
3. Eliminating fast degrees of freedom

While the discussion in the last section addressed the identification of essential
variables, we shall now explain how reduced models can be derived from the full
set of equations of motion. The techniques that will be introduced in the course of
this section range from thermodynamical free energy concepts to dynamical averaging
techniques. In any event the physical idea behind the reduction process is that the fast
degrees of freedom act as random forcing on the slowly evolving parts in the system.
If the dynamics of the fast variables is well-posed in the sense that it admits a unique
equilibrium distribution, we can simply average the random perturbations over their
equilibrium distribution whereby the slow degrees of freedom are effectively driven by
an averaged force. A generic slow-fast system has the form

ẋǫ(t) = f(xǫ(t), yǫ(t), ǫ)

ẏǫ(t) =
1

ǫ
g(xǫ(t), yǫ(t), ǫ) ,

(3.1)

where x and y are the slow and fast coordinates, respectively. From the equations of
motion it can be seen already that if both f and g are (globally) Lipschitz continuous,
uniformly in ǫ and t, then the fast velocities will be of order 1/ǫ faster than the slow
ones if ǫ goes to zero. This situation becomes more intuitive if we switch to the slow
timescale by scaling the free variable t 7→ ǫt

ẋǫ(t) = ǫf(xǫ(t), yǫ(t), ǫ)

ẏǫ(t) = g(xǫ(t), yǫ(t), ǫ) ,
(3.2)

where we have labelled the scaled quantities again by xǫ(t), yǫ(t). In the limit ǫ → 0
the slow variables are effectively frozen, for ẋǫ(t) = O(ǫ), while the fast variables
evolve conditional on the slow ones.5 We assume that the conditional fast dynamics
is well-posed for all values of the slow variables in a sense that will be specified below.
This slaving mechanism is a common feature of molecular systems: for instance, it is a
general phenomenon that the frequencies of the fast bond vibrations depend upon the
slowly evolving conformations of the molecule; in turn, the varying bond vibrations
couple back to the slow modes, usually torsion angles [29]. It may even happen that
the back-coupling of the fast variables to the slow ones induces further timescales
which may lie beyond the characteristic time of the slow degrees of freedom [35, 165].

The reader may wonder why timescales are an issue at all, besides the fact that
systems with several different timescales are in some vague sense complicated. One
difficulty in the context of molecular dynamics applications lies in the need for long-
time simulations; in order to integrate the equations of motion any numerical scheme
has to resolve the fastest modes on the order of femtoseconds which is a tedious task
if the simulation ought to reveal the dynamics of the slowest modes that may take
place on scales of milliseconds. Moreover the effect of the discretization error becomes
more and more important for long trajectories, since for high-dimensional systems in a
random environment (solvent) the discretized system departs from the exact trajectory
very early during the integration.6

5We will make extended use of the Landau symbol O which we will, however, use in a very loose
sense: here h(ǫ) = O(ǫα) means that the limit |h(ǫ)ǫ−α| → c ≥ 0 exists for ǫ→ 0.

6Yet this seems to be no problem whatsoever, since although single trajectories may be completely
misdirected, the calculation of average quantities works surprisingly well; for a detailed discussion on
the question Why does molecular dynamics work? the reader is referred to [166, 167, 168, 169].
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3.1. Central paradigm in biophysics: free energy landscapes

There is a whole industry within the molecular dynamics community that is concerned
with the calculation of free energy profiles. The free energy is arguably considered the
most fundamental thermodynamical quantity in analyzing molecular systems, for there
is a variety of phenomena as, for instance, molecular solvation, enzyme catalysis, or
conformation dynamics, the analytical understanding of which is directly related to
the corresponding free energy landscape [170]; see the review [1] and the references
therein. Moreover it is a common believe that the dynamics of these phenomena is also
driven by the free energy. For instance, it is often assumed that conformation dynamics
is dynamics in the respective free energy landscape [171, 172]. We shall argue that this
is not generally the case, even if there is a clear timescale separation between reaction
coordinate and the remaining degrees of freedom. (The reason is that the free energy
is not the potential of a force in the strict sense.) Before we come to this point let us
briefly review the notion of free energy.

Speaking of free energy in the context of molecular applications, mostly means
the Helmholtz or the Gibbs free energy. The Helmholtz free energy is the quantity of
choice in order to describe the reversible work in a system at constant temperature in a
fixed volume, whereas the Gibbs free energy describes reversible processes at constant
temperature and pressure. In both cases the number of particles is kept constant. Here
we are particularly interested in the Helmholtz free energy, which is most standard if
no chemical reactions occur.

The statistical mechanics definition of the free energy is in terms of the partition
function. Let us give an intuitive derivation: Recall the thermodynamical concept
of Legendre transformations among thermodynamical potentials [173]. The Helmholtz
free energy is given by F = U−TS, where U is the internal energy, T the temperature,
and S is the entropy of the system. The partition function is simply the normalization
constant of the respective probability density, say ρ ∝ exp(−βH),

Z =

∫

T∗Q

exp(−βH(z)) dz , z = (q, p) .

Now we can endeavour the Boltzmann definition of Shannon’s information entropy,

S = −
∫

T∗Q

ρ(z) ln ρ(z) dz ,

which can be rewritten for a system in equilibrium, i.e., ρ = Z−1 exp(−βH):

S = βEH(z) + lnZ . (3.3)

Noting that β = 1/T , it follows upon identifying U = EH(z) that

F = −β−1 lnZ (3.4)

which is the familiar expression that typically appears in molecular dynamics books.
By replacing the Hamiltonian by the potential energy we can easily repeat the last few
steps for the configurational Gibbs ensemble, but we could also consider a subensemble
only, e.g., the distribution of the fast variables. This will be explained next.

Thermodynamic Integration We introduce the conditional free energy. Let Φ :
Rn → Rk denote a reaction coordinate. Unless otherwise stated we assume that Φ

35



is regular in the sense that its Jacobian DΦ has full rank k almost everywhere.7 The
molecular Hamiltonian H : T ∗Rn → R in mass-scaled coordinates reads

H(q, p) =
1

2
〈p, p〉 + V (q) .

Following the relevant literature (e.g., [88]) we have:

Definition 3.1. Consider the Hamiltonian H on the phase space T ∗Rn ∼= Rn × Rn

with the canonical coordinates (q, p), and let Φ : Rn → Rk denote a smooth reaction
coordinate. Then the free energy along the values of Φ is defined as

F (ξ) = −β−1 lnZ(ξ), (3.5)

with the partition function

Z(ξ) =

∫

Rn×Rn

exp(−βH(q, p))δ(Φ(q) − ξ) dqdp , (3.6)

where δ denotes the Dirac delta measure on Rk.

The reader should bear in mind that (up to normalization) the integrand in (3.6)
defines a conditional probability density. By application of the co-area formula we can
write the partition function as the equivalent surface integral [70, 175]

Z(ξ) =

∫

Σξ×Rn

exp(−βH) (volJΦ)−1dHξ . (3.7)

where dHξ is the Hausdorff measure (surface element) of Σξ × Rn considered as a
submanifold of Rn×Rn. Here Σξ ⊂ Rn denotes the level set Φ−1(ξ), but for the sake
of simplicity we shall drop the subscript ξ and just write Σ for the level sets. The
volume of the rectangular matrix JΦ is defined as [176]

volJΦ(q) =
√

detJTΦ (q)JΦ(q) .

We believe that (3.5) together with (3.7) provides the appropriate mathematical
representation of the free energy. For our purpose this form is more convenient than
the one involving the Dirac delta, unless we want to dig into the depths of generalized
functions and measure theory. For a formal derivation of the above identity using a
simple change-of-variables argument the reader is referred to Appendix D.

From the definition it is clear that the free energy could be easily computed from
the marginal probability distribution of the reaction coordinate. However the essential
dynamics is typically slow, and so reliably sampling the marginal distribution is a
rather tedious issue. Therefore a common approach is to constrain the system to fixed
values of the reaction coordinate, and then sample the average force acting upon it.
The free energy is recovered afterwards by numerical integration with respect to the
reaction coordinate. This widely-used technique, which exploits the dichotomy of free
energy as the potential of mean force, is known as Thermodynamic Integration and
goes back to Kirkwood [8]. The hope is that, once one has successfully identified the
reaction coordinate, sampling in the remaining variables is comparably fast.

We issue a warning: There is some ambiguity in the definition of free energy
throughout the literature. Especially in the literature on transition state theory the
term free energy is often used without the matrix volume; see, e.g., [3, 4]. We shall
come back to that point at a later stage, and introduce yet another definition:

7According to Sard’s Lemma [174] this can be guaranteed by choosing the Φ : Rn → Rk, such
that it belongs to the class Cn−k+1(Rn). Then the points, where DΦ is rank-deficient, form a set of
measure zero in Rn−k, and the level sets Φ−1(ξ) are regular submanifolds of codimension k in Rn.
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Definition 3.2. The expectation for an integrable phase space function f = f(q, p)
conditional on the reaction coordinate Φ(q) = ξ is defined as

Eξf =
1

Z(ξ)

∫

Σ×Rn

f exp(−βH) (volJΦ)−1dHξ . (3.8)

The following Lemma is standard, but we give the proof for the sake of illustration:

Lemma 3.3. Let the free energy be defined as above. Then the derivative of the free
energy takes the form of a conditional expectation

∇F (ξ) = Eξfξ , (3.9)

where fξ is the generalized force along the reaction coordinate evaluated at Φ(·) = ξ,

fξ =
∂H

∂Φ

∣
∣
∣
∣
Φ=ξ

+ β−1
(
JTΦJΦ

)−1
JTΦ∇ ln volJΦ . (3.10)

Proof. Differentiating the free energy (3.5) with respect to ξ ∈ Rk we obtain

∇F (ξ) = −β−1 1

Z(ξ)

∂Z

∂ξ
,

where ∂/∂ξ = (∂/∂ξ1, . . . , ∂/∂ξk) is shorthand for the vector of partial derivatives
with respect to ξ. Hence it remains to evaluate the integral

∂Z

∂ξ
=

∂

∂ξ

∫

Σ×Rn

exp(−βH) (volJΦ)−1 dHξ (3.11)

The calculation is easily carried out in an adapted coordinate frame. To this end we
let σ : Rd → Σ, d = n− k be the embedding Σ ⊂ Rn, and we let {n1(σ), . . . , nk(σ)}
denote a set of orthonormal vectors that span the normal space over Σ. Further we
denote by NΣε a sufficiently small tubular ε-neighbourhood of Σ, such that the map

φ : Rn → NΣε, (x, η) 7→ σ(x) + ηini(σ(x)) .

is a local embedding NΣε ⊂ Rn. By means of φ we can uniquely represent any point
q ∈ Rn ∩ NΣǫ in terms of the bundle coordinates as q = φ(x, η); for the details we
refer to Appendix B. In particular the local coordinate expression for the potential is

V (x, η) = V (σ(x) + ηini(σ(x))) .

Defining the conjugate momenta (u, ζ) in the standard way, we can easily extend φ to
a symplectic transform T ∗φ : T ∗Rn → T ∗NΣε. By construction, the transformation
from (q, p) to the adapted coordinates (x, η, u, ζ) is symplectic, hence volume-
preserving. Moreover the condition Φ(q) = ξ, i.e., the restriction to Σ × Rn amounts
to setting η = 0. For convenience we define an augmented Hamiltonian by HΦ =
H + β−1 ln volJΦ. Using chain rule the derivative in (3.11) now becomes

∂Z

∂ξ
= −

∫

Rd×Rn

B(x)−T
∂

∂η
exp(−βHΦ(x, η, u, ζ))|η=0 dxdudζ

= β

∫

Rd×Rn

B(x)−T
∂HΦ

∂η

∣
∣
∣
∣
η=0

exp(−βHΦ(x, 0, u, ζ)) dxdudζ ,
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where B(x) is the matrix JTΦ (σ(x))Q(σ(x)) with Q = (n1, . . . , nk) ∈ Rn×k. By
definition of the augmented Hamiltonian this yields

∂HΦ

∂η

∣
∣
∣
∣
η=0

=
∂H

∂η

∣
∣
∣
∣
η=0

+ β−1QT∇ ln volJΦ .

Upon multiplication with B−T the last equation is equal to

∂HΦ

∂Φ

∣
∣
∣
∣
Φ=ξ

=
∂H

∂Φ

∣
∣
∣
∣
Φ=ξ

+ β−1(QTJΦ)−1QT∇ ln volJΦ .

To complete the proof we show that the matrix (QTJΦ)−1QT is the Moore-Penrose
pseudoinverse of the Jacobian JΦ. To this end consider a QR decomposition of the
Jacobian JΦ. That is, we consider JΦ = QR, where Q ∈ Rn×k has orthonormal
columns and R ∈ Rk×k is upper triangular. Since R is invertible, the Moore-Penrose
pseudoinverse of the Jacobian can be written as [177]

(JTΦJΦ)−1JTΦ = (RTQTJΦ)−1RTQT = (QTJΦ)−1R−TRTQT ,

by which the assertion immediately follows.8

Remark 3.4. The last result looks slightly different from what is typically found in the
literature [71, 2]; see also [78, 10, 11, 12]; they are equivalent though. The difference
can be explained by pointing out that these authors treat the partition function (3.6)
as an ordinary surface integral (without the Jacobian), simultaneously considering
considering Φ as if it were an independent coordinate [179]; cf. the results in [180].

3.1.1. Contributions to the free energy Let us shortly comment on the last
result. Apparently the derivative of the free energy is the conditional expectation
of the mechanical force ∂H/∂Φ in the direction of the reaction coordinate plus an
additional term that is owed to the definition of the conditional probability density
(pseudo force). Only in case that Σ ⊂ Rn is a linear subspace the matrix volume in
(3.7) is constant, and the free energy is really the potential of the average mechanical
force. We shall study the contributions to the mechanical force in more detail. From
a geometrical viewpoint the Lagrangian formulation is more convenient, for the
interpretation becomes more lucid. Taking advantage of the identity (2.8) we have

∂H

∂η

∣
∣
∣
∣
η=0

= − ∂L

∂η

∣
∣
∣
∣
η=0

along the integral curves of the Hamiltonian vector field. In coordinates L reads

L(x, η, ẋ, η̇) =
1

2
〈(G+ C)ẋ, ẋ〉 +

〈
AT ẋ, η̇

〉
+

1

2
〈η̇, η̇〉 − V (x, η) ,

with the submatrices of the metric tensor defined in (B.2); see the appendix for
details. We can compute the derivative of the Langrangian with respect to the normal
coordinate component-wise. This yields

∂L

∂ηi

∣
∣
∣
∣
η=0

=
1

2

∂Cαβ
∂ηi

∣
∣
∣
∣
η=0

ẋαẋβ +
∂Ajα
∂ηi

∣
∣
∣
∣
η=0

ẋαη̇j − ∂V

∂ηi

∣
∣
∣
∣
η=0

.

8Intriguingly the last line would be true, even if Q were not orthogonal: in fact for arbitrary full-
rank matrices A,B ∈ Rn×k with A = BS and S non-singular, it can be shown that A♯ = (BTA)−1BT

is the uniquely defined Moore-Penrose pseudoinverse of A. It can be readily checked that the thus
defined matrix meets the four Moore-Penrose conditions [178].
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By chain rule it follows for the potential term

∂V

∂ηi

∣
∣
∣
∣
η=0

= 〈ni, gradV 〉

which is simply the directional derivative along the i-th normal direction. We can
omit the potential in the following. The two other terms have a nice geometrical
interpretation, too. Using the results from Appendix B we find

∂L

∂ηi

∣
∣
∣
∣
η=0

= Siαβ(x)ẋ
αẋβ + ωij(Xα)ẋαη̇j , (3.12)

where

Siαβ = 〈dni(Xα), Xβ〉
are the matrix entries of the symmetric map that is associated with the second
fundamental form of the embedding (extrinsic curvature of Σ) written in the basis
of the local tangent vectors Xα = ∂σ/∂xα. The vectors dni(X) = ∇ni ·X denote the
directional derivatives of the normals ni along a vector X . The coefficients ωij are the
normal fundamental forms that are associated with the normal frame {n1, . . . , nk}:

ωij(Xα) = 〈ni, dnj(Xα)〉
Note that the term involving the normal connection in linear in both the normal
and the tangential velocities. Hence it disappears upon taking the average over the
velocities [15]. In particular if the codimension of Σ in Rn is one, then it is well-known
that the connection term is identically zero; see Appendix B for details.

At first glance, the fact that the normal fundamental forms give no contribution
to the free energy is quite remarkable. It says that the derivative of the mean
force depends solely on points on TΣ, but not on the ambient space variables, in
particular not on the normal velocities. At closer inspection, however, this is what we
should expect, since the reaction coordinate does not depend on the velocities at all.
Consequently we can disregard the connection term and compute the mean force by
averaging over the remaining terms only. Reformulating the result from Lemma 3.3
accordingly, we thus have the expression for the derivative of the free energy

∇F (ξ) = Eξf̂ξ ,

where

f̂ξ = (QT (q)JΦ(q))−1
(
QT (q)∇VΦ(q) − 〈∇n(q) · v, v〉

)
, (3.13)

with

VΦ(q) = V (q) + β−1 ln volJΦ(q) .

The last quantity f̂ξ in (3.13) is known as the force of constraint that is needed
to constrain a natural mechanical system with potential VΦ to the configuration
submanifold Σ = Φ−1(ξ); see the discussion in the Sections 4.1 and 4.2. Here the
curvature term 〈∇n · v, v〉 is understood as a k-vector with the single components
〈∇ni · v, v〉, and (q, v) are elements of the tangent bundle

TΣ = {(q, v) ∈ Rn × Rn | q ∈ Σ, JΦ(q) · v = 0} .
In order to reduce the computational effort it may convenient to recast (3.13) in a

form that does not require to compute the orthonormal vectors ni. Indeed f̂ξ equals

f̂ξ = (JTΦ (q)JΦ(q))−1
(
JTΦ (q)∇VΦ(q) −

〈
∇2Φ(q) · v, v

〉)
, (3.14)
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where again the rightmost term is explained component-wise for Φ = (Φ1, . . . ,Φk).
Further notice that the reaction coordinate depends only on the configuration

variables. Hence we can equally well integrate out the momenta in (3.7), which does
not make a difference for the free energy. Modulo additive constants it becomes

F (ξ) = −β−1 lnQ(ξ) , Q(ξ) =

∫

Σ

exp(−βVΦ)dσξ ,

where dσξ is the surface element of Σ ⊂ Rn. Calculating the derivative yields

∇F (ξ) =
1

Q(ξ)

∫

Σ

f̄ξ exp(−βVΦ)dσξ .

with

f̄ξ = (JTΦ (q)JΦ(q))−1
(
JTΦ (q)∇VΦ(q) − β−1 tr

(
PT (q)∇2Φ(q)

))
. (3.15)

Here PT = 1−JΦ(JTΦJΦ)−1JTΦ denotes the point-wise projection onto the constrained
tangent space TqΣ. The last equation is in fact a velocity-averaged version of the
generalized force (3.14) with respect to the Maxwellian velocity distribution [13, 16].
The trace term is known to be the extrinsic mean curvature of Σ in Rn with respect
to the normal frame that is spanned by the gradient vectors gradΦi.

Remark 3.5. Intriguingly equation (3.12) suggests a more general interpretation: Let
X denote a generic vector field that is attached to a submanifold Σ ⊂ Rn. For each
σ ∈ Σ consider the decomposition of tangent spaces TσR

n = TσΣ ⊕ NσΣ with the
respective projections PT and PN that are defined point-wise for σ ∈ Σ. Note that this
is a decomposition of Rn, since we can naturally identify TσR

n with Rn. Then we
can define two vector fields the first of which satisfies [181]

PN∇XY = II(X,Y ) , (3.16)

where ∇ is the (covariant) differentiation in Rn, and X,Y are both tangent along Σ.
The second fundamental form II is defined by means of the Weingarten maps [182]

II(X,Y ) =
∑

i

ni 〈ni,∇XY 〉 =
∑

i

ni 〈SiX,Y 〉 .

The symmetric Weingarten maps Si : TσΣ → TσΣ are given by Si = −PTdni(·)
as can be readily checked by differentiating the relation 〈ni, Y 〉 = 0 along X. (Here
dni(X) is just an alternative notation for ∇Xni.) For a normal vector field ν, i.e., a
vector field with ν(σ) ∈ NσΣ we have the following identity

PN∇Xν = DXν , (3.17)

where DXν is the connection of the normal bundle. Given a normal frame {n1, . . . , nk}
the connection can be written by means of the normal fundamental forms [183]:

ωij(X) = 〈DXni, nj〉 = 〈dni(X), nj〉 .
The above identities (3.16) and (3.17) follow from the fundamental equations for
submanifolds (Gauss formulae and Weingarten equations). But since any vector field
on Σ can be represented in terms of ∇XY and ∇Xν, the mechanical contribution in
(3.10) can be regarded as the normal fraction of the Hamiltonian vector field [14].
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Figure 3. The plot shows the potential (3.19) with the dynamical barrier for the
parameters C = 15, α = 200, and ξ0 = 0.8. The deep cut-away comes from the
frequency peak of the harmonic oscillator.

