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Abstract

The description of systems of interacting electrons in the presence of magnetic fields
within density-functional theory requires the current and magnetization densities
to be used as basic variables besides the particle density. However, electron-gas-
based approximations for the exchange and correlation energies exhibit derivative
discontinuities as a function of the magnetic field whenever a new Landau level is
occupied, which makes them impractical to use as local approximation. The same
approximations also assume a collinear configuration respectively between the mag-
netization, vorticity density and corresponding conjugate fields. Orbital dependent
functionals — which depend on Kohn-Sham spinors — allow to overcome both lim-
itations. To make use of such expressions, we have derived the integral equations
for the exchange-correlation components of the scalar and vector potential, and the
magnetic field in the fashion of the optimized effective potential method. We suggest
a practical scheme for their solution as well as a simplifying approximation. The
formalism is then applied to several systems and problems: we consider the degen-
eracy problem for open-shell atoms; orbital magnetic moments and band-splittings
induced by spin-orbit coupling for extended systems are calculated; and quantum
dots in an external magnetic field are studied. The exact-exchange functional is
employed both in collinear and non-collinear fashion within density-functional the-
ory, spin-density-functional theory and current-spin-density-functional theory. The
effect of the exchange vector potential is verified to be minor. An expression for
the Colle and Salvetti approximation for the correlation energy has been derived
which explicitly includes orbital currents and their relevance has been verified. New
orbital and density functionals for the exchange energy of two-dimensional systems
are proposed, which are seen to perform significantly better than the corresponding
local-spin-density approximation in two-dimensional systems with few electrons.






Kurzfassung

Die Beschreibung von Systemem wechselwirkender Elektronen in magnetischen
Feldern im Rahmen der Dichtefunktionaltheorie erfordert die Verwendung der
Strom- und Magnetisierungsdichten als zusétzliche fundamentale Variablen neben
der Teilchendichte. Fir ein homogenes Elektronengas im &aufleren Magnetfeld
weist die Austausch-Korrelationsenergie immer dann Ableitungsunstetigkeiten als
Funktion des Magnetfelds auf, wenn ein neues Landau-Niveau mit Elektronen be-
setzt wird. Im Rahmen einer auf diesem Modell beruhenden Lokaldichtendherung
fithrt dies zu von lokalen Werten der Dichte bestimmten Unstetigkeiten der
entsprechenden Austausch-Korrelationspotentiale, die die Lokaldichtendherung in
numerischen Anwendungen unpraktikabel macht. Des weiteren nimmt man
in der Lokaldichtendherung eine kollineare Konfiguration zwischen der lokalen
Magnetsierungs- bzw. Vortizitatsdichte und den entsprechenden konjugierten Po-
tentialen an.

Mit Hilfe von Funktionalen, die explizit von Kohn-Sham Spinororbitalen
abhéngen, kann man beide Einschrankungen tiberwinden. Zur Anwendung solcher
Funktionale wird hier eine Verallgemeinerung der sogenannten Methode des Opti-
mierten Effektiven Potentials vorgestellt und die entsprechenden gekoppelten Inte-
gralgleichungen fiir die Austausch-Korrelationspotentiale (skalares Potential, Mag-
netfeld und Vektorpotential) hergeleitet. Ein praktisches Verfahren zu ihrer Losung
sowie eine vereinfachende Naherung werden vorgeschlagen. Anwendungen des For-
malismus fiir verschiedene Systeme und Probleme werden untersucht: wir betra-
chten das Problem entarteter Grundzustande bei Atomen mit offenen Schalen;
magnetische Orbitalmomente und spin-bahn-induzierte Bandaufspaltungen fiir aus-
gedehnte Festkorper werden berechnet; Quantenpunkte im externen Magnetfeld
werden untersucht. Bei diesen Anwendungen wird das exakte Austauschfunktional
sowohl in kollinearer als auch in nicht-kollinearer Situation im Rahmen der Dichte-,
Spindichte- und Stromdichtefunktionaltheorie verwendet. In allen Beispielen zeigt
sich, daf} der Effekt des Austausch-Vektorpotentials gering ist.

Fir die Korrelationsenergie wird eine Verallgemeinerung des Colle-Salvetti-
Funktionals hergeleitet, die Orbitalstrome explizit beriicksichtigt, und der Effekt
dieser Strome wird untersucht. Weiterhin werden neue Orbital- und Dichtefunk-
tionale fiir die Austauschenergie zweidimensionaler Systeme vorgeschlagen und es
wird gezeigt, dal diese fiir Systeme mit wenigen Elektronen deutlich verbesserte
Ergebnisse im Vergleich zur 2D-Lokaldichtenédherung liefern.
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Chapter 1

General introduction

At present, the general and practical solution of the quantum mechanical many-body
problems for interacting electrons remains unsolved. An ingenious and in principle
exact way of approaching the problem is density functional theory (DFT). With
the introduction of the Kohn-Sham scheme, the interacting problem for the ground
state is mapped onto a problem for the ground state of a non-interacting auxiliary
system.

In this way, the challenge is translated to find practical and universal expressions
for the quantities that incorporate all the complications of the original, interacting
problem: the Pauli and Coulomb correlation (or exchange-correlation) energy func-
tionals. The approximations to these quantities should be practical enough to be
easily, economically and routinely applied. Moreover, they should be universal to
perform equally well for all the systems one might want or need to study.

Nowadays, density-functional theory is the cornerstone of electronic structure
calculations for atoms, molecules, solids and nanostructures. But failures and limi-
tations exist as well. At the same time, there is the need to extend the formalism,
and the corresponding schemes of calculations, to deal with more and more diverse
situations. Often, these two issues meet each other along the way of new advances.

At the center of this thesis is the aim of dealing with the ground state of elec-
trons with non-vanishing current and or non-vanishing magnetization. Thus we
resort to the generalization of DF'T known as spin-DFT (SDFT) and current-SDFT
(CSDFT). In this context, we consider a particular class of approximations for the
exchange-correlation energies, generally known as orbital functionals. This is mainly
motivated by two facts. First, there is the need to overcome the numerical problems
which arise in the application of the local density approximations for the exchange-
correlation energies of CSDFT. Second, most approximations in SDFT and CSDF'T
have the shortcoming that they assume a collinear configuration between the mag-
netization, vorticity density and corresponding magnetic field.

This thesis devides in two parts: Chaps. 2-4 serve as introduction to the foun-
dation of DFT as well as orbital functionals; Chaps. 5-8 report new advances and
results.



2 CHAPTER 1. GENERAL INTRODUCTION

In Chap. 2, the basic ideas and main formulations of DFT are introduced.
Approximations for the exchange-correlation energy functional in terms of orbital
functionals are reviewed in Chap. 3. Chap. 4 focusses on the fact that, in principle,
the description of many-electron systems in the presence of a magnetic field within
a density-functional framework requires the paramagnetic current density and mag-
netization density to be used as basic variables besides the electron density. Here,
we also analyze the relations, similarities and differences among several possible
formulations of DFT. This conclude the general review.

Extensions of the optimized effective potential (OEP) method for functionals
depending explicitly on the Kohn-Sham spinors are reported in Chap. 5. With
these extensions the equations providing the exchange-correlation fields are derived.
We propose a practical scheme for their solution, and a simplifying approximation
which we analyze in more detail.

The formalism developed in the previous chapter is then applied in Chap. 6 to
shed light on a long standing problem of density functioanl theory, which is known as
“the degeneracy problem”. With this respect, open-shell atoms at vanishing external
magnetic field are investigated. The aim is to properly describe the degeneracy of
the ground states with and without a current. An analysis at the level of the
exchange-only approximation is carried out. This is followed by a new analysis of
the Colle and Salvetti correlation functional to account for the orbital currents and
the relevance of these currents is evaluated.

Different systems are analyzed in Chap. 7. In particular, the orbital magnetic
moments and band-splittings induced by the spin-orbit coupling in several solids
and non-collinear magnets are investigated. Two-dimensional (2D) quantum dots
exposed to external magnetic fields are considered.

Motivated by the fact that approximate exchange-correlation energy functionals
for three-dimensional systems perform poorly when applied to 2D systems, new and
efficient implicit and explicit density functionals for the exchange energy in 2D are
derived and applied in Chap. 8.

General conclusions are drawn in Chap. 9.



Chapter 2

Density functional theory

A reformulation of the interacting many-electron problem in terms of the electron
density rather than the many-electron wavefunction has been attempted since the
early days of quantum mechanics. The advantage is clear. While the wavefunction
for interacting electrons depends in a complex fashion on all the particle coordi-
nates, the particle density is a function of only three spatial coordinates. Initially,
like in the Thomas-Fermi method [1, 2|, it was believed that formulating quantum
mechanics solely in terms of the particle density is only approximate. However, in
the mid-60s, Hohenberg and Kohn [3] showed that in principle, for systems of elec-
trons acted upon by an electrostatic potential, it is possible to determine exactly all
the properties of the many-electron ground state from knowledge of the correspond-
ing ground state particle density alone. Also early in the development of quantum
mechanics it appeared another important approach to the many-particle problem
consisting in the single-particle approximation. Here, the two-particle potential rep-
resenting the interaction between particles is replaced by some effective one-particle
potential. A prominent example of this approach is the Hartree-Fock method, which
however includes in the effective one-particle potential only the exchange contribu-
tions. A year after the Hohenberg-Kohn theorem had been proved, Kohn and Sham
[4] made a step forward by showing that, taking the ground state particle density as
basic quantity, both the exchange and correlation effects due to the electron-electron
interaction can be treated through a single-particle Schrodinger equation in a well
defined sense. The Hohenberg-Kohn theorem and Kohn-Sham scheme are the ba-
sic elements of density-functional theory (DFT). Here we will review them, going
from the initial formulation, dealing with only non-degenerate ground states, till the
extension to degenerate ground states. Also we briefly consider alternative and/or
more rigorous mathematical formulations of the same theory.



4 CHAPTER 2. DENSITY FUNCTIONAL THEORY

2.1 Introduction

The non-relativistic Hamiltonian for interacting electrons moving in a static poten-
tial v(r) reads (in atomic units)

1 & 1en 1 al
H=T+Ve4+V:=—2> V24 —— 2.1
+ Vi + 2; Z+22|ri_rj‘+;1}(r) (2.1)

i ‘

Here, T is the total kinetic-energy operator, V.. describes the interaction between
the electrons, and V is a local (multiplicative) scalar operator, which includes the
interaction of the electrons with the nuclei (which are considered within the Born-
Oppenheimer approximation as fixed points) and possibly other external scalar po-
tentials.
The eigenstates, Vg(zy, ..., zy), of the system are obtained by solving the eigen-
value problem R
H\I/E(Il,...,{L‘N) :E\PE<I’1,...7$N), (22)

with appropriate boundary conditions specifying the physical problem at hand. x;
stands for both the space- and spin-coordinates (r;,s;). Eq. (2.2) is the time-
independent Schrodinger equation. We are particularly interested in the ground
state, which is the eigenstate with lowest energy. Also, we will assume that the
wavefuntion can be normalized.

Due to the interactions among the electrons, f/ee, an explicit and closed solution
of the many-electrons problem (2.2) is, in general, not possible. On the other hand,
a wide range of physical and chemical phenomena can be understood only as a
manifestation of the interactions among the electrons. For this reason, we are also
interested in obtaining approximate, but accurate, solutions.

We observe that once the number of electrons in the system is given (and know-
ing, of course that they interact via the Coulomb interaction) the Hamiltonian is
then determined by specifying the external potential. For a given external poten-
tial, v(r), we then introduce the total energy as a functional of the (normalized)
many-body wavefunction W(z1, ..., zx)

B W] = (|7 + V. + V|w). (2.3)

The energy functional (2.3) may be evaluated for any N electron wavefunction, and
the Rayleigh-Ritz variational principle ensures that the ground state energy, F,, is
given by
E,= inf E,Y]. (2.4)
v, (W|W)=1

The Euler equation expressing the minimum of the energy is

J

s LEY] = A[(¥[¥) 1]} =0. (2:5)
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Relation (2.5) again leads to the many-body Schrodinger equation and the La-
grangian multiplier A\ can be identified with the energy. Now, with the variational
principle at hand, we have gained a procedure to obtain approximate solutions. This
is done by restricting the form of the wavefunctions to a particular form. In the
Hartree-Fock (HF) approximation, for example, the form of the wave-function is
restricted to a single Slater determinant. The Euler equation (2.5), along with the
constraint for the single-particle orbitals to be orthonormal, yields the so-called HF
equation. This equation has the form of a Schrédinger equation for non-interacting
electrons in an effective non-local potential. The HF Slater determinant is then
used to obtain the total energy from expression (2.3). The estimation of the energy
obtained in this way is said to be accurate up to within the exchange energy. The
rest is defined as the correlation energy. The approximate nature of the HF method
is due to the fact that the true many-electron wavefunction is not a single determi-
nant. However the full wavefunction can be expressed as a linear combination of an
infinite number of determinants. Thus, an estimation beyond the exchange energy
can be done either by adding more and more determinants or by introducing ad-hoc
wavefunction models, typically having many parameters.

Unfortunately these approaches based on the wavefunctions, although accurate,
are affected by an impractical growth of the numerical effort with the number of
particles, and thus with the total number of the coordinates the wavefunction de-
pends on. Hence, inspired by the Tomas-Fermi approach, one might wonder if the
role played by the wavefunction could be substituted by the particle density. In that
case, one would deal with a function of only three spatial coordinates, independently
of the number of electrons. The definition of particle density is the following

2

n(r) == <\I/]i5(f*—f~i)\\lf> :NZ/CZJJQ.../de’\If(r,a,xg,...,xN) (2.6)

from which
/d?’r n(r) = N. (2.7)

The assurance that the electronic density alone is enough to determine all observable
quantities of the system is provided by the theorem of Hohenberg and Kohn, as
exposed in the following section.

2.2 Hohenberg-Kohn theorem

Let us denote with P the set of external potentials leading to a mon-degenerate
ground state for N interacting electrons. For a given potential, the corresponding
ground state, U, is obtained through the solution of the Schrodinger equation

v — W, with veP. (2.8)
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Wavefunctions obtained in this way are called (interacting) v-representable. We
collect these ground state wavefunctions in the set W. The corresponding particle
densities can be computed using definition (2.6) as

U — n, with U eW. (2.9)

Ground state particle densities obtained in this way are said to be (interacting)
v-representable. We denote the set of these densities as D.

First part

Given a density n € D, the first part of the Hohenberg-Kohn theorem states that
the wavefunction ¥ € W leading to n is unique apart from an inessential constant
phase factor. The proof is carried out by reductio ad absurdum.

Consider two different wavefunctions ¥; and ¥, in W, in the sense that they
differ by more than a simple constant phase factor. Let, furthermore, n; and ny be
the corresponding densities computed by Eq. (2.6). Since, by construction, we are
restricting ourselves to non-degenerate ground states, ¥; and ¥y have to come from
two different potentials, say, v; and vy respectively. Let us assume that

Uy # Wy and ny(r) = na(r). (2.10)

Application of the Rayleigh-Ritz variational principle yields the first inequality

<‘I’1\ﬁ1\‘1’1> < <‘I’2|ﬁ1|\1’2>7 (2.11)
from which we obtain
Ey < (Uy|Hy + (Vi — Va)|U,) = B, + /d% ny(r) [y (r) — vy(r)] . (2.12)
Alterantively, we also have
By < (U1|Hy + (Vo — V)| ¥1) = By + /d% n(r) [va(r) — vy (r)]. (2.13)

Assuming now that the two densities are equal, ny(r;) = ns(r), and adding the
inequalities (2.12) and (2.13) yields

Ei+ FEy < By + Es, (2.14)

which is a contradiction. We have to conclude that the above hypothesis (2.10) on
the densities was wrong, and obtain n; # ns.

The fact that the ground-state density determines the wavefunction will be de-
noted symbolically as

n — VY, withneDand ¥V € W, (2.15)
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Second part

It is also possible to verify that the elements ¥ of W determine the elements v of
P, apart from an additive constant. This can be explicitly seen by inverting the
Schrodinger equation

Z U(I‘i) — E— (T+‘/66) \Ij(rlar2)"'7rN>. (216)
S U(ry,ro,...,ryN)

We summarize this result by writing

UV — v, with ¥ € W and v € P. (2.17)

2.2.1 Consequences

Putting together the first and second part of the theorem - Eqgs. (2.15) and (2.17) -
yields
n — v+ const, withn € D and v € P. (2.18)

It is now clear that the ground state particle density determines the external poten-
tial (up to an additive constant).

Moreover, from the first part of the theorem it follows that any ground-state
observable is a functional of the ground-state particle density. This is seen by using
the (one-to-one) dependence of the wavefunction, ¥[n], on the particle density

(L|01¥) = (¥[n]|O¥[n]) = Ofn]. (2.19)

For example, the following functional can be defined
E,yx[n] = (¥ [n]|T + Vie + V|¥[n]) = Fux[n] + / &*r n(r)o(r) (2.20)

where v is a given external potential and n can be any density in D. Note that
Fuk[n] == (U[n]|T + V.| ¥[n]). (2.21)
is independent of v: In this sense, it is said to be a universal functional.
Let ng be the ground-state particle density of the potential vy. The Rayleigh-Ritz

variational principle (2.4) immediately allows one to conclude

Evo = géllrjl EUO,HK [n] = EUQ,HK [no] (222)

We have finally obtained a variational principle based not anymore on the “expen-
sive” wavefunction but on the particle density.
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2.2.2 Extension to degenerate ground states

As demonstrated by Kohn [5, 6], the Hohenberg-Kohn theorem can be generalized to
include in the set P local potentials having degenerate ground states as well. Thus,
we now consider the situation where to the lowest eigenvalue of the Schrodinger
equation (2.2) can correspond an entire subspace of wavefunctions. Correspond-
ingly, the sets W and D are enlarged to include all the additional ground-state
wavefunctions and particle densities.

Clearly, the solution of the Schrédinger equation (2.2) establishes a mapping
from P to W which is one-to-many. Moreover, different degenerate wavefunctions
can have the same particle density. Thus, the equation (2.6) establishes a mapping
from W to D which is many-to-one. However, it is still possible to show that any
one of the degenerate ground-state densities determine the potential uniquely.

The first part of the HK theorem needs to be modified as follows. It is first
observed that two degenerate subspaces, ground states of two different potentials
are disjoint. The proof is carried out by reductio ad absurdum:

If one assume that a common eigenstate W can be found, then subtraction of the
Schrodinger equations yields

(Vi = Vo)W = (B) — Ep) V. (2:23)

For this identity to be true, the eigenstate should vanish in the region where the
two potentials differ by more than an additive constant. This region has measure
greater than zero. But physical eigenfunctions are expected to vanish only on set of
measure equal to zero. This leads to a contradiction. So we conclude that v; and v,
cannot have common eigenstates. This allows to apply the Rayleigh-Ritz variational
principle (similarly to what has been done in the case of the non-degenerate case) to
show that ground states from two different potentials always have different particle
densities.

However, one should note that two or more degenerate ground state wavefunc-
tions can have the same particle density. As a consequence, neither the wave-
functions nor a generic ground state property can be uniquely determined from
knowledge of the ground state particle density alone. This implies that we have to
reconsider the definition of the universal Fyx as well. Just below, we verify that the
one-to-one correspondence among ground state wavefunctions and particle densities
is not necessary to define Fyk.

First, we observe that the second part of the HK theorem goes as in the original
proof. We thus obtain that each ground state in a degenerate level determines the
external potential up to an additive constant. Then, the first part together with the
second one, again confirm that any element of D determines an element of P, up to
an additive constant. In particular, any one of the degenerate densities determines
the external potential. This fact, together with the trivial observation that the total
energy is the same for all the wavefunctions in a given degenerate level, allow one
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to define Fyk as follows
Fucln] o= E o] = [ d*rolal(x)n(r). (2.24)
which implies that the value of
Fux[n] = (¥ — n|T + V.| — n) (2.25)

is the same for all the degenerate ground-state wavefunctions that have the same
particle density. The variational principle based on the particle density can then be
formulated as before in Eq. (2.22).

2.3 Kohn-Sham scheme

The expressions we have obtained in the previous section defining Fyx are only
formal ones. In practice, Fyk has to be approximated. To obtain approximations
which yield accurate results turns out to be an extremely difficult task. However,
efficient approximations can be constructed by introducing the Kohn-Sham scheme.
There the idea is to extract from Fpk some parts that are exactly known (in the
sense that we are going to specify).

