
4. Phase space of the fast variables

We have addressed the problem of the deriving simplified equations of motion for a
given reaction coordinate in great detail. Yet the question of how to compute the
coefficients and parameters of the reduced model (e.g., the free energy) has remained
open. All of the reduced models depend on quantities that are averaged over the fast
variables. Hence it is important to study the statistical properties of the fast variables,
conditional on the particular value of the reaction coordinate. Especially we are going
to explain how the conditional averages over the fast variables can be computed in
practice.

4.1. Excursus: constrained mechanical systems

In this section we shall briefly discuss the properties of mechanical systems subject to
holonomic constraints. In treating constraints it is most convenient to start within
the framework of Lagrangian mechanics. For our purposes it suffices to define a
holonomic constraint by specifying a submanifold Σ ⊂ Rn of the configuration space.
Together with the natural inclusion TΣ ⊂ TRn this determines the state space of
the constrained system. Suppose that Σ = ϕ−1(0) is determined as the level set of a
smooth function ϕ : Rn → Rs. If the Jacobian Dϕ(q) has maximum rank on Σ, then
Σ is a proper submanifold of codimension s in Rn . The tangent space to q ∈ Σ is then
defined in the usual way considering the direction of curves in Σ which is equivalently
expressed as [182, 243]

TqΣ = {v ∈ TqR
n |Dϕ(q) · v = 0} .

For the sake of simplicity, we assume that Σ has codimension s = 1 in Rn. For a much
more general discussion of holonomic constraints the interested reader is referred to
the textbook [81]; a good introduction into the geometry of submanifolds is [183].

We can now easily define a constrained Lagrangian by either restricting the
original Lagrangian to the constrained tangent bundle TΣ ⊂ TRn, or to use the
Lagrange Multiplier Theorem [97] to define an augmented Lagrangian,

L̂(q, q̇, λ) = L(q, q̇) − λϕ(q) .

Note that the thus defined Lagrangian L̂ : TRn+1 → R is not regular as a function
of q and λ, for it does not contain the velocity dλ/dt. Hence defining a Hamiltonian
makes no sense at the moment. Nevertheless by minimizing the action integral for L̂

∫ b

a

(L(q(t), q̇(t)) − λ(t)ϕ(q(t))) dt ,

where the endpoints q(a) and q(b) both satisfy the constraint, we obtain the Euler-
Lagrange equations in the unknowns q and λ,

d

dt

∂L̂

∂q̇i
=
∂L̂

∂qi

0 =
∂L̂

∂λ
.

(4.1)

Evidently the second equation is simply the constraint ϕ(q) = 0. Accordingly the
Euler-Lagrange equations form a differential-algebraic system which is of differential
index three [244, 245]. The alternative method by restricting the original Lagrangian to
TΣ amounts to endowing Σ with an appropriate set of local coordinates (x1, . . . , xn−1),
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writing up the Lagrangian in these coordinates, and deriving local Euler-Lagrange
equations. These will be then of the form (2.4). According to the theorem on Lagrange
multipliers the local Euler-Lagrange equations are equivalent to the equations (4.1).
We refer to the latter as ambient space formulation. It is by far the most common
approach in molecular dynamics, for the equations can be discretized by standard
numerical schemes [105, 246].

For related approaches the interested reader may consult the seminal work of
Dirac [247], or constrained formulations using vakonomic mechanics [20]. A different
method that is more in the spirit of index reduction techniques is treated in [248].

4.1.1. Geometric considerations Physically speaking, constraining a particle to
a submanifold is achieved by (i) adding a constraining force −λ∇ϕ to the original
equations and (ii) imposing the condition ϕ(q) = 0. The more familiar constrained
Newtonian equations read

Mq̈ + ∇V (q) + λ∇ϕ(q) = 0 , ϕ(q) = 0 .

Here the symbol ∇ is just a shorthand for ∇ = (∂/∂q1, . . . , ∂/∂qn)T . For the sake of
simplicity we set M = 1 and identify tangent and cotangent space in what follows.

We shall take a closer look at the origin of the constraining force. To this end we
consider a curve q(t) which is an integral curve of the constrained equations of motion.
Let n(q) be the unit normal to the constraint surface Σ. The tangent vectors q̇(t) then
satisfy at all times t the orthogonality condition

〈n(q), q̇〉 = 0 ,

where we have omitted the curve parameter t. Differentiation with respect to t yields

〈∇n(q) · q̇, q̇〉 + 〈n(q), q̈〉 = 0 .

By assumption q(t) is a solution of the constrained equations of motion. Hence we can
insert the Newtonian equations into the last equation and solve for λ. This gives us
the Lagrange multiplier λ(t) = λ(q(t), q̇(t)), and thus the constraint force

−λ∇ϕ(q) = (〈n(q),∇V (q)〉 − 〈∇n(q) · q̇, q̇〉)n(q) , (4.2)

where (q, q̇) ∈ TΣ. The last equation already reveals the mechanism of constraining a
particle: Firstly, we define the point-wise projection onto the normal space to Σ,

PN : (TRn)|Σ → (TΣ)⊥ , X 7→ 〈n(q), X〉n(q) .

The contribution of the potential to the constraint force is easily identified as PN∇V
which is the projection of the force field along the normal direction. This is physically
intuitive, and accordingly the force that intrinsically acts on the constrained particle
due to the potential is given by the tangential force −PT∇V , where PT = 1 − PN
denotes the projection onto TΣ. For the remaining part we shall prove:

Lemma 4.1. Without loss of generality we set V ≡ 0. Then the constraint force
−λ∇ϕ is given by the second fundamental form of the embedding Σ ⊂ Rn.

Proof. Consider the unit normal n ∈ Rn as a map n : Σ → Sn−1 which sends a
point q ∈ Σ to the unit sphere Sn−1 (Gauss map). The second fundamental form is
explained as the symmetric bilinear form II : TqΣ × TqΣ → R that is defined by

II(X,Y ) = 〈S(q) ·X,Y 〉 , S(q) = −PT∇n(q) .

The map S : TqΣ → TqΣ is called the Weingarten map; in codimension one it is
simply the negative derivative of the Gauss map, for ∇n ∈ TqΣ. Hence the assertion
follows by comparing the last equation to (4.2) upon noting that q̇ ∈ TqΣ.
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Remark 4.2. The calculation of the constraint force for a scalar constraint is
very instructive as it reveals the physical mechanism of constraining a particle to
a submanifold of its configuration space. However we will also need an expression
for the constraint force (and for the Lagrange multiplier) in the case when Σ has
codimension s > 1. Since Dϕ has maximum rank s, we can construct an orthonormal
frame {n1(q), . . . , ns(q)} for all q ∈ Σ simply by orthonormalizing the columns of Dϕ.
By repeating the calculation above for each normal vector ni we obtain

λ = −(QTDϕ)−1
(
〈S · q̇, q̇〉 +QT∇V

)
, (4.3)

where (q, q̇) ∈ TΣ, and the matrix Q = (n1, . . . , ns) ∈ Rn×s contains the normal
vectors as columns. The components of S are the single Weingarten maps

Si : TqΣ → TqΣ , Si(q) = −PT∇ni(q) (i = 1, . . . , s) .

Here, in contrast to the scalar constraint, it is no longer true that ∇ni ∈ TqΣ. But
as q̇ ∈ TqΣ in the quadratic expression of (4.3), we can replace ∇ni by its tangential
projection PT∇ni which then yields the second fundamental form of the embedding.
Note that a common representation of λ that is frequently found in the literature is

λ = (DϕTDϕ)−1
(〈
∇2ϕ · q̇, q̇

〉
− DϕT∇V

)
, (4.4)

where ∇2ϕ is the Hessian matrix of ϕ = (ϕ1, . . . , ϕs) that is understood component-
wise. Both formulae for the Lagrange multipliers (4.3) and (4.4) are equivalent, which
follows from considerations concerning pseudoinverses in the previous section and from
the definition of the second fundamental form. In any event the constraint force −Dϕλ
is uniquely determined [66]. Comparing the last equations (4.3) and (4.4) to (3.13)
and (3.14) suggests that we can compute the derivative of the free energy (3.9) by
averaging over the Lagrange multiplier with the augmented potential

Vϕ = V + β−1 ln volJϕ .

4.1.2. Constrained Hamiltonian systems The transition from the Lagrangian to
the Hamiltonian representation is not straightforward in the presence of constraints, at
least in the ambient space formulation. In principle this would not be a problem, if we
utilized local coordinates on the surface. Then the local Lagrangian would be regular,
provided Σ were a regular hypersurface. Working with the augmented Lagrangian L̂
we can formally define the conjugate momentum to q by

pi =
∂L̂

∂q̇i
.

This is the former momentum p, and we can derive a Hamiltonian Ĥ pretending that
L̂ is regular, while restricting the Legendre transform to the set defined by

0 =
∂L̂

∂λ̇
.

