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Abstract

For an affine toric variety Spec(A4) we give a convex geometric description of the Hodge decom-
position of its Hochschild cohomology. Under certain assumptions we compute the dimensions
of the Hodge summands 7| (1i)(A), generalizing the existing results about the André-Quillen co-

homology group T(ll) (A). We prove that every Poisson structure on a possibly singular affine
toric variety can be quantized in the sense of deformation quantization. Furthermore, we give a
convex geometric description of the Harrison cup product formula T(ll) (A) x T(ll) (A) — T(21) (A),
which gives us the quadratic equations of the versal base space. Moreover, a differential graded
Lie algebra g controlling Poisson deformations of an arbitrary affine variety is constructed. In
the toric case we simplify the computation of the Poisson cohomology groups H*(g).
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1 Introduction

Deformation theory appeared as the investigation of how many complex structures may appear
on a fixed compact manifold. In 19th century Riemann [60] already mentioned 3g — 3 moduli
determining the complex structure of an algebraic curve of genus g > 2.

Following Gerstenhaber’s approach [31]| we consider deformations of algebras. Let k be a field
of characteristic 0 and let A be a k-algebra. A deformation of A over an Artin ring B is a pair
(A, ), where A’ is a B-algebra and 7 : A’®pk — A is an isomorphism of k-algebras. Two such
deformations (A’, 1) and (A", m9) are equivalent if there exists an isomorphism of B-algebras
¢ : A" — A” such that it is compatible with 7 and 7, i.e., such that m = 79 0 (¢ ®p k).

Let us additionally assume that A is equipped with a Poisson structure. Deforming the
product in the direction of the chosen Poisson structure on A leads us to the problem of
deformation quantization, which has been appearing in the literature for many years and was
established by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer in [9]. A major result,
concerning the existence of deformation quantization is Kontsevich’s formality theorem [40,
Theorem 4.6.2|, which implies that every Poisson structure on a real manifold can be quantized,
i.e., admits a star product. Kontsevich [39] also extended the notion of deformation quantization
into the algebro-geometric setting. From Yekutieli’s results [71], [72] it follows that on a smooth
algebraic variety X (under certain cohomological restrictions) every Poisson structure admits
a star product. As in Kontsevich’s case, the construction is canonical and induces a bijection
between the set of formal Poisson structures up to gauge equivalence and the set of star products
up to gauge equivalence.

When X = Spec(A) is a smooth affine variety, we use the following formality theorem:
there exists an Ly,-quasi-isomorphism between the Hochschild differential graded Lie algebra
C*(A)[1] and its cohomology complex H*(A)[1], extending the Hochschild-Kostant-Rosenberg
quasi-isomorphism of these complexes. Dolgushev, Tamarkin and Tsygan [22] proved an even
stronger statement by showing that the Hochschild complex C*(A) is formal as a homotopy
Gerstenhaber algebra. Consequently, every Poisson structure on a smooth affine variety can be
quantized.

In this thesis we drop the smoothness assumption and consider the deformation quantization
problem for possibly singular affine toric varieties. In the singular case the Hochschild-Konstant-
Rosenberg map is no longer a quasi-isomorphism and thus also the n-th Hochschild cohomology
group is no longer isomorphic to the Hodge summand H (”n ) (A) =2 Hom A(QZ| i A). Therefore,
other components of the Hodge decomposition come into play, making the problem of deforma-
tion quantization interesting from the cohomological point of view. For arbitrary singularities,
many parts of the Hodge decomposition are still unknown. The case of complete intersections
has been settled in [30], where Fronsdal and Kontsevich also motivated the problem of defor-
mation quantization on singular varieties. In the toric case Altmann and Sletsjge [6] computed
the Harrison parts of the Hodge decomposition.

Deformation quantization of singular Poisson algebras does not exist in general; see Mathieu
[47| for counterexamples. For known results about quantizing singular Poisson algebras we refer
the reader to [63] and references therein. The associative deformation theory for complex ana-



lytic spaces was developed by Palamodov in [56] and [57]|. For recent developments concerning
the problem of deformation quantization in derived geometry, see [15].

Studying noncommutative deformations (also called quantizations) of toric varieties is im-
portant for constructing and enumerating noncommutative instantons (see [17], [18]), which
is closely related to the computation of Donaldson-Thomas invariants on toric threefolds (see
[37], [16]).

Considering only commutative deformations of algebras, the whole information about the
singularity of A is encoded in the so called versal base space. In the case of complete intersection
singularities, the versal base space is obtained by certain perturbations of the defining equations.
As soon as we leave the class of complete intersections, computing the versal base space becomes
a challenging problem.

For toric surfaces Kollar and Shepherd-Barron [38] showed that there is a correspondence
between certain partial resolutions (P-resolutions) and reduced versal base components. More-
over, Arndt [7] obtained equations for the versal base space. Furthermore, in [21] and [67]
Christophersen and Stevens give a simpler set of equations for each reduced component of
the versal base space. Altmann [4] constructed the versal family for isolated toric Gorenstein
singularities.

In [5] Altmann also constructed infinitely many one-parameter deformations for non-isolated
three-dimensional toric Gorenstein singularities and explained that the answers to the following
questions would provide important information about three-dimensional flips.

1. Which sets of one-parameter families belong to a common irreducible component of the
base space?

2. How can those families be combined to find a general fiber of this component?

Note that if X = Spec(A) is not an isolated singularity, the versal base space is infinite di-
mensional. However, as long as T, (21)(A) < 00, we can still present the versal base space as an
analytic set of finite definition (see e.g. [69]).

In order to better understand the commutative deformation theory of X, we need to under-
stand the cup product T(ll)(A) X T(ll)(A) — T(Ql)(A), which will also give us quadratic equations
of the versal base space and thus provide a partial answer to the first question above. A for-
mula for computing the cup product for toric varieties that are smooth in codimension 2 was
obtained in [3]|. Since this formula is especially simple in the case of three-dimensional isolated
toric Gorenstein singularities, it helped Altmann to construct the versal base space in [4]. The
cup product of toric varieties was also analyzed by Sletsjge [65].

In recent years there has been a lot of interest in Poisson deformations, i.e., in deformations
of a pair consisting of a variety and a Poisson structure on it (see [28], [33], [52], [53], [54]).

1.1 Main results

We now provide an overview of the thesis and state our main results. Some parts of this
dissertation have appeared in [27]. We expect that the reader is familiar with the language of
algebraic and toric geometry on the level of [34] and [20].

In Chapter 2 we recall definitions and some techniques for computing Hochschild cohomology.
Let H"(A) denote the n-th Hochschild cohomology group of A and let

H™(A) = HJ}(A) @ - & HJ (A)
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be its Hodge decomposition. The higher André-Quillen cohomology groups T(:L; Z(A) are isomor-
phic to HZ";)(A) for ¢ = 1,...,n. Analyzing the Kiinneth spectral sequence and using Michler’s
results in [49], [50], give us the following.

Main result 1 (Proposition 2.4.5, Theorem 2.5.9): Let X = Spec(A) be smooth in

codimension d. For each i > 1 and 0 < j < d+ 1, we have T(JZ,)(A) = ExtQ(lek,A). For

reduced isolated hypersurfaces in AN of dimension > 2 we obtain that

9 3] ) .
Hn(A)Q HomA<QZ|k7A)®A/(aTivaT{f277ax{\,) an<N
- le] 0 0 .
A)FE 5L 2h) ifn > N.

In Chapter 3 we compute the Hochschild cohomology for affine toric varieties. Let X, =
Spec(A) be an affine toric variety given by a cone o = (ai,...,ay) C Nr. We have A =
k[oV N M], where M is the dual lattice of the lattice N, and k is a field of characteristic 0.

For an element R € M, let T(IESR(A) ~H Z;ri’R(A) denote the degree R part of the k-th higher

André-Quillen cohomology group T, (lz) (A). The results describing T(ki’)R(A) are obtained using
spectral sequence arguments on the double complex defined in Section 3.3.

Main result 2 (Theorem 3.4.3): Let X, = Spec(A) be an affine toric variety that is smooth
in codimension d. Let i > 1 be a fized integer. Then the k-th cohomology group of the complex

0— C’Zi)(Mk; k) — @jyzl(jfi)(Spank EJR; k) = — EBTSo,dimT:dHC@)(Spank EEE) (1.1

is 1somorphic to T(k;s_R(A) fork=0,..,d (Cfi) (My; k) is the degree O term). Moreover, if X
is an isolated singularity (i.e. dim(X) =d+ 1), then
{ Coker ( @r<gdimr=a Cly (KT k) = Cly (KJ5 k) if k = dim(X)

H(]i;)_dim(x)ﬂ(f(f; k) if k> dim(X) + 1.

6y (A) =

Analyzing the complex (1.1) for d = 1 gives us a formula for T(li)(A) in the case of toric
surfaces (see Section 3.5). For higher dimensional toric varieties we obtain the following. Let

AR):=[R=1]={a€ Ng | (a,R) =1} C Ngr
be an affine space. We define the cross-cut of o in degree R to be the polyhedron Q(R) :=
oN[R=1] C A(R).

Main result 3 (Proposition 3.6.2, Theorem 3.6.7): If Q(R) lies in a two-dimensional
affine space, we have

N
: —R i i n i
dimy, T(li) (A) = max {O,ZV]- (R) — Z Qi(R) — <2> + SQ(R)}. (1.2)
Jj=1 djkEQ(R)
Moreover, if X = Spec(A) is an n-dimensional affine cone over a smooth toric Fano variety
(n > 3), then
N-n ifi=n-1

1 _
T(i)(A) o { 0 otherwise .

11



The numbers VﬂR), Q;k(R) and 522( R are easily computed and thus the equation (1.2) gives

us an explicit formula for T(ll.)(—R) in the case of three-dimensional affine toric varieties (see
Subsection 3.6.1).

In Chapter 4 we consider the problem of deformation quantization on singular affine toric
varieties. We assume additionally that our field & is also algebraically closed. Using some of
the results from Chapter 3, together with Maurer-Cartan formalism, Kontsevich’s formality
theorem (or more precisely its Corollary 4.3.3) and the GIT quotient construction for an affine
toric variety without torus factors, we obtain the following.

Main result 4 (Theorem 4.4.4): Ewvery Poisson structure on an affine toric variety can be
quantized.

In Chapter 5 we analyze commutative deformations of affine toric varieties. They are con-
trolled by the Harrison differential graded Lie algebra, which has cohomology groups isomorphic
to T(;(A), k > 0.

In particular, we are interested in affine Gorenstein toric varieties, which are obtained by
putting a lattice polytope @@ C A into the affine hyperplane A x {1} € A x R =: Ny and
defining o := Cone(Q), the cone over ). Then the canonical degree R* equals (0,1). Focusing
on three-dimensional Gorenstein toric varieties, we arrange the rays ai,...,any of o in a cycle
and we define a1 := a1 and d; := aj11 — a;. Altmann [4] showed that T(ll)(fR*) =V/k-1,
where V := {t = (t1,...,tn) € kV | Z;VZI tjd; = 0} denotes the set of (generalized) Minkowski
summands. The complex (1.1) for ¢ = 1 and R = 2R* is in the case of three-dimensional
Gorenstein singularities equal to

0= Ny 5 NY S @ (Ny/6;d;) 2 (Spany, R*)* — 0, (1.3)
where ¥(z) = (2, ..., z), 8(b1, ... bw) = (b1 — bz, by = bs, ... by —b1), n(qu, . qn) = >0 g; and

5 0 if the 2-face (aj, a;j41) is smooth
77 1 if the 2-face (aj,a;41) is not smooth.

Main result 5 (Theorem 5.1.5, Theorem 5.2.3): Let X, = Spec(A) be an arbitrary
toric variety and let R,S € M. We give a convex geometric description of the Harrison cup
product T(ll’)_R(A) X T(ll’)_S(A) — T(Ql’)_R_S(A). Focusing on three-dimensional toric Gorenstein
singularities, the cup product T(ll’)_ R (4) x T(ll’)_ 2R 4) > T(Zl)_ R (A) equals the bilinear map
V/(k-1)xV/(k-1)+— kern/im¢ (1.4)

(t,8) = (s1t1d1, ..., sNtNdAN).

In particular, we show that for three-dimensional Gorenstein isolated singularities our cup prod-
uct formula agrees with Altmann’s formula in [3|, which was obtained with different methods.

12



In Section 5.4, using the cup product formula (1.4) and following Altmann’s construction in
[4], we conjecture a set of equations of the versal base space of Gorenstein toric singularities in
degree —R*. In Section 5.5 we construct a differential graded Lie algebra on the complex (1.3),
which extends the cup product formula (1.4).

In Chapter 6 we study Poisson deformations, i.e., deformations of a pair consisting of a va-
riety and a Poisson structure on it.

Main result 6 (Theorem 6.1.3, Proposition 6.2.2): We construct a differential graded
Lie algebra g controlling the Poisson deformations. Focusing on toric varieties we also simplify
the computation of the Poisson cohomology groups H*(g) and the cup product of the Hochschild
differential graded Lie algebra H?(A) x H*(A) — H3(A).

13



2 Differential graded Lie algebras and
deformation theory

In this chapter we study differential graded Lie algebras and their applications to deformation
theory. In Section 2.1 we recall formal deformation theory, where one of the most important
results is Schlessinger’s criterion for a functor to have a hull or to be prorepresentable. In Section
2.2 we use the language of differential graded Lie algebras to define the cotangent complex,
which is essential for studying deformations of affine varieties. In Section 2.3 we construct
the Hochschild differential graded Lie algebra and prove that it controls the deformations of
associative algebras. Section 2.4 relates Hochschild cohomology groups in the case of normal
affine varieties with Ext groups. Finally, in Section 2.5 we provide an explicit calculation of
the Hochschild (co)-homology groups in the case of reduced isolated hypersurfaces.

2.1 Formal deformation theory

Let k be a field of characteristic 0 and let X be a variety, i.e., an integral scheme over k, such
that the structure morphism X — Spec(k) is separated and of finite type.

Definition 1. A local deformation of X is a cartesian diagram

b

Spec(k) — S
where 7 is a flat morphism and S = Spec(B) where B is a local k-algebra with residue field k,
and X is identified with the fibre over the closed point.

If B = k[t]/t? is the ring of dual numbers, then we speak of a first order deformation. Given
two local deformations of X

il i2
X — X X — X
Spec(k) — S Spec(k) — S

parametrised by the same base S = Spec(B), an isomorphism of local deformations is defined
to be a morphism f : X — X’ of schemes over S inducing the identity on the closed fibre, i.e.,
such that the diagram in Figure 2.1 is commutative.

14



X

RN
XfX
S

Figure 2.1: A commutative diagram of local deformations

Before we define the above construction as a functor, we need the following definitions. An
Artin ring is a ring A in which every descending sequence of ideals

.CclyclhclhcA

stabilizes, i.e., there exists n such that we have I, = I, for all m > n. Let (R, mpg) and (S, mg)
be local rings. A morphism f: R — S is a local morphism if f(mg) C mg.

Definition 2. Let A be the category of local Artin k-algebras with the residue field k (with
local homomorphisms as morphisms).

Definition 3. The completion R of a local ring (R, mp) is the inverse limit of the factor rings

R := lim (R/mp).

neN
We say that R is complete if the natural morphism R — R is an isomorphism.

Definition 4. Let A be the category of complete noetherian local k-algebras R such that
R, = R/ml, is in A for all n € N. Note that A is a subcategory of A.

Let S denote the category of sets.

Definition 5. We define the covariant functor Defy : A — S of local deformations up to
isomorphism.

We want to know if this functor is representable, i.e., if there exists a noetherian local k-
algebra B and a local deformation

Spec(k) — Spec(B)

which is universal, i.e., such that any other local deformation (over a base Spec(A)) is obtained
by pulling back under a unique Spec(A) — Spec(B).

We first analyze the restriction of Defx to A.

15



Definition 6. Let us denote by Def x the restriction of the functor DAefX to A. We call Def x
the deformation functor of X.

We consider a covariant functor F' : A — S, such that F'(k) is a set that contains just one
element (we denote this set with ).

Definition 7. A covariant functor F' : A — S (with F(k) = %) is called a functor of Artin
rings. To every complete local k-algebra R we can associate a functor of Artin rings hr by

hr(A) := Hom(R, A).
A functor that is isomorphic to hg for some R is called prorepresentable.

Remark 1. Let R € A and let A € A with m” = 0 for some n. It holds that Hom(R, A) =
Hom(R/m', A).

One of the most important results of classical formal deformation theory is Schlessinger’s
criterion for a functor F' to be pro-representable. Before we recall this criterion we need some
definitions.

Note that the category A has fibered direct products. If A’ — A and A” — A are morphisms
in A, we take A’ x 4 A” to be the set-theoretic fibered product

{(a’,a") | a’ and a” have the same image in A}.

The ring operations extend naturally, giving another object of A, and this object is also the
categorical fibered direct product in A.

By € and ¢; we will always mean indeterminates annihilated by the maximal ideal, and in
particular of square zero (e.g., the algebra k[e] has dimension 2 and k[e, €5] has dimension 3
as a k-vector space).

Definition 8. We call F'(kle]) the tangent space of F.

The tangent space of a functor hg is equal to the dual vector space of mp/ m%.
There is a bijection between the set F'(R) := Hm o F(R/m',) and the set of morphisms
Hom(hg, F') (see [35, Chapter 15]).

Definition 9. Let R € A and choose ¢ € F(R) By above ¢ corresponds to a morphism
hr — F. We call such a pair (R, &) a pro-couple.

If F is pro-representable and (R, £) is a pro-couple corresponding to the isomorphism hp — F,
then we say that the pro-couple (R, &) pro-represents the functor F.
For every f: R — S we denote

F(f): F(R) — F(S)
to be the map induced by the maps F(R/m') — F(S/m%), n > 1.

Definition 10. A morphism F' — G is called smooth if for any surjective morphism A — B
in A, the map

is surjective.

16



Definition 11. A functor F' is smooth if the morphism F' — # is smooth, i.e., if F(A) — F(B)
is surjective for every surjective morphism A — B.

Definition 12. Let (R,{) be a pro-couple for F' : A — S corresponding to a morphism
hr — F. Then (R,¢) is called a hull of F if the corresponding map hr — F' is smooth and
the induced map

Hom(R, k[e]) — F(kle])
on tangent spaces is bijective.

Definition 13. A small extension in A (resp. fl) is a short exact sequence
e:0->M—-B—A—0,

where B — A is in A (resp. A) and mpM = 0. Thus M is a B/mp-vector space. A small
extension is called principal if dimp/p, (M) = 1.

Definition 14. Given a functor F : A — S and morphisms f: A’ — A, g: A” — Ain A, let
f * g be the natural map

F(A" x4 A") = F(A") x p(ay F(A"). (2.1)
Let us introduce Schlessinger’s conditions (Hi), (H2), (H3) and (Ha).
Definition 15. (H;) The map (2.1) is surjective if g : A” — A is a principal small extension.
(H3) The map (2.1) is bijective if A” = k[e] and A = k.

(H3) Conditions (H;) and (Hz) hold (which implies that F'(k[e]) is a k-vector space) and
F(k[e]) is a finite dimensional k-vector space.

(Hy) The map (2.1) is bijective if g : A” — A is a principal small extension.
We now present Schlessinger’s criterion.

Theorem 2.1.1. Let F: A — S be a functor of Artin rings. Then F has a hull if and only if
F satisfies (Hy), (H2) and (Hs). Furthermore, F' is pro-representable if and only if in addition
F satisfies (Hy).

Proof. See Hartshorne [35, Theorem 16.2]. O

Theorem 2.1.2. Let X be a scheme over k. Then the functor Defx (see Definition 6) has a
hull under either of the following hypothesis:

o X is affine with isolated singularities,
e X 1is projective.
Proof. See Hartshorne [35, Theorem 18.1]. O

Definition 16. If the pro-couple (R,§) of a functor F'is a hull, then we say that (R, &) is a
versal family for F.

Remark 2. Note that our definition of a versal family is the same as the definition of a
miniversal family in [35] and a semiuniversal couple in [64].

17



A functor which has infinite-dimensional tangent space does not have a versal family.

Definition 17. Let (R,&) and (S,7n) be two pro-couples of a functor F. A morphism of pro-
couples

[ (R, §) = (5,m)

is a morphism f : R — S in A such that F(f)(ﬁ) =n. We call f an isomorphism of pro-couples
if in addition f : R — S is an isomorphism.

Proposition 2.1.3. If (R,§) and (S, p) are versal families for F, there exists an isomorphism
of versal families (R, &) =2 (S, u) which is not necessarily unique.

Proof. See [64, Proposition 2.2.7]. O

Definition 18. If the deformation functor Defx has a versal family (R,¢), then R is by
Proposition 2.1.3 uniquely determined up to isomorphism and we call R the versal base space.

2.2 Differential graded (Lie) algebras and the cotangent complex

In the last thirty years differential graded Lie algebras have become a very important tool
in deformation theory. Using the language of differential graded Lie algebras we define the
cotangent complex, which plays a crucial role in the deformation theory of affine varieties. We
will follow Manetti [45], [46].

2.2.1 Differential graded (Lie) algebras

Definition 19. We denote by G the category of Z-graded k-vector spaces. Objects of G are
k-vector spaces endowed with a Z-graded direct sum decomposition (V € G = V = @,z Vi).
If a € V; C V for some i, we say that a has degree i and we denote it by |a| = i. Morphisms in
G are degree-preserving linear maps.

