2. Modelling molecular motion

2.1. Lagrangian and Hamiltonian mechanics

In classical molecular dynamics, a molecule is mostly modelled as a natural mechanical
system [87, 88]. The two basic formulations are those of Lagrange and Hamilton:
From a systematic point of view, Lagrangian mechanics seems more fundamental as
it is based on a variational principle that directly leads to a coordinate-invariant
formulation of mechanics. Intriguingly the least action principle was discovered by
Hamilton itself decades after Lagrange stated the Euler-Lagrange equations, and which
is thus also termed Hamilton’s principle [89, 90]. However the equivalent Hamiltonian
formulation which should be distinguished from the variational principle, is better
suited to establish statistical thermodynamics from mechanical principles or to point
out the fundamental relationship with quantum mechanics. The related ensemble
concepts are crucial ingredients of molecular models. We essentially follow the outline
in the textbook [66]; see also [81] for some historical remarks.

Atomic interaction potential The key ingredient to all classical molecular
models is the atomic interaction potential that contains all physically relevant
interactions, where the word physically is to be understood within the scope of classical
molecular dynamics. Here we consider only potentials that do not involve any velocity
interactions and that are at least twice continuously differentiable.

Typically the molecular potential is modelled as a sum of contributions of different
physical origin. For the sake of convenience we endeavour the multi-body notation
with the bold face symbol q; € R3¢ = 1,...,N for the position of the i-th
atom. Roughly speaking, the molecular interaction can be divided into two parts:
local interactions as induced by the bond structure of the molecule, and long-range
interactions like electrostatic interactions, for instance. One rather simple but widely-
used example is the Ryckaert-Bellemans potential for modelling alkane chains [91].
The local interactions are

e harmonic stretching of the covalent bond between the atoms ¢ and ¢ + 1 as
described by Via(qi, Qi+1) < (i — 7eq)? with r; = ||qi+1 — ail],

e harmonic vibrations of the bond angle formed by the covalent bonds between
three successive atoms which are modelled by Via(qi—1, i, Qit1) < (¥ — eq)?
with the bond angle ¥; = <(qi—1 — i, Qit1 — i),

e motion of the torsion angle w; between two planes each of which is spanned
by three atoms; this potential has a multi-well structure (see Figure 1), and it
depends upon positions of four successive atoms Vis = Vis(Qi—1,Q:, Qit1, Qit2)-

Local interactions that involve more that four atoms are not captured by this model.
The corresponding non-bonded interaction are

e electrostatic interaction from the charges of the atoms 7 and k, that are described
by a Coulomb potential V(q;, qx) o 1/d;, with djr = ||a; — ||,

e van der Waals interactions between polarizable atoms that are modelled by a
Lennard-Jones potential Vi,j(q;,qx) o 1/dji — 1/dS,, that contains both short-
range and long-range interactions.
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Figure 1. Ryckaert-Bellemans torsion angle potential as a function of the torsion
angle wy; see [91] for the details. The right panel shows the only two proper torsion
angles (dihedral angles) of the united atoms pentane molecule.

This results in the following molecular potential

V@)=Y Voa(ai, qit1) + O Vealaj-1, 95, q541)
i J

+ Z Vis(Qk—1, Qs Q415 Ai4-2)
%

+ ZVC(QkaQI) + ZVLJ(QkaQI) ;

k,l k,l

where q = (qi,...,qn)7 and the sums run over all the atoms that contribute to
the respective interaction. Other possibly relevant interactions that are not directly
contained in the potential are accounted for by adjusting the parameters in the
potential in an appropriate way. In this sense the molecular potential is semi-empirical,
and in fact using different potentials or force fields may produce vastly different results.
See [92, 44] for the general force field methodology and [93] for a recent comparison
of different force fields for the conformation dynamics of trialanine in water.

Lagrangian mechanics Consider a molecule with configuration space @ C R"
and molecular configurations ¢ = (¢*,...,¢")7. Realistic molecular systems typically
involve a large number N of atoms, therefore the spatial dimension n = 3N is large.
We denote by ¢ = dg/dt the corresponding velocities, and by TQ = @ x R™ the
tangential bundle over the configuration space Q.

Let further V : @ — R be a smooth molecular interaction potential. Throughout
this thesis we shall assume that any of the two conditions is met: Either the system
is bounded in the sense that V — oo as ||q|| — oo, i.e., the configuration space is
unbounded, but the potential is such that a particle cannot escape to infinity. Or
the system is periodic in the sense that Q = T". That is, @ is isomorphic to a flat
n-dimensional torus. The latter is typically assumed for periodic boundary conditions
or to bound the potential energy. In any case the Lagrange function L : TQ) — R is
of the form kinetic minus potential energy,

L(a,d) = 3 (M. i)~ V(a), (21)
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where M € R™ " is the diagonal, and positive-definite mass matrix, and (-,-) is the
standard inner product between (tangent) vectors in R™. Consider a curve ¢(t) in Q
with ¢ € [a,b] and fixed endpoints ¢(a) = ¢4, q(b) = ¢,. Hamilton’s principle states
that if a curve ¢(¢) minimizes the action integral

b
| taw.dw . (29)

then it is a solution of the corresponding Euler-Lagrange equations
d oL 0L
dt o dg'
For a multi-body system in Cartesian space, the Euler-Lagrange equations reduce to

the familiar Newton equations: Let again q; € R? denote the position vector of the
i-th atom in Cartesian space @ = R3N, and let m; be the corresponding atomic mass,

=0, i=1,...,n. (2.3)

such that M = diag(my, m1,m1,...,my,my, my). Then (2.3) becomes
ov
miqi:— 5 izl,...,N.
dq;

A convenient property of the Euler-Lagrange equations (2.3) is that they can be easily
put into a form which is invariant under coordinate transforms (covariant); clearly
Newton’s equations above are not covariant. The covariant formulation is particularly
important, e.g., if a molecule is rigid or partially rigid [36].

Assume that @ is a n-dimensional Riemannian or pseudo-Riemannian manifold
which is endowed with a coordinate-dependent metric g(q) : T,Q x T,Q — R. Here
T,Q is the tangent plane attached to ¢ € @ which we identify with R™ as usual.
Alternatively we will denote the metric by (-,-), = (g(q)-,-) and write ¢° (or just g)
for the associated linear map: the metric tensor with elements g;;. The elements of
the respective inverse map ¢f are labeled ¢*.

The proof of the basic statement below is standard and can be found in various
textbooks on geometric mechanics [66]. We give it for the sake of illustration.

Lemma 2.1. Let L : TQ — R be a Lagrange function. Then in coordinates
(q,9) € TQ the Euler-Lagrange equations (2.3) have the covariant form

) o 14
. i gk ij o
¢ +15%4d¢" +g o =0, (2.4)

where

o b (Y Do Do) (25)

ik T 9 gk OqJ g
are the symmetric Christoffel symbols on T'Q, and we have set in force the summation
convention which means that we sum over double upper and lower indices.