This yields the Hamiltonian

Ĥ(q, p, λ) = q̇ipi − L̂(q, q̇, λ) = H(q, p) + λϕ(q) .

Clearly this Hamiltonian does not give an equation for λ in the usual way. Therefore
the evolution of the Lagrange multiplier is undetermined. Nevertheless, we obtain
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equations of motion for the variables q and p,

q̇i =
∂Ĥ

∂pi

ṗi = −∂Ĥ
∂qi

0 = −∂Ĥ
∂λ

,

(4.5)

that are equivalent to the Euler-Lagrange equations (4.1) modulo the restriction
∂L̂/∂λ̇ = 0. Similar to the former Lagrangian formulation on the tangent bundle
the dynamics now takes place on the constrained phase space bundle

B =
{
(q, p) ∈ T ∗Rn

∣
∣ q ∈ Σ and 〈∇ϕ(q),D2H(q, p)〉 = 0

}

which is the image of the Legendre transform of (TRn)|TΣ which we can identify with
T ∗Σ. Here H is the original (i.e., unconstrained) Hamiltonian, and D2 denotes the
derivative with respect to the second slot. The condition on the momentum is exactly
the condition ϕ̇(q) = 0, and is referred to as hidden constraint; it is hidden because
it does not appear explicitly in the equations of motion. Notice that the identification
of B with T ∗Σ is a rather subtle issue which is related to the non-regularity of the
augmented Lagrangian; in general this identification is valid only up to a symplectic
diffeomorphism p 7→ p + α∇ϕ, where α is chosen such that p satisfies the hidden
constraint; see [249, 250] regarding this discussion.

Let Φt : B → B with B ∼= T ∗Σ be the flow of the equations of motion (4.5).
Then it is easy to show that the total energy remains a first integral, H |B = H |B ◦Φt,
where H |B is the unconstrained Hamiltonian, restricted to B. In fact, for a solution
(q(t), p(t)) of the constrained equations of motion (4.5), the variation of the total
energy along that curve is equal to

d

dt
H(q(t), p(t)) = −λ ∂ϕ

∂ql
∂H

∂pl

which is zero, since (q(t), p(t)) is a curve in B, and hence satisfies the hidden constraint.
The last equation is quite important from the viewpoint of numerics, since it states
that a numerical discretization scheme of the differential-algebraic system (4.5) should
take care of the hidden constraint in order to preserve the energy conservation property
of the continuous flow [82, 251]. Furthermore it is obvious from the equations of motion
that the constrained system is still reversible in time.

Concerning the volume-preservation property or symplecticness there is some
disagreement in the molecular dynamics community, for it is often stated that
constrained Hamiltonian flows were not volume-preserving [73]. Although agreement
on this issue is immediately obtained, if the Hamiltonian is considered in local
coordinates on T ∗Σ which is no different from the standard case in Rn, people
disagree upon the ambient space formulation; see, for instance, [79, 72, 80]. Since
both approaches are equivalent in the sense that the trajectories coincide, we expect
that the ambient space Hamiltonian has the same structural properties as its local
counterpart. Indeed, the following can be shown [82].

Lemma 4.3 (Leimkuhler & Reich 2004). Let the flow Φt : B → B, B ∼= T ∗Σ be the
solution of the ambient space Hamiltonian system (4.5), and let ω = Ω|B denote the
restriction of the standard symplectic form Ω = dqi ∧ dpi on T ∗Rn to the constrained
phase space B. Then Φt is symplectic, i.e., Φ∗

tω = ω.
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Proof. We give the proof for the sake of illustration. We start by introducing the
differential one-forms dq and dp on full phase space, and then specify the restriction
to B by considering the symplectic form along integral curves of the constrained
equations of motion. From the equations of motion (4.5) we have

dq̇i =
∂2H

∂pi∂ql
dql +

∂2H

∂pi∂pl
dpl

dṗi = −
(
∂2H

∂qi∂ql
+ λ

∂2ϕ

∂qi∂ql

)

dql − ∂2H

∂qi∂pl
dpl

0 =
∂ϕ

∂ql
dql ,

where the last equation is the differential version of the constraint ϕ(q) = 0. Now
consider a solution (q(t), p(t)) of the system (4.5). We have to show that dω/dt = 0.
By definition, ω = Ω|B; therefore invariance of ω under the flow Φt is equivalent to
state that the time derivative of the unconstrained symplectic form,

dΩ

dt
=

d

dt

(
dqi ∧ dpi

)
= dq̇i ∧ dpi + dqi ∧ dṗi ,

vanishes along a constrained curve (q(t), p(t)) ∈ B. Plugging the differentials from the
equations of motion into the rightmost terms in the last equation we arrive at

dΩ

dt
=

∂2H

∂pi∂ql
dql ∧ dpi +

∂2H

∂pi∂pl
dpl ∧ dpi

+

(
∂2H

∂qi∂ql
+ λ

∂2ϕ

∂qi∂ql

)

dql ∧ dqi +
∂2H

∂qi∂pl
dpl ∧ dqi

=
∂2H

∂pi∂ql
dql ∧ dpi +

∂2H

∂qi∂pl
dpl ∧ dqi

=
∂2H

∂pi∂ql
dql ∧ dpi −

∂2H

∂pl∂qi
dqi ∧ dpl ,

where we have taken advantage of the skew-symmetry of the wedge product: all terms
of the form Aijdz

i ∧ dzj cancel with the respective −Ajidzj ∧ dzi, for Aij = Aji
is symmetric due to interchangeability of second order partial derivatives; by the
skewness property the diagonal terms are zero, too. Finally, notice that all terms
in the double sum appear twice with alternating signs. Hence all terms in the last line
cancel, and the assertion follows.

From this we immediately conclude:

Corollary 4.4. Let λΣ be the Liouville form corresponding to ω = Ω|B with B ∼= T ∗Σ.
Then the constrained flow Φt : B → B preserves the Liouville volume, Φ∗

tλΣ = λΣ.

Proof. The assertion directly follows from Lemma 4.3 and the definition of the
Liouville form (2.12) with the restricted symplectic form ω = Ω|B.
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4.1.3. Statistical mechanics of constrained molecular systems Let us shortly
revisit the problem of evolving phase space densities in time. The line of discussion is
similar to section 2.1.1: we abbreviate z = (q, p) and consider an initial preparation
f0(z). As the only difference we require z ∈ B.

Since the constrained flow Φt : B → B preserves the Liouville measure, i.e,
the Hausdorff measure on B considered as a submanifold of T ∗Rn ∼= Rn × Rn, the
Frobenius-Perron operator is simply defined as the push-forward of f0 by the flow,

Ptf0 = f0 ◦ Φ−t .

The energy of the constrained system is the Hamiltonian H restricted to B. Hence the
Gibbs measure νcan naturally associated with the constrained system is the restriction
of the full measure µcan(dz) = ρcan(z)dz to the constraint subspace, i.e.,

νcan = (ρcan|B) dλΣ . (4.6)

Here dλΣ is the Hausdorff measure (Liouville measure) of B ⊂ Rn × Rn. It is
helpful to write down the local coordinate expression of νcan: introducing again bundle
coordinates (x, y) on NΣ, and defining the conjugate momenta (u, v) in the usual way
(see Appendix B), the unconstrained symplectic form becomes

Ω = dxα ∧ duα + dy ∧ dv ,
where we used the index α to label the local coordinates xα, uα, α = 1, . . . , n − 1
on the constrained phase space B. The constrained symplectic form is obtained by
restricting the standard symplectic form according to ω = Ω|B which amounts to
erasing the last term dy ∧ dv in the sum. Using the local coordinate expression (B.4)
of the unconstrained Hamiltonian, the constrained Gibbs measure reads

νcan(dx, du) =
1

ZΣ
exp(−βHΣ(x, u)) dx1 . . . dun−1

with

HΣ(x, u) =
1

2

〈
G(x)−1u, u

〉
+ V (x, 0) ,

and the partition function

ZΣ =

∫

B

exp(−βHΣ(x, u)) dx1 . . . dun−1 .