Entropy, dynamical barriers It is about time coming to our first example which
will guide us through the rest of this thesis: consider the Hamiltonian H : T ∗Rn → R

H(ξ, x, ζ, u) =
1

2
〈ζ, ζ〉 +

1

2
〈u, u〉 + Vǫ(ξ, x)

with ξ ∈ Rk, x ∈ Rd, d = n− k and the singularly perturbed interaction potential

Vǫ(ξ, x) = W (ξ) +
1

2ǫ2
〈A(ξ)x, x〉 ,

where A ∈ Rd×d is an arbitrary symmetric, positive-definite (s.p.d.) matrix. Clearly
the potential energy diverges as ǫ goes to zero. Observing that Vǫ(ξ, x) = V1(ξ, x/ǫ),
it is therefore convenient to introduce the scaled variables x 7→ ǫx in order to prevent
the energy from blowing up. The scaling has a symplectic lift to the cotangent bundle
that is given by u 7→ u/ǫ. The thus scaled Hamiltonian reads

Hǫ(ξ, x, ζ, u) =
1

2
〈ζ, ζ〉 +

1

2ǫ2
〈u, u〉 + V1(ξ, x) . (3.18)

Physically speaking, the scaling has the effect that the second class of particles (with
coordinates x) gets lighter as ǫ goes to zero. Therefore the particles get faster and
faster, since the total energy remains finite. Accordingly we choose ξ as the reaction
coordinate. The conditional density with respect to ξ is

Z(ξ) =

∫

Rd×Rn

exp(−βHǫ(ξ, x, ζ, u))dxdζdu

= ǫd
(

2π

β

)n+d
2 (√

detA(ξ)
)−1

exp(−βW (ξ)) .

Modulo constants the free energy becomes

F (ξ) = W (ξ) +
1

2β
ln detA(ξ) .
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Now compare the free energy to the (conditional) internal energy of the system

U(ξ) = EξHǫ(ξ, x, ζ, u) = W (ξ) +
d

2β
,

where the conditional expectation is defined according to (3.8). From the last equality
and equation (3.3) we directly obtain the Shannon entropy of the fast subsystem

S(ξ) =
1

2
(d− ln detA(ξ)) .

Example 3.6. We shall exemplify the influence of the fast variables on the reaction
coordinate in some more detail. Imagine the fast variables x represent the bond
vibrations of a molecule, and ξ labels a conformational degree of freedom. Then it
may happen that entropic effects from the bond vibrations alter the conformation
dynamics. Let us carry the example above to the extremes, and set

V1(ξ, x) =
1

4
(ξ2 − 1)2 +

1

2
ω(ξ)2x2 (3.19)

with ξ ∈ R, x ∈ R and a function ω(ξ) ≥ c > 0, which is defined as

ω(ξ) = 1 + C exp
(
−α(ξ − ξ0)

2
)
. (3.20)

The potential function is shown in Figure 3. The frequency has a sharp peak at ξ = ξ0
that induces a large force pointing towards the equilibrium manifold x = 0 (cf. Figure
4a). This has the effect that a particle which approaches ξ0 with a large oscillation
energy will bounce off the dynamical barrier that arises from the frequency peak,
although the potential is almost flat this direction. In order to demonstrate the effect
of the dynamical (or entropic) barrier we compute the free energy

F (ξ) =
1

4
(ξ2 − 1)2 + β−1 lnω(ξ) . (3.21)

which is depicted in Figure 4b. Apparently the entropic barrier in the full potential
shows up as a potential barrier in the averaged potential. Nevertheless it is not a
potential barrier in the usual sense, as it becomes harder and harder to cross it, if
temperature T = 1/β increases. In this sense the variation of bond frequencies results
in entropic effects that may influence the conformational behaviour of a molecule.

3.1.2. Two distinct notions and the Fixman Theorem We shall now come
back to the problem of distinct notions of free energy. There is yet another quantity
that circulates in the literature and which is often confused with the free energy (3.5):

G(ξ) = −β−1 lnZΣ(ξ) (3.22)

with

ZΣ(ξ) =

∫

Σ×Rn

exp(−βH) dHξ . (3.23)

This definition is quite important in the context of transition state theory [3, 4]. It
has been shown [5] that the optimal dividing surface Σ = Φ−1(ξ) that minimizes the
transition rates between two sets over all hypersurfaces is a critical point of G(ξ).
Notice that the apparent difference to F (ξ) lies in the matrix volume of the Jacobian
JΦ, which is not present here. The more subtle difference lies in the fact that G
is intrinsically defined through the surface Σ, whereas F explicitly depends on the
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Figure 4. The oscillation frequency ω(ξ) and the free energy F (ξ) are plotted
— the latter for different inverse temperatures β ∈ {6.0, 5.0, 4.0, 3.0} with the
parameters C = 15, α = 200, and ξ0 = 0.8. Here β = 3.0 labels the highest
peak at ξ = ξ0, whereas the lowest one corresponds to β = 6.0, clearly indicating
that the effect of the dynamical barrier becomes more and more important as
temperature increases.

reaction coordinate Φ. This can be seen as follows: It is easy to recognize that we can
switch between F and G by simply augmenting V with the Fixman potential W

VΦ(q) = V (q) + β−1 ln volJΦ(q)
︸ ︷︷ ︸

=:W (q)

. (3.24)

Now suppose that we define a new reaction coordinate by Φg = g(Φ) where g is
a smooth, strictly monotonic function. Clearly Φg(q) = g(ξ) still defines the same
surface Σ, so G is not altered. But since the Fixman potential

β−1 ln volJΦg
= β−1 (ln volJΦ + ln | detDg(Φ)|)

depends on g, the free energy much depends on the reaction coordinate, viz.,

F (g(ξ)) = F (ξ) + β−1 ln | detDg(ξ)| . (3.25)
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Φ(q) = ξ

Φ(q) = ξ+

Φ(q) = ξ−

∇Φ(q)

Figure 5. Giving some meaning to the Fixman potential W = β−1 ln ‖∇Φ‖ for
codimension-one submanifolds: The plot illustrates the squeezing of nearby level
sets. The width of the harmonic confinement potential Wǫ ∝ (Φ(q) − ξ)2 in the
direction of the normal is of order ‖∇Φ‖2 (see also Example 3.6).

We may call G the geometric free energy as it is invariant under transformations of
the reaction coordinate. In contrast, we shall refer to F as the standard free energy or
simply free energy. It can be readily checked that the corresponding Gibbs densities
are related by a weighting factor in the way that

exp(−βG(ξ)) = EξvolJΦ(q) exp(−βF (ξ)) . (3.26)

The Blue Moon relation The difference between F and G highlights another
important aspect: In the seminal work [179] Fixman addressed the problem of how
to compute unbiased averages for polymeric fluids that are subject to holonomic
constraints. For instance, consider the objective of computing averages along certain
prescribed reaction coordinates by Thermodynamic Integration methods. That is, the
task is to compute the conditional expectation with respect to a reaction coordinate
running constrained dynamics. This bias problem has been often understood in the
sense that the bias were introduced by the integrability condition Φ̇(q) = 0 (hidden
constraint) that any system satisfies in addition to the reaction coordinate constraint
Φ(q) = ξ. This is certainly the case for a mechanical system if velocity- or momentum-
dependent observables are considered. It is less known, however, that the bias problem
remains if the dynamics is purely on configuration space, e.g., in case of Brownian
motion. To understand this, recall the definition (3.8) of the conditional expectation.
If we integrate out the momenta we have for an observable f = f(q)

Eξf =
1

Q(ξ)

∫

Σ

f exp(−βV ) (volJΦ)−1dσξ ,

where dσξ denotes the surface element of Σ ⊂ Rn, and Q is the positional
normalization constant. Suppose we want to compute the conditional expectation
by imposing the constraint Φ(q) = ξ and averaging over the remaining variables. Of
course, the constraint only specifies the submanifold Σ = Φ−1(ξ) on which the system
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evolves; roughly speaking, the system knows its configuration manifold Σ but not the
function Φ. The natural probability measure that is associated with the constrained
system is therefore obtained by restricting the Gibbs measure to Σ. This defines
another expectation that should be well distinguished from the conditional one:

EΣf =
1

QΣ(ξ)

∫

Σ

f exp(−βV ) dσξ , (3.27)

where QΣ is simply the configuration space version of (3.23). Equation (3.27)
explains why averages that are computed subject to holonomic constraints differ from
conditional expectations. In fact it is easy to see from the two definitions that

Eξf =
EΣ

(
f (volJΦ)−1

)

EΣ(volJΦ)−1
, (3.28)

is the conditional expectation expressed by the constrained one. This identity which
is known in the literature by the name of Fixman theorem or Blue Moon ensemble
method holds true, no matter if the system involves momenta or not. Merging the
Blue Moon relation together with equation (3.26) from above, we find a remarkably
simple relation between F and G, namely

F (ξ) = G(ξ) − β−1 lnEΣ(volJΦ)−1

︸ ︷︷ ︸

=:D(ξ)

. (3.29)

This identity is remarkable, for we shall demonstrate in Section 4.3 below that the
derivative of G can be written as an averaged force of constraint. That is, we can
compute ∇G simply from quantities that are available anyway during the course
of integration (Lagrange multipliers) with no need for extra reweighting. Once G
is computed we obtain F by adding the term D = −β−1 lnEΣ(volJΦ)−1 which is
also computed without any reweighting. For obvious reasons, the function D is called
Fixman potential, too. As an additional treat the method does not involve second
derivatives.

We can provide some physical interpretation of the Fixman potential W which
is due to the work of van Kampen and Lodder on constraints [75]; see also [28, 17].
In some sense the Fixman potential mimics unconstrained dynamics, although the
system is constrained. Consider a free dynamical system, either Brownian dynamics
or stochastic Hamiltonian. Suppose we want to impose a constraint Φ(q) = ξ by
adding a strong confining force that pushes a particle towards the surface Σ = Φ−1(q)
Imagine, this force is induced by the confinement potential

Wǫ(q) =
1

2ǫ2

k∑

i=1

(Φi(q) − ξi)
2 .

Letting ǫ become smaller and smaller while appropriately scaling the initial conditions
(in order to prevent the energy from diverging) renders the particle to quickly oscillate
around the constraint manifold Σ. The confinement potential has the property that
its gully width orthogonal to Σ is of the order (volJΦ)2; see Figure 5 for illustration.
In case the dynamics is ergodic with respect to the canonical density the limit ǫ → 0
will result in: (i) confinement of the particle to the constraint manifold and (ii) an
additional effective force, which is the derivative of the Fixman potential

W (q) = β−1 ln volJΦ(q) .

In this sense adding the Fixman potential to a constrained system mimics
unconstrained dynamics, by accounting for the influence of nearby level sets Φ(q) = ξ±
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in Figure 5. This also explains why the standard free energy (which involves the
Fixman potential) explicitly depends on the reaction coordinate Φ(q), whereas the
geometric free energy depends only on the surface Σ. (This motivates the name
geometric free energy.) Similar results for the microcanonical ensemble are available
in the literature; see, e.g., [180, 27]. We refer to Section 3.4 for a detailed discussion
of various confinement approaches.

We conclude by emphasizing that the two distinct notions of free energy, F and
G, both have a configuration space analogue: since the reaction coordinate does not
depend on the momenta at all, we have (modulo additive constants)

F (ξ) = −β−1 lnQ(ξ) (3.30)

with

Q(ξ) =

∫

Σ

exp(−βV )(volJΦ)−1 dσξ

for the standard free energy, and

G(ξ) = −β−1 lnQΣ(ξ) (3.31)

with

QΣ(ξ) =

∫

Σ

exp(−βV ) dσξ

for the geometric free energy. Since the reaction coordinate is a purely configurational
quantity, the thus defined free energies differ from the previously defined free energies
(3.5) and (3.22) that were defined on phase space only by an additive constant.

Remark 3.7. The traditional way in the literature to express the conditional
expectation is in terms of the Dirac delta measure (e.g., see [71])

Eξf =
1

Q(ξ)

∫

Rn

f(q) exp(−βV (q))δ(Φ(q) − ξ) dq ,

whereas the constrained average can be written as

EΣf =
1

QΣ(ξ)

∫

Rn

f(q) exp(−βV (q))δ(Φ(q) − ξ) volJΦ(q) dq .

Accordingly the normalization constant QΣ reads

QΣ(ξ) =

∫

Rn

exp(−βV (q))δ(Φ(q) − ξ) volJΦ(q) dq .

Comparing the last equations to each other, the assertion (3.28) follows as well. In
an equal manner we could use the relation (3.24) to compute conditional expectations
from constrained simulations by using the augmented potential VΦ instead of V .

3.2. The Averaging Principle

Free energy profiles provide reduced statistical models for molecular system. A
dynamical approach is the Method of Averaging which consists in replacing the full
equations of motion by a reduced set of equations where certain degrees of freedom
have been averaged out. The assertion that the trajectories of the reduced system are
close to those of the original system is called the Averaging Principle. In its traditional
formulation [184] it goes as follows: consider the initial value problem

żǫ(s) = ǫf(zǫ(s), y(s)) , zǫ(0) = z
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with uniformly Lipschitz continuous right hand side, where y(t) is some forcing
function. By continuity of the solution it follows that the limit solution for ǫ → 0
is constant on the interval [0, T ] for any fixed value of T > 0,

lim
ǫ→0

zǫ(s) = z ∀s ∈ [0, T ] .

Things change if we speed up time and consider the behaviour of the solution on an
infinite time interval [0, T/ǫ]. To this end we introduce the scaled variables t = ǫs and
xǫ(t) = zǫ(t/ǫ). Keeping in mind that s ∈ [0, T/ǫ] is equivalent to t ∈ [0, T ], we arrive
at the classical averaging formulation

ẋǫ(t) = f(xǫ(t), y(t/ǫ)) , xǫ(0) = x , (3.32)

where the initial value is independent of ǫ. This explains the idea of the fast dynamics
as random perturbations, since y(t/ǫ) has now become a fast forcing function. Closing
the last equation thus amounts to taking the limit ǫ→ 0. Provided that y(t) is ergodic
with respect to probability measure µ, we can also close the equation by taking the
ensemble average of the right hand side, i.e.,

f̄(x) := lim
T→∞

∫ T

0

f(x, y(t)) dt =

∫

f(x, y)µ(dy) .

If the integral exists, then xǫ(t) → x0(t) uniformly on compact time intervals [0, T ],
and the limit solution x0(t) is governed by the averaged equation

ẋ0(t) = f̄(x0(t)) , x0(0) = x .

For the convergence proof the reader is referred to the relevant literature [185, 24]. In
the molecular dynamics case the forcing y(t/ǫ) in (3.32) is random and is the solution
of the equations of motion for the fast variables. We can reformulate an analogous
principle for the slow-fast system (3.1) from the last subsection,

ẋǫ(t) = f(xǫ(t), yǫ(t), ǫ)

ẏǫ(t) =
1

ǫ
g(xǫ(t), yǫ(t), ǫ) .

On the slow timescale the slow variables are effectively frozen, such that the fast
dynamics (conditional on the slow variables) obeys the equation

ẏx(t) = g(x, yx(t), 0) . (3.33)

Let ϕxt denote the respective conditional fast flow. That is, yx(t) = ϕxt (y) is the
solution of the last equation with initial value yx(0) = y, where we use the subscript
x to indicate the possible dependence on the slow variables. Assuming further that
either ϕxt is hyperbolic or mixing with unique invariant probability measure µx, then
the conditional expectation of f(x, ·) is uniquely defined [186, 187],

f̄(x) = lim
T→∞

∫ T

0

f(x, ϕxt (y)) dt =

∫

f(x, y)µx(dy) , (3.34)

provided the integral exists. In the molecular modelling case we face a very comfortable
situation, since the equations of motion are either stochastic with non-degenerate noise
matrix or Hamiltonian with randomized momenta. In any case the canonical invariant
measure for the full system is unique, and so will be the conditional probability measure
for the fast variables. Although the last statement may not be completely self-evident,
we will show that the splitting into slow and fast variables can be carried out such as
to maintain uniqueness of the invariant measure also for the fast dynamics.
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The Averaging Principle is an assertion about the approximation properties of the
averaged system on compact time intervals (observation time scale). If the right hand
side of (3.32) averages to zero, then the dynamics of the accelerated system becomes
trivial on the observation time scale. In this case the relevant dynamics happens on
a longer time interval of order 1/ǫ or even exp(−ǫ), i.e., when fluctuations come into
play. Averaging theorems for diverging time intervals can be found, e.g., in the work
of Khas’minskii [33]. One such case is the high-friction limit of the Langevin equation.
It has been claimed, however, that long-term corrections to the averaged equations
(so-called diffusive limits) may become important even if the averaged dynamics is
non-trivial on the observation time scale [34]. These authors notice that the rareness
of the conformational transitions indicates that the relevant dynamics happens on time
scales that lie beyond the observation time. There are two answers to this objection:
First of all, we observe that the time scale of the transitions does not diverge as ǫ
goes to zero (although, e.g., transition rates may change with ǫ). Hence conformation
dynamics is essentially an O(1) effect. Moreover it seems that the methodology of
diffusive limits is more targeted on systems with deterministic right hand side that
is subject to random perturbations stemming from the fast variables. The problems
considered in molecular dynamics are usually of a different type, but we will pick up
this thread again in Section 6 below (see Remark 6.2).

Yet another open question up to now is whether the effective force f̄ is somehow
related to the free energy. In point of fact the free energy is also termed potential of
mean force, and it is a common believe in the molecular dynamics community that the
effective dynamics along a reaction coordinate is driven by the respective free energy.

Example 3.8. For the sake of illustration let us start with a simple (linear subspace)
example: suppose the dynamics is given by a non-degenerate diffusion process,

γq̇(t) = −∇V (q(t)) + σẆ (t)

with q = (x, y) ∈ Rd × Rk. Suppose further that the symmetric, positive-
definite matrices γ, σ satisfy the fluctuation-dissipation relation 2γ = βσσT . In the
Hamiltonian scenario timescale separation is often related to the mass ratio of fast and
slow particles. For the Smoluchowski equation the situation is slightly different, since
the equation of motion does not contain any masses. Now recall that in the elaboration
upon covariant formulations of the Smoluchowski equation we have argued that γq̇ is
an element of the cotangent space. That is, the friction matrix γ for diffusive motion
takes over the role of the mass matrix for inertial motion. Let us assume for the
moment that both friction and noise matrices are block diagonal,

γ =

(
γ1 0
0 γ2

)

, σ =

(
σ1 0
0 σ2

)

,

where each of the submatrices is proportional to the unit matrix (isotropy). In this
case the equations of motion decay according to

γ1ẋ(t) = −D1V (x(t), y(t)) + σ1Ẇ1(t)

γ2ẏ(t) = −D2V (x(t), y(t)) + σ2Ẇ2(t)

where D1, D2 denote the derivative with respect to the first and second slot. A simple
comparison to (3.1) shows that we obtain the familiar slow-fast system by choosing
γ2 = ǫγ1. Fluctuation-dissipation requires that σ2 =

√
ǫσ1, which yields for γ1 = 1

ẋǫ(t) = −D1V (xǫ(t), yǫ(t)) +
√

2β−1Ẇ1(t)

ẏǫ(t) = −1

ǫ
D2V (xǫ(t), yǫ(t)) +

√

2β−1

ǫ
Ẇ2(t) .

(3.35)
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The invariant Gibbs measure µ ∝ exp(−βV ) with β = 2/σ2
1 is independent of ǫ as

can be readily checked by substituting into the Kolmogorov forward equation. The
conditional fast dynamics alone is obtained by switching to the slow timescale setting
t = ǫs and sending ǫ→ 0. This yields the family of equations9

ẏx(s) = − D2V (x, yx(s)) +
√

2β−1Ẇ2(s) .

This is a non-degenerate diffusion process. Hence it is certainly ergodic with respect
to the conditional Gibbs measure, i.e., the Gibbs measure for fixed x,

µx(dy) =
1

Q(x)
exp(−βV (x, y)) dy . (3.36)

Letting ǫ in (3.35) going to zero, we obtain averaged equations of motion

ẋ0(t) = −∇V̄ (x0(t) +
√

2β−1Ẇ1(t) ,

where convergence in probability xǫ → x0 is guaranteed by the Averaging Principle
for stochastic processes [24, 184]. In our simple example the average force is

∇V̄ (x) =

∫

Rk

D1V (x, y)µx(dy)

which turns out to be the derivative of both geometric or standard free energy. Here,
the equivalence F = G is owed to the fact that the reaction coordinate defines a linear
subspace of the configuration space, such that the distinctive Jacobian term vanishes.

3.2.1. Averaging for linear reaction coordinates The following is basically a
standard application of the Averaging Principle to molecular dynamics problems that
involve a linear state space decomposition. In some sense it extends the ordinary
Galerkin projection of first-order dynamical systems that is a popular reduction
approach in the control community (e.g., [48, 188]). The crucial difference here is
that the negligible degrees of freedom are averaged out rather than truncated. For an
example of a Galerkin projection we refer to Example 3.23 below.

Let Rn be the Cartesian configuration space of our molecule with coordinates q,
and assume we have applied any kind of spatial decomposition method (POD, PIP,
ICA, . . . ) to Rn. Let the k-dimensional (affine) dominant subspace found by any
of these methods be denoted by S ⊂ Rn, where S is characterized by a projection
matrix P = PPT (the k columns of P span the subspace S). The projection onto
the orthogonal complement S⊥ with respect to the Euclidean metric is denoted by
Q = QQT . Then P + Q = 1, and we have a unique decomposition of Rn due to

Pq ∈ S , Qq ∈ S⊥ .