Let us consider the Hamiltonian of N non-interacting electrons

N N
. 1 )
Hy=T+V, =~ ?_1 Vi + ;_1 v(ry). (2.26)

Similarly to what has been done for the interacting system, we group all the external
local potentials v, in the set P®. The corresponding non-interacting ground state
wavefunctions Wy are then grouped in the set W*, and their particle densities ng in
Ds. We can then apply the HK theorem and define the non-interacting analogue of
FHK, which is

Ti[ns] = Es[vsng] —/dgr vs[ns(r)ns(r). (2.27)

Restricting ourselves to non-degenerate ground states, the expression (2.27) can be
re-written stressing the one-to-one correspondence among densities and wavefunc-
tions, as follows )

Ts[ns] = (Ung|T|Ws[n]) (2.28)

A fundamental assumption is now introduced: For each element n of D a potential
v, in P* exists, such that the corresponding ground-state particle density n, equals
n. In other words, it is assumed that the interacting v-representable densities are
also non-interacting v-representable. In this way, the interacting problem is mapped
onto a non-interacting one. To which extent this can be justified rigorously will be
discussed in Sec. (2.4.3).
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Given the existence of v, the Hohenberg-Kohn theorem (applied to the class
of non-interacting systems) ensures that v, is unique up to an additive constant.
As a result, we find the particle density of the interacting system by solving the
eigenvalue problem

HU = E,U,, (2.29)

with the same boundary conditions as for the interacting system. Eq. (2.29) is
usually referred as the Kohn-Sham equation. For non-degenerate ground states, the
Kohn-Sham ground-state wavefunction is a single Salter determinant. In general,
when considering degenerate ground states, it can be expressed as a linear com-
bination of several Slater determinants [7, 8, 9]. The situation can be even more
complex. In fact, there exist interacting ground states with particle densities that
can be represented only by means of an ensemble of non-interacting particle densi-
ties [10, 11, 12, 13, 14]. We will come back to this point in Sec. (2.4.2). Here we
continue by considering the simplest cases. Hence, Eq. (2.29) can be rewritten in
terms of the single-particle orbitals as follows

{—%VQ + vs(r)} Pio(r) = €icpia(r) . (2.30)

Here i is a collective index for all quantum numbers except spin. The single-particle
orbitals ¢;,(r) are commonly called Kohn-Sham orbitals. We emphasize that —
although in DFT the particle density is the only basic variable — the Kohn-Sham
orbitals are proper fermionic single-particle states. The ground-state Kohn-Sham
wavefunction is obtained by occupying the N eigenstates with lowest eigenvalues.
The corresponding density is obtained as

nr) = 303 I () (2.31)

o=1,1 i=1

In the next section, we consider the consequences of introducing the Kohn-Sham
system in DFT.

2.3.1 Exchange-correlation energy functional

An important decomposition for Fyk[n] can be introduced by extracting all those
terms for which an exact expression, either in terms of the Kohn-Sham orbitals or
particle density, is available. This decomposition is given by

Fuk[n] = Ts[n] + Uln] 4+ E,.[n] . (2.32)
The first term is the kinetic energy of the Kohn-Sham system

Tl =5 33 [ eVt (2.33)

o=1,1 i=1
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the second contribution to the decomposition (2.32) is the Hartree energy

n(r)n(r’)

Uln] = %//d3rd37” T (2.34)

and the remainder is defined as the exchange-correlation energy
E.[n] :== Fuk[n] — Ts[n| — Uln] . (2.35)

For systems consisting of one single electron, there is no electron-electron interaction
(i.e. Ve =0). Hence, by Eq. (2.21), the functional Fiy[n] reduces to Ts[n]. Conse-
quently, for one-particle systems, E,.[n] equals —U|[n] as an immediate implication
of Eq. (2.35). For systems having more than one particle, F,. accounts for the
exchange and correlation energy contributions. Comparing Eqs. (2.32) and (2.20),
the following expression for the total energy density functional is obtained

Eunx[n] = Toln] + Uln] + Eneln] + / &r n(r)o(r). (2.36)

Consider now the Euler equations for the interacting and non-interacting system,
i.e., the necessary condition for having the energy minimum

0 Fuk B

5r(r) +o(r)=0 (2.37)
and ST

5 () + v(r) =0, (2.38)

respectively. Note that we have just assumed the differentiability of the functionals.
This is a crucial assumption to be reconsider in Sec. (2.4.3). Making use of definition
(2.32), from Eq.s (2.37) and (2.38) we obtain

0s(r) = 0ar(x) + vaelr) + (). (2.30)

Here, v is the external potential acting upon the interacting electrons, vy is the
Hartree potential

v (r) = /dST’ n(r’) (2.40)

r—1'|’
and v, is the so-called exchange-correlation potential

Ure(r) = on(r)

(2.41)

Summarizing, the importance of decomposition (2.32) is that a significant part
of Fuk is given in the explicit form of Ti[n| 4+ U[n] without approximation. In par-
ticular, while the Hartree energy (Eq. (2.34)) has an explicit expression in terms
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of the particle density, the kinetic energy of the Kohn-Sham system (Eq. (2.33))
has an explicit expression in terms of the Kohn-Sham orbitals. Still, E,. represents
an important part of the total energy, whose exact functional form is unknown and
which, therefore, has to be approximated in practice. However, good and surpris-
ingly efficient approximations exist for F,..

We will discuss a particular class of approximations which are known under the
name of orbital functionals in the following chapter. Before that, in the remainder
of this chapter we discuss somewhat more formal aspects about the foundations of
DFT and the Kohn-Sham scheme.

2.4 Reformulations of DFT

In this section we consider reformulations of DF'T, which has the merit to analyze
and solve, at least to some reasonable extent, important technical questions at the
heart of DFT. Also, they influenced and still influence the analysis of the properties
of the exact functionals. An extensive, careful and up-to-dated review of the topics
which follow is given in Ref. [15].

2.4.1 Levy’s formulation

An important consequence of the HK theorem is that the Rayleigh-Ritz variational
principle based on the wavefunction can be replaced by a variational principle based
on the particle density. Let us emphasize again that the latter is valid for all the
densities in the set D, which is the set of v-representable densities. Unfortunately,
v-representability is a condition which is not easily verified for a given function n(r).
As a consequence, one might worry that in applying the Hohenberg-Kohn variational
principle, there is the possibility of plugging in trial densities not contained in D
and then obtain an unphysical minimum value. The solution of this problem was
provided by Levy [16], and later reformulated and extended by Lieb [7].

First, the set W is enlarged to Wy which includes all possible antisymmetric
and normalized N-particle wavefunctions ¥. Note that W also contains N-particle
wavefunctions which are not ground-state wavefunctions to some external potential
v. Correspondingly, the set D is replaced by the set of N-representable densities,
Dx. This set of particle densities is generated from the wavefunctions in Wy by
using Eq. (2.6). The densities in the set Dy are called N-representable, since they all
come from N-particle antisymmetric wavefunctions. Note that following the explicit
construction given by Harriman [17], any integrable and positive function n(r) is
N-representable.

Levy reformulated the variational principle in a constrained-search fashion, as
follows

E, = inf { inf  (W|T + V| W) + /d3r n(r)v(r)} : (2.42)
U—n|UeWN

neDN
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In this formulation, the search inside the curly brackets is constrained to those wave-
functions which yield a given density n - therefore the name “constrained search”.
The minimum is then found by the outer search over all densities. It is interesting
to note that v(r) acts like a Lagrangian multiplier to satisfy the constraint on the
density at each point in space. Also note that Fyk is replaced by

Fii[n] := inf (O|T + V..|¥), with ¥ € Wy and n € Dy . (2.43)

U—n
Furthermore it can be shown that the infimum is a minimum [7]. While the set
Wy is convex, the functional Fyp[n] is not convex [7]. This poses serious problem
in proving the differentiability of Fyj. The Lieb formulation of DFT (that will be

described in the next section) is, to some extent, a remedy to this limitation. Still
following the work of Levy, the functional Eyk can then be replaced by

E,1L[n] == Fipn] + / d*r n(r)v(r), with n € Dy. (2.44)

Let us also observe that if, for a given vy, the corresponding ground-state particle
density, ng, is inserted, then

EUO,LL [no] == EUO,HK [77,0] == E[UQ] (245)

from which
FLL[TL] = FHK[’II], foralln € D. (246)

Furthermore, if any other particle density is inserted we obtain
Ey,1nn| > Efv], for n#ng and n € Dy. (2.47)

In this approach, the degenerate case does not require particular care. In fact,
the correspondences between potentials, wavefunctions and densities are not explic-
itly employed as it was done in the previous Hohenberg-Kohn formulation. We may
say that this is another advantage of substituting the V-representability with the
N-representability condition, and of introducing the “constrained-search” of the min-
ima. However it is important to stress that the N-representability is of secondary
importance in the context of the Kohn-Sham scheme, for which still it is neces-
sary to assume that the densities of the interacting electrons are non-interacting
v-representable as well. We discuss this point in more detail in the next section,
where the ensemble and Lieb formulation of DFT are introduced.

2.4.2 Ensemble-DFT and Lieb’s formulation

Do all the densities of Dy come from some local external potential? The answer
to this question, which has been given by Levy and Lieb [7], is negative. The
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point is: The sets D is not convex. In fact, linear combinations of densities, n(r),
corresponding to degenerate ground states, Wy,

n(r) =3 Mmp(r), Ax=1 (0< N\ < 1) (2.48)
k=1

in general are not in D [7, 18]. These particle densities are densities of ensembles,
defined through the (statistical, or von Neuman) density operator

M M
D= M) (T, with D A=1 (0< M\ <1). (2.49)
k=1 k=1

Expectation values of an operator O on ensembles are defined as
O:=Tr {ﬁé} , (2.50)

where the symbol “Tr” stands for the trace taken over an arbitrary complete set of
orthonormal N-particle states

Tr(DO) := Y (D4|(DO)|®y). (2.51)

k

The trace is invariant under unitary transformations of the complete set, and we
can choose it as formed by the eigenstates of the Hamiltonian H which includes the
ground states in Eq.(2.49). As a result

Tr {DO} - iAk@k\Omy (2.52)

Clearly, the energy obtained from a density matrix of the form (2.49) equals the
ground state total energy of the system under consideration.

Particle-densities of the form (2.48) are called ensemble v-representable densities,
shortly E-V-densities. We denote this set of densities as Dgy. Densities that can be
obtained from a single ground state are said to be pure-state (PS) v-representable,
or shortly PS-V-densities. The functional Fyk can then be extended as [19]

Fenln] == Tr {D (T + Vi) } . with n € Dgy (2.53)

where D of the form (2.49) is any density matrix giving the density n. However
the set Dgyv, just like D, is difficult to characterize. Moreover, as for Fyx and Fiy,
also for Fppk (and for the non-interacting versions of the same functionals), a proof
of their differentiability is not available. But in the so-called Lieb formulation the
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differentiability question can be addressed [7, 8, 9]. In this formulation, the universal
functional is defined as

Fi[n] == inf Tr {f) (T + V)} , with n € Dy (2.54)
D—n

and it can be shown that the infimum is a minimum [7]. Note that in definition

(2.54), D is a generic density matrix of the form

D= MWy (Wy|, with » Ae=1 (0< M\ < 1), (2.55)
k k

where WU, € Wy, and the sum is not restricted to a finite number of degenerate
ground states as in Eq. (2.49). Clearly

Fip[n] < Fip[n], for n € Dy, (2.56)

and
Fi[n] = Fip[n] = Fuk[n], forneD. (2.57)

F[n] is defined on a convex set, and it is a convex functional. Hence, it is possible
to establish to show that Fp[n] is differentiable at any ensemble v-representable
densities and nowhere else (the differentiability is meant in the Gateaux sense) [7].
Thus, in minimizing the functional

Ey[n| := F[n] +/d3r n(r)v(r) . (2.58)
with respect elements of Dgy by the Euler-Langrange equation
0FyL,
=0 2.59
Sy ) (259)

is well defined on the set Dgy. As the Euler-Lagrange equation is well-defined for
these densities, they are found as the solution of the same equation.

2.4.3 Kohn-Sham scheme on rigorous ground

We can finally address, although briefly, some important points about the Kohn-
Sham scheme and its rigorous justification. The results for Fy, given in the previous
section, carry over to Tt,[n|. That is, the functional

Tiln] = inf Tr {ET} , withn € Dy (2.60)
D—n
is differentiable at any non-interacting ensemble v-representable densities, and nowhere
else. We may imagine to gather all these densities in the set Djy,. It is then clear
that the Euler-Langrange equation
o1y,

m + ’U5<I') =0 (261>
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is well defined on the set Dy, only. One can then redefine the exchange-correlation

functional as
Eyerln] = Fu[n] — Ti[n] — Uln, (2.62)

and observe that the differentiability of F} [n] and T1,[n] implies the differentiability
of E,.[n] only on Dgy N D%y. Remain the question how large the latter set is.
For densities defined on a discrete lattice (finite or infinite) it is known [20] that
Dgv = Djy. Moreover, in the continuum limit, Dg and Dj, can be shown to be
dense with respect to each other [7, 8, 9]. This implies that any element of Dgy
can be approximated, with an arbitrary accuracy, by means of an element of D3, .
These statements basically cover all situations of physical interest.

At last, we point out that theoretical indications and numerical examples of
interacting PS-V-densities which are non-interacting E-V-densities but not non-
interacting PS-V-densities have been given [10, 11, 12, 13]. This fact well justifies
not only the theoretical need but also the practical importance of the Lieb formula-
tion: in which the Kohn-Sham scheme is both flexible enough and mathematically
well justified.



Chapter 3

Orbital functionals

The success of DFT is largely due to the availability of increasingly accurate ap-
proximations to the exchange-correlation energy functional. While the simple local
density approximation (LDA) proved to be surprisingly accurate especially in solid
state physics, only the advent of the so-called generalized gradient approximations
(GGA’s) with their increased accuracy led to an explosion of applications of DFT
in quantum chemistry. The development of new, improved functionals is an on-
going effort. In this thesis, we are mainly interested in explicit functionals of the
Kohn-Sham orbitals, rather than explicit functionals of the density (such as LDA
or GGA). Since the density, by virtue of the Hohenberg-Kohn theorem, determines
the potential, and the potential determines the orbitals, such orbital functionals are
sometimes called implicit density functionals. Here we review how it is possible to
make use of such approximations [21, 22|, and for sake of simplicity we will limit our
considerations to non degenerate states. Extensions of the present basic formulation
to deal with non-collinear magnetization, currents and the corresponding conjugate
fields are among the main topics of the present work, and are reported in chapter 5.

3.1 Introduction

The idea of using implicit density functionals was already introduced in the orig-
inal Kohn-Sham formalism. In fact, the kinetic energy density functional Ti[n] is
expressed, without approximation, in terms of the Kohn-Sham orbitals, i.e.,

Tl =5 23 [P0V, (3.1)

o=1,] i=1
and thus the dependence on the density n is implicitly carried by the orbitals.
Another important example of an orbital functional is the exact-exchange (EXX)
energy functional

E ] = _% ) i /d37" /dST’w;"(r)(pz”(r/)%a(r/)%g(r) : (3.2)

v
o=1,0 jk=1 v =

17
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The correlation energy is then defined as
E.n| := E.c[n] — E.[n] . (3.3)

Note that definition (3.2) is valid only when the Kohn-Sham ground states can
be expressed as a single Slater determinant, such as in the case of non-degenerate
ground states.

In expression (3.2), we recognize the Fock term of the HF approach. But, it is
very important to distinguish the HF method and the EXX approximation. While
the HF wavefunction is meant to provide an approximation for the many-body wave-
function itself, the Kohn-Sham wavefunction is meant to reproduce the exact particle
density. Another difference is that, while the Hartree-Fock orbitals are produced by
a non-local effective potential, the Kohn-Sham orbitals are produced by a single
particle equation with a local effective potential.

An important property of EXX is that it is free of self-interaction: this means
that the orbital does not “feel” the electrostatic potential formally created by itself
as part of the Hartree potential because this term is exactly cancelled by a corre-
sponding term in the exchange potential. The EXX potential decays asymptotically
as —1/r for finite systems and this asymptotic form acts on all the orbitals. There-
fore, the KS potential in EXX approximation supports a whole Rydberg series of
unoccupied bound states as well as negative ions. By contrast, the HF approxima-
tion does not support the Rydberg series.

Unlike the EXX functional, explicit density functionals like LDA or GGA typ-
ically are not free of self-interaction. One of the consequences is the incorrect ex-
ponential asymptotic decay of the corresponding exchange-correlation potentials for
finite systems. Some time ago, Perdew and Zunger [23] proposed to make any ap-
proximate E2PP"% self-interaction free by removing the self-interaction explicitly for
each orbital. As a result an expression depending explicitly on the Kohn-Sham
orbitals is obtained.

Another advantage of orbital dependent functionals over standard explicit den-
sity functionals like LDA or GGA is that they also can reproduce the derivative
discontinuity A,. of the exchange correlation functional as a function of particle
number which occurs at integer particle number N [24, 25, 26]. This discontinuity
enters the expression for the so-called fundamental energy gap of periodic solids
which is the analogue of the so-called chemical hardness of finite species.

Two other classes of orbital functionals are also discussed in the literature. One
of them are the so-called hybrid functionals which are constructed by approximating
the exchange energy by a fraction of exact exchange plus some GGA part for the
remainder. Hybrids have been introduced in quantum chemistry [27, 28, 29, 30] and
have been found to yield accurate results for many energetic properties.

The second class of functionals we would like to mention here are the so-called
meta-GGA’s [31, 32, 33] which are of the general form

E%GGA[n] = /d37’ g(n,Vn, 1) (3.4)
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where

N
=5 3 S IVeu)? (35)
o=1,] i=1
is the kinetic energy density associated with the Kohn-Sham orbitals. It is through
their dependence on 7, that meta-GGA’s also become orbital functionals.

Orbital functionals constitute a natural framework for the systematic construc-
tion of approximations for the exchange-correlation functional in the spirit of per-
turbation theory. Gorling and Levy [34] have suggested a perturbative expansion of
the exchange-correlation energy functional in powers of €2,

Epe =) ¢EQ) = EPX 4 'EP 4. (3.6)

J=1

where we have used that
EY) = pEXX (3.7)

xc

Expression (3.6) implies that also v,. can be written as a power series in €2,

vaelr) = D P0(x) = v () + o (x) + (3.8)
j=1

where the first order term is the EXX potential.

One of the interesting properties of orbital-dependent correlation energy func-
tionals is their ability to properly describe long-range van-der-Waals interactions for
well-separated subsystems. Engel et. al. [35] have mapped out the binding energy
curve of rare gas dimers as a function of atomic separation using the second or-
der functional E. They found a qualitatively correct description, however, a full
quantitative description apparently requires higher-order correlations to be taken
into account.

Yet another representation of E,. is related to the dynamic linear density re-
sponse function of the interacting system of interest. The derivation of this repre-
sentation requires ideas from time-dependent density functional theory (TDDFT).
For the fundamental ideas underlying TDDFT, the interested reader is referred to
the review of Refs. [36, 37].

3.2 Optimized effective potential

Once we accept to use an expression for F,. which explicitly depends on the Kohn-
Sham orbitals, the main question is how to compute the corresponding exchange-
correlation potential of Eq. (2.41).

