
5. Algorithmic issues and numerical examples

Based on the considerations of the Sections 2.4, 3, and 4.2 we shall qualitatively
study some of the introduced reduction schemes for two model systems: Ryckaert-
Bellemans n-butane and the glycine dipeptide analogue with a GROMOS96 vacuum
force field. The latter is a small peptide that contains a central amino acid and which is
a popular benchmark system for spectroscopy and conformation dynamics [282, 283].
On the other hand Ryckaert-Bellemans’ n-butane molecule is particularly convenient
for our purposes, since many properties are known on analytical grounds (e.g., reaction
coordinate, torsional free energy).

We have argued (and this is confirmed by numerical simulations) that hybrid
Monte-Carlo (HMC) generates a diffusion-like flow, and, in point of fact, we can
draw similar conclusion from HMC simulations or simulations of the corresponding
Smoluchowski equation. Langevin dynamics is not used in the model studies. The
reason is that (i) the dynamics of a Langevin equation can be vastly different for
different friction and noise coefficients, and (ii) there is an ongoing discussion about
the choice of good integrators that preserve the thermodynamical properties of the
systems (e.g., temperature, equipartition of energy, invariant measure). We refer to
the monograph [284] and the references therein.

5.1. The constrained hybrid Monte-Carlo algorithm

For the evaluation of constrained and conditional expectation values we confine our
attention to the hybrid Monte-Carlo scheme as has been introduced in Section 4.2.2.
The reason is twofold: first of all, all quantities of interest can be computed as
positional averages, and, secondly, we know for sure that the constrained expectations
eventually converge to the correct values (strong law of large numbers).

To this end we briefly explain how the constrained hybrid Monte-Carlo algorithm
actually works. It is convenient to switch back to a representation of the equations
of motion and the invariant measure in terms of the ambient space variable (q, p).
We shall also drop the mass scaling assumption. Given a symmetric, positive-definite
molecular mass matrix M ∈ Rn×n, and an interaction potential V : Rn → R that is
bounded from below, the unconstrained Lagrangian is defined as

L(q, v) =
1

2
〈Mv, v〉 − V (q) .

The respective unconstrained Hamiltonian thus reads

H(q, p) =
1

2

〈
M−1p, p

〉
+ V (q) .

Introducing the reaction coordinate constraint Φ(q) = ξ, the constrained equations of
motion (4.1) are then generated by the augmented Lagrangian L̂ = L−λi(Φi(q)− ξi).
The SHAKE discretization of the equations of motion for a time step h > 0 is

qn+1 − 2qn + qn−1 = −h2M−1 (∇V (qn) + DΦ(qn)λn)

ξ = Φ(qn+1) .
(5.1)

In the classical formulation of Ryckaert et al., the momentum is approximated by [260]

pn = M

(
qn+1 − qn−1

h

)

. (5.2)
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This method has two major drawbacks: First of all, the mapping (qn, pn) 7→
(qn+1, pn+1) defined by (5.1)–(5.2) is not symplectic.22 Secondly, the three-term
recursion in (5.1) may lead to an accumulation of round-off errors. Therefore the
scheme may become unstable, as has been pointed out in [105]. A remedy of both
problems is to make the SHAKE algorithm a variational integrator: following [258]
we replace (5.2) by the correct discrete conjugate momentum (4.18). This amounts to
formulating SHAKE as a one-step method which yields the RATTLE algorithm [261]

pn+1/2 = pn − h

2
(∇V (qn) + DΦ(qn)λn)

qn+1 = qn + hM−1pn+1

ξ = Φ(qn+1)

pn+1 = pn+1/2 −
h

2
(∇V (qn+1) + DΦ(qn+1)µn)

0 = DΦ(qn+1)M
−1pn+1 ,

(5.3)

The Lagrange multipliers λn, µn are chosen, such that the two constraints are satisfied.
The RATTLE integrator (or SHAKE considered as a mapping T ∗Σ → T ∗Σ) is
symplectic as following from its variational nature; cf. the related articles [246, 82].23

Recall that hybrid Monte-Carlo (HMC) requires that we draw a initial momentum
from the constrained Maxwell distribution at each Monte-Carlo step, where the
constrained Maxwellian depends point-wise on the constrained position variables. This
can be understood as follows: consider the unconstrained expression for the kinetic
energy in terms of the velocity variables,

T (v) =
1

2
〈Mv, v〉 :=

1

2
〈v, v〉M ,

where 〈·, ·〉M denotes the metric with respect to the mass matrix. We have shown
in Section 4.1.3 that the constrained canonical probability distribution is simply the
restriction of the unconstrained distribution. In order to restrict the Maxwell density
to the constrained tangent space TqΣ, q ∈ Σ, we define the M -orthogonal projection
PM,T : TqR

n → TqΣ that is defined point-wise for each q ∈ Σ:

PM,T = 1−M−1JΦ(JTΦM
−1JΦ)−1JTΦ , JΦ = DΦ(q) .