Assume that the dynamics on S is slow as compared to the motion on S⊥. We can
define the respective slow and fast coordinates in the obvious way by x = PT q and
y = QT q. Hence (x, y) form a complete set of new coordinates that are globally
related to the Cartesian coordinates by q = Px+Qy, where x is the (linear) reaction
coordinate. Since the slow-fast decomposition holds globally, we can easily get rid of
the fast modes by simply averaging over the fast subspaces (fibres) S⊥

x
∼= Rn−k for

9The time scaling takes into account that the increments of the white noise are proportional
to the square root of the time increments [117]. As a consequence the noise scales according to
Ẇ (t) 7→ αẆ (t/α2) under scaling transforms t 7→ t/α. Hence time scaling has the same effect as
scaling the friction coefficient according to γ → αγ subject to the condition 2γ = βσσT .
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each value of the reaction coordinate. We assume that the dynamics is given by a
diffusion process on the Euclidean configuration space Rn,

q̇(t) = −gradV (q(t)) +
√

2β−1Ẇ (t) .

In terms of the new coordinates (x, y) we obtain the equations

ẋǫ(t) = −D1V (xǫ(t), yǫ(t)) +
√

2β−1Ẇ1(t)

ẏǫ(t) = −1

ǫ
D2V (xǫ(t), yǫ(t)) +

√

2β−1

ǫ
Ẇ2(t)

(3.37)

with Ẇ1 = PT Ẇ and Ẇ2 = QT Ẇ , and V (x, y) = V (Px + Qy). Note that we have
already assigned the fast timescale to the second equation, where in contrast to the
little example before the friction matrix is hidden in the scaled coordinates. Again the
invariant Gibbs measure µ ∝ exp(−βV ) is independent of ǫ, and for ǫ → 0 the fast
process follows the conditional probability law

µx(dy) =
1

Q(x)
exp(−βV (x, y)) dy

with the conditional partition function (normalization constant)

Q(x) =

∫

Rk

exp(−βV (x, y)) dy .

The following averaging result is standard

Proposition 3.9 (Bogolyubov 1961). Assume that the integral

f̄(x) = − lim
T→∞

1

T

∫ T

0

D1V (x, yx(s)) ds ,

exists for all x ∈ Rk, where yx(s) is the solution of the conditional fast flow

ẏ(s) = −D2V (x, y(s)) +
√

2β−1Ẇ2(s) .

Then as ǫ → 0 the solution xǫ(t) of the system of equations (3.37) converges in
probability to a Markov process x0(t) that is governed by the equation

ẋ0(t) = f̄(x0(t)) +
√

2β−1Ẇ1(t) , (3.38)

where for T > 0, δ > 0

lim
ǫ→0

P

[

sup
0≤t≤T

|xǫ(t) − x0(t)| > δ

]

= 0 .

For the proof the reader is referred to the relevant literature, e.g., [24, 185]. In this
simple case it is easy to recognize that the free energy is indeed directly related to the
averaged equations of motion. Since the conditional fast process is ergodic with respect
to the conditional probability measure µx(dy) as is defined above, we can express the
averaged vector field f̄(x) as the conditional expectation

f̄(x) = −
∫

Rk

D1V (x, y)µx(dy) .

The last equation reveals that the mean force f̄ = −∇V̄ has a potential

V̄ (x) = −β−1 ln

∫

Rk

exp(−βV (x, y)) dy , (3.39)

that is formally equivalent to both of the two free energies F or G, respectively.
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A note about free energy as an averaging concept In the last example we could
observe that the averaged dynamics was driven by the negative gradient of the free
energy which explains why the (standard) free energy is sometimes termed potential
of mean force. However we have to be careful, since according to equation (3.25) the
derivative of the free energy neither transforms as a gradient field nor as a 1-form, i.e.,
a force. Moreover we have seen in Lemma 3.3 that the derivative of the free energy
contains a pseudo force that has no straightforward dynamical interpretation, in case
the essential variables do not span a linear subspace of the configuration space but
rather a general Riemannian submanifold. Consequently we cannot expect that the
free energy will provide the driving force of a general reaction coordinate dynamics.

A very simple argument convinces us that the standard free energy cannot be the
right quantity to look at: consider the last example, where x ∈ R is one-dimensional.
The reduced system in terms of the averaged force ∂xV̄ reads

ẋ(t) = −∂xV̄ (x(t)) +
√

2β−1Ẇ (t) .

Suppose we perform a change of coordinates, and we define a new coordinate z by
x = f(z). Expressing the equation of motion in terms of z using Lemma 2.11 yields

ż = − 1

f ′(z)2
∂z V̄ (f(z)) − β−1 f

′′(z)

f ′(z)3
+

1

f ′(z)

√

2β−1Ẇ . (3.40)

Now recall that the free energy carries some gauge dependence (3.25). That is,

F (f(z)) = F (z) + β−1 ln f ′(z) .

Hence for V̄ (x) = F (x) we would obtain the transformed equation

ż = − 1

f ′(z)2
∂zF (z) − 2β−1 f

′′(z)

f ′(z)3
+

1

f ′(z)

√

2β−1Ẇ , (3.41)

which is different from (3.40) in general. Thus: although it may be that V̄ = F holds
true formally (and so does G = F for the geometric free energy) the transformation
properties of the standard free energy do not qualify its derivative as an averaged
force. We leave it open to the reader to convince oneself that (3.41) is not an Itô
equation (e.g., by choosing V̄ (x) = x2 and f(z) = z2).

3.2.2. Nonlinear reaction coordinate dynamics Presumably free energy
landscapes do not appropriately describe the dynamics along arbitrary reaction
coordinates, since their gradients do not transform like ordinary vector fields. Now
consider a smooth reaction coordinate φ : Rm → Rk, and suppose we can globally
decompose the system under consideration into a set of slow variables φ ∈ Rk and
another set of fast variables, say, z ∈ Rm−k. This system will be of the form

φ̇ǫ(t) = f(φǫ(t), zǫ(t), ǫ)

żǫ(t) =
1

ǫ
g(φǫ(t), zǫ(t), ǫ) .

On condition that the fast dynamics for each value of the reaction coordinate φ = ξ

żξ(t) = g(ξ, zξ(t), 0)

is well-posed and admits a unique invariant measure, the Averaging Principle states
that φǫ(t) converges in some appropriate sense to a limit process φ0(t) as ǫ→ 0.

The difficulty in setting up the slow-fast system is that it relies on a global change
of coordinates which is hopeless for a general state space. However we observe that the
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equation for the fast dynamics and the conditional invariant measure are defined only
locally for φ = ξ. Noting that φ(·) = ξ with ξ taking values in Rk defines a foliation
of Rm, we propose to decompose the full system into a family of slow-fast systems

ẏǫ(t) = fξ(yǫ(t), zǫ(t), ǫ)

żǫ(t) =
1

ǫ
gξ(yǫ(t), zǫ(t), ǫ) ,

where the vector fields fξ, gξ are defined locally in a tubular neighbourhood of each
fibre Σ = φ−1(ξ). (This coordinate construction is explained in the appendix). The
slow coordinates y ∈ Rk are intended to describe the dynamics orthogonal to each
fibre. Averaging over over the fast variables then yields a family of vector fields

f̄(ξ) = lim
T→∞

1

T

∫ T

0

fξ(y0 = 0, zξ,0(t), 0) dt ,

that are defined fibre-wise for φ(·) = ξ, where zξ,0(t) is the solution of the fast dynamics
on each fibre. The effective dynamics of the reaction coordinate can be reconstructed
by endowing the reaction coordinate space with an appropriate metric. To some
extend the approach presented here can be considered a variant of the accelerated
dynamics or metadynamics that is put forward in [13]; cf. also [189]. However, the
local decomposition of state space here allows for a lucid physical and geometrical
interpretation of the limit equation. This proves useful in designing algorithms that
efficiently sample the coefficients of the reduced equation.

Unfortunately the standard Averaging Principle does not apply, since we can only
study the local convergence to initial values on each fibre. Averaging over the initial
values then gives the average vector field in the vicinity of the fibre but no dynamical
information whatsoever, since the motion cannot leave the tubular neighbourhood.
Therefore we warn the reader that the calculation is purely formal. Nevertheless we
shall support the claims to be made by appropriate numerical examples later on.

Accelerating Brownian motion Let V : Rn → R be a smooth potential that is
bounded from below, and let σ > 0 be scalar. The Smoluchowski equation reads

q̇(t) = −gradV (q(t)) + σẆ (t) .

Given a reaction coordinate Φ : Rn → Rs, the level sets of which define smooth
configuration submanifolds of codimension s, we denote by σξ : Rn−s → Σξ the
embedding Σξ = Φ−1(ξ) into Rn. To each σξ ∈ Σξ we attach a set of normal vectors
(n1(σξ), . . . , ns(σξ)), and we introduce local coordinates zα, α = 1, . . . , n − s on Σξ,
and normal coordinates yi, i = 1, . . . , s that measure the distance to Σξ with respect
to the normal frame {n1, . . . , ns}. Fixing ξ, the original coordinates can be uniquely
expressed in a sufficiently small tubular ε-neighbourhood NΣξ,ε of Σξ by the map

q = φξ(z, y) , φξ : (z, y) 7→ σξ(z) + yini(σξ(z)) .

According to (B.2) the Euclidean metric has the local coordinate expression

gξ(z, y) =

(
Gξ(z) + Cξ(z, y) Aξ(z, y)

Aξ(z, y)
T 1

)

.

All local coordinate expressions, and the particular submatricesGξ, Cξ ∈ R(n−s)×(n−s)

or Aξ ∈ R(n−s)×s are given in Appendix B. Note that all quantities depend
parametrically on the value ξ of the reaction coordinate by virtue of the particular
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embedding of the normal bundle NΣξ,ε into Rn × Rn. In local coordinates the
Smoluchowski equation becomes (see Lemma 2.11)

ẏiǫ = −gilξ (zǫ, yǫ) ∂lVξ(zǫ, yǫ) + biξ(zǫ, yǫ) + σailξ (zǫ, yǫ)Ẇl

żαǫ = −1

ǫ
gαlξ (zǫ, yǫ) ∂lVξ(zǫ, yǫ) +

1

ǫ
bαξ (zǫ, yǫ) +

σ√
ǫ
aαlξ (zǫ, yǫ)Ẇl .

Note that the equations are only meaningful up to the first exit time from NΣξ,ε.
Moreover we have employed the following notation: Vξ = V ◦ φξ, and the function
bhξ = −β−1gklξ Γhξ,kl denotes the additional Itô drift term, whereas aklξ are the entries

of the uniquely defined positive-definite matrix square root of g−1
ξ . The symbol ∂l is

a shorthand for the partial derivatives with respect to zα and yi, respectively.10

By having assigned appropriate powers of ǫ to the equation of the fast variables, we
force the dynamics tangential to the fibre Σξ to be fast as compared to the orthogonal
dynamics of the yi (reaction coordinate dynamics); see 3.35 for comparison. For all
ǫ > 0 this system has an invariant Gibbs measure that is given by

µξ(dz, dy) =
1

Zξ
exp(−βVξ(z, y)) det gξ(z, y) dzdy . (3.42)

The independence of ǫ can be easily verified by inserting the last expression into the
Kolmogorov forward equation. Now we can repeat the time rescaling argument to see
that on the microscopic timescale the equations read

ẏiǫ = −ǫgilξ (zǫ, yǫ) ∂lVξ(zǫ, yǫ) + ǫbiξ(zǫ, yǫ) + σ
√
ǫailξ (zǫ, yǫ)Ẇl

żαǫ = −gαlξ (zǫ, yǫ) ∂lVξ(zǫ, yǫ) + bαξ (zǫ, yǫ) + σaαlξ (zǫ, yǫ)Ẇl .

Following [184] we obtain convergence to the initial value yǫ(t) → y0 as ǫ → 0, where
the restriction to the level set Φ−1(ξ) clearly amounts to y0 = 0. Using the formulae
for the Christoffel symbols from Appendix B we obtain for the fast dynamics

żα = −Gαβξ (z) ∂βVξ(z, 0) + bαξ (z, 0) + σEαβξ (z)Ẇβ ,

where

bαξ (z, 0) = −β−1Gβγξ (z)Γαξ,βγ(z, 0) .

Here the Γαξ,βγ are the Christoffel symbols associated with the metric Gξ on Σξ, and

Eξ is the unique positive-definite matrix square root of G−1
ξ . All other terms vanish

at y = 0 since both gαiξ = 0 and Γαξ,ij = 0. Hence the last equation is the local version
for the intrinsic motion on Σξ. Therefore, and according to Section 2.3, the invariant
measure is the ordinary Gibbs measure (3.42) restricted to the fibre. That is,

νΣ(dz) =
1

QΣ
exp(−βV (σξ(z)) detGξ(z) dz . (3.43)

Let us denote the right hand side of the slow equations of motion by

f iξ(z, y) = −gilξ (z, y) ∂lVξ(z, y) + biξ(z, y) + σailξ (z, y)Ẇl .

Now averaging fibre-wise over the fast variables yields the static right hand side

f̄ i(ξ) =

∫ (

biξ(z, 0) − gilξ (z, 0)∂lV (z, 0) + σailξ (z, 0)Ẇl

)

νΣ(dz) .

10Note that there is some ambiguity in the use of the index i, as i is supposed to run from 1 to s
whenever it indicates a normal coordinate as in yi, but i also is considered as taking integer values
from n − s + 1 to n, for instance, when labelling general vectors or matrices like gαi. Moreover the
indices h, k, l run from 1 to n, whereas i, j only label the normal directions 1, . . . , s. We hope that
their use will be clear from the particular context.
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Employing the expressions in (B.6) for the Christoffel symbols and for the metric at
y = 0, the mean vector field and the noise term get a considerably simpler form

f̄ i(ξ) =

∫ (

β−1Gαβξ (z)Siαβ(σξ(z)) − δij∂jVξ(z, 0)
)

νΣ(dz) + σẆ i

=

∫
(
β−1κξ,i(z) − δij∂jVξ(z, 0)

)
νΣ(dz) + σẆ i .

(3.44)

The functions κξ,i(z) in the last row are the single components of the extrinsic mean
curvature vector of Σξ in Rn that is introduced in the following: Let PT : TσR

n →
TσΣξ denote the point-wise projection onto the tangent space to Σξ, and recall
the definition of the Weingarten maps Si = −PTdni(·) associated with the second
fundamental form. The mean curvature vector Hξ is defined as [190]

Hξ(z) =

s∑

i=1

κξ,i(z)ni(σξ(z)) , κξ,i = − trSi .

Reconstruction of the global dynamics We consider the deterministic part of
f̄ i(ξ) as a force field on Rs by virtue of its parametric dependence on ξ and by
identifying TRs with T ∗Rs. Hence it remains to turn the stochastic force with respect
to y into a force hat acts with respect to the reaction coordinate Φ. This is done so by
endowing the limit system with an appropriate metric. To this end bear in mind that
it follows from the Tubular Neighbourhood Theorem [191] that sufficiently close to
the fibres Σ = Φ−1(ξ) the uniquely invertible relation between the normal coordinate
y and the reaction coordinate r = Φ and is given by

r = JΦ(σξ(z))
TQ(σξ(z))y + ξ ,

where JΦ denotes the Jacobian of Φ, and the columns of Q are the normal vectors
(n1, . . . , nk). For each σ ∈ Σξ this transformation induces a metric on the normal
space Nσ,0Σξ, that is given by mξ(z) = (JTΦJΦ)(σξ(z))

−1. By averaging over the fast
variables with respect to their invariant distribution we can define an metric as follows

m(ξ) =

∫

mξ(z) νΣ(dz) . (3.45)

Notice that the deterministic part of (3.44) can be brought into the form

di(ξ) = β−1 ∂

∂yi
ln

∫

Φ−1(ξ)

exp(−βVξ(z, y))
√

det gξ(z, y)dz

∣
∣
∣
∣
∣
y=0

.

The averaged stochastic part is simply additive noise in the direction of the reaction
coordinate. Hence we may write the naked reaction coordinate dynamics as

ξ̇i(t) = di(ξ(t)) + σẆi(t) ,

which is ordinary diffusion in Rs with respect to the Euclidean metric. If we equip
our configuration space Rs with the averaged metric m(ξ) that comes along with the
reaction coordinate, we obtain the global form of the averaged equations

ξ̇i(t) = −mij(ξ(t))∂jG(ξ(t)) + bi(ξ(t)) + σhij(ξ(t))Ẇj(t) , (3.46)

where h is the unique matrix square root of the inverse metric m−1, and G is the
geometric free energy (which should not be confused with the metric tensor Gξ)

G(ξ) = −β−1 lnQΣ(ξ) with QΣ(ξ) =

∫

Φ−1(ξ)

exp(−βV ) dσξ
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Figure 6. Spherical polar coordinates (ϕ, ϑ, r) ∈ S2 × R+.

The additional term b is the usual Itô equation drift

bi(ξ) = −β−1mjk(ξ)Γ̄ijk(ξ) ,

where Γ̄ijk are the Christoffel symbols associated with the metric m,

Γ̄ijk =
1

2
mil

(
∂mjl

∂ξk
+
∂mkl

∂ξj
− ∂mjk

∂ξl

)

.

We emphasize that our approach is not unique, since it relies on an arbitrary
manipulation of the equations of motion, speeding up the dynamics on the fibres.
There is yet another possibility to accelerate the dynamics orthogonal to the reaction
coordinate using a projection operator approach. For a single reaction coordinate the
authors of [13] derive a representation that involves the free energy F

ξ̇(t) = a(ξ(t))F ′(ξ(t)) + β−1a′(ξ(t)) + σ
√

a(ξ(t))Ẇ (t) , (3.47)

where the metric factor a is defined as the conditional expectation

a(ξ) = Eξ‖∇Φ(q)‖2 ,

which should be distinguished from the expectation with respect to νΣ (compare
equation (3.28)). It is not obvious that (3.47) really transforms like an Itô equation, as
it does not have the standard covariant form (2.30). However it has been demonstrated
that (3.47) is consistent with Itô formula under transformations of the reaction
coordinate. Since this is also true for (3.46) one could expect that the two equations
are equivalent. Intriguingly this is not the case, unless ∇Φ is a function of ξ only, since
then a = m−1 (see the examples below). Presumably the difference in the result is owed
to the fact that the authors of [13] organize the decomposition along the probability
measures (gluing together different conditional measures), whereas we have endowed
a decomposition of the state space (based on the foliation defined by Φ).

Example 3.10. Let us illustrate how the local averaging scheme works by means of
an example. Consider the three-dimensional diffusion equation

q̇(t) = −gradV (q(t)) + σẆ (t) , V (q) = V0(‖q‖) + δ(q)
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where ‖·‖ is the Euclidean vector norm in R3. The potential V is bounded from below
and is such that the first term defines the slow motion in the system, i.e., |V0| ≪ |δ|.
In this case there is a natural choice for the reaction coordinate

Φ1(q) = ‖q‖ =
√

q21 + q22 + q23 .

We first go through the reduction procedure using a global change of coordinates
and then compare it to the local approach. The form of the problem suggests to use
spherical polar coordinates. We introduce coordinates (ϕ, ϑ, r) ∈ S2 × R+ by

q1 = r cosϕ sinϑ , r ≥ 0

q2 = r sinϕ sinϑ , 0 ≤ ϕ < 2π

q3 = r cosϑ , 0 ≤ ϑ ≤ π ,

(3.48)

and therefore consider NS2 ∼= S2×R+ as our new configuration space (see Figure 6).
Pulling back the Euclidean metric to S2 × R+ induces the metric

h(ϑ, r) =





r2 sin2 ϑ 0 0
0 r2 0
0 0 1



 =:

(
G(ϑ, r) 0

0 1

)

,

where we have introduced the metric G(ϑ, r) = r2G1(ϑ) for the upper left 2× 2 block
of the full matrix, where G1(ϑ) is the local metric on the unit 2-sphere S2. Clearly
r = Φ1(q) is the reaction coordinate. The corresponding slow-fast system reads

ω̇αǫ = −1

ǫ
Gαβ(ϑǫ, rǫ)∂βV (ωǫ, rǫ) +

1

ǫ
bα(ϑǫ, rǫ) +

σ√
ǫ
Aαβ(ϑǫ, rǫ)Ẇβ

ṙǫ = −∂rV (ωǫ, rǫ) + br(ϑǫ, rǫ) + σẆ ,

where ω = (ϕ, ϑ) and bl = β−1hjkΓljk. The noise amplitude A = r−1A1 is the positive-

definite matrix square root of the inverse metric G−1 = r−2G−1
1 . On the microscopic

timescale s = t/ǫ, we have convergence rǫ → r for ǫ going to zero, such that the fast
dynamics for frozen r is governed by the equation

ω̇αǫ = −Gαβ(ϑǫ, rǫ)∂βV (ωǫ, r) + bα(ωǫ, r) + σAαβ(ϑǫ, rǫ)Ẇβ .

Notice that the fast dynamics is intrinsic to S2
r (the 2-sphere with radius r), since

Γϕrr = Γϑrr = 0 .

That is, the additional Itô drift bα = −β−1GγδΓαγδ depends only on the local metric
G. Hence the conditional invariant measure of the fast process is simply given by the
appropriately normalized Gibbs measure on the sphere S2

r

νr(dω) =
1

QS2
r
(r)

exp(−βV (ω, r))
√

detG(ω, r) dω .