The way to accomplish this task is indicated by the Hohenberg-Kohn theorem.
Application of this theorem to non-interacting systems shows that there is a one-
to-one correspondence between n(r) and vg(r). The latter, in turn, determines the
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Kohn-Sham orbitals which yield the density we started from. Thus, we can formally
write any of these quantities as functional of one of the other quantities, and an
explicit dependence on one of them introduces an implicit dependence on the others.
It is then clear that a variation of the particle density corresponds to a variation of
the Kohn-Sham potential which, in turn, induces a variation of (all) the orbitals.
We can use this observation in order to rewrite Eq. (2.41) using the chain rule of
functional differentiation as follows

N[5, [ 0Bwe Spjo(r!
Vge(T) = Z Z_:/d r LSQOJ'U(I") ?n(i‘)) +cc.|. (3.9)

In writing the latter equation, we have tacitly restricted the exchange-correlation
functional to depend on the occupied Kohn-Sham orbitals only. Now, let us observe
that the functional derivative of E,. with respect to the orbitals can be easily cal-
culated given its explicit functional form in terms of the orbitals. However, as we
have observed above, the dependence of the orbitals on the particle density is not
explicit. Hence, to calculate the functional derivative of the orbitals with respect to
the density, we can view the orbitals as functionals of vy(r), yielding

= 33 [ oo [ e Dol o). (a0

o=T1 j=1 Opia (T

The third functional derivative on the right-hand side of this equation may now be
identified as the inverse of the static density response function of the Kohn-Sham

system defined by
on(r)

xs(r, 1) = So.(r) (3.11)

Operating with ys on Eq. (3.10) from the right, one obtains

/d?’r’vxc( i)=Y Z/d?’ ’[ 5E‘“, 5?;:(()> tee| . (3.12)

o=T,] j=1 Opia(r

Now all the terms in this equation can be expressed in terms of the Kohn-Sham
orbitals and eigenvalues. The functional derivative of the orbitals with respect to
the potential can be obtained exactly from first order perturbation theory and reads

0pjo(r')

W = G jo(r', 1) (1) (3.13)
where we have defined the (projected) Green’s function of the Kohn-Sham system
as

gpk‘o' (10 o'
Gl jol Z - ’; . (3.14)

k#]
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For simplicity, we have assumed here that the single particle levels are non-degenerate.
The static linear density response function of the Kohn-Sham system may be written
as

Xs(r, 1) = Z ZU (05, () Gy jo (r, ) 0o () + c.c] (3.15)

o=1.] j=1

Substituting (3.13) and (3.15) into (3.12) yields

Z ZG /d?’r’ {5, (") [U2e(r)) = Uae jo (r)] Gs jo (X' 2)@jo (x) + c.c.} =0 (3.16)

o=1,l j=1

where we have defined

, | B,
Uge jo (L) = — . 3.17
17 = ) S () (3.17)

Introducing the so-called orbital shifts [38, 39, 40]
W (r) = /dBT’go;U(r’) [20(') — ttgejo ()] G jo (', T) (3.18)

allows us to rewrite Eq. (3.16) in a very compact way,

S5 [ (s (1) + ce] =0, (319)

o=1.] j=1

which is the standard form of the so called optimized effective potential (OEP)
equation. The name of this equation suggests that the resulting potential is optimal,
but in which sense is it so?

In DFT, the value of the ground state energy corresponds to the minimum value
of the density functional for the total energy. This minimum is obtained only if
the exact ground-state particle density is inserted. Now the idea of the Kohn-
Sham method is to calculate that density from single-particle orbitals solving a
single-particle Schrodinger equation. Hence, in order to produce those single-particle
orbitals we need to use the proper single-particle potential: namely the one which is
optimized in the sense that its orbitals minimize the total-energy functional. This
is nothing but the Kohn-Sham potential [41, 42]. In fact, for the argument given
above, the total energy density functional, Eq. (2.36), can be thought to implicitly
depend on the effective potential through the particle density. Using again the chain

rule, one obtains
6E,[n] /d37’/ 0E, on(r)
Sug(r) on(r') dvg(r)

where the last equality follows from the Hohenberg-Kohn variational principle. This
point of view provides another derivation of the OEP equation. To this end, we just

(3.20)
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need to substitute the dependence on the particle density with the dependence on
the orbitals. Then, Eq. (3.20) may be written as

&;S =2 Z/dS ’ [5;5]? s 5;05:(? —i—c.c} =0. (3.21)

o=T,l j=1

The functional derivative of FE, with respect to the Kohn-Sham orbitals is easily
expressed as

5B, { Vv? 0By
" =|——+uv()+ UH(I‘)} o (r) + (3.22)
5903'0(1‘) 2 ’ 590](7( )
which, by using the Kohn-Sham equation, may be expressed as
SE, 0By
= [Ejo — Vee(T)] @jo(r . 3.23
590j0-(r) [ J ( )] J ( ) 5§0]g( ) ( )

Inserting this expression into Eq. (3.21) and using the orthonormality of the Kohn-
Sham orbitals, one finally arrives at the integral equation (3.16) for v,.(r). In other
words, the optimized effective potential is that local potential that yields single-
particle orbitals which minimize the total energy [43, 44].

3.3 KLI and CEDA approximation

The OEP equation (3.16) is an integral equation to be solved for the exchange-
correlation potential v,.(r). Historically, this solution first has been achieved for
systems with very high symmetry [44]. In order to reduce the computational ef-
fort, simplifying, yet accurate, approximations to the full OEP equations have been
suggested which will be discussed in this section.

We see that an important ingredient of the OEP equation is the Green’s function
of Eq. (3.14) which involves a summation over occupied and unoccupied Kohn-
Sham orbitals. Sharp and Horton [43] and later Krieger, Li, and Iafrate (KLI)
[45, 46] proposed to approximate the Green’s function (3.14) by replacing the energy
denominators by a constant value, A, independent of the particle indices j and k.
Using the completeness of the Kohn-Sham orbitals, this approximation leads to

) = [ 2 et eilr) - 55, ()]

= [ =) = )] (3.21)

Substitution into Eq. (3.18) gives

Z an JIC(CLI (r) — Uge jo(r) — (Effj‘; — Emjg)] +cec.=0, (3.25)

o=T,l j=1
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where we have used the definitions

Njo(r) == @}, () )0 (r), (3.26)
and the constants

KU /d?’r o () () 0 (r) (3.27)

The constants . ;, are defined in an analogous way as orbital averages of . j» ()
with respect to the orbital ;.. Solving Eq. (3.25) for v5M(r) yields

KLI

UIC

Umc _70‘( ) + EI;CL]IU Uge,jo + C~C-) . (3.28)

o=T,l j=1

This so-called KLI equation has transformed the OEP integral equation into a linear
algebraic equation in which one needs to deal with the N = N; + N| occupied
orbitals. Since one does not need to consider the infinitely many unoccupied orbitals,
the KLI equation is much easier than the OEP equation in practical applications.
Although this transformation is approximate, in many cases the deviations from full
OEP results are small.

As we have seen, in the KLI approximation the Kohn-Sham orbital energy dif-
ferences €, — €i, are approximated by one and the same constant, irrespective of
the sign of different terms. In a similar spirit, a different approximation known as
common energy denominator approximation (CEDA) [47] or localized Hartree-Fock
(LHF) [48] approximation has been proposed which only replaces the energy differ-
ences for occupied-unoccupied orbital pairs by a constant while it retains the energy
differences for the occupied-occupied pairs. For the Green’s function this gives

No

CEDA P (T) 1o (T
Gs?ol') (I‘,I‘,) = : i —¢ Z Spka (Pka ) : (329)
k=1 J k k>NU
k#j
Adding and substracting the contribution of the occupied orbitals with the common
energy denominator and using the completeness of the Kohn-Sham orbitals yields

r—r -
GEEP ') = §:¢“ Heltiel) AEZwm pro(e) - (330)
k#ﬂ

which, when inserted into Eq. (3.16), leads to the following equation for the exchange-
correlation potential in the CEDA approximation

1
CEDA _
U;rc (I‘) - 2n(r Z Z [njo Umc,]a I‘)

o=1,l j=1

No
+ 2 e r) (7L Taciio) +C.0.|  (331)
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with
TCEPA /d3T<P§a(T)USSEDA(I')SDw(T) (3.32)

and similarly for @, ji». One immediately sees that the CEDA reduces to the KLI
approximation if all off-diagonal terms ¢ # j in the second sum are neglected.

Both the KLI as well as the CEDA approximation (Egs. (3.28) and (3.31), respec-
tively) can easily be implemented within a self-consistent scheme with essentially
the same effort. From a theoretical point of view, CEDA has the advantage of being
invariant under unitary transformations of the occupied orbitals while KLI is not.
From a practical point of view, it turns out that CEDA and KLI results are often
very similar.

3.4 Exact transformation of the OEP equation

In this section we discuss a way to transform the OEP equations exactly which, on
one hand, highlights the role of the orbital shifts (3.18) and, on the other hand,
allows us to motivate the KLI approximation from a different perspective. We start
by noting that the non-interacting Green’s function satisfies the following differential
equation

(hs() = 230 ) Gaso0',1) = = (3 = 1) = &, (D)io (X)) . (3.33)

where h,(r) is the Kohn-Sham Hamiltonian. Acting with the operator (hy(r) —j,)
on Eq. (3.18) yields a differential equation which uniquely determines [38] the orbital
shifts

(BS(I') - 5j0> 77Z);o(r) = — (Vae(r) — uwcyja(r) - (Eﬂcc,jv - EwC,ja)) 90;0(1') . (3.34)

Solving for v,(r)y7,(r) gives

() (1) = = (Vae(r) = Uaejo (1) = (Tacjo = Unejo)) Pjo(T)

(T s o

Multiplication of this equation with ¢;,, subsequent summation over all occupied
orbitals and using the OEP equation in the form (3.19) eventually leads to

Vge(r) =

2n1(r) Z Zﬂ {nj0<r) (u:cc,ja (I‘) + Eccc,jg — ﬂxc,ja)

o=1, j=1

+ (%w;g(r) + 5]-01/13’.‘0(1")) ©io(r) + c.c} ) (3.36)
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The second term in the curled brackets can be rewritten by using the Kohn-Sham
equations and the OEP equation again which finally leads to an exact reformulation
of the OEP equation as

Uacc(r) = %(I‘) Z za: {nja<r) (umc,jo(r) + 6acc,ja - ﬂxc,ja)

o=1,l j=1

—V - (¢}, (r)Veje(r)) + c.c.} : (3.37)

If the term involving the orbital shifts ¢ (r) is neglected in this expression, one
again obtains the KLI potential of Eq. (3.28).

The orbital shifts ¢;,(r) also play a central role in an iterative scheme to the
solution of the full OEP equation recently suggested by Kiimmel and Perdew [39, 40].
The idea of this scheme is to solve Eq. (3.34) for the orbital shifts directly in the
following way: for a given approximate solution v,.(r) to the OEP equation, compute
the right hand side of Eq. (3.34) and then solve this equation for the orbital shift
;- (r) subject to the orthogonality constraint

[ 63 0)0sa(x) =0 (3.38)

which follows from the definition (3.18) by the orthonormality of the Kohn-Sham
orbitals. With the resulting orbital shifts compute the quantity

Sr)=>Y_ iw;a(r)¢jg(r) +c.c. (3.39)

o=, j=1

and then compute a new potential by

v (r) = v (r) — aS(r) (3.40)
with some constant ce. With this new v, recompute the right hand side of Eq. (3.34)
and then solve again for a new orbital shift. This is iterated a few times for fixed
Pjos h, and €jo before eventually these quantities are also recomputed during the
regular Kohn-Sham self-consistency cycle. This scheme has been applied successfully
[39, 40] to compute the OEP potential (in the exact exchange approximation) not
only for highly symmetric systems such as atoms but also for small sodium clusters
where the direct solution of the OEP equation is a much more difficult task.
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Chapter 4

Magnetization and current density
in DFT

The generalizations of DF'T designed to deal with magnetic properties of the ground
states of many-electron systems are introduced in this chapter. A finite current
and/or spin magnetization can either be induced by external fields, or they can occur
spontaneously, e.g. in degenerate ground states of atoms, or in extended ferromag-
nets. Following the historical development, we first introduce spin-density-functional
theory (SDFT), then we consider current-density-functional theory (CDFT). These
two are then combined in the complete formulation of current-spin-density-functional
theory (CSDFET). In this way, the similarities and differences of all these approaches
are clarified. For the sake of simplicity, the Kohn-Sham equations are written
for pure-states, which are restricted to be of the form of a single Slater determi-
nants. Moreover, we will not specify whether the functionals are being defined in
the Hohenberg-Kohn sense, or by the constrained-search procedure. In this respect,
for each new version of DF'T one can extend the analysis already carried out in detail
in chaper 2. A special feature of SDFT and C(S)DFT not present in ordinary DFT,
the so-called nonuniqueness problem, will be carefully reviewed toward the end of
this chapter. The so-called j,,-formulation of CSDFT is briefly reviewed.

4.1 Spin-density-functional theory

Spin density functional theory (SDFT) stems from a Hamiltonian for interacting
electrons which includes a Zeeman coupling of the spin degrees of freedom to an ex-
ternal magnetic field B(r). The Hamiltonian reads (atomic units are used through-
out)

~

H=T+V,+ /d3r a(r)u(r) — /d3r m(r)B(r), (4.1)

where A
n(r) = \IIT(r)\I/(r) , (4.2)
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and
i(r) =~ (1) (r) (4.3)

are the particle and magnetization density operators, respectively. In the above
expressions, o is the vector of Pauli matrices, pp is the Bohr magneton, and W' is
the field operator defined for two-component spinor field operator

Wi(r) = (P1(r), 4] (x)). (4.4)

In order to “density functionalize” the ground-state problem, the presence of the
field B requires the use of an additional basic density. This is the magnetization
density m. Thus, the energy variational principle can be formulated as [49]

E,p= rr?gll E,s[n,m|, (4.5)
with
Eypn,m] = Fln, m] + / d&*r v(r)n(r) — / &*r m(r)B(r) . (4.6)

As in DFT, the kinetic energy and the electron-electron interaction are taken into
account through the functional F'[n, m|. Again, it is important to note that F'[n, m]
is universal in the sense that it does not depend on the external fields.

At this point, a Kohn-Sham scheme for SDF'T may be introduced by assuming
non-interacting (v,B)-representability of the interacting densities (n,m). In other
words, it is assumed that for any interacting ground state, a non-interacting sys-
tem exists having the same ground state particle and magnetization density as the
interacting one. Then F'[n, m| can be decomposed as

Fn,m] = Ti[n,m] + U[n] + E,c[n,m] , (4.7)

where T[n, m] is the kinetic energy functional for non-interacting electrons, U[n] is
the classical electrostatic energy (Eq. (2.34)), and the remainder is the exchange-
correlation energy functional, F,.n,m]|, as defined in SDFT. The single-particle
Kohn-Sham equation of SDFT reads [49]

SV 4 0(n) + npoBL(r) | B4(r) = i(r) (4.8)

where ®;(r) are two-component, single-particle Pauli spinors. The above equation
has the form of a Pauli equation, which includes only the Zeeman coupling of the
effective magnetic field B, to the electronic spin.

In summary, the minimization of the energy funtional (4.6) is translated into the
calculation of the ground state for the Kohn-Sham system (4.8). The particle and
magnetization densities are then obtained by

n(r) = 3 Bl)ai(r) (1.9
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and
m(r) = —up Y B (1)odi(x). (4.10)

where the sums run over the N Kohn-Sham spinor-orbitals with lowest eigenen-
ergies. Using the minimum condition of Eq. (4.5), for both the interacting and
non-interacting system, the effective potentials can be expressed as

vs(r) = v(r) + vy (r) + vee(r) (4.11)

and
B(r) = B(r) + B,.(1) , (4.12)

where the Hartree potential vy (r) is given by Eq.(2.40). The exchange-correlation
potentials are functional derivatives of the exchange-correlation energy F,. with
respect to the corresponding conjugate densities

Vae(r) = %‘m (4.13)
and e
B,.(r) = —% - (4.14)

4.1.1 Spin-unrestricted and restricted KS scheme

SDFT is often used within the collinear approximation which assumes that the exter-
nal and exchange-correlation magnetic field have only a non-vanishing z-component.
As a result, the Kohn-Sham spinors decompose into spin-up (o =) and spin-down
(o0 =]) orbitals, i.e., ®;(r) = (p;1(r),0) or ®;(r) = (0,¢(r);;). Within this re-
striction the direction of the magnetization is uniform, parallel to the z-direction
m(r) = (0,0,m(r)). This restricted form is used in many practical applications.
Then, one may reformulate SDFT in terms of only the spin densities n,(r), because
the particle density and the non-vanishing component of the magnetization can be
re-expressed as

n(r) = ny(r) +n(r), (4.15)
and
m(r) = — s (g (r) = (1)) (4.16)

The total energy F of a system of interacting electrons is then defined as a functional
of the two spin densities n,(r)

Elng,n|| =Tsny,n)] +Uln] + Exng,n] + Z /dgr Ve (T)ny(T) (4.17)
o=T,l
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where

1~ &
Tslny, ] = —3 Z Z/d37“ go;g(r)vzgojg(r) (4.18)
o=Nl J
is the non-interacting kinetic energy and N, is the number of electrons with spin
0. vy(r) = v(r) £ upB (+ for 0 =7, — for 0 =|) is an external spin-dependent
electrostatic potential. The single-particle orbitals pj,(r) in Eq. (4.18) are solutions
of the Kohn-Sham equation

(—%W + Usa(r)) Pjo(T) = €jopjo(T) (4.19)

where j is a collective index for all quantum numbers except spin. The effective
single particle potential for spin o is given by

Vso (r) = v(r) + v (r) + Vpeo (T) (4.20)
where we have defined the spin-dependent exchange-correlation potential as

_ 5EIC[”T7 nl]

Veo(T) = oo (1) = Uge(r) £ i Bae(r) . (4.21)

Here, v, is the exchange-correlation potential, and B,.(r) is the z-component of
B,.(r) (which is, by assumption, the only one different from zero). The self-
consistency cycle is closed by computing the spin densities via

no(1) = 3 liso () (4.2

where the sum runs over the orbitals occupied in the KS ground state determinant.

Since the KS potential can now differ for the two spin-channels, the KS equation
in SDF'T generates a spin-unrestricted scheme, in the sense that the spin-up and
spin-down orbitals may be different. Let us note that the unrestricted KS scheme of
SDFT immediately leads to the restricted scheme of DFT if one considers functionals
which only depend on the total electronic density of Eq. (4.15). In particular, the
exchange-correlation potential is

5Ezc[n]
on(r)

Vge(T) = (4.23)

and both the v,. and the total effective potential v, then are independent of the
spin index 0. However, despite the spin-independence of v; and v,., the Kohn-Sham
orbitals, being proper fermionic single-particle orbitals, still carry a spin-dependence.
Clearly, the spin-unrestricted scheme reduces to the spin-restricted one for ground
state with vanishing spin polarization, as found in closed-shell systems.
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As we have seen in chapter 3, for orbital functionals the optimized effective
potential method leads to an integral equation for the exchange-correlation potential.
For simplicity, we again consider approximations of F,. that are functionals of the
occupied orbitals only. The OEP integral equation in SDFT can then be written as

No

> (W, ()pse(r) +cc) =0 (4.24)

J=1

As opposed to Eq. (3.19) of ordinary DFT, one now has one OEP equation for each
spin-channel, where the orbital shifts are defined as

Vo (r) = / A1’ G55 (1) (Voo () = tgejo (1)) Gajo (', ). (4.25)

The Green’s function Gy j, of the Kohn-Sham system is defined as in Eq. (3.14),
and . jo as in Eq. (3.17).

Written in the transformed form of Sec. 3.4, the two nontrivial OEP equations
of collinear SDFT can also be written as [38]

Vge,o(T) = 271:(1‘) ZU [|80ja(r)|2 (Uze,jo (T) + (Vzcjo — Uzejo)) — V - (¢;o(r)v90jo(r))]
+ c.c. ] (4.26)
where
Vg jo = /d?’r Ol (T) Vg0 (1) P (T) (4.27)
and
rcse = [4°7 5 (0)tcsa (5130 1) (4.28)

We observe that the exchange-correlation potential of ordinary DFT given in
Eq. (3.37) can then be written as a weighted average of potentials for the different
spin channels

11(1) Ve, (1) + 7y (1) Ve (1)

vael®) = T W) (4.29)

where
roat) = s D (10300 (aesols) + (g = faese)) = V (05, 1) Vs )
+ cec ] (4.30)

and U,j, 1s defined as U,.j, in Eq. (4.27) except that v,., is replaced by vge.
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4.2 Current-density-functional theory

The Hamiltonian of current-density-functional theory (CDFT) includes the coupling
of the electronic orbital degrees of freedom to an external vector potential A(r)

A

H = T4V, + /dgr ﬁ(r)v(r)—i—% /d3r 5, (1A ()

+ d*r a(r)A%(r) . (4.31)

22
Here c is the speed of light. The operator of the particle density, 7n(r), is defined as
in Eq. (4.2), and
~ 1 A A A A
Bo(r) = 5 {\lﬁ (r)V¥(r) — [V\I/T (r)] ‘If(r)} (4.32)
i
is the the paramagnetic current density operator.

Following Vignale and Rasolt [50], a reformulation of the energy variational
principle is obtained in the form

E,a = m}n E, aln,jp) (4.33)
with
Ey,aln,j,] = Fln,j,| + /d37" v(r)n(r) + % /d3r Jp(r)A(r) + 2%2 /d?’r n(r)A%(r) .
(4.34)

It appears natural to use the paramagnetic current density j, as basic variable,
in addition to the particle density. In particular, the universal functional F[n,j,|
depends on both n and j,,.

