
6. Deviations from reduced models: correcting Brownian motion

Recall the idea of the Averaging Principle as introduced in Section 3.2. Remember
moreover that we have obtained averaged diffusion equations for the reaction
coordinates by artificially accelerating the dynamics of the unresolved modes. The
averaged equations can then be considered the asymptotic result of the (singular) limit
of infinite time scale separation between the reaction coordinate and the remaining
degrees of freedom.

Correspondingly, we shall briefly sketch possible scenarios where this asymptotic
strategy fails to capture the effective dynamics, e.g., due to a lack time scale separation
or due to metastability in the unresolved modes. Anyway in realistic examples there
is no control over the scale separation; in fact there is no small parameter at all.

6.1. Moderate deviations from the Averaging Principle

For the sake of clarity we restrict our attention to the case of a linear reaction
coordinate. (The generalization to curvilinear reaction coordinates is straightforward
using the results of Section 2.3.) Accordingly, we consider a Smoluchowski equation
with separated slow and fast modes (x, y) and a potential V : Rs × Rk → R, viz.,

ẋǫ(t) = −D1V (xǫ(t), yǫ(t)) + σ Ẇ1(t)

ẏǫ(t) = −1

ǫ
D2V (xǫ(t), yǫ(t)) +

σ√
ǫ
Ẇ2(t) .

(6.1)

Here σ2 = 2/β. As we know from Proposition 3.9, for ǫ → 0 the slow process xǫ(t)
converges pathwise to a Markov process x(t) for all t ∈ [0, T ] which is governed by

ẋ(t) = −∇G(x(t)) + σ Ẇ1(t) , (6.2)

where the averaged potential G is the (geometric) free energy,

G(x) = −β−1 ln

∫

exp(−βV (x, y)) dy .

6.1.1. Central Limit Theorem: fluctuations from equilibrium We want to
study the error of the averaged motion, xǫ(t)− x(t), on a fixed time interval [0, T ]. It
was discovered by Khas’minskii [85] that the normalized error

ξǫ(t) =
xǫ(t) − x(t)√

ǫ

has a limiting distribution for ǫ → 0 that is Gaussian.28 What is interesting to note
is the difference to deterministic systems, for which it is possible to asymptotically
expand the error xǫ(t)−x(t) = ǫξ1(t)+ ǫ2ξ2(t)+ . . . in powers of the small parameter.
For diffusive systems it can be shown however, that the error is of order

√
ǫ, where all

higher-order error terms are exponentially small [24]. Hence no further terms of the
asymptotic expansion can be written down.

Suppose that D1V (x, y) has bounded first and second derivatives in x. We
continue the analysis of the error by setting xǫ(t) = x(t) +

√
ǫξǫ(t). Then

ξ̇ǫ(t) =
1√
ǫ

(
D1V (x(t) +

√
ǫξǫ(t), yǫ(t)) −∇G(x(t))

)
. (6.3)

28We write ξǫ(t) rather than ξǫ(t, ω), where ω ∈ Ω is an element of some set of elementary events.
However the reader should keep in mind that ξǫ(t) is a stochastic process that depends on the
realizations of the white noise, i.,e., ξǫ(t, ·) is a random variable for each t ∈ [0, T ].
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Expanding the right hand side formally in terms of ǫ, we obtain [185]

ξ̇ǫ(t) =
1√
ǫ

(D1V (x(t), yǫ(t)) −∇G(x(t)))

+ D2
1V (x(t), yǫ(t)) · ξǫ(t) + O(ǫ∞) .

The remainder O(ǫ∞) is far from obvious, but we refer the reader to the article [86]
and the references given there. Now recall that yǫ(t) = y(t/ǫ). Integrating yields

ξǫ(t) =
1√
ǫ

∫ t

0

(D1V (x(s), y(s/ǫ)) −∇G(x(s))) ds

+

∫ t

0

D2
1V (x(s), y(s/ǫ)) · ξǫ(s) ds+ O(ǫ∞) .

Obviously the second term on the right hand side converges in the way that
∫ t

0

D2
1V (x(s), y(s/ǫ)) · ξǫ(s) ds →

∫ t

0

∇2G(x(s)) · ξ(s) ds (6.4)

as ǫ→ 0. Upon rescaling time according to s 7→ ǫs, the first term becomes

1√
ǫ

∫ t/ǫ

0

(D1V (x(ǫs), y(s)) −∇G(x(ǫs))) ds .