The slow dynamics is governed by the equation

ṙǫ = −∂rV (ωǫ, rǫ) + br(ωǫ, rǫ) + σẆ

with

br = −β−1hklΓrkl = −β−1
(
Gαγr Γrαγ + Γrrr

)

and the Christoffel symbols

Γrϕϕ = −r sin2 ϑ , Γrϑϑ = −r , Γrrr = 0 .
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By ergodicity of the fast process with respect to νr and application of the Averaging
Principle we obtain convergence rǫ → r0 as ǫ→ 0. The limit process obeys

ṙ0(t) = −∂rV̄ (r0(t)) +
2

βr0(t)
+ σẆ (t) , (3.49)

where the averaged potential is given by

V̄ (r) = V0(r) +

∫

δ(ω, r)νr(dω) . (3.50)

We can obtain the same limit result by using the local embedding NΣ ⊂ R3×R3

with Σ = S2
ξ . This can be seen as follows: As a first step consider the 2-sphere with

radius ξ, that is defined by the reaction coordinate Φ1(q) = ξ. A local embedding
σξ : S2 → S2

ξ ⊂ R3 is given by polar coordinates with fixed radius r = ξ

σ1
ξ = ξ cosϕ sinϑ , ξ ≥ 0

σ2
ξ = ξ sinϕ sinϑ , 0 ≤ ϕ < 2π

σ3
ξ = ξ cosϑ , 0 ≤ ϑ ≤ π .

The next step is to construct a normal frame, for instance, by

n(σξ(ϕ, ϑ)) = ∇Φ1(σξ(ϕ, ϑ)) = σ1(ϕ, ϑ) .

Since ‖∇Φ1(σξ)‖ = 1 the normal coordinates that measure the distance to the surface
S2
ξ are simply given by y = Φ1 − ξ. In local coordinates (ϕ, ϑ, y) the metric tensor is

gξ(ϕ, ϑ, y) =

(
Gξ(ϑ) + Cξ(ϕ, ϑ, y) 0

0 1

)

,

where the local surface metric Gξ = ξ2G1 is defined as above, and

Cξ,αβ = 2y 〈∂ασξ, dn(∂βσξ)〉 + y2 〈dn(∂ασξ), dn(∂βσξ)〉 .
We can easily compute the matrix of the Weingarten map and the respective mean
curvature. For the Weingarten map we have the expression

Sξ(ϕ, ϑ) = −dn(·) = −ξ−1PT ,

where PT : TσR
n → TσS

2, PT = 1 − n 〈n, ·〉 is the point-wise projection onto the
tangent plane to the unit sphere. Also the mean curvature is easily computed: Since
all tangent spaces TσS

2 are two-dimensional, the projector PT has rank 2. Thus

κξ = − trSξ =
2

ξ

which is the mean curvature of a 2-sphere in R3 with radius ξ. Using the result from
the last subsection, the locally averaged equations take the form

ξ̇(t) = −∂ξV̄ (ξ(t)) +
2

βξ(t)
+ σẆ (t) , (3.51)

where the averaged potential is given by

V̄ (ξ) = V0(ξ) +

∫

δ(ω, ξ)νΣ(dω) . (3.52)

Since r = y+ξ in this particular case, (3.51) equals already the global equation (3.49).
In terms of the geometric free energy G the limit equation thus reads

ṙ(t) = −∂rG(r(t)) + σ Ẇ (t)

which is full agreement with (3.46).
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Example 3.11. One might imagine that the reaction coordinate is defined by

Φ2(q) = ‖q‖2 = q21 + q22 + q23 ,

which is also a frequently used reaction coordinate for distance-based problems. Let us
denote ρ = Φ2. Transforming the averaged equation (3.49) to an equation for ρ = r2

is straightforward: we find with (3.49) and Lemma 2.11

ρ̇(t) = −4ρ(t) ∂ρV̄
(√

ρ(t)
)

+
6

β
+ 2σ

√

ρ(t) Ẇ (t) , (3.53)

where we have used that the Christoffel symbol Γrrr transforms like [81]

Γρρρ =

(
∂r

∂ρ

)2

Γrrr
∂ρ

∂r
+
∂ρ

∂r

∂2r

∂ρ2
= − 1

2ρ

Other than in the equation for r, we have Γρρρ 6= 0 which, in fact, yields the correct
limit equation as would be obtained by using modified polar coordinates from the
outset (replacing r by

√
ρ), and then stepping through the averaging procedure. The

same equation is obtained by endowing the local limit equation (3.51) with the metric
m(ρ) = (4ρ)−1 that is induced by the reaction coordinate Φ2 due to (3.45).

3.3. Projection operator techniques

It remains to address the reaction coordinate dynamics for a second-order mechanical
system. For second-order systems we encounter the problem that the conditional
expectation over the fast degrees of freedom involves position and velocity
(momentum) variables. Now recall that in the Hamiltonian picture both positions
and momenta were treated as independent variables. However fixing the reaction
coordinate at a certain value amounts to imposing a holonomic constraint which
inevitably determines the conjugate momenta. In turn, by varying the slow position
and momentum variable independent of each other we obtain a fast subsystem
that is dissipative and no longer Hamiltonian. The natural invariant probability
measures for dissipative systems of this kind, so-called Axiom A flows, are Sinai-
Ruelle-Bowen (SRB) measures [192, 193]. Although SRB measures are special cases
of Gibbs measures (for example, they can be written in the form exp(−S), where S
is a suitably defined pseudo-potential), they are difficult to handle both analytically
and numerically; for example, if the flow of the fast subsystem is unbounded and
expanding, there is no way of sampling the invariant measure by numerical long-term
simulations. Moreover it is by no means clear whether the averaged system preserves
the structure of the original mechanical equations. We shall illustrate the problem:

Example 3.12. Let us again adopt the Lagrangian viewpoint for a second, and
consider the Lagrangian L : TNS2 → R in polar coordinates (ϕ, ϑ, r) ∈ S2 × R+

L =
1

2

〈

G(ϑ, r)(ϕ̇, ϑ̇)T , (ϕ̇, ϑ̇)
〉

+
1

2
ṙ2 − V (r) ,

where V is a smooth, spherically-symmetric potential, and G(ϑ, r) = r2G(ϑ, 1) is the
metric of the 2-sphere with radius r. See Example 3.10 for details. Speeding up the
angle variables by scaling the respective velocities according to

Lǫ(ϕ, ϑ, r, ϕ̇, ϑ̇, ṙ) = L(ϕ, ϑ, r, ǫϕ̇, ǫϑ̇, ṙ) ,
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we obtain Euler-Lagrange equations in first-order form with slow and fast variables

ṙǫ(t) = pǫ(t)

ṗǫ(t) = −Γrαβζ
β
ǫ (t)ζγǫ (t) − ∂rV (rǫ(t))

ω̇αǫ (t) =
1

ǫ
ζαǫ (t)

ζ̇αǫ (t) = −1

ǫ
Γαβγζ

β
ǫ (t)ζγǫ (t) − 2

ǫ
Γαβrζ

β
ǫ (t)pǫ(t)

subject to appropriate initial conditions. We have abbreviated ω = (ϕ, ϑ). On the
microscopic timescale s = t/ǫ we find the fast dynamics for frozen slow variables r, p:

ω̇αr (t) = ζαr (t)

ζ̇αr (t) = −Γαβγζ
β
r (t)ζγr (t) − 2Γαβrζ

β
r (t) p .

(3.54)

Note that since Γαβr 6= 0, the system is dissipative unless p = 0. In this particular case
the fast equations of motion describe geodesics on the 2-sphere of radius r, i.e.,

ω̈αr (t) = −Γαβγω̇
β
r (t)ω̇γr (t) .

The associated Gibbs measure is the ordinary Gibbs measure for the full system
restricted to the 2-sphere with radius r. That is,

µr(dω, dω̇) =
1

ZS2
r
(r)

exp(−βTr(ω, ω̇)) detG(ω, r) dωdω̇

with the abbreviations

ZS2
r
(r) = 4πr2

(
β

2π

)−3/2

for the normalization constant, and

Tr(ω, ω̇) =
1

2
〈G(ω, r)ω̇, ω̇〉

for the kinetic energy. We can write the slow equations again in second-order form,

r̈ǫ(t) = −Γrαβω̇
β
ǫ (t)ω̇γǫ (t) − ∂rV (rǫ(t)) ,

and average the quadratic part in the slow equation with respect to µr. This yields

r̈(t) = − 2

β

1

r(t)
− ∂rV (r(t)) , (3.55)

where we have used that Γrϕϕ = −r sin2 ϑ and Γrϑϑ = −r. We easily recognize
that equation (3.55) is just the mechanical analogue of the stochastic limit equation
(3.49). Now let us revisit equation (3.54) assuming that p < 0. The Christoffel
symbols are Γϕϕr = Γϑϑr = 1/r and zero else. Therefore the system is strictly
hyperbolic, whenever p < 0 is sufficiently large in modulus. If the system were
purely deterministic, the damping would dominate the dynamics, but its stationary
points, and therefore its invariant measures, would clearly depend on the initial values.
Consequently, the averaged equations would depend on which invariant measure we
choose. For the stochastic system with randomized velocities anything can happen.
Strictly speaking, the stochastic Hamiltonian system was defined only with regard
to the symplectic, time-reversible and energy-preserving Hamiltonian flow (which we
no longer have). But, having in mind the fluctuation-dissipation relation from the
Langevin equation, we can imagine that the dynamics will depend on how friction and
velocity perturbations counterbalance each other. And so will the invariant measure.
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3.3.1. Optimal prediction and the Mori-Zwanzig formalism Originally, the
idea of averaging stems from celestial mechanics [20]. Although the models considered
there were purely mechanical, i.e., second-order, the problems are slightly different
from ours. Indeed, the above considerations reveal that the application of the
Averaging Principle is beyond the scope of this thesis. A central paradigm in molecular
dynamics which comes from nonequilibrium thermodynamics is the method of Mori
[49] and Zwanzig [50]. It is a formal procedure to rewrite the equations of motion
in a specified set of essential variables (resolved variables). Unlike the Averaging
Principle the Mori-Zwanzig proceeds without eliminating degrees of freedom, but
rather incorporates them as some sort of heat bath, involving memory and noise.
What is called noise here actually results from the unresolved variables and is the
solution of an auxiliary equation which describes the dynamics orthogonal to the
subspace of the resolved (essential) variables. The key element of this procedure is a
projection operator, that projects the full set of equations onto the set of essential
degrees of freedom. The projection is orthogonal in the Hilbert space L2; thus it
projects onto a space of functions that depend on the essential variables only. However
this projection is not unique, and there is some freedom of choice. For instance, for first-
order systems the conditional expectation (3.8) provides such a projection, but likewise
the expectation (3.27) with respect to the constrained Gibbs measure. There is a subtle
point concerning the relation between projection and the orthogonal dynamics as has
been pointed out recently in [58]: the validity of the Mori-Zwanzig procedure relies on
the well-posedness of the equations for the unresolved variables; this issue is similar
to the closure problem for the fast dynamics in the averaging scheme, whereby the
projection must account for positions and the momenta (velocities) in an appropriate
manner to obtain well-posed equations of motion.

Before we proceed with the Mori-Zwanzig formalism, let us first consider the
problem of optimally projecting the equations of motion onto the (function) subspace
that is spanned by the reaction coordinate. This gives rise to a method called optimal
prediction: Suppose we want to approximate the dynamics of an unresolved variable
in some function space norm, say, in the Hilbert space L2. Basically, this is to say
that we want to study the best-approximation of an observable with regard to its
expectation value. To this end let µcan(dz) denote the Gibbs measure on the phase
space E = T ∗Rn. We introduce the weighted Hilbert space

L2(µ) =

{

v : E → R
∣
∣

∫

E

v(z)2 µcan(dz) <∞
}

that is endowed with an appropriately weighted scalar product

〈u, v〉µ =

∫

E

u(z)v(z)µcan(dz) .

Recall the problem of optimal subspace projection, e.g., by the method of Principal
Component Analysis (PCA) in Section 2.4. In some sense, optimal prediction can
be considered the function space analogue of optimally projecting onto a dominant
subspace. For example, consider the conditional expectation Eξ(·) = E(·|Φ = ξ) as
defined in (3.8) for a reaction coordinate Φ. It is easy to check that the conditional
expectation defines an orthogonal projection

Π : L2(µ) → L2(µ̄) ⊂ L2(µ) , (Πf)(ξ) = Eξf ,

where µ̄(dξ) ∝ Z(ξ) dξ is the marginal probability of the reaction coordinate. In
other words, the conditional expectation is an orthogonal projection onto the space
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of functions that depend only on the reaction coordinate. Given an arbitrary function
φ ∈ L2(µ), this projection has the following useful property [64]

‖φ− Πφ‖2
µ ≤ ‖φ− ψ‖2

µ ∀ψ ∈ L2(µ̄) .

where ‖ ·‖µ denotes the norm in L2(µ). Labelling by E(·) the expectation with respect
to µcan, then the last inequality can be expressed in terms of expectation values,

E|φ− Eξφ|2 ≤ E|φ− ψ|2 ∀ψ ∈ L2(µ̄) .

For the sake of illustration consider a reaction coordinate Φ(t) = Φ(q(t)). Since

d

dt
Φ(q(t)) = DΦ(q(t))T p(t)

is linear in the momenta, the best-approximation of the reaction coordinate with
respect to the conditional expectation Eξ(·) becomes trivial, viz.,

ξ̇(t) = 0 , ξ(0) = ξ .

The approach is clearly not unique, and the optimal prediction equation very much
depends on the choice of the conditional expectation. For example, one could project
onto functions that depend on both Φ and Φ̇ or other relevant quantities. For our
purpose it is more convenient to define a conditional expectation, that involves the
reaction coordinate Φ and its conjugate momentum Θ.

Definition 3.13. Let the function Φ : Rn → Rk denote a smooth reaction coordinate,
and let Θ : T ∗Rn → Rk be its conjugate momentum map.11 We define the marginal
probability density of Φ,Θ in the canonical ensemble by

R(ξ, η) =

∫

Rn×Rn

δ(Φ(q) − ξ)δ(Θ(q, p) − η)µcan(dq, dp) . (3.56)

The conditional probability measure is denoted µξ,η = δ(Φ− ξ)δ(Θ− η)µcan. Then for
an integrable function f = f(q, p), we define the conditional expectation by

Eξ,ηf =
1

R(ξ, η)

∫

Rn×Rn

f(q, p)µξ,η(dq, dp) (3.57)

Quite remarkably, Eξ,η(·) comprises the expectation with respect to the
constrained canonical ensemble as the special case Eξ,0(·). Hence the expectation
Eξ,0(·) 6= Eξ(·) is intrinsic to the constrained phase space T ∗Σ, where Σ = Φ−1(ξ).
That is, it does not depend on the function Φ but only on the surface Σ. For the
details the interested reader is referred to the relevant literature [195, 196].

Now optimal prediction proceeds as follows: Suppose we are given the molecular
Hamiltonian H explicitly in terms of the reaction coordinate Φ, its conjugate
momentum Θ, and a bunch of unresolved coordinates and momenta. This gives rise
to equations for the reaction coordinate and its conjugate momentum

Φ̇i =
∂H

∂Θi

Θ̇i = − ∂H

∂Φi
, i = 1, . . . , k .

11We understand the term momentum map in a rather loose sense and not in accordance with
the definition that is conventionally used in geometric mechanics (e.g., see [81, 194]). Nevertheless we
regard the conjugate momentum Θ as a function of q and p, thus a momentum map.
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The equations are not closed; they depend on both resolved and unresolved variables.
Replacing the right hand side of the equations by its best-approximation by taking
the conditional expectation yields the optimal prediction equations due to Hald [56]

ξ̇i = Eξ,η

(
∂H

∂Θi

)

η̇i = −Eξ,η

(
∂H

∂Φi

)

, i = 1, . . . , k .

(3.58)

Proposition 3.14 (Hald 2000). The system (3.58) is Hamiltonian

ξ̇i =
∂E

∂ηi

η̇i = −∂E
∂ξi

.

with total energy

E(ξ, η) = −β−1 lnR(ξ, η) .

Formally the optimal prediction Hamiltonian resembles the free energy
expressions from the previous subsections. In fact it is some sort of free energy
(in phase space though) which is related to the geometric free energy. For better
distinguishability we shall speak of E as the optimal prediction free energy.

Optimal prediction equations In many relevant cases the representation of the
reduced equations (3.58) in terms of the optimal prediction free energy E is not
convenient, since E may not be accessible so easily (cf. Section 3.5). Even worse, in
general the conjugate momentum Θ is not known explicitly. Nevertheless it is possible
to recast (3.58) in a form that contains only quantities that are either already known
or that can be sampled by means of Thermodynamic Integration. Assume that JΦ has
maximum rank. For convenience we introduce new coordinates z1, . . . , zn

ψ : zl =

{
Φl(q) for l = 1, . . . , k
ql for l = k + 1, . . . , n .

(3.59)

This transformation is non-singular, for detDψ = volJΦ does not vanish by assuming
that JΦ has maximum rank. Hence we can write the molecular Lagrangian as

L(z, ż) =
1

2
akl(z)ż

kżl − V (z) , (3.60)

where akl are the entries of the metric (DψTDψ)−1◦ψ−1 that is induced by the change
of coordinates. Due to (2.6) the conjugate momenta are given by wj = ∂L/∂żj. The
Hamiltonian is then obtained as the Legendre transform H(z, w) = wj ż

j − L(z, ż).
We may split the new coordinates according to z = (ξ, r) and w = (η, s), such that

H(ξ, r, η, s) =
1

2
aijηiηj +

1

2
aiαηisα +

1

2
δαγsαsγ + V (ξ, r) , (3.61)

where the akl are the matrix elements of

(DψTDψ) ◦ ψ−1 =

(
JTΦJΦ MT

Φ

MΦ 1

)

. (3.62)

Here we employ Latin indices to enumerate the reaction coordinate (upper left matrix
block), whereas the Greek indices label the unresolved modes (lower right unit block).
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The off-diagonal submatrix MΦ ∈ R(n−k)×k is the minor of JΦ that is made out of
the first n− k rows. Modulo normalization the marginal density thus becomes

R(ξ, η) =

∫

T∗Σ

exp(−βH(ξ, r, η, s)) dLξ(r, s) ,

where dLξ(r, s) =
√

detGξ(r)drds is the Hausdorff measure of Σ×Rn−k ⊂ Rn×Rn,
and Gξ is the induced metric on Σ = Φ−1(ξ), that is obtained as the restriction of the
Euclidean metric to Σ.12 We need to compute the partial derivatives of

E(ξ, η) = −β−1 lnR(ξ, ζ) .

We have

∂E

∂ηi
=

1

R

∫

T∗Σ

∂H

∂ηi
exp(−βH) dLξ .

Since the off-diagonal terms are linear in s, they vanish on average, and it remains

∂E

∂ηi
= Aij(ξ, η)ηj with Aij = Eξ,η

〈
∇Φi,∇Φj

〉
.

Other than the constrained expectation Eξ,0 = EΣ which is intrinsic to the surface
Σ, the conditional expectation Eξ,η does not give rise to a proper dynamical system
that has µξ,η as its invariant distribution. However we can sample Eξ,0 and the fact
that Φ is only a function of the configurational variables suggests to do a Taylor
expansion of the conditional expectation in powers of η. If the temperature is low as
compared to the atomic masses (i.e., β ≫ 1), the Maxwellian momentum distribution
will be sharply peaked at η = 0. It is therefore convenient to replace Eξ,η by Eξ,0

while neglecting higher order terms, in which case the last expression becomes

Aij = EΣ

〈
∇Φi,∇Φj

〉
+ O(‖η‖2) .

Accounting for the dependence of the Hausdorff measure dLξ (surface element) on
the foliation parameter ξ by appropriately extending Gξ to the ambient space of
Σ = Φ−1(ξ), we can compute the derivative with respect to ξi. This yields

∂E

∂ξi
=

1

R

∫

T∗Σ

(
∂H

∂ξi
+

1

2
tr

(

G−1
ξ

∂Gξ
∂ξi

))

exp(−βH) dLξ ,

where

∂

∂ξi

√

detGξ =
1

2
tr

(

G−1
ξ

∂Gξ
∂ξi

)
√

detGξ

is basically the i-th component of the mean curvature of Σ in Rn; see Appendix C
for the calculation.13 Omitting again all terms that are linear in s, expanding all
other terms around η = 0, what remains decays into two parts: The first part is the
derivative of V with respect to ξi which, together with the mean curvature, can be
summarized to yield the derivative of the familiar geometric free energy (3.31). The

12Note that we still have to integrate over a manifold, and that Gξ is simply the metric of Σ from

the preceding sections, where we have explicitly chosen r = q1, . . . , qn−k as local coordinates on Σ.
13This looks like a contradiction to Hald’s Theorem, since we have an extra term in addition to the

derivative of the Hamiltonian. However one should bear in mind that the coordinates r = q1, . . . , qn−k

in the Hamiltonian (3.61) are not the unresolved variables, unless q is restricted to the fibre Φ−1(ξ).
But this means nothing but shifting the metric Gξ from the Hausdorff measure to the (unresolved)
kinetic energy part in the Hamiltonian. Yet this does not affect the integral.
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other term is the derivative of the (average) kinetic energy of the reaction coordinate,
such that we finally obtain

∂E

∂ξi
=

∂

∂ξi
(
K(ξ) +Ajk(ξ)ηjηk

)
+ O(‖η‖4) .