In the next step, the Kohn-Sham scheme is introduced by assuming that there ex-
ists a system of non-interacting electrons, subject to the effective potentials (vs, Ay),
whose ground state has same particle and paramagnetic-current density as the
ground state of the given interacting system. The form of the Kohn-Sham equation
is [50]

1

= (—N 4 %As(r)>2 + v,(r)

As in DFT and SDFT, the functional F[n,j,] can be decomposed in terms of the
kinetic energy functional of non-interacting electrons, Ts[n, j,|, the classical electro-
static energy, U[n], and the exchange-correlation energy functional, E,.[n, ],

Flnj,) = Tnj,) + Uln] + Evcln,y) (4.36)

Then the effective potentials in the Kohn-Sham equation are given by

vs(r) = v(r) + v (r) + vee(r) + 2L02 [A2(r) — Az(r)} , (4.37)
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and
AL(r) = A1) + Au(r) | (4.39)

The exchange-correlation scalar and vector potentials are defined as partial func-
tional derivatives of E,.[n, j,|:

. (SEIC[TL,jp]

vxC(r) - 571(1') N (439)
and SE ()
A(r) =c (;p—(z)*”” - (4.40)

respectively. vg(r) is the Hartree potential (Eq. (2.40)). The N Kohn-Sham single-

particle states with lowest energies are used to compute the particle density and the
paramagentic current density
X

o) =53 {@;(r)wk(r) - [whm] @k(r)} . (4.41)

21
k=1

All the elements needed to evaluate the ground state energy E, o for the interacting
electrons are available.

4.2.1 Kohn-Sham scheme and gauge transformations

In this section we consider the transformation
v(r) — v(r), A(r) — A(r) + VA(r). (4.42)

If the many-body wavefunction is transformed accordingly as

U — exp|—

> Alry)|w (4.43)

k=1

o | .

the form of the Schrodinger equation is preserved. Then note that the particle
density and paramagnetic-current density transform as

. . 1
n(r) — n(r), j(r) — ju(r) — En(r)VA(r), (4.44)
i.e., the paramagnetic-current density is not a gauge invariant quantity. This leads
to the necessity of verify whether the Kohn-Sham scheme of CDFT is invariant
under the gauge transformation defined just above.
Eqgs. (4.34) and (4.44) imply that F[n,j,(r)] transforms as

Fln, jp—%nVA] — Fln, jp(r)]—% / drjp(r)~VA(r)—|—% / den(r)|VA(T)]2. (4.45)
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This is apparent if we consider the definition of F[n, j,|. In Levy’s constrained-search
formulation this functional can be defined as

Fln,j,| == Lt (U|T + V,.|W), with U € Wy and n,j, € Dy. (4.46)

—)p

In this definition Dy is the set that contains all particle and paramagnetic current
densities which are N-representable. It is not necessary to ask for the paramagnetic-
current density to satisfy the continuity equation. In fact, as we will see below, this
condition will be automatically satisfied.

It is readily seen that Ti[n, j,(r)] transforms as F'[n, j,(r)], since it differs from the
latter by a gauge invariant term (the electron-electron interaction). Alternatively,
this can also be seen by transforming the non-interacting wavefunction as dictated
by transformation (4.43). The Hartree energy, U, only depending on n is invariant.
As a consequence it is immediately seen that also F,. is invariant, i.e.,

Bl jp — %nVA] = Eueln,j,(r)]. (4.47)

A simple gauge-invariant quantity depending on both j, and n is the vorticity
density

vir) = v x 20 (4.48)

Thus the exchange-correlation energy functional can depend on j, only through the
vorticity

Exc[nujp] = Exc[na V]- (449)

In terms of n and v, we then have

UrC(r) - ;TLE&'C) - ﬁxc(r) — %Arc<r> . ‘z((:;, (450)
where ~
- OE,.
Uze(r) = S(x) I (4.51)
and )
Au(r) = —cn(lr>v « ﬁr) : (4.52)

Both 9,. and A,.(r) are gauge-invariant, since their definitions involve only gauge-
invariant quantities. Also note that

vs(r) = v(r) + vy (r) + Oge(r) + %Am(r) : % - %Aic(r), (4.53)

where
1

J(r) = 3p(r) + n(®) A () (1.54)
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is the total physical current, which is gauge invariant. It is then clear that the gauge
transformations defined above induce a similar transformation for the effective fields
v, and A, and the form of the Kohn-Sham equation is indeed preserved.

Finally note that the total Kohn-Sham current density

3o() = Jp() + () ALE) = (1) + n(r)As(r) (1.55)

may not be equal to the physical current j. In fact, an additional term from the
exchange-correlation part of the effective vector potential appears in Eq. (4.55).

The Schrodinger form of the Kohn-Sham equation guarantees that the Kohn-
Sham total current is source free. That is, it satisfies the (static) continuity equation.
Alternatively, because of Eq. (4.52) it is clear that

V- (n(r)Aq(r)) =0, (4.56)

which again leads to
V-jsg=V-j=0. (4.57)

4.2.2 Local vorticity approximations for F,.

The local density approximation (LDA) [4] and the local-spin-density approximation
(LSDA) [4, 49] use as paradigm system the homogeneous electron-gas. The idea is
that a inhomogeneous system may be locally represented as a uniform or slowly
varying one. Although this approach appears rather crude for real systems (which
are typically far from the slowly-varying limit), it works surprisingly well. While
the LDA and LSDA are well known to the practitioners of DFT and SDFT, the
corresponding approximation for CDFT is less popular. Hence, we here outline its
main ingredients. For reasons that will become clear below, it is also known as the
local vorticity approximation (LVA).

Let us consider an electron-gas exposed to an external magnetic field. For weak
external magnetic field, the ground state energy per electron of the uniform electron
gas may be written up to second order in the B-field as

e(n, B) = €(n, 0) — %XL(n)]B\Q 4o (4.58)

where yp(n) is the diamagnetic susceptibility of the interacting system. This ex-
pression can be rewritten in terms of the vorticity density as

1
v (159

with v being the vorticity (see Eq. (4.48)), by observing that for the uniform gas j
vanishes identically, and thus the external field can be expressed as

e(n,v) =¢€(n,0) —

A:—c%’:BzvXA:—cv, (4.60)
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Figure 4.1: Difference between the exchange energy with and without magnetic field
(dashed line) calculated at constant density (corresponding to rs = 1). The solid line
represents this difference for the full exchange-correlation energy. The horizontal
azis represents the chemical potential in units of the cyclotron frequency (w. = %)
Plot extracted from Ref. [51].

In the last step, making use of perturbation theory for the non-interacting kinetic
energy as well, the second-order shift for the xc-energy per particle can be expressed

as [52]
exc(n,jp):em)[ ! (1—XL(”>)1V|2}, (4.61)

187n X% (n)

where €,(n) is the exchange energy per electron of the uniform gas, and x%(n) =
—vp/(1272%¢?) (vF is the Fermi velocity).

Note that, since for the uniform gas j = 0, using j, rather than j,, as basic
variable would not have allowed us to obtain an LDA-type approximation of any
kind. However Eq. (4.61) is valid only for small vorticity fields. Going beyond this
limitation, the random phase approximation (RPA) applied to the electron gas with
magnetic field has been used [51] to construct an LVA. Figs. 4.1 and 4.2 show that,
in contrast to the small vorticity limit of Eq. (4.61), the exchange and correlation
energies exhibit a characteristic series of cusps corresponding of successive Landau
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subbands. At increasing magnetic field strength, which correspond to increasing
value of the vorticity density, the difference with respect to the exchange-correlation
energy at zero field becomes more and more important.
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Figure 4.2: Difference between the correlation energy with and without magnetic
field (dashed line) calculated at constant density (corresponding to rs = 1). The
solid lines represent this difference for the full exchange-correlation energy. The
horizontal axis represents the chemical potential in units of the cyclotron frequency
(we =8 ). Plot extracted from [51].

We now address the application of the above LVA functionals to inhomogeneous
systems. Of particular interest is the situation where, at vanishing external magnetic
field, the system is in a state with paramagnetic current different from zero. This
can occur for a system having degenerate ground states such as open-shell atoms.
Applying the LVA would correspond in this case to consider the inhomogeneous elec-
tron gas as a locally homogeneous one, which is exposed to an effective magnetic field
generating the given local vorticity. This suggests that even at zero external mag-
netic field, a careful consideration of the orbital currents for the exchange-correlation
functionals may be important. We will extensively consider this point in Chap. 6,
in connection with a well-known problem of DFT which is generally known as the
“degeneracy problem”. But before this, let us also note that the cusps in Figs. 4.1
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and 4.2 immediately point at possible numerical problems when computing the effec-
tive potentials within the corresponding local approximation [53]. These problems
can be avoided by introducing some regularizations, which smooth out the cusps
[53, 54, 55], although this introduces additional approximations. Alternatively, the
fact that the cusps occur at the occupation of different Landau levels suggest that
such numerical problems may be automatically handled by considering expressions
for F,. which depend explicitly on the Kohn-Sham orbitals rather than on the par-
ticle and vorticity densities [53, 56, 57]. This is indeed one of the ideas that will
bring us to chapter 5.

4.3 Current-spin-density-functional theory

Having discussed SDFT and CDFT, we can briefly report the basic equations of
current-spin-density-functional theory (CSDFT). Here, the complete (non-relativistic)
Hamiltonian is considered. In second quantization and atomic units, it reads

4 /d%j,,(r)A(r)%—% /d% A(r)A%(r) (4.62)

The corresponding energy functional [52] is
Bupalnm ) = Flomg)+ [€ro@nt) - [¢rm@B)

2 [ mAE) + o [EramAate) . (16)

2c2

Assuming that the Kohn-Sham ground state is a single Slater determinant, the
corresponding spinor-orbitals are given by the following eigenvalue problem

E (—N + %As(r)) +0,(r) + o By (1) | Bu(r) = ud(r) | (4.64)
The effective fields can be expressed as
B) = 0(e) + o (e) + o) + 55 [AN) - AXO)] L (469)
B,(r) = B(r) + Bu.(r) | (4.66)
Ay(r) = A(r) + Age(r) (4.67)

and, as usual, vy is the Hartree potential (see Eq. (2.40)). The exchange-correlation
potentials are functional derivatives of the exchange-correlation energy F,. with
respect to the corresponding conjugate densities

- 5Ewc[na m>jp]

Ua:c(r) - T(I’) m, j, ) (468>
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6Exc [n7 m? jp]

Bxc(r) = 51’[1(1‘) o j ) (469>
_ 0B[n,m, j]
Azc(r) =cC W e m (470)

Before concluding, an observation is in order. The external physical magnetic
field B is connected to the external vector potential A through the relation

B=V xA. (4.71)

In this respect, it is important to note that Eq. (4.71) does not automatically
apply to the effective fields. First of all, in CSDFT as formulated by Vignale and
Rasolt [52], the set of the external physical magnetic fields, and thus the set of cor-
responding physical ground state densities, are a sub-set of all the possible external
fields and ground state densities that can be formally considered. Second, the re-
lation (4.71) does not enter explicitly in the definition of the functionals. Third,
the Kohn-Sham scheme is introduced by requiring that (n,m.j,) are non-interacting
(v,B,A)-representable - rather than specifying the more restrictive condition to be
(v,B = V x A A)-representable. In passing, we also observe that in the non-
relativistic framework it is quite natural to think of the spin- and orbital-degree
of freedoms as independent (decoupled) quantities. This is reflected in the scheme
of CSDFT by considering the magnetization density and the paramagnetic-current
density as independent quantities to which correspond independent fields in the
sense just specified above. All these aspects will be further analyzed in the next
section, and then again in Sec. 5.2.

4.4 From DFT to CSDFT

Conceptually, DFT, SDFT, and CSDFT are very similar: they all map the system
of interacting electrons onto a system of non-interacting particles moving in some
effective fields. In the case of DFT this auxiliary system yields the same electron
density as the interacting one, while in SDFT the magnetization densities of the
two systems coincide as well. In CSDFT, also the paramagnetic current density of
the auxiliary system is equal to the paramagnetic current density of the interacting
system. In all three formalisms the energy of the interacting system is written
as a functional of the corresponding densities and the value for the ground state
energy is obtained by minimizing this functional with respect to the densities. But
going from DFT to CSDFT, the domain of the functionals changes: it is enlarged,
and the effective fields increase in number. Thus - although the adopted notation
does not stress this point - the v,. of DFT is not the same as the v,. in the other
frameworks, as the B,. in SDFT cannot be expected to be the same as the B,. in
CSDFT. But intuitively some equivalences (for particular states or systems) can be
expected. In this sense, there is an important case to be carefully considered. This
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is the case of zero external B and A fields. In this limit, only B,. and A,. can
still contribute. Non-vanishing A,. can be expected for ground states having non-
vanishing paramagnetic current, while a non-vanishing B,. will result for ground
states with magnetization different from zero.

It is also interesting to note that in the limit of vanishing external magnetic field,
DFET, SDFT and CSDFT can all be applied and, with the exact functionals, would
yield the same total energy. But as the experience with the LDA and LSDA (re-
spectively in DET and SDFT) tells, within a given type of approximations, different
numerical results are obtained [58]. In particular, for states having a finite magne-
tization, it is usually better to employ the LSDA rather than LDA. This reflects the
fact that LSDA is built to deal with spin-polarized ground states, while the LDA is
developed for states with vanishing magnetization. We may then expect additional
benefits in developing approximations for functionals which take into account that
ground states can have a non-vanishing current as well. It is indeed one of the aims
of this work, to further investigate this issue, in particular when orbital functionals
are used.

4.4.1 Non-uniqueness problem

In going from DFT to CSDFT one faces what at first may seem a shocking surprise:
The Hohenberg-Kohn theorem as stated in DFT is not valid anymore. In particular,
the one-to-one correspondence between the sets of external potentials and ground
state densities is missing. Of course, also in DFT there is an infinite number of
potentials that yield the same ground state density, but they differ only by a trivial
additive constant. Instead, in SDFT, CDFT and CSDFT they can differ in a non-
trivial way. This difference was already pointed out in the work by von Barth and
Hedin [49] where SDFT was introduced. This was later confirmed, and extensively
investigated by Eschrig and Pickett [59]. The same problem was further analyzed
by Ullrich [60] for SDET on arbitrary lattices, leading to other non-trivial examples
of nonuniqueness. Finally, additional constructions of set of potentials which give
the same ground state densities have been reported for both SDFT and CDFT by
Capelle and Vignale [61, 62]. Form the latter works, we take a couple of clarifying
examples.

To obtain a condition for nonuniqueness in SDFT, let us consider v' = v + Av
and B’ = B+ AB that are supposed to give the same (many-body) ground state |¥)
as v and B. In particular, we have in mind a system with an energy gap between the
ground and the first excited state, and with total magnetization M, = [ d*r . (r)
as a constant of motion (Mz commutes with the Hamiltonian). Thus, the choice
v =v and AB = C'u, (where u, is a unit vector in the z direction) is a proper one
as long as C' is not large enough to induce level crossings.

As an additional example, we consider the case of a fully polarized ground state.
In this situation, all the electrons are in the same spin state, say spin up: N = Ny,
and thus N; = 0. While the part of the effective potential for the /N; orbitals is
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determined (for finite systems the corresponding additive constant can be chosen in
such a way that the potential goes to zero at infinity), the potential for V| orbitals
is completely undetermined, as long as its lowest eigenvalue is higher than the N;th
eigenvalues of the corresponding spin-up equation.

Similarly for CDFT [61, 62], let us consider v" = v + Av and A’ = A + AA
such that the same ground state, | V), as for v and A is obtained. Then necessary
condition is

/ d*r {ﬁAv + %AAQ + %ijA |U) = AE|T) . (4.72)
As a trivial example we may consider the class of systems for which N = [ d®r @ is
a constant of motion. Then Awv is constant, and AA = 0 is a solution of condition
(4.4.1). This is the well-known, and harmless, nonuniqueness of the scalar potential
with respect to the additional constant.

A less trivial example is obtained by considering a system with an energy gap

between the ground state and the first excited one, and for which

L,= / Pr(u, x 1) - j, (4.73)
is a constant of motion. Thus, solutions of condition (4.4.1) are given in the form
of AA = C(u, xr) and Av = _(Aﬁ)27 with C' being a constant not large enough

to induce level crossings.

A reassurance that the problem is not a real impediment for SDFT has been given
by Kohn, Savin and Ullrich [63]. More recently, Gidopoulos reported an analysis
showing that the problem does not exist in SDFT for the class of non-collinear
magnetic fields [64].

At last, the problem has recently been analyzed in combination with the degen-
eracy of ground states in Ref. [65]. It is seen that, Hohenberg-Kohn functionals for
SDFT, CDFT and CSDFT can still be defined without impediment. Although in the
Hohenberg-Kohn formulation it is not trivially seen that the functionals can be still
defined, in passing we observe that in the Levy formulation it is instead apparent. In
fact, in the latter formulation neither the one-to-one correspondence between wave-
functions and densities nor the one-to-one correspondence among densities external
potentials is used in defining the functionals. However, as well as in the Hohenberg-
Kohn formulation, the problem may have some important, and negative, impacts
when the differentiability of the functionals is considered, or invoked. This is still an
open problem. It is connected with the non-interacting v-representability question
of the interacting densities. Furthermore, it may enter in the extension of the OEP
method to SDFT and C(S)DFT. Thus we will reconsider it in the next chapters.

4.5 Different formulation of CSDFT: j,-DFT

One can formulate CSDFT in different ways. For example, it is possible to intro-
duce a spin-dependent vector potential A, [52]. Correspondingly, spin-dependent
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paramagnetic-current densities have to be taken as basic densities. Another exam-
ple is the formulation of Diener [66], which contemplates as basic density the total
current in place of the paramagnetic one. Along these lines, we look at yet another
formulation - which we call the j,,-formulation [67].

Let us start from the Hamiltonian of Eq. (4.62) and specify that we restrict the
field B and A to satisfy Eq. (4.71). In order to make it explicit, we rewrite the
Hamiltonian as follows

0= T4Vt /d3r A(r)o(r) — /d% fn(r) [V x A(r)]

1 5 1

+- /dgr Jp(r)A(r) + 50 /d37“ A(r)A?(r) . (4.74)
c c

Integrating by parts the Zeeman term and assuming that the surface contributions

vanishes (which is certainly reasonable for finite system) we obtain

H=T+V,+ / d3r 7(r) [v(r) + %A@)} + / A% jm(r)A(r) (4.75)

where

Jm(r) = j,(r) — ¢V x m(r). (4.76)

Expressions (4.75) and (4.76) suggest that the ground state problem can be
“density functionalized” by choosing (n,j,,) as basic densities. This leads to the
following energy functional [67]

Eyaln,jm] = Fln,jml + /d?’r v(r)n(r) + E /d37“ Jm(r)A(r)

c

1
+2—02 d*r n(r)A%(r) . (4.77)
The Kohn-Sham scheme is introduced by assuming that the ground state den-
sities (m,j,) of the interacting system are non-interacting (v,A,B = V x A)-
representable. Therefore, the Kohn-Sham equation is

CIDk(r) = qu)(r) . (478)

[% (—N + %As(r)>2 + vs(r) + ppoBy(r)

Thus by construction the effective magnetic field is a quantity derived from the
effective vector potential

B(r) .=V x Ay(r) . (4.79)

The basic effective fields are the scalar potential

vs(r) = v(r) + v (r) + vee(r) + 2L02 [A2(r) — Az(r)} , (4.80)
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and the effective vector potential
A(r) = A(r) + A,.(r).

In particular,

_5Exc[n7jm}
Ure(r) = on(r) .

0B[N, )
Al = )

It is readily seen that
B..(r) ==V x A,.(r) .

43

(4.81)

(4.82)

(4.83)

(4.84)

We here conclude our review of different “Havors” of density-functional theory.

In the following chapters we will report our developments and results.
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Chapter 5

Extensions of the OEP method

As we have discussed in chapter 3, there are several motivations for considering ap-
proximations to the exchange and correlation energies in terms of the Kohn-Sham
orbitals. When dealing with magnetic properties of many-electron systems, this
choice seems even more necessary. This is related to the fact that, although it is
possible to construct a LDA-type approximation for CDFT [50, 51, 52], the same
approximation (and consequentially the ones based on it) are awkward to use in
practical calculations. This has a clear physical reason: when a uniform electron
gas is exposed to an external magnetic field, Landau levels form and, for given mag-
netic field, the xc energy density exhibits derivative discontinuities as function of
the density whenever a new Landau level is filled. In a local approximation these
discontinuities then show up in the corresponding exchange-correlation potentials
at those points in space where the local densities coincide with the densities of the
uniform gas for which these discontinuities occur. One solution to this problem is to
smoothly interpolate the exchange-correlation energy density between the limits of
weak and strong magnetic fields [54, 55]. Alternatively, since the problem is entirely
due to the orbital effect of occupying Landau levels, it is attractive to use explic-
itly orbital-dependent approximations to F,.. Moreover, a natural non-collinear
description is immediately obtained if one accepts to employ exchange-correlation
functionals which explicitly depend on two-component Kohn-Sham spinors, without
further restricting their form.