Strictly speaking, PM,T sends vectors v ∈ Rn to vectors in ṽ ∈ Rn, such that ṽ
satisfies the hidden constraint DΦ · ṽ = 0. It can be readily checked that (i) the matrix
PM,T meets the idempotency property P 2

M,T = PM,T , and that (ii) it is symmetric
with respect to the mass-weighted scalar product 〈·, ·〉M . That is,

〈PM,T u, v〉M = 〈u, PM,T v〉M
for any two vectors u, v ∈ Rn. Hence PM,T is an orthogonal projection with respect
to the metric defined by the mass matrix M . Consequently, we shall refer to PM,T

as M -orthogonal projection. Since PM,T maps to the constrained velocity space, we
obtain the restricted Maxwell density exp(−βTΣ) by restricting the kinetic energy,

TΣ(q, v) := T (PM,T v) =
1

2
〈PM,T v, v〉M .

22The mapping preserves the wedge product though. However the thus defined flow is not a map
T ∗Σ → T ∗Σ, since the momenta do not satisfy the hidden constraint DΦTM−1p = 0.

23A convenient numerical scheme for solving the nonlinear constraint equation Φ(qn+1) = ξ is
provided by original SHAKE iteration; see [260]. The SHAKE iteration can be considered a nonlinear
one-step Gauss-Seidel-Newton iteration as has been argued in [267]. It is incredibly stable at rather
large step-size, e.g., 5fs with a torsion angle constraint and the Ryckaert-Bellemans force field.
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Figure 18. Ryckaert-Bellemans united-atoms butane molecule [91].

Defining K(p) = T (M−1p), the phase space analogue of TΣ is found to be

KΣ(q, p) :=
1

2

〈
P ∗
M,T p, p

〉

M−1
, P ∗

M,T = MPM,TM
−1 .

It is easy to see that P ∗
M,T is idempotent and symmetric with respect to 〈·, ·〉M−1 .

Hence P ∗
M,T is the M−1-orthogonal projection onto the constrained momentum space

T ∗
q Σ. In other words, P ∗

M,T sends p ∈ Rn to p̃ ∈ Rn, such that p̃ satisfies the hidden

constraint DΦTM−1p̃ = 0. Omitting normalization, the constrained Maxwellian is

̺Σ(q, p) ∝ exp(−βKΣ(q, p)) (5.4)

which is exactly the ambient space analogue of the constrained density (4.8) in local
coordinates. The easiest way to draw momenta from the constrained distribution (5.4)
is to generate a vector p due to the unconstrained distribution exp(−βK(p)), and then
apply the projection onto the constrained cotangent plane T ∗

q Σ, q ∈ Σ. This then
yields a vector p̃ = P ∗

M,T p that is properly distributed according to ̺Σ. In this way
the projection maintains the full dimensionality for the HMC algorithm, and we can
completely work in the ambient space coordinates q and p.

The algorithm We summarize the considerations from Section 4.2.2 and the last
few paragraphs. Given an initial position q0 that satisfy the constraint Φ(q0) = ξ, the
constrained hybrid Monte-Carlo algorithm proceeds as follows.

(i) Draw a random vector due to the unconstrained momentum distribution

p ∼ exp(−βK(p)) , K(p) =
1

2

〈
M−1p, p

〉
.

(ii) Project p so as to satisfy the hidden constraint, i.e., p0 = P ∗
M,T p with

P ∗
M,T = 1− JΦ(JTΦM

−1JΦ)−1JTΦM
−1 , JΦ = DΦ(q0) .

(iii) Propagate (q̃1, p̃1) = Ψτ (q0, p0), where Ψτ is the numerical flow up to time τ > 0,
that is defined by the RATTLE discretization (5.3).

(iv) Accept q1 = q̃1 with probability

r = min

(

1,
exp(−βH(q̃1, p̃1))

exp(−βH(q0, p0))

)

,

or reject, i.e., set q1 = q0. (Here H = K + V is the unconstrained Hamiltonian.)

(v) Repeat.
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Figure 19. The figures show the POD analysis of the Cartesian configuration
data of a butane molecule. The data stems from a HMC run at T = 300K and
τ = 50fs observation time span (step-size h = 1fs). The total number of steps
is N = 200 000 Upper panel: eigenvalues of the covariance matrix. Lower panel:
characteristic time scales of the rotated modes (the scale is arbitrary)

5.2. Ryckaert-Bellemans n-butane

Proper orthogonal decomposition We study the spatio-temporal decomposition
of the 12-dimensional Cartesian configuration space of a united atoms butane molecule.
To this end we generate a HMC time series at T = 300K with observation interval
τ = 50fs between the HMC points. The integration is carried out with an ordinary
Leapfrog/Verlet integrator with time step h = 1fs. For the chosen parameters h, τ the
HMC acceptance probability is nearly one. Denoting by {q1, . . . qN} the HMC Markov
chain of length N = 200 000 we estimate the covariance matrix by

Ĉ =
1

N − 1

N∑

k=1

(qk − q̄) (qk − q̄)
T
.
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where q̄ denotes the arithmetic mean of the data

q̄ =
1

N

N∑

k=1

qk .

Moreover the data has been aligned in order to remove overall translations and
rotations (i.e., the rigid body symmetry which lowers the rank Ĉ by six).

Let us write the singular value decomposition of the symmetric covariance matrix
as Ĉ = UΛV T with Λ = diag(λk) with λ6, . . . , λ12 = 0 and orthogonal matrices
U = V . The POD modes are defined as

zk = V T (qk − q̄) .