As before the Ajk are the lowest-order components of the effective inverse mass, and K
is the geometric free energy (which we have labelled by K in order to avoid confusion
with the metric tensor Gξ)

K(ξ) = −β−1 ln

∫

Σ

exp(−βV ) dσξ

with dσξ denoting the surface element of Σ ⊂ Rn. Conclusively, the optimal prediction
free energy or effective Hamiltonian splits into kinetic and potential energy in the way
that is easily interpretable, and probably more handy for practical applications

E(ξ, η) ≈ 1

2
Aij(ξ)ηiηj +K(ξ) , (3.63)

where both the inverse mass A−1 and the geometric free energy K (more precisely: the
mean force −∇K) can be directly sampled by means of Thermodynamic Integration
using constrained molecular dynamics; see the detailed discussion in Section 4.2.

The reader may wonder whether one could recover the standard free energy by
integrating exp(−βE) over the momenta. In fact, integrating out the momenta yields

∫

exp(−βE) dη ∝
(√

detEΣJTΦJΦ

)−1

exp(−βK) .

But this is different from (3.26) which states the relation between geometric and
standard free energy, and which — upon using (3.28) — can be recast in the form

exp(−βF ) = EΣ(volJΦ)−1 exp(−βK) .

Example 3.15. Let us reconsider the three-dimensional toy problem with radial
potential. Choosing coordinates (ϕ, ϑ, ρ) on NΣ ∼= S2 × R+, where ρ = ‖q‖2 denotes
the resolved coordinate (reaction coordinate), the Hamiltonian takes the form

H =
1

2

〈
G(ϑ, ρ)−1u, u

〉
+ 2ρζ2 +W (ρ) .

Again, G(ϑ, ρ) = ρG1(ϑ) is the metric on the 2-sphere with radius
√
ρ, and W (ρ) =

V (
√
ρ) is the radial potential. In this particular case the expression for the optimal

prediction free energy (3.63) is exact and reads

E(ρ, ζ) = 2ρζ2 − β−1 ln

∫

S2

exp(−βW (ρ))
√

detG(ϑ, ρ) dϕdϑ

= 2ρζ2 +W (ρ) − β−1 ln ρ

plus additional constants which we have omitted. This puts forward the equations

ρ̇(t) = 4ρ(t)ζ(t)

ζ̇(t) = − ∂ρW (ρ(t)) − 2ζ(t)2 +
1

βρ(t)
.
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3.3.2. The generalized Langevin equation Optimal prediction can be considered
a lowest-order approximation of the equations of motion, similar to the averaging
procedure. However it is possible to derive an exact evolution equation for the
essential variables which is very intuitive, and from which we can derive non-Markovian
corrections to optimal prediction. For this purpose we briefly review the projection
operator approach of Mori and Zwanzig as can be found in, e.g., [51, 197, 52].

Let us consider the problem how phase space functions evolve in time. To this end
consider a Hamiltonian H : T ∗Rn → R with coordinates z = (q, p). Let XH be the
Hamiltonian vector field generated by H , and denote by z(t) = Ψt(z) with z = z(0)
the integral curves of XH (i.e., Ψt : E → E, E = T ∗Rn is the Hamiltonian flow map).
For our purposes it is convenient to cast Hamilton’s equations in the form

d

dt
Ψi
t(z) = XH(Ψi

t(z)) , Ψi
0(z) = zi (3.64)

Given a function f0 : E → R, we define f(z, t) = (f0 ◦Ψt)(z) as the pull-back of f0 by
the flow map. It follows by (3.64) and chain rule that f obeys the differential equation

d

dt
(f0 ◦ Ψt)(z) = ∇f(Ψt(z)) ·XH(Ψt(z)) . (3.65)

Clearly the last equation is not closed in the sense that it does not give rise to the
time evolution of f without solving Hamilton’s equations for z(t) = Ψt(z). Recall that

X̃H(Ψt(z)) = DΨt(z) ·XH(z)

is the transformation rule (chain rule) for a generic vector field. But since Ψt is
symplectic and therefore preserves Hamilton’s equations, the identity X̃H = XH holds
true for the push-forward of a Hamiltonian vector field by its flow. Now recall the
definition of the Liouville equation (2.12). Using chain rule again and the definition
(2.13) of the Liouville operator, we can rewrite the ordinary differential equation (3.65)
as a partial differential equation in z and t. That is,

∂tf(z, t) = Lf(z, t) , f(z, 0) = f0(z) , (3.66)

where now the symbol ∇ in L = XH(z) · ∇ denotes the derivative with respect to z.
(For the relation to the adjoint Liouville equation that governs the time evolution of
probability densities see the remark below.) We may endeavour the semigroup notation
from Section 2.1.1 and write the solution of the Liouville equation as

f = f0 ◦ Ψt = exp(tL)f0 .

In particular we can choose f0 = zi0, such that exp(tL)zi0 = Ψi
t(z0) describes the time

evolution of the i-th coordinate. The aim is to split the transfer operator Tt = exp(tL)
into a part St that acts only on the subspace of the essential (resolved) variables, and
a part S⊥

t that operates on the orthogonal subspace.
Following [56] we denote by Π : L2(µ) → L2(µ) and Q = 1−Π a pair of orthogonal

projections (e.g., the conditional expectation). Modulo some technical assumptions we
require that QLQ is the infinitesimal generator of a strongly continuous semigroup. In
other words, we demand that QL generates a flow on the Q subspace. For the details
we refer to [58, 198] and define S⊥

t as the propagator of

∂tw(z, t) = QLw(z, t)

w(z, 0) = w0(z) ∈ kerΠ
(3.67)

which can be equivalently written as an inhomogeneous equation for w = exp(tQL)w0:

∂tw(z, t) = Lw(z, t) − ΠLw(z, t)

w(z, 0) = w0(z) ∈ kerΠ .
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The solution of the last equation is easily obtained by Variation of Constants [199],
which results in a Volterra integral equation for the orthogonal dynamics w(z, t),

w(z, t) = Ttw0(z) −
∫ t

0

Tt−sΠLw(z, s) ds . (3.68)

Using that TtL = LTt we may write the Liouville equation (3.66) in the form

∂tf(z, t) = ∂tTtf0(z) = TtΠLf0(z) + TtQLf0(z) .
In the second term the transfer operator Tt acts on a function that lies in the nullspace
of Π. Hence we can insert the solution (3.68) of the orthogonal dynamics with initial
condition w0 = QLf0. Omitting the argument z from now on this gives

∂tf(t) = TtΠLf0 + S⊥
t QLf0 +

∫ t

0

Tt−sΠLS⊥
s QLf0 ds . (3.69)

The last equation is often referred to as generalized Langevin equation. By no means
this equation is simpler than the original problem. In point of fact, the complexity
of the full-dimensional evolution problem has been transferred to the solution of the
Volterra integral equation of the second kind for the orthogonal dynamics.

The various terms in the generalized Langevin equation have suggestive physical
interpretations: The first term on the right hand side is Markovian. Indeed,

TtΠLf0 = ΠLf0 ◦ Ψt = ΠLf(t) .

The second term in (3.69), which is usually interpreted as noise evolves the unresolved
variables according to the orthogonal dynamics’ equation. It remains in the orthogonal
subspace for all times, for S⊥

t Q commutes with Q = Q2. Finally, the third term
depends on the value of the observable f at times s ∈ [0, t], i.e., it depends on the
past evolution up to time t. Accordingly it embodies memory effects that stem from
dynamical interaction between the two subspaces.

Introducing the abbreviations w(t) = S⊥
t QLf0 and K(t − s) = Tt−sΠL we can

cast the generalized Langevin equation in the slightly more compact form

∂tf(t) = ΠLf(t) +

∫ t

0

K(t− s)w(s) ds+ w(t) , (3.70)

where w(t) is the solution of the Volterra integral equation (3.68) for the orthogonal
dynamics with w0 = QLf0. So far, the last equation is completely equivalent to the
Liouville equation (3.66), but in practice it can only be solved approximately.

Remark 3.16. Note the different signs in the Liouville equation (2.12) for densities
and the Liouville equation (3.66), and remember that the Liouvillian is skew-adjoint
in the Hilbert space L2(dz) (and so is in L2(µ) for any smooth probability measure
µ preserved by the Hamiltonian flow). Accordingly the Liouville equation (3.66) for
phase space functions can be regarded as the formal adjoint of (2.12).

This duality is the classical analogue of the famous dichotomy of Schrödinger
and Heisenberg picture in quantum mechanics; see, e.g., [200]. Recall that the time
evolution of a probability density ρ is the push-forward of an initial density ρ0 by the
Hamiltonian flow, i.e., ρ = ρ0 ◦ Ψ−t, whereas the time-dependence of an observable
f is induced by the pull-back, f = f0 ◦ Ψt of an initial value f0. We can make the
Schrödinger-Heisenberg duality more specific: Suppose we are interested in the time-
dependent expectation value of an observable f . As we have seen in (3.65) we can
calculate f(z, t) by following an initial preparation f(z, 0) = f0(z) along a trajectory
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z(t) = Ψt(z). If the initial values z are distributed according to some probability
distribution ρ0(z), then

EHf(z, t) =

∫

E

ρ0(z)Ttf0(z) dz ,

where we have employed the semigroup notation Tt = exp(tL). This representation of
time-dependent expectation values is called Heisenberg picture (or Lagrangian picture
in fluid dynamics, respectively). Changing our point of view slightly we may consider
the observable at a fixed point in phase space, while weighting the observed quantity
with the current value of the initial ensemble,

ESf(z, t) =

∫

E

f0(z)T−tρ0(z) dz ,

which is known by the name of Schrödinger representation. According to [201] the
adjoint semigroup is generated by the adjoint Liouvillian L∗ = −L, i.e., T ∗

t = T−t.
Noting that ESf = 〈f0, T−tρ0〉 we see immediately that 〈f0, T−tρ0〉 = 〈f0, T ∗

t ρ0〉 =
〈Ttf0, ρ0〉. Hence both representations are equivalent in the sense that EH = ES

Approximations and closures Although it seems appealing to make further
assertions, e.g., concerning a generalized fluctuation-dissipation relation, (3.70) is the
best we can achieve, unless we reinforce further assumptions. In particular we choose Π
to be the conditional expectation. We briefly review the most common approximation
schemes that are available in the relevant literature. To this end, we restrict our
attention to the case of a separable Hamiltonian that is of the form

H(x, y, u, v) =
1

2
〈u, u〉 +

1

2
〈v, v〉 + V (x, y) ,

where (x, u) ∈ Rk×Rk denotes the reaction coordinate with its conjugate momentum,
whereas (y, v) ∈ Rn−k × Rn−k labels a set of unresolved conjugate variables.

The Mori-Zwanzig approach is very elegant on the formal level of deriving the
generalized Langevin equation, but it becomes a bit messy when it comes to specific
the equations of motion. Therefore, and for the sake of clarity, we shall be very explicit
regarding notation: we let z = (x, y, u, v) abbreviate the state vector, and we write
ϕ(z, t) = Ψt(z) for the solution curves that are generated by the Hamiltonian H .
Moreover let the projection Π be the conditional expectation Eξ,η = E(·|z1 = ξ, z3 =
η) that is understood with respect to the initial conditions, where the corresponding
probability density is given by (3.56). Note that this point of view is different from
the optimal prediction viewpoint, where simply the right hand side of Hamilton’s
equations was replaced by its optimal L2-projection given the current value of the
reaction coordinate. (Consult the recent textbook [59] for some clarifying remarks.) It
can readily checked that the generalized Langevin equation takes the form

∂tϕ1(z, t) = Eξ,ηϕ2(z, t)

∂tϕ2(z, t) = −∇G(ϕ1(z, t)) +

∫ s

0

K(t− s)w(z, s) ds+ w(z, t) ,
(3.71)

where the integral kernel K(t − s) = Tt−sEξ,ηL is defined as above, and ∇G =
Eξ,ηD1V (·, ·). The fluctuation term stems from the orthogonal dynamics equation,

w(z, t) = −S⊥
t ∇ (V (ϕ1(z, t), ·) −G(ϕ1(z, t))) .

So far the generalized Langevin equation involves no approximations, notwithstanding
the separability assumption on the Hamiltonian. But obviously the equations are
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not closed, for they still depend on the initial values of the unresolved variables.
A commonly used simplification is obtained by taking the conditional expectation on
either sides of the equation which, by definition of the orthogonal dynamics, annihilates
the fluctuation term. Defining ξ(t) = (Eξ,ηϕ1)(ξ, η, t) and η(t) = (Eξ,ηϕ2)(ξ, η, t), the
generalized Langevin equation (3.71) becomes upon projecting from the left

ξ̇(t) = η(t)

η̇(t) = −Eξ,η∇G(ϕ1(z, t)) +

∫ s

0

Eξ,ηK(t− s)w(z, s) ds .

Still the equations are not closed, since the conditional expectation does not commute
with the evaluation of the nonlinear force term, i.e., Eξ,η∇G(ϕ1(z, t)) 6= ∇G(ξ(t)). In
order to obtain an equation for (ξ, η) we follow [64] and interchange the evaluation of
the effective force and the conditional expectation:

Eξ,η∇G(ϕ1(z, t)) ≈ ∇G(Eξ,ηϕ1(z, t)) = ∇G(ξ(t)) . (3.72)

We refer to this step as mean-field approximation. The reader should not be bothered
by this step, since the sole alternative would be to neglect the spreading of ϕ1(z, t) due
to different initial conditions in z. However it has turned out [202] that one is better
off preserving the distributed initial conditions, while mistreating them slightly, than
completely ignoring them. This yields a non-Markovian optimal prediction equation

ξ̇(t) = η(t)

η̇(t) = −∇G(ξ(t)) +

∫ s

0

Eξ,ηK(t− s)w(z, s) ds .
(3.73)

Note that the memory integral contains information about the unresolved modes,
and so we still have to solve the orthogonal dynamics equation. Suppose the Volterra
equation (3.68) is well-posed. Following [203] the formal solution of (3.68) is14

w(z, t) = ζ(z, t) −
∫ t

0

R(t, s)ζ(z, s) ds ,

where R(t, s) is the resolvent kernel

R(t, s) =
∞∑

i=1

(−1)i−1κi(t, s) , κi(t, s) =

∫ t

0

K(t− ς)κi−1(ς, s) dς

with κ1(t, s) = K(t− s). The smoothness of w(z, ·) depends on the smoothness of the
memory kernel. Clearly solving the equations numerically is not necessarily easier than
directly solving the Liouville equation (3.67) for the orthogonal dynamics. Nevertheless
the Neumann series above is related to an iterative scheme that is useful once an
approximate solution is known. For a sufficiently small time step h we consider

w(z, h) = ζ(z, h) −
∫ h

0

K(h− s)w(z, s) ds , (3.74)

where ζ(z, h) = Thw0(z), and Eξ,ηw(z, s) = 0, i.e., w(·, s) lies in the nullspace of the
projection Π = Eξ,η. We shall apply the method of successive approximations to the
integral equation (3.74). This method consists in constructing a sequence

uk+1(z, h) = ζ(z, h) −
∫ h

0

K(h− s)uk(z, s) ds

14Of course, well-posedness depends upon the choice of the underlying function space. In particular
the existence of weak L2-solutions has been proved recently in the article [58]
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with Eξ,ηuk(z, s) = 0 and initialization u0(z, h) = ζ(z, h). It can be regarded as a
Picard iteration for the differential equation (3.65). Pushing the iteration to the next
order u1, exploiting the semigroup property Th = Th−s ◦ Ts, we find

u1(z, h) = (1 − hEξ,ηL) ζ(z, h)

and so forth. It is known that for a sufficiently smooth integral kernel K(h − s)
that satisfies a local Lipschitz condition the sequence {uk} eventually converges to
the orthogonal dynamics solution in some interval [0, τ ], i.e., uk(z, h) → w(z, h) for
h ∈ [0, τ ] as k → ∞. However existence and uniqueness is guaranteed only locally;
basically the maximally achievable τ up to which the solution can be continued
depends on boundedness and decay of the integral kernel. For details the reader may
consult the references [204, 205]. It is interesting to note that extending the lowest
order approximation w(z, h) ≈ u0(z, h) to h = t and substituting it into (3.73) yields
what circulates in the literature as t-damping equation

ξ̇(t) = η(t)

η̇(t) = −∇G(ξ(t)) − t γ(ξ(t)) · η(t) ,
(3.75)

where the positive semi-definite friction matrix γ is given by

γ(ξ) = Eξ,η

(

∇ (V (z1, ·) −G(z1))∇ (V (z1, ·) −G(z1))
T
)

.

In the last step we have once more interchanged the conditional expectation with
the function evaluation (mean-field approximation). Roughly speaking the t-damping
equation amounts to the approximation S⊥

t ≈ Tt; see [64] and the references therein.
However we note that neither u0 nor u1 ought to be considered a systematic asymptotic
expansion for the orthogonal dynamics that is valid beyond the characteristic decay
time h of the orthogonal dynamics. In particular the energy in the t-damping equation
will quickly decay to zero. This seems rather unphysical, and we therefore suggest to
approximate the memory kernel not until the level of numerical discretization.

A related approximation which is popular in the nonequilibrium statistical
mechanics community consists in introducing a characteristic time τ that indicates
the support of the memory integral backwards in time; see, e.g. [206, 207]. The basic
idea is to replace (3.74) by a modified Volterra equation

w(t) = ζ(z, t) −
∫ t

0

K(t− s)ŵ(z, s) ds , w, ŵ ∈ kerEξ,η ,

where ŵ(s) = w0(z)k(s/τ), and k(s/τ) is an arbitrary function satisfying

k(0) = 1 and

∫ ∞

0

k(s/τ) = τ .

For k(s/τ) = exp(−s/τ) we can easily expand the integral in powers of τ and obtain
a t-damping-like equation which reads to lowest order in τ (see [208])

ξ̇(t) = η(t)

η̇(t) = −∇G(ξ(t)) − τ γ(ξ(t)) · η(t)
with the previously defined friction matrix. Unlike (3.75) the friction term in the last
equation does not increase as time evolves, provided γ stays bounded. Nevertheless
the system is dissipative in the sense that the total energy of the system is decreasing
along the solution curves and eventually goes to zero. A further ad-hoc modification
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that has been suggested recently in the PhD thesis [55] consists in adding an extra
stochastic term to the equations with (yet unknown) statistics. This leads to

ξ̇(t) = η(t)

η̇(t) = −∇G(ξ(t)) − τ γ(ξ(t)) · η(t) + F (ξ(t), t) ,

which is a linear Langevin equation but should not be confused with the covariant
Langevin equation (2.25) with configuration-dependent friction and noise coefficients.
If F (ξ, t) is an uncorrelated, zero-mean stochastic process that satisfies the generalized
fluctuation-dissipation relation,

EF (ξ, s)F (ξ, t)T = 2τβ−1γ(ξ)δ(s− t) ,

then the linear Langevin equation has the invariant probability density

ρ(ξ, η) ∝ exp(−βE(ξ, η)) with E(ξ, η) =
1

2
〈η, η〉 +G(ξ) .

Remark 3.17. We mention that there is an ongoing discussion about whether the
Volterra equation or approximations thereof are well-posed and numerical solutions
exist [58, 209, 210]; see also [210]. Regarding stability of the solutions with respect
to perturbations of the (unresolved) initial conditions we refer to the excellent survey
article [203] and the references given there.

Many authors study a special case of a Volterra integro-differential equation that
relates the velocity autocorrelation function of the reaction coordinate to the memory
kernel, in case the system consists of harmonic oscillators only [211]; however these
authors rarely take into account the specific assumptions under which the equations
have been derived (e.g., linear projections rather than conditional expectations); see,
e.g., [53, 212]. Moreover this type of Volterra equation suffers from various degrees of
ill-posedness, and the numerical integration is notoriously unstable. Therefore many
authors resort to regularization techniques, e.g., (sequential) Tikhonov regularization,
or choosing local ansatz functions for the memory kernel [54]..

To the best of the author’s knowledge there are no statements regarding the
numerical efficiency of the Mori-Zwanzig method as compared to simulations of the
full model, and detailed numerical studies of the generalized Langevin equation are
desirable. Moreover, systematic studies of Markov approximations are rare, e.g., [57].
But addressing the computational aspects in an adequate way is far beyond the scope
of this thesis, and we leave it at the few remarks given above. For related approaches
using a moment expansion of the Liouville equation we refer to [213].

3.4. Modelling fast degrees of freedom: adiabatic perturbation theory

In this subsection we put forward another approach to get rid of certain irrelevant
(unresolved) degrees of freedom. The name adiabatic perturbation theory is borrowed
from the theory of adiabatic invariants of integrable systems which is a common topic
in celestial mechanics. The theory of adiabatic invariants relies on the formalism of
canonical transformations: an oscillatory system is recast into an equivalent one with
action-angle coordinates (I, ϕ), such that I is invariant under the Hamiltonian flow,
and ϕ is an angular coordinate on a torus [20]. If the action variables I are not
preserved but slowly varying (slow is meant in comparison with the angle variables),
we arrive at the classical averaging problem; see [214] and the references therein.

The method which is proposed in this section can be considered a
thermodynamical variant of the action-angle problem, which is better suited to
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problem involving a heat bath. It leads to a simplification of the former averaging
problem, and it relies on the basic insight that certain degrees of freedom are fast
and have comparably small amplitude, such that we can treat them as harmonic
oscillations. Not only does this considerably simplify the analysis of the models and
their numerical simulation, but most of the unresolved variables are harmonic anyway,
e.g., bond and bond angle vibrations, or solvent motion to mention just a few.