Letting ǫ going to zero, the last expression would be simply an instance of the ordinary
Central Limit Theorem, if there were no time dependence in x. But it has been
proved that the integral (6.4) converges weakly to a Gaussian Markov process [85].
Abbreviating f(x, y) = D1V (x, y), this Gaussian process has the covariance matrix

a(x)a(x)T = lim
T→∞

∫ T

0

∫ T

0

cov (f(x, yx(s)), f(x, yx(t))) dsdt , (6.5)

where yx(t) is the solution of the fast dynamics for a fixed value of x, and cov(f, g)
denotes the covariance of two random vector fields f, g. (Note that yx(t) for fixed t
is a random variable by virtue of the different realizations of the Brownian motion.)
The limit of the normalized deviation satisfies the following family of equations

ξ̇(t) = ∇2G(x) · ξ(t) + a(x) · Ẇξ(t)

with Ẇξ(t) denoting standard Brownian motion in Rk. As a result the averaged
equation (6.2) is replaced by the following pair of equations

ẋ(t) = −∇G(x(t)) + σ Ẇ1(t)

ξ̇(t) = ∇2G(x(t)) · ξ(t) + a(x(t)) · Ẇξ(t) .
(6.6)

Equation (6.6) has an interesting structure, a so-called skew product structure. That
is, the slow equation for x is decoupled from the equation for ξ, while the deviations
depend on the solution of the averaged equation. Therefore it is by no means obvious
how to recover the full solution from the averaged one, including the deviations. One
possibility to do so is by employing van Kampen’s approximation [296]

xǫ(t) ≈ x(t) +
√
ǫξ(t) , (6.7)

where the ”≈” symbol should not be taken literally, for convergence ξǫ(t) → ξ(t)
was only in the sense of probability distributions, whereas we had convergence in
probability with regard to xǫ(t) → x(t). Another frequently used approach, e.g., [297],
is to add some extra noise to the averaged solution, while omitting the drift:

ẋǫ(t) = −∇G(xǫ(t)) +
(
σ +

√
ǫa(xǫ(t))

)
Ẇ1(t) (6.8)
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All these approximations are in some sense obvious, but ad-hoc. Therefore we refer to
the steps (6.7) and (6.8) as remodelling of the full dynamics. Nevertheless the method
offers interesting opportunities for the practical implementation, since the covariance
matrix (6.5) can be computed numerically running constrained simulations of the fast
dynamics at fixed values of the slow coordinate.

Example 6.1. For the sake of illustration we reconsider our guiding example 3.20:

ẋǫ(t) = −∂xV (xǫ(t), yǫ(t)) + σ Ẇ1(t)

ẏǫ(t) = −1

ǫ
∂yV (xǫ(t), yǫ(t)) +

σ√
ǫ
Ẇ2(t) .

Here (x, y) ∈ R × R, and the potential is given by

V (x, y) =
1

4

(
x2 − 1

)2
+

1

2
λ(x)2y2

with the function λ(x) ≥ c > 0 defined by

λ(x) = 1 + C exp
(
−α(x− xb)

2
)
.

Note that the ǫ-scaling is slightly different from the previous occurrences (see Example
3.20, for instance). The skew-structured limit equation then reads

ẋ(t) = −∂xG(x(t)) + σ Ẇ1(t)

ξ̇(t) = ∂2
xG(x(t))ξ(t) + a(x(t)) Ẇξ(t) ,

(6.9)

where G is the free energy exhibiting the entropic (dynamical) barrier,

G(x) =
1

4

(
x2 − 1

)2
+ β−1 lnλ(x) ,

and

a(x) =
1

β

∣
∣
∣
∣

λ′(x)

λ(x)2

∣
∣
∣
∣
.

is the standard deviation of the Gaussian error which can be computed analytically,
if we assume that the fast process is ergodic (see Appendix F). Note that the second
derivative of F (x), which appears in the limit equation of the error is not negative
definite (see Figure 39). In fact the error is completely governed by the dynamical
barrier at x = xb, where both |λ′(x)| and |λ′′(x)| attain their maximum values. This
is in good agreement with the numerical results in Example 3.20.