Proof. Consider the Lagrange function on 7'Q)

. I
L(¢.d) = 5954'¢ —V(a),
which gives rise to the standard Euler-Lagrange equations (2.3), that now become
d lagjkqj'k_i_a_vf

4oy _
dt (9354 2 Oq' oq’ 0.
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Hence

dgi;  10gik \ ... v
) o 27 gk + 22 —
9i5q" + (3qk 9 8qi qq + 8qi s

which upon multiplying by the inverse metric tensor g* and rearranging indices gives

L OV
-0 Tt g7 -k il =0
@+ T +9" 5,

with the non-symmetric Christoffel symbols

~ ; 39 il 1 89 ik

I, = il e -9 .
LY < dg" 2 ¢’

Taking into account the symmetry of the summation indices j and k in the Euler-
Lagrange equations above, the quadratic expression F;kq'j ¢* can be rewritten as

i (09t 109K\ ik _ lgil 99t Ogm  Ogjk g
ogk 2 9q' 2 ogk  OqI 0’

where the right hand side of the equation contains the symmetric Christoffel symbols

I‘; i just defined. From this the assertion follows. O

Remark 2.2. Sometimes it is required to write the FEuler-Lagrange equations in
coordinate-free form. This is easily done by means of the lemma above using the
language of covariant derivatives which is common in differential geometry [94, 95].
If c(t) is a curve, and X is a vector field, the covariant derivative Ve X is declared
as the directional derivative of X along c(t) which reads

(Ve X)' = X0 elt)) + T elt) X7 () (1)

See [66] for the details. If c(t) is an integral curve of X, and X is the Lagrangian
vector field, as defined by the Fuler-Lagrange equations (2.4), we obtain the following
coordinate-free representation

Ve é(t) +gradVie(t)) =0,

of the Fuler-Lagrange equations, where the gradient of V is defined in coordinates as
(grad V) = ¢g¥0V/dq?. In fact, if we multiply the last equation by the metric tensor g
(generalized mass matriz) we obtain Newton’s second aziom, F = ma. For a modern
survey of Riemannian geometry and related applications see [96].

Hamiltonian mechanics Given a molecular Langrangian (2.1) we can proceed to
the Hamiltonian formalism by introducing the conjugate momentum variable

oL .
pi:a_qi’ i1=1,....n. (2.6)
We call the coordinate pair (g,p) a set of conjugate variables. We assume that the
transformation (g, ¢) — (g, p) is invertible which requires the partial Hessian matrix
(02L/9¢'9¢7) to be non-singular; so far this is the mass matrix M or the metric tensor
g, respectively. We introduce the Hamiltonian as the Legendre transform of L
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where we have to substitute the velocities by the respective momentum variables.
Keep in mind that the sum is taken over the double upper and lower index ¢. Once
the Hamiltonian is defined we directly obtain Hamilton’s equations of motion

i = OH
a Ipi
OH (2.7)
ﬁiz—a—(f, i=1,...,n.
It is a straight consequence of the above definition that
OH oL
aq* aq*

which together with (2.6) shows the equivalence of Hamilton’s equations and the Euler-
Lagrange equations. Furthermore (2.6) assigns the phase space T*Q with coordinates
(¢,p) to the configuration space @) with coordinates ¢; the bundle 7*Q = @ x R" is
called the cotangent bundle over Q). The mapping from the tangent space T'Q to the
cotangent space T*Q is provided by the linear map ¢”,

b * .j .
g :TqQ_)TqQﬂ pl:gl]qJ7 221,...,TL
which is a slightly more sophisticated way to expresses the well-known relationship
p = Mg between Cartesian velocities and momenta. By the regularity assumption on
the Lagrangian the matrix of ¢” is invertible, so g¥ exists and takes T*Q back to TQ.
On the cotangent space the Hamiltonian has the generic form

1 .
H(q,p) = 59”1%‘1)3‘ +Vi(q)

and generates Hamilton’s equations (2.7). A coordinate-free representation of
Hamilton’s equations can be obtained using Poisson brackets; see [81] for details.

Hamiltonian flows have some important conservation and symmetry properties:
Let ¥, : T*Q — T7*Q denote the one-parameter group of diffeomorphisms that is
generated by the Hamiltonian. That is, (q(t),p(t)) = P:(q,p) is the solution of the
initial value problem (2.7) with (¢(0),p(0)) = (¢,p)-

First of all, the flow conserves the total energy, H = H o W;. Secondly, it is
reversible in the sense that U:(q,p) = ¥_;(q, —p). Last but not least, it conserves
phase space volume, i.e., det DU, = 1. The last feature follows directly from the
fact that the vector field (2.7) is divergence-free; an even stronger attribute is that
Hamiltonian flows are symplectic which will be explained in the following.

Definition 2.3. Let M be an even-dimensional smooth manifold. A symplectic
structure on M is a closed non-degenerate differential 2-form Q : T, M x T, M — R,
i.e., the following conditions hold true

dY=0 and VE#03n: Q& n) #0.
The pair (M, Q) is called a symplectic manifold.

As a consequence of Darboux’s Theorem [97] there is a natural symplectic form
on the cotangent space T*@Q that is given by

Q =dq" Adp;. (2.9)
where the skew-symmetric wedge product of two differentials is defined as

Q(&,m) = dq' (€)dpi(n) — dg* (n)dpi(€) .
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with dq*(¢) = ¢&, dpi(¢) = ¢ for ¢ € T.T*Q and z = (q,p). If Q is one-dimensional,
is a volume form. For arbitrary dimension n, the oriented Liouville volume is obtained
by taking n-fold exterior products of the symplectic form,

(_1)11(71—1)/2

A= QAN AQ (2.10)
N————

n times

n!

which yields in coordinates
A=dg' A...Adg" Ndpy A ... Ndp,, .
We will also need [66]

Definition 2.4. Let (M,Q) and (N,Z) be symplectic manifolds. A smooth map
¢ M — N is called symplectic, if ) is the pull-back of = by ¢. That is,

Qb* :Qz(gan):E¢(z)(Tz¢'§aTz¢'n>a fOT &UGTZM,

where the tangent map

d
T:0:T-M = TyyN, T.p-C= £¢(7(5))
s=0
explains the derivative of ¢ at z € M; here v(s) denotes a curve in M that satisfies
~¥(0) = z and 4(0) = {, and the vector T.¢ - only depends on ¢ but not on the curve.

We consider the particular case of the Hamiltonian flow map ¥, : T*Q — T*Q
with standard symplectic form € = dg® A dp; for which the next statement holds [98].

Proposition 2.5 (Arnold 1989). Hamiltonian flows are symplectic.

Although it is common knowledge, we shall prove the Liouville Theorem as
following from the symplecticness property for the readers convenience:

Corollary 2.6. Hamiltonian flows preserve the Liouville volume W;A = A.

Proof. The wedge product commutes with the pull-back, i.e., the pull-back of the
wedge product is the wedge product of the pull-back. Hence (2.10) gives

(_1)n(n71)/2

UiA = (TEQ) A ... A (TFQ),

n!
but as ¥; ) = Q, according to Proposition 2.5, we conclude that WA = A. O

Assumption 2.7. For the sake of convenience we shall introduce mass-scaled
coordinates q — M~%2q and p — M~2p, where M is the symmetric positive-
definite mass matriz. This is certainly a symplectic transform, i.e., it preserves the
wedge product, and it allows us to set the molecular masses to one in what follows.

2.1.1. Statistical mechanics: ensemble concepts So far we have considered a
single molecule only; on physical grounds however this is often not the appropriate
perspective: First of all, real experiments mostly deal with ensembles of molecules
rather than with a single molecule. Secondly, it is doubtful that an experimentalist can
precisely prepare or measure the initial state of a single molecule at room temperature.