For the butane data we observe that the eigenvalues decay almost exponentially with
one dominant eigenvalue that explains about 50% of the total variance (see Figure
19a). The first two modes cover about 81% of the total variance. To determine the
number of important modes, we take a look at the corresponding decorrelation times

τd,i =
1

N

N∑

k=1

|cik| ,

where the discrete autocorrelation function cik of the i-th POD mode at time lag k is
estimated via fast Fourier transform of the data [285]. In can be seen in Figure 19b that
the first two POD modes are slow in the sense that their autocorrelation functions
decay slowly. The characteristic timescales of the remaining modes are comparably
shorter. Note the following two features of the characteristic timescales: First of all
the last six modes do not show any interesting behaviour which reflects the symmetry-
reduction by means of the molecular alignment. (The same is true for the eigenvalues
of the covariance matrix.) Furthermore the decay time τd is not a monotonic function
of the number of modes, i.e., there may always be slow modes that have small variance.

Let us study the approximation capabilities of POD by means of the single torsion
angle ω which is the observable of interest for the conformation dynamics. If we denote
by Pk ∈ Rn×k the matrix that contains the first k eigenvectors of the covariance
matrix, we can define the rank-k approximant of the original data qk as

q̂l = PkP
T
k (ql − q̄) + q̄ = Pk(z

1
l , . . . , z

k
l )
T + q̄ .

Accordingly we obtain a reconstruction of the torsion angle by ω̂l = ω(q̂l). We find
in Figure 20a that even the single mode approximation yields the correct qualitative
conformation behaviour between the three metastable sets (one trans and two cis
conformations) although the variance is reduced as expected. This is contrasted
with the two-mode approximation in Figure 20b which captures the main dynamical
features of the conformation dynamics. Yet the invariant distribution of the torsion
angle is not fully captured by the two-mode approximation, since small errors can
accumulate over time and thus lead to the wrong distribution (see Figure 21 below).

Free energy calculation and optimal prediction We shall restrict our attention
to the single torsion angle of the butane molecule; it will serve as the reaction
coordinate from now on. Let us start with the free energy along the torsion angle
which equals the torsion potential independently of the temperature [286]. (Note that
this is not true in general, but only for the n-butane potential that does not involve
Lennard-Jones interactions.) We compare the two quantities: Helmholtz free energy

F (ω) = −β−1 ln

∫

Σ

exp(−βV )‖∇Φ‖−1dσω ,
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Figure 20. The plot compares the single mode approximation of the central
torsion angle with the two-mode approximation for the first 50 000 HMC steps.

and geometric free energy

G(ω) = −β−1 ln

∫

Σ

exp(−βV )dσω ,

where Σ = Φ−1(ω) in either case. Both energies are computed by Thermodynamic
Integration using the constrained hybrid Monte-Carlo algorithm at temperature
T = 300K with τ = 50fs between the HMC points and 5 000 sample points per
constrained run. The interval [−π, π[ was subdivided using a uniform grid of 60 values
between 0.14 and 6.14 (see Section 5.1 for the simulation details).

The standard and and the geometric free energy are shown in Figure 22a. One
observes that the geometric free energy energy barrier from the cis to the trans
conformation is about 1.0kJ/mol higher than the standard free energy barrier, which
confirms that free energy barriers give a only lower bound for the (reversible) work that
is needed to switch between different conformations. Simultaneously we have sampled
the effective inverse mass, that appears in the optimal prediction Hamiltonian (3.63)
and that is depicted in Figure 22b. The plot clearly indicated that the inverse mass or
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Figure 21. The plot shows histograms the torsion angle distribution at T = 300K
that were computed over the full time series and approximations thereof. The
variance in both reconstructions is lowered as compared to the original data.
The red histogram moreover illustrates that the correct distribution may not be
reached although the dynamics seems well-captured. The reason is that small
errors can accumulate over time and thus lead to the wrong distribution.

inverse metric, respectively, depends on the reaction coordinate, even in this simple
case of a single torsion angle living on the unit circle S1. We observe that the kinetic
energy favours the trans conformation, which is characterized by a rather slim shape
with respect to the principal axis of inertia and which should be contrasted with to
the more clustered cis conformations. This seems somehow counter-intuitive since one
could expect that the mass distribution of a rotating molecule tends to spread out
due to centrifugal forces. However here the situation is different since the rotation
we are dealing with is an internal motion of the molecule. Likewise the respective
kinetic energy is internal and should not be confused with the rotational energy of
a rigid-body. Physically speaking, the effective mass indicates the redistribution of
atomic masses for different conformations. Since the kinetic energy tends to stabilize
the more compact trans conformation by slightly increasing the total energy of the cis
conformations, we shall speak of an internal centripetal force.24

In order to study the dynamical properties of the reduced model we compare the
torsion dynamics of the full HMC simulation to a HMC simulation of the optimal
prediction Hamiltonian as has been defined in Section 3.3.1:

E(ω, η) =
1

2g(ω)
η2 +G(ω) .