Here we encounter the same problem as without constraints: the invariant measure of
the system (4.5) is not unique and, in particular, the only candidate for an ergodic
measure, namely the microcanonical measure, is singular with respect to dλΣ. However
Section 2.1.1 has already set the stage for the constrained case: we introduce a discrete
stochastic constrained Hamiltonian system as iterates of the map

xk+1 = (π ◦ Φτ )(xk, uk) , π : T ∗Σ → Σ . (4.7)

Now let uk be chosen randomly according to the constrained momentum distribution

̺x(u) ∝ exp (−βT (x, u))) , T (x, u) =
1

2
Gαβ(x)uαuβ , (4.8)

where the Gαβ are the elements of the inverse metric of Σ ⊂ Rn. Then the discrete
spatial transfer operator Sτ that takes probability densities on Σ forward in time is

Sτf(x) =

∫

(f ◦ π ◦ Φτ )(x, u) ̺x(u) du .
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Let

νΣ(dx) =
1

QΣ
exp(−βV (x, 0))

√

detG(x) dx , (4.9)

be the Gibbs measure on Σ that is obtained from νcan by integrating out the momenta.
(The constantQΣ simply normalizes the total probability to one.) According to Section
2.1.1 we consider Sτ on the weighted Hilbert space L2(νΣ) with the respective scalar
product defined in (2.19). Consulting Proposition 2.8, we immediately obtain that
νΣ(dx) is the unique invariant measure of the constrained stochastic Hamiltonian
system (4.7). The algorithmic realization will be exposed in the following section.

Remark 4.5. A frequently used (symbolic) formula for the constrained canonical
measure in the ambient space variables (q, p) that involves Dirac’s delta function is

νΣ ∝ exp(−βH(q, p))δ(ϕ(q))δ(ϕ̇(q))(volJϕ(q))2 ,

where volJϕ = ‖∇ϕ‖ denotes the matrix volume of ∇ϕ. This representation is intrinsic
to the constrained phase space T ∗Σ since the matrix volume annihilates the explicit
dependence on ϕ stemming from the delta function (compare equation (3.7)).

4.2. Sampling constrained invariant measures

We are aiming at algorithms that allow for sampling the (invariant) Gibbs measure of a
constrained systems. The algorithms should be easy to implement on a computer and
offer control over the numerical discretization error. Without constraints, sampling
the Gibbs measure can be accomplished using any of the standard thermostatting
techniques. Here the task is more involved, for two major requirements have to
be met: firstly the thermostat must be consistent with constrained dynamics (fixed
reaction coordinate), and secondly the dynamics has to be ergodic with respect to the
constrained Gibbs measure. It is well-known that the ordinary Nosé-Hoover thermostat
suffers from ergodicity problems for certain classes of Hamiltonians [108, 109]. This
pathology can be removed by using extensions to the single-oscillator chain or by
imposing constant temperature constraints [110, 111]. But even then, expectation
values converge only if the dynamics is ergodic, and conditions to guarantee ergodicity
are still lacking (notice the circularity in the argument). Additionally all these more
sophisticated methods have in common that due to their complexity they are relatively
hard to implement, and they require a careful adjustment of the parameters involved.
Even worse, it is not clear a priori how these methods fit constrained symplectic
integration; see [112] for a discussion on that topic. In particular in the Nosé-Hoover
method the constraint force, which is the relevant quantity in free energy calculations,
becomes dependent on the thermostat variables, which means that it can no longer be
interpreted as the constraint force of the molecular subsystem. A promising alternative
is stochastic Langevin dynamics or Brownian (Smoluchowski) dynamics [13]. These
systems are proven to be ergodic under sufficiently weak assumptions like periodic or
bounded configuration space [114, 115]. Since the noise term is usually unbounded
constraining such systems to submanifolds of its state space is a challenging problem
that has been recently addressed for the high-friction case [17].

4.2.1. Blue Moon sampling Recall the discussion of the Fixman Theorem in
Section 3.1.2: we have to distinguish between the conditional and the constrained
probability measure and the respective conditional expectations. Let Φ : Rn → Rk

be a smooth reaction coordinate, and denote by Σ = Φ−1(ξ) its smooth fibre given a
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regular value ξ of the reaction coordinate. The conditional probability measure of a
Hamiltonian system reads

µξ(A) =
1

Z(ξ)

∫

A

exp(−βH)(volJΦ)−1dHξ ,

where A ⊆ Σ × Rn is a measurable Borel set, and dHξ is the surface measure of
Σ × Rn considered as a submanifold of T ∗Rn ∼= Rn × Rn. In contrast, the Gibbs
measure generated by the constrained flow is defined as

νcan(B) =
1

ZΣ

∫

B

exp(−βH)dλΣ

with B ⊆ T ∗Σ and dλΣ denoting the constrained Liouville measure on T ∗Σ ∼= Σ×Rd,
where d = n− k is the dimension of Σ. We define the respective expectation values

Eξf =
1

Z(ξ)

∫

Σ×Rn

f exp(−βH)(volJΦ)−1dHξ ,

and

EΣf =
1

ZΣ

∫

Σ×Rd

f exp(−βH)dλΣ .

If we restrict our attention to configuration observables f the relation between the
two expectation values is easier to comprehend. First of all observe that Σ = Φ−1(ξ)
does not involve any momenta, from which the identity dHξ = dσξdp follows, where
dσξ is the surface element of Σ ⊂ Rn, and p denotes the original momenta. Hence we
can integrate out the momenta and find that

Eξf =
1

Q(ξ)

∫

Σ

f exp(−βV )(volJΦ)−1dσξ ,

and

EΣf =
1

QΣ

∫

Σ

f exp(−βV )dσξ ,

where the reduced normalization constants Q(ξ) and QΣ are related by

Q(ξ) = QΣ EΣ(volJΦ)−1 .

That is, as long as we consider only position-dependent observables we can compute
averages with respect to either probability measure just by altering the potential
function according to V 7→ V ± β−1 ln volJΦ; compare the discussion of the Fixman
Theorem in Section 3.1.2. In particular we can compute conditional expectations by
running constrained simulations with the augmented potential VΦ = V +β−1 ln volJΦ.
Recall that this was just another way to read the Blue Moon relation (3.28),

Eξf =
EΣ

(
f (volJΦ)−1

)

EΣ(volJΦ)−1
,

which expresses the conditional expectation of a configurational observable f by the
constrained expectation EΣ(·) = E(·|q ∈ Σ). It can be computed either with respect
to νcan as defined above or likewise with respect to νΣ as given by (4.9).
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4.2.2. Constrained hybrid Monte-Carlo The goal of this section is to introduce
an alternative to the usual microcanonical sampling methods (Nosé-Hoover, isokinetic
ensemble) that may not be ergodic, or standard Monte-Carlo which may be poorly
mixing. We adopt the hybrid Monte-Carlo (HMC) technique, which emulates the
general Metropolis Monte-Carlo strategy of proposal and acceptance steps, where,
however, the proposal is generated by short runs of the Hamiltonian system with
randomly chosen initial conditions. This method circumvents the common Monte-
Carlo problem, namely, that the acceptance probability of an arbitrary move to an
energetically unfavourable state becomes incredibly small. As ordinary Metropolis
Monte-Carlo, HMC is conceptually very simple, and is designed to handle symplectic
integration, i.e., one can use standard integrators for constrained Hamiltonian systems.
Moreover it can be proved that the dynamics is ergodic with respect to the positional
density under rather mild conditions which are met for our purposes [83, 252, 253].
As an additional treat the acceptance procedure also controls the numerical error,
because HMC rejects those moves that have too large energy fluctuations.

In order to explain how HMC works recall the concept of the discrete spatial
transfer operator Sτ that evolves spatial densities forward in time, and which is
associated with a stochastic Hamiltonian system with random momenta. According
to Proposition 2.8 and the considerations from the last section, the randomized flow
preserves the spatial probability measure (4.9) that we may write as

νΣ(dx) =
1

QΣ
exp(−βV (σ(x)))

√

detG(x)dx ,

where σ(x) denotes the embedding of Σ into Rn, and x = (x1 . . . , xd) are local
coordinates on Σ. Now consider the symplectic and reversible discrete flow map
Ψτ : B → B on the constrained phase space B = T ∗Σ, and consider iterates
of Ψτ with initial momenta that are randomly chosen according to the constrained
Maxwell distribution ̺x(·) in (4.8). This generates a sequence {x0, . . . , xN−1} ⊂ Rd in
configuration space. Note that if the flow Ψτ were exactly energy-preserving, then the
xk would be distributed according to νΣ. However it is impossible to find a numerical
discretization scheme that is symplectic, reversible, and exactly energy-conserving at
the same time as follows from backward error analysis [105]. The best we can achieve
is that the energy error remains uniformly bounded on compact time intervals and
oscillates around its exact value [254].

