Learning the
Non-Coding Genome

Dissertation

zur Erlangung des Grades eines Doktors
der Naturwissenschaften (Dr. rer. nat.)
am Fachbereich fur Mathematik und Informatik

der Freien Universitat Berlin.

Vorgelegt von Max Schubach
Berlin, 2017

Betreuer & Erstgutachter: Prof. Dr. Peter N. Robinson
Zweitgutachter: Prof. Dr. Rosario M. Piro

Drittgutachter: Prof. Dr. Giorgio Valentini

Tag der Disputation: Donnerstag, 20. September, 2018

Datum der Verdffentlichung: Dienstag, 13. November, 2018

ii

Abstract

The interpretation of the non-coding genome still constitutes a major challenge in the application
of whole-genome sequencing. For example, disease and trait-associated variants represent a
tiny minority of all known genetic variations, but millions of putatively neutral sites can be
identified. In this context, machine learning (ML) methods for predicting disease-associated non-
coding variants are faced with a chicken-and-egg problem - such variants cannot be easily found
without ML, but ML cannot be applied efficiently until a sufficient number of instances have been
found. Recent ML-based methods for variant prediction do not adopt specific imbalance-aware
learning techniques to deal with imbalanced data that naturally arise in several genome-wide
variant scoring problems, resulting in relatively poor performance with reduced sensitivity and
precision.

In this work, I present a ML algorithm, called hyperSMUREF, that adopts imbalance-aware learn-
ing strategies based on resampling techniques and a hyper-ensemble approach which is able to
handle extremely imbalanced datasets. It outperforms previous methods in the context of non-
coding variants associated with Mendelian diseases or complex diseases. I show that imbalance-
aware ML is a key issue for the design of robust and accurate prediction algorithms. Open-source
implementations of hyperSMURF are available in R and Java, such that it can be applied effec-
tively in other scientific projects to discover disease-associated variants out of millions of neutral
sites from whole-genome sequencing.

In addition the algorithm was used to create a new pathogenicity score for regulatory Mendelian
mutations (ReMM score), which is significantly better than other commonly used scores to rank
regulatory variants from rare genetic disorders. The score is integrated in Genomiser, an analy-
sis framework that goes beyond scoring the relevance of variation in the non-coding genome.
The tool is able to associate regulatory variants to specific Mendelian diseases. Genomiser scores
variants through pathogenicity scores, like ReMM score for non-coding, and combines them with
allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic rele-
vance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able
to identify causal regulatory variants, allowing effective detection and discovery of regulatory
variants in Mendelian disease.

ii

Acknowledgements

At this point I would like to thank everybody who supported me during my doctoral candidate
time. First of all I have to express my gratitude to my supervisor Prof. Dr. Peter N. Robinson.
My research and work would not be possible without his thoughts, ideas, patient and helpful
discussions. Thank you for your great support during this time.

My special thanks goes to my collaborates at the Dipartimento di Informatica at the University of
Milano. Especially Prof. Dr. Giorgio Valentini for the constructive discussion and the productive
and pleasant time together in Berlin. But also many thanks to Dr. Matteo Re and Marco Notaro
from Giorgio’s group.

Many thanks to all that helped in the development of Exomiser and Genomiser, in particular
Prof. Dr. Damian Smedley and Dr. Jules OB. Jacobsen. Thanks to the core Jannovar crew Marten
Jager and Dr. Manuel Holtgrewe for developing Jannovar further to a well implemented and well
documented software, which is often not the case when it comes to scientific software.

I also would like to thank Prof. Dr. Peter Krawitz, Prof. Dr. Uwe Kornak, Prof. Dr. Stefan Mundlos
and all others from the Medical Genetics and Human Genetics department for the pleasant time
at the Charité.

Finally, I would like to thank Linde B6hm and Dr. Manuel Holtgrewe for the helpful feedback on
the writing part.

This work is dedicated to Dr. Hans Reinhard Schubach.
% 17.03.1950; 1 08.10.2016

vii

Contents

1 Introduction
1.1 Biological Background L Lo
1.2 Sequencing and Sequence Analysis L L.
1.3 Data Mining and Machine Learning
1.4 ThesisOutline

2 Preliminaries

2.1 Mathematical Preliminaries
2.1.1 Setsand Matrices
2.1.2 Graphs

2.2 Machine Learning Preliminaries
2.2.1 Instances and Attributes L
2.2.2 Ensemble Learning L L L L Lo
223 Classifiers e
2.2.4 Classification on Imbalanced Datasets
2.2.5 Performance Measurement

23 Ontologies L
2.3.1 Semantic Similarity Lo

2.4 Genome-wide Pathogenicity Scores
241 CADD
242 GWAVA . . .
243 DeepSEA
244 Figen
245 FATHMM-MKL
246 LINSIGHT e

2.5 Chapter Conclusion

A W =

Contents

3 Imbalanced Training Sets 33
3.1 HyperSMURF o oo 35
3.1.1 Algorithm 36

3.1.2 Implementation 39

32 GenomicData L 39
3.21 MendelianData L 39

322 GWASData 42

323 eQTL Data 43

3.3 HyperSMURF Performance Measurement 43
3.3.1 Performance Evaluation Strategies 44

3.3.2 Comparison with state-of-the-art Methods 45

3.4 Informative Features 46

3.5 HyperSMURF Performance Results 49
3.5.1 Optimal Parameters 49

3.5.2 Performance on genomically close Variations 53

3.5.3 State-of-the-art Methods Performance 55

3.5.4 eQTL Performance 58

3.6 Discussion and Chapter Conclusion 60

4 Regulatory Variants 63
4.7 EXOMISEr o o e e e e e 64
4.1.1 Jannovar e e e e e e e e e e e e e 66

4.1.2 The Human Phenotype Ontology 69

4.2 GenOmMISer o v vt e e e e 69
4.3 Regulatory Mendelian Mutation Score L L. 71
4.3.1 Comparison to genome-wide Pathogenicity Scores 75

4.4 Genomiser Performance L 78

4.5 Discussion and Chapter Conclusion 82

5 Discussion and Conclusion 85
References 93
A Regulatory Mendelian Mutations 103
B HyperSMURF Performance 115
C ReMM Score Performance 133

Contents

D Genomiser Performance 141
E HyperSMURF Tutorial 145
E.1 Requirements 145
E.2 Simple usage Examples with SyntheticData 147
E.3 Usage Examples with GeneticData 150
Abbreviations 157
Glossary 159
Zusammenfassung 167

Curriculum Vitae 169

xi

List of Figures

1.1
1.2
1.3

2.1
2.2

3.1
3.2
33
34
3.5
3.6
3.7

3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7

B.1
B.2
B3

The structure of the DNA
Schematic structure of an eukaryotic protein-coding gene

Topological confirmation of the genome

Feature space of DeepSEA 25
The LINSIGHT model 29
Schematic overview of hyperSMURF 36
Feature correlation of Mendelian, GWAS and eQTL data 48
HyperSMUREF parameter tuning 50
RF and SMOTE k-nearest neighbors parameter tuning 51
ROC and PR curves of the standard, optimal and only parts of hyperSMURF . . 53
Comparison of the PR curves across methods 55
Comparison of the sensitivity across methods with respect to the quantiles of top

ranked variants L L 56
Performance measurements of the eQTL data using splits 59
Performance measurement of the eQTL data using 10-fold CV 59
Phenotype prioritization algorithms of Exomiser 67
Schematic overview of variant processing in Genomiser 71
Genomic attributes of regulatory Mendelian mutations 73
Precision, recall, Fiscore, and Foscore of the ReMM score 75
Performance of non-coding variant scores on Mendeliandata 76
Ranking results of non-coding scores in simulated genomes 77
Performance of Genomiser and Phen-Gen with simulated 1KG genomes 79
HyperSMURF parameter tuning with fixed undersampling factor 119
HyperSMUREF parameter tuning with fixed oversampling factor 121

Precision, recall and F-score comparison of hyperSMUREF, an optimized hyper-
SMURF and only subparts of hyperSMURF 122

xiii

List of Figures

Xiv

B.4

B.5

B.6

B.7

B.8

B.9

B.10

B.11

C1

C2

C3

D.1

Comparison across retrained learners from different non-coding scoring methods
by ROC curves 123
Precision, recall, and F-score comparison across retrained learners from different
non-coding scoring with Mendeliandata 125
Precision, recall and F-score values of the normalized scores from retrained non-
coding score learners on the Mendeliandata 126
Details of precision, recall and F-score within the interval [0.75, 1] of the normal-
ized scores from retrained non-coding score learners on the Mendelian data . . 127
Precision, recall, and F-score comparison across retrained learners from different
non-coding scoring with GWASdata 129
Precision, recall and F-score values of the normalized scores from retrained non-
coding score learners on the GWASdata 130
Details of precision, recall and F-score within the interval [0.75, 1] of the normal-
ized scores from retrained non-coding score learners on the GWAS data 131
Performance measurements of the eQTL data using splits 132

Precision, recall, and F-score comparison across different genome-wide pathogenic-

ity scores using the Mendeliandata 135
Precision, recall and F-score results of the normalized genome-wide pathogenic-

ity scores with the Mendeliandata 137
Detailed precision, recall and F-score results of the normalized genome-wide
pathogenicity scores in the interval [0.75, 1] of the Mendelian data 139

Performance curves of Genomiser with standard settings and without limiting to
only regulatory regions in TADs, 143

List

of Tables

2.1

3.1
3.2
33
34
3.6

4.1
4.2

Al
A2
A3
A4
A5
A6
A7
A8
A9

B.1
B.2
B.3
B.4

Cl1

D.1

Summary of genome-wide pathogenicity scores

Overview of non-coding regulatory Mendelian mutations
HyperSMURF default parameters
Impact of hyperSMURF components on its overall performance
Performance of hyperSMURF with different negative selection strategies
Comparison of imbalance-unaware and imbalance-aware methods with progres-
sively imbalanced data

ReMM score performance with respect to specific functional elements
Genomiser performance comparison between standard settings and without lim-
iting to only regulatory regionsin TADs

Enhancer mutations L
Promoter mutations o
S5UTRmutationso
FUTR mutationsot
RNA gene mutations
Imprinting control region mutations
MiRNA gene mutations L o oL
Detailed information of the negative Mendeliandata
Genomic attributes used for the Mendeliandata

Informative Mendelian features according to univariate logistic regression
Informative GWAS features according to univariate logistic regression
Optimal hyperSMURF parameters on the Mendeliandata.
Statistical comparison of ROC curves

Statistical comparison of ROC curves between ReMM and other NCV scores . . .

32

41
50
52
54

57

74

81

104
104
107
110
111
112
112
113
114

116
117
121
124

134

Compound heterozygous mutations used for Genomiser performance measurement 142

XV

Chapter 1

Introduction

Two buzzwords were omnipresent in the press over the last years: big data and artificial intel-
ligence (AI). All kinds of fields generate big data, for example medicine, social media, environ-
mental and ecological research, process optimization, and lots of other areas. These data harbor
important information for decision support in medicine, optimization of processes, for example
in terms of power-saving, or an optimal embedding of the environment to preserve and use it
for living, mobility and agriculture.

Challenges that come along with big data are its storage, effective accessibility of the data and
its interpretation. All three sections are highly dependent of each other, but at the end the inter-
pretation becomes a crucial part. The hypothesis is that the answer raised by questions of a big
dataset is hidden within it and that by using the right assumptions solutions can be extracted.
Therefore sophisticated algorithms for analysis are necessary to achieve the promise of big data.

One of the tools to extract knowledge out of big data might be AL In Al a computer program is
able to find logical connections within a big dataset and uses them to make assumptions out of
millions of data points. Nowadays, the most popular Al idea is deep learning. Deep learning is a
class of artificial neural networks (ANNs) whose design was inspired by a network of neurons in
the brain. Raw information is processed through the different neurons of the network. Thereby
different artificial neurons (edges) get activated or deactivated and information is combined to-
gether at synapses (vertices) until a final interpretable output is generated. Learning with ANNs
is referred as ‘deep’ if the ANN design contains at least three layers of vertices between the input
and the output layer, so called hidden layers. Thus, a deep ANN receives at its input interface
lots of data that will be processed trough a network with different types of layers, and at the end
the important information is extracted and assumptions are made.

One famous example of deep learning algorithm is the AlphaGo machine from Google [1]. Al-
phaGo is able to play the board game Go which is supposed to be extremely complex for a com-
puter and so far professional Go players were unbeatable by a computer. But recently AlphaGo

Chapter 1 Introduction

was able to beat the best Go players in the world. It is interesting to consider how AlphaGo
achieved this. At the cutting edge there was an enormous amount of data the deep learning al-
gorithm of AlphaGo was trained on. After Silver et al. [1] had a reasonable well running machine
they let the software play random games against itself more than thousands of times to raise its
power.

Generating data from self-play is an ideal environment for a software or algorithm to learn a
specific task. Therefore self-play is a common approach for reinforcement learning in game Al [2].
In reinforcement learning the software tries to find a strategy by itself to maximize a cumulative
reward. In game Al this will be the winning or losing of a game but the algorithm has to decide
on its own which move will be the best. Thus, through self-play the algorithm will see millions
of possible moves and so learns to relate which move is in which situation more likely to win or
loose a game.

In other research fields the generation of data can be limited. If we apply the idea to medicine
we easily can find data where it is not possible to create or to find new examples because of cost,
ethical, technical, feasible or time reasons. For example if we want to predict the cause of a rare
genetic disease we will be limited to the incidence of that disease. A genetic disease is defined
as rare if the prevalence is lower than 1 in 2000. If we consider a population of over 2 million
in Europe there will be an upper limitation of 350,000 on a rare disease. Some extremely rare
diseases might affect less than 1000 people in Europe or even in the world. In this example we
are faced with several problems. Data generation, for example using whole-genome sequencing
(WGS) (see Section 1.2), will be time consuming and cost expensive. It will also not be possible
to include everyone from our cohort because of logistic issues or if the disease cannot be reliably
diagnosed in a sufficient number of patients. Consequently on the one hand we have small,
maybe imperfect, examples for the rare genetic disease, and on the other hand a large cohort of
healthy examples leading to natural imbalances within the collected data.

In the initial example AlphaGo has none of these problems because it is possible to generate
an extremely large dataset using self-play. The outcome, win or loose, is easily measurable,
always balanced, one player wins and the other one loses, and false positives (cheating) are
unlikely. When it comes to genetic diseases, another problem is that the mechanism causing the
disease might be extremely complex and different over the genome. In a board game the rules
are relatively small. They can, like in Go, lead to complex patterns but the biology will always
be more diverse than any present or future board game.

Structure of this Chapter This chapter gives short background information on the main im-
portant topics in this work. First, Section 1.1 wraps up the biological background with a focus
on genetic processes. Second, Section 1.2 shows how genetic code can be determined and how
genetic differences between individuals can be interpreted. Third, Section 1.3 introduces machine
learning (ML), a field in Al Finally, this chapter concludes in Section 1.4 with an outline of this
thesis.

1.1 Biological Background

1.1 Biological Background

The letters of life are the four nucleotides adenine (A), cytosine (C), thymine (T), and guanine (G).
The deoxyribonucleic acid (DNA) is a polymeric macromolecule made from these four nucleotide
monomers also known as bases. A and T can pair together using two hydrogen bonds and C
pairs together with G using three hydrogen bonds. This makes the DNA double-stranded with
complementary bases at each site (see Figure 1.1).

Adenin [N BN Thymine
Cytosine I Guanine

I Phosphate backbone

Figure 1.1: The structure of the DNA. The DNA is a double-stranded helix. Each strand has a phosphate
backbone to which the nucleotides are connected. The two strands are paired through the complementary
bases A with T and C with G.

The human genome is composed of two copies of the 22 autosomes, the two allosomes (two
X-chromosomes for female and one X and one Y chromosome for male), and several copies of
circular mitochondrial DNA. The DNA decodes proteins in their sequence information. Proteins
perform a vast array of functions within organisms like catalyzing metabolic reactions. They are
the engine of the cell. Proteins consist of one or more chains of amino acid (AA) residues. In
eukaryotes there are 21 proteinogenic AAs. Each of the AA is encoded by at least one specific
triplet (codon) of nucleotides.

The triplets decoding for a protein are structured in genes at the DNA level. The initial step of
decoding the DNA into protein is to translate the sequence of codons from a gene into messenger
ribonucleic acids (mRNAs), starting at a specific start-codon and ending at a stop-codon. The
ribonucleic acid (RNA) is single stranded and has an uracil (U) instead of an A. The process of
translation into mRNA is called transcription (see Figure 1.2).

Genes consist of coding or non-coding information. The coding information is used to gener-
ate the protein, and the non-coding parts have regulatory responsibilities for synthesizing the
protein or they will be removed during the generation of the mRNA. Blocks of non-coding in-
formation, called introns, are removed from a pre-mRNA and the coding blocks, called exons, are
spliced together (see Figure 1.2). This process is called splicing and results in a mature-mRNA
that is used for the next step, the translation. Within the translation the codons are read by the
ribosome complex and the corresponding AAs are concatenated. Then the chain is folded and
sometimes multiple chains are grouped together resulting in the functional protein.

Chapter 1 Introduction

Regulatory Code Only around 3 % of the human DNA is coding sequence. The remaining
non-coding part, previously referred to as “dark matter”, has a regulatory purpose and positively
or negatively regulates the transcriptional activity of genes. There are several known categories
of functional elements in the non-coding genome.

Genes are flanked by untranslated regions (UTRs), the 5’UTR before the start-codon and the
3’UTR after the stop-codon, visualized in Figure 1.2. Both UTRs will be present in the mature-
mRNA. To be precise a proportion of the 5’UTR in eukaryotes, which contain an upstream open
reading frame (uORF) within the 5’UTR, is sometimes translated into a protein product but in
some mRNAs the UTR has a major regulatory function: it forms complex secondary structures to
regulate the expression of the gene and it is involved in the recruitment of ribosomal complex to
start the translation. The 3°UTR contains regulatory regions that post-transcriptionally influence
the gene expression. For example it contains microRNA (miRNA) binding sites to down-regulate
the gene expression. During transcription proteins polyadenulate the transcript, which means
that a poly-A tail is added at the end of the 3’UTR. This tail is important for the nuclear export,
translation and stability of the mature-mRNA.

DNA elements that directly regulate the transcription are promoters, enhancers and silencers.
promoters are located near the transcription start site upstream of the gene. They are involved in
the binding of proteins which recruit the RNA polymerase (transcription factors) and the binding
of the RNA polymerase itself to start the transcriptional mechanism. The transcription factors
have specific activator or repressor sequences to regulate the gene expression. Enhancers or
silencers can also recruit transcription factors but in contrast to promoters, they can be several
hundred kilo bases (Kb) upstream or downstream of the gene. Therefore the DNA has to be
folded. A schematic overview of the regulatory elements is in Figure 1.2.

Regulatory sequence Open reading frame Regulatory sequence
Enhancer Promoter 5'UTR Start Stop 3'UTR Enhancer
ona — - - N - - .- -
\/

Transcription

——— Exon | Intron |Exon [Intron Exon
Pre-mRNA

Post-transcription

modification) .
————— 5'cap Protein coding region Poly-A tail
Mature-mRNA

v

Translation

v

Protein

Figure 1.2: Schematic structure of an eukaryotic protein-coding gene. Translation as well as transcrip-
tion is controlled by regulatory elements (pink and blue). During the post-transcription step the introns
(light grey) will be spliced out and UTR regions (blue) will be modified with 5’cap and a poly-A tail (dark
grey). At the translation stage the coding sequence (green) will be translated into AAs. Finally the protein
gets folded into its specific 3D-structure (bottom).

1.1 Biological Background

Topological Confirmation Regulatory elements, like enhancers and silencers, have to come
to close proximity to the promoter to get involved into gene regulation. Therefore the linear
genome has to organize itself through folding to a 3D-structure. In the cells the folding is usually
made by a complex of macromolecules called chromatin. For example, if a protein is transcribed,
the chromatin structure at that site will be loose to allow access for transcription factors and
polymerases to the DNA. Therefore the chromatin structure will give a hint if a gene is actively
transcribed or not.

Several methods were developed like Chromatin immunoprecipitation sequencing (ChIP-seq) or
DNase I hypersensitive sites sequencing (DNase-seq) to find out the states of chromatin. Using
methods of chromosome conformation capture techniques [3] reveals that the genome is subdi-
vided into topologically-associated domains (TADs). This subdivision is highly conserved over cell
types or even different species, so we can claim that TADs are involved in long-range regulatory
interactions. Another important observation is that regulatory elements only interact with pro-
moters and their genes within a TAD (intra-TAD) but not on elements outside of it (inter-TAD).
Figure 1.3 shows an overview of TAD and enhancer regulation within it.

Genes
Enhancers

Figure 1.3: Topological confirmation of the genome. Representation of a hypothetical locus. Hi-C inter-
action frequencies are displayed as a two-dimensional heatmap (red), where intra-TAD contacts are more
frequent than inter-TAD contacts. TADs and regulatory domains (RDs) are represented as bars; genes and
enhancers are depicted as arrows and ovals, respectively. From the Hi-C heatmaps, one can envision TAD
as entangled skeins of DNA (bottom).

Chapter 1 Introduction
1.2 Sequencing and Sequence Analysis

The process to obtain the sequence of nucleotides of an organism is called sequencing. The first
method was developed by Sanger et al. [4] and Sanger & Coulson [5] and this method and further
developments are known as classical sequencing or Sanger sequencing. In comparison to the clas-
sical approach the next-generation sequencing (NGS) methods have a much higher throughput
and they enable the possibility to sequence all protein coding regions in the human genome (ex-
ome) or even the whole human genome under reasonable costs. These sequencing technologies
are [llumina, 454/Roche, and IonTorrent, also referred to as second-generation technologies. The
drawback of the second generation is that they can only sequence short fragments of DNA. The
third-generation technologies, like PacBio or MinION, are able to sequence longer fragments but
have a reduced throughput and a higher error rate compared to the second-generation.

The DNA output fragments (reads) of the sequencers have to be puzzled together to receive the
complete nucleotide sequence of the target. The reads can be assembled de-novo into longer
contigs or, if a reference sequence of the organism is available, they can be aligned against it.
Mostly the reference sequence is a consensus sequence, obtained by a collection of sequenced
individuals. The decision of using a reference alignment depends on the sequencing technology
and on the species. If no reference alignment is present the sequence assembly approach has to be
done. Here usually longer reads are factorized because it is easier to retain the global structure
of the genome and repetitive DNA regions can be resolved. Mostly the long reads are combined
with short reads from the second-generation to have a higher resolution. For reference mapping
the second generation is used frequently because the genome structure is given by the reference
and small differences can be detected with high reliability.

In addition to most approaches it is favorable to compare differences in sequences and therefore
a mapping to a reference sequence results in a standardized and comparable output. This enables
databases to be constructed and results to be shared among the community. The drawback with
these technologies is that the resolution on complex structural rearrangement and repetitive
regions is low.

Sequence Variation The diversity of a species is reflected by differences in their genome.
These variations can be detected if the assembled sequences between two individuals are com-
pared or if the genome of an individual is compared to a reference genome. Complete chromoso-
mal aberrations are the largest but also the least frequent class of variations. Insertions, deletions
or translocations, like inversions, are larger structural variations (SVs). The class of small inser-
tion or deletions (InDels) can be detected by a single read from a NGS technology of the second-
generation. Therefore sizes of InDels are often defined as smaller than 25 or 50 base pairs (bp).
The smallest and most frequent variations are single nucleotide variants (SNVs). For example,
compared to the human reference genome there will be over 3,000,000 single nucleotide posi-
tions that differ in a whole-genome sequence of a human individual.

By using a reference genome it is possible to compare variants between individuals in a pop-
ulation. This is enormously helpful to find the causative variant, also called mutation, in an
individual with a rare genetic disease because we are able to separate common from rare vari-

1.3 Data Mining and Machine Learning

ants. Frequent variants in population are called polymorphisms, defined as the allele different to
the reference which occurs more than 1% in a population. Thus a frequent SNV is called single
nucleotide polymorphism (SNP). Variants with a lower allele frequency (AF) than 1 % are rare vari-
ants. In order to find the cause of a rare disease this variant set is usually used to search for the
causative pathogenic mutation.

By using the location of the variants and a database with genes, it is possible to discover the so
called functional class of a variant. The functional class tells us something about the region of the
variant, like if it is between two genes (intergenic), within an intron (intronic), an UTR or in the
coding sequence of a gene. For coding sequences the classification is more detailed. Using the
degenerated code, the functional class will describe if the SNV changes an AA in the resulting
protein (missense) or not (synonymous) in comparison to the reference. Also an introduction of
new stop or start codons, as well as destroying them, can be possible (nonsense). For InDels the
functional class describes if it is in-frame or a frameshift. Nonsense, missense and frameshift
variations are more likely disease causing than other variant classes.

To assess the potential deleteriousness of variants further, it is interesting how well conserved
the site is, meaning if the same DNA or AA sequence is present in other species. If we have
a highly conserved site it is likely that it has an important function and changes might cause
a dysfunctional gene or protein. In terms of a missense variant it is important to know which
new AA is introduced. A similar AA might be unproblematic but if the new AA is different in
size, polarity or hydrophobicity the function of the protein might be influenced. To do this in
an automated way, several conservation or pathogenicity scores were developed [6-13]. They
integrate the presented ideas into one final score, which is much easier to handle instead of
having thousands of variants to evaluate.

The final step of identifying a causal variant is linking the variant to the phenotype of the patient.
Either the affected gene or at least the gene family or genes in the same biological pathway should
be known to cause similar symptoms. Finally the pathomechanism should be proposed.

1.3 Data Mining and Machine Learning

Data is omnipresent in our society and normally we are awash with information. In addition
there is a big growing gap between generating and understanding the data. Data mining is the
process of discovering patterns in large datasets. These data are stored electronically and the
search is done automated or augmented by a computer. Therefore data mining is used to extract
knowledge out of large data.

ML evolved form the study of pattern recognition and computational learning theory in Al In
ML the focus is on the learning process. Learning enriches knowledge and the knowledge can
be used to categorize or classify new observations. This is why ML has its focus on the technical
learning process and the performance of it. A common example will be to observe the present
behavior and compare it with the past behavior. In ML the learning is named as training and the
performance evaluation as the testing step.

Chapter 1 Introduction

There are different styles of learning in data mining applications. Depending on the learning
signal, ML tasks are typically classified into three broad categories. If the training example inputs
and outputs are given we can learn the link between the input to the output. This is done by
supervised learning. If the output is not given and the learning algorithm has to structure the
input by its own we speak of unsupervised learning. In between these two categories there is
semisupervised learning where the training input is incomplete and output classes are missing.

If we describe them on the desired output we can use the following categories. In classification
learning we have a set of classified examples from which we want to learn a way to classify
unseen examples. In association learning every association among the underlying data is sought,
not a single prediction of a class value. There are numeric predictions, where the outcome is a
numeric quantity and not a discrete class. The field of clustering tries to find groups that belong
together.

1.4 Thesis Outline

In this thesis, I give an overview of ML techniques with a special focus on imbalanced data,
explain important variant scores for evaluation of non-coding variations and describe my con-
tribution to this field. The thesis is structured on the one hand in a technical part, containing
the development of a new ML algorithm that can be used on highly imbalanced data. On the
other hand there is an applied part where the invented algorithm is applied on genetic data in
combination with other methods to discover mutations in whole genomes.

In this chapter, I gave an overview to the biological background, sequencing and variant evalua-
tion in a Mendelian context and a short introduction into ML. Chapter 2 defines formal and math-
ematical preliminaries, as well as the main ML concepts, the used ML methods and classifiers,
and ML performance validation strategies. At the end, Chapter 2 contains a detailed description
of available non-coding deleteriousness scores that were used in this work, describing their ML
strategy, their training data and performance.

In Chapter 3 I present hyperSMURF, a ML algorithm that is specifically designed for highly im-
balanced (genetic) data. After that, I describe the experimental evaluation of hyperSMURF and
its results and compare it to retrained learners that were used to generate other non-coding dele-
teriousness scores.

Chapter 4 introduces the software framework Exomiser along with the tool Jannovar. Exomiser
filters and prioritizes variants for novel disease-gene discovery or differential diagnostics of
Mendelian diseases. I explain the modifications on Exomiser that were made to extend the vari-
ant discovery to the non-coding part of the genome, called Genomiser. Alongside I introduce
the pathogenicity score ReMM which was developed to asses non-coding Mendelian variants us-
ing the hyperSMURF approach. ReMM score and Genomiser are experimentally validated and
compared to other scores and software. Finally, in Chapter 51 give a conclusion of this thesis.

Chapter 2

Preliminaries

In this chapter I will define formal and mathematical preliminaries in Section 2.1. Then, in Sec-
tion 2.2, I explain the main concepts of ML, give formal definitions in this field, and describe
the important algorithms that were used in this work. Section 2.3 gives a brief introduction into
ontologies. Finally, Section 2.4 contains a detailed description of available non-coding deleteri-
ousness scores that were used in this work, including their ML strategy, their training data and
performance.

2.1 Mathematical Preliminaries

In this section I describe the main mathematical concepts and notations that I will use later in
this work. The notation and definitions are based on the work of Wolff et al. [14].

2.1.1 Sets and Matrices

Set A set S is a well-defined collection of distinct objects or elements. They are denoted by
curly brackets. For example S = {0, 23,42} has the three elements 0, 23 and 42. Sequences in
sets are denoted by dots, like S = {0, 1,...,42}. I will use the symbol N as the set of all positive,
or natural numbers. N are all non-negative numbers and Z is the set of all integers.

The number of elements or the size of a set S is denoted by |S|. The cartesian product of two
sets S and S5 is denoted as S7 x S5. S1 C Sy denotes that S7 is a subset of Sy and if S7 is a
subset or equal to S it is denoted by S; C S5. The union of two sets S1 and S5 is denoted as
S7 U Sy and the intersection as S1 N .S5.

Chapter 2 Preliminaries

Matrix A matrix M is a rectangular array of elements, mostly numbers. It has m rows and
1 2

0 23 24
denoted by a; ; where max(i) = m and max(j) = n. For example a3 of the previous matrix
M is az 3 = 42. Matrices will be denoted as a bold capital letter. An 1 X n or m X 1 matrix is
called row vector or column vector v and is denoted by a bold lower case letter. A n x n square

n columns. For example the matrix M = [] is a 2 x 3 matrix. A specific element is

matrix M has the same number of rows and columns. I is the identity matrix, a square matrix
where a; ; = 1foralli = jand a; ; = O for all i # j. The inverse matrix of a square matrix
M, denoted by M1, is a matrix M ! such that MM ! = 1. The rank of a matrix M is the
dimension of the vector space spanned by its columns (or rows) and is denoted by rank(M).

A number A and a non-zero vector v satisfying Mv = Av are called an eigenvalue and an
eigenvector of a n x n matrix M, respectively. The number A is an eigenvalue of M if and
only if M — AL, is not invertible. The eigendecomposition is the factorization of a diagonalizable
matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and
eigenvectors Mv = Av. The matrix is diagonalizable if there exists an invertible matrix T such
that T-'MT is a diagonal matrix.

Element a; ; of a covariance matrix Y] represents the covariance between the ith and jth elements
X1

of a random vector X = | : | oflength n (3;; = cov(X;, X;)). A random variable X; can be
Xn

interpreted as all different variables of an attribute within our instance (see Section 2.2).

2.1.2 Graphs

In this thesis only a broad description of a graph is need. So a graph is an ordered pair G = (V, E)
comprising a set of vertices V' together with a set of edges E. An edge z € E is a subset of two
vertices, e.g. z = (x,y),x,y € V, which the edge connects. A graph can be undirected meaning
that the edge z = (z,y) is the same as the edge z = (y, x). If the graph is directed the edges F,
or arrows, are directed meaning that edge z = (x, y) goes from vertice x to vertice y but not the
other way round.

Directed Acyclic Graph A directed acyclic graph (DAG) is a directed graph that has no cycles.
This characteristic results in a topological ordering of a DAG. So a DAG has only sequences of
vertices such that every edge is directed from earlier to later in the sequence.

Tree and Forest A tree is an undirected graph in which any two vertices are connected by
exactly one path. So every acyclic connected graph is a tree. In this work only rooted trees were
used. I will speak of a forest when we have a disjoint union of trees.

Common Ancestor In rooted trees of DAGs it is possible to compute the common ancestors
(CAs) of set of vertices. They can be observed by visiting the path from all vertices back to the

10

2.2 Machine Learning Preliminaries

root in a tree or following the reverse path in a DAG. If a node is visited by all backtraces from
the initial set it will be a CA. Sometimes the lowest common ancestor (LCA) is computed. It is
the shared ancestor that is located farthest from the root.

2.2 Machine Learning Preliminaries

This section wraps up important definitions in ML (Section 2.2.1), a formal description of classi-
fiers used in this work (Section 2.2.3) and strategies for training and testing including different
performance measurements (Section 2.2.5). Because Chapter 3 presents a new ensemble method
on imbalanced datasets, known possible classification strategies on such data are described in
Section 2.2.4. The main concept behind the new method is ensemble ML and Section 2.2.2 de-
scribes this in more detail. The notation and definitions are based on the work of Witten et al.
[15].

2.2.1 Instances and Attributes

The examples or observations of a classification problem are called instances Z. These instances
are used to train and test the classifier (see Section 2.2.5). Each instance is an individual and
independent example of the concept to be learned. A dataset is a matrix in which every row
vector represents an instance, a vector of features © also known as attributes. Each instance
has a fixed and predefined set of attributes. For every instance the value of an attribute is a
measurement of the quantity to which the attribute refers. Different classes can be defined for
attributes. The most common variables are continuous so that the quantity is numeric like real or
integer values (note that integer are not continuous in a mathematical sense). Another important
class are categorical variables where the quantities are nominal. A nominal attribute has one
value out of a predefined finite set of possibilities. But there are other levels of measurement like
ordinal, interval or ratio.

2.2.2 Ensemble Learning

Ensemble methods combine multiple ML algorithms to increase the predictive performance. Dif-
ferent training sets can learn a model by themselves and afterwards the trained models are com-
bined to produce an ensemble of learned models. Often the different trained models have a weak
predictive power but the combination of them can be very powerful. Important models are bag-
ging, boosting, randomization and stacking.

The idea behind the methods is the so called bias-variance decomposition. In terms of classification
the error of an algorithm can be divided in bias and variance. The bias is the error rate for a
particular learning algorithm. It measures how well the learning method matches the problem.
E.g. a high bias results in missing relations between features and target outputs (underfitting).
This is because a learner is only trained by a finite number of instances and is therefore not

11

Chapter 2 Preliminaries

fully representative over the overall population of possible instances. The expected value of this
component is called variance of a learning method for a particular problem.

Here, I describe bagging and randomization in more detail because the new ensemble method
described in Chapter 3 uses the bagging principle together with a Random Forest (RF) classifier
which uses bagging and randomization.

Bootstrap Aggregating The simplest way to combine different trained classifiers together is
to make a majority vote for a final prediction using all classifiers (for classifiers see Section 2.2.3).
If the prediction is numeric, for example if we receive probabilities, we can use an average vote.
In bootstrap aggregating or bagging [16] every classifier has the same weight. So every vote is
equal (e.g. the boosting approach uses a weighted vote). We can think of a bagging example by
randomly choosing n training datasets of the same size from our problem domain (sampling with
replacement). After that n different classifiers C' = {C1, Cy, ..., C),} are trained and finally we
get the prediction p of all classifiers by using the average prediction p = L;sz In Algorithm 2.1
the bagging pseudocode is shown.

With bagging it is possible to get an unbiased performance estimate during the training phase,
which is known as out-of-the-bag error (for performance measurement see Section 2.2.5). The
subsampling allows us to test every training instance x; € Z with all classifiers ¢, C c o,
where x; was not used to train the classifiers C'. The drawback is that the out-of-the-bag error
often underestimates the actual performance of the bagged ensemble classifier.

Randomization Randomization can be used to increase the variance of a learning algorithm.
Apart of using random input instances, an option is to run multiple classifiers on all training
instances using different pseudorandom number generators to introduce a random variance and
finally combine the results by majority or average vote. Another well known method is random
subspaces. For every iteration of training a random subset of attributes is chosen. This concept
was implemented in randomized decision trees and the popular classifier RF is a combination
of random trees and bagging [17]. The combination is often powerful because the introduced
variance is different in bagging and randomization. Therefore the total error will be minimized.

2.2.3 Classifiers

The algorithm that is used in a classification problem is known as classifier or learner h(x) where
X is an input vector. It can consist of a single function or a complex concept that maps the input
data to the categorial output. In ensemble learning (see Section 2.2.2) multiple classifiers are used
for training. Here we can speak of one ensemble classifier that uses classifiers. Again these
classifiers can be ensemble classifiers but the nuclear entity of learners is a base classifier. In this
work a new algorithm is introduced (Section 3.1) which is based on an ensemble classifier called
RF. RFs use as base classifier the concept of decision trees used as random trees which will be
introduced in the next paragraphs.

12

L5 NV)

2.2 Machine Learning Preliminaries

Algorithm 2.1: Bootstrap Aggregating (Bagging)

TRAINING PHASE

Input :Z7 <« All training instances.
n <— Ensemble size.

Output : C Ensemble of classifiers.
// Initialize set of classifiers.
C=10
// Train n classifiers.
fori + 1tondo
Take a bootstrap sample Z; from 7.
Build classifier C; using Z; as training set.
Add classifier C; to current Ensemble C' = C U C;.
end
return C

CLASSIFICATION PHASE

Input :x < Single instance to test.
C < Ensemble of classifiers of size n.
Output : p < Average probability over all predictions of x on C.

fori < 1tondo
‘ pli] < prediction of x on C;.
end
Zn)lp[i]
P Tenginpl Ty

return p

Decision Trees A decision tree takes advantage of a tree-like model to support decisions by
divide-and-conquer. A node in a decision tree is for a specific test of an attribute, mostly an
attribute value with a constant. To classify an unknown instance, it is routed down the tree
according to the values of attributes tested at the nodes along the path. The leaf nodes apply
a classification, set of classifications, or a probability distribution over all classifications to in-
stances when they reache it. Nodes for decisions with numeric attributes usually have two or
three children according to the operation less than, greater than, and potentially equality to a
constant. Nominal attributes have usually as many children as possible values.

In a decision tree the missing values can be handled in a special way, if they were not treated
as an attribute value. A possible, but simple solution, might be to record all branches at a node
when testing a missing value and finally take the most commonly used branch. More sophisti-
cated approaches split the instance and assign a weight to all parts, which is proportional to the
number of training instances visiting that branch. Finally, the decisions at the leaf nodes must
be recombined using the weights.

13

Chapter 2 Preliminaries

The automatic learning of decision trees can be expressed recursively. The set is split into two
subsets using an argument and in both subsets the process is continued in a recursive manner.
This ends if the instances of the subset at a node have the same class, or, when splitting, add no
value to the predictions. In general the argument that splits the instances “best” is taken at a
node.

Different algorithms are used to measure the best split. For example the algorithm C4.5 [18]
implemented in the Weka library [15] uses information gain. It is based on the concept of entropy
from information theory. Entropy H(Z) is defined as

n
H(Z) = Ig(p1,p2; - Pn) = — > pilogy p; (2.1)
=1

where p; represents the percentage of each class present in the child node that results from a
split in the tree with Y 7" | p; = 1. A perfect split will be when every split consists only of one
class resulting in zero entropy. A poor split with 50 % of class labels in both splits will have an
entropy of one. The information gain /G is the entropy of the parent H(Z) minus the weighted
sum of all children entropies of attribute a (see Definition 2.1).

Definition 2.1 (Information Gain). LetZ denote a set of training instances, each of the form (x,y) =
(x1, 2,23, ...,2,y) where z, € vals(a) is the value of the ath attribute of example x and y is
the corresponding class label. The information gain for an attribute a is defined in terms of entropy

H() as follows:

1G(Z,a) = H(T) - H(T|a) (2.2)
- - Y EEIeE N ez - o)
vevals(a)

The C4.5 algorithm [18] uses information gain as measurement and the pseudocode of the deci-
sion tree construction algorithm is shown in Algorithm 2.2.

Another popular decision tree algorithm is the classification and regression tree (CART). The
regression concept is similar, but CART uses the gini impurity I instead of the information
gain I G. The gini impurity measures how often a randomly chosen instance from the set would
be incorrectly labeled if it was randomly labeled according to the distribution of classes J in the
subset. So we define the probability f; to label an instance correctly with label ¢ € J in the subset
and the probability 1 — f; to label the same instance incorrectly. Both probabilities are multiplied
and summed up over all labels in the (sub)set.

J
Ia(f) = Zfi (1= fi) (2.4)

i=1

It reaches its minimum (zero) when all instances in the corresponding subset of a node fall into
a single target category.

14

[y

w

o e N N G

10
11
12
13
14

15
16
17
18
19
20
21

2.2 Machine Learning Preliminaries

Algorithm 2.2: C4.5
Input :Z7 <+ All training instances.

Output : A decision tree classifier C' created in a recursive manner.

C + C4.5(7)
return C

Function C4.5(7)

C{}

// Leaf if no tree can be constructed.

if y; = y;V classes y;,y; € T then // pure class

‘ return leaf with class y;

elseif Z = {} then // Class must be derived other than 7
‘ return leaf e.g. with majority class

end

// Find out the best attribute for a split.
info<[] // Store information gain of each attribute.
forall a; € attributes(Z) do // attributes(Z) = ©
‘ infoli| < IG(Z, a;)
end
apest < index(in fo, max(info))

// Constructing the (sub)tree.
C < Decision node for testing apes;
T+ split(Z, apest)
forall Z; € 7 do

C; + C4.5(T;)

C < append(C, C;)

end

return C

Random Forests The algorithm of RFs was introduced by Breiman [17]. A RF is an ensemble
of k tree predictors and for the ith tree a random vector ©; is generated of individual sampled
attributes, independent of the past random vectors ©1, . .., ©;_1, but with the same distribution.
This type of decision trees are called a random trees. The reason for this ensemble approach is
that if one or a few features are very strong predictors for target class, the different trees can
become correlated and the variance is similar, which is not the goal of randomization. Finally,
we can define the ith classifier as h(x, ;). In addition the k trees are generated using bagging,
enabling the out-of-the-bag error method for RFs.

Definition 2.2 (Random Forest). A Random Forest (RF) is an ensemble classifier consisting of an
ensemble of k tree-structured classifiers {h (x,©;) |i = 1,...k} where the ©; are independent iden-
tically distributed random vectors and each tree casts a unit vote for the most popular class at input
X.

15

Chapter 2 Preliminaries

A final RF classifier uses each tree h(x, ©;) to vote on the final class y. A typical number of
random features used as ©; are L\/ |@|J or [loga (|©]) 4+ 1].

2.2.4 Classification on Imbalanced Datasets

The class imbalance problem means that we have, on the one hand, a class represented by a large
number of examples. On the other hand a second class only represented by a few examples.
This imbalance can cause a significant decrement in the performance achievable by standard
learning methods which assume a balanced distribution of classes. Therefore these algorithms
fail to properly represent the distributive characteristics of the data when presented with complex
imbalanced datasets and as a result provide unfavorable accuracies across the classes of the data.

To handle the imbalance problem there are several approaches for training complex data with
standard learning methods. In the last years three main proposals have emerged: (1) data sam-
pling, (2) algorithm modification, and (3) cost-sensitive learning. The idea in data sampling is
to modify the training data to generate more balanced data. Here it is possible to oversample
the minority class to match the other class, e.g. by randomly oversampling the minority class
without replacement [19]. Or the majority class can be downsampled to the same size of the
minority class, e.g. by randomly eliminating instances of the majority class until it has the same
size as the minority [20]. We speak of an algorithm modification if the classifier algorithm itself
adapts for imbalanced data and the initial training set is not modified.

Finally, cost-sensitive learning combines the data structure with algorithm modifications. The
general idea is to penalize the mistakes made by classification of minority classes to a greater
extent than those of the majority classes. E.g. some learners can use weights of instances that
portray the importance of these instances. Instances with lower weights have a smaller influence
in training than instances with larger weights. Using this idea, every instance of the minority
class can get a weight of one. The majority class will get the ratio that is needed for downsampling
it to the same size as weight.

In this work a specific method was used to oversample the minority class. The algorithm will
now be explained in detail.

Synthetic Minority Over-Sampling Technique Synthetic minority oversampling technique
(SMOTE) is a technique to increase the minority class by generating new synthetic instances
mwn
(2

k-neighbor instances 2" (all minority classes) are defined by k-mer clustering (k € N) and a
new instance X?f” is generated by randomly swapping attributes between the actual instance
" and one random other instance X?”m e I™n of the k-neighbors. This can be repeated
until we reach an oversampling factor o so that the final number of minority instances are

[Zmin) 4 | T3] = |Z™"| + o - |Z™"|. Algorithm 2.3 shows the pseudocode of SMOTE.

during the test phase [21]. Therefore for every minority instance x/*" in the training set the

X

16

=W

10
11
12

13

14
15
16

17
18
19
20
21
22
23

24

25

2.2 Machine Learning Preliminaries

Algorithm 2.3: Synthetic minority oversampling technique (SMOTE)

Input :Z™™" < Minority class instances.
N + Amount of SMOTE in % or oversampling factor o x 100.
k < Number of nearest neighbors

Output : (1—](\)[0) - T synthetic minority class samples (Synthetic[][]).