Here
1

g(ω)
= EΣ‖∇Φ‖2

M−1 with ‖x‖2
M−1 =

〈
M−1x, x

〉

is the mass-weighted effective inverse mass. A phase plot of the effective Hamiltonian
is presented in Figure 23. For the sake of comparison we also do a HMC simulation in

24Although the conjugate momentum to the torsion angle is certainly angular momentum, the
reader should not be tempted to interpret the effective mass as moment of inertia. Both cis and trans
have the same moments of inertia with respect to the rotation axis. In fact it is constant.
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Figure 22. Comparison of free energy F (ω) and geometric free energy G(ω) at
T = 300K along the single torsion angle. For the Ryckaert-Bellemans n-butane
the free energy does not depend on T . The energy barrier in the geometric free
energy between cis and trans conformation is about 1.0kJ/mol higher than for the
standard free energy. The lower panel shows the angle-dependent effective inverse
mass that appears in the optimal prediction Hamiltonian.

the free energy landscape. The corresponding free energy Hamiltonian is defined by

Hfree(ω, η) =
1

2µ
η2 + F (ω) ,

where µ is the effective mass

µ = β−1cov(Φ̇)−1 .

Here Φ̇ means the torsion angle velocity. The definition of an effective mass by
means of the covariance is based on the assumption that the kinetic energy in the
simulated ensemble is equally partitioned among all degrees of freedom (equipartition
of energy).25 We run HMC simulations for E, Hfree and for the full system, each at

25Keep in mind that the hybrid Monte-Carlo trajectory does not contain momenta or velocities.
Therefore we have computed the torsion angle velocity taking finite differences along the trajectory.
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Figure 23. Optimal prediction Hamiltonian E at T = 300K (arbitrary units).

room temperature T = 300K with τ = 50fs and total length N = 500 000 steps. The
results in terms of torsion angle distribution and decay of correlations is presented
in Figure 24 below. By definition the separable free energy Hamiltonian reproduces
the correct marginal distribution of the torsion angle. However this is not true for the
optimal prediction Hamiltonian: the marginal distribution here is26

∫

R

exp(−βE(ω, η))dη ∝ exp(−βG(ω))

(√

EΣ‖∇Φ‖2
M−1

)−1

,

which should not be confused with the respective Fixman relation (3.26),

exp(−βF (ω)) = exp(−βG(ω))EΣ‖∇Φ‖−1
M−1 .

Nevertheless it seems that the deviation is not too severe, since the optimal prediction
simulation almost reaches the correct torsion angle distributions (see Figure 24a).
As a dynamical observable we have computed the autocorrelation functions for each
torsion angles. It can be seen in Figure 24b that the decay of correlations of the optimal
prediction simulation and the free energy simulation is close to the behaviour of the
full HMC Markov chain. Unfortunately the correct decay of correlations is no indicator
for the correct transition behaviour between the conformations. Indeed if we define
metastable sets by subdividing the interval [−π, π[ into three boxes M1 = [−π,−1[,
M2 = [−1, 1[, and M3 = [1, π[ and compute the transition matrix of the respective
Markov chains by simply counting transitions within the HMC time step τ , we find
the following three transition matrices:

Pfull =





0.9927 0.0073 0
0.0022 0.9956 0.0022

0 0.0075 0.9925



 (5.5)

Pop =





0.9927 0.0073 0
0.0022 0.9956 0.0022

0 0.0075 0.9925



 (5.6)

26The occurrence of mass-weighted metric is owed to the fact that the constrained expectation is
understood as the configuration space marginal of a constrained Hamiltonian system. Therefore the
respective Gibbs density involves the molecular masses by virtue of the Riemannian surface element.
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Figure 24. Comparison of reduced models for conformation dynamics. Upper
panel: distribution of the torsion angles at T = 300K over a 25ns HMC simulation.
Lower panel: autocorrelation functions of the torsion angle (arbitrary time units).

Pfree =





0.9941 0.0059 0
0.0016 0.9968 0.0016

0 0.0056 0.9944



 . (5.7)

The three states M1,M2,M3 are chosen such that the respective conformations are
separated by the saddle points of the free energy landscape. Notice that Pop = Pfull. In
particular the probability to stay inside the cis transformations is lower as compared
to the free energy system. Provided the coarse-grained dynamics is still Markovian,
then the three-state Markov chains are completely characterized by the respective
transition matrices (e.g., exit times, transition rates). Of course the deviations between
the transition matrices are not very drastic, but we have observed that the identity
Pop = Pfull is quite robust with regard to different discretizations. Moreover we should
keep in mind that the matrices we all computed from finite samples.

Recapitulating, the optimal prediction Hamiltonian provides a reasonable reduced
model for studying the dynamics between conformations on short time intervals (the
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Figure 25. Decay of correlations for the torsion angle using Brownian dynamics
at temperature T = 300K. (The time axis is arbitrarily scaled.)

correct invariant distribution is clearly given by the free energy). The main feature
of optimal prediction however is that it allows for a physical interpretation of the
different dynamical contributions in terms of inertial forces and forces coming from
the reduced potential (i.e., the geometric free energy).

