
A. Different free energy concepts and Fixman potentials

The table below shows the various notions of free energy in this thesis and surveys their related Fixman potentials (for a more detailed
overview, we refer to Section 3.5). As before Φ : Rn → Rk is a smooth reaction coordinate, where smooth is meant such that the level
sets Σξ = Φ−1(ξ) are C2-submanifolds of codimension k in Rn for all regular values ξ ∈ Rk. The Jacobian is abbreviated as JΦ = DΦ.
Following the previous nomenclature, dσ labels the surface element (or Hausdorff measure) of Σξ ⊂ Rn, whereas dH denotes the surface
element of the phase space submanifold Σξ × Rn ⊂ Rn × Rn. Note that standard and geometric free energies coincide, if the reaction
coordinate is linear in the configurations. In this case also A = D = F −G below.

free energy second-order system first-order system Fixman potential

standard
F = − β−1 lnZ with

Z =

∫

exp(−βH)(volJΦ)−1 dH

F = − β−1 lnQ with

Q =

∫

exp(−βV )(volJΦ)−1 dσ

D = − β−1 lnM (= F −G) with

M =
1

QΣ

∫

(volJΦ)−1 exp(−βV )dσ

geometric
G = − β−1 lnZΣ with

ZΣ =

∫

exp(−βH) dH

G = − β−1 lnQΣ with

QΣ =

∫

exp(−βV ) dσ

W = β−1 ln volJΦ , e.g., V 7→ V +W

for Blue Moon reweighting

optimal
prediction

E =
1

2
〈Iη, η〉 +G with

I =
1

QΣ

∫

JTΦJΦ exp(−βV )dσ

A = −β−1 ln

∫

exp(−βE)dη −G ,

where typically A 6= F −G

confinement
U = β−1 ln

√
detK , (K s.p.d.)

if K = JTΦJΦ, then U = W



B. Coordinate expressions

We introduce the local coordinate expressions and expressions for the metric tensor
that are used throughout this thesis. Let Σ ⊂ Rn be a smooth submanifold of
codimension k in Rn. Recall the definition of the normal bundle over Σ

NΣ = {(σ, n) |σ ∈ Σ, n ∈ NσΣ} ⊂ Rn × Rn

with the natural diffeomorphism of NΣ into Rn given by ι : (σ, n) 7→ σ + n. In a
sufficiently small tubular neighbourhood NΣε of Σ with ‖n‖ < ε we can pull back
the Euclidean metric, considering NΣε as our configuration space. Then, given an
orthonormal frame {n1(σ), . . . , nk(σ)}, we can introduce local coordinates on NΣε by

φ1 : Rn → NΣε, (x, y) 7→ (σ(x), yini(σ(x))) , (B.1)

By means of φ1 we can represent any point (σ, n) ∈ NΣε in terms of the bundle
coordinates (x, y), hence any point q ∈ Rn close to the submanifold Σ. We shall make
the arrangement that all coordinates that belong to Σ are indexed by Greek letters
α, β, γ, . . ., whereas the normal coordinates are indexed by Latin letters i, j, k, . . ..
Whenever it is necessary, we will use Latin indices . . . , l,m, n that run over all
coordinates which, however, should become clear from the context.

We endow the tangent space TNΣε with the standard bases ∂/∂xα ∈ Tσ,nNΣε
and ∂/∂yi ∈ Tσ,nNΣε which give rise to local coordinates in the usual way. Let us
abbreviate z = (x, y). Then the local coordinate expression of the metric tensor is
obtained by pulling back the Euclidean metric by the map φ = ι ◦ φ1

gij(z) = δkl
∂φk

∂zi
∂φl

∂zj
, i, j, k, l = 1, . . . , n

Hence the metric tensor takes the form

g(x, y) =

(
G(x) + C(x, y) A(x, y)

A(x, y)T 1

)

. (B.2)

where the matrix G(x) ∈ Rd×d, d = n−k is the metric induced on Σ by restricting the
Euclidean metric. Introducing the shorthand Xα = ∂σ/∂xα for the vectors tangent to
Σ, we have Gαβ = 〈Xα, Xβ〉. The matrix C(x, y) ∈ Rd×d has the entries