By no means the averaging results that we present are new. However the current
approach places emphasis on two different aspects: First of all it gives rise to a
alternative view on fast motions from which semi-analytic, reduced models can be
developed that have few free parameters. Secondly, it explains once more the relation
between stiff harmonic modes, e.g., bonds, and constrained variables. In other words,
it points out the (in principle well-known but often ignored) difference between a
constrained system, where certain modes are held fixed at equilibrium values, and
very stiff systems, where the system is allowed to oscillate around these values. The
last remark concerns the difference between conditional and constrained expectations
(Fixman Theorem or Blue Moon formula), and it provides a physical understanding
of techniques like the widely-used umbrella sampling; cf. [76].

A modelling potential Suppose that any of the subspace reduction methods from
Section 2.4 has given us an approximating subspace M that is spanned by a few slow
variables, say, x1, . . . , xn−s, and assume that the dynamics stays close to this subspace
over a finite time interval. Given a local orthonormal frame {n1(σ(x)), . . . , ns(σ(x))}
over M with normal coordinates y ∈ Rs we define a confining potential by

Uǫ(σ, n) =
1

2ǫ2
〈B(σ)n, n〉 ,

where n ∈ NσM with n = yjnj(σ(x)), and ǫ ≪ 1 is an empirical scaling parameter,
that might be chosen, for instance, as the autocorrelation time ratio of the slowest
and the first truncated dominant degree of freedom. Suppose that for each σ ∈M the
matrix B(σ) ∈ Rn×n is positive-semidefinite of rank s. In bundle coordinates (x, y)
the confinement potential then takes the form

Uǫ(x, y) =
1

2ǫ2
〈K(x)y), y〉 . (3.76)

Note that if we assume that the matrix B(σ) above has maximum rank s, then the
symmetric, and positive-definite matrix K(x) ∈ Rs×s is simply B(σ) written in the
basis of the normal frame. In fact, it is recommendable to construct the normal frame
from the eigenvectors of B(σ) corresponding to non-zero eigenvalues.

The confinement potential Uǫ is designed in such a way that it achieves its
minimum exactly on the approximant [27]. This is always possible if the matrix K
has s strictly positive eigenvalues (recall that the codimension of M ⊂ Rn is s). If ǫ
tends to zero, it generates a force in the neighbourhood of M that pushes the moving
particle to the manifold. Clearly in the limit the particle must remain on M , and we
obtain a reduced system that lives only on the approximant.

By construction, U captures the influence of the normal modes which have small
variance.15 This offers a reliable description of the motion close to the approximantM ,
provided the matrix family B(σ) is appropriately chosen. For example, one may think
of B(σ) as the covariance or correlation matrix of the system conditional on x. This

15The term normal mode is not to be confused with what is typically called Normal Mode Analysis.
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M = {(x, y)|y = 0}

Uǫ(x, y) = 1
2ǫ2 〈K(x)y, y〉

Figure 7. Schematic plot of the confining potential.

would guarantee that the normal modes reproduce the statistics of the unresolved
motion in the vicinity of the approximant. The idea now is to replace the original
potential V by a modelling potential

Vǫ(x, y) = VM (x) + Uǫ(x, y)

in a tubular neighbourhood of M . For example, one might think of VM (x) = V (σ(x))
as the restriction of the molecular to the approximant, or VM (x) = F (x) could be some
kind of free energy in the essential variables x. This can by rephrased saying that the
fast variables are modelled by appropriate Ornstein-Uhlenbeck processes (Brownian
motion) or harmonic oscillators, respectively (second-order equations).

Strong confinement limit: diffusive motion To formulate our idea precisely we
start studying the limit ǫ → 0 for the Smoluchowski equation. Let Vǫ : Rn → R be
the modelling potential. Then for β > 0 the Smoluchowski equation on Rn reads

q̇ǫ(t) = −gradVǫ(qǫ(t)) +
√

2β−1Ẇ (t) .

We assume that the approximant M that is spanned by the essential variables is
a smoothly embedded submanifold of codimension s in Rn, and we denote this
embedding by σ : Rn−s → M ⊂ Rn. As before we introduce local coordinates
xα, α = 1, . . . , n − s on M , and normal coordinates yi, i = 1, . . . , s that measure
the distance to M with respect to the normal frame {n1, . . . , ns}. In terms of the local
coordinates the Smoluchowski equation becomes according to Lemma 2.11

ẋαǫ = −gαl(xǫ, yǫ) ∂lVǫ(xǫ, yǫ) + bα(xǫ, yǫ) + aαl(xǫ, yǫ) Ẇl

ẏiǫ = −gil(xǫ, yǫ) ∂lVǫ(xǫ, yǫ) + bi(xǫ, yǫ) + ail(xǫ, yǫ) Ẇl ,
(3.77)

where bh = −β−1gklΓhkl denotes the additional Itô drift term with the symmetric
Christoffel symbols Γhkl, and akl are the entries of the uniquely defined positive-definite

matrix square root of g−1 multiplied by the noise amplitude
√

2β−1 (see Appendix B
for the definition of the metric tensor g). The effect of confining a Brownian particle
to the submanifold M is expressed in the next statement following an idea due to [74].
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Proposition 3.18. For all ǫ > 0 let the process (xǫ(t), yǫ(t)) ∈ Rn defined by (3.77)
with ǫ-dependent initial values (xǫ(0), yǫ(0)) = (x, ǫy) be a continuous Markov process.
Furthermore let the processes admit a family of unique invariant measures µǫ(dx, dy).
Then as ǫ→ 0 the process xǫ(t) ∈ Rn−s converges in probability to a stochastic process
x(t) ∈ Rn−s satisfying the following differential equation

ẋ(t) = b̄(x(t)) − grad V̄ (x(t)) + ā(x(t)) Ẇ (t) , (3.78)

where the effective potential is given by

V̄ (x) = VM (x) +
1

2β
ln detK(x) .

The rightmost term is a Fixman potential. The remaining coefficients are

b̄α(x) = β−1Gγδ(x)Γαγδ(x) , āαγ(x) =
√

2β−1
(√

G−1(x)
)

αγ

with the Christoffel symbols Γαγδ(x) = Γαγδ(x, 0) of the metric G(x) on M .

Proof. For the relation between the various free energies and the Fixman potential
see the paragraph above Remark 3.21 below. First of all observe that Vǫ(x, y) =
V1(x, ǫ

−1y). Hence we suggest to introduce scaled variables y = ǫz, in order to
circumvent a blow up of the normal energy in the confinement limit. Moreover we
assume that all realizations will stay in the tubular neighbourhood of M . In the scaled
coordinates (x, z) the equations of motion read

ẋαǫ = −1

ǫ
gαjǫ ∂jV1 − gαβǫ ∂βV1 + bαǫ + aαlǫ Ẇl

żiǫ = − 1

ǫ2
gijǫ ∂jV1 −

1

ǫ
giβǫ ∂βV1 +

1

ǫ
biǫ +

1

ǫ
ailǫ Ẇl ,

(3.79)

where we have introduced the scaled quantities gǫ = g(x, ǫz), bǫ = b(x, ǫz) and
aǫ = aǫ(x, ǫz). Now the normal energy remains finite as ǫ goes to zero, and the
equations have the standard form to which the Averaging Principle applies. It can
be readily checked that the ǫ-family of invariant measures is given by

µǫ(dx, dz) =
1

Zǫ
exp (−βV1(x, z))

√

det g(x, ǫz) dxdz .

In order to compute the conditional invariant measure of the fast process we make a
time scaling t 7→ ǫ2t, taking into account that the noise scales like Ẇ (t) 7→ ǫ−1Ẇ (ǫ2t):

ẋα = −ǫ2gαjǫ ∂jV1 − ǫ2gαβǫ ∂βV1 + ǫ2bαǫ + ǫaαlǫ Ẇl

żiǫ = −gijǫ ∂jV1 − ǫgiβǫ ∂βV1 + ǫbiǫ + ailǫ Ẇl .

Letting ǫ go to zero yields the fast process conditioned on the frozen slow variables x

żix = − δij ∂jV1(x, z) +
√

2β−1δil Ẇl , (3.80)

where we have taken advantage of the identity gil(x, 0) = δil. The conditional invariant
measure then is independent of ǫ and has the remarkably simple form

µx(dz) =
1

Q(x)
exp (−βU1(x, z)) dz ,
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which is owed to the fact that the fibres NσM locally look like Rs, since we have
dilated the normal direction in the just described way; no functional determinant is
involved.16 Endeavouring the Averaging Principle we have to compute the integral

f̄α(x) = lim
ǫ→0

lim
T→∞

1

T

∫ T

0

fαǫ (x, zx(t)) dt ,

where fαǫ denotes the right hand side of the x-equation in (3.79). Note that the
conditional fast process is a non-degenerate Ornstein-Uhlenbeck process, and therefore
zx(t) is exponentially mixing, i.e., ergodic. Hence we can replace the time average by

f̄α(x) = lim
ǫ→0

∫

fαǫ (x, z)µx(dz) .

Since µx(dz) does not depend on ǫ, and the integrand is uniformly continuous in z we
may interchange the limit ǫ→ 0 with the integration. We can split fαǫ = hαǫ + kαǫ into
one part that becomes independent of z as ǫ goes to zero

lim
ǫ→0

hαǫ (x, z) = bα(x, 0) + aαl(x, 0)Ẇl

and into a remainder that gives

lim
ǫ→0

kαǫ (x, z) = lim
ǫ→0

gαl(x, ǫz) ∂lV1(x, z)

= Gαγ(x)
(
∂γV1(x, z) − ωij(Xβ)z

j∂iV1(x, z)
)

The second term which contains the 1-form coefficients ωij(·) of the normal connection
is determined by those off-diagonal terms of the inverse metric tensor which are
linear in z, as follows upon Taylor expanding the inverse of g in powers of z; since
gαi(x, 0) = 0, the singular term vanishes completely (cf. Appendix B). Clearly only
terms that are quadratic in z will survive the averaging procedure, since z has zero
mean; therefore all terms ωij(·)zjzi with i 6= j are averaged out, where the additional

zi comes from the partial derivative of the quadratic potential. However ωij(·) is a

skew-symmetric form and thus ωii(X) = 0 (see the remark below).
In order to complete the proof it remains to evaluate f̄α = h̄α + k̄α with h̄ = h0.

Since gαl(x, 0) = δlβG
αβ we have b̄α = bα(x, 0) and therefore

f̄α = −Gαγ
∫

∂γV1(x, z)µx(dz) + b̄α + āαγẆγ

= −Gαγ∂γ
(

VM (x) +
1

2β
ln detK(x)

)

+ b̄α + āαγẆγ .

Noting that grad V̄ = G−1∇V̄ and ā =
√

2β−1G−1 we see that f̄ is the right hand side
of (3.78). Finally, convergence in probability xǫ(t) → x(t) is a straight consequence
of the Averaging Principle for non-degenerate diffusion processes [24]. (See also the
recent paper [17] for a convergence proof.)

Note that the degree of complexity in the reduced equations is of course a matter
of how the approximant M is embedded into the Rn, since the metric G is induced

16Moreover the dilation has the consequence that we can extend the average of the slow process
over the full fibres in the normal bundle (i.e., without the restriction to the tubular neighbourhood),
as effects of the extrinsic geometry vanish anyway as ǫ goes to zero.
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by the embedding M ⊂ Rn which is open to choice. In point of fact, M will often be
a linear subspace of Rn, such that the reduced equations simply become

ẋ(t) = −grad V̄ (x(t)) +
√

2β−1Ẇ (t) , (grad V̄ = ∇V̄ ) .

Strong confinement limit: mechanical system We have to be careful with
regard to näıve application of the Averaging Principle: the situation is less clear
here than in the diffusion case, since in general the equations do not admit a unique
invariant measure. Therefore we shall restrict our attention to the stochastic version
of the equations of motion (i.e., with randomized momenta and distributed initial
conditions) and give only informal statements concerning convergence (cf. [24, 215]).
We support our conjectures by suitable numerical examples below.

We consider an ǫ-family of Lagrangians Lǫ : TNM → R with the modelling
potential Vǫ that has been substituted for the molecular potential. Using bundle
coordinates (x, y) the Euler-Lagrange equations can be written in first-order form

ẋαǫ = uαǫ

u̇αǫ = −Γαkl(xǫ, yǫ)w
k
ǫw

l
ǫ − gαl(xǫ, yǫ)∂lVǫ(xǫ, yǫ)

ẏiǫ = viǫ

v̇iǫ = −Γikl(xǫ, yǫ)w
k
ǫw

l
ǫ − gil(xǫ, yǫ)∂lVǫ(xǫ, yǫ)

(3.81)

with the shorthand w = (u, v) for the tangent space coordinates. As before we
introduce scaled coordinates z = y/ǫ in order to prevent the normal energy from
diverging for ǫ→ 0. The thus scaled equations of motion are

ẋαǫ = uαǫ

u̇αǫ = −Γαǫ,klw
k
ǫw

l
ǫ − gαγǫ ∂γV1 −

1

ǫ
gαjǫ ∂jV1

ẏiǫ =
1

ǫ
viǫ

v̇iǫ = −Γiǫ,klw
k
ǫw

l
ǫ − giαǫ ∂αV1 −

1

ǫ
gijǫ ∂jV1

(3.82)

with the same abbreviation as before: gǫ = g(x, ǫz) and Γhǫ,kl = Γhkl(x, ǫz).
The Lagrangian that corresponds to the scaled Euler-Lagrange equations then is
Kǫ(x, z, ẋ, ż) = Lǫ(x, ǫz, ẋ, ǫż). If we let Eǫ(r, s) with r = (x, z) and r = ṡ denote the
total energy of the Lagrangian Kǫ, then the corresponding invariant Gibbs measure
can be written in terms of a smooth density. That is, for each value of ǫ we have

νǫ(dr, ds) = Z−1
ǫ exp (−βEǫ(r, s)) det gǫ(r) drds .

The finite energy scaling has the effect that the Gibbs measure νǫ will contract to the
Gibbs measure on TM as ǫ goes to zero with an additional term that comes from the
scaled constraining potential U1(x, z). Indeed

ν0 ∝ exp (−β(E1(x, 0, ẋ, 0) + U1(x, z))) detG(x) .

Scaling the free variable according to t 7→ ǫt (microscopic timescale), we find

ẋαǫ = ǫuαǫ

u̇αǫ = −ǫΓαǫ,klwkǫwlǫ − ǫgαγǫ ∂γV1 − gαjǫ ∂jV1

ẏiǫ = viǫ

v̇iǫ = −ǫΓiǫ,klwkǫwlǫ − ǫgiαǫ ∂αV1 − gijǫ ∂jV1 .
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Sending ǫ → 0 and exploiting that gαjǫ → 0 in the equation for uα, since the off-
diagonal entries of the inverse metric g−1

ǫ vanish, we have ẋ(t) → 0 and u̇(t) → 0.
This yields equations of motion for z(t) conditioned on the frozen slow variable x

z̈ix = −gij(x, 0) ∂jV1(x, z) = −∂iU1(x, z) ,

such that the conditional invariant measure becomes

νx(dz, dv) =
1

Q(x)
exp (−βEx(z, v)) dzdv .

with the conditional normal energy

Ex(z, v) =
1

2
〈v, v〉 + U1(x, z) .

Observing that Γαij,ǫ → 0 as ǫ → 0, computing the average of the slow dynamics is
no different than in the diffusion case. Since all terms which are linear in v vanish, it
remains the average of the potential terms; the mechanical analogue of (3.78) is

ẋα = uα

u̇α = −Γαγδ(x)u
γuδ −Gαγ(x)∂γ V̄ (x)

(3.83)

with the Christoffel symbols Γαγδ of the metric G on M and the averaged potential

V̄ (x) = VM (x) +
1

2β
ln detK(x) .

Clearly the confined system is Hamiltonian with energy

H0(x, p) =
1

2

〈
G(x)−1p, p

〉
+ U(x) ,

and we claim that the original model system (3.81) (appropriately randomized) with
initial values that are distributed according to (x, y, u, v) ∼ exp(−βEǫ(x, ǫy, u, ǫv))
converges in distribution to the (randomized) confined system given by (3.83) with
initial conditions that are distributed according to (x, u) ∼ exp(−βH0(x,Gu)).

Remark 3.19. The Langevin equation that is associated to (3.83) reads

ẋα =
∂H0

∂pα

ṗα = −∂H0

∂xα
− γ̂αδ

∂H0

∂pδ
+ ς̂αδẆ

δ .

(3.84)

In accordance with Lemma 2.10, friction γ̂ = JTσ γJσ and noise coefficients ς̂ = JTσ ς
satisfy the fluctuation-dissipation relation, where Jσ = Dσ is the Jacobian of the
embedding σ : Rn−s → M ⊂ Rn, and Ẇ denotes the Wiener process in Rn−s.
Basically the derivation of (3.84) is along the lines of the last paragraph, applying
the L2-convergence result of Kifer [216] for hypo-elliptic diffusion processes; see also
[217, 218]. We omit this lengthy calculation, that involves some subtleties (non-
resonance and exponential mixing conditions) and refer to the next subsection where
a numerical illustration for a Langevin system with an eigenvalue resonance is given.

Example 3.20. Consider the Hamiltonian function H : T ∗R2 → R

H(x, y, u, v) =
1

2
u2 +

1

2
v2 + Vǫ(x, y)

with the potential

Vǫ(x, y) =
1

4
(x2 − 1)2 +

1

2ǫ2
ω(x)2y2 ,
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and x ∈ R, y ∈ R. The function ω(x) ≥ c > 0 is defined as before:

ω(x) = 1 + C exp
(
−α(x− x0)

2
)
.

As ǫ → 0 the potential Vǫ induces a large force pushing a particle towards the
equilibrium manifold y = 0. Choosing initial values y = O(ǫ) the confinement to the
x-axis then results in additional force on the particle that is given by the derivative
of the Fixman potential. In order to let the energy remain finite we apply a scaling
transform to the fast variables, (y, v) 7→ (ǫy, ǫ−1v). This yields a scaled Hamiltonian
Hǫ to which the following Lagrangian is associated

Lǫ(x, y, ẋ, ẏ) =
1

2
ẋ2 +

1

2
(ǫẏ)2 − V1(x, y) .

The corresponding Euler-Lagrange equations can be written as a first-order system

ẋǫ(t) = rǫ(t)

ṙǫ(t) = −xǫ(t)(xǫ(t)2 − 1) − ω′(xǫ(t))ω(xǫ(t))yǫ(t)
2

ẏǫ(t) =
1

ǫ
sǫ(t)

ṡǫ(t) = −1

ǫ
ω(xǫ(t))

2yǫ(t) .

(3.85)

with initial values that are distributed according to (x, y, r, s) ∼ exp(−βE1(x, y, r, s))
independently of ǫ. (Here E1 is the total energy of the Lagrangian Lǫ for ǫ = 1. Note
that without scaling the initial values, the total energy diverges. As a consequence the
limit orbits may not lie on the x-axis at all (cf. [219]).) On the slow timescale t 7→ ǫt
we find that the fast dynamics alone is given by

ẏx(t) = sx(t)

ṡx(t) = − ω(x)2yx(t) ,

which can be regarded as a Hamiltonian system with the oscillation energy

Ex(y, s) =
1

2
s2 + ω(x)2y2

and the conditional invariant measure

µx(dy, ds) =
1

Q(x)
exp(−βEx(y, s)) dyds .

Application of the Averaging principle yields the limit equation

ẋ0(t) = r0(t)

ṙ0(t) = −x0(t)(x0(t)
2 − 1) − β−1 lnω(x0(t)) .

(3.86)

Notice that the rightmost term is again the derivative of the Fixman potential. It is
furthermore easy to see that in our particular example the mean force is the derivative
of the free energy. A comparison of the limit solution and the full solution for various
values of ǫ is shown in Figure 9. Apparently, the averaged solution is always pretty close
to the limit solution, except at the dynamical barrier. The reason is that the frequency
of the fast oscillator is almost constant away from the barrier, such that the two degrees
of freedom are virtually decoupled, and averaging trivially gives good approximations
(see Section 6 for a detailed discussion of the deviations from the averaged dynamics).
For values below ǫ = 0.1 the two solutions are almost indistinguishable; notice that the
convergence is even pathwise. The long-term dynamics of the slow variable is depicted
in Figure 8. Here we have integrated both the limit solution and the full equation
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Figure 8. Long-term behaviour of the solution of (3.85) for ǫ = 0.1 versus the
limit solution. Upper panel: Typical hybrid Monte-Carlo (HMC) realization for
β = 4.0 and 100 integration steps between the HMC points. Lower panel: invariant
density of the slow dynamics computed from 500 000 sample points.

using a hybrid Monte-Carlo scheme with internal step-size h = 10−3 and an step-size
τ = 10−2 between the Monte-Carlo points, i.e., new momenta were drawn every 10
integration steps. The long-term simulation has been carried out with τ = 10−1 and
500 000 Monte-Carlo points.