Brownian motion Just for illustration we repeat the simulation using the reduced
diffusion model (3.46) from Section 3.2. The equation of motion is

ω̇ = − 1

m(ω)
G′(ω) − 1

2β

m′(ω)

m(ω)2
+

√

2

β

1

m(ω)
Ẇ

where

m(ω) = EΣ‖∇Φ‖−2

should not be confused with the effective mass g in the optimal prediction Hamiltonian.
In particular the constrained expectation is understood with respect to the mass-free
constrained Brownian dynamics. We have run a full simulation at T = 300K and step-
size h = 1fs, and also simulated diffusion in the respective free energy landscape using
the Euler-Maruyama scheme. Then we compared both realizations to the reduced
diffusion model. The full length of the simulation was N = 1 000 000 steps. (Note that
the total length of the HMC trajectory was 25ns as compared to only 1ns here.)

It turns out that the näıve free energy model gives a remarkably wrong decay
of correlations, whereas the averaged model does a fairly good job (see Figure 25).
Apparently, it is necessary to introduce additional friction and noise parameters
γ, σ > 0, similar to the effective mass µ in the free energy Hamiltonian, that controls
the decay of correlations. Following [287, 288, 289] we can estimate the diffusion
coefficient σ from the decay of the velocity autocorrelation function (Einstein-Green-
Kubo formula). That is, we consider the reduced equation

γ ˙̄ω = −F ′(ω̄) + σẆ ,
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where

2γ = βσ2 and σ2 =

∫ ∞

0

cω(t) dt

with cω(t) denoting the velocity autocorrelation function of the torsion angle. The
result is shown is Figure 26, where it turns out that the parametrized free energy
diffusion model now reproduces the correct decay of correlations. (It better be,
for we have chosen friction and noise coefficients in such a way as to reflect the
correct correlations.) Moreover the model captures the correct marginal distribution
of the torsion angle by definition of the standard free energy — at least for a
sufficiently long simulation. As we have argued, the decay of correlations does not
tell us anything about other dynamical observables such as transition rates between
metastable conformations. For further comparison we compute the Markov transition
matrices between the sets M1 = [−π,−1[, M2 = [−1, 1[, and M3 = [1, π[:

Pfull =





0.9988 0.0012 0
0.0005 0.9990 0.0005

0 0.0011 0.9989



 (5.8)

Pavg =





0.9988 0.0012 0
0.0005 0.9990 0.0005

0 0.0011 0.9989



 (5.9)

Pfree =





0.9982 0.0018 0
0.0004 0.9991 0.0005

0 0.0012 0.9988



 . (5.10)

As before in case of optimal prediction, we observe that the transfer operator of the
averaged model coincides exactly with the full propagator, Pfull = Pavg. Conclusively,
and in accordance with the considerations of the Hamiltonian system, we expect that
the diffusion model with the geometric free energy is able to capture the correct
transition rates between the cis and the trans conformations. The standard free energy
model gives the correct statistics of the conformations though, and the deviation
between the free energy propagator and the full one is not very drastic anyway.

Fixman potential: replacing fast degrees of freedom In Section 3.4 we have
introduced an ad-hoc method to derive a semi-analytic reduced model. Since the
calculation of effective models or free energy profiles, may be numerically expensive,
we have proposed to replace the energy of the non-approximating modes in the system
by an appropriately parametrized harmonic modelling potential. Averaging over the
harmonic degrees of freedom then leads to a reduced model in terms of the reaction
coordinate and an additional Fixman potential, the parametrization of which is open
to choice. Moreover there is some freedom in choosing an appropriate metric on the
approximant. For the butane molecule we suggest the following: Choosing the torsion
angle as reaction coordinate the configuration space is essentially S1 ⊂ R12. Given a
metric h(ω) on S1, we consider the modelling Hamiltonian

Hfix(ω, η) =
1

2h(ω)
+ Vtor(ω) +

1

2β
ln detK(ω) .

134



0 0.5 1 1.5 2 2.5 3

x 10
4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

au
to

co
rr

el
at

io
n 

fu
nc

tio
ns

time

full simulation
averaging
free energy (with friction)

Figure 26. Decay of correlations for the torsion angle dynamics for Brownian
dynamics with friction, where noise and friction coefficients σ, γ are computed
from the Einstein-Green-Kubo relations (cf. Figure 25 above).

Here K ∈ R5×5 is a yet unspecified, symmetric, positive-definite matrix.27 As a
potential Vtor, we choose the torsion potential; for the metric we choose either the
constant effective mass h(ω) = µ or h(ω) = g(ω) from the last subsection. We decide
to employ the covariance matrix of the symmetry-reduced data to feed the Fixman
potential. There are essentially two possibilities

K1(ω) = Eξ(qr(t) − q̄r)(qr(t) − q̄r)
T ,

or

K2(ω) = EΣ(qr(t) − q̄r)(qr(t) − q̄r)
T ,

where Eξ and EΣ mean conditional or constrained averages, respectively, and the
subscript r indicates that the data is aligned in order to account for the overall
rotations and translations. Strictly speaking, the Ki denote only the irreducibly part
of the covariance matrices. Running a sufficiently long unconstrained simulation the
conditional covariance matrix can be computed from sorting the data according to the
different values of the torsion angle. Alternatively, one could run short constrained
simulations to get a local estimate of K1 or K2. Here we have run constrained
simulations on a 30 points grid each with about 5 000 HMC sampling points in order
to obtain rather accurate estimates. In fact, it turns out that detK1 and detK2 are
quite different (see Figure 27): the modelling potential that involves the constrained
covariance matrix K2 is right between the free energy and the geometric free energy
G(ω), whereas the one involving K1 is significantly different.