We emphasize that the averaged dynamics x(t) already provides the best-
approximation to the full dynamics xǫ(t) for reasonably small ǫ. Therefore, including
the error does by no means improve the approximation quality of the limit dynamics.
It rather serves as a vehicle to increase the variability of the averaged model, in order
to incorporate certain fluctuations, that would not be present otherwise. Moreover it
turns out that incorporating moderate deviations can account for situations where the
scale separation is not good, i.e., ǫ is not small.

6.2. Large deviations from the Averaging Principle

The method of averaging and the Central Limit Theorem make assertions for the
dynamics on the finite time intervals. Typically they both may become invalid on
diverging time intervals of order 1/ǫ or even exp(1/ǫ). However there are many
interesting phenomena that occur on such time scales (rare events), and which are
not always captured by the Averaging Principle. One such case is the hopping of the
fast dynamics between local attractors (metastable conformations), which may happen
on time scales that are beyond the time scale of the slowest modes in the system.
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Figure 39. These plots illustrate the coefficients in the equations of motion (6.9)
for the error for various inverse temperatures β ∈ {5.0, 4.0, 3.0}. Again β = 3.0
labels the most noticeable peak at x = xb, whereas the little one corresponds to
β = 5.0. Note first of all the error achieves its maximum in the vicinity of the
dynamical barrier, and furthermore that the second derivative of F (x) that drives
the averaging error is not negative definite.

6.2.1. Diffusive limits Reconsider the generic slow-fast system (3.1). Here we seek
to derive a reduced equation on the longer, diffusive, time scale of order 1/ǫ. This
may be of interest, if the averaged system is deterministic on the O(1) time scale
with vanishing drift, whereas the fast dynamics is stochastic. (One such case is the
high-friction limit of the Langevin equation on the observation time scale of order 1.)

Changing the free variable in (6.1) according to t 7→ t/ǫ while omitting the noise
in the slow equation, we obtain the following system on the diffusive time scale

ẋǫ(t) = −1

ǫ
D1V (xǫ(t), yǫ(t))

ẏǫ(t) = − 1

ǫ2
D2V (xǫ(t), yǫ(t)) +

σ

ǫ
Ẇ2(t) .

(6.10)
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We assume that the slow dynamics averages to zero under the fast process, i.e.,
∫

Rk

D1V (x, y)µx(dy) = 0 , (6.11)

where µx(dy) ∝ exp(−βV (x, y))dy is the invariant Gibbs measure of the fast process
yx(t). It can then be shown that the slow drift gives significant contributions on the
diffusive time scale by coupling to the noise of the fast equation as ǫ → 0, hence the
term diffusive limit ; see the rich literature, e.g., [33, 298, 23]. Associated with the
system (6.10) is the Kolmogorov backward generator

Aǫ =
1

ǫ2
A1 +

1

ǫ
A2

with

A1 =
σ2

2
trD2

2 − D2V (x, y) ·D2

A2 = −D1V (x, y) · D1 .

By adopting arguments from semigroup perturbation theory, e.g., [299], we can expand
the solution of the backward equation into a power series in ǫ. Equating coefficients of
equal powers gives rise to reduced equations in terms of the slow variable x, namely

ẋ(t) = b(x(t)) + a(x(t)) Ẇ (t) . (6.12)

Here Ẇ (t) denotes standard Brownian motion in Rs. As is shown in Appendix E, the
drift and the noise coefficients are given by the expressions

a(x)a(x)T = 2

∫

D1V1(x, y)
T

∫ ∞

0

EyD1V (x, yx(t)) dt µx(dy)

b(x) =

∫

D1V (x, y)

∫ ∞

0

EyD
2
1V (x, yx(t)) dt µx(dy) ,

where yx(t) denotes the fast process at time t starting at yx(0) = y, and Ey labels the
average over all realizations up to time t conditional on the initial value y.

A few important bibliographical remarks are in order: Firstly, giving a rigorous
proof of the diffusive limit equation is far beyond the scope of the present thesis, and
refer to the appendix for a rough sketch of derivation using a perturbative expansion
of the backward equation. Yet another issue is convergence: the vast majority of the
results in the literature deals with weak convergence xǫ(t) → x(t) on condition that the
centering condition (6.11) is satisfied. Stronger results are available though; see, e.g.,
the original paper by Khas’minskii [33] or the textbook [125]. Other papers, like [34],
relax the centering condition demanding for a two-scale expansion of the backward
equation (which is much more challenging). See the paper [300] for a numerical scheme,
which is based upon a multiple time stepping discretization of the original system
(6.10) that can be used to simulate the limit system (6.12) quite effectively.