Cαβ = 2 yk 〈dnk(Xα), Xβ〉 + ykyl 〈dnk(Xα), dnl(Xβ)〉 ,
where dn(X) = ∇n ·X denotes the directional derivative of n along X .29 Note that
we have exploited the symmetry 〈dnk(Xα), Xβ〉 = 〈Xα, dnk(Xβ)〉 in the last equation.
Finally the elements of the off-diagonal matrix A(x, y) ∈ Rd×k are given by

Aiβ = yj 〈ni, dnj(Xβ)〉 .
If the codimension of Σ in Rn is one, then the metric tensor takes a particularly simple
form, and the matrices G,C can be given a nice geometrical meaning:

g(x, y) =

(
G(x)(1 −M(x, y))2 0

0 1

)

where M denotes the matrix of the Weingarten map that is associated with the second
fundamental form of the embedding Σ ⊂ Rn (cf. [81, 219]). It is defined by

Mα
γ = yGαβ 〈dn1(Xβ), Xγ〉 .

29We will also sometimes use the common notation dn(X) = ∇Xn.
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The vanishing of the off-diagonal matrix A is related to the fact that the normal
connection is identically zero for submanifolds of codimension one. This can be seen
by differentiating the expression ‖n1‖2 = 1 along Σ

0 =
d

dt
‖n1(σ(t))‖2

∣
∣
∣
∣
t=0

= 2 〈dn1(X), n1〉 ,

where σ(t) is a curve in Σ with tangent X at t = 0. More generally, the coefficients
ωij(X) = 〈dni(X), nj〉 are 1-forms which are called the normal fundamental forms.
By the same differentiation argument it is easy to check that these 1-forms are skew-
symmetric, ωij = −ωji . For the details the reader is referred to [181, 183].

Hamiltonian and Lagrange function We now state the local expressions of the
molecular Lagrangian and the corresponding Hamiltonian. Without loss of generality
we set the atomic masses to unity. The Lagrangian L : TNΣε → R is considered first:

L(σ, n, σ̇, ṅ) =
1

2
〈(σ̇, ṅ), (σ̇, ṅ)〉 − V (σ, n) .

Note that this is the ordinary Lagrangian (2.1) with M = 1, where the inner product
of tangent vectors in TNΣε is defined by

〈(X,Y ), (X ′, Y ′)〉 = 〈X + Y,X ′ + Y ′〉 ,
where 〈·, ·〉 is the usual inner product in Rn. The local coordinate expression of L is

L(x, y, ẋ, ẏ) =
1

2

〈
g(x, y) · (ẋ, ẏ)T , (ẋ, ẏ)

〉
− V (x, y) , (B.3)

where V (x, y) = V (σ(x) + yini(σ(x))), and the metric tensor (B.2) can be written as

g =

(
G+ C A
AT 1

)

= P ·
(
G+ C −AAT 0

0 1

)

· PT

with the matrix

P =

(
1 A
0 1

)

.

The inverse metric tensor then takes the form

g−1 = P−T ·
(

(G+ C −AAT )−1 0
0 1

)

· P−1

with the inverse of P ,

P−1 =

(
1 −A
0 1

)

.

Defining the conjugate momenta to (x, y) by

uα =
∂L

∂ẋα
, α = 1, . . . , d

vi =
∂L

∂ẏi
, i = 1, . . . , k .

we obtain the Hamiltonian as the Legendre transform of L

H(x, y, u, v) =
1

2

〈
g(x, y)−1 · (u, v)T , (u, v)

〉
+ V (x, y) . (B.4)
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Calculation of the Christoffel symbols Our averaging results rely on local
coordinates. Hence we need to compute the (symmetric) Christoffel symbols

Γijk =
1

2
gil
(
∂gjl
∂zk

+
∂gkl
∂zj

− ∂gjk
∂zl

)

with z = (x, y). Since we can assume that all curves (σ(t), n(t)) stay close to Σ it
makes sense to consider only terms up to zeroth order in y (linear terms have mean
zero anyway). At y = 0 the first α ≤ n− k Christoffel symbols read