Hence we study ensembles of molecules. The ensemble will be represented by a
probability distribution of initial states, where the choice of the respective distribution
will depend on the problem under consideration; situations where chemical reactions
occur and the number of particles may change, require other ensemble concepts than
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ensembles with a constant number of particles. We shall mainly treat the case of an
ensemble at constant temperature with a constant number of particles and constant
volume, the so-called canonical ensemble. The time evolution of the initial ensemble is
then governed by the dynamics of the single molecules [67]. This can be understood in
the following way: Let us abbreviate z = (g, p), and let fy(z) be the initial preparation
of the statistical ensemble. Moreover we denote by ¥, the Hamiltonian flow in phase
space E = T*Q. Then the density in time f(z,¢) will be the initial density that is
transported along the orbits of the flow W,, that is,

f(z,t) = (foo ¥ _y)(z), with fo=f(,0). (2.11)
Thus, the density f at time ¢ is the push-forward of the initial density fy by the flow
map W,. This is a consequence of Liouville’s Theorem which implies conservation of
probability. The last equation can be rephrased in terms of an evolution equation for
f. If we denote by Xy the Hamiltonian vector field that is defined by (2.7), then f is
governed by the Liouville equation

Of(2st) = —LF(z 1), F(0) = fo, (2.12)
where the Liouville operator L is defined as

L=Xpu(2) -V, (2.13)
where V is the derivative with respect to z',..., 22". The Liouvillian is skew-adjoint,

if it is considered to act on an appropriate subspace of the Hilbert space L?(dz). For
further reading the interested reader is referred to the original work of Koopman [99].
See also [100] and the references therein.

It is easy to check that the transported density (2.11) satisfies the Liouville
equation, and in fact the Liouvillian is the generator of the corresponding semigroup,

fooW_, =exp(—tL)fo. (2.14)
Accordingly a stationary density is a function p for which p(z) = (p o ¥_;)(z) for
all z € E at all instances of time ¢. Of course, any function of the Hamiltonian,

p(z) = f(H(z)), is a stationary solution of the Liouville equation. One prominent
representative of this class is the canonical density or Boltzmann density

pean(z) =  exp(~BH(2)), (2.15)

where
Z:/Eexp(—ﬁH(z)) dz, (2.16)

is the normalization constant (partition function), 5 = 1/T is the inverse temperature,
and dz denotes the Lebesgue measure associated with the Liouville form (2.10).

The semigroup notation above emphasizes the mathematical equivalence of the
particle dynamics and the ensemble dynamics [101]. Indeed the relation (2.14) allows
for likewise studying the statistical properties of the Hamiltonian system (2.7) in
terms of the flow map W,: Consider the set M of probability measures on F, that are
absolutely continuous with respect to the Lebesgue measure dz (Liouville measure).
According to the Liouville Theorem, dz is preserved by the flow and we can introduce
the transfer operator or Frobenius-Perron operator P; that acts on measures p € M,

(Pp)(B) = (uoW_;)(B) for all measurable sets B C E

by means of the action on the associated smooth density,
(Pefo) = fooV_;.
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This amounts to interpreting the transfer operator in a probabilistic sense for a single
particle, and we can rephrase the stationarity of the Gibbs density, stating that

NCan(dZ) = Pcan (Z) dz

is an invariant measure of the Hamiltonian dynamics, that is, it satisfies P;pican = ftcan-
Consult [67, 102] for a detailed discussion in the context of metastability.

Stochastic Hamiltonian systems In general, statistical mechanics is about
computing average quantities with respect to some probability measure. So far we
have omitted the problem of how to compute such averages. In molecular dynamics
the expectation value of an observable A(z) is typically computed via time averages,
exploiting the notion of ergodicity: a typical trajectory will eventually visit all possible
states with p > 0. In a more formal language this means

T
EA(Z):/EA(Z),U(C[Z): lim %/0 A(U,z)dt.

T—o0

The main difficulty here is that the deterministic flow ¥; has no unique invariant
measure, since any function of the Hamiltonian yields a stationary solution of the
Liouville equation. Even worse, the only candidates for ergodic invariant measures, like
the equidistribution on the surface of constant energy, the microcanonical measure, are
singular with respect to the Liouville measure. Conversely this means that we cannot
compute averages with respect to the canonical measure ., from single particle
trajectories [67]. In fact very few Hamiltonian systems are known to be ergodic: certain
billiards and geodesic flows on surfaces of constant negative curvature [103, 104].
However it is possible to define a stochastic Hamiltonian system by averaging out
the momenta from the deterministic flow, by which we obtain a dynamical system
on configuration space only. For simplicity, we shall make two arrangements: Firstly,
we consider only observables A(g) that do not depend on the momenta p € T;Q.
Secondly, we fix an observation time span 7 > 0 and define the discrete flow map

Zot1 =¥z, 2z = (q(te), p(tx)).

Notice that here the subscript denotes a time index that should not be confused
with the respective coordinate label; anyway the distinction should be clear from the
context. Further note that both restrictions are not too severe, as the restriction on
the observables can mostly be circumvented by analytically doing the momentum
averaging, and the discrete flow can be thought of stemming from a symplectic
discretization of the Hamiltonian equations of motion [105, 82].

Let 7 denote the natural bundle projection 7 : T*Q — @ from the cotangent
bundle onto its base, and we let the parametric function

0q(p) = % exp <—§g” (Q)pipj>

denote the probability density of the momentum variable p according to the Gibbs
distribution pcan. The function Z(q) normalizes the momentum density to one. Clearly
the momentum distribution depends on the configuration g by means of the inverse
metric tensor and the normalization constant; nevertheless it is locally Gaussian. We
now introduce a stochastic Hamiltonian system as iterates of the map

Qr+1 = (m o W:)(qx, Pr) (2.17)
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with p, randomly chosen according to the momentum distribution gg, (-). The
respective discrete spatial transfer operator S, that takes probability densities on
Q@ forward in time, can then be defined as

5. f(q) = / (f om0 W,)(q.p) 2a(p) dp.

Note the following important difference between the spatial and the full transfer
operator P;: The full propagator satisfies the semigroup property P;is = PsP;.
However, the definition of the spatial propagator involves a momentum average, and
in general averaging over the initial momenta and integrating up to time, say, 27 gives
a different result than averaging at the initial time and the intermediate time 7. In
particular this means that .S; has no generator.

In the following we will consider S, on the Hilbert space L?(v), that is weighted
by the reduced probability measure v(dq) = 0o(q)dgq, where g is the marginal

0@ = | peanlap)db.
T;Q
The weighted Hilbert space is defined as
L*(v) = {v :Q —R| / (v(q))? v(dq) < oo} (2.18)
Q
with the scalar product
(.01, = | wla(@)vida). (219)

The invariant probability measure that seems to be naturally associated with the
stochastic Hamiltonian dynamical system (2.17) is v. This means for the associated
propagator that it must satisfy S;1 = 1, as 1 denotes the invariant density with
respect to v. And indeed, it follows immediately from the fact that the canonical
density is normalized that S;1 = 1. Moreover the following is true [67]:

Proposition 2.8 (Schiitte 1998). Let @ = T™ be periodic. Then the transfer operator
S, : L?>(v) — L2(v) has a simple eigenvalue N = 1 that is bounded away from the
remaining spectrum. Hence 1 is the unique invariant density in L*(v).

2.2. Stochastic Langevin dynamics

Using deterministic dynamics has several advantages. First of all deterministic
Hamiltonian systems are widely used in the molecular dynamics community and there
is a variety of efficient numerical algorithms available [92, 106]. Moreover there is a
well-established covariant formalism which is flexible enough so as to allow for the
treatment of infinite dimensional problems, systems with symmetries or systems on
manifolds [81]. However one severe drawback for molecular applications is the fact
that there is no unique invariant phase space measure.

The sampling problem is mostly addressed by means of certain thermostatting
techniques like Nosé-Hoover, Berendsen or stochastic Andersen thermostats [88, 107].
Mostly, these algorithms modify the equations of motion in such a way that the
dynamics samples the canonical density, provided the Hamiltonian flow is ergodic
with respect to the microcanonical measure. This is a very strong assumption, and
it is well-known that the ordinary Nosé-Hoover thermostat suffers from ergodicity
problems for certain classes of Hamiltonians [108, 109]. This pathology can be
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removed by employing extensions to the single-oscillator chain or by imposing constant
temperature constraints [110, 111, 112]. But even then, the sampling works well only
if the dynamics is ergodic, and conditions to guarantee ergodicity are still lacking.
Additionally all these more sophisticated methods have in common that due to
their complexity they are relatively hard to implement, and they require a careful
adjustment of the parameters involved. See the recent survey article [113].

