. In the application often more than two different systems are considered to
enable as many swaps as possible. The systems often differ in temperature, but
not necessarily. Other system parameters can also be used to generate systems
in a different thermodynamic state; see e.g. [6] for a review on different Replica
exchange algorithms. The Replica exchange methods can also be used to calculate
thermodynamic quantities; see e.g. [62].
In order to describe the algorithm let us consider two systems at different tempera-
tures for simplification. The system at high temperature will efficiently sample the
state space because it is not so much affected by the barriers but will not sample
the area in a metastable state very accurately. On the contrary the system at low
temperature explores this region but does not explore the rest of the state space
efficiently. The main idea of the Replica exchange algorithm is now to include trail
moves which try to interchange the information of the high temperature system and
the low temperature system. Therefore, the algorithm tries to swap the positions
of the two different systems according to the Metropolis Hastings ratio. Due to the
swapping the low temperature sampling explores much more of the state space.
Since the swapping probability is very low, if the temperature difference of two
systems is very high, many intermediate systems are introduced. Therefore, a good
swapping rate can be guaranteed and thus a good exploration of the state space
is achieved. The swap moves are not very expensive because they do not involve
additional calculations. Furthermore, the Boltzmann distribution corresponding to a
particular system is not changed by the swapping. The temperature of the individual
trajectory is not changed, only the position. So the stationary distribution can be
easily obtained as in an ordinary sampling. A visualization of a Replica exchange
algorithm is given in 3.13.

Fig. 3.13: Example scheme of a Replica exchange algorithm.

The convolution approach can also be integrated into the Replica exchange algo-
rithm. Like in the original Replica exchange algorithm we run different trajectories
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but we use the convolution in order to generate different systems. The smoothing
decreases the barrier and thus the trajectory can explore the state space much faster
similar to the high temperature sampling. For smaller smoothing parameters the
metastable states are better explored. This variant of Replica exchange might be very
useful in a situation where an entropic barrier is present for the reasons explained
above. Example
As a proof of concept we tested the convolution Replica exchange for a one-
dimensional and a two-dimensional example. For the sampling an Euler-Maruyama
discretization was used. We compared our results with a temperature Replica
exchange.

For the one-dimensional example we calculated a trajectory of 10,000 steps. We used
the asymmetric bistable potential given in (3.8). In this case the convolution is given
by (3.9). For simplification we only used two different potentials for the convolution
Replica exchange and the temperature Replica exchange. For the convolution Replica
exchange λ1 = 0 and λ2 = 0.04 was used. The inverse temperature β = 4 was
chosen. For the temperature Replica exchange β = 4 and β = 1 were chosen. The
time step was set to dt = 0.001 for all simulations. The algorithm tries to swap the
position of the particle in every step.
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Fig. 3.14: Sampled region for the temperature Replica exchange (left) and the convolution
Replica exchange (right).

In the one-dimensional example one clearly sees a difference between the two
approaches. For the temperature Replica exchange the whole potential in the region
[-0.5,1.5] has been sampled. Due to the high temperature the particle also visited
very unlikely states. In the convolution Replica exchange the metastable states were
explored very well. The particle did not visit states very far outside compared to
the temperature Replica exchange. The sampling is much more focused around the
local maximum. In the temperature Replica exchange the swapping took place 4,437
times and in the convolution Replica exchange the position was swapped 4,863
times.
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The algorithm was also tested for a two-dimensional example. We consider the
following potential

V (x, y) = 3 exp(−x2 − (y− 1/3)2)− 3 exp(−x2 − (y− 5/3)2)

− 5 exp(−(x− 1)2 − y2)− 5 exp(−(x+ 1)2 − y2) + 1/5x4 + 1/5(y− 1/3)4.
(3.18)
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Fig. 3.15: Visualization of the two-dimensional three well potential.

The potential has two equally deep minima at approximately (0, 1) and (0,−1) and
one less deep minima at (1.5, 0). A local maximum is approximately at (0.75, 0).
There are two different transition paths which connect the two deep minima. There
is the direct connection and a second path is given by first going into the less deep
minimum before going into the other deep minimum. A visualization can be found
in figure 3.15

A trajectory of length 10,000 was calculated with time step dt = 0.1. Again, for
simplicity we only considered two different potentials for the temperature Replica
exchange and the convolution Replica exchange. For the convolution Replica ex-
change λ1 = 0 and λ2 = 0.7 were used. The convolution was approximated by a
Monte Carlo approximation as shown in 3.1. The inverse temperature was set to
β = 10. In the temperature Replica exchange β1 = 10 and β2 = 2 were used. Like in
the one-dimensional example the swap was tried in each step. For better comparison
the same random numbers were used in the two different approaches.

In this example one also sees a difference in the two different samplings. In the
temperature Replica exchange all three metastable sets were visited. We also see
like in the one-dimensional example that very unlikely positions were visited. The
sampling of the convolution Replica exchange looks much more structured. Nearly
no unlikely position was sampled. For the convolution Replica exchange all three
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Fig. 3.16: Sampled region for the temperature Replica exchange (left) and the convolution
Replica exchange (right).

metastable sets were explored but also the area around the local maximum was
explored very well. In the temperature Replica exchange this is not the case. The
position has been swapped 54,381 times in the temperature Replica exchange and
58,491 times in the convolution Replica exchange.

3.2.2 Reweighting

In MD and also in Monte Carlo simulations reweighting techniques are used to
transfer results to another one referred to a different parameter (e.g. temperature)
without additional simulations, for example. These reweighting schemes are often
related to importance sampling as presented in the introduction. First, we present
the general theory before showing how the convolution approach can be used in a
reweighting scheme.
One form of reweighting is based on the Boltzmann distribution (ρ). In case of
different temperatures the different Boltzmann distribution can be related easily.
Let us consider two different inverse temperatures β and β′. The distributions are
related by

ρβ′ ∝ exp(−β′V ) = C exp(−(β′ − β)V )ρβ (3.19)

where C is a constant depending on β and β′ and is often undetermined. The
expectation of an observable ϕ(x) with respect to temperature β′ can be written
as

Eβ′ [ϕ] =
1
Zβ′

∫
ϕ(x)ρβ′(x)dx

=
C

Zβ′

∫
ϕ(x) exp(−(β′ − β)V (x))ρβdx

=
Zβ
Zβ′

CEβ [ϕ exp(−(β′ − β)V )]
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where Zβ and Zβ′ are the normalization constants. The ratio of the normalization
constants is given by

Z ′β
Zβ

= CEβ [exp(−(β′ − β)V )]. (3.20)

The resulting reweigthing scheme for an observable ϕ is given by

Eβ′ [ϕ] =
Eβ [ϕ exp(−(β′ − β)V )]

Eβ [exp(−(β′ − β)V )]
. (3.21)

This reweighting scheme can also be extended to the convolution approach. Since
the stationary distribution depends on the potential and the potential is changed by
the convolution, the stationary distribution also changes. We are going to denote
the distribution of the convoluted potential by ρλ and the original distribution by
ρ. The two different distributions can be related in a similar way as in the different
temperature setting

ρ ∝ exp(−βV ) = C exp(−β(V − Vλ))ρλ (3.22)

where C is again a constant.

Let us again consider the expectation of an observable ϕ

E[ϕ] =
1
Z

∫
ϕ(x)ρ(x)dx (3.23)

=
C

Z

∫
ϕ(x) exp(−β(V (x)− Vλ(x)))ρλ(x)dx (3.24)

=
Zλ
Z
CEλ[ϕ exp(−β(V (x)− Vλ(x)))]. (3.25)

The ratio of the two normalization constants is given by

Z

Zλ
= CEλ[exp(−β(V (x)− Vλ(x))]. (3.26)

So the main difference compared to the temperature reweighting is that the differ-
ence has to be calculated between the potentials instead of the temperatures.

Example
As a proof of concept we are going to show this approach for the sampling of a
stationary distribution of the same three well potential given in (3.18)

For the sampling we use again a Euler-Maruyama discretization. We sampled one
trajectory with 10, 000 steps. The temporal discretization was set to dt = 0.1. We
compared the method with a standard sampling in the unperturbed potential. The
inverse temperature was set to β = 5. The convolution was approximated by a Monte
Carlo procedure as shown in 3.1. The smoothing parameter was set to λ = 0.5.
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Fig. 3.17: Sampled region in the non-convoluted potential (left) and the sampled region
for the convoluted potential (right).

In figure 3.17 we compared the individual trajectories of the different samplings.
For a better comparison we used the same random numbers for both trajectories.

One can see that the convolution lowers the barrier and thus the trajectory explores
more of the state space. The left figure shows the exploration of the standard
sampling. The trajectory in the original potential did not explore the region outside
the metastable region in which it started. The right figure shows the exploration in
the convoluted potential. The trajectory in the convoluted potential explored the
two deep metastable regions and the local maximum. It crossed the barrier to the
other metastable regions several times. The two different pathways were explored
by the trajectory. Even the less metastable region which is above the two bigger
metastable regions was visited. While the standard sampling does not give us any
information about the numbers of minima and the different barriers, the sampling in
the convoluted potential gives us more state space information. The shown results
indicate the decreasing effect of the convolution on the metastability.

In order to test the reweighting scheme presented above we are going to reconstruct
the Boltzmann distribution of the unconvoluted potential from the convoluted
sampling. In order to reconstruct the correct Boltzmann distribution from the
biased sampling we have to approximate the reweighting factor given in (3.25).
This can be done during the sampling. We applied the reweighting scheme in the
two-dimensional example.

Figure 3.18 shows the original Boltzmann distribution and the reweighted Boltz-
mann distribution from the sampling shown above. We see that the reconstructed
Boltzmann distribution and the original Boltzmann distribution agree very well. So
the reweighting scheme in combination with the convolution to lower the barrier
works. The less metastable region is not visible in this example because of the chosen
inverse temperature.
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Fig. 3.18: Comparison of the original Boltzmann distribution (left) and the reweighted
Boltzmann distribution from the sampling in the convoluted potential.

In this section we have seen how the convolution approach can be used for the
sampling of thermodynamic quantities. In various low-dimensional examples these
methods have been tested showing quite good results. In the next section we are
going to investigate, if the convolution approach can be understood in terms of
Linear Response theory. By doing this we can describe the response of the dynamical
system on the convolution in a systematic manner.

3.3 Linear response

As we have seen so far the convolution decreases the metastability. But we have also
seen that the convolution changes the dynamical system. Therefore, we are going
to show in this section how this change can be quantified and that the convolution
approach can be understood in Linear Response theory. Linear Response theory is
a way to characterize the behaviour of a dynamical system on some small external
forcing. The response of the system on this small force can be explicitly quantified.
This result is especially useful for thermodynamic quantities because by using the
theory we can calculate how the system reacts and thus how the quantity changes
by the convolution. Furthermore, this can be used to correct the thermodynamic
quantities sampled in a convoluted potential and in this way we can calculate
equilibrium quantities with decreased metastability.

So in order to apply Linear Response theory we have to show that the convolution
can be interpreted as a small external force. Therefore, it is possible to calculate a
response function and thus quantify how the observable changes under the convolu-
tion explicitly. It is possible to rewrite this formula such that the convolution can
be interpreted as a perturbation of the original potential. Let us consider that the
potential V : Rn → R is a polynomial function of the form shown in Theorem 5

V (x) =
∑

i1,i2...id
ai1,i2...idx

i1
1 x

i2
2 . . . x

in
n . (3.27)
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Then the convolution is given by

Vλ(x) =
∑

i1,i2...in
ai1,i2...in

(
(xi11 +

i1!
(i1 − 2)!λx

i1−2 +Gi1(x1,λ))

+(xi22 +
i2!

(i2 − 2)!λx
i2−2 +Gi2(x2,λ))

. . .

+(xinn +
in!

(in − 2)!λx
in−2 +Gin(xn,λ))

)

where

Gn(x,λ) =
bn/2c∑
k=2

ai1,i2...id
n!

k!(n− 2k)!λ
kxn−2k.

After multiplication and rearranging terms we find

Vλ(x) =
∑

i1,i2...in
ai1,i2...in

(
(xi11 x

i2
2 . . . x

in
n +

i1!
(i1 − 2)!λx

i1−2xi22 . . . x
in
n

+xi11
i2!

(i2 − 2)!λx
i2−2 . . . xinn

+ . . .+ xi11 x
i2
2 . . .

in!
(in − 2)!λx

in−2 +O(λ2)

)
.

This result shows that we can first reconstruct the original function and second we
can order the additional terms according to the power of the convolution parameter
λ. We are interested in the situation in which λ is close to zero because we only
want small perturbations of the dynamical system. Because of the small smoothing
parameter we can exclude all terms which include λ with exponent bigger or equal
2 and approximate the convolution by

Vλ(x) =
∑

i1,i2...in
ai1,i2...in

(
(xi11 x

i2
2 . . . x

in
n + λF (x) +O(λ)2

)
(3.28)

where F (x) =
∑n
j=1

ij !
(ij−2)!x

ij−2∏n
k=1
k 6=j

xikk .

Considering this a new drift of the SDE we see that the convolution can be seen
approximately as a linear perturbation. Thus it is possible to derive a response
function for the convoluted potential.
Let us consider a stochastic dynamical system satisfying the SDE (2.16). Furthermore,
let us consider that the potential V is polynomial and so is the derivative of the
potential. If we now apply the convolution to this potential function, we know that
there is a formula given by (3.5). The convoluted SDE is now given by

dxt = −(∇Vλ(xt))dt+
√

2β−1dBt. (3.29)
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For a small λ we can neglect the higher order terms and write

dxt = (−∇V̄λ(xt))dt+
√

2β−1dBt (3.30)

where V̄λ(x) =
∑
i1,i2...in ai1,i2...in

(
(xi11 x

i2
2 . . . x

in
n +λF (x)

)
. In order to calculate the

deviation of the system from the equilibrium system we assume that the distribution
function fλ(x, t) of the convoluted system satisfies the Fokker-Plank equation

∂fλ

∂t
= L†λfλ (3.31)

fλ|t=t0 = ρeq. (3.32)

The initial condition represents that the system is at equilibrium and ρ∞ is the
equilibrium distribution. The generator of the process satisfying (3.30) is given by

L†λ = L†λ0 + λL†λ1 (3.33)

where L†λ0 corresponds to the Fokker-Plank operator of the unperturbed system and
L†λ1 is related to the external forcing. Since the convolution can be expressed as a
linear perturbation and the generator is also linear we have that

L†λ1 = ∇F · D (3.34)

where D is some linear differential operator. Furthermore, we know that for the
unique equilibrium distribution

Lρeq = 0. (3.35)

The resulting Fokker-Plank operator of the perturbed dynamics is given by

L†λ = −∇ · (∇V ·) + 1
2σ2∇

2 − λ∇F · ∇ (3.36)

The solution we are looking for is expressed as a power series expansion in λ

fλ = f0 + λf1 ++λ2f2 . . . (3.37)

Substituting this into (3.32) and using the initial condition we find the following
system of equations

∂f0
∂t

= L†λ0 f0 f0|t=0 = ρeq (3.38)

∂f1
∂t

= L†λ0 f1 +L†λ1 f0 f1|t=0 = 0. (3.39)
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The only solution to the first equation is the invariant distribution f0 = ρeq.. Substi-
tuting this into the second equation and using the form of L†λ1 we find

∂f1
∂t

= L†λ0 f1 +∇FDf0. (3.40)

Using a variation of constants formula to solve the above equation we get

f1(t) =
∫ t

t0
exp(L†λ0 (t− s))∇F (x)Dρeqds. (3.41)

The above calculation can now be used to calculate the deviation of an observable
due to the external forcing in expectation. Let A(·) be an observable. Furthermore,
we denote with O(t) the deviation of its expectation value from equilibrium

O(t) = 〈A(Xt)〉 − 〈A(Xt)〉eq (3.42)

=
∫

Rn
A(x)(fλ(x, t)− ρeq(x))dx (3.43)

= λ

∫
Rn
A(x)

(∫ t

t0
exp(L†λ0 (t− s))∇F (x)Dρeqds

)
dx (3.44)

The above formula can be used to calculate observables for a system at equilibrium
by sampling the convoluted system. We can simply sample the observable in the
convoluted potential and subtract the correction term to get the observable for the
unconvoluted potential. In order to apply the correction formula the generator and
the stationary distribution have to be known what can be a drawback. But together
with a good approximation scheme this would result in an efficient sampling method
because the correction term can be calculated on the fly.

So far we have seen that the convolution approach decreases the metastability. We
have shown various applications of the approach, e.g. rapid state space exploration
and also the efficient sampling of thermodynamic quantities. In the last section of
this chapter we are going to apply the convolution approach to the sampling of
dynamic quantities.

3.4 Convolution for dynamic quantities

After we have seen that the convolution approach can be applied efficiently for
the sampling of thermodynamic quantities we would now like to investigate, if the
approach can also be used for the sampling of dynamic quantities. First we are going
to consider the problem of sampling exit times for double well potentials. We do this
because in this special situation we can use the Arrhenius’ law to describe the mean
first exit time. The Arrhenius law states that the mean first exit time mainly depends
on the barrier. We have already seen that the convolution decreases the barrier and if
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we assume that the potential is polynomial or can be approximated by a polynomial,
we can quantify the change of the barrier explicitly using the representation formula
known from Theorem 5. This enables us to develop an extrapolation algorithm using
samplings from convoluted and less metastable dynamical systems.
In the second section we are going to generalize the application of the convolution
approach to other dynamic quantities. We do this by building an importance sampling
scheme based on Girsanov’s theorem. As a biasing potential we are going to use
the convoluted potential. In order to apply this method we have to check that the
Novikov’s condition are satisfied. We conclude with a numerical example.

3.4.1 Convolution for exit times

In this section we consider the application of the convolution approach to the exit
time problem in a double well potential. In this situation Arrhenius’ or Kramers’ law
applies which gives us explicit expression for the exit time cf. [5], [8] and [69]. The
Arrehnius law states that the mean first exit time mainly depends on the heights
of the barrier. We are going to use the convolution to reduce this height such that
the exit time is lower and thus easier to sample. So in order to find the exit time
for the original potential we are going to develop an extrapolation scheme. For this
we assume that the potential is of polynomial form as presented in Theorem 5. So
we can make use of the finite sum representation of the convolution and quantify
the change of the barrier. Combining this with the formula of Kramer’s law we
can use this to extrapolate the exit time of the original potential from sampling the
less metastable system. In the end we show a one-dimensional application of the
extrapolation scheme and compare our results with the Monte Carlo estimator and
the exact exit time coming from the PDE formulation of the problem.