Γαβγ =
1

2
Gαδ

(
∂Gβδ
∂xγ

+
∂Gγδ
∂xβ

− ∂Gβγ
∂xδ

)

Γαiβ = GαγSiγβ

Γαij = 0 ,

(B.5)

where Γαβγ are simply the Christoffel symbols that are associated with the metric G on
the surface Σ. The symmetric matrix that is associated with the second fundamental
form in the local coordinate basis Xα = ∂σ/∂xα has the entries

Siγβ = 〈dni(Xγ), Xβ ]〉 .
The remaining Christoffel symbols for the normal coordinates (i ≤ k) are given by

Γiαβ = −Siαβ
Γijα =

1

2

(

ωjiα − ωijα

)

Γijk = 0 .

(B.6)

Notice that Γijα is skew-symmetric in the upper and lower indices, as follows from the
definition of the skew-symmetric coefficients of the normal connection

ωijα = 〈dni(Xα), nj〉 .

C. More coordinate expressions and the mean curvature vector

We first address the problem how to parametrize the constraint manifold. A
submanifold Σ of Rn defined by the vector-valued equation Φ(q) = 0 is properly
immersed, if DΦ has maximum rank, i.e., is non-singular almost everywhere on the
surface [182, 243]. According to Sard’s Lemma [174] this can be guaranteed by choosing
Φ : Rn → Rk, such that it belongs to the class Cn−k+1(Rn). Then the points, at which
DΦ is rank-deficient, form a set of measure zero in Rn−k, and the level sets Φ−1(ξ)
are regular submanifolds of codimension k in Rn. The following Lemma holds:

Lemma C.1. Let q∗ ∈ Σ be any non-singular point, and let Uδ(q
∗) denote

a sufficiently small tubular δ-neighbourhood including that point. Then there is
a parametrization of Σ in Uδ(q

∗) given by {q1, . . . , qn−k; f1, . . . , fk} that is an
embedding, where f : Rn−k → Rk is the local inverse of Φ as defined by qn−k+l =
f l(q1, . . . , qn−k).

Proof. Let q∗ be a non-singular point of Σ, and consider the square k× k minor K of
DΦ which is made by, say, cropping the Jacobian’s first n − k columns. Suppose
detK 6= 0 at q∗ ∈ Σ. Then the Implicit Function Theorem guarantees that we
can locally solve the equation Φ(q) = 0 for the vector (qn−k+1, . . . , qn), obtaining
smooth functions of the remaining coordinates. Let these function be denoted by
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qn−k+l = f l(q1, . . . , qn−k), such that Φ(q1, . . . , qn−k; f1, . . . , fk) = 0. Consequently
σ = (q1, . . . , qn−k; f1, . . . , fk)T is an immersion and moreover by the Inverse Function
Theorem and smoothness of f an embedding of Σ into Rn.

Note that the specific choice of K does not affect our considerations, for we can
always choose a different parametrization σ̃, with any k coordinates ql being functions
of the remaining n − k coordinates. For instance if Φ is of class C∞, then so are the
transition functions ψ = σ ◦ σ̃−1. Thus Σ will be globally smooth.

Hence we can define local coordinates {x1, . . . , xn−k} with xα = qα for α =
1, . . . , n − k, such that σ = σ(x) is an embedding Σ ⊂ Rn. Then we obtain from
implicit differentiation of the equality Φ(x1, . . . , xn−k; f1, . . . , fk) = 0

dΦ =

(
∂Φ

∂xα
+
∂Φ

∂f l
∂f l

∂xα

)

dxα = 0 , (f l = qn−k+l)

where the sum is taken over α = 1, . . . , n−k and i = 1, . . . , k. Since the 1-forms dxα are
linearly independent, we demand that each of the brackets vanishes. For convenience
we may bring the last equation into matrix vector form. We have

Df = −(D2Φ)−1D1Φ .