A promising alternative is stochastic Langevin dynamics or Brownian
(Smoluchowski) dynamics [13]. These systems are proven to be ergodic under
sufficiently weak assumptions which are similar to those from the last section, i.e.,
periodic or bounded configuration space [114, 115]. A Langevin system can be regarded
as a mechanical system with additional noise and dissipation (friction). The noise can
be thought of modelling the influence of a heat bath surrounding the molecule and
the dissipation is chosen such as to counterbalance the energy fluctuations due to the
noise. In its traditional form the equations of motion read [116]

q(t) = M~ 'p(t)

pt) = = VV(a(t)) = yM~'p(t) + oW (t),
where 7,0 € R™™ are positive-definite matrices, and W(t) is the standard n-
dimensional Wiener process [117]. Here we use the expedient notation W(t) rather
than dW (t) for the increment of the Wiener process at the price of being less exact
with regard to its correct interpretation [118]; so far it is sufficient to state that we
understand the last equation in the sense of It6, and therefore we will continue using
this notation without further comments and omitting the time argument in most cases.

The fluctuation-dissipation theorem of Kubo [119] states that, if friction and noise

satisfy the fluctuation-dissipation relation 2y = Boo”, then the Langevin equation
defines a Markov process that is ergodic with respect to the canonical measure picap.
For our purposes it is convenient to rewrite the Langevin equation in a slightly different
form: Let H : T*R™ — R be the molecular Hamiltonian in mass-scaled coordinates

H@MZ%@M+V@

with conjugate coordinates z = (g, p). Then the Langevin equation can be written as
) =T -T)VH(2(t) + 2 -W(t), (2.20)

where V denotes the derivative in R?", and we have introduced the 2n x 2n matrices

J—<_01 (1)> F_(g 3) 2_(8 2)

Remark 2.9. In principle the mass scaling g — M~2q, p — M~/2p affects both
friction and noise terms in the Langevin equation in the way that the coefficients v, o
scale according toy — M2y M~2 and o — M~'%¢. Hence the friction and noise
coefficients become mass-dependent as well [39]. However it is easy to see that the mass
scaling preserves the fluctuation-dissipation relation, and we refrain from making the
scaling explicit. The reader should apologize this abuse of notation.

Covariant form of the Langevin equation: Hamiltonian formulation
Unfortunately there is no canonical way that would lead to a covariant formulation
of the Langevin equation in the spirit of the Euler-Lagrange equations or Hamilton’s
equations. As we shall see below the Langevin equation can be understood either
as an Itd6 or as a Stratonovich equation, as long as we restrict our attention to
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point transformations (i.e., symplectic lifts of configuration space maps to phase
space); the distinction becomes irrelevant. The restriction to point transformations
is not too severe, for the vast majority of physical problems that involve changes of
variables are of that type. We will see below that equation (2.20) transforms like a
dissipative Hamiltonian vector field, no matter whether it is interpreted as an Ito
or a Stratonovich equation.! That is, the Langevin equation has some very specific
properties as compared to general hypo-elliptic diffusion equations which are due to
its Hamiltonian origin.

To the best of the author’s knowledge the available approaches for covariant
representations use projection operator techniques, where the system is coupled to a
heat bath [121, 122]. These approaches involve very specific assumptions concerning
timescale separation between system and bath variables or are based on Markov
approximations of the friction kernel [123]. In principle one could simply apply Ito’s
formula to the Langevin equation, and recognize that it boils down to the familiar
change-of-variables formula. Here we adopt an alternative approach by considering
the associated evolution equation: The time evolution of a function u € L!(dz) is
governed by the Kolmogorov backward equation

Ou(z,t) = Apwu(z,t), u(-,0) =ug, (2.21)
where the backward generator is defined as
1
Apw = §AE’R2n +(J-T)VH(2) V. (2.22)

where Ay, g2 is the degenerate Laplacian with respect to the covariance matrix, i.e.,

As gren = tr(E2XTV?).
Now we can easily study the transformation properties of the Langevin equation
by means of the corresponding backward equation: Let M = T*Q@Q be a symplectic
manifold of dimension 2n that is endowed with a Riemannian metric hg, and
understand V as the covariant derivative in T'M. Recall that the Laplace-Beltrami
can be computed as the trace of the Hessian [68]. Further recall that the Hessian
V2f : T.M — T,M is defined as the matrix associated with the bilinear form
d’f(X,Y), where X,Y € TM are two vector fields that are evaluated point-wise
at z € M. It follows from Leibniz’ rule that

Vxdf(Y) = d*f(X,Y) + df (VxY),
and we obtain in coordinates:

0% f af 0]
2 X)) = _1k 2L -

(X X5) = 021027 Y 9zk Xi 9zt
Here I‘fj are the symmetric Christoffel symbols associated with the Riemannian metric
ho on T'M that contains the inverse covariance matrix. Now we define the following
sub-Riemannian metric

-1

h(z)=F(z) (227) F'(z),
where F is obtained by a Cholesky decomposition of the phase space metric hg = FTF.
(The metric h is sub-Riemannian because only the momentum block is non-zero; see
[124] for a more general discussion on sub-Riemannian geometry.) The corresponding
symmetric Hessian matrix then reads in coordinates

(V2f)S _h“( °f -T¥ 8f) : (2.23)

021027 9 §zk

1For the geometry of dissipative Hamiltonian vector fields without noise, see [120].
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Double contraction (trace) of the Hessian yields the degenerate Laplace-Beltrami
operator Asx; ps on the phase space M = T*(), in other words: the diffusion generator
of the Langevin equation on the phase space M. We state:

Lemma 2.10. Let Q be a Riemannian manifold that is endowed with a metric g which
is of the form g = BT B, and let H : T*Q) — R be the Hamiltonian

H(q,p) = % {g9(q)"'p,p) + V(q).

Moreover we denote by v and ¢ the usual friction and noise coefficients that satisfy
the fluctuation-dissipation relation 25 = 65T . Abbreviating the canonical coordinates
by z = (¢,p), the coordinate-invariant form of the Langevin equation is

)= -T)VH(z() +2-W(t), (2.24)
where the 2n x 2n matrices are defined as
0 1 0 0 o o
=( 5 0) m=(0 shs ) ==(0 5% )

Unwrapping the matriz-vector notation, (2.24) is equivalent to

. OH
q:

Opi

OH  OH y (229)
Di=—7=—Yijm— +o; W, i=1...,n

oq’ Japj J

where v = BTAB, and 0 = BT6 are g-dependent friction and noise matrices that
satisfy the fluctuation-dissipation relation 2v = Boo™ .

Proof. The assertion concerning fluctuation-dissipation is trivial. For the first part it
is sufficient to consider the evolution equation associated with the Langevin equation
(2.20). To this end consider the molecular Hamiltonian

()= 3 (€O +V(), (16 €TR" 2R xR,

which gives rise to the Langevin equation (2.20). We shall study the transformation
properties of (2.20) by means of the corresponding backward equation

Dy — <%AE,R% (1) Vi @) .