T < |Z™™"] // Number of minority class samples.
// If N is less than 100%, randomize the minority class samples as only a
random percent of them will be SMOTEJ.
if N < 100 then
Randomize(Z™™)
T ()T
N < 100
end

// Set necessary variables

N + LWNOJ // The amount of SMOTE is assumed to be in integral multiples of
100.

numattrs| | < Number of attributes

tdx_synthetic <~ 0 // Keep a count of number of synthetic samples generated.

Z2[][] // Array for synthetic samples

// Compute k nearest neighbors for each minority class sample only.
fori <+ 1to 1 do
Z™n[][] < Compute k nearest neighbors for x;"
Populate(N, ™™ i, T0™ idx_synthetic, fmm)
end

, and get the indices

// Function to generate the synthetic samples.
Function Populate(N,Z, i, Zg, idz, f)
while NV # 0 do
nn < Choose a random number between 1 and k& // Select one of the nearest
neighbors of xI".
for attr < 1 to numattrs do
dif f « I[nn][attr] — Z[i][attr]
gap < Random number between 0 and 1
ZIglidz|[attr] < ZL[i]lattr] + gap - dif f

end
idx + idr +1
N+ N-1
end
return

17

Chapter 2 Preliminaries

2.2.5 Performance Measurement

In most classification problems (supervised and sometimes unsupervised) we build the learner
to classify new instances that we never have seen before. So the question to every trained clas-
sifier is always, how good it will predict totally new observations. To get an insight about the
performance several testing strategies have been developed and different measurements can be
used to rate the quality. Normally these methods are conservative, meaning that we can expect
the same or an even higher performance on new data. But on the counterpart a classifier can
also be overfitted, meaning that it represents the trained data nearly perfectly but new instances
are a closed book. Now I explain briefly testing strategies and performance measurements used
in this work.

Training and Testing The performance testing of a classifier has to be separated from the
training phase. Training instances should not be used during testing. Otherwise a bias is intro-
duced and usually the performance on new observations is worse. Therefore different strategies
can be used for training and testing. The optimal approach depends on the dataset to be analyzed.
Some of them are computationally expensive and some of them do not work well on small data.

A standard approach will be to split up the data into a training and a test set, like 60 % of all
instances for training and the remaining 40 % for testing. The data should be divided randomly.
Sometimes also stratified splits are made to ensure the same proportion between classes in the
training and test set.

Another well-known approach is cross-validation (CV). With CV'it is possible to test on all data
but the test set is always disjoint from the training set. In leave-one-out cross-validation (LOOCV)
for every instance x; all other instances Z/x; are used for training the classifier and it will be
tested on x;. If more than one instance is held out it is called a k-fold cross-validation (k-fold
CV), where we partitioned all instances Z into £ € N groups, mostly of equal size, so that Z =
ThAIyA ... Ay, Then training and testing will take place k-times. For the nth round the
classifier will be trained on Z/Z,, and then tested on Z,,. Classical k-fold training strategies are
5 and 10-fold CVs.

Receiver Operating Characteristic Receiver operating characteristic (ROC) curves were
adopted from signal detection where the tradeoff was characterized between a hit rate and a
false-alarm rate over a noisy channel. ROC curves are widely used in ML to show the perfor-
mance of a classifier without regard to class distribution or error costs. On the vertical axis the
ROC curve plots the true positive rate (TP rate) (also recall or sensitivity) and on the horizontal
axis the false positive rate (FP rate). The TP rate is expressed as a percentage of the true positives
(TP) included in the sample compared to all positives.

TP
TPRate =100 - ———— 2.5
Rate 00 TP+ FN (2.5)

The FP rate is the number of true negatives (TN) in the sample, expressed as a percentage of the

total number of negatives.
FpP

FPRate =100 - ———
Rate =100~ =575

(2.6)

18

2.3 Ontologies

If the ROC curve lies close to the diagonal we have a similar TP rate and FP rate rate which can be
interpreted as a random prediction. Ideally the curve climbs vertically so that the TP rate is close
to 100 % and only after that the FP rate rises. ROC curves can be summarized in a single quantity
using the area under the curve (AUC). If a classifier has an area under the receiver operating
characteristic curve (AUROC) close to 0.5 it performs like random. An AUROC of 1.0 will be a
perfect classification.

In imbalanced datasets ROC curves can be disadvantageous because they are independent of the
class distribution. Therefore precision-recall (PR) is a better performance measurement and it
can be shown that a good PR curve also has a good ROC curve [22-24].

Precision and Recall PR curves show the precision on the vertical axis, also called positive

predictive value (PPV), and on the horizontal axis the recall (also sensitivity or TP rate). The area

under the precision recall curve (AUPRC) is the summary statistic of PR curves and can range

from zero to one where also larger is better. But the PR curve or its AUPRC value is closely related

to the class distribution. For example if we have high precision on the first 20 %, but after that the

curve falls off steeply, the classifier performs well when it reports high scores or probabilities.
TP

precision = 100 - TP+ FP (2.7)

F-Score The F-score (also F{-measure or F-measure) can be used for information retrieval. It
can be interpreted as a weighted average of the PR curve and is mostly used as the harmonic
mean of precision and recall.

2 - recall - precision 2-TP

Fi = = 2.8
! recall 4+ precision 2-TP+FP+FN 28)

If the focus is more on the recall or precision the F-score can be generalized to

Il - precision (14+a?) - TP
F.o=(1 2y, reca = 2.9
a=(1+a7) a? - precision +recall (1 +a?)-TP+a?-FN + FP 29)

For example for o = 2 the recall is weighted 4 times more than the precision.

2.3 Ontologies

An ontology is a standardized way for knowledge representation, or in other words, an explicit
specification of a conceptualization as defined by Gruber et al. [25]. So an ontology contains
the relevant concepts, also called objects or terms, which are named and defined entities of the
domain of interest. To specify a conceptualization we need to define statements, so called axioms,
that say what is true in the domain and give us a possible interpretation of the defined terms.
Some of those axioms are relationships that can be defined in a computer-interpretable way. Two
important relationships between terms are is_a and part_of.

19

Chapter 2 Preliminaries

Different types of ontologies exist. Ontologies that provide a controlled vocabulary for objects
in a domain are called domain ontologies. For example the word “card” can be in the domain
computer hardware a “graphic card”. In the domain of party games a card can be a “playing
card” of a card game. Another type of ontologies will be upper or top-level ontologies. They
consist of very general terms that are common across all domains.

2.3.1 Semantic Similarity

A specific type of domain ontologies are attribute ontologies. These ontologies link terms to other
objects. For example the Gene Ontology (GO) has an annotation relationship between terms and
genes or proteins [26]. Thus, GO uses the annotations to assign biological functions, character-
istics or attributes to the genes. Using attribute ontologies we can find annotated objects, like
genes, that are similar to a set of terms using semantic similarity. In contrast to that, a domain
ontology provides us only a controlled vocabulary and we are limited to search terms within the
ontology using parent- or subclasses.

Information Content Resnik [27] defines the information content (IC) of a term ¢ as the nega-

tive log likelihood,
1C(t) = —log(p (1)), (2.10)

where p(t) is the probability of encountering an instance of term ¢ in an object, like a gene.
Intuitively this means if a term has a higher probability, for example many genes are annotated
with it, the informativeness decreases. The root term 7 will have an IC of zero, IC (p (1)) =
IC(1) = 0, because it will be shared by all objects. This intuitive behavior is also implied by
the annotation propagation rule. So p(t) is a monotonically increasing function when following
the links from the leaves to the root of an ontology. Generally speaking, when terms ¢; is_a ¢,
then p(t1) < p(t2) and IC (p (t1)) = IC (p (t2)).

Using the IC, Resnik [27] showed how to define a similarity between two terms. This is defined
as the IC of the CA from both terms. Because an ontology is a DAG there might be multiple CAs.
The most specific one is called the most informative common ancestor. So the similarity between
two terms is

sim(t1,t2) = max {IC(a)|a € CA(t1,t2)}. (2.11)

In attribute ontologies we might want to find similarities between objects, like how similar two
genes are given an ontology. This results in a comparison between sets of terms. This is done
using the previously defined term similarity and some modifications. For example we can simply
do a weighted average of all comparisons using

1
sim(T;, 1) = - Z sim(tx, t), (2.12)
|E‘ ’ ’T7| t GT' t GT'
k 217 7
where T' = {t1,...,t,} is a set of terms, maybe derived from an object [28].

20

2.4 Genome-wide Pathogenicity Scores

Sometimes also the best-matched average (BMA) is used [29]. It can be asymmetric like

1 .
BMAasym(TiaTj> = 7 Z max{szm(tk,tl)}, (2'13)
‘E‘ T tlETj

or symmetric
BMAasym(nyTj) BMAasym(T‘jaT‘i)

BMAsym(T‘ZaT‘j) = 9 + 9 . (2.14)

2.4 Genome-wide Pathogenicity Scores

To find out the pathogenicity or the functional relevance of SNVs or InDels several scores have
been developed. They predict the impact of a variant to the designed purpose, e.g. how intolerant
a mutation in a gene is in terms of the resulting change of the protein function. A few dozen
such scores exist and in general they can assess the impact of a SNV on a protein in the coding
regions.

One of the first scores was Sorting Intolerant From Tolerant (SIFT) [6] which scores variants
according to conservation of the AA sequence in related proteins. SIFT calculates the probability
that an AA at a position is tolerated conditional on the most frequent amino acid being tolerated.
It normalizes the value and if it is less than a cutoff the variant is predicted to be deleterious.
Other scores followed, like PolyPhen or MutationTaster [7-9].

All of these scores have been successfully used in Exome or other genetic studies [30-32]. But
if we expand the target region to the full genome they are not able to score non-coding variants
(NCVs). The two first pathogenicity scores for coding and non-coding variations are CADD
form Kircher et al. [33] and GWAVA published by Ritchie et al. [34]. Several other methods were
published afterwards, like the recent score LINSIGHT [35]. The common ground of the methods
is that all of them use supervised machine-learning methods. Except the scores Eigen and Eigen-
PC [36] where an unsupervised approach was applied.

The purpose and design of all non-coding or genome-wide scores differs slightly. We can roughly
divide them into four groups: (1) ML classifiers that attempt to separate known disease variants
from putatively benign variants using a variety of genomic features (for example GWAVA and
FATHMM-MKL [34, 37]); (2) sequence- and motif-based predictors for the impact of NCVs on
cell-type-specific molecular phenotypes, such as chromatin accessibility or histone modifications
(for example DeepSEA [38]); (3) evolutionary methods that consider data on genetic variation to-
gether with functional genomic data with the aim of predicting the effects of NCVs on fitness (for
example CADD and LINSIGHT [33, 35]); (4) unsupervised ML approaches based on correlation
of features (Eigen and Eigen-PC [36]).

In this work several non-coding scores were used to compare, on the one hand, the base learners
of these scores to a new ML approach (Chapter 3) and, on the other hand, the generated scores
to a new developed non-coding score for regulatory Mendelian mutations (Chapter 4). Thus,
the performance and learning strategies of the genome-wide scores CADD, GWAVA, DeepSEA,
Eigen and Eigen-PC, FATHMM-MKL, and LINSIGHT are described in more detail in the next
Sections 2.4.1 to 2.4.6.

21

Chapter 2 Preliminaries

241 CADD

The Combined Annotation-Dependent Depletion (CADD) score from Kircher et al. [33] is able
to prioritize functional, deleterious and pathogenic variants across many functional categories.
Thus it integrates multiple genome features per possible nucleotide change. CADD is specifically
designed to score any possible human SNV or small InDel (limited to human reference genome
hg19 release).

CADD uses an evolutionary model for training sets selection to ensure that the method is not
limited to a small set of genetically or experimentally well-characterized mutations. So Kircher
et al. [33] state that CADD measures the likelihood of deleteriousness and not the likelihood
of pathogenicity, because no known pathogenic mutations from databases and also no known
benign variants were used for training. But the property of deleteriousness should correlate with
both molecular functionality and pathogenicity [39], so it can be used to discover pathogenic
mutations.

Because of this thought Kircher et al. [33] used as non-deleterious set, positions that differ be-
tween the human genome and the inferred human-chimpanzee ancestral genome [40] at which
humans carry a derived allele with an AF of at least 95 % compared to the 1000 Genomes Project
(1KG) [41]. The resulting negative dataset contains 14.9 million SNVs and 1.7 million InDels.
The positive variant set was simulated using an empirical model of sequence evaluation with
CpG-specific mutation rates and simulation parameters from whole genome alignments of six
primate species of the Enredo-Pecan-Ortheus (EPO) study [40, 42]. The final genome-wide sub-
stitution rate matrix contains local mutation rate estimates in blocks of 100 Kb together with
the frequency and length distribution of insertion and deletion events. This matrix was used to
simulate over 44 millions SNVs and over 5 million InDels on regions where EPO alignments were
present. Kircher et al. [33] claimed that this strategy ensures the prediction of deleteriousness
and not pathogenicity.

CADD relies mostly on features from annotations of the Variant Effect Predictor (VEP) [43],
conservation scores and different chromatin features from Encyclopedia of DNA Elements (EN-
CODE). In total a vector of 63 features per variant was constructed. These features, together
with the positive and negative set, were used to train 10 different models by a Support Vector
Machine (SVM) with a linear kernel. In newer versions of CADD the SVM learner was replaced
by a logistic regression. All 10 datasets were generated by randomly sampling 13,141,299 SNVs,
627,071 insertions and 926,968 deletions from the positive and the negative set, which results in
10 perfect balanced datasets. Train and test strategy was a simple split using 99 % for training
and 1% for testing. Kircher et al. [33] used a low generalization parameter ¢ = 0.0025 to con-
verge the SVM in a reasonable amount of time. Finally the average model was used as a final
model and they computed the combined SVM scores (C-scores) of all possible substitutions in
the human reference genome. In addition they introduced with the scaled C-score, a Phred-like
metric ranging from 1 to 99 on the basis of their ranking relative to all possible substitutions in
the human reference genome:

k
— 10logy, (ran) : (2.15)

total number of substitutions

22

2.4 Genome-wide Pathogenicity Scores

To assess the functionality of the score to different diseases, Kircher et al. [33] tested them to
previously known mutations in Mendelian diseases, Genome Wide Association Studies (GWAS)
hits or somatic variants. For example they used pathogenic and non-pathogenic variants of the
ClinVar database [44, 45] and achieved an AUROC of 0.9164.

In sum, CADD is a deleteriousness rather than a pathogenicity score. This means that CADD do
not use known pathogenic variants linked to a specific disease as well as known benign variants
for training. The authors had a unique way to generate their training data and their results
showed that training on simulated de-novo mutations portrays the pathogenicity of variations
in different types of diseases. But because these variants are not exactly known to be pathogenic
and cause a genetic disease they named them deleterious and non-deleterious. With these data
they were able to build a general score that is able to score variants of the whole genome in an
unbiased way, totally independent of databases, and consequently CADD can be used in different
types of variant scoring approaches.

2.4.2 GWAVA

Genome-wide annotation of variants (GWAVA) was developed by Ritchie et al. [34] to interpret
variants outside the genic regions. They integrated various genomic and epigenomic features and
trained a modified RF. To be more precise Ritchie et al. [34] had the following feature groups:
Open chromatin like DNase I hypersensitivity, transcription factor binding sites (TFBSs) and his-
tone modifications as well as RNA polymerase binding from ChIP-seq experiments, CpG islands,
Genome segmentation like calls from ChromHMM [46], conservation score like GERP [10, 11],
human variation frequencies, distance to the nearest splice-site and other genetic contexts, and
finally sequence context information such as the G/C content.

The training set contains as positive class 1614 SNVs, tagged as “regulatory mutation” in Hu-
man Gene Mutation Database (HGMD) [47]. As negative or control set Ritchie et al. [34] used
15,730,276 common variations (minor allele frequency (MAF) >1 %) in the 1KG [41]. With their
AF cutoff they wanted to reduce the chance of including rare functional variants in their control
set. They generated three subsets of their negative data. First, they sampled 100 times the size
of the positive set (dataset D;). Second, they computed the distance to the nearest transcription
start site (TSS) and used all close 1KG SNVs until they reached 10 times the size of the positive
set (dataset D5). And finally, they used a selection window of 1 Kb around the positives, whereby
5027 negatives remained (dataset Ds3).

For classification Ritchie et al. [34] modified a RF to deal with the imbalances in their datasets.
The dataset D is balanced but in Dy the positive/negative ration is 1:10 and 1:3 for D3. Thus,
they constructed the RF so that the majority class is subsampled to the same size as the minority
class before building every random tree in the forest. Consequently, if the forest size is large
enough, the classifier used at least every training instance once. For all three datasets a forest
size of t = 100 was used.

23

Chapter 2 Preliminaries

As performance measurement a 10-fold CV approach was applied and the AUROC measured. The
AUROC:s of this experiment were AUROCp, = 0.97, AUROCp, = 0.88 and AUROCp, = 0.71.
In addition a gene-aware CV approach was tested, so that variants from the same gene appear-
ing in the training and test sets do not inflate performance statistics. Therefore they randomly
selected only one variation per gene of the positive set. This reduced the performance in terms
of AUROC: slightly (AUROCp, = 0.95, AUROCp, = 0.82, and AUROCp, = 0.64).

They validated their final trained classifier on pathogenic non-coding mutations from ClinVar
[44, 45], GWAS SNPs from GWAS catalog [48], chromosome 22 of the individual NA06984 from
the 1KG project (negatives) including regulatory HGMD variants of that chromosome as posi-
tives and finally, with non-coding somatic mutations from Catalogue of Somatic Mutations in
Cancer (COSMIC) [49]. For all four datasets Ritchie et al. [34] did a retraining on the new data
using CV for performance tests. For negatives the GWAVA authors used the previously described
negative set from the 1KG data with close variants to TSS in the ClinVar analysis and excluded
chromosome 22 in the genome individual analysis. For the GWAS data they generated a matched
SNV control set from common GWAS genotyping arrays, and in the somatic analysis recurrent
variations were used (occuring in multiple studies).

The gini importance was measured to show how important the features are. The gini importance
is derived from the gini impurity (see Section 2.2.3) and is the mean decrease in impurity at each
node in the tree owing to the feature of interest, weighted by the proportion of samples reaching
that node. This analysis was done only on their initial setup but it shows that depending on
the negatives the best features are conservation scores, distances to known TSS and the H3K4
trimethylation level.

To conclude Ritchie et al. [34] built an imbalance-aware classifier based on a RF that is able to pre-
dict non-coding regulatory variations of different categories like somatic, common or Mendelian
variants. In all analysis the same features set was used for classification.

2.4.3 DeepSEA

The approach of the deep learning-based sequence analyzer (DeepSEA) is to learn the regula-
tory code of the human genome from large-scale chromatin-profiling data to prediction chro-
matin effects of sequence alterations on a single-nucleotide level [38]. It consists of two parts.
First, allele-specific chromatin profiles were predicted though a deep convolutional neural net-
work (CNN). And second, the chromatin profiles were combined with conservation scores and
a boosted logistic regression classifier was trained. Compared to other approaches the focus of
DeepSEA is more on the generation of features than on the training of NCVs.

For training their CNN they split the human genome into 200 bp bins. Then they used 919 chro-
matin features (125 DNase features, 690 transcription factor features from ChIP-seq, 104 histone
features) and labeled the feature with 1 if more than half of the 200 bp bin is in the peak re-
gion. 0 otherwise. Then 1000 bp sequence fragments were used to train the network. Fragments
were centered around a 200 bp bin so that there were flanking regions of 400 bp on each side.
The nucleotides of the region were used in the feature matrix as columns so that finally a three
dimensional matrix of size 1000 x 4 x 919 was constructed as input.

24

2.4 Genome-wide Pathogenicity Scores

DeepSEA used three convolutional layers with 320, 480 and the last layer with 960 kernels. Fi-
nally, they generated the fully connected layer, and the sigmoid output layer makes the predic-
tions (range 0 to 1) for the 919 chromatin features. To evaluate their performance, chromosome
7 and 8 were excluded from training and the CNN was trained on the other autosomes. Finally
4000 regions on chromosome 7 were used for testing and they achieved a median AUROCs of
0.958 for TFBSs, 0.923 for DNase and 0.856 for histone modifications.

For functional SNV priorisation the feature scores were computed using the sequence with and
without the variant. Then the absolute difference between the probability values was used,

diff = |P (reference) — P (alternative)|, (2.16)

as well as the relative log fold changes of odd,

logfold — |1 P (reference) 1 P (alternative) (2.17)
ogfold = |lo —lo . .
& 81-p (reference) 81°p (alternative)

Both different feature sets show different feature spaces and those are visualized in Figure 2.1.

Finally, the conservation scores PhastCons [12] (excluding human), PhyloP [13] (excluding hu-
man), and GERP++ [10, 11] were added to the initial feature set resulting in 2 x 919 + 4 = 1842
features training a boosted logistic regression classifier. Zhou & Troyanskaya [38] used regula-
tory mutations from HGMD [47], expression quantitative trait loci (eQTLs) and GWAS hits as
positive class for training. Negative SNP groups were generated using random subsets from 1KG
[41] with a MAF greater than 0.5 % that are in non-coding regions close to the positives (within
1200 bp, 21,000 bp and 24,000 bp). Using their method and datasets, they claimed that DeepSEA
outperform previous published methods (CADD [33], GWAVA [34] and Funseq2 [50]).

— diff —logfold
6
4
2
0
0.00 0.25 0.50 0.75 1.00
P(reference)

Figure 2.1: Feature space of DeepSEA. Feature set characteristics of DeepSEA. Visualization of the
functions diff and logfold that were used to generate the two different feature spaces for DeepSEA.
P (reference) values between 0 and 1 are represented in abscissa. A fixed P (alternative) of 0.5 is used.

25

Chapter 2 Preliminaries

2.4.4 Eigen

In 2016 Ionita-Laza et al. [36] published an unsupervised approach to integrate different anno-
tations into one measure of functional importance (Eigen). They assume that the variants can
be partitioned into functional and non-functional without any labeling. The idea is that there
is a blockwise conditional independence between annotations given the true state of a variant,
resulting in blocks or groups of annotations that differ in their mean between functional and non-
functional variants. This correlation structure can be used to separate the two variant groups.
In addition they introduced Eigen-PC, another meta score that is based on the eigendecompo-
sition of annotation covariation matrix and uses the lead eigenvector to weight the individual
annotations.

Ionita-Laza et al. [36] rely on similar features as other methods but they generated blocks (fea-
ture groups) such that predictors of different blocks were conditionally independent. Predictors
within a block were allowed to be conditionally dependent. Forming of these blocks was done
with a correlation matrix and they selected blocks by hand.

Two different input datasets were used to build the meta-scores. The non-synonymous dataset
(missense and nonsense variants) integrates all non-synonymous variants that were present in
the dbNSFP [51]. The other dataset for non-coding and synonymous variants was built with all
variants in the 1KG [41] database without a match in dbNSFP and within 500 bp upstream of the
gene start site (418,997 variants in total).

The authors identified three blocks for the NCVs. First, a conservation score block including
GERP [10, 11], PhyloP [13] and PhastCons scores [12] (8 features in total). Second, a regulatory
information block including open chromatin measures, TFBSs and histone modifications (17 fea-
tures in total). And finally third, an AF block where they used AFs from different ethnicities of
the 1KG [41] as features (4 features in total). For non-synonymous coding variants (missense
and nonsense) the regulatory information block was replaced by protein function scores (SIFT,
PolyPhen and Mutation Assessor [6, 7, 52]).

For validation of Eigen, Ionita-Laza et al. [36] used autosomal pathogenic and benign variant
sets from ClinVar [44, 45]. Because of their two different functional scores these variants were
subdivided into a non-synonymous coding set and a non-coding set, including synonymous vari-
ants. Eigen score achieved an AUROC of 0.868 (Eigen-PC = 0.839) on the missense and nonsense
variants (16,545 non-synonymous pathogenic and 3482 benign variants; imbalance ~1:5). CADD
score version 1.0 achieved a similar AUROC of 0.861 but the AUROC of version 1.1 of CADD was
only 0.776. For non-coding or synonymous pathogenic mutations they identified 111 pathogenic
variants in ClinVar [44, 45]. As begin/negative set they randomly selected the same amount of
variants that have the same set of functional classes (5’UTR, 3’UTR, etc.) determined by VEP
[43]. Here, Eigen achieved an AUROC of 0.785 and Eigen-PC of 0.614. Again CADD has a similar
performance of 0.777.

To strengthen the validation of non-codings, Ionita-Laza et al. [36] predicted the functional sig-
nificance of GWAS hits from GWAS catalog [48]. GWAS hits that map to known regulatory
elements achieved the highest Eigen scores. In addition 676 eQTL SNPs which map to known
regulatory elements were tested and compared to CADD and GWAVA. A Wilcoxon rank-sum

26

2.4 Genome-wide Pathogenicity Scores

test [53] was used to show that Eigen and Eigen-PC scores led to more significant results than
CADD and GWAVA.

Finally, Figen was used to compare recurrent and non-recurrent somatic non-coding mutations
from COSMIC [49]. A Wilcoxon rank-sum showed that p-values from Eigen and Eigen-PC are
orders of magnitude smaller than the scores of CADD. The method GWAVA that also claims to
predict recurrent somatic mutations (see Section 2.4.2) was not used for comparison.

In sum, Ionita-Laza et al. [36] showed for the first time a non-coding score by unsupervised
learning. Their meta-score depends only on the correlation of features of the two used training
sets, non-synonymous variations from dbNSFP [51] and non-codings/synonymous variants from
1KG [41]. The features used were similar to those used in other methods, but Eigen is the only
presented method here that uses AFs as predictive features. For Mendelian diseases AFs are
mostly used for filtering rather than in a pathogenicity score because the prevalence of a disease
is known [54-57].

2.4.5 FATHMM-MKL

FATHMM-MKL from Shihab et al. [37] is a ML approach that integrates functional annotations
from ENCODE with nucleotide-based sequence conservation scores. This results in similar fea-
ture sets to CADD [33] or GWAVA [34]. The training set assembly was based on GWAVA because
also HGMD variants [47] for positives and 1KG variants [41] with a MAF >1 % for negatives were
used. The main difference is that all germline HGMD, not only regulatory mutations, were used
in FATHMM-MKL. Positive and negative sets were further split according to whether or not the
variant introduces an amino acid substitution. Only the non-coding set will be discussed here
further.

Shihab et al. [37] used multiple kernel learning (MKL) to indicate weather a SNV is functional or
not. Therefore they created 10 feature groups out of their features (coding and non-coding) and
encoded them into kernel matrices. A final composite kernel matrix K = Zzl 0= 1)\; K; can be
derived by each corresponding base kernel K;, and K was used to to train a SVM. For NCVs only
a subset of four feature groups were used because they achieved the best results. These groups
were conservation scores, histone modification based on ChIP-seq peak calls, TFBSs based on
PeakSeq peak calls, and open chromatin based on DNase-seq peak calls. The other six groups
were rejected.

The authors compared FATHMM-MKL to CADD [33] and GWAVA [34]. They modified their
non-coding training set in several ways to avoid overfitting or reduced performance of a score
because of incompleteness. First, they removed every variant where no C-Score was available
in CADD. Second, the same negative selecting strategy as in GWAVA [34] was performed using
window of 1 Kb around the positives (also explained in Section 2.4.2). And third, all training
data included in the GWAVA classifier were removed so that there will be no bias by predicting
variants that GWAVA is already trained on. In addition to the adaption of GWAVA and CADD
every variant that did not have at least one value in all 10 feature groups was removed. These
modifications reduced their training set from 6.7 million negative and 12,438 positive examples
to 4591 negatives and 3032 positives which where used in a 5-fold CV.

27

Chapter 2 Preliminaries

FATHMM-MKL derived an AUROC of 0.91 closely followed by CADD with 0.87. GWAVA has only
an AUROC of 0.69 on the non-coding dataset. The strongest feature group of FATHMM-MKL is
the conservation group with an AUROC of 0.88. The AUROC of the other three groups is between
0.55 to 0.61. As additional performance test Shihab et al. [37] predicted a set of pathogenic and
benign NCVs (n = 647) from ClinVar [44, 45] using their fully trained classifier on the previous
data. With ClinVar, FATHMM-MKL results in an AUROC of 0.93, CADD of 0.89 and GWAVA
0.62.

To conclude the FATHMM-MKL score achieved slightly better performance than CADD on the
tested NCVs in terms of the AUROC and it substantially outperforms GWAVA. The method used
by FATHMM-MKL (MKL SVM) is similar to CADD (SVM with linear kernel) as well as the fea-
ture set. The major difference of FATHMM-MKL is the specific non-coding training set (HGMD
and 1KG). CADD is more general in the training set by using evolutionary concepts (simulated
mutations and derived ancestor alleles) and not specific curated dataset (e.g. HGMD). FATHMM-
MKL might be slightly better in the actual specific tested case but it has to be shown whether it
can also generalize as well as CADD on the whole genome.

2.4.6 LINSIGHT

Linear INSIGHT (LINSIGHT) uses evolutionary methods, similar to the idea of CADD, that con-
sider data on genetic variation together with functional genomic data for predicting effects of
NCVs on fitness [35]. In particular LINSIGHT combines a generalized linear model for func-
tional genomic data with a probabilistic model of molecular evolution called Inference of Natural
Selection from Interspersed Genomically coHerent elemenTs (INSIGHT) [58].

The idea behind INSIGHT is to estimate the probabilities that variants at each genomic site will
have fitness consequences based on patterns of genetic polymorphism within a species (humans)
and patterns of divergence from closely related outgroup species (apes: rhesus macaque, chim-
panzee, and orangutan). Therefore INSIGHT compares the focal sites with those flanking neutral
sites. To find out if these elements of interest are under selective pressure, INSIGHT predicts two
hidden variables in their model, visualized in Figure 2.2: (1) the ancestral allele Z; at a specific
site ¢ of closest outgroup species using a set of aligned bases O; (here, apes) before it diverged
to (2) the ancestral allele A; from the humans at the site ¢ before the polymorphism known in
our population was introduced (given by the 1KG data [59]). Predicting these two variables will
allow to measure the ratio of polymorphism rate v at ¢ to a local polymorphism rate. Parameter
~ cannot be predicted by the population itself because we do not know if the major allele or the
minor allele we see in humans at this site was the ancestral allele.

Related on the difference of Z; and A; the observed allele in the human population has three
states. First, they are completely divergent and monomorphic in humans (D). Second, there is a
low frequency-derived allele in humans based on a threshold (L). And third, using the frequency
threshold there can be a high frequency-derived allele (H). The frequency threshold of LINSIGHT
isset to f = 0.15.

With these thoughts we can classify non-coding sites into neutral drift, weak negative selection
and strong negative selection. Variants at sites with strong negative selection are immediately

28

2.4 Genome-wide Pathogenicity Scores

4 INSIGHT Linear model)

phyloP score

DNase peak

Figure 2.2: The LINSIGHT model. From the primate outgroup multi-alignment O; at a focal site ¢ IN-
SIGHT predicts the ancestral allele hidden variable Z;. Through a neutral substitution rate \; we came
to the second hidden variable, the ancestral allele A; of the human population. From A; INSIGHT de-
fines on the one hand the fraction of neutral polymorphisms 5 = (531, f2, 83) with low- (51 = (0, f)),
intermediate- (32 = [f,1 — f]), and high-frequency-derived (82 = (1 — f, 1)) alleles. On the other hand
there is the neutral polymorphism rate 6; at site <. Then LINSIGHT combines this probabilistic graphical
model with a generalized linear model. The parameters for the selection S; from INSIGHT, p and 7, are
defined by linear combinations of local genomic features, followed by sigmoid transformations.

removed from the population and cannot segregate or fix in human population. This will hold for
the completely divergent sites D or conserved sites. Weak negatives sites can segregate under low
frequency like the L sites. Mutation in neutral sites can segregate with low and high frequencies
and can fix in the population, like H, L, D and conserved sites. In addition INSIGHT has the
ability to model also positive selection. But in the model of LINSIGHT this was discarded because
positive selection has a negligible importance when estimating genome-wide probabilities of
fitness consequences [60].

The influence of negative selection at site ¢ is summarized by p; and the relative rate of low-
frequency derived alleles ;. The parameter p; is the probability that a site ¢ is under negative
selection (strong or weak) within functional elements. So this parameter gives the fitness conse-
quences of a mutation at this site and, because of that, p; is in the main focus of the LINSIGHT
analysis. v; is used for fitting the model but ignored later. LINSIGHT then tries to predict se-
lection parameters by a generalized linear regression model using local genomic features. It
assumes that p; = g (W, x D;) and v; = h (W, x D;) were W, and W, are row vectors
of weights for the genomic features, D; a column vector of genomic features, and g() and h()
non-linear functions. Huang et al. [35] used two sigmoid functions, the Gomertz sigmoid func-
tion g(x) = exp (—3exp (—x)) [61] for g() to avoid saturation at small values and the standard
logistic function h(z) = H% Then LINSIGHT tries to estimate the parameters by maximum
likelihood using online stochastic gradient-descent algorithm. Gradients of the feature weights
are computed by backpropagation. Thus, the method is similar to a neural network without any

hidden layer. Figure 2.2 shows an overview of the LINSIGHT model.

29

Chapter 2 Preliminaries

LINSIGHT uses 48 different features such as RNA expression levels, chromatin accessibility, his-
tone modifications, bound transcription factors, conservation scores like PhyloP and phastCons
[12, 13], distance to the nearest TSS or known TFBS motive. At the end, Huang et al. [35] precom-
puted their final derived fitness score for the whole genome (hg19 release). Then they extracted
several median scores of different genomic areas to show that splice sites have the highest median
scores (0.956) followed by annotated TFBSs with a median score of 0.240. Unannotated intronic
and intergenic regions showed the lowest scores (0.044 to 0.043).

To compare LINSIGHT to other genome-wide deleteriousness scores (CADD, Eigen, DeepSEA,
FunSeq2, GWAVA, and PhyloP [13, 33, 34, 36, 38, 50]), Huang et al. [35] used as positives non-
coding nucleotide positions in HGMD [47] and ClinVar [44, 45] and common polymorphisms
(MAF >1%) as negatives. Three different test sets were defined from this data (all balanced). (1)
all positives and a random sample of negatives; (2) negative examples matched by distance to the
nearest TSS (balanced); (3) negative examples matched by specific genomic regions (“promoter”
regions upstream 1 Kb of annotated TSS from all genes, “splice” regions within 20 bp of any
annotated splice site, UTR regions, and all “other” regions).

Overall, Huang et al. [35] showed that LINSIGHT outperforms the other tested methods on all
three datasets. LINSIGHT achieves an AUROC of 0.897 for the unmatched, 0.759 for the matched
TSS and 0.661 for the matched region test set. All other methods have similar or decreased AU-
ROCs, but they are always lower than LINSIGHT. So Huang et al. [35] concluded that their ap-
proach on characterizing NCVs based on natural selection in the past provides useful information
about phenotypic importance in the present.

2.5 Chapter Conclusion

This preliminary chapter described important formal definitions and mathematical concepts on
which the later chapters will be based on. I also introduced the main ML concepts, like RF,
bagging, ensemble methods, and training/testing strategies which will be important for my work.
Finally, different non-coding pathogenicity scores were introduced because these scores and their
base learners will be used for benchmarking my work.

Summary of genome-wide Pathogenicity Scores I take advantage of this concluding sec-
tion to summarize the introduced genome-wide pathogenicity scores. It is difficult to tell which
score suits for which task. The original publications are difficult to use for performance compar-
ison because different datasets or different dataset releases, as well as different versions of the
scores, were used. Depending on the goal, further evaluations may be required before selecting
and using a pathogenicity score. It might also be possible to use a combination of scores, which
is often the case in non-synonymous variant predictions for Mendelian disease [54, 55].

Table 2.1 gives an overview of all introduced scores. The table summarizes the different learners,
training data and features for every scores. This might help to select an appropriate score for a
pathogenicity prediction task, especially the training data and the selected features will help in
that case.

30

2.5 Chapter Conclusion

In theory, the evolutionary scores and the unsupervised Eigen approaches should be generalized
best over different types of variants because they do not rely on a specific training class, like
regulatory HGMD variants, and avoid the observation bias that exists in the databases. One
example of observation bias is that the database ClinVar [44, 45] has a high fraction of BRCA2
and BRCA1 mutations [62]. When used for training or testing it might overfit or overestimate
these two genes and have a reduced performance on other genes. But even if scores generalize
well there will be specific prediction problems where these scores will have a poor performance.
For example Mather et al. [63] showed that the CADD score has limited clinical validity for
pathogenic germline variants in non-coding regions in cancer.

Maybe the best option to compare all scores is to look into scientific publications that compare
scores with a standardized dataset. For example by using the work of Dong et al. [64] and Liu
et al. [65]. But I have to notice that these publications might have an observation bias because
variants in the testing set might be included in the training set of some pathogenicity scores.
This leads to an overestimated performance of these scores. In theory that can be avoided, if
pathogenicity scores replaced the outcome value of training variants by a score from an internal
CV. But I am not aware that any of the scores have such a strategy implemented. In addition,
when it comes to non-coding scores, we have the problem of missing data, and with the actual
databases we are extremely limited in creating a comprehensive dataset for pathogenic NCVs.

In the following chapters I will describe my contribution to this field. The next Chapter 3 presents
hyperSMURF, a ML algorithm that is specifically designed for highly imbalanced (genetic) data, as
well as its experimental evaluation. Chapter 4 describes how I use hyperSMURF to generate a new
pathogenicity score and how this score is integrated in a framework to discover the non-coding
part of the genome. Then, the pathogenicity score as well as the framework are experimentally
validated and compared to other scores and software. Finally, Chapter 5 concludes this thesis.

31

Chapter 2 Preliminaries

Table 2.1: Summary of genome-wide pathogenicity scores. Grouped by their classification task. Different feature groups were encoded by (A) sequence
conservation, (B) ChIP-seq/Open chromatin, (C) population frequencies, (D) Sequence and genetic context. The asterisk (x) at the CADD classifier denotes
that the initial version of CADD 1.0 was built with an SVM. Version 1.1 and newer used a logistic regression.

Classification task

Known disease from putatively benign variants

Name Classifier Positives Negatives Features Literature

GWAVA Modified RF Regulatory mutations in HGMD Common 1KG variants (1 %) A;B; G D; Ritchie et al. [34]
ChromHMM

FATHMM-MKL SVM with MKL Germline HGMD variants Common 1KG variants (1 %) A;B Shihab et al. [37]
A; B; Extraction on
sequence- and

. motif-based
DeepSEA Logistic regression HGMD variants, eQTL and GWAS hits Common 1KG variants (0.5 %) Zhou & Troyanskaya [38]

cell-type-specific
molecular phenotypes

through CNN
Predicting the effects on fitness derived from evolution
Name Classifier Positives Negatives Features Literature
CADD L ., Simulated variants Human derived variants A;B;D Kircher et al. [33]
SVM/Logistic regression
L. . . A; B; D; RNA
LINSIGHT Logistic regression Fit of INSIGHT model . Huang et al. [35] and Gronau et al. [58]
expression
Unsupervised approach
Name Classifier Instances Features Literature
Correlation of features
Eigen using predefined feature ~ 1KG variants within 500 bp upstream of the gene start site A;B; C Tonita-Laza et al. [36]
groups
Correlation of features
based on the
Eigen-PC eigendecomposition of 1KG variants within 500 bp upstream of the gene start site A;B; C Tonita-Laza et al. [36]

annotation covariation
matrix

32

Chapter 3

Imbalanced Training Sets

I developed the ensemble machine learning method hyperSMURF that can deal with extremely im-
balanced datasets in collaboration with Giorgio Valentini and Peter N. Robinson. Giorgio Valentini
implemented the R version of hyperSMURF. Matteo Re did the feature extraction for GWAS data
with DeepSEA as well as the training for it. I presented the hyperSMURF algorithm at the German
Conference on Bioinformatics (GCB) 2016 and at ISMB/ECCB 2017. The hyperSMURF algorithm was
published in Scientific Reports [66].

M. Schubach, M. Re, P. N. Robinson, and G. Valentini. (2017). Imbalance-Aware Machine Learning
for Predicting Rare and Common Disease-Associated Non-Coding Variants. Scientific Reports,
7(1), 2959.

ML is a powerful method to explore biological processes with only little knowledge. Current
scientific knowledge can be exploited to train a classifier to predict characteristics of new data.
This provides insight into the biological mechanisms involved. To increase performance of the
ML algorithm it is advantageous that the data for training is reliable. But nature teaches us that
it is hard to find good and reliable data because validations of hypotheses can be laborious, costly
or unfeasible with the current state of science. Therefore, ML may be applied in situations where
there are only a few reliable candidates that achieve a certain expected behavior but there is a
magnitude of observations with the opposite or neutral behavior. This leads to an imbalance
between positive and negative observation. Such training sets for a ML classifier are suboptimal
because classifiers tend to focus on the majority class and therefore may neglect the minority
class.

33

Chapter 3 Imbalanced Training Sets

Since WGS has become increasingly affordable, the number of genome projects with thousands of
sequenced individuals has increased over the last years [49, 59, 67-69]. For example the gnomAD
or ExAC study collects genomes or exomes to show heterogeneity of the population so that other
projects can use them as a reference database. Other studies try to to find causative mutations
for rare or common diseases (e.g. by de Ligt et al. [30] and Stahl et al. [70]). Here, the challenge
is to find the one or the few causative changes within around three million differences compared
to a reference genome.

As explained in Section 2.4 there are multiple approaches to predict the pathogenicity on variants
mainly for coding regions [6—9]. But the protein coding part is only a small subset less than 1.5 %
of the genome (according to National Center for Biotechnology Information Reference Sequence
Database (RefSeq) annotation release 108 [71]). A few approaches are available for the non-
coding genome but some of them did not have a major focus on training their methods on the
non-coding part, or they followed different training concepts, like generalizing using evolution-
ary ideas or extracting non-coding features (compare with Section 2.4). Recent studies showed
that non-coding scores do not perform well in predicting non-coding causative mutations for
Mendelian diseases and cancer [56, 63].

Disease and trait-associated variants represent a tiny minority of all known genetic variation.
For instance in non-coding regions the number of available positive examples for Mendelian
diseases is of the order of several hundreds, while the number of negative examples is of the
order of millions [56].

Similar conditions, with different levels of imbalance between positive and negative examples,
may arise in other medically relevant contexts, e.g. in variants related to cancer [72] or in GWAS
for complex diseases [73]. The vast majority of trait- or complex-disease-associated variants
identified to date in GWAS have been found to be located outside of protein-coding sequences
and in some cases localize to known gene regulatory elements such as promoters and enhancers.
But it is difficult to judge if these common variants are causative or if they can be interpreted as
“tags” for haplotypes on which functional variants reside, rather than necessarily being disease-
causing themselves [74, 75].

Relatively few NCVs have been identified to date as causal for Mendelian disease. Although
historically, variation in non-coding sequences has remained underinvestigated [76], mutations
have been confidently identified in a wide range of non-coding function elements, including
promoters, enhancers, 5" and 3° UTRs, RNA genes, and imprinting control region (ICR) elements
[56]. A better understanding of regulatory variants will therefore be necessary to unravel the
functional architecture of rare and common disease.

However, computational algorithms for the analysis of non-coding deleterious variants are faced
with special challenges owing to the rarity of confirmed pathogenic mutations. In this setting,
classical learning algorithms, such as SVM [77] or artificial neural networks [78] tend to general-
ize poorly, because they usually predict the minority class with very low sensitivity and precision
[79]. In the context of the prediction of genetic variants associated with traits or diseases, this
boils down to wrongly predicting most of the disease-associated variants as non-disease associ-
ated, thus significantly limiting the usefulness of machine learning methods for the prediction
of novel disease-associated NCVs.

34

3.1 HyperSMURF

Structure of this Chapter To deal with the imbalance problem that naturally arises from the
analysis of genetic variants in the human genome, I developed a ML method, Hyper SMOTE Un-
dersampling with Random Forests (hyperSMURF), which is specifically designed for the analysis
of (extreme) imbalanced (genomic) data. The topic of this chapter is the method hyperSMURF
and its performance. In Section 3.1 I describe hyperSMURF in detail including the pseudo-code
in Algorithm 3.1 together with implementation details. Datasets used for performance mea-
surement together with other ML strategies to which I compare hyperSMURF are described in
Section 3.3. Section 3.4 examines the features of the datasets in more detail. Section 3.5 presents
the performance results of hyperSMURF compared to other ML strategies and finally Section 3.6
concludes this chapter.

3.1 HyperSMURF

Hyper SMOTE Undersampling with Random Forests (hyperSMURF) is a method specifically con-
ceived to handle extremely imbalanced data. To deal with such problems and to achieve high
coverage of the available input data as well as a high accuracy of the predictions, hyperSMURF
is based on three complementary strategies: (1) sampling techniques; (2) ensemble methods; (3)
a hyper-ensemble approach. Now these strategies are described briefly and Figure 3.1 contains a
schema of hyperSMURF which concludes the overview.

Sampling Techniques The majority class is subdivided into n € N non-overlapping parti-
tions. Their instances are randomly subsampled to reduce the number of negative examples in
each partition, reducing extreme imbalance. At the same time oversampling techniques are ap-
plied to the minority class to enlarge their number. For oversampling, SMOTE from Chawla et
al. [21] is used. This allows the construction of new synthetic minority examples similar to the
available original ones (see Section 2.2.4 for more details). Finally, for each subsampled partition
of instances from the majority class, all minority class instances and a different oversampled set
of minority instances are added, resulting in n balanced datasets.