5.1 OEP method in CSDFT

The calculation of the exchange-correlation potential for orbital-dependent function-
als in ordinary (S)DFT is done in the framework of the optimized effective potential
method [38, 43, 44]. Here we extend this method to CSDFT and derive the OEP
integral equations for the exchange-correlation potentials within a full non-collinear
treatment. We start by calculating the functional derivatives of E,. with respect to
the three effective and independent potentials v, By, and A, [68]. These functional

45
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derivatives can be computed in two different ways by using the chain rule, i.e.,

B [ ) 1, ) omir)
Sug(r) /d {xc( )5vs(r)+cAm( )5’05(1') Buel )(5115(1")}

0Bre [ [ oaonl) 1 6,0 , m(r’)
0B,(r) /G”{””“(‘%Bs(rﬂ+ ()58, {r) Bxc(”é&(r)]
K ([ OB 50,(r)
= ;/d r {5¢¢(r’) 5B.(r) —I—h.c} : (5.2)
OB, s [ onl) 1, ) , om(r')
a5 Bt T

Z/cﬁ ’[ 5E“)§i ((r; +h.c.]. (5.3)

i=1

Egs. (5.1) - (5.3) constitute a system of coupled integral equations for the unknown
exchange-correlation potentials. For simplicity, we have assumed that the approx-
imation for F,. depends only on the occupied spinor orbitals such as, e.g., the
exact-exchange functional

5 (1) (1)@ (x)

EFXX[{@,)] = ——Z/d?’ /d3’ |r_r,| : (5.4)

For any approximation of F,. given explicitly in terms of the spinor orbitals,
the functional derivatives of F,. with respect to these spinors can be evaluated
right away. The other functional derivatives in Egs. (5.1) - (5.3) may be computed
exactly from first-order perturbation theory by considering variations of the Kohn-
Sham spinors due to a perturbation dH,(r') of the Kohn-Sham Hamiltonian. To
first order in the perturbation these variations are

— ©(r) ;
00;(r) =~ [ Bl ) H,(r)Di(r') 5.5
() Z_/ ) () () (5.5
i
where for simplicity we have assumed a non-degenerate spectrum. For arbitrary vari-
ations dvg(r), IB4(r), and 0A4(r) in the three effective potentials, the perturbation
dH(r) is given by

~

1 1 1
dH,(r) = dvs(r) + %V(SAS(I') + %(5A5(r)v + gAS(r)(SAS(r) +pupodBg(r) . (5.6)
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Insertion into Eq. (5.5) allows us to identify the functional derivatives of the spinors
with respect to the effective potentials as

503 i . [ r)i(r)] (5.7)
oo =12 2 [wwen 0] 55
wo

and

Jj=1
JFi

(5.9)
From Egs. (5.7) - (5.9) one can compute the static response functions, i.e., the func-
tional derivatives of the densities with respect to the effective potentials. Inserting
everything into Egs. (5.1) - (5.3) one can then write the OEP integral equations in

a very compact form as

Zqﬂ r)+he =0, (5.10)
—pp Y _ OH(r)oW(r) + h.e.=0, (5.11)

and N
212, S { @l V) - [velem)] ww} +he =0, (5.12)

=1

2

where we have defined the so-called orbital shifts [38, 39]

Vi)=Y if(%ﬂ;f (5.13)

i

with

Dy — /d37"{vm(r’)@;(r’)@i(r’)
+ iAm(r') [@}(r’)v’@i(r') - (v'q>;(r')) @i(r’)}

+ pupB.(r )cI)T( "sigma®;(r') — @;(r’)éiTE(j)}_ (5.14)
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The name “orbital shifts” (5.13) derives from their structure as a first-order shift
from the unperturbed Kohn-Sham orbital ®; under a perturbation whose matrix
elements are given by D;;. The OEP equations (5.10)-(5.12) have a very simple
interpretation: they merely say that the densities do not change under this pertur-
bation.

In analogy to Sec. 3.2, we mention that the same equations may also be derived
by minimizing the total energy with respect to the local effective fields.

At last, in connection with the nonuniqueness problem discussed in Sec. 4.4.1,
the possibility of finding several sets of potentials producing the same set of densi-
ties may allow variations of the potentials for which the density response vanishes.
If necessary, and as we will see in Sec. 5.2, supplementary conditions based, for
example, on known properties for the potentials, can be considered to select one
solution.

5.1.1 Practical solution of the OEP equations

By re-organizing the terms, the OEP equations can be rewritten as follows

occ un

Ry(r)=> Y D’”% + h.c. =0, (5.15)
ko J
occ  un m.. (r

Re(r) =YY Dy &c’“i(g +he =0, (5.16)
ko J

and

occ un jp].;;j (I‘)

Ra(r) :ZZijgk_gl +he =0, (5.17)
E J

where the first sum is carried over the occupied and the second one over the unoc-
cupied orbitals. Here we have defined

iy (r) = ®H(r)dy(r), (5.18)
my;(r) = —pp®(r)od(r), (5.19)
- L [t i

o) = o {0l Ver) - [volm)] e} (5.20)

Also Dy; can be re-expressed as

Dy; = /dsrl{”xc(r')nkj(r')+%A“(r,)jpkj(r/) = Buo(r)my;(r')

oty OB
Pl )5q>;(rf)}' (5.21)

This way of rewriting the equations is important because it suggests a practical
scheme for the solution of the OEP equations. To this end, we observe that R,, Rg,
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and Ra define three independent residues, which vanish when the correct orbitals
and fields are plugged in. Hence, we expect that along the self-consistency cycle,
the exchange-correlation potential residues will converge to zero. This leads to the
idea to use the residues for updating the exchange-correlation fields as following

Uyo(r) = v (1) — aR(r), (5.22)
B..(r) = Bi;'(r) — aRg(r), (5.23)

and
Al (r) = Al (r) — aRy (r). (5.24)

Here, i refers to the number of iterations along the self-consistent cycle, and « is a
mixing parameter chosen in order to speed up the convergence.

The only disadvantage of the above scheme may be in the explicit use of unoc-
cupied levels. The scheme was first proposed in the SDFT context [69], and then
extended by us to CSDFT. Experience has shown very good performance, especially
when applied to extended systems.

For finite systems, it is well known that the KLI approximation - discussed
in Chap. 3 - often performs extremely well. It is then appealing to extend this
approximation to the non-collinear OEP equations in CSDFT. This is the topic of
the following section.

5.1.2 KLI approximation in CSDFT

In this section, we suggest a simplifying approximation [43] in the spirit of Krieger,
Li, and Iafrate (KLI) [45, 46] who introduced an analogous approximation in the
(collinear) OEP method of (S)DFT (see Chap. 3). We then introduce the KLI
procedure in CSDFT by approximating the orbital shifts as follows [68]

T, (r) ~ % Zcbj(r)Dij — &,(r)Dy; | (5.25)

where A is a constant. The value of A is not important since it drops out from the
final expressions. Inserting this approximation into the OEP equations and applying
the completeness relation for the Kohn-Sham spinors one obtains a set of algebraic
equations for the exchange-correlation potentials which can conveniently be written
as

D(r)Vye(r) = R(x) . (5.26)

Here, we have defined the 7-component vector V,.(r) as

VL) = (valr), L) TAL()) (5.27
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and the 7 x 7 matrix D(r) has the structure
D(r) = | —m(x) ()1 7
) THx) N

where 1 is a 3 x 3 unit matrix. The matrix elements of the 3 x 3 matrices J and

N are defined by

N (r T(r
Taale) = 223" [cpj(r)aa a(g;(ﬁ ) _ 8(1(;;2 )aaq),-(r)], (5.28)

and

Or,  Org Org  Ory

1 9dn(r)on(r)
Cdn(r) Oro Org (5:29)

al TI‘ i\ TI‘ 1¢8
Noste) = 13 [acbi( ) 0i(x) | 0] (x) 0%i( >]

where o = 1,2, 3 corresponds to the cartesian coordinates x, y, and z, respectively.
The seven components of the vector R(r) on the right-hand side of Eq. (5.26) are
given by

1 & oF
Ri(r) = = Ol (r)—= + ny(r) Dy + hoc.| 5.30
1(r) 2;[1()5@(1‘) n;(r) ¢ (5.30)
1 SE
R a - 5 - I a = + Q00 Dzz+h )
1+a(T) 2;[ pp®;(r)o 50T (1) Mo (T) ¢

1L |1 o OF 1 0%l (r) 6E
Rata(r) =5 > [—Q)L(r)a—mﬁa - Z%WZ;) + Jpa(t) Dir + hoc.
(5.31)
with the density n;(r), magnetization density m;(r), and paramagnetic current den-
sity jp.i(r) of the single orbital ®;(r). It is worth mentioning that in order to arrive
at this result we used the identity (4.56), which follows directly from the gauge
invariance of the exchange-correlation energy.

The KLI equations (5.26) can be solved by iteration: start with an intial guess
for the potentials to compute the orbitals and the right-hand side of Eq. (5.26),
then solve this equation for the new potentials and iterate until self-consistency is
achieved. Again, in connection with the nonuniqueness problem, discussed in Sec.
4.4.1, the possibility of finding several sets of potentials producing the same set of
densities may require to specify a solution by using supplementary conditions as, for
example, is done in the Sec. 5.2.
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5.2 CSDFT-KLI potentials for open-shell atoms

In order to gain some intuition in the KLI equations of CSDFT, we will now ana-
lyze the case of atoms at vanishing external magnetic field in more detail [68]. This
analysis is also useful as an introduction to the next chapter dealing with the de-
generacy problem for open-shell atoms. In the case of zero external magnetic field,
the Kohn-Sham equation takes the form
V2 1 1
—7—% v(r)+ v (r)+ vge(r)+ %VAM(I')%— EAxc(r)V + ppoBg.(r)| Oi(r)=¢€P;(r) .
(5.32)
In the following, as we have done in Sec. 4.1.1, we employ the collinear approxi-
mation. In addition, we assume cylindrical symmetry for both the densities and the
corresponding conjugate potentials (i. e., they do not depend on the azimuthal angle
¢). As a consequence the magnetic quantum number is a good quantum number for
the single-particle orbitals which then take the form

Pimo (T) = Gio (1, 0) exp(ime)x(o) , (5.33)

where we used spherical coordinates and m is the magnetic quantum number (not to
be confused with m(r), the z-component of the magnetization density). o is the spin
index and x(o) is the eigenfunction of the z-component of the spin operator. Thus,
o = +1 for spin-up, and ¢ = —1 for spin-down. In the collinear approximation,
B..(r) = (0,0, B,.(r)) is parallel to the z-axis while A,.(r) = A,.(r)e, where e,
is the unit vector in ¢-direction. As an additional consequence of the cylindrical
symmetry of our problem we have VA, (r) = 0.

We restrict ourselves to ground states whose densities can be reproduced by a
single Slater determinant. For example, for the boron atom one configuration has
all three up-electrons and the two down-electrons in states with magnetic quantum
number m = 0 while in another configuration one of the up-electrons occupies an
m = 1 state with the other occupations unchanged. In this way current-carrying and
zero-current states can be considered. The resulting current only has a component
in the ¢-direction, j,(r) = j,(r)e,. We may then rewrite Eq. (5.32) as

& 1 m

Y +v(r) + vy (r) 4+ vee(r) EmAmC(r) + B0 Be(T) | Yimo(T) = €imoPimo(T) -
(5.34)

We now discuss a number of typical cases: For atomic closed-shell configura-
tions, where the density is spherical and both the magnetization density and the
paramagnetic current density vanish identically, both A,. and B,. vanish identi-
cally. Obviously, in this situation CSDFT reduces to the original DFT.

For ground state configurations where only orbitals with m = 0 are occupied, the
correct value for j,(r) — which is zero at any point in space — is trivially obtained
already within the SDFT scheme. Therefore we expect that v,.(r) = v5P¥T(r),

Ba.(r) = BSPYI (1), and A,.(r) = 0. Actually, any other choice of A,.(r) would not
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make any difference for the ground state densities (because of the prefactor m = 0
in Eq. (5.34)). In a way this may be regarded as a simple manifestation of the
non-uniqueness of the CSDFT potentials pointed out in Ref. [62].

As a third case we consider ground state configurations with a half-filled shell as,
e.g., in the nitrogen atom. Again, SDFT already gives the correct values of the total
densities. Therefore, we again expect that v,.(r) = v5P¥T(r), B,.(r) = BSPFT(r),
and A,.(r) = 0.

Ground state configurations carrying a non-vanishing paramagnetic current are
the most interesting ones in our context. At zero external magnetic field, this
situation only arises for open-shell atoms away from half-filling. Indeed, it is for these
states that we expect A,.(r) # 0 as well as v,.(r) # v5P¥T(r), B,.(r) # BSPFT(r).

In the following we analyze the KLI equations for the above cases in order to
confirm these expectations. We remind the reader that in our derivation of the
OEP equations we assumed that F,. depends only on the occupied orbitals. As a
consequence

6Ea:c .
———— ~exp(—ime) (5.35)
590im0(r)
holds. In this case, the first two KLI equations are
14,0
e (0) + 22225 4 ) — ) (1) 4 0@, (1) (5.36)

¢ ny(r)

where we have defined the spin-dependent scalar potential

ch,a(r) = Ua:c(r) + ,uBO-Ba:c(r)' (537)

The terms on the right-hand side of Eq. (5.36) are given by

occ

1
wgzlc?a<r) = F(r) ;nima(r)uwc,ima(r) ) (538)
1 ocCcC

2, (r) = o (V) e 5.39
wxc,a(r) ng(r) ;nzma(r) TC,imo ( )

with . .
Uacc,ima(r) - % S0 = (540)

Soimo(r) Pimo (T)
and

1
G = / Er Mo (1) [Vaes (1) — thae s ()] + — / Er o (D) Aue(r) . (5.41)
c
Here njme(r) and jp,imo(r) are the density and the paramagnetic current density of

the single orbital @;,,,(r) which, for our symmetry, are related by

nimo(r)
rsinf

jp,ima(r> =m (542)
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The third KLI equation reads

> dne(t)tnes () + N () Auelr) = 3 [0, (1) + 02, ()] (5.43)

g

with e
j ’LmU
EU: > ;:W (5.44)
CEC o ij,zma Ua:c zma(r) 3 (545)
and .
xco' Z.]p 1m0 :pc imo - (546)

It is interesting to note that v,.,(r) and A.(r) couple to each other only if at least
one j,,(r) is non-vanishing.

At this point, we first consider open-shell configurations for which all occupied
orbitals have m = 0. Then N(r) vanishes and the KLI equation (5.36) reduces
to the KLI equation of SDFT, while Eq. (5.43) becomes a trivial identity. As a
CONSeqUENCe, Vg q(r) = vior ' (r) and Ag(r) is undetermined. As discussed above,
A,.(r) does not affect any of the ground state densities and hence we fix A,.(r) = 0.

Next we consider configurations with a half-filled shell. We assume that we
have already solved the SDFT-KLI equations and use the resulting orbitals and
potentials plus the initial guess A,.(r) = 0 as a start for the iterative solution of the
CSDFT-KLI equations. We substitute this initial guess into Eqs. (5.36) and (5.43)
to compute the new potentials. The occupied orbitals of SDFT either have m = 0 or
they come in pairs with m and —m. This leads to the same contributions to . (1)
for orbitals in the same shell, while for the paramagnetic current they contribute
with equal magnitude but opposite sign. Hence, the KLI equations become

Vpew (1) = Wi, (1) + D, (r) = v50, ' (r) (5.47)

Te,o re,o re,o Te,o

and |
—N(r)AY(r) =0= A" (r) =0. (5.48)
This shows that the SDFT solution along with A,.(r) = 0 is also a CSDFT solu-
tion. We also tested numerically that the solution A,.(r) = 0 is stable against (not
necessarily small) perturbations of the initial guess.
Finally, we consider the most interesting case of ground state configurations
with a paramagnetic current different from zero. For these configurations we expect
Au(r) # 0. Solution of the third KLI-equation (5.43) with respect to A,.(r) yields

S 0 (0) + 0o (1) = o (£) Vs 0 (r)
N(r)

Auelr) = ¢ (5.49)
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In this equation, the denominator increases with increasing number of electrons.
The numerator also typically increases when more orbitals are occupied but, due to
large cancellations for contributions arising from orbitals with opposite values of m,
it increases with a slower rate than the denominator. As a consequence, we expect
larger exchange-correlation vector potentials A,.(r) for atoms in the first row than
for atoms in the second row (but the same column) of the periodic table.

In the remainder of this section we discuss the asymptotic behavior of the
exchange-correlation potentials and the vector potential.

We start by assuming that, for finite systems, the exchange-correlation potentials
in the asymptotic region far away from the system behave as

rooo 1

ch,o'(r) - —— (550)
T
and
lim A (r) =0 (5.51)

Eq. (5.50) certainly is a reasonable assumption: it is the well-known asymptotic
behavior for v,., of SDFT which we assume to be unchanged in CSDFT. Eq. (5.51)
then ensures that the term proportional to A..(r)/r in the Kohn-Sham equation
(5.34) decays faster than v,.,(r) asymptotically. At this stage, Eq. (5.51) may be
viewed as a working assumption in order to be able to proceed further. Below we
show that it is consistent with the solution of the KLI equation.

Under this assumption we can deduce [70, 38| the asymptotic behavior of the
atomic orbitals from the Kohn-Sham equation (5.34) as

7nli_}rgo imo (1) = Y Bime exp(—Binor) | (5.52)
where Gine = V/—2€ime. This implies that the spin density is dominated asymptot-
ically by the highest occupied orbital of that spin. The same is true for the current
density if the magnetic quantum number of this orbital is different from zero (as is
the case for current-carrying states of open-shell atoms).

In order to proceed further with our analysis we restrict ourselves to the exact-
exchange functional of Eq. (5.4). Then the KLI equation (5.36) allows us to establish
the following relation between v,., and A,. in the asymptotic region
1 M, A 1

7‘h—>r£lo ch,0'<r) ET‘ <in 0 xC<r> - _; + dxCJVaMaU ) (553)

where we tacitly assumed that we are taking the limit away from a nodal plane
of the highest occupied orbital of spin o [38, 48]. Here N, is the orbital index of
that orbital and M, is its magnetic quantum number. Since we are working in the
collinear approximation, the Kohn-Sham equations for the two spin channels are
completely decoupled and we can choose a constant shift in v,., such that

dxc,NgMgcr =0. (554)
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Eq. (5.53) together with Eq. (5.50) then implies

MO’ r—00
mAm(r) =0 (5.55)
which is consistent with the assumption of Eq. (5.51).

However, a closer inspection of the KLI equations (5.36) and (5.43) shows that
they become linearly dependent in the asymptotic region and therefore do not have a
unique solution. This again may be viewed as a manifestation of the non-uniqueness
problem in CSDFT [61, 62]. In our numerical procedure to be described in the next
chapter, we take a pragmatic approach to the problem of linearly dependent KLI
equations and choose a solution with A,.(r) — 0 and a v, (r) satisfying Eq. (5.50).
This procedure enforces a unique solution in the cases studied.

5.2.1 Physical versus effective magnetic fields

We have just observed above that for spin-polarized but zero-current states, A,. =0
and B,. # 0 is a solution. We can then consider the case where both A,. and B,
are different from zero. By inspection of the two KLI-equations (5.36) and (5.43) it
is clear that under the exchange of spin-up and spin-down electrons, B,.(r) changes
sign. Similarly, exchanging an electron from an orbital with magnetic quantum
number m to a previously unoccupied one with —m leads to A,.(r) changing sign.
These transformations can be performed independently leading to the same total
energy. Hence, the relative sign of A,. and B,. can change independently, that
would not be the case if B,, =V x A,..

As we have seen in Sec. 4.5, if one insists on defining the effective magnetic field
in terms of the effective vector potential then one has to resort to j,,-DFT. One
might wonder how the OEP equations would look in the latter formulation. The
answer is given in the next section.

5.3 OEP equations for j,-DFT

In working out the expressions of the j,,-OEP equations, one has to consider only
external and exchange-correlation magnetic fields that are given as curl of the exter-
nal and exchange-correlation vector potential, respectively. Therefore, the possible
variations are also related by 6B, = V x0A. In addition, in this case one has to use
that the exchange-correlation energy functional depends, through the Kohn-Sham
spinors, on the basic densities (n, j,,). Then, one may start by writing the following

identites
6Exc o 37", v r/ 5TL(I'/) ]' r 5.]771( )
O /d {”( J ooy T oAl >5vs(r)}

_ ki /d3 / [ 52;’5””;) ‘EI;’:E:;) +hc] (5.56)
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0B /dgr/ [vxc(r/)iz—(l(./))—l—%A o(r )‘SJm(rr;]

_ Z /d3 { 5&55“ fsik((i)) +h.c.] . (5.57)

However, here we prefer to arrive at the final (exact) expressions of these equations
along a somewhat simplistic but meaningful derivation.