Here we used the symbol D1 to denote the derivative with respect to the first n− k
coordinates and D2 for the remaining slot. Clearly K = D2Φ is the invertible k × k
minor of DΦ. In particular in the codimension k = 1 case, we can explicitly assert
Df = −(∂Φ/∂qn)−1D1Φ. Finally we obtain the restriction of the Euclidean metric to
Σ as the metric that is induced by the embedding of Σ into Rn,

Gαγ = 〈∂σ/∂xα, ∂σ/∂xγ〉 = δαγ +
∑

l

∂f l

∂xα
∂f l

∂xγ

which can be equivalently written in the form

G = 1 + (D1Φ)T (D2Φ)−T (D2Φ)(D1Φ) .

Mean curvature vector The map Φ : Rn → Rk with the rank of DΦ equal
to k defines a foliation of Rn of codimension k by the collection of all connected
components Σξ = Φ−1(ξ), where ξ varies throughout Rk. In the calculation of the
optimal prediction equations in Section 3.3.1 we have utilized a relation between the
variation of the surface element dσξ with ξ and the components of the mean curvature
vector of the leaf Σξ. The justification is given now:

For each regular ξ value consider the normal bundle over Σ = Σξ. We have seen
in Appendix B that in a sufficiently small tubular neighbourhood we can pull back
the Euclidean metric to the normal bundle NΣ. Using bundle coordinates (x, y) the
pulled-back metric takes the form (B.2), viz.,

g(x, y) =

(
G(x) + C(x, y) A(x, y)

A(x, y)T 1

)

.

where the matrix G is the metric induced on Σ by the embedding. By

dV =
√

det g(x, y)dxdy

we define the volume element on NΣ. Since g(x, 0) = G(x) ⊗ 1 the surface element
dσξ =

√
detGξ(x)dx of Σ in can be expressed accordingly as

dσξ =
√

det g(x, 0)dx
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where the subscript ξ is used to indicate the implicit dependence of the surface metric
on the foliation parameter ξ (on the other hand, g(x, 0) = G(x)⊗1 without subscript,
since the normal coordinate y = 0 takes over the role of the parameter ξ).

Given an orthonormal frame {n1(σ), . . . , nk(σ)} for the normal bundle we can
write the map Φ in terms of the bundle coordinates Φ(x, y) − ξ = (JTΦQ)(σ(x))y,
where Q ∈ Rn×k is the matrix (n1, . . . , nk), and JΦ = DΦ denotes the Jacobian. By
chain rule we can evaluate the derivative of the surface metric Gξ

∂

∂ξi

√

detGξ(x) = (JTΦQ)ij
∂

∂yj

√

det g(x, 0) .

Here (JTΦQ)ij are the elements of the inverse matrix (JTΦQ)−1. Taking advantage of
the identity (det g)′ = det g · tr(g−1g′) we find

∂

∂ξi

√

detGξ =
1

2
(JTΦQ)ij tr

(

g(x, 0)−1 ∂g

∂yj

∣
∣
∣
∣
y=0

)
√

det g(x, 0)

= −(JTΦQ)ij tr
(
G−1

Sj

)√
detG .

From the particular form of the metric g(x, y) we can conclude that G−1
Sj with

Sj = −PTdnj(·) are the matrices of the Weingarten maps with respect to the local
basis of the tangent vectors ∂σ/∂xα ∈ TσΣ, where PT : TσR

n → TσΣ is the tangential
projection. The trace gives the negative components of the mean curvature vector

H(σ(x)) =
s∑

i=1

κi(x)ni(x) , κi = − tr(G−1
Si) ,

with respect to the normal coordinates y1, . . . , yk (or the respective normal frame).
Accordingly ∂i

√
detGξ = (JΦQ)ijκj is the mean curvature with respect to the

foliation Φ−1(ξ). The dependence on Φ via the Jacobian does not come as a surprise,
since, as is known, the mean curvature is an extrinsic curvature measure.