Fixman potential reloaded Summarizing, the confinement (also: strong molecular
restraint) has the effect that a correction potential, the Fixman potential

U = β−1 ln
√

detK ,

has to be added to the restricted dynamics on M in order to capture the influence of
the fast modes [179]. Note that the result is similar to the results in classical mechanics
[180, 75, 27], and it is well-known [219] that in case the normal energy is finite the
correction potential does not depend on the embedding ofM into Rn. Here keeping the
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Figure 9. The two plots illustrate convergence of the full system of equations
(3.85) towards the limit system (3.86). It can be seen that the error for a
typical realization of a HMC trajectory is maximum at the dynamical barrier
x = x0; for ǫ = 1 it even happens that the full dynamics makes a transition to a
neighbouring metastable set and deviates completely. All simulations have been
carried out at the temperature β = 4.0, and we have have chosen the parameters
A = 15, α = 200, x0 = 0.8 for the frequency function ω(x). The lower panel gives
a zoom into the upper graphics around x = 1.

normal energy bounded is achieved by the dilatation y 7→ ǫy of the fibres in the normal
bundle. In the example above it turned out that the mean force could be expressed as
the derivative of the (geometric) free energy. However in general the Fixman potential
is different from the free energy which very well depends on the extrinsic geometry as
we have seen in the section on free energy (cf. the discussion about dynamical barriers
in the specific case of a flat geometry).

Before we conclude let us let us briefly clarify the relation between the Fixman
potential here and the quantity formerly denominated the Fixman potential, viz.,
W = β−1 ln volJΦ. To this end we remind the reader that volJΦ =

√
detDΦTDΦ for

a function Φ : Rn → Rs, and we consider a free Hamiltonian system onto which a
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constraint Φ(q) = ξ is imposed by adding the confining potential

Wǫ(q) =
1

2ǫ2
(Φ(q) − ξ)

2
.

As before the spatial initial conditions q0 = qǫ(0) are located in a tubular ǫ-
neighbourhood of Σ = Φ−1(ξ). That is, we require Φ(q0) − ξ = O(ǫ) in order to
prevent the energy from diverging in the limit ǫ → 0. By expanding Wǫ in terms of
the normal coordinates around the constraint manifold and repeating the calculation
from above, it is then straightforward to show that the Fixman potential W becomes
the potential of the limiting confining force perpendicular to Σ.

In molecular simulations, the Fixman potential is sometimes added to a
constrained Hamiltonian (e.g., with frozen molecular bonds) in order to mimic
unconstrained dynamics and to reproduce the correct statistics of an unconstrained
system [28]. By the way, the same can be done for Brownian dynamics [17]. However
as we have argued in the proof of Lemma 3.18 and in the last example (cf. Figure 9),
the convergence of the confined system to the limit system is often pathwise. That is,
by adding the Fixman potential to a constrained system do even approximate single
trajectories of the stiff, unconstrained system.

Remark 3.21. Let us shortly comment on the relevance of the connection 1-forms
ωii(X) associated with the normal frame. There is one possible scenario where the
connection gives contributions to the average force, namely, if the embedded manifold
has singular points σ∗ where ni(σ∗) = 0 for some of the normal vectors. In this case
ωii(X) is different from zero, and in some

√
ǫ-scale neighbourhood of these points the

averaged dynamics will differ from the full solution. However it follows from Sard’s
Theorem that such points form a set of measure zero, and therefore the confinement
result holds whenever the reaction coordinate is sufficiently smooth.

3.4.1. Resonances in molecular systems For purely deterministic systems it is
well-known that eigenvalue crossings in the matrix K of the confining potential may
have large impact on the limit equation. It is an open question whether degeneracies of
the matrix K can affect the approximation capabilities of the stochastic limit system
as well. To address this question, let us briefly review the Averaging Principle for
almost integrable system as it appears in celestial mechanics. To this end we follow
the outline in [98] and consider the Hamiltonian Hǫ = Hǫ(I, ϕ) that is assumed to
give rise to the following weakly perturbed system

İ = ǫf(I, ϕ, ǫ) (3.87)

ϕ̇ = −ω(I) + ǫg(I, ϕ, ǫ) , (3.88)

where I ∈ Rm and ϕ ∈ Tm (cf. equation (3.2)). In the limit ǫ→ 0 the I = (I1, . . . , Im)
become first integrals of the resulting vector field, where the condition I = I0 singles
out an invariant torus Tm with coordinates ϕ = (ϕ1, . . . , ϕm). For ǫ = 0 the equation
ϕ̇ = −ω(I0) defines a conditional flow on the torus, which can be easily solved,

ϕ(t) = ϕ0 − ωt , ω = ω(I0) .

Now assume that the right hand side of the slow equation is periodic for ǫ = 0, i.e.,
f(I, ϕ+ 2π, 0) = f(I, ϕ, 0). The time average of the slow equation is simply

f̄(I0) = lim
T→∞

1

T

∫ T

0

f(I0, ϕ0 − ωt, 0) dt ,
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and is independent of ϕ0. The classical Averaging Principle of Neishtadt [220] consists
in replacing the full system above by the spatially averaged system

J̇ = ǫf̄(J) , f̄(J) =
1

(2π)m

∫

Tm

f(J, ϕ, 0) dϕ .

The last equality states that the conditional flow ϕ(t) is such that in the limit t→ ∞
the torus is uniformly sampled which excludes periodic orbits, for example. Basically,
replacing the time average by the spatial average requires that the components of the
frequency are non-resonant. That is, for all J ∈ Rm we require (at least) that there
are no integer coefficients ki ∈ Z, such that

k1ω1(J) + . . .+ kmωm(J) = 0 ,
s∑

i=1

|ki| 6= 0. (3.89)

If, for instance, the two frequencies of a two-dimensional harmonic oscillator are
related by ω1 = kω2 with k ∈ N, then the system admits a periodic orbit with
ω∗ = min(ω1, ω2). Hence the conditional fast flow covers only a one-dimensional
submanifold (namely, the periodic orbit) of the two-dimensional torus T2.

To see how the above problem is related to ours, consider the family Hamiltonians
Hǫ with confinement potential as is obtained as the Legendre transform of the
Lagrangian Lǫ in the last section. We shall restrict our attention to initial value
problems at constant energy (i.e., the microcanonical setting). The Hamiltonian reads

Hǫ(x, y, u, v) =
1

2
〈u, u〉 +

1

2
〈v, v〉 + VM (x) +

1

2ǫ2
〈K(x)y, y〉 .

By construction, the conditional system of equations for frozen x is integrable. Hence
coordinates (I, ϕ) exist, such that there is a (x, ǫ)-parameter family of canonical (i.e.,
symplectic) transformations. The corresponding family of Hamiltonians is

Hx,ǫ(I, ϕ) =

s∑

k=1

Ik(x, ǫ)ωk(x) ,

where the ωk(x) are square roots of the eigenvalues of K(x), and Ik = Ik(y, v;x, ǫ).
Although (z, w)x,ǫ 7→ (I, ϕ)x,ǫ is a symplectic transformation when x is fixed, the full
transformation Sǫ : (x, z, p, w) 7→ (x, ϕ, p, I) is not unless we set ǫ = 0 (note that
ω = ∂H0/∂I in (3.87) above). However we can compute the equations of motion with
respect to the pulled-back (non-standard) symplectic form, which of course becomes
ǫ-dependent [221]. Enforcing the non-resonance condition (3.89) and letting ǫ tend to
zero, one obtains an averaged system that is Hamiltonian with the energy [222]

HJ(x, p) =
1

2
〈p, p〉 + VM (x) +

s∑

k=1

Jkωk(x) .

Here the averaged action variables Jk = Īk are constant and depend solely on the initial
conditions (x(0), y(0), v(0)) of the original system. Hence also in microcanonical setting
the confinement has the effect that an additional potential is added to the constrained
dynamics on T ∗M . This should be compared to the Fixman potential,

W0(x) =

s∑

k=1

Jkωk(x) vs. U0(x) = β−1
s∑

k=1

lnωk(x) ,

noting that U0 depends on the temperature 1/β, whereas W0 only depends on the
scaled initial energy of fast system via the initial values (x(0), y(0), v(0)) which is

81



easily explained by the different underlying ensemble concepts, i.e., canonical vs.
microcanonical; see the monograph [27] for a detailed discussion.

An interesting question is how resonances could affect the confinement result in
the molecular dynamics case. For the classical situation it is well-known [20] that the
approximation capability of the limit system is related to the exponent γ > 0 that
appears in so-called Diophantine conditions

| 〈k, ω(J)〉 | > c‖k‖−γ , J ∈ Rs , ∀k ∈ Zs\{0} .
That is, if for given γ the measure of frequencies ωk(J) that violate the Diophantine
condition is large (almost resonant regimes), the averaged system is likely to be a
bad approximation to the original dynamics. However the effect of the resonance also
depends on how long the system stays in the vicinity of an almost resonant set. If
the normal motion is generated by non-degenerate Ornstein-Uhlenbeck processes the
system is mixing and we expect no problems. However for a stochastic Hamiltonian
system or Langevin dynamics at low friction and noise the situation is less clear.

To determine the measure of the frequency set that violates the Diophantine
condition is a tedious and challenging mathematical task that goes far beyond the
scope of the present thesis (cf. the articles [223, 224, 225]). Therefore we will not take
up this discussion here, but we shall study the problem by means of an illustrative
model system instead. To this end consider a singularly perturbed potential which
constrains to a submanifold of codimension s = 2:

Uǫ(x, y) =
1

2ǫ2
〈A(x)y, y〉 A(x) =

(
a1(x) c
c a2(x)

)

with ai(x) = (x± 1)2 + ∆, and a coupling constant 0 < c≪ 1. The additive constant
∆ > 0 is chosen such that A is a positive matrix (e.g., ∆ = 2c). The frequencies ωk are
the eigenvalues of A which are shown in Figure 10. The eigenvalues of A are λi = ω2

i

λi(x) =
a1(x) + a2(x)

2
±
√

(a1(x) − a2(x))2

4
+ c2 .

Note that at x = 0 the eigenvalues are separated by a gap of width ∆λ = 2c (avoided
crossing). As c→ 0 the gap closes, and the system has a resonance ω1 = ω2.

We compare the classical singularly perturbed Hamiltonian initial value problem
and compare it to the stochastic Hamiltonian system with randomized momenta. To
this end consider the three-dimensional model Hamiltonian

Hǫ(x, y, u, v) =
1

2
u2 +

1

2
〈v, v〉 +

1

2ǫ2
〈A(x)y, y〉 ,

putting forward the equations of motion

ẋǫ = uǫ

u̇ǫ = − 1

2ǫ2
〈A(xǫ)yǫ, yǫ〉

ẏǫ = vǫ

v̇ǫ = − 1

ǫ2
A(xǫ)yǫ .

(3.90)

The system is integrated subject to the initial conditions (x(0), y(0), u(0), v(0)) =
(x∗, ǫy∗, u∗, v∗). The associated limit Hamiltonian has the form

HJ(x, u) =
1

2
u2 + J1ω1(x) + J2ω2(x)
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Figure 10. Eigenvalues of the matrix A: the dotted blue lines show a1 and a2),
whereas the red and green curves show the eigenvalues λ1 = ω2

1 and λ2 = ω2
2 . As

the zoom in the lower panel illustrates the eigenvalues exhibit an avoided crossing
at x = 0 with frequency gap ∆λ = 2c (right panel).

with the frequencies ωi(x) =
√

λi(x) from above and the action variables [222]

Ji =
1

ωi(x∗)

(
1

2
w2
i +

1

2
ω2
i (x∗)z

2
i

)

Here z = C(x∗)y∗, and w = ż, where C(x) ∈ O(2) is the orthogonal matrix that
point-wise diagonalizes A(x) = CT (x)Λ(x)C(x). We start the integration of the full
Hamiltonian system (3.90) with initial values that are chosen such that the action
variables Iǫk(t) = Ik(y(t), v(t);x(t), ǫ) satisfy Iǫ1(0) ≈ 1 and Iǫ2(0) ≈ 0. Then as ǫ → 0
we expect that the action variables uniformly converge to the adiabatic invariants,
Iǫk → Jk. As can be seen from Figure 11 the action variables remain almost constant
unless the system reaches the resonant regime around x = 0, where energy is suddenly
transferred from one normal mode (oscillation) to the other, such that the action
variables vary significantly. For fixed coupling constant c > 0 between the oscillators
these non-adiabatic transitions become weaker as ǫ decreases. In fact it is known that
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Figure 11. Jump of the action variables Iǫ
k(t) at the avoided crossing. It can

be seen that jumps occur exactly when the dynamics reaches x = 0. The
plots show the dynamics of the Iǫ

k(t) for ǫ = 1 (blue), ǫ = 0.1 (green), and
ǫ = 0.01 (red). All numerical simulations were carried out at constant step-
size h = 0.0002 using a symplectic Leapfrog/Verlet scheme with initial values
(x(0), y1(0), y2(0), u(0), v1(0), v2(0)) = (−1, 0, ǫ, 0, 0, 0).

non-adiabatic transitions occur in a
√
ǫ-neighbourhood of a resonance [226, 227].

Of course we have to keep in mind that we are not interested in tracing the Iǫk
but rather in approximating the slow variable xǫ(t) by the effective motion x(t) which
is generated by HJ . Here the situation is even worse, since once the system has passed
through the (avoided) crossing, though constant again, the values of the Iǫk have been
altered. Yet the limit Hamiltonian HJ is still the same with Jk = I0

k(0) which is likely
not to capture the true dynamics after a non-adiabatic transition has occurred. Hence
the limit solution and full solution deviate more and more whenever the system passes
through the crossing (see Figure 12).

Now let us repeat the experiment for a stochastic Hamiltonian system with
randomized momenta. Of course it does not make sense to look at action variables
which are anyway stochastic variables, since they depend on the random momenta
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Figure 12. The approximation of the full solution with ǫ = 0.002 by the limit
solution ǫ = 0 becomes worse each time the system passes through a resonance
(crossing). The integration was carried out with step-size h = 10−5 and initial
values (x(0), y1(0), y2(0), u(0), v1(0), v2(0)) = (−1, 0, ǫ,0, 0, 0).

of the fast dynamics. Anyway there is no limit result which states that they should
become constant as ǫ goes to zero. Nonetheless we may compare the slow motion xǫ(t)
to the limit motion x(t). A typical realization of the Hamiltonian system (3.90) at
the temperature β = 4.0 is shown in Figure 13. Apparently for relatively large ǫ the
avoided crossing does not affect the dynamics at all. Even if we close the eigenvalue
gap by letting the coupling constant c go to zero, the limit dynamics still approximates
the full dynamics (a typical realization and the corresponding Fixman potential for
c = 0.0001 is shown in Figure 14 below). Observe that the nascent resonance at x = 0
induces an additional potential barrier that renders the system to be (though weakly)
metastable. Last but not least we illustrate the dynamics at various temperatures while
keeping ǫ, c fixed. We choose c = O(

√
ǫ), which is typically considered the worst case

(e.g., see [228] and the references therein). For ǫ = 0.01 we observe that for our test
problem the system full dynamics and the limit dynamics are almost indistinguishable
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Figure 13. Typical realization for the stochastic Hamiltonian system associated
with (3.90) for moderate coupling c = 0.1. The simulations were performed using
a hybrid Monte-Carlo (HMC) scheme at temperature β = 3.0 with step-size
h = 0.0005 for the Leapfrog integrator choosing new momenta every 100 steps.
The lower panel shows a zoom into the upper one.

for various values of β (see Figure 15).
Certainly these short simulations are nothing more than illustrations of what

can happen in the presence of resonances or almost-resonances (avoided crossings).
However they should get the impression to the reader that the impact of resonances
on the limiting behaviour of appropriately ”thermalized” systems does not seem as
severe as for purely deterministic systems.

The reader may wonder if the Fixman potential U0 is just the average of the
deterministic potentialW0 over all initial values with respect to the Gibbs distribution.
It is easy to see that this is not the case, for

W̄0(x, x∗) =
s∑

k=1

ωk(x)

∫

Jk(x∗, y, v)νx∗
(dy, dv) 6= U0(x) ,

where the average is with respect to the Gibbs measure νx of the normal modes.
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Figure 14. HMC simulation for weak coupling c = 0.0001 and ǫ = 0.05. The
upper panel shows the corresponding Fixman potential for β = 3.0.

Remark 3.22. We take a brief look at Langevin dynamics in the limit of low friction
and noise which represents a particular case — even in the absence of resonances:
Consider the Langevin equation for the confinement problem. For σ, γ scalar satisfying
the fluctuation-dissipation relation 2γ = βσ2 we have the equations of motion

ẋǫ = uǫ

u̇ǫ = − 1

2ǫ2
〈A(xǫ)yǫ, yǫ〉 − γuǫ + σẆ1

ẏǫ = vǫ

v̇ǫ = − 1

ǫ2
A(xǫ)yǫ − γvǫ + σẆ2 .

(3.91)

We are interested in the quasi-deterministic limit γ, σ → 0 with γ ∼ σ2 (constant
temperature). For this purpose we introduce a scaling parameter δ ≪ 1 and we set
γ = δγ0 and σ =

√
δσ0. As before we dilate the normal coordinates according to

(y, v) 7→ (ǫy, v), defining z = y/ǫ (note that z and v are no longer conjugate variables).

87



0 0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time

x 0.
01

β
(t

)

β=1.0 (limit)

β=1.0

β=4.0 (limit)

β=4.0

β =7.0 (limit)

β=7.0

β=10.0 (limit)

β=10.0

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

x

F
ix

m
an

 p
ot

en
tia

l F
(x

)

β=1.0
β=4.0
β=7.0
β=10.0

(b)

Figure 15. Typical HMC simulations for c = 0.1 and ǫ = 0.01 at various
temperatures. Note that the limit and the full trajectories are virtually
indistinguishable. The lower panel shows the respective Fixman potentials.

On the microscopic (i.e., slow) timescale the Langevin equation now becomes

ẋǫ,δ = ǫuǫ,δ

u̇ǫ,δ = − ǫ

2
〈A(xǫ,δ)zǫ,δ, zǫ,δ〉 − ǫδγ0uǫ,δ +

√
ǫδ σ0Ẇ1

żǫ,δ = vǫ,δ

v̇ǫ,δ = −A(xǫ,δ)zǫ,δ − ǫδγ0vǫ,δ +
√
ǫδ σ0Ẇ2 .

(3.92)

Suppose the coupling constant c > 0 is kept fixed. Even then we are caught in
a complicated situation since there are two distinct scaling parameters, where the
limiting behaviour very much depends on the order of letting ǫ, δ tend to zero, and
we have to consider certain distinguished limits. Roughly speaking, δ → 0 brings us
straight to the deterministic world, and the description using the Fixman potential
becomes inappropriate, whereas letting ǫ go to zero first amounts to the fully stochastic
situation. Therefore it is recommendable to couple the two scales in a way that ǫ ∼ δ.
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Figure 16. Typical realizations of the slow variable xǫ,δ for the two-parameter
Langevin equation (3.92) with coupled parameters ǫ ∼ δ (blue curves: full system,
red curves: limit dynamics for ǫ = 0). The realizations indicate that for ǫ, δ → 0
the averaged dynamics with the Fixman potential does no longer approximate the
full (quasi-deterministic) system. In contrast, taking the limit ǫ→ 0 while keeping
δ = 1 fixed leads to the usual (stochastic) limiting behaviour which is also robust
in the vicinity of the avoided crossing.

Letting now ǫ, δ go to zero we see that friction and noise vanish at a higher rate
than the slow variable xǫ,δ freezes. Hence the assumptions underlying the Averaging
Principle fail, for the fast dynamics does no longer admit a unique invariant measure.
Accordingly we expect that the Fixman potential does not provide the correct limit
description for ǫ, δ → 0, even far away from the avoided crossing.

Indeed the realizations shown in Figure 16 indicate that for ǫ, δ → 0 the averaged
system of equations (3.84) with the Fixman potential does no longer approximate the
full (quasi-deterministic) system. In contrast, taking the limit ǫ → 0 while keeping
δ ≫ ǫ fixed leads to the usual (stochastic) limiting behaviour which is also robust in
the vicinity of the avoided crossing. We emphasize that these hand-waving arguments
can only provide restricted insight; a rigorous study of the two-parameter system
(3.92) requires profound knowledge of the system itself and careful analysis of the
distinguished limits which cannot be given here. For the method of distinguished limits
and perturbative multiscale expansions we refer to [229] and the references therein.
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3.4.2. Relations to geometric singular perturbation theory This whole
section has surveyed different techniques for the elimination of fast degrees of freedom.
All these techniques have in common that the fast degrees of freedom are averaged
out with respect to some particular probability distribution that is either the invariant
measure of the fast dynamics (Averaging Principle) or a prescribed probability
measure (optimal prediction). Here we shall briefly mention yet another approach
which proceeds by discarding (and hence disregarding) the fast variables, which is
reasonable under certain conditions. Let us consider a deterministic slow-fast system

ẋ(t) = f(x(t), y(t), ǫ)

ẏ(t) =
1

ǫ
g(x(t), y(t), ǫ) ,

(3.93)

where ǫ ≪ 1, and (x, y) ∈ Rd × Rs are slow and fast coordinates, respectively. So
far we have considered the limit ǫ → 0, but the limiting equation clearly depends on
how the limit is reached. In fact by simply setting ǫ = 0, the system degenerates to a
differential-algebraic equation of the form

ẋ(t) = f(x(t), y(t), 0)

0 = g(x(t), y(t), 0) .