Let us first introduce the Eyring-Kramers’ law. We consider a stochastic process
satisfying (2.38) in a metastable set S be a bounded domain in Rn with smooth
boundary. We denote the exit time to leave the domain S of this stochastic process
which started in x ∈ S by

τS = inf{t > 0,xt /∈ S}. (3.45)

The quantity we would like to estimate is the mean first exit, which is the expectation
of the stopping time Ex[τS ]. In order to sample this dynamic quantity we have to
sample paths (x0:τ ) of the SDE (2.38). So we see that estimating this quantity is a
path sampling problem.
From the literature it is well-known that the mean first exit time mainly depends on
two things: the barrier height ∆E = V (z)−V (y) where z is the local maximum and
y is the minimum of the metastable set S and the temperature β of the stochastic
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process. Furthermore, we assume that the stochastic fluctuations are weak in
comparison to the barrier which means

1
β∆E

� 1, (3.46)

then the mean first exit time is a rare event. In accordance with large deviations
theory the relevant time scale of the exit event to happen scales exponentially in β

Ex[τS ] ' C exp[β(V (z)− V (y))] (3.47)

where y is the minimum of the set S and z is the local maximum and C is some
constant cf. [5] or [8]. Based on this formula it is also possible to define a so-called
hopping rate which quantifies the rate at which the metastable set is left cf. [69]. It
is given by

κ ∼ C−1 exp (−β(V (z)− V (y))). (3.48)

It was possible to quantify the constant C for different situations leading to the
Eyring-Kramers’ law cf. [28, 50]. For the one-dimensional case the Eyring-Kramers’
formula satisfies

Ex[τS ] '
2π√

V ′′(y)|V ′′(z)|
exp[β(V (z)− V (y))].

From this explicit expression of the constant C we see that its dependency on the
curvature of the potential. We can also conclude that a smaller curvature is leading
to a longer transition time cf. [5]. The multidimensional version for n ≥ 2 satisfies

Ex[τS ] '
2π
|α1(z)|

√
| det∇2V (z)|
| det∇2V (y)|

exp[β−1(V (z)− V (y))].

where α1(z) is the single negative eigenvalue of the Hessian | det∇2V (z)| at the
local maximum. Due to the exponential dependence on the barrier heights the
sampling of the hopping rate or the mean first exit time is difficult to sample. In
general a lower barrier leads to a smaller exit time and thus it is easier to sample.
We have seen that the convolution decreases the barrier heights. So we can build an
extrapolation scheme by combining the convolution formula of Theorem 5 and the
Eyring-Kramers’ formula.

Derivation of the Extrapolation formula
The overall idea is to smooth out the barrier by convoluting the potential in order to
make the sampling easier. Furthermore, we would like to use the biased sampling
to calculate the mean first exit time for the unconvoluted potential. By combining
Eyring-Kramers’ law and the convolution approach we can build an extrapolation
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method. With this method we can use the biased sampling data to extrapolate for the
original mean first exit time. We are using the Arrhenius formulation for simplicity.

We have already seen that the mean first exit time mainly depends on the barrier

Ex[τS ] ' C exp[β(V (z)− V (y))]. (3.49)

We assume that the potential is a polynomial such that we can use the representation
formula given in (3.2). Plugging this into the Arrhenius’ law (3.49) and rearranging
terms we find

β−1 log(1/C(Ex[τS(λ)])) ' Vλ(z)− Vλ(y) (3.50)

where Vλ(·) is the convoluted potential evaluated at the corresponding minima y
or the local maxima z. We see that the log mean first exit time of the convoluted
dynamical system changes in a polynomial fashion in λ by using Theorem 5 (this will
get clearer in the one-dimensional example). So using this connection we can sample
the mean first exit time for different convoluted potentials and use a logarithmic
regression to extrapolate the mean first exit time for the unconvoluted potential. The
result can be made even more accurate if the change of the potential is taken into
account in the constant C. Since the convolution is changing the whole potential, it
will also affect the constant. But in many different applications the constant cannot
be calculated and as we will see in the one-dimensional example the method gives
quite good results without taking this change into account. Let us state an algorithm
for the extrapolation in the next section.

Algorithm
The main idea of this approach is to sample the exit time in different smoothed
potentials and use this data to extrapolate for the original exit time. We state the
algorithm in pseudocode next.

Result: Quantity of Interest
initialisation: x0 = x; decreasing sequence λi, i = 1, . . . N
for i=1:N do

calculate the V (x,λi) by solving the convolution (3.2);
sample the quantity of interest in Vλi(x);
save quantitiy of interest (λi);

end
Extrapolate the quantity of interest for the unconvoluted potential by (3.50)

Algorithm 1: Extrapolation Scheme

In order to investigate the dependency of the smoothing parameter and the mean first
exit time we can also use the boundary value problem presented in the example 2.2.1.
This will give us some theoretical insights but does not give additional information
on the extrapolation formula.
Let us start with the boundary value problem. Due to the Feynman-Kac formula the
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mean first exit time u(x) = Ex[τS ] can also be expressed as the following boundary
value problem

Lu(x) = −1 x ∈ S (3.51)

u(x) = 0 x ∈ δS (3.52)

where L is the infinitesimal generator of the stochastic process. Since we are going
to use the convolution to lower the barrier, we can use the boundary value problem
to calculate the explicit dependency of the exit time on the smoothing parameter.
Convoluting the potential introduces a second parameter such that the mean first
exit time also depends on the smoothing parameter. In order to explore the λ

dependency on the mean first exit time we just calculate the derivative of the above
stated boundary value problem.

∂

∂λ
Lλ(x)uλ(x) = −1

⇔− ∂

∂λ
∇xVλ(x)∇xuλ(x) +

∂

∂λ

1
2∆xuλ(x) = 0

⇔−∇x
∂

∂λ
Vλ(x)∇xuλ(x)−∇xVλ(x)

∂

∂λ
∇xuλ(x) +

1
2∆x

∂

∂λ
uλ(x) = 0

⇔Lλ(x) ∂
∂λ
uλ(x) = ∇x

∂

∂λ
Vλ(x)∇xuλ(x)

⇔Lλ(x) ∂
∂λ
uλ(x) = ∇x∆xVλ(x)∇xuλ(x)

This result shows that the mean first exit time in case of smoothing the potential is
changing mostly in the direction of the curvature. This observation fits the obser-
vation of Eyring-Kramers’ formula that a smaller curvature in the stable direction
decreases the mean first exit time cf. [5]. But apart from this we do not know to use
the above result to correct the biased sampling or extrapolate to get the right result.
To solve the last equation is actually very difficult because the resulting system of
equations depend on each other.

Example
As a proof of concept we will give a one-dimensional example of a particle moving
in a metastable potential. We are interested in the mean first exit time of the particle
leaving a specific well and the hopping rate of this event.

The position of the particle xt ∈ R at time t is described by an SDE satisfying (2.38).
We consider the same asymmetric bistable potential as in the first one-dimensional
example

V (x) = 8x4 − 44/3x3 + 2x2 + 11/3x+ 1. (3.54)
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A visualization can be found in figure 3.1. According to the representation formula
(3.5) the convolution of the potential is given by

Vλ(x) = V (x) + 48λ4 + (2− 44x+ 48x2)λ2. (3.55)

To predict the mean first exit time for a stochastic process stating in the left well we
are going to generate three different potentials each convoluted with a different λ.
In each of these convoluted potentials we sample the exit time. Due to the reduced
metastability the sampling effort is reduced. To extrapolate the exit time for the
unconvoluted potential based on the sampling in the convoluted potentials we use
the log regression based on equation (3.50). In this one-dimensional example the
formula simplifies to

β−1 log(1/C(Ex[τS(λ)])) ' Vλ(z)− Vλ(y)

=
bn/2c∑
k=0

n!
k!(n− 2k)!λ

kzn−2k −
bn/2c∑
k=0

n!
k!(n− 2k)!λ

kyn−2k

=
bn/2c∑
k=0

n!
k!(n− 2k)! (z − y)

n−2kλk. (3.56)

In order to show that the extrapolation scheme produces good results we calcu-
late the exact exit time by the PDE formulation. Furthermore, we compare the
extrapolated result with a standard Monte Carlo sampling for the exit time in the
unconvoluted potential.

In this example we want to sample the mean first exit time of an SDE starting in
the left well. So the starting point was set to x = −0.25 for all simulations. The
temperature was set to β = 3. We used three different smoothing parameters
λ1 = 0.15,λ2 = 0.2,λ3 = 0.25. The sampling was done with an Euler-Mayurama
algorithm with temporal discretization dt = 0.001. The exit time was sampled 1000
times for each individual sampling. The Monte Carlo approximation was also done
with 1000 samplings. The exact exit time was calculated with a finite difference
scheme based on the formulation (3.52).

The example shows that the extrapolated solution and the real solution agree very
well. Comparing the absolute errors of the extrapolation scheme and the PDE
solution (error = timePDE − timeext = 1.9) and the MC and the PDE solution
(error = timePDE − timemc = 3.7) we see that the extrapolation scheme performs
better than the MC estimator. In total, the sampling time for the exit time in the
three convoluted potentials together is also lower than the sampling time of the
Monte Carlo estimator due to the reduced barrier heights.
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Fig. 3.19: PDE solution (blue) for different parameters λ in [0,0.25] at x=-0.25 and the
extrapolated solution (green) which is calculated of the sampled data from the
smoothed dynamics. In pink the Monte Carlo estimator for the exit rate is shown.
The red crosses show sampled exit time in the convoluted potential which was
used for the extrapolation.
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Fig. 3.20: PDE solution (blue) for different parameters λ in [0,0.25] and extrapolated
solution (green) with the three calculated data points for λ1 = 0.15, λ2 = 0.2
and λ3 = 0.25.

So we have seen that the convolution approach can be used for the sampling of
mean first exit times by combining it with the Eyring-Kramers’ formula. In the next
section we develop an importance sampling scheme for a more general formulation
of dynamic quantities.

3.4.2 Generalization for dynamical quantities

As we have already seen in Chapter 2 dynamic quantities of SDE can be expressed in
general as

Ex
P

[
exp

(∫ τ̂

0
f(xs)ds+ g(xτ̂ )

)]
(3.57)

where ˆτ = min(τ ,TN ) and TN is a finite sampling time. Since the convolution
decreases the metastability, we can use the convoluted potential as a bias for the
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sampling of dynamical quantities. So in order to develop an importance sampling
scheme we combine the convolution approach with the reweighting strategy based
on Girsanov’s theorem as presented in Chapter 2 3. Girsanov’s theorem gives us a
direct formula how the path measure changes, if the drift of the SDE is changed.
In order to apply the theorem we have to make sure that Novikov’s condition is
satisfied. Furthermore, we have also seen that the resulting estimator is unbiased.
We are going to state a Lemma which assures that Girsanov’s theorem can be applied
and shows a one-dimensional example as a proof of concept of the method.

We are interested in sampling dynamical quantities from a metastable dynamical
system satisfying equation (2.16). But in order to reduce the sampling effort and
the variance of the estimator we would like to sample the less metastable dynamics
given by

dyt = −∇Vλ(yt)dt+
√

2β−1dBt, y0 = x. (3.58)

In order to compensate the change of drift we use the reweighting formula from
Girsanov’s theorem. In this case it satisfies

Mt = exp
(
− 1√

2β−1

∫ t

0
(∇V (xs)−∇Vλ(xs))dBs

− 1
4β−1

∫ t

0
(∇V (xs)−∇Vλ(xs))2ds

)
(3.59)

such that we can use

EP[f(x0:τ )] = EQ[f(y0:τ )] = EP[Mτf(y0:τ )]

to calculate dynamic quantities for the original dynamics by sampling the less
metastable dynamics given by equation (3.58). Let us next state a Lemma proving
Novikov’s condition.

Lemma 2. We assume the potential V to be a continuous differential function for which
∇Vλ exits and is again a continuous function. Furthermore, let us assume that the time

ˆτ = min(τ ,TN ) is finite and the events we are interested in can be sampled on a closed
and bounded set D ⊂ Rn. Then Novikov’s condition holds and we can use Girsanov’s
theorem to calculate path-dependent quantities from non-equilibrium sampling for the
equilibrium dynamics.

Proof. We have to verify Novikov’s condition for the difference ∇V (·) −∇Vλ(·)
which states that

E

[
exp

(1
2

∫ τ̂

0

∣∣∣∣∇V (yt)−∇Vλ(yt)√
2β−1

∣∣∣∣2dt)] <∞. (3.60)
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We know that the difference of the continuous function is again a continuous function.
So we can calculate

1
2

∫ τ̂

0

∣∣∣∣∇V (yt)−∇Vλ(yt)√
2β−1

∣∣∣∣2dt = β

4

∫ τ̂

0

∣∣∣∣∇V (yt)−∇Vλ(yt)
∣∣∣∣2dt

≤ β

4 τ̂
∣∣∣∣∇V (y)−∇Vλ(y)

∣∣∣∣2
≤ β

4 τ̂ sup
y∈D

∣∣∣∣∇V (y)−∇Vλ(y)
∣∣∣∣2 <∞

Since we know that the set D is closed and bounded, we know by the extreme value
theorem that the maximum is attained on D. Due to the fact that the difference
of two continuous functions is again continuous we know that the difference is
bounded. Furthermore, we assumed the time horizon to be bounded and so it
follows that the whole expression is bounded. From this we conclude that (4.17) is
satisfied. Therefore, Novikov’s condition holds.

After we have seen that Girsanov’s theorem can be applied let us consider an
example.

Example
Let us consider a one-dimensional example as a proof of concept. We want to sample
the moment generating function of the stopping time

τ = inf{t > 0,xt > 0.5} (3.61)

of the SDE satisfying (2.38) in this potential

V (x) = 8x4 − 44/3x3 + 2x2 + 11/3x+ 1. (3.62)

Instead of sampling in the original potential we are going to sample in the convoluted
potential given by

Vλ(x) = V (x) + 96(λ2/2)2 + (4− 88x+ 96x2)(λ2/2) (3.63)

for λ = 0.2. The two different potentials are visualized in figure 3.21.

We simulated 1000 trajectories with a standard Euler-Maruyama algorithm. The
time step was set to dt = 0.0001 and the temperature was set to β = 3. The starting
point was set to x0 = −0.25. In order to reweight the expectation we used the
standard Girsanov formula as shown in equation (3.59).
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Fig. 3.21: Original potential (blue) and convoluted potential (orange)

MC IS
E[e−βτ ] 1.958× 10−3 1.782× 10−3

V ar 3.937× 10−3 1.773× 10−4

R(I) 32.04 7.46
E[τ ] 27.06 3.64
V ar[τ ] 699.65 10.86

Tab. 3.1: Comparison of the importance sampling estimator (IS) in the convoluted potential
and the Monte Carlo estimator for the moment generating function and the mean
hitting time (non reweighted) and its variance.

The example shows that with the convolution as bias a variance reduction for
dynamical quantities can be achieved. As one can see in table 3.1 even for a small
number of samples the variance can be reduced by one order of magnitude. The
estimator of moment generating function also show good agreement. The only
disadvantage of this approach is that the potential has to be evaluated twice to
calculate the difference. For high-dimensional problems this can cause a lengthy
calculation and a loss in efficiency. Furthermore, we show the non-reweighted
estimators of the stopping time and its variance for the convoluted potential and the
original potential. The comparison of the two estimators shows that the convolution
decreases the stopping time. From this we can again conclude that the convoluted
dynamical system is less metastable. So the convolution can be used to accelerate
the sampling. The also shown variance of the mean first stopping time shows that
the barrier heights has an influence on the variance of the estimator.

3.5 Summary and Discussion

In this chapter we presented the convolution approach to decrease the metastability
and thus simplify the sampling of different quantities. We showed that this approach
can be used to decrease the metastability without apriori knowledge of the exact
location of the metastability in different one- and two-dimensional examples. The
application of the approach to Butane showed that the approach can also be used in
a high-dimensional setting. We combined the approach with an importance sampling
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strategy for the sampling of thermodynamic quantities. After this we could show
that the convolution can be seen as a small external force acting on the potential
and so it is possible to quantify the response of the dynamical system in terms of
Linear Response theory. In the last part of the chapter we applied the convolution
approach to the sampling problem of path dependent quantities. We derived an
extrapolation scheme based on the Eyring-Kramers’ formula for mean first exit times
in double well potentials and also showed that we can use Girsanov’s theorem in
order to build an importance sampling scheme for general dynamic quantities.

During the many numerical simulations which were performed in this chapter the
choice of the convolution parameter has always been a very critical point of the
approach. It was never clear from the beginning how large the influence of the
smoothing parameter on the dynamical system would be. Therefore, to find a good
smoothing parameter different numerical simulations have been run and analysed.
From a theoretical viewpoint one can say that the smoothing parameter has to be
chosen such that the spectral gap becomes smaller but can still be detected. But
the actual parameter λ which does that is quite difficult to find. One possibility to
investigate the influence of the convolution on the metastability is to investigate
the behaviour of the eigenvalues of the transfer operator under the convolution. A
possible way in order to do this could be the application of Kato theory; see [44].
Kato theory was developed for the investigation of linear operators under perturba-
tion. Since the infinitesimal generator is a linear operator which is perturbed by the
convolution, an analysis could give more theoretical information.
For the importance sampling scheme for thermodynamic quantities the calculation
of the reweighting factor for the reweighting method may also become very unhandy
for high-dimensional problems. The method proved to be very accurate in the
low-dimensional setting but the approximation of the reweighting factor in many
dimensions can become very difficult.
It was possible to derive a linear response function. In order to use this response
function to correct observables coming from a biased sampling the stationary distri-
bution and the infinitesimal generator of the stochastic process has to be known or
approximated. This can be very challenging for high-dimensional problems. So to
use this scheme efficiently for numerical simulations a good approximation for the
integral has to be developed in future work.
Even though the examples for the application of the methods for path sampling
problems showed good results difficulties could occur. The extrapolation scheme
for the mean first exit time can be extended to high-dimensional problems because
here also a closed formula is known. But the high-dimensional formula requires
knowledge about the eigenvalues of the Hessian at the local minimum. This is a
drawback because the convolution will also influence these eigenvalues. How large
the influence is and if the change of the eigenvalues may be neglected has to be
found out in future research.
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In the case of general dynamic quantities the convolution of the potential does not
steer the dynamical system into a specific direction. This is one drawback of the
convolution approach for dynamic quantities. It can be used for quantities like exit
times. But for transitions in a potential with many different minima a more directed
forcing will be much more efficient. Another disadvantage is that for the evaluation
of the Girsanov weight the potential has to be evaluated twice. This can be very
costly in higher dimensions and reduce the efficiency of the method. This is why
we are going to develop an importance sampling approach for dynamical quantities
based on a local bias in the next chapter. In order to build this local bias we are
going to transfer the experience from the method developed for thermodynamic
quantities to the sampling of dynamic quantities.
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4Adaptive importance sampling

The sampling of dynamic quantities is important to characterize its behaviour and
as we have seen in the last section of chapter 3.4 the convolution approach can
be used to reduce the variance of the sampling. But the convolution approach can
be too naive in many situations. For example, for the sampling of transitions the
convolution lowers the barriers but it does not really steer the dynamic system
into the right direction in a controlled way. Therefore, we are going to extend a
certain class of enhanced sampling algorithms which were developed for the effective
sampling of thermodynamic quantities to the sampling of dynamic quantities. In
the computational physics community many algorithms have been developed for
effective sampling of thermodynamic quantities as we have already seen in chapter
2.5. But we have also seen that the sampling of dynamic quantities is a different
sampling problem and this is why it is not possible to directly use these methods for
the path sampling problem. The main difference of the two sampling problems are
the random variables and the different probability measures which are considered
as already presented in the introduction. This also results in a different Radon-
Nikodym derivative which has to be used to compensate the biasing. So in order to
build an adaptive importance sampling scheme for dynamic quantities of metastable
complex dynamical questions we are going to combine the assimilated well-known
enhanced sampling methods coming from MD with a theorem from stochastic
analysis, Girsanov’s theorem.
The class of enhanced sampling algorithms which we are going to use is the class of
biasing algorithms. The main idea of these algorithms is to introduce an artificial
bias (on the potential or on the force) to decrease the metastability of the dynamical
system. Enhanced sampling algorithms have been designed for sampling stationary
distributions and thermodynamic quantities. By assimilating these algorithms they
can also be used for sampling dynamic quantities and variance reduction.
A very similar method for importance sampling has been proposed by [95]. The
main difference to our approach is that we are not interested in finding the optimal
bias because it is computationally too expensive. Instead, we use the unbiasedness of
the estimator and construct a suboptimal bias which will lead to a variance reduction.
Moreover, while the authors of [95] considered a very general approach of variance
reduction for solving PDEs by path integrals of SDEs, we only look at dynamical
systems which are metastable. In order to construct the bias we use Metadynamics.
For this we need an additional sampling but we do not have to know the stationary
distribution.