Ensembling Methods Each balanced dataset d;,i € {1,2,...,n} does not in itself assure
a sufficient coverage of the available training data, since only a small subset of the majority
class is included. To overcome this limitation, a different learning machine is trained on each
partition d; of the n different datasets and then the predictions of the n resulting models are
combined according to ensemble techniques to obtain a “consensus” prediction of the ensemble.
Note that each base learner is trained on different training data, thus assuring diversity between
the base learners, a key concept for the success of ensemble methods [80]. At the same time a
high coverage is guaranteed, since the n datasets include all or a significant part of the available
training data. Section 2.2.2 contains more details on ensemble methods.

Hyper-Ensemble Approach Another key factor for the success of ensemble methods is the
accuracy of the base learners [80]. As described in Section 2.2.2, ensembles usually improve the

35

Chapter 3 Imbalanced Training Sets

accuracy and the robustness of the predictions of the learning machines [81, 82]. To this end, a RF
[17] was used instead of training a single base learner for each dataset d;. Then the predictions
were combined by averaging across the probabilities estimated by each RF. Because each base
learner is in turn an ensemble of decision trees, the hyperSMURF method results in a hyper-
ensemble approach (an ensemble of ensembles). In principle any ensemble of learning machines
can be used but RFs have been chosen because of their prooven effectiveness in the analysis of
genetic variants [83, 84].

In addition hyperSMURF was trained on a feature set which contains groups of scores with simi-
lar features like conservation scores (see Section 3.4). The random feature selection of RFs results
in different feature combinations between and within the groups, so that trees become uncorre-
lated from feature groups, resulting in different variances, which results in a better performance
[17]. See Section 2.2.3 for more details on RFs.

- Minority class
7_ e
o E——
Hyper-
—> SMURF
score
n
Data Oversampling of positives RF hyperensemble
partitioning Undersampling of negative learning combination

Figure 3.1: Schematic overview of hyperSMURF. This schema visualizes the steps processed in hyper-
SMUREF. At the beginning we start with an imbalanced dataset for training (left-side). The training set is
partitioned into n partitions using all minority class instances (green) and an equal split of the majority
class instances (blue) for every partition. In every partition the minority instances are oversampled using
SMOTE and the majority instances are subsampled to an appropriate size. Here minority and majority
instances are equal after over- and undersampling. Then, for each partition, a RF is trained. When a new
instance « should be predicted, the average prediction of all n RFs is used (hyper-ensemble combination)
to generate the hyperSMURF score (Hyscore (€); right-side).

3.1.1 Algorithm

This section explains the pseudocode of hyperSMURF in Algorithm 3.1 in more detail. Z™"
represents the instances of the minority class while Z™% are the instances of the majority class.
More precisely Z™" = {(z,y)|x € O,y = 1} and "% = {(z,y)|x € O,y = 0}, where y €
{0,1} represents a binary classification and © is a set of real-valued vectors representing the
features associated with each instance.

36

3.1 HyperSMURF

The first algorithm step (i) is the partitioning. Here, the algorithm subdivides the instances of

the majority class Z™% into n partitions {I{n N e R } such that |J Z;"" = 7™
=1

i=
and ﬁ Iimaj = () (line 1).

i=1

During the for-loop (lines 2 to 7), the algorithm iterates over the n partitions of the data, does
over- and undersampling steps, and finally trains a different RF [17] at each iteration. At first
within the loop — algorithm step (ii): oversampling — a set of new synthetic instances Igf_m
is generated using all minority instances Z™" through SMOTE [21] (line 3). This algorithm
generates representative novel instances that are similar to the original instances by linear in-
terpolation between randomly chosen pairs of close instances of the minority class. For more
information about SMOTE see Section 2.2.4. The resulting “synthetic” dataset Igji” has a car-
dinality |Igfm| =0 ‘Imm’ Thus, if o is set to 0 = 0, no oversampling is done. Note that the
oversampling factor o is related to the factor IV that is described in the SMOTE Algorithm 2.3

(= 1o0)-

In the second part within the loop — algorithm step (iii): undersampling — a subsample of majority

instances flm %I is constructed for every partition i by randomly subsampling instances from Z;" o

using the undesampling factor u in order to obtain ’flm o ‘ =u (}Imm} + ‘Igjm‘) ,u > 0 (line 4).
If u is set to u = 0, the undersampling step is skipped. A value of u = 1 will balance both classes
during training but sometimes it might be favorable to retain some imbalance while training, e.g.
using a three times larger majority set with u = 3. Thus, we can exploit a larger set of minority
instances for training.

The algorithm step (iv) is the training set assembly. The training set 7; for every partition ¢ is
obtained by a simple union of the sampled majority 7%, original minority Z™", and synthetic
minority instances Igjm (line 5).

At each iteration of the for-loop the resulting training set 7; is used to train a RF model C}
(line 6) which is able to compute the probability P(x = 1|C;) that a given instance x belongs
to the positive class label — algorithm step (v): RF training. The output of the algorithm is a set
C ={Cy,Cq,...,Cp} of RFs (line 8).

Finally, if C is constructed, the hyperSMURF score (Hyscore) for a new instance & can be com-
puted by averaging across the probabilities estimated by each different base RF:

Hyscore(x) = iip<w = I‘Cz) (3.1)
=1

In the standard hyperSMUREF settings each base learner C; is a RF, which is in turn an ensemble
of decision trees, thus resulting in an ensemble of ensembles (hyper-ensemble). But in theory it
can be replaced by any other learner.

37

Chapter 3 Imbalanced Training Sets

In sum, by adopting both over- and undersampling techniques [21, 23, 85] to increase the car-
dinality of the minority class and to reduce the cardinality of the minority class, hyperSMURF
obtains balanced datasets for training the RF. Moreover the ensembling approach assures a high
coverage of the available training data with diverse base learners, since each RF is trained on
different training data. Finally the hyper-ensemble approach uses ensembles as base learners,
instead of single learning machines, which assures accurate and robust predictions.

Algorithm 3.1: Hyper SMOTE Undersampling with Random Forests (hyperSMURF).

Input :Z™% < set of majority class
I™" « set of minority class

n <— number of partitions
k < number of nearest neighbors for SMOTE
o0 < oversampling factor
u <— undersampling factor
Output : Set of random forests C' with |C| = n

// (i) Partitioning of N
{I{naj,I;mj, . ,I;Z““j} < partition ("% n)

fori < 1tondo
// (ii) SMOTE oversampling minority class

Zg"™ SMOTE (Z™™", o, k)

// (iii) Undersampling majority class
fimaj < Undersample (Izmj,u, ‘Zg;”"‘)

// (iv) Training set assembly

7; — Jmin U Igjzn U fz?mlj

// (v) Random Forest training

end

return C' < {C1,Cy,...,C,}

Calculating the out-of-the-bag error (see Section 2.2.2) using the partitions is possible but not
recommended. Of course every instance of the majority class is only used once and the n — 1
partitions can be used for calculating. But all original instances of the minority class are present in
all partitions. Therefore we cannot use them. It is possible to use the artificial minority instances
generated by smote because they should differ between the partitions due to randomization in
SMOTE. But they are synthetic and their benefit is only during the training step. In addition
we cannot ensure that synthetic instances always have different feature vectors between the
partitions and therefore there can be identical sampled synthetic instances. Because of these
considerations the out-of-bag error is not implemented and not considered further.

38

3.2 Genomic Data

3.1.2 Implementation

HyperSMURF is implemented in R as a library and in Java as a Weka plugin [15]. The R li-
brary is available via the Comprehensive R Archive Network (CRAN)! under https://cran.
r-project.org/package=hyperSMURF including a reference manual and examples. The hyper-
SMURF Weka plugin is hosted on GitHub (https://charite.github.io/hyperSMURF) under
GNU General Public License Version 3 (GNU GPLv3). The Java hyperSMURF implementation
can be downloaded and included in other programs using the software project management and
comprehension tool Maven, or it can be included directly into Weka using the plugin manager.
Appendix E contains a detailed tutorial about the hyperSMURF Java package and how it can
be integrated in other Java programs to train and test instances. Further, I created an extended
manual with installation details and examples on https://hypersmurf .readthedocs.io and
the Java application programming interface (API) is hosted on the website https://javadoc.
io/doc/de.charite. compbio/hyperSMURF. Results presented in this work were created with
the Java hyperSMURF implementation.

3.2 Genomic Data

To show the effectiveness of the proposed approach, I trained hyperSMURF with different ge-
nomic imbalanced datasets and performed an experimental comparison with learners of popular
non-coding deleteriousness scores and other published approaches. The following three chal-
lenging and medically relevant data for the ML prediction problem were selected: first, the pre-
diction of regulatory mutations underlying Mendelian diseases [56] (Section 3.2.1); second, the
prediction of NCVs associated with GWAS regulatory hits from the GWAS-Catalog [48] (Sec-
tion 3.2.2); and third, the prediction of the relationship between functional elements and miRNA
regulation (Section 3.2.3).

3.2.1 Mendelian Data

For the Mendelian dataset we have a binary classification problem. On the one hand there
are the non-coding Mendelian disease-associated mutations (positive class). On the other hand
there are observed probably non-deleterious variant sites (negative class). In total hyperSMURF
was trained with 406 positive and 14,755,199 negative instances resulting in an imbalance of
~1:36,000. Each genomic position of a variant was annotated with 26 different genomic at-
tributes including conservation scores and chromatin states. Now, positives and negatives for
the Mendelian data along with their genomic attributes are described in detail.

Regulatory Mendelian Mutations For the positive variant set a comprehensive literature
review was performed to identify NCVs that are convincingly associated with Mendelian disease.
Only those variations were included for which the publications provide plausible evidence of

'https://cran.r-project.org

39

https://cran.r-project.org/package=hyperSMURF
https://cran.r-project.org/package=hyperSMURF
https://charite.github.io/hyperSMURF
https://hypersmurf.readthedocs.io
https://javadoc.io/doc/de.charite.compbio/hyperSMURF
https://javadoc.io/doc/de.charite.compbio/hyperSMURF
https://cran.r-project.org

Chapter 3 Imbalanced Training Sets

pathogenicity. The following lines describe the criteria and the judging approach NCVs. The
phenotypic abnormalities of the individual carrying the variant were assessed and a variant was
included only if the disease association was regarded as plausible on the basis of evidence such as
familial co-segregation or experimental validation, using techniques such as luciferase reporter
assays, electrophoretic mobility assay, or telomerase activity assay. In some cases pathogenicity
was assigned based on curator judgment or computational predictions; for instance, mutations
in RNA genes that affected RNA secondary structure elements such as stem loops were included.

To identify articles for biocuration, a number of review articles were consulted on non-coding
mutations [73, 86-91] including 5’ and 3’ UTR mutations [92-97], enhancer mutations [76, 98,
99], promoter mutations [100, 101], and mutations affecting miRNA genes or miRNA recogni-
tion sites in mRNAs [102-105]. Additionally, locus-specific databases were reviewed for selected
genes [106-108]. Variants that represent susceptibility loci for common, complex disease (for
example GWAS hits) were excluded. Likewise, somatic variants associated with cancer were

discarded.

A total of 453 unique non-coding Mendelian disease-associated variants were identified (see Ap-
pendix A and Tables A.1 to A.7). Mutations were manually mapped to the human genome ref-
erence GRCh37, if necessary. Each variant was cataloged according to its sequence variant type
(Table 3.1). The disease associated with the variant was mapped to an Online Mendelian Inheri-
tance in Man (OMIM) disease identifier and the affected gene was encoded with a National Cen-
ter for Biotechnology Information (NCBI) Entrez Gene identifier. For hyperSMURF performance
measurement only SNVs were used as positive dataset and therefore 47 InDels were removed,
resulting in 406 positive variants for performance evaluation.

Observed Probably non-deleterious Variant Sites For negatives, single-nucleotide sites in
the human genome were identified at which the human genome reference sequence differs from
the inferred ancestral primate genome, based on the Ensembl EPO whole-genome alignments of
six primate species [40, 42] (Ensembl Compara release e71). A file containing the inferred ances-
tral sequences was downloaded from the 1KG website [59, 68]. All positions of high-confidence
alignments that differ from the human reference sequence (hg19) were selected. Low-confidence
calls are defined in the EPO alignment file as those where the ancestral state is supported by one
sequence only. The alignment file was compared with the human genome sequence (hg19) via
an in-house Java program that cataloged the differences found according to location with respect
to genomic annotations. Table A.8 shows a detailed summary of the inspected differences.

Nucleotide positions associated with variants present in the phase 3 1KG data at a frequency of
higher than 5 % were excluded [59, 68]. This means that the derived allele in the human genome
is present at a frequency of less than 95 % so that it is less certain that the allele has been exposed
to many generations of natural selection. The Variant Call Format (VCF) file with integrated
AFs from the 1KG phase 3 was downloaded from their FTP server on May 30, 2015 and the
AF info field of the 1KG database VCF was used as the threshold. All variants were annotated
with Jannovar v.0.14 [109] using the RefSeq [71] (annotation release 105) and only variants that
were annotated with a non-coding variant effect were used as final non-deleterious variant sites
(negative positions).

40

3.2 Genomic Data

Table A.8 shows the distribution of variants extracted in this way and the variant categories
selected for analysis are marked. This yielded to a total number of 14,755,199 sites. Because
deleterious variants are depleted by natural selection in fixed or nearly fixed derived alleles,
we can infer that variations at these sites are unlikely to be associated with Mendelian disease.
Therefore the genomic sites from this set were chosen as negative instances for training.

Table 3.1: Overview of non-coding regulatory Mendelian mutations. A total of 453 unique, non-coding,
regulatory Mendelian mutations were identified by manual biocuration (see Appendix A and Tables A.1
to A.7). The pathomechanism of a subset of the 5" and 3’ UTR mutations was indicated in the original
publications and is shown here. 406 of the 453 mutations were single-nucleotide variants and were used
as positive instances for machine learning. One example of a disease caused by each pathomechanistic
category is shown together with the affected gene and the OMIM number of the disease.

Category Example Count
Disease Gene OMIM ID

Enhancer Triphalangeal thumb, type I SHH 174500 42

Promoter Hemophilia B F9 306900 142

5 UTR 153

Transcription Acute intermittent porphyria HMBS 176000 52/153

(core promoter)

uORF Marie Unna hereditary hypotrichosis HR 146550 37/153

Secondary Hyperferritinemia cataract syndrome FTL 600886 31/153

structure

Kozak sequence Beta thalassemia HBB 613985 2/153

Unclassified Thrombocytopenia 2 ANKRD26 188000 31/153

3’ UTR 43

Polyadenylation Permanent neonatal diabetes INS 606176 14/43

miRNA binding Autosomal-dominant spastic paraple- REEP1 610250 5/43
gia 31

Other Autosomal-dominant myopia 21 ZNF644 614167 24/43

Large non-coding Microcephalic osteodysplastic primor- RNU4ATAC 210710 65

RNA gene dial dwarfism, type 1

MiRNA gene Autosomal-dominant deafness 50 MIR9%6 613074 5

Imprinting control Beckwith-Wiedemann syndrome H19 130650 3

region

Total 453

Total SNVs 406

41

Chapter 3 Imbalanced Training Sets

Genomic Attributes Every position in the genome (hg19 release) was annotated with 26 nu-
meric features. Conservation scores PhastCons and PhyloP [12, 13] were derived from Univer-
sity of California, Santa Cruz (UCSC) [110] using the multi-species alignment of 9 primates,
32 mammals and 45 vertebrates. GERP++ element scores and the corresponding p-values were
downloaded from the GERP website on June 6, 2015 [10, 11]. CpG and G/C content as well as
the observed to expected CpG ratio were downloaded directly from the UCSC Table Browser on
June 6, 2015 [111]. In addition the GC content in the human genome (hg19 release) in a range
of +75bp for every position was computed (Ns are not counted). Transcription and regulation
annotations were downloaded from UCSC [110]. The maximum ENCODE H3K27 acetylation
level along with the maximum ENCODE H3K4 methylation level and the maximum ENCODE
H3K4 trimethylation level was used. DNase hypersensitive scores were derived from the UCSC
ENCODE Regulation DNase Clusters track V3 along with the number of overlapping TFBSs con-
served in the human/mouse/rat alignment. In addition, permissive and robust enhancers were
taken from the FANTOMS project [112]. Population-based features were computed by counting
the number of rare (<0.5 % AF) and common (>0.5 % AF) 1KG variants [59, 68] (phase 3 version
5a of 05/02/2013) in a window of +500 and using the ratio of rare variants (<0.5 % AF) and com-
mon variants (>0.5 % AF) (zero if common variants are zero). Finally, overlapping copy-number
variations (CNVs) for every position in the human genome were counted for each position in the
CNV databases Database of Genomic Variants (DGV) [113], dbVar [114] and ISCA [115] (study
IDs nstd37, nstd45 and nstd75). All attributes are listed and briefly explained in Table A.9.

3.2.2 GWAS Data

To predict regulatory SNPs in the genome, 2115 regulatory GWAS hits were downloaded on May
13,2016 from the locationhttps://xionitiO1.u.hpc.mssm.edu/v1.0/EIGEN_TestDatasets/
GWAS_eQTLs/GWAScatalog_EIGEN.txt [36]. Regulatory GWAS hits were defined from the
GWAS-Catalog [48] that overlap with a known regulatory element. These hits were also the vari-
ations that received the highest Eigen scores by Ionita-Laza et al. [36]. The same non-deleterious
sites defined in the Mendelian data in Section 3.2.1 were used as negatives but every position
overlapping with a regulatory GWAS hit was removed (remaining 1,475,505 negatives).

Variants were annotated with a different feature set to show that the hyperSMURF method is
not dependent on the features. Here the deep CNN method for extracting functional annota-
tions from DeepSEA was used. Therefore regulatory GWAS hits and negative variants were
converted into VCF format. Then, by running DeepSEA [38], their chromatin effect features
were extracted. For this task DeepSEA in version 0.94 together with the genome assembly
GRCh37/hg19 were used. The code for the standalone version and additional evolutionary con-
servation score files were downloaded from http://deepsea.princeton.edu/media/code/
deepsea.v0.94.tar.gz in order to produce a set of genomic attributes directly extracted from
the DNA sequence through deep CNNs.

Using the DeepSEA feature extraction, the feature set is larger than the one used in the Mendelian
dataset. The deep convolutional network at the core of the DeepSEA method makes predictions
for 919 chromatin features (125 DNase features, 690 TFBSs features, 104 histone features). For

42

https://xioniti01.u.hpc.mssm.edu/v1.0/EIGEN_TestDatasets/GWAS_eQTLs/GWAScatalog_EIGEN.txt
https://xioniti01.u.hpc.mssm.edu/v1.0/EIGEN_TestDatasets/GWAS_eQTLs/GWAScatalog_EIGEN.txt
http://deepsea.princeton.edu/media/code/deepsea.v0.94.tar.gz
http://deepsea.princeton.edu/media/code/deepsea.v0.94.tar.gz

3.3 HyperSMURF Performance Measurement

each of the considered variants DeepSEA predicts two score values by analyzing two 1000 bp
FAST-AIl (FASTA) sequences centered on the variant based on the reference genome and carrying
the reference and the alternative allele at the variant position. The DeepSEA method is described
in Section 2.4.3 in more detail.

The predicted chromatin effect scores provided by DeepSEA were used to compute two set of
features: 919 absolute differences of probabilities in Equation (2.16) and 919 relative log fold
changes of odds in Equation (2.17), obtaining an initial set of 1838 features. In addition the
four precomputed evolutionary scores were extracted from the DeepSEA intermediate output.
The scores are the PhastCons score for primates [12] (excluding human), the PhyloP score for
primates [13] (excluding human) and the two GERP++ scores [10, 11]. Substitution scores were
not used. Finally a set of 1842 features was obtained for each variant. According to the protocol
detailed by Zhou & Troyanskaya [38] all the extracted features were normalized to zero mean
and unit variance prior to further analyses.

The processing of the features with deep convolutional networks, using an NVIDIA K20 device
for Graphics Processing Unit (GPU) parallel computing and a server with 128 GB of RAM re-
quired about 115.6 hours of computation time for processing 1,475,911 variants. To reduce the
computation time while maintaining a sufficiently large set of negative background variants,
only 10 % of the negative data were taken randomly (1,475,505 variants in total), resulting in an
imbalance of ~1:700.

3.2.3 eQTL Data

To determine the relationship between functional elements and miRNA regulation, the raw
data of Budach et al. [116] was downloaded from https://github.molgen.mpg.de/budach/
miRNA_eQTL on January, 2017. The file modelmatrix.txt.gz contains 2,002,126 SNPs in total, 4785
of them are associated with miRNA-eQTLs and 1,997,341 with non-miRNA-eQTL observations.
This leads to an imbalance of ~1:400. Budach et al. [116] choose 18 features for their final model
during feature selection. Features contain different transcription factors, ChromHMM states,
miRNA promoters, and multiple separate parts of the miRNA primary transcript. HyperSMURF
and their logistic regression model was trained on the complete imbalanced dataset instead of
using random balanced datasets like in the initial publication [116].

3.3 HyperSMURF Performance Measurement

The performance of hyperSMURF was assessed using the three datasets described in the previous
section. Special evaluation strategies were developed to generate an unbiased performance mea-
surement (see Section 3.3.1). Finally, in Section 3.3.2, I performed an experimental comparison
of hyperSMURF with learners of popular non-coding deleteriousness scores and other published
approaches. This retraining and testing of the models was done on the same data and genomic
features, instead of using pre-trained models or pre-computed scores as it has been usually done
in previous work [34, 36, 38, 56, 83]. The other non-coding scores and their models are previously

43

https://github.molgen.mpg.de/budach/miRNA_eQTL
https://github.molgen.mpg.de/budach/miRNA_eQTL

Chapter 3 Imbalanced Training Sets

introduced in Section 2.4. In this chapter the learners are named after the score for simplicity
but the results listed here always show the retrained ML methods.

3.3.1 Performance Evaluation Strategies

Extensive performance measurements, tests on the influence of different parameters and the
behavior on different imbalance settings were primary made with the Mendelian data (see Sec-
tions 3.2.1 and 3.5). The main purpose of GWAS (Sections 3.2.2 and 3.5.3) and eQTL data (Sec-
tions 3.2.3 and 3.5.4) was the comparison between hyperSMURF and other ML methods, to show
that hyperSMURF can be used with different genetic data as well as a different types and sizes of
features.

On the Mendelian and GWAS data the model performance was tested with a cytogenetic band-
aware 10-fold cross-validation (cytoband-aware 10-fold CV) to ensure that positive or negative
variants of the same location, gene, or disease do not occur in the training and test set. Therefore
the mutations were partitioned into the chromosomal bands. Bands with at least one positive
mutation were assigned to one of the ten folds so that each fold had similar numbers of positives
(stratified CV). To be more precise the Mendelian data (Section 3.2.1) contains around 40 positives
and the GWAS data (Section 3.2.2) around 212 positives per fold. The remaining bands were
randomly assigned to the different folds and negative sites were added to the partition of their
associated band.

For each round of the CV, the nine folds corresponding to the training set underwent the sub-
division of hyperSMUREF into n partitions and were over- and undersampled according to the
procedures described in Section 3.1.1. The trained ensemble was then tested on the remaining
held-out unchanged fold not used for training. In this way, across the ten rounds of the CV
procedure, all available genomic positions were tested.

Negative variants that are genomically close to positives might have similar features, like GC
content. Therefore those data might be more difficult to separate for the classifier. To test the
capability of hyperSMUREF to distinguish classes on those extreme settings, further experiments
were performed by selecting as negatives those variants being within 100, 500 and 1000 Kb dis-
tance from a positive, or being in the same TAD. Then a topologically-aware cross-validation
(topologically-aware CV) was performed by constructing a number of folds equal to the number
of TADs or the number of 100, 500 and 1000 Kb genomic windows around each positive. Over-
lapping windows were merged together. In this way the performance evaluation metrics are
calculated based on the ranking of each positive over its matched negatives rather than on the
overall ranking of all positive variants over all negative variants.

Two evaluation strategies were realized with the eQTL data. On the one hand the initial approach
by Budach et al. [116] was implemented. Here, three quarters of all instances were randomly
sampled for training, using the rest for testing, and the analysis was repeated 50 times. For this
analysis the performance results are shown in Section 3.5.4. On the other hand an approach
similar to the cytoband-aware 10-fold CV, described previously, was taken. Thus, SNPs that
affect multiple (predicted) recognition sites of the same miRNA might have similar behavior to
unrelated SNPs. To ensure that SNPs of the same miRNA do not occur in the training and test

44

3.3 HyperSMURF Performance Measurement

set, they were partitioned into their relative miRNA. Then each miRNA was randomly assigned
to one of the 10 folds by assuring that the size of the eQTLs was similar in all 10 folds (around 478
per fold; stratified CV). Training and test sets for hyperSMURF and the logistic linear regression
were equal for the repetitive training and the microRNA-relation cross-validation (miRNA-relation
CV). Performance results of the miRNA-relation CV experiment are presented in Section 3.5.4.

Automatic Tuning of Parameters HyperSMURF learning depends on several parameters in-
cluding oversampling and undersampling ratios, the size of the hyper-ensemble (number of par-
titions), as well as the learning parameters of the RF that constitute the base learners of the
hyperSMURF method. Therefore I developed a parameter search to find out characteristics of
hyperSMURF and to gain the optimal performance. Parameter search was done using the cyto-
genetic band-aware CV strategy. For each round in the CV the nine partitions of the training set
were used to make an internal 9-fold CV using different parameter settings. For every parameter
combination the AUPRC was recorded. Finally, an optimal hyperSMURF was trained, using for
every 10-fold CV step the best parameter setting in terms of the highest AUPRC from the internal
9-fold CV.

An extensive search was done using the Mendelian data (see Section 3.2.1). Because of perfor-
mance issues the parameters were split into three analysis types. First, optimization was done
using the number of partitions n, together with the oversampling factor o from SMOTE and
the undersampling factor m. Parameters of the RF were kept fixed using ¢ = 10 random trees
and d = 5 random features. Second, the optimal k nearest neighbors of SMOTE per fold were
searched using the optimal values of the previous analysis. And finally third, the RF settings
were optimized with fixed partitions n = 100, over- and undersampling (0 = 2, m = 3).
HyperSMUREF training on Mendelian data was repeated 100 times with standard settings and
the optimal settings (see Tables 3.2 and B.3) using different seeds to get an average performance
that is not dependent on randomization issues. Results of the parameter tuning can be found in
Section 3.5.1.

3.3.2 Comparison with state-of-the-art Methods

The imbalance-aware hyperSMURF method was compared with the retrained learners of popular
methods for scoring NCVs. This extensive comparison was done on the Mendelian and the GWAS
data. Learners of the following scores were used: CADD, GWAVA, DeepSEA, Eigen and Eigen-
PC [33, 34, 36, 38]. Apart from GWAVA, which uses a modified version of the RF algorithm by
balancing the training data through undersampling of the majority class (see Section 2.4.2 for
more details about GWAVA), the other learners are imbalance-unaware in the sense that they
do not adopt specific learning techniques to deal with highly imbalanced data. All models were
retrained and tested using the Mendelian and GWAS data (see Sections 3.2.1 and 3.2.2) instead
of using pre-trained models or pre-computed scores as it is often done in previous work [34, 36,
38, 56, 83].

The SVM underlying the CADD score v1.0 was reimplemented by a more efficient C++ imple-
mentation using the LibLinear library v.2.01 [117]. The GWAVA learner was reimplemented

45

Chapter 3 Imbalanced Training Sets

using Java and the Weka library [15]. The module is called weka-GWAVA (version 0.1) and
source code is available from https://charite.github.io/weka-GWAVA. The R code for the
Eigen and Eigen-PC methods was downloaded from the Eigen Website: http://www.columbia.
edu/~1i2135/Eigen_functions_112015.R, while the original DeepSEA software in version
0.94 was downloaded from http://deepsea.princeton.edu/media/code/deepsea.v0.94.
tar.gz.

All methods were used with the same input data and with exactly the same folds using the pre-
viously described cytoband-aware 10-fold CV. The settings of the individual methods were se-
lected from their original publication. This means GWAVA was used with a forest-size of 100,
but the number of random features was used as in hyperSMURF, because the feature sizes differ
between the original publication and the data used in this work. For the SVM approach of the
CADD method the same c of ¢ = 0.0025 was used as by Kircher et al. [33] and finally the code of
Eigen, Eigen-PC and DeepSEA remained untouched. For Eigen conditionally independent blocks
were identified manually using feature correlation (see Section 3.4). In the Mendelian data three
blocks were defined: conservation, population and regulatory features. The GWAS data contains
the following three blocks: conservation, logfold and diff. The results of this extensive compari-
son are shown in Section 3.5.3.

3.4 Informative Features

Univariate analysis was performed to see the performance of single features in the different
datasets. This gives an idea about top performing features by themselves. But it is worth point-
ing out that some features perform poorly alone but have a high information content when
combined with another feature. For a robust prediction the average AUROC and AUPRC of an
univariate logistic regression model repeated 100 times [118] implemented in Weka [15] was
used. To measure the performance for the Mendelian and GWAS data the previously described
cytoband-aware 10-fold CV was performed.

Budach et al. [116] did an extensive performance measurement of their eQTL features with an
additional feature selection that results in 18 remaining features for training. The performed
feature selection was similar to the univariate logistic regression analysis except that for every
regression run the distance between SNP and miRNA was added as second feature. Therefore no
univariate logistic regression analysis was performed here.

In addition to the univariate analysis, correlation plots of features using the Pearson correlation
coefficient were made to inspect correlation between features and to find functional groups (see
Figure 3.2). These groups are needed as input for Eigen to obtain the between-block correlations
(see Section 2.4.4).

Mendelian Data Results of the 100 times repeated univariate logistic regression model of all
26 features are shown in Table B.1. Most of the features show an information gain on their
own, except the two FANTOM5 features, the GERP++ element-score p-value and counts of rare
variants as well as counts of overlapping CNVs in dbVAR, DGV, and ISCA.

46

https://charite.github.io/weka-GWAVA
http://www.columbia.edu/~ii2135/Eigen_functions_112015.R
http://www.columbia.edu/~ii2135/Eigen_functions_112015.R
http://deepsea.princeton.edu/media/code/deepsea.v0.94.tar.gz
http://deepsea.princeton.edu/media/code/deepsea.v0.94.tar.gz

3.4 Informative Features

The population features like CNVs or SNVs are expected to have a poor performance as sin-
gleton features. For example the number of common and rare variants in a +500 window have
AUROC:s of 0.58627 and 0.50697. So there is no information gain if we know that a region has
many or just a few rare variants. For common variants there is a small gain on highly polymor-
phic regions like the major histocompatibility complex (MHC) because these regions might not
contribute to Mendelian disease. But of course, it is of high information if we know the fraction
of rare and common variants in those regions, meaning that on polymorphic sites there might
by chance also be more rare variants. But if this is not the case, this might be an indicator for a
negative selection of rare variants at the site. This hypothesis underlines the performance of the
fracRareCommon feature, a ratio of rare to common variants. The information gain in terms of
the AUROC tremendously grows to 0.67170. So we can suggest similar results for the CNVs by
using the ratio between pathogenic CNVs (dbVAR, ISCA) to polymorphic CNVs (DGV).

By inspecting the correlation of the features in Figure 3.2a we can define roughly four groups.
One large group are the conservation scores. Another group are the chromatin features including
also CpG and GC content. The third group are the population features like CNVs, rare or common
variants and the last group are the FANTOMS5 tracks which have only a tiny relation to DNase
features and the H3K4 methylation level. For preselected Eigen blocks FANTOMS5 were added to
the chromatin feature group.

GWAS Data The GWAS data has a large set of 1838 features resulting in a total of 1,838,000
trainings of the logistic regression models because of the 10-folds and the 100 repetitions. The
outstanding features are the two conservation scores PhyloP and PhastCons. PhyloP has a large
AUPRC of 0.36978 £ 0.01004 (AUROC of 0.76382 £ 0.00019) and PhastCons is highly predictive
because the AUROC is over 0.9 (AUROC = 0.93689 =+ 0.00094 and AUPRC = 0.04262 + 0.00332).
All non-conservation features that were generated by the deep CNN of DeepSEA seem to be not
informative by themselves. Most features have an AUROC around 0.5. The univarite results of
the genomic features were ranked according to the estimated AUPRC and the ten best and ten
less informative features are listed in Table B.2.

For the correlation matrix the four conservation scores and the eight best other features together
with their logfold values were selected. The corresponding correlation matrix in Figure 3.2b
shows two correlation groups: on the one hand the conservation scores and on the other hand
the CNN features (chromatin, DNase, and TFBS features). In addition there is a clear difference
between logfold and the absolute difference of the probability features. This shows that the dif-
ferent computation of features results in different feature space, like it is visualized in Figure 2.1.
The highly correlated CNN features suggest that the feature set of the GWAS data might be over-
loaded because we can imagine a similar behavior for the remaining 1818 features. So it might
be advantageous to use a single score over multiple cells like the maximum H3K4 methylation
level in all cells used in the Mendelian dataset (see Table A.9).

Overall these results show that it will be important to select always one conservation score for
training a classifier. Therefore in hyperSMURF I would suggest to increase the number of random
features to 100 so that around 22 % of the random trees in the RF will use a conservation score.
This results from the four conservation features in the 1838 large feature set as seen the equation

47

Chapter 3 Imbalanced Training Sets

4.
1838

100 - 100 = 21.76 %. Another option will be to select the features in a stratified way by

building groups. Then the algorithm must be adapted to always select a feature out of each group
to ensure that a conservation score will be always selected. Another common option is to use

weights for features.

eQTL Data As explained above no univariate logistic regression was done for the eQTL data.

Only the correlation between the remaining features is visualized in Figure 3.2c. These results

suggest that the remaining features, after the feature selection, were wisely chosen because no

correlation is detected and every feature reflects a different feature space for the prediction.

verPhastCons46way
mamPhastCons46way

(a) Mendelian data.
(b) GWAS data.

priPhastCons46way | | Hela.S3.GTF2F1.None.LOGFOLDCHANGE
GerpRS |] HeLa.$3.TBP.None.LOGFOLDCHANGE
numTFBSConserved [] A549.ETS1.EIOH_0.02pct LOGFOLDCHANGE
verPhyloP46way .- PFSK.1.FOXP2.None.LOGFOLDCHANGE
mamPhyloP4sway] HepG2.Mxi1 None.LOGFOLDCHANGE
priPhyloP46way [] HepG2.Sin3Ak.20.None.LOGFOLDCHANGE
GerpRSpy [HepGa.MYBL2.None LOGFOLDCHANGE
GbVARCount]| GM12878.MAZ None.LOGFOLDCHANGE
DEVGount] . HeLa.S3.GTF2F1.None.PDIFF HE
\sCApath] =10 HeLa.53.TBP.None. PDIFF N
commonVar u 0s A549.ETS1.EIOH_0.02pct. PDIFF | |
00 HepG2.Mxit.None.PDIFF | [| -os
CpGperGC > [}
CoGerCea o5 HepG2.Sin3Ak.20.None. PDIFF |] 10
HepG2.MYBL2.None. PDIFF
CronsExp EEE L e o
“COontent u GM12878.MAZ.None.PDIFF | |
— PFSK.1.FOXP2.None.PDIFF | |
naseClusteredScore | || GERP. NES u
DnaseClusteredHyp |] GERP. RSS u
EncHaKaMe1 | | Pryior [
EncHokaMe3 .. PhastCons [l
EncHaK27Ac
EL PSP E L E L LKL LSS EE
fantomsRobust |] B S
fantom5Perm | | & &R sy
& N A P T Qo S AT 0% 0L %00 %00
arevar [l ok DR S s s s s s K
S o N R L I L I L P F
fracRareCommon [l Lo N F 2P o K OO OO O OC
& SRS S
S8 € SO @SR LA D E P S St DD DD DD & €59 S
@sef%éw @‘I_‘,@i_‘,@e gf;*io“@v&l@é;i@:‘ﬁi°°Z.°°°é*fv§‘$“f@‘\:'ﬂé e“i&”‘i"ﬁ & &£ s QQ‘O NN {151‘*\:) “8'2‘3‘9@2« P
F T SE LR L G P SR F S S s T @ As SRR =
o ,,«\‘°\°‘¢&§ S FEF RS PFFT SRS FFF EIOX SENCIS
& OF CECLOS LELE EEF SSRGS B
& S L S R R N
S & 88 € g
(c) EQTL data,
—— |
12_Repressed .
- [
18_Heterochrom/lo .
inaso u
9_Ten_Transiton ||
3_Poised_Promoter .
s B Conr
=0
1_Active_Promoter . 05
00
promoterspecic ||
05
mirna.drosha . |

4_Strong_Enhancer
7_Weak_Enhancer
distance

hosteqtl

10_Txn_Elongation

mmaso [
—
R R & & S @ & oF P S R © E S
SEFLSLLE S CELEES S
SR FCGFCIE 4 & F
o & & & S a7 &
< 0 § &8 5 &
N A7 N7 S o7 ©

Figure 3.2: Feature correlation of Mendelian, GWAS and eQTL data. Visualization of correlation be-
tween the features within (a) Mendelian, (b) GWAS and (c) eQTL data. Correlation is computed by Pearson
correlation coefficient. For GWAS features correlation (b) a subset of features is shown: conservation and
eight other features (using logfold and the absolute difference of the probability).

48

3.5 HyperSMURF Performance Results

3.5 HyperSMURF Performance Results

This section shows the main results of the ML algorithm hyperSMURF by applying it to the
Mendelian, GWAS and eQTL data described in the previous Section 3.3. First, in Section 3.5.1
I explore the different parameters of hyperSMURF carefully and suggest standard settings as
well as optimal parameters from automatic tuning experiments on the Mendelian data. Further,
Section 3.5.2 will explore the performance of different functional elements within the Mendelian
data. An important part is Section 3.5.3 where I compare the performance of retrained popular
non-coding methods to hyperSMURF using GWAS and Mendelian data. Finally, Section 3.5.4
compares the performance results from Budach et al. [116] to hyperSMURF on the eQTL data.

3.5.1 Optimal Parameters

To provide an idea about the impact of the different learning parameters on the overall hyper-
SMURF performance, an automatic tuning of parameters, described in Section 3.3.1, was per-
formed with the Mendelian data. Figures 3.3, B.1 and B.2 show that with an increasing number
of partitions n, the performance in terms of AUPRC increases, as expected, because a larger space
of the negative variants is explored and the larger size of the hyper-ensemble provides more ac-
curate and reliable results. Nevertheless we have a steep boost until n = 100 and for larger
numbers of partitions the improvement is marginal. In terms of runtime this means that we can
safely use n = 100 to obtain reasonably good performance.

In addition Figures 3.3a and B.2 show that the best selection of the undersampling factor m
within a partition is important. The curves corresponding to m = 3 lie steadily over the other
curves with lower undersampling ratio and show on average an AUPRC increment of about 0.05
independently of the selected oversampling factor o.

The oversampling factor o contributes to the overall performance too (Figures 3.3a and B.2) even
if the improvement is less significant than that of the undersampling ratio. In contrast to that, the
size of the k nearest neighbors used by SMOTE seems to play no performance role on the tested
neighbor sizes k = {3,4,5,6,7,8,9,10}. Here, Figure 3.4b shows at all neighbors sizes similar
performance in terms of the AUPRC at the complete range of tested oversampling factors. Later
we will see that using the optimized k per fold has the same performance as using the standard
value £ = 5 on the Mendelian data.

The learning parameters of the RF also play a role in the performance of the hyper-ensemble.
Figure 3.4a shows that increasing the forest size leads to better performances, but the AUPRC
curve reaches saturation for forest sizes larger than ¢ = 20. Therefore there is no need to increase
runtime by increasing the forest size. Moreover, the number of random selected features d is an
important learning parameter because Figure 3.4a shows that the best curves correspond tod = 5
and d = 6. A relatively large decrement in performance can be registered when a suboptimal
number of features d was selected. These results reveal that we can obtain good performances
on Mendelian data with the standard settings listed in Table 3.2, while keeping the runtime to a
minimum.

49

Chapter 3 Imbalanced Training Sets

Undersampling factor —1—2—3 Oversampling factor : 2.5 -~ ;.5 : :2%.5
0.4
0.4
O
x [6)
x
50.3 % 0.3
<
0.2 0.2
0 50 100 150 200 0 50 100 150 200
Number of partitions Number of partitions
(a) Oversampling factor o = 2. (b) Undersampling factor m = 3.

Figure 3.3: HyperSMURF parameter tuning. AUPRC as a function of different hyperSMURF partition
sizes generated by internal 9-fold cytogenetic band-aware CV using Mendelian data. Error bars represent
the standard deviation between ten repetitions of internal 9-fold CV using different folds. (a) Curves rep-
resent different undersampling factors with a fixed oversampling factor o = 2 (Figures with oversampling
factor o = 0.5,0 = 1, 0 = 1.5, 0 = 2.5, and 0 = 3 can be found in Figure B.2). The oversampling
factor is the ratio of synthetic positive examples generated through the SMOTE algorithm with respect
to the available number of positive examples (see Section 3.3.1 for details). (b) Curves represent different
oversampling factors with a fixed undersampling factor m = 3 (Figures with undersampling factor m = 1
and m = 2 can be found in Figure B.1). The undersampling factor is the ratio of negative examples with
respect to positives. Negative examples were randomly sampled without replacement from each partition
of the data (see Section 3.3.1 for details).

Table 3.2: HyperSMURF default parameters. Default values and sets of parameter values explored for
the automatic tuning of hyperSMUREF. The item “Random tree features” refers to the number of randomly
selected features at each step of the construction of the inductive trees that constitute the base learners of
the RF. More details about the parameters of hyperSMUREF can be found in Section 3.1. For random tree
features the standard is always set to d = L\/m | where x is a vector of all training features. Therefore
the random tree features of d = 5 marked by an asterisk * holds only for the Mendelian data because it
has 26 features. The equation results in d = 4 for the eQTL data. On the GWAS data d is increased to
d = 100 to raise the probability to include a conservation score in a random tree (see Section 3.4).

Parameter Description Default Parameter Values for Optimization
n Number of partitions 100 10, 25,50, 75,100, 150, 200

o SMOTE oversampling factor 2 0.5,1,1.5,2,2.5,3

k SMOTE k-nearest neighbor 5 3,4,5,6,7,8,9,10

m Undersampling factor 3 1,2,3

t Forest size 10 9, 10,20, 30, 50, 75, 100

d Random tree features 5* 3,4,5,6,7,10

50

3.5 HyperSMURF Performance Results

—3—5—7 . —05—15—25
RF random features _ 4—6—10 Oversampling factor __ 1 2 -3

0.4 0.4
0 2
g 0.3 g 0.3
< <

0.2 0.2

0 25 50 75 100 4 6 . 8 10
Tree size of Random Forest k-nearest neighbors
(a) RF parameter tuning. (b) SMOTE k-nearest neighbors parameter tuning.

Figure 3.4: RF and SMOTE k-nearest neighbors parameter tuning. (a) AUPRC as a function of different
RF sizes (number of decision trees) trained by internal 9-fold cytogenetic band-aware CV. The curves
represent the number of random features d = {3,4,5,6,7, 10} used to construct each decision tree of the
RF. (b) AUPRC as a function of different k-nearest neighbors trained by internal 9-fold cytogenetic band-
aware CV. The curves represent different oversampling factors o = {0.5,1, 1.5, 2,2.5, 3} for SMOTE. All
not described hyperSMURF parameters were set to standard values (Table 3.2). Error bars represent the
standard deviation between ten repetitions of internal 9-fold CV using different folds.

51

Chapter 3 Imbalanced Training Sets

To show how the different methods within hyperSMURF interact and contribute to the final
result, only parts of hyperSMURF were run on the Mendelian data and the performance was
compared to the standard settings. A complete overview of the performance result is shown in
Table 3.3, and PR along with ROC curves are shown in Figure 3.5. All of these results show that
each component of the algorithm (and in particular the hyper-ensemble approach) plays a key
role in improving the performance of the method. Comparison with a standard RF (that consti-
tutes the base learner of hyperSMURF) shows the huge improvements obtained by hyperSMURF
with respect to this standard state-of-art ML algorithm.

Table 3.3: Impact of hyperSMURF components on its overall performance. AUROC, AUPRC and AU-
ROC of the top 100, 500, and 1000 variants(AUROC1 g, AUROC35¢9 and AUROCggg) with the Mendelian
data. “HyperSMUREF std” is the full hyperSMUREF algorithm; “HyperSMURF optimal” uses the best auto-
mated selected parameters for every CV step (see Section 3.3.1); “HyperSMURF no-over” is hyperSMURF
with no oversampling; “HyperSMURF no-par” is hyperSMURF with no partitioning and therefore no
hyper-ensemble approach. “RF” is the classical Random Forest ensemble. In every setting a subsam-
pling of the majority (negative) class to three times the cardinality of the minority class (positives) was
performed. Other parameters were set to default (see Table 3.2). Every training was done 100 times with
a different pseudorandom number generator by choosing a different seed. The mean AUCs and their
standard deviation are shown here.