Given two graded vector spaces V,W € G we denote by Homj (V, W) the vector space of
k-linear maps f : V — W such that f(V;) C Wiy, for every i € Z. Observe that Hom)(V, W) =
Homg(V, W) is the space of morphisms in the category G. Given V,W € G we set

VoW :=®ez(VeW), where (VW) =&zV; @ Wi_j,
Hom*(V, W) := &, Homf(V, W).

Definition 20. We denote by DG the category of Z-graded differential k-vector spaces (also
called complexes of vector spaces). The objects of DG are pairs (V,d), where V = @®;c7V; is
an object of G and d : V — V is a linear map called the differential, such that d(V;) C Viyq
and d?> = d od = 0. Morphisms in DG are degree-preserving linear maps commuting with the
differentials.

We will often consider G as the full subcategory of DG whose objects are the complexes (V,0)
with trivial differential.

Given (V,d) in DG we define Z*(V) := ker(d : V' — V) BY(V) := im(d : Vi~! — V?)
and we call H!(V) := Z(V)/B(V) the i-th cohomology group of V.

18



Definition 21. A morphism in DG is called quasi-isomorphism if it induces an isomorphism
in cohomology. A differential graded vector space (V,d) is called acyclic if

H(V) := @iz H' (V) = 0.

For every integer n € Z we denote by k[n] € G C DG the object with homogenous components
equal to
E ifti+n=0
klnli = { 0 otherwise.

Definition 22. Given n € Z, the shift functor [n] : DG — DG is defined by setting V[n] =
kin] @V, V € DG, fn] = Idyy @ f, f € Morpg. More informally, the complex V[n] is the

n

complex V' with degrees shifted by n, i.e., V[n]; = Viyn, and differentials multiplied by (—1)".

Definition 23. An associative graded algebra is a Z-graded vector space A = @ A; € G endowed
with a product A; x A; — A;y; satisfying the properties:

1. a(bc) = (ab)c,
2. a(b+c) = ab+ ac, (a + b)c = ac + be,
3. ab = (—1)lelllpg for a, b homogeneous (Koszul sign convention).

Definition 24. A differential graded algebra (dg-algebra for short) is the data of an associative
graded algebra A and a k-linear map d : A — A, called differential, with the properties:

1. d(An) C An+1, d? = 0,
2. d(ab) = d(a)b + (—1)l%lad(b) (graded Leibnitz rule).

Definition 25. A differential graded Lie algebra (dgla for short) is the data of a Z-graded
differential vector space (g, d) together with a bilinear map [, ]: g x g — g (called bracket) of
degree 0 such that

1. [a,b] = —(=1)l9ll[b, a] (graded skewsymmetry),

2. [a, [, c]] = [[a,b],c] + (—=1)Ill[b, [a, ] (graded Jacobi identity),

3. dla,b] = [da,b] + (=1)l*[a, db] (graded Leibnitz rule).

A morphism f : (g,da) — (h,dp) of differential graded algebras is a morphism of graded
algebras commuting with differentials (i.e. daf, = fny1dp for every n).
2.2.2 The Maurer-Cartan equation and gauge equivalence

Definition 26. For a dgla g we define the functor of Artin rings MCy : A — S by

1
B {zeg@mp | d(x)+§[$,$] = 0}.

MCy is said to be the Maurer-Cartan functor associated to g. Elements of MCy(B) are the
Maurer-Cartan elements of the dgla g ® mp.
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Definition 27. Let G denote the category of groups and let g be a dgla. We define the functor
Gg : A — G given by
B+ exp(g’ ® mp),

where exp is the standard exponential functor on Lie algebras. Gy is said to be the gauge
functor associated to g.

Remark 3. Note that the functor Gy is well defined since m; = 0 for some n € N.

The gauge functor Gy acts naturally on the Maurer-Cartan functor MCgy by the formula
Gg(B) x MCy(B) — MCy(B)

[b’ }n
(n+1)!

(ehx) >z + > (b, ] — d(b)).
n=0

This action is called the gauge action. Note that the image is indeed an element in MCy(B)
(see e.g. Manetti [45]).

Definition 28. Let g be a dgla. The deformation functor of g is the functor of Artin rings
Defy : A — S given by

MCqy(B)

Gy(B)

We say that a dgla g controls a functor F', if Defy = F' holds.

B —

Example 1. Let g be a dgla with H'(g) < oo. To find the solution space of the MC equation
for g we use the following procedure (also called the power series Ansatz; see [66, pp. 64]). We
choose a basis t1, ..., t, of H'(g) and representatives @1, ..., o, € g of this basis. We construct
the local ring R of the solution space of the MC equation as a quotient of k[[t1,...,t,]]. Let
m = (t1,...,t,) denote the maximal ideal of k[[t1,...,t,]]. Over Ry := k[[t1, ..., t,]]/m? we have
the solution ;" ; t;;. To find higher order terms we write

=Y t"a,

|a|>1
where we use multi-variable power series and multi-index notation (¢ = (t1,....,t,)). The
primary obstruction comes from
1 .
2 ety D (Wlpnp] =0 (2.2
|a|=2 li|=l4]=1

We can express the class of [¢;, ;] in H%(g) in terms of a basis Qp,..., Qs as >, CZQ;C The
equation (2.2) is solvable if and only if

1 o
gék) =3 Z cfjtzt] =0,
lil=l15]=1

for all k = 1,...,s. Set Ry := k[[t1,...,ts]]/(g2 + m?), where go = (951),...,955)) and continue
this procedure as in [66]. In many examples (especially when we are considering deformations
of toric varieties) we can find the local ring R of the solution space of the MC equation after
finitely many steps.
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2.2.3 Differential graded modules

Definition 29. Let (A,d) be a dg-algebra. An A-dg module is a differential graded vector
space (M,d), together with two associative distributive multiplication maps A x M — M,
M x A — M with the properties:

1. AiMj C Mi+j7 MZ‘AJ‘ C Mi+j7
2. am = (—1)‘“||m|ma, for homogenous a € A, m € M,
3. d(am) = d(a)m + (—=1)!%lad(m).

Let (A,d4), (N,dy) and (M, dys) be dg-algebras. The tensor product N ® 4 M is defined as
the quotient of N ®; M by the graded submodules generated by all elements na ® m —n ® am.
The tensor product N ® 4 M has a natural structure of an A-dg-module with a(n®@m) := an®m
and the differential

d(n & m) = dy(2) @ y + (—1)z © du(y),

with x € N, |z| =¢q, y € M.
Given two A-dg modules (M, dys), (N,dy) we denote

Hom'y (M, N) :={f € Hom} (M, N) | f(am) = f(m)a,m € M,a € A},
Hom’ (M, N) := @®pezHom’y (M, N).

The graded vector space Hom’ (M, N) has a natural structure of an A-dg-module with
(af)(m) :=af(m) and the differential

d : Hom’ (M, N) — Hom{" (M, N), df =dno f— (—1)"fody.
Note that f € Hom% (M, N) is a morphism of A-dg-modules if and only if df = 0.

Definition 30. A homotopy between two morphisms of dg-modules f,g : M — N is an element
h € Homgl(M7 N) such that f — g = dh = dyh + hdy;. We also say that f is homotopic to g.

The relation f is homotopic to g is an equivalence relation.

Definition 31. We say that dg-modules M and N are homotopically equivalent if there exist
maps f: M — N and g : N — M such that f o g is homotopic to idy and g o f is homotopic
to idy.

Given a morphism of dg-algebras B — A and an A-dg-module M we set:
Der’g (A, M) := {¢ € Hom}.(A, M) | ¢(ab) = ¢(a)b+ (=1)""lagp(b), &(B) =0},

Derp(A, M) := @pezDer'y (A, M).

As in the case of Hom", there exists a structure of an A-dg-module on Der;(A, M) with
(ap)(b) := ap(b) and the differential

d : Derly(A, M) — Der'yt ' (A, M), d¢ = dp¢ — (—1)"¢da.

Given ¢ € Der's(A, M) and f € Hom} (M, N) their composition f¢ belongs to Der’g’m(A, N).

21



Proposition 2.2.1. Let B — A be a morphism of dg-algebras: there exists an A-dg module
Qap together with a closed derivation d : A — Qg (i.e. dd = 0, where § is the differential
of Qa ) of degree 0, such that for every A-dg module M the composition with d gives an
isomorphism

Hom7 (245, M) = Derg (A, M).

Proof. The construction is similar to the case of algebras. We define the graded vector space
Fy= @Adﬂf,

where the direct sum runs through homogenous elements x € A. We define |dz| = |z|. Fj is
an A-dg-module with a(bdx) := abdz and the differential

§(adz) = dadz + (—1)1ad(sz),

where we also denote by § the differential of A. Note that in particular §(dx) = d(éx). Let
I C F4 be the homogenous submodule generated by the elements

d(z +vy) —dz — dy, d(zy) — z(dy) — (—=1)*W¥y(dz), d(b) for b € B.
Since 6(I) C I, the quotient Q45 := Fa/I is still an A-dg-module. O

Definition 32. The module Qyp is called the module of relative Kdihler differentials of A over
B.

For basic properties of the module of Kéahler differentials in the case of algebras see Mat-
sumura [48].
2.2.4 The cotangent complex

In this subsection we define the cotangent complex using differential graded algebras and their
semifree resolutions. Note that original idea by Quillen [61] was to define it using simplicial
algebras and free simplicial resolutions. Palamodov [55] used the Tyurina resolution.

Definition 33. A dg-algebra (R, s) with differential s is called semifree if:
1. The underlying graded algebra R is a polynomial algebra over k: k[x; | i € I].

2. There exists a filtration ) = I(0) C I(1) C --- ,UpenI(n) = I, such that s(z;) € R(n) for
every i € I(n + 1), where by definition R(n) = Klz; | i € I(n)].

Note that R(0) = k and R = UR(n).

Definition 34. A semifree resolution of a dg-algebra A is a surjective quasi-isomorphism
R — A where R is a semifree dg-algebra.

Theorem 2.2.2. Every dg-algebra A admits a semifree resolution.

Proof. We prove it just in the case of algebras (i.e. A has only one non-zero degree Ay); for a
general proof see Manetti [46]. We can find a surjective map Py := k[x;, | i0 € ly] — A, for
some index set Iy (mapping z;, to the generators of A). Now we take generators a;,, ¢ € I; of
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the kernel of the above map, and we define P_; := k[z;, | i1 € [1] — Py, mapping x;, to a;,.
We continue with this procedure and we get that the complex

"'P,2—>P,1—)P0—)0

is quasi-isomorphic to A = Ag. Moreover, we see that P, — A is a semifree resolution with the
filtration I(n+1) := I;, U---U L; , for n > 0. O

Proposition 2.2.3. Let R — A be a semifree resolution of A. The homotopy class of the A-dg
module L g, == Qg ®r A is independent from the choice of the resolution.

Proof. See Manetti [46]. O
Definition 35. We call L4, the cotangent complex of A.
It is important to choose a semifree resolution as we will see in the following example.

Example 2. Let A be the dg-algebra k[z] = k[z], which is non-zero in degrees —1 and 0. There
exists a surjective quasi-isomorphism between A and the dg-algebra that have k in degree 0 as
the only non-zero degree. We have HO(QA|k) # 0 since d(dz) = d(dx) holds and thus we can
not get dz in the image. Thus we obtain that ), = 0 is not in the same homotopy class as
Q|- The problem is that A is not a semifree resolution of k.

In the next example we compute the cotangent complex in the case of reduced hypersurfaces.

Example 3. Let X = Spec(A) be a reduced hypersurface, where

A=k[xy,...xn]/(f(z1,....,2zN)).

A semifree resolution of A is given by R = k[x1, ..., Zp,y], where y has degree —1 and z; have
degree 0 for all i. The differential s is given by s(y) = f. We have

Qg = Rdx, & -+ © Rdz, & Rdy
and
s(dy) = d(s(y)) = d(f) = ) 57-das
The cotangent complex LL 4, is therefore
0 — Ady > @ Adx; — 0.

Definition 36. Let X = Spec(A) and we look on the cotangent complex L4, as a chain
complex (terms with degree —i become terms with degree 7). The n-th homology group of the
cotangent complex L 4 is called the n-th Andre-Quillen homology group and denoted by

The n-th Andre-Quillen cohomology group is the n-th cohomology group of Homy4 (L A‘k,A),
denoted by
T"(A) := H"(Homa (L g, A))-

Remark 4. For i = 0,1,2, T%(A) has the same meaning as in books of Hartshorne [35] and
Sernesi [64] (they use the notation T%(A|k, A)).
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2.3 The Hochschild differential graded Lie algebra

In this section we will obtain modules T%(A) as a cohomology groups of another complex,
called the Harrison complex, which is quasi-isomorphic to the cotangent complex. Moreover,
the Harrison complex is the subcomplex of the Hochschild complex. We will see their role in
deformation theory.

2.3.1 The Hochschild complex

Let A be an associative algebra. Consider the A-module Cj,(A4) := A ®@ A®™ (where ® = ®y
and A" = A®---® A, n factors). It is an A-module through multiplication on the left A
factor.

Definition 37. The Hochschild boundary is the k-linear map 0 : C,, = A® A®" — C,_1 =
A® A®(=1) siven by the formula

8(&, A1y -eey an) = Z(_l)ldz(av A1y -eey afn)7
where
do(a,ay,...,an) = (aay,ag, ..., ap)

di(a,ai,...,apn) == (a,ay, ..., a;@4;i11,...,an) for 1 <i<mn,

dp(a,ai,...,an) = (ana,ay, ...,an—1).

It holds that 9 0o @ = 0 and thus we get the complex C,(A) that is called the Hochschild
chain complex. The corresponding homology groups are called Hochschild homology groups and
denoted by H,(A). The complex C*(A), where C™(A) is the space of k-linear maps f : A®"™ —
A, is called the Hochschild (cochain) complex. Note that every element ¢ € Homy(Cp, A) is
completely determined by the k-linear map f : A" — A:

o(a,ar,...,an) = af(ai,...,an).
The differential is given by

df)(a1® - ®ap):= ar1flaa® - @ap)+
Z?:}l(_l)if(al ® - ® a1 @ ® ap)+
(=D)"f(a1 ® -+ @ ap—1)an.

The corresponding cohomology groups are called Hochschild cohomology groups and denoted
by H*(A).

Definition 38. The circle product of Hochschild cochains f € C™(A), g € C™(A) is the
element f o g € C™t"~1(A) given by
m .
fog(a1®- - - ®amin-1) = Z(—l)(z_l)(nﬂ)f(%@- ~®0i-109(a;i®" - -®i1n-1)R0iyn®- - Qmin-1)-
i=1

Definition 39. The Gerstenhaber bracket [f,g] of f € C™(A), g € C™(A) is

[f.g] = fog— (~1)mDhgo f
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Proposition 2.3.1. It holds that d[f,g] = [f,dg] + (—1)""[df, g].
Proof. See Gerstenhaber |31]. O

Lemma 2.3.2. The Gerstenhaber bracket defines a dgla structure on the shifted compler g :=
C(A)[1].

Proof. Since we are shifting the complex, we also change the differential (by Definition 22). It
turns out that the shifted differential dy is equal to dg = [m,-], where m € C?(A) belongs to
algebra multiplication (m(a,b) = a-b). Simple computation shows that if f € C"(A) with
n odd, we have dg(f) = [m, f] = d(f). If n is even, then we have dy(f) = [m, f] = —d(f).
Note that [-, -] defines a graded Lie algebra structure on g (see Schedler |63, Remark 4.1.4|) and
that the condition dy[f, g] = [dgf, g+ (—1)I[f, dyg] is equivalent to the graded Jacobi identity,
which is satisfied. O

2.3.2 The Hodge decomposition of the Hochschild complex

We will now recall the construction of the decomposition of the Hochschild complex from
Gerstenhaber-Schack [32].

In the group ring Q[S,] of the permutation group S, one defines the shuffle s;,_; to be
> (sgnm)m, where the sum is taken over those permutations m € \S,, such that

(1) <7m(2) <--- <m(3)
and
mi+1) <m(i+2)<--- <m(n).

We assume that 0 < ¢ < n, setting sp, = sp0 = 0. We denote a1 ® --- ® a,, € A®™ by
(a1, ..., an) and define an action of the permutations group S,, on A®" as follows: 7(ay, ..., a,) =
(Qr-11,.yar-1,), ™ € Sy. With this action we can consider A®" as a Q[S,,]-module.

Theorem 2.3.3. There are canonical decompositions
Hy(A) = HP(A) @ - & HY(A),

H"(A) = H(”l)(A) SCRERNS> H&)(A),
which are also known as the Hodge decompositions of the Hochschild (co-)homology.
We sketch the proof following [32], where they use Barr’s theorem (see [10]): let s, =
Z?:_f Sin—i, then ds, = s,—10 holds.
An element of a finite-dimensional algebra over a field must be a root of some monic polyno-

mial with coefficients in that field. The polynomial of the lowest degree is called the minimal
polynomial. The next proposition describes the minimal polynomial of s,, as an element of

Q-algebra Q[S,].
Proposition 2.3.4. The minimal polynomial of sy, is

n

() = [J(@ = (2" =2)) = (@ = (2" = 2)) a1 (2).

i=1

Proof. See [32]. O
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Thus p, has the form (z— A1) -+ - (z —\y), where \; = 2° — 2. Let e,,(j) be the j-th Lagrange
interpolation polynomial evaluated at s,, i.e.,

en(j) = (H)\J — )\i)_l H(Sn — )\z)

i#] ]
Proposition 2.3.5. The e,(j) are mutually orthogonal idempotents whose sum is the unit
element. Moreover, in Q[S,] it holds that

Aren(1) + Aaen(2) + -+ - + Apen(n) = sp. (2.3)

Proof. Following [32, Theorem 1.2|: multiplication by s, is an operator on the n-dimensional
n—1

subspace of Q[S,] spanned by 1, s,,s2,...,s" 1. It has n distinct eigenvalues A1, ..., A\,. With

ey S
the choice of an eigenvector basis is this multiplication representable by the n x n matrix with

A; on the diagonal. The proof easily follows. O

From Proposition 2.3.5 we get the decomposition Cy,(A) = @je,(j)Crn(A) and since de,(j) =
en—1(7)0 holds (see [32, Theorem 1.3]), we also obtain the decomposition of H,(A). We denote
iy (A) := e,(5)Cr(A) and the corresponding homology groups of the complex C¥) by j2ek (A).
We define C(}) (A) :={f € C"(A) | fosp = (2/—2)f}. From Proposition 2.3.5 we obtain that
crA) =Ccpd) @@ C(”;l)(A). The Hochschild differential d respects this decomposition
and we denote the cohomology groups of the subcomplex C(‘j) (A) by H (”j)(A). We obtain the
decomposition of H*(A) and thus conclude the proof of Theorem 2.3.3.

Example 4. C(21)(A) = {f € C*(A) | f(a,b) = f(b,a)}, since sy = s1,1 = id — (12) and thus
fosa(a,b) =0 means f(a,b) — f(b,a) =0. C(QQ)(A) ={f € C?*(A) | f(a,b) = —f(b,a)}, since
fosa(a,b) =2f(a,b) means f(a,b) = —f(b,a).

The following result is classical.

Proposition 2.3.6. It holds that H,(Zn)(A) = lek’ the n-th exterior power of the module of
Kabhler differentials. If X = Spec(A) is smooth, then H,(A) = H,(ln)(A).
Proof. See Loday [43, Theorem 4.5.12] and Weibel |70, Section 9.4]. O

Definition 40. The complex C’(‘l) (A) is called the Harrison complex and its cohomology groups
are called the Harrison cohomology groups, denoted by

Har"(A) := H{j)(A).

Remark 5. Note that the Gerstenhaber bracket is not graded product with respect to the

Hodge decomposition, i.e., in general it does not hold that [-,-] : H(Zill)(A) X HEZE) (A) —
H&:?:ll). The image can be bigger (Bergeron and Wolfgang [11] gave counterexamples). On
the other hand for j = k = 0 we have [, ] : H(”f)'l(A) x H™ LAY — H'T™(A), which give

(1 (1)
us an important differential graded Lie algebra as we will see in the following.

Proposition 2.3.7. The Gerstenhaber bracket induces the dgla structure on the complex C’('l)(A)[l].
Proof. See [10]. O
Definition 41. The dgla from Proposition 2.3.7 is called the Harrison dgla and denoted by

Cty (A1,
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2.3.3 Relations between the Hochschild and cotangent complex

The following proposition relates the cotangent and Harrison complex.

Proposition 2.3.8. The compler L ;[1] is quasi-isomorphic to the Harrison chain complex

cM(A).
Proof. See Quillen [61] or Loday [43, Proposition 4.5.13]. O

There exist some "operations" on the cotangent complex to get complexes that are quasi-
isomorphic to C(‘i) (A) for ¢ > 1. This can be done using the derived exterior powers /\iLA|k of
a cotangent complex L, (see Illusie [36], Loday [43, Section 3.5.4] or Buchweitz-Flenner [13],
[14] for definitions). We only define the derived exterior power of a complex with two non-zero
terms (by Example 3 we know that this is the case for L4, where A is the algebra of regular

functions of a reduced hypersurface).