Remark 6.2. The reader may wonder what happens if the slow equation already
contains some noise on the O(1) time scale, i.e., if we face a situation like

ẋǫ(t) = −1

ǫ
D1V (xǫ(t), yǫ(t)) +

σ√
ǫ
Ẇ1(t)

ẏǫ(t) = − 1

ǫ2
D2V (xǫ(t), yǫ(t)) +

σ

ǫ
Ẇ2(t) .

Apparently the system admits an invariant measure, the Gibbs measure

µ(dx, dy) =
1

Z
exp(−βV (x, y)) dxdy ,
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where the normalization constant Z is defined by

Z =

∫

Rs×Rk

exp(−βV (x, y)) dxdy .

Existence of the Gibbs measure, however, contradicts the centering condition (6.11),
as can be easily seen by interchanging the order of integration in the last equation,

Z =

∫

Rs

(∫

Rk

exp(−βV (x, y)) dy

)

︸ ︷︷ ︸

constant due to (6.11)

dx .

The centering condition is crucial for the derivation of the diffusive limit equation in
the present form (see Remark F.1 below). In fact it seems that diffusive limits are more
targeted on systems with deterministic right hand side, subject to random perturbations
stemming from the fast variables. This is slightly different from problems usually
considered in molecular dynamics. However the method is useful for studying hypo-
elliptic diffusion processes, such as the high-friction limit of the Langevin equation.

6.2.2. Metastability and conditional averaging Roughly speaking the Averag-
ing Principle relies on the idea that the fast dynamics explores its state space, sampling
its invariant measure, while the slow dynamics is at rest. Therefore averaging fails, if
there is some subset of state space, in which the fast dynamics is likely to get trapped.
Consider the slow-fast system (6.1), and assume that the fast subsystem

ẏx(t) = −D2V (x, yx(t)) + σ Ẇ2(t)

is ergodic with respect to the conditional Gibbs measure µx(dy). Assume further that
for some values of x ∈ Rs the fast dynamics shows metastability. For example, we
can assume that for a particular value xcrit the potential V (x, y), considered along
the fast direction, has a significant potential barrier ∆V (xcrit) separating two wells. If
2∆V (xcrit) ≫ −σ2 ln ǫ then Large Deviation Theory explains that the exit time from
the potential wells induces an additional time scale that is of the order

τǫ,σ ∼ ǫ exp (β∆V (xcrit)) (β = 2/σ2 ≫ 1) . (6.13)

The last equation can be considered as some sort of Arrhenius law; for a mathematical
justification we refer to the standard textbook on Large Deviation Theory by Freidlin
and Wentzell [24]. It is easy to see that, at low temperature, τǫ,σ exceeds any other
time scale in the system. In turn, rapid mixing of the fast variable then requires ǫ to
be exponentially small as compared to the noise level σ . We would like to study the
system (6.1) in the case that τǫ,σ = O(1). Fixing the order of exit times in that way
amounts to a scaling relation between ǫ and σ by virtue of (6.13).

We shall briefly explain the basic idea of the conditional averaging approach that
has been put forward in [35], and which has been refined recently in [165, 301]. To
this end assume that for each x, we can identify two more or less metastable sets
B1(x), B2(x) ⊂ Rk. (Here Rk denotes the state space of the fast variables.) As one
observes that the fast process yx(t) is rapidly mixing inside each metastable set B1(x)
or B2(x), respectively, it makes sense to average the slow dynamics with respect to the
(almost invariant) probability measures on each metastable set. This results in two
locally averaged models, one for B1(x) and another one for B2(x), which are coupled
by means of a rate matrix that governs the transitions between the metastable sets.
The reduced model is then a time inhomogeneous model of the form

ẋ(t) = −∇Gi(t)(x(t)) + σẆ1(t) , (6.14)
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where Gi is the local free energy

Gi(x) = −β−1 ln

∫

Rk

µx,i(dy) (6.15)

with µx,i(dy) = (µx|Bi(x))(dy), appropriately normalized. The switching i(t) = i(t, x)
is a two-state Markov jump process, that mimics the transition between B1(x) and
B2(x). Under certain conditions the rates of the jump process are determined by the
second dominant eigenvalue λ2(x) of the infinitesimal generator of the fast process
yx(t), as has been demonstrated in [35] (however in a non-rigorous fashion).