Algorithm AUPRC AUROC AUROC g9 AUROCj5

HyperSMUREF std 0.43 +£0.02 0.99 £0.00 0.67 =0.05 0.79 £0.01
HyperSMURF optimal 0.45 £0.01 0.99 £0.00 0.69 £0.03 0.78 £0.01
HyperSMURF no-over 0.40 £0.02 0.99 £0.00 0.66 £0.05 0.76 #0.02
HyperSMURF no-par ~ 0.03 +0.00 0.98 +0.00 0.00 0.14 +0.23
RF 0.02 +0.00 0.99 +0.00 0.00 0.03 +0.11

Finally, it is possible to use the best parameter setting in terms of the highest AUPRC generated
by the internal 9-fold CV in a final and optimal training of a cytoband-aware 10-fold CV. Of
course this is possible because the internal 9-fold CV uses only the training dataset and the test
dataset remains untouched. The optimal settings of hyperSMURF can be found in Table B.3. To
show the increase of performance the cytoband-aware 10-fold CV was repeated 100 times using
the standard and the optimal hyperSMURF (Table 3.2). In every round a different pseudorandom
number generator by choosing a different seed was used to get an average performance that
is not dependent on the chain of the chosen pseudorandom number generator. The standard
hyperSMURF achieved an AUPRC of 0.4319 £ 0.0189, while the optimized algorithm an AUPRC
of 0.4503 &£ 0.0189. This difference is significant according to the Wilcoxon rank sum test (p-
value < 2.2-10716). PR and ROC curves of the repeated experiment are visualized in Figure 3.5.

52

3.5 HyperSMURF Performance Results

— hyperSMURF std (0.989) — RF (0.983) — hyperSMUREF std (0.432) —RF (0.016)
— hyperSMURF optimal (0.988) — hyperSMURF optimal (0.450)
— hyperSMURF no-over (0.992) — hyperSMURF no-over (0.397)
hyperSMURF no-par (0.986) hyperSMURF no-par (0.027)
1.00 r_'_—k 1.00
0.75 0.75
[0}
©
o 5
0.50 éo 50
o =
° o
>
=
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate Recall
(a) ROC curves. (b) PR curves.

Figure 3.5: ROC and PR curves of the standard, optimal and only parts of hyperSMURF. “HyperSMURF
std” is the full hyperSMURF algorithm; “HyperSMURF optimal” uses the best automated selected parame-
ters for every CV step (see Section 3.3.1); “HyperSMURF no-over” is hyperSMURF with no oversampling;
“HyperSMURF no-par” is hyperSMURF with no partitioning and therefore no hyper-ensemble approach.
“RF” is the classical Random Forest ensemble. Here, only the experiment which has the closest AUPRC to
the mean of the 100 times repeated experiment per group is shown.

The optimized k nearest neighbors of SMOTE have no contribution to the performance. When
using the default of k& = 5 the AUPRC performance is 0.4509 £ 0.0105. This is slightly better
than using the optimized k. But the difference is not significant according to the Wilcoxon rank
sum test (p-value = 1).

Figure 3.5 is an excellent example to show that the ROC curve is not at all informative on im-
balanced datasets. There is no significant difference between the ROC curves and their AUROCs
in Figure 3.5a. But in Figure 3.5b the PR curves and their AUPRCs are different, especially if we
compare the RF approach with hyperSMURF.

3.5.2 Performance on genomically close Variations

Positive and negative variations that are in similar regions of the genome might have similar
features. Therefore it can be difficult to separate them properly by the classifier. To see the per-
formance on close variation Section 3.3 introduces the topologically-aware CV where different
windows around positives were set and only negatives within the resulting regions were chosen.
This approach also reduces the imbalance between the two classes because only a small frac-
tion of negatives was selected. Now the imbalance ranges from ~1:80 to ~1:3000, dependent on
which dataset or which approach is used (see Table 3.4). So the default parameters in Table 3.2
have to be adjusted.

53

Chapter 3 Imbalanced Training Sets

For the Mendelian data, only the 100 Kb negative selection has a low imbalance of ~1:300 and
with default settings of partitioning and oversampling we get a balanced dataset in every parti-
tion. Consequently no undersampling is needed and the parameter is set to m = 1. For training
the GWAS data sets I reduced the partitioning to n = 50 in all four experiments, changed the
oversampling to o = 1 in the 100, 500 Kb and TAD selection, and finally used m = 1 for under-
sampling in the 100 Kb experiment. In theory other combinations of parameter settings can be
used to balance the dataset. Also an internal CV can be done to select the best parameters. But
in this analysis it is sufficient to have a good performance rather than optimal, because I want to
demonstrate that hyperSMURF also works on genomically close variations.

Table 3.4 shows the imbalance, the resulting number of folds and the performance in terms of the
AUROC and AUPRC of the different experiments. The results clearly demonstrate that hyper-
SMUREF is able to distinguish disease variants genomically close to non-disease variants. The
AUPRC achieved performances are even better than those obtained with the experimental set-
up over all negatives by the cytoband-aware 10-fold CV. The main reason for this is the reduced
imbalance of the new experiments. But also the increased number of folds in the CV leads to
better results, because more training data is available to test the remaining fold.

Table 3.4: Performance of hyperSMURF with different negative selection strategies. The first column
represents the size of the “genomic window” used to select negatives around each positive or the “TAD-
based” negative selection strategy; the second column reports the imbalance between positive and nega-
tive examples; the third is the number of folds of the topologically-aware CV, while the last two columns
show the estimated AUPRC and AUROC. The experiment was done with (a) Mendelian and (b) GWAS
data.

(a) Mendelian data

Negatives Selection Imbalance Ratio Folds AUPRC AUROC

+100Kb 1:302 116 0.71 0.98
+500Kb 1:1432 116 0.63 0.98
£1000Kb 1:2765 111 0.62 0.98
TAD 1:1406 125 0.61 0.98

(b) GWAS data

Negatives Selection Imbalance Ratio Folds AUPRC AUROC

+100Kb 1:80 1402 0.6488 0.9840
+500Kb 1:277 723 0.4796 0.9841
£1000Kb 1:409 413 0.4213 0.9851
TAD 1:269 1196 0.4792 0.9838

These experiments show that hyperSMUREF is able to distinguish between close variations. But it
should be wisely considered wether a classifier is trained or tested on new or unknown variations.
If the goal is a general classifier for the whole genome then it might be useful to include negatives

54

3.5 HyperSMURF Performance Results

from unknown regions. Here I would strongly recommend the overall approach. If some genes
or regions are of special interest where already known regulatory variations are present, the
topologically-aware CV strategy can be of benefit because it might distinguish better between
close variants.

3.5.3 State-of-the-art Methods Performance

As described in Section 3.3.2, the performance of hyperSMURF was compared to the retrained
methods of CADD, GWAVA, Eigen, Eigen-PC and DeepSEA [33, 34, 36, 38] using the Mendelian
and GWAS data. Different metrics were used to compare hyperSMURF with the other methods.
The standard metrics AUROC, AUPRC, precision, recall, and F-measure at different score thresh-
old levels as well as an analysis of the distribution of top-ranked variants associated with traits
or diseases were applied.

— hyperSMURF (0.432) — Eigen-PC (0.044) — hyperSMURF (0.635) — Eigen-PC (0.004)
— CADD (0.093) — GWAVA (0.195) — CADD (0.037) — GWAVA (0.414)
—Eigen (0.013) — DeepSEA (0.052) — Eigen (0.004) — DeepSEA (0.246)
1.00 1.00
0.75 0.75

Precision
I
()]

o
Precision
o
(o)

o

0.25 0.25
0.00 0.00 - -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Recall Recall
(a) Mendelian data precision-recall (PR) curves. (b) GWAS data precision-recall (PR) curves.

Figure 3.6: Comparison of the PR curves across methods. (a) PR curves using the Mendelian data. (b)
PR curves with GWAS data. Numbers in parentheses represent AUPRC values of the PR curves.

ROC and PR Curves The overall results in terms of PR curves, presented in Figure 3.6, show
that hyperSMUREF achieves significantly better results than the retrained state-of-the-art methods
with both data, Mendelian and GWAS. At all recall levels hyperSMURF achieves larger values
of precision and the AUPRC is significantly larger than with other methods. These results are
confirmed by the analysis of the ROC curves in Figure B.4 and the sensitivity of the methods as
a function of the quantiles of top ranked variants in Figure 3.7. Although the AUROCs between
the methods are similar, the difference between the ROC curve of hyperSMURF compared to
CADD and DeepSEA was statistically significant according to the DeLong test (significance level
a = 0.05; compare with Table B.5a, [119]). But it is well-known that with imbalanced data the
AUPRC is more informative than the AUROC [7, 24].

55

Chapter 3 Imbalanced Training Sets

Focusing on the retrained learners the imbalance-aware strategy of GWAVA works in both set-
tings better than the other imbalance-unaware learners. Interestingly the third best method is
different for the GWAS and the Mendelian data. For Mendelian the SVM of the CADD method
scores reasonably well on low recall levels but does not display good performance on the GWAS
data. In contrast to that, the DeepSEA approach has no good performance on Mendelian data
but shows a reasonable performance on the GWAS data. These observations might result from
the features that were used in both sets. The SVM seems to score better on smaller feature sizes.
The convolutional networks from DeepSEA have a better performance on large features and the
feature set of the GWAS data itself is generated directly for the DeepSEA method using deep
convolutional networks.

— hyperSMURF — Eigen — GWAVA — hyperSMURF — Eigen — GWAVA
— CADD Eigen-PC — DeepSEA — CADD Eigen—-PC — DeepSEA
1.00 1.00
0.75 0.75
= =
= =
‘3 0.50 3 0.50
C C
[0 [0
n (%]
0.25 0.25
0.00 e 0.00
107 107 1072 10° 107® 107 1072 10°
Quantile of top ranked variants Quantile of top ranked variants
(a) Mendelian data. (b) GWAS data.

Figure 3.7: Comparison of the sensitivity across methods with respect to the quantiles of top ranked
variants. (a) Sensitivity with respect to the quantiles of top ranked variants with Mendelian data. (b)
Sensitivity with respect to the quantiles of top ranked variants with the regulatory GWAS hits. X-axis is
log, transformed.

Distribution of top ranked Positive Variants The curves in Figure 3.7 represent the sen-
sitivity as a function of the quantile of top ranked positive variants. For instance a sensitivity
equal to 0.1 at a quantile 10~ means that one tenth of the positive variants lie in the top 0.001
quantile, the first top ranked thousandth of the overall variants. For example in Figure 3.6a the
curve of hyperSMURF has a sensitivity equal to about 0.75 at a quantile 10~%. This shows that
about three quarters of the Mendelian mutations in non-coding regions are scored in the top ten
thousandth of the overall variants. Therefore 300 Mendelian mutations are within the top scored
1700 of the over 14 million genetic variants analyzed. Similar results are achieved for the GWAS
data shown in Figure 3.7b. Here, hyperSMURF gains a sensitivity of 0.75 at a quantile level of
10~3. So we have around 1500 regulatory GWAS hits within the top scored 2900 of around 1.4
million variants.

56

3.5 HyperSMURF Performance Results

Thus, these curves reflect the ability of the different methods to score the positive variants in
the top positions of the ranking. From this standpoint the curves show that imbalance-aware
methods achieve the best results because the curves of hyperSMURF and GWAVA lie significantly
above the curves of the other imbalance-unaware methods with both analyzed datasets (compare
with Figure 3.7). The vote for the third best method is similar as in the ROC and PR curves.
DeepSEA works reasonably well on the GWAS data. For the Mendelian data no clear third best
method is detectable.

Precision, Recall, and F-Score Results For a better understanding of the prediction behavior
of non-coding common and rare disease associated variants of the different retrained methods
the precision, recall, and F-score as a function of the score predicted by hyperSMURF and the
other methods were inspected and visualized. In sum, hyperSMURF shows the best F-score for
Mendelian and GWAS data. This is mainly the consequence of a better precision for hyper-
SMURF, while maintaining a recall comparable with the other methods. The second best method
is GWAVA possibly because it is the only one among the compared methods that explicitly adopts
imbalance-aware learning techniques. Detailed precision, recall and F-score results as a function
of the score thresholds are presented in Figures B.5, B.7, B.8 and B.10 and are comprehensively
discussed in Appendix B.

Table 3.6: Comparison of imbalance-unaware and imbalance-aware methods with progressively im-
balanced data. Results of imbalance-unaware (SVM of CADD) and imbalance-aware (hyperSMURF and
modified RF of GWAVA) learners in terms of AUPRC and AUROC using cytoband-aware 10-fold CV with
Mendelian data. Imbalance ratio represents the ratio between positive examples and negatives using the
Mendelian data.

Imbalance Ratio AUPRC AUROC
CADD GWAVA hyperSMURF CADD GWAVA hyperSMURF

1 0.89 0.99 0.99 0.87 0.99 0.99
0.1 0.79 0.96 0.96 0.89 0.99 0.99
0.01 0.52 0.88 0.90 0.89 0.99 0.99
0.001 0.23 0.71 0.78 0.85 0.99 0.99

Progressively Imbalanced Data To show how imbalance-aware and imbalance-unaware meth-
ods perform on different imbalance levels, negative variants of the Mendelian data were sub-
sampled to four different subsets with imbalance levels of 1:1, 1:10, 1:100, and 1:1000. Then a
cytoband-aware 10-fold CV training was done using the imbalance-aware methods hyperSMURF
and GWAVA, and the imbalance-unaware SVM classifier of CADD.

The results in Table 3.6 show that all methods have a good AUROC on all imbalance levels. But
as described in Section 2.2.5 the ROC statistics are not convincing in imbalanced datasets. For
the imbalance-unaware SVM the AUPRC reduces significantly when the imbalance is increased.
In these settings AUPRC of the GWAVA and hyperSMURF methods decreases less dramatically.

57

Chapter 3 Imbalanced Training Sets

With 1:1000 they are still larger than 0.7. Comparing hyperSMURF and GWAVA it seems that
hyperSMURF performs slightly better than GWAVA. This small performance boost can be due to
the SMOTE oversampling because it is, of course, not present in GWAVA and there is a similar
increase of around 0.05 of the AUPRC in other experiments, like the automated parameter selec-
tion in Figure 3.3b or the performances of the different components in hyperSMURF shown in
Table 3.3.

3.5.4 eQTL Performance

The imbalance of the eQTL dataset is with ~1:400 not as high as in the Mendelian dataset (see
Section 3.2.1) and therefore the parameters of the hyperSMURF algorithm must be carefully cho-
sen. I used the standard parameters of hyperSMURF already used in Mendelian training (see
Section 3.2.1) but without undersampling of the majority class (see step (iii) in Algorithm 3.1).
Standard values of hyperSMUREF are in Table 3.2. This leads to a theoretical imbalance of ~1:1.39
in every partition to train the RF. Further parameter search was not performed because of high
performance on the standard settings.

Repetitive training of the eQTL dataset resulted in an average AUROC of 0.9860 = 0.0010 for
hyperSMURF and 0.9353 £ 0.0005 for the logistic regression model. The average AUPRC is
0.5837£0.0109 for hyperSMURF and 0.0845 £ 0.0007 for the logistic regression model showing
clearly that hyperSMURF has superior results on the given imbalance problem. The PR curves
of all 50 repetitions are visualized in Figure 3.8 together with the probability cutoff (same results
for ROC curves are in Figure B.11). Both methods have stable shapes of curves and stable AUCs.
But there is a huge improvement in terms of the PR curve with hyperSMURF. Around 25 % of
positives are at the top rank and more than 60 % of all positives have a precision over 0.5 using
hyperSMURF. The regression has no significant precision at any recall. In addition the probability
value seems to scale perfectly on the hyperSMURF approach (compare the probability cutoff
in Figures 3.8 and B.11). Most positives have a probability larger than 0.9 (see PR curves in
Figure 3.8) but in general the probability is nicely distributed over all data (see the ROC curves
in Figure B.11). Therefore a reliable cutoff can be used to find new eQTLs.

The PR and ROC curve performance of miRNA-relation CV are shown in Figure 3.9. ROC and PR
statistics show lower performance than in the previous test where a random split of training and
test data was used (experiment was repeated 50 times). Especially the AUPRC is dramatically
reduced. This demonstrates that SNPs from the same miRNA tend to have similar characteristics
and therefore boost the performance if they were divided in training and test. It might be valid
to do so if the goal is to identify new eQTLs of miRNAs that are included in the data. But it will
perform poorly on other miRNAs that are not in the training set or on trained miRNAs that do
not have any positives included in the training set. According to the Budach et al. [116] training
set the latter applies for the vast majority (92 %) of all miRNAs. In this case the approach of
the miRNA-relation CV helps to give an unbiased performance for these and other unknown
miRNAs.

58

3.5 HyperSMURF Performance Results

Probabiliy [Probabiliy [
cutoff o oo o = cutoff o o o
onN OGN O N o N
o o1 O 0o O o O O
1.00 1.00
0.75 0.75
c c
S S
£0.50 £0.50
o o
o o
0.25 0.25
0.00 ™~ 000 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Recall Recall
(a) PR curves of hyperSMURF. (b) PR curves of logistic linear regression.

Figure 3.8: Performance measurement of the eQTL data using splits. PR curves generated by sampling
50-times using random splits with three quarters for training and remaining instances for testing. The
color of the line shows the probability at the given recall value. Training was done with (a) hyperSMURF
and (b) a logistic linear regression model.

— hyperSMURF(0.927) — hyperSMURF (0.125)
— GLM (0.904) —GLM (0.047)
1.00 0.5
0.4
0.75
[0}
®
.029 50.3
% 0.50 3
g 8
© 00.2
=}
=
0.25
0.1
0.00 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate Recall
(a) ROC curves on eQTL data using CV. (b) PR curves on eQTL data using CV.

Figure 3.9: Performance measurement of the eQTL data using 10-fold CV. PR and ROC curves using the
miRNA-relation CV of the eQTL data (see Section 3.2.3). HyperSMURF was used with standard settings
(see Table 3.2) without undersampling. The logistic regression model (GLM) was configured as described
by Budach et al. [116] using all data and the special CV setting. Values in brackets after the algorithm
show the AUC.

59

Chapter 3 Imbalanced Training Sets
3.6 Discussion and Chapter Conclusion

In this chapter I introduced hyperSMURF, a ML algorithm that is specifically designed to handle
large (genetic) imbalanced data. HyperSMURF uses over- and undersampling techniques as well
as ensemble methods (hyper-ensemble) to generate small balanced subsets. Two software imple-
mentations, one in R and one in Java, are freely available together with an extended manual and
tutorial (https://hypersmurf .readthedocs.io and Appendix E).

HyperSMURF was used with three different imbalanced datasets: a Mendelian dataset to pre-
dict regulatory NCVs, a GWAS dataset for the prediction of regulatory GWAS hits and finally,
eQTL data to determine the relationship between functional elements and miRNA regulation.
Mendelian and GWAS data have similar negatives, but of course both datasets have different
positives and also different features were used. Especially the GWAS dataset contains a huge
number of features (1838), most of them are chromatin effect scores generated by DeepSEA. But
the univariate regression analysis in Section 3.4 suggests that only the conservation scores are
predictive by themselves. Therefore a high number of random features per tree was used to
increase the likelihood of selecting a conservation score.

An extensive unbiased parameter search was done with the Mendelian data to figure out the be-
havior of hyperSMURF and the contribution of its different components. The presented unbiased
approach to find the best parameter combinations showed that the performance increases when
good settings are chosen. Nevertheless one has to weigh up the performance with the runtime.
Thus a standard hyperSMUREF setting was determined with the genetic data in Table 3.2, which
keeps the runtime to a minimum while still guaranteeing a good performance.

In addition experimental results showed that hyperSMUREF is able to distinguish disease variants
that are genomically close to non-disease variants: AUPRC results achieved with this experi-
mental setting are sometimes also better than those obtained with the experimental set-up that
includes all the negatives and the overall ranking of all positives versus all negatives. This is
not surprising because “TAD-aware” and “genomic-window-aware” experimental settings lead
to less imbalanced prediction tasks.

Compared to other ML methods used in NCVs prediction, hyperSMURF showed on all three
genetic datasets a better performance than the other retrained learners. This is due to the fact
that hyperSMUREF is the only method explicitly designed for high imbalanced data. GWAVA,
which also has an implemented imbalance-aware strategy, has consequently the second best
performance. It can handle imbalanced data to some extent. But with increasing imbalance the
performance in terms of the AUPRC declines faster (see Table 3.6).

Finally the results of the eQTL data show how important it is to think about imbalance-aware
strategies in the context of predicting consequences of genetic data. This example was not con-
structed to fit into an imbalanced sample. It was directly taken out of the literature without any
modifications. This shows that imbalanced sets are available in the literature and they have to
be carefully treated. Of course Budach et al. [116] achieved an accuracy of 85 %, but they avoided
the imbalance by sampling balanced subsets of the two classes for model selection and testing.
Assuming that they wanted to test how good their features are, it is a reasonable approach. But
if they wanted to use this training as a basis to determine new relationships between functional

60

https://hypersmurf.readthedocs.io

3.6 Discussion and Chapter Conclusion

elements and miRNA regulation, the training on the whole imbalanced data should be used to-
gether with an imbalance-aware classifier.

To conclude, the results showed that imbalance-aware machine learning strategies can success-
fully counteract the bias towards the majority class. Imbalance-aware strategies are essential for
predicting disease-associated NCVs in genomic contexts because these datasets are characterized
by a large imbalance between the known small set of available disease-associated variants and
the huge set of all human genetic variations. HyperSMURF implements robust strategies using
over- and undersampling techniques to handle imbalanced data. So the next step will be to use
the insights we gained in this chapter about hyperSMUREF, features and the genetic data to gen-
erate a new genome-wide score of any position in the human genome. Thus the next chapter
will introduce a new genome-wide NCVs pathogenicity score for Mendelian disease. This score
will be integrated in a complete framework, which analyzes variants from WGS together with
phenotypes to find the causative mutation out of thousands of variants.

61

Chapter 4

Regulatory Variants

I developed the Regulatory Mendelian Mutation score (ReMM score) for pathogenicity prediction of
NCVs in collaboration with Giorgio Valentini and Peter N. Robinson. The Genomiser framework was
developed mainly in collaboration with Damian Smedley, Jules OB. Jacobsen and Peter N. Robinson.
The initial performance measurements of Genomiser and Phen-Gen were done by Damian Smedley.
I presented the Genomiser at the Annual Meeting of the German Society of Human Genetics 2016 and
at the Annual Meeting of the Arbeitsgemeinschaft fiir Gen-Diagnostik e.V. (AGD) 2016. Genomiser
and ReMM score are published together in the American Journal of Human Genetics [56].

D. Smedley, M. Schubach, J. OB. Jacobsen, S. Kéhler, T. Zemojtel, M. Spielmann, M. Jager. H.
Hochheiser, N. L. Washington, J. A. McMurry, M. A. Haendel, C, J. Mungall, S. E. Lewis, T. Groza,
G. Valentini, and P. N. Robinson. (2016). A Whole-Genome Analysis Framework for Effective
Identification of Pathogenic Regulatory Variants in Mendelian Disease. The American Journal of
Human Genetics, 99(3), 595-606.

The underlying framework of Genomiser is Exomiser. The development of Exomiser was lead by
Damian Smedley and Peter N. Robinson and we published it in Nature protocols [55]. An important
component of Exomiser is Jannovar which was originally published in 2014 by Jdger et al. [109].
After that Manuel Holtgrewe and I developed Jannovar further.

D. Smedley, J. OB. Jacobsen, M. Jager, S. Kohler, M. Holtgrewe, M. Schubach, E. Siragusa, T.
Zemojtel, O. J. Buske, N. L. Washington, W. P. Bone, M. A. Haendel, and P. N. Robinson. (2015).
Next-generation diagnostics and disease-gene discovery with the Exomiser. Nature protocols,
10(12), 2004-15.

From the previous Chapter 3 we learned that with imbalance-aware ML methods, like hyper-
SMURE, it is possible to predict regulatory mutations out of thousands of non-deleterious variants

63

Chapter 4 Regulatory Variants

with high confidence. Because WGS is now affordable such methods are highly needed to find
the needle in the haystack: the pathogenic mutation within thousands of benign variants. For
Mendelian diseases common approaches, tools and standard diagnostics are focused on coding
regions. This might introduce a long-standing observational bias toward coding sequences. The
regulatory code that determines whether and how a given genetic variant affects the function of
a regulatory element remains poorly understood for most classes of regulatory variation. Thus,
given our lack of understanding and tooling, it is not surprising that so far very few disease-
causing NCVs have been identified as causal in Mendelian disease. To address this gap we need
on the one side a regulatory pathogenicity score and on the other side a fast framework that
effectively finds the causative coding or non-coding mutation.

This chapter will introduce both: first, an integrative algorithm for ranking NCVs in WGS data
and second, a ML method for scoring NCVs. The ML method rates each position of the non-
coding genome based on predicted pathogenicity in Mendelian diseases using hyperSMURF and
the previously introduced Mendelian data (see Sections 3.1 and 3.2.1). The integrative algorithm
factors in multiple inputs: (1) phenotypes, (2) variants in coding regions, (3) variants in non-
coding regions, and (4) existing published gene-phenotype associations.

Structure of this Chapter In this chapter I will present at the beginning, in Section 4.1, the
framework Exomiser, an analysis framework that is able to score coding variants and associate
them to specific Mendelian diseases. Then I will explain in Section 4.2 Genomiser, a further
development of Exomiser, which extends the framework to NCVs. This analysis framework is
able to not only score the relevance of variation in the non-coding genome, but also to associate
regulatory variants to specific Mendelian diseases. In Section 4.3 I explain the ReMM score for
relevance prediction of NCVs. Section 4.4 shows the performance of Genomiser by simulated
whole-genomes using different genome-wide deleteriousness scores and Genomiser is compared
to another genome-wide prioritization tool. Finally, Section 4.5 concludes this chapter.

4.1 Exomiser

Exomiser [55] is an application that filters and prioritizes variants together with genes in NGS
projects for novel disease-gene discovery or differential diagnostics of Mendelian diseases. On
the variant side Exomiser uses population databases like ExAC [67] to remove frequent vari-
ants, Jannovar [109] to find out the corresponding gene and the functional effect within it (see
Section 4.1.1), and pathogenicity scores like MutationTaster [8, 9] to assess the potential delete-
riousness of the variant. On the phenotypic side Exomiser comprises a suite of algorithms for
prioritizing genes that are related to the input phenotype, using random-walk analysis of pro-
tein interaction networks, clinical relevance and cross-species phenotype comparison. For this
approach Exomiser relies on similarity scores between sets of terms from the Human Phenotype
Ontology (HPO). The preliminary Section 2.3 shows a general overview on ontologies and the se-
mantic similarity approach. The HPO, its structure and applications are explained in Section 4.1.2
in more detail.

64

4.1 Exomiser

Now I will briefly explain the filtering and prioritization steps. For variants from WGS the fil-
tering must be extended to NCVs but have to remain fast. So an optimal filter configuration and
combination have to be created. Therefore I will take up the filtering approaches later in the
Genomiser part, in Section 4.2, and describe them in more detail.

Filtering The variant input of Exomiser are the called or detected variants from an align-
ment against a reference sequence (hg19/GRCh37) stored in a VCF file, resulting from exome
sequencing of a rare disease patient and, optionally, other affected and unaffected family mem-
bers. Exomiser reduces the variants contained in the VCF file using several criteria and filters.
The filtering step is critical in order to reduce the number of variants. For example a typical
exome contains around ~30,000 variants and the filtering step reduces the variants to around
1000 or less.

Functional Filter Exomiser annotates each variant relative to the UCSC hg19 transcript set
using the Jannovar software library [109]. In the actual development version 7.3 or 8.0,
Exomiser is able to also use RefSeq or Ensembl as transcript database. This annotation
describes the location within or between transcripts, the type of variant (e.g. missense,
nonsense or intergenic) and the predicted consequence of the variant on the protein-coding
sequence. By default, Exomiser removes any variants that are synonymous and non-coding
(intergenic, intronic, upstream, downstream or intronic).

Frequency Filter As Exomiser deals with rare genetic diseases, frequent variants can be re-
moved using an upper threshold of the MAF for Exomiser’s frequency filter. The popula-
tion databases 1KG, Exome Server Project (ESP) 6500 and ExAC [59, 67, 68] are included.

Variant Pathogenicity Filter Pathogenicity predictions are assessed via SIFT, MutationTaster
and PolyPhen2 [6-9] provided by dbNSFP [51]. During variant pathogenicity filtering
variants that were not predicted as pathogenic from one of the three scores can be removed.

Pedigree Filter Finally variants can be filtered on expected inheritance patterns. This step is
optional but frequently used because there are some expectations clinicians made out of
the pedigree of the affected individual. The following inheritance filters are available: auto-
somal dominant (AD), autosomal recessive (AR) or X-linked recessive (XR). The approach
is slightly different between a single individual or a multisample family-based analysis.
Exomiser uses the inheritance annotation from Jannovar [109]. Jannovar together with
the inheritance filtering approach will be described in Section 4.1.1 in more detail.

Prioritization The filtering approach effectively reduces the number of variants. However,
this typically leaves us with more candidates (up to 1000) than can reasonably be manually as-
sessed. So some sort of ranking by a prioritization algorithm is necessary. The Exomiser suite
contains a number of different methods for variant prioritization based on protein-protein inter-
actions and/or phenotype comparisons between a patient and existing human disease databases
and model organisms. Exomiser calculates variant-based and method-specific, gene-based scores
and combines them using a logistical regression model to generate a final combined score that
is used for ranking. Variant scores are a combination of how rare the variant is as observed in

65

Chapter 4 Regulatory Variants

the population databases, together with its predicted pathogenicity. How the gene score is cal-
culated varies, depending on which prioritization method is chosen by the user. Figure 4.1 gives
an overview of the prioritization methods which I will describe now briefly:

PhenlX This method should be selected when Exomiser is used in clinical diagnostics. The
phenotypic prioritization procedure analyzes only those genes that have been associated
with a Mendelian disease [54]. The algorithm uses the semantic similarity approach of
Phenomizer [120] for differential diagnostics. The PhenIX algorithm evaluates and ranks
variants on the basis of pathogenicity and semantic similarity of patients’ phenotypes as
described by HPO-terms to those of Mendelian diseases whose molecular etiology has been
clarified.

PHIVE This algorithm is a cross-species mouse-human phenotype comparison. The idea be-
hind PHIVE is that if a mouse model exists for the gene containing the disease-associated
mutation, then it is likely to exhibit phenotypic similarity to the clinical phenotypes. Here,
Exomiser implements the PhenoDigm algorithm [121] to calculate the phenotypic similar-
ity between a patient’s clinical signs and symptoms and observed phenotypes in mouse
mutants associated with each gene candidate in the exome.

ExomeWalker Mutations in a gene that is part of the same pathway or genes that interact
closely with known disease genes may result in similar phenotypic manifestations. There-
fore this approach uses protein-protein association networks together with random walks
[122] to find associated genes from seeded genes or disease-gene families based on pheno-
typic similarity [123].

hiPHIVE The human/interactome-PHIVE (hiPHIVE) algorithm extends the PHIVE algorithm
to include zebrafish and human phenotype data. For genes that have no phenotype data
from any of these sources a random walk is performed in a protein-protein association to
score close candidates network to genes with strong phenotypic similarity to the patient.

4.1.1 Jannovar

Jager et al. [109] developed Jannovar, a Java framework for transcript-based annotation and pedi-
gree analysis inspired by the transcript annotation tool ANNOVAR [124]. Jannovar is able to
read variants, e.g. stored in a VCF file, and annotates them according to a transcript database. It
supports multiple transcript databases and multiple genome releases. Transcript databases are
RefSeq, Ensembl, and UCSC as well as user defined transcript databases using mouse (builds
mm9 and mm10) and human genomes (builds hg18, hg19/GRCh37 and GRCh38). For definition
of variation features Jannovar uses the standard Sequence Ontology (SO). Jannovar is fast, de-
signed in a modular way and well documented so that it can easily be used as software library
for variant annotation in other tools like in the Exomiser framework. The software manual is
available at the website https://jannovar.readthedocs.io and the API documentation at
https://javadoc.io/doc/de.charite.compbio/jannovar-core).

66

https://jannovar.readthedocs.io
https://javadoc.io/doc/de.charite.compbio/jannovar-core

4.1 Exomiser

/Individual with Mendelian disease/

v

Use disease genes
or HPO terms?

Disease-gene‘ HPO
family Terms

Use known human

_ disease genes only?
- PPI network

I Yes No 1

Use mouse
genes only?

= &
——

- Mouse - Human
- Mouse
- Zebrafish
- PPI network

- Human

Figure 4.1: Phenotype prioritization algorithms of Exomiser. This decision tree gives an overview about
the available phenotype prioritization methods implemented in Exomiser. The paths from the root to the
leaves define possible solutions about which method should be selected depending on the goal and the
available input.

Inheritance A function of Jannovar beyond the variant feature annotation is the inheritance
annotation. It can use nuclear VCFs as well as multi VCFs from a family to find out the inheri-
tance mode of each variant. In Mendelian studies this annotation can be used to effectively filter
down variants that only follow an expected inheritance pattern. Exomiser takes the advantage of
Jannovar’s inheritance annotation to remove variants that are not in concordance with the input
inheritance pattern of the user. The inheritance annotation is a rule-based system and it works
on single individuals, as well as on small and large family pedigrees. The rule-based system can
analyze the following inheritance annotations: autosomal dominant (AD), autosomal recessive
(AR), X-linked recessive (XR), and X-linked dominant (XD).

The program will rewrite the genotypes included in the VCF to internal genotype objects. These
genotypes can either be NOCALL (no genotype was determined for the person), REF (homozygous
wild-type), HET (heterozygous alternative), or HOM (homozygous alternative). In general a caller
calls a hemizygous mutation as homozygous. Therefore Jannovar uses HOM and in addition HET
to increase the sensitivity as hemizygous on known males. The persons can either be affected,
unaffected or their affection state is unknown.

67

Chapter 4 Regulatory Variants

Autosomal dominant (AD) For example this filter can be used to filter for de-novo mutations.

If the pedigree contains a nuclear person then the variant call list must contain one HET call.
If multiple individuals are available every affected person should have a HET call. To avoid
problems on difficult or uncalled sites it is also possible that some affected or unaffected
have a NOCALL. But it is important that every unaffected cannot have a HET or a HOM call
at the observed site.

Autosomal recessive (AR) Here it can be either a homozygous or a compound heterozygous

mode of inheritance. Homozygous has similar rules for affected as in AD, but all of them
should have a HOM instead of a HET call (some NOCALLs are allowed). Every unaffected
cannot be HOM and there is a special rule defined for the parents. The homozygous variant
must be inherited with a HET call from both unaffected parents. Thus, parents from affected
individuals must be HET for this site.

Compound heterozygous rules are more complex. For example the rules must run on a
region within a chromosome or, to simplify it, to a list of variants. As default Jannovar
uses all variants annotated to the same gene with a moderate (e.g. missense) or higher
effect as such a list. In a nuclear family there should be at least two HET genotypes in
the list. On larger pedigrees Jannovar tries to take the unaffected parents from affected
children into account to figure out if two different HET variants are not located on the
same allele. In particular one variant should be HET in the mother and REF the father. The
other variant can only be REF in the mother and HET in the father. The rest is straight
forward. Every affected should have both variants HET. If an unaffected has both variants
HET then Jannovar tries to find out if they are also on different alleles using the parents (if
available). If this holds then both variants will be discarded.

X-linked dominant (XD) All variants must be X-chromosomal and Jannovar uses different

rules for males and females. Males can only be REF or hemizygous, but variant callers
do not distinguish between males and females, so they will stick to their REF, HET and HOM
calls. Thus, Jannovar will consider HET calls in males as HOM to increase the sensitivity.
For XD every affected female can only have a HET variant and affected males a HET or
HOM variant. For males XD will be a rare case because these mutations are mostly lethal.
Unaffected persons can only be HET at this site.

X-linked recessive (XR) Here we have the same chromosomal restrictions and male/female

68

differences like in XD. The simplest case is that affected persons are HOM (maybe some
NOCALL) and all others are HET, REF or NOCALL. It is important that on an affected male
child with unaffected parents the mutation can only be inherited by the mother. If the
affected child is female it must be inherited from both parents but the father must also be
affected.

For completeness Jannovar also has rules for XR compound heterozygous. This can only
affect females but it is very unlikely because one variant has to be transmitted by an af-
fected father or a de-novo mutation. The latter will be handled by XD rules.

4.2 Genomiser

4.1.2 The Human Phenotype Ontology

In 2008 Robinson et al. [125] presented the Human Phenotype Ontology (HPO), a controlled, stan-
dardized vocabulary for describing entities and the semantic relationships between phenotypic
abnormalities encountered in human disease [125-127]. It is widely used for rare diseases but it
is also possible to use it for common (complex) disease description. The HPO is organized as four
independent subontologies. (1) Phenotypic abnormality, (2) Mode of inheritance with Mendelian
or non-Mendelian inheritance modes, (3) Mortality/Aging subontology, and finally, (4) clinical
modifier subontology to characterize phenotypic abnormalities, for example with the age of on-
set. Using this controlled vocabulary a comparison or clustering of phenotypes is easily possible
and enables the integration of phenotype information across scientific fields and databases.

HPO is widely used in translational research and genomic medicine [128-130] and it is the stan-
dard terminology to describe phenotypic features of affected individuals in Exomiser. All phe-
notype prioritization algorithms, except ExomeWalker, uses HPO-terms and semantic similarity
(Section 2.3.1) to find phenotypic similar genes to an input term query. Here the HPO provides
annotation profiles from terms to rare disorders using OMIM, Orphanet and DatabasE of Chro-
mosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER) for disease
entities [131]. In addition the HPO has annotation profiles for common diseases generated with a
text-mining approach by analyzing the PubMed corpus [132]. But only the rare disorder profiles
and not the common disease annotations are included in Exomiser.

4.2 Genomiser

The Genomiser implementation is based on Exomiser (see Section 4.1, [55]). Genomiser, like Ex-
omiser, ranks variants in the human sequence according to their pathogenicity and contribution
to a Mendelian disease. Also the analysis steps of Genomiser are similar to Exomiser (see Fig-
ure 4.2 for a schematic overview of the Genomiser steps). The major difference is that Genomiser
can filter and rank NCVs in addition to coding variants.

To use the full functionality of Genomiser, the initial input is a VCF from a whole-genome along
with phenotypes of the sequenced person, AF cutoff and maybe other configurations. The next
steps are designed in a way that large VCF files are processed in a reasonable time frame using a
minimal memory. Therefore the initial step is to find the genes with phenotype similarity to the
input phenotype (set of HPO-terms). A cutoff for phenotype similarity is used (standard 0.5) to
remove unrelated genes. This allows for variants to be directly removed if they do not relate to a
phenotypically similar gene while extracting them from the input VCF. All phenotype similarity
algorithms of Exomiser/Genomiser are described under Section 4.1 in detail. Now the variants
are streamed through different annotation and filtering steps and they will be directly removed
if they fail one filtering step. In addition the concept of streaming enables parallel computing,
so in theory every variant can be processed in parallel up to the final step, except a compound
heterozygous filtering is made by Jannovar.

69

Chapter 4 Regulatory Variants

The next filtering steps are processed per variant. For every variant a lookup of their population
frequency is made in population databases and every frequent variant will be removed. The stan-
dard used cutoff is 1 %. As population databases Genomiser uses ExAC, ESP 6500 and frequencies
from the 1KG [59, 67, 68, 133]. In addition the functional effect of the variants is annotated us-
ing Jannovar [109]. According to the position or the sequence effect it will be annotated with
different variant scores. For coding missense, nonsense or InDel mutations the maximum of
pathogenicity scores of Exomiser are used, namely MutationTaster, Polyphen and SIFT. Like in
Exomiser, an additional score of 0.9 for essential splice-sites and 0.95 for nonsense as well as
frameshift mutations is added.

For NCVs or synonymous variants Genomiser is able to use any precomputed score on the
genome (hg19 release). This can be CADD [33] or Eigen [36] described in Sections 2.4.1 and 2.4.4
or the score described in the next Section 4.3, the ReMM score. Because Eigen is not available
on allosomes, it is recommended to use Genomiser with ReMM or CADD to fully explore the
genome. In addition, variants that are below a threshold (specific to the pathogenicity score) will
be removed (always according to the highest pathogenicity score). It is important to notice that
no variant will be removed in terms of its functional class. For example Exomiser will remove 3’
or 5° UTRs, synonymous, intronic or intergenic variants.

At the end of the filtering it is possible to use an inheritance filter. This might be useful if more
than one family member is sequenced or if a specific inheritance mode is expected for a dominant
inheritance with a heterozygous de-novo mutation. The inheritance filter is implemented in
Jannovar [109] and is described in Section 4.1.1 in more detail.

Finally, for the remaining variants, the pathogenicity scores and the phenotype score of the
corresponding genes are combined to a final Genomiser score. In the final output the Genes
with their variants are ranked according to their Genomiser score. Figure 4.2 shows a complete
overview of the Genomiser annotation and filtering steps. In the next paragraph I will describe
how Genomiser assigns NCVs to a gene.

Target Gene of Non-Coding Variants For NCVs the association of a variant to a gene is
not as straight forward as for coding variants. Here, Genomiser takes advantage of the three-
dimensional structure of the DNA to find the corresponding gene. This means that enhancers
might come to close proximity to a promoter next to a gene using a loop of the DNA strand.
Therefore the variant can be far away in terms of bases and multiple genes can lie in between.
This is why Genomiser assigns NCVs, in particular distal variants more than 20 Kb away from
a gene, to all possible genes within their TAD [134], the segment of the genome that is in close
proximity. See Section 1.1 for more information about topological confirmation of the DNA.
To be more stringent these variants must reside in predicted enhancers from the FANTOM5
consortium [135] or Ensembl regulatory feature build [136] and are only associated with the
most phenotypically similar gene in the TAD. Proximal intergenic, intronic and 5 and 3’UTR
variants are associated to the closest gene.

70

4.3 Regulatory Mendelian Mutation Score

v
A |Phenotype Similarity
Score and Filter

B Allele Rarity
Score and Filter

\/
v
C Pathogenicity
Score and Filter

\/
v
D Combines Scores and
Rank

Phenotype Allele Rarity Pathogenicity

Dissimilar Similar Frequent Rare Benign Deleterious

Figure 4.2: Schematic overview of variant processing in Genomiser. Genomiser uses a (multi-sample)
VCEF, a list of HPO-terms representing the clinical signs and symptoms observed in the individual being
investigated by WGS, and optional user parameters that control the filtering and prioritization steps. A:
Genes are scored and filtered according to their phenotype similarity with the input HPO-terms. Genes
with low or no similarity together with their respective variants are removed (gene in the centre). B:
Variants are annotated with allele frequencies from population databases and frequent variants will are
filtered out (variant on the left side). C: Pathogenicity scores are assigned to variants and non-deleterious
ones are discarded (variant on the right side). D: Variant pathogenicity and gene phenotype similarity
scores are combined to a final Genomiser score. For NCVs TADs are used to assign the variant to the
highest phenotypic similar gene in the same TAD (see Section 1.1 for an introduction into TADs). Finally,
genes are ranked according to their Genomiser score (rank 1 left gene, rank 2 right gene).

4.3 Regulatory Mendelian Mutation Score

Genomiser was generated for the specific task of finding coding variants together with regula-
tory NCVs. For that reason ML techniques for building a scoring model of non-coding Mendelian
variants would perform better with a highly reliable training set, consisting of mutations that
had been validated by experimentation or co-segregation studies, or for which other convincing
evidence of pathogenicity was available. Such catalog did not exist before a detailed and compre-
hensive biocuration was done from the medical literature to identify experimentally or otherwise
validated NCVs (< 35 nucleotides) associated with Mendelian disease. The gained variants are
described in the previous chapter under Section 3.2.1 and in Appendix A. In total 453 regulatory
variants were identified including 406 SNVs which will be used as positive set. As negatives the
same set of non-deleterious variant sites was used, like for hyperSMURF performance testing,
derived from differences between the human genome reference sequence and the inferred an-
cestral primate genome based on the EPO whole-genome alignments of six primate species [40,
42] (see Section 3.2.1 for a detailed description of the 14,755,199 negatives). Also the 26 genomic
attributes were used resulting in the same Mendelian data described in Section 3.2.1.

71

Chapter 4 Regulatory Variants

I showed in Section 3.5.3 that the ML method hyperSMUREF performs superior to other learners
of non-coding scores. Therefore it was chosen as learning strategy using the default hyper-
SMURF parameters in Table 3.2 as configuration. The combination of the Mendelian data and
the hyperSMURF ML method will result in the Regulatory Mendelian Mutation score (ReMM
score). This score makes a relevance prediction of regulatory variants, or to be more precise a
relevance prediction of positions of the human genome in terms of a Mendelian disease.

To build a precomputed score for every position in the human genome (reference genome release
hg19) the Hyscore of the cytoband-aware 10-fold CV was used for all available training data (406
positives and 14,755,199 negatives). For all other positions in the human genome a global model
was built using the complete negatives and positives. Therefore all remaining 2,845,135,389
unambiguous (i.e., not “N”) positions of the human reference genome (release hg19) were an-
notated. This precomputed Hyscore using the Mendelian data over the whole human genome
will be defined as the ReMM score and it is available as indexed tabix format from the website
https://charite.github.io/software-remm-score.html.

Now only a simple lookup is needed to find out the ReMM score of a new observed variant.
Here we need only the position and not the exchange of the variant because ReMM is con-
structed only on the positions in the human genome. This means also that ReMM is not di-
rectly aware of changes in sequence of motives. For example, to get the ReMM score of variant
chr16:209709T>C we can use the tabix command to get the score of position 209,709 on chro-
mosome 16: tabix ReMM.v0.3.1.tsv.gz 16:209709-209709. The result should be 0.5300.
Small InDels were explicitly excluded from the training set (exactly 47 small InDels were present
in the curated Mendelian data) but a ReMM score can also be computed for them. In order to
predict the pathogenicity of deletions, it is possible to use the maximum ReMM score of any
nucleotide affected by the deletion. E.g. the positions of three deleted nucleotides of the deletion
chr2:86564631CATG>C have the scores 0.9230, 0.9250 and 0.9560 resulting in a final score of
max{0.9230,0.9250,0.9560} = 0.9560. For insertions, we can use the maximum ReMM score
of the two nucleotides that surround the insertion. For example the position before the insertion
chr9:35657917G>GCA has the score 1.0 and the position after the insertion has the score 0.9950,
resulting in a final score of max{1.0,0.9950} = 1.0.