Hence we shall only consider two instances of the latter: a separable system with
constant effective mass h(ω) = µ and a non-separable system with h(ω) = g(ω).
For each system we run a HMC simulation at T = 300K with τ = 50fs. The total
length is T = 25ns. The results are shown in Figure 28 below: it seems that the

27Clearly, the normal space over S1 is 11-dimensional. But if we further take into account the
SE(3)-symmetry of rigid motions, then the quotient space is effectively only 5-dimensional. Therefore
the matrix in the Fixman potential has rank s = 5, and it suffices to consider its irreducible part.
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Figure 27. Different modelling potentials at T = 300K. Upper panel: potential
energy for a Fixman potential computed from a conditional covariance matrix.
Lower panel: modelling potential that has been computed from the constrained
covariance matrix.

separable system with the constant effective mass performs slightly better in terms of
torsion angle distribution and autocorrelation function, whereas the torsion-dependent
mass overemphasizes the influence of the cis conformations’ inertia which is already
accounted for by the Fixman potential.

For further comparison we compute again the Markov transition matrices between
the sets M1 = [−π,−1[, M2 = [−1, 1[, and M3 = [1, π[. We find

Pfull =





0.9936 0.0064 0
0.0017 0.9965 0.0018

0 0.0063 0.9937



 (5.11)

Pnon =





0.9915 0.0085 0
0.0012 0.9976 0.0012

0 0.0090 0.9910



 (5.12)
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Figure 28. Simulation results for the modelling Hamiltonians involving
the conditionally averaged covariance matrix at T = 300K. Upper panel:
autocorrelation functions. Lower panel: distributions of the central torsion angles

Psep =





0.9935 0.0065 0
0.0012 0.9976 0.0012

0 0.0066 0.9934



 . (5.13)

Notice that the two (1,1) and (3,3) entries in the transition matrix Pnon reflect the
effect of the rotational energy of the cis transformation. To confirm that the separable
model scores well, we compute the matrix norm of the differences ∆Pnon = Pfull−Pnon

and ∆Psep = Pfull − Psep. Indeed, we have

‖∆Pnon‖2 = 0.0046 and ‖∆Psep‖2 = 0.0014 ,

where ‖ · ‖2 denotes the spectral norm that is induced by the Euclidean vector norm.
One should be careful with drawing conclusions from this simple example, as there
are many different routes leading towards reduced models, and there is no a priori
justification for preferring the separable model to the non-separable one. Setting up
a good parametrization already requires some physical insight into the system; cf.
[41, 38]. In fact it is not even clear whether an accurate sampling of the Fixman
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Figure 29. Glycine dipeptide in its extended C5 conformation.

potential improves the result, as we have carried out a substitution of the unresolved
modes only in a small tubular neighbourhood of the approximant (here: S1). However
the simulations seem encouraging to promote further systematic studies.

5.3. Glycine dipeptide in vacuum

We consider the glycine dipeptide analogue as a paradigm for small biomolecules that
exhibit interesting dynamical features, e.g., macroscopically distinct conformations
and transitions between these conformations. The data is obtained from a 100ns hybrid
Monte-Carlo simulation with a 100fs integration between the Monte-Carlo points. For
the simulation we employ the GROMOS96 vacuum force field of GROMACS [290, 291]
together with the native Java interface METAMACS [292]. It is important to note that
we do not want to discuss issues whether the peptide model is physically meaningful
or even realistic. It literally serves as a paradigm by means of which we can illustrate
certain effects or compare different reduction schemes.

Proper orthogonal decomposition of torsion space We apply proper
orthogonal decomposition (POD) to the torsion space of the glycine dipeptide analogue
(GLDA). Regarding the macroscopic conformations we may confine our attention
to the four central dihedral angles (see Figure 29); the leftmost and the rightmost
torsions only rotate the methyl (CH3) endgroups, which typically does not give rise
to interesting physical effects. The four angles (θ, φ, ψ, ω) ∈ S1 × S1 × S1 × S1 span
the 4-torus T4 which we shall consider as the essential configuration space. (Doing a
decomposition of the Cartesian configuration space does not seem to make sense here,
since the conformation dynamics of GLDA in vacuum can be completely described in
terms of the torsion angles.)

In principle, we could embed the torus into a linear space, e.g., T4 ⊂ R5. But
then we have to take into account that the embedding induces a nontrivial metric on
R5, which complicates both the POD and the following reduction steps. Instead we
favour the idea of considering a flat torus, i.e., we regard T4 as the rectangle [−π, π]4

(or [−180, 180]4, respectively) upon identifying opposite edges. In this case it may
happen that edges separate points lying in a single conformation which then show
up as several clusters. However we are free to place the edges wherever we like. In
particular we can cut the torus in a way that no clusters get separated. This amounts
to a shift of the data as in Figure 30 which is optimal in the sense that the number of
transitions over the edges within one Monte-Carlo step is minimized. As POD is affine
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Figure 30. Optimal cut of the torus T4. Notice that unlike before in Section 5.2,
all angles are measured in degrees.

invariant it is clearly not affected by the shifting, and we can apply standard POD.
Diagonalizing the covariance matrix of the centered torsion data, it turns out

that there is a single POD mode that is separated from the remaining modes by a
considerable eigenvalue gap. This explains why the torsion data can be reconstructed
from a single POD mode as can be seen from Figure 31. Moreover the dominant
mode is much slower mixing than the other modes as is indicated by the decay
of autocorrelations, which qualifies it for the systems reaction coordinate. (The
eigenvalues of the covariance matrix and the characteristic time scales can be found
in the caption of Figure 31.) Intriguingly the first mode depends almost completely
on the two central backbone angles (φ, ψ), viz.,

z1 ≈ 1√
2

(ψ − φ) .