D. A co-area formula for Dirac’s delta function

We briefly outline how to write the conditional probability (3.6) as an ordinary surface
integral (3.7). Some definitions first: a function f : Rn → R is quickly decaying if

lim
‖z‖→∞

zαf(z) = 0 , ∀α ∈ N0 ,

where zα is declared component-wise [306]. Then the space of quickly decaying
functions f ∈ C∞(Rn) with quickly decaying derivatives is called Schwartz space
and is denoted by S (Rn). Let Φ : Rn → Rk be a smooth function, such that the
fibres Σξ = Φ−1(ξ) are smooth submanifolds of codimension k in Rn. Then for any
function f ∈ S (Rn) we define the Dirac measure δ(Φ(z) − ξ) by

∫

Rn

f(z)δ(Φ(z) − ξ) dz =

∫

Σξ

f (volJΦ)−1 dσξ . (D.1)

Here JΦ = DΦ denotes the Jacobian of Φ, and dσξ is the Hausdorff measure (surface
element) of Σξ ⊂ Rn. The matrix volume for the rectangular matrix JΦ is given by

volJΦ(z) =
√

detJTΦ (z)JΦ(z)

Without loss of generality we set ξ = 0 and omit the argument ξ from now on. In order
to show that the definition (D.1) makes sense let us introduce a non-negative function
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ϕ : Rk → R that has compact support and which satisfies ϕ(0) > 0. Moreover for
ε > 0 we define the family of functions δε(y) = ε−1ϕ(ε−1y). The following is standard:
for a test function h ∈ S (Rk) we introduce the Dirac distribution δ(y) by

lim
ε→0

∫

Rk

δε(y)h(y) dy =

∫

Rk

h(y)δ(y) dy ,

where the rightmost integral is defined as the point evaluation [307]

h(0) =

∫

Rk

h(y)δ(y) dy .

Here we face a slightly different problem: Using (D.1) we have to show that

lim
ε→0

∫

Rn

δε(Φ(z))f(z) dz =

∫

Rn

f(z)δ(Φ(z)) dz . (D.2)

By definition, the support of δε shrinks as ε goes to zero. Therefore we can restrict
the integration domain to a tubular neighbourhood NΣε of Σ with local coordinates
given by the map φ(x, y) = σ(x) + yini(σ(x)). Hence we have

lim
ε→0

∫

NΣε∩Rn

δε(Φ(z))f(z) dz

= lim
ε→0

∫

Rn

f(x, y)δε(B(x)y)
√

g(x, y)dxdy

with the abbreviation
√
g =

√
det g. Note that we have used the somehow abusive

notation f(x, y) for the pull-back (f ◦ φ)(x, y)). The matrix B = QTJΦ ∈ Rk×k with
Q = (n1, . . . , nk) stems from the local representation of (Φ ◦ φ)(x, y) = B(x)y. We
introduce a new variable ζ by setting ζ = B(x)y. Thus by the above definition of the
Dirac distribution δ(ζ) the last equation becomes

lim
ε→0

∫

Rn

f(x,B(x)−1ζ)δε(ζ)(detB(x))−1
√

g(x,B(x)−1ζ)dxdζ

=

∫

Rn

f(x,B(x)−1ζ)δ(ζ)(detB(x))−1
√

g(x,B(x)−1ζ)dxdζ

=

∫

Rn−k

f(x, 0)(detB(x))−1
√

g(x, 0)dx ,

It follows from the particular form of the metric (B.2) that
√

g(x, 0) =
√

G(x), where
G is the metric of Σ. Observing further that detB(x) = volJΦ(σ(x)) we obtain

lim
ε→0

∫

NΣε∩Rn

δε(Φ(z))f(z) dx =

∫

Σ

f (volJΦ)−1 dσ ,

which gives the assertion (D.2). We conclude by noting that the definition (D.1) is
independent of the choice of any compactly supported function ϕ.

E. Three-scale problems

The common structure of the systems considered in Section 6 is that they involve
three time scales rather than two time scales as in typical slow-fast systems. Hence we
consider a generic three-scale system (for simplicity we assume that (x, y) ∈ R × R)

ẋǫ(t) =
1

ǫ
f(xǫ(t), yǫ(t)) + g(x, y)

ẏǫ(t) = − 1

ǫ2
h(xǫ(t), yǫ(t)) +

σ

ǫ
Ẇ2(t)

(E.1)
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which is basically the former slow-fast system after a rescaling of time according to
t 7→ t/ǫ, such that the right hand side of the slow equation has the same order of
magnitude as the diffusion term in the fast equation [23, 34]; see also [308, 298].