Here V = (8/dn',...,0/0¢,) is the derivative in R?", and T',%¥ € R>*2" are
defined in an obvious way. Consider a diffecomorphism ¢ : @ — R"™ with n = ¢(q)
which has a symplectic lift T*¢ : T*Q — T*R™ to phase space that is given by
(n,€) = (6(q),Dé(q)~Tp). In coordinates (¢, p) the Hamiltonian reads

H(q,p) = % (9(@) 'p.p)+V(g) (V=Vog),

with the induced metric tensor ¢ = BT B, B = D¢. Writing the backward equation in
the new coordinates is straightforward: using (2.23) we obtain for the diffusion part

%AM*Q = %tr (B"66" BD3) =: %tr (2xTVv?),

where Dy denotes the derivatives with respect to the second (momentum) slot, and
V denotes the derivatives with respect to the new coordinates. Also the drift is
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easily accounted for: since (¢,p) are conjugate, the Hamiltonian vector field keeps
its canonical form; moreover the dissipation part transforms like an ordinary vector
field on T*Q = R?". The thus transformed drift part reads

0
(J-T)VH =JVH — ( BTB-Tp >

1

from which the assertion follows upon noting that BT4B~T = BTABg~ ' =~¢~'. O

The proof reveals the origin of the Ito-Stratonovich equivalence in case of
the Langevin equation without using the It0 formula: regarding the backward
operator only the momentum derivatives contributes to the Laplace-Beltrami, and
the momentum transforms linearly under point transformations. In the language of
It6 calculus this means that the second order momentum derivatives in the It formula,
which make up the additional terms, all vanish.

The time evolution of physical densities f € L!(dz) is governed by the Kolmogorov
forward equation, that is in some sense dual to the backward equation [102]

at.f(zvt) = -Afwf(zvt) ) f(a O) = fO ) (226)

where the forward generator,
1
Agw = §A27M -V-J-T)VH. (2.27)

is the formal adjoint of the backward generator on the Hilbert space L?(dz). (Note that
the diffusion part of the operator is self-adjoint in L2(dz) since Ay ps involves only
momentum derivatives, but the metric merely depends on the configuration variables.)
The forward operator can then be rewritten according to

1
2
where we have used that the Hamiltonian vector field is divergence-free. Alternatively
the rightmost divergence can be written as tr(yg~!). Provided that the fluctuation-
dissipation relation is met, the canonical (Boltzmann) density is a stationary solution
of the forward equation, independently of the chosen coordinate system:

Ay = zAs vy —(J-T)VH-V+V.(ITVH),

1
Aprcan - 07 Pcan — E GXP(—ﬁH) .

2.3. High-friction dynamics: Brownian motion

The Smoluchowski equation be understood as the high-friction limit of the Langevin
equation. Unfortunately there is some ambiguity in the denotations throughout the
literature: we shall use the term Brownian motion synonymously with Smoluchowski
equation which describes a non-degenerate (elliptic) diffusion process in contrast to
the degenerate (hypo-elliptic) Langevin equation. For the sake of illustration we shall
briefly sketch the transition from Langevin to Smoluchowski for a one-dimensional
system. To this end we write the Langevin equation in second-order form

Mi=—-VV(q) —~vj+ oW .

We introduce a small parameter € > 0 by scaling the friction constant according to
~ — v/€; keeping the correct invariant density requires the scaling o — o /+/€ for the
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noise coefficient. In other words, the high-friction limit amounts to letting € go to zero,
so that we arrive at the singularly perturbed problem

|y o
- + J—
et 2
So far the limit ¢ — 0 would yield the boring result ¢ = 0, as can be seen upon
multiplying the whole equation by e. However this changes if we consider the dynamics
on the diffusive timescale t — t/e, on which the equations of motion take the form

€2M(je = _VV(QE) —Yge + oW .
Taking the limit ¢ — 0 formally leads to the Smoluchowski equation
Ydo = —VV(qo) + oW . (2.28)

The little word formally should be taken literally, because the white noise in the
equation is unbounded, and therefore we cannot be sure that €2§. goes to zero as €
goes to zero. Nevertheless it can be shown that the sample paths ¢.(t) converge to
qo(t) with probability one [125, 126].

Mge = -VV(qe) — W,

Covariant form of the Smoluchowski equation: geometric Itd6 formula
Loosely speaking the Smoluchowski equation can be understood as some sort
of diffusive limit of the Langevin equation. However we have to take care that
the Smoluchowski equation (SE) transforms in a way that is consistent with
transformation properties of the Langevin equation (LE). Given a change of variables
¢ : R™ — @, this property is expressed in the following commutative diagram

T*¢: T*Q—T*R"

(LE, T*R") (LE, T*Q)
y—»ooJ/ l’Y_’OO
(SE, R™) wo-R (SE, Q)

Unlike the Langevin equations we understand the Smoluchowski equation strictly in
the sense of It0, because here the distinction really matters as we will see below.
Without loss of generality we set v = 1. Then the fluctuation-dissipation relation
implies that co” o 1. In other words, the noise matrix ¢ is proportional to
an orthogonal matrix. We may even choose 0 = /283~! scalar, since the white
noise is invariant under orthogonal transformations [127]. Now the multidimensional
Smoluchowski equation takes the form?

¢=—gradV(q) + /26-1W, ¢qeR". (2.29)

Note that we have tacitly replaced the derivative V by the gradient; the first one
is a one-form, whereas the latter defines a vector field on R™. This might seem
somehow arbitrary but the replacement is owed to the fact that the friction matrix
in the Langevin equation transforms according to v — BT~B under a change of
coordinates. Hence «y¢ is an element of the cotangent space, and suppressing v amounts
to replacing VV by the gradient. For integrable functions v € L!(dq) let us introduce
the Kolmogorov backward equation that is associated with (2.29),

atU(CL t) = Abw U(qu t) ) U('u 0) = Yo

2Setting v = 1 is along the lines of the mass scaling, for we can always make ~ vanish in the
Smoluchowski equation by scaling the coordinates according to g — v~1/2g¢.

23



with the elliptic backward generator
Apw = 871A = grad V(g) - V.
We shall prove the following statement which is due to [69)]:

Lemma 2.11. Let Q be a configuration manifold of dimension n that is equipped with

a Riemannian metric g = (-,-), and coordinates ¢ = (¢, ...,q"). Then the covariant
Smoluchowski equation in Ité form reads
¢ =—gradV(q) +b(q) +a(q) - W (2.30)

with the coefficients
b'(q) = —B7¢""T5),  and alq) = /267 1g(q)~! (2.31)

where the I‘;-k are the matrices of the symmetric Christoffel symbols on T'Q,
. 1y (O0g  Ogi; Oy

i, =—g¢ | =2 4 2L - 25 )
= 3Y (&JJ "ok ag

The Stratonovich equivalent is obtained by omitting the additional drift vector b(q).

Proof. Recall the definition of the diffusion backward generator
Apw = 1A —gradV - V.

Now recall that the gradient of a function V' : @ — R is defined by the equation
dV(w) = (gradV, w>g for all vectors w € T,Q. In coordinates this means

. oV
dV)' =¢Y—.

(erad V)i = g5

Accordingly, we know that the diffusion on @ is generated by the Laplace-Beltrami

operator on @ which is obtained as the double contraction (trace) of the Hessian

matrix (2.23) or, equivalently, A = div o grad. In coordinates the Laplacian reads

[128]

< 0*v . Ov
Av =g ——— —T%, —
J (&ﬂ@q’“ Jk@(f) ’
where I‘ék are the symmetric Christoffel symbols associated with the metric g. We
observe that the first term in the Laplace-Beltrami appears as an ordinary diffusion,

whereas the other one has the formal structure of a drift term. Thus the Laplacian
can be split into two parts, and so the backward generator admits the representation

Apw = Adigr + Adrife

with the single operators

L O
e — Q1
— -1 _ijpk kl
Adviey = — (5 9T +9 _8ql> —aqk

Writing down the associated It6 stochastic differential equation is straightforward.
The Stratonovich form is obtained by simply considering the Smoluchowski equation
as an ordinary first-order vector field which amounts to erasing all terms that involve
Christoffel symbols. This proves the assertion. O
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Remark 2.12. We point out an important distinction: on the Euclidean configuration
space U C R™ consider the Brownian motion of a free particle
at) = W(t).
Now let ¢ : Q — U be a change of coordinates, such that u = ¢(q). The map ¢ induces
a Riemannian metric g = J$J¢ on Q, where Jy(q) = Do¢(q) is the Jacobian of the
transformation. According to Lemma 2.11 the respective Ité equation on @ becomes
¢'(t) = —59" T + a”W; (1),
where a is the uniquely defined positive-definite matriz square root of g—'. However
note that a is not the only admissible choice for the diffusion matriz, that stems
from reinterpreting the diffusion part Agg = 9*90%/90q'0q¢’ in the associated backward
generator in terms of white noise in the differential equation. In particular if we
demand that the two processes are related pathwise by the coordinate map, u(t) =
d(q(t)), then the noise term is altered due to:

i L ki i1
q'(t) = —593krjk + JFW;(t),

where J;;j are the entries of the inverse Jacobian qu_l. (In many cases, Jy is uniquely
related to the metric g = J;;FJd, by a Cholesky decomposition. If ¢ is conformal, it may
even happen that Jy is nontrivial, although g =1 and thus o = a.)

As before, it is the Kolmogorov forward equation which governs the time evolution
of densities. For functions f € L'(dq) the forward equation reads [129]

8tf(Qat):Afo(qvt)a f('vo):fo'
The forward operator is defined as the formal adjoint of the backward operator in the
Hilbert space L?(do), where do = +/det g(q)dg denotes the volume element on Q. It
is easy to see, using integration by parts, that the forward operator has the form?
Atw = 7 A +grad V(g) - V + AV (q).
It is then straightforward to show that the Gibbs density

(a) =  exp(~6V (@)

is a stationary solution of the forward equation, i.e., Agyp = 0. In turn it follows that

(dg) = — exp(— OV () /Aot 9(q) da

is the invariant measure (Gibbs measure) of the Smoluchowski equation (2.30). (Notice
that the Gibbs density p is the density of the Gibbs measure v with respect to the
volume on Q.) There is yet another operator which we will often consider, and that is
formally equivalent to the backward operator but acts on a different function space.
Following [102], we consider the Fokker-Planck equation that evolves densities in time
with respect to the invariant probability measure v(dq)

Ow(q,t) = Lw(g,t), w(-,0)=wp
with the (backward) Fokker-Planck operator
L=p3"1A—gradV(q) -V,
which is regarded on a suitable subspace of L!(v). Clearly £1 = 0, since the constant

function 1 is the invariant Gibbs density with respect to v. Moreover it can be shown
that the Fokker-Planck generator is self-adjoint:

31t follows directly from two iterations of Stokes’ Theorem (i.e., Green’s formula) that the Laplace-
Beltrami operator is essentially self-adjoint in the Hilbert space L?(do), but not in L?(dq).
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Proposition 2.13. Let the weighted Hilbert space be defined according to (2.18) with
the respective weighted scalar product (-,-),. Then (Lu,v), = (u,Lv), for functions
u,v € L*(v), i.e., L is self-adjoint in L*(v).

Proof. The proof for the Euclidean case is standard can be found, e.g., in [102].
Exploiting that £ can be written as a Schrédinger operator in L?(do), the proof
carries over to the manifold case considered here at almost no further expense. O

2.4. Essential degrees of freedom

Most systems of nonlinear differential equations, either deterministic or stochastic,
that model real-world problems are characterized by vastly different timescales,
on which certain dynamical effects happen [130]. In many molecular systems such
timescales are well-separated, since different physical interactions in the molecular
potential induce different characteristic timescales. Roughly speaking, we can assign a
natural timescale 7 to a physical process that is inversely proportional to its average
energy. Accordingly, the vibrations of the molecular bonds (about 1 femtosecond) are
typically the fastest modes in the system. We introduce the ratio

e= st g
Tslow

which serves as a measure for the separation of timescales in the system. Often things
become more complicated as the degrees of freedom are coupled among each other.
Then the fast variables may induce slow motions elsewhere in the system, such that
the assignment of timescales to certain modes gets difficult. Dividing a molecular
system into slow and fast degrees of freedom is motivated by the observation that the
conformational dynamics of a molecule is typically slow, as compared to the remaining
degrees of freedom, since transitions between conformations are rare events. However
this statement is in some respects circular, since the distinguishability of conformations
pretty much depends on the choice of the right essential (slow) coordinate.

We understand conformation dynamics as taking place in configuration space; in
particular in the Hamiltonian context, the restriction to the configuration variables
was owed to generating the Gibbs measure as the unique invariant measure of
the dynamics. But even then one might imagine that the distinction between
conformational degrees of freedom and those which are of minor interest is not along
temporal scales but along spatial scales, in case of which we could be interested in
those degrees of freedom that have the largest amplitude [43]. In fact conformational
behaviour is a spatial property of a molecule, in the sense that it is related to
the its geometric shape. Nevertheless the dynamics between conformations is often
driven by either crossing of energy barriers or other temperature-dependent entropic
mechanisms, both of which are inherent temporal effects [131, 132]. Clearly one might
think of other possible subdivisions: the principal decision to be made is whether
the velocities or momenta should be taken into account; this is possible in principle;
standard references for such purely deterministic approaches that treat the full phase
space are [31, 32]; see also [133, 134] for some recent developments.

2.4.1. Spatial decomposition methods It is not the aim of this thesis to discuss
the problem of finding good reaction coordinates in great detail or even to resolve it; for
our purposes it is sufficient to assume that we are given a set of slow coordinates with
significant spatial amplitude, for instance, by sufficient physical insight a priori or by
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Figure 2. The left panel of the figure shows a volume rendering plot of the
SARS-protease inhibitor at — allowedly unrealistic — temperature T=1500K.
The clouds indicate the flexibility (fast oscillations) of the two main conformations
which are depicted on the right, and which are well described by the two central
torsion angles ¢, 1. See [136] for the simulation details.

statistical tools that operate on the produced time series a posteriori. Accordingly
this subsection mainly surveys the available approaches for the identification of
essential degrees in molecular systems, i.e., spatially extended motions that are slow
in some appropriate sense. At the very beginning of this chapter we have seen that
molecular interaction forces are defined in terms of internal degrees of freedom of
a molecule. Hence it seems natural to suspect the essential coordinates among the
internal coordinates. Indeed in many cases the conformation dynamics can be well
described by specific dihedral (torsion) angles which link certain approximately rigid
subunits of the molecule; see Figure 2 below for illustration. Other possible candidates
for essential degrees of freedom are radii of gyration, certain intramolecular distances
between selected endgroups of the molecule, or distances between parts of a molecule
and some specific solvent molecules [135]. In any event the reader should keep in mind
that essential degrees of freedom are not intrinsically defined by the molecule under
consideration, but rather depend on the specific problem.

In case the essential degrees of freedom are not known a priori they can be possibly
detected by statistical analysis of simulation data. There are plenty of such data-based
methods and algorithms that all have in common that they sort out a linear subspace
of the data space which is in some sense optimal, although the methods might be
rather different in detail. This subspace is then assumed to be spanned by the essential
variables [137]. Mostly these techniques work on Euclidean data only, and it would be
nice to apply them in a more general framework to data that lies on a manifold; we
shall discuss this issue below.

The most famous approach is certainly the method of Principal Component
Analysis (PCA) which is also known as Karhunen-Loéve expansion or Proper
Orthogonal Decomposition (POD) to name just a few [138, 45].