Let us consider again the CSDFT-OEP equations given in Eqgs. (5.10), (5.11)
and (5.12). Note that Eq. (5.10) is a statement for the particle density, so it does
not need to be changed. The second and the third ones instead are conditions for
the magnetization and paramagnetic-current densities. We can thus combine them
in the fashion as j, and m are combined in j,,. The resulting equations are

Z Ol (r)W;(r) + h.c. = 0, (5.58)

and

1Y 1 N
5 {@j (r) VU (r) — [vqﬁ (r)} \I/i(r)} +5V % {2 o (r)U\IJi(r)} Y he.=0. (5.59)

Also, we need not reconsider the definition of the orbital shifts W,(r).

In fact, note that the definition of D;; in Eq. (5.14) contains the B, filed. Here
we have to insert the “restriction” B,. = V x A,.. Then, we may integrate by parts
(assuming vanishing surface contributions). This leads to

Dy = /d3r’{Uzc(r')@;(r')q),-(r’)+iAm(r’) i) V', () — (V2)()) (x|
- LAV [<I>}<r’>a<1>i<r’>}—®§<r/>(f{)?—éi)}. (5.60)

In summary, we have obtained two coupled equations which provide v,. and A,..
This is all what is needed since, as should be clear by now, B,. is obtained directly
from A,..

Before concluding, we analyze the consequence of the collinear approximation,
and the assumption of cylindrical symmetry for the densities and potentials. Because
of these restrictions and By being source free (this follows from the fact that By is
a curl of a vector), we obtain the condition

0
ey - 61

where p and z are cylindrical coordinates. In other words, the only non-vanishing
component of this field may vary only with respect to p. It is apparent that this
field is quite different from the one usually computed in the standard LSDA and
LVA. Further analysis of OEP-j,,, equations is subject of an ongoing work.

% Bs(r) =
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5.4 Non-collinear OEP method in SDFT

For studying systems exhibiting non-collinear magnetism, SDFT is commonly ap-
plied under the assumption of local collinearity, i.e., the Kohn-Sham magnetic field
is assumed to be locally parallel to the magnetization vector [71]. This is necessary
since the electron-gas based approximations for the functionals assume a collinear
state for the electron gas. The OEP method has been originally introduced in SDF'T
for the case of global collinearity. In this case, the magnetization and the total Kohn-
Sham magnetic field are assumed to have the same direction everywhere in space.
In this restricted case, as we have seen in Sec. 4.1.1, one needs only to consider
two “separate” problems: one for the spin up, and the other for the spin down or-
bitals. A rigorous non-collinear description is immediately obtained if one accepts to
employ exchange-correlation functionals which explicitly depend on two-component
Kohn-Sham spinors - without further restricting their form.

Having in mind the differences between the SDFT and CSDFT, and starting with
the OEP equations for CSDFT (Eqgs. (5.10), (5.11) and (5.12)), the corresponding
ones for SDFT may be obtained by neglecting the coupling to the external vector
potential, and thus neglecting the dependence on the paramagnetic current in the
functionals. Thus, the third equation (5.12) has to be ignored - since, it is merely
a statement on the paramagnetic-current density (which comes from the possibility
of varying with respect the vector potential). Still we need the two first equations,
which we rewrite as

N
> ol )+ hec.=0 (5.62)
k=1
and
—MBZ<D )oU,(r) + h.c. = 0. (5.63)

Here we must not forget to remove the vector potential and currents from the defi-
nition of the orbital shifts ®(r). This is carried out by rewriting

Dy; = /d37”/ {@; (r') [ch(r/) + UBUBIC<I'/)] Dy (r') — @;f(r’) 5;;?5;/) } ’ (5.64)

As we have shown in Ref. [22], the same equations can also be derived more
pedantically proceeding similarly as we have done for the CSDFT-OEP equations.
Alternatively as shown in Ref. [69], they can be derived by using the conditions for
the minimum of the total energy as functional of the local effective fields.

Furthermore, along the lines of Sec. 3.4, we can give an exact transformation of
the equations (5.62) and (5.63). This is carried out by considering the differential
equation for the orbital shifts

7 5E$C
[hs(r) - gk] Uy(r) = — [vm(r) 4 upo By (r)]| @4 (r) + o Dy®i(r) , (5.65)
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which, together with the OEP equations (5.62) and (5.63), eventually leads to the
transformed OEP equations for non-collinear spin-DFT. These may most conve-
niently be written in matrix notation as

n(r() | —;nl((r)) —mOQ(r) —mg,(r) ;wc(?)) glgr;
—mq(r pupn(r zc, 1T _ g2(r
“mor) 0 () 0 Bro() | = | gotr) | - P99
—ms(r) 0 0 pn(r) Byes(r) ga(r)
Here we have defined
a(r) = % S {uaen(v) =V (VL)) 0i0)] + mir)Dis+ he} (567)
with the orbital densities
ng(r) = ®f (1) Dy (r) (5.68)
and SE
Uger (L) = 5(I)kz:') Oy (r) . (5.69)

The other terms on the right-hand side of Eq. (4.26) are given by

gasi(r) = i {iacka(r) = V [ (VOL0)) 0 Wh(x)| + g o) D + hc |

k=1

(5.70)

with a = 1, 2,3 and the Pauli matrices 0, = o, etc. as well as the orbital magneti-
zation

Mio(r) = —pp®! (r)o, @k (r) (5.71)
and
Ugek,o(T) = (f}f—z;)cratbk(r) . (5.72)

We recall that Gidopoulos has recently showed that the nonuniqueness problem
does not affect SDFT on the class of ground states densities with non collinear
magnetizations produced by external non-collinear magnetic fields [64].



Chapter 6

Open-shell atoms and the
degeneracy problem

As we have discussed in chapter 2, the Hohenberg-Kohn [3] and Kohn-Sham [4] the-
orems of DFT, which were originally established for non-degenerate ground states,
can be extended to degenerate ground states as well [5, 6]. These degenerate ground
states lead to a set of different ground state densities, and the exact energy func-
tional yields the same ground state energy for all these densities. It has long been
known, however, that common approximations do not yield the same total ener-
gies [72, 73, 74, 75]. In a systematic investigation of this problem Baerends and
coworkers [76] showed that for states with different total magnetic quantum num-
ber, M, spurious energy splittings of up to 5 kcal/mol result from generalized
gradient approximations (GGA’s). Splittings even up to 10 kcal/mol are observed
for the meta-GGA’s [77].

Recently, the problem has attracted renewed interest. Becke has proposed an
approach for constructing exchange-correlation functionals with an increased ability
to reproduce the degeneracy of atomic states [78]. The essential idea is to enforce
the proper description of the Fermi (or exchange) hole curvature [79] in the approx-
imation of the exchange-correlation energy functional [29]. As a consequence, the
paramagnetic current density appears explicitly in the expression of the correspond-
ing functional [80]. This improves the description of the atomic degeneracy [78] of
states carrying different paramagnetic current densities.

Along the line of Becke’s approach, Maximoff et al [81] have modified the GGA of
Perdew, Burke, and Ernzerhof (PBE) to a form explicitly depending on the param-
agnetic current density. In this way, they successfully reduced the previous spurious
energy splittings. Actually, they have weakened Becke’s suggestion by improving not
the exchange hole curvature at all points in space, but rather its “system” average.

More recently, Tao and Perdew [77] have employed ideas of the current-DFT
framework of Vignale and Rasolt [52]. They constructed a current-dependent cor-
rection to GGA and meta-GGA functionals and their results again suggest that
some improvements for the energy splittings can be achieved.

29
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Motivated by the observed importance of the exchange-hole curvature and its
current terms, we here study the performance of the exact-exchange (EXX) energy
functional which, by definition, describes the curvature correctly for the energy
splittings in DFT, SDFT and CSDFT [68, 82, 83]. In our investigation, we will stay
within the framework of orbital functionals, adopting the OEP method in different
flavors of DFT. But as in all the previus investigations, we only consider densities
represented by single Slater determinants of Kohn-Sham orbitals.

6.1 Enmnergy splittings in exact-exchange approxi-
mation

In this section, we investigate the degeneracy problem for the atoms of the sec-
ond and third row in the periodic table at the exact-exchange-only level in DFT,
SDFT and CSDFT using the KLI approximation. These are the atoms which are
also considered as reference cases in Refs. [77, 78, 81]. For heavier elements such
as the transition metals, there are additional complications in the analysis of the
degeneracy problem: physically, inclusion of spin-orbit coupling will be necessary to
describe the ground states properly. But also for purely non-relativistic calculations
the absolute error in total ground-state energies in the KLI approximation as com-
pared to full OEP calculations in SDFT is typically a factor of three to five larger
for the transition metals than for the lighter atoms [38]. Thus when considering
transition metals we could never claim to reach the same accuracy that we achieved
for the lighter elements.

6.1.1 Numerical implementation

Although the (interacting) Hamiltonian of an atom has spherical symmetry, the
ground state densities of open-shell atoms typically are not spherical. However, for
any of the possible degenerate ground states one can always find an axis for which
the corresponding density exhibits cylindrical symmetry and we choose this axis as
the z-axis of our coordinate system. We seek a Kohn-Sham single-particle potential
with the same cylindrical symmetry. Then the magnetic quantum number m is a
good quantum number to characterize the Kohn-Sham orbitals. We can perform
self-consistent calculations by specifying how many orbitals with m = 0,1,... are
occupied for each spin channel, and we then keep this configuration fixed throughout
the self-consistency cycle. In this way the current-carrying and zero-current states
can be considered.

Along these lines, we have developed an atomic code for DFT, SDFT and CS-
DFT calculations in a basis set representation, assuming cylindrical symmetry of
the Kohn-Sham potential. As basis functions we use the Slater-type functions of
Ref. [84] for the radial part, multiplied with spherical harmonics for the angular
part. We then express the KS Hamiltonian matrix in this basis and by standard
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matrix diagonalization obtain the KS orbitals as linear combinations of the basis
functions.

We have tested our code by computing the total energies of spherically sym-
metric atoms of the first and second row of the periodic table in exchange-only
KLI approximation and compared with results from accurate, fully numerical codes
available in the literature [38, 45, 85]. Using the quadruple zeta basis sets (QZ4P)
of Slater functions [84], our code reproduces these energies to within a maximum
deviation of 0.3 kcal/mol and an average deviation of 0.1 kcal/mol for the first-row
atoms and to within a maximum deviation of 0.9 kcal/mol and an average deviation
of 0.5 kcal/mol for the second row. As an additional estimate of the accuracy of
our calculations we have also computed the energy splittings between different con-
figurations in LSDA. Our results reproduce the spurious energy splittings reported
in Ref. [78] with a deviation of less than 0.02 kcal/mol. As a combination of these
error estimates we expect our result for spurious energy splittings to be accurate at
least at a level of about 0.1 kcal/mol.

6.1.2 Results for DFT and SDFT

We have calculated self-consistent total energies for different configurations of open-
shell atoms. Tab. 7.1 shows the energy differences (spurious energy splittings)
between Kohn-Sham Slater determinants with total magnetic quantum number
|M| =1 and M = 0 in kcal/mol. For comparison we also list the results of the
current-dependent exchange-only functionals of Refs. [78] (denoted jBR) and [81]
(denoted jPBE) in the first and second columns, respectively. Our SDFT results
for the exact-exchange functional lead to larger splittings than both the jBR and
the jPBE functionals. The idea behind the construction of these functionals is to
improve the exchange-hole curvature by inclusion of the orbital paramagnetic cur-
rent density. Since in our calculations we have used the exact exchange functional
(and therefore also the correct exchange hole curvature), the success of the jBR
and jPBE functionals in reducing the energy splittings might actually be due to an
overcorrection of their parent functionals.

The most remarkable results of our calculations are the energy splittings obtained
with pure DFT calculations (i.e., with spin-independent effective potentials) using
the exact exchange functional (third column of Tab.7.1). These spurious splittings
are in most cases more than an order of magnitude smaller than the corresponding
SDF'T results, therefore basically reproducing the exact degeneracy of the different
ground-state configurations. Of course, due to the additional variational degree of
freedom, total energies in SDFT are always lower than corresponding DFT results.
The price to be paid for this improvement, however, are the unphysically increased
energy splittings.



62CHAPTER 6. OPEN-SHELL ATOMS AND THE DEGENERACY PROBLEM

Atom Ajpg [78] Ajppp [81] ADEL . ASPET, ASSRIT

B 0.6 -0.4 ~ 0.1 1.7 1.4
C 0.7 -0.7 ~ 0.1 1.6 1.3
O 1.2 -0.6 0.6 2.4 2.3
F 1.5 -0.6 0.4 2.3 2.3
Al 1.0 0.2 ~ 0.1 1.7 1.6
Si 0.8 -0.1 ~ 0.1 1.8 1.6
S 2.0 0.7 0.3 3.0 3.0
Cl 1.7 0.3 0.3 3.2 3.1

Table 6.1: Spurious energy splittings, A = E(|M|=1) — E(M = 0) in kcal/mol. In
all the calculations QZ4P-basis sets has been used.

6.1.3 Results for CSDFT

We now turn to the results of our CSDFT calculations. As expected (see discussion
in Sec. 5.2), for zero-current states we always obtain a self-consistent CSDFT so-
lution with vanishing exchange vector potential, A,(r) = 0. This solution, which is
equivalent to the corresponding SDFT solution, always gives the lowest total energy.
For current-carrying states we always find a non-vanishing A,. The last column of
Tab.7.1 reports the spurious energy splittings between different configurations of
open-shell atoms of the first two rows of the periodic table obtained within CSDFT.
The splittings are lower in CSDFT than in SDFT due to the additional variational
degree of freedom in the former approach. We see that the effect is most pronounced
for B and C atoms. Although a CSDFT approach to the degeneracy problem ap-
peared promising, our results show only a small and insufficient improvement.

As discussed in Sec. 5.2, the linear dependence of the KLI equations (5.36) and
(5.43) in the asymptotic region may lead to numerical problems in the calculations
of the potentials. Problems can also be induced by the use of finite basis sets. For
example, while in theory the KS orbitals decay exponentially at a rate determined
by their eigenvalues, in a finite basis set the orbitals decay at a rate determined
by the most diffuse function. We have also obtained exchange vector potentials
which diverge asymptotically. This may lead to a wrong ordering of the occupied
and unoccupied orbitals or even to convergence problems. A numerically convenient
scheme to use the KLI equations (5.36) and (5.43) during the self-consistency cycle
consist in, first, to calculate v, ,(r) from Eq. (5.36) with the A,.(r) obtained in the
previous iteration. In this step the asymptotic behavior of v, (r) iy —% can be
imposed if necessary. Then with this updated v,.,(r), a new A,.(r) is obtained from
Eq. (5.43). In order to enforce the asymptotic limit A,.(r) —> 0 we add a small
positive quantity ¢ to N(r) in Eq. (5.49). Total energies and current densities are
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Figure 6.1: Spherical component of the exchange vector potentials for current-
carrying states of oxygen and sulfur atoms (within TZ-basis set).

very insensitive to the choice of §: for the fixed value of § = 10~* a.u., total energies
vary by an order of 1072 kcal/mol or less if § is varied by an order of magnitude
around its chosen value.

In Fig. 6.1 we show the L = 0 (i.e., spherical) component of an expansion
of the exchange vector potentials in terms of Legendre polynomials, i.e., A,(r) =
S0 o AL(r) Py (cos ), for the oxygen and sulfur atoms in the current-carrying state.
The exchange vector potential of sulfur is smaller in amplitude than the one for
oxygen, which also implies a smaller effect on the energies. This confirms our ex-
pectations resulting from the analysis of the KLI equations of Sec. 5.2.

6.1.4 KLI approximation and finite basis sets

If one looks at the corresponding scalar exchange potential (Fig. 6.2) and magnetic
fields (Fig. 6.3), one sees that the overall structure of the SDFT and the CSDFT
results are similar. But for B,, there are significant differences in magnitude close
to the nucleus.

This is also reflected by a difference in the relative magnetization density (0) =
[11(0) —n(0)]/[n1(0) +n,(0)] at the nuclear position. For the current-carrying state
of oxygen we obtain the value ((0) = —1.03x 107 in SDFT and ((0) = —1.16 x 1073
in CSDFT which amounts to a difference of approximately 13%. In order to estimate
the accuracy of these numerically sensitive results we have also calculated the same
quantity for a nitrogen atom and obtain ¢(0) = —1.77 x 1073. This value differs by
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Figure 6.2: Spherical component of the exchange scalar potentials for the current-
carrying state (M=1) and zero current state (M=0) of the oxygen atom computed
in SDET and CSDFT (within TZ-basis set).

approximately 9% from the value ((0) = —1.62 x 1073 given in Table 10 of Ref. [3§]
which was obtained with a fully numerical code for spherically symmetric effective
potentials. This analysis refers to results obtained by using the QZ4P basis sets.
However, within this basis set, the plots for v, and B, show some anomalies. To
comment on that, we focus on the SDFT case since the situation for CSDFT is
similar.

In Figs. 6.4, starting from around r = 15 (a.u.) to around r = 50 (a.u.), a
small step structure in v, and a bigger step in B, are evident. In the region of these
steps, the densities are very small and the main contribution comes essentially just
from the last occupied orbital (which is decaying exponentially). The contribution
to the total energy of this region is only minor. As a result, the overall effect of this
numerical artifact is similar to a “constant” shift for the potentials — this is actually
quite evident by looking at the up and down potential separately (not reported here),
and by the fact that the total energy is not significantly affected. In other words, we
observe a kind of “mechanism” through which different potentials computed with
a finite basis set can produce if not the same but very close particle densities and
hence very close total energies.

We have observed that this kind of anomalies are not present in the results

obtained with smaller basis sets, such as TZ - as shown in Figs.6.2 and 6.3 - or
with the DZ. The QZ4P basis is the largest set available to us. In particular, it
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Figure 6.3: Spherical component of the exchange magnetic field for the current-
carrying state (M =1) and zero zurrent state (M=0) of the oxygen atom computed
in SDFT and CSDFT (within TZ-basis set).

has a more diffuse character. Thus, we conclude that to bigger basis sets (but,
not yet complete) it may correspond a major flexibility for the potentials to behave
wrongly. Always for the QZ4P basis set, we have observed that the problem can be
alleviated by adding a small constant to the density appearing in the denominator of
Eq. (5.39). In fact, the Slater potential seems to be free from any numerical artifacts
(at least for the case considered, and for others that we do not report here). Fig. 6.4
shows the plots before and after this ad-hoc fix, for § = 10~*a.u. Remarkably, the
difference in the total energy is less than 0.01 kcal/mol. This reminds us of the trick
described above, which we used to obtain a non divergent exchange-vector potential.
We point out that in recently published work similar problems were reported for the
full OEP solution within a finite basis set in (S)DFT [86, 87, 88, 89, 90].

6.2 Orbital currents for the correlation energy

In the previous sections, motivated by the observed importance of the exchange-
hole curvature and its current-dependent terms, we have studied the performance of
the exact-exchange energy functional (which, by definition, describes the curvature
correctly) for the energy splittings in DFT, SDFT and CSDFT. In a spin-restricted
DFT scheme, the degeneracy is well reproduced to within 0.6 kcal/mol, but sur-
prisingly spin-unrestricted SDFT calculations result in splittings up to 3 kcal/mol
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Figure 6.4: Spherical component of the exchange magnetic field for the current-
carrying state of the oxygen atom computed in SDFT; before and after the addition
of the constant in the denominator of Eq. (5.39) for the SDFT case.

work. This is not a very satisfactory result, because SDFT provides solutions of
lower energy as DFT, but the corresponding splittings are larger. We also found
that current-carrying states always have higher energies than states without cur-
rent. Moreover, CSDFT results are close to the SDFT ones. These results lead
to the conclusion that EXX alone is not sufficient, and inclusion of correlation is
needed for any further improvement.

The construction of a correlation energy functional compatible with EXX for
the calculation of molecular binding energies is a difficult task [91, 92, 93]. But for
spherical atoms, it has been found that EXX combined with the Colle-Salvetti (CS)
functional for correlation [94, 95, 96] leads to very accurate results [97]. The CS
functional has received a large interest, also because it has been used to derive the
popular Lee-Yang-Parr (LYP) functional [98], which is most commonly used together
with Becke’s exchange functional [99] (BLYP) and in hybrid schemes such as B3LYP
27, 28]. It should be emphasized that the CS correlation energy functional also
has its limitations [100, 101, 102]. In particular, while short-range correlations are
well described [101] the very important long-range correlations are missing. These
correlations often cannot be ignored in molecules and solids, but are energetically
negligible in atoms. This fact, together with the encouraging results for spherical
atoms [97], indicates that it is appropriate to employ the CS functional to analyze
the degeneracy problem for open-shell atoms beyond EXX.