75



In the introduction we have seen that there exits a optimal bias which would give
a zero variance estimator. But the optimal bias depends on the quantity itself
and it is not computable without solving the sampling problem. Furthermore, we
have also seen in Chapter 2 that the unbiasedness of the estimator is independent
from the used bias. Since the main goal of importance sampling is the variance
reduction we try to design a bias which decreases the variance sufficiently instead of
calculating the optimal one. To construct a good bias we would like to benefit from
the enhanced sampling algorithms for thermodynamic quantities. In order to do this
these methods have to be assimilated. Combining the assimilated algorithms with
an effective reweighting scheme we have built an adaptive importance sampling
algorithms for sampling dynamic quantities. In this chapter we are going to use
Metadynamics as an example for the class of enhanced sampling techniques. But
the introduced framework is not restricted to Metadynamics. We are going to show
this by applying Metadynamics directly on the force of the dynamical system and
also proving Novikov’s condition under general assumptions. In principle any other
adaptive importance sampling scheme like Adaptive Biasing Force, Hyperdynamics
etc. can be used, as long as Novikov’s condition is satisfied. The proposed algorithm
has two advantages compared to a standard estimator of dynamic quantities: firstly,
it is possible to produce estimators with a lower variance and, secondly, the sampling
is speeded up. The proposed method can be seen as a method that creates a non-
equilibrium dynamics which is used to sample the equilibrium quantities.
The chapter is structured as followed. First, we are going to introduce additional
theory of importance sampling and briefly comment on Girsanov’s theorem. Then,
we are presenting Metadynamics as an example of the used enhanced sampling
techniques. Next, some theoretical aspects of the methods are presented before
different numerical examples are shown. We conclude the chapter with a short
summary and a discussion of the numerical results.
Parts of this chapter have been published in [73]. In this chapter further analysis of
the resulting algorithm has been added. Additional one-dimensional examples have
been run in order to show different aspects of the algorithm. A two-dimensional
application can be found in [73].

4.1 Importance sampling for dynamic quantities

In this section we present the two main ingredients of the algorithm. In the first
part we briefly review the main idea behind importance sampling and show how the
variance affects the statistical error. The second section is a short introduction into
Metadynamics and how the algorithm is assimilated.
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We are going to consider the diffusion process xt ∈ Rn governed by the SDE as the
root model for the motion of a molecule. The SDE is given

dxt = −∇V (xt)dt+
√

2β−1dBt, x0 = x (4.1)

where xt is the state of the system at time t ≥ 0, V : Rn → R is a sufficiently smooth
(e.g., C∞) potential, β−1 > 0 is an arbitrary scaling factor for the noise, often called
the inverse temperature, and Bt is a standard n-dimensional Brownian motion with
respect to the probability measure P on the probability space (Ω, P,F).
Moreover, we assume that the process is trapped in a metastable region S ⊂ Rn

which is an open and bounded set with a smooth boundary. Furthermore, we define
a target set T that is an open and bounded set with a smooth boundary as well.
Finally, we define the stopping time τ = inf{t > 0 : xt ∈ T } to be the first time that
the process (2.16) hits the target set T , e. g. when a dihedral angle of a biomolecule
reaches a certain value. The presented theory here can be generalized to a state-
dependent diffusion constant, cf. [67]. But here we will consider the constant case
only.
We are interested in expectations of the form

E[exp (−βg(x0:T ))] (4.2)

where x0:T is a trajectory of (2.16) until some finite time T and g is some functional
on C([0,T ] : Rn). We consider this type of quantities because they give us infor-
mation in terms of the temperature of the system. However, a generalization to
other quantities expressed as expectations is possible. As pointed out by [88] an
interesting case of this quantity arises when g = 0 for x0:T ∈ A ⊂ C([0,T ], Rn) and
g =∞ otherwise. Then, (4.2) becomes

P[x0:T ∈ A]. (4.3)

Expectations like (4.2) are integrals over the entire state space and cannot be
calculated analytically. But, given an ensemble of paths, they can be approximated
by an unbiased MC estimator

I = E[exp (−βg(x0:T ))] = lim
N→∞

1
N

N∑
i=1

exp (−βg(xi0:T )) (4.4)

where xi0:T , i ∈ [1, . . . ,N ] are independent paths of length T , all starting at the same
point x0 = x ∈ Rn, produced, for example, by numerical integration of (2.16). This
estimator is unbiased. Its variance is given by

Var(I) =
1
N
(E[exp (−2βg(x0:T ))]−E[exp (−βg(x0:T ))]

2). (4.5)
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The relative error is defined by

r(I) =

√
(Var(I))

E[I ]
=

1√
N

√
E[exp (−2βg(x0:T ))]

E[exp (−βg(x0:T ))]2
− 1 (4.6)

cf. [88].
To build an importance sampling scheme for a metastable diffusion process one has
to decrease the depth of the minima which cause the metastable behaviour. Since
the time evolution of the SDE (2.16) with a low temperature (i. e. large β) is a
negative gradient descent perturbed by some Brownian motion, the process xt will
stay in the region around the minimum of V . By filling the metastable region in V (·)
we change the metastable behaviour and thus the sampling of the desired quantity of
interest gets easier. But this perturbation changes the underlying path distribution as
well. To compensate for this perturbation we use Girsanov’s theorem to reweight (or
correct) the estimators. Another interpretation of this theorem is that it offers a way
to sample equilibrium quantities of some dynamics by sampling the dynamics out
of equilibrium. We can construct a bias, which influences the multimodality of the
stationary distribution in such a way that low probability regions are more probable
or high barriers are easier to cross. The main advantage of Girsanov’s theorem is
that it is not necessary to know the stationary distribution a priori. So we would like
to sample a less metastable SDE

dyt = −(∇V (yt) +∇Vbias(yt; c,w,λ)dt+
√

2β−1dBt, y0 = x (4.7)

where ∇Vbias(yt; c,w,λ) is now a local perturbation reducing the metastability.
Similar to what we have seen in chapter 3 we can use the weight given by Girsanov’s
theorem satisfying

Mt = exp
( 1√

2β−1

∫ t

0
(∇Vbias(yt; c,w,λ))dBs

− 1
4β−1

∫ t

0
(∇Vbias(yt; c,w,λ))2ds

)
. (4.8)

The importance sampling estimator for dynamical quantities of interest is then given
by

EP

[
exp

(
− βg(y0:T )

)
(4.9)

exp
( 1√

2β−1

∫ T

0
(∇Vbias(yt; c,w,λ))dBs −

1
4β−1

∫ T

0
(∇Vbias(yt; c,w,λ))2ds

)]
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Furthermore, as we have seen in chapter 2 we can derive a different formula of the
weight if the bias is of gradient structure. The corresponding importance sampling
estimator satisfies

EP

[
exp

(
− βg(y0:T ) +

1
2β−1

(
Vbias(yT ; c,w,λ)− Vbias(y0; c,w,λ)

))
exp

( 1
2β−1

∫ T

0

(
∇V (ys)∇Vbias(ys; c,w,λ) + 1

2 |∇Vbias(ys; c,w,λ)|2

β−1∆Vbias(ys; c,w,λ)ds
)]

. (4.10)

Independent from the used expression of the Girsanov reweighting the expectation
can be again approximated by a finite summation similar to (4.4) as

Î =
1
N

N∑
i=1

exp (−βg(yi0:τ ))M
i
0:τ (4.11)

where yi0:τ and M i
0:τ are independent samples from (4.7) and (2.40). For a(yt)

satisfying Novikov’s condition and a bounded stopping time, Mτ is a continuous
bounded martingale which yields E[Mt] = 1, t ∈ [0, τ ]. Then, the importance
sampling estimator is an unbiased estimator with expectation

E[Î ] = E[exp (−βg(x0:τ ))] (4.12)

cf. [58]. Following [88], we know that the relative error of this estimator is

r(Î) :=
1√
N

√
E[exp (−2βg(y0:τ ))(M0:τ )2]

E[exp (−βg(x0:τ ))]2
− 1. (4.13)

In order to control the relative error we have to control the ratio

R(Î) :=

√
E[exp (−2βg(y0:τ ))(M0:τ )2]

E[exp (−βg(x0:τ ))]2
. (4.14)

To apply proposition 2 to dynamic quantities like exit times we have to guarantee the
fulfillment of Novikov’s condition. This can be achieved by making an assumption
on the stopping time.

Condition 1. In order to guarantee the applicability of proposition 2 it is to be assumed
that the stopping time is bounded for the specific problem. This assumption is by far
non-trivial and can only be shown analytically in very few situations. Anyhow, from a
numerical viewpoint it is impossible to simulate trajectories which have infinite length.
One has to stop the simulation after a finite number of steps. The quantity of interest
can be approximated by the quantity of interest conditioned on the event happening
in a finite simulation time. This assumption can be formalized by considering the
stopping time τ̂ = min(τ ,TN ) where TN is the length of the numerical simulation.
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Then, Novikov’s condition follows for a reasonable function u(·). This treatment has
been suggested in [58].

Condition 1 means that the sampling of the quantity of interest has to be finite in
time. If the sampling is too long (t > TN ), the simulation is stopped.

In conclusion, Proposition 2 gives us an option to sample the dynamic quantity of
interest from a different dynamical system without knowing the stationary distri-
bution a priori. The different dynamical system can be changed in such a way that
the quantity of interest is observed more often. The main difficulty of applying this
strategy to a metastable system is to determine the metastable regions to change it
accordingly. For this, we are going to use Metadynamics. This algorithm is used in
MD to sample the free energy surface and can be seen as an adaptive biasing method.
In order to use this algorithm for the effective sampling of dynamic quantities we
are going to assimilate the algorithm slightly.

4.1.1 Metadynamics

The method Metadynamics was first proposed in [41] called local elevation. It was
reintroduced as Metadynamics in [53]. It is an adaptive method for sampling the
free energy surface (FES) of high-dimensional molecular systems. The main purpose
of this method is the efficient sampling of the FES and the construction of the
corresponding stationary distribution. The method combines dynamics in reaction
coordinates with adaptive bias potentials. The idea of this approach is to perturb
the energy landscape when the simulation is trapped in a metastable region. This is
done by locally adding Gaussian functions along a reaction coordinate which fill up
the minima in which the simulation is trapped. In this way it is possible to explore
the energy landscape in a rather short time compared to the standard sampling
approach. The convergence of some certain variants of Metadynamics was proved in
[16].

In order to apply the method it is assumed that the high-dimensional system can
be projected onto a few relevant collective coordinates. One possible way to find
these collective variables for stochastic dynamics is to average out the fast degrees
of freedom; see [54] or [94] for example. A more general overview can be found
in [15] and the references therein. In general this projection can be written as
s : Rn → Rd with d � n. Only the dependence of these parameters on the free
energy F(s(x)) is considered. The exploration of the FES is guided by the forces
F ti = −∂F(si(x))/∂sti. But again metastability is a problem of the effective sampling
which is not solved by the projection into reaction coordinates. So in order to sample
the FES more efficiently a bias is added to the system whenever the simulation
is stuck in such a minimum. With Metadynamics one constructs a bias potential
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Vbias : Rd → R which is composed of K ∈N Gaussian functions. The complete bias
potential is

Vbias(x) =
K∑
i=1

wi√
2πλ2

i

exp
(
− (s(x)− ci)2

2λ2
i

)
(4.15)

where wi ∈ R is a weight, ci ∈ Rd is the centre of the Gaussian, and λi ∈ R is the
width. These functions are placed along the trajectory to allow for an easy escape
from the metastable sets using the derivatives as an artificial force. The method
can be parallelized easily since the bias depends on the history of the individual
trajectory only. This makes the method extremely efficient. Additionally, the bias
also prevents the trajectory from going back to the visited states.

For simplicity we assume that all considered functions and variables are in the
low-dimensional collective variable space and stick with the old notation. Of course,
Girsanov’s theorem is not restricted to the collective variable space.

4.1.2 Assimilation of Metadynamics

We are going to assimilate the Metadynamics algorithm to the sampling of dynamical
quantities of interest. For our framework we do not have to calculate the complete
FES. We only need a bias which makes sure the trajectory does not get trapped in
the metastable region. This is the reason why we add an additional sampling before
we start sampling the quantity of interest to build a bias. In order to build a bias
which decreases the metastability, we use Metadynamics in the metastable region
only.

The bias is built in the following way: When the trajectory is trapped in a metastable
region we start a Metadynamics simulation until the trajectory has left the metastable
region. In every kth step we add a Gaussian function to the potential such that
the metastability is reduced. The force is then changed with the gradient of these
Gaussian functions. When the trajectory hits the target set T for the first time,
we save the bias and stop the Metadynamics simulation. The bias consists of
#steps needed/k bias functions. The choice of k is a compromise between adding
as few bias functions as necessary getting a small hitting time τ and not perturbing
the potential too much. Depending on the choice of the parameters w and λ a
certain number of bias functions is needed. It is obvious that the simulation of
Metadynamics gets more expensive the more bias functions are added due to the
increasing number of function evaluations. That is why all parameters should be
adapted to the problem such that the computation does not get too costly.

After having built the bias potential the sampling of the original trajectory is con-
tinued with the bias potential. To correct the quantity of interest at the end of the
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calculation we must sample the weights (2.40) as well. This can be done on the
fly.

4.2 The algorithm

Now we present the algorithm in pseudocode. We will use Metadynamics to build
a bias in the metastable regions of the potential. Then, we sample the quantity of
interest in this biased potential N times and reweight the sampling with the weight
given by (2.40).

Data: dynamics xt, yt, starting set S, target set T
initialisation: x0 = y0 = x; wi,λi
Step 1: Build bias potential
while Transition has not occurred do

sample the dynamics xt given in eq. (4.7)
every kth steps: add a new bias function to u(·)

end
save the bias potential;
Step 2: Sample the quantity of interest
for N do

sample the quantity of interest with the additional bias according to eq.
(4.7)
sample the weights according to eq. (2.40)

end
reweight according to eq. (2.42)
return estimator

Algorithm 2: Adaptive importance sampling

4.3 Properties of the method

In this section we are going to explore different properties of the algorithm. First
we show under which assumptions Novikov’s conditions are satisfied. Then, we
conclude that the method preserves ergodicity. In the end we will give a couple of
remarks concerning different aspects of the method.

4.3.1 Proof of Novikov’s condition

To apply Girsanov’s theorem one has to make sure that the Novikov’s condition is
satisfied. The proof is very similar to what we have seen in chapter 3.

Lemma 3. Let τ̂ be the stopping time as given in Condition 1. Further let the bias
potential Vbias be a continuous differential function for which ∇Vbias is bounded. We
also assume that the events we are interested in can be sampled on a closed and bounded
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set D ⊂ Rn. Then the Novikov condition holds and we can use Proposition 2 to calculate
path-dependent quantities from nonequilibrium sampling for the equilibrium dynamics.

Proof. Since the bias function is added to the potential V , the resulting SDE is given
by

dyt = (−∇V (yt) +∇Vbias(yt; c,w,λ)dt+
√

2β−1dBt, y0 = x. (4.16)

We have to verify Novikov’s condition for ∇Vbias(·) which states that

E

[
exp

(1
2

∫ τ̂

0

∣∣∣∣∇Vbias(yt; c,w,λ)√
2β−1

∣∣∣∣2dt)] <∞. (4.17)

We are going to show that the time integral is bounded from which we can then
conclude that Novikov’s condition holds. We can calculate

1
2

∫ τ̂

0

∣∣∣∣∇Vbias(yt; c,w,λ)√
2β−1

∣∣∣∣2dt = β

4

∫ τ̂

0

∣∣∣∣∇Vbias(yt; c,w,λ)
∣∣∣∣2dt

≤ β

4 τ̂
∣∣∣∣∇Vbias(y; c,w,λ)

∣∣∣∣2dt
≤ β

4 τ̂ sup
y∈D

∣∣∣∣∇Vbias(y; c,w,λ)
∣∣∣∣2 <∞

Since we know that the set D is bounded and that ∇Vbias is also bounded by

assumption, we know by supy∈D
∣∣∣∣∇Vbias(y; c,w,λ)

∣∣∣∣2 is bounded. Furthermore, we

have assumed that time horizon finite and so it follows that the whole expression
is bounded. From this we conclude that (4.17) is satisfied. Therefore Novikov’s
condition holds and Girsanov’s theorem can be applied.

From this Lemma follows that we can use the Gaussian function as the biasing
potential such that ∇V is perturbed by the derivative of the Gaussian function or we
can use directly Gaussian functions to perturb ∇V .

4.3.2 Ergodicity

In this paragraph we show that both variants of the Adaptive Importance Sampling
methods preserve ergodicity. For this we are going to show that the resulting
potential is still confining.
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Lemma 4. Let us consider a confining potential V . If the bias is constructed with the
assimilated version of Metadynamics with Gaussian functions with variance λ > 0, then
the biased potential is still a confining potential and Proposition 1 still applies.

Proof. The bias is a sum of Gaussian functions. Since the Gaussian functions decrease
to zero

lim
x→±∞

Vbias = 0

the biased potential is still confining

lim
x→±∞

V + Vbias =∞.

Even if Metadynamics is directly applied to the force, the biased potential is still
confining.

Lemma 5. Let us consider a confining potential V . If the bias is constructed with the
assimilated version of Metadynamics directly working on the derivative, the biased
potential is still a confining potential and Proposition 1 still applies.

Proof. The gradient of the bias potential is a sum of Gaussian functions so the bias
itself is a sum of error functions due to linearity of integration. Since we assume the
number of biasing functions to be bounded N <∞ and the sum of the weights is
also finite, the bias potential is also bounded.

lim
x→±∞

Vbias = |C|

The result follows from the exact calculation as before.

4.3.3 Remarks

We conclude this section with some final remarks about the presented method.

Remark 1. The construction of the bias potential depends on the history of the trajectory.
Since the simulation to get the bias function is done in an additional step, the potential
is not time dependent. Furthermore, the discretization of (2.16) always gives a discrete
time Markov process because of the time independence of the Brownian motion. The
construction of the bias potential itself is not Markovian because it depends on the
history of the trajectory. Since the construction of the bias function and the sampling of
the quantity of interest are done independently of each other, the bias does not have any
influence on the Markovianity of the perturbed SDE (4.7). In general, an extension of
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the proposed method for non-Markovian dynamics should be possible. In this regard
one could use the Metadynamics methods proposed in [11] and the general reweighting
formula given in [67].