In order to derive the limit equation for ǫ→ 0, we shall employ a perturbation-like
argument. To this end consider the backward equation associated with (E.1):

∂tv
ǫ(x, y, t) = Aǫvǫ(x, y, t) (E.2)

with

Aǫ = ǫ−2A1 + ǫ−1A2 + A3 ,

and the three generators

A1 =
σ2

2
∂2
y + g(x, y)∂y

A2 = f(x, y)∂x

A3 = g(x, y)∂x .

Suppose that the fast process, generated by A1, has a unique invariant measure
µx(dy) = ρ(x, y)dy, where the density ρ satisfies A1ρ = 0.

We expand the solution of the backward equation into a perturbation series
according to vǫ = v0 + ǫv1 + ǫ2v2 + . . . choosing an initial density vǫ(x, y, 0) = vǫ(x, 0)
that only depends on the slow variable [35]. Plugging vǫ into (E.2) equating powers of
ǫ yields a hierarchy of equations, the first three of which are

ǫ−2 : A1v0 = 0 , (E.3)

ǫ−1 : A1v1 = −A2v0 , (E.4)

ǫ0 : A1v2 = ∂tv0 −A2v1 −A3v0 . (E.5)

As the operator A1 acts on function in the fast variable only, and its kernel is one-
dimensional, we can conclude that v0 depends on x only. In order to unveil the lowest
order time evolution (E.5) we define the projection Π : L2(µx) → ker(A1) ⊂ L2(µx)
onto the nullspace of A1 as the map

(Πu)(x) =

∫

u(x, y)µx(dy) . (E.6)

In fact Π is the conditional expectation with respect to µx(dy). We address the next
equation (E.4). For it to be uniquely solvable in L2(µx), it is helpful to see that [309]

u ∈ ranA1 ⇐⇒ u ∈ (kerA1)
⊥ ⇐⇒ Πu = 0 .

Hence orthogonality to the kernel amounts to averaging of A2v0 to zero under the fast
dynamics, which can be equivalently expressed by ΠA2Π = 0, because the kernel of
A1 is one-dimensional. If the centering condition (6.11) holds, this condition is clearly
satisfied, such that we can invert A1 on the second equation:

v1 = −A−1
1 A2v0 .

If we insert this expression into the evolution equation (E.5), and apply the orthogonal
projection onto the nullspace of A1, we obtain the diffusive limit equation

∂tv0(x, t) = Āv0(x, t) with Ā = ΠA3Π − ΠA2A−1
1 A2Π . (E.7)

In view of the fact that A2 and A3 are first-order differential operator, and A1 does not
involve any x-derivatives at all, we can interpret the last equation again as a backward
equation in L1(dx) with a generator that can be cast into standard form

Ā = A(x)∂2
x +B(x)∂x ,
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and to which the following Itô stochastic differential equation is associated [33]

ẋ(t) = B(x(t)) +
√

2A(x(t))Ẇ (t) .

We will show below how the coefficients A,B are to be computed. Generally speaking,
the procedure works by solving (E.4) which is an ordinary differential equation:

A−1
1 A2v0 = A−1

1 f(x, y)∂xv0 =: w(x, y)∂xv0 ,

where the function w(x, y) solves the cell problem

A1w(x, y) = f(x, y) with w(x, ·) ∈ (kerA1)
⊥
. (E.8)

Note that the initial conditions and the respective integration constants of the cell
problem are chosen such that w(x, ·) does not lie in the nullspace of A1. Solving the
equation subject to consistent initial conditions, Ā can be written as

Āv0 = −
∫

f(x, y)w(x, y)µx(dy) ∂
2
xv0

+

∫

(g(x, y) − f(x, y)∂xw(x, y))µx(dy) ∂xv0

(E.9)

using the definition of the conditional expectation with respect to µx. It remains to
show that the covariance matrix of the diffusion is positive definite. Indeed by means
of (E.8) the first term under the integral can be rewritten as the quadratic expression

f(x, y)w(x, y) = w(x, y)A1w(x, y) ,

which is strictly negative, since the spectrum of A1, considered on functions that are
orthogonal to the kernel of A1, lies entirely on the negative real axis.