ReMM Score Feature Analysis To show that the attributes are informative between positive
and negative instances several analyses were done to inspect the feature set. The Mendelian
regulatory mutations displayed a number of substantial differences as compared to the neutral
variants but also to other variant groups like GWAS hits. Figure 4.3a shows the centered mean
and scaled genomic attributes of Mendelian regulatory mutations as compared with the derived
non-deleterious positions as well as the 2115 regulatory GWAS hits from the GWAS data (see
Section 3.2.2), annotated with the Mendelian features. Five highly informative attributes of dif-
ferent attribute groups are shown. In all shown attributes the Mendelian regulatory mutations
are significantly different to the regulatory GWAS hits and to the negatives.

In addition, principal-component analysis (PCA) was performed on the two variant classes of the
Mendelian dataset with all 26 features visualized in Figure 4.3b. The first two components show a
certain separation between our Mendelian regulatory mutations and the negative variants. Both

72

https://charite.github.io/software-remm-score.html

4.3 Regulatory Mendelian Mutation Score

principal components make up 27 % of the total variability. Using PCA we are able to discover
challenging variant classes. Inspecting the different regulatory classes in Figure 4.3b we see
that 5’UTR, promoter and RNA variants are the three classes that separate best with the non-
deleterious variants. Enhancer and 3’'UTR variants seem to be more challenging. So in the next
section I will inspect the ReMM score performance of the different functional variant classes to
see if we can detect a similar behavior.

B2 Mendelian regulatory B8 Non—deleterious) 23$S Er(?]moter ’ ENA \éarllim.
Regulatory GWAS nhancer on-deleterious
6 = .
. :.
g 3 a0
= =
: '
3 5
g g .
@0 g o “ .
3 o F,
2 - © it s
S - 2 ’ j
S_3 2 o |
= .
a L%
Vit
-6 S S @ @ s = — K
Se o S S8 S T
&F £ &5 8 o8 j ! T T
;\;ﬁ & I qmg:g” f -15 -10 -5 0
$ d o
s Principal Component 1
(a) Higly informative attributes. (b) PCA.

Figure 4.3: Genomic attributes of regulatory Mendelian mutations. (a) Centered mean and scaled ge-
nomic attributes of Mendelian regulatory mutations compared with the derived non-deleterious positions
as well as the 2115 regulatory GWAS hits from the GWAS data (see Section 3.2.2) annotated with Mendelian
features. Five highly informative attributes of different attribute groups are shown. (b) PCA showing the
first two principle components, which make up 27.2 % of the total variability.

ReMM Score Performance of different Functional Elements Table 4.1 shows the perfor-
mance of the ReMM score considering variants located in different functional elements of non-
coding regions. Performance values were generated by using the ReMM score of positives from a
specific functional element, removing all other positives and using all negatives for comparison.
Results highlight that ReMM achieves relatively good results for different categories of func-
tional elements, although the performance was poorer for mutations in 3° UTRs and enhancers.
This is in concordance with the insights gained by the PCA analysis (Figure 4.3b) in the previous
paragraph.

The poor performance on the 3’UTR site was also detected by LINSIGHT [35]. Their median
LINSIGHT score was only 0.076. For example 5’UTR have a median score of 0.128. Because LIN-
SIGHT used similar feature sets and also the negative training is somehow similar to ReMM one
can claim that the feature set is not sufficient for 3’'UTR variants. 3’'UTRs are not under the same
rigid structural constraints as the coding or the 5’UTRs that have to accommodate the transla-
tional machinery. Evolutionary pressure may thus have taken advantage of the greater degree

73

Chapter 4 Regulatory Variants

of freedom of 3’'UTRs to modulate mRNA molecules [137]. Therefore more diverse features are
needed to portray the mechanisms of the 3’'UTR.

Table 4.1: ReMM score performance with respect to specific functional elements. Performances consid-
ering variants located in different functional elements of non-coding regions. AUROC g is the AUROC
computed considering only the top ranked 100 variants. AUROC5¢ and AUROC;¢go are computed in a
similar way.

Functional Element AUPRC AUROC AUROC;y0 AUROC5); AUROCggg

5UTR 0.31 1.00 0.62 0.82 0.89
3’'UTR 0.01 0.95 0.60 0.79 0.78
Enhancer 0.05 1.00 0.36 0.66 0.83
Promoter 0.23 0.99 0.64 0.78 0.83
RNA component 0.51 1.00 0.91 0.85 0.89
MiRNA 0.23 1.00 0.41 0.88 0.94

Probability Cutoff The question is upon which ReMM score we can achieve a reliable result
if the variant is involved into a regulatory mechanism. In theory each RF of hyperSMURF returns
a probability and the Hysqore is the average probability over the 100 partitions ranging from 0
to 1. So using cutoff ¢ = 0.5 will return a good result in terms of positives because nearly every
positive mutation should be predicted as pathogenic. But the problem is that the number of
negatives might be extremely large compared to the positives and we will have an overestimation.

In Figure 4.4a the precision, recall and F-measures are plotted over the complete range of the
ReMM score. As expected, if we choose ¢ = 0.5 we will get a recall close to one, meaning that
we will predict nearly all positives as pathogenic (379 out of 406; TP rate = 0.934). But the
precision is close to 0 so we will predict a lot of false positives (FP) (124,756 out of 14,755,199;
FP rate = 0.008). The F-measure (F;score) shows that we will have the highest harmonic mean
of recall and precision at ¢ = 0.984. This results in a TP rate of 0.463 and a FP rate of 0.000009.
If we want to predict more positives it might be good to use the maximum of the Fyscore =
5-precision-recall

Torecisiontrecan+ S0 We will get a recall four times larger than the precision. In Figure 4.4b we see
-precision+recall
that the cutoff will lie around ¢ = 0.969 resulting in a TP rate of 0.583 and a FP rate of 0.000021.

ClinVar [44, 45] has two categories for deleterious Mendelian mutations: (1) pathogenic and
(2) likeley pathogenic. So if we transfer this to ReMM we can define the group of pathogenic
predictions with a score larger that 0.984 (max Fyscore). A likely pathogenic prediction will be if
the ReMM score is larger than 0.969 (max Fascore). Of course values lower the likely pathogenic
score can have a regulatory influence in the genome but it is unlikely that this cause a Mendelian
disease directly. Maybe those variants are involved in more common diseases or acting in an
oligogenic fashion.

Depending on the approach where ReMM is integrated the cutoff ¢ must be wisely chosen, and it
might be advantageous to use the raw ReMM score rather than defining cutoffs. For example in
Genomiser we use a cutoff of ¢ = 0.5 to completely filter the variants below it. This ensures that

74

4.3 Regulatory Mendelian Mutation Score

we miss only 21 SNVs and no InDels out of 453 variants during the performance measurement
(see Section 4.4). Now we still have a lot of FPs but the powerful approach of Genomiser is to
combine ReMM with phenotype predictions and other works have previously shown that pheno-
typic information can effectively boost the prioritization of disease-associated genes because it is
very specific and selective [54, 57, 138]. Therefore it is fine to choose a lower threshold because
the combination with another approach boosts the performance.

— Precision — Recall — F1-Score — F2-Score — Precision — Recall — F1-Score — F2-Score

1.00 1.00

0.75 0.75
g g
+=0.50 +=0.50
g g

0.25 0.25

0.00 0.00

0.00 0.25 0.50 0.75 0.75 0.80 0.85 0.90 0.95
ReMM score ReMM score
(a) Complete range of scores. (b) Range [0.75, 1] of scores.

Figure 4.4: Precision, recall, F;score (F-measure), and Foscore of the ReMM score. (a) Complete range
of ReMM score. (b) Details of ReMM score in the interval [0.75, 1].

4.3.1 Comparison to genome-wide Pathogenicity Scores

The Mendelian data training set was used to show the performance of other genome-wide non-
coding scores for relevance prediction in this context. The result will show which score might
be a good choice to use within Genomiser to predict NCVs. The following other non-coding
scores were used for comparison: CADD v.1.3, GWAVA v.1.0, FATHMM-MKL, Eigen, Eigen-PC,
DeepSEA, and LINSIGHT [33-38]. CADD, Eigen, Eigen-PC and LINSIGHT scores were extracted
from the provided precomputed genome-wide file. For Eigen and Eigen-PC all variants on allo-
somes were removed, because Eigen/Eigen-PC is available only on autosomes. Position scores
of GWAVA, FATHMM-MKL' and DeepSEA were computed using the source code and trained
models provided by the authors. For ReMM the scores of the cytoband-aware 10-fold CV were
used (see Section 3.3).

Evaluation was mainly done using the ROC and PR curves which are visualized in Figure 4.5.
More statistical comparison is described in Appendix C. The PR and ROC curves show that in
the context of the prioritization of the Mendelian mutations, the ReMM score substantially out-

'commit d4af576240fb872179805fb113e892597248441d

75

Chapter 4 Regulatory Variants

performs other state-of-the-art non-coding scores. It is worth mentioning that in the context
of extremely imbalanced data, the AUPRC curve is more informative than the area under the
ROC (see Section 2.2.5 [22—24]) but even the small differences between the ROC curves, shown
in Figure 4.5a, are in some cases statistically significant according to the Delong test [119] for
the comparison of the areas under dependent ROC curves (Table C.1).

—ReMM (0.989) — GWAVA (0.956) —ReMM (0.446) —GWAVA (0.189)
—CADD (0.952) — DeepSEA (0.973) —CADD (0.003) — DeepSEA (0.026)
— Eigen (0.981) — FATHMM-MKL (0.985) — Eigen (0.095) =— FATHMM-MKL (0.009)
Eigen-PC (0.964) — LINSIGHT (0.950) Eigen—PC (0.010) — LINSIGHT (0.319)
1.00 1.00
0.75 0.75
Q
s
0 5
3050 3
é §O 50
) o
>
=
0.25 0.25
0.00 0.00 —_—
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate Recall
(a) ROC curves of pathogenictity scores. (b) PR curves of pathogenictity scores.

Figure 4.5: Performance of non-coding variant scores on Mendelian data. (a) ROC and (b) PR curves of
the different inspected genome-wide pathogenicity scores on the Mendelian data. Curves were generated
using available precomputed scores or pre-trained models. For Eigen and Eigen-PC only the autosomes
were used and all variants (positives and negatives) on allosomes were discarded. Numbers after the score
name in the legend show the AUC.

If we take a closer look at the PR performance of the different scores (Figure 4.5b) we see that
GWAVA works reasonably well for 20 % of the regulatory Mendelian mutations. Also Eigen and
Eigen-PC have a small signal for those positives. I would suggest that there is a small fraction of
around 20 % of positives that are very different to the negatives. If we go back to the PCA analysis
there is a small cluster of regulatory Mendelian mutations that is far away from the negatives
and no negatives lie inside the cluster.

Simulation of real Genomes Whichever scoring methodology is used, variant analysis alone
is unlikely to be useful to identify Mendelian disease-associated variants in WGS data, which
typically contain over 4 million variants, approximately 25,000 of which are located in protein
coding sequences. Therefore an analysis on real genomes using the phase 3 1KG genomes [41]
was done to see the performance of the scores in a more realistic environment. To do so, vari-
ants with a higher MAF than 1% were removed to gain only rare variants that might be in-
volved in a Mendelian disease. The remaining variants per genome were annotated with their
ReMM, CADD, Eigen and Eigen-PC scores because they have precomputed scores over the whole
genome. Only autosomes were used in that analysis because allosome scores are not available

76

4.3 Regulatory Mendelian Mutation Score

for Eigen/Eigen-PC. All remaining variants in every sample of the 1KG were ordered accord-
ing to their score value. Then every regulatory Mendelian mutation (345 NCVs on autosomes)
was iteratively added to every genome (in total 2504) and the observed rank for every of these
spiked-in mutations was recorded.

The MAF filtering of genomes from 1KG yields to an average number of 68,622.3 variants per
genome. The 345 regulatory variants resulted in 708,630 of spike-ins. The percentage of ob-
served top first ranks and the percentage of the regulatory variant falls into the 1, 10, 100 and
1000 positions as shown in Figure 4.6. It shows that after filtering out common variants the pri-
oritization by CADD was not able to identify the causative variant as the top hit in any of the
samples. ReMM achieves this in 4.41 %, Eigen-PC in 0.69 % and interestingly Eigen in 8.13 % of
all genomes. Even looking at the top 10 and 100 variants, the causative variant was only seen in
0% or 0.29 % of samples by CADD, 21.03 % or 41.86 % by Eigen, 15.84 % or 26.39 % by Eigen-PC
and 8.51 % or 20.82 % by ReMM. Therefore analyzing complete genomes will still be a challenging
question. But if WGS of the patient’s parents are available, the analysis can be easier because
the inheritance filter can limit the amount of variants to a manageable size. For example recent
studies show that there are around 60 to 100 de-novo SNVs available per genome [139].

[TopM Top 10/l Top100 [Top1000

5 [o2}
o o

N
o

% genomes with disease variant within top X

o

s 8
& 19)

Figure 4.6: Ranking results of non-coding scores in simulated genomes. Every regulatory Mendelian
mutation was spiked into all 1KG samples (only rare variants), annotated by ReMM, CADD, Eigen and
Eigen-PC, and the observed rank was reported. This barplot shows how often the causative mutation was
seen at the first position or within the top 10, top 100 or top 1000 positions of the simulated genomes. The
average number of rare variants in the genomes is 68,622.3.

I remark that the better performance of Eigen compared to ReMM and the good performance
of Eigen-PC is due to a bias in their feature selection in combination with this analysis. Eigen
uses AFs from the 1KG. In this analysis the same genomes were used to spike-in our regulatory
mutations. Therefore every variant in a genome, except the added regulatory variant, has an AF
in the 1KG, and Ionita-Laza et al. [36] argued that high weights of Eigen correlate with no AFs in
the 1KG. Therefore a fair comparison of Eigen between CADD and ReMM is not possible using

77

Chapter 4 Regulatory Variants

simulated whole-genomes of the 1KG. The reduced performance of Eigen-PC compared to Eigen
is due to the lack of a clear distinct AF group for the eigendecomposition and the AF in the lead
eigenvector of Eigen-PC can play a minor role.

These results show that we need additional approaches to find the causative mutation in WGS
from persons with a Mendelian disease. Especially if we do not want to be restricted to a to a
subclass of variants like de-novo mutations. Here, Genomiser comes into place because it builds
a bridge from the genetic information to the phenotypes which always boosts the ranking [54,
57, 138]. Thus, the next Section 4.4 will present the performance of Genomiser on the Mendelian
dataset with real genomes.

4.4 Genomiser Performance

For performance evaluation every Mendelian regulatory mutation (453 NCVs, see Table 3.1 and Ap-
pendix A) was inserted 23 times in one of the 1092 whole-genome VCF files from the phase 1 1KG
[41] resulting in 453 x 23 = 10,419 simulated genomes. For dominant diseases, one heterozy-
gous mutation was added, and for recessive diseases, either one homozygous mutation or two
heterozygous mutations were added to the 1KG VCF file. In all experiments the phenotypic (HPO)
annotations for the corresponding disease in OMIM were taken from the HPO annotation files.
To measure the ability of Genomiser to detect known disease-gene associations, the analysis was
repeated with incomplete (maximum of three HPO annotations), noisy (two random HPO-terms
added) and imprecise (two of the original HPO annotations replaced by the more general parent
terms in the ontology) annotations.

The simulated genomes were run through the default settings of Genomiser: <1 % MAF, ReMM
or CADD score for NCVs, MutationTaster, Polyphen, and SIFT for coding and phenotype sim-
ilarity with hiPHIVE. ReMM score position included in the ReMM training set were generated
through the cytoband-aware 10-fold CV. For all other positions in the human genome a global
model using the complete negative and positive positions was used. At the end the performance
of Genomiser was measured with respect to the seeded regulatory Mendelian variant. The num-
ber of first ranked causative variants from all 10,419 experiments of the simulated genomes was
counted.

In 2014 Javed et al. [57] published the tool Phen-Gen. It has the capacity to process HPO-encoded
phenotypic information and whole-genome data. Therefore Phen-Gen was used to compare its
performance with the performance of Genomiser using the same genomic and phenotypic pro-
files and identical AF and inheritance model filtering.

Figure 4.7a shows Genomiser was able to prioritize the causative, regulatory variant as the top-
scoring candidate in 77 % of the simulated Mendelian genomes when using the full phenotypic
profile. There is a slight reduction in performance to 68 % when using the restricted phenotypic
profile that is more likely to represent the type of phenotype annotations collected in realistic
clinical settings.

Figure 4.7b shows that the performance varied according to variant category: the 5’UTR, RNA
gene and miRNA gene mutations were the easiest to prioritize and the 3’'UTR mutations were

78

4.4 Genomiser Performance

particularly difficult followed by enhancer mutations. This is in accordance to the results of
the ReMM score performance with respect to specific functional elements in Table 4.1. The table
shows that ReMM has the lowest performance on 3’'UTR and enhancer mutations. But also CADD
has the same decrease in performance, suggesting that 3’UTR and enhancer mutations used in
this work are in general difficult to detect.

Interestingly for 3’UTR mutations the performance drops significantly when using restricted
phenotypes. This is mostly due to the fact that the used mutations in 3’'UTR causing a rare
disorder were only associated with two HPO-terms. For example there are 7 NCVs causing Beta-
Thalassemia (OMIM-id 613985). This syndrome is only annotated with the terms HP:0011906
and HP:0004840. By creating the restricted phenotypes we will add two random terms to the
original terms. Thus we have an equal correct-to-noise term ratio resulting in a bad performance.
Other examples for syndromes caused by mutations in the 3’UTR with only two annotated terms
are the Alpha-Thalassemia, Myopia 21 or Deafness (autosomal recessive 39).

.Genomiser+ReMM .Genomiser+CADD. Phen-Gen .Genomiser+ReMM - complete | |Genomiser+CADD - restricted
.Genomiser+ReMM - restricted.Phen—Gen - complete
100 .Genomiser+CADD - complete .Phen—Gen - restricted
E
=3 =
8 =
@ 75 §'75
= c
E g
3 g
3 50 250
2 «
o Q
£ @
= =
2 £
g E
S 25 8 25
S £
> 2
S S
L
0 0
& & & § o) £ s N
& S & < <& &
Phenotypes Variant category

(a) Genomiser and Phen-Gen performance on sim- (b) Genomiser and Phen-Gen performance by vari-
ulated genomes. ant category.

Figure 4.7: Performance on Genomiser and Phen-Gen with simulated 1KG genomes using the 453
NCVs. Restricted phenotype means incomplete (maximum of three HPO annotations), noisy (two random
HPO-terms added), and imprecise (two of the original HPO annotations replaced by the more general
parent terms in the ontology) phenotype annotations.

Using CADD instead of the ReMM score the performance was 71 %, and 61 % when using the full
or restricted phenotypic profiles, respectively. When CADD was used without any phenotype
data the causative variant was not seen as the top scoring hit in any samples. Compared to
ReMM without phenotype data the performance dropped substantially but 23 % were still seen
at the first position in a whole genome (see Figure 4.7a).

In both scenarios, using complete and restricted phenotypes, the Genomiser results represent
a substantial improvement over Phen-Gen [57], which achieved performances of 19 % and 14 %
using the full or restricted phenotypes, respectively (Figure 4.7a). In addition, Phen-Gen was

79

Chapter 4 Regulatory Variants

not able to detect enhancer, miRNA, and ICR mutations. Therefore it can only be used to detect
mutations close to a gene (Figure 4.7b).

To assess the performance of Genomiser on 22 published cases of compound heterozygosity, both
mutations were spiked into a 1KG VCF file and ran the standard Genomiser analysis with ReMM.
Here, one causal mutation is regulatory and the other is coding or at a splice site (see Table D.1).
The causative gene was ranked at the top in 18 (84 %) of all simulations, demonstrating the ability
of Genomiser to integrate information about coding and NCVs into the prioritization process.

Weaken the 20 kb Regulatory Region Constraint Genomiser has a limitation to detect
variants that are over 20 Kb away from the next gene. In that case the variant must overlap
with predicted enhancers from the FANTOMS5 consortium [135] or regulatory regions from the
Ensembl regulatory feature build [136]. This constraint speeds up the analysis of Genomiser
because fewer variants have to be considered. For the actual test set this works substantially well
because of the good performance of Genomiser (Figure 4.7). But on new genomes the constraint
might be problematic and can filter out good candidates. In addition, it might not be needed
because the ReMM score uses FANTOM5 and Ensemble regulatory features as part of its attribute
set. Therefore it can be favorable to let ReMM decide if the variant is regulatory or not.

Another problem of the 20 Kb constraint is that variants, that are in the 20 Kb range of a gene,
as well as intergenic variants, are always mapped to the closest gene. Of course it is likely that
variants before the TSS are located in a promoter. But in general the literature uses a maximal
distance of 2 Kb in front of the TSS [140-142]. The TAD is a conserved structure so we can see
it as a regulatory compartment. Rudan et al. [143] showed that intra-TAD domain loops are
divergent in evolution. In addition Mumbach et al. [144] found out that only a fraction (14 %) of
enhancers with known GWAS hits target the next gene. Considering these insights, the target of
intergenic or intronic variants should be every gene in its corresponding TAD, and Genomiser
might assign variants to the false gene which might be phenotypically unimportant.

Because of these thoughts I modified the actual development version of Genomiser! to drop the
20 Kb constraint, use ReMM only for relevance prediction of intergenic or intronic variants and
associate every intergenic, intronic, upstream, and downstream variant to the most phenotypi-
cally similar gene in the TAD. The main differences of the development to the stable Genomiser
version 7.2 is that Jannovar v0.20 is integrated to assess the variant effect using the transcript
database RefSeq, as well as that it includes minor enhancements and bugfixes.

For performance evaluation every 448 Mendelian regulatory mutation (see Table 3.1 and Ap-
pendix A, duplicated positions were removed) was inserted 23 times in one of the 2054 whole-
genome VCF files from the phase 3 1KG [59, 68] resulting in 448 x 23 = 10,304 simulated
genomes. Variants were always spiked in with a homozygous genotype. This should have no
effect because the inheritance mode is set to unknown and no OMIM prioritizer is used. The
function of the OMIM prioritizer is to reduce the phenotype score when the variant does not fit
to the inheritance mode of the associated syndrome. E.g. the Exomiser scores of heterozygous
variants that are linked to a recessive disease will be divided by two. Randomly two to ten HPO-
terms were generated from the associated OMIM disease with a 40 % chance to return a more

!commit 2978b534737857f c7c6a7442b88f ce9222bdddch

80

4.4 Genomiser Performance

generalized term (using a term upwards in the DAG). Finally, 20 % random terms were added so
that we finally get a noisy and maybe more realistic phenotype query for the patient. Then the
standard and the modified (no-constraint) Genomiser were run on the inputs using a frequency
cutoff of 1% and the hiPHIVE prioritization algorithm. At the end the final score and the rank
of the Mendelian regulatory mutation were observed. It is important to say that both versions
of Exomiser were run with exactly the same input data (genomes and HPO-terms) to make the
results comparable.

Table 4.2 shows how many times we see a Mendelian mutation at the first position or within the
top 10 or top 100. Both analyses have really similar results. In the standard Genomiser approach
we see the variant of interest 70.027 % at the first position and using the no-constraint approach in
69.501 % of all 10,304 tests. Therefore also the ROC curves in Figure D.1a as well as the AUROCs
are nearly the same (AUROCtandard = 0.915 and AUROC 0-constraint = 0.914).

Another important observation is that both benchmark results are similar but slightly better
(around 2 %) than the initial Genomiser benchmark runs using restricted phenotypes. This is on
the one hand due to minor fixes and improvements of the frameworks. On the other hand, in this
analysis the RefSeq instead of the UCSC transcript database is used. RefSeq has less transcripts,
especially less predicted transcripts, so that the coverage of the genome is smaller. This results
in smaller coding predictions by Jannovar and therefore the pathogenicity of a larger amount of
variants will be due to ReMM and not the coding variant scores. As I showed before, ReMM is
really restrictive in assigning high values to positions and therefore more variants will be sorted
out. So actually both versions of Genomiser work really well on the tested regulatory Mendelian
mutations. But the regulatory region constraint can be removed without any drawbacks.

Table 4.2: Genomiser performance comparison between standard settings and without limiting to only
regulatory regions in TADs. 453 NCVs were spiked into genomes of the 1KG and Genomiser was run
using noisy phenotype queries. Here we see the percentage of the gene associated to the variant at the
rank one (Top), within the first 10 (Top10) and within the first 100 (Top100) genes. Genomiser was used
in the standard version (Standard) and in a modified version (No-Constraint) where the assignment of
20 Kb to the next gene was removed and every intergenic, intronic, upstream, and downstream variant
was associated to the most phenotypcially similar gene in the TAD. No overlap to a regulatory region
defined by FANTOMS [135] or the Ensembl regulatory feature build [136] is needed here.

Rank No-Constraint Standard

Top 69.5 % 70.7 %
Top 10 83.2% 83.2%
Top 100 89.2% 89.2%

81

Chapter 4 Regulatory Variants
4.5 Discussion and Chapter Conclusion

In this chapter I explained the coding variant prioritization tool Exomiser for Mendelian disease.
Exomiser uses variants from a VCF file together with phenotypes, encoded in HPO-terms, further
filters them on variant effect and allele frequency, and finally ranks the variants/genes according
to phenotype similarity and variant pathogenicity. Two important components in Exomiser are
on the one hand the HPO, a standard terminology to describe phenotypic features, which enables
semantic similarities to phenotypic similar genes to an input term query; and on the other hand
Exomiser uses Jannovar, a library that annotates the variant effect in SO-terms and can annotate
variants with inheritance patterns.

Genomiser extends Exomiser to the non-coding part of the genome. On deep intergenic vari-
ants it uses the topological structure of the DNA to assign variants to the most phenotypically
similar gene in the same TAD. For pathogenicity prediction Genomiser uses the precomputed
non-coding score of the whole genome.

One of these pathogenicity scores is ReMM and it is built directly to assess the relevance of NCVs,
including UTRs, in Mendelian diseases. ReMM is trained on 406 Mendelian mutations using the
hyperSMURF algorithm. The ReMM score is defined per position in the human genome and
ranges from 0 (no regulatory site) to 1 (regulatory site). On the Mendelian dataset ReMM works
better than other non-coding scores, like LINSIGHT, CADD or Eigen. All included functional
elements have a reasonably good performance. Only variants in the 3’UTR are difficult to de-
tect, which is in concordance with the literature. It seems that 3’'UTRs are not under the same
rigid structural constraints as other elements so that evolutionary pressure may thus have taken
advantage of the greater degree of freedom here to modulate mRNA molecules [137]. Therefore
more diverse features and more diverse 3’UTR examples are needed to portray and learn the
mechanisms of the 3’'UTRs.

A good alternative score in terms of Mendelian regulatory variants might be LINSIGHT. In the
performance measurements LINSIGHT shows the best performance of the compared scores,
apart from ReMM. It has a slightly better performance than ReMM for around 40 % of the vari-
ants but then the performance has a steep decrease (compare with Figure 4.5b). On the one hand
LINSIGHT uses similar features per positions, and I showed previously in Section 4.3 that the
features are informative for the Mendelian dataset. On the other hand the evolutionary model
adapted from INSIGHT seems to model a mendelian evolutionary behavior very well. Therefore
the fitting of the selection parameter S; per site ¢ is really informative in terms of Mendelian
pathogenic mutations.

The Eigen and Eigen-PC scores are the only scores generated from unsupervised learning. This
idea is reasonable because most of the time it is difficult to create good training sets or we are too
limited (maybe also biased) in training data using a supervised learning. But the other side of the
coin is that Eigen includes allele frequencys (AFs) from the 1KG. This becomes problematic for
recessive diseases, because it is likely that those variants have an AF, resulting in lower scores.
This drawback was also discovered by benchmarking with simulated real genomes, as Figure 4.6
showed. Every negative variant became a low score because all of them had an AF from the 1KG.
Most of the Mendelian mutations are unique and have no AF resulting in good Eigen scores. Now

82

4.5 Discussion and Chapter Conclusion

we have to weigh if an AF cutoff might be a better option. For example the recent work from
Whiffin et al. [145] showed that using high-resolution variant frequencies to empower clinical
genome interpretation might be more powerful than including AFs in a training set.

The combination of Genomiser and ReMM score provides the first practical approach to effec-
tively analyze variant data from WGS. It can find pathogenic NCVs as well as coding variants.
Especially the phenotypic approach boosts the performance, and even with realistic restricted
phenotype terms Genomiser is able to find the causative mutation in 68 % on rank one. There
might be a small drawback for the detection of new pathogenic variants because of the previ-
ously discussed constraints and limitations on intergenic, upstream, downstream and intronic
variants. But the last analysis showed that these specific constraints are not necessary and the
phenotypic approach together with the ReMM score is stable enough. To conclude this I would
recommend to remove the regulatory region constraint in further versions of Genomiser because
it will be a limitation on novel genomes. The ReMM score by itself seems to be enough to assess
the importance of a NCV and no further filters are needed.

83

Chapter 5

Discussion and Conclusion

In this thesis, I described my contributions to the field of ML on highly imbalanced data and that
of assessing the regulatory genome for Mendelian diseases. First, I gave a brief introduction to
the background in biology, data mining and ML, computer science and mathematics. Then I pre-
sented different well known pathogenicity or deleteriousness scores for the non-coding genome.
After that I explained my contribution in this field, the ML algorithm hyperSMURF and the ReMM
score together with the application Exomiser and Genomiser.

In this chapter, I will give a short summary of my contributions and discuss limitations. The
thesis concludes with an outlook on future work and upcoming challenges.

Contribution Summary

In Chapter 3 I introduced hyperSMURF, a ML algorithm for highly imbalanced data that natu-
rally arise in several genome-wide variant scoring problems. Five major characteristics can be

highlighted.

1. HyperSMUREF uses over- and undersampling techniques to allow the construction of bal-
anced training sets, thus avoiding the bias towards the non-deleterious genetic variants.
The partitioning combined with the over- and undersampling techniques results in diverse
base learners, a well-known factor for the success of ensemble methods [80].

2. The relatively small size of the training data is counterbalanced by the partitioning of the
data and by the ensemble approach. This allows the algorithm to learn from all or a large
set of instances, which improves the coverage of the available training data.

3. Predictions are provided by an ensemble of RFs (hyper-ensemble), thus improving the ro-
bustness and the accuracy of the predictions.

85

Chapter 5 Discussion and Conclusion

4. The relatively small size of the training examples scales nicely with large amounts of data,
as shown for genetic variants.

5. The ensemble approach allows a parallel implementation of the algorithm.

HyperSMURF was used in combination with genetic NCV data. Thus, in Section 3.3.1 I explained
the cytogenetic band-aware CV, a strategy which allows an unbiased performance measurement.
It guarantees that variants from the same gene, disease or locus are not divided between training
and test set. Otherwise overfitting will be introduced. In addition, the prediction of positives and
negatives in genomically close regions in Section 3.5.2, using similar motivated CV strategies,
results in good performance. Even this is known to be a difficult challenge, because variants in
the same region might share similar feature values.

The experimental results showed that imbalance-aware methods significantly outperform im-
balance-unaware ML methods for the prediction of regulatory non-coding Mendelian and com-
mon disease associated variants, as well as SNPs associated with miRNA to eQTLs relationships.
Apart from the GWAS and Mendelian negatives, training sets, features, feature sizes and imbal-
ances were different between the analyzed datasets. This shows that hyperSMUREF is robust in
the prediction of imbalanced data of versatile genetic applications.

In Chapter 4 I explained the usage of hyperSMURF together with the Mendelian data to build the
ReMM score for assessing the pathogenicity of NCVs in Mendelian diseases. Previous methods
have been designed to detect functional NCVs in general, rather than solely detecting those NCVs
that cause Mendelian disease. It is difficult to find a good pathogenic variant set for that purpose
due to the fact that available databases contain errors [146] and conflate Mendelian and GWAS-
associated variants. Therefore the manually curated 406 Mendelian SNVs were used as positive
training set to build the ReMM score. This dataset was created by an extensive and detailed
literature curation to identify mutations that are associated with Mendelian disease and whose
pathogenicity was judged to be plausible based on co-segregation, experimental evidence, or
similar considerations. Further inspection of the data, e.g. in Figure 4.3, showed that they do in
fact substantially differ from background positions in the genome and also from GWAS hits.

For the prioritization of Mendelian mutations in WGS data, the ReMM score performed much
better than other NCV scores. Here, ReMM was compared to CADD, GWAVA, Eigen, Eigen-
PC, FATHMM-MKL, DeepSEA and LINSIGHT [33-37]. The ReMM score was precomputed for
every unambiguous position of the human reference genome using all available training data.
Afterwards the positions of the training data were replaced with scores from the cytogenetic
band-aware CV to have a global score that can be used in other approaches and for unbiased
comparisons to other scores on the full range of the human genome. Apart from the unsupervised
Eigen/Eigen-PC approach, none of the other scores provides such an unbiased scoring file.

To find the causative mutations in rare genetic disorders, the Exomiser framework brings mul-
tiple phenotype and genotype strategies together to filter and rank variants according to the
disease. Also in Chapter 4 I explained Exomiser, its implemented filters and phenotype prioriti-
zation algorithms together with important underlying concepts: the HPO and the software tool
Jannovar for functional annotation of variations. Then I introduced Genomiser, a further devel-
opment of Exomiser, to analyze variant data from whole genomes. Genomiser takes advantage

86

of the topological confirmation of the genome to assign NCVs to a related gene. The software
was benchmarked using 10,419 simulated whole genomes with complete and restricted as well
as without phenotypes, in combination with ReMM or CADD as pathogenicity scores for NCVs.
I was able to show that the inclusion of phenotype data is critical for the effective prioritization
of the regulatory variants because performance dropped from 68 % to 23 % when Genomiser was
run with a consequent removal of phenotypic filtering and prioritization. The same analysis, but
with a replacement of ReMM with CADD, failed completely on this task, because CADD is not
specifically designed for regulatory Mendelian mutations and highly imbalanced data.

Challenges and Outlook

Finally I discuss how hyperSMURF, the ReMM score and Exomiser or Genomiser can be used
in future applications and research. I will examine the limitations of the different approaches
and present strategies to overcome them. I will end this work with some general words about
imbalanced data, concluding the considerations in the introduction.

HyperSMURF Oversampling by SMOTE seems to be the weakest factor on imbalanced train-
ing, as shown in the analysis of the different compartments of hyperSMURF in Section 3.5.1. But
in this work the SMOTE algorithm itself was used like in the initial publication and not further
decomposed or analyzed. But several modifications are potentially advantageous on training
data with specific characteristics. For example in the original publication of SMOTE by Chawla
et al. [21] a new synthetic instance is generated between exactly two instances in a cluster. It
is also conceivable that several or all instances within a cluster will be used for creating syn-
thetic instances. Also, different strategies can be combined to generate different variances, a key
component for performance improvement in ensemble learning.

From the analysis of different NCV classes using the ReMM score we know that 3’ UTR variants
are difficult to classify (compare with Section 4.3). Therefore it might be beneficial to shift the
importance of the classification boundary to those minority classes which are difficult to learn
during oversampling. An algorithm that combines this idea together with the general approach
of SMOTE is the adaptive synthetic sampling approach (ADASYN) [147]. ADASYN generates a
higher fraction of synthetic variants for minority classes that are more difficult to learn.

HyperSMURF has an advantageous algorithmic feature: it is highly parallelizable. Each training
and testing per partition is independent from each other. All actual implementations, in R and
Java, support parallel computing, but only on a single machine. On cluster environments multiple
small jobs are preferred to a large one. Therefore a fast and parallel implementation with a
high performance cluster support will assist the further usage of hyperSMUREF in other fields of
applications.

A limitation of the proposed approach is the large number of learning parameters. Many different
parameters might act as a deterrent to the use of hyperSMURF in other projects. Indeed the
proper choice of good setting values is not always straightforward and may have a certain impact
on the accuracy of the algorithm. The provided default parameters in Table 3.2 worked well in

87

Chapter 5 Discussion and Conclusion

the experiments. Also an experimental procedure to automatically tune the parameters through
an internal CV was introduced. In the future this can be implemented directly into the software
to provide a decision support system to the user that helps to gain an optimal parameter set
without overfitting. Again a fast, parallel and cluster support software will be favorable because
many computational expensive experiments have to be done in the internal CV.

ReMM Score The ReMM score clearly falls in category one of genome-wide scores, described
in Section 2.4. To recap it here, these scores use a ML classifier that attempts to separate known
disease variants from putatively benign variants with a variety of genomic features. Therefore
ReMM is specifically designed for regulatory Mendelian diseases. On the one hand this is the
strength of ReMM: the good curated positive data, the features directly selected for that pur-
pose and the special imbalance-aware strategy lead to a superior performance on Mendelian
regulatory variants in comparison to other non-coding scores. Right now the number of known
causative regulatory variants is still extremely low and therefore it is difficult to assess the per-
formance on the full range of possible regulatory Mendelian mutations. Further work will be
needed to determine whether the ReMM score, future versions of the ReMM score or one of
the competing scores will be useful for the full spectrum of non-coding Mendelian variations,
which could conceivably differ in many ways from the small set of currently known non-coding
Mendelian variants.

On the other hand the performance of ReMM will be limited naturally on other groups of vari-
ants like somatic mutations or common variations. If other types of variant classes should be
investigated, like coding, GWAS or somatic variants, the evolutionary driven scores like CADD
or LINSIGHT, or even the unsupervised Eigen score, will model the data better because theses
scores use a more general approach. But an important factor of evolutionary scores is sequence
conservation. Berthelot et al. [148] and Villar et al. [149] showed that conserved regulatory re-
gions are rare and tend to be promoters. So sequence conservation is not the most important
factor of evolution in enhancers and therefore evolutionary scores are limited in modeling these
regions.

In Section 2.5 I concluded that databases used for performance testing can have an observation
bias. For example most of the ClinVar mutations are located in BRCA2 and BRCA1 [62], resulting
in an underrepresentation of variants in other genes. Partly this is also true on the Mendelian
data, the training data of the ReMM score. The 406 NCVs are associated with 132 different genes
but the five genes TERC, HBB, FTL, RMRP, and F9 contain 30 % of all variants. In some subgroups
the observation bias is much higher. For example 17 (46 %) of all 37 enhancer mutations are linked
to the gene SHH. We can suppose that variants from one gene or element act in a similar way
and can have similar features. This might lead to an overrepresentation of variants of this type
in the overall training set.

The best possibility to remove the observation bias is to train multiple classifiers with a ran-
domly sampled subset by selecting only a small fraction of variants per gene and variant class.
New predictions will be made by an average or majority vote over all classifiers. For the ReMM
score I discarded this strategy because the positive dataset is extremely small. A subsampling of
variants will increase the imbalance which will cause other unintentional effects of decreasing

88

performance. But this idea should be considered if the number of regulatory Mendelian muta-
tions increase. With the actual amount of data it might be better to integrate adaptive learn-
ing strategies for oversampling. This can be achieved through the previously discussed method
ADASYN or a modified version of it, which takes the number of variants per gene into account
during creation of synthetic instances.

In this work only unspecific regulatory features were used, like the maximum H3K4 methylation
level from different cell lines. The advantage of these features is that they have a dense signal
over the whole genome. Also the TAD is conserved over cell lines and can be seen as a general
compartmentation of the DNA. But most regulatory mechanisms are really specific on the tissue
type or the time point when they are active — broadly speaking what happens within a TAD is not
always the same. This introduces several new problems. Tissue and maybe time point specific
experiments have to be made, which introduces two totally new dimensions. Mostly the data
generated from such experiments are sparse on the whole genome, resulting in not assigned
or zero attributes for all other, not involved instances. Therefore we need a logic to integrate
the data before we begin with the training. A first step into this direction might be DeepSEA
because it integrates several sparse regulatory features into sequence-based dense scores. But
still the tissue and time dimension is missing. In the future this gap might be closed by multiplex
assays of variant effect (MAVEs) [62]. For example massive parallel reporter assays (MPRAs)
are able to test every variant effect (SNVs and 1 bp deletions) of a regulatory region in a specific
tissue [150].

Exomiser and Genomiser An application that integrates the ReMM score to find causative
regulatory mutations in Mendelian diseases is the Genomiser framework. The performance of the
simulated genomes showed that the software is able to find the causative mutation in around 70 %
of all tests. So the software is ready for new unsolved genomes. The combination with Exomiser
also enables the observations of coding variants, and maybe Genomiser can help to find the
missing link in those cases where we have only one heterozygous coding mutation in a recessive
gene. With the AR filter of Jannovar, Genomiser will detect the second non-coding mutation,
e.g. a 5> UTR variant which disturbs the transcription of one allele, leading to transcripts that
contain only the pathogenic coding mutation (like a homozygous variant). Genomiser can even
be used on exome sequencing data because the exon enrichment often covers 5° and 3° UTRs.

One effect prediction is still missing in the framework: splice sites. Only essential splice sites,
+2 bases of the exon start or end, are predicted. But other splice sites exist like deep intronic
splice elements or exonic splicing enhancers (ESEs). Prediction of splice elements will be crucial
to assess the pathogenicity of the whole range of all possible SNVs or InDels that might cause a
rare genetic disorder. Again MAVE:s exist for revealing variant effects on mRNA processing [62].
With these splicing assays it will be possible to generate a large dataset for variant splice effects
and this can be used to generate an accurate score for splicing prediction.

Because Exomiser and also Genomiser are used in multiple large projects and the Monarch Ini-
tiative together with the Queen Mary University of London push the development, Exomiser will
be improved further — with more data being integrated and old data updated. If Genomiser is be-
coming a standard tool for analyzing genomes, constant further development would be needed.

89

Chapter 5 Discussion and Conclusion

In the actual development a representational state transfer (REST) web service is integrated into
Exomiser and multiple features will sill be added, like using own frequency databases e.g. from
an in-house cohort. In addition the Exomiser developer team plan to generate a version of the
new genome GRCh38 release. Therefore also ReMM needs to be updated. A simple lift-over to
the new genome might be possible. But the best way will be a new training directly on features
and variants of the new release.

The central point of Genomiser are the phenotypes because they are the key component for a
good performance. But for untrained users it might be difficult to detect the key phenotypes
or whether separate phenotypes belong to the syndrome or to something else. The presented
phenotype similarity algorithms can handle noise to some extent because when using restricted
phenotypes the performance of Genomiser is still high. But other phenotype approaches might
make more stable predictions irrespective of user input. We can think of using image analysis
from faces, limbs or X-rays to detect phenotypic abnormalities [151]. This can be added as a third
dimension, beside HPO and molecular deleteriousness scores, to predict the affected gene with
a causative mutation.

So we see that for specific purposes in biology or medicine, like the relevance prediction of NCVs,
we are limited to certain amount of data, mostly for positive examples. This can result in a huge
imbalance between the effect we want to predict and what we consider as neutral or negative. To
increase the number of examples we cannot use the concept of self-play and take another spin,
like in the board game Go [1, 2]. Huge efforts have to be made to gain more observations. But
where financial and technical limitations exist, this may not always be possible.

Smart but imbalance-unaware methods will mostly fail on highly imbalanced data because they
tend to learn only the majority class. Therefore algorithms designed specifically for highly im-
balanced data can help to fill that gap. Using such imbalance-aware ML techniques and a good
curated training set with convincing features, it is possible to extract knowledge out of a hand-
ful examples and expand it to a large scale like the whole genome. In this work I successfully
used this approach for relevance prediction on NCVs. Finally a clever combination with other
approaches, like the ML on regulatory Mendelian mutations together with phenotypes, results
in powerful applications.

In the future, approaches of combining multiple datasources will become an important topic.
The general challenge will be to integrate different metadata and experiments of different tissues
and time points, use Al to find the links within the data, and extract knowledge out of it. But we
should always keep in mind that there might only be a few known examples at any given time
point. That is where efficient imbalance-aware ML strategies can make a major contribution.

90

References

1. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature
529, 484-89 (Jan. 2016).

2. Littman, M. L. in Machine Learning Proceedings 1994 (eds Cohen, W. W. & Hirsh, H.) 157-63
(Morgan Kaufmann Publishers Inc., San Francisco (CA), July 1994).

3. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA
interactions. Nature Methods 4, 895-901 (Nov. 2007).

4. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors.
Proceedings of the National Academy of Sciences 74, 5463-7 (1977).

5. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. Journal of Molecular Biology 94, 441-6 (May 1975).

6. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous vari-
ants on protein function using the SIFT algorithm. Nature Protocols 4, 1073-81 (June 2009).

7. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations.
Nature Methods 7, 248-9 (Apr. 2010).

8. Schwarz,]J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-
causing potential of sequence alterations. Nature Methods 7, 575-6 (Aug. 2010).

9. Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation pre-
diction for the deep-sequencing age. Nature Methods 11, 361-2 (Mar. 2014).

10. Davydov, E. V. et al. Identifying a High Fraction of the Human Genome to be under Selec-
tive Constraint Using GERP++. PLoS Computational Biology 6, €1001025 (Dec. 2010).
11. Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic se-

quence. Genome Research 15, 901-13 (July 2005).

12. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome research 15, 1034-50 (Aug. 2005).

13. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substi-
tution rates on mammalian phylogenies. Genome Research 20, 110-21 (Jan. 2010).