Remark 2. The method is not restricted to the use of Metadynamics. Any stochastic
approximation algorithm (e.g. Adaptive Biasing Force) or even a deterministic algorithm
could be used, provided the bias satisfies Novikov’s condition. The method is also not
restricted to the case in which the drift term (b(·)) of the SDE is of gradient form. Since
the Girsanov formula does not use the stationary distribution, all calculations are still
valid. However, if the bias is not of gradient form the alternative Girsanov formula
cannot be applied.

Remark 3. In order to create a good bias potential within a reasonable computational
cost one can use the history of the trajectory to estimate the parameters of the bias
functions. The midpoint ci can be chosen to be the mean of the average of the last k
steps and the λi can be chosen to be the maximal distance from the starting point of the
last k steps times a constant, C(λi = max(|xi∗(1:k) − ci|)), C ∈ R. This can be more
efficient as we could see in the example shown above. In the literature one can find
many extensions and variants of Metadynamics which could be used as well, e.g. [4]

4.4 Examples

In the following we study different numerical examples of the method presented
above. We assume that the reaction coordinates are given such that we have a low-
dimensional representation of the high-dimensional dynamics. In the first section of
the example section we are going to present different applications of the assimilated
Metadynamics. The first one-dimensional example shows the construction of the bias
potential with fixed parameters. In the second example we are going to use the alter-
native reweighting formula (4.10) to correct the statistics from the nonequilibrium
sampling. The third example shows the application of the method for smaller inverse
temperatures. In the last example of this part the reverse transition is considered as
the quantity of interest. In the second part we are going to show different examples
for the application of Metadynamics on the force. The first example is again the
construction of the bias potential with fixed parameters. The second example shows
how the parameters can be estimated from the sampling of the additional trajectory.
In the last example of this section again the reverse transition is considered as the
quantity of interest.

For the examples we consider the dynamics given by (2.16) and the potential given
by

V (x) =
1
2 (x

2 − 1)2. (4.18)
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Fig. 4.1: In blue, the potential function (4.18) is shown and in red a realization of (2.16)
showing the desired transition is presented.

This potential has two minima at x = ±1 and a local maximum at x = 0. We are
going to calculate two different quantities of interest. The first quantity of interest
is the probability of all continuous paths which start at a point x in the metastable
region S and reach the target set in time τ̂ = min(τ ,TN ) as shown in Condition 1.
This can be written as P(A), where A = {x0:τ̂ ∈ C([0, τ̂ ], Rn)|x0 = x(x ∈ S),xτ̂ ∈
T }. For this quantity of interest we choose g(yt) = 0 for yt ∈ S, t ∈ [0, τ̂ ] and
choose g(yt) = 1 for yt ∈ T , t ∈ [0, τ̂ ]. The second quantity of interest is the
moment generating function of the stopping τ̂ . To sample this we set g(y0:τ̂ ) = τ̂ .
The trajectories y0:τ̂ are realizations of (4.7) with b(·) = −∇V (·), u(·) is the bias
constructed by the Metadynamics simulation and σ =

√
2β−1. We compare our

method with the results of a standard MC estimator for the different quantities. We
will see that in the examples our method achieves the variance reduction for both
reweighting formulas given in this thesis. Furthermore, the average sampling time
was decreased in the biased simulation. For this, we estimate the mean sampling
time (MST) for our experiments. The MST is the average time trajectories need to
reach the target set. If the trajectory does not hit the target set the MST is set to
TN .

In all examples 1000 trajectories of (4.7) are calculated by using a standard Euler-
Maruyama discretization with a time step ∆t = 10−4 in MATLAB, cf. [39]. Our aim
is to investigate the variance of the different estimators and the MST. At maximum,
we calculate TN = 15.000 time steps. The random number generator is fixed to have
a better comparison within the different examples. The seed of the random number
generator is given in the introduction of the example to simplify reproducibility. The
examples have been tested with other random number generators which are not
shown here, but showing similar results.
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4.4.1 Assimilated Metadynamics

In this section different examples for the assimilated version of Metadynamics are
presented.

Example 1: Diffusion in a double well
For this example we define the metastable region S = [−1.5, 0]. We choose the
starting point of the SDE (2.16) in the metastable region x0 = −1 and set the
temperature to β = 3.0 for all simulations. The stopping time is defined as the first
hitting time of the target set T = [0.9, 1.1]. The random number generator was set
to rng(1,’twister’).

The parameters of the bias function have been set to wi = 0.05, λi = 0.8 ∀i . The
centre ci of every bias function is chosen as the current value of the trajectory when
the new bias function is added. The Girsanov weights to reweight the expectation
have been calculated by (4.8).
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Fig. 4.2: The blue curve shows the original potential (4.18). The green curve shows the bias
Vbias produced by Metadynamics and in red the corresponding biased potential
(V + Vbias) is shown.

MC GIR
P (A) 4.8470× 10−2 4.8323× 10−2

Var 4.6121× 10−2 1.6404× 10−2

R(I) 4.4307 2.6504
E[exp (−βτ )] 2.569× 10−3 2.4885× 10−3

Var 2.5850× 10−4 6.9180× 10−5

R(I) 6.2561 3.3463
MST 1.4804 1.4425

Tab. 4.1: Comparison of the importance sampling estimators and the Monte Carlo estima-
tors for the simulation with fixed parameters of the biased potential.

In this example 79 bias functions have been used; see figure 4.2 for the calculated
bias and the resulting potential. The estimators of the MC and the importance
sampling are in good agreement for both cases; see 4.1. The results show that the
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variance of the biased estimator is reduced for both quantities of interest using the
reweighting approach. The variance for the transition probability is reduced by
65% and for the moment generating function by 76%. Hence, the automatically
generated bias potential by the adjusted Metadynamics is actually a good potential
in the sense of importance sampling. Additionally, the MST is faster compared to the
plain MC approach. This example shows that our method achieves the desired goals
of variance reduction and computational speed-up.

Example 2: Alternative Reweighting Formula
In the following example we use the alternative reweighting formula as shown in
(4.10). In order to calculate the bias we use the same parameters as in the first
example. Since the random number generator was set to rng(1,’twister’) , the bias is
exactly the same as in the first example; see figure 4.2.

In order to calculate the Girsanov’s weights we need Vbias, ∇Vbias and ∇2Vbias. For
Vbias as given in (4.15), the derivatives can be calculated easily.

MC AGIR
P (A) 4.8470× 10−2 4.8329× 10−2

Var 4.6121× 10−2 1.6407× 10−2

R(I) 4.4307 2.6504
E[exp (−βτ )] 2.5690× 10−3 2.4856× 10−3

Var 2.5850× 10−4 6.9170× 10−5

R(I) 6.2561 3.3459
MST 1.4804 1.4425

Tab. 4.2: Comparison of the importance sampling estimators and the MC estimators for the
simulation with the alternative Girsanov formula.

In this case the MC estimator and the importance sampling estimator agree very
well. The variance reduction is very similar to the other reweighting formula. The
variance for the transition probability is reduced by 64% and the variance for the
moment generating function is reduced by 73%. These examples show that the
alternative Girsanov formula can be applied well to correct the biased estimators.
The reduction of the MST is the same as in the first example since we used the same
seed for the random number generator.

Example 3: Diffusion in a double well with lower temperature

In order to test the method in a low temperature situation we calculate the probability
of all continuous paths which start at a point x in the metastable region S and reach
the target set in time τ̂ for β = 7 and for β = 10. The random number generator is
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set to rng(3,’twister’). The Girsanov weights to reweight the expectation have been
calculated by (4.8).
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(a) The blue curve shows the original potential
(4.18). The green curve shows the bias Vbias

produced by Metadynamics and in red the corre-
sponding biased potential (V + Vbias) is shown
for β = 7.

(b) The blue curve shows the original potential
(4.18). The green curve shows the bias Vbias

produced by Metadynamics and in red the corre-
sponding biased potential (V + Vbias) is shown
for β = 10.

Fig. 4.3: Resulting bias for a low temperature sampling.

β = 7 MC GIR
P (A) 1× 10−3 1.9× 10−3

Var 1× 10−3 6.845× 10−5

R(I) 31.62 4.319
β = 10 MC GIR
P (A) 0 2.04× 10−4

Var 0 1.845× 10−6

R(I) ∞ 6.602
Tab. 4.3: Comparison of the importance sampling estimators and the Monte Carlo estima-

tors for the simulation with fixed parameters of the biased potential.

In the example, for β = 7, 123 bias functions have been used; see figure 4.3 for
the calculated bias and the resulting potential. The estimators of the MC and the
importance sampling for the probability leaving the set within a certain time are in
good agreement. In the case of the biased sampling 87 trajectories have reached
the set within the simulation time. In the unbiased sampling only 1 trajectory has
reached the target set in the simulation time.
In this example, for β = 10, 128 bias functions have been used; see figure 4.3 for the
calculated bias and the resulting potential. In the unbiased sampling no trajectory
has reached the target set within the simulation time. So the MC estimator is zero.
In the biased sampling 49 trajectories have reached the set within the simulation
time. So we still can calculate an estimator.
The above examples show that the proposed algorithm also works for low tem-
perature samplings. In both tested cases a variance reduction could be achieved.
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Furthermore, the algorithm could still give results when the MC method produces
no estimator at all.

Example 4: Reverse Problem
In a second example we test the method for the transition and the mean first exit
time for the reverse problem. For this example we define the metastable region
S = [0, 1.5]. We choose the starting point of the SDE (4.7) in the metastable region
x0 = 1 and fix β = 3.0 for all simulations. The stopping time is defined as the first
hitting time of the target set T = [−0.9,−1.1]. The random number generator was
set to rng(3,’twister’). The parameters of the bias potential are the same as in the
previous example. The Girsanov weights to reweight the expectation have been
calculated by (4.8).
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Fig. 4.4: The blue curve shows the original potential (4.18). The green curve shows the bias
Vbias produced by Metadynamics and in red the corresponding biased potential
(V + Vbias) fo the reverse problem is shown.

MC GIR
P (A) 4.64× 10−2 5.138× 10−2

Var 4.3927× 10−2 8.25× 10−3

R(I) 4.5563 1.7679
E[exp (−βτ )] 2.4021× 10−3 2.558× 10−3

Var 2.42× 10−4 1.567× 10−5

R(I) 6.4837 1.5475
MST 1.4812 1.3132

Tab. 4.4: Comparison of the importance sampling estimators and the Monte Carlo estima-
tors for the simulation with fixed parameters of the biased potential.

Even though the problem is symmetric the algorithm generates different biasing
potentials for the reverse problem. In this example 155 bias potentials have been
used; see figure 4.4 for the calculated bias and the resulting potential. The example
shows again a good agreement of the MC estimators and the importance sampling
for both quantity of interest; see table 4.4. The results show that the variance of the
biased estimator is reduced for both using the reweighting approach. The variance
for the transition probability is reduced by 80% and for the moment generating
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function by 95%. This example shows that the method achieves the desired goals of
variance reduction and computational speedup, also for different problems.
The difference in the bias potentials can come from the difference of the gradient
of the potential. In the left well the gradient is negative while in the right well the
gradient is positive. Another explanation is the sampled trajectory. The bias is built
with an extra sampling which only depends on one trajectory. So the bias function
strongly depends on this extra sampling.

4.4.2 Metadynamics applied on the force

In this example we are going to explore the idea to apply the assimilated version
of Metadynamics directly on the gradient of the potential. Since the metastability
arises from the structure of the gradient, it makes sense to directly perturb the
gradient without taking the detour via the potential. The main reason why we
propose this version of adaptive importance sampling scheme are the Gaussian
functions used in the previous examples. Since the potential is biased with Gaussian
functions, the gradient is perturbed by the gradient of the Gaussian. The derivative
of a Gaussians has a positive and a negative part and thus a small minimum and a
small maximum are added. It seems that the resulting bias is very rugged which
could cause new sampling problems. This is why changing the gradient directly with
Gaussian functions should result in smoother bias.
Furthermore, the examples show that the proposed method is not restricted to the
usage of Metadynamics. Basically, each algorithm producing a bias can be integrated
into the proposed framework.

The biased dynamical system again satisfies

dyt = (∇Vbias(yt)−∇V (yt))dt+
√

2β−1dBt. (4.19)

The main difference to the previous approach is that the gradient of the system is
biased with a sum of Gaussian functions. So the bias function is defined by

∇Vbias(yt) =


dVbias
dx1
...

dVbias
dxd

 :=


∑K
i=1 bi(yt, ci,wi,λ)

...∑K
i=1 bi(yt, ci,wi,λ)

 . (4.20)

where

bi(x; c,w,λ) = wi√
2πλ2

i

exp
(
− (s(x)− ci)2

2λ2
i

)
, i ∈ [1, . . . ,K] (4.21)

where ci ∈ Rn ∀i ∈ [1, . . . ,N ] is the centre of the bias function, wi ∈ R ∀i ∈
[1, . . . ,K] is a weight, and λi ∈ R ∀i ∈ [1, . . . ,N ] is the width of the bias function.
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The bias function is built in the same way as the bias potential in Metadynamics. We
again use the assimilated version of Metadynamics in order to generate the biasing
force only in the metastable region. From sampling the dynamical system one gets
blurred gradient information which can be used to approximate the gradient such
that the metastability is removed or decreased.

Example 5: Diffusion in a double well
The quantities of interest are as in the previous examples. As in the first example
the metastable region are defined as S = [−1.5, 0]. We choose the starting point of
the SDE (4.7) in the metastable region x0 = −1 and fix β = 3.0 for all simulations.
The stopping time is defined as the first hitting time of the target set T = [0.9, 1.1].
The random number generator was set to rng(1,’twister’) .The Girsanov weights to
reweight the expectation have been calculated by (4.8).
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Fig. 4.5: The blue curve shows the negative gradient of the original potential (4.18). The
green curve shows the bias Vbias produced by Metadynamics applied directly on
the gradient and in red the corresponding negative biased gradient is shown.

MC GIR
P (A) 4.4× 10−2 4.5379× 10−2

Var 4.2106× 10−2 6.1682× 10−3

R(I) 4.6635 1.7306
E[exp (−βτ )] 2.5320× 10−3 2.5315× 10−3

Var 2.2788× 10−4 3.44× 10−6

R(I) 5.9617 0.7327
MST 1.4801 0.84695

Tab. 4.5: Comparison of the importance sampling estimators and the Monte Carlo estima-
tors for the simulation with the standard Girsanov formula where a biasing force
is calculated.

We can also see a very good agreement of the MC estimator and the importance
sampling estimator for both quantities of interest. Furthermore, a variance reduction
could be achieved for both estimators. The variance for the transition probability is
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reduced by 85% and the variance for the moment generating function is reduced by
98%. These examples show that the direct application of Metadynamics on the force
can be used for building good biasing forces. Again a reduction of the MST could be
achieved as well.
Comparing the results with the results from the biasing potential approach one sees
that the estimators have lower variance. The results can be interpreted as the direct
biasing on the force.

Example 6: Estimated parameter example
In this example the parameters for the constructed bias have been estimated from
the sampling. The parameter λi is calculated from the history of the trajectory as
described in Remark 3 with the constant C = 10. The centre of the bias function
was calculated by the average over the last 200 steps of the trajectory. The random
number generator was set to rng(1,’twister’). All other parameters are kept as in the
previous example (β = 3.0). The Girsanov weights to reweight the expectation have
been calculated by (4.8).
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Fig. 4.6: The blue curve shows the negative gradient of the original potential (4.18). The
green curve shows the bias Vbias produced by Metadynamics directly applied on
the force with estimated parameters and in red the corresponding biased negative
gradient is shown.

MC GIR
P (A) 4.8470× 10−2 4.7408× 10−2

Var 4.6121× 10−2 6.9288× 10−3

R(I) 4.4307 1.7557
E[exp (−βτ )] 2.569× 10−3 2.5278× 10−3

Var 2.5850× 10−4 4.41× 10−6

R(I) 6.2561 0.8312
MST 1.4804 0.9614

Tab. 4.6: Comparison of the importance sampling estimators and the Monte Carlo estima-
tors for the simulation with the standard Girsanov formula.
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This example shows a very good agreement of the MC estimator and the impor-
tance sampling estimator for both quantities of interest. So the estimation of the
parameters for the biasing force work. The variance reduction could be achieved
for both estimators. The variance for the transition probability is reduced by 85%
and the variance for the moment generating function is reduced by 98%. These
examples show that the parameters on the biasing force have an impact on the
variance reduction. Comparing the results with the results from the biasing potential
approach one sees that the estimators also have a lower variance. We also have a
bigger reduction of the MST. So one sees that a carefully designed biasing function
can lead to a significant variance reduction and a reduction of the sampling time.

Example 7: Reverse example
A naive application of the method on the reverse problem shows that the direct
force biasing needs more information about the dynamical system. In the proposed
method the bias is always positive. But a positive force will only push the trajectory
into one direction. In order to be flexible the bias has to be adapted to the structure
of the gradient. Let us consider the above example 4.4. First we have considered
the problem of going from the left well into the right well. The negative gradient is
negative in the metastable area. To decrease the influence of the potential on the
trajectory the gradient has to be raised. Consider now the reverse problem going
from the right to the left well. The negative gradient is positive in the metastable set.
So a negative bias has to be used to lower the gradient in the metastable region. A
naive application of the method with only positive bias will not be able to generate
the necessary bias. The potential version of the method does not have such problems
because the resulting force is positive and negative. So in order to apply this method
directly on the gradient one needs additional information on the system.

To show that the force method with additional information can be used to build
biases for the reverse problem we consider the reverse problem again. As in the
previous example we test the methods for the transition and the mean first exit
time for the reverse problem. For this example we define the metastable region
S = [0, 1.5]. We choose the starting point of the SDE (4.7) in the metastable region
x0 = 1 and fix β = 3.0 for all simulations. The stopping time is defined as the
first hitting time of the target set T = [−0.9,−1.1]. The random number generator
was set to rng(3,’twister’) in order to have a better comparison within the different
simulations. The parameters of the bias potential are the same as in the previous
example. For this computation we chose wi = −0.1, λi = 0.8 for all bias functions.
The ci of every bias function is chosen as the current value of the trajectory when
the new bias function is added. The Girsanov weights to reweight the expectation
have been calculated by (4.8).
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Fig. 4.7: The blue curve shows the negative gradient of the potential (4.18). The green
curve shows the bias Vbias produced by Metadynamics applied directly on the force
and in red the corresponding biased negative gradient is shown.

MC GIR
P (A) 4.6× 10−2 5.799× 10−2

Var 4.3927× 10−2 5.5× 10−3

R(I) 4.5563 1.2790
E[exp (−βτ )] 2.4021× 10−3 3.0043× 10−3

Var 2.4258× 10−4 2.5× 10−6

R(I) 6.4837 0.52680
MST 1.4812 1.0007

Tab. 4.7: Comparison of the importance sampling estimators and the Monte Carlo estima-
tors for the simulation with the standard Girsanov formula.