Furthermore we see from the time series that ψ(t) equals −φ(t) (to all appearances).
This behaviour reflects the fact that the glycine dipeptide analogue is symmetric
with respect to the plane that is spanned by the peptide bond in the extended C5
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Figure 31. POD of the shifted dihedrals. The eigenvalues of the data
covariance matrix are σ = {1.4448, 0.0416, 0.0371, 0.0066}. The corresponding
autocorrelation times are τ = {238.2034, 2.1211, 3.4585, 2.4682}.

conformation. Accordingly we have z1 ≈
√

2ψ. The agreement is indeed surprising,
as Figure 32 indicates. However it should be kept in mind that the approximation
is likely not to capture the correct long-term behaviour (e.g., invariant distribution),
since small deviations can accumulate over time.

Free energy and the optimal prediction Hamiltonian We should not be
tempted to think that ψ is the slowest mode in the system, for equal reasoning
applies for the other backbone angle φ. If we assume that dihedral angles are typically
the slowest degrees of freedom in the system as compared to bond and bond angle
vibrations, then it follows that only φ and ψ together can be considered as slow
variables. Nevertheless it is instructive to first take a look at standard and geometric
free energy in terms of a single backbone angle, e.g., the ψ angle.

To this end we constrain the reaction coordinate ψ, and do Thermodynamic
Integration at T =300K along 36 different values ψ between −180◦ and +180◦.
The simulation is carried out using the constrained hybrid Monte-Carlo scheme from
Section 5.1, where each constrained run involves 50 000 sample points with τ =100fs
spacing between the Monte-Carlo points and internal step-size h =1fs, such that
the acceptance rate varies between 98% and 99%. Each integration starts from a
configuration for the respective angle after minimizing the potential energy. Again we
compare standard free energy

F (ψ) = −β−1 ln

∫

Σ

exp(−βV )‖∇Φ‖−1dσψ ,
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Figure 32. Approximation of the dominant POD mode by the angle ψ.

Figure 33. Glycine dipeptide in its C7 conformation.

and geometric free energy

G(ψ) = −β−1 ln

∫

Σ

exp(−βV )dσψ ,

where Σ = Φ−1(ψ) is of codimension one in the configuration space R57. Both standard
and geometric free energy are shown in Figure 34a below. The C7 conformations at
ψ ≈ ±85◦ and the stretched C5 conformations at ψ ≈ ±150◦ are clearly distinguished
(see Figure 33). Recalling the considerations from the butane example we face the same
effect, namely, that the geometric free energy favours the cluster-like C7 conformation
as compared to the profile of the standard free energy. This becomes more lucid if
we look at the corresponding effective inverse mass 1/g as it appears in the optimal
prediction Hamiltonian, and which is defined by the constrained expectation

g(ψ) =
(
EΣ‖∇Φ‖2

M−1

)−1
.
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Figure 34. Free energy and effective inverse mass of the ψ angle at T = 300K.

The effective inverse mass is depicted in Figure 34b. It again reflects the tendency
of the kinetic energy to stabilize those conformations which are slim with respect to
the principal axis of inertia. (The destabilizing effect is even more evident for the
knobby 0◦ conformation which, however, is extremely unfavourable anyway.)

Note that the effective inverse mass has almost the same shape as in the butane
example before (up to a 180◦ shift). This suggests that the inverse effective mass is
a genuine property of the chosen reaction coordinate (here: a torsion angle). This is
quite remarkable, since the quantity g is computed as a configurational average which
depends very well on the molecular potential and thus on the specific molecule.

Effective models in the Ramachandran plane The one-dimensional free energy
profiles and the effective inverse mass of the optimal prediction Hamiltonian could
already provide some insight into the conformation dynamics of GLDA. As in the
butane example it has turned out that the extrinsic geometry of the reaction coordinate
can have significant dynamical effects on the conformation dynamics that compete
with the effects induced by the potential energy. We shall complete the picture by
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Figure 35. Standard free energy F (φ,ψ) at T = 300K.

looking at free energy landscapes and effective kinetic energy along the two central
backbone angles φ and ψ.