14. Wolff, M., Hauck, P. & Kiichlin, W. Mathematik fiir Informatik und Bioinformatik (Springer-
Verlag Berlin Heidelberg, 2004).

93

References

15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

94

Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J. Data Mining: Practical machine learning tools
and techniques (Morgan Kaufmann Publishers Inc., 2016).

Breiman, L. Bagging predictors. Machine Learning 24, 123-40 (Aug. 1996).
Breiman, L. Random Forests. Machine Learning 45, 5-32 (Oct. 2001).

Quinlan, J. R. C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993).

Ling, C. X. & Li, C. Data mining for direct marketing: Problems and solutions. in KDD 98
(1998), 73-9.

Japkowicz, N. et al. Learning from imbalanced data sets: a comparison of various strategies
in AAAI workshop on learning from imbalanced data sets 68 (Sept. 2000), 10-5.

Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research, 321-57 (Feb. 2002).

Saito, T. & Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC
Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE 10, 1-21 (Mar.
2015).

He, H. & Garcia, E. A. Learning from imbalanced data. IEEE Transactions on Knowledge and
Data Engineering 21, 1263-84 (June 2009).

Davis, J. & Goadrich, M. The Relationship Between Precision-Recall and ROC Curves in Pro-
ceedings of the 23rd International Conference on Machine Learning (ACM, Pittsburgh, Penn-
sylvania, USA, 2006), 233—-40.

Gruber, T. R. et al. A translation approach to portable ontology specifications. Knowledge
acquisition 5, 199-220 (June 1993).

Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics 25,
25-9 (May 2000).

Resnik, P. Using Information Content to Evaluate Semantic Similarity in a Taxonomy 448-53
(Morgan Kaufmann Publishers Inc., Montreal, Quebec, Canada, 1995).

Azuaje, F. & Bodenreider, O. Incorporating Ontology-Driven Similarity Knowledge into
Functional Genomics: An Exploratory Study. BIBE 2004 : proceedings : 19-21 May, 2004,
Taichung, Taiwan, ROC. IEEE International Symposium on Bioinformatics and Bioengineer-
ing (4th : 2004 : Taichung, Taiwan) 2004, 317-24 (May 2004).

Pesquita, C., Faria, D., Falcéo, A. O., Lord, P. & Couto, F. M. Semantic Similarity in Biomed-
ical Ontologies. PLoS Computational Biology 5, €1000443 (July 2009).

De Ligt, J. et al. Diagnostic Exome Sequencing in Persons with Severe Intellectual Disabil-
ity. New England Journal of Medicine 367. PMID: 23033978, 1921-9 (Nov. 2012).

Lemke, J. R. et al. Targeted next generation sequencing as a diagnostic tool in epileptic
disorders. Epilepsia 53, 1387-98 (Aug. 2012).

Glockle, N. et al. Panel-based next generation sequencing as a reliable and efficient tech-
nique to detect mutations in unselected patients with retinal dystrophies. European Journal
of Human Genetics 22, 99 (Jan. 2014).

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

References

Kircher, M. et al. A general framework for estimating the relative pathogenicity of human
genetic variants. Nature Genetics 46, 310-5 (Mar. 2014).

Ritchie, G. R. S., Dunham, L, Zeggini, E. & Flicek, P. Functional annotation of noncoding
sequence variants. Nature Methods 11, 294-6 (Mar. 2014).

Huang, Y.-F., Gulko, B. & Siepel, A. Fast, scalable prediction of deleterious noncoding vari-
ants from functional and population genomic data. Nature Genetics 49, 618-24 (Mar. 2017).

Ionita-Laza, I., McCallum, K., Xu, B. & Buxbaum,]J. D. A spectral approach integrating
functional genomic annotations for coding and noncoding variants. Nature Genetics 48,
214-20 (Feb. 2016).

Shihab, H. A. et al. An integrative approach to predicting the functional effects of non-
coding and coding sequence variation. Bioinformatics 31, 1536—-43 (May 2015).

Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-
based sequence model. Nature Methods 12, 931-4 (Oct. 2015).

Kimura, M. The Neutral Theory of Molecular Evolution 367 (Cambridge University Press,
1983).

Paten, B. et al. Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome
Research 18, 1829-43 (Nov. 2008).

Consortium, T. 1. G. P. An integrated map of genetic variation from 1,092 human genomes.
Nature 491, 56-65 (Nov. 2012).

Paten, B., Herrero, J., Beal, K., Fitzgerald, S. & Birney, E. Enredo and Pecan: Genome-
wide mammalian consistency-based multiple alignment with paralogs. Genome Research
18, 1814-28 (Nov. 2008).

McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biology 17, 122 (Dec.
2016).

Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation
and human phenotype. Nucleic Acids Research 42, D980-5 (Jan. 2014).

Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant vari-
ants. Nucleic Acids Research 44, D862-8 (Jan. 2016).

Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characteri-
zation. Nature Methods 9, 215—-6 (Feb. 2012).

Stenson, P. D. et al. The Human Gene Mutation Database: 2008 update. Genome Medicine
1, 13 (Jan. 2009).

Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.
Nucleic Acids Research 42, D1001-6 (Jan. 2014).

Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and
website. British Journal of Cancer 91, 355-8 (June 2004).

Fu, Y. et al. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer.
Genome Biology 15, 480 (Oct. 2014).

95

References

51. Liu, X, Wu, C., Li, C. & Boerwinkle, E. dbNSFP v3.0: A One-Stop Database of Functional
Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Human
Mutation 37, 235-41 (Mar. 2016).

52. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations:
application to cancer genomics. Nucleic Acids Research 39, e118 (Sept. 2011).

53. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochas-
tically larger than the other. The Annals of Mathematical Statistics, 50-60 (1947).

54. Zemojtel, T. et al. Effective diagnosis of genetic disease by computational phenotype analy-
sis of the disease-associated genome. Science Translational Medicine 6, 252ra123 (Sept.
2014).

55. Smedley, D. et al. Next-generation diagnostics and disease-gene discovery with the Ex-
omiser. Nature Protocols 10, 2004-15 (Nov. 2015).

56. Smedley, D. et al. A Whole-Genome Analysis Framework for Effective Identification of
Pathogenic Regulatory Variants in Mendelian Disease. The American Journal of Human
Genetics 99, 595-606 (Sept. 2016).

57. Javed, A., Agrawal, S. & Ng, P. C. Phen-Gen: combining phenotype and genotype to analyze
rare disorders. Nature Methods 11, 935-7 (Sept. 2014).

58. Gronau, I, Arbiza, L., Mohammed, J. & Siepel, A. Inference of natural selection from inter-
spersed genomic elements based on polymorphism and divergence. Molecular Biology and
Evolution 30, 1159-71 (May 2013).

59. Consortium, T. 1. G. P. A global reference for human genetic variation. Nature 526, 68-74
(Oct. 2015).

60. Gulko, B., Hubisz, M. J., Gronau, I. & Siepel, A. A method for calculating probabilities of
fitness consequences for point mutations across the human genome. Nature Genetics 47,
276-83 (Mar. 2015).

61. Gompertz, B. On the nature of the function expressive of the law of human mortality, and
on a new mode of determining the value of life contingencies. Philosophical transactions
of the Royal Society of London 115, 513-83 (1825).

62. Starita, L. M. et al. Variant Interpretation: Functional Assays to the Rescue. The American
Journal of Human Genetics 101, 315-25 (Sept. 2017).

63. Mather, C. A. et al. CADD score has limited clinical validity for the identification of pathogenic
variants in noncoding regions in a hereditary cancer panel. Genetics in Medicine 18, 1269—
75 (May 2016).

64. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for
nonsynonymous SNVs in whole exome sequencing studies. Human molecular genetics 24,
2125-37 (Dec. 2014).

65. Liu, X., Li, C. & Boerwinkle, E. The performance of deleteriousness prediction scores for
rare non-protein-changing single nucleotide variants in human genes. Journal of Medical
Genetics 54, 134—44 (Feb. 2017).

96

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.
78.

79.

30.
31.

82.

83.

References

Schubach, M., Re, M., Robinson, P. N. & Valentini, G. Imbalance-Aware Machine Learn-
ing for Predicting Rare and Common Disease-Associated Non-Coding Variants. Scientific
Reports 7, 2959 (June 2017).

Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536,
285-91 (Aug. 2016).

Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes.
Nature 526, 75-81 (Oct. 2015).

Sifrim, A. et al. Distinct genetic architectures for syndromic and nonsyndromic congenital
heart defects identified by exome sequencing. Nature Genetics 48, 1060-5 (Sept. 2016).

Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheuma-
toid arthritis risk loci. Nature Genetics 42, 508—-14 (June 2010).

Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids
Research 42, D756-63 (Jan. 2014).

Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in
human cancer. Nucleic Acids Research 43, D805-11 (Jan. 2015).

Ma, M. et al. Disease-associated variants in different categories of disease located in distinct
regulatory elements. BMC Genomics 16, S3 (June 2015).

Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery.
The American Journal of Human Genetics 90, 7-24 (Jan. 2012).

Edwards, S. L., Beesley, J., French, J. D. & Dunning, A. M. Beyond GWASs: llluminating
the Dark Road from Association to Function. The American Journal of Human Genetics 93,
779-97 (Nov. 2013).

Gordon, C. T. & Lyonnet, S. Enhancer mutations and phenotype modularity. Nature Ge-
netics 46, 3-4 (Jan. 2014).

Cortes, C. & Vapnik, V. Support-vector networks. Machine Learning 20, 273-97 (Sept. 1995).

Bishop, C. Neural networks for pattern recognition 1st ed. (Clarendon Press; Oxford Univer-
sity Press, 1995).

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. A Review on Ensem-
bles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42,
463-84 (July 2012).

Kuncheva, L. I. Diversity in Classifier Ensembles 295-327 (John Wiley & Sons, Inc., 2004).

Kittler, J. & Roli, F. Multiple Classifier Systems: First International Workshop, MCS 2000
Cagliari, Italy, June 21-23, 2000 Proceedings (Springer Science & Business Media, 2000).

Srivastava, A. N. Advances in machine learning and data mining for astronomy (Chapman
and Hall/CRC, 2012).

Ritchie, G. R. & Flicek, P. Functional Annotation of Rare Genetic Variants 57-70 (Springer,
2015).

97

References

84.

85.

86.

87.

88.
89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

98

Goldstein, B. A., Polley, E. C. & Briggs, F. Random forests for genetic association studies.
Statistical Applications in Genetics and Molecular Biology 10 (June 2011).

Liu, X.-Y., Wu, J. & Zhou, Z.-H. Exploratory undersampling for class-imbalance learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, 539-50 (Dec.
2009).

Cazzola, M. & Skoda, R. C. Translational pathophysiology: a novel molecular mechanism
of human disease. Blood 95, 3280—-88 (May 2000).

Scheper, G. C., van der Knaap, M. S. & Proud, C. G. Translation matters: protein synthesis
defects in inherited disease. Nature Reviews Genetics 8, 711-23 (July 2007).

Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and Disease. Cell 136, 777-93 (Feb. 2009).

Ward, L. D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and
human disease. Nature Biotechnology 30, 1095-106 (Nov. 2012).

Jarinova, O. & Ekker, M. Regulatory variations in the era of next-generation sequencing:
Implications for clinical molecular diagnostics. Human Mutation 33, 1021-30 (Apr. 2012).

Jones, B. L. & Swallow, D. M. The impact of cis-acting polymorphisms on the human phe-
notype. The HUGO journal 5, 13-23 (July 2011).

Chen, J.-M,, Férec, C. & Cooper, D. N. A systematic analysis of disease-associated vari-
ants in the 3’ regulatory regions of human protein-coding genes I: general principles and
overview. Human Genetics 120, 1-21 (Apr. 2006).

Chatterjee, S. & Pal, J. K. Role of 5’- and 3’-untranslated regions of mRNAs in human
diseases. Biology of the Cell 101, 251-62 (May 2009).

Chuzhanova, N., Cooper, D. N., Férec, C. & Chen, J.-M. Searching for potential microRNA-
binding site mutations amongst known disease-associated 3’ UTR variants. Genomic Medicine
1, 29-33 (Jan. 2007).

Pickering, B. M. & Willis, A. E. The implications of structured 5’ untranslated regions on
translation and disease. Seminars in Cell & Developmental Biology 16, 39—-47 (Feb. 2005).

Calvo, S.E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread
reduction of protein expression and are polymorphic among humans. Proceedings of the
National Academy of Sciences 106, 7507-12 (May 2009).

Wethmar, K., Smink, J. J. & Leutz, A. Upstream open reading frames: molecular switches
in (patho)physiology. Bioessays 32, 885-93 (Oct. 2010).

Epstein, D. J. Cis-regulatory mutations in human disease. Brief Functional Genomics 8, 310—
6 (July 2009).

Sakabe, N. J., Savic, D. & Nobrega, M. A. Transcriptional enhancers in development and
disease. Genome Biology 13, 238 (Jan. 2012).

Khan, I. A. et al. In silico discrimination of single nucleotide polymorphisms and patholog-
ical mutations in human gene promoter regions by means of local DNA sequence context
and regularity. In Silico Biology 6, 23-34 (June 2006).

References

101. Savinkova, L. K. ef al. TATA box polymorphisms in human gene promoters and associated
hereditary pathologies. Biochemistry (Moscow) 74, 117-29 (Feb. 2009).

102. Cammaerts, S., Strazisar, M., De Rijk, P. & Del Favero, J. Genetic variants in microRNA
genes: impact on microRNA expression, function, and disease. Frontiers in Genetics 6, 186
(May 2015).

103. Hrdlickova, B., de Almeida, R. C., Borek, Z. & Withoff, S. Genetic variation in the non-
coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim-
ica et Biophysica Acta (BBA) - Molecular Basis of Disease 1842, 1910-22 (Oct. 2014).

104. Kawahara, Y. Human diseases caused by germline and somatic abnormalities in microRNA
and microRNA-related genes. Congenital anomalies 54, 12-21 (Feb. 2014).

105. Meola, N., Gennarino, V. A. & Banfi, S. microRNAs and genetic diseases. Pathogenetics 2,
7 (Nov. 2009).

106. Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spec-
trum disorders. The American Journal of Human Genetics 94, 677-94 (May 2014).

107. Giardine, B. et al. HbVar database of human hemoglobin variants and thalassemia muta-
tions: 2007 update. Human Mutation 28, 206 (Feb. 2007).

108. Podlevsky, J. D., Bley, C. J., Omana, R. V., Qi, X. & Chen, J. J.-L. The telomerase database.
Nucleic Acids Research 36, D339-43 (Jan. 2008).

109. Jager, M. et al. Jannovar: A Java Library for Exome Annotation. Human Mutation 35, 548-
55 (May 2014).

110. Rosenbloom, K. R. et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids
Research 43, D670-81 (Jan. 2015).

111. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Research 32,
D493-46 (Jan. 2004).

112. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature
507, 455-61 (Mar. 2014).

113. MacDonald, J. R., Ziman, R., Yuen, R. K. C., Feuk, L. & Scherer, S. W. The Database of Ge-
nomic Variants: a curated collection of structural variation in the human genome. Nucleic
Acids Research 42, D986-92 (Jan. 2014).

114. Lappalainen, I. et al. dbVar and DGVa: public archives for genomic structural variation.
Nucleic Acids Research 41, D936-41 (Jan. 2013).

115. Riggs, E. R, Jackson, L., Miller, D. T. & Van Vooren, S. Phenotypic information in genomic
variant databases enhances clinical care and research: The international standards for cy-
togenomic arrays consortium experience. Human Mutation 33, 787-96 (May 2012).

116. Budach, S., Heinig, M. & Marsico, A. Principles of microRNA Regulation Revealed Through
Modeling microRNA Expression Quantitative Trait Loci. Genetics 203, 162940 (Aug. 2016).

117. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. & Lin, C.-J. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research 9, 1871-4 (Aug. 2008).

99

References

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.
134.

135.

136.

100

Cessie, S. L. & Houwelingen, J. C. V. Ridge Estimators in Logistic Regression. Journal of
the Royal Statistical Society. Series C (Applied Statistics) 41, 191-201 (1992).

DeLong, E., DeLong, D. & Clarke-Pearson, D. Comparing the Areas under Two or More

Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Bio-
metrics 44, 837-45 (1988).

Kohler, S. et al. Clinical Diagnostics in Human Genetics with Semantic Similarity Searches
in Ontologies. The American Journal of Human Genetics 85, 457-64 (Oct. 2009).

Smedley, D. et al. PhenoDigm: analyzing curated annotations to associate animal models
with human diseases. Database 2013, bat025 (May 2013).

Kohler, S., Bauer, S., Horn, D. & Robinson, P. N. Walking the interactome for prioritization
of candidate disease genes. The American Journal of Human Genetics 82, 949-58 (Apr. 2008).

Smedley, D. et al. Walking the interactome for candidate prioritization in exome sequenc-
ing studies of Mendelian diseases. Bioinformatics 30, 3215-22 (July 2014).

Wang, K, Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants
from high-throughput sequencing data. Nucleic Acids Research 38, e164 (July 2010).
Robinson, P. N. et al. The Human Phenotype Ontology: A Tool for Annotating and Analyz-

ing Human Hereditary Disease. The American Journal of Human Genetics 83, 610-5 (Nov.
2008).

Robinson, P. & Mundlos, S. The Human Phenotype Ontology. Clinical Genetics 77, 525-34
(June 2010).

Kohler, S. et al. The Human Phenotype Ontology in 2017. Nucleic Acids Research 45, D865-
76 (Jan. 2017).

Robinson, P. N. Deep phenotyping for precision medicine. Human Mutation 33, 777-80
(May 2012).

Robinson, P. N. & Webber, C. Phenotype ontologies and cross-species analysis for transla-
tional research. PLoS Genetics 10, €1004268 (Apr. 2014).

Deans, A. R. et al. Finding our way through phenotypes. PLoS Biology 13, 1002033 (Jan.
2015).

Kohler, S. et al. The Human Phenotype Ontology project: linking molecular biology and
disease through phenotype data. Nucleic Acids Research 42, D966-74 (Jan. 2013).

Groza, T. et al. Automatic concept recognition using the Human Phenotype Ontology ref-
erence and test suite corpora. Database 2015, bav005 (Jan. 2015).

Exome Variant Server Seattle, WA: NHLBI GO Exome Sequencing Project (ESP).

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature 485, 376-80 (Apr. 2012).

Lizio, M. et al. Gateways to the FANTOMS5 promoter level mammalian expression atlas.
Genome Biology 16, 22 (Jan. 2015).

Zerbino, D. R., Wilder, S. P, Johnson, N., Juettemann, T. & Flicek, P. R. The ensembl regu-
latory build. Genome Biology 16, 56 (Mar. 2015).

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

References

Conne, B., Stutz, A. & Vassalli, J. D. The 3’ untranslated region of messenger RNA: A molec-
ular ‘hotspot’ for pathology? Nature Medicine 6, 637-41 (June 2000).

Yang, H., Robinson, P. N. & Wang, K. Phenolyzer: phenotype-based prioritization of can-
didate genes for human diseases. Nature Methods 12, 841-3 (Sept. 2015).

Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease
risk. Nature 488, 471-5 (Aug. 2012).

Jung, L, Park, J., Choi, C. & Kim, D. Identification of novel trans-crosstalk between histone
modifications via genome-wide analysis of maximal deletion effect. Genes & Genomics 37,
693-701 (Aug. 2015).

Lee, D. et al. A method to predict the impact of regulatory variants from DNA sequence.
Nature Genetics 47, 955-61 (June 2015).

Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer-promoter interactions are encoded by
complex genomic signatures on looping chromatin. Nature Genetics 48, 488-96 (Apr. 2016).

Rudan, M. V. et al. Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromo-
somal Domain Architecture. Cell Reports 10, 1297-1309 (Mar. 2015).

Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes
of disease-associated DNA elements. Nature Genetics 49, 1602—12 (Sept. 2017).

Whiffin, N. et al. Using high-resolution variant frequencies to empower clinical genome
interpretation. Genetics in Medicine 19, 1151-8 (May 2017).

Bell, C.]. et al. Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation
Sequencing. Science Translational Medicine 3, 65ra4 (Jan. 2011).

He, H., Bai, Y., Garcia, E. A. & Li, S. ADASYN: Adaptive synthetic sampling approach for
imbalanced learning in 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence) (June 2008), 1322-8.

Berthelot, C., Villar, D., Horvath, J. E., Odom, D. T. & Flicek, P. Complexity and conservation
of regulatory landscapes underlie evolutionary resilience of mammalian gene expression.
bioRxiv (Apr. 2017).

Villar, D. et al. Enhancer Evolution across 20 Mammalian Species. Cell 160, 554-66 (Nov.
2017).

Inoue, F. & Ahituv, N. Decoding enhancers using massively parallel reporter assays. Ge-
nomics 106, 159-64 (Sept. 2015).

Ferry, Q. et al. Diagnostically relevant facial gestalt information from ordinary photos.
eLife 3, 02020 (June 2014).

Eilbeck, K. et al. The Sequence Ontology: a tool for the unification of genome annotations.
eng. Genome Biology 6, R44 (Apr. 2005).

Hilbert, M. Big Data for Development: A Review of Promises and Challenges. Development
Policy Review 34, 135-74 (Jan. 2016).

101

Appendix A

Regulatory Mendelian Mutations

In this appendix all regulatory Mendelian mutations used for training and testing are listed.
They are grouped by functional classes, each class in a separate table: the chromosomal position
(GRCh37 assembly), the reference and alternative allele, the OMIM identifier of the syndrome
caused by the mutation, the affected gene and the PubMed identifier (PMID) of the original pub-
lication where the mutation is linked to the disease. All listed positions of SNVs were used as
positive set for the Mendelian data. The InDels were included in the test set of Genomiser.

Table A.1 contains the 42 identified enhancer mutations, Table A.2 the 142 promoter mutations,
Table A.3 the 153 5° and Table A.4 the 43 3’UTR mutations, Table A.5 the 65 mutations in RNA
genes, Table A.6 the 3 mutations in ICRs, and finally, Table A.7 the 5 mutations in miRNAs. All
variants were identified by an extensive biocuration and only those variations were included
where the publications provide plausible evidence of pathogenicity.

Table A.8 shows an overview of negative Mendelian data. Single-nucleotide sites were detected in
the human genome that differs from the inferred ancestral primate genome based on the Ensembl
EPO whole-genome alignments of six primate species [40, 42]. Low-confidence calls (ancestral
state is supported by one sequence), marked by a lower case printing in the multiple sequence
alignment, were removed. In addition variants with a frequency of higher than 5 % were filtered
out. Finally the variants were annotated by Jannovar [109] v.0.14 using RefSeq [71] (annotation
release 105) and only variants of NCV were used as final non-deleterious variant sites (negative
positions). To sum up the extraction steps of negative sites, Table A.8 shows the distribution of
variant categories for single nucleotide positions in human genome (reference release hg19) that
differ from the inferred sequence of the last common primate ancestor.

The feature vector of the Mendelian data consists of 26 genomic attributes (see Section 3.2.1).
Table A.9 describes all attributes together with the source.

103

Appendix A Regulatory Mendelian Mutations

Table A.1: Enhancer mutations. All coordinates refer to the GRCh37 assembly. A total of 42 enhancer
mutations were identified from the medical literature.

Chr Position Ref Alt OMIMID Gene PMID
chrl 21890663 G A 241500 ALPL 10679946
chr1 209989478 C CA 119300 IRF6 24442519
chr2 219524871 A G 124000 BCS1L 19389488
chr7 156061506 C T 142945 SHH 18836447
chr7 156583831 T C 174500 SHH 17152067
chr7 156583949 G C 174500 SHH 17152067
chr7 156583951 G A 174500 SHH 22903933
chr7 156583968 T TTAAGGAAGTGA 174500 SHH 22495965
TT

chr7 156584107 A C 174500 SHH 20068592
chr7 156584153 T C 174500 SHH 25382487
chr7 156584166 C G 188740 SHH 19847792
chr7 156584166 C T 188740 SHH 19847792
chr7 156584168 G A 174500 SHH 24777739
chr7 156584174 G A 174500 SHH 19519794
chr7 156584236 A C 174500 SHH 20569257
chr7 156584241 A G 174500 SHH 12837695
chr7 156584265 T A 174500 SHH 12837695
chr7 156584273 C T 174500 SHH 20569257
chr7 156584275 A G 174500 SHH 18463159
chr7 156584465 G C 174500 SHH 12837695
chr7 156584863 G A 174500 SHH 17300748
chr8 11331747 G T 613375 BLK 19667185
chr9 35657917 G GCA 250250 RMRP 11207361
chr9 35657945 T C 250250 RMRP 11207361
chr9 35658032 A AGAGTAGT 250250 RMRP 21063072
chr10 23508305 A G 615935 PTF1A 24212882
chr10 23508363 A G 615935 PTF1A 24212882
chr10 23508365 A G 615935 PTF1A 24212882
chr10 23508437 A G 615935 PTF1A 24212882
chr10 23508446 A C 615935 PTF1A 24212882
chril1 5271283 G A 141749 HBG1 2423160
chr11 5276125 G T 141749 HBG2 10335983
chri1 31685945 C A 106210 PAX6 24290376
chri1 67250359 CCG CAA 102200 AIP 20506337
chr12 114704515 G T 142900 TBX5 22543974
chr16 209709 T C 604131 HBA2 16728641
chr17 68676303 T C 261800 SOX9 19234473
chrX 55054635 A G 300751 ALAS?2 23935018
chrX 70331494 G A 300400 IL2RG 26525228
chrX 100641044 A C 300755 BTK 9545398
chrX 105251968 G A 314200 SERPINA7 25361180
chrY 2655719 C T 400044 SRY 9452083

Table A.2: Promoter mutations. All coordinates refer to the GRCh37 assembly. A total of 142 promoter
mutations were identified from the medical literature.

Chr Position Ref Alt OMIMID Gene PMID

chrl 8021919 C G 606324 PARK?7 18722801
chrl 155271258 T C 266200 PKLR 11054094
chri 155271269 C G 266200 PKLR 12393511
chrl 160001799 G C 610293 PIGM 16767100

continued on the next page

104

Table A.2: Promoter mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chri 171621877 A C 137750 MYOC 15483649
chrl 173886568 G C 613118 SERPINC1 22234719
chrl 228337561 A G 608804 GJC2 20695017
chr2 47630106 G C 120435 MSH?2 11782355
chr2 128175983 A G 612304 PROC 10942114
chr2 128175984 A G 612304 PROC 10942114
chr2 128175988 T A 176860 PROC 7592627
chr2 234668851 T TCAT 606785 UGT1A1 26220753
chr3 12421189 A G 604367 PPARG 15531525
chr3 48632780 G A 226600 COL7A1 10980546
chr3 169482906 G C 614743 TERC 22323451
chr3 169482947 G C 127550 TERC 16670076
chrs 112073008 A T 175100 APC 11606402
chr5 176836585 C G 234000 F12 18832903
chrs 176836590 G A 234000 F12 18832903
chré 118869382 A G 609909 PLN 12705874
chr6 118869423 A C 609909 PLN 18241046
chr7 31003560 A C 612781 GHRHR 11875102
chr7 117119337 T G 219700 CFTR 7540587
chr7 117119923 G T 219700 CFTR 10204861
chr7 117119984 G A 277180 CFTR 10200050
chr8 11560787 T C 614429 GATA4 22500510
chr8 11560864 C A 614429 GATA4 22500510
chr8 11561283 C T 614429 GATA4 22500510
chr8 11561369 G T 614429 GATA4 22500510
chr8 11561399 AG A 614429 GATA4 22500510
chr8 41655164 A G 182900 ANK1 8640229
chr8 41655260 G C 182900 ANK1 8640229
chr9 35658014 C CCACGTCCTCAG 250250 RMRP 17937437
CTTCA
chr9 104198194 C T 229600 ALDOB 20882353
chr10 71075518 A G 235700 HK1 19608687
chr10 89623365 G T 158350 PTEN 17847000
chr10 89623373 C G 158350 PTEN 17847000
chr10 89623462 G A 158350 PTEN 17847000
chr10 127505271 A G 263700 UROS 11254675
chr10 127505287 G T 263700 UROS 11254675
chr10 127505291 G T 263700 UROS 11254675
chri1 2182532 G C 606176 INS 20133622
chri1 2182533 G C 606176 INS 20133622
chril 2182543 CAGATGGCGGGG C 606176 INS 20133622
GCTGAGGCTGCA

chri1 2193085 A T 605407 TH 17696123
chri1 2193086 C T 605407 TH 17696123
chri1 2193087 G A 605407 TH 17696123
chri1 5248326 CTT C 613985 HBB 16732578
chri1 5248329 T G 613985 HBB 7076659
chri1 5248329 T C 613985 HBB 26554738
chri1 5248330 T C 613985 HBB 2458145
chri1 5248331 A T 613985 HBB 3382401
chri1 5248331 A G 613985 HBB 2741940
chri1 5248332 T C 613985 HBB 3002527
chri1 5248333 G T 613985 HBB 1729892
chri1 5248372 G A 613985 HBB 21801233
chri1 5248374 T A 613985 HBB 17516066
chril1 5248388 G T 613985 HBB 1428943
chri1 5248388 G C 613985 HBB 6280057
chri1 5248388 G A 613985 HBB 2018842
chri1 5248389 G A 613985 HBB 16732578

continued on the next page

105

Appendix A Regulatory Mendelian Mutations

106

Table A.2: Promoter mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chri1 5248389 G T 613985 HBB 1986379
chri1 5248391 G A 613985 HBB 1634236
chri1 5271201 G A 141749 HBG1 1704803
chri1 5271204 C T 141749 HBG1 3181130
chri1 5276186 A G 141749 HBG2 2441598
chri1 5276213 G C 141749 HBG2 6208955
chri1 17409772 C A 601820 KCNJ11 15579781
chri1 17498513 G C 256450 ABCC8 15579781
chri1 116708365 T G 604091 APOA1 9974418
chri2 121416289 A C 600496 HNF1A 9313764
chr12 121416354 T C 600496 HNF1A 10649494
chri2 121416444 T G 600496 HNF1A 22413961
chr12 121416446 TG G 600496 HNF1A 10649494
chri2 121416448 G C 600496 HNF1A 10333057
chr13 20767158 G A 220290 GJB2 17660464
chr13 48877851 G A 180200 RB1 1881452
chr13 48877856 T G 180200 RB1 17096365
chr13 48877856 T A 180200 RB1 17096365
chr13 48877860 G T 180200 RB1 1881452
chr13 52585683 T A 277900 ATP7B 20931554
chri3 60738072 C T 609129 DIAPH3 20624953
chr13 113760062 C G 227500 F7 9716591
chr13 113760095 T G 227500 F7 8978290
chr13 113760097 T G 227500 F7 12888866
chr13 113760101 C T 227500 F7 11110717
chri3 113760124 A C 227500 F7 12888866
chri4 73603081 GC G 613694 PSEN1 20194882
chr16 56995796 G A 143470 CETP 11397708
chr17 3539712 G GT 219750 CTNS 11505338
chr17 3539712 G T 219750 CTNS 11505338
chr17 3539720 G C 219800 CTNS 11505338
chr17 4806453 C T 608931 CHRNE 10382905
chr17 4806454 G A 608931 CHRNE 10211467
chr17 42078968 C A 237310 NAGS 21681857
chr18 77748580 ACGCCGTGCGTG A 608572 TXNL4A 25434003
CTGACGGCATGC
GCGCGCGCTAG

chr19 11200031 ACTC A 143890 LDLR 9610768
chr19 11200073 C T 143890 LDLR 10484771
chr19 11200087 T C 143890 LDLR 8589690
chr19 11200089 C T 143890 LDLR 7937987
chr19 39137810 CA C 603278 ACTN4 19666657
chr19 45449218 A G 207750 APOC2 9017511
chr19 49468350 C A 600886 FTL 19254706
chr20 42984264 G A 125850 HNF4A 12235114
chr20 42984276 C T 125850 HNF4A 20546279
chr20 42984299 T C 125850 HNF4A 11590126
chr20 42984309 A G 125850 HNF4A 20546279
chrX 37639262 A C 306400 CYBB 8083361
chrX 37639264 T C 306400 CYBB 8083361
chrX 37639266 C T 306400 CYBB 9600921
chrX 37639267 C T 306400 CYBB 9600921
chrX 38211584 A G 311250 OTC 20127982
chrX 55057617 G C 300751 ALAS2 12663458
chrX 70443029 T G 302800 GJB1 8757034
chrX 70443029 T C 302800 GJB1 16373087
chrX 70443031 G C 302800 GJB1 15470753
chrX 70443099 C T 302800 GJB1 8757034
chrX 70443185 G A 302800 GJB1 21504505

continued on the next page

Table A.2: Promoter mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chrX 135730217 A C 308230 CD40LG 17244160
chrX 138612869 G C 306900 F9 1631558
chrX 138612869 G T 306900 F9 24138812
chrX 138612869 G A 306900 F9 24138812
chrX 138612871 A G 306900 F9 24138812
chrX 138612872 C G 306900 F9 24138812
chrX 138612872 C T 306900 F9 7633432
chrX 138612874 T G 306900 F9 8324220
chrX 138612875 T A 306900 F9 3416069
chrX 138612875 T C 306900 F9 24138812
chrX 138612876 G C 306900 F9 7633432
chrX 138612889 G A 306900 F9 23472758
chrX 138612889 G C 306900 F9 24138812
chrX 138612890 A T 306900 F9 1733855
chrX 138612890 A G 306900 F9 23472758
chrX 146993366 G C 300624 FMR1 20799337
chrX 146993405 T C 300624 FMR1 20799337
chrX 146993444 A G 300624 FMR1 20799337
chrX 153237261 A G 309541 HCFC1 23000143
chrX 154251045 A G 306700 F8 24372689
chrX 154251045 AG G 306700 F8 24372689
chrX 154251048 A T 306700 F8 24372689
chrX 154251082 T C 306700 F8 22136525
chrX 154251084 A C 306700 F8 19422439

Table A.3: 5’UTR mutations. All coordinates refer to the GRCh37 assembly. A total of 153 5’UTR muta-
tions were identified from the medical literature.

Chr Position Ref Alt OMIMID Gene PMID
chr1 10003560 A T 608553 NMNAT1 26316326
chri 10003561 C T 608553 NMNAT1 26316326
chr1 21835920 C T 241500 ALPL 10679946
chri 55505180 C A 603776 PCSK9 18559913
chri 91487748 G T 614167 ZNF644 24991186
chr1 113498814 C T 610021 SLC16A1 17701893
chri 171621759 G A 137750 MYOC 15483649
chr1 209975361 T A 119300 IRF6 12219090
chr2 25387652 G T 609734 POMC 9620771
chr2 47630249 G GA 120435 MSH2 11782355
chr2 73114549 G A 612716 SPR 15241655
chr2 86564631 CATG C 610250 REEP1 18321925
chr2 128176001 T C 176860 PROC 7881411
chr2 203241250 GGC GAT 178600 BMPR2 17641158
chr2 203241529 G A 178600 BMPR2 19223935
chr3 37034932 C G 609310 MLH1 17690979
chr3 37034997 C T 609310 MLH1 12919137
chr3 37035012 C A 609310 MLH1 21840485
chr3 49209095 C T 236000 KLHDCS8B 19706467
chr3 128598490 C CTAAG 611126 ACADY 17564966
chr3 184094078 C A 187950 THPO 10583217
chr3 184094093 TC T 187950 THPO 9694695
chr5 1295161 T G 615134 TERT 23348503
chrs 14871567 G A 118600 ANKH 12297987
chr5 36877039 CC A 122470 NIPBL 16799922
chrs 63258025 CT C 614674 HTR1A 21990073
chr5 149340544 T C 222600 SLC26A2 10482955

continued on the next page

107

Appendix A Regulatory Mendelian Mutations

108

Table A.3: 5’UTR mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chr6 88299677 T C 611523 RARS2 25809939
chr6 137143759 C T 215100 PEX7 12325024
chr7 107301201 T C 274600 SLC26A4 17503324
chr7 117120064 C G 219700 CFTR 21847140
chr7 117120115 C T 211400 CFTR 21837768
chr8 19796671 T G 238600 LPL 9017514
chr8 19796711 G C 238600 LPL 9017514
chr8 21988118 T C 146550 HR 19122663
chr8 21988119 A G 146550 HR 19122663
chr8 21988140 C G 146550 HR 19122663
chr8 21988146 C T 146550 HR 19122663
chr8 21988148 G A 146550 HR 24261346
chr8 21988149 G C 146550 HR 19122663
chr8 21988151 A T 146550 HR 19122663
chr8 21988202 G T 146550 HR 19122663
chr8 21988215 G A 146550 HR 19122663
chr8 21988219 C T 146550 HR 19122663
chr8 21988220 A T 146550 HR 19122663
chr8 21988220 A G 146550 HR 19122663
chr8 21988221 T C 146550 HR 19122663
chr8 41655127 TCA T 182900 ANK1 20479128
chr9 21974860 C A 155601 CDKN2A 9916806
chr9 37422743 TGC TAT 260000 GRHPR 25410531
chr9 116037909 TTGTCAGTGACG T 615922 PRPF4 24419317
CACTTCC

chr9 130616643 C T 187300 ENG 22192717
chr9 130616644 G A 187300 ENG 16752392
chr9 130616761 G A 187300 ENG 22192717
chr10 27389371 G A 188000 ANKRD26 21211618
chr10 27389373 G A 188000 ANKRD26 21467542
chr10 27389374 G T 188000 ANKRD26 21467542
chr10 27389376 T G 188000 ANKRD26 21467542
chr10 27389380 A C 188000 ANKRD26 21211618
chr10 27389381 A C 188000 ANKRD26 21467542
chr10 27389382 T C 188000 ANKRD26 21467542
chr10 27389383 C T 188000 ANKRD26 21211618
chr10 27389389 C T 188000 ANKRD26 21211618
chr10 71038467 G A 605285 HK1 19536174
chri1 299504 G A 610967 IFITM5 22863190
chri1 2182419 T G 606176 INS 20133622
chri1 5248257 C G 613985 HBB 14687034
chri1 5248269 G C 613985 HBB 8562944
chri1 5248280 C T 613985 HBB 1536956
chri1 5248291 GA G 613985 HBB 7803275
chri1 5248294 G A 613985 HBB 18473240
chri1 47470715 G C 616326 RAPSN 12651869
chri1 47470726 T C 616326 RAPSN 12651869
chri1 57365055 C T 106100 SERPING1 8755917
chr11 61735061 T A 615517 FTH1 11389486
chri1 88070895 G T 245000 CTSC 23108224
chri11 118955588 CG C 176000 HMBS 11071386
chr12 12870319 CTTCC C 610755 CDKN1B 23555276
chr12 12870744 GAGAG G 610755 CDKN1B 22129891
chr12 15130918 G C 610024 PDE6H 15629837
chr13 29233225 TC T 601952 POMP 20226437
chr13 48877899 G C 180200 RB1 8570221
chr13 48877900 G T 180200 RB1 25999316
chr13 52585551 T G 277900 ATP7B 9199563
chr13 52585596 G T 277900 ATP7B 9199563

continued on the next page

Table A.3: 5’UTR mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chr13 52585606 T G 277900 ATP7B 20931554
chr14 37130036 G A 604625 PAX9 21443745
chr14 55369403 G A 128230 GCH1 10825351
chr14 76447266 C T 107970 TGFB3 15639475
chr17 66508599 G A 160980 PRKAR1A 12424709
chr17 75316275 G C 162100 SEPT9 16186812
chr19 11200072 C T 143890 LDLR 15303010
chr19 11200083 C T 143890 LDLR 11792717
chr19 11200085 C G 143890 LDLR 21538688
chr19 11200085 C T 143890 LDLR 21538688
chr19 11200086 C G 143890 LDLR 17625505
chr19 11200086 CT C 143890 LDLR 14616764
chr19 11200089 C G 143890 LDLR 21538688
chr19 11200104 T C 143890 LDLR 25248394
chr19 11200105 C T 143890 LDLR 15303010
chr19 11200124 T C 143890 LDLR 25248394
chr19 35773456 G A 613313 HAMP 15198949
chr19 39138352 C T 603278 ACTN4 19666657
chr19 49468579 C G 600886 FTL 11238302
chr19 49468589 T C 600886 FTL 21410535
chr19 49468594 C G 600886 FTL 15223007
chr19 49468597 G C 600886 FTL 12200611
chr19 49468597 G T 600886 FTL 12730114
chr19 49468597 G A 600886 FTL 9226182
chr19 49468598 C T 600886 FTL 16900584
chr19 49468599 T C 600886 FTL 12730114
chr19 49468601 C A 600886 FTL 9414313
chr19 49468601 C T 600886 FTL 23421845
chr19 49468601 C G 600886 FTL 12670350
chr19 49468602 AAC A 600886 FTL 12730114
chr19 49468602 A G 600886 FTL 12670350
chr19 49468604 C G 600886 FTL 15234655
chr19 49468604 C A 600886 FTL 14662596
chr19 49468604 C T 600886 FTL 12730114
chr19 49468605 A G 600886 FTL 12730114
chr19 49468606 GTGTTTGGACGG G 600886 FTL 12730114
AACAG

chr19 49468606 G C 600886 FTL 7492760
chr19 49468608 G A 600886 FTL 15690351
chr19 49468611 T G 600886 FTL 19887780
chr19 49468612 G A 600886 FTL 12730114
chr19 49468614 A C 600886 FTL 20578964
chr19 49468616 G C 600886 FTL 10759702
chr19 49468617 G C 600886 FTL 23421845
chr19 49468621 A T 600886 FTL 16395671
chr20 2451408 G T 117650 SNRPB 25047197
chr20 6103422 T C 173650 FERMT1 25156791
chr22 19710933 C G 231200 GP1BB 8703016
chr22 40742514 T C 103050 ADSL 12016589
chrX 49114969 C A 304790 FOXP3 16371377
chrX 49834101 G A 300009 CLCN5 19673950
chrX 68049525 T G 304110 EFNB1 23335590
chrX 68049525 T C 304110 EFNB1 23335590
chrX 100641212 T C 300755 BTK 9445504
chrX 103031893 C T 312080 PLP1 8723686
chrX 123480184 C T 308240 SH2D1A 9771704
chrX 138612900 T A 306900 F9 24138812
chrX 138612901 T C 306900 F9 24138812
chrX 138612902 T C 306900 F9 24138812

continued on the next page

109

Appendix A Regulatory Mendelian Mutations

Table A.3: 5’UTR mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chrX 138612903 C G 306900 F9 24138812
chrX 138612905 CA C 306900 F9 2917196
chrX 138612906 A G 306900 F9 24138812
chrX 138612907 A G 306900 F9 2917196
chrX 138612907 A C 306900 F9 24138812
chrX 146993615 G C 300624 FMR1 11897823
chrX 153363065 TCTCCTCCTCGC T 312750 MECP2 15034579
chrX 153991099 C G 305000 DKC1 11379875
chrX 154250939 C T 306700 F8 16972227
chrX 154251046 G A 306700 F8 16972227

Table A.4: 3’°UTR mutations. All coordinates refer to the GRCh37 assembly. A total of 43 3°UTR mutations
were identified from the medical literature.

Chr Position Ref Alt OMIMID Gene PMID
chri 11083408 G A 612069 TARDBP 19618195
chr1 26143316 T C 602771 SEPN1 16498447
chr1 45481173 G T 176100 UROD 11295834
chri 91381763 C T 614167 ZNF644 21695231
chrl 91382343 G C 614167 ZNF644 21695231
chri 100661453 T G 248600 DBT 20570198
chr1 156028185 C A 610798 LAMTOR2 17195838
chr2 69553299 G T 610542 GFPT1 25765662
chr2 71913729 T A 253601 DYSF 16705711
chr2 86444173 C T 610250 REEP1 16826527
chr2 86444180 C A 610250 REEP1 16826527
chr2 86444209 G A 610250 REEP1 18321925
chr7 81384514 CTTTCATCATC C 608265 HGF 19576567
chr7 81384516 TTCA T 608265 HGF 19576567
chr8 11422122 G T 613375 BLK 19667185
chr8 22058957 T C 614856 BMP1 25214535
chri1 2181023 T C 606176 INS 20133622
chri1 5246714 TTTTATT T 613985 HBB 1374896
chri1 5246715 T C 613985 HBB 1374896
chri1 5246717 T C 613985 HBB 1856830
chri1 5246718 A G 613985 HBB 4018033
chri1 5246718 A T 613985 HBB 15481893
chri11 5246720 T G 613985 HBB 11722440
chri1 5246796 T G 613985 HBB 22734587
chri1 46761055 G A 188050 F2 8916933
chr12 102796022 A T 608747 IGF1 14684690
chr13 100638514 T A 609637 ZIC2 22859937
chr13 100638825 T C 609637 ZIC2 22859937
chr13 100638890 T A 609637 ZIC2 22859937
chr13 100638902 A G 609637 ZIC2 22859937
chr14 76425035 G A 107970 TGFB3 15639475
chr16 223690 TAA T 604131 HBA2 26193977
chr16 223691 A G 613978 HBA2 1581238
chr16 223693 A G 613978 HBA2 11480787
chr16 31202807 G A 608030 FUS 23847048
chr16 31202818 G A 608030 FUS 23847048
chr16 31202867 C T 608030 FUS 23847048
chr16 31202869 G A 608030 FUS 23847048
chr21 27253648 AAT A 605714 APP 25828868
chrX 22266301 A G 307800 PHEX 18625346
chrX 48683304 A T 300863 HDAC6 20181727

continued on the next page

110

Table A.4: 3’UTR mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID
chrX 49106917 T C 304790 FOXP3 19471859
chrX 49106919 T C 304790 FOXP3 11685453

Table A.5: RNA gene mutations. All coordinates refer to the GRCh37 assembly. A total of 65 RNA gene

mutations were identified from the medical literature.