We see that the method with the additional information achieves the variance
reduction. Moreover, the MC estimator and the importance sampling estimator
agree very well. The variance reduction is in the same order of magnitude as in
the previous examples. The variance for the transition probability is reduced by
87% and the variance for the moment generating function is reduced by 98%. The
reduction of the MST could be achieved in this example.

4.5 Summary and Discussion

In this chapter we have developed an algorithm for the adaptive importance sampling
of dynamical quantities in metastable dynamic systems. The main idea for this
approach was to combine well-known MD enhanced sampling techniques with
Girsanov’s theorem. For the adaptive importance sampling the enhanced sampling
techniques have been assimilated. We could show under which conditions the
method can be applied and that the method preserves ergodicity. The method has
been tested for many different applications. All of these different applications show

4.5 Summary and Discussion 95



that the method achieves the variance reduction and the reduction of the sampling
time. The examples also show that the bias depends on the additional sampling. So
for different realizations of the additional sampling different biases are generated.
Furthermore, one can see that variance reduction depends on the bias. Since in all
different numerical examples a variance reduction has been achieved, it seems that
the general framework is working. From the last example one can learn that a naive
construction of the bias can also have a negative impact on the sampling. So in order
to construct a good bias much information of the system has to be used. Similar
results have been shown in [23].
We have seen that the method achieved a larger variance reduction if a larger β (a
smaller temperature) is considered (see example 4.4.1). A possible explanation for
this could be that we use a stationary bias. The constructed bias is generated by an
additional realization of the dynamical system and is then used for the sampling of
the quantity of interest. So the construction of the bias only considers one possible
realization of many. It does not cover all possible movements of the trajectories.
For a smaller β the trajectories are more affected by the diffusion constant and so
the stationary bias does not reflect this. So in order to overcome this difficulty one
could try to model a bias which reacts on some special behaviour. For example, one
could supervise the sampling of the quantity of interest and if a certain behaviour
(e.g. a movement in some direction) is shown, the bias is changed according to this.
Also a more sophisticated way of building the bias could be used, e.g. reinforcement
learning [43].
Comparing the variance reduction for the application of the bias on the potential
and on the derivative of the potential we see that the application on the derivative
achieves a larger variance reduction. A possible reason for this could be that the
resulting bias is smoother compared to the application of the method on the potential.
The construction of the bias by Metadynamics implies that the dynamical system is
perturbed by derivative of the Gaussian functions. The derivatives have a negative
and a positive part and thus the resulting bias is less smooth compared to the direct
application of the method on the derivative. But we have also seen that the method
needs additional information such that the perturbation is working accordingly. How
the application of another algorithm to construct the bias like Adaptive Biasing Force
impacts the variance of the estimator is a question for future research.

One of the main disadvantages of Adaptive Importance Sampling based on Metady-
namics is the restriction on effective coordinates. Since Metadynamics only works in
effective coordinates, our algorithm is also restricted to this. But other enhanced
sampling techniques are also based on the assumption that the high-dimensional
molecular system can be approximated by some low-dimensional model. Our algo-
rithm has been applied in a two dimensional example; see [73]. Theoretically, the
algorithm can also be applied in high-dimensional examples. But different problems
arise in a high-dimensional set-up.
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The first problem is how a bias can be built. For high-dimensional problems it is
hard to understand which part of the potential causes the metastable behaviour. So
the location of the metastable behaviour for high-dimensional problems is difficult.
The accurate biasing of the potential is challenging on its own. Much information of
the system has to be known a priori to force a certain behaviour of the dynamical
system. From this perspective it does make sense to use the method which is working
with an assimilated version of Metadynamics. Metadynamics has been applied for
different high-dimensional problems very efficiently, see e.g. [87], and by using this
method we can benefit from this experience.
Another problem is that the variance of the Girsanov weight scales with the dimen-
sion. It is well-known in the literature that the Radon-Nikodym is affected by the
dimensionality of the problem [68] and this will definitely have an negative impact
on the variance reduction. A possible solution for this could be a different way of
sampling the Girsanov weight, e.g. by using the SDE formulation of the martingale
[67] or considering a low-dimensional representation of the molecule, e.g. by effec-
tive coordinates. Owen states that one has to make sure that the variances decrease
sharply if the dimension increases [68]. So by using a reduced model with only the
relevant direction we can reduce the dimensionality of the model and thus reduce
the variance in irrelevant directions.
The last critical point of the algorithm is the constructed bias. As we have seen in the
many examples the bias highly depends on the additional trajectory. Furthermore,
in many cases the constructed bias only destabilizes the metastability. As we have
seen in the examples this works for different quantities of interest very well. For
more sophisticated problems the constructed bias might be too naive. In importance
sampling the bias has a significant impact on the variance reduction. There is also no
guarantee that there is always a variance reduction and it is also possible that a bias
designed in a wrong way can result in a variance increase. So for more complicated
problems more information has to be introduced into the design of the bias. This
could be done, for example, by combining the adaptive importance sampling method
with the string method similar to [94].

From all of these observations the proposed algorithm seems to work best if combined
with a proper dimension reduction technique in order to achieve a significant
variance reduction.
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5Gradient estimators and
non-parametric representation

In this chapter we are presenting approaches to optimize the bias in order to find
the bias which gives the best variance reduction. On the one hand we have seen in
the introduction that unbiasedness of the estimator does not depend on the bias.
We have used this in the previous chapter to build an importance sampling scheme.
On the other hand we have also seen that the bias has an impact on the variance
reduction and that there theoretically exits a bias for which the variance of the
estimator is zero. So instead of using any bias as done in the previous chapter we
are optimizing the bias in this chapter. The main idea of this optimization approach
is a formulation of finding the optimal bias as a optimization problem. In order
to derive the optimization problem the bias is approximated by parametric ansatz
functions. The approximation procedure can be seen as a Galerkin projection and has
been proposed by C. Hartmann and Ch. Schütte in [38]. Based on this formulation
different algorithmic methods have been suggested to solve the optimization problem,
e.g. the gradient descent method [38] or the cross entropy method [93]. An overview
on the current algorithmic developments can be found in [12].
In this chapter we are going to extend the proposed methods. For the stochastic
gradient descent method we derive different gradient estimators. In the original
paper [38] the authors derived a gradient estimator from the discretized problem.
In the literature other approaches can be found which we are going to assimilate
for the problem formulation presented in [38]. First we are going to derive a
gradient estimator based on ideas presented in [27]. But the resulting formulas
are only applicable if the bias can be represented with one ansatz function. This
is why we derive two different gradient estimators based on ideas presented in
[31]. The resulting formulas can be used to optimize an approximation with many
ansatz functions. Numerical examples are presented to show different aspects of the
method.
In the second part of the chapter we derive a non-parametric representation of
the bias by kernelizing the Cross-Entropy method. This reformulation has the
advantage that the control is expressed in terms of kernel functions and the resulting
representation formula of the control is a non-parametric. Furthermore, the control
depends on the data coming from the sampling. This approach can be seen as a
data-driven approximation of the control.
First we give a brief introduction into the common approaches for gradient estimation

99



of expectations. Then we derive the optimization problem. After this we derive
the one-dimensional gradient estimator based on the Malliavin gradient descent
approach. Two other gradient estimators are derived by the likelihood approach.
These gradient estimators are tested in a numerical example. In the last part of the
chapter the non-parametric representation formula is calculated. Numerical tests of
the non-parametric representation formula support our findings. A discussion closes
the chapter.

5.1 Derivation of the optimization problem

Let us consider the SDE given by

dxt = −∇V (xt)dt+
√

2β−1dBt, x0 = x (5.1)

We are interested in quantities of interest related to these metastable sets. These
quantities of interest F (x) : Rn → R are formulated as a moment generating
function

F (x) = −β log EP

[
exp

(
− 1
β
W (x0:τ̂ )

)
|x0 = x

]
(5.2)

with
W (x0:τ̂ ) =

∫ τ̂

0
f(xs)ds (5.3)

where f : Rn → R is a sufficiently smooth and bounded function. The quantity of
interest depends on the whole path of the trajectory. For the special case in which f
is the indicator function of the target set the function W is only the hitting time of
this set. The quantity of interest is in this case the moment generating function of
the stopping time. In the following E[·|x0 = x] is denoted by Ex[·] To now overcome
the metastability of the dynamics the drift of the dynamics is changed. In this way a
perturbed dynamic system is generated which satisfies

dxut = (u(xut )−∇V (xut ))dt+
√

2β−1dBt, xu0 = x (5.4)

where u : Rn → Rn has to be a measurable function which satisfies Novikov’s
condition; see proposition 3.
Then we can use Girsanov’s theorem to reweight the quantity of interest and write

F (x) = −β log Ex
Q

[
exp

(
− 1
β
W (xu0:τ̂ ) +

∫ τ̂

0
γ(xus )dBs +

1
2

∫ τ̂

0
|γ(xus )|2ds

)]
(5.5)

where
√

2β−1γ(xus ) = u(xus ). Due to the convexity of the negative logarithm we can
apply Jensen’s inequality to get

F (x) ≤ Ex
Q

[
W (xu0:τ̂ )− β

∫ τ̂

0
γ(xus )dBs −

β

2

∫ τ̂

0
|γ(xus )|2ds

]
. (5.6)
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Substituting the Brownian motion Bs now into a Brownian motion under the new
probability measure Q by using BQ

t = Bt +
∫ τ̂

0 |γ(xus )|2ds we find

F (x) ≤ Ex
Q

[
W (xu0:τ̂ ) +

β

2

∫ τ̂

0
|γ(xus )|2ds− β

∫ τ̂

0
γ(xus )dB

Q
s

]
. (5.7)

Now using the linearity of the expectation we see that one of the terms is just an
expectation over a stochastic integral. Since the expectation of a stochastic integral
is zero, we can further simplify

F (x) ≤ Ex
Q

[
W (xu0:τ̂ ) +

β

2

∫ τ̂

0
|γ(xus )|2ds

]
. (5.8)

This is an upper bound for the quantity of interest. The best perturbation can now
be found by minimizing the functional

F (x) = inf
γ
{Ex

Q

[
W (xu0:τ̂ ) +

β

2

∫ τ̂

0
|γ(xus )|2ds

]
}. (5.9)

Since there is a priori no information about the function space in which γ has to be in,
this problem is not solvable numerically. In order to solve it numerically the change
of drift is approximated by a sum over N ∈N ansatz functions u(x) ≈

∑N
i=1 aibi(x)

where ai ∈ R and the bi : Rn → Rn are bounded continuous functions similar to the
approach presented in the previous chapter. The optimization problem can now be
approximated by

F (x) ≈ min
a∈RN

{Ex
Q

[
W (xa0:τ̂ ) +

β2

4

∫ τ̂

0
|
N∑
i=1

aibi(x
a
t )|2ds

]
} (5.10)

where the dynamic xat is given by

dxat = (
N∑
i=1

aibi(x
a
t )−∇V (xat ))dt+

√
2β−1dBt, xa0 = x. (5.11)

On possible method to solve this stochastic optimization problem is a gradient
descent. In the literature different approaches have been proposed how gradients
of expectations can be computed efficiently. We summarize these approaches very
briefly in the next section and give a short introduction into the gradient descent
method.

Gradient descent

The gradient descent method is a first order iterative optimization method for solving
optimization problems. In order to find a minimum of a function F steps along the
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direction of the negative gradient of this function (−∇F ) are taken (gradient decent
methods). The new iterate of the gradient descent method xnew is calculated by

xnew = xold − α∇F (xold); n > 0

where xold is the old iterate, α is a so-called step size and ∇F is the gradient of the
function evaluated for the old iterate xold. If the gradient cannot be calculated ana-
lytically, different approximation methods can be used; see e.g. [66]. Maximization
problems can also be solved in a similar way by stepping into the direction of the
positive gradient direction (gradient ascent method). The algorithm is iterated until
some stopping condition, usually something like ‖∇F (xnew)‖2 ≤ ε for ε small, is
satisfied.

Step size
For deterministic optimization problems different sophisticated step length algo-
rithms following either the Wolf condition or the Goldstein condition are available
[66]. These step length algorithms can help to speed up the convergence of the
method and help to prevent zigzagging. But to our knowledge these algorithms
cannot be applied for stochastic optimization problems.

In stochastic optimization the step size sequence which is often used is either a
constant or satisfies

∞∑
n=0

αn =∞, αn ≥ 0, αn → 0 for n ≥ 0.

With these step sizes and some further assumptions one can show convergence of
the stochastic gradient descent method, e.g. [51].

Gradient estimators
If the objective function is an expectation, the derivative cannot be calculated ana-
lytically. We summarize different approaches how the approximation of derivatives
of expectations can be calculated.

1. The finite difference approach or resampling approach, e.g. [3]. In this approach
the derivative of the expectations is approximated by a finite difference

∇aE[f(xa0:T )] ≈
E[f(xa+ε0:T )]−E[f(xa0:T )]

ε

for a small ε. The resulting estimator is a biased estimator [3]. Moreover, this
approach is extremely costly because the process x has to be sampled for every
perturbation of the parameter sufficiently often. The approach gets even worse
if the dimension of the parameter is large. There are several variants of this
finite difference approach to overcome the resampling, for example Simultane-
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ous Perturbation Stochastic Approximation (SPSA) introduced by Spall [81].
Here all entries of the parameter space are perturbed at once. This reduces
the resampling effort for a high-dimensional parameter space. To reduce the
variance of the estimator different numerical extensions were proposed. For
example, common random numbers make this estimator extremely efficient in
terms of variance [46].

2. The pathwise approach proposed by Yang and Kushner [92]. The idea of this
approach is to interchange the expectation and the derivative. The resulting
expectation then involves ∇af and ∇ax0:T . This expression can be again
written as an expectation and evaluated by Monte Carlo methods. The only
restriction for this method is that f has to be a smooth function to calculate
∇af . The derivative of the process with respect to the parameter ∇ax0:T can
be calculated explicitly.

3. The likelihood approach or score method introduced by [35] [34] and [75]. This
approach uses the fact that the gradient can be written as E[f(x0:T )H ] with
some random variable H. This representation is not unique since any random
variable H which is orthogonal to x0:T can be added cf. [36]. Normally, H
is equal to the gradient of the log-likelihood (∇a log(p(a,x0:T ))) with p(a, ·)
being the density with respect to the Lebesques measure of the law of xT . But
in many applications the density is not known. If the parameter is only in
the drift term and the diffusion term is elliptic, it is possible to calculate H
explicitly using Girsanov’s theorem cf. [92]. More general situations in which
the parameter is also in the diffusion term have been investigated by Gobet
and Munos [36].

5.2 Malliavin gradient descent one-dimensional

In the following section a one-dimensional derivative estimator is derived. This
estimator is motivated by [27]. In the paper O. Ewald introduces a method which
is called Malliavin gradient descent. The main idea of the method is to combine
gradient descent methods with Malliavin Calculus in order to solve stochastic opti-
mization problems. The method is used for the calibration of stochastic systems. In
this paragraph we are going to apply this approach to the parametric optimization
problem. The main advantage of the Malliavin gradient descent is that the objective
function does not have to be continuous at all. Even functions which are discontin-
uous or have singularities can be considered. This is, for example, the case if one
is interested in the sampling hitting times. If this estimator can be generalized to a
high-dimensional application, is not quite clear yet. This is why we only present the
derivation without any further numerical testing.
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Before deriving the gradient formula we will summarize the presented theory. At the
end of this paragraph we apply this theory to the parametric optimization problem.

Let us consider the probability space (Ω, P,F) with a Brownian motion (Bt). Fur-
thermore, we consider the following SDE

dxt = β(xt,u)dt+ σ(xt, v)dBt (5.12)

where u respectively v are parameters from some subset U ∈ R and V ∈ R.
The functions β : R× U → R and σ : R× V → R are two times continuously
differentiable with bounded derivatives up to order two. Then, it follows that there
exists a family {(xt(x,u, v))|x ∈ R,u ∈ U , v ∈ V } of stochastic processes such that
the process (xt(x,u, v)) satisfies (5.12) for any choice of x,u, v with initial condition
x0(x,u, v) = x P-almost sure and for P-almost any ω ∈ Ω and any time t the map

(x,u, v)→ xt(x,u, v)(ω) (5.13)

is continuous differentiable [72]. In general, the condition on the bounded deriva-
tives can be relaxed but then the family (xt(x,u, v)) might only exist until an
explosion time.
For simplification we drop the explicit dependence of xt on (x,u, v) but keep it in
the drift term β and the diffusion term σ. The derivatives are denoted as ∂

∂xxt,
∂
∂uxt

and ∂
∂vxt. The following proposition shows how the different derivatives can be

calculated.

Proposition 3. Assume that β : R× U → R and σ : R× V → R are two times
continuously differentiable with bounded derivatives up to order two and xt satisfies
the SDE given by (5.12). Then the derivatives with respect to the different parameters
are given by

∂

∂x
xt = exp

(∫ t

0

∂

∂x
β(xs,u)ds

)
exp

(∫ t

0

∂

∂x
σ(xs, v)dBs −

1
2
∂

∂x
σ(xs, v)2ds

)
∂

∂u
xt =

(
∂

∂x
xt

)(∫ t

0

(
∂

∂x
xt

)−1 ∂

∂u
β(xs,u)ds

)
∂

∂v
xt =

(
∂

∂x
xt

)(∫ t

0

(
∂

∂x
xt

)−1 ∂

∂v
σ(xs, v)dBs
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−
∫ t

0

(
∂

∂x
xt

)−1 ∂

∂x
σ(xt, v)

∂

∂v
σ(xt, v)ds

)

Proof. A short version of the proof can be found in [27]. A more general proof of
this proposition can be found in [72]. The proposition is only a special case of the
presented theorem in [72].

With this formula for the derivatives we can now calculate the derivative of an
expectation with respect to the different parameters.

Proposition 4. Given a measurable function h : R→ R+, a time τ̂ , σ > 0 and assume
that h(xτ̂ ) ∈ L(Ω). Consider the function in u and v

(u, v)→ E[h(xt(x,u, v))]. (5.14)

Define the following weight functions

Xt :=
∫ t

0
σ(xs, v)−1 ∂

∂x
xsdBs

Ut :=
∫ t

0

(
∂

∂x
xs

)−1 ∂

∂u
β(xs,u)ds

Vt :=
∫ t

0

(
∂

∂x
xs

)−1 ∂

∂v
σ(xs, v)dBs −

∫ t

0

(
∂

∂x
xs

)−1 ∂

∂x
σ(xs, v)

∂

∂v
σ(xs, v)ds

St := σ(xs, v)−1 ∂

∂x
xt

If h ∈ L2
loc(R) with at most linear growth at infinity, then the following formulas

hold

∂

∂u
E[h(xτ̂ )] = E

[1
τ̂
h(xτ̂ )Xτ̂Uτ̂

]
−E

[1
τ̂
h(xτ̂ )

∫ τ̂

0
(DtUτ̂ )Stdt

]
∂

∂v
E[h(xτ̂ )] = E

[1
τ̂
h(xτ̂ )Xτ̂Vτ̂

]
−E

[1
τ̂
h(xτ̂ )

∫ τ̂

0
(DtVτ̂ )Stdt

]
where DtUτ̂ and DtVτ̂ are the Malliavin derivatives.