Definition 42. Let d : L — E be a morphism of locally free Ox-modules on a scheme X,
where L has rank 1 and E has finite rank. Let K : L — E be the chain complex, with F lying
in the degree 0. We define the derived exterior power A?(K) of the complex K to be the chain
complex

L?1 5 E@L® ! ... S ANITPEQLO™ — ... — NE,

with the differentials dp,(zo ® 25™) = (29 A dz1) ® x?(nfl), where AYE is degree 0 term.

Proposition 2.3.9. Definition 42 agrees with the general definition of the derived exterior
power given in [36].

Proof. See Saito |62, Chapter 4]. O
We define higher Andre-Quillen homology groups Téi)(A) for ¢ > 1 by putting
T (A) := Ho(N (Lajg)-
We also define higher Andre-Quillen cohomology groups

T(H(A) == H"™(Hom 4 (A" Ly, A)).
With our notation 7),(A) = T,(ll)(A) and T"(A) = Tg)(A) hold.

Theorem 2.3.10. The complexes N'(Lay)[i] and C(A) are quasi-isomorphic for each i =
1,...,n and it holds that
Har"(A) = H{}y(A) = Tg)—l(A)
or more generally .
H(4) = T2 (A).

Proof. See Quillen [61] or Loday [43, Proposition 4.5.13]. O
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2.3.4 The Hochschild cohomology and deformation theory
This subsection is very classical. We follow [63]. Recall that a Hochschild two-cocycle is an
element v € Homy (A ® A, A), satisfying

ay(b®c) —y(ab®c) +vy(a®bc) —v(a®b)e = 0. (2.4)
This has a nice interpretation in terms of infinitesimal deformations.

Definition 43. An infinitesimal deformation of an associative algebra A is an algebra A, :=
(A[€]/(€2), %) such that a x b= ab (mod ¢).

We say that two infinitesimal deformations 1, vy, are equivalent if there is a k[e]/(e?)-module
automorphism of A, which is the identity modulo € and maps 71 to 72. Such a map has the
form ¢ := id +e€ - ¢; for some linear map ¢; : A — A, i.e., ¢ € C'(A). It holds that

¢_1(¢(a) *y @(D)) = a *ytdpy b-

Proposition 2.3.11. H?(A) is the vector space of equivalence classes of infinitesimal defor-
mations of A.

Proof. An infinitesimal deformation is given by a linear map v: A ® A — A, by the formula
a*yb=ab+ey(a®b).

Then the associativity condition of . in (A[e]/(€?), *,) is exactly (2.4). The above computation
also shows us that equivalence classes agree. O

Remark 6. Starting with a Harrison cocycle gives us commutativity of the above star product.

Definition 44. A one-parameter formal deformation of an associative algebra B is an asso-
ciative algebra By = (B][A]], %), such that

a*xb=ab (modh),

for each a,b € B. We require that x is associative, k[[h]]-bilinear and continuous, which means
that
(D bmh™) 5 (D enh™) = D (b * cu) ™
m>0 n>0 m,n>0

Suppose now that we have an infinitesimal deformation given by v; : A® A — A. To extend
this to a second-order deformation, we require vy, : A ® A — A, such that

axb:=ab+ ey (a®Db) + y2(a @ b)
defines an associative product on A ® k[e]/e3.
Looking at the new equation in second degree, this can be written as

ay2(b®c) —y(ab®c) +y2(a®@bc) —y2(a®@b)c =71 (71(a®@b) @c) —y1(a @7 (b® ). (2.5)

The LHS is dvy2(a ® b ® ¢), so the condition for v9 to exists is exactly that the RHS is a
Hochshild coboundary. Moreover, the RHS is equal to %[71,71]. So this element defines a
class of H3(A) which is the obstruction to extending the above infinitesimal deformation to a
second-order deformation.
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Remark 7. More generally we can consider n-th order deformation, i.e., a deformation over
kle]/(e"™1). We can show that the obstruction to extending an n-th order deformation Y 1 ; €'y;
(where here €"*! = 0) to an (n + 1)-st order deformation Z?jll €'y; (now setting €2 = 0), is
also a class in H3(A).

Corollary 2.3.12. If H3(A) = 0, then all first-order deformations extend to a one-parameter
formal deformation.
2.3.5 Deformations of associative algebras

We consider the following deformation problem.

Definition 45. A deformation of A over an Artin ring B is a pair (A’,7), where A’ is a B-
algebra and 7 : A’ ® g k — A is an isomorphism of k-algebras. Two such deformations (A’, 1)
and (A", 7o) are equivalent if there exists an isomorphism of B-algebras ¢ : A" — A” such that
it is compatible with 71 and 9, i.e., such that 7 = 7m0 (¢ @p k).

A functor that encodes this deformation problem is
Defgy : A — S

B +— {deformations of A over B}/ ~ .

It is a well known fact that this deformation problem is controlled by the Hochschild dgla.
In the following we will give a complete proof. Some ideas are taken from [63, Sections 4.3,4.4]
and [45].

Lemma 2.3.13. Let g be a dgla and let ¢ € MC(g). The map d¢ : y — dy + [€,y] defines a
new differential on g. Moreover, (g,dS,[-,"]) is also a dgla.

Proof. An explicit verification, see Schedler [63, Proposition 4.2.3|. O

Definition 46. We call the dgla (g,d¢, [-,-]) given in Lemma 2.3.13 the twist by &, and denote
it by g¢.

Lemma 2.3.14. Maurer-Cartan elements of g are in bijection with Maurer-Cartan elements
of g¢ by the correspondence
E+negoneg.

Proof. We immediately see that d*(n)+%[n,n] = d(é+n)+3[E+n, £+n), using that dE+1[€, €] =
0. ]

Definition 47. Let V be a vector space. We denote by C"(V') the space of k-linear maps
V@ — V. The C*(V)[1] is a dgla with Gerstenhaber bracket and zero differential.

Lemma 2.3.15. Let V' be a vector space. Giving an associate product on V' is the same as
giving an element p € C*(V) satisfying 3[u, ] = 0, which is the MC equation for the dgla
C(V)[].

Proof. We define the multiplication on V by a-b := u(a, b). It holds that (ab)c—a(bc) = §[u, p].
The dgla C*(V)[1] has trivial differential and thus 1[u, u] is the MC equation. O
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Lemma 2.3.16. Let A be an algebra. We set Ag to be as a vector space equal to A but viewed
as an algebra with trivial multiplication. Let p € C%(Ag) represent the multiplication on A. It
holds that C*(A)[1] = C*(Ap)[1]*.

Proof. 1t follows from Lemma 2.3.2, since the differential on A is given by d = [y, -|. O

Lemma 2.3.17. Let B be an Artin ring. MC elements of C*(A®@ mp)[1] are in bijection with
associative products of the vector space Ag @ B, giving the known product on A modulo mp.

Proof. Let u € C?(Ag) represent the multiplication on A. Then associative products of the
vector space Ag ® B, giving the known product on A modulo mp are given by

w+&n+& =0 (2.6)

for ¢ € C*2(A®mp). Since [u, u] = 0 and the differential on C*(A ® mp)[1] is given by [u, ],
we see that equation (2.6) give us an MC element £. We can also reverse this proof. O

Proposition 2.3.18. The Hochschild dgla C*(A)[1] controls the functor Def 4, i.e., the defor-
mation functor of C*(A)[1] is isomorphic to Def 4.

Proof. Let us for short denote g := C*(A)[1]. Elements of MCy(B) are the Maurer-Cartan
elements of the dgla g ® mp. By Lemma 2.3.17 there exists a bijection between elements of
MCy(B) and associative products of the vector space A9 ® B, giving the known product on A
modulo mpg.

To conclude the proof we need to show that two products * and *’ on Ag ® B are equivalent
(in the sense of Definition 45) if and only if the corresponding elements v, € MCy(B) are
gauge equivalent. If the products are equivalent we can easily see that there exists o € g ®@mp
such that

a+ b= exp(a)(exp(—a)(a) * exp(—a)(b)). (2.7)

As before let 1 € C?(Ag) denote the multiplication on A.
Rewriting (2.7) gives us
(1 +7")(a @ b) = exp(e) (exp(—a)(a) * exp(—a) (b)) = exp(ad &) (1 +7)(a @ b),

where the last equality follows from basic theory of Lie groups (see [63, Section 4.4]).
Thus it follows that

(n+7") = exp(ad o) (u + v) =

p+y+ z; ((zial); ([, +1]) =

Y+ (ada):, ([a,] = da),
=0

(n+1)!
where we used that da = [u, @] = —[a, u]. We see that v and +' are gauge equivalent. We can
also reverse the argument and show the other direction. O
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2.3.6 Deformations of commutative algebras

Consider the following deformation problem. Let A be a commutative algebra (by that we
always mean a commutative and associative algebra). A commutative deformation of A over
an Artin ring B is a pair (A’,7), where A’ is a commutative B-algebra, such that the natural
map mp®Rp A’ — A’ isinjective and 7 : A’®pk — A is an isomorphism of k-algebras. Two such
deformations (A’,m) and (A", my) are equivalent if there exists an isomorphism of B-algebras
¢ : A" — A” such that it is compatible with 7; and 7, i.e., such that m = m o0 (¢ @p k). A
functor that encodes this deformation problem is

CDefA:.A—>S

B — {commutative deformations of A over B}/ ~ .
Lemma 2.3.19. A’ is flat over B.

Proof. Tt is enough to prove that TorP(k, A’) = 0 by [23, Theorem 6.8]. After tensoring the
exact sequence
O—->mp—B—=k—=0

with A" we obtain

0— TorP(k,A) > mpop A' - Bog A' - kog A — 0.
By the assumption the map mp ®p A’ — B ®p A’ is injective and thus Tor? (k, A') =0. O
Corollary 2.3.20. Let X = Spec(A). Functors CDef 4 and Defx are isomorphic.

Proposition 2.3.21. The Harrison dgla C(’l)(A)[l] controls the functor CDef 4, i.e., the de-

formation functor of C(‘l)(A)[l] is isomorphic to CDef 4.

Proof. The proof is very similar to the proof of Proposition 2.3.18. Commutativity we get by
restricting C?(A) to 0(21)(14) (see Example 4). Other steps are the same. O

2.4 The Hochschild cohomology of normal affine varieties

Not much is known for the groups H(”Z.)(A) in the case when i # 1,n. In this subsection we

show that when A is normal (i.e. the algebra of regular functions on a normal variety) we can
say more about other parts.

Lemma 2.4.1. Let A and B be abelian categories and let F' : A — B be an exact covariant
functor. If (A,d) is a chain (resp. cochain) complex in A, then

H,F(A) = F(H,(A)),

respectively

H*F(A) = F(H*(A)).

A similar statement holds also for a contravariant functor.
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Proposition 2.4.2. Let Py < P + Py, < --- be a complex of projective A-modules. Then
there is a first-quadrant spectral sequence

ES9 = Exth (Hy(P.), A) = HPT(Hom(P,, A)),
with differentials dy : E5Y — Eg_l’q”.

Proof. Let A — @, be an injective resolution and consider the first-quadrant double complex
Hom(P,,Q,). We have two spectral sequences. First one gives us

EY? = HI(Hom(P,, Q.)) = Hom(Pp, Hy(Q.)),

where we used the projectivity of P, and Lemma 2.4.1. Thus we get EA! = E¥? = HP(Hom(P,), A)
if ¢ = 0 and 0 otherwise. From this we see that H"(tot*(Hom(P,,Q,))) = H"(Hom(P,), A).
The second spectral sequence gives us

EY? = H(Hom(P,, Qp)) = Hom(Hqy(P,), Qp),
where we used the injectivity of @), and Lemma 2.4.1. Hence
EY? = Exth (Hy(P.), A) = HP"9(tot*(Hom(P.,Q.))) = H**(Hom(P,), A)
and thus we finish the proof. O

Definition 48. The spectral sequence from Proposition 2.4.2 is called the Kiinneth spectral
sequence.

Proposition 2.4.3. Let R be a ring and let M and N be finitely generated R-modules. If
ann M + ann N = R then Exth(M,N) = 0 for every r. Otherwise depth(ann M, N) is the
smallest number 1 such that Extz (M, N) # 0.

Proof. See Eisenbud |23, Proposition 18.4]. O

Proposition 2.4.4. For R Cohen-Macaulay it holds that gr(M) := depth(ann M, R) = dim R—
dim M, where dim M := dim R/ ann M.

Proof. From Eisenbud |23, Theorem 18.7] we know that for every proper ideal I in a Cohen-
Macaulay ring R we have depth(/, R) = dim R — dim R/I. Using I = ann M we get our result
that gr(M) := depth(ann M, R) = dim R — dim M. O

Proposition 2.4.5. Let X = Spec(A) be smooth in codimension d. For each i > 1 and
0<j<d+1, we have T(JZ.)(A) = ExtQ(Qi"k,A).

Proof. Since each term of AL Ak 18 a projective A-module for each i > 1, we have a Kiinneth
spectral sequence: A
EDY = Ext} (T\V(A), A) = TEYI(A).
Modules Tq(i) (A) have support on the singular locus for ¢ > 1 by Proposition 2.3.6. Since A
is smooth in codimension d, we have Extﬁ(T,l(i) (A),A) =0for ¢ >1and p=0,1,...,d; here we
used Proposition 2.4.4: since for ¢ > 1 it holds that dim (Tq(i)(A)) < dimA —d— 1, we have

gr(TS(A)) > d+1. If ¢ > 1 it follows that E2¢ = 0. Thus we have

ER? = Ext! (15 (4), A) = BRI = T7) (A).

(i)
We conclude the proof using To(i)(A) = QiA‘k, which holds by Theorem 2.3.6. O
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Corollary 2.4.6. Let A be a coordinate ring of a normal variety. We have the Hodge decom-
positions
H2(A) = EXtIILX(Q,lea A) ® HomA(Qi\kv A)
H?(A) = Ext%(Qy;,, 4) ® EXt}A(QiW A) & HomA(Qi\k;a A).
Moreover, for each i € N we have T(li) (A) = Extk(QfA‘k, A) and T(%.) (A) = Ext2A(Qf4|k, A).
Proof. We use Proposition 2.4.5 for d = 1 and the Hodge decomposition. O

2.5 The Hochschild (co-)homology of affine hypersurfaces

In this section we will compute Hochschild (co-)homology of a reduced affine hypersurface
X < AN, The results describing the Hochschild homology were already obtained by Michler
[49], [50]. Here we obtain the results in a little bit different way. The main part of this section
is the computation of the Hochschild cohomology. The main result of this section is Theorem
2.5.9, which will also give us a more complete view on the results that we will obtain in the
next chapter (see Example 8).

2.5.1 The Hochschild homology of reduced affine hypersurfaces

Let X = Spec(A), where A = k[xy,...,zn]/(f(2z1,...,2N)). We write for short A = P/f and
Qp for Qpz, . on]k

Proposition 2.5.1. The derived exterior power AiLA|k 1s 1somorphic to the chain complex

042 0L op a2 0l gp Ao, (2.8)
where Q’]; ®p A is degree 0 term.

Proof. From Example 3 we know that L 4, is isomorphic to
0 — Ady > oY | Adz; — 0.

We can use Definition 42 with L = Ady and F = &]_; Adz; and thus we get that AL 4, is
isomorphic to

L% s EQL® ... 5 NTEQ LE" ... — NUE,
where AT7"E @ L¥" = ®1<p c.ocpy_p<nA(dap, Ao Aday, ) @ Ady = Q5" @p A and differ-
entials agree since s(dy) = df. O

Lemma 2.5.2. The cokernel of the map Q'f;l ®p A /\—df> Q]]% ®Qp A is equal to Q]j“k.

Proof. See |51, Lemma 3|. O

Corollary 2.5.3. Ho(/\i]LAM) ~ ing (this we already know by Theorem 2.3.6). From definition
of differentials Ndf of the complex (2.8) we have

of of of

Ho(AN L) 20, = A :
o(A"Lapk) = Qyp, /(3x1’8x2’ ’(%cN)
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Lemma 2.5.4. The k-the homology (for 0 < k < i) of the chain complex (2.8) is equal to
torS(QES).

Proof. See |44, Lemma 4.11] or [19, pp. 7. O
Let us focus now in the case when A is an isolated hypersurface singularity.

Lemma 2.5.5. If A has an isolated singularity at the origin as the only singular point, then
we have tors(QfX';l) = Q%k (an isomorphism of A-modules is given by the exterior derivative

Q%;l — Q%k) and tors(Qin) =0fori<N-—1andi> N.
Proof. See Michler [51, Theorem 2| or [49, Proposition 3|. O

Corollary 2.5.6. Let A be a hypersurface in AN with an isolated singularity at the origin. We

have
Q%k ifn=0,1

0 otherwise.

Hp(ANLogpp,) = {

Proposition 2.5.7. Let A be a hypersurface in AN with an isolated singularity at the origin.

Forn > N we have
{ QN f2-n=N-1N

0 otherwise.

For n < N we have .
H)(A) = { Vi Fi=n,

0 otherwise.
Proof. 1t follows from the results above, see also [50]. O
Corollary 2.5.8. Forn > N it holds that

. . n g . . of o0 0
dimy, H,(A) = dimy, @7, HV(A) = dlmk(Q%k) = dimy, (A/(a;l’ 352, s 833{\[))’

which is the Tyurina number of the hypersurface.
Proof. It follows from the Hodge decomposition and Proposition 2.5.7. O

Example 5. Let X = Spec(A) be the Gorenstein toric surface defined by the polynomial

p(z,y,z) = zy — 2"t

For n > 3 we have dimy H,(A) = r, the Milnor number of the surface.

2.5.2 The Hochschild cohomology of isolated hypersurface singularities

In this subsection we compute the Hochschild cohomology for reduced isolated hypersurface
singularities.

Theorem 2.5.9. Let A be a reduced isolated hypersurface singularity in AN, N > 3. We have

n 0 0 o .
HY () = Homg}(ﬂg}k,A) eng/(&fl,axJ;,...,agj;) z.fn <N
A/(%ﬂ%a"’am) ifn> N.
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Proof. If n < N, then by Proposition 2.4.5 it follows that

H"(A) = Hom4 (2}, A) @ Exti,(Qngl, A)e- o Ext (U, A).

We denote by C, := /\NLA|k the complex

054 obgpa s 2 aN g Ao
A perfect pairing Q;‘; ®p Qg_k — Qg = P induces a perfect pairing
Cr @4 Cn_ — Cny = A,
where C}, is degree k term of the complex C,. From this we get that the complex
0 — Homy(Cn, A) = Homa(Cn-1,A) = -+ — Homy(Cp, A) — 0 (2.9)

is isomorphic to C,. Looking on the complex (2.9) as a cochain complex Hom4(C,, A) with
Hom 4 (Cy, A) of degree 0, we see that

H"(Homa(C,, A)) = Hy_,(C,).
Using Corollary 2.5.6 we thus obtain

N : _
QA\k: ifn=N-1,N

H"(Hom(C., 4)) = Hy-n(C.) = { 0 otherwise.

(2.10)

Note that we have QfD =0 for j > N + 1 since Qp is a free module of rank N. Using Lemma
2.5.4 and Lemma 2.5.5 we thus see that for i > N we have

e) 2] 0, oo . .
(A)g{ ;)4/((%]017();5};770;;) lf]:Z—l,Z

T o
(1) otherwise.

Moreover, using again Lemma 2.5.4 and Lemma 2.5.5 we see that

054 obgpa s Mok epd 0
is quasi-isomorphic to Q]jj‘lk for K < N — 1. From the equation (2.10) it follows that
ExtJA(Q’Z‘k, A) =0,
if j £0,k—1,k (k<N —1). Thus we see that in the decomposition

Extiy (g, A) @ - @ Extl (), 4)

only one direct summand is nonzero and isomorphic to Q%k = A/ (aa—xfl, 887];, ey %). The

Hodge decomposition concludes the proof. O

Example 6. Let X = Spec(A) be the Gorenstein toric surface defined by the polynomial

p(z,y,2) = zy — 2"t

We obtain that for n > 3 we have dimy H"(A) = r, the Milnor number of the surface.
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3 The Hochschild cohomology of toric
varieties

In Section 3.1 we briefly recall basic definitions of toric geometry. We analyze the Hochschild
complex in the case of toric varieties in Section 3.2. Section 3.3 contains a construction of an
important double complex of convex sets. Using the spectral sequence arguments we are able to
give a convex geometric description of the Hodge decomposition of the Hochschild cohomology
for affine toric varieties in Section 3.4 (see Theorem 3.4.3). As an application we explicitly
calculate T, (12.)(/1), for all ¢ € N, in the case of two and three-dimensional toric varieties (see
Proposition 3.5.2 and Proposition 3.6.2). The two-dimensional case is considered in Section 3.5
and the three-dimensional case is considered in Section 3.6, where we also compute 7| (1i) (A) for
affine cones over smooth toric Fano varieties in arbitrary dimensions (see Theorem 3.6.7).

3.1 Toric geometry

Let k be our field of characteristic 0. Let M, N be mutually dual, finitely generated, free Abelian
groups; we denote by Mg, Ny the associated real vector spaces obtained via base change with R.
Assume we are given a rational, polyhedral cone o = (ay, ...,an) C Ng with apex in 0 and with
ai,...,ay € N denoting its primitive fundamental generators (i.e. none of the a; is a proper
multiple of an element of N). We define the dual cone " := {r € My | (o,r) > 0} C My and
denote by A := ¢V N M the resulting semi-group of lattice points. Its spectrum Spec(k[A]) is
called an affine toric variety. For A € A we denote by z* the monomial corresponding to .
Since A is saturated, Spec(k[A]) is normal (see e.g. [20, Theorem 1.3.5]).