Integral representation of the averaged generator Extracting the coefficients
a, b by solving the cell problem (E.8) may not be possible in general. An alternative
approach [25] uses an explicit integral representation A−1. Thus let g(x, ·) be
orthogonal to the kernel of L2(µx), i.e., Πg = 0. Then the function

G(x, y) = −
∫ ∞

0

exp(tA1)g(x, y) dt

is an integral representation of A−1
1 g, for

A1G = −
∫ ∞

0

A1 exp(tA1)g dt

= −
∫ ∞

0

d

dt
exp(tA1)g dt

= (1 − lim
t→∞

exp(tA1))g ,

and A1 is negative-definite for all functions g ∈ (kerA1)
⊥

. Hence exp(tA1) → 0 and

w(x, y) = −
∫ ∞

0

exp(tA1)f(x, y) dt ,

which gives upon substitution into (E.9)

Āv0 =

∫

f(x, y)

∫ ∞

0

exp(tA1)f(x, y) dt µx(dy) ∂
2
xv0

+

∫

f(x, y) ∂x

∫ ∞

0

exp(tA1)f(x, y) dt µx(dy) ∂xv0

+

∫

g(x, y)µx(dy) ∂xv0 .
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Exploiting the semigroup property of exp(tA1) the coefficients become

A(x) =

∫

f(x, y)

∫ ∞

0

Eyf(x, yx(t)) dt µx(dy)

B(x) =

∫ (

g(x, y) + f(x, y)

∫ ∞

0

Ey∂xf(x, yx(t)) dt

)

µx(dy) ,

where yx(t) denotes the fast process at time t starting at yx(0) = y, and Ey labels the
average over all realizations up to time t conditional on the initial value y.

F. Van Kampen’s approximation

We shall demonstrate how studying the normalized deviations leads to a three-scale
problem of the type (E.1). To this end consider the scaled deviation

ξǫ(t) =
xǫ(t) − x(t)√

ǫ
. (F.1)

For the sake of convenience we restrict our attention to the case ξǫ ∈ R. We augment
the system (6.1) by the (redundant) differential equation (6.3) for ξǫ. In other words,
we replace (6.1) by the joint system for (x, ξǫ, yǫ) ∈ R × R × R:

ẋ = − ∂xG(x) + σẆ1

ξ̇ǫ = − 1√
ǫ
∂x (V (x, yǫ) −G(x)) − ∂2

xV (x, yǫ)ξǫ + O(ǫ∞)

ẏǫ = − 1

ǫ
∂yV (x, yǫ) +

σ√
ǫ
Ẇ2 .

Clearly the averaged equation for x is decoupled from the rest, but we keep it, since
otherwise the system would become time inhomogeneous. The associated backward
equation then has the form

∂tu
ǫ(x, ξ, y, t) = Aǫuǫ(x, ξ, y, t)

with

Aǫ = ǫ−1A1 + ǫ−1/2A2 + A3 ,

where the single generators are given by

A1 =
σ2

2
∂2
y − ∂yV (x, y)∂y

A2 = −∂x (V (x, y) −G(x)) ∂ξ

A3 =
σ2

2
∂2
x −

(
∂xV (x, y) + ∂2

xV (x, y)ξ
)
∂x .

In contrast to the previous section the nullspace of A1 now consists of function
that depend on x as well as ξ (the slow coordinates). Accordingly the projection
Π : L2(µx) → kerA1 maps to functions g(x, ξ). Quite remarkably the operator A2

meets the solvability condition ΠA2Π = 0. The powers of
√
ǫ in the backward equation

suggests that we shall expand its solution as follows

uǫ = u0 +
√
ǫu1/2 + ǫu1 + . . . .