Proof. A proof of this proposition can be found in [27].

Application
In the following we are going to apply the presented theory for the stochastic
optimization problem (5.10). In the following we are going to denote the controlled
SDE by

dxat = (ab(xat )−
∂

∂x
V (xat ))dt+

√
2β−1dBt. (5.15)
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The function V is, as before, a metastable potential. The function ab(xat ) is the
parametric approximation of the optimal control. We want to calculate the derivative
of the expectation with respect to the parameters of the control. To use the same
notation as in the presented theory we choose β(x, a) = (ab(xat )− ∂

∂xV (xat )) and
σ =

√
2β−1. The derivative are given by

∂

∂x
β(x, a) = a

∂

∂x
b(xat )−

∂

∂xx
V (x), ∂

∂a
β(x, a) = b(x), ∂

∂x
σ = 0, ∂

∂v
σ = 0.
(5.16)

Due to proposition 3 ∂
∂xx

a
t is given by

∂

∂x
xat = exp

(∫ t

0
a
∂

∂x
b(xat )ds

)
. (5.17)

Since we are only interested in the derivative with respect to a, we are going to
use At instead of Ut. I also drop the terms which are related to the derivative
with respect to v. The other stochastic processes which are needed to calculate the
derivative of the expectation are due to Proposition 4

Xt :=
∫ t

0

1√
2β−1 exp

(∫ t

0
a
∂

∂x
b(xat )ds

)
dBs

At :=
∫ t

0
exp

(
−
∫ t

0
a
∂

∂x
b(xat )ds

)
f(xas)ds

St :=
1√

2β−1 exp
(∫ t

0
a
∂

∂x
b(xat )ds

)
.

The Malliavin derivative of At which is denoted by DtAτ̂ is given by

DtAτ̂ = Dt

∫ τ̂

0
exp

(
−
∫ t

0
a
∂

∂x
b(xas)ds

)
f(xas)ds

=
∫ τ̂

t
Dt[exp

(
−
∫ s

0
a
∂

∂x
b(xas)dq

)
b(xas)]ds

=
∫ τ̂

t
Dt(−

∫ s

0
a
∂

∂x
b(xaq )dq) exp

(
−
∫ s

0
a
∂

∂x
b(xaq )dq

)
b(xas)

+ exp
(
−
∫ s

0
a
∂

∂x
b(xas)dq

)
Dtb(x

a
s)ds

=
∫ τ̂

t
(−
∫ s

t
Dta

∂

∂x
b(xaq )dq) exp

(
−
∫ s

0
a
∂

∂x
b(xaq )dq

)
b(xas)

+ exp
(
−
∫ s

0
a
∂

∂x
b(xaq )dq

)
∂

∂x
b(xas)

∂

∂x
xas

(
∂

∂x
xas

)−1 1√
2β−1ds

=
∫ τ̂

t
(−
∫ s

t

∂

∂x
a
∂

∂x
b(xaq )

∂

∂x
xat

(
∂

∂x
xas

)−1
dq)

1√
2β−1 exp

(
−
∫ s

0
a
∂

∂x
b(xaq )dq

)
b(xas)
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+ exp
(
−
∫ s

0
a
∂

∂x
b(xat )dq

)
∂

∂x
b(xas)

∂

∂x
xas

(
∂

∂x
xas

)−1 1√
2β−1ds

where ∂
∂xx

a
t

(
∂
∂xx

a
s

)−1
is given by

∂

∂x
xat

(
∂

∂x
xas

)−1
= exp

(∫ t

s
a
∂

∂x
b(xaq )dq

)
.

The derivative is then given by

∂

∂a
E[φ(xat , a)] = E[

1
τ̂
φ(xaτ̂ , a)

(∫ t

0

1√
2β−1 exp

(∫ t

0
a
∂

∂x
b(xas)ds

)
dBs

)
(∫ t

0
exp

(
−
∫ t

0
a
∂

∂x
b(xas)ds

)
b(xas)ds

)
]

−E[
1
τ̂
φ(xaτ̂ , a)

∫ τ̂

0
DtAτ̂

1√
2β−1 exp

(∫ τ̂

0
a
∂

∂x
b(xas)ds

)
ds].

This gradient estimator does not require the differentiability of φ. This is why it
can be extremely useful to solve optimal control problems with non-continuous cost
functions. In this case the PDE formulation cannot be solved because there is no
valid formulation of the problem. But still the gradient estimator is quite complex
due to the nested integrals which could limit the application. In the next section we
are going to calculate a different gradient estimator which is easier to implement.

5.3 Likelihood approach to parametric optimal control

In this section we present the likelihood approach to estimate the gradient of the
objective function. The main idea of this section is motivated by [31]. The authors
of this paper used Malliavin Calculus to calculate derivatives for objective functions
which can again be formulated as expectations. In this paragraph we adapted
this approach to the special objective function of the optimization problem stated
above.

In order to perform a gradient descent we have to calculate the partial derivatives
with respect to the parameter ai of the expectation

ϕa(x) = EQ[φ(x
a
0:τ̂ , a)|xa0 = x]. (5.18)

In the following we assume that φ is a path functional depending on the whole
path of the process and a continuous differential function in the second argument.
Furthermore, we assume that

Ex
Q[φ(x

a
0:τ̂ , ξ)2] <∞ (5.19)
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where the controlled dynamical system is given as 5.11 and ξ is the maximum
in the second argument.The following result gives an expression for the partial
derivative.

Theorem 6. Assuming that φ is a continuous differentiable function for which the
boundedness condition as given in (5.19) holds and a finite time T < ∞ (or a finite
stopping time) then the partial derivative of the expectation is given by

∂

∂ai
ϕa(x) = Ex

Q

[
∂φ

∂ai
(xa0:τ̂ , a) + φ(xa0:τ̂ , a)

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBt

]
. (5.20)

Proof. To show that the above result is a derivative we show that (5.20) converges
against the finite difference. For this we define an auxiliary process xεt

dxεt = (
N∑
i=1

(ai + εi)bi(x
ε
t)−∇V (xεt))dt+

√
2β−1dBt, xε0 = x (5.21)

where ε is a small perturbation in one of the parameters (ε = [0, 0, . . . εi, . . . , 0] ∈
RN ). The probability measure which is introduced by the SDE (5.11) will be denoted
by Q and the probability measure introduced by (5.21) will be denoted by Qε. Let us
assume that the two probability measures are absolutely continuous which respect to
each other. Now applying Girsanov’s theorem a new random variable can be defined

Mτ̂ = exp
(
− εi

∫ τ̂

0

bi(xat )√
2β−1dBt −

ε2i
2

∫ τ̂

0

∣∣∣∣ bi(xat )√
2β−1

∣∣∣∣2dt).

Due to the boundedness of the function bi we have that EQ[Mτ̂ ] = 1 for any εi ≥ 0
because Novikov’s condition is satisfied. By assumption the two considered measures
are absolutely continuous. This is why the objective function can be rewritten as

ϕa+ε(x) = EQε [M̄τ̂φ(x
ε
0:τ̂ , a)|xε = x], (5.22)

where

M̄τ̂ = exp
(
− ε1

∫ τ̂

0

(bi(xεt))√
2β−1 dB

ε
t −

ε2i
2

∫ τ̂

0

∣∣∣∣ (bi(xεt))√
2β−1

∣∣∣∣2dt). (5.23)

The Brownian motion Bε
t is a Brownian motion under the measure Qε defined by

Bε
t = Bt + εi

∫ t
0

(bi(xtε)√
2β−1

dt. The joint distribution of (xε· ,Bε
· ) under Qε coincides with

the joint distribution of (x·,B·) under Q. So the objective function can be expressed
as

ϕa+ε(x) = Ex
Q[Mτ̂φ(x

ε
0:τ̂ , a)]. (5.24)

Using Itô’s formula Mτ̂ can be expressed as

M ˆ̂τ = 1 +
∫ τ̂

0
Mt

(εibi(xat ))√
2β−1 dBt. (5.25)
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Rearranging and dividing both sides by εi one gets

1
εi
(Mτ̂ − 1) =

∫ τ̂

0
Mt

(bi(xat ))√
2β−1 dBt. (5.26)

Since MT is a martingale, it is bounded and so by the dominated convergence
theorem we get for εi → 0

lim
εi→0

1
εi
(Mτ̂ − 1) =

∫ τ̂

0

bi(xat )√
2β−1dBt =

1√
2β−1

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBt (5.27)

in L2. Therefore we can calculate∣∣∣∣1ε (ϕa+ε(x)−ϕa(x))− ∂

∂ai
Ex

Q

[
φ(xa0:τ̂ , a)

]∣∣∣∣
=

∣∣∣∣1ε (Ex
Qε

[
φ(xa+ε0:τ̂ , a+ ε)

]
−Ex

Q

[
φ(xa0:τ̂ , a)

]
)− ∂

∂ai
Ex

Q[φ(x
a
0:τ̂ , a)]

∣∣∣∣
=

∣∣∣∣1ε (Ex
Q

[
φ(xa0:τ̂ , a+ ε)Mτ̂

]
−Ex

Q

[
φ(xa0:τ̂ , a)

]
)− ∂

∂ai
EQ

[
φ(xa0:τ̂ , a)

]∣∣∣∣
=

∣∣∣∣1ε (Ex
Q

[
φ(xa0:τ̂ , a+ ε)Mτ̂ − φ(xa0:τ̂ , a+ ε)

+ φ(xa0:τ̂ , a+ ε)− φ(xa0:τ̂ , a)
]
)− ∂

∂ai
EQ

[
φ(xa0:τ̂ , a)

]∣∣∣∣
=

∣∣∣∣1ε (Ex
Q

[
(φ(xa0:τ̂ , a+ ε)− φ(xa0:τ̂ , a)) + φ(xa· , a+ ε)(Mτ̂ − 1)])− ∂

∂ai
EQ[φ(x

a
0:τ̂ , a)

]∣∣∣∣
=

∣∣∣∣1ε (Ex
Q

[
(φ(xa0:τ̂ , a+ ε)− φ(xa0:τ̂ , a))−

∂φ

∂ai
(xa0:τ̂ , a)

]

+
1
ε
(Ex

Q

[
φ(xa0:τ̂ , a+ ε)(Mτ̂ − 1)− φ(xa0:τ̂ , a)

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBt

]∣∣∣∣
≤
∣∣∣∣Ex

Q

[
(
φ(xa0:τ̂ , a+ ε)− φ(xa0:τ̂ , a)

ε
)− ∂φ

∂ai
(xa0:τ̂ , a)

]∣∣∣∣
+

∣∣∣∣1ε (Ex
Q

[
φ(xa0:τ̂ , a+ ε)(Mτ̂ − 1)− φ(xa0:τ̂ , a)

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBt

]∣∣∣∣.
The first part of the inequality converges to zero because φ is a square integrable
function cf. [47]. Applying the Cauchy-Schwarz inequality we find

∣∣∣∣1ε (Ex
Q

[
φ(xa0:τ̂ , a+ ε)(Mτ̂ − 1)− φ(xa0:τ̂ , a)

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBt

]∣∣∣∣
≤Ex

Q

[
φ(xa0:τ̂ , ξ)2

]
Ex

Q

[(1
ε
(Mτ̂ − 1)−

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBt

)2]
.

By (5.27) the second term converges to zero and this gives the required result.

The resulting expression for the gradient of the expectation is still an expectation.
This is very useful in the sampling context because it can be approximated by a
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standard Monte Carlo procedure. In the next paragraph we derive a second gradient
estimator based on some assumptions on the biasing potential.

5.3.1 Gradient estimator of the alternative Girsanov formula

As we have already seen in the derivation of the zero variance property there exists
another representation formula of the Girsanov weight if the biasing potential is of
gradient form. This different representation formula can also be used for deriving
another gradient estimator.

As we have seen in the previous calculation the gradient descent includes a stochastic
integral

1√
2β−1

∫ τ̂

0

∂

∂ai

N∑
i=1

aibi(x
a
t )dBs. (5.28)

Let us now consider that the bias function is of gradient form such that the perturbed
SDE can be written as

dxas = −(∇V (xas)−∇Vbias(xas))ds+
√

2β−1dBs (5.29)

where ∇Vbias(x) =
∑N
i=1 ai∇bi(x) where bi(x) : Rn → R. One can derive an

alternative gradient formula using Itô calculus similar to the alternative reweighting
formula shown in Chapter 2. Applying Itô calculus one gets

Vbias(x
a
t )− Vbias(xa0) =

∫ t

0
(−∇V · ∇Vbias + |∇Vbias|2 + β−1∇2Vbias)(x

a
s)ds

+
√

2β−1
∫ t

0
∇Vbias(xas)dBs.

Using again the parametric basis functions as approximation of the control we need
the integral Vbias(x) =

∑
i ai

∫
bi(x) and the derivative ∇2V (x) =

∑
i ai∇bi(x) to

use alternative representation formula. Now after rearranging terms one finds

∂

∂ai
ϕε(x) = E

[
∂φ

∂ai
(xa· , a) + φ(xa· , a)

1√
2β−1

[ ∫ τ̂

0

∂

∂ai
(∇V · ∇Vbias

− |∇Vbias|2 − β−1∇2Vbias)(x
a
s)ds+

∂φ

∂ai

(
Vbias(x

a
τ̂ )− Vbias(xa0)

)]]
.

Since the alternative expression does not include a stochastic integral one could
suppose that the alternative gradient estimator has a lower variance. We are going
to investigate this in our numerical examples.
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5.3.2 Examples

We tested the different gradient estimators for a one-dimensional bistable system.
Let us consider the controlled dynamics

dxus = (− ∂

∂x
V (xs) + u(xs))ds+

√
2β−1dBs x0 = x. (5.30)

The asymmetric bistable potential satisfies

V (x) = (x2 − 1)2 − 0.2x+ 0.3.

A visualization can be found in figure 5.1(a). This potential has two minima at
x0 ≈ −0.973994 and x2 ≈ 1.02412 while the right well is deeper than the left well.
Furthermore, the potential has a local maximum at x1 ≈ −0.0501259. We define the
stopping time

τ̂ = inf{s > 0 : |xs − x2| ≤ 0.1}. (5.31)

The goal of the considered control problem is to effectively sample the transition into
the metastable set around x2 starting in the metastable set x0. For this the objective
function is expressed as: Minimize

Ex
Q[τ̂ +

∫ τ̂

0
|u(xs)|2ds]. (5.32)

This expectation can be understood as a regularized expectation for the stopping
time. The stopping time should be reduced without controlling the dynamical system
too much.

For all simulations the inverse temperature was set to β = 4. The initial condition
is chosen to be x0 = 1 for all realizations. The trajectories are sampled by using a
Euler-Maruyama scheme with a time discretization dt = 0.001.

Representation and optimization of control
The control is represented by 20 normalized Gaussians of the form

u(x) =
20∑
k=1

ak

σ
√

2π
exp

(
− (x−mk)

2

2σ2

)
(5.33)

are used with σ = 0.1579. The basis functions are place along the path of the
trajectory mk = −1.1 + (k − 1)σ k = 1 . . . , 20. The chosen representation is
independent of time because the time dependence of the optimal control is relatively
weak for this problem and thus left out for simplification.

Stochastic gradient
In this example we test the stochastic gradient descent (5.20). The gradient of

5.3 Likelihood approach to parametric optimal control 111



the objective function was approximated by a standard Monte Carlo estimator.
To evaluate the gradient estimator 200 trajectories have been calculated for each
evaluation. The decreasing step size is chosen to be 0.4/(iteration+10). In total 15
optimization steps were calculated. As a starting point for the optimization we used
an perturbed approximation of the optimal solution calculated by the related PDE.
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(a) In blue the original potential is shown. In
black the optimal tilted potential is shown calcu-
lated by the PDE formulation of the problem. In
red the result after every gradient descent step
is shown.

(b) In blue the starting control is shown. In
red the optimal control calculated by the PDE
formulation is shown. In black the last iterate
after 15 optimization steps is shown.

Fig. 5.1: Resulting potential and control for a gradient descent done with the stochastic
gradient estimator with 200 trajectories.
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Fig. 5.2: The different variances of the objective function (yellow), hitting time (blue), cost
function (orange) are shown for every evaluation of the gradient descent method.

The example shows that this gradient estimator works. The controlled potential
is converging into the direction of the optimal tilted potential. Furthermore, the
control of the last iterate shows a quite good fit of the optimal control in the rele-
vant region. The variance of the objective function decreases mostly in the first 3
optimization steps. After 12 steps the best variance is reached and afterwards the
variance is slightly decreasing. This can be a sign of zigzagging behaviour of the
gradient methods.
In different numerical examples (not shown here) one could observe that the perfor-
mance of the stochastic gradient descent highly depends on the choice of the step
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size. Furthermore, the step size will influence the convergence of the method. If the
step size is chosen too small, the gradient descent will not move very far from the
starting point. If the step size is chosen too big, the method needs many iterations to
find the optimum.

The approximation quality also depends on the number of chosen basis functions.
The intuitive conjecture, saying the more basis functions the better the approxima-
tion, is not complied.

Alternative formula
In this example we test the alternative estimator of the gradient estimator. The
gradient of the objective function was approximated by a standard Monte Carlo
estimator. The decreasing step size is chosen to be 0.01/(iteration+10). In total 15
optimization steps were calculated. As an starting point for the optimization we
used a perturbed approximation of the optimal solution calculated by the related
PDE. To evaluate the gradient estimator 200 trajectories were calculated.
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(a) In blue the original potential is shown. In
black the optimal tilted potential is shown calcu-
lated by the PDE formulation of the problem. In
red the result after every gradient descent step
is shown.

(b) In blue the starting control is shown. In
red the optimal control calculated by the PDE
formulation is shown. In black the last iterate
after 15 optimization steps is shown.

Fig. 5.3: Resulting potential and control for a gradient descent done with the alternative
stochastic gradient estimator with 200 trajectories.

The example shows that the alternative gradient estimator works. The controlled
potential is converging into the direction of the optimal tilted potential. Similar to
the previous example the convergence of the method depends very much on the
chosen step size. Furthermore, the control of the last iterate shows again a quite
good fit of the optimal control in the relevant region. Compared to the stochastic
gradient estimator it seems that the stochastic behaviour is reduced. The gradient
estimates are less affected by the individual behaviour of the different trajectories.
The variance decreases in every gradient descent iteration. The gradient descent
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Fig. 5.4: The different variances of the objective function (yellow), hitting time (blue), cost
function (orange) are shown for each evaluation of the gradient descent method.

methods with the alternative gradient estimator seems to be even more sensitive to
the step size.

Comparing the variances of the different gradient estimators we see that the variance
of the stochastic gradient estimator decays much quicker than the variance of the
estimator based on the alternative formula. Looking at the two different formulas
one could suppose that the variance of the alternative formula is much better because
there is no stochastic integral which has to be calculated. But the shown numerical
example clearly contradicts this expectation see 5.5. In the last calculated iteration
the variance of the stochastic estimator is also lower. It seems that the stochastic
integral in the gradient estimator stabilizes the calculation. But this has to be
evaluated in future research.
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ent estimator for the stochastic gradient descent
shown in each iteration.
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ent estimator for the stochastic gradient descent
with the alternative formula shown in each iter-
ation.