The expression for the CS functional relies on the assumption that the correlated
two-body reduced density matrix may be approximated by the Hartree-Fock (HF)
two-body reduced density matrix pi¥(ry, ry), multiplied by a Jastrow-type correla-
tion factor. After a series of approximations, the following expression is obtained
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for the correlation energy

— —4¢ I‘p2 (7)
Fe= 41/d p(r) 1+ cip3(r)

1+ cop3(x) VI (r+ 5 r— %)

(6.1)
where pllF(r;s) is expressed in terms of the average and relative coordinates r =
5(ry 4+ 1r2) and s = r; —ry. Here, p(r) is the electron density and the constants
c1 = 0.049, co = 0.132, ¢35 = 0.2533, ¢4 = 0.349 are determined by a fitting procedure
using the Hartree-Fock (HF) orbitals for the Helium atom.

Following Lee, Yang and Parr, this expression can be restated as a formula in-
volving only the total charge-density, the charge-density of each Hartree-Fock orbital
and their gradient and Laplacian [98]. In this derivation, the single-particle orbitals
are tacitly assumed to be real. We denote the resulting expression as CSLYP.

In the following, we relax this restriction and allow for complex orbitals. We then
proceed in analogy to the inclusion of current-dependent terms in the Fermi-hole
curvature [79, 78] and in the extension of the electron-localization-function (ELF)
[103] for time-dependent states [104]. As a consequence, in addition to the term
already present in the CSLYP expression, the current densities of the single-particle
orbitals appear in the final formula. In order to obtain this expression, which in the
following will be denoted as JCSLYP, we rewrite the Laplacian of the Hartree-Fock
(HF) two-body reduced density matrix in Eq.(6.1) in terms of the original particle
coordinates

S S
VA (x5 -3

1 1 1
- (ZVf + ng — §V1 . VQ) ,OQHF(I‘l, I'Q)’rl:,.2 . (62)

2 2/ |0
where . .
Py (r1,19) = SP(r1)p(rz) — 5 > (1) o)y (re, 1) (6.3)
Here,
plo’ r17r2 Z@ka Iy <)0kg 1'2) (64)

is the first-order HF density matrix (for a single Slater determinant) expressed in
terms of the single-particle orbitals ¢y ,(r). The corresponding spin-density is simply
given by

polt) = P (1. 1), (6.5)
Allowing the single-particle orbitals ¢y »(r) to be complex, a given orbital not only
gives the contribution py,(r) = |k (r)]* to the density, but also the contribution
Jp ko (r) = Im (0 (r) Ve, (r)) to the paramagnetic current density which is given
by

ipe(r ZJp ko () . (6.6)
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After some straightforward algebra, the Laplacian of the second-order HF reduced
density matrix takes the final form

V2piF (r+§’r_;) o %P(r)vzp(r)——<Vf0(r))2
No V o 2
ST S [ e
. I (6.7)

where

1) = S ol [ Jppgé )) . f) i k,(,(r)] 65)
a ke

1 pk,a(r)

contains all the current-dependent terms. Alternatively, Eq. (6.7) may also be ex-
pressed in terms of the non-interacting kinetic energy density,

Z Voo = 3 Z R N
k:l 7 k=

1 pk,o(r)
VA (55 ) | = GV - 0 - )

) (200(1)75(r) = Jpo (1)) - (6.10)

Comparison of Egs. (6.7) and (6.10) show that J(r), as defined in Eq. (6.8), also
contains current-dependent terms coming from the kinetic energy density.

In the next section, we assess the performance of the CS functional, and, in
particular, the relevance of J(r), in reproducing the degeneracy of atomic states.

6.2.1 Results for the JCSLYP functional

In analogy to the procedure where Hartree-Fock orbitals are used as input to the
CS formula, we have evaluated the correlation energies in a post-hoc fashion using
Kohn-Sham orbitals. These orbitals are obtained from a self-consistent EXX-only
calculation in the approximation of Krieger, Li, and Iafrate (KLI) [46].

In principle, a given functional should be evaluated with KS orbitals obtained
from a self-consistent calculation, and certainly it is possible to use the CS functional
in self-consistent calculations [97]. However, we expect only minor quantitative dif-
ferences between post-hoc evaluation of total energies (or rather total energy differ-
ences) and fully self-consistent results because of the variational nature of DFT. In
fact, the variational principle implies that if one evaluates the total energy with a
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SDFT (DFT)
Atom | Ajcsiyp Acsryp
B | 08(03) | 24 (L4
C | 09¢01) | -32(43)
O | -0.6(-1.9) | 0.9 (-0.4)
F | -0.1(-15) | -3.5 (-5.1)
Al | 0405 | 1.1(0.2)
Si | 05(-04) | -1.2 (-2.2)
S | 01(16) | 1.1(07)
Cl | 07(-L3) | -1.1(-3.2)
me | 03 (1.0) | 0.4 (-1.8)
mae | 05(1.0) | 1.8(2.2)

Table 6.2: Spurious energy splittings, A = E(|M| = 1) — E(M = 0) in kcal/mol for
open-shell atoms, computed in SDFT (DFT results in parenthesis for comparison,).
The correlation energy has been added to the KLI-EXX energies including (JCSLYP)
and neglecting (CSLYP) the current terms of Eq. (6.7). The last row shows the mean
error (me) and mean absolute (mae) of the spurious splittings.

density which differs slightly from the self-consistent density, the resulting change
in the energy is of second order in this small deviation of the densities. This is the
reason why in the literature of functional development it is so common that the
numerical tests of new approximations are carried out with non-self-consistent cal-
culations. In particular, this is also the reason why in other works on the degeneracy
problem the functionals are evaluated in a post-hoc manner as well [77, 78, 81]. We
have tested the effect of the self-consistency using a grid-based implementation for
spherical atoms: total energies obtained with the Colle-Salvetti functional evaluated
with self-consistent and exchange-only KLI densities typically differ by a few tenths
of a millihartree which corresponds to a relative deviation of 1073 percent.

Table 6.2 shows the spurious energy splittings (difference in the total energies)
between Kohn-Sham Slater determinants with total magnetic quantum number
|M| = 1 and M = 0, from our SDFT and DFT calculations. The deviation of
these total energies from the exact values is plotted in Fig. 6.5, where again the
spurious energy splittings are visible. These results highlight the importance of
including J(r) in Eq. (6.7). In particular, it is remarkable to observe that SDFT
splittings are within 0.9 kcal/mol (with a mean error of 0.3 kcal/mol and a mean
absolute error of 0.5 kcal/mol), and the corresponding DFT spurious energy split-
tings are less than 1.9 kcal/mol (with mean errors of 1.0 kcal/mol). It is worthwhile
to note that in several cases inclusion of correlation leads to current-carrying states
(|M] = 1) with lower total energy than zero-current states (M = 0). These results
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Figure 6.5: Dewviation from exact total energies for SDFT and DFT calculations
employing the CS functional, including (JCSLYP) and not including (CSLYP) the
current-dependent term J in Eq. (6.7). States with different magnetic quantum
numbers My, are plotted. Exact total energies are taken from Ref. [97] and references
therein.

are in contrast to EXX-only cases, for which we have seen that: (i) the zero-current
states are always lowest in energy and (ii) the spurious energy splittings are always
smaller in DFT than in SDF'T. Therefore, going beyond EXX by including correla-
tion in the form of the CS functional accurate total energies can be obtained within
the OEP method [97]. Figure (6.5) and Table (6.3) show the deviations from exact
total energies for the states with different magnetic quantum numbers, i.e. different
current-carrying states. This further emphasizes the importance of proper inclusion
of J(r) in Eq. (6.7).

6.3 Conclusions

We confirmed that degenerate ground-state levels of open-shell atoms can be well
described by adopting orbital functionals. At the level of EXX (within the KLI
approximation) we found that the degeneracy of states with different paramagnetic
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JCSLYP (CSLYP)
SDFT DFT SDFT DFT

|My] 0 0 1 1
me 23 (16.1) | 4.7 (185) | 26 (15.7) | 3.7 (16.8)
mac | 4.8(164) | 54 (185) | 47 (15.7) | 4.7 (16.8)

Table 6.3: Mean error (me) and mean absolute error (mae) in the total energies
for the CS functional, including (JCSLYP) and not including (CSLYP results in
parenthesis) the current-dependent term J of Eq. (6.7), in kcal/mol. Exact total
energies are taken from Ref. [97] and references therein.

currents is well reproduced by DFT calculations, but not with SDFT and CSDF'T
ones. In particular, the additional exchange vector potential of CSDFT does not
provide a sufficient correction over the SDFT calculations. Further improvements
have been obtained by including the correlation energy. For the Colle and Sal-
vetti correlation functional, we have derived an expression that can be seen as a
current-dependent meta-GGA expression. We have evaluated the relevance of the
corresponding orbital currents and a very good description of the degeneracy has
been obtained.
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Chapter 7

Extended systems and quantum
dots

In the previous chapter, we have seen the role of the exchange vector potential to be
only minor in context of the description of the degeneracy of the ground-states of
open-shell atoms. It is then interesting to explore if this may be more or less valid
also for somewhat different systems. In addition, we are interested in considering
situations where the unconstrained treatment of the non-collinear features should
be of particularly importance. This leads us to consider extended systems [69, 105].
Finally, we return to finite systems, and the collinear approximation, by considering
quantum dots exposed to an external magnetic field [106].

7.1 Orbital magnetic moments and band-splittings

CSDF'T is the ideal framework to compute quantities such as orbital magnetic mo-
ments. In fact, the Kohn-Sham system of CSDFT in addition to the particle density
and magnetization density, also reproduces the paramagnetic current of interacting
ground-states from which, then, the orbital magnetic moment can be computed as

follows
1

H =5 /d?’r r X jp(r). (7.1)

For determining the orbital magnetic moment an approach known as orbital polar-
ization (OP) method [107, 108, 109, 110] is often in use. However, its partial success
is plagued by its empirical formulation. Recently, interesting ideas to systematize
the OP method within relativistic-density-functional theory (RDFT) [111, 112, 113]
have been proposed [114].

In the following, we work within the non-collinear, non-relativistic limit, in the
form of the Vignale and Rasolt formulation of CSDFT. However, we need to add
a relativistic element to the scheme. This is the the spin-orbit coupling. It is well
known, in fact, that the inclusion of the spin-orbit coupling is important to avoid
the “quenching” of the orbital magnetic moments in crystals. This can be explained

73
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in an intuitive way by considering the fact that the orbital angular momentum does
not generate an appropriate symmetry operation for extended systems. The eigen-
function of the crystals must be labeled according to the irreducible representation
of the symmetry group of the crystal, which in general have low dimension. Thus
the related “orbital moments” are reduced. Moreover, the delocalization of the elec-
trons due to the overlap of the wavefunction with neighboring atoms, leading to a
reduction of a kinetic energy as compared to the electron for isolated atoms. How-
ever, the spin magnetic moments are not quenched and thus the spin-orbit coupling
can act to enhance the orbital magnetic moments. The quenching of the orbital
moments in absence of the spin-orbit coupling term has been observed also in CS-
DFT calculations using the local vorticity approximation [115]. We anticipate here,
that we have experienced the same effect by using the EXX approximation. An ad-
ditional reason for considering the spin-orbit coupling is to reproduce the observed
degeneracy splitting in the electronic band-structures.

7.1.1 Numerical implementation

A suitable functional to be used in the corresponding non-collinear OEP method, is
the exact-exchange-orbital functional evaluated with KS spinors

o Pl (r)d,(r)P!(r') D, ('
BN = 5 [ [ #ray i) ’|(r)_if| 2D (g

1]

For the calculations we have implemented the scheme for the solution of the non-
collinear OEP equations in CSDFT - described in Sec. 5.1.1 - using the FP-LAPW
method [116] within the EXCITING code [117]. The single-electron problem is
solved using an augmented plane wave basis without using any shape approxima-
tion for the effective potential. Likewise, the magnetization and current densities
and their conjugate fields are all treated as unconstrained vector fields throughout
space. The deep lying core states (3 Ha below the Fermi level) are treated as Dirac
spinors and valence states as Pauli spinors. To obtain the Pauli spinor states, the
Hamiltonian containing only the scalar fields is diagonalized in the LAPW basis:
this is the first-variational step. The scalar states thus obtained are then used as
a basis to set up a second-variational Hamiltonian with spinor degrees of freedom,
which consists of the first-variational eigenvalues along the diagonal, and the matrix
elements obtained from the external and effective vector fields. This is more effi-
cient than simply using spinor LAPW functions, but care must be taken to ensure
that there is a sufficient number of first-variational eigenstates for convergence of
the second-variational problem. Spin-orbit coupling is also included at this stage
[115, 118, 119, 120].
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SDET CSDFT
Solid | Exp. | LSDA  GGA EXX | EXX
Fe | 0.08 | 0.053 0.051 0.034 | 0.034
Co | 0.14 | 0.069 0.073 0.013 | 0.013
Ni | 0.05 | 0.038 0.037 0.029 | 0.029
36.2 36.7 634 63.4

Table 7.1: Orbital magnetic moments for iron, cobalt and nickel in pug. The ex-
perimental data are taken from Ref. [121]. All calculations are performed in the
presence of spin-orbit coupling. The final row lists the average percentage deviation
from the experimental value.

Symmetry SDFT
point Exp. | LSDA GGA EXX | EXX-CSDFT EXX-SCDFT
Ge I'7,_g, | 297 311 296  291.3 289 258.1
Ge I'ge_ge | 200 | 229.7 220 201.3 199 173.3
Si s, 44 50 58 42.5 45.5 42.5
9.5 14.0 2.0 2.2 10.5

Table 7.2: Spin-orbit induced splittings for Germanium and Silicon at the I'-point,
m meV. The symmetry point at which the results are obtained is indicated in column
one. The experimental data are taken from Ref. [122]. EXX-CSDFT are results of
the present work and EXX-SCDFT are results from Ref. [123]. The final row lists

the average percentage deviation from the experimental value.

7.1.2 Results and discussion

The orbital moments for spontaneous magnets Fe, Co and Ni, in the absence of
external magnetic fields and with spin-orbit coupling included, are presented in
Table 7.1.

For SDFT, the LSDA, GGA and EXX functionals are used, while for CSDFT the
values are obtained using the EXX functional. It is clear from Table 7.1 that there
is no difference between the results obtained using EXX-CSDFT and EXX-SDFT.
It should also be noted that in comparison to experiments the EXX results are
significantly worse than their LSDA and GGA counterparts. One reason, of course,
could be the fact that LSDA and GGA also include correlation in an approximate
way which is neglected completely within the EXX framework.

The spin-orbit coupling is also responsible for the splitting of some degeneracy
of the band structure. In a recent work [123] it is claimed that the use of the EXX
functional in the framework of spin-current-DFT (SCDFT) [52, 124, 125] improves
the spin-orbit induced splitting of the bands in semiconductors. Unfortunately, it
is not clear if this improvement is due to the use of different functionals (going
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from LSDA to EXX), or due to the use of an extra density when going from SDFT
to CSDFT. This has motivated us to compare CSDFT and SDFT results for this
quantity using the same functional in both cases. We have determined the value
of this splitting for solid Si and Ge and the results are presented in Table 7.2.
While the EXX functional significantly improves the agreement with experimental
values, there is almost no change when going from SDFT to CSDFT. Thus the
improvement is solely due to the orbital-based functional. We also note that the
EXX-SCDFT results of Ref. [123] are significantly different from ours, and in much
worse agreement with experiments. This might be due to the use of pseudopotentials
in the previous work. In this respect it is worth noting that EXX derived KS energy
gaps also show significant differences depending on whether an all-electron full-
potential or pseudopotential method is used [126].
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Figure 7.1: Paramagnetic current density for Ge, in the [110] plane, calculated
using the SDFT and CSDFT. Arrows indicate the direction and information about
the magnitude (in atomic units) is given in the colour bar.

The paramagnetic current density of Ge for LSDA, GGA, EXX-SDFT and EXX-
CSDFT is plotted in Fig. 7.1. Ge is chosen as an example since the spin-orbit
induced splitting is largest for this system and, unlike in the case of metallic or-
bital moments, this quantity does show some difference when going from SDFT to
CSDFT. We immediately notice that there is no significant qualitative difference
between the LSDA and GGA currents. There are, however, pronounced differences
in the current density between LSDA/GGA and EXX-(C)SDFT: the current in the
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latter case being smaller and more homogeneous than that of the former. This is
an interesting finding since it indicates the tendency of (semi-) local functionals
towards higher values of the paramagnetic current density. Even though the EXX-
SDFT current is considerably lower in magnitude than that of EXX-CSDFT and
also has a less symmetric structure, the spin-orbit splittings for the two cases are
almost the same. From Fig. 1 it is also clear that one of the major effects of using
the OEP method and of using j, as an extra density is to change the local structure
of the paramagnetic current.

While the spin-orbit induced band splittings in exact-exchange calculations (both
SDFT and CSDFET ones) are in rather good agreement with experiment, the results
for the orbital moments are worse than the LSDA or GGA values. This suggests
that the proper treatment of correlation is essential for the accurate calculation of
orbital moments.

7.2 Non-collinearity in SDFT

Let us remind that, electron-gas-based approximations have been developed from
the collinear ground-state of the electron-gas. As a consequence, they can be applied
only under the assumption of either local or global collinearity of the magnetization
density and the exchange-correlation magnetic field. In the former case, the practical
scheme of calculation is as follows: one defines for each point in space a rotation wich
diagonalizes the spin-density matrix [64, 71]. In such a way, a magnetization along
the local z-direction is obtained from which a corresponding (parallel) exchage-
correlation magnetic field can be computed. Then, the fields are rotated back.
Hence, the resulting magnetization density and exchange-correlation magnetic field
are by construction locally collinear.

Instead, exchange-correlation functionals of Kohn-Sham spinors naturally allow
an unconstrained non-collinear calculation. As an example in Fig. 7.2, we report
the plot of m(r) x Bexx(r) for the case of an unsupported Cr monolayer, for which
non collinearity is thus apparent. Although for this particular case, one might
speculate that inclusion of correlation may reduce the non-collinearity of m(r) and
the resulting B,.(r), in general such non-collinear features are expected to exist.

Although the property of local non-collinearity between the magnetization and
the exchange-correlation magnetic field so far only has been demonstrated for static
systems, it is of particular interest for time-dependent SDFT with respect to appli-
cations for spin dynamics. The Kohn-Sham equation for time-dependent SDET [37]
is given by

i%@k(r,t) = (—%V2 + vg(r, t) + ,uBo'BS(r,t)> Op(r,t) . (7.3)

Using this equation, it can be shown [127] that the time evolution of the mag-
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Figure 7.2: m(r) X Brxx(r) for an unsupported Cr monolayer. Arrows indicate the
direction and information about the magnitude (in a.u.) is given in the color bar.

netization density is governed by the equation

om(r,t)
ot

where the Kohn-Sham spin-current tensor is given by

+ VIgs(r,t) = —2upm(r, t) x By(r, 1) , (7.4)

{JKS(r,t)] - 4z i:: { [;ﬁqﬂ (r, )] Gady(r, ) — Bl (r, 1) [(;;@k(r,t)]} (7.5)

af

and the divergence of this tensor is defined as

{VJKS(r,t)} ;:i 0 [JKS( t)] . (7.6)

a B=1 8T/3 af

The right-hand side of Eq. (7.4) contains a term proportional to m(r,t) x B,.(r, 1),
which in LSDA vanishes identically. Hence, only with spinor-orbital functionals such
as EXX, a reasonable description of the spin dynamics can be achieved.

7.3 Quantum dots in an external magnetic field

Quantum dots represent a fundamental element for novel nanoelectronic compo-
nents based on the semiconductor technology, and a paradigm for exploring a large
spectrum of quantum effects in finite low-dimensional systems [128, 129]. A com-
mon way to fabricate quantum dots is to restrict the two-dimensional electron gas
in a semiconductor heterostructure laterally by electrostatic gates, or vertically by
etching techniques: this creates a bowl-like potential in which conduction electrons
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are trapped. Their realization can be easily tuned by changing the electrostatic
gates, their geometry, or applying magnetic fields. The electrons in a quantum dot
are affected by the surrounding semiconductor material. One can describe electron
motion in a quantum dot by replacing the mass of a free electron by the effective
mass of electrons of the host semiconductor material in the Hamiltonian (m — m*).
This is called the effective-mass approximation and it has been shown to be fairly
accurate for the quantum dots we are going to consider.