Suppose that g is sufficiently smooth, such that the equation g(x, y, 0) = 0 defines a
differentiable manifold M = g−1(0). Further assuming that D2g(x, y, 0) 6= 0 on M ,
the Implicit Function Theorem states that we can locally solve for y = h(x). Upon
reinserting h into the slow equation we obtain the reduced system17

ẋ(t) = F (x(t)) , F (x) = f(x, h(x), 0) . (3.94)

In some sense this restriction can be understood as averaging over the fast variables,
where the corresponding conditional invariant measure is singular with support on
M , i.e., µx(dy) = δM (x, y). It has been shown [230, 231] that, if M is uniformly
asymptotically stable, then the full system (3.93) stays in a tubular ǫ-neighbourhood
of M , such that it can be approximated by solving the reduced system (3.94).

The proper geometric description of the dynamics in the vicinity of the invariant
manifold M is due to Fenichel [232], who has shown that for sufficiently small ǫ an
invariant manifold Mǫ exist that can be parametrized by a formal series

ξ = ξ(x, ǫ) with ξ(x, ǫ) = h(x) + ǫh1(x) + ǫ2h2(x) + . . . .

The corresponding reduced equations of motion for 0 < ǫ≪ 1 then are

ẋ(t) = Fǫ(x(t)) , Fǫ(x) = f(x, ξ(x, ǫ), ǫ) .

For the general theory and conditions that guarantee convergence of the formal power
series we refer to the review [233] and the references given there. Nicely, the above
considerations can be generalized to stochastic systems of Smoluchowski type

ẋ(t) = f(x(t), y(t), ǫ) + σa(x(t), y(t), ǫ)Ẇ (t)

ẏ(t) =
1

ǫ
g(x(t), y(t), ǫ) +

σ√
ǫ
b(x(t), y(t), ǫ)Ẇ (t)

(3.95)

with σ2 = 2/β. By applying the above arguments to the deterministic part in the
stochastic equations of motion, and imposing some non-degeneracy condition on the

17We call M uniformly (hyperbolic) asymptotically stable, if and only if all eigenvalues of the
Jacobian D2g(x, h(x), 0) have negative real parts and are uniformly bounded away from zero.
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covariance matrix aaT of the noise it has been shown recently [130] that the sample
paths remain concentrated inside a tubular σ-neighbourhood of Mǫ. Under certain
conditions it is then possible to approximate (3.95) by the reduced stochastic system

ẋ(t) = Fǫ(x(t)) + σAǫ(x(t))Ẇ (t) (3.96)

with

Fǫ(x) = f(x, ξ(x, ǫ), ǫ) and Aǫ(x) = a(x, ξ(x, ǫ), ǫ)

The reduced equation provides an approximation up to the first exit time τǫ from Mǫ.
The approximation is of order σ

√

ǫ(1 + χ(t)), where χ(t) depends on the associated
deterministic system and is bounded whenever the deterministic system admits a
uniformly hyperbolic, asymptotically stable invariant manifold. In particular for ǫ = 0
the reduced system gives simply the slow diffusion restricted to the invariant manifold
M = M0 that is defined by the algebraic equation g(x, y, 0) = 0.

Replacing the full system (3.95) by the reduced system (3.96) in a controlled
manner involves many subtleties; in particular the first exit time τǫ from the invariant
manifold goes to zero as ǫ → 0, and therefore the estimation for the approximation
error becomes useless. For the technical intricacies we refer to [130, 234].

Example 3.23. Reconsider our familiar confinement problem for a diffusion process
in R2. Using the scaling y = ǫz of the fast coordinate we have the system of equations

ẋǫ = −∂xV (xǫ) − ∂xω(xǫ)ω(xǫ)z
2
ǫ + σ Ẇ1

żǫ = − 1

ǫ2
ω2(xǫ)zǫ +

1

ǫ
σ Ẇ2 .

(3.97)

with the sharply-peaked frequency (see Figure 4)

ω(x) = 1 + C exp
(
−α(x− x0)

2
)
. (3.98)

The invariant manifold of the deterministic equation that is defined by the condition
z = 0 is clearly uniformly hyperbolic and asymptotically stable, for ω(x) ≥ c > 0. For
fixed ǫ > 0 the diameter of the invariant manifold Mǫ is determined by the second
derivative of the constraining potential, and it becomes wider, if ω(x) is large, i.e., the
potential is stiff, and it becomes narrower, if ω(x) is small. This accounts for the fact
that for a stiff potential there is less spreading of trajectories. For ǫ = 0 the reduced
system turns out to be the confined system (3.78), but without the additional Fixman
potential,

ẋ0 = −∂xV (x0) + σ Ẇ1 .

As we have seen throughout several examples, the confined system including the
Fixman potential U = β−1 lnω approximates the full dynamics rather well, and the
reader may wonder, if solutions of the last equation can do better. Figure 17 shows a
typical realization of the Smoluchowski equation above for small ǫ versus the averaged
and the restricted dynamics. The plot clearly indicates that the averaged dynamics
yields the better approximation. Especially the long-term behaviour (the invariant
distribution) is not captured by the restricted dynamics at all.

Of course even for ǫ > 0 the reduced equations on the invariant manifold Mǫ

were never meant to approximate the long-term behaviour of the full system, since the
system is likely to leaveMǫ after some time. Nevertheless we mention this approach, as
discarding fast harmonic and quasi-harmonic motions is quite common in molecular
applications; for instance, almost every popular molecular dynamics code imposes
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Figure 17. The upper panel shows typical realizations of the slow-fast
Smoluchowski equation (3.97) versus the averaged and its restricted limit
equation. The integration was performed using an Euler-Maruyama scheme with
step-size h = 10−4 and initial values (x(0), z(0)) = (x0, 0) as is consistent with
the restriction to the invariant manifold M . The lower panel shows unnormalized
histograms of the slow coordinates. Notice that only the averaged system
reproduces the three metastable sets correctly, since the additional barrier at
x = 0.8 stems from the entropy contribution of the fast modes (cf. the discussion
regarding the entropy contribution of fast bond vibrations in Section 3.1.1).

constraints on the fast bond vibrations without accounting for their contribution (given
by the Fixman potential) to the remaining system.18

Spatial decomposition methods reconsidered If the invariant manifold M is
known from the outset there are plenty of methods to restrict a system to it. For
first-order systems and invariant manifolds that are linear subspaces of the systems’
configuration space a convenient route is the Galerkin projection: Recall the discussion

18In fact, this is not quite correct, since many molecular force fields are parametrized such as to
reproduce certain physical effects subject to frozen bond lengths or even bond angles [235].
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from Section 2.4, and let z ∈ Rn denote the original configuration variable. Denote
further by P the n × d matrix the rows of which span the d-dimensional subspace
M . Then PPT z ∈ M , and we can introduce local coordinates x = PT z on M . The
Galerkin projection then consists in the projection of the full system

ż(t) = f(z(t), t), z ∈ Rn

onto the tangent space of M . That is,

ẋ(t) = PT f(Px(t), t), x ∈ Rd .

For mechanical systems one has to be more careful, since the Galerkin projection does
not preserve the Hamiltonian property of the system, even if it is written as a first-
order system. The canonical way to restrict a mechanical system to a submanifold
of its configuration space is by means of holonomic constraints [163]. That is, the
restriction of the equations of motion is obtained by, firstly, restricting the original
Lagrangian to TM and then, secondly, computing the corresponding Euler-Lagrange
equations. It clearly depends on the particular system whether the reduced equations
are really simpler to evaluate than the original ones. For example, if f = −gradV in
the equations above, where V is the molecular potential, then the right hand side of
the reduced equations still requires the gradient evaluation of the full molecular force
field which is typically the most expensive operation in numerical simulations.

3.5. Summary and bibliographical remarks

This section briefly revisits the variety of different strategies that have been introduced
to systematically deduce reduced models for conformation dynamics of molecules
provided a suitable reaction coordinate is known.

Distinct notions of free energy Consider a molecule with configurations q ∈ Rn

and conjugate momenta p ∈ T ∗
qR

n ∼= Rn. Let further Φ : Rn → Rk be a smooth
reaction coordinate. If the molecular Hamiltonian is denoted by H = T +V , then the
standard free energy is defined by the marginal density of the reaction coordinate,

F (ξ) = −β−1 ln

∫

Σ×Rn

exp(−βH)(volJΦ)−1dHξ ,

or

F (ξ) = −β−1 ln

∫

Σ

exp(−βV )(volJΦ)−1dσξ

which differs from the former only by an additive constant (recall that JΦ = DΦ).
Here Σ = Φ−1(ξ) is the level set of the function Φ that is defined by the equation
Φ(q) = ξ, where dσξ denotes its surface element. In contrast to that, dHξ is the
Hausdorff measure of Σ×Rn considered as a submanifold of Rn×Rn. By construction,
F captures the correct statistical weights between different conformations [1, 236].

There is yet another definition that is important in the context of transition state
theory [3, 4] which is based on the probability density of the surface Σ ⊂ Rn,

G(ξ) = −β−1 ln

∫

Σ×Rn

exp(−βH)dHξ ,

or

G(ξ) = −β−1 ln

∫

Σ

exp(−βV )dσξ .
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We have termed this second type of free energy the geometric free energy, since it
depends only on the surface Σ but not on the reaction coordinate Φ. The difference
between the two free energies and implications thereof have been clearly stated for the
first time in the review [13]. The authors of [5] insist on calling only F a proper free
energy, since G is not a function of the reaction coordinate. However we think that
only G deserves the name potential of mean force, for only the derivative of G can
be written as an average generalized force as has been pointed out in Section 3.1.1.
Moreover unlike ∇F , only ∇G transform like a 1-form (i.e., a force).

By analyzing the different probability densities underlying the two free energies,
we recover the famous Fixman Theorem or the Blue Moon reweighting formula, that
allows for computing conditional expectations from constrained simulations [179, 71],

Eξf(q) =
EΣ

(
f(q)(volJΦ(q))−1

)

EΣ(volJΦ(q))−1
.

The leftmost expectation is a conditional expectation Eξ(·) = E(· |Φ(q) = ξ), whereas
the one on the right denotes the expectation with respect to the Gibbs measure
restricted to the fibre Σ = Φ−1(ξ), i.e., EΣ(·) = E(· | q ∈ Σ). The formula marks
the important difference between a function Φ and a surface Σ that is defined as
its level set: there are many functions that have identical level sets. Basically, the
Blue Moon formula can be considered an instance of Federer’s co-area formula [70].
Accordingly, the reasoning that leads to Blue Moon does not involve any reference
to an underlying dynamical system. Therefore, and in contrast to what is commonly
asserted, the formula holds whether or not the system involves momenta. Moreover the
relation is true for any configurational probability measure. As a straight consequence
F and G are related by the simple formula

F (ξ) = G(ξ) − β−1 lnEΣ(volJΦ)−1

Averaging for stochastic differential equations Consider the diffusion of a
molecule with configurations q ∈ Rn in the potential energy landscape V : Rn → R,

q̇(t) = −gradV (q(t)) +
√

2β−1Ẇ (t) .

Suppose we can arbitrarily speed up all variables except the reaction coordinate.
Basically this amounts to speeding up the dynamics along the fibres Φ−1(ξ) for all
regular values ξ of the reaction coordinate. Of course it is not possible to find a
global coordinate transformation so as to rewrite the above equation in terms of the
reaction coordinate and the remaining coordinates. However we can locally consider
the accelerated dynamics on each fibre Σ = Φ−1(ξ) and average the right hand side
of the equations of motion over the invariant measure νΣ ∝ exp(−βV )dσξ of the thus
accelerated dynamics. This yields an effective drift and noise orthogonal to each fibre.
In order to recover the global picture, we endow the state space that is spanned by
the reaction coordinate with an appropriate averaged metric

m(ξ) = EΣ(DΦTDΦ)−1 .

By this we obtain a reduced model for the dynamics of the reaction coordinate

ξ̇ = −gradG(ξ) + b(ξ) +
√

2β−1a(ξ)Ẇξ ,

where gradG = m−1∇G is the gradient of the geometric free energy, a is the positive-
definite square root of the inverse metric tensor m−1, and Ẇξ denotes standard
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Brownian motion in Rk (here, k is the dimension of the reaction coordinate). The
additional drift comes from interpreting the equation in the sense of Itô; it is given by

bi(ξ) = β−1mjkΓijk

with Γijk denoting the symmetric Christoffel symbols associated with the Riemannian
metric m. We emphasize that the derivation of the reduces system is based on an
arbitrary manipulation of the original model which is not unique.

In point of fact, there is yet another possibility to accelerate the dynamics
orthogonal to the reaction coordinate using a projection operator approach. This
amounts to a decomposition along the lines of the invariant measure of the system
(gluing together different conditional measures). For a single reaction coordinate the
authors of [13] derive a reduced equation that involves the free energy F

ξ̇ = h(ξ)∂ξF (ξ) + β−1∂ξh(ξ) +
√

2β−1h(ξ)Ẇξ ,

where the metric factor h is defined as the conditional expectation

h(ξ) = Eξ‖∇Φ(q)‖2 ,

which should be distinguished from the (constrained) expectation with respect to νΣ.
It is not obvious that the second equation really transforms like an Itô equation, as
it does not have the standard covariant form. However it has been demonstrated that
it is consistent with Itô formula under transformations of the reaction coordinate.
Since this is also true for the other reduced equation one could expect that the two
equations are equivalent. Intriguingly this is not the case, unless ∇Φ is a function of ξ
only. Then h = m−1. The difference can be explained by drawing upon to the different
decompositions into fast and slow variables (probabilistic versus geometric).

Optimal prediction and the Mori-Zwanzig procedure If the original system
is Hamiltonian the methods of choice can be subsumed under the name of projection
operator techniques. Unlike the ordinary averaging techniques these methods do not
explicitly rely on the assumption of time scale separation, and they take into account
that the configurational variables and their conjugate momenta are independent
variables (i.e., the equations is effectively second-order):

qi =
∂H

∂pi

pi = −∂H
∂qi

, i = 1, . . . , n .

Let us assume the system is appropriately thermalized, i.e., we consider a stochastic
perturbations of the original deterministic system, such that the system at temperature
T = 1/β is ergodic with respect to the canonical probability measure µ ∝ exp(−βH).
Let Φ : Rn → Rk denote again a reaction coordinate with (yet unknown) conjugate
momentum Θ : Rn × Rn → Rk. Then the conditional expectation

Eξ,η(·) = E ( · |Φ(q) = ξ, Θ(q, p) = η)

defines an orthogonal projection in the Hilbert space L2(µ), where E(·) is meant with
respect to µ. Exploiting the best-approximation property of orthogonal projections,
one can show that the optimal approximation of Hamilton’s equations in L2(µ) in
terms of ξ and η solely is obtained by the projected equations of motion

ξj =
∂E

∂ηj

ηj = − ∂E

∂ξj
, j = 1, . . . , k ,
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where the optimal prediction free energy E (effective Hamiltonian) is defined by

E(ξ, η) = −β−1 ln

∫

T∗Σ

exp(−βH)dLξ,η .

Here dLξ,η is the Hausdorff measure of the submanifold Σ×Rn−k ⊂ Rn×Rn that is
defined as the level set of the reaction coordinate and its conjugate momentum.

The optimal prediction equations in Hamiltonian form are due to Hald and were
stated in [56]. We could show that the effective Hamiltonian E relates to known
quantities as the geometric free energy G in the following intuitive way

E(ξ, η) =
1

2
〈I(ξ)η, η〉 +G(ξ) + O(‖η‖4) .

The effective inverse mass is given by

I(ξ) = EΣJ
T
ΦJΦ ,

where the expectation is understood with respect to the constrained Gibbs measure
νΣ ∝ exp(−βV )dσξ . Neither G nor I depend on the momentum variables. If the
temperature is low as compared to the atomic masses (i.e., β ≫ 1) the Maxwellian
momentum distribution is sharply peaked around η = 0, such that we can neglect all
higher-order contributions and interpret the effective Hamiltonian in the usual way as
a sum of kinetic and potential energy. Doing so, the reader may wonder whether one
could recover the standard free energy by integrating exp(−βE) over the momenta.
In fact, integrating out the momenta yields

∫

exp(−βE) dη 6= C exp(−βF ) .

That is, the reaction coordinate distribution generated by the optimal prediction
system is not given by exp(−βF ) which is no surprise whatsoever, as we have neglected
all terms that are at least O(‖η‖4).

The Mori-Zwanzig procedure (e.g., [51, 198, 237] consists in decomposing the
Liouville equation that is associated with the Hamiltonian system into a part that
acts only in the direction of the reaction coordinate plus a remainder. To this end we
define the projection Π = Eξ,η, Π : L2(µ) → L2(µ). If (q(t), p(t)) denotes the solution
of Hamilton’s equations depending on initial values q = q(0) and p = p(0), then the
generalized Langevin equation for a function f(t) := f(q(t), p(t)) reads

∂tf(t) = ΠLf(t) +

∫ t

0

K(s− t)w(s) ds + w(t) .

Here K is a friction kernel that makes the equation non-Markovian, and w is the
solution of an Volterra integral equation that is defined on the subspace orthogonal
to the reaction coordinate. The operator L is the usual Liouvillian that is generated
by the Hamiltonian vector field. Although the various terms in the last equation have
appealing physical interpretations (drift, friction and noise) the equation is useless
without further assumptions and approximations. For example, if the Hamiltonian is
separable, explicitly containing the reaction coordinate and its conjugate momentum,
a (rather bold) approximation to the generalized Langevin equation is the so-called
t-damping equation, proposed by the authors of [202]. It reads

ξ̇(t) = η(t)

η̇(t) −∇G(ξ(t)) + t γ(ξ(t)) · η(t) ,
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and it is the formerly introduced optimal prediction equation with a Markovian friction
term that increases with time. The symmetric and positive semi-definite matrix γ
describes configuration-dependent friction, and G is the geometric free energy (which
coincides with the standard free energy F in this particular case). An alternative
equation, where t in the friction term is replaced by a constant characteristic time
scale τ is suggested in [55]. However in either case the system is dissipative and the
energy of the system quickly decays to zero (which is not true for the original system).

Systematic studies of the Mori-Zwanzig procedure are extremely rare; see, e.g.
[238, 57, 58]. Even worse, they rely on rather restrictive assumptions (e.g., separable,
quadratic Kac-Zwanzig Hamiltonian as in [60]) which considerably limits the usability
of the Mori-Zwanzig procedure.

Modelling fast degrees of freedom: Fixman potential A basic insight of
conformation dynamics is that once a reaction coordinate is well chosen, then the
remaining degrees of freedom are fast and have comparably small amplitude. This
leads to the idea to treat all unresolved variables as being harmonic, with a stiffness
matrix which may depend on the reaction coordinate. Consequently, we replace the
original molecular potential V by a modelling potential

Vǫ(x, y) = VM (x) +
1

2ǫ2
〈C(x)y, y〉 ,

where M is the configuration manifold that is spanned by the reaction coordinate,
(x, y) are local coordinates on the normal bundle NM , and C is a symmetric and
positive-definite matrix. The particular form of the VM is open to choice; for example,
one can choose it as the restriction of the molecular potential to M . We have studied
the singular limit ǫ → 0 of both the diffusion system or the Hamiltonian system,
while keeping the total energy finite. In either case the model potential constrains the
motion to the dominant subspace M giving pathwise convergence in most cases. The
averaged drift in the limit system stems from the effective potential,

V̄ (x) = VM (x) + (2β)−1 ln detC(x) .

The rightmost term is the Fixman potential. It pops up when taking the limit ǫ→ 0,
and it describes the influence of the coupling between the (fast) oscillations normal to
M and the motion alongM . Physically speaking, it accounts for the difference between
a constrained system and a very stiff (but unconstrained) system. This connection has
been established in [75] from the viewpoint of statistical mechanics; see also [28]. The
equivalent problem in the microcanonical ensemble goes back to [180] and [239]. For
a detailed discussion we refer to the textbook [240] or [98].

Furthermore the confinement mechanism provides a physical explanation of the
Fixman Theorem and the Blue Moon formula. Imagine, the dominant subspace
M ⊂ Rn is determined as the level set of some function ϕ : Rn → Rk, i.e.,
M = ϕ−1(0). If we impose the constraint ϕ(q) = 0 by adding a strong potential,

Vǫ(q) = VM (q) +
1

2ǫ2

k∑

i=1

(ϕi(q))
2
,

then the corresponding limit potential for ǫ→ 0 has the familiar form

V̄ (q) = VM (q) + β−1 ln volJϕ(q) .

Hence it turns out that the Fixman Theorem describes the difference between an
ideal constraint, i.e., a configuration submanifold M ⊂ Rn, and a penalty function
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ϕ that is added to confine the system to the fibre M = ϕ−1(0). The analogous
relationship between the invariant constrained and conditional probability measures
has been exposed in the recent paper [17], where also a strong convergence proof for the
confinement of diffusion processes is given. (The infinite energy scenario is discussed
in [219] for mechanical systems and in [241, 242] for diffusion processes.)

The confinement method can be viewed as a simplification of the former reduction
schemes that works for both stochastic differential equation models and (stochastic)
Hamiltonian systems. Especially the limit potential can be interpreted as a free energy
in a flat geometry, where the influence of the extrinsic geometry of M has vanished
due to the finite energy scaling (see Section 3.4). Moreover the stiffness matrix can be
freely chosen (modulo the condition that it be symmetric and positive-definite). Hence
the modelling potential offers some flexibility in setting up a reduced model by means
of parametrization. For alternative approaches that are built on fully parametrized
reduced models we refer to the recent preprints [41, 39].
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