Fig. 5.5: Decay of the variance of the different gradient estimators.

Alternative formula with one realization
In the last example we test the alternative estimator with only one evaluation of
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the gradient. Even though the variance of the estimator based on the alternative
formula is worse compared to the estimator, including the stochastic integral, the
first experiment with the alternative formula showed a very stable behaviour of
the estimator; see 5.3.2. This is why we want to see if the number of evaluations
could be decreased to decrease the computational effort of the gradient evaluations.
The decreasing step size is chosen to be 0.007/iteration. In total 10 optimization
steps were calculated. As starting point for the optimization we used a perturbed
approximation of the optimal solution calculated by the related PDE. To evaluate
the gradient estimator 1 trajectory was calculated.
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red the result after every gradient descent step
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(b) In blue the starting control is shown. In
red the optimal control calculated by the PDE
formulation is shown. In black the last iterate
after 10 optimization steps is shown.

Fig. 5.6: Resulting potential and control for a gradient descent done with the stochastic
gradient estimator with 1 trajectory.
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Fig. 5.7: The different variances of the objective function (yellow), hitting time (blue), cost
function (orange) are shown for every evaluation of the gradient descent method.

The example shows that the alternative gradient estimator with only one evaluation
of the dynamical system works. The controlled potential is converging into to of
the optimally tilted potential. Furthermore, the control of the last iterate shows a
quite good fit of the optimal control in the relevant region. The variance decreases
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in every gradient descent iteration. But the variance decay is much slower compared
to the gradient estimator with averaging. So in order to reduce the computational
cost for the gradient evaluation is does make sense to combine both techniques. In
order to get close to a possible minimum without computational effort one could
start the optimization with only a few evaluations of the dynamical system and after
a number of iterations the number of function evaluations is increased to get a better
gradient estimator.

After we have developed and tested different gradient estimators for the optimization
problem of finding the optimal bias we are now going to take a closer look at another
method which was proposed to solve the optimization problem, namely the Cross-
Entropy method. We are going to show that the Cross-Entropy method can be
kernelized and that the methods can be seen as a Gaussian process approach finding
the optimal bias.

5.4 Non-parametric representation

In this section we develop a non-parametric expression of the control based on the
Cross-Entropy method. The parametric Cross-Entropy for importance sampling of
diffusions was first introduced by [93]. We extend this approach by introducing
a kernel function and in this way we can derive a non-parametric representation
formula of the optimal bias. The derived formula can be used to express the optimal
bias on the trajectories and also to predict the bias. The prediction also depends
on the trajectories from the sampling. Because of this dependency on the observed
trajectories the kernelized Cross-Entropy method can be seen as a data driven
approximation of the optimal bias. Furthermore, the kernelization of the parametric
Cross-Entropy method turns the linear method into a non-linear method and thus
gives the approach more flexibility to express the optimal bias.
Kernel methods are well-known in the context of machine learning, e.g. support
vector machines or Gaussian processes [65]. The main advantage of these methods is
that they can operate in a high-dimensional space by using so-called kernel functions
without the explicit calculating of the coordinates in this space. This is done by
expressing these high-dimensional calculations in terms of inner products which is
often called the kernel trick. Kernel functions are weighted sums of integrals which
are used in this application to express similarity of observed data points (e.g. time
points in a trajectory) and thus encode spacial information cf. [65].

The section is structured as follows: We introduce kernel functions very briefly before
presenting the parametric Cross-Entropy method. Then, we derive the kernelized
version of the Cross-Entropy method and close this section by giving a numerical
example of the derived method.
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5.4.1 Kernel functions

In machine learning kernel functions are used as a measure of similarity because
it is assumed that two inputs which are very close to each other will give a similar
output. The term kernel arises in the theory of integral operators. A function
k : D ∈ Rn ×D ∈ Rn → R of two arguments mapping into the R is called a kernel.
With this kernel we can now define an integral transformation Tk.

Definition 2. Consider a function f ∈ L2 and k ∈ L2(µ). Then the integral operator
Tk : L2(µ)→ L2(µ) is defined by

Tk(f) =
∫
D
k(y,x)f(x)µ(dx)

where µ denotes a measure on D.

A kernel is said to be symmetric if k(x, y) = k(y,x) holds. In machine learning only
positive semidefinite kernels are considered. A kernel is positive semidefinite if∫

k(y,x)f(x)f(y)µ(dx)µ(dy) ≥ 0

holds for all f ∈ L2(µ) and x, y ∈ D.

Famous examples of symmetric positive semidefinite kernels defined on Rn are the
linear kernel

k(x, y) = xT y x, y ∈ Rn

or the Gaussian kernel (RBF kernel)

k(x, y) = exp
(
− ‖x− y‖

2
2

2σ2

)
x, y ∈ Rn,σ ∈ R+ (5.34)

In many applications only stationary kernel functions are considered but one can
also find non-stationary kernel functions in the literature [74].
At least we present Mercer’s theorem which states that a kernel can be represented
in terms of eigenvalues and eigenfunctions. This representation will be useful for
the derivation of the non-parametric representation formula.

Theorem 7 (Mercer’s theorem [74]). Let (D,µ) be a finite measurable space and
k ∈ L∞(µ× µ) be a kernel such that Tk : L2(µ) → L2(µ) is positive definite. Let
φi ∈ L2(µ) be normalized eigenfunctions of Tk associated with the eigenvalue λi > 0.
Then

• the eigenvalues {λi}∞i=1 are absolutely summable
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•

k(x, y) =
∞∑
i=1

λiφi(x)φi(y) (5.35)

holds µ× µ almost everywhere and the series converges absolutely and uniformly
µ× µ almost everywhere.

Proof. A proof of this representation theorem can be found in [52].

After this brief presentation of kernel functions we are going to present the derivation
of the Cross-Entropy method and how it can be used to solve the optimization
problem stated in equation (5.10).

5.4.2 Parametric Cross-Entropy method

In order to derive the Cross-Entropy method for the minimization problem

min
u
J(u) = Ex

Q

[
W (xu0:τ̂ ) +

β

2

∫ τ̂

0
|γ(xus )|2ds

]
s.t. dxut = −(∇V (xut ) + u(xut ))dt+

√
2β−1dBt, xu0 = x

we note that we can rewrite the objective function J based on a entropy representa-
tion

J(u) = J(u∗) +D(Q|Q∗) (5.36)

where u∗ is the optimal control, D(Q|Q∗) is the Kullback-Leibler divergence and
Q = Q(u) and Q∗ = Q(u∗) are the measures corresponding to the different controls.
Due to the Galerkin procedure the optimization problem turns into the problem of
minimizing

H̄(a) = D(Q(u(a))|Q∗) (5.37)

over a ∈ RN , such that the measure Q(u(a)) is absolutely continuous with respect
to Q∗. However, minimizing D is not easy possible because the function may have
several minima or the optimal measure Q∗ is unknown. The problem can be turned
into a feasible minimization problem by flipping the arguments

H(a) = D(Q∗|Q(u(a))). (5.38)

We lose equality in (5.36) since D is not symmetric. But it is well-known that

H̄(a) ≥ 0,H(a) ≥ 0 and H̄(a) = 0 if and only if H(a) = 0 (5.39)

holds where the minimum is attained if and only if Q∗ = Q(u(a)). Let us denote
the path functional W (xu0:τ̂ ) =

∫ τ̂
0 f(x

u
s )ds+ g(xuτ̂ ). It is known from the literature
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[12] that the minimization of (5.38) is equivalent to the minimization of the cross
entropy functional

CE(a) = −E[logMτ̂ (a)) exp(−W (xu0:τ̂ ))] (5.40)

where the likelihood ration Mτ̂ (a) = ( dQ∗

dQ(u(a)) ) between the controlled and the
uncontrolled dynamic is quadratic in the parameter a and can be expressed via a
Girsanov transformation. Many different methods have been proposed to solve this
optimization problem; see e.g. [38, 93, 94].

5.4.3 Non-parametric Cross-Entropy method

The aim of the Cross Entropy method is to estimate a good approximation of the bias.
In [93] a Galerkin projection of the bias was chosen such that the bias is represented
by some weighted ansatz functions

u(x) ≈
M∑
i=1

aibi(x).

In order to determine the weights ai the Cross-Entropy functional (5.40) has to
be minimized. In this linear approach the ansatz functions have to be chosen and
placed. The choice and the placing influence the convergence and the variance
behaviour of the quantity of interest. Especially, the sufficient placing of the ansatz
function can be very challenging. This is why we are interested in a non-parametric
representation of the bias. Furthermore, a non-parametric representation introduces
more flexibility into the Cross-Entropy method. This non-parametric representation
can be seen as allowing for an infinite set of ansatz functions bi and from this point
of view we can make use of Mercer’s theorem to represent the kernel in terms of
eigenfunctions as we will see later.
Since one only has a finite number of samples for the estimation of u(x), we need a
regularization by introducing a penalty term. We choose a regularization of quadratic
form r = −1

2
∑
j

a2
j

λj
where λj ∈ R are the so called hyper-parameters. We will see

later that the hyper-parameters can be seen as the eigenvalues of the kernel.

Let us recall Girsanov’s theorem. We consider the two SDEs

dxt = −∇V (xt)dt+
√

2β−1dBt x0 = x

dxut = −(∇V (xut ) + u(xut ))dt+
√

2β−1dBt, xu0 = x.
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Then, we know from Girsanov’s theorem that the likelihood Mτ̂ is given by

Mτ̂ = exp
( 1√

2β−1

∫ τ̂

0
u(xt)dBt −

1
4β−1

∫ τ̂

0
(u(xt))

2dt

)
. (5.41)

The discrete regularized Cross-Entropy functional is then given by

CEr(a) = − 1
N

N∑
i=1

e−W (xi0:τ̂ )
(

logMτ̂ (a))

)
− 1

2
∑
j

a2
j

λj
(5.42)

where Mτ̂ (a) is (5.41) with u(x) =
∑M
j=1 ajbj(x). In order to minimize the Cross-

Entropy functional to find the optimal weights a∗ we are taking the gradient of (5.42)
with respect to a and set it to zero. Since only the likelihood and the regularization
depend on the parameter a, the derivative is given by

∂

∂aj
CEr(a) = − 1

N

N∑
i=1

e−W (xi0:τ̂ )
( 1√

2β−1

∫ τ̂

0
bj(xt)dBt

− 1
2β−1

∫ τ̂

0
(
∑
j

ajbj(xt))bj(xt)dt

)
− aj
λj

.

In order to kernelize the above equation we multiply the above equation such that
we can use Mercer’s theorem. We multiply by λj and bj(x). Then, by introduc-
ing a summation over the ansatz functions we see that (

∑
j λjbj(x)bj(y)) is the

representation of a kernel given by Mercer’s theorem. The λj can be interpreted
as the eigenvalues and bj(x) as the eigenfunctions of the corresponding integral
transformation.
The derivative of the regularized Cross-Entropy functional is given by

0 = − 1
N

N∑
i=1

e−W (xi0:τ̂ )
( 1√

2β−1

∫ τ̂

0
k(xit,x)dBt

− 1
2β−1

∫ τ̂

0
(
∑
j

ajbj(xt)k(x
i
t,x)dt

)
−
∑
j

ajbj(x).

Rewriting again the approximation
∑
j ajbj(x) as u(x) we have found an integral

equation for the function u(x)

0 = − 1
N

N∑
i=1

e−W (xi0:τ̂ )
( 1√

2β−1

∫ τ̂

0
k(xit,x)dBt

− 1
2β−1

∫ τ̂

0
(u(xt)k(x

i
t,x)dt

)
− u(x).

We now assume that we have observations of the dynamical system consisting of
N paths each of individual length Ti i = 1, . . . ,N (we call the collection of all time
points of all trajectories observations). Let us denote the size of the observation is
NO. Using these we can discretize the above integral equation to get a system of
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linear equations. Solving this gives us an estimate of the control on the observed
trajectory. We discretize the integrals in time at points xitk

A =
1
N

N∑
i=1

e−W (xi0:τ̂ )
(
− 1

2β−1

Mi∑
tk=0

(u(xitk)k(x
i
tk

,x′)dtk
)
+ INO×NO

b = − 1
N

N∑
i=1

e−W (xi0:τ̂ )
1√

2β−1

Mi∑
tk=0

k(xitk ,x′)dBtk

where the kernel k is evaluated on all sampled time points of all trajectories. Based
on the estimate of the observations we can use the estimate of u(x) to predict the
control for every point. This is done in a second step by rearranging the above
formula and use the solution of the linear system

u(x) =
1
N

N∑
i=1

e−W (xi0:τ̂ )
(
− 1√

2β−1

Mi∑
tk=0

k(xitk ,x)dBtk

+
1

2β−1

Mi∑
tk=0

u(xitk)k(x
i
tk

,x)dtk
)

where the kernel k is evaluated on the old observations and the new point x.
Furthermore, it is not necessary to start from the unperturbed dynamical system.
By assimilating the path function using again the weights from Girsanov’s theorem
we can start with any perturbed dynamical system to find the optimal control. The
resulting formulas look very similar to the equations derived above, only the path
function changes. We only present the regularized Cross-Entropy functional since
the derivation does not change

CEr(a) = − 1
N

N∑
i=1

e−W (xv0:τ̂ )M
v
τ̂

(
logMτ̂ (a))

)
− 1

2
∑
j

a2
j

λj

where
dxvt = −(∇V (xvt ) + v(xvt ))dt+

√
2β−1dBt, xv0 = x

and
Mv
τ̂ = exp

(
− 1√

2β−1

∫ τ̂

0
v(xvt )dBt +

1
4β−1

∫ τ̂

0
(v(xvt ))

2dt

)
.

By doing this it is possible to start the optimization problem with an already per-
turbed stochastic process. This can be very helpful if the stochastic process is
metastable. Furthermore, the here presented scheme can be used to iterate over the
predicted bias in order to optimize it.
Let us briefly comment on the connection to Gaussian processes before presenting a
one-dimensional example of the presented approach. The regularized Cross-Entropy
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functional can also be interpreted from a pseudo-Bayesian viewpoint. For this we
rewrite the functional

CEr(a) = −E

[
log

(
exp

(
C
( 1√

2β−1

∫ τ̂

0
u(xt)dBt −

1
4β−1

∫ τ̂

0
(u(xt))

2dt
))

exp
(
− 1

2
∑
j

a2
j

λj

))]
.

where C = exp(−W (x0:τ̂ )). We can interpret the first term as a weighted likelihood

(weighted by the path functional) and exp
(
− 1

2
∑
j

a2
j

λj

)
as a Gaussian prior distribu-

tion over the parameter aj . From this point of view the regularized Cross-Entropy
functional can be understood as a Gaussian process model for the function u. This
interpretation of the method could be very useful because there are many very effi-
cient algorithms for Gaussian processes in the literature which might help to develop
fast algorithms for high-dimensional generalization of the presented method; see
e.g. [74].

5.4.4 Examples

In the following we show the application of our method in a simple one-dimensional
example. Let us consider a dynamical system satisfying (2.16) where V is a symmet-
ric bistable potential

V (x) =
1
2 (x

2 − 1)2. (5.43)

The potential has two minima which are separated by a local maximum. The
dynamical system following the SDE is metastable. A visualization can be found in
3.1. We are interested in sampling the moment generating function for the stopping
time reaching the local maximum when starting in the local minimum x = −1. The
resulting path functional is given by

E[exp(− 1
β
τ )] (5.44)

where τ = inf{t > 0,xt > 0}. In this example 20 trajectories of (2.16) are calculated
by using a standard Euler-Maruyama discretization with a time step ∆t = 10−2 and
β = 2 in MATLAB. In order to sample the quantity of interest we sampled until all
trajectories reached the goal. We used a Gaussian kernel as a measure of similarity
given by

k(x, y) = α exp
(
− (x− y)2

2σ2

)
(5.45)

with α = 5 and σ = 0.5. In total 10 optimization steps have been performed to find
the optimal bias.
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Fig. 5.8: Original potential (blue) and perturbed potential (red)
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Fig. 5.9: Comparison of the optimal biasing potential of the sampling approach (yellow)
and the solution of the corresponding HJB equation (blue), the original potential
is shown in (red)

MC IS
E[τ ] 2.81 1.85

Var[τ] 4.087 2.020
E[exp(− 1

β τ )] 0.3419 0.3754
Var[exp(− 1

β τ )] 0.0461 0.0218

Tab. 5.1: Comparison of the importance sampling estimator (IS) and the Monte Carlo
estimator after 10 optimization steps.

We see that the estimator of the MC and the importance sampling are in good
agreement for the quantity of interest; see 5.1. Comparing the reweighted estimator
with a MC estimator with 10,000 trajectories E[exp(− 1

β τ )] = 0.3714 we see that
the IS estimator is very close. So the IS estimator with 20 trajectories is better than
the MC estimator with 20 trajectories. Furthermore, our approach could achieve
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a variance reduction. The variance of the moment generating function could be
reduced by 50%. The sampling time could also be reduced with results in a shorter
computation time. In figure 5.9 the bias computed by the regularized Cross-Entropy
approach is compared to the solution of the corresponding HJB equation. The results
show a good agreement.

One limitation of the presented method is that the kernel function has to be evaluated
on all sampled time points of all trajectories. This leads to very huge linear systems
which can become difficult to solve for many observations. To overcome this problem
a sparsity approach has to be developed. One idea is to use so-called inducing points
(z) and to express the optimal bias by a linear combination of different kernel
functions (k(x, zj) =

∑
j αjK(x, zj)). In this way the kernel functions only have the

dimension of the inducing points and the size of the kernel matrix can be reduced.
There are also other ideas to deal with high-dimensional data sets; see e.g [74].

5.5 Summary and Discussion

In the first part of this chapter different gradient estimators for the optimization
problem after projecting the optimal control into a weighted ansatz function space
have been derived. The main idea is motivated by differentiating the rewritten
path functional. Here different formulation of the path functional can be used. In
a first approach we derived a gradient formula based on ideas presented in [27].
The formula has the main advantage that the objective function of the optimization
problem does not have to be continuous. But the derived formula relies on the fact
that the approximation of the bias only depends on one parameter. If and how the
presented method can be extended to high-dimensional problems has to be dealt
with in future research. Another gradient estimator was derived by using an idea
presented in [31]. We could show that the resulting derivative converges to the finite
difference approximation and thus is a derivative of the path function. Furthermore,
a second gradient estimator could be derived if the bias is of gradient structure based
on ideas presented in [58]. These different gradient estimators have been tested for
one-dimensional examples. The examples show that the gradient estimators work
and that by applying a gradient descent a good approximation of the optimal control
can be found. Comparing the variances of the gradient estimators we could clearly
see that the variance of the estimator based on the alternative formula decays much
slower than the variance of the estimator including the stochastic integral. So it
seems that the stochastic integral stabilizes the gradient estimation if averaging is
used. The second gradient estimator showed a very stable behaviour even though
it is a stochastic expression. This is why it was tested with only one trajectory
sampling. The example showed that even in this case the gradient descent was
working. Comparing this example with the example of the estimator using averaging
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the behaviour was not very stable but still it performed quite well. The advantage of
this stable estimator is that the computational cost of the evaluation can be reduced
drastically if the amount of sampling is reduced. If this behaviour of the gradient
estimator generalizes to other applications and in which way it is affected by the
step size has to be dealt with in future research.