Equating powers of
√
ǫ yields a hierarchy of equations, the first three of which are

ǫ−1 : A1u0 = 0 ,

ǫ−1/2 : A1u1/2 = −A2u0 ,

ǫ0 : A1u1 = ∂tu0 −A2u1/2 −A3u0 .
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Repeating the procedure from the last section taking into account the solvability
condition and the fact that the projection Π commutes with the Ornstein-Uhlenbeck
generator A3 gives the familiar limit equation

∂tu0 = Āu0 with Ā = −ΠA2A−1
1 A2Π + ΠA3Π .

By running through the calculation from the last section, Appendix E, it can be
shown that the term containing A−1

1 yields the diffusion expression for the normalized
deviation ξ without further drift (see below), whereas the rightmost term yields the
averaged equation for the slow variable x and the drift G′′(x)ξ of the error. That is,
Ā turns out out to be the generator of the skew system (6.6).

Calculation of the diffusion coefficient Consider the family of cell problems
(E.8) for functions w(x, ξ, ·) ∈ (kerA1)

⊥
. In particular we take a look at

f(x, ξ, y) = − ∂

∂x

(
λ(x)2

2
y2 − σ2

2
lnλ(x)

)

from Example 6.1 above. The cell problem is then independent of ξ,

σ2

2

d2w

dy2
− yλ(x)2

dw

dy
+

(

y2λ′(x)λ(x) − σ2

2

λ′(x)

λ(x)

)

= 0 .

Hence w(x, ξ, y) = w(x, y). The solution of the homogeneous problem is easily found:

w0(x, y) = C2(x) +
σ
√
π

2

C1(x)

λ(x)
Erfi

[
λ(x)y

σ

]

,

where C1, C2 are integration constants, that may or may not depend on the slow
variable x, and erfi[z] is the complex error function that is defined by

erfi[z] = −i erf[iz] with erf[z] =
2√
π

∫ z

0

exp(−ζ2) dζ .

Variation of constants including the solvability condition (6.11) finally leads to

w(x, y) = C2(x) +
σ
√
π

2

C1(x)

λ(x)
Erfi

[
λ(x)y

σ

]

+
1

2

λ′(x)

λ(x)
y2 , (F.2)

where the integration constant C1(x) is arbitrary, and C2(x) is determined by the
requirement Πw = 0. That is, C2(x) is found to be

C2(x) = −σ
2

4

λ′(x)

λ(x)3
.

Intriguingly the solvability condition does not rely on C1(x) at all. For this reason we
may fix C1 ≡ 0 without any loss of generality. In fact, the computed coefficients do
not depend on C1(x) anyway. By this we obtain the diffusion coefficient in (6.9),

A(x) = −
∫

f(x, y)w(x, y)µx(dy) =
σ4

4

(
λ′(x)

λ(x)2

)2

. (F.3)

Remark F.1. Consider again the problem of inverting A1. Clearly the result of this
operation is defined only up to functions that vanish under the action of A1,

v1 = A−1
1 A2v0 + ζ with ζ ∈ kerA1 ,

where the additional function ζ accounts for the indeterminacy of inverting A1. Gladly
this does not change the diffusive limit equation as long as the solvability condition
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ΠA2Π = 0 is met, for then also ΠA2ζ = 0, and so the indeterminacy disappears from
the effective equation. See also [85].

However we have to be very careful in relaxing the centering condition (6.11).
To see what can happen consider the cell problem, and do not assume that A2v0 be
orthogonal to the kernel of A1; but then projecting equation (E.4) to the nullspace of
A1 yields a contradiction, for ΠA1 = A1Π and therefore

0 = ΠA1v1 = ΠA2v0 6= 0 .

Of course the solvability condition ΠA2Π = 0 is somehow weaker than the centering
condition (6.11). Nevertheless the last equation clearly shows that the perturbation
series breaks down, if the right hand side of equation (E.4) has a component in the
nullspace of A1. In fact ΠA2Π = 0 can be considered a consistency condition for the
whole ansatz to make sense.
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