A more detailed multiscale analysis is carried out in the PhD thesis [165]. There
the author also exposes how the metastable fast dynamics can be approximated
in some L1-sense by a family of Ornstein-Uhlenbeck processes that are coupled by
appropriately designed Markov jump processes; cf. also the results in [302, 303].

Realization as a stochastic particle method The method of conditional
averaging allows for an elegant numerical realization as a stochastic particle method
which makes it accessible for practical applications. The discretization is based on a
Trotter splitting of the generator associated with the conditionally averaged system
(6.14), an idea borrowed from so-called surface hopping algorithms in quantum-
classical dynamics [304, 305]. To derive the numerical scheme, consider the Fokker-
Planck equation associated with the original system (6.1)

∂tρ(x, y, t) = Lρ(x, y, t) , u(x, y, 0) = g(x) ,

where L is the backward generator in the semi-weighted Hilbert space L2(µx). Given
two families of metastable sets B1(x) and B2(x), we seek for a Galerkin decomposition
of the full solution of the Fokker-Planck equation in the form

ρ(x, y, t) = c1(x, t)χ1(x, y) + c2(x, t)χ2(x, y) .

Here χ1, χ2 span the two-dimensional dominant subspace of the fast dynamics’
generator. Provided certain conditions are met (e.g., regularity of the boundary
between the metastable sets), then it has been shown in [35] that the Fokker-Planck
equation associated with the reduced system (6.14)–(6.15) has the following intuitive
representation in terms of the coefficient vector c = (c1, c2)

T , namely

∂c(x, t) =
(
L̄ + R̄

)
c(x, t)

with L̄ containing the generators Li of the locally averaged systems (6.14)

L̄ =

(
L1 0
0 L2

)

,

and a rate matrix R̄ ∈ R2×2 that provides the switching between the states i ∈ {1, 2}.
Here the rate depends on the second eigenvalue λ2(x) of the generator of the fast
dynamics yx(t). A time discretization at time step h = O(ǫ2) is obtained by a splitting,

exp
(
h(L̄ + R̄)

)
= exp

(
hL̄
)
exp

(
hR̄
)

+ O(h2) ,

of the propagator. The thus defined propagator has a nice pathwise interpretation:
apparently the first exponential simply gives the propagation according to the locally
averaged equations (6.14) up to time h, where the second one represents the exchange
between the two states i = 1 and i = 2. In point of fact, exp(hR̄) is a stochastic matrix
for all h > 0, i.e., it is the transition matrix of the Markov chain {i(0), i(h), i(2h), . . .}.

153



Considering an ensemble of N particles xk(t), k = 1, . . . N in the respective states
ik ∈ {1, 2}, the system (6.14)–(6.15) has the following realization as a stochastic
particle method: Propagate each particle, xk(t) 7→ xk(t+ h), by solving

ẋk(t) = −∇Gik(t)(xk(t)) + σẆ1(t) .

Then let each particle make a transition ik 7→ jk according to the transition
probabilities contained in the stochastic matrix exp(hR̄). If the xk(t) represent
the ensemble c(x, t) at time t, then the resulting ensemble at time t + h yields a
representation of c(x, t+ h). For the details we refer to [301].

Finally, we claim that conditional averaging provides a useful extension of the
proposed reduction scheme for diffusion at low temperature. This presupposes that it
is possible to estimate the transition rates between possible metastable sets along the
fast variables which is typically difficult, whenever the state space of the unresolved
variables is high-dimensional. One possible way then may be to resort to iterative
schemes like [47], and confine the attention to very few fast variables, e.g., certain
torsion angles, to get a rough estimate of metastabilities or exit times, respectively.

Unlike the extensions based on Central Limit Theorem or diffusive limits, the
generalization of conditional averaging to Riemannian manifolds and curvilinear
reaction coordinates is not straightforward; it requires a careful study of the boundary
between the metastable sets and the restriction of the fast generator to these sets. This
problem is under current investigation by the author.
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