Definition 49. A variety X is called Q-Gorenstein if the double dual of some tensor product
of wx is an invertible sheaf on X.

The following facts about toric Q-Gorenstein varieties can be found in [2, Section 6.1]. For an
affine toric variety given by a cone o = (ay,...,an) we have that X is Q-Gorenstein if and only
if there exists a primitive element R* € M and a natural number g € N such that (a;, R*) = ¢
for each j = 1,..., N. X is Gorenstein if and only if additionally ¢ = 1. In particular, toric
Q-Gorenstein singularities are obtained by putting a lattice polytope P C A into the affine
hyperplane A x {g} C Ng := A x R and defining ¢ := Cone(P), the cone over P. Then the
canonical degree R* equals (0,1).

From now on we will try to simplify the results obtained in the previous chapter using the
lattice grading that comes with toric varieties.

3.2 Grading of the Hochschild cohomology

Definitions and statements in this subsection already appeared in [6] for i = 1. We give a
generalization for arbitrary ¢ > 1.
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Let A = ®iczA; be a graded k-algebra. If ag,...,a, are homogenous elements, define the
weight of ag ® -+ ® a, € A®PT! to be w = Y |a;|, where |a;| = j means that a; € A;. This
makes the tensor product A®P*+! into a graded k-module. Since differentials preserve the weight,
this equip both H,(A) and HP(A) with the structure of graded k-modules.

In the case when Spec(A) is an affine toric variety there exists M-grading on A. Let A =
k[A] = k[o¥ N M].

Definition 50. We say that an element f € C™(A) has degree R € M if f maps an element with
weight w to an element of degree R+w in A. This means that f is of the form f(zM®- - -@z*) =
fo(A1, .., Ap)aftA i+ - We need to take care that the expression is well defined, i.e., that
fo(A1, ey Ap) =0for R+ A1 +--- X\, € A (in the following we will also use R+ Ay + -\, 20
since we can look on M as a partially order set where positive elements lie in the cone A). Let
C™F(A) denote the degree R elements of C™(A) and let CE;’)R(A) denote the degree R elements
of C(Tfi)(A).

We would like to understand the space C™?(A) better and the following definition will be
useful.

Definition 51. L C A is said to be monoid-like if for all elements A1, Ao € L the relation
A1 — A2 € A implies Ay — Ay € L. Moreover, a subset Ly C L of a monoid-like set is called full
if (Lo+A)NL = L.

For any subset P C A and n > 1 we introduce S™(P) := {(A1, ..., \,) € P" | Y.0_; Ay € P},
If Ly C L are as in the previous definition, then this gives rise to the following vector spaces
(1<i<n):

Cly(L, L\ Lo; k) :={p: S"(L) = k [ posp = (28 — 2)g, o vanishes on S™(L \ Lo)},
which turn into a complex with the differential

d": O (L, L\ Los k) — Cfyy (L, L\ Loz k),
(d"0)( A1y ooy An) =
n—1

©(A2, s An) + Z(_Di@(/\ly e A A1 e An) + (1) 0(A1, s A1)
i=1
Definition 52. By Ha.) (L, L\ Lo; k) we denote the Hochschild cohomology groups of the above
complex C('i)(L, L\ Lo; k).

Lemma 3.2.1. For all R € M it holds that

Ci ™ (A) = Cly (A AN (R+ A)s k).

Proof. For f € C(TLZ.’)_R(A), we have f(2M @+ @ 2™) = fo(A1, .., Ap) 2T =F and then the

isomorphism is given by f — fo. O

It is a trivial check that Hochschild differentials respect the grading given by the degrees
R € M. Thus we get the Hochschild subcomplex C(° 1)_ R and we denote the corresponding
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T(") ““R(A). When the ring A will be clear from the

context, we will also write H(; ( R) = ZL “(=R).

cohomology groups by H() (A)

From definitions it follows that Ci ( ) = EBRC(Z.’)fR(A), C"(A) = drC™ 1(A) and Hg.)(A) =
orH " (A), H™(A) = @pH™ R( )
Proposition 3.2.2. Let R € M and let A = k[A]. We have
Tg)_i’_R(A) > Hi5 (A, A\ (R+ A); k). (3.1)
Proof. We use Lemma 3.2.1 and the decomposition of the Hochschild cohomology. O

Remark 8. In next chapters we will also use the positive grading

Ti T (A) 2 HE (A A\ (=R + A); k).

Poisson structures lie in T(OQ)(A), which is non-zero for positive degrees (R € A).

3.3 A double complex of convex sets

In this section we follow the paper [6] verbatim. Arguments mentioned in [6] in the case i = 1
works also for arbitrary ¢ > 1 using the definitions from Section 3.2.
Let 0 = (a1, ...,an). For 7 C o let us define the convex sets introduced in [6]:

KE .= An(R—int7"). (3.2)
The above convex sets admit the following properties:
o K= A and Kg ={reA|(a,r) <(a;,R)} for j=1,...,N.
o For 7 # 0 the equality K = Nge K, holds.
_ N KR
e A\(R+A)=U; Ky
We have the following double complexes C,) (KE; k) for each i > 1 (see Figure 3.1). We
define CEIZ.)(Kf; k) := C’&(Kﬁ,@; k) and

Ol (B k) = @r<odimr=pClhy (KT k) (0 < p < dimo).

The differentials 67 : C’é)(K "y C’g)( » % ;k) are defined in the following way: we are
summing (up to a sign) the images of the restriction map Cé) (KE: k) — ng') (Kf}; k), for any
pair 7 < 7/ of p and (p+1)-dimensional faces, respectively. The sign arises from the comparison
of the (pre-fixed) orientations of 7 and 7’ (see also |20, pp. 580] for more details).

Example 7. The map ¢ : @N 1CE])( k) = @, ak><UC’g)(KR NKE k) is simply given by:
(f1, -y fn) gets mapped to f; — fi, € cg (KENKEE).

ap?

The following results (obtained in 6] for ¢ = 1) can also be generalized to i > 1:
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b (k) — 2 O3 (K k) — 2 O3 (K k) — 0

2 (Kfs k) —

4

(A ) —0 s O (B ) — s O (B ) ——

1
¢ )

(@)

Figure 3.1: The double complex C'('i)(Kf%; k)

Lemma 3.3.1. The canonical k-linear map C(qz.)(A,A \ (R+ A);k) — C}

(i) (KE: k) is a quasi-
isomorphism, i.e., a resolution of the first vector space.

Proof. For r € A C M we define the k-vector space
VE () = {p: {2 e dh=r}—=k|pos,=(2'—2)p}.

Then our complex C’gi)(K R k) splits into a direct product over r € A. Its homogenous factors

equal

q q
0= Viy(r) =V

On the other hand, denoting H'p := {a € Ng | (a,7) < (a,R)} C Ng, the relation r € K%

is equivalent to 7\ {0} C Hj r- Hence, the complex for computing the reduced cohomology of
the topological space

j | reKk 7<0 | dim7r=2; reKF
(T){]‘ € “J}—>V(g)(7"){§ | d 25 reRT L

U @\{co

\{0}cH,p

equals
0 s ks U I 7eKSY | pir<o | dimr=2; rekR}
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if oM H:R #0 (e ifre Uij;) and it is trivial otherwise. Since UT\{O}CH::R (7\ {0}) is con-

tractible, this complex is always exact. Thus, Cé)(K.R; k) =T1I,en V(?) (r)ir<o | dim7=e; reK7}

has HreA\(quR) V(Z) (r) = Cé) (A\ (R + A),A; k) as cohomology in 0, and it is exact else-
a

where. O
Corollary 3.3.2. Leti > 1 be a fixed integer. For q > 1 and p > 0 there is a spectral sequence

EP = @i r—p H (K P k) = TEF07R(A) = HF0R(4),

) (1) (4)
Proof. We use first the differentials 67 and then the differentials d". O

Proposition 3.3.3. Tg)_i’_R(A) = H”(tot'(C('i)

Proof. We use first the differentials d” and Lemma 3.3.1 and then the differentials §P. O

(KE;k))) for1 <i<n.

Proposition 3.3.4. If 7 < o is a smooth face, then H(qi) (KE:k) =0 forqg>i+1.

Proof. We proceed by induction on dim 7, i.e., we may assume that the vanishing holds for all
proper faces of 7. Let 7(7) be an arbitrary element of int(c¥ N7+)N M, ie., 7 = o N [r(7)]*.
Then, via Ry := R — g - r(7) with g € Z, one obtains an infinite (if 7 # o) series of degrees
admitting the following two properties:

o Kl = KZE for any g € Z (since R; = R on 7), and
o Kﬁg # () implies 7/ < 7 for any face 7/ < o and g > 0 (since (a;, Ry) < 0if a; & 7).

In particular, in degree —R, with g > 0 the first level of our spectral sequence is shaped as
follows:

e For p < dim 7 only HEIZ.)(KR' k) with 7/ < 7 appear as summands of E"?. By induction

T

hypothesis they vanish for ¢ > ¢ + 1 and by definition they vanish for ¢ < 1.

e For p = dim7 it follows that E}"? = HY

() (Kf, k).

e All vector spaces E?*? vanish beyond the [p = dim 7]-line.

Hence, the differential d, : EP? — E,I&T’q*’drl are trivial for r > 1,1 —1 < g and r > 1,
q > 1+ 1 and we obtain

qt+dim7—i, 79
Toy (R = Hg

Let T (1) := Tg)(Spec(k[TV N M])) and similarly T(Z?)(a) =17 (A). We have

(KB k) for g > 0,9 > i+ 1. (3.3)

T(r;)(O') ®k[UVﬁM] k[UV N M]m’“(f) = T(ZL)(T) =0 for n > 1, (3.4)

since k[7V N M] equals the localization of k[g" N M] by the element z"("). The last equality
holds by Proposition 2.3.6 since 7 is a smooth face. From (3.4) we see that any element
of T‘?LdlmT_l(—Rg) C T‘]ﬁdlmT_Z will be killed by some power of z"(7), which implies that

() ()
Hgi)(Kf;k) =0 by (3.3). O
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3.4 The Hochshild cohomology in degree —R € M

The main result in this section is Theorem 3.4.3. The results in this subsection do not follow
immediately from [6] as in Section 3.3.
The first reason that computations of T(’;‘)(—R) become more challenging for ¢ > 1 is that it

is not immediately clear how to generalize an easy description of H (11)(K§; k) to H Zi)(Kf; k).

Definition 53. We say that f € C?n) (L, L\ Lo; k) is multi-additive if it is additive on every
component, provided that the sum of all entries lies in L. Being additive in the first component
means f(a+b, Ao, ..., A\n) = fla, Ao, ..., \p) + f(b, A2y ooy Ap), witha+b+ A1+ + A, € L. We
denote

C’Zln) (L, L\ Los k) :=={f € C(,y(L, L\ Lo; k) | f is multi-additive}.

In the case n = 1 it holds trivially that H(ll)(L,L \ Lo; k) equals C_‘(ll)(L,L \ Lo; k). Some

additional effort is necessary to show this for n > 1. Note that computations of H ) (KR k)

are still easier than computations of H ("Z.) (Kf; k), i # n, because in the case i = n we do not

have coboundaries.

Proposition 3.4.1. We have

H{ (L, L\ Los k) = C(y (L, L\ Lo; k)
for allm > 1.

Proof. That every multi-additive function f € C(”n) (L, L\ Lo; k) satisfies df = 0 is obvious by

definition of d. For the other direction we use the following computation (similarly as in the
proof of Loday [43, Proposition 1.3.12]):
we have

Zo‘ df(AU_l(l)) ey )\U_I(TL+1)) = (35)
n!(f()\l, )\3, )\4, ey /\n+1) + f()\Q, )\3, )\4, e )\n+1) — f()\l + )\2, )\3, )\4, cees )\n+1)),

where the sum is taken over all permutations o € Sy, 41 such that o(1) < o(2).
The proof of (3.5) for n =1 is trivial, let us prove it for n = 2:

df (A1, A2, Az) — df (A1, Az, A2) + df (A3, A1, A2) =
F(A2,A3) — fF( AL+ A2, A3) + f( A1, A2 + A3) — f(A1, Aa)
—(f(N3,22) = F(A1 + A3, A2) + F(A1, A3 + A2) = F(A1, A3))
+f( A1, A2) — fF(As + A1, A2) + fF(A3, M+ A2) — f( A3, A1) =
2f (A2, A3) + 2f (A1, A3) — 2f (A1 + A2, A3).
Let us prove (3.5) for general n: we first sum over all permutations o € S, 11 such that o(1) <
0(2) with additional condition (1) = 1. In this sum we have the summand n!f(A2, Az, Ag, ...y Apt1):

> df Mo-1(1), s Ao—1(nt1)) = 1LF (A2, A3y Ay ooy Ange1) + -+
0€Sp+1 | 0c(1)<0o(2),0(1)=1

Then we sum with additional condition o(2) = n+1, where the summand n!f (A1, A3, Ag, ...; Apt1)
appears:

> df (No=1(1), s Ao—1(np1)) = PLF (AL, Agy Ay ooy Anp1) + -+
0€Snt1 | o(1)<o(2),0(2)=n+1
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Finally, we restrict the sum on the condition ¢(2) = (1) + 1 where we get the summand

—nlf(A1 4+ A2, A3, oy Apg1):

> df Ao=1(1)s s Ao—1(ns1) = =1+ (= DIFAL + A2, Ag, ooy Ant) + -+
0€Sn+1 | 0(2)=0c(1)+1

From the above we can easily show the equality (3.5). O

The next proposition will give us very useful formulas for H , (KE: k).

Proposition 3.4.2. Let 7 < o be a smooth face. The injections C_'(”n)(Spank KE k) — C&)(Kf; k)

are isomorphisms. Moreover, Span;, KF = Najer Spany, Kﬁ, and we have

0 if (aj, R) <0
Spany Kjt = < (a;)*  if (aj,R) =1
M ®zk if (a;, R) > 2.

Proof. We will prove the case n = 2, generalization to other n is then immediate. Let f €

6’(22) (KE: k). We want to show that f € C’é)(Spank K& k).

Without loss of generality we can assume that 7 = (ay, ..., a;), with (a;, R) > 2 fori=1,...,1
and (aj,R) =1 for j =1+ 1,...,m, since if R was non-positive on any of the generators of 7,
then K would be empty.

By smoothness of 7 there exist elements r1, ...,7; such that (r;, ar) = d; for 1 < i <[ and
1 < k < m. Hence for elements s,, sy, € Kﬁ it holds that

l l

[ (80, 80) = ZZ(C% Su){Quy Sw) £ (T, 7u) + f (v, Pw)s

i=1 u=1

with p, 1= s, — Ziﬂ(ai, 5,7 € TE N M and py = Sy — Zﬁ:1<ai, sw)ri € TH N M. We can
easily show that > >  f(sy, Syw) does depend only on s1 := ), s, and sp := ) Sy, and not
on the summands themselves:

WICENEDD (Z(az’, sv){ag, 52) f(risrj) + f(po, 2 = Z(% $2)17)) =
= ZW% si)(aj, s2) f(risry) + fs1— Z(% S$1)Ti, 82 — Z(ai, $2)7)-

Then, f(s1,s2) may be defined as this value. The second claim follows as in [6] by

Nazer Spany, KCI[:”, = ﬁ?zlﬂ(aj)l = Spany,(t+, 71, ...,71) = Span;, KX,

To shorten notation we write My, (resp. Ni) instead of M ®z k (resp. N ®z k).

Remark 9. Note that 0 and 1-dimensional faces are always smooth. For 7 = 0 we obtain

that C’zi)(A; k) = C’éi)(Spank A k) = C’Zi)(Mk;k). Thus if o = (a1, ...,an) C My = k™, then
fe C’éi) (A; k) is completely determined by the values f(sg,, ..., sk,;), for 1 <k; <--- < k; <n,

where si, ..., s, € A are linearly independent (k-basis in k™).
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Let E be a minimal set that generates the semigroup A := ¢VNM. E is called a Hilbert basis.
We write EJR =FEnN Kﬁ, Eﬁc =FEnN Kg N Kf;; for a 2-face (a;,a;) < o and Eff := ﬂa].ETEJR
for faces 7 < o.

Theorem 3.4.3. Let X, = Spec(A) be an affine toric variety that is smooth in codimension
d. Let i > 1 be a fixed integer. Then the k-th cohomology group of the complex

0 — Clyy (Mi; k) = @;C;) (Spany, EfS k) = -+ = @r<odimr=a+1C(;)(Spany Ef; k) (3.6)

is 1isomorphic to T(]zs_R(A) fork=0,...d (ééi)(Mk; k) is the degree O term,).

Moreover, if X is an isolated singularity (i.e. dim(X) =d+ 1), then

(i) (KR k) if k= dim(X)

H(Ii;)_dim(x)“(f(f; k) if k> dim(X) + 1.

Proof. By Corollary 3.3.2 we have

Tk,*R(A) o

{ Coker ( Br<odimr=d C! (KE: k) — C!
(i)

: —i,—R —R
EPT = @Téo,dim7'=pHg¢) (be; k) = T(p;;_q (4) = H@Tq (4),

for ¢ > ¢ and p > 0. By the assumption j-dimensional faces are smooth for j < d. From
Proposition 3.3.4 it follows that B! = B = ... = E® = 0, for ¢ > i + 1. Thus EY" =
ERY = @ng,dimT:pHgi)(Kf;k) ford+ 1> p > 1. It follows that T(%*R(A) is isomorphic to
the k-th cohomology group of the complex

Hiy(Ask) — @ Hi (K k) = -+ = Sr<odimr=dr1 Hy (K F).

We conclude the first part using Proposition 3.4.1 and Proposition 3.4.2.

If X is an isolated singularity, then we also have E"? = 0 for p > d + 2. Thus Egﬂ’q =
Eirla — Hgi)(Kf; k) for ¢ > i + 1, which finishes the proof. O
Corollary 3.4.4. Since toric varieties are smooth in codimension 1, we obtain that T(li)(—R)
18 isomorphic to the cohomology group of the complex

C’gi)(Mk; k) — EBjC_'(ii)(Spank Ef; k) — @<aj’ak><gé(ii)(8pank Eﬁ; k). (3.7)

3.5 The Hochschild cohomology of toric surfaces

In this section we compute dimy, T(lz.’)_R(A) for all ¢ € N in the case when A is a two-dimensional

affine toric variety (a two-dimensional cyclic quotient singularity). Let X(n,q) denote the

g 21 ) , (¢ = ¥/1). X(n,q) is given by the cone o =

(a1,a2) = ((1,0); (—¢,n)). We can develop ;™ into a continued fraction

quotient by the Z/nZ-action & — (

n

n—q:b1+ 1
ba + .

(b; > 2). Then FE is given as the set £ = {w?, ..., w"'}, with elements w' € Z? and
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Low®=(0,1), w' = (1,1), w™*' = (n,q),
2. w4 wtl =b o wt (i=1,..,7).

We now compute T(li’)fR(A) for toric surfaces A = A(n,q) = k[A := (w®, w1y N M].

Proposition 3.5.1. Fori > 2 we have T(lz.’)_R(A) = 0. Otherwise we have

. 1,-R
dimy, T(i)
max{0, dimy C’fi)(Spank EE k) + dimy, C_’Ei)(Spank ER: k) — dimy, C’éi)(Spank ER: k) — e},

where

(4) =

) 2=dim Oy (Mys k) ifi=1

%7 1= dimg Cly(Misk)  ifi=2.
Proof. 1t follows immediately from (3.7): the map f : &;C, )(KR k) — C’f )(KR NKE: k) give
us ker f = C’Z ) KE:k)+ C'z)( KB k) — dim(im f), where dlm(lmf) = dimC(Z)(KR NKE;k)
since f is burject1ve The number ¢; is the dimension of C’fi) (A; k) since the map

Cly(As k) — @, Cf) (K5 k)
is injective. ]
We obtain the following corollaries:
Corollary 3.5.2. Focusing on T(12’)_R(A) we can easily check that
hiy (As k) := dimy Hiy) (As k) = dimy, Cfy (A k) =1

and that h%Q)(K(ﬁ; k) := dimg H?Q)(K(ﬁ; k) <1 fori=1,2. We consider four different cases for
the multidegree R € M = 7.2:

e R =w! (or analogously R = w"). We obtain E1 = {w°} and Ey = {w?, .., w1} We
have

dimy, C’(QQ)(Spank Ef: k) = dimy, C’(QQ)(Spank Ef:k)=0

and thus Proposition 3.5.1 yields Tl’_R(A) =0.

2)

e R=w' (2<i<r—1). Weobtain Ey = {w’,..,w" '} and By = {w™, . w1} We
have dimy, C'(QQ)(Spank Ef:k) =0,

dimg, 6'(22)(Spank ER: k) = dimy, 6'(22)(Spank ER: k) =1
and thus Proposition 3.5.1 yields dimy, T(12’)_R(A) =1

e R=1-w'(1<i<r2<I1<bforr>2 o0ori=12<1<by forr=1). We obtain
By = {u°,...,w'} and By = {w', ..., w1}, We have dimy 0(22)(Spank Ef: k) =0,

dimg, 6'(22)(Spank ER: k) = dimy, 6'(22)(Spank EF: k) =1

and thus Proposition 3.5.1 yields dimy ThH R =1.