In order to compute free energy and effective inverse mass, we perform
Thermodynamic Integration in the Ramachandran plane. Such calculations are rare
(e.g., [11]), although easy-to-use Thermodynamic Integration formulae in more than
one dimension have been put forward during the last few years (see also [293],
using a simplified force expression). We cover the Ramachandran plane with a two-
dimensional, uniform 36×36 grid, and run constrained hybrid Monte-Carlo simulations
at T = 300K on each grid point (φi, ψj). The step-size was chosen to be h = 1fs
with 100 integration steps between between the Monte-Carlo points. Starting from a
energy-minimized configuration, each simulation involves N = 10 000 sample points,
hence equivalently 1ns of total integration time for each φ, ψ combination. Using the
expressions from the Corollaries 4.15 and 4.16, we compare both standard free energy

F (φ, ψ) = −β−1 ln

∫

Σ

exp(−βV ) (volJΦ)
−1
dσφ,ψ ,

and geometric free energy

G(φ, ψ) = −β−1 ln

∫

Σ

exp(−βV )dσφ,ψ

with Σ = Φ−1(φ, ψ). Taking advantage of the reaction coordinate’s periodicity, we
reconstruct the smooth free energy surfaces from the mean forces by expanding F
and G into truncated, two-dimensional Fourier series [294]. The respective Fourier
coefficients are then determined from the sampled derivatives, ∇G and ∇F , in a least
square sense which amounts to solving an underdetermined linear system of equations.

The results are shown in the Figures 35 and 36. Both plots clearly reveal the
C7 conformation at about (φ, ψ) = (±80◦,∓80◦). Moreover, but less clearly, we
can see the extended C5 conformation around (φ, ψ) = (±180◦,±150◦) which is
about 5 − 10kJ/mol higher than the C7 conformation. Again the C5 energy in the
geometric free energy landscape is raised as compared to the standard free energy
(circa 3.5kJ/mol). For illustration the minimized potential energy function projected
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Figure 36. Geometric free energy G(φ, ψ) at T = 300K. The upper panel shows
the geometric free energy, whereas the lower panel depicts the difference to the
standard free energy. See Figure 35 and the Fixman potential in Figure 38.

onto the Ramachandran plane is shown in Figure 37 below. The most noticeable
difference is that the energy barriers of the strongly repulsive O-O ring-like state at
φ = 0◦ and the H-H ring-like state at ψ = 0◦ are far more pronounced than in the
free energy landscapes, which, however, does not belong to any admissible transition
path anyway (cf. Figure 30). The plots indicate that both geometric and free energy
are mainly affected by the potential energy landscape of the system.

For further comparison we have plotted the difference F−G in Figure 36b. Letting
Φ denote the reaction coordinate, the following is known on analytical grounds

F −G = −β−1 lnEΣ (volJΦ)
−1

,

where the mass-weighted matrix volume is defined as

volJΦ =
√

det(DΦM−1DΦ) ,

This should be contrasted with the Fixman potential A = −β−1 ln
√

det g that is
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Figure 37. Minimized potential energy landscape of the backbone angles.

defined by the relation
∫

exp(−βE) dη ∝ exp(−βA) exp(−βG) ,

where E is the optimal prediction Hamiltonian

E(φ, ψ, η1, η2) =
1

2
gij(φ, ψ)ηiηj +G(φ, ψ)

with the effective inverse mass

g−1 = EΣDΦTM−1DΦ ∈ R2×2 .

The Fixman potential A is shown in Figure 38 below. Note that clearly A 6= F −G,
since the constrained expectation does not commute with the operations performed on
the mass-weighted Gramian. (They are quite similar though.) We abstain from doing
numerical simulations of the reduced system, and focus on qualitative features instead.
To this end we shall study the specific form of the effective kinetic energy in more
detail. Roughly, Figure 38 reflects the familiar property of the free energy to favour the
extended C5 conformation: the Fixman potential achieves its global minimum in the
±180◦ corners of the Ramachandran plane. Moreover we see that the effective inverse
mass is not diagonal, i.e., the two angles are coupled by the effective kinetic energy,
where the off-diagonal terms’ order of magnitude in Figure 38 is about one tenth of
that of the diagonal entries. The reader should compare this to the calculations of
the kinetic energy for a system with constrained bonds in [295] which reveal quite
similar features. Additionally we see that the reduced model inherits the systems’
symmetry, since also the kinetic energy is invariant under parity (φ, ψ) 7→ −(φ, ψ).
Intriguingly we find that, other than the free energy, the kinetic energy carries a higher
(approximate) symmetry that stems from the (almost) invariance with respect to the
transformations φ 7→ −φ or ψ 7→ −ψ. The slight perturbation of the symmetry stems
from the non-uniform mass distribution along the peptide’s backbone.

The kinetic energy plots reveal an interesting feature of the system: Let us assume
that no extra potential were present in the optimal prediction Hamiltonian, i.e.,G = 0,
while keeping the shape of the kinetic energy as is (which is not so far off as the
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Figure 38. Effective inverse mass g−1 = EΣ(JT
Φ
M−1JΦ) of the two central

backbone angles at T = 300K. The Fixman potential A = −β−1 ln
√

det g is
shown in the lower right corner (cf. also Figure 36).

comparison with the Ryckaert-Bellemans example shows). Then the system is (in a
loose sense) geodesic, but is still likely to remain in the C5 conformation whenever
the momentum is nonzero; only for η = 0 (inertia-free motion) the total energy is
identically zero in the whole Ramachandran plane. Note that this comes up as a
property of the effective Riemannian metric in the expression of the kinetic energy
which therefore acts as a dynamical force that is mainly induced by the structure of
the backbone (cf. the discussion in Example 3.20). In this sense the extrinsic geometry
of the reaction coordinate renders conformation dynamics of a molecule.
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