Chr Position Ref Alt OMIMID Gene PMID

chr2 122288463 C T 616651 RNU4ATAC 26522830
chr2 122288468 C T 616651 RNU4ATAC 26522830
chr2 122288485 G A 210710 RNU4ATAC 21474760
chr2 122288492 G A 616651 RNU4ATAC 26522830
chr2 122288501 G A 210710 RNU4ATAC 25735804
chr2 122288503 G A 616651 RNU4ATAC 26522830
chr2 122288505 G A 210710 RNU4ATAC 21474761
chr2 122288505 G C 210710 RNU4ATAC 21474761
chr2 122288506 G A 210710 RNU4ATAC 21474761
chr2 122288508 C G 210710 RNU4ATAC 21474761
chr2 122288510 G A 210710 RNU4ATAC 22581640
chr2 122288521 G C 210710 RNU4ATAC 22581640
chr2 122288566 G A 210710 RNU4ATAC 21474760
chr2 122288573 T C 616651 RNU4ATAC 26522830
chr2 122288579 G A 210710 RNU4ATAC 22581640
chr3 169482399 C T 614743 TERC 12676774
chr3 169482441 G C 127550 TERC 11574891
chr3 169482456 CGG C 614743 TERC 15550482
chr3 169482472 T C 614743 TERC 21931702
chr3 169482524 C A 614743 TERC 18753630
chr3 169482526 G A MIM TERC 17936651
chr3 169482527 C T 614743 TERC 12676774
chr3 169482544 C T 614743 TERC 12676774
chr3 169482592 C T 614743 TERC 25346280
chr3 169482645 G C 614743 TERC 14630445
chr3 169482667 C T 614743 TERC 21931702
chr3 169482669 G A 614743 TERC 17640862
chr3 169482671 C T 614743 TERC 17640862
chr3 169482673 T G 614743 TERC 21931702
chr3 169482706 C T 614743 TERC 21436073
chr3 169482720 T C 614743 TERC 21931702
chr3 169482732 T G 614743 TERC 15550482
chr3 169482733 G A 614743 TERC 14630445
chr3 169482735 AAGTC A 614743 TERC 17640862
chr3 169482740 AGC ACT 127550 TERC 11574891
chr3 169482742 C A 614743 TERC 21931702
chr3 169482749 A T 127550 TERC 18931339
chr3 169482751 CAG C 127550 TERC 15319288
chr3 169482751 C T 614743 TERC 17392301
chr3 169482769 A C 614743 TERC 21931702
chr3 169482777 G C 614743 TERC 15319288
chr3 169482782 C T 614743 TERC 21931702
chr3 169482812 T C 614743 TERC 17460043
chr3 169482814 G A 127550 TERC 18931339
chr9 35657754 G A 250250 RMRP 16244706
chr9 35657754 G C 250250 RMRP 16244706
chr9 35657767 G A 250250 RMRP 16244706
chr9 35657771 C T 250250 RMRP 16244706
chr9 35657773 T C 250250 RMRP 16244706

continued on the next page

111

Appendix A Regulatory Mendelian Mutations

Table A.5: RNA gene mutations — Continued from previous page

Chr Position Ref Alt OMIMID Gene PMID

chr9 35657795 A G 250250 RMRP 16244706
chr9 35657802 G C 250250 RMRP 16244706
chr9 35657820 G A 250250 RMRP 16244706
chr9 35657820 G GA 250250 RMRP 14569125
chr9 35657822 C T 250250 RMRP 16244706
chr9 35657833 C A 250250 RMRP 16244706
chr9 35657847 C T 250250 RMRP 17937437
chr9 35657869 C G 250250 RMRP 16244706
chr9 35657888 C T 250250 RMRP 16244706
chr9 35657889 G A 250250 RMRP 12107819
chr9 35657918 C T 250250 RMRP 26279652
chr9 35657951 A G 250250 RMRP 16244706
chr9 35657952 G A 250250 RMRP 16244706
chr9 35657975 C T 250250 RMRP 16244706
chr9 35657988 C G 250250 RMRP 26279652
chr9 35658011 G A 250250 RMRP 16244706

Table A.6: Imprinting control region mutations. All coordinates refer to the GRCh37 assembly. A total
of 3 ICR mutations were identified from the medical literature.

Chr Position Ref Alt OMIMID Gene PMID
chri11 2020124 C A 180860 H19 20007505
chri1 2023019 A G 130650 H19 20007505
chri1 2023048 A C 130650 H19 21863054

Table A.7: MiRNA gene mutations. All coordinates refer to the GRCh37 assembly. A total of 5 miRNA
gene mutations were identified from the medical literature.

Chr Position Ref Alt OMIM ID Gene PMID
chr7 129414553 A G 613074 MIR96 22038834
chr7 129414596 G T 613074 MIR96 19363479
chr7 129414597 C T 613074 MIR96 19363479
chr9 73424964 G A 616722 MIR204 26056285
chr15 79502186 C T 614303 MIR184 21996275

112

Table A.8: Detailed information of the negative Mendelian data. Distribution of variant categories
for single nucleotide positions in Homo sapiens that differ from the inferred sequence of the last com-
mon primate ancestor. An asterisk (x) marks variant categories that were used as negative dataset for
hyperSMURF. Therefore only variants that match to the SO-terms SO:0001970, SO:0001969, SO:0001623,
50:0001624, SO:0001631, SO:0001632, SO:0001628, SO:0001782, SO:0001566, SO:0002018, SO:0002011,
S0:0002017, and SO:0001627 were chosen [152]. All of the terms belong to non-coding regions. Fixed
variants in the population, defined as a more than 5 % presence of the ancestral allele in the individuals of
the 1KG, were rejected. Variants were annotated by Jannovar version 0.14 [109] with transcript definitions

from the RefSeq [71] (annotation release 105).

Category All High quality =~ Fixed High-quality & Fixed
CDS 49,599 44,885 43,420 38,706
CDS (syn) 57,708 52,656 52,189 47,137
Unclassified sequence variant 11,408 10,675 11,408 10,675
Splice 12,520 12,553 12,430 11,218
5UTR 764,719 711,934 692,943 640,158*
3’UTR 121,014 112,740 109,034 100,760*
Intron 5,954,014 5,600,983 5,383,124 5,030,093*
Upstream/Downstream 224,128 198,554 203,737 178,163*
Noncoding (exon) 67,704 58,236 62,038 52,570
Noncoding (intron) 858,848 782,486 782,720 706,358*
Intergenic 9,908,106 8,989,024 9,018,749 8,099,667*
Total 18,029,768 16,574,726 16,371,792 14,915,505

113

Appendix A Regulatory Mendelian Mutations

Table A.9: Genomic attributes used for the Mendelian data. 26 genomic attributes used as feature vector
for the Mendelian data (see Section 3.2.1) are listed. For each attribute a short description and the source
(UCSC table identifier of the UCSC Table Browser [111] or web-link) is given.

Attribute Description

GCContent GC-content in a window of £75 bp
Percentage of island that is C or G.

CpGperGC &
UCSC table cpgIslandExt
Percentage of island that is CpG.

CpGperCpG & P
UCSC table cpgIslandExt
Ratio of observed to expected CpG in island.

CpGobsExp P P
UCSC table cpgIslandExt

. Primate PhyloP score.

priPhyloP46way Y
http://hgdownload.soe.ucsc.edu/goldenPath/hgl9/phyloP46way/primates
Vertebrate PhyloP.

verPhyloP46way 4
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/vertebrate
Mammalian PhyloP score.

mamPhyloP46way 4
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/placentalMammals

. Primate PhastCons conservation score

priPhastCons46way
http://hgdownload.soe.ucsc.edu/goldenPath/hgl9/phastCons46way/primates
Vertebrate PhastCons conservation score

verPhastCons46way
http://hgdownload.soe.ucsc.edu/goldenPath/hgl9/phastCons46way/vertebrate
Mammalian PhastCons conservation score

mamPhastCons46way
http://hgdownload.soe.ucsc.edu/goldenPath/hgl9/phastCons46way/placentalMammals
GERP++ element score

GerpRS
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
GERP++ element p-Value

GerpRSpv P
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
Maximum ENCODE H3K27 acetylation level

EncH3K27Ac Y
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac
Maximum ENCODE H3K4 methylation level

EncH3K4Me1l Y
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me1
Maximum ENCODE H3K4 trimethylation level

EncH3K4Me3 Y
http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeRegMarkH3k4me3
DnaseClustered V3 hypersensitivity score

DnaseClusteredHyp P Y
http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeRegDnaseClustered
Number of DnaseClustered V3 hypersensitive cells

DnaseClusteredScore P
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered
FANTOM 5 permissive enhancers

fantom5Perm
http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed
FANTOMS robust enhancers

fantom5Robust
http://enhancer.binf.ku.dk/presets/robust_enhancers.bed
Number of overlapping transcription factor binding sites.

numTFBSConserved pPIng P &
UCSC table tfbsConsSites

rareVar Number of rare 1KG variants (<0.5 % AF) in a window of 500 bp

commonVar Number of common 1KG variants (>0.5 % AF) in a window of +500 bp

fracRareCommon Ratio rare to common variants
Overlapping ISCA CNVs
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd75

ISCApath P &
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd46
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd37
Overlapping dbVAR CNVs

dbVARCount ftp://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiensby_assembly/
GRCh37.p13/gvf/GRCh37.p13.remap.all.germline.ucsc.gvf.gz
Overlapping DGV CNVs

DGVCount pping

http://dgv.tcag.ca/dgv/docs/GRCh37_hgl9_variants_2014-10-16.txt

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/primates
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/vertebrate
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/placentalMammals
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/primates
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/vertebrate
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/placentalMammals
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k27ac
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me1
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegMarkH3k4me3
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered
http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed
http://enhancer.binf.ku.dk/presets/robust_enhancers.bed
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd75
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd46
http://www.ncbi.nlm.nih.gov/dbvar/studies/nstd37
ftp://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiensby_assembly/GRCh37.p13/gvf/GRCh37.p13.remap.all.germline.ucsc.gvf.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiensby_assembly/GRCh37.p13/gvf/GRCh37.p13.remap.all.germline.ucsc.gvf.gz
http://dgv.tcag.ca/dgv/docs/GRCh37_hg19_variants_2014-10-16.txt

Appendix B

HyperSMURF Performance

In Appendix B I show additional results of hyperSMURF according to the three datasets: Mende-
lian, GWAS and eQTL. The first part shows the results of the univariate linear regression model
on the Mendelian and GWAS data, discussed previously in Section 3.4. Afterwards all results of
the optimal parameter search from Section 3.5.1 are shown and finally an in-depth comparison
of the performance on the different datasets between hyperSMURF and the retrained learners is
made.

Informative features

Table B.1 shows the results of the univariate linear regression model on the Mendelian data.
Performance measurement was done using the cytoband-aware 10-fold CV. The experiment was
repeated 100-times and AUROC and AUPRC were measured. The same table is available for the
GWAS data (Table B.2). Here, only the ten best and ten less formative features in terms of the
AUPRC were shown instead of all 1842 features. A detailed explanation about the results can be
found in Section 3.4.

115

Appendix B HyperSMURF Performance

Table B.1: Informative Mendelian genomic features according to univariate logistic regression. Results
are computed by cytoband-aware 10-fold CV using a logistic regression model with Mendelian data. The
experiment is repeated 100 times, and AUPRC together with AUROC means and the standard deviations
are listed. Genomic features were ranked according to the estimated AUPRC. The sources of the data for
the considered genomic features are listed in Table A.9.

Genomic Feature AUPRC AUROC
mamPhyloP46way 0.24018 £ 0.01600 0.92077 £ 0.00025
verPhyloP46way 0.11705 =4 0.00635 0.92450 =+ 0.00028
priPhyloP46way 0.02750 4 0.00541 0.96333 £ 0.00036
priPhastCons46way 0.00951 £ 0.00965 0.89562 £ 0.00316
mamPhastCons46way 0.00157 £ 0.00020 0.85717 = 0.00171
verPhastCons46way 0.00121 £ 0.00019 0.84922 £ 0.00177
DnaseClusteredHyp 0.00101 +£ 0.00032 0.73808 + 0.00414
CpGperCpG 0.00096 £ 0.00040 0.61934 £ 0.00257
CpGobsExp 0.00093 4= 0.00036 0.61912 £ 0.00286
CpGperGC 0.00081 4= 0.00019 0.61898 + 0.00235
numTFBSConserved 0.00062 4 0.00011 0.62967 £ 0.01099
EncH3K4Me3 0.00058 4- 0.00004 0.81133 £ 0.01060
GerpRS 0.00039 £ 0.00004 0.84027 £ 0.00724
DnaseClusteredScore ~ 0.00032 4 0.00005 0.73790 4 0.00222
GCContent 0.00032 £ 0.00002 0.82201 £ 0.00091
rareVar 0.00024 4 0.00010 0.50697 + 0.00233
EncH3K27Ac 0.00024 4 0.00001 0.79388 £ 0.00877
EncH3K4Mel 0.00006 £ 0.00000 0.73490 £ 0.00819
fracRareCommon 0.00005 = 0.00000 0.67170 £ 0.00201
commonVar 0.00004 £ 0.00000 0.58627 £ 0.00563
ISCApath 0.00004 4 0.00000 0.50986 4 0.01101
GerpRSpv 0.00004 £ 0.00000 0.49735 =+ 0.02040
fantom5Perm 0.00003 4= 0.00000 0.49468 + 0.02366
fantom5Robust 0.00003 = 0.00000 0.49362 £ 0.02293
dbVARCount 0.00002 4 0.00000 0.44047 £ 0.03022
DGVCount 0.00002 £ 0.00000 0.44047 £ 0.03022

Table B.2: Informative GWAS genomic features according to univariate logistic regression. Results
are computed by cytoband-aware 10-fold CV using a logistic regression model with GWAS data. The
experiment is repeated 100 times. AUPRC together with AUROC means and the standard deviations are
listed. Genomic features were ranked according to the estimated AUPRC and the ten best and ten less
informative features are shown.

Genomic Feature AUPRC AUROC

PhyloP

PhastCons
HepG2|Sin3Ak-20|None|PDIFF
HeLa-S3| TBP|None|PDIFF
PFSK-1|FOXP2|None|PDIFF
HeLa-S3|GTF2F1|None|PDIFF
HepG2|Mxil |None|PDIFF
A549|ETS1[EtOH._0.02pct|PDIFF
HepG2|MYBL2|None|PDIFF
GM12878|MAZ|None|PDIFF

NHDF-Ad|H3K9me3|None|[PDIFF
NT2-D1|ZNF274|None|PDIFF
H1-hESC|H3K9me3|None|PDIFF
GM12878|ZNF274|None|PDIFF
HeLa-S3|BRF2|None|PDIFF
GMO08714|ZNF274|None|PDIFF
HeLa-S3|SPT20|None|PDIFF
K562|KAP1|None|PDIFF
U20S|SETDB1|None|PDIFF
K562|SETDB1|MNaseD|PDIFF

0.36978 4 0.01004
0.04262 £ 0.00332
0.00415 £ 0.00006
0.00414 4 0.00010
0.00392 £ 0.00006
0.00391 £ 0.00009
0.00382 £ 0.00019
0.00381 % 0.00012
0.00373 £ 0.00010
0.00373 £ 0.00009

0.00137 4 0.00004
0.00137 £ 0.00003
0.00136 £ 0.00003
0.00134 4 0.00002
0.00132 £ 0.00004
0.00131 £ 0.00001
0.00130 £ 0.00003
0.00129 4 0.00001
0.00129 £ 0.00001
0.00127 £ 0.00001

0.76382 £ 0.00019
0.93689 £ 0.00094
0.51082 £ 0.00137
0.50653 + 0.00381
0.51070 £ 0.00329
0.50962 £ 0.00636
0.50738 £+ 0.00276
0.51528 £ 0.00577
0.51412 4 0.00084
0.51408 £ 0.00264

0.52076 £+ 0.01015
0.50806 £ 0.00856
0.51356 + 0.00811
0.50384 + 0.00432
0.49894 £ 0.00515
0.49587 £+ 0.00388
0.50425 £+ 0.00888
0.50126 £ 0.00326
0.49855 £ 0.00371
0.48961 £ 0.00455

117

Appendix B HyperSMURF Performance
Optimal Parameters

Several experiments were done to find optimal parameters for hyperSMURF on the Mendelian
data. Therefore several settings per variable of hyperSMURF were chosen (see Table 3.2 for all
tested parameters and values) and an internal 9-fold cytoband-aware CV was performed for each
round of the cytoband-aware 10-fold CV. This procedure of automatic tuning of the parameters
is described in Section 3.3.1 in more detail.

Figure B.1 shows the AUPRC of the parameter tuning with a fixed undersampling factor (m =
1, 2 and 3), the number of partitions n and different fixed oversampling factors. The oversam-
pling factor curves show clearly that an increase in partition size results in an increase of the
AUPRC. But the performance increase saturates at around n = 100 partitions for all oversam-
pling and undersampling factors.

The oversampling factor seems to be more diffuse and no optimal value can be determined clearly.
But using oversampling (oversampling factor >0) will always increase the performance, as pre-
viously showed in Table 3.3. The best undersampling factor can be derived from Figure B.2. Here
the same performance is shown but with a fixed oversampling factor of o = 0.5, 1, 1.5, 2, 2.5 and 3
and the undersampling parameters used as curves. For all oversampling settings an undersam-
pling factor of m = 3 gives the best AUPRC. It is important to say that larger values of m were
not tested because this will result in larger datasets and increase the runtime. But a tendency
can still be seen here. In all figures the curves with m = 2 and m = 3 are closer together than
m = 1 to m = 2. This gives a hint of saturation on larger undersampling factors.

The number of nearest neighbors of SMOTE seems to play a minor role. No optimal &£ could
be figured out in Figure 3.4b. Finally the experiments of the RF learner in Figure 3.4a suggest a
lower forest size because no performance increase can be measured on forests larger than ¢t = 25.
Random feature of d = 5 or d = 6 seems to be a good choice.

Bringing all these observations together we can agree on a standard setting of hyperSMURF.
Because we are dealing with huge datasets the used standard setting keeps the computational
burden to a minimum while still remaining at high performance. This is why these standard
hyperSMUREF settings, listed in Table 3.2, were chosen. For completeness Table B.3 shows all
optimal hyperSMUREF settings after the automatic tuning process. The optimal hyperSMURF
increases the AUPRC from 0.4319 to 0.4503.

118

~—05—15—25 ~—05~—15—25
—1 2 —3

Oversampling factor Oversampling factor __ 1 5 3

0.4

0.2

0 50 100 150 200 0 50 100 150 200
Number of partitions Number of partitions
(a) Undersampling factor m = 1. (b) Undersampling factor m = 2.
—05—15—25

Oversampling factor _ 5 3

0.4

0.2

0 50 100 150 200
Number of partitions

(c) Undersampling factor m = 3.

Figure B.1: HyperSMURF parameter tuning with fixed undersampling factor. AUPRC as a function
of different hyperSMURF partition sizes generated by internal 9-fold cytogenetic band-aware CV using
Mendelian data. Curves show different oversampling factors with a fixed undersampling factor m for each
figure: (a) m = 1, (b) m = 2 and (c) m = 3. Error bars represent the standard deviation between ten
repetitions of internal 9-fold CV. The undersampling factor is the ratio of negative examples with respect
to positives. Negative examples were randomly sampled without replacement from each partition of the
data (see Section 3.3.1 for details).

119

Appendix B HyperSMURF Performance

Undersampling factor —1—~—2~3 Undersampling factor —1—2—~3
0.4 0.4
4 £
003 a0.3
> >
< <
0.2 0.2
0 50 100 150 200 0 50 100 150 200
Number of partitions Number of partitions
(a) Oversampling factor f = 0.5. (b) Oversampling factor f = 1.
Undersampling factor —1—2—3 Undersampling factor —1—2—-—3
0.4 0.4
O O
x @
00.3 o 0.3
=) =)
< <
0.2 0.2
0 50 100 150 200 0 50 100 150 200
Number of partitions Number of partitions
(c) Oversampling factor f = 1.5. (d) Oversampling factor f = 2.

120

Undersampling factor —1—2—3

Undersampling factor —1—2—-—3

0.4 0.4
O O
x x
a0 0.3 a 0.3
=) =)
< <

0.2 0.2

0 50 100 150 200 0 50 100 150 200
Number of partitions Number of partitions

(e) Oversampling factor f = 2.5.

(f) Oversampling factor f = 3.

Figure B.2: HyperSMURF parameter tuning with fixed oversampling factor. AUPRC as a function
of different hyperSMURF partition sizes generated by internal 9-fold cytogenetic band-aware CV using
Mendelian data. Curves show different undersampling factors with a fixed oversampling factor f for each
figure: (a), f = 0.5,(b) f =1,(c) f = 1.5,(d) f = 2,(e) f = 2.5, and (f) f = 3. Error bars represent the
standard deviation between ten repetitions of internal 9-fold CV using different folds. The oversampling
factor is the ratio of synthetic positive examples generated through the SMOTE algorithm with respect to
the available number of positive examples (see Section 3.3.1 for details).

Table B.3: Optimal hyperSMURF parameters on the Mendelian data. For each fold, parameters were
selected using internal 9-fold cytogenetic band-aware CV (see Section 3.3.1). The best parameters in terms
of the AUPRC for each partitioning of the cytoband-aware 10-fold CV are shown.

Fold
Par. Description 1 2 3 4 5 6 7 8 9 10
n Number of partitions 75 75 75 50 100 200 50 100 200 50
f SMOTE oversampling factor 1.5 25 15 1 2 2 25 25 1 3
k SMOTE k-nearest neighbor 9 5 4 6 5 3 4 5 6 10
m Undersampling factor 3 3 3 3 3 3 3 3 3 3
t Forest size 20 10 50 50 20 75 100 20 50 20
d Random tree features 7 6 6 6 5 6 5 5 6 5

121

Appendix B HyperSMURF Performance

— hyperSMURF std — hyperSMURF no-over—RF — hyperSMURF std — hyperSMURF no-over — RF
— hyperSMURF optimal — hyperSMURF no-par — hyperSMURF optimal — hyperSMURF no-par
1.00 1.00
0.75 0.75
c
o =
(7]]
50.50 $0.50
9] o
o
0.25 0.25
0.00 — 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(a) Precision (b) Recall
— hyperSMURF std — hyperSMURF no-over — RF — hyperSMURF std — hyperSMURF no-over — RF
— hyperSMURF optimal — hyperSMURF no-par — hyperSMURF optimal — hyperSMURF no-par
0.5
0.9 N
0.4
3
g 0.8
gO.S ;(3
o
(2] O
0.2 &5
[
m
0.1 0.6
0.0 / 05
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(c) Fy-score (d) Balanced accuracy

Figure B.3: Precision, recall and F-score comparison of hyperSMURF, an optimized hyperSMURF and
only subparts of hyperSMURF. “HyperSMUREF std” is the full hyperSMUREF algorithm; “HyperSMURF op-
timal” uses the best automated selected parameters for every CV step (see Section 3.3.1); “HyperSMURF
no-over” is hyperSMURF with no oversampling; “HyperSMUREF no-par” is hyperSMURF with no partition-
ing and therefore no hyper-ensemble approach. “RF” is the classical Random Forest ensemble. In every
setting a subsampling of the majority (negative) class to three times the cardinality of the minority class
(positives) was performed. Other parameters were set to default (see Table 3.2).

122

Performance on Non-Coding Variants

This section contains some additional plots about the performance of hyperSMURF on Mendelian,
GWAS and eQTL data. The main discussion about the results can be found in Sections 3.5.3
and 3.5.4. Here I present an in-depth discussion about performance in terms of precision, recall
(sensitivity), balanced accuracy and Fy-score (F-Measure).

State-Of-The-Art Methods

Figure B.4 shows the ROC curves of hyperSMURF and the retrained learners from CADD, GWAVA,
Eigen, Eigen-PC, and DeepSEA on the Mendelian and GWAS data. As expected GWAVA has a
similar performance to hyperSMUREF in both datasets because it has the same base-learner and,
the main reason, it adopts an imbalance-aware strategy. Eigen and Eigen-PC have a reasonably
good ROC curve on the Mendelian data but completely fail on the GWAS data. The reason for this
might be the huge feature set where only two distinct feature groups are present. To show that
the ROC curves are significantly different a one-sided DeLong test was performed and the results
are listed in Table B.4. These results underline the previous observations that only GWAVA has
a similar ROC performance to hyperSMUREF.

— hyperSMURF (0.989) — Eigen—-PC (0.974) — hyperSMURF (0.998) — Eigen—PC (0.494)
— CADD (0.906) — GWAVA (0.993) — CADD (0.915) — GWAVA (0.994)
— Eigen (0.957) — DeepSEA (0.901) — Eigen (0.496) — DeepSEA (0.967)
1.00 1.00
0.75 0.75

True positive rate
o
[6)]
o

True positive rate
o
o
o

0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate False positive rate
(a) Mendelian data ROC curves. (b) GWAS data ROC curves.

Figure B.4: Comparison across retrained learners from different non-coding scoring methods by ROC
curves. Values in brackets show the AUROC. (a) ROC curves of the retrained learners from the differ-
ent non-coding scoring methods on Mendelian data; (b) ROC curves of the retrained learners from the
different non-coding scoring methods on regulatory GWAS data.

123

Appendix B HyperSMURF Performance

Table B.4: Statistical comparison of ROC curves. Comparison of the AUROC between hyperSMURF
(Mendelian data AUC = 0.99; GWAS data AUC = 1.00) and the retrained learners from other scoring
methods: CADD, GWAVA, Eigen, Eigen-PC, and DeepSEA. Tests were performed using the one-sided
DeLong test [119]. An asterisk (x) marks a statistically significant difference (significance level « = 0.05).

(a) Mendelian data (b) GWAS data
Score AUROC P-Value Score AUROC P-Value
HyperSMURF 0.99 - HyperSMURF 1.00 -
CADD 0.91 0.04* CADD 0.92 9.83 x 107177 *
GWAVA 0.99 1.00 GWAVA 0.99 0.46
Eigen 0.96 0.25 Eigen 0.96 1.02 x 107233 *
Eigen-PC 0.97 0.38 Eigen-PC 0.97 9.55 x 10723%*
DeepSEA 0.90 9.13 x 107°* DeepSEA 0.90 6.52 x 107162 *

In order to obtain a common basis for the comparison, all scores were rescaled in the range [0, 1]
through a simple linear transformation (normalized score). On the Mendelian data hyperSMURF
has the best precision across the normalized scores (Figure B.5a) and the retrained SVM of CADD
the best recall (Figure B.5b). HyperSMUREF is the only method that achieves both: a high precision
and a high recall. Therefore it achieves the best F;-score (Figure B.5c).

The second best method in terms of the F;-score is GWAVA (Figure B.5¢). It has a good sensitivity
but only a high precision for normalized scores close to one (Figures B.5a and B.5b). Therefore
the F;-score has a maximum of around 0.35 gained by scores close to one (Figures B.6e and B.7e).
Because GWAVA adopts a balancing approach the balanced accuracy is good over the complete
range of scores (Figure B.5d).

The retrained SVM of CADD has no recall (Figure B.5b). Thus, the F;-score is always at zero
except of a final peek close to one (Figures B.6b and B.7b).

Eigen and Eigen-PC have a similar behavior. Both have a small peak in precision where at the
same range the recall drops (Figures B.5a and B.5b). Of course at this range they gain the best F; -
score (Figure B.5c). But interestingly the range of the peeks between the methods are at different
values (Figures B.6c, B.6d, B.7c and B.7d). Eigen has its peak at higher normalized scores and
Eigen-PC at low scores. This means that for Eigen-PC several negative variants get an extremely
high score in contrast to the regulatory mutations. Therefore it can only be used to remove
negative variants instead of finding regulatory Mutations with high values.

Finally DeepSEA has a lower recall with a low maximum precision of around 0.25 close to one
(Figures B.6f and B.7f). In summary, this analysis shows that hyperSMURF has a substantially
better performance than the other methods. Only the imbalance-aware learning method GWAVA
shows that it is able to deal with the data. But the imbalance factor is too high to reach the
hyperSMURF performance.

124

— hyperSMURF — Eigen — GWAVA — hyperSMURF — Eigen — GWAVA

— CADD Eigen—-PC — DeepSEA —CADD Eigen-PC — DeepSEA
1.00 1.00
0.75 0.75
c |
o =
2 =
50.50 $0.50
1) o
o
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(a) Precision (b) Recall
— hyperSMURF — Eigen — GWAVA — hyperSMURF — Eigen — GWAVA
—CADD Eigen-PC — DeepSEA —CADD Eigen-PC — DeepSEA
0.5
0.9
0.4
3
©0.8
00.3 3
5 Q
3 3
u 807
0.2 &
©
m
04 \ 0.6
0-0 0-5
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(c) Fy-score (d) Balanced accuracy

Figure B.5: Precision, recall, and F-score comparison across retrained learners from different non-
coding scoring with Mendelian data. HyperSMURF, CADD, Eigen, Eigen-PC, GWAVA, and DeepSEA
performance by varying the normalized score threshold.

125

Appendix B HyperSMURF Performance

— Precision — Recall — FMeasure

— Precision — Recall — FMeasure

1.00 1.00
0.75 0.75
) S
= 0.50 =0.50
s g
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(a) HyperSMURF (b) CADD
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
3 3
=0.50 +0.50
g g
0.25 0.25
0.00 0.00 —Jl
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(c) Eigen (d) Eigen-PC
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
g]
+0.50 +0.50
g g
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(e) GWAVA (f) DeepSEA

Figure B.6: Precision, recall and F-score values of the normalized scores from retrained non-coding

score learners on the Mendelian data.

126

— Precision — Recall — FMeasure — Precision — Recall — FMeasure

1.00 1.00
0.75 0.75
) S
=<0.50 =0.50
s g
0.25 0.25
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(a) HyperSMURF (b) CADD
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
3 3
=0.50 +0.50
g g
0.25 0.25
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(c) Eigen (d) Eigen-PC
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
g)
+0.50 +0.50
g g
0.25 0.25
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(e) GWAVA (f) DeepSEA

Figure B.7: Details of precision, recall and F-score within the interval [0.75, 1] of the normalized scores
from retrained non-coding score learners on the Mendelian data.

127

Appendix B HyperSMURF Performance

On the GWAS data we can define two groups of methods. The first group contains hyperSMURF,
GWAVA and DeepSEA. All of them have similarly good recall values (Figure B.8b) and a good pre-
cision (descending order, Figure B.8a). All other scores, forming the second group, have precision
values close to zero and reduced sensitivity.

All well performing methods have good F;-scores with maximums ranging from 0.4 to 0.6 (Fig-
ure B.8). GWAVA and DeepSEA have very similar performance on precision, recall and F;-score
(compare with Figures B.9e, B.9f, B.10e and B.10f). But GWAVA has the best balanced accuracy
because of the imbalance-aware method (Figure B.8d). For the GWAS data no different behavior
of Eigen and Eigen-PC can be detected (compare with Figures B.9¢, B.9d, B.10c and B.10d). Both
methods seem to have problems with the huge amount of features in contrast to the low amount
of correlated groups (conservation scores, logfold and diff features).

128

— hyperSMURF — Eigen — GWAVA — hyperSMURF — Eigen — GWAVA

— CADD Eigen—-PC — DeepSEA —CADD Eigen-PC — DeepSEA
1.00 1.00
0.75 0.75
<
2 T
£0.50 $0.50
1) o
o
0.25 0.25
0.00 = 0.00 L L —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(a) Precision (b) Recall
— hyperSMURF — Eigen — GWAVA — hyperSMURF — Eigen — GWAVA
—CADD Eigen-PC — DeepSEA —CADD Eigen-PC — DeepSEA
1.0
0.6
0.4 308
° 3
= Q
Q
3 3
| [0]
L o
=
©
0.2 Z0.6
A/ L
—
0.0 0.4
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(c) Fy-score (d) Balanced accuracy

Figure B.8: Precision, recall, and F-score comparison across retrained learners from different non-
coding scoring with GWAS data. HyperSMURF, CADD, Eigen, Eigen-PC, GWAVA, and DeepSEA perfor-
mance by varying the normalized score threshold.

129

Appendix B HyperSMURF Performance

— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00 j
0.75 0.75
) S
= 0.50 =0.50
s g
0.25 0.25
0.00 0.00 }Lﬁ\/‘/\
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(a) HyperSMURF (b) CADD
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 ﬁ 1.00 _ﬁ
0.75 0.75
3 3
=0.50 +0.50
g g
0.25 0.25
0.00 = 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(c) Eigen (d) Eigen-PC
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
g]
+0.50 +0.50
g g
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(e) GWAVA (f) DeepSEA

Figure B.9: Precision, recall and F-score values of the normalized scores from retrained non-coding
score learners on the GWAS data.

130

— Precision — Recall — FMeasure

— Precision — Recall — FMeasure

1.00 1.00
0.75 0.75
E S
=0.50 =0.50
g s
0.25 0.25
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(a) HyperSMURF (b) CADD
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
E S
=0.50 +0.50
g g
0.25 0.25
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(c) Eigen (d) Eigen-PC
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
g)
+0.50 +0.50
g g
0.25 0.25
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(e) GWAVA (f) DeepSEA

Figure B.10: Details of precision, recall and F-score within the interval [0.75, 1] of the normalized
scores from retrained non-coding score learners on the GWAS data.

131

Appendix B HyperSMURF Performance

eQTL

Finally I show the missing ROC curves of the 50-times-repeated experiment on the eQTL data.
HyperSMUREF as well as the logistic linear regression showed stable ROC predictions between all
50 repetitions (Figure B.11). Comparing the curves of both methods we clearly see that hyper-
SMURF shows a better ROC than the original logistic linear regression model.

cutoff cutoff

0

Probabiliy Probabiliy [E

S0

° o
[}
o o

0S50
72
00't

O O«
o v
S o

1.00 1.00

0.75 0.75

True positive rate
o
(4]
o

True positive rate
o
()]
o

0.25 0.25

0.00 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate False positive rate

(a) ROC curves of hyperSMURF. (b) ROC curves of logistic linear regression.

Figure B.11: Performance measurement of the eQTL data using splits. ROC curves generated by a 50-
times-repeated sampling using random splits with three quarters for training and remaining instances for
testing. The color of the line shows the probability at the given recall value. Training was done with (a)
hyperSMUREF and (b) a logistic linear regression model.

132

Appendix C

ReMM Score Performance

This appendix contains an in-depth comparison of ReMM to the other non-coding scores CADD,
Eigen, Eigen-PC, GWAVA, DeepSEA, FATHMM-MKL and LINSIGHT. In order to obtain a com-
mon basis for the comparison, all scores were rescaled in the range [0, 1] through a simple linear
transformation (normalized score).

GWAVA displayed the best precision across the normalized scores (Figure C.1a), whereas FATHMM-
MKL and DeepSEA had the best recall (Figure C.1b). Nevertheless ReMM is the only method that
achieves both a relatively high precision and recall (Figures C.1a, C.1b and C.2a), thus achiev-
ing the best F;-score (Figure C.1c) and best balanced accuracy (Figure C.1d). Although GWAVA
displayed the best precision, it showed a marked decrement of the recall as a function of the nor-
malized score (Figure C.1c), and for the highest values of the precision the recall is close to zero
(Figures C.2e and C.3e). Correspondingly, GWAVA showed a maximal F;-score of only about 0.3,
as compared to a maximum ReMM Fj-score larger than 0.5 (Figure C.1c).

In contrast to GWAVA, the recall of LINSIGHT is better on higher normalized scores. This results
in a reasonable F;-score with a maximum over 0.4. Even if LINSIGHT is trained on a totally
different dataset with a generalized linear regression model that tends to generalize poorly in
imbalanced datasets the result is fairly good. There is a subset or maybe a specific functional
variant class where LINSIGHT has a good performance.

DeepSEA achieved a high sensitivity but a very low precision which was close to zero for the
full range of the normalized score, with a peak close to one when the sensitivity declines close
to zero (Figures C.2f and C.3f). Thus, it results in a F;-score that is very close to zero in the full
range of the normalized scores.

CADD performs poorly on this task, mainly due to a low precision, with a recall that is very close
to zero for a normalized score larger than 0.5 (Figures C.2b and C.3b).

133

Appendix C ReMM Score Performance

Eigen achieved the best F;-score for normalized score close to 0.26 (Figures C.1c and C.2b). This
is the result of a peak in precision (about 0.5) close to this value of the normalized score. Unfor-
tunately the recall declines for normalized scores larger than 0.2, thus leading to poor F;-scores
just for score thresholds larger than 0.26. This is due to the fact that several negative variants
get an extremely high score in contrast to the regulatory mutations. Therefore a cutoff at 0.26
(normalized score) or 4 (Eigen score) for Mendelian regulatory mutations could represent an ap-
propriate threshold to improve the performance of Eigen. In sum, Eigen has comparable but
slightly lower performances in comparison to GWAVA. Eigen-PC has a similar behavior in terms
of performance but both precision and recall are lower than Eigen, leading to an even poorer F;
curve (Figures C.2d and C.3d).

FATHMM-MKL showed a low precision but a high sensitivity with a significant decay only for
normalized scores very close one. The resulting F;-score is very low also for large values due to
the poor performance in precision (Figures C.2g and C.3g).

Table C.1: Statistical comparison of ROC curves between ReMM and other NCV scores. One-sided
DeLong test [119] was performed between ReMM (AUC = 0.99) and CADD, GWAVA, Eigen, Eigen-
PC, DeepSEA, FATHMM-MKL, and LINSIGHT. An asterisk () marks a statistically significant difference
(significance level a = 0.05).

Score AUROC p-value
ReMM score 0.99 -

CADD 0.95 0.78

GWAVA 0.96 0.75

Eigen 0.98 1.27 x 10739 *
Eigen-PC 0.96 2.01 x 1078 *
DeepSEA 0.97 0.63
Fathmm-MKL 0.98 0.54
LINSIGHT 0.95 0.79

In summary, this analysis indicates that ReMM substantially outperforms the other methods in
predicting non-coding regulatory Mendelian mutations. ReMM is the only method able to obtain
both a relatively high precision and recall for the largest values of the normalized score (Fig-
ure C.2a). In particular, Figure C.3a indicates that ReMM, for score values higher than 0.97, can
achieve an increasing precision from 0.5 to 1 while maintaining a relatively high recall between
0.3 and 0.5. This suggests that a threshold in the range of [0.95, 1] may be most appropriate to
search for novel Mendelian mutations in the non-coding genome. Similar considerations about a
probability cutoff can be found in the corresponding Section 4.3. Note that for scores very close
to one the sensitivity is very low, thus leading to an F;-score close to zero.

134

I remark that ReMM was specifically designed to deal with this extremely imbalanced task, with
a small but highly reliable set of positive examples (manually curated Mendelian mutations). The
five competing methods analyzed here were not specifically designed for Mendelian mutations
and moreover, apart from GWAVA, they do not adopt learning strategies specifically devised to
deal with extremely imbalanced data. These facts might explain their worse results with respect
to ReMM in the prediction of Mendelian mutations.

— ReMM — Eigen-PC — FATHMM-MKL — ReMM — Eigen-PC — FATHMM-MKL
— CADD —GWAVA LINSIGHT — CADD — GWAVA LINSIGHT
— Eigen — DeepSEA —Eigen — DeepSEA

1.00 1.00

0.75 0.75

0.25 0.25

Precision
o
(o)
o
Recall
=
[¢))
o

0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(a) Precision (b) Recall
— ReMM — Eigen-PC — FATHMM-MKL — ReMM — Eigen-PC — FATHMM-MKL
— CADD — GWAVA LINSIGHT — CADD — GWAVA LINSIGHT
—Eigen — DeepSEA —Eigen — DeepSEA

0.5

o
©

F-score
o
W
Balanced Accuracy
¢ o IS o
(2] ~ [e)

0.4

0.2

0.1
0.0 = 0.5
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Threshold Threshold
(c) Fy-score (d) Balanced accuracy

Figure C.1: Precision, recall, and F-score comparison across different genome-wide pathogenicity
scores using the Mendelian data. ReMM, CADD, Eigen, Eigen-PC, GWAVA, DeepSEA, FATHMM-MKL,
and LINSIGHT performance by varying the normalized score threshold.

135

Appendix C ReMM Score Performance

— Precision — Recall — FMeasure

— Precision — Recall — FMeasure

1.00 1.00
0.75 0.75
e e
=0.50 +0.50
g g
0.25 0.25
0.00 0.00 =1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(a) ReMM score (b) CADD
— Precision — Recall — FMeasure — Precision — Recall — FMeasure
1.00 1.00
0.75 0.75
e E
=0.50 +=0.50
g g
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(c) Eigen (d) Eigen-PC

136

— Precision — Recall — FMeasure — Precision — Recall — FMeasure

1.00 1.00

0.75 0.75
3 g
=0.50 +0.50
g g

0.25 0.25

0.00 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(e) GWAVA (f) DeepSEA
— Precision — Recall — FMeasure — Precision — Recall — FMeasure

1.00 1.00

0.75 0.75
3 g
+=0.50 +0.50
g g

0.25 0.25

0.00 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Normalized score Normalized score
(g) FATHMM-MKL (h) LINSIGHT

Figure C.2: Precision, recall and F-score results of the normalized genome-wide pathogenicity scores
with the Mendelian data.

137

Appendix C ReMM Score Performance

— Precision — Recall — FMeasure

— Precision — Recall — FMeasure

1.00 1.00

0.75 0.75
3 g
=0.50 +0.50
g g

0.25 0.25

—1
0.00 0.00
0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(a) ReMM score (b) GWAVA
— Precision — Recall — FMeasure — Precision — Recall — FMeasure

1.00 1.00

0.75 0.75
3 g
=0.50 +=0.50
g g

0.25 0.25

0.00 0.00

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00

Normalized score

(c) Eigen

138

Normalized score

(d) Eigen-PC

— Precision — Recall — FMeasure — Precision — Recall — FMeasure

1.00 1.00

0.75 0.75
3 g
=0.50 +0.50
g g

0.25 0.25

0.00 0.00 J

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(e) GWAVA (f) DeepSEA
— Precision — Recall — FMeasure — Precision — Recall — FMeasure

1.00 1.00

0.75 0.75
3 g
+=0.50 +0.50
s g

0.25 0.25

0.00 -J 0.00

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Normalized score Normalized score
(g) FATHMM-MKL (h) LINSIGHT

Figure C.3: Detailed precision, recall and F-score results of the normalized genome-wide pathogenicity
scores in the interval [0.75, 1] of the Mendelian data.

139

Appendix D

Genomiser Performance

Appendix D contains some additional material about the measurement of the performance of
Genomiser and the results. Table D.1 lists all variants that were used for compound heterozy-
gous analysis of Genomiser. Therefore each spike-in was done with a coding and a non-coding
mutation identified in the literature. In total 22 cases were analyzed.

Figure D.1 shows the ROC and PR curves of the comparison between the standard Genomiser
approach and the modified Genomiser, where all intronic, intergenic, upstream and downstream
variants were assigned to the phenotypically closest gene, independent of an overlap with a
regulatory region defined by FANTOMS5 [135] or the Ensembl regulatory feature build [136].

141

Appendix D Genomiser Performance

Table D.1: Compound heterozygous mutations used for Genomiser performance measurement. In
total 22 cases were identified in the literature with one coding or splice site mutation and one mutation
in a non-coding sequence. All cases were used to test the performance of Genomiser on combinations of
coding/non-coding mutations. Note that the 22 non-coding mutations were also included in the main test
set of 453 NCVs.

Coding Variant Non-coding Variant ~ Gene PMID
chr22:40760969G>A chr22:40742514T>C ADSL 12016589
chr9:104189856C>G chr9:104198194C>T ALDOB 20882353
chr1:100680411G>A chr1:100661453T>G DBT 20570198
chr2:69583638C>A chr2:69553299G>T GFPT1 25765662
chr7:31016054A>G chr7:31003560A>C GHRHR 11875102
chr13:20763471C>T chr13:20767158G>A GJB2 17660464
chr9:37430601TC>T chr9:37422744GC>AT GRHPR 25410531
chr11:5248004G>A chr11:5248291GA~G HBB 7803275
chr11:5248225CTT>C chr11:5248280C>T HBB 19372376
chr11:5247992CAAAG>C chr11:5248294G>A HBB 18473240
chr11:5247992CAAAG>C chr11:5246720T>G HBB 11722440
chr11:5248223G>GTA chr11:5246718A>T HBB 5481893
chr11:5248004G>A chr11:5248269G>C HBB 8562944
chr11:5247992CAAAG>C chr11:5248374T>A HBB 17516066
chr11:5248232T>A chr11:5248372G>A HBB 21801233
chr10:71119707G>A chr10:71075518A>G HK1 19608687
chr2:128185950C>T chr2:128175983A>G PROC 10942114
chr11:47469631G>T chr11:47470715G>C RAPSN 12651869
chr11:2187270G>T chr11:2193087G>A TH 17696123
chr10:127503630A>G chr10:127505271A>G UROS 11254675
chr10:127477562C>T chr10:127505291G>T UROS 11254675
chr10:127505005C>T chr10:127505287G>T UROS 11254675

— No-Constraint (0.914) — Standard (0.915) — No-Constraint (0.022) — Standard (0.023)

1.00 I 0.5
0.4
0.75
[0}
< 0.3
2 S
= (7
§0.50 g
] 0.2
=
0.25
0.1
0.00 0.0 \, T~
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate Recall
(a) ROC curve (b) PR curve

Figure D.1: Performance curves of Genomiser with standard settings and without limiting to only
regulatory regions in TAD. 453 NCVs were spiked into genomes of the 1KG and Genomiser was run
using noisy phenotype queries. The Exomiser scores were recorded of every gene in the output and the
(a) ROC and (b) the PR curves were plotted here. An Exomiser score of zero was assigned to the target
gene of the NCV, if the variant was not present (filtered out) in the Genomiser output. Genomiser was
used in the standard version (Standard) and in a modified version (No-Constraint) where the assignment
of 20 Kb to the next gene was removed and every intergenic, intronic, upstream, and downstream variant
was associated to the most phenotypcially similar gene in the TAD. In ‘No-Constraint’ variants did not
necessarily overlap to a regulatory region defined by FANTOMS5 [135] or the Ensembl regulatory feature
build [136].