In modelling quantum dots, the most common approximation for the flat disk-
like shape is a two-dimensional well with a parabolic confinement potential. Due to
the cylindrical symmetry of the problem, the model quantum dot Hamiltonian of N
electrons in a homogeneous external magnetic field along the z-axis can be separated
into radial and angular parts as ¢;,(r) ~ exp(ild)R;,(r), where the radial wave
functions R;;,(r) are eigenfunctions of the Hamiltonian

~ 1 2? 10 I [ 0?
Hslo‘ = - ( + - - _> + —we + m*—TZ

2m* \or?  ror r? 2 2
l AQTC * %
—*& + upm*g* By + vg (1) + Veo (1) (7.7)
m*c

with the total confinement Q = /w? + w?/4, and the cyclotron frequency w, =
By/m*c. The radial wave functions are expanded in the basis of eigenfunctions
of the corresponding non-interacting problem. Before reporting our results, it is
appropriate to mention that although the Hamiltonian of SDFT does not include
any coupling to the external vector potential, in practice this coupling is usually
included. As a result, the Kohn-Sham schemes of SDFT and CSDFT use the same
external vector potential, but the latter also includes the exchange-correlation vector
potential.

Figure 7.3 shows the total energy of a six-electron-quantum dot (wy = 5 meV) as
a function of the strength of the external magnetic field By. The kinks correspond
to changes in the ground-state configurations with respect the z-projection of the
angular momenta (L.;S,). The EXX total energies are considerably too large when
compared with the accurate QMC results [54]. EXX also leads to an erroneous
occurrence of the (—5;2) ground-state at By = 1.5...2.0 T. Moreover, we find only
negligible effects of A, on physical quantities like the total energy, density, and
current density. In this respect, our results are in line with previous ones obtained
within several kinds of local approximations [54].

Interestingly, adding the LSDA correlation [130] in a post-hoc fashion to the EXX
energies (FX X + cLSDA) yields the correct sequence of states as a function of Bj.
This is a major improvement over the cLSDA-corrected Hartree-Fock calculation
which does not give the correct ground states for a similar system [131]. As seen in
Fig. 7.3, the energies of EXX+cLSDA are still consistently too low by 1.0 —1.5 meV.
Considering the agreement between QMC and the conventional LSDA, our results
reflect the inherent tendency of the LSDA to cancel out its respective errors in
exchange and correlation. We are able to remove most of the error by applying
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Figure 7.3: Magnetic-field dependence of the total ground-state enerqy (minus
6 = 6+\/wi +w?/4) in the siz-electron quantum dot calculated with the exact-
exchange (EXX), EXX plus LSDA correlation (EXX+cLSDA), and with EXX plus
the corrected LSDA correlation (EXX+c1|LSDA). The LSDA and quantum Monte
Carlo (QMC) results [54] are shown for comparison.

a self-interaction correction as suggested by Stoll et al. [132], which consists in
removing the contribution coming from the like-spin electrons, as follows

Fur) = Earspa— / drns (r)e.[ns, 0](r) — / drny(t)ef0,n ](x),  (7.8)

where €.(ny, n|) is the correlation energy per electron of the two-dimensional polarized-
electron-gas of Attaccalite et al. [130]. In Fig. 7.3, we have denoted this approxi-
mation as EXX+cT|LSDA.

Finally — as we have mentioned in Sec. 6.2.1 — we would like to emphasize once
more that our post-hoc calculations are justified by the variational nature of DFT.
This implies that if one evaluates the total energy with a density which slightly differs
from the self-consistent density, the resulting change in the energy is of second order
in this small deviation of the densities.

7.4 Conclusions

We have verified that for extended system such as Fe, Co, Ni, Ge and Si and for
quantum dots in external magnetic fields, the effect of full self-consistent EXX cal-
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culations within CSDFT is only minor, and often negligible, as compared to self-
consistent EXX-SDFT calculations. In particular, the orbital magnetic moments for
Fe, Co, Ni are greatly underestimated both in EXX-SDFT and EXX-CSDFT. The
possibility of carrying out ab-initio non-collinear calculation within our extended
formalism has been highlighted by reporting the case of an unsupported Cr mono-
layer. For the case of quantum dots exposed to external magnetic fields, it is seen
that a modified SDF'T scheme including the coupling to the vector potential, but not
adding the dependence of the functional on the currents, can provide energies close
to the quantum Monte Carlo total energies, if a self-interaction corrected LSDA for
correlation is added to the EXX functional.
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Chapter 8

Exchange-energy functionals for
2D systems

Since the advent of density-functional theory (DFT) much effort went in the de-
velopment of approximative functionals for the exchange and correlation energies.
Most of this work focused on three-dimensional (3D) systems. For two-dimensional
(2D) systems such efforts have been relatively scarce, partly due to the lack of direct
applications until significant developments in semiconductor technology allowed the
fabrication of low-dimensional structures such as quantum dots (QDs). Semiconduc-
tor QDs are finite quasi 2D electron systems confined typically in GaAs/AlGaAs het-
erostructures, and due to their controllability in size, shape, and number of confined
electrons, they have various applications in the field of nanotechnology [128, 129].
Within the DFT approach, QDs are most commonly treated using the 2D LSDA
exchange functional derived in 1977 by Rajagopal and Kimball [133], which is then
combined with the 2D LSDA correlation parametrized first by Tanatar and Ceper-
ley [134] and later for the complete range of collinear spin polarization by Attaccalite
and co-workers [130]. Despite the relatively good performance of LSDA with respect
to, e.g., quantum Monte Carlo calculations [54], there is a lack of accurate 2D func-
tionals. Moreover, previous studies have shown that 3D functionals perform poorly
when applied to these quasi 2D systems [135, 136, 137]. For example, in 3D the
LDA-exchange is proportional to n*? whereas in 2D is proportional to n%2. In
fact, Pollack and Perdew [137] analyzed very nicely that when a density becomes
more and more 2D, the 3D LDA results become increasingly worse. This failure
is common to GGA and meta-GGA approximations as well. The exact-exchange
functional employed within the optimized effective potential method, which au-
tomatically conforms to various dimensionalities, seems an appealing alternative.
However, the development of approximations for the correlation energies compati-
ble with exact exchange remains a challenging problem. In this chapter, we present
an ab initio derivation of new exchange functionals for finite 2D systems [138] in
the framework proposed by Becke and Roussel [80]. The new exchange-energy func-
tionals constitute a natural basis for developing corresponding correlation-energy
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functionals.

8.1 Modeling the exchange-hole function

Our starting point is the expression of the exchange energy given in terms of the
spin-dependent exchange-hole functions, which reads as

Ng(r o
E.[ng,n] ———Z/d%/cﬂ ‘r1_12|h$(r1,r2) (8.1)

Within the restriction that the noninteracting ground state is nondegenerate and
hence takes the form of a single Slater determinant, the exchange-hole (or Fermi-
hole) function hJ takes the form

| Sope s o (01) o (12) 2

na(r1>

hg(rl, I'Q) = (82)
The sum in the numerator is the one-body spin-density matrix of the Slater deter-
minant in terms of the KS orbitals, 14, ,. The exchange-hole function as defined here
is always positive. Moreover, integrating this function over ry yields

/dQ’I“Q hg([’hl‘g) =1. (83)

This property reflects that around an electron with spin o at r; other electrons of the
same spin are less likely to be found as a consequence of the Pauli principle. From
Eq. (8.1), specializing it to the case of 2D, it is clear that to evaluate the exchange
energy we just need to know the cylindrical average with respect to s = ro — ry of
the exchange-hole around r;. Expressing the exchange-hole by its Taylor expansion

ho(r1,ra =11 +8) = exp(s - V)hI(r1,v')|p=r, (8.4)
the cylindrical average is defined as
N 1 2
(1) = o / Ay exp(s - VA2 (21,1 e, (8.5)
0

The short-range behavior with respect to s is then obtained as

B 2
ho(ri,s) = ng(ry)+ %V/th(rl, )y + -
= n,(r1) + 5°Cro(ry) + ... (8.6)

where C7 is the so-called local curvature of the exchange hole around the given
reference point ry. This function can be expressed as [80, 79|

1|, (Vn(,) ,]p -
g = — — 2 S 2 .
Ce 1 Vn + 5 e + " (8.7)



8.1. MODELING THE EXCHANGE-HOLE FUNCTION 85

where
No
To = Z |V¢k,a|2 (88>
k=1
is twice the spin-dependent kinetic-energy density, and
1 o~
ino = 5 2 [V (Vo) = (VU1,) o] (8.9)
k=1

is the spin-dependent paramagnetic current density. Both 7, and j,, depend explic-
itly on the KS orbitals. Thus the expression in Eq. (8.7) has an implicit dependence
on the spin-densities n,. Once we can provide an approximation for ﬁg(rl, s) sat-
isfying the normalization condition of Eq. (8.3), we can compute the exchange-hole
potential

U7 (r)) = —27 / ds 7 (r1, ) (8.10)
0

and finally the exchange energy
1
E.lny,n| = 5 EU /d2r1 ne(r1)UZ (ry). (8.11)

As the basis of our exchange model we consider the ground state single-electron
wave function of a 2D harmonic oscillator
a 2,.2

Uolr) = = exp {—O‘; } : (8.12)
which is normalized for each o # 0. We point out that the harmonic (parabolic) ap-
proximation for the confinement potential is the most common choice when modeling
QDs fabricated in semiconductor heterostructures [128, 129]. The exact exchange-
hole function (8.2) for the single-particle case becomes h?(ry,rs) = ¥k(r2)t,(ry) =
ne(ry). Setting ry = r and ry = r + s, we calculate the cylindrical average as

1 2

ho(r,s) = o |, dpsny(r +s)
= o exp [—a” (r* + 5°)] x
272

21
x / dps exp [—2a°rs cos(¢)]
0

2
= % exp [—a® (r* + %) ] Io(2a°rs), (8.13)

where Iy(z) is the modified Bessel function of the first kind of zero order (note that
I5(0) = 1). Performing the integral in Eq. (8.10) yields

UJ(r) = —|aly/mexp [—a’r?/2] Io(a®r?/2) (8.14)
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for the exchange-hole potential. Since the modified Bessel function has the limiting
property Io(z) — exp(z)/v/2mz, for x — 400 (x € R), we immediately find

lim UJ(r) = —1/r. (8.15)

r—00

Furthermore, this particular case is self-interaction free by construction.

8.1.1 Implicit density functional

At this point, we adopt the strategy of Becke and Russel [80] and elevate expression
(8.13) as a general model for the averaged exchange hole of a generic N-electron 2D
system. In order to locally reproduce the short-range behavior of the exchange hole,
we replace o and r? by functions of r, respectively, i.e., a® — a(r) and r* — b(r).
Now we can rewrite Eq. (8.13) as

ho(a,b;s) = ¢ exp [—a (b+ s%)] Iy(2aV/bs). (8.16)
7
This model satisfies, through its original definitions, hZ(a,b;s) > 0 and the unit

normalization [Eq. (8.3)]. From the second-order term in the Taylor expansion in
Eq. (8.6) we obtain

107
-1 - _ Tz 8.17
(y = Dexp(y) = 2 (8.17)
where y := ab. The first-order term gives
a = mngexp (y), (8.18)
and hence we get
b= exp (—y). (8.19)

TNy

As the result, Eqgs. (8.17)-(8.19) determine, together with Egs. (8.16), (8.10) and
(8.11), an implicit density functional. This completes the derivation of our first
approximation to the exchange-energy functional.

8.1.2 Explicit density functional

Next we show that the same procedure also provides an explicit density functional.
For that purpose, we consider the 2DEG limit where the derivatives in Eq. (8.7)
can be set to zero, i.e., V?n, = 0 and Vn, = 0, and we take the known expression

for the kinetic-energy density of the 2DEG, 7, = 2mp? + %—:’ (Ref. [139]). Note
that the current-dependent term in Eq. (8.7) cancels the current-contribution to the
kinetic energy, leading to the expected result that the exchange energy of a uniform
system does not depend on the (uniform) paramagnetic current density. In fact, a

uniform paramagnetic-current in a homogeneous electron gas can be viewed as being
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generated by a transformation to a moving Galilei frame. Since the electron-electron
Coulomb interaction is the same in any Galilean frame, the exchange energy cannot
depend on the Galilean frame and, hence, must be independent of the uniform
paramagnetic-current density. These simplifications lead to y = 0, b = 0, and
a = mn,, so that the averaged exchange-hole function becomes

hl(s) = ngexp [—mnys’], (8.20)
and the exchange-hole potential is now given by UZ[n,] = —mne 2, which is an
explicit functional of the spin-density. Defining the 2D density parameter r, =

1/y/mn, where n = ny +n, is the total density, and the polarization £ = (ny —n,)/n,
the total exchange energy per particle becomes

e lr _ ﬁ 3/2 _~\3/2
dradl=— A [0 97+ (-0 (8:21)

This expression can then be used also for inhomogeneous systems of electrons by
assuming that locally they behave as homogenoues one. In fact, it is interesting to
compare expression (8.21) with the exact 2DEG result [133] widely applied to finite
systems in terms of the LSDA:

EQQCDEG[rm £l = —;\T/z [(1 + 5)3/2 + (1 - 5)3/2} ) (8.22)

Interestingly, the only difference between these two expressions is in the prefactor
for about ~ 4.4%.

8.2 Evaluation of the new functionals

In this section we report the numerical evaluation of the performance of our new
approximations considering as reference systems the two-dimensional electron gas
and few electrons quantum dots.

8.2.1 Two-dimensional electron gas

Besides the exchange energies, it is interesting to compare the averaged exchange
hole given in Eq. (8.20) with the exact exchange hole of the 2DEG. Following the
derivation of Gori-Giorgi and co-workers [140] for the pair-distribution function of
the 2DEG, we find

§ K2V T2 (k3 s

h2DEG(S) — ( F,O') 1( F,o ) (823)

m RBsR

where k3" = (47n,)"/? is the Fermi momentum (for spin ¢) in 2D, and J; is the ordi-
nary Bessel function of the first order. In Fig. 8.1(a) we compare the exchange holes
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Figure 8.1: FEzchange hole (a) and the exchange energy per particle (b) for two-
dimensional electron gas (£ = 0) in the exact expression (dashed lines) and in the
present model (solid lines).

with a fixed spin-density n, = 1 between our model (solid lines) and the exact 2DEG
result (dashed lines) and find a good qualitative agreement. Figure 8.1(b) demon-
strates the differences in the exchange energies (per particle) given in Eqs. (8.21)
and (8.22) as a function of the total density (for & = 0).

8.2.2 Few-electron quantum dots

Next, we consider the smallest nontrivial QD consisting of two electrons. The Hamil-
tonian is given by

2
1 1 1
H— Bl v T 7 8.24
% (5% pt) -y 629

where we set the strength of the harmonic confinement to wy = 1. In this case
the ground-state (singlet) wave function is known analytically [141], and the total
density can be expressed as [142]

4

2 1 2
r) = ———de " (1472/2) + =y/me ¥ /2 x
o) = e SR
x [Io(r2/2) + r21o(r%/2) + r*1(r/2)] }. (8.25)
The exact (spin) exchange-hole potential is simply
2,0 ny(r')
UnZy(r) = —/dr'|r ] (8.26)
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Figure 8.2: Ezchange-hole potential of a two-electron quantum dot calculated exactly
(dashed line) and using the present model (solid line), LSDA (dotted line), and
the present model in the 2DEG limit (dash-dotted line). The analytic density and
orbitals are used as input for the model and the LSDA.

In Fig. 8.2 we compare the exact exchange-hole potential (dashed line) to the
result of our exchange model (solid line) and find an excellent agreement. We note
that in a regime 0.75 < r < 0.85 the parameter y is not solvable from Eq. (8.17).
Therefore, we set there y to zero, which corresponds to the 2DEG result discussed
above, i.e., we perform a well-valid LSDA-type approximation in this small regime.
The dash-dotted line shows the result of our explicit density functional which cor-
responds to the 2DEG limit. This density functional has the wrong asymptotic be-
havior, but it is considerably closer to the exact result than the conventional LSDA
(dotted line). In Fig. 8.3 we show the exchange-hole potentials for a 20-electron QD
with wy = 0.42168, corresponding to a typical value of 5 meV in the effective-mass
approximation when modeling QDs in GaAs [128, 129]. The exact-exchange (EXX)
result (dashed line) is calculated here in the Krieger-Li-lafrate (KLI) approach within
spin-DFT implemented in the octopus real-space code [143]. Again, we find a very
good agreement between EXX results and our model. However, despite the fact
that U? provided by the LSDA stays considerably above the EXX curve at r < 4,
the opposite behavior at larger r leads to a rather accurate LSDA exchange energy
in the case of the N = 20 quantum dot. However, as seen in Table 8.1, in smaller
QDs the performance of our exchange model is superior to the standard LSDA.
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Figure 8.3: Similar to Fig. 8.2 but here for 20 electrons. The exact-exchange result
was calculated here using the KLI approximation.

Table 8.1: FExchange energies for different number of electrons calculated using the
exact exchange, the implicit density functional of Sec. 8.1.1, standard LSDA, and the
the explicit density functional of Sec. 8.1.2. For N > 2 the EXX result was calculated
within the KLI approximation, and as input for our functionals and LSDA exchange
we used the self-consistent density and orbitals from the standard LSDA including
correlation (wy =1 for N =2, and wy = 0.42168 for N > 2).

N EXX Implicit functional LSDA Explicit functional
2 -1.0839 -1.0836 -0.983 -1.026
6 -2.229 -2.284 -2.130 -2.223
12 -4.890 -5.059 -4.763 -4.972

20 -8.781 -9.124 -8.632 -9.012
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8.3 Conclusions

We have provided new implicit and explicit exchange functionals that significantly
improve the exchange-hole potentials and exchange energies for few electrons in 2D
quantum dots with respect to the standard local density approximation. Our results
also suggest that accurate approximations for the correlation energy functional can
be developed analogously.
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Chapter 9

(General conclusions

In this thesis, we have shown that the ground state of interacting electrons with non-
vanishing current and magnetization can be successfully described and investigated
within density functional theories by employing approximate exchange-correlation
energy functionals which depend explicitly on the Kohn-Sham spinors. This ap-
proach allows an unconstrained search of the Kohn-Sham ground state. As a conse-
quence approximations such as the assumption of local or global collinearity between
magnetization, current and corresponding conjugate fields are avoided. At the same
time, other limitations of electron-gas based approximations, such as the divergences
of the exchange-correlation potentials originating from the appearance of the Lan-
dau levels in the homogeneous electron-gas exposed to an external magnetic field
are overcome in a natural way.

To make use of such spinor-orbital functionals, we have presented the derivation
of the equations for the exchange-correlation components of the effective fields within
the optimized effective potential method. Furthermore, a practical scheme for their
solution and simplifying approximations have been suggested and analyzed. In this
context, the relations, similarities and differences among different flavors of density
functional theory have been elucidated.

We have confirmed that the solution of a long standing problem in density func-
tional theory, which is the description of the degeneracy of ground states of open-
shell systems carrying different paramagnetic-current densities, is achieved by using
approximate orbital-dependent expressions for the exchange and correlation energy.
In this context, we have derived a new expression for the correlation energy in
the form of the Colle and Salvetti functional which takes into account the orbital
currents of the Kohn-Sham ground state. The relevance of these terms has been
evaluated.

We have then considered extended periodic systems and have calculated their
orbital magnetic moments and band-splittings induced by the spin-orbit coupling.
We have shown that, at the level of the exact-exchange-only approximation, the
orbital magnetic moments are greatly underestimated. Thus we gave a clear indi-
cation that inclusion of correlation beyond of exact exchange is essential for these
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quantities. On the other hand, the calculated band-splittings are in agreement with
experimental results.

Important systems for technological applications are two-dimensional quantum
dots. For these systems, we have shown that by adding to the exact-exchange
approximation an ad-hoc self-interaction corrected correlation from the standard
two-dimensional LSDA total energies close to Quantum Monte Carlo results can be
obtained.

However, for all the considered systems, we have found that the role of the ex-
change vector potential is minor. Our analysis also suggests that the same statement
may be valid for the full exchange-correlation vector potential.

At last, motivated by the facts that three-dimensional functionals perform poorly
when applied to two-dimensional systems — and that the development of functionals
for the exchange and correlation energies of two-dimensional systems is still in its
infancy — we derived new approximations for the exchange energy functional. Ex-
cellent agreement for the exchange-hole potentials and exchange energies is found
when compared with the exact-exchange reference data for the two-dimensional uni-
form electron gas and few-electron quantum dots, respectively. Along the same lines
models for the correlation-hole and thus approximations for the correlation energies
could be obtained as well.
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