The numerical examples show that the convergence of the gradient descent method
is very sensitive to the starting point and the chosen step size. The starting point also
influences how strong the metastability is influenced and how much the sampling
effort can be reduced. So in order to have a fast converging gradient descent it is
necessary to have a good starting point. For this the optimization method and the
adaptive importance sampling method presented in Chapter 4 could be combined in
future work. The adaptive importance sampling method could be used to build a
suboptimal bias which is then, in a second step optimized, by the gradient descent
method.

To determine a good step size is an even harder problem. If the step size is too small,
the convergence of the gradient descent method is very slow. If the step size is too
big, the algorithm will need a very long time to find the optimum. Moreover, this
can lead to biases which hinder the trajectory from reaching the sampling goal. This
can then also lead to a zigzagging behaviour of the gradient descent.

So finding the optimal bias with the gradient descent method is a difficult task.
There are many parameters to be tuned and there is also a discretization error from
the projection of the control and also from the Euler-Maruyama discretization of the
SDE. This is why a zero variance estimator might be impossible to be found. But as
we have seen in the numerical experiments a significant variance reduction can be
achieved by performing only a few optimization steps and using the resulting bias as
a suboptimal bias in combination with a reweighting scheme.

In the second part of the chapter we have derived a non-parametric representation
of the optimal bias. For this we used the Cross-Entropy method and developed a
regularized estimator. The non-parametric estimator is derived by expressing the
derivative of the ansatz function as a kernel function based on Mercer’s theorem.
The kernel is evaluated on the sampled trajectories and encodes the similarity
information. The estimator can be assimilated such that a already perturbed process
can be used to calculate the optimal bias. For this only the path functional has to be
adapted by Girsanov’s theorem. In this way the approach can be used to optimize
the already used. We also showed how the kernelized Cross-Entropy method can
be viewed as a Gaussian process model. At the end of the section the approach was
tested in a numerical example. In this example a variance reduction was achieved
and also a good approximation of the HJB equation was found.
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The here presented approach can be easily extended to high-dimensional problems.
In order to do this one has to express the biasing potential as a kernel function. The
optimal bias is then expressed as the derivative of the kernel. So in order to calculate
the optimal bias a linear system for the derivative can be derived and with this the
optimal bias can be calculated.
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6Summary and Outlook

In this thesis methods have been developed how the sampling of different quantities
of metastable dynamical systems can be improved. The main idea of all of these
approaches is to sample the quantity of interest in a biased potential. The bias
reduces the metastability and thus the sampling can be speeded up. Furthermore, if
the bias is designed in a good way the variance of the sampling can be reduced.

In Chapter 3 a global perturbation was used to bias the metastable system. The
method can be used to decrease a metastability in a structural way without a priori
knowledge where the metastability is located. The approach is based on a convolu-
tion approach with was first used by Scheraga for global optimization of molecular
systems. In preliminary numerical tests we could show that the convolution ap-
proach has a decreasing impact on the metastability for low- and high-dimensional
examples. Furthermore, different schemes for the approximation of the convolution
were summarized. We showed how the convolution approach can be integrated
into different well-known MD algorithms like replica exchange and developed a
reweighting technique for thermodynamic quantities. We could also show that the
convolution approach can be interpreted as a small external force acting on the
dynamical system. In this way it was possible to use Linear Response theory to
understand the behaviour of the dynamical system on the convolution. Furthermore,
we showed how the convolution approach can also be used for the sampling of
dynamic quantities. For this we first combined the convolution approach with the
Eyring-Kramers’ formula to develop an extrapolation scheme for mean first exit times
and exit rates. In a second approach we combined the convolution approach with
Girsanov’s theorem to develop an importance sampling scheme for general dynamic
quantities.
In future research the convolution approach could be used to build a multilevel
Monte Carlo estimator. Different potentials can be generated with different smooth-
ing parameters and the quantity of interest is then sampled in each individual
potential. These samples have to be combined then in order to find the real estima-
tor. In Multilevel Monte Carlo this is done by combining the sampled estimators from
different levels in a telescope sum. If this can also work for convolution approaches,
has not been tested or proved yet. As we have seen the convolution approach
reduces the metastability which also reduces the sampling time dramatically. If the
convolution approach can be integrated into the Multilevel Monte Carlo framework,
this could result in a fast low variance estimator for metastable systems.
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In order to analyse the convolution approach analytically Kato theory could be
used. Kato theory was invented to investigate the behaviour of linear operators
under perturbation. The convolution can be seen as a perturbation of the original
dynamical system especially in the polynomial case. It would be of great value to
investigate the behaviour of the eigenvalues under the convolution in order to get a
better understanding how the spectral gap and thus the metastability of the system
is changed.
Another interesting question is if and how ergodicity is influenced under convolution.
We have seen in the numerical tests that the position of the metastable states is
also changed by the convolution. For small smoothing parameters this might be
negligible. But since the convolution is a global transformation, the behaviour of
the potential at infinity will also change. How this influences the ergodicity is still
unclear and should be dealt with in future work.
All in all it was possible to show that the convolution approach can be used to
decrease the metastability without exact knowledge of the location. The approach
offers many interesting possibilities to be integrated in well-known frameworks. Also
analytical investigation seems to be possible for special situations. All this makes the
convolution approach an interesting method to be investigated further.

In Chapter 4 we extended well-known algorithms from MD, namely Metadynam-
ics which have been designed for the sampling of stationary distributions, to the
sampling of dynamic quantities. In order to achieve this we adapted the existing al-
gorithm in a way that it only constructs a bias which reduces the metastability locally
leaving the rest of the dynamical system unchanged. The quantity of interest is then
sampled in the bias potential and the expectation is reweighted. The weights are
calculated according to Girsanov’s theorem. The resulting estimator is an unbiased
estimator. It was also possible to derive a second unbiased estimator if the bias has a
gradient structure. Under relatively mild assumptions we could show that Novikov’s
condition holds and thus Girsanov’s theorem can be applied. A further analysis
showed that the bias which is constructed by our algorithm preserves ergodicity of
the dynamical system. Different low-dimensional examples show that a suboptimal
control can achieve a variance reduction and a reasonable reduction of the sampling
effort. In general, the method is not restricted to the usage of Metadynamics and
other methods can be used to construct the bias. This was indicated by applying a
Metadynamics-like algorithm to construct a bias directly on the force.
For future research different strategies could be tested. There is a third way how
the Girsanov’s weights can be expressed. Based on the Martingale Representation
theorem the Girsanov weight can be expressed as a SDE c.f. [67]. Since the resulting
SDE is of very simple form and the diffusion term is not space-dependent a more
sophisticated discretization scheme can be used [77]. This could lead to a reduced
variance of the Girsanov weight in high-dimensional problems. If this has an impact
on the variance of the Girsanov weight and the resulting estimator has to be evalu-
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ated in future research.
The Adaptive Importance Sampling algorithm can also be combined with the opti-
mization procedure presented in Chapter 5. The bias constructed by the assimilated
Metadynamics algorithm can be used as a starting point for the optimization. The
combination of these two methods would improve the optimization procedure be-
cause it is often very hard to find a good starting point. Especially in the case of a
metastable dynamical system it is very important to have a good bias which improves
the evaluation of the expectation and thus reduces the sampling effort. If the bias is
chosen in a bad way, the evaluation of the expectation can be very slow.

In Chapter 5 we dealt with the optimization formulation of finding the optimal
bias. In the first part new gradient estimators for the gradient descent algorithm
proposed in [38] were developed. At first we derived a gradient estimator for non-
continuous objective functions based on an idea presented by [27]. The estimator
was developed in a low-dimensional framework. If this estimator can be extended
to high-dimensional problems has to be verified in the future. If this is possible it
would be interesting to compare this gradient estimator with the others developed in
this thesis to see which performs better for the given problem. In a second approach
we used an idea from financial mathematics and adapted it to the control problem at
hand. Based on a different representation of the likelihood ratio another derivative
estimator was derived. The different estimators were tested numerically showing
quite good results. But the numerical test also showed that the convergence of the
approach heavily depends on the starting point and the chosen step size. For future
research other gradient estimators could be tested. There were many interesting
ideas presented in the literature, e.g. [36] or [2]. Especially the ideas presented
in [36] have also been tested for high-dimensional problems such that it could
be very interesting to see if they can be applied to the optimal control problem.
The authors interpret the expectation as a solution of a PDE and differentiate the
PDE to calculate the derivative of the expectation. In a second step the solution of
the differentiated PDE is reformulated as an expectation. The gradient estimators
presented in this work are also applied in high-dimensional problems and show a
very stable behaviour. So since the expression for the gradient is not unique, many
other formulas can be used.
In the second part of the chapter non-parametric estimators for the optimal bias
were developed. The key idea was a reformulation of the Cross Entropy approach
proposed by [93]. For the derivation a regularization was introduced and so the
ansatz functions can be rewritten in terms of kernel functions. The resulting formula
includes all the sampled points and this changes the point of view on the optimization
problem. The optimization problem turned into a data-driven problem taking much
more dynamical information into account. The shown interpretation in term of
Gaussian processes also strengthens this point of view. The first low-dimensional
examples show good first results in terms of variance reduction and approximation
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of the optimal bias.
A future research direction for the non-parametric representation formula could
focus on the connection of the Cross-Entropy method and Gaussian processes. As we
have seen the regularized Cross-Entropy functional can be interpreted as a likelihood
times a prior which leads to the Gaussian process interpretation. The main advantage
of this interpretation is that many algorithmic achievements from Gaussian processes
could also be used for the optimization problem, for example, the sparsity approach.
The sparsity approach offers the application of the method for high-dimensional
problems with many observations. Another interesting question is to understand how
different kernel functions influence the variance reduction and the approximation
error.

A high-dimensional application of this methodology is very challenging. Many of the
enhanced sampling algorithms which could be used for constructing a bias only work
in low- dimensional reaction coordinates. Many of the here developed methods can
be applied at least in theory for high-dimensional problems. But if we do not use the
projection into reaction coordinates, we need to find what causes the metastability
in the dynamical system. Since metastability is a phenomenon which involves many
particles, it is not quite clear how these particles can be detected. If the relevant
particles causing the metastability are detected, the interaction potentials could be
changed in order to influence it. If this leads to an optimal bias or a suboptimal bias,
is unclear. In principle, this could also lead to a complete different behaviour of the
dynamical system which would be undesirable. Furthermore, it is also well-known
that the Radon-Nikodym derivative is affected by the dimension. So in order to
prevent this dimension effect the variance has to decrease sharply as the dimension
increases [68]. This can only be achieved if information about the system is available.
From this point of view we think the best option to achieve a significant variance
reduction for dynamic systems is to combine the importance sampling approach
with a dimension reduction method.

All in all, the variance of the estimator is reduced if the metastability is decreased.
For the low-dimensional examples the metastable set is easy to find. In this case the
dynamical system is described only in some relevant coordinates and the related HJB
equation must only be solved in a low-dimensional space. For very low-dimensional
problems the HJB equation can then be solved numerically which will lead to a very
good variance reduction and a massive speed-up in sampling.

6.1 Future work

In this section we are going to summarize different directions which could be
explored in future research.
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Machine learning

We have seen in this thesis that there are many connections of the problem and
subjects close to machine learning like stochastic optimization or Gaussian processes.
Another different connection of optimal control and machine learning can be found
in [43]. In this paper H. Kappen suggests to use a machine learning approach to
solve the optimal control problem called reinforcement learning. The main idea
of this approach is that the a control is learned by an algorithm based on the state
space exploration. Since in molecular dynamics the equations of motion are given,
reinforcement learning (RL) could be used to find the optimal control. In RL a
system or agent can try an action to reach a certain goal. After some time the action
is evaluated. If the action helps achieving the goal, a reward is given. The goal is to
maximize the reward. One example of RL is Q-learning. Here the system can choose
the action freely at the beginning of the learning process. Due to the performance
of the different actions they are rewarded differently. A so-called learning rate
determines how the new information gained by the exploration overrides the old
information. A decreasing learning rate ensures that the best action of the past is
chosen more often in the future. In this way the optimal action can be learned by
exploring the system. In order to apply RL in MD possible actions have to be found.
The actions can be explored automatically by different simulations. To determine a
good set of actions a priori knowledge about the system must be available.

Analytical expression of the variance decay

In order to build a sufficient importance sampling scheme it would be very interesting
to get a better understanding how the bias or a suboptimal control influences the
variance. In the literature it was proved that for finite time problems the second
moment of the estimator can be characterized as a solution to a PDE, cf. [82].
The theorem uses an equivalent representation of the second moment. For this
representation the PDE can be derived by using Itô formula and Feynman-Kac
formula. To study the variance decay a perturbation approach is used. This approach
might be used to investigate much smaller problems in which the PDE can be solved
analytically or at least numerically. This would give the possibility to understand the
decay of the variance under a suboptimal control much better and how an effective
bias has to be designed to achieve a significant variance reduction.
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7Appendix

Example: Girsanov discrete version

In this section we are going to consider a derivation of Girsanov’s theorem. The
example is taken from [56].

Let us consider a stochastic process xt. We are going to shift the mean of the
stochastic process. The process satisfies

dxt = −h(t) + dBt (7.1)

where h ∈ C2 : R+ → R is a deterministic function with h(0) = 0 and dBt is
a standard Brownian motion. Furthermore, let t > 0, n ∈ N is a constant and
0 = t0 < t1 < t2 . . . < tn = t is a partition of the interval [0, t]. We have to show that
the density of the process (7.1) is given by

n−1∏
i=0

1√
2π(ti+1 − ti)

exp
(
−
n−1∑
i=0

(xi+1 − xi + h(ti+1)− h(ti))2

2(ti+1 − ti)

)
. (7.2)

We note that the discrete process satisfies xt1 = −h(t1) +Wt1 ,xt2 = −h(t2) +
h(t1) +Wt2 −Wt1 , . . . ,xtn = −h(tn) + h(tn−1) +Wtn −Wtn−1. Since the increment
of the Brownian motion is an independent Gaussian random variable with variance
t1, t2 − t1, . . . , tn − tn−1, it follows that xt1 ,xt2 − xt1 , . . . xtn − xtn−1 are again inde-
pendent Gaussian random variables with mean −h(t1),−h(t2) +h(t1), . . . ,−h(tn) +
h(tn−1) and variance t1, t2− t1, . . . , tn− tn−1. So we can calculate for a test function
ϕ : Rn → R

E[ϕ(xt1 ,xt2 − xt1 , . . . ,xtn − xtn−1)] =
∫
ϕ(y1, . . . , yn)q(y1, . . . , yn)dy1 . . . dyn

(7.3)
with density

q(y1, . . . , yn) =
n−1∏
i=0

1√
2π(ti+1 − ti)

exp
(
−
n−1∑
i=0

(yi + h(ti+1)− h(ti))2

2(ti+1 − ti)

)
. (7.4)

Using a transformation of variables ψ : Rn → Rn

ψ = (y1, y2, . . . , yn)→ (y1, y1 + y2, . . . , y1 + y2 + . . . yn). (7.5)
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This is a C1 diffeomorphism with det (Jacobi) = 1. One sees that ψ(x1,x2 −
x1, . . . ,xn−xn−1) = (x1, . . . ,xn) has the inverse ψ−1(x1,x2, . . . ,xn) = (x1,x2, . . . ,xn) =
(x1,x2 − x1, . . . ,xn − xn−1). So we can apply the transformation of variables on a
test function ϕ̄ : Rn → R

E[ϕ̄(xt1 ,xt2 , . . . ,xtn)] = E[ϕ̄ ◦ψ(xt1 ,xt2 − xt1 , . . . ,xtn − xtn−1)]

=
∫
ϕ̄(y1, . . . , yn) ◦ψ(y1, . . . , yn)q(y1, . . . , yn)dy1 . . . dyn

=
∫
ϕ̄(x1, . . . ,xn)q ◦ψ−1(x1, . . . ,xn)Jac(ψ−1)(x1, . . . ,xn)dx1 . . . dxn

=
∫
ϕ̄(x1, . . . ,xn)q(x1,x2 − x1 . . . ,xn − xn−1)dx1 . . . dxn

which gives the desired result.
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Zusammenfassung

Das Verhalten von Molekülen wird bestimmt von seltenen Ereignissen. So kann
zum Beispiel eine Konformationsänderung dazu führen, dass sich die Funktionalität
eines Moleküls komplett ändert. Darüberhinaus haben diese seltenen Ereignisse
auch einen großen Einfluss auf numerische Simulationen von Molekülen. Darum
ist es wichtig effektive und zuverlässige numerische Methoden zu haben, um diese
seltenen Ereignisse vorherzusagen.
Die Probleme, die durch seltene Ereignisse hervorgerufen werden, werden haupt-
sächlich durch das stochastische Verhalten des dynamischen Systems und einem
daraus resultierenden Phänomen, welches Metastabilität genannt wird, verursacht.
Metastabilität heißt, dass das dynamische System für lange Zeit in einem bestimmten
metastabilen Zustand verweilt, bevor es sehr schnell in einen anderen metastabilen
Zustand übergeht. Deshalb ist Metastabilität eines der größten Probleme für die
effektive Schätzung der unterschiedlichen Größen. In der Molekulardynamik gibt
es zwei unterschiedliche Größen und die Schätzung von beiden wird durch seltene
Ereignisse beeinflusst. Für thermodynamsche Größen sind viele unterschiedliche
Methoden entwickelt worden, die sich nicht ohne Weiteres auf die Schätzung von
dynamischen Größen übertragen lassen.
Diese Arbeit beschäftigt sich mit der Verbesserung von Schätzmethoden dieser
Größen. Die zugrundeliegende Idee ist, die Metastabilität des Systems zu beein-
flussen, um den Simulationsaufwand zu verringern und eine Varianzreduktion des
Schätzers zu bekommen. Nach einer Einführung und einer Zusammenfassung der
relevanten Theorie beschäftigt sich das 3. Kapitel mit einer Idee aus der globalen
Optimierung, um die Metastabilität zu reduzieren. Wir zeigen, dass der Ansatz
sowohl für thermodynamische Größen als auch für dynamische Größen genutzt
werden kann.
Im 4. Kapitel werden lokale Ansätze genutzt, um ein Importance-Sampling-Schema
für dynamische Größen zu entwickeln. Wir nutzen die Expertise gut etablierter
MD-Methoden, um eine gute lokale Perturbation zu erstellen. Für das Importance-
Sampling-Schema müssen diese Algorithmen angepasst und mit Ergebnissen aus der
stochastischen Analysis verbunden werden. Die Methode wird an unterschiedlichen
Beispielen getestet.
Das letzte Kapitel beschäftigt sich mit zwei Methoden, die eine optimale Perturba-
tion im Sinne der Varianz finden können (Gradientenabstieg und Cross-Entropy-
Methode). Für den Gradientenabstieg werden unterschiedliche Schätzer des Gradien-
ten entwickelt und mithilfe der Cross-Entropy-Methode wird eine nicht parametrische
Approximation der optimalen Pertubration hergeleitet. Am Ende der Arbeit werden
die Ergebnisse zusammengefasst, diskutiert und weiterführende Ideen präsentiert.
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