143

Appendix E

HyperSMURF Tutorial

This appendix chapter is a tutorial on how to use the hyperSMUREF Java library for training and
testing on imbalanced data. Here we will create a new Maven project, called hyper SMURF-tutorial,
and use hyperSMURF together with Weka [15] to train some tasks. Therefore we first have to
set up a Maven project. Maven will manage and import all necessary libraries. Then we will
start with a synthetic example. Afterwards we use real genetic data for training. All files of this
tutorial are available under https://www.github.com/visze/hyperSMURF-tutorial.

E.1 Requirements

First we have to build a maven project and include the hyperSMUREF library into the pom.xml
file. Therefore we generate a new folder (hyperSMURF-tutorial) with a new pom.xml file.

$ mkdir hyperSMURF-tutorial
$ cd hyperSMURF-tutorial
$ touch pom.xml

Then we open the pom.xml file in an editor and put in the following lines:

145

https://www.github.com/visze/hyperSMURF-tutorial

Appendix E HyperSMURF Tutorial

<project xmlns="http://maven.apache.org/POM/4.0.0"
< xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
— xsi:schemalocation="http://maven.apache.org/POM/4.0.0
< http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>de.charite.compbio.hypersmurf</groupIld>
<artifactId>hyperSMURF-tutorial</artifactId>
<packaging>jar</packaging>
<version>0.3</version>
<name>hyperSMURF-tutorial</name>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupIld>nz.ac.waikato.cms.weka</groupId>
<artifactId>weka-dev</artifactId>
<version>3.9.0</version>
</dependency>
<dependency>
<groupId>de.charite.compbio</groupId>
<artifactId>hyperSMURF</artifactId>
<version>0.3</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
</plugin>
</plugins>
</build>
</project>

Now we can start writing Java files under the folder src/main/java. To build a final runnable
jar-file we simply use the command mvn clean package to compile the jar file into the target
folder. Then we can run the hyperSMURF-tutorial-0.3-jar-with-dependencies. jar jar
in target folder by specifying our main class (here SyntheticExample from the next section):

$ java -cp target/hyperSMURF-tutorial-0.3-jar-with-dependencies.jar
— de.charite.compbio.hypersmurf.SyntheticExample

146

E.2 Simple usage Examples with Synthetic Data

If you use Eclipse for developing a useful maven command to generate a project that can be
imported into eclipse ismvn eclipse:eclipse.

E.2 Simple usage Examples with Synthetic Data

In this section we will add a new file SyntheticExample.java under the folder src/main/
java/de/charite/compbio/hypersmurf to our maven project. In the file we will generate the
SyntheticExample class which contains all functions to generate some imbalanced synthetic
data, configure and run hyperSMURF and finally show some performance measurements of the
training. The class has a main function to run it and two other functions:

(1) generateSyntheticData to generate synthetic imbalanced data and (2) classify to classify
instances with a classifier using k-fold CV.

The outline of the Java class SyntheticExample looks like this:

package de.charite.compbio.hypersmurf;
public class SyntheticExample {

VA
* e need a seed for the random number generator to make consistent predictions.
*/

private static int SEED = 42;

public static void main(String[] args) throws Exception {

}
}

So the class only defines a seed for the random number generator to make predictions consistent.
Then we use the RDG1 data generator from Weka to generate synthetic data. For example we will
generate 10,000 instances, each with 20 numeric attributes, and set the index to the last attribute
which contains class ¢y and ¢; by default. Then we randomize the data using our predefined
seed:

RDG1 dataGenerator = new RDG1();
dataGenerator.setRelationName ("SyntheticData") ;
dataGenerator.setNumExamples (10000) ;
dataGenerator.setNumAttributes(20) ;
dataGenerator.setNumNumeric(20) ;
dataGenerator.setSeed (SEED) ;
dataGenerator.defineDataFormat () ;

Instances instances = dataGenerator.generateExamples();

// set the index to last attribute
instances.setClassIndex(instances.numAttributes() - 1);

// randomize the data

Random random = new Random(SEED) ;
instances.randomize (random) ;

147

Appendix E HyperSMURF Tutorial

The problem is that this data is not imbalanced. We can check this by writing a short helper
function.
private static int[] countClasses(Instances instances) {

int[] counts = new int[instances.numClasses()];
for (Instance instance : instances) {

if (instance.classIsMissing() == false) {
counts[(int) instance.classValue()]++;
}
}
return counts;
}

Now if we add int [] counts = countClasses(instances) ; to our instance generation and
printitusing System.out.println("Before imbalancing: " + Arrays.toString(counts));
we will see that ¢y has 2599 and c; has 7401 instances.

To imbalance the data we will write some code. For example we want to use only 50 instances
of ¢p. So we have to generate a new Instances object and assign all ¢; class instances and only
50 ¢q class instances to it.

// imbalance data
int number0fClassOne = 50;
Instances imbalancedInstances = new Instances(instances, counts[1] + number0OfClassOne) ;
for (int i = 0; i < instances.numInstances(); i++) {
if (instances.get(i).classValue() == 0.0) {
if (number0fClassOne '= 0) {
imbalancedInstances.add(instances.get(i));
number0fClassOne--;
}
} else {
imbalancedInstances.add(instances.get (1)) ;
}
}
imbalancedInstances.randomize (random) ;
counts = countClasses(imbalancedInstances) ;
System.out.println("After imbalancing: " + Arrays.toString(counts));

The last line prints out the new imbalance. Now ¢y has only 50 instances.

Now we have to set up our classifier. We will use hyperSMURF with 10 partitions, an oversam-
pling factor of 2 (200 %), no undersampling, and each forest should have a size on 10.

// setup the hyperSMURF classifier
HyperSMURF clsHyperSMURF = new HyperSMURF() ;
clsHyperSMURF . setNumIterations (10) ;
clsHyperSMURF . setNumTrees (10) ;
clsHyperSMURF . setDistributionSpread(0) ;
clsHyperSMURF . setPercentage (200.0) ;
clsHyperSMURF . setSeed (SEED) ;

The next step will be the performance testing of hyperSMURF on the newly generated imbal-
anced dataset. Therefore we will use a 5-fold CV. To rerun this performance test using other clas-
sifiers we write everything into a new function static void classify(AbstractClassifier
cls, Instances instances, int folds){}. The classify function will collect the predic-

148

E.2 Simple usage Examples with Synthetic Data

tions over all 5 folds in the Evaluation object which then can be used to print out the overall
performance results. Here is the complete classify function:

private static void classify(AbstractClassifier cls, Instances instances, int folds)
— throws Exception {
// perform cross-validation and add predictions
Instances predictedData = null;
Evaluation eval = new Evaluation(instances);
for (int n = 0; n < folds; n++) {
System.out.println("Training fold " + n + " from " + folds + "...");
Instances train = instances.trainCV(folds, n);
Instances test = instances.testCV(folds, n);

// build and evaluate classifier

Classifier clsCopy = AbstractClassifier.makeCopy(cls);
clsCopy.buildClassifier(train);

eval.evaluateModel (clsCopy, test);

// add predictions
AddClassification filter = new AddClassification();
filter.setClassifier(cls);
filter.setOutputClassification(true);
filter.setOutputDistribution(true);
filter.setOutputErrorFlag(true) ;
filter.setInputFormat (train) ;
Filter.useFilter(train, filter); // trains the classifier
// perform predictions on test set
Instances pred = Filter.useFilter(test, filter);
if (predictedData == null)
predictedData = new Instances(pred, 0);
for (int j = 0; j < pred.numInstances(); j++)
predictedData.add(pred.instance(j));

// output evaluation

System.out.println();

System.out.println("=== Setup ==="

System.out.println("Classifier: " + cls.getClass().getName() + " " +
— Utils. joinOptions(cls.getOptions()));

System.out.println("Dataset: " + instances.relationName());

System.out.println("Folds: " + folds);

System.out.println("Seed: " + SEED);

System.out.println();

System.out.println(eval.toSummaryString("=== " + folds + "-fold Cross-validation ===",
— false));

System.out.println();

System.out.println(eval.toClassDetailsString("=== Details ==="));

149

Appendix E HyperSMURF Tutorial

Finally we can test hyperSMURF by calling the method using five folds: classify (c1sHyperSMURF,
imbalancedInstances, 5) ;. The output of the performance should be similar to the next text:

=== b-fold Cross-validation ===

Correctly Classified Instances 7406 99.3961 %,

Incorrectly Classified Instances 45 0.6039 %

Kappa statistic 0.3809

Mean absolute error 0.0858

Root mean squared error 0.1278

Relative absolute error 637.5943 Y%

Root relative squared error 156.5741 %

Total Number of Instances 7451

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area C(Class
0.280 0.001 0.609 0.280 0.384 0.410 0.895 0.337 c0
0.999 0.720 0.995 0.999 0.997 0.410 0.895 0.999 cl

Weighted Avg. 0.994 0.715 0.993 0.994 0.993 0.410 0.895 0.995

So we will get an AUROC of 0.895 and an AUPRC of 0.337 for our minority class cp. We can also
use a RF classifier using the same number of random trees to see the differences:

// setup a RF classifier

RandomForest clsRF = new RandomForest() ;
clsRF.setNumIterations (10);
clsRF.setSeed (SEED) ;

// classify RF

classify(clsRF, imbalancedInstances, 5);

Now we see that the RF is only able to get an AUROC of 0.706 and an AUPRC of 0.109.

E.3 Usage Examples with Genetic Data

HyperSMURF was designed to predict rare genomic variants when the available examples of such
variants are substantially less than background examples. This is a typical situation with genetic
variants. For instance, we have only a small set of available variants known to be associated
with Mendelian diseases in non-coding regions (positive examples) against the sea of background
variants, i.e. a ratio of about 1 : 36,000 between positive and negative examples [56].

Here we show how to use hyperSMURF to detect these rare features using datasets obtained
from the original large set of Mendelian data [56]. To provide usage examples that do not require
more than 1 minute of computation time on a modern desktop computer, we considered datasets
downsampled from the original Mendelian data. In particular we constructed Mendelian datasets
with a progressively larger imbalance between Mendelian associated mutations and background
genetic variants. We start with an artificially balanced dataset and then we consider progressively
imbalanced datasets with ratio positive:negative varying from 1 : 10, 1 : 100 and 1 : 1000.
These datasets are downloadable as compressed . arff files, easily usable by Weka, from https:
//www.github.com/charite/hyperSMURF-tutorial/data.

150

https://www.github.com/charite/hyperSMURF-tutorial/data
https://www.github.com/charite/hyperSMURF-tutorial/data

E.3 Usage Examples with Genetic Data

The Mendelian.balanced.arff.gz file includes 26 features, a column class showing the be-
longing class (1 = positive, 0 = negative), and a column fold. This is a numeric attribute with
the number of the fold in which each example will be included according to the cytoband-aware
10-fold CV procedure (0 to 9). In total the file contains 406 positives and 400 negatives.

Now we have to write the following code in our new Java file MendelianExample. java in folder
src/main/java/de/charite/compbio/hypersmurt:

1. Loader of the Instances.

2. CV strategy that takes the column fold into account when partitioning and removing the
column fold for training.

3. Setting up our hyperSMUREF classifier.

So this will be the blank MendelianExample. java class:

public class MendelianExample {

J**

* e need a seed to make consistent predictions.
*/

private static int SEED = 42;

VAZ:

* The number of folds are predefined in the dataset
*/
private static int FOLDS = 10;

public static void main(String[] args) throws Exception {

}
}

To read the data we can simply use the ArffLoader from Weka. We will use the first argument
of the command-line arguments as our input file.

// read the file from the first argument of the command line input
Arffloader reader = new ArfflLoader();

reader.setFile (new File(args[0]));

Instances instances = reader.getDataSet();

Then we have to set the class attribute. This is the last attribute of our instances. So we write
instances.setClassIndex(instances.numAttributes() - 1);. Because we have a bal-
anced dataset of the Mendelian data we do not need to do over- or undersampling. So we simply
run hyperSMURF with two partitions and a forest size of ten. Over- and undersampling settings
have to be set to 0.

// setup the hyperSMURF classifier
HyperSMURF clsHyperSMURF = new HyperSMURF () ;
clsHyperSMURF . setNumIterations(2) ;
clsHyperSMURF . setNumTrees (10) ;
clsHyperSMURF . setDistributionSpread(0) ;
clsHyperSMURF . setPercentage (0.0) ;
clsHyperSMURF . setSeed (SEED) ;

151

Appendix E HyperSMURF Tutorial

Now we arrived at the special cytogenetic band-aware CV. The folds are predefined as attribute
fold in the instances object. We have to select the instances on that fold but have to remove the
fold attribute before training or testing a classifier. So we will write a small helper method that
gives us a given fold for testing or the inverse for training. The blank method can be written like
this:

private static Instances getFold(Instances instances, int fold, boolean invert) throws
— Exception {

}

We will use the filter SubsetbyExpression to get the instances with the fold and we can simply

use the Instances method deteleAttributeAt (int index) to remove the fold attribute. For
SubsetbyExpression filter we write a regular expression like attribute = nor ! (attribute = n)
to get the nth fold, or all other folds except fold n. The identifier attribute will be written

like ATT with the index (one based) of the attribute. We can get it using int indexFold =
instances.attribute("fold").index () ; (zero based) and we have to increment it by one

for our filter method. So the content of our getFold method can look like:

// filter on fold variable

int indexFold = instances.attribute("fold").index();
SubsetByExpression filterFold = new SubsetByExpression();
if (invert)

filterFold.setExpression("! (ATT" + (indexFold + 1) + " =" + fold + ")");
else
filterFold.setExpression("ATT" + (indexFold + 1) + " =" + fold);

filterFold.setInputFormat (instances) ;
Instances filtered = Filter.useFilter(instances, filterFold);

// remove fold attribute
filtered.deleteAttributeAt (indexFold) ;

return filtered;

Now it is time for the CV. This is similar to the Synthetic Example in Appendix E.2, but we will
use the getFold method to make the train/test partitioning.

152

E.3 Usage Examples with Genetic Data

// perform cross-validation and add predictions

Instances predictedData = null;

Evaluation eval = new Evaluation(instances);

for (int n = 0; n < FOLDS; n++) {
System.out.println("Training fold " + (n+1) + " from " + FOLDS + "...");
Instances train = getFold(instances, n, true);
Instances test = getFold(instances, n, false);

// build and evaluate classifier

Classifier clsCopy = AbstractClassifier.makeCopy(cls);
clsCopy.buildClassifier(train);

eval.evaluateModel (clsCopy, test);

// add predictions
AddClassification filter = new AddClassification() ;
filter.setClassifier(cls);
filter.setOutputClassification(true);
filter.setOutputDistribution(true);
filter.setOutputErrorFlag(true);
filter.setInputFormat (train) ;
Filter.useFilter(train, filter); // trains the classifier
// perform predictions on test set
Instances pred = Filter.useFilter(test, filter);
if (predictedData == null)
predictedData = new Instances(pred, 0);
for (int j = 0; j < pred.numInstances(); j++)
predictedData.add(pred.instance(j));

// output evaluation

System.out.println();

System.out.println("=== Setup ==="

System.out.println("Classifier: " + cls.getClass().getName() + " " +
— Utils. joinOptions(cls.getOptions()));
System.out.println("Dataset: " + instances.relationName());
System.out.println("Folds: " + FOLDS);

System.out.println("Seed: " + SEED);

System.out.println();

System.out.println(eval.toSummaryString("=== " + FOLDS + "-fold Cross-validation ===",
— false));

System.out.println();
System.out.println(eval.toClassDetailsString("=== Details ==="));

If we run hyperSMURF with the settings above the command-line output will show an AUPRC
of 0.989 and an AUROC of 0.989 of our class 1 which are the Mendelian regulatory mutations.
This is the complete output:

153

Appendix E HyperSMURF Tutorial

=== 10-fold Cross-validation ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error
Total Number of Instances

=== Details ===
TP Rate FP Rate
0.985 0.074
0.926 0.015
Weighted Avg. 0.955 0.044

770
36
0.9107
0.0898
0.1925
17.9538 7
38.4915 %
806

Precision Recall

0.929 0.985
0.984 0.926
0.957 0.955

95.5335 %
4.4665 %

F-Measure MCC

0.956 0.912
0.954 0.912
0.955 0.912

ROC Area
0.989
0.989
0.989

PRC Area Class

0.983 0
0.989 1
0.986

Then we can perform the same computation using the progressively imbalanced datasets: Mendelian.

1_10.arff.gz,Mendelian.1_100.arff.gz, and Mendelian.1_1000.arff.gz. Of course ev-

ery time we have to adapt the settings of hyperSMURF.

Using Mendelian.1_10.arff.gz together with hyperSMURF the output can look like this:

// setup the hyperSMURF classifier
clsHyperSMURF = new HyperSMURF() ;
clsHyperSMURF . setNumIterations(5) ;

clsHyperSMURF . setNumTrees (10) ;

clsHyperSMURF . setDistributionSpread(0) ;
clsHyperSMURF . setPercentage (100.0) ;

clsHyperSMURF . setSeed (SEED) ;

=== 10-fold Cross-validation ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error
Total Number of Instances

=== Details ===
TP Rate FP Rate
0.981 0.044
0.956 0.020
Weighted Avg. 0.978 0.042

4310
96
0.8779
0.0577
0.1427
34.4437 Y
49.3333 %,
4406

Precision
0.995
0.833
0.980

0.981
0.956
0.978

Recall

97.8212 %
2.1788 %

F-Measure MCC

0.988 0.880
0.890 0.880
0.979 0.880

Increasing the imbalance with Mendelian.1_100.arff.gz:

// setup the hyperSMURF classifier
clsHyperSMURF = new HyperSMURF () ;
clsHyperSMURF . setNumIterations(5) ;

clsHyperSMURF . setNumTrees (10) ;

clsHyperSMURF . setDistributionSpread(0) ;
clsHyperSMURF . setPercentage (100.0) ;

clsHyperSMURF . setSeed (SEED) ;

154

ROC Area
0.990
0.990
0.990

PRC Area Class
0.999 0
0.950 1
0.994

E.3 Usage Examples with Genetic Data

=== 10-fold Cross-validation ===

Correctly Classified Instances 39987 99.1348 7%

Incorrectly Classified Instances 349 0.8652 %

Kappa statistic 0.6795

Mean absolute error 0.0249

Root mean squared error 0.0851

Relative absolute error 124.7001 %

Root relative squared error 85.3023 %

Total Number of Instances 40336

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.992 0.071 0.999 0.992 0.996 0.705 0.991 1.000 0
0.929 0.008 0.541 0.929 0.684 0.705 0.991 0.900 1

Weighted Avg. 0.991 0.071 0.995 0.991 0.992 0.705 0.991 0.999

Again increasing the imbalance with Mendelian.1_1000.arff.gz:

// setup the hyperSMURF classifier
clsHyperSMURF = new HyperSMURF() ;
clsHyperSMURF . setNumIterations (10) ;
clsHyperSMURF . setNumTrees (10) ;
clsHyperSMURF . setDistributionSpread(3) ;
clsHyperSMURF . setPercentage (200.0) ;
clsHyperSMURF . setSeed (SEED) ;

=== 10-fold Cross-validation ===

Correctly Classified Instances 392436 99.2597 %

Incorrectly Classified Instances 2927 0.7403 %

Kappa statistic 0.2021

Mean absolute error 0.0233

Root mean squared error 0.0805

Relative absolute error 1135.2254 7

Root relative squared error 251.4735 Y,

Total Number of Instances 395363

=== Details ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.993 0.079 1.000 0.993 0.996 0.323 0.989 1.000 0
0.921 0.007 0.114 0.921 0.204 0.323 0.989 0.773 1

Weighted Avg. 0.993 0.079 0.999 0.993 0.995 0.323 0.989 1.000

As we can see, we have a certain decrement of performance when the imbalance increases. Indeed
when we have perfectly balanced data the AUPRC is very close to 1, while by increasing the
imbalance we have a progressive decrement of the AUPRC to 0.950, 0.900, down to 0.773 when
we have a 1 : 1000 imbalance ratio. Nevertheless this decline in performance is relatively small
compared to other ML methods.

We can perform the same task using parallel computation. For instance, by using 4 cores with an
Intel i7-2670QM CPU, 2.20GHz, we perform a full cytoband-aware 10-fold CV using 406 genetic
variants known to be associated with Mendelian diseases and 400,000 background variants in
less than 5 minutes. We get the best performance boost from this implementation if we do the
training of the partitioning in parallel. So we can set the number of execution slots to 4 using
clsHyperSMURF . setNumExecutionSlots(4) ;.

155

Appendix E HyperSMURF Tutorial

Of course the training and CV functions allow also to set the parameters of the RF ensembles,
that constitute the base learners of the hyperSMURF hyper-ensemble, such as the number of
decision trees to be used for each RF (setNumTrees (int num)) or the number of features to be
randomly selected from the set of available input features at each step of the inductive learning
of the decision tree (setNumFeatures (int num)). The full description of the HyperSMURF class
can be found in the hyperSMURF Java APl https://javadoc.io/doc/de.charite.compbio/
hyperSMURF.

156

https://javadoc.io/doc/de.charite.compbio/hyperSMURF
https://javadoc.io/doc/de.charite.compbio/hyperSMURF

Abbreviations

1KG 1000 Genomes Project.

A adenine.

AA amino acid.

AD autosomal dominant.

ADASYN adaptive synthetic sampling ap-
proach.

AF allele frequency.

AGD Arbeitsgemeinschaft fiir Gen-Diagnostik
eV.

Al artificial intelligence.

ANN artificial neural network.

API application programming interface.

AR autosomal recessive.

AUC area under the curve.

AUPRC area under the precision recall curve.

AUROC area under the receiver operating
characteristic curve.

BMA best-matched average.
bp base pair.

C cytosine.

CA common ancestor.

CADD Combined Annotation-Dependent De-
pletion.

CART classification and regression tree.

ChIP-seq Chromatin immunoprecipitation se-
quencing.

CNN convolutional neural network.

CNV copy-number variation.

COSMIC Catalogue of Somatic Mutations in
Cancer.

CRAN the Comprehensive R Archive Network.

CV cross-validation.

cytoband-aware 10-fold CV cytogenetic band-
aware 10-fold cross-validation.

DAG directed acyclic graph.

DECIPHER DatabasE of Chromosomal Imbal-
ance and Phenotype in Humans using
Ensembl Resources.

DeepSEA deep learning-based sequence ana-
lyzer.

DGYV Database of Genomic Variants.

DNA deoxyribonucleic acid.

DNase-seq DNase I hypersensitive sites se-
quencing,.

ENCODE Encyclopedia of DNA Elements.
EPO Enredo-Pecan-Ortheus.

eQTL expression quantitative trait locus.
ESE exonic splicing enhancer.

ESP Exome Server Project.

FASTA FAST-AIL
FP false positives.
FP rate false positive rate.

G guanine.

GCB German Conference on Bioinformatics.

GNU GPLv3 GNU General Public License Ver-
sion 3.

157

Abbreviations

GO Gene Ontology.

GPU Graphics Processing Unit.

GWAS Genome Wide Association Studies.
GWAVA genome-wide annotation of variants.

HGMD Human Gene Mutation Database.

hiPHIVE human/interactome-PHIVE.

HPO Human Phenotype Ontology.

hyperSMURF Hyper SMOTE Undersampling
with Random Forests.

IC information content.

ICR imprinting control region.

InDel small insertion or deletion.

INSIGHT Inference of Natural Selection from
Interspersed Genomically coHerent
elemenTs.

Kb kilo base.
k-fold CV k-fold cross-validation.

LCA lowest common ancestor.
LINSIGHT linear INSIGHT.
LOOCY leave-one-out cross-validation.

MAF minor allele frequency.

MAVE multiplex assay of variant effect.

MHC major histocompatibility complex.

miRNA microRNA.

miRNA-relation CV microRNA-relation cross-
validation.

MKL multiple kernel learning.

ML machine learning.

MPRA massive parallel reporter assay.

mRNA messenger ribonucleic acid.

NCBI National Center for Biotechnology Infor-
mation.

NCV non-coding variant.

NGS next-generation sequencing.

OMIM Online Mendelian Inheritance in Man.
ORF open reading frame.

PCA principal-component analysis.
PMID PubMed identifier.

158

PPV positive predictive value.
PR precision-recall.

RD regulatory domain.

RefSeq National Center for Biotechnology
Information Reference

Database.

ReMM score Regulatory Mendelian Mutation

Sequence

score.
REST representational state transfer.
RF Random Forest.
RNA ribonucleic acid.
ROC receiver operating characteristic.

SIFT Sorting Intolerant From Tolerant.

SMOTE synthetic minority oversampling tech-
nique.

SNP single nucleotide polymorphism.

SNV single nucleotide variant.

SO Sequence Ontology.

SV structural variation.

SVM Support Vector Machine.

T thymine.

TAD topologically-associated domain.

TFBS transcription factor binding site.

TN true negatives.

topologically-aware CV topologically-aware
cross-validation.

TP true positives.

TP rate true positive rate.

TSS transcription start site.

U uracil.

UCSC University of California, Santa Cruz.
uORF upstream open reading frame.

UTR untranslated region.

VCF Variant Call Format.
VEP Variant Effect Predictor.

WGS whole-genome sequencing.

XD X-linked dominant.
XR X-linked recessive.

Glossary

A

Allele Frequency (AF) Relative frequency of an allele at a particular locus in a population.

Allosome Sex related chromosome.

AlphaGo An Al computer program that plays the board game Go.

Artificial Intelligence (AI) A branch of computer science dealing with the simulation of intelli-
gent behavior in computers.

Artificial Neural Network (ANN) A ML system which is inspired by a network of neurons in
the brain. Raw information is processed through the different neurons of the network.
Thereby different artificial neurons (edges) get activated or deactivated and information
is combined at synapses (vertices) until a final interpretable output is generated.

Deep Learning An ANN with at least three hidden layers.
Hidden Layer Layers of vertices in between the input and the output layer of an ANN.

Autosome A chromosome other than a sex related chromosome (allosome).

B

Bias-Variance Decomposition The total expected classification error of a learning method made

up of the sum of bias and variance.

Bias Error from erroneous assumptions in the learning algorithm.

Variance An error from sensitivity to small fluctuations or incompleteness in the training
set.

Big Data An accumulation of data that is too large and complex for processing by traditional data
processing software. Big data can be characterized by the five Vs [153]: (1) Volume -
the quantity of generated and stored data. (2) Variety — the type of the data. (3) Velocity
— the speed of data being generated and processed. (4) Variability — inconsistency of the
data set. (5) Veracity - the data quality of the data.

C

Chromatin Complex of macromolecules, consisting of DNA, proteins, and RNAs. Its function
is to package DNA into a compact, dense shape, to reinforce the DNA macromolecule

159

Glossary

to allow mitosis, to prevent DNA damage, and to control gene expression and DNA
replication.

Chromosomal Aberration Missing, extra, or irregular portion of chromosomal DNA compared
to a reference sequence. Complete chromosomal aberrations are the loss or the gain of
a complete chromosome.

Classifier Also known as learner. An algorithm that implements classification, especially in a
concrete implementation.

Codon Nucleotide triplets that encode an AA.

Open Reading Frame (ORF) A continuous stretch of codons that contain a start-codon and

a stop-codon.

Upstream Open Reading Frame (uORF) A specific open reading frame (ORF) within the
5’'UTR of the mRNA.

Start-Codon First codon of a mRNA transcript (usually AUG). It always codes for AA me-

thionine in eukaryotes.

Stop-Codon Terminates the translation of a mRNA transcript (usually UAA, UAG or UGA).
Contig A set of overlapping DNA segments that represents a consensus region of DNA.
Cross-Validation (CV) A model validation technique for assessing how the results of a statistical

analysis will generalize to an independent data set. The validation data is split into
training and test sets.

k-Fold Cross-Validation (k-fold CV) Partitioning of the validation data into k inN test

sets. For the ith test set, i = {1,2,...,k}, all other test sets will be used for train-
ing ({1,2,...,k}\9).

Cytogenetic band-aware 10-fold Cross-Validation (cytoband-aware 10-fold CV) The hu-
man genome will be partitioned into its cytogenetic bands. All variants within a band
will be assigned to the same fold. For Mendelian and GWAS data bands with positive
variants will be added to the folds such that every fold has a similar amount of positives.
All remaining bands will be added randomly to the 10 folds.

MicroRNA-Relation Cross-Validation (miRNA-relation CV) Folds are the number of avail-
able miRNAs. Every variant will be in the fold of their corresponding miRNA Strategy
is used with the eQTL data.

Topologically-Aware Cross-Validation (topologically-aware CV) The human genome
will be partitioned into TADs. All variants within a TAD will be assigned to one fold.
The number of folds are the number of available TADs that contain at least one variant.

D

Data Mining The process of discovering patterns in large datasets.

Divide-And-Conquer Recursively breaking down a problem into sub-problems of the same or
related type, until these problems become simple enough to be solved directly. Then
the sub-problem solutions are combined together to a general solution of the original
problem.

E

Ensemble Learning An ML method that combines multiple ML algorithms to raise the predictive
performance.

160

Glossary

Bagging An ensemble learning method with multiple classifiers which all have the same
weight for a final prediction, mostly done by majority or average vote. Every classifier
is trained from a bootstrap sample taken out of the initial training instances.

Out-Of-The-Bag Error Method to measure an unbiased performance during the training
phase of bagging. Because every classifier is trained from a bootstrap of the initial
training set, every instance can be used as a test set in all classifiers not using this
instance for training.

Boosting An ensemble learning method that adapts weak learners to generate a strong
learner. The boosting approach learns the weight of the weak learners to combine them
optimally.

Randomization Method to increase the variance by using random input, different seeds or
random subspaces (features).

Stacking Training a learning algorithm with all features as well as the predictions of several
other learning algorithms as additional input.

Exome All protein coding regions (exons) in the genome.

Exomiser An application/framework that filters and prioritizes variants together with genes in
NGS projects for novel disease-gene discovery or differential diagnostics of Mendelian
diseases.

Genomiser Extension of Exomiser to filter and rank NCVs in addition to coding variants.

F

Feature Selection Process of selecting a subset of relevant features for model construction. In
general redundant or irrelevant features are removed.

Functional Class The functional context of a sequence variation, defined by inspecting the flank-
ing sequence for gene features.

Frameshift InDel within the coding part of an exon. The variant destroys the reading frame
of the exon, resulting in a complete different sequence of AAs after the mutation com-
pared to a reference.

In-Frame InDel within the coding part of an exon. The variant inserts or deletes triplets,
but the reading frame of the exon will stay intact. The translated AA sequence after the
variant will be the same compared to a reference.

Non-Synonymous Combined functional class of missense and nonsense.

Missense Variant within the coding part of an exon, resulting in a new AA compared to a
reference.
Nonsense Variant creating a new stop- or start-codon or destroys it.

Synonymous Variant within the coding part of an exon not changing the AA at the position

compared to a reference due to the degenerative code.

G

Go An abstract strategy board game for two players, invented in ancient china around 2500 years
ago. The aim of the game is to surround more territory with stones than the opponent.

Graph A structured set of objects (vertices V'), where pairs of objects are in a related sense (edges
E). A graph is denoted as G = (V, E) An edge z € FE is a subset of two vertices, e.g.
z = (z,y),x,y € V, which the edge connects.

161

Glossary

Directed Graph A graph G = (V, F) in which edges have orientations. An arrow (z,y) is
considered to be directed from = to y, x,y € V.

Undirected Graph A graph G = (V, E)) in which edges have no orientation. The edge (z,)
is identical to the edge (y,), x,y € V.

H

Hyper SMOTE Undersampling with Random Forests (hyperSMURF) ML method specifically
conceived to handle extremely imbalanced data. To deal with such problems and to
achieve high coverage of the available input data as well as a high accuracy of the pre-
dictions hyperSMUREF is based on three complementary strategies: (1) sampling tech-
niques; (2) ensemble methods; (3) hyper-ensemble approach.

I

Instance An example/observation of a classification problem. Normally described by its feature
vector.
Attribute An individual measurable property or characteristic of an instance.
Nominal Attribute Classification of entities into particular categories. Also known as
categorical attribute.
Feature An individual measurable property or characteristic of an instance.

J

Jannovar Java framework for transcript-based annotation and pedigree analysis.
K

k-fold CV k-fold cross-validation.
Leave-One-Out Cross-Validation (LOOCYV) Special type of k-fold CV. Uses every single
instance in the validation set as test set. So k is the number of all instances.

M

Machine Learning (ML) Application of Al that automates analytical model building by using
algorithms that automatically and iteratively learn from data.
Matrix A matrix M is a rectangular array of elements, mostly numbers, with m rows and n
columns, m,n € N.
Column Vector An m x 1 vector v of a m X n matrix M, denoted by a bold lower case letter.
Covariance Matrix A matrix that stores the covariance between the ¢th and jth elements of
a random vector at its element a; ;. A covariance matrix is denoted as X..
Diagonal Matrix A matrix in which the entries outside the main diagonal are all zero.
Eigendecomposition Factorization of a diagonal matrix into a canonical form, whereby the
matrix is represented in terms of its eigenvalues and eigenvectors.
Eigenvalue A number A and together with the eigenvector v satisfying Mv = Av.
Eigenvector A non-zero vector v together with a number A satisfying Mv = A\v.
Row Vector An 1 x n vector v of a m x n matrix M, denoted by a bold lower case letter.

162

Glossary

Square Matrix A n x n matrix M with same number of rows and columns.
Identity Matrix A square matrix where a; ; = 1 forall i = j and a; ; = 0 for all i # j,
denoted as L
Inverse Matrix The inverse of a square matrix M such that MM~-! = I, denoted by
ML

Mutation Causative (mostly rare or unique) variant resulting in a genetic disease.

o

Ontology A standardized way for knowledge representation.
Axiom Defined statements to specify the representation, for example relationships of terms.
Domain Ontology An ontology that provide a controlled vocabulary for objects in a domain.
Attribute Ontology An attribute ontology that links terms to other objects.

Most informative common Ancestor The most specific common ancestor (CA) in an ontol-
ogy.

Term Relevant concepts of an ontology which are named and defined entities of the domain
of interest. Also sometimes called object.

Top-Level Ontology Ontology that consists of very general terms that are common across
all domains.

P

Polymorphism Frequent variants, where the allele, which is different to the reference, occurs in
more than 1% of a population.
Single Nucleotide Polymorphism (SNP) Variant polymorphisms, where the variant has only
a single nucleotide change.

R

Random Tree A decision tree using a random, individual sampled subset ©; of all available at-
tributes ©.

Reference Sequence A consensus sequence (DNA sequence), obtained by a collection of se-
quenced individuals.

Regulatory Code All regulatory elements/domains/regions in the DNA. Literature estimates its
proportion to around 5 % to 15 % of the whole genome.

Enhancer An enhancer is a region in the DNA that can recruit transcription factors (activa-
tors). When it comes in close proximity (looping) to a promoter it activates or increases
the transcription of a gene.

Promoter A promoter is a region in the DNA, located near the transcription start site of a
gene. It contains TFBSs that recruit the RNA polymerase to initiate the transcription of
the gene.

Silencer A silencer is a region in the DNA that can recruit transcription factors (repressors).
When it comes in close proximity (looping) to a promoter it prevents or decreases the
transcription of a gene.

163

Glossary

Regulatory Mendelian Mutation Score (ReMM score) Score per position in the human genome
to assess the pathogenicity in terms of a Mendelian disease from a mutation at the po-
sition. Because of its creation it is restricted to the non-coding regulatory genome. The
score ranges from zero (likely benign) to one (pathogenic).

S

Seed A number (or vector) used to initialize a pseudorandom number generator.

Sequence Assembly Aligning and merging short DNA fragments in order to reconstruct the
original DNA sequence.

De-Novo Assembly Assembling DNA fragments to create the full (novel) original sequence.

Mapping Assembly Assembling reads against an existing backbone sequence (reference se-
quence), building a sequence that is similar but not necessarily identical to the reference
sequence.

Sequencing Determine the primary structure of an unbranched biopolymer. In terms of DNA
the result is a linear ordering of the nucleotides.

Chromatin immunoprecipitation Sequencing (ChIP-seq) Identifies genomic locations that
are either bound by specific transcription factor or harbor epigenetic modifications to
histones or DNA. The method uses a specific antibody against the protein or epigenetic
modification of interest. Afterwards the bound DNA is investigated by NGS.

Classical Sequencing First sequencing method.

DNase I hypersensitive Sites Sequencing (DNase-seq) Chromatin is treated with DNase
I, and DNA fragments that arise from regions sensitive to DNase attack are enriched,
amplified and sequenced.

Next-Generation Sequencing (NGS) Is a generic term for sequencing technologies devel-
oped after Sanger sequencing. These methods have a higher throughput than Sanger
sequencing, enabling sequencing of complete genomes within reasonable costs. The
are subdivided into second-generation (e.g. Illumnina, Roche/454) with high through-
put but short reads and third-generation with a lower throughput but reads of several
Kb in length.

Sanger Sequencing First sequencing method developed by Sanger et al. [4] and Sanger &
Coulson [5] in 1977. It is based on the selective incorporation of chain-terminating
dideoxynucleotides by DNA polymerase.

Set A set S is a well-defined collection of distinct objects or elements. In this work a set is de-
noted by curly brackets. N denoting the set of all natural numbers N = {1,2,3,...},
Ny are all non-negative numbers Ny = {0,1,2,3,...}, Z is the set of all integers
Z=A...,-2,—-1,0,1,2,...} (positive, negative, and zero) and R is the set of all real
numbers (rational and irrational).

Single Nucleotide Variant (SNV) Variant (compared to a reference sequence) affecting only a
single nucleotide change.

Small Insertion or Deletion (InDel) Variant class of short deletions or insertions compared to
a reference sequence. Can be detected by a single read from a NGS technology of the
second-generation. Sizes of InDels are defined as equal or smaller than 25 bp.

Splicing Editing of the nascent pre-mRNA transcript into a mature-mRNA. During splicing in-
trons are removed and exons are ligated together.

164

Glossary

Exon Any part of a gene that will encode a part of the final mature-mRNA.
Intron Any part of a gene that will be removed during splicing.
Structural Variation (SV) Large structural differences compared to a reference sequence. Con-
tains larger insertions, deletions or translocations including inversions.

T

Testing Performance evaluation of trained ML classifier.

Topologically-Associated Domain (TAD) A genomic region of increased contact probability
compared to sequences outside of it. This chromatin folding at the sub-megabase scale
is not random and the structures are present in animals as well as in some plants, fungi,
and bacteria. TADs are stable units of replication-timing regulation. In general they
are higher conserved contacts between cell-states, tissues and species. They range from
several kilobases up to megabases.

Training The learning step of a classification problem.

Association Learning The predicted output of unseen examples is a numeric quantity and
not a discrete class.

Clustering Finding logical groups of data through association of their features.

Classification Learning Learning from a set of classified examples to classify unseen exam-
ples. Output is a single nominal prediction.

Reinforcement Learning An algorithm (here mostly called agent) learns from the conse-
quences of its actions, rather than from being taught explicitly. It selects its actions
based on past experiences, maximizing a reward.

Semisupervised Learning A combination between supervised and unsupervised learning,.

Supervised Learning ML training with given input and output examples.

Unsupervised Learning ML training with missing output examples. The learning algorithm
has to structure the input by its own.

Transcription The process of translating the DNA into the mRNA.

Translation The process when the codons of a spliced mRNA are read by the ribosome complex
and the corresponding AAs are concatenated.

165

Zusammenfassung

Bei der Genomsequenzierung stellt die Interpretation der nicht-kodierenden Bereiche des Ge-
nomes immer noch eine bedeutende Herausforderung dar. Im Vergleich zu den haufigen, meist
neutralen, genetischen Verdnderungen stellen Varianten, welche mit Krankheiten oder anderen
Eigenschaften assoziiert sind, eine winzige Minderheit dar. In diesem Sinne stehen Methoden zur
Vorhersage von nicht-kodierenden, krankheitsassozierten Varianten durch Maschinelles Lernen
(ML) dem Henne-Ei-Problem gegeniiber - solche Verdnderungen sind ohne ML schwierig zu fin-
den, aber ML ist meistens erst dann erfolgreich, wenn eine ausreichende Anzahl von Beispielen
gefunden wurde. Die neuesten Methoden zur Vorhersage von Varianten durch ML integrieren
keine speziellen Vorhersagetechniken um dieses Ungleichgewicht zu behandeln, was zu einer
relativ schlechten Performanz mit reduzierter Sensitivitat fiihrt, da die zugrundeliegenden An-
wendungen zur genomweiten Bewertung von Varianten nicht im Gleichgewicht sind.

In dieser Arbeit stelle ich hyperSMURF vor, einen Algorithmus, der Verfahren zum Lernen von
Daten mit extremer Differenz zwischen Observationsmengen benutzt, basierend auf Techniken
zur Stichprobewiederholung und einer Hyper-Vereinigung. Im Bereich von nicht-kodierenden
Varianten, welche mit Mendel’schen oder komplexen Erkrankungen assoziiert sind, ibertrifft
er vorherige Methoden. Ich zeige, dass das ML durch explizit entwickelte Techniken fiir Daten
mit hohem Ungleichgewicht ein Schliisselkonzept fiir eine robuste und genaue Vorhersage in
diesem Bereich ist. HyperSMUREF ist open-source und in R und Java implementiert und kann
somit miithelos in anderen Wissenschaftsprojekten genutzt werden um krankheits-assoziierte
Varianten unter Millionen von neutralen Verdnderngen bei Genomsequenzierung zu finden.

Des Weiteren wurde mit Hilfe des Algorithmus eine neue Bewertungsfunktion fiir Mendel’sche
regulatorische Mutationen entwickelt (ReMM score). Sie ist signifikant besser als andere Be-
wertungen zum Erkennen von regulatorischen Varianten bei seltenen genetischen Funktions-
storungen. ReMM score ist in dem Analyseframework Genomiser integriert, welches nicht nur
kodierende, sondern auch relevante nicht-kodierende genomische Varianten bewertet und diese
dann einer Erkrankung zuordnen kann. Genomiser benutzt hierfiir Bewertungsfunktionen und
kombiniert diese mit Allelefrequenzen, der Raumstruktur von Chromosomen und der phéanoty-
pischen Relevanz von Varianten zu bekannten Syndromen. Dadurch wird Genomiser zu einem
effizienten Tool zur Entdeckung von neuen regulatorischen Varianten bei Medel’schen Erkran-
kungen.

167

Curriculum Vitae

For reasons of privacy, the curriculum vitae is not part of the online version.

169

Curriculum Vitae

170

Curriculum Vitae

171

Curriculum Vitae

172

Eigenstandigkeitserklarung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbststandig und nur mit den angegebe-
nen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut oder dem Sinne nach an-
deren Werken entnommen sind, durch Angaben von Quellen als Entlehnung kenntlich gemacht
worden sind. Diese Arbeit habe ich nicht schon einmal in einem fritheren Promotionsverfahren

eingereicht.

Ort, Datum Unterschrift

	Introduction
	Biological Background
	Sequencing and Sequence Analysis
	Data Mining and Machine Learning
	Thesis Outline

	Preliminaries
	Mathematical Preliminaries
	Sets and Matrices
	Graphs

	Machine Learning Preliminaries
	Instances and Attributes
	Ensemble Learning
	Classifiers
	Classification on Imbalanced Datasets
	Performance Measurement

	Ontologies
	Semantic Similarity

	Genome-wide Pathogenicity Scores
	CADD
	GWAVA
	DeepSEA
	Eigen
	FATHMM-MKL
	LINSIGHT

	Chapter Conclusion

	Imbalanced Training Sets
	HyperSMURF
	Algorithm
	Implementation

	Genomic Data
	Mendelian Data
	GWAS Data
	eqtl Data

	HyperSMURF Performance Measurement
	Performance Evaluation Strategies
	Comparison with state-of-the-art Methods

	Informative Features
	HyperSMURF Performance Results
	Optimal Parameters
	Performance on genomically close Variations
	State-of-the-art Methods Performance
	eqtl Performance

	Discussion and Chapter Conclusion

	Regulatory Variants
	Exomiser
	Jannovar
	The Human Phenotype Ontology

	Genomiser
	Regulatory Mendelian Mutation Score
	Comparison to genome-wide Pathogenicity Scores

	Genomiser Performance
	Discussion and Chapter Conclusion

	Discussion and Conclusion
	References
	Regulatory Mendelian Mutations
	HyperSMURF Performance
	ReMM Score Performance
	Genomiser Performance
	HyperSMURF Tutorial
	Requirements
	Simple usage Examples with Synthetic Data
	Usage Examples with Genetic Data

	Abbreviations
	Glossary
	Zusammenfassung
	Curriculum Vitae