The hybrid Monte-Carlo (HMC) method accounts for this drawback by accepting
or rejecting points with a certain probability that depends on the energy error. We
start the integration from xk ∈ Rd with initial momentum uk ∼ ̺x(u). Integrating
the underlying Hamiltonian system for a time τ then generates a proposal x̃k =
(π ◦ Ψτ )(xk, uk), which is accepted (i.e., xk+1 = x̃k) with probability

pτ (xk, uk) = min (1, exp(−β∆HΣ(xk, uk; τ))) ,

where

∆HΣ(xk, uk; τ) = (HΣ ◦ Ψτ )(xk, uk) −HΣ(xk, uk)

is the energy error. Accordingly we reject the proposal (i.e., xk+1 = xk) with
probability 1−pτ . In this form, HMC yields a configuration sampling, and by repeating
the procedure of generating proposals, the resulting HMC Markov chain {x1, . . . , xN}
allows for approximating the conditional expectation, if the system is ergodic [255].
In order to prove ergodicity for the constrained HMC Markov chain we make use of
an idea in [83] that rests upon the following strong Law of Large Numbers [256, 257].
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Proposition 4.6 (Meyn & Tweedie 1993, Tierney 1994). Let {xt ∈ Rd, t =
0, τ, 2τ, . . .} be a Markov chain with invariant probability measure νΣ that satisfies

P [xk+1 ∈ B |xk = x] > 0 ∀x ∈ U ⊆ Rd, ∀B ∈ B(U) , (4.10)

where B(U) is the Borel σ-algebra of U ⊂ Rd, and B ∈ B(U) has positive Lebesgue
measure. Then {xt ∈ Rd, t = 0, τ, 2τ, . . .} satisfies the strong Law of Large Numbers,

lim
N→∞

1

N

N−1∑

i=0

f(σ(xi)) =

∫

Rd

f(σ(x))νΣ(dx) (almost surely)

for almost all x0 ∈ Rd, where f ◦ σ ∈ L1(νΣ) is a measurable function.

It is convenient to understand f as an observable that is defined on the original
n-dimensional configuration space, such that f ◦ σ denotes the restriction to Σ. For
example, the reader may think of the system’s potential energy f = V (q). We proceed
step by step, checking (i) invariance of the constrained Gibbs measure νΣ, and (ii) the
phase space accessibility condition (4.10) for the HMC algorithm.

Invariance of the constrained Gibbs measure Invariance of the constrained
Gibbs measure can be shown following the outline of the proof in [253] for separable
Hamiltonians. Here we cannot separate the canonical density into merely momentum
and position dependent parts, and so we write

νcan(dx, du) =
1

ZΣ
exp(−βT (x, u))
︸ ︷︷ ︸

̺x(u)

exp(−βV (σ(x)))
︸ ︷︷ ︸

η(x)

dxdu

indicating that the momentum density depends on the position coordinates as well.
We introduce the HMC acceptance probability for a τ -step by (x̃, ũ) = Ψτ (x, u)

pτ (x, u) = min

(

1,
̺x̃(ũ)η(x̃)

̺x(u)η(x)

)

. (4.11)

The definition of pτ (x, u) is the standard Metropolis-Hastings acceptance probability
for symplectic and reversible flow maps, and it can be readily checked that it coincides
with the acceptance probability defined above. Clearly we have pτ = 1 for an exactly
energy-conserving flow. We prove the following statement.

Lemma 4.7. The constrained Gibbs measure νΣ is invariant under the HMC flow that
is generated by the symplectic and reversible flow map Ψτ together with the Metropolis
acceptance-rejection procedure with acceptance probability pτ .

Proof. It is sufficient to show that the HMC preserves expectation values with respect
to νΣ. Let ζ ∈ Rd be an accepted position value after a single integration and
acceptance step. We assume that the initial momentum u is distributed according
to ̺x(u). Furthermore, let ϑ(dζ) denote the marginal distribution of the position
variables after one HMC step. Hence we have to show that

∫

Rd

f(σ(x))νΣ(dx) =

∫

Rd

f(σ(ζ))ϑ(dζ) .

Suppose the initial position x follows the canonical distribution νcan. Then for a
given x we draw a momentum vector from ̺x(u), and propagate a time step τ
according to (x̃, ũ) = Ψτ (x, u). We can perform the acceptance-rejection procedure
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for the rightmost expectation using a change-of-variables argument. Exploiting that
the constrained Liouville measure dλΣ is preserved under the flow Ψτ , we obtain

∫

Rd

f(σ(ζ))ϑ(dζ)

=

∫

Rd

f(σ(ζ)) pτ (Ψ−τ (ζ, ũ)) ρ(Ψ−τ (ζ, ũ)) dλΣ

+

∫

Rd

f(σ(ζ)) (1 − pτ (ζ,−ũ)) ρ(ζ,−ũ) dλΣ ,

where ρ(x, u) = ̺x(u)η(x) denotes the smooth density of νΣ(dx, du) = ρ(x, u)dxdu.
Note that the first integral on the right hand side originates from the acceptance, the
second one stems from the rejection step. Taking advantage of the identity

pτ (Ψ−τ (ζ, ũ)) ρ(Ψ−τ (ζ, ũ)) = pτ (ζ,−ũ) ρ(ζ,−ũ) , (4.12)

using the reversibility Ψ−τ (x, u) = Ψτ (x,−u) of the flow and that ρ(x,−u) = ρ(x, u)
is even in its second argument, we find upon integrating out the momenta

∫

Rd

f(σ(ζ))ϑ(dζ)

=

∫

Rd

f(σ(ζ)) (1 +Aτ (ζ, ũ) −Aτ (ζ, ũ)) ρ(ζ, ũ) dλΣ

=

∫

Rd

f(σ(ζ)) ρ(ζ, ũ) dλΣ

=
1

ZΣ

∫

Rd

f(σ(ζ))
√

detG(ζ) dζ .

In the second line we have introduced the abbreviation Aτ = pτρ for the two terms
in the identity (4.12) above. The assertion follows, observing that the last equation is
simply the expectation with respect to the constrained Gibbs measure νΣ.

Remark 4.8. HMC gives a time-reversible mapping, as can be verified directly by
checking detailed balance for (x̃, ũ) = Ψτ (x, u):

ρ(x, u)pτ (x, x̃) = ρ(x, u)min

(

1,
ρ(x̃, ũ)

ρ(x, u)

)

= min (ρ(x̃, ũ), ρ(x, u))

= ρ(x̃, ũ)min

(

1,
ρ(x, u)

ρ(x̃, ũ)

)

= ρ(x̃, ũ)p−τ (x̃, x) .

(4.13)

The assertion follows from the symmetry with respect to the initial and propagated
variables after the second line. Hence HMC generates a reversible flow.

Configuration space accessibility To verify the accessibility condition (4.10) we
basically have to show that there is a discrete flow map that connects any two points
x(0) ∈ U ⊆ Rd and x(τ) ∈ B, where B ∈ B(U). To this end we borrow an argument
from [83], where the accessibility condition in case of an unconstrained, separable
system has been proved. Therein the authors use a discrete version of Hamilton’s
assuming that the system is bounded, i.e., either U ∼= Td (compact), or U ∼= Rd with
V ◦ σ uniformly bounded from above.
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Since the HMC acceptance probability (4.11) is strictly positive, it does not alter
the accessibility properties of the Markov chain. Hence, and for the sake of notational
convenience, we shall omit it in what follows. Proving the accessibility condition then
requires two steps: In a first step we follow the approach in [83] and construct ambient
space sample paths that satisfy the accessibility condition in Σ ⊂ Q. In doing so,
it turns out that the problem boils down to a standard symplectic discretization
of constrained systems. In a second step we demonstrate that the ambient space
discretization has an equivalent formulation in local coordinates, hence satisfying the
accessibility condition (4.10). Regarding the former problem we endeavour a discrete
variant of Hamilton’s principle of least action. Following [258], we introduce a discrete
Langrangian as a map Lh : Q × Q → R. The discrete counterpart of the classical
action is a mapping Sh : QN+1 → R, that is defined as the sum

Sh =

N−1∑

k=0

Lh(qk, qk+1) (4.14)

where qk ∈ Q and k labels the discrete time. Given fixed endpoints q0, qN ∈ Q
the discrete variational principle states that the discretized equations of motion
minimize the action sum. The discretized equations are obtained by variation over
the q1, . . . , qN−1 which yields the discrete Euler-Lagrange equations

D2Lh(qk−1, qk) + D1Lh(qk, qk+1) = 0 , ∀k ∈ {1, . . . , N − 1} , (4.15)

where D1,D2 denote the derivatives with respect to the first and second slot. If
D2Lh (the generalized discrete momentum) is invertible, then (4.15) implicitly defines
a discrete flow by means of the map (qk+1, qk) = Φh(qk, qk−1). The particular
discretization scheme that leads to (4.14) is open to choice and should depend on
the problem; for the details we refer to the seminal work of Marsden and West [258].

Lemma 4.9. Suppose the potential V : Q → R is sufficiently smooth and
bounded from above. Given q0, qτ ∈ Σ, there is a symplectic mapping (q(τ), p(τ)) =
Φτ (q(0), p(0)) and an open neighbourhood B ⊂ Σ of qτ , such that

P [q(τ) ∈ B | q(0) = q0] > 0 .