(2)
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e For the remaining R € M, either £y C Ey or Ey C Ey or #(E1NEs) > 2. In these cases
hold either dimy, 6’(22)(Spank EJR; k) = 0 for some j, or we have dimy, C?Q)(Spank BEk) #

0. Thus in all these cases Proposition 3.5.1 yields T(lz’)_R(A) =0.
Corollary 3.5.3. Results for TV"E(A) (already appeared in [59]):
e R=w' (or analogously R = w"). We obtain dim T'(—R) = 1(or 0 if r = 1).
e R=w'(2<i<r—1). We obtain dim, T*(—R) = 2.
e R=1-w'(1<i<nr2<I<a)forr>2 0ori=12<I1<ay forr=1). We obtain
dimy TH(—R) = 1.
e For every other degree R, we obtain that T'(—R) = 0.

The following example shows that in the case of Gorenstein toric surfaces the computations
in this chapter agree with the computations in the previous chapter.

Example 8. Let X, = Spec(A,,) be the Gorenstein toric surface, given by the polynomial

f(z,y,2) = 2y — 2" in A3, From Theorem 2.5.9 we know that H3(A4,) = An/(%, %zjj’ %),

which has dimension as a k-vector space equal to n (the Milnor number of the hypersurface).
From the Hodge decomposition and Corollary 2.4.6 we have

H*(Ap) 2= T (An) © Ty (An) © T()(An) = @70 Extly (5, An)-
Using Corollary 3.5.2 we can be even more precise: the cone o, is given by
on = ((1,0),(—n,n + 1)).

Its continued fraction has » = 1, by = n + 1 and thus we have dimy T(12’_R(An) = 1 for the

)
degrees R = (2,2),...,(n+1,n+1) and dimy T(12’)_R(An) = 0 for other degrees. Thus we proved
that

0f 0f 0f,
ox’ Oy’ 0z

and they have dimension n as k-vector spaces. In particular, it holds that Extin(Q Anlks Ap) =
Hom(Qi‘n| 4> An) = 0, which can also be easily checked using the results from Section 2.5.

H(An) = Ty (An) = Ext! (9% 1, An) = An/(

3.6 The Hochschild cohomology of higher dimensional toric
varieties

In this section we compute T, (li’)fR(A) for higher dimensional toric varieties. Altmann [4], [5]

described a relation between the computation of T(ll)(fR) and the convex geometry of Q(R)
(using Minkowski summands of Q(R)). We will develop another approach that will also allow
us to compute 7| (1Z.)(—R) for i > 1. At the end we will obtain explicit formulas for 3-dimensional
toric varieties (see Proposition 3.6.2). As far as we know the techniques that we use to obtain
these calculations are new even in the case ¢ = 1. In this section we also obtain a formula for
T (li)(—R) for affine cones over smooth toric Fano varieties in arbitrary dimension (see Theorem

3.6.7).
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Let a cone o = (aq,...,an) represent an n-dimensional toric variety, n > 3. For R € M we
define an affine space

A(R):=[R=1]={a € Ngr | (a,R) =1} C Ng.
The cross-cut of o in degree R is the polyhedron
Q(R) :==0N[R=1] C A(R).

The compact part of Q(R) is generated by its vertices a; := a;/(a;, R) for j satisfying (a;, R) >
1. We write dy, ...,dx € R* for the compact edges of Q(R). For each compact 2-face € < Q(R)
we define its sign vector € € {0, £1}¥ to be

¢ — { +1 if d; is an edge of €

0 otherwise,

where the signs are chosen so that the oriented edges €;d; fit into a cycle along the boundary
of €. In particular, ) . €;d; = 0.
Let us recall Altmann’s construction. It can be divided into three steps (see [5]):

e Step 1: T'(—R) equals the complexified (in our case C will be replaced by a field k)
cohomology of the complex
Ngr — EBj(SpanREJR)* — ®<aj,ak><g(8panREﬁf)*. (3.8)
e Step 2:

We can represent an element of @j(SpanREJR)* by a family of elements

bj € Np if(aj,R> > 2,
bj S NR/R - Qj if(aj,R> = 1.

We choose now "new coordinates"

bj :=b;j — (bj, R)a; € R, which is well-defined even in the case (aj, R) = 1;

sj := —(bj, R) for j meeting (a;, R) > 2 (inducing an element of W(R) defined below).

We can relate this coordinates with Minkowski summands of a polytope Q(R) and thus
we obtain that T'(—R) C Ve(R) @ We(R)/(L,1),

where

V(R) := {(t1,....tx) € RE | Ztieidi = 0} for every compact 2-face ¢ < Q(R)},

)

W(R) = R#{vertices of Q(R) not in N}.

e Step 3:
We describe the relations between elements (t,s) € V(R) & W(R).
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We already generalized Step 1 (see Corollary 3.4.4). Now we use another approach that will
also give us explicit formulas for all ¢ (we also do not know how to generalize Step 2 and Step
3). In the three-dimensional case we obtain a formula for T(li)(—R) for all 7 that can be easily
computed and depends only on basic combinatorial properties of the cone (see Proposition
3.6.2). In particular, we obtain explicit formulas also in the case i = 1 and we will see that for
isolated and Gorenstein singularities our formula agrees with Altmann’s formula obtained with
Minkowski summands (see Corollary 3.6.3 and Corollary 3.6.4).

Lemma 3.6.1. Let Y be a toric surface given by o = (aj,a3) C Ng = R2. We have
dimy, Spany, Bfy = max{0, Wi(R) + Wa(R) — 2 — dimy T, (Y}, where

2 if{aj,R) > 1
WJ(R) = 1 if (aj,R) =1
0 if {a;,R) <0.

Proof. Tt follows immediately by Proposition 3.5.1. O

Remark 10. W;(R) is a number and is not related to Altmann’s notation of W (R) defined
above. The same for VJ’(R) defined below.

Let djj, := ajay, denote the compact edges of Q(R) (for (aj,ar) < o, (aj, R) > 1, (ax, R) > 1).
We denote the lattice N N Spanyg(a;,ar) by ]\_fjk and its dual by Mjk. Let Rjk denote the
projection of R to M,

Proposition 3.6.2. If the compact part of Q(R) lies in a two-dimensional affine space we have

dimy, T( = max {O Z VZ Z Q;’k(R) - (?) + SZQ(R)}’

djr€Q(R)
where
(%) if (e, R) > 1
VIR):=q ("7) if (e, R) =1
0 if (a;, R) <0,

%

{ W (R E Wi (R)En=d—dima T, o) Ry e (0 RY, (g, R) # 0
]k

otherwise,

(
0
{ imy, ATy REQ(R) SPany, Eﬁ) if Q(R) is compact

st
QE) otherwise.

Proof. From Theorem 3.4.3 we know that T(li)(—R) is the cohomology group of the complex
C’fi)(Mk; k) — @jégi)(SpankEf; k) — @(aj,awsgééi)(Spank(Eﬁ); k).

Let f := (f1,.. ,fN) € ®; ()(SpankE]R). We see that VJZ(R) = dimk(AiSpankEf). Assume
now that Span, EF i SpankEk # (), otherwise we have SpaunkE]]f;LC = (). We can easily verify that
;k(R) = dimk(/\iSpankEﬁ;): we have dimk(SpankEﬁ) =n-—-2+ dimk(SpankEﬁjk), where
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Ejj; is a generating set of (a;, ;)" N Mjj. From Lemma 3.6.1 we know that dimk(SpankEﬁ;) =
max{0, W;(R) + Wi(R) — 2 — dimy T} (—Rji)}. Thus we have

(aj,a)
dimy, Ty (—R) = max {0, Y V/(R) = Y Qi (R) — <Z> + '),
7j=1 djk

where s’ equals the dimension of the domain of restrictions (that we get with restricting fi=fx
on Spany, Eﬁ;) that repeats. We can easily verify that s' = 85( R)" H

3.6.1 Computations of T(li)(A) for three-dimensional toric varieties

Using Proposition 3.6.2 we can easily compute T(ll.)(—R) for three-dimensional affine toric va-
rieties. From straightforward computation of the formula in Proposition 3.6.2 we obtain the
following corollary.

Corollary 3.6.3. Let X be an isolated 3-dimensional toric singularity. Without loss of gener-
ality we can assume that generators ay, ...,an are arranged in a cycle (we define ayy1 = ai).
We have the following formulas:

dimy, TL (—R) = max {0, #{a; | a; € N, i.e., (a;,R) =1} — 3} if R>0
Mk L) | #{a; | a; € N, not contained in a noncompact edge} if R # 0,
. 1 oy max{O,#{dj]dJieN}—i-C(R)—B} if R>0

dimy, Ty) (—R) = { max {0, #{a, | @ € N} + C(R) — 2} if R#0,

dimy, T(13)(—R) = max{0,C(R) — 1},

dimy, T(li)(—R) =0 fori> 4,

where C(R) := #{chambers with (aj, R) > 1} and a chamber with (aj, R) > 1 means (a;, R) >

1 for j = jo,jo+1,...,jo+k for some jo,k € N and (aj, R) <1 for j = jo—1 and j = jo+k+1.

Proof. We use Theorem 3.6.2 with n = 3. We also have T <1aj i

is smooth in codimension 2. Let m be a number of a; with (aj, R) =1 (i.e. m is the number

of lattice vertices of the polytope Q(R)) and mg be a number of vertices a; with (a;, R) > 1.
If R > 0 we have N = my + mo and thus we can easily compute that

max{0,3 - m1}>.

)(—RNH) = 0 for all j since X

1

Szg(R) = dimy, A ﬂSpankEfjH = <
J

For i = 1 we have Zjvzl le(R) = 3ma + 2my, Zjvzl W;(R) = 2my + mg and thus

N
Z le',j+1(R) =2 Z(WJ(R)) — N =4mg + 2m1 — m1 — ma = 3ma + my.
dj Jj=1

Thus we see that T(ll)(—R) = max{0, m; — 3}.
For ¢ = 2 we have
2 3 VE(R) = VA, (R) =3
Qya(R) = 1 I VAR) = 2 V2, (R) = 8 or VA(R) =8,V (R) = 2
0 otherwise
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and thus

1 if <aj,R> =1 and <aj+1,R> =

0 if (aj,R) =1 and (aj4+1,R) =2
VH(R) — QF 11 (R) = 2 if (aj, R) =2 and (aj1,R) =

0 if (aj,R) =2 and (aj4+1, R) =

o

otherwise,

from which we easily obtain the formula that we want.
For ¢ = 3 we have Zjvzl Vj3(R) = mo,

3 (gy={ 1 V)=V, (R)=3
33+l 0 otherwise

and the formula follows.

If R # 0 we do not have any compact 2-faces in Q(R). We define the index set S for vertices
that do not lie on unbounded edges of Q(R) (note that |S| = m;1 + mgo — 2). We denote two
vertices that lie on unbounded edges by k£ and I.

For i = 1 Theorem 3.6.2 gives us (since W;(R) = V}l (R) — 1 if (a;, R) > 0) the following:

N N
Z le(R) o Z Q},jJrl(R
j=1

=V} (R) +V1 + (O VHR) - 2O VHR) + ViH(R) + VN (R) = 3(my +my — 1)) — 3 =
jes jeSs
~()_VHR)) +3(my +my - 2),
JES

which equals #{a; | a; € N, not contained in a noncompact edge}.

In the following we denote for short C' := C(R). We consider the case i = 2. Let a; denote
the vertex that lies on an unbounded edge and has the highest index [ (recall that generators
a; are arranged in a cycle). We consider two cases: first if (a;, R) = 1, then we compute
that Zl ! (VQ( ) — ?,j+l(R)) = C + my, thus to get dimg T( )( R) we also need to add
VA(R) — 3= —2. If (a, R) > 1 we see that

-1
(V(R) = Q] j11(R) = C +my — 2.

1

J

Note that we get —2 because in C' + m; we count also the last chamber and the last vertex
with (a;, R) = 1 and thus we need to subtract 2. We also need to add V;2(R) — 3 = 0. In both
cases (if (a;, R) =1 or if (a;, R) > 1) we obtain the same formula, i.e.,

dimy, Ty (—R) = C +my — 2,

For ¢ = 3 we again consider two cases: first if (a;, R) = 1, then we compute that

-1

(ng(R) - Q?,j—i—l(R)) = max{0,C — 1}.
1

J
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If (a;, R) > 1, then we see that

-1
Z(V]3(R) - Q?,Hl(R)) =max{0,C — 1} — 1.

=1
In both cases we obtain the same formula

dimy, Ty (—R) = max{0,C — 1}.

Remark 11. Note that in the case i = 1 we obtain the same formula as Altmann in [1].

Let X be a three-dimensional toric Gorenstein singularity given by a cone o = (ay, ..., an),
where a1, ...,ay are arranged in a cycle. Let sq,...,sy be the fundamental generators of the
dual cone ¢V, labelled so that o N (sj)l equals the face spanned by aj,aj41 € 0. Let R*
denote the degree such that (R*,a;) = 1 for all i (R* exists for Gorenstein toric varieties).
With £(j) we denote the length of the edge d;. With P we denote the polytope o N [R* = 1].
The following corollary is also obtained with a straightforward computation of the formula in
Proposition 3.6.2.

Corollary 3.6.4. Let X be a three-dimensional toric Gorenstein singularity given by a cone
o = {(ai,...,an), where ay,...,an are arranged in a cycle. It holds that T(ll)(—R) s mon-trivial
in the following cases:

e R = R* with dimy, T(l y(=R) =N -3,
o R=qR* (for ¢ > 2) with dimy T(ll)(—R) =max{0,#{j | ¢ <L(j)} — 2},

e R = qR* —ps; with 2 < q < ((j) and p € Z sufficiently large such that R & int(c"). In
this case dimy T(ll)(fR) =1.

Additional degrees exist only in the following two (overlapping) exceptional cases:

e P contains a pair of parallel edges dj, dj, both longer than every other edge. Then
dimy, T(ll)(—qR*) =1 for q in the range

max{((l) | I # j,k} < ¢ < min{€(j),£(k)}},

e P contains a pair of parallel edges dj, dj with distance d (d := (a;, sx) = (ak, sj)) and
it holds that ¢(k) > d > max{{(l) | | # j,k}. In this case dim T(ll)(—R) =1 for
R =qR" + ps; with 1 < q < (j) and 1 <p < (((k) — q)/d.
T(12)(—R) is non-trivial in the following cases:
e R = R* with dimy, T(12)(—R) =N -3,
e R=qR* (for ¢ > 2) with dimy, T(12)(—R) =max{0,2-#{j | ¢ < ()} — 3},

o R = qR* — ps; with 2 < q < ((j) and p € Z sufficiently large such that R & int(c"). In
this case dimy, T(E)(—R) =2.
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Additional degrees exist only in the following two (overlapping) exceptional cases:

e P contains a pair of parallel edges dj;, dj, both longer than every other edge. Then
dimyg, T(lg)(—qR*) = 2 for q in the range

max{((l) | | # j,k} < ¢ < min{€(5), £(k)}},

e P contains a pair of parallel edges dj, dj, with distance d = (a;, sy) = (ak, S;) and it holds
that £(k) > d > max{l(l) | l # j,k}. In this case dimy T(12)(7R) =2 for R = qR" + ps;
with 1 < q < L(j) and 1 <p < (U(k) —q)/d.

T(13)(—R) is non-trivial in the following cases:

o R=qR* (for q > 2) with dimy T(lg)(—R) =max{0,#{j | ¢ < L(j)} — 1},

e R =qR* —ps; with 2 < q < ((j) and p € Z sufficiently large such that R & int(c"). In
this case dimy, T(lg)(—R) =1.

Additional degrees exist only in the following two (overlapping) exceptional cases:

e P contains a pair of parallel edges dj;, dj, both longer than every other edge. Then
dimyg, T(l?’)(qu*) =1 for q in the range

max{{(l) | | # j,k} < ¢ <min{l(j), 0(k)}},

e P contains a pair of parallel edges d;, dy, with distance d = (a;, si) = {(ax, s;) and it holds
that €(k) > d > max{{(l) | | # j,k}. In this case dimy, T(13)(—R) =1 for R = qR* + ps;
with 1 < ¢ < £(j) and 1 < p < (£(k) — q)/d.

And we have T(li)(—R) =0 fori>4.
Proof. We distinguished the following cases.

o Let R = R*.
We see that ség(R*) =0 for all 7. By Corollary 3.5.3 we also have T<1aj,aj+1>(_R*jJ+1) =0
for all j. By Proposition 3.6.2 we have dim, T'(—R*) = dimy T(12)(7R*) = N —3 and

T(ll.)(—R*) =0 for i > 2.
e Let R =qR"*, where ¢ > 2.
We have Zjvzl VJZ(R) = (?)N A two face {aj,a;+1) C Njj1 = Z? is a Gorenstein cyclic
quotient singularity of type Ay;)—;. Let us define v := #{j | ¢ < £(j)}.
For i = 1 we have Zjvzl Q}’jH(R) = 3N —w (since for ¢ < £(j) we have dimy, T<1aj7ak> (—qR) =

1). Thus dimg T(ll)(—R) =v—3+ SéQ(R) holds by Proposition 3.6.2.

In the case i = 2 we have Zévzl Qij_ﬂ(R) = (g)v + (g)(N —v) = 3N — 2v. Thus

Proposition 3.6.2 gives us that dimy, T(12)(—R) =20 -3+ S?;)(R)'
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For i = 3 we have Zjvzl ng’jJrl(R) = N—v. By Proposition 3.6.2 we have dimy, T(lg)(—R) =
v—1+ S?ég(R)'

We now compute dimy, ﬂjSpankER

41 (and thus SéQ(R) for all 7). We have

dimy, N; Span,, E]}'?j—s—l >1

since Spang{R} C N;Spany Efjﬂ for all j = 1,..., N (note that we are in the case
R = qR* for ¢ > 2). If dimg ﬁjSpamkEJl%+1 = 3, then trivially T(li)(—R) = 0 for all 3.
Now we will show

CLAIM: For R = qR* we have dimy, N; SpaunkE]]:'?jJrl = 2 if and only if P consists of parallel
edges dj, dj, and Spany, Eff | = Ng holds for all I € {1,..., N} \ {j,k} (in particular, we
have SpankEjf:"‘j+1 = Spank{ajL N aj{H, R} and Spang{ai Nag,, R} = SpankE,ka).
Proof: we need to show that a € SpaulrllchﬁjJrl if and only if a € Spank.Elka. Since
Span,{R} C SpankEﬁjH, Spany, EF, . |, it is enough to show that

a€ ajl N aj;rl = ac SpankE,ka

and

a € ap N a,ﬁH — ac¢€ SpankEﬁjH.

Let a € aj-ﬂaj{rl. Since d; and d}, are parallel, we have a1 = a +a(a;j+1 —a;), thus we
see that (a, axy1) = (a, ag), which implies that a € SpankE,ka = Spany{aj;-Nag,,, R} =
{c € My, | (c,ar) = (c,ax+1)}, since R also has a property that (R, ar+1) = (R, ax). The
same for the other direction and thus we prove the claim.

From this we immediately obtain formulas that we want (note that the exceptional cases
are given when dimy, ﬁjSpankEfjH =2and v = 2.

e Let R # 0. We immediately see that the only possible cases for having a non-zero
TE (—R) are when R = qR* — ps’ with 2 < ¢ < I(j) and p € Z sufficiently large such that

(i)
R ¢ int(cV). In these cases dimy T(ll)(—R) = dimy, T%,(—R) = 1 and dimy, T(12)(—R) =2.

®3)

o Let R > 0 and R # qR*. We can check (as we did above) that T(lz.)(—R) = 0 for all 7,
except when P contains a pair of parallel edges d;, di, with distance d = (a;, sx) = (a, S;)
and it holds that ¢(k) > d > max{{(l) | | # j,k}. In this case we have dimy, Tll)(—R) =

(
dimy, T(13)(—R) = 1 and dimy T(12)(—R) = 2 for R = qR* + ps; with 1 < ¢ < £(j) and
1<p<(U(k) —q)/d.

O]

We see that in the case i = 1 our formulas agree with the ones given in [5].

3.6.2 Computations of T(lz.) (A) for affine cones over smooth toric Fano varieties

We start with the following observation.

52



Remark 12. When Q(R) is not contained in a two-dimensional affine space, we can still follow
the proof of Proposition 3.6.2 and we obtain that

dimy T (—R) > ZVZ - > Qy ( ) (3.9)

]kEQ R)

The cycles in Q(R) give us some repetitions on the restrictions (f; = fr on SpankEﬁc) and
thus it is hard to obtain a formula for dimy, T(li)(—R) in higher dimensions. For every tree T" in
Q(R) we obtain also upper bounds:

dimy, Ty (— i - > Q < ) (3.10)

djr€T
since no cycles appear in T

We focus now on higher dimensional toric varieties. Let us consider the special case of
Q-Gorenstein toric varieties that are smooth in codimension two.

Lemma 3.6.5. LetY be a Q-Gorenstein variety which is smooth in codimension two. If R € M
is a degree such that (aj, R) > 2 for some j € {1,..., N}, then T(li)(—R) =0 for alli> 1.

Proof. The hyperplane H := {a € Ng | (a,gR — R*) = 0} subdivides the set of generators
of oo HYy = {a; | (a;,R) < 0}, H* = {a; | (a;,R) = 1} and HE, = {a; | (a5, R) > 2}.
We fix a vertex aj, of Q(R) with (aj,, R) > 2. Skipping some of the edges, we can arrange
Q(R) into a tree T with the main vertex aj,, the set of leaves equal to HE and the set of
inner vertices equal to H§2 \ @j,. From the equation (3.10) we see that dimy T(li)(—R) <

Z] Vi ViR) — ZdjkeT Q;k(R) — (%) and we can easily verify that this is < 0. O

Deformation theory of affine varieties is closely related to the Hodge theory of smooth pro-
jective varieties. We will use the following recent result.

Theorem 3.6.6. Let X = Spec(A) be an affine cone over a projective variety Y. On T(qi) (A4)
we have a natural Z grading and if Y is arithmetically Cohen-Macaulay and wy = Oy (m), then

n—1i,q oo
T (A = T ()T
2 Hy o '(Y) ifi<q,

prim

q
where T(i)

(A)pm denotes the degree m € Z elements of T(qi)(A) and HY? (Y') is the primitive
cohomology, namely the kernel of the Lefschetz maps

prim

HPI(Y) — HPTLTL(Y),
Proof. See |25, Corollary 3.4]. O

We will apply Theorem 3.6.6 to the case of Fano toric varieties, where reflexive polytopes
come into the play.
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Definition 54. A full dimensional lattice polytope P C Mp is called reflexive if 0 € int(P)
and, moreover, its dual
PY :={a € Ng | {a,P) > —1}

is also a lattice polytope. Here the expression (a, P) means the minimum over the set {(a,r) | r €
P}.

Reflexive polytopes lead to interesting toric varieties that are important for mirror symmetry.
There is a one-to-one correspondence between Gorenstein toric Fano varieties and reflexive
polytopes (see [20, Theorem 8.3.4]).

If X is a Gorenstein affine toric variety given by o = Cone(P), where P is a reflexive
polytope, then X is an affine cone over a smooth Fano toric variety Y, embedded in some P"
by the anticanonical line bundle.

Theorem 3.6.7. Let X = Spec(A) be an n-dimensional affine cone over a smooth toric Fano
variety Y (n > 3). Then T(li)(A) =0forn>4andi=2,..,n—2. Moreover, dimy, Té%l)(A) =
N —n and T(lk) (A) =0 for k > n > 3. Furthermore, dimy, T(ll) (A) = N =3 forn =3 and
T(ll)(A) =0 forn > 3.

Proof. Tt holds that HP4(Y) = 0 for p # q (see e.g. [12]) and thus also H>! (V) = 0. By

prim
Theorem 3.6.6 we have T(li)(A)_l =0forn >4 and i = 2,....,n — 2. Following the proof of
Lemma 3.6.5, we see that if R # R* = (0,1) we have the following options:

1. there exists aj, such that (aj, R) > 2, which implies that T(li’)_R(A) =0 foralli>1 by
Lemma 3.6.5.

2. HE, =0 and Hf = {a; € F} for a facet F. There exists s € M such that (s,a;) = 0 for

alla; € F. If T (li’)_R(A) # 0 for some 4, then dimy T(li’)_RJras(A) # 0 for infinitely many

a € Z. Thus dimy T, (1l.) (A) = oo, which is a contradiction since T (1i)(A) is supported on
the singular locus and A is an isolated singularity. Thus T(li’)fR(A) =0 forall i > 1.

3. HY, = Hff =0, which trivially implies that T(li’)‘R(A) =0.

Now we focus in the case i = n — 1. Above we saw that T(IT’L:?)(A) =0if R # R*. The
inequality (3.9) is in the case R = R*, i = n — 1 an equality since no restrictions repeat and
thus we obtain

N
dimy, T8 (4) = max {0, vr (R ) Q?kl(R*)_<nT_Ll>}'

J=1 djr€Q(R*)

Since V"M (R*) = (7)) = 1 and Q' (R*) = (123) = 0 we obtain 7,17 (4) = N — n. With

the same procedure we immediately see that T(lk) (A) = 0 for £ > n. Finally we focus on the
case ¢ = 1. With the same computations as above we see that dimy T(ll)(A) =0ifn > 3.

If n = 3, then dimg T(ll)(A)_l = dimy T(ll)(A) as above and T(ll)(A) = H;;ilm(Y) by Theorem
3.6.6. We have dimy, H;;ilm(Y) = N — 3 by [20, Theorem 9.4.11] and thus we conclude the

proof. O
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Remark 13. From Theorem 3.6.6 and Theorem 3.6.7 it follows that

dim; 1{1’1

prim

(Y)=N —n =rk(pic(Y)) — 1.
For i = n — 2 we can generalize Theorem 3.6.7 to the following:

Proposition 3.6.8. Let X = Spec(A) be an n-dimensional Q-Gorenstein variety given by
o = Cone(P), where P is a simplicial polytope. Then T(1n_2) (A)=0.

Proof. The only non-clear part is when X is Gorenstein and we consider the degree R = R*.
From the proof of Proposition 3.6.2 we see that

N
dimy, T(lrzj) (A) = max {0, V2R - Y QAR - (n 7_1 2) 2

J=1 djk€Q(R*)

since no restrictions repeat. Let e denote the number of edges in Q(R*). Since Vj”_Q(R*) =

(”_1) =n—1 and Q;.LR_Q(R*) (”_2

9 n72) = 1, we obtain

dimg, T(lan)(—R*) =max{0,N(n—1) —e—n(n—1)/2}.

For simplicial polytopes it holds that e > N(n —1) —n(n —1)/2 by the lower bound conjecture
proved in [10] and thus dimg T(lnfz)(—R*) =0. 0

Remark 14. For ¢ = 1 we can generalize Theorem 3.6.7 to the following: @Q-Gorenstein
toric varieties that are smooth in codimension 2 and Q-factorial (or equivalently simplicial) in
codimension 3 are globally rigid (see [68] or [2] for the affine case).
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4 Deformation quantization

In Section 4.1 we compute the Gerstenhaber bracket in the toric setting. Poisson structures from
a deformation point of view are analyzed in Section 4.2. We introduce the notion of deformation
quantization of a Poisson structure. In Section 4.3 we present the formality theorem, which
implies that every Poisson structure on a smooth affine variety can be quantized. The formality
theorem can not be generalized to singular affine varieties (see Example 10). On the other hand
we manage to prove that every Poisson structure on a possibly singular affine toric variety can
be quantized (see Theorem 4.4.4 in Section 4.4), which is the main result of this chapter.

For basic theory of Poisson structures we refer the reader to [41]. For motivation and known
results about quantizing (singular) affine Poisson varieties we refer to [30] and [63]. In [63] it
is considered the quantization problem for the nilpotent cone (the nilpotent cone Nilg C g*
is the set of elements ¢ € g* such that for some x € g we have ad(z)¢ = ¢). In the special
case when g = slo we obtain that Nilg is a Gorenstein toric surface. Using deformation of
Calabi-Yau algebras Etingof and Ginzburg [24] analyze quantization of affine surfaces in C?
and quantization of del Pezzo surfaces. For quantization of singular projective varieties see
results of Palamodov [56], [57] and [58].

4.1 The Gerstenhaber bracket for toric varieties

Recall the orthogonal idempotents e; := e3(1), ez := e3(2) and e3 := e3(3) of the group ring
Q[S3] from the Subsection 2.3.2.

Lemma 4.1.1. It holds that

er(a,b, c) = é(Q(a, bc) — 2(c,b,a) + (a,¢,b) — (bye,a) + (byaye) — (c,a,b),
eala,b,) = 5 ((a,5,) + (e,b, ),
es(a,b,c) = %((a, b,c) — (¢,b,a) — (a,c,b) + (b,c,a) — (b,a,c) + (c,a,b)).

Proof. Elementary computations (see also [56]). O

If A=k[oV N M]=k[A], we can use the grading of M to rewrite the Gerstenhaber bracket.
Very important will be the formula of the Gerstenhaber bracket [f,g] for f € C?>~f(A) and
g € C*~9(A). We can write (similarly as in the proof of Lemma 3.2.1) [f, g] € C*~R=9(A) as:

[f,9)(@™ @ 2™ @ 2™) = fg(a™ ® ™) @ 2) — fa™ ® g(a2 ® 2™))+
+9(f(2 @ 2™) @ ™) — g(a™ ® f(2 @ 2™))
= (fo(=S + A1 + A2, A3)go (A1, A2) — fo(A1, =S + Ao + A3)go( e, A3)+
+ go(—R+ A1+ A2, A3) fo(A1, A2) — go(A1, —R + Ao + )\3)f0()\2’)\3))xA—R—S’
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where A = A\ + Ao + A3.
In general we have the following.

Lemma 4.1.2. Let A = k[A], f(aM,...,2*m) = S0 fi(A1, .o, Ay )~ Tt tdm e Om(4)
and g(x™,...,2*) =310 gj(A1y ey M)z ST A € OM(A), where
Ji € C™(A AN (Ri + A)s k),
fori=0,.,p and g; € C"(A,A\ (Sj + A); k) for j =0,...,r. Then
[f7 g](l’)\l, "'7$)\m+n71) — Z[fi,gj:lx—Ri_Sj+Al+-v.)\m+n71’
.7
where
[fir95] = fio g5 = (=)0 gs 0 f € CTHTHAAN (R + Sj + A)s k),
where fi 0 g;j(Ai, .., Amgn—1) =

m

D (=D)ETEFD L F( o At =S Aut A A1 Autns o Aman—1)95 (A -oos Augn—1)-

u=1

Proof. Tt follows from the isomorphism in Lemma 3.2.1. O
For defining and deforming Poisson structures in the next section, the following computations

will be useful.

Lemma 4.1.3. Ifp,q € 0(22) (A), we have

[p, ] = p(q(a,b), c) — p(a,q(b,c)) + q(p(a,b),c) — q(a,p(b, c)).

Projecting give us:

exlpa] = Splala,),) — 5pla,alb ) + gpla(a b))+
+ Zq(p(a,),b) — gala,p(b ) + 3a(p(a b)),
62[ 7Q] :07

eslpa] = 5 (pla(a,b),€) + pla(b,), @) + plafe,a),b)+
+a(p(a,b),c) + q(p(b, c),a) + q(p(c, a),b)).

If we have p,q € 0(21)(14), then [p,q] = ei[p, q]. If we have p € C(Ql)(A) and q € 0(22)(14), then
[pa Q] = 62[p7q]'

In particular, when p = q we have

[p,p] = 2(p(p(a,d), c) — p(a,p(b, c))),

with
2 1 1
61[ 7p] = 2(§p(p(a'7 C)7 b) - gp(aap(bv C)) + gp(p(a7 b)7 C))
ea[p,pl =0 (4.1)
4
63[ 7p] = g (p(p(av b)> C) + p(p(b? C)a CL) + p(p(ca (l), b)) . (42>
Proof. Everything is straightforward and easy computation; see also [56]. O
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4.2 Poisson structures

Definition 55. A Poisson algebra is a k-vector space A equipped with two mulltiplications
(F,G)— F -G and (F,G) — {F,G}, such that

e (A,-) is a commutative associative algebra over k, with unit 1,
e (A, {,-}) is a Lie algebra over k,
e the two multiplications are compatible in the sense that
{a-b,c} =a-{b,c}+b-{a,c}, (4.3)
where a,b and ¢ are arbitrary elements of A.

The Lie bracket {-,-} is then called the Poisson bracket (or the Poisson structure).

Definition 56. Let X = Spec(A) be an affine variety and suppose that A is equipped with a
Lie bracket {-,-} : A x A — A, which makes A into a Poisson algebra. Then we say that X is
an affine Poisson variety, or simply a Poisson variety.

Definition 57. Let (Xi,{:,-}) and (X2,{:, -}2) be two Poisson varieties. A morphism of
varieties 1 : X1 — Xo is called a Poisson morphism or a Poisson map if the dual morphism
P* 1 O(X2) — O(X1) is a morphism of Poisson algebras.

Proposition 4.2.1. Let A be a coordinate ring of a variety (not necessarily smooth). An
element p € 0(22) (A) such that dp =0 (i.e. p € H(QZ)(A) & HomA(QQA‘k,A)) and e3([p,p]) =0 €
05’3) (A) determines the Poisson structure and every Poisson structure on A is obtained in this
way.

Proof. Condition dp = 0 gives us all properties of a Poisson algebra except the Jacobi identity of
(A,{-,-}). We now use computations from the previous section saying that ez([p,p]) = 0 if and
only if p(p(a, b), c)+p(p(b,c),a)+p(p(c,a),b) = 0 (see (4.2)), which gives us the Jacobi identity.
We can also easily see that all Poisson structures come in this way since Hom ,4(9124| i A) is the
space of skew-symmetric biderivations.

Lemma 4.2.2. If A is smooth (or more generally when Har*(A) = 0), then the condition
e3([p,p]) = 0 is equivalent to the condition [p,p] =0 € H3(A).

Proof. We have ea([p,p]) = 0 (see (4.1)) and ei([p,p]) = 0 € T(Ql)(A) because T(21)(A) =

Har3(A) = 0. O
Proposition 4.2.3. Every Poisson structure p on an affine toric variety Spec(k[A]) is of the
form
d
pla™,2?2) =3 fi(Ar, gz fitite, (4.4)
i=0

where f; € 0(22) (A, A\ (—R;+A); k), R € M. We call fi(\1, A\2)xBit21H22 the Poisson structure

of degree R; and we call p the Poisson structure of index (R, ..., Rq).
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Proof. A Poisson structure p is an element of H(QZ)(k[A]; k) such that es[p,p] = 0. From Propo-

sitions 3.2.2 and 3.4.1 we know that

HER (KA = HPy (A AN (<R 4 A)sk) 2 Gy (A A\ (<R + A); k).

Thus p is of the form (4.4), and e3[p, p] = 0 gives us additional restrictions on f;, 7 =0,..,d. O

Example 9. For every hypersurface given by a polynomial g(z,v,2) in A%, we can define a
Poisson structure m,; on the quotient k[z,y, z]/g, namely:

Ty = 0:(9)0y A 0. + 0y(9)0, A Oy + D2(9)0z A Dy,

i.e., we contract the differential 1-form dg to 9, A Jy A 0.. Consider the toric surface A,
given by g(x,y,2) = zy — 2", We would like to express m, in the form (4.4). We see that
mg(x,y) = —(n+1)2", my(2,2) = x and m4(y, 2) = y hold.

In this case A is generated by Sp := [0, 1], S2 := [1,1] and S3 := [n + 1,n], with a relation
S1+ 83 = (n+1)Sz. We would like to find f of the form (4.4), such that f = m,. With a
simple computation we see that f will be of degree So:

f(x)\l’x/\Q) — fO()\17)\2)-T_Sz+)\1+>\27

where fo(S1,53) = —(n + 1). The function fy is with this completely determined by skew-
symmetry and bi-additivity.

Recall from Definition 44 that a one-parameter formal deformation of A is an associative
algebra (A[[A]], %), such that
a*b=ab (modh).

Definition 58. We say that a Poisson structure p € H(QQ) (A) can be quantized if there exist
Y2, ¥35-.. in C?(A), such that

1
a*b::ab+5p(a®b)h+’yg(a®b)ﬁ2+fyg(a®b)ﬁ3+-~

is a one-parameter formal deformation.

Remark 15. By Lemma 4.2.2 we know that when X = Spec(A) is smooth, a Poisson structure
pon X can be extended to a second order deformation (i.e. 7o always exists (mod £%)). In the
next section we will present the formality theorem, which implies that we can actually deform p
to any order, i.e., p can be quantized. In general (when X is singular) there exist obstructions
to the existence of a quantization (see Schelder [63, Remark 2.3.14] or Mathieu [47]).

Proposition 4.2.4. One-parameter formal deformations (A[[h]], *) of an associative algebra A
are in bijection with Maurer-Cartan elements of a dgla g := (hC*(A)[1])[[A]].

Proof. Let v := >, < ™y, € gt. Here v, € C*(A) for all m, since g is shifted. To v € g
we associate the star product f * g = fg + Y oms1 By (f ® g). We need to show that * is
associative if and only if v satisfies the Maurer-Cartan equation. This follows from a direct
computation (see Schedler [63, Remark 4.3.2] for a more conceptual explanation):
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fr(gxh)—(frg)xh=
S (g @ h) = Y (fg @ h) + v (f © gh) =y (f @ g)h)+

m2>1

+ D B ((f @ (g @ B) = ym((f © g) @ B)) =

m,n>1

1
= —dyy =0y =—(dy + 5077,

where we denote by dy the differential of g (see Lemma 2.3.2). O

Thus we see that we can quantize p = 71 if and only if there exist v9, 73,... solving the
equation

1
dgy + 5[%7] =0,

where v =3~ ™.
We need to solve the following system of equations:

0= dg")/l

1
0 =dgy2 + 5[71,71]
0 = dgy3 + [71, 2]

n—1

1
0= dg’)/n + 5 Z;[’Yia 'Ynfi]

In general it is very hard to compute this equations and also the process may never end.
Next section describes an alternative way to solve this equations using the formality theorem.

4.3 The formality theorem

In this section we show that there exists a quasi-isomorphism between the Hochschild complex
and its cohomology complex (with zero differentials), called the Hochschild-Kostant-Rosenberg
(HKR) morphism. However this does not extend to a dgla morphism on shifted complexes,
since it does not preserve the Lie bracket. The idea of Kontsevich was to correct this and show
that the HKR morphism actually extends to an L.,-morphism, which we now define.

Let g = @engr be a graded Lie algebra. For x € g; we write || = [. Let g be a vector
space g with the grading d° defined by d°(z) = |z| — 1. The symmetric algebra that plays an
important role in what follows is the graded commutative algebra S°g. On S*g we consider the

following grading:
l l
d(ym) = o 1= dx).
i=1 i=1
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Let g = ®ieczg; and h = Piezh; be two differential graded Lie algebras. We will be mainly
interested in graded linear maps ® : S*(g[1]) — b[1] of degree 0. For n € N we denote by ®,,
the restriction of ® to S™(g[1]). The fact that ® is graded of degree 0 means that ®,, maps
ght ... ghn to pFitFhatl=n for all k,...,k, € Z (the restriction of ®, to gF'...g"» we denote
by @, ... k). In particular, ®(; ) maps g'---g' to hl. This fact will be useful when we will
consider solutions of the Maurer-Cartan equations associated to g and b.

Definition 59. If there exists a map ® : S*(g[1]) — h[1] we call such a map pre-Loo-morphism
(see also [40, pp. 14-15]).

Definition 60. Using the natural isomorphism S™(g[1]) = (A"(g))[n] we say that a pre-Loo-
morphism F is an Lo.-morphism if and only if it satisfies the following equation for any n =
1,2, ... and homogenous elements v; € g :

A (A An) = Y EBp (1 Ao Ady A A ) =

1 1
5 T Z [Pe(Yo1) A AYo(k)s PLeVo (k1) A A Vo))
ki1 kt=n " 5€S,

D ECu 1 (e I ATA - A A ARG A ).
1<j

Here are first two equations in the explicit form:
d®1(71) = ®1(dm),

APy (y1 A y2) — Pa(dyr A ) — (—1) @2 (71 A dyz) = ®1([v1,72]) — [@1(11), P1(72)]-

Definition 61. Let g and h be two differential graded Lie algebras and let @ : S°g[1] — h[1]
be an Lo.-morphism. Then @ is called an Lo-quasi-isomorphism if the morphism @3 : H*g —
H*p, induced by the restriction ®; : g — b of ® to g, is an isomorphism.

Definition 62. A pointed differential graded Lie algebra g is a dgla, with the differential given
by d,(y) := [z,y|, for some z € g with the property [z,z] = 0. The graded Jacobi identity
implies d, o d, = 0 (see |41, pp. 373|).
We can naturally extend ® to S*g[1][[%]] and thus we get a map Qg : hg[[h]] — hh|[[4]] defined

by:

~ 1

Qo(z) = H<1>,C(g;’f).

keN

Proposition 4.3.1. Let g and b be two pointed differential graded Lie algebras. Let @ :
S*g[l] — b[1] be an Loo-morphism and let = be an MC element of hg[l][[h]]. Then Q¢(x)
is an MC element of hh[1][[A]].

Proof. See |41, Proposition 13.41(1)]. O

Definition 63. A dgla g is formal if there exists a pair of L,-quasi-isomorphisms of differential
graded Lie algebras
g—f—=0b

with b having trivial differentials.

61



Now we present the formality theorem (see [40], [22]):

Theorem 4.3.2. Let X = Spec(A) be a smooth affine variety. There exists an Loo-quasi-
isomorphism between the Hochschild dgla C*(A)[1] and the dgla H*(A)[1] (i.e. the cohomology
complex H*(A)[1] is a graded Lie algebra with trivial differential). In particular, the Hochschild
dgla C*(A)[1] is formal.

Proof. We only sketch an idea of the proof. The map HKR,, : A} Derg(A, A) — C™(A) defined
by

HKRn(€1 ARERRA fn)(al D an) = % Z Sgn(o')ga(l) (al) U ga(n)(an% (4'5)
" o€eS,

gives an isomorphism of A-modules A"} Dery(A, A) and H &)(A) (see Loday [43]). We have
H"(A) = Homa (Q;,, A) = Hpj,y (A)

and by (4.5) they are also isomorphic to A’} Dery(A, A). There exists a quasi-isomorphism of
complexes H*(A) and C*(A) also called the Hochschild-Kostant-Rosenberg quasi-isomorphism:
HKR: H*(A) — C*(A) is given by

HKR(§ A A&p)(a1 @ - ®ay) :=HKR, (&1 A - A&p)(a1 ® - ® ap).

As already mentioned in the introduction, HKR morphism does not extend to a dgla mor-
phism on shifted complexes C*(A)[1] and H*(A)[1], since it does not preserve the Lie bracket.
Kontsevich [40] manage to construct an explicit sequence of linear maps ®,, : S"(H*(A)[1]) —
C*(A)[1], where ®; is the map HKR and other ®,, satisfy conditions of an L.,-morphism (see
also [22] for a more general proof). Since ®; is a quasi-isomorphism, we obtain an L.,-quasi-
isomorphism of differential graded Lie algebras by Definition 61. O

Corollary 4.3.3. Every Poisson structure m on a smooth affine variety Spec(A) can be quan-
tized.

Proof. A Poisson structure 7 is trivially an MC element of H*(A)[1]. By Theorem 4.3.2 there
exists an Loo-quasi-isomorphism ® between C*(A)[1] and H*(A)[1], with ®; = ¢, where we
denote the HKR morphism by ¢. H*(A)[1] is trivially pointed dgla and C*(A)[1] is pointed
dgla by the proof of Lemma 2.3.2. Thus by Proposition 4.3.1 we know that Qq;(ﬂ) is an
MC element of hC*(A)[1][[h]]. From Proposition 4.2.4 we know that we have a star product
axb=ab+ ®1(7)+---=ab+ 5+ --- by definition of ¢: ®1(7m) = ¢(7) = 5. Thus 7 can be
quantized by Definition 58. O

Remark 16. Since for singular varieties in general we have H 8) (A) # 0 for ¢ # n we see that
the HKR quasi-isomorphism can not be generalized to singular varieties. And thus also the
formality theorem and Corollary 4.3.3 can not be generalized to singular varieties.

Recall now the functors MCy and Defy of a dgla g from Subsection 2.2.2.

Theorem 4.3.4. If f : g — b is an Loo-quasi-isomorphism, then the induced maps MCy —
MCy and Defy — Defy are isomorphisms.

Proof. See Manetti [45, Chapter IX]. O
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Example 10. If g is formal with dim;, H'(g) = n < oo, then by Theorem 4.3.4 the local ring of
the solution space of the MC equation for g (see Example 1) is isomorphic to k[[t1, ..., t,]]/(9),
where g is generated by quadratic equations. Let X, = Spec(A) be an isolated toric singularity,
such that its versal base space can not be generated only by linear and quadratic equations (for
example if o = Cone(P), where P is an octagon or more generally when P is "thick" enough;
see [4] for more details). We know that the deformation functor of the Harrison dgla C¢,) (A)[1]
is isomorphic to the functor Defx by Corollary 2.3.20 and Proposition 2.3.21. Moreover, by
Theorem 2.1.2 we know that Hl(C('l)(A)[l]) < 00. As a corollary we obtain that in these cases
the Harrison dgla C?),(A)[1] is not formal and thus also the Hochschild dgla C*(A)[1] is not
formal. On the other hand we will show in the next section that Corollary 4.3.3 is still satisfied
for singular toric varieties.

4.4 Deformation quantization of affine toric varieties

In this section we prove that every Poisson structure on an affine toric variety can be quantized.
We will use the Maurer-Cartan formalism, Kontsevich’s formality theorem (or more precisely its
Corollary 4.3.3) and the GIT quotient construction for an affine toric variety Spec(A) without
torus factors: we can write Spec(A4) = AN /G for some group G. This construction works over
an algebraically closed field k of characteristic 0. Our proof works also in the case of affine toric
varieties with torus factors.

Let X be a toric variety without torus factors, i.e., given by a full-dimensional cone ¢ =
{ay,...,an) C Nr. We recall now the construction that presents X as a GIT quotient AV /G,
where G is a group (see e.g. |20, Chapter 5]). We have a short exact sequence

0— ML zoW 5 Cl(X) -0,

where Cl(X) is the class group of X, (1) = N the number of ray generators and for R € M
we have the injective map g(R) = (R,a1)e; +--- + (R,an)en, where {e; | i = 1,..., N} is the
standard basis for Z". We have X = AN /G, where G = Homy(Cl(X), k*); here we need the
assumption that k is also algebraically closed. Moreover, the class group is of the form

CUX)ZZ XL XL X Ly, X Ly X -+ Ly,
and thus our group G is of the form
ng*x-"xk*xGm ><Gp2 X--'ka,

where G, are groups of p;-th roots of unity.

The map ¢ induces a semi-group isomorphism between A C M and its image AC = g(A).
This map determines the isomorphism of k-algebras G’ : k[A] — k[x1, ..., zx]%, with G'(zF) =
zI(B) = :L'§R’a1> e x%iazv)_ Elements that lie in A® are G-invariant elements. Thus we have
X = Spec(k[z1,...,2n]) )G = Spec(k[x1, ..., xN]%).

Example 11. Let 0 = ((1,0), (=(n—1),n)), 0¥ = ((0,1),(n — 1,n)). The map g : M 2 Z? —
72 is given by g(A1, A2) = Arer + (nAa — (n—1)A1)ez. We see that the degrees of the generators
of the ring of invariants are ¢(0,1) = (0,n), g(1,1) = (1,1) and g(n,n — 1) = (n,0). Thus the
ring of invariants is k[z", zy, y"].
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Proposition 4.4.1. For A\, R € M it holds that

A€ Ujeij;i if and only if g(\) € Uje[Kg(R)7

J
where I = {1,...,N} and ng(R) are the convex sets (3.2) of the cone (eq,...,en) C RV,

Proof. By the definition of g we know that (g(\),ej) = (A, a;) and (g(R),e;) = (R,a;). For

g(\) € Ungj(R) there exists j such that (g()),e;) < (g(R),e;j) which means that there exists j

such that (A, a;) < (R, a;), which is equivalent to A € Ung.. [

Every affine toric variety can be decomposed into the product of a torus and a toric variety
without torus factors. Let A = k[o¥ N M] and X = Spec(A) be a toric variety without torus
factors. Let Ty = Spec(k[Z*]) and Ay = k[A x ZF] (Ag = A). We denote X}, = Spec(Ay) =
X x Ty. Let Y, = AN x T, = Spec(By), where By = k[N x Z*] and Ny is the set of
natural numbers with 0. We define the lattices M := M x ZF, N := N x Z* and the map
g : A xZF - N} x ZF with

g' (A w) = (g(N), ).

We now briefly recall basic definitions and propositions from Poisson geometry.

Definition 64. Let V3 be a subvariety of an affine Poisson variety (V1,{-,-}) andletp: Vo — P
be a surjetive map, where P is also an affine variety. We say that the triple (V, Vs, P) :

Va
o N
% P

is Poisson reducible if there exists a Poisson structure {-,-}p on P, such that for every x € V3,
{F.G}p(p(z)) = {F,G}x),

for all F,G € O(P) and for all extensions F',G of Fop and G op. If V; = V5, then the Poisson
structure {-, -} p is called a reduced Poisson structure of the Poisson structure {-,-}.

The next propositions are important for proving that every Poisson structure on an affine
toric variety can be quantized.

Proposition 4.4.2. FEvery Poisson structure p on X can be seen as a reduced Poisson structure
of some Poisson structure P on Y.

Proof. From Proposition 4.2.3 we know that every Poisson structure on Xy, is of the form

d

1)(m>\1 ) IA2) = Z fi()‘lv )‘Q)Z'Ri+>\l+>\27
1=0

where f; € C% (A x ZF, (A x Z¥) \ (=R; + (A x Z")); k), R € M.
We now construct a Poisson structure P on a smooth affine variety Yz:

d
Pt o) = 3 Fi(A, ) RO+,
=0
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where F; has the property that F;(¢'(M\1), g (A2)) = fi(A1, A2), for each i.

STEP 1: Functions F; with the above property exist for each i:

We choose k + n linearly independent vectors si, ..., Sg1+p € A X ZF such that sq, ..., s, € 0 x ZF
and Sg11, ..., Sk4n € A X 0. Note also that f; are completely determined by the values f;(s;, s;),
for 1 < j <1 <k+n by Remark 9. Since ¢’ is injective we can choose F; € 0(22)(1\16\7 x ZF: k),
such that F;(¢'(s;),¢'(s1)) = fi(sj,s1), for 1 < j <l <k+n.

Let t1,...,tnN_n € Név be chosen such that sgi1,...,Sk4n,t1, ..., EN—pn determine an R-basis
of RY. We choose F; such that Fj(t;,t;) = 0 for 1 < j,l < N —n and Fy(sj,t;) = 0 for
j=1,.,k+nandl=1,..,N —n (this will be important to prove the Jacobi identity for P
in Step 3). We easily see that F;(¢'(A1), ¢’ (A2)) = fi(A1, A2) holds.

STEP 2: P is well defined:

For P(z*',2*2) to be well defined, it must hold for each i that F;(\, u) = 0 for ¢/(R) + X +
i ? 0. We need to check that this agrees with the property F;(¢'(M1),9'(A2)) = fi(A1, A2):
without loss of generality we assume that A\j, A2 € A x 0. We have F;(g(A1),g9(A\2)) = 0 for
g(R) + g(A\1) + g(A2) 2 0 or equivalently for g(A1 + A2) € Név \ N(])V(—g(R)) = Ujg[ngg(R),
where I = {1,..., N}. By Proposition 4.4.1 this is equivalent to A\; + Ag € UjelngR and we
indeed have f;(A1,A\a) =0 for R+ Aj + Ay 2 0.

STEP 3: P satisfies the Jacobi identity:

We have e3(3)([p, p]) (2, 232, 273) = 0, since p is a Poisson structure. Using Lemma 4.1.2 and
the equalities F;(g'(A1), 4" (A2)) = fi(A1, A2) from Step 1, we see that

es(3)([P, P])(x? M), 29 02), 2970)) = 0,

Since e3(3)[P,P] € H ?3)(Yk) we can use Proposition 3.4.1 and thus from the construction of F;
in Step 1 (Fi(t;,t;) = 0 and Fj(sj,t;) = 0) we immediately see that e3(3)[P, P] = 0. Thus the
Jacobi identity is satisfied. O

Let g denote the differential graded Lie algebra (C*(A)[1])[[%2] and let b denote the differ-
ential graded Lie algebra (hC*(By)[1])[[A]].

Proposition 4.4.3. Let y(z*,272) := > o By (2, 272) € bt be an MC element of the
dgla b, where vy is a Poisson structure on Yy of index (¢'(Ro), ...,g'(Rg)). Then v induces an
MC element F(x?,222) = Y B3, (2™, 272) € gt of the dgla g, where 7y is a reduced
Poisson structure (on Xy ) of the Poisson structure v, and it has index (Ro, ..., Rq).

Proof. We prove it only for d = 0 and k = 0 (i.e. for 1 of degree Ry on a toric variety X = X
without torus factors). The rest follows immediately, just the notation is more tedious.
We know that 7, (2, 272) = v (A1, Ag) 2™ +HA+X2  where

Yom € C*(NY,Ng' \ Ny (—=mg(R)); k).

We define Fom(A, 1) = Y0 (9(V), g(1)) and 7 := Y2, Ao (a?, ), where

Fm (2, 2#) = Fom (A, )™ FHATE,

We first need to check that F (2, z#) = > m>1 B (22, 2#) is well defined, i.e., if mR+ X+
w2 0, then v, (g(N), g(p)) = 0. This can be done as in Step 2 of Proposition 4.4.2.

Looking only at G-invariant elements (i.e. A = g(\') and p = g(i') for some N, ' € A) in the
MC equation for v and using Lemma 4.1.2, we see that the MC equation also holds for 4. [J
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Theorem 4.4.4. Every Poisson structure p on an affine toric variety can be quantized.

Proof. As above let X} denote an arbitrary affine toric variety. By Proposition 4.2.3, p is of
the form p(z*t, 272) = E?:o fi(A1, Ag)aftitMit22 for some R; € A x ZF. By the construction in
the proof of Proposition 4.4.2 this Poisson structure can be seen as a reduced Poisson structure

of P on Yj:
d

P@A o) = 37 B\ p)ad B0,

i=0
where the functions F; have the property that F;(¢'(M1),¢' (A2)) = fi(A1,A2). Since P is a
Poisson structure on the smooth affine variety Y3, we know by Corollary 4.3.3 that P can be
quantized. In other words, there exists a one-parameter formal deformation and by Lemma 4.2.4
we know that this corresponds to an MC element v(z*1,272) 1= Y o Ay, (2™, 222) € pl,
where 71 is of index (¢'(Rp), ..., g'(Rq)). By Proposition 4.4.3 we know that this give us an MC
element

G, ) = 3 () e g,

m>1
where 77 is a reduced Poisson structure on X} of the Poisson structure v and it has index
(Ro, ..., Rg). By the construction we have 7; = p. Using again Lemma 4.2.4 we see that p can
be quantized. O
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5 Commutative deformations of toric
varieties

In Section 5.1 we give a convex geometric description of the Harrison cup product formula
T(ll)(A) X T(ll)(A) — T(Ql)(A). We show that our cup product formula in the case of three-
dimensional isolated Gorenstein toric varieties recovers Altmann’s cup product formula obtained
in [3]. This is done in Section 5.2. In Section 5.3 we analyze the cup product formula between
non-negative degrees. In Section 5.4 we conjecture a set of equations defining the versal base
space in degree —R* for not necessarily isolated Gorenstein singularities. In Section 5.5 we
extend our cup product formula to a differential graded Lie algebra structure on Altmann’s

deformation complex.

5.1 The Harrison cup product formula for toric varieties

In this section we give a formula for the cup product of toric varieties, extending Altmann’s
cup product formula for toric varieties that are smooth in codimension 2 (see [3]). Note that
Altmann obtained the cup product formula with different methods (using Laudal’s cup prod-
uct).

Definition 65. The Lie bracket [, | of the Harrison dgla induces a product T(ll) (A)xT, 11) (A) —

(
T(zl)(A) that we call the (Harrison) cup product.

We denote T"(A) := T(’?l)(A) for n > 0. We now recall some results obtained by Sletsjge in
[65]. For R € M we have an exact sequence of complexes:

0= Cly(A AN\ (R4 A)sk) = Oy (Ask) = CFy (AN (R4 A)s k) — 0.

Note that H(kl) (A; k) = 0 for k > 2 by Proposition 3.3.4. Thus we can write the corresponding
long exact sequence in cohomology and we get the following.

Corollary 5.1.1. The sequence
d
0= Hiy(A AN\ (R+A); k) — Hiyy(Ask) = Hiy (A (R+A); k) = HEy (A, A\ (R+A); k) = 0

1s exact and

H{j) (AN (R+A)k) = HETHA AN (R + A)sk)

for n > 2. These isomorphisms are induced by the map d.

Remark 17. Here with the map d we mean that we first extend a function from A\ (R + A)
to the whole of A by 0 and then we apply our differential d. Both maps we will denote by d
and the meaning will be clear from the context.
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Let o = (a1, ...,an) and A(R) := A+Rfor R € M. Let £ be an element from H(ll)(A\A(R); k).
We extend (not additively) & to the whole of A by 0 (i.e. £(A) =0 for A € A(R)). This extended
function we denote by £°. We have TV~ f(A) = H(Ql)(A, A\ (R+ A); k) by Proposition 3.2.2
and the surjective map

HY) (AN (R+A);k) 5 HE (A A\ (R+ A); k)

by Corollary 5.1.1. Thus we see that every element of T'(—R) can be written as d¢® for some
€ € H(A\ A(R): ).

Proposition 5.1.2. Let R, S € M and let £ and p be elements from H(ll)(A \ A(R); k) and
H(ll)(A \ A(S); k), respectively. It holds that

4, dpl] = dC,
where
C, Aa) = (5.1)
)’ (A2) + (M)’ (A1) — d€® (M, A2) (=R + A1 + o) — dp® (A, A2)€% (=8 + A1+ Xa).
Proof. See |65, Theorem 4.8]. O

Sletsjpe [65] claimed that Proposition 5.1.2 gives us a nice cup product formula, but unfor-
tunately there is a mistake at the end of the paper: in [65] it was written that only the first
two terms of C'(A1, A2) matter for the computations of the cup product formula and that the

other two vanish with d. This is not correct since d¢® ¢ 0(21) (A, A\ A(R+ S); k), which was
wrongly assumed (see [65, pp. 128]). We only have d¢® € C(Ql)(A,A \ A(R); k).
Thus we need to consider C'(A\, A2) with all 4 terms and we will try to simplify this using

the double complex C(‘l)(Kfq; k) (see Figure 3.1 for i = 1). On K£+S (j =1,...,N) we define
the function

hi(A) i= = (& - 1) (N) + §(=5 + XN (N) + 1 (=R + X)E(N),

where ¢; is an additive extension (not necessarily unique) of £ from K Cﬁ, to the whole of lattice
M (note that it is possible to extend £ by Remark 9 since the rays a; are smooth cones). If
(aj, R) = 1 holds, then we can extend it to M N aj- and consequently to the whole of M (not
uniquely). Similarly we define p;.

As we will see there is a close connection between dhj and C(A1, A2). For A € A we define

£\)  ifre KR
)= 1q &) i A e KN (Uppg KIY)
0 otherwise
and similarly we define ,u,?. Note that {(A) = &(A) for A € K£~ Note also that on K,ﬁ_*s the

functions 5?()\) and £°()\) are in general different for \ € Kﬁ,*‘s N (Ugsks K2E). The following
proposition gives us a nice interpretation of the cup product.

Proposition 5.1.3. On K£+S (i.e. for (A1, A2) € A x A such that A1 + )\ € Kﬁ*s) it holds
that

d(hj) (A1, X2) = CO(\1, Ag) = (5.2)
D)) (A2) + A uf(M) — d€ (A, A2)pud (=R + A+ A2) — dud (A1, A2)E) (=S + A1+ A2).
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Proof. We have

d(h;) (A1, Az) =

= &(A2)pi(A2) + &(=5 + A2)py(A2) + pj (=R + A2)&5(A2)—

(= &A1+ X2)i(A 4 A2) + &(=S + A+ A2 (A + A2) + 1 (=R + A+ A2)&5 (A1 + A2))
= & (A (A1) + &(=5 + A1) (A1) + i (=R + A1) (M)

We will compute dh;(A1, A2) in terms of 55) and ,u? (so far we compute dh; in terms of §; and

p;) for different choices of A; and Aa. We can then simply check that in each of these cases the
equality (5.2) is satisfied.

1. )\1 ER,S and /\2 ZR,SZ

e )\ + )\ >R, S
We have dh; (i, A) = &) (he) + &g (M) — & (=S + M+ M) (g (M) +
115 (A2)) = pi (=R 4+ A1+ A2) (& (M) + &5(N2)).
e A\ + X >R, )\1—|—>\2\ZS:
dhj(A1, X2) = & (M) pi(A2) + E(A2) (A1) — pi(—R + A1+ A2) (§( A1) + &5(A2)).
e M+ PR M+ A>5:
dhj(A1, A2) = & (M) (A2) + & (M) (A1) — (=S + M1+ A2) (15 (A1) + (A2)).
e M+ 2RS
dhj(A1, A2) = &(AM)ps(A2) + &5 (A2) i (Ar).
In all four cases above we have dh; = C°, since 55-)()%) = &;(\;) and ,ug()\k) = pi(A\g)
hold for &k =1, 2.
2. M1 2R, Sand Ay > R, S

We have §;(\1) = {?()\1) and (A1) = M?()\l)~ Note that these equalities does not
necessarily hold for Ao. We also know that Ay + Ay > R, S and thus we have

dhj(A1, X2) = &A1) pi(A2) + &(A2) (A1) — £5(=S + A1+ X2) (15 (A1) + 115(X2))+
§(=S + A2)pj(A2) + pj (=R + A2)€j(N2) =

=& A (A2) + & (A2) (A1) — (6 (A1) +&(=S + A2)) (15 (A1) + p5(A2))

— (wi(=R+ X2) + (M) (&A1) + &5 (A2)) + &(=S + A2 (A2) + i (— R+ A2)&i(A2) =
= (M) (&A1) +&(=5 4 A2)) — &A1) (i (=R + A2) + (A1)

On the other hand we have
CO(A1, A2) = =& (M) (1 (=R 4 A2) + 13 (M) — f (M) (£)(=5 + A2) + & (A1)

Since \y € Kﬁ*s we have —R + Ay 2 S and —S + X2 # R and thus u?(—R+ A2) =
pj(—R + A2) and 5?(—3 + A2) = &(—=S + A2). It follows that the equality dh; = CY is
satisfied in this case.

3 MZEZR MZRMZS, >R
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e M+ >S
We have dhj()\l, )\2) = fj(/\Q)/L]()\l) +£]()‘1)1UJ]()\2) + F‘J( R+ )‘2) ( ) - gj(_S—{_
A+ A2) (15 (M) + 115 (A2)) = (15 (A1) + 5 (=R + X2)) (& (M) + &(A2)),

CO(A1, A2) = €7 (M) (A2) = €0 (A1) (1 (= Rt-DX2) +415 (A1) = (1 (A1) +4F (X2)) €5 (=
A1+ A2) and thus the equality (5.2) is satisfied.

o\ +X 2 S
We have dhj(A1, A2) = &(A2)pj (A1) + & (A1) (A2) + 115 (= R+ X2)€5(Xa) — (i (A1) +
pi (=R + X2)) (§(M) + & (X2)),
CO(A1, A2) = E)(A)pi(A2) — (M) (1 (=R + A2) + p3(A1)) and thus the equality
(5.2) is satisfied.
Similarly as above we can check that the equality (5.2) is satisfied also in the remaining
cases.

O

We will now explain how to use Proposition 5.1.3 in order to compute the cup product
TY—R) x T'(-8) = T*>(-R - 9).

From the double complex C(l)(K.R; k) in Figure 3.1 we know that C' € EB]C(QI)( +5:k) (ie.
for each j we restrict C' to K, }§+S ) represents the cup product. Note that we have dC =46C =0.
By Proposition 5.1.3 there exist functions h;, j = 1,..., N, such that dh; = CO.

Lemma 5.1.4. For each j = 1,...,N, there exist functions F; € C (A \ AR+ S); k) such
that dFj =C — dhj.
Proof. Tt follows immediately since H (1)(K R+5. k) = 0 by Proposition 3.3.4. O

Collecting all the results gives us:

Theorem 5.1.5. Every element of T'(—R) (resp. T'(=S)) can be written as d€° (resp. du°)
for some & € H (A \ A(R); k) (resp. pn € H(l)(A \ A(S);k)). The cup product [d°, du] €
T?(—R—8) is equal to

§(F1, ..., FN) + 0(hi,...,hn) € T* (=R - S).

Remark 18. An element 6(F1, ..., Fx) +6(h1,....,hy) € C'(1 )(KR+S k) is mapped to zero with

both maps d and ¢ and thus it is an element of 7%(—R — S). The functions Fj can be easily
constructed since the functions C' — dh; have many zeros.

5.2 Deformations of three-dimensional affine Gorenstein toric
varieties

In this section we apply Theorem 5.1.5 to the case of three-dimensional affine Gorenstein toric
varieties.

Affine Gorenstein toric varieties are obtained by putting a lattice polytope  C A into the
affine hyperplane A x {1} C A x R =: Ny and defining o := Cone(Q), the cone over Q. Then
the canonical degree R* equals (0,1).
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Let X, be a three-dimensional affine Gorenstein toric variety given by a cone o = (a, ..., an),
where ay, ...,an are arranged in a cycle. We will also write Gorenstein singularity for singular
Gorenstein variety. We define ay1 := a;. Let us denote d; := aj41 — a; and let

N
7j=1

denote the set of (generalized) Minkowski summands (see [4]).
Proposition 5.2.1. It holds that T*(—R*) 2 V/k - 1.
Proof. See [5]. O

Remark 19. Note that if X, is isolated, we have T'(—R*) = T'. In general T" is non-zero
also in other degrees (see Corollary 3.6.4).

The complex (3.6) for i =1 and R = 2R* becomes
0 Y N O n * %
— Ny, — Nj;' — &;(Ny/d;d;) = (Spang, R*)* — 0,
where ¥(z) = (2, ..., z), 8(b1, ... bw) = (b1 — bz, by = bs, ... by — 1), n(qu, -, qn) = Y1 g; and

5 e 0 if the 2-face (aj,a;j41) is smooth
J 1 if the 2-face (aj, aj4+1) is not smooth.

Corollary 5.2.2. We have T?(—2R*) = kern/im & and moreover, if X, is isolated we see that
T?(—2R*) = (My,/R*)* since the complex

18 exact.

5.2.1 The cup product T'(—R*) x T'(—R*) — T?*(—2R*)

In the case of isolated three-dimensional toric Gorenstein singularities Altmann [3]| obtain the

following cup product
V/(k 1) x V/(k-1) — (My/R")" (5.3)

N
(L §) — Z Sjtjdj.
j=1

We want to apply Theorem 5.1.5 to the case of three-dimensional toric Gorenstein singular-
ities. To do that we will first show how to construct a function ; (defined on ajL) from an

element ¢t € V. From Altmann’s construction (see [5, Section 2.7]) there exist b; € Rt for
7 =1,..., N such that Vj it holds that

bj+1 — bj =tj(aj+1 — a). (5.4)

Since Z;Vﬂ tjd; = 0 we have a solution of this system of equations, namely by = by + t1ds,
by = by + t1dy + tads,..., by = b1 + Zi\izl t;d;. Now we project Bj € R* to CL]-L along the vector
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aj: we obtain bj := bj — éZi:a iaj Our function &; € (a;)* is defined by &;(z) = (b, z) = (b;, z).

Without loss of generality we can assume b; = 0 and thus we obtain that &;(z) = ( fc;ll trdy, x).
Note that we indeed have §; — ;41 = 0 on ajL N ajL—H'

Using Theorem 5.1.5 we will generalize Altmann’s cup product formula to the case of not nec-
essarily isolated toric Gorenstein singularities. Note that Altmann was using different methods
(Laudal’s cup product) in his proof.

Theorem 5.2.3. The cup product T*(—R*) x T'(=R*) — T?(—2R*) equals the bilinear map
V/(k-1)xV/(k-1)+~ kern/imé

(t,s) — (sit1d1, ..., sntndn).

We write for short R = R*. We first need to compute the function

hj = =8N (A) + & (=R + M pi(A) + i (=R + A& (N

on KC%JR and then compute hj—hj1 on K] ?H = K2RﬁKj2f1 We see that £;(—R+A)u;(A) =0
on KgJR since p1;(—R+X) =0 for X € a (thus either £;(—R+X) =0 or pj(A) = 0). The same
argument holds for p1;(—R + X\)&;(A) =

We have hj = —&;(A)p;(X) and thus on KJQJH it holds that

j—1 j—1
hy = hjn = (s5d;)(t5ds) + (s5d) O tdi) + (t5d5) (Y swdy). (5.5)
k=1 k=1

We now consider the function (dh; — C)(A1, A2) € C(l)(KQR k). Let
N ¢ AﬁozjL ﬂajﬂl,

¥ GAﬁa 1ﬂa

N e Pl = (K0 KE )\ (af Najyy),

541

N € Py = (KE 0K\ (a;Naj).

aj—1

If (a;, aj+1> is smooth, then Pf and P2J are infinite sets contained in the lines parallel to aj-ﬂajgrl

and a N a , respectively. If (aj,a;j4+1) is not smooth, then Pj = Pj = (Z) and thus we can

easﬂy see that dhj = C holds on KQJR. Moreover, K22 “i11 C Spang(R7, a N a]+1) and thus

hj — hj+1 = 0 for a non-smooth (a;,aj+1) and this agrees with our cup product formula, since
thjdj =0 on Nk/dj.

We focus now on the case when (aj, aj41) is smooth. If X € Plj U PQj, then (X, a;) =1. We

want to find the functions Fj; € C(ll)(KgJR; k) for which dh; + dF; = C holds. Let

—&(e)sjdj(c) — p(e)tjd;(c) = &(c)sj + p(e)t; if ce P}
Fj(c):={ €&(0)sj—1dj-1(c) + ple)tj-1dj-1(c) = —&(c)sj—1 — p(e)tj-1  if c € P3
0 otherwise.

Lemma 5.2.4. On KgJR (i.e. for (A1,A2) € A X A such that \; + Xy € K(%]R) it holds that
dhj + dFj =C.
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Proof. We write the proof in a way that also becomes clear how we chose the functions Fj.
Recall the definitions of C' and dh; = C° (equations (5.1) and (5.2)). In order that functions
F} satisfy the equation dh; + dF; = C on KgJR the following claims need to hold.

Claim 1: It holds that

Fi(N + X)) = (5.6)
= Fj(N) + Fj(N]) = §(V)s;d; (X)) — p(N)t;di (X)) =
= F;(N) + Fj(M) + €(V)s; + p(M)t;

and
Fi(¥ + X)) = Fj(37) + Fj (M) — €(¥)sj—1dj—1(Ny) — p(y? )tj—1dj—1 (M) (5.7)

Indeed, (C—dhy)(M, ) = £(V)sjd; (\])+p(N)td; (M), since (V) = (M), £ —€0 (X)) =
tjdj(A{) and d¢(N, /\Jl) = d{?()\j, )\31) = 0 (similarly also for p). With the same procedure we
obtain also the other equation and thus Claim 1 is proved.
Let 20 := M ++9 + X and 23 := N ++7 + N}, where M # 0 and p7 # 0.
Claim 2: Functions F; must also satisfy the following equations:
Fj(N 447 + X)) = (5.8)
Fj(V + M) + Fi(77) = €(v7)sd; (V) + M) — p(3)t5d; (N + M)
+ E(—R+ 2])s;d; (N + X)) + p(—R + 2])t;d; (N + N).
and
Fj(N 447 + X)) = (5.9)
Fj(y) + M) + F(V) + €(W)sj1dj-1 (77 + M) + n(V)t5-1dj-1 (7 + M)
— §(—R+25)sj1dj 1 (¥ + Ay) — (=R + )t 1d; 1 (77 + X))
Proof of the Claim 2: It holds that
(C = dhj)(N +X,+7) =
E(v)sidi (N + M) + p(y ) t5d; (N + M) + €V + X)up(~R + =)+
(Y + MG (R +27) — €N + M)u(=R + 2]) = n(¥ + M)E(-R + 2).
Since M # 0 and 1/ # 0, we have —R+2} > 0 and —R+2] > 0. Thus fé(—R+z{) = ¢&(—R+2),
50()\J + M) — f()\J + M) = —t;d; ()\j) and similarly for (C’—dhj)(wj + A}, A). Thus we conclude

the proof of Claim 2. We can easily verify that our function F satisfies the properties (5.8),
(5.9) and that dFj; + dh; = C indeed holds. O

To conclude the proof of Theorem 5.2.3, we need to show that 6(F1,..., Fx) +0(h1,...,An) =
(tis1d1,...,tnsndn). Recall the formula for hj — hjq1 on KHJrl (see the equation (5. 5))
distinguish the following cases

l. ce Pljz it holds that (aj,c) =1, (ajt1,¢) = 0 and thus we have Fj41(c) =
£(e)sj + ple)tj, where &(c) = Y1, tidi(c), ple) = Zle s;di(c). Using d;(c ) = —1 we

obtain that
(Fj = Fj41)(c) + (hj — hjt1)(c) = —s;t;.
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2. ce P2j+1: it holds that (a;,c) =0, (a;j4+1,¢) = 1 and thus we have Fj(c) =0, Fj41(c) =

—&(c)s; — p(c)t;, where (c) = Zg;ll tid;(c), p(c) = 5;11 sid;(c). It follows that
(Fj = Fj1)(c) + (hj = hj1)(c) = t;s;.
3. ce aj- N ale: it holds that (F; — Fj41)(c) + (hj — hj41)(c) = 0.
4. ¢ = R: it follows that (Fj - Fj+1)(c) + (h]’ — hj+1)(c) = 0.

Thus we completely described the element §(Fi, ..., Fx) + 6(h,...,AN) € Géévle(ll)(sz7?+1; k).
By [6, Proposition 5.4] we know that H(ll)(Spank K]%?H;IC) = H(ll)(Ki?H;k) since a 2-face
(aj,ajt+1) admits at most Gorenstein singularities. If (a;,aj41) is smooth, then it holds that
dj(c) = —1 for ¢ € Plj and dj(c) = 1 for ¢ € Pg“. We see that our additive function,
corresponding to the 0(Fj) + d(h;), is equal to t;s;d;. If (aj,a;41) is not smooth, then the
corresponding function is equal to 0. Thus we conclude the proof of Theorem 5.2.3.

Corollary 5.2.5. If X, is an isolated Gorenstein singularity, then Theorem 5.2.8 gives us
Altmann’s cup product (5.3).

5.3 The cup product between non-negative degrees

Let X, be a non-isolated three-dimensional toric Gorenstein singularity. In this section we
compute the cup product T'(—R) x T1(—=S) — T?(—=R— S) for R, S # 0. If R and S have the
last entry equal to 0, then the computations in this section have implications in deformation
theory of projective toric varieties.

The following notation already appeared in Subsection 3.6.1. Let si,...,sy be the funda-
mental generators of the dual cone ¢V, labelled so that o N (sj)L equals the face spanned by
aj,aj41 € o. With £(j) we denote the length of the edge d;. Let R?’q = qR* — ps; with
2 < q <{(j) and p € Z sufficiently large such that R? 1 ¢ int(cV). In this case we already know
that dimy, T"(=R??) = 1 by Corollary 3.6.4.

Lemma 5.3.1. If #{a; | (a;, R) > 0} <2, then T*(—R) = 0.

Proof. It #{a; | (aj,R) > 0} < 1, then the statement is trivial. Without loss of generality
(aj, R) > 0 for j = 1,2 and (a;j, R) < 0 for other j. Now the statement follows from the fact
that T2 = 0 for the Gorenstein surface (aj,as) C Ng = R? (see Example 8). O

Proposition 5.3.2. Let Ry := R?““ and Ry := RV*®, where j and k are chosen such that

aj and ay are not neighbours (we allow j = k). The cup product T*(—Ry) x T'(—Rs2) —
T?(—Ry — Ry) is zero.

Proof. Let & € H(ll)(A \ A(R1);k) and p € H(ll) (A\ A(R2); k) represent basis elements for
TY(—R;) and T!(—Ry), respectively. We will show that the cup product [d¢°, du®] € T?(— Ry —
Ry) is equal to zero. If j = k the statement follows from Lemma 5.3.1. Since a; and ay, are not
neighbours, it holds that (a;, R1 + R2) < (aj, R1) and (ag, R1 + R2) < (ag, R1), from which it
follows that K£1+R2 C Kfil fori = 4,74+ 1,k,k + 1. Thus we have d(hy,...,hy) = C and by
Theorem 5.1.5 it follows that the cup product is equal to 6(hq,...,hy) € @é‘\leH(ll)(KﬁiFQ; ).
We can easily see that h; =0ifi £ 5,7+ 1,k k+ 1 and

hi(A) = =€) (A) + E(=Re + Mu(X) + p(—Ri + NEN) € Oy (K2 k),
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ifi=j,7+ 1,k k+1 We see that §(hi,...,hxy) =0 and thus we conclude the proof. O

The following example shows that we can also compute the cup product between the elements
of degrees Ry := R?l’ql and Ry := R?i’ih.
Example 12. A typical example of a non-isolated, three-dimensional toric Gorenstein singu-
larity is the affine cone X, over the weighted projective space P(1,2,3). The cone o is given

by o = (a1, as, asg), where
ap = (—-1,-1,1), a2 =(2,-1,1), a3=(-1,1,1).
We obtain oV = (s1, s, s3) with
s1=1(0,1,1), s9=(-2,-3,1), s3=(1,0,1).

T! is non-zero in degrees R} := 2R* — ass, R?j ;= 2R* — 51 and Ri = 2R* — sy with a > 1,

B >1and v > 2. Let us denote the corresponding basis element of R., R% and R?Y by 2%, zg,

and zi, respectively.
We have

(as, Ri) =2, (ag, Ré} =2 - 3a,
<CL2, R%> = 2, <a3, R%> =2 2,8,

<CL1,R£>
<CL1, R%>
(a1, R3) = (a2, R3) =3, (a3, R}) =3—2y.

By Lemma 5.3.1 we know that the only possible non-zero cup products can be [z%,z%] and
[21, 23], since in other cases we have TQ(Ré- + RF) = 0. Using Theorem 5.1.5 we can easily
verify that [z}, 2%] # 0 and [z}, 23] # 0. In this case the equations 2] - 2# = 2} - 25 = 0 already
define the whole versal base space. Stevens checked this using the computer algebra system
Macaulay, see [5, Section 5.2].

5.4 The versal base space of a three-dimensional toric
Gorenstein singularity

In this section we conjecture a set of equations of the versal base space of degree R* for not
necessarily isolated three-dimensional toric Gorenstein singularities. Note that in the isolated
case the equations were obtained by Altmann in [4].

For b € Z we define

o b b0 - [0 b0
"1 0 otherwise, " | —b otherwise.

We define an ideal I = (3N, bju¥ | k > 1) C k[us, ..., uy], where b; € Z for all i = 1,..., N
and it holds that Zfil b; = 0. The following proposition will be very useful. In some parts of
the proof we follow [4] verbatim.

Proposition 5.4.1. (1) I is generated by polynomials from klu; — u;j],

(2) I C kluy,...,un]| is the smallest ideal that meets property (1) and on the other hand contains
N bf N b
r(w) = TIliz v —Iliz " -

75



Proof. We define
N

gr(u) == ijué‘?, for k > 1.
j=1

We know that g1 (u) = Zjvz1 bju; and since Z;V:1 b; =0, we have
g1(u) = ba(ug —u1) + -+ + by (uny —u1).

Replacing u; by u; — uq as arguments in g, yields

N N k k
gk(UQ — ULy .y UN — Ul) = ij(uj - Ul)k = ij(Z(_l)v< )uquuf—v)

j=1 =1 v=0 v
:vZ;(—l)”< >u?'(§;bﬂf—”) ::(_1) < >U"fgk_v(u),

from which (1) follows.
Without loss of generality we assume that by,...,b5r > 0, bpr41, ...,0n8 < 0. After renaming

Ui =T, UM+ =Ym4+; (1<i<M, 1<j<N—-M),

we obtain
M N
ge(z,y) = (D _biak) = ( D biyh),
i=1 j=M+1

ra,y) = (@) — ().
Let S denote the multiset
Si={1,..,1,2,..,2, ... M, ... M},
where i has multiplicity b; (for i = 1, ..., M) and thus
L:=|S|=bf +-+bj, =b] +-+by.

For A C S we write 24 := [I;c xi, which is a monomial of degree |A]. We can generalize
arguments with symmetric polynomials made in [4, Lemma 3.3] as follows: let

sj(z) == Z A, forj=1,..1
ACS,|Al=5

We write g(z) = 327, biz¥ and gr(y) = Z;V:MH bj_y}“. Note that we have

M
g1(x) = s1(2) = > bia.
=1

We can show that there exist by, € Q, (k=1,...,1) with b; # 0 such that

-1

(@ aly) = bi(brwy + -+ byaan) + D brgr(z)si—k(@) + bigi(z). (5.10)
k=2
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We choose by 1= M and then we choose by such that by (x1 4+ +ay)t + bags ()s;—2(x)

does not have monomials of the form a:b +1

“Mi(T1, .oy Tiy oy ) (for each @ =1,..., M), where
m; is a monomial of degree [ — b; — 1. Such by exists and we see that we can naturally continue
this procedure, i.e., we choose by such that by(z1 + - - + 2ar)' 4 baga(z)s;_2(z) + bags(z)s_3
does also not have monomials of the form xf"+2 ~mi(x1, .oy Tjy ooy xpy) for each i = 1,..., M. At
the end we obtain the equation (5.10).

We have s1(z) = g1(z), s2(z) = 3((g1(z)? — g2(z))) and as above we can easily verify that

for a fixed j (1 < j <) there exist ¢; € Q, (i = 1,...,j) with ¢& # 0 such that

Sj(E):él(fxl"f'"' +Zczgz 5] z +c]g]( )

Thus we see that for 1 < k < [ we can write sip(z) = Pr(g1(2),...,9k-1(z)) + crgr(x),
sk(y) = Pu(91(y ),...,gk,l(y)) + crgr(y) for some polynomials P € Q[z1, ..., zx—1] and non-
vanishing rational numbers cg. In particular, we have

r(z,y) = P(91(2), s gi-1(2)) — P(91(y); -+, q1-1(y)) + agi(z) — cgi(y)-

We can conclude the proof following [4, Lemma 3.4]: each polynomial ¢(u) can be uniquely
written as

u) = qu(ug — UL, ., UN — UT) - UL
v>0

If I C klu] is an ideal generated by polynomials in w — uy only, then for each ¢q(u) € I the
components ¢, are automatically contained in I, too. Hence, we should look for the components
of the polynomial p. In the polynomial ring k[X,Y, U] we know that

r(U+X,U+Y)=U+X1)" - (U+ Xp)"™ — (U + Yags1) 2+ - (U + Yu)o¥
has s,(X) — sx(Y) as the coefficient of U'™F (k =1,...,1).

We obtain
si(X) — sk(Y) = Pr(91(X), -, gk—1(X)) — Pr(91(Y), -, go—1(Y)) + crgr(X) — crgr(Y)
k—1
= Qv (K, X)gv (K; X) + Ckgk (Ka X)
v=1

for some coefficients q,. If we show that I = (3% =1 jb | 1 <k <), then specialization (first
by U +— x1, X; — x; — x1, Y; — y; — x1, then followed by the usual one) shows that the ideal
generated by the components r,(uw — u1) of r equals I. We conclude the proof by showing that
I= (Zjvzl ué?bj | 1 <k <1): we can generalize arguments with symmetric polynomials made
in [4, Lemma 3.3| as follows: for each k > [ there exist polynomials Py, € Q[s1, ..., s;], such that

91(2) = 9k(y) = Pr(s1(2), -, s1(2)) = Prls1(y), s 51(y))-
As in [4, Lemma 3.3| we conclude that
l

ge(@,y) =Y go(z,y) - 2o(2,y),

v=1

for some polynomials z,. Thus we conclude the proof. O
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Recall that X, is not necessