
1. Introduction

This thesis explores different routes to model reduction in the context of classical
molecular dynamics. Adopting a reductionist’s point of view, our main concern is the
sound causal explanation of observable macroscopic properties, e.g., activation energies
or dynamical stability of conformations in terms of the microscopic physical model.
Notwithstanding computational aspects, the difficulty lies in the sheer complexity of
the microscopic models with their vastly different spatial and temporal scales.

Roughly speaking, reduced modelling comes in two varieties: elimination of
specific (e.g., fast) degrees of freedom (also: modes) from the original model, or
parametrization of certain simplified models. The first approach is usually referred
to as mode reduction, whereas the latter is often termed remodelling. In this thesis we
mainly focus on mode reduction, since sticking to the original microscopic model means
to keep as much of the problem’s physics as possible. (The microscopic models are
based on profound physical and chemical knowledge, both theoretical considerations
and experimental data, which constitutes their empirical adequacy and predictive
power.) In doing so, we extend and refine available methods of mode reduction such as
averaging or projection operator techniques and set them in context with one another.
Nevertheless we also allude to aspects of parametrized models.

Model reduction, as it is understood here, relies on the knowledge of a possibly
multidimensional reaction coordinate. Of course the problem of finding good (i.e.,
physically meaningful) reaction coordinates is highly sensitive to boundary conditions
such as temperature or pressure and hence cannot be addressed without referring
to a specific situation. However for medium-sized molecules such as polypeptides
or Lennard-Jones clusters there are often few natural candidates for good reaction
coordinates, e.g., torsion angles or radii of gyration. Difficulties arise, if solvent
effects play a role, for then the molecules’ configuration space has to be extended to
incorporate the solvent which may lead to systems with varying number of particles.
However we do not address the reaction coordinate problem here.

Central paradigm in reduced modelling: free energy Free energy is arguably
one of the most important and prevalent concepts in molecular dynamics (see the
reviews [1, 2]). According to the general view, free energy describes the tendency of a
molecular system to associate and react. By definition free energy encodes statistical
information about such activated processes, provided the reaction coordinate is
suitably chosen. Hence statistical equilibrium properties such as conformational
weights can be expressed in terms of free energy. It is less obvious that also many
dynamical properties such as transition rates are related to a particular variant of free
energy, as has been pointed out on various occasions, e.g., [3, 4, 5]; for the original
works on transition state theory we refer to the papers of Eyring [6] and Wigner [7].
Interestingly enough, we find that this specific free energy also appears as an effective
molecular potential in most of the reduced models, which casts it a fundamental
dynamical concept. For reasons that will become clear below, we term this second
type of free energy geometric free energy, whereas the first one (which reflects the
equilibrium statistics) will be referred to as standard free energy.

Literature and previous developments The reader may believe that giving a
complete overview of the relevant free energy literature is hopeless. During the last
few years progress has been made towards algorithms that sample standard free energy

1



profiles from their derivatives using constrained simulations, exploiting the dichotomy
of free energy as the potential of mean force; the free energy is recovered afterwards
by numerical integration. This method is known as Thermodynamic Integration and
goes back to Kirkwood [8]. The idea of relating the derivative of the free energy to
the averaged force of constraint appears in the work of Mülders et al. [9] for the
first time; however these authors derive a wrong expression emanating from a wrong
definition of the conditional expectation. Correct expressions have been established
in, e.g., [10, 11, 12, 13, 14]. Most of these authors omit the problem of sampling the
respective conditional expectation which is crucial for actual computations; recent
work in that direction is [15, 16, 17]. Later articles by Vanden-Eijnden and co-workers
[13, 5] address the problem of relations among different the free energy definitions,
geometric and standard free energy. Current work that exploits this relations for the
development of efficient algorithms has been done by the author [18].

Mode elimination techniques for ordinary or stochastic differential equations with
multiple scales have a long lasting tradition in celestial mechanics, especially in the
Russian literature, e.g., [19, 20], but also in the climate modelling community; for
instance, see the proceedings [21]. In celestial mechanics typical problems boil down
to finding an appropriate set of action-angle variables [22], whereas climate problems
are often described by stochastic differential equations with slow and fast variables
[23]. In either case the reduced models are obtained upon averaging over the random
perturbations induced by the fast degrees of freedom; the relevant reference regarding
the Averaging Principle is the textbook by Freidlin and Wentzell [24]. (A good and
systematic overview of the current multiscale literature can be found in the review
by Givon et al. [25]). Instances of the just mentioned averaging methods are rare in
molecular dynamics, however. One such case that is studied by Bornemann & Schütte
[26, 27] or Reich [28, 29] is the elimination of fast bond vibrations by introducing
holonomic constraints (rigid bond approximations). Another current example that is
treated in Yanao et al. [30] is the dynamics of gyration radii as collective variables in
Hamiltonian system; yet these authors pursue a purely deterministic approach which is
more in the spirit of De Leon et al. [31] or Uzer et al. [32]. The only approach known to
the author that addresses stochastic dynamics is a projection operator type method in
E & Vanden-Eijnden [13]. For such systems it may happen that the averaged dynamics
is trivial on the typical observation time scale, whereas relevant effects appear on
longer time scales only. In this case (which, however, does not appear in the examples
considered by us) averaging theorems on diverging time intervals come into play which
were originally stated by Khas’minskii [33]; see also the recent article [34]. The related
problem of large deviations from the averaged equations (for example, if the unresolved
system contains essential barriers) is considered in, e.g., [35].

A significant part of the model reduction literature deals with simplified
parametrized models, typically linear differential equations. Examples involve rigid
base or rigid base-pair models in DNA modelling [36], diffusion models for protein
folding [37], or stochastic differential equations that are coupled to Hidden Markov
Models [38, 39]. Related work on nonlinear Langevin equations which is based on a
Maximum-Likelihood principle is [40]. We abstain from presenting an exhaustive list
of references and instead refer to the bibliography in [41]. For the sake of completeness
we also mention the equation-free approach that has been developed in [42].

Quite often model reduction is also understood in the sense of clustering or state
space decomposition. Most of these methods aim at classifying an essential subspace
onto which the full molecular time series is projected. By this, one obtains a dimension-
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reduced time series which is easier to analyze. Methods of this kind are known,
e.g., by the name of Principal Component Analysis [43, 44] or Proper Orthogonal
Decomposition [45]. Yet another promising approach that allows for the identification
of essential subspaces that are dynamically relevant is the transfer operator approach
by Schütte et al. [46]; see also the book of Weber [47]. Essential subspace techniques can
be easily linked with methods of mode reduction. For example, a popular approach in
the optimal control community (e.g., see [48]) is to truncate the modes orthogonal
to the essential subspace, a method known by the name of Galerkin projection.
Applications to molecular problems are not known to us though.

Another important part of the literature is concerned with projection operator
techniques that have been established by Mori [49] and Zwanzig [50] in the context
of non-equilibrium statistical mechanics. (See also the review by Hynes [51] or the
monograph by Evan & Morriss [52].) In molecular applications such methods amount
to the derivation of the (non-Markovian) generalized Langevin equation. Examples can
be found in [53, 54]; regarding a systematic study of the projection operator ansatz
for molecular problems we refer to [55]. Contemporary mathematical works concern
closure schemes for the generalized Langevin equation [56], Markovian approximations
[57], or issues related to existence and uniqueness [58]. A good overview can be found
in the new textbook by Chorin & Hald [59]. Related problems such as applications
to Kac-Zwanzig heat bath models are discussed in [60]. A Markovian variant of the
projection operator approach, which can be regarded as least-square approximation in
some suitably defined function space, is called optimal prediction. Typically optimal
prediction is applied to problems involving partial differential equations, for which
the method works quite well (e.g., Burgers’ equation [61], Korteweg-deVries-Burgers
equation [62]). However the application to deterministic Hamiltonian systems yields
rather poor results as has been repeatedly demonstrated, for example, by Hald &
Kupferman [63] or Chorin et al. [64], and instances of stochastic Hamiltonian systems
are not known to us. The only molecular dynamics application we are aware of is in the
article of Seibold [65]; however therein the author mainly focuses on low temperature
asymptotics and aspects of computational efficiency.

Issues addressed in this thesis This thesis deals with very different aspects of
model reduction. The original models range from deterministic mechanical models
on the one hand to stochastic differential equations such as Brownian motion or
Langevin dynamics on the other hand. Each of these models comes along with
its own formalism (covariant formulations in mechanics, Itô calculus for stochastic
differential equations, etc.) which makes it difficult to handle all problems within a
unifying framework. Moreover many problems in molecular dynamics are of genuinely
thermodynamical nature which calls for an appropriate mathematical description of
statistical concepts such as free energy. Here we adopt a more geometric language that
is common to classical mechanics on manifolds. This may seem unusual, especially
for readers that are familiar with stochastic differential equations. But in fact,
many problems in molecular dynamics are problems on manifolds that have an
interesting underlying geometric structure: constrained dynamics on a configuration
submanifold, curvilinear reaction coordinates, and many more. Furthermore the
covariant formalism of mechanics allows for straightforward generalization of statistical
mechanics problems to curved spaces which is suitable, e.g., for sampling certain
probability measures subject to holonomic constraints (cf. Section 4.2).

The general mathematical framework is established in Section 2. We basically
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follow the relevant literature on geometric mechanics by Abraham & Marsden [66]
and review ideas for Hamiltonian systems with randomized momenta that have been
put forward in the work of Schütte [67]. It turns out that the covariant formalism
of mechanics easily extends to stochastic differential equations which leads, among
others, to a geometric version of Itô’s formula which proves that the Itô stochastic
differential equation transforms like a second-order vector field (Lemma 2.11). The
basic language of stochastic differential geometry, on which our considerations are
based, is developed in the books by Stroock [68] and Hsu [69]. By expanding the
ideas therein to Langevin processes, we reveal that the Langevin equation has some
interesting transformation properties as compared to general hypo-elliptic diffusion
processes which are due to its Hamiltonian origin (Lemma 2.10). In particular we
find that the Itô-Stratonovich ambiguity vanishes, if we confine our attention to
point transformations. The geometric viewpoint of molecular dynamics thus highlights
that such different systems as second-order mechanical systems, first-order Brownian
motion and stochastic Langevin equations exhibit common transformation properties.
Additionally it gives rise to a physically intuitive and unifying picture for what is
called entropic effects in conformation dynamics: in case of second-order mechanical
systems, these stem from inertial contributions due to the kinetic energy, but they
can be likewise explained by the interplay between ordinary diffusion and certain
conformational degrees of freedom. In either case these effects are actuated by the
underlying Riemannian structure (see Section 5 for some examples).

Section 3.1 tries to shed some light on the different free energy definitions that
circulate in the literature; cf. the review [13], and see also the schematic overview in
Appendix A. On a purely formal level, Federer’s co-area formula [70] links standard
and geometric free energy by relating the underlying conditional probability densities.
From a physical point of view, the standard free energy can be expressed as a sum of
geometric free energy and an appropriately defined Fixman potential. Neither relation
is actually new, but they both have useful practical implications for Thermodynamic
Integration algorithms that, to the best of our knowledge, have not been taken into
account so far: First of all, we explicate that the famous Blue Moon formula by Carter
et al. [71] for the conditional expectation is an instance of the co-area formula (Section
3.1.2). The Blue Moon ensemble method is a popular and widely-used technique for
the sampling of conditional expectations by means of constrained simulations with an
appropriate reweighting strategy. Yet there has been (and still is) some confusion (e.g.,
see [16, 72, 73]) about whether the weight is affected by the presence of momenta or
velocities in the system. But as we will argue below, reweighting is an issue for any type
of constrained dynamics — no matter if the system involves momenta or not. Secondly,
we demonstrate that geometric free energy can be viewed as the potential of mean
constraint force (see Section 3.1.1 or Section 4.1 regarding holonomic constraints). By
using Thermodynamic Integration it is hence possible to compute the derivative of
the geometric free energy by simply averaging over the Lagrange multipliers (forces of
constraint) that are explicitly available during the simulations without further function
evaluations; cf. also the recent article [17]. Last but not least, the Fixman potential
that marks the difference between geometric and standard free energy can be directly
computed from constrained simulations without computing second derivatives of the
reaction coordinate. This yields a remarkably simple formula for computing standard
free energies that does neither require second derivatives nor reweighting à la Blue
Moon (see Remark 4.14 or the recent article [18] by the author). To the best of the
author’s knowledge all available algorithms do in fact require the calculation of the
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reaction coordinate’s Hessian; e.g., see [10, 11, 12, 16]. The various contributions to
geometric and standard free energy have concise geometric and physical interpretations
as is worked out in detail in Section 3.1.1. In Section 3.1.2 we also give an answer to
the question in which sense free energy can be understood as a potential of mean force:
if one takes up the position that force is understood as a differential 1-form, then only
the derivative of the geometric free energy qualifies as a (mean) force (viz., the mean
constraint force), while the derivative of the standard free energy exhibits additional
gauge dependencies with regard to transformations of the reaction coordinate.

Section 3.2 is dedicated to the application of the Averaging Principle to diffusion
models, i.e., stochastic differential equations with non-degenerate noise term. If the
reaction coordinate is linear in the configuration variables, then the reduced equations
describe simple diffusion in the free energy landscape; in this particular case, standard
and geometric free energy coincide. If the reaction coordinate is nonlinear, the
application of the Averaging Principle requires that we write the equation globally
in terms of the resolved and the unresolved coordinates. Not only is this difficult
(or even impossible), but it also makes the resulting equations in some respects
intransparent. Therefore we take advantage of the fact that the reaction coordinate
foliates configuration space and consider only local averages of the dynamics on each
leaf, where each leaf is defined by a specific value of the reaction coordinate. The
global picture can then be reconstructed by endowing the locally averaged equations
with an appropriate Riemannian metric that is induced by the reaction coordinate
and is defined for all of its possible values (Section 3.2.2). Although the just described
approach is no longer covered by the Averaging Principle, it turns out that the reduced
system is again an Itô equation which is covariant under transformations of the reaction
coordinate and has a straightforward physical interpretation as a diffusion equation
on a Riemannian manifold. In particular the effective potential energy is given by
the geometric free energy. We briefly illustrate the method by suitable examples (see
Examples 3.10 and 3.11) and discuss its relation to a related approach [13].

For mechanical systems the situation is more complicated, since the equations are
essentially second-order, and thus the requirement that the fast dynamics exhibits a
unique invariant measure for all values of the slow coordinates is difficult to handle
analytically and numerically (see Example 3.12). Therefore we resort to projection
operator techniques or least-square approximations such as optimal prediction [64].
Though similar to standard averaging, these methods account for the fact that the
equations are second-order. As Chorin & Hald have proved in [56], optimal prediction
for Hamiltonian systems leads to reduced models that are again Hamiltonian. Based
on considerations therein, we derive a new and simple expression (3.63) for the
effective total energy that allows for a lucid interpretation as a mechanical system
on a Riemannian manifold which is spanned by the reaction coordinate. As in the
Brownian dynamics case, we demonstrate that the effective potential is given by the
geometric free energy. More sophisticated projection operator techniques like the Mori-
Zwanzig procedure involve the derivation of a generalized Langevin equation, which is
a suggestive way to rewrite Hamilton’s equations as a Langevin-like equation that is
formally equivalent [49, 50]. However we emphasize that the equivalence is only formal,
for the derivation relies on the tacit (but wrong) assumption that the Hamiltonian
system has a unique invariant measure. Although theoretically appealing, the ideas
of Mori and Zwanzig have barely any practical relevance for studying complicated
molecular processes; here we mention it only for the sake of completeness, while
pointing out certain difficulties in connexion with the derivation of the generalized
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Langevin equation (see Remark 3.17 and the preceding paragraph).
Finally in Section 3.4, we propose an ad-hoc alternative to averaging and optimal

prediction that is based on the observation that the unresolved degrees of freedom
often have small amplitude and can thus be approximated by harmonic motions. By
averaging over these modes one ends up with semi-analytic reduced models (both
diffusive and mechanical) that live only on the essential subspace, but still have few free
parameters. Since the parametrization involves only the unresolved parts of a molecule,
these models are easy to compute at the cost of restricted physical interpretability.
Two interesting aspects emerge in connexion with the semi-analytic models: First,
the reduced models are relevant in the context of stiff-bond approximations, since
they explain how the dynamics is altered, when infinitely stiff bonds are replaced
by rigid bonds (i.e., constraints). Work in this direction has been done by Hinch
[74] for diffusive systems and by van Kampen & Lodder [75] and Reich [28] for
mechanical systems. Although we do not contribute new results regarding rigid-
bond approximations, knowledge about practical implications thereof are still not
widespread in the molecular dynamics community (e.g., see [76]). Second, there are
some interesting relations to adiabatic perturbation problems in mechanics [27]. For
instance, it is well-known that averaging problems for small oscillations may suffer from
resonances between the oscillators’ frequencies [20]. It seems, however, that resonances
do not play a role, if the system is appropriately thermalized. Since investigating
resonance effects in stochastic Hamiltonian systems or Brownian motion in detail is
far beyond the scope of this thesis, we provide only numerical evidence for this claim
in Section 3.4.1. However more careful studies would be desirable.

To some extend reduced modelling results in the calculation of (geometric) free
energy profiles. In fact there is a bunch of literature that addresses standard free
energy calculation by means of Thermodynamic Integration, e.g., [71, 77]. However
Thermodynamic Integration proceeds by constrained integration, and it is by no means
clear how standard thermostatting techniques fit constrained integration. It is striking
that the question of how to sample the correct probability measure (constrained
Gibbs measure) is typically ignored; e.g., see [10, 11, 78]. In particular there is a
lot of confusion in the literature whether constrained Hamiltonian systems inherit
fundamental thermodynamical properties from their unconstrained counterparts. For
example, it is common sense in the molecular dynamics community that constrained
Hamiltonian flows do not preserve phase space volume; e.g., see [73, 72, 79, 80].
Additionally there is an ongoing discussion [16] concerning the impact of so-called
hidden constraints on the invariant distribution of constrained second-order systems
and its relation to first-order systems. (Again this remark alludes to the co-area
formula and the problem of Blue Moon reweighting for first-order systems.) We
provide the theoretical background regarding constrained mechanical systems in
Section 4.1. To this end, we basically review available results from the literature
[66, 81]; in particular we adopt an argument in [82] that proves that constrained
Hamiltonian systems are symplectic and therefore volume-preserving (Lemma 4.3).
Taking advantage of this property, we then construct a novel hybrid Monte-Carlo
(HMC) scheme that can be used together with the RATTLE symplectic integrator
for constrained Hamiltonian systems. Following an idea in [83], we can prove that
the corresponding discrete Markov chain is ergodic with respect to the constrained
Gibbs measure on configuration space (Proposition 4.12). Related results for Brownian
motion have recently become available in the work of Lelièvre et al. [17]. Therein,
however, the authors prove ergodicity only for the time-continuous process, while
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disregarding discretization issues. In Section 4.2.3 we generalize their results and
construct a constrained Langevin dynamics, equation (4.27), that conserves a given
holonomic constraint and that preserves the constrained Gibbs measure. (For this
purpose we once more take advantage of the similarity between Hamilton and Langevin
dynamics, borrowing ideas from index reduction techniques for differential-algebraic
equations.) Furthermore we suggest a discretization scheme, equations (4.29)–(4.32),
that can be regarded as a stochastic modification of the RATTLE algorithm. We
should mention that an almost identical algorithm has been published by Vanden-
Eijnden & Ciccotti [84] during the course of this thesis, where the authors could even
prove that the algorithm is second-order accurate. However the article does not address
issues of invariant measures and constrained probability distributions. We conclude
with Section 4.3 by discussing the application of the various sampling schemes to
the calculation of free energy profiles. We especially propose a novel algorithm that
does neither require Blue Moon reweighting of the expectation values nor calculating
second derivatives of the reaction coordinate (see Remark 4.14).

We illustrate the reduction schemes as well as the constrained hybrid Monte-Carlo
sampling by means of several examples in Section 5. Both averaged Brownian motion
and optimal prediction perform remarkably well in terms of dynamical observables
such as transition rates or decay of correlations. (Especially for the latter approach
this comes rather unexpected as optimal prediction for deterministic Hamiltonian
system is known to yield fairly poor results; e.g., see Chorin et al. [64].) Moreover
optimal prediction reveals an interesting (and yet unknown) physical mechanism that
explains the backbone dynamics of a chain-like molecule: for n-butane, for example,
we observe that the angular kinetic energy favours the trans conformation, which
is characterized by a rather slim shape with respect to the principal axis of inertia
and which should be contrasted with the bulky cis conformations. Prima facie this
seems counter-intuitive, since one could expect that the mass distribution of a rotating
molecule tends to spread out due to centrifugal forces. However here the situation
is different, for the backbone rotation is an internal motion of the molecule. Since
the kinetic energy tends to stabilize the more compact trans conformation by slightly
increasing the total energy of the cis conformations, we term the induced force internal
centripetal force. The same rotation mechanism explains the different conformational
stabilities of the glycine dipeptide analogue, for which we study free energy landscapes
and the optimal prediction Hamiltonian along the two central backbone angles: also
here the kinetic energy stabilizes the extended C5 conformations by slightly lowering
their total energy as compared to the bulky C7 conformations. Our calculations also
reveal that the kinetic energy preserves the molecular potential’s symmetry under
parity transformations in the Ramachandran plane, but exhibits an even higher
symmetry itself: the matrix elements of the effective inverse metric are (approximately)
invariant under reflections of the two backbone angles independently, where the slight
perturbation of the symmetry reflects the non-uniform mass distribution along the
peptide’s backbone. To the best of the author’s knowledge symmetry-breaking effects
of the peptide backbones’ mass-distribution have not been studied so far, and more
careful studies would be desirable.

Finally, we survey known results from the literature that deal with corrections to
the Averaging Principle for non-degenerate stochastic differential equations. Problems
involve moderate [85, 86] and large deviations [24, 35] or deviations on long time scales
[33, 34]. We mention them for the sake of completeness and encourage their application
to molecular dynamics problems in the future.
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Summary of the main achievements

• The transformation properties of mechanical systems, non-degenerate diffusion
equations (Brownian motion) and hypo-elliptic Langevin equations are studied.
Restricting our attention to point transformations, it is a common feature of
all such systems that they transform as second-order vector fields. In case of the
diffusion equation, this property reflects the well-known Itô formula. For Langevin
equations the Itô-Stratonovich ambiguity vanishes.

• The various contributions to standard and geometric free energy have concise
geometric and physical interpretations. In particular we reveal that the geometric
free energy is the potential of mean constraint force. As a by-product we provide
an alternative version of the famous Blue Moon ensemble method that turns
out to be an instance of Federer’s co-area formula. It therefore also applies to
constrained first-order systems such as Brownian motion.

• For both averaging and optimal prediction we find that the geometric free energy
appears in the reduced equations as an effective potential, which casts it a
fundamental dynamical quantity. For all practical purposes the optimal prediction
Hamiltonian can be approximated by a sum of kinetic and potential energy (i.e.,
geometric free energy), where the kinetic energy is defined with respect to an
averaged Riemannian metric that is induced by the reaction coordinate.

• Hybrid Monte-Carlo (HMC) for constrained mechanical systems is a novel
algorithm for sampling constrained Gibbs measures and free energy profiles. We
prove a Law of Large Numbers for the time-discrete HMC Markov chain that
holds for any stable step-size. Exploiting the close relationship between Hamilton
and Langevin equations, we derive a constrained version of the Langevin dynamics
that preserves the constrained canonical distribution and allows for calculating
free energy profiles without reweighting or computing second derivatives.

• The performance of the different reduction schemes is demonstrated by means
of two molecular examples: n-butane and the glycine dipeptide analogue. The
reduced systems reproduce essential dynamical observables such as correlations
or transition probabilities. Even more important, the models reveal a common
rotation mechanism for the molecules’ conformational dynamics that can be
explained by the interplay between geometric free energy and the (extrinsic)
geometry of the reaction coordinate.

Some matter of notation We will make extended use of abstract index notations.
Often we will use lowercase Greek indices α, β, γ and Latin indices i, j, k to distinguish
between different types of coordinates (e.g., resolved and unresolved coordinates) with
respect to an unspecified basis. Note, however, that this distinction is sometimes
relaxed; then we use Latin indices h, l,m, n to label arbitrary coordinates. Moreover
we use Einstein’s summation convention, that is, we sum over double upper and lower
indices, where the range of the respective indices should be clear from the context.
Using a particular coordinate system, for example, polar coordinates (r, ϕ, ϑ) we may
also write g12 or grϕ to denote the (1, 2) component of a contravariant tensor g (e.g.,
the inverse metric tensor). The reader should be aware of some other abusive notations
that are common in the physical literature. For example, we will use the dot (time
derivative) to denote tangent vectors. That is, if q = (q1, . . . qn) denotes coordinates on
a configuration manifold Q, then we write (q, q̇) to denote the respective coordinates
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on the tangent space TQ. We employ so-called mass-scaled coordinates which allows
us to set the molecular mass to unity throughout this thesis. This is convenient, for it
considerably simplifies the notation, and it allows us to identify tangent and cotangent
space in the sense that q̇ = p. In doing so the velocity vector q̇ on the left is an element
of the tangent space TqQ, whereas the momentum on right hand side is from the dual
space T ∗

qQ. In general this identification will be procured by the metric tensor g on Q,
but in the Euclidean case we will exploit this identification without further comment.

The various types of differential operators appearing in the text may seem a little
confusing. Often it is important to distinguish between derivatives that are denoted
by df or ∇f , and the gradient of a function f that is written as grad f (the latter is
a vector field, whereas the former denotes a 1-form). For vector fields X,Y we will
sometimes use the symbols ∇XY for the covariant derivative between vector fields, or
dY (X) = ∇Y ·X to denote the directional derivative of a vector field along a vector.
Moreover the bold face symbol Df means the Jacobian of a vector-valued function f .
We may also use the notation D1f(·, ·) or D2f(·, ·) to indicate derivatives with respect
to the first or second slot (e.g., slow and fast coordinates) of a function.
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