The idea is to find a best-approximating k-dimensional subspace to a given set
of data. We may characterize this subspace S C R"™ by a projection operator &,

27



mapping R™ onto S. We give a brief derivation of the method to provide some
geometric intuition for the following discussion. Assume the data consist of sampled
measurements {z(t1),...,z(tny)} of a trajectory z(t) € R"™. Finding the optimal
subspace S amounts to solving the least-square problem?*

N
. _ 2
H}e;n; z(t)) — Zx(t1)ll3

where the rank of & is k. This problem can easily be reformulated as a related
variational problem: Let S be a one dimensional subspace in R™ spanned by the
vector w € R"™, such that the projection & becomes the linear map &£ = (-, w) w.

Since [|z]|?> = ||z — Zz|| + || Z2x||* holds true for any projection, the least-square
problem is equivalent to maximizing the energy of the projection,
N
2
Elw] =) (z(t),w)’ = A(Jwl3 - 1),
=1

where the Lagrange multiplier imposes normalization upon the vector w. Taking the
variation of w = w, keeping z fixed it follows by chain rule 0 E. = (dF, dw,) that the
critical points of F have to satisfy the equation

N
2 (x(t), w) (x(tr), dwo) — 2\ (w, Swg) = 0.
=1

Since the last equation clearly must hold for arbitrary variations dw. we conclude that

N
<Z (x(t1),-) x(tl)> w=w,
1=1

where (modulo normalization) the sum on the left hand side is an estimator of the
symmetric covariance matrix of the data with accuracy O(N~1/2). Assuming that the
covariance matrix has maximum rank n, the eigenvectors form a complete orthogonal
set of vectors wi,ws, ..., w,. Consequently, we may repeat this whole procedure on
the orthogonal complement to w = ws, and find that then the best approximation is
given by the second eigenvector wo, and so on. Finally the rank-k approximant S is
spanned by the first k eigenvectors which is optimal in the sense that

N n
mgianz lz(t) — Ptz = > X

1=1 j=k+1
is the minimum achieved by any k-plane in R", where the ); are the ordered
eigenvalues of the covariance matrix; to put this differently, the chosen subspace
contains the maximum variance of all k-dimensional linear subspaces [45]. By this
procedure we find the optimal subspace; if we want to find the optimal affine subspace,
we can exploit that it must pass through the mean of the data, and thus simply centre
the data by subtracting the mean before computing the covariance.

Although POD is optimal at approximating a given data set it is not necessarily

so for describing the dynamics that generates the particular data, for features of low

4There is some freedom in choosing a vector norm with respect to which the minimization is
carried out. Frequent choices, for instance, are energy-based norms that are induced by an inner
product (u,v), = (Au,v), where A = M may be the molecular mass matrix or the matrix of a
quadratic Lyapunov function (notice that the former is equivalent to using mass-scaled coordinates).
The specific choice of an inner product should be suited to the problem under consideration.
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variance (energy) may induce important effects. In the molecular dynamics community
a large amount of variance in the subspace is often taken as equivalent to the statement
that the conformational dynamics takes place in this subspace. This is often wrong, as
has been pointed out on various occasions; see [139, 140], for instance. Although in the
derivation above we have nowhere assumed that the data follows an unimodal or even
Gaussian distribution, it is self-evident that the method is reliable only for unimodal
data. Hence a one-dimensional subspace containing, say, 99% of the variance is not
necessarily the essential subspace with regard to the conformation dynamics.

Apparently, choosing the essential degrees of freedom merely according to their
variance is not a good idea in general. Nevertheless we can consider the full set of
eigenvectors wy, wa, ..., wy, as a new basis for R™ that gives an ordering according to
variance. This may serve as a hint what the essential subspace could be, and we know
that the slow modes are good candidates for the conformational degrees of freedom.
Hence we introduce characteristic timescales for the thus rotated modes,

z2(t)=R-z(t), R=(wr,...,wy) € O0(n),

by the respective decorrelation time T which is defined as the integral

T= /OOO lpi(s)|ds, pi(s) = cor(z(0),zi(s)).

Loosely speaking, the decorrelation time indicates when z(t) and z(t+s) are effectively
independent. We stress that the thus defined characteristic timescale is a technical
notion rather than a sound and uniquely defined mathematical term; there are
alternative definitions: in particular in the climate modelling community the integral is
sometimes computed using the square of the autocorrelation function or the function
itself [141]. However we claim that a slowly decaying autocorrelation function with
T > 1 together with a large variance indicates possibly relevant dynamical behaviour.
Of course this approach is not completely tight, but it is based on the fundamental
observation that conformational changes in a molecule are related to spatially large
and relatively slow rearrangements of the configuration variables.

Diagonalizing the data covariance matrix is not the only way to proceed; in
particular the assignment of timescales can be linked with any other method as
well. Another technique takes advantage of the insight that correlated motions in
molecules, in particular proteins, are ubiquitous and often essential for biomolecular
function. In principle, the covariance analysis can be extended to using the correlation
matrix instead which means using an appropriately normalized covariance matrix. This
approach, however, heavily relies on a quasi-harmonic treatment of the configurational
ensemble, as it detects only linearly correlated motions [142, 143].

A quite promising approach is the Full Correlation Analysis which is based on the
information theoretical concept of mutual information. It allows to detect and quantify
any correlated motion from the Cartesian molecular dynamics trajectories. As in the
previous cases the methods singles out a linear subspace of R™ which is spanned by
maximally uncorrelated basis vectors which are the solution of a generalized nonlinear
eigenvalue problem [54]. This method has proven superior to the classical correlation
analysis on some occasions [144]. Related approaches are Independent Component
Analysis [145] and Non-Gaussian Component Analysis [146].

Yet another dynamics-based technique is the method of Principal Interaction
Patterns (PIP), as introduced by Hasselmann [147]. It is predominantly used in the
climate modelling community, and it takes into account the dynamical system upon
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which a reduced dynamical model is built: the aim is to minimize the difference

T
Jle] = / () — wo(t)] dt

where xg(t) is the solution of a reduced dynamical system that is described by a set
of functions or parameters ©; for instance, one may think of © as the linear projection
& from above, such that the reduced system is simply the Galerkin projection of
the original equations. Now PIP involves two steps, the first of which is an ensemble
average over the initial values 2(0), 2o (0), followed by minimization with respect to
O. Eventually, finding the essential degrees of freedom zg boils down to solving
a nonlinear optimization problem in &?. Alternatively one might imagine that ©
parametrizes a reduced model [148]. Although theoretically appealing we believe that
this method does not lead to computationally tractable problems for most molecular
systems; we quote it for the sake of completeness; see also [149].

We finally mention that the problem of maximizing the decorrelation time can
be addressed directly, which is known by the name of Optimal Persistence Patterns.
This technique aims at identifying the linear subspace that has the slowest decay of
correlation. There are several possible ways to measures persistence (e.g., by means of
the decorrelation time 7), and it is shown in [150] that finding the optimally persistent
subspace results in solving a generalized eigenvalue problem. However since it is our
strong believe that conformation dynamics manifests itself as macroscopic behaviour in
both space and time, we prefer the combined approach of least-square approximations
like POD together with the analysis of decorrelation times.

Transfer operator approach The transfer operator approach to metastability
rests upon the observation that conformation dynamics can be understood as flipping
dynamics between distinct subsets of configuration space that are almost invariant
under the dynamics [67, 151]. Hence the problem of identifying conformations amounts
to the identification of almost invariant sets in configuration space, where almost
is understood in a way that transitions between those sets are rare. The method
exploits the close relationship between the flow of a dynamical system, either
Langevin, Smoluchowski or stochastic Hamiltonian, with its associated Frobenius-
Perron operator Sy on configuration space.

The key idea is that the natural invariant sets and measures are given by the
eigenvectors or eigenfunctions to the eigenvalue Ag = 1, whereas the eigenfunctions to
Ak < 1 that are close to A\g = 1 correspond to the almost invariant sets [152]. Suppose
that the probability of the system to be in configuration ¢ € @ at time ¢ = 0 is given
by the unique invariant density fo = pcan. Then the transition probability p(r, A, B)
from A C @ to B C @ within the observation time 7 is given by the fraction of the
ensemble that has started in A at ¢ = 0, and which has ended up in B at time t = 7.
Hence p(1, A, B) is the conditional probability
~ P,qg(r) € BN q(0) € A

P, g0 ed
where subscript indicates that the initial preparation is given by pcan. Finally, a
metastable set A is characterized by the requirement that p(r, A, A) ~ 1. This is
to say that during a fixed observation time 7 the system is likely to stay within the

set. The algorithmic strategy that is put forward in [67] is to identify metastable
subsets from the eigenfunctions of the Frobenius-Perron operator S, that correspond

P, q(7) € Blq(0) € 4]
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to eigenvalues A < 1 close to the Perron root A\g = 1. The number of metastable sets
is then equal to the number of eigenvalues close to one, including A\g = 1 and counting
multiplicity. The justification of this strategy is given in [102, 153].

2.4.2. Reaction coordinates The term reaction coordinate is typically used in a
very loose sense and synonymous with essential degrees of freedom. More precise, a
reaction coordinate can be understood as defining a family of isocommittor surfaces,
such that all trajectory launched from the same surface have equal probability to first
reach one metastable set before the other [154, 155]. The isocommittor surfaces are
the codimension-one level sets of the reaction coordinates which, within the framework
of Brownian motion, can be systematically computed from the Kolmogorov backward
equation. For simplicity assume that there are only two conformations, or metastable
sets A C Q and B C Q. If Ay, is the backward generator associated with the molecular
diffusion process, then the solution of the boundary value problem

Abwq):()a (I)|6A:07(I)|8B:1

yields the reaction coordinate in the sense that the probability that a process starting
from ¢ € @ reaches B before A is ®(q); so to speak, the level sets ®(q) = £ with &
between 0 and 1 are the isocommittor surfaces of the process [13]. This clearly presumes
that the metastable sets have been identified in advance, e.g., by the transfer operator
algorithm as presented in the last paragraph.

In principle the procedure works in the same way for processes that are generated
by Langevin equations, with the only difference that the reaction coordinate becomes a
function on phase space [156]. But notice that reaction coordinate with its probabilistic
meaning lacks a physical interpretation in terms of the intramolecular motion, i.e., it
does not explain the transition mechanism. This issue is addressed by algorithms like
the String Method [157] or the Nudged Elastic Band method [158]. Further note that
although the direct identification of reaction coordinates is theoretically appealing, it
requires solving a high-dimensional PDE which is part of a current PhD thesis [159].

2.5. Problems related to symmetry and further generalizations

As we have illustrated any of the introduced methods can provide a set of essential
variables, and it depends on the specific problem which method to take. However
we have concealed that all of the methods require some sort of preprocessing, before
they can be applied to the raw Cartesian data. The reason is that in the absence
of external forces, the intramolecular force field is translationally and rotationally
invariant; therefore also the equations of motion are equivariant with respect to the
Euclidean group SE(3) = R3 x SO(3) which consists of translations and proper
rotations in R? (rigid body symmetry). But since the rigid body symmetry carries no
interesting information for the conformation analysis, the symmetry group is factored
out before the data analysis starts; otherwise the motion that is associated with the
symmetry deteriorates the statistical analysis, in particular the covariance analysis.
Typically the symmetry reduction is done by means of a molecular alignment
of the simulation data, also sometimes called fitting, which removes the overall
translations and rotations from the Cartesian data. This has several drawbacks: First
of all, molecular alignment algorithms operate with respect to an arbitrarily chosen
reference configuration of the molecule, such that all rotations and translations are
carried out such as to minimize some distance to the reference state [160]. Often only a
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specific group of atoms is chosen as reference, with respect to which the data is aligned,
and, as the reader can imagine, the subspace identification depends on the choice of
the reference configuration. Secondly and even worse, the preprocessing destroys the
correspondence between data and equations of motion, for the symmetry reduction is
performed on the data indeed, but the equations of motion are left untouched. This
inconsistency has the effect that, e.g., the dichotomy free energy as the potential of
mean force for a reaction coordinate that is not invariant under translations and
rotation is annihilated. As a consequence the free energy as computed from the
distribution of the symmetry-reduced data is different from the free energy that is
computed by means of Thermodynamic Integration.

Therefore we want to apply the techniques to general non-Euclidean data which
could, e.g., be obtained from nonlinear transformations of the original data. On the
one hand these transformations can be chosen such as to respect the symmetry, like
the transformation to internal coordinates. On the other hand this requires that we
know how to compute the covariance matrix in a meaningful way, say, for data lying
on a torus. We shall explain this idea in more detail: Consider a set of curvilinear
coordinates that are represented by the following map

e:R" =M CR™ with () := p(z(t)),

where in most cases m < n, but also the reverse case can be dealt with [161]. Given
a series of observation data x(t), we define a centered data set by simply subtracting
the mean ¢(t) — ¢(t) — @, where the term mean has to be specified in a way
that fits the problem; see [162] and the references therein. It seems appealing to
decompose M directly. However neither do we believe that there is a straightforward
generalization of the above mentioned concepts to manifolds nor do we assume that
such a procedure would lead to computationally tractable problems. Instead we favour
the following approach going back to considerations from nonlinear elasticity [163]:
the idea is to embed M into a linear space V of higher dimension, and apply a linear
subspace decomposition to V; once a subspace U C V is chosen, we can construct the
approximant S C M as the intersection M N U. The last step is to be understood as
follows: Let v be a local coordinate map on V', and let Pv € U, where & is the usual
projection from V to U C V. Moreover let the map 7 : M — V denote the embedding
M C V. Then 7710 2 o7 maps ¢ € M to points on the approximant.

The particular embedding 7 is open to choice, and should be motivated by
the physics of the problem. For an example using a polar decomposition of torsion
space, see [164]; this particular embedding is quite problematic, for all points lie on
a hypersphere $?™~! where m is the number of torsion angles. There is yet another
difficulty: Notice that the approximant is a regular submanifold of codimension s in
M; but then, considered as a submanifold of R”™ it has codimension s, too. Hence the
approximant has dimension n — s which is still high-dimensional, since mostly m < n.

It is a good idea to change the view slightly: consider the non-approximating
subspaces which are defined as the fibres over the essential variables or reaction
coordinates, and which are given by a family of configurational submanifolds

Ye={zeR"|®:R" - R"° &(z) =&}, (2.32)
with the reaction coordinate
P:R" > R™°, d=yxo7 'oPoroy,

where y : R™ — R™7¢ is a local coordinate map on S. By construction, D® has rank
m — s which is equivalent to stating that the fibres ®~1(¢) are smooth submanifolds
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of R™, and so ®(x) = £ defines a foliation of the Euclidean configuration space. The
reaction coordinates can then be thought of as spanning the essential configuration
space [42]. Nevertheless it is important to bear in mind that the object of interest is
the approximating subspace rather than the respective reaction coordinates. Moreover
it is no longer the case that 3¢ is the orthogonal complement of S in R™ as was true
in the linear scenario. However proceeding this way has the advantage that a clever
choice of both ¢ and 7 can lead to relatively low-dimensional essential variables, e.g.,
linear combinations of a few torsion angles or radii of gyration (cf. Figure 2).
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