Proof. We define the constraint manifold Σ as the level set (fibre) of the smooth
function ϕ : Q → R. That is, we set Σ = ϕ−1(0) for a regular value 0 of ϕ. For
simplicity we assume that V is uniformly bounded on Σ (otherwise we may restrict
our attention to a subset M ⊂ Σ which can be done at the price of further notation).
We let L : TQ→ R denote the continuous Lagrangian

L(q, q̇) =
1

2
〈q̇, q̇〉 − V (q) ,

and introduce the discrete Lagrangian Lh : Q×Q→ R for a time step h > 0:

Lh(qk, qk+1) =
1

2

(

L

(

qk+1,
qk+1 − qk

h

)

+ L

(

qk,
qk+1 − qk

h

))

We fix endpoints q0, qN ∈ Σ and set qN = qτ . Since V is bounded, the action sum is
bounded from below, and the limit of the unconstrained problem exists. Extremizing
the unconstrained action sum subject to the constraint qk ∈ Σ for k ∈ {1, . . . , N − 1},

min
qk∈Σ, λk

N−1∑

k=0

(Lh(qk+1, qk) − 〈λk, ϕ(qk)〉) ,
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the discrete Euler-Lagrange equations turn out to be [259]

0 = D2Lh(qk−1, qk) + D1Lh(qk, qk+1) + λTkDϕ(qk)

0 = ϕ(qk)
(4.16)

for all k ∈ {1, . . . , N − 1}. Given qk−1, qk ∈ Σ, i.e., ϕ(qk) = ϕ(qk−1) = 0, we can
evaluate the derivatives of the discrete Lagrangian Lh and solve the last equation for
qk+1 subject to the condition that qk+1 ∈ Σ. This yields the equations of motion

qk+1 − 2qk + qk−1 = −h2(∇V (qk) + Dϕ(qk))λk

0 = ϕ(qk+1) ,
(4.17)

which are known as the SHAKE algorithm [260]. The Lagrange multiplier λk is chosen
such as to enforce the constraint at time k + 1. The discrete conjugate momenta is
defined by the discrete Legendre transform of L̂h = Lh − 〈λk, ϕ(qk)〉, that is,

pk = −D1Lh(qk, qk+1) + Dϕ(qk)λk . (4.18)

Hence we can consider the SHAKE algorithm as a mapping B → B (or T ∗Σ → T ∗Σ).
It is symplectic by virtue of its variational character (cf. the related work [246, 82]). By
choosing initial conditions q(0) = q0 and p(0) = −D1L̂h(q0, q1, λ0) the discrete flow
generates a discrete trajectory that connects q0 and qτ . Finally, it follows by continuity
of Φτ on the initial conditions that the endpoints of trajectories with perturbed initial
momenta pǫ(0) = p(0) + ǫ remain in B ⊂ Σ whenever ǫ is sufficiently small.

A frequently used variant of the SHAKE algorithm is called RATTLE and goes
back to [261]. It can be considered as a constrained version of the ordinary velocity
Verlet scheme. SHAKE and RATTLE are equivalent to each other by dint of (4.18).
Moreover they are variational with the discrete Lagrangian Lh defined above, and
therefore both SHAKE and RATTLE are symplectic.

Lemma 4.9 guarantees accessibility from any point q ∈ Σ to any open set. However
condition (4.10) requires accessibility of any Borel set of positive Hausdorff measure
(irreducibility), which excludes certain pathologies that otherwise might occur in the
HMC transition probabilities; see [83]. This is expressed in:

Lemma 4.10. Let Ψτ : T ∗Σ → T ∗Σ denote the symplectic numerical flow map that
is defined by the RATTLE algorithm. Then the HMC transition probabilities satisfy

P [q(τ) ∈ B | q(0) = q0] > 0 ∀q ∈ Σ ⊂ Q

for all B ∈ B(Σ) with positive Hausdorff measure Hd on Σ.

Proof. Given an initial point q ∈ Σ, we have to show that any Borel set B of positive
measure can be reached from a set of momenta with positive measure.

To this end consider the subset MB(q) ⊂ T ∗
q Σ that is determined by all initial

momenta p for which (π ◦ Ψτ )(q, p) ∈ B. Omitting the acceptance step, the HMC
transition probabilities p(q,B, τ) = P [q(τ) ∈ B | q(0) = q] can be written as

p(q,B, τ) =

∫

MB(q)

̺q(q) dp .

Since the constrained Maxwell density ̺q(p) is strictly positive, it is enough to show
that MB(q) has positive measure. Since we can naturally identify all cotangent spaces
T ∗
q Σ with the d-dimensional subspaces of Rn that are determined by the hidden

constraint 〈∇(q), p〉 = 0, we have to show that MB(q) has positive Hausdorff measure
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Hd. Now suppose the contrary, i.e., assume Hd(MB(q)) = 0, and consider the map
Fq : MB(q) → B, p 7→ (π ◦ Ψτ )(q, p). By definition Fq is onto. Therefore we have [70]

Hd(B) = Hd(Fq(MB(q))) ≤ LHd(MB(q)) = 0

which contradicts Hd(B) > 0. Here 0 < L < ∞ is the Lipschitz constant of Fq (since
Ψτ is volume-preserving, such a constant obviously exists).

It remains to show that the flow (qk, pk) → (qk+1, pk+1) has an equivalent
counterpart (xk+1, uk+1) = Ψh(xk, uk) in local coordinates (which inherits all its
structural properties). As we know from the continuous world, the local coordinate
version of the Euler-Lagrange equations can be derived from the restricted Lagrangian
LΣ = L|TΣ. Accordingly we define the constrained discrete Lagrangian as LΣ,h =
(L|TΣ)h. Given an embedding σ : Rd → Σ ⊂ Q we can define the constrained discrete
Lagrangian LΣ,h : Σ × Σ → R as the map

LΣ,h(xk, xk+1) = Lh (σ(xk), σ(xk+1)) ,

which gives rise to the following discrete Euler-Lagrange equations

0 = D2LΣ,h(xk−1, xk) + D1LΣ,h(xk, xk+1) . (4.19)

Solving the equation for xk+1 given xk, xk−1 defines a map Θh : Rd → Rd. By
computing the conjugate momenta uk = −D1LΣ,h(xk, xk + 1) we can augment this
map to a symplectic map Ψh : T ∗Rd → T ∗Rd. The following statement is true [262]:

Lemma 4.11 (Wendlandt & Marsden 1997). Equation (4.16) has a solution
(qk+1, qk) = Φh(qk, qk−1) if and only if (xk+1, xk) = Θh(xk, xk−1) is a solution of
(4.19). Furthermore Φh and Θh are equivalent in the sense that Φh = σ ◦ Θh.

This completes the proof that the accessibility condition (4.10) holds true for the
HMC Markov chain together with the SHAKE or RATTLE iteration. Together with
the invariance of the constrained Gibbs measure νΣ we therefore conclude

Proposition 4.12. Let V : Q → R be sufficiently smooth and bounded from above.
Then, for measurable f ◦ σ ∈ L1(νΣ), the strong Law of Large Numbers,

lim
N→∞

1

N

N−1∑

i=0

f(qi) =

∫

Rd

f(σ(x))νΣ(dx) (almost surely) ,

holds true for almost all initial values q0 ∈ Σ, where {q0, q1, q2, . . .} with qi ∈ Σ stems
from the RATTLE symplectic integrator (4.17)–(4.18).

The last assertion does not say anything about the speed of convergence, which
remains an open problem; see [83, 263] for some numerical studies. In particular the
speed of convergence depends on the choice of the HMC integration time τ = Nh.
Exploring state space becomes certainly faster if τ is increased. However increasing
τ while keeping the step-size h constant decreases the acceptance probability, since
energy fluctuations become an issue.

Before we conclude the Monte-Carlo section, we shortly mention that the HMC
algorithm with lag time τ = h and without the acceptance-rejection procedure is
equivalent to an Euler discretization of the Smoluchowski equation [264]. However
letting the acceptance step account for the discretization error, HMC can be regarded
as an exact discretization of the Smoluchowski equation at step-size τ = h, i.e., HMC
generates a diffusion-like flow. Therefore the algorithm converges for any stable step-
size without introducing a bias.
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4.2.3. Langevin and Brownian motion As this section does not address
dynamics but rather sampling of probability distributions in order to compute certain
expectation values we may accept any sampling scheme that does the job. Popular
sampling method in molecular dynamics are Brownian motion and Langevin dynamics,
and we shall explain how they fit into the framework of constrained integration.

Unlike for deterministic dynamics, there are many situations in which stochastic
dynamics is proved to be ergodic [115]. This requires that the coefficients in the
equations are globally Lipschitz, a condition which is typically not satisfied; in practice,
this seems to be no problem whatsoever [265].

Constrained Brownian motion We briefly review the work in [17], where an
ergodicity proof for constrained Brownian motion is given. For this purpose we let
again Σ = ϕ−1(0) denote a smooth submanifold of codimension k in Rn, where
ϕ : Rn → Rk with regular value 0 ∈ Rk. For each σ ∈ Σ let (n1(σ), . . . , nk(σ))
be the normal frame attached to Σ. If Q ∈ Rn×k is the matrix the columns of which
are the normal vectors nk, then

PT (σ) = 1−Q(σ)QT (σ)

is the point-wise orthogonal projection PT : TRn|Σ → TΣ of vectors onto the tangent
space of Σ. Here σ : Rk → Σ labels again the embedding Σ ⊂ Rn. It is convenient to
use the ambient space notation q = σ(x) for q ∈ Rn lying on Σ. Assuming the usual
boundedness conditions on the potential V we have [17]

Proposition 4.13 (Lelièvre 2006). Let νΣ be the constrained Gibbs measure (4.9).
Then νΣ is the unique invariant measure of the following Itô equation

q̇ = −PT (q)
(

gradV (q) −
√

2β−1Ẇ
)

+ β−1
k∑

i=1

κi(q)ni(q) (4.20)

with initial value q(0) ∈ Σ, and the components κi of the mean curvature vector

H(q) =

s∑

i=1

κi(q)ni(q) , κi = − tr(PT∇ni) .

Moreover the solutions q(t) of (4.20) satisfy a Law of Large Numbers

lim
T→∞

1

T

∫ T

0

f(q(t)) dt →
∫

Σ

f(σ(x))νΣ(dx) (almost surely)

where f ∈ L1(νΣ), and convergence holds for almost all initial values q(0) ∈ Σ.

Regarding the conditional measure we encounter the same situation as in the
HMC case: simply changing the molecular potential to Vϕ = V + β−1 ln volJϕ the
constrained diffusion process samples the conditional probability measure. Equation
(4.20) can be considered the ambient space formulation for diffusion on a submanifold
of Rn, similar to the constrained Euler-Lagrange equations (4.1). This representation
is especially convenient for numerical discretization. Itô-Taylor expansion of (4.20)
with step-size h > 0 leads to the following variational formulation [17]

q∗ = qn − h gradV (qn) +
√

2β−1∆Wn

qn+1 = argmin
z∈Rn

(
‖z − q∗‖2 | ϕ(z) = 0

) (4.21)
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with ∆Wn = Wn+1 −Wn denoting the increment of the Brownian motion. We can
enforce the constraint by introducing an appropriate projection onto the tangent space
of Σ which gives rise to the implicit Euler-Maruyama scheme [266]

qn+1 = qn − h (gradV (qn) + Dϕ(qn+1)λn) +
√

2β−1∆Wn

ϕ(qn+1) = 0 ,
(4.22)

where the Lagrange multiplier λn ∈ Rk is chosen, such that ϕ(qn+1) = 0. It is further
possible to simplify the above scheme by attaching the constraint force −λTDϕ at qn,
from which we obtain a semi-explicit discretization scheme [13, 16]

qn+1 = qn − h (gradV (qn) + Dϕ(qn)λn) +
√

2β−1∆Wn

ϕ(qn+1) = 0 ,
(4.23)

We emphasize that both discretization schemes are consistent with the constrained
Itô equation (4.20). Certainly the implicit scheme will allow for larger step-sizes, but
it requires to solve the implicit and nonlinear equation. In turn, the choice of the
nonlinear solver will affect the stability of the numerical solution (cf. [82, 267]).

Constrained Langevin dynamics We address the problem of constraining
Langevin dynamics to a configuration submanifold Σ ⊂ Rn. Of course it is possible
to treat the Langevin equation as an ordinary hypo-elliptic diffusion by applying
Proposition 4.13. This would, however, completely ignore the underlying (symplectic)
geometry of the phase space in the Langevin equation. Therefore we propose an
approach that comes close to common index reduction techniques for mechanical
systems with constraints.19

For the sake of simplicity we assume that ϕ be real-valued. Now consider the
Langevin equation for a constrained natural mechanical system (4.5),

q̇i =
∂Ĥ

∂pi

ṗi = −∂Ĥ
∂qi

− γij
∂Ĥ

∂pj
+ σijẆ

j , i = 1, . . . , n

0 =
∂Ĥ

∂λ
,

(4.24)

with the constrained Hamiltonian Ĥ = H + λϕ,

Ĥ(q, p) =
1

2
〈p, p〉 + V (q) + λϕ(q) .

Moreover, let us assume that γ, σ are scalar satisfying 2γ = βσ2. Then, more
concretely, the constrained Langevin equation for a separable Hamiltonian reads

q̇ = p

ṗ = −∇V (q) − λ∇ϕ(q) − γp+ σẆ

0 = ϕ(q) ,

(4.25)

Unlike in the mechanical case considered earlier, the Lagrange multiplier has now
become a random variable that depends on the particular realization of the Brownian

19A related approach has been put forward recently during the writing of this thesis [84].
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motion. Recall from the discussion of the constrained Hamiltonian system that the
dynamics takes place on the constrained phase space bundle that by

B =
{

(q, p) ∈ T ∗Rn
∣
∣ q ∈ Σ and

〈

∇ϕ(q),D2Ĥ(q, p)
〉

= 0
}

.

Let n(q) be the unit normal to Σ. Since the gradient gradϕ = ∇ϕ is normal to the
fibre ϕ−1(0) and p = D2Ĥ , we have the orthogonality condition

〈n(q(t)), p(t)〉 = 0

for the solutions (q(t), p(t)) of (4.25). Therefore (by differentiation with respect to t)

〈n(q(t)), ṗ(t)〉 + 〈∇n(q(t)) · p(t), p(t)〉 = 0

By inserting the equation of motion for p, and solving for −λ∇ϕ, we find

−λ∇ϕ(q) = P ∗
N (q)

(

∇V (q) + γp− σẆ
)

+ Sq(p, p) , (4.26)

where P ∗
N : (T ∗Rn)|Σ → (T ∗Σ)⊥ , P ∗

N = nnT is the point-wise projection onto the
orthogonal complement of T ∗Σ and Sq(p, p) is the second fundamental form of the
embedding Σ ⊂ Rn (compare Lemma 4.1 and keep in mind that the mass scaling
allows us to identify TRn with T ∗Rn), viz.,

Sq(p, p) = −n(q) 〈∇n(q) · p, p〉 .
Plugging the constraint force back into the Langevin equation (4.25) eliminates the
constraint, and we end up with the phase space equivalent of (4.20):

q̇ = p

ṗ = −P ∗
T (q)

(

∇V (q) + γp− σẆ
)

+ Sq(p, p) .
(4.27)

Here P ∗
T = 1−P ∗

N denotes the orthogonal projection onto the constrained phase space
T ∗Σ. The function ϕ(q) is a conserved quantity of the constrained Langevin equation
which can be seen as follows: By construction of the constraint force, we have ϕ̈(t) = 0
along the solutions (q(t), p(t)) of (4.27). Integrating with respect to time we conclude
that ϕ(t) = αt + δ. Choosing suitable initial conditions (q(0), p(0)) = (q0, p0), such
that

ϕ(q0) = 0 & 〈∇ϕ(q0), p0〉 = 0 ,

we have α = δ = 0 and therefore ϕ(t) = 0 at all times t > 0. Borrowing a denomination
from the theory of differential algebraic equations [251], we term (4.27) the underlying
stochastic differential equation to (4.25).20 It remains to check whether the constrained
canonical distribution µΣ is invariant under the constrained Langevin dynamics.

As before, let HΣ = H |B denote the restriction of the original Hamiltonian to
the constrained phase space B ∼= T ∗Σ. We employ the notation dλΣ(q, p) for the
constrained Liouville measure expressed in the ambient space coordinates.21 Then,
abbreviating z = (q, p), the invariant measure can be written as

µΣ(dz) =
1

ZΣ
exp(−βHΣ(z))dλΣ(z) .

20Exactly the same result would be obtained by applying Itô’s formula to the orthogonality
condition above, for the orthogonality condition is linear in the momenta, and the noise comes solely
from the momentum equation. Therefore there are no extra second-order contributions from the noise.

21The notation dλΣ(q, p) becomes clear if one bears in mind that the constrained Liouville volume
form λΣ is defined by exterior products of the constrained symplectic form ωΣ which is simply the
restriction of the unconstrained symplectic form, ωΣ = (dqi ∧ dpi)|B.
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In order to show that µΣ is indeed invariant we consider the Kolmogorov backward
equation associated with the Langevin equation (4.27) and study its solution

u(z, t) = Ezf(z(t)) , u(z, 0) = f(z) ,

where z(t) = (q(t), p(t)) is the solution of (4.27), and Ez(·) is the expectation
conditional on the initial value z = (q0, p0). The measure µΣ is invariant, if

∫

B

u(z, t)µΣ(dz) =

∫

B

u(z, 0)µΣ(dz) ∀t > 0 . (4.28)

The backward generator (2.22) for the constrained Langevin equation (4.27) reads

Abw =
σ2

2
P ∗
T : D2

2 + p ·D1 − P ∗
T (∇V + γp) ·D2 + Sq · D2 .

The double contraction A : B = tr(AB) denotes the matrix inner product, whereas
the simple dot is the pairing between tangent and cotangent vectors in Rn. Taking
the time derivative of (4.28), omitting the normalization constant ZΣ, we obtain

∂

∂t

∫

B

u exp(−βHΣ)dλΣ

=

∫

B

(Abwu) exp(−βHΣ)dλΣ

=

∫

B

(
σ2

2
P ∗
T : D2

2 − γP ∗
T p ·D2

)

u exp(−βH)dλΣ

︸ ︷︷ ︸

forcing and dissipation

+

∫

B

(p ·D1 − (P ∗
T∇V (q) − Sq(p, p)) ·D2)u exp(−βH)dλΣ

︸ ︷︷ ︸

constrained Hamiltonian

,

where we have replaced HΣ by H under the integral. We can address the two terms
separately: Regarding the latter, we observe that the integral contains the Liouvillian
of the index-reduced deterministic system. As µΣ is invariant under the constrained
deterministic flow, and the index-reduced system generates the same flow on T ∗Σ as
the constrained Hamiltonian vector field (4.5), it follows that the integral vanishes
identically. The integrand in the first integral can be written as

∫

B

(
σ2

2
P ∗
T : D2

2 − γP ∗
T p · D2

)

u exp(−βH)dλΣ

=
σ2

2

∫

B

divΣ (D2 (u exp(−βH))) dλΣ

with divΣ labelling the divergence on the linear momentum subspace T ∗
q Σ ⊂ T ∗

qR
n

divΣX(q, p) = tr (P ∗
TD2X(q, p)) .

We can perform the momentum integration by application of the divergence theorem
[268] for submanifolds of arbitrary codimension; since T ∗

q Σ is a linear subspace of
T ∗
qR

n ∼= Rn and linear subspaces have zero mean curvature, it follows that the
remaining forcing/dissipation integral above is zero, i.e.,

∫

B

divΣ (D2 (u exp(−βH))) dλΣ = 0 .

Hence we conclude that µΣ is invariant under the constrained Langevin motion (4.27).
Assuming that the associated Markov process z(t) = (q(t), p(t)) with (q(0), p(0)) =
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(q0, p0) has a strictly positive transition function (accessibility condition) yields the
Law of Large Numbers

lim
T→∞

1

T

∫ T

0

f(z(t))dt →
∫

f(z)µΣ(dz) (almost surely)

for all functions f ∈ L1(µΣ) and consistent initial conditions (q0, p0) ∈ T ∗Σ. We omit
the generalization of (4.27) to vector-valued constraints and refer the reader to the
section on constrained Hamiltonian systems.

An ad-hoc numerical discretization of (4.27) can be built upon integrators for
constrained deterministic systems. Modifying the SHAKE algorithm (4.17) with the
discrete conjugate momentum (4.18) accordingly, we propose the scheme

pn+1/2 = pn − h

2
(∇V (qn) + γpn + λn∇ϕ(qn)) + σ∆Wn+1/2

qn+1 = qn + hpn+1 ,
(4.29)

where ∆Wn+1/2 = Wn+1/2 −Wn, and the Lagrange multiplier λn is chosen, such that

ϕ(qn+1) = 0 . (4.30)

The final momentum step is

pn+1 = pn+1/2 −
h

2
(∇V (qn+1) + γpn+1/2

+ µn∇ϕ(qn+1)) + σ∆Wn+1 ,
(4.31)

where ∆Wn+1 = Wn+1 −Wn+1/2, and µn is determined by the hidden constraint

〈∇ϕ(qn+1), pn+1〉 = 0 . (4.32)

The integrator is quasi-symplectic in the sense of [269], and we expect that it is strongly
convergent of order two. Preliminary numerical simulations seem to support this claim,
but we refrain from detailed numerical studies for the sake of brevity. In fact, a very
similar result has appeared recently during the writing of this thesis. Elaborating upon
the RATTLE integrator, the authors of [84] obtain an integrator almost identical to
(4.29)–(4.32), but with a different implementation of the white noise term; in addition,
they prove that the integrator is second-order accurate.

4.3. Thermodynamic Integration

We have presented methods for sampling constrained Gibbs measures in either
configuration or phase space. By these means we can now to sample, for example,
the derivative of the free energy or other quantities that appear in any of the reduced
models. In order to access configuration space regions which correspond to improbable
values of the reaction coordinate, we have to resort to methods like Thermodynamic
Integration [8, 270] or the closely related Thermodynamic Perturbation [271, 272].
Accordingly this section explains Thermodynamic Integration from the point of view of
the different types of constrained dynamics and gives an overview of different methods
of free energy calculation. In particular we will explain how both geometric and
standard free energy can be computed rather efficiently from the force of constraint.

We shall exemplify the basic approach by means of the optimal prediction
equations. For the sake of simplicity we consider a scalar reaction coordinate Φ :
Rn → R. In this particular case the optimal prediction Hamiltonian (3.63) reads

E(ξ, η) =
1

2
m(ξ)−1η2 +G(ξ) ,
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where the effective mass m is given by

m(ξ) =

(

1

QΣ

∫

Σξ

‖∇Φ‖2 exp(−βV )dσξ)

)−1

.

Here Σξ denotes the level sets Φ−1(ξ) for all regular values ξ of Φ, and dσξ
is the corresponding surface element (no conditional expectation here, QΣ is the
normalization constant). Recall further that the geometric free energy is defined as

G(ξ) = −β−1 ln

∫

Σξ

exp(−βV )dσξ .

In order to sample the effective mass, we can simply use any method that samples
νΣ, like HMC or even Langevin dynamics. If we denote by {q0, . . . , qN−1} ⊂ Σξ the
respective (constrained) Markov chain we can approximate m by

m(ξ) ≈
(

1

N

N−1∑

i=0

‖∇Φ(qi)‖2

)−1

.

Recall that it is theoretically possible to compute the standard free energy by
running brute force simulations, sampling the marginal distribution of the reaction
coordinate. In principle the geometric free energy could also be directly computed
from unconstrained simulation data building histograms of the reaction coordinate:
upon backwards application of the Blue Moon reweighting formula (3.28), we have

exp(−βG(ξ)) ≈
(
N−1∑

i=0

‖∇Φ(qi)‖
)−1 N−1∑

i=0

χξ(Φ(qi)) ‖∇Φ(qi)‖ ,

where χξ denotes the indicator function of the set [ξ, ξ + ∆ξ[ for sufficiently small
increment ∆ξ. The last formula makes the geometric free energy directly observable.
Of course for all reaction coordinates of actual interest, the sampling along the reaction
coordinate will be rather poor due to slow mixing and metastability. Resorting to
Thermodynamic Integration instead, we can estimate G from its derivative,

G′(ξ) ≈ 1

N

N−1∑

i=0

〈n(qi),∇V (qi)〉 − β−1div n(qi)

‖∇Φ(qi)‖
, n =

∇Φ

‖∇Φ‖ .

Basically, the formula for G′ is obtained by disregarding the Fixman potential in the
expression (3.15). In principle, the optimal prediction equations (3.58) would require
only that the mean force be given, however it might be desirable to have its potential at
hand. Given n samplings at various values ξl we can recoverG by numerical integration
(i.e., Thermodynamic Integration) over ξ using any suitable quadrature rule

Gn(ξ) =

n∑

l=1

wn,lG
′(ξl) , (4.33)

where wn,l are the weights of the particular quadrature rule (see, e.g., [273, 274]).

4.3.1. Free energy from constrained Langevin motion We study Thermody-
namic Integration in case the constrained dynamics is on phase space. For this purpose
consider a generalized free energy along a vectorial reaction coordinate Φ : Rn → Rk

Uα(ξ) = −β−1 lnZα(ξ)
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with the generalized partition function

Zα(ξ) =

∫

Σξ×Rn

exp(−βHα) dHξ ,

where dHξ = dσξdp is the surface measure of Σ × Rn ⊂ Rn × Rn, and Hα is the
Hamiltonian that is augmented by the Fixman potential with weight α,

Hα = H + β−1 ln volJα , volJα =
√

detDαTDα .

Choosing α = q the generalized free energy turns into the geometric free energy
G = Uq, whereas for α = Φ we recover the standard free energy F = UΦ. Now recall
that according to Lemma 3.3 the derivative of the free energy can be written as

∇Uα =
1

Zα

∫

Σ×Rn

∂Hα

∂Φ

∣
∣
∣
∣
Φ=ξ

exp(−βHα)dHξ ,

Moreover we know from the discussion in Section 3.1.1 that the derivative of the free
energy with respect to the reaction coordinate is independent of the normal momenta
(or velocities). Then, upon comparing equation (3.13) to the expression (4.26) for the
Langevin constraint force (note that both the noise term and the linear friction term
have zero mean), it turns out that ∇Uα can be equivalently written as

∇Uα =
1

Zα

∫

Σ×Rn

λα exp(−βHα)dHξ ,

where λα is the Lagrange multiplier in (4.25) that is necessary to constrain a Langevin
system with Hamiltonian Hα to the constraint phase space

B = {(q, p) ∈ Rn × Rn | q ∈ Σ, DΦ(q) ·D2Hα(q, p) = 0} ,
which is clearly independent of the weight α, since D2Hα = D2H . Notice that by
definition of the constraint force, λα depends only on the constrained momenta. Hence
we can replace the expectation above by the constrained average. This yields

∇Uα =

∫

B

λα µΣ,α , (4.34)

where µΣ,α is the constrained canonical probability measure with Hamiltonian Hα,

µΣ,α =
1

ZΣ,α
exp(−βHΣ,α)dλΣ , (4.35)

that is preserved by the constrained Langevin system with Hamiltonian Hα. Clearly,
α = q simply amounts to the constrained canonical probability measure, whereas the
invariant measure of the Langevin system with α = Φ is the conditional canonical
measure. The respective Lagrange multipliers are related by

λα = λq − β−1(JTα Jα)−1JTα∇ ln volJα , (4.36)

which, upon choosing α = Φ, becomes the correct expression (3.13) for computing
the derivative of the standard free energy. Hence formulae (4.34)–(4.36) reveals both
∇F and ∇G by appropriately adapting the weight function α. Assuming ergodicity
for the discretization of the constrained Langevin equation (4.27) we claim that the
following is true: Let (qk, pk), k = 0, . . .N − 1 be a discretized solution of (4.27) with
initial values (q0, p0) ∈ B. Then we have for the geometric free energy

∇G(ξ) = lim
N→∞

1

N

N−1∑

k=0

λq,k(qk, pk) , (4.37)
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where λq,k is the Lagrange multiplier of the stochastic RATTLE algorithm (4.29)–
(4.32). If we replace the potential V in (4.27) by the augmented potential VΦ =
V + β−1 ln volJΦ, generating a realization {(q̃0, p̃0), . . . , (q̃N−1, p̃N−1)} ⊂ B, then we
obtain the same relation for the derivative of the standard free energy

∇F (ξ) = lim
N→∞

1

N

N−1∑

k=0

λΦ,k(q̃k, p̃k) , (4.38)

where λΦ,k is now the discrete RATTLE Lagrange multiplier for the augmented
potential. At this point the reader may wonder, whether we can replace the
continuous Lagrange multiplier in (4.34) by its discrete counterpart. For the
deterministic RATTLE algorithm, equivalence between the Lagrange multipliers has
been established in [12]. Indeed, by simply repeating the argument given there, it
follows that the same is true for the stochastic RATTLE algorithm.

The evaluation of ∇VΦ may be a tedious task, since it requires to compute the
Hessians ∇2Φi. If the mean force is not updated at each integration step it may be
more efficient to use the original potential instead of the augmented one. Then we
can explicitly augment the Lagrange multiplier according to (4.36) and reweight the
average employing the Blue Moon relation (3.28). If {(q0, p0), . . . , (qN−1, pN−1)} ⊂ B

is a realization of the constrained Langevin equation (without the additional Fixman
potential), then we can compute the standard free energy by means of

∇F (ξ) = lim
N→∞

(
N−1∑

k=0

w(qk)

)−1 N−1∑

k=0

w(qk)λΦ,k(qk, pk) , (4.39)

with the Blue moon weight w = (volJΦ)−1 and

λΦ,i = λq,i − β−1(JTΦJΦ)−1JTΦ∇ ln volJΦ ,

which is in perfect agreement with the formulae that have been derived in various
instances, e.g., [12, 15, 11, 275].

Remark 4.14. An even simpler way to compute F directly goes via equation (3.29).
Recall the considerations concerning the co-area formula that have led to the Blue
Moon reweighting relation in Section 3.1.2. In particular we have found that standard
and geometric free energy are simply related by

F (ξ) = G(ξ) − β−1 lnEΣ(volJΦ)−1 .

Since we can obtain the components of ∇G by just averaging over the ordinary
Lagrange multipliers, it is evident that the most efficient way to compute F is by
first computing G and then adding the Fixman potential D = −β−1 lnEΣ(volJΦ)−1.
This method is certainly the most efficient one, since it only requires the evaluation
of volJΦ, where the Jacobians are available anyway during the constrained integration
without extra reweighting or the calculation of second derivatives.

4.3.2. Free energy from constrained hybrid Monte-Carlo Free energy
calculation with HMC trajectories is slightly different from the Langevin case, since
HMC samples only the configurational Gibbs density. The Lagrange multipliers,
however, are functions of both positions and momenta.

We can easily compute the momentum average analytically: averaging the
quadratic curvature term in the constraint force over the constrained Gaussian
momentum density gives the mean curvature as can be seen from equation (3.15). To a
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certain extend this is obvious, as the momentum average of a quadratic form gives the
trace of the matrix inside the quadratic form, and the Lagrange multipliers contain
the second fundamental form that involves the matrices of the Weingarten maps; the
trace of the Weingarten maps then yields the coefficients of the mean curvature vector.
The next statement is a consequence of (3.15) and the Law of Large Numbers (4.12):

Corollary 4.15. Let {q0, . . . , qN−1} ⊂ Σ denote a HMC Markov chain with the
integrator (4.17)–(4.18) and the acceptance probability (4.11). Then

∇G(ξ) = lim
N→∞

1

N

N−1∑

k=0

g(qk)

with

g = (JTΦJΦ)−1
(
JTΦ∇V − β−1 tr

(
PT∇2Φ

))
,

where PT = 1 − JΦ(JTΦJΦ)−1JTΦ is the point-wise projection onto TqΣ, and the
rightmost term is understood component-wise for Φ = (Φ1, . . . ,Φk)

T . Accordingly,
the derivative of the standard free energy takes the obvious form

∇F (ξ) = lim
N→∞

(
N−1∑

k=0

w(qk)

)−1 N−1∑

k=0

w(qk)f(qk) ,

with w = (volJΦ)−1 and

f = g − β−1(JTΦJΦ)−1JTΦ∇ ln volJΦ .

Note that the reasoning of Remark 4.14 applies as well: we can directly compute
the standard free energy F by Thermodynamic Integration of ∇G and adding the
Fixman term D = −β−1 lnEΣ(volJΦ)−1 to G. The alternative way to compute the
∇F without extra reweighting à la Blue Moon is expressed in the following statement:

Corollary 4.16. Let {q̃0, . . . , q̃N−1} ⊂ Σ denote a constrained HMC Markov chain
with the augmented Hamiltonian HΦ = T + VΦ, where VΦ = V + β−1 ln volJΦ. Then

∇F (ξ) = lim
N→∞

1

N

N−1∑

k=0

f(q̃k)

with

f = (JTΦJΦ)−1
(
JTΦ∇VΦ − β−1 tr

(
PT∇2Φ

))
.

Bibliographical remarks For the sake of completeness we mention just a few
other methods that are available in the literature. A Brownian dynamics approach
that exploits the relation between the derivative of a generalized free energy and the
respective mean constraint force is given in [17]. Another widely-used Monte-Carlo-
based algorithm for free energy calculations is Umbrella Sampling [276], where the
system is forced to sample a certain range of the reaction coordinate by adding a
confining potential. Though easy to implement (and thus popular), Umbrella Sampling
involves unphysical manipulations of the original system and uncontrolled sources of
error due to the choice of the confining potential [236]. Another class of approaches
can be subsumed under the name of Adaptive Biasing Forces. These approaches, like
conformational flooding [277], scaled force [77], or metadynamics [278], estimate the
mean force during the course of integration. While sampling of phase space proceeds,
the estimate is progressively refined, and introduced in the equations of motion as
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a biasing force, which guarantees that the force acting along the reaction coordinate
averages to zero over time. Eventually the free energy is recovered from the added
force. For an overview of various kinds of methods we refer to the reviews [13, 2] and
the references therein.

The formerly mentioned methods exploit that the free energy is equal to the
reversible work that a system performs while undergoing an adiabatic change of
state. This requires that the system always stays in its thermodynamic equilibrium
conditional on the (frozen) reaction coordinate. But if the reaction coordinate is
controlled in such a way that the remaining system cannot relax to its thermodynamic
equilibrium, then the amount of performed work typically exceeds the free energy
(second law of thermodynamics). Hence the above mentioned algorithms suffer from
a systematic overestimation of free energy differences due to finite sampling times.
However it is possible to compute free energy differences by averaging the irreversible
work using an appropriate exponential weighting which is due to [279, 280]. For
applications of the Jarzynski equality we refer to the recent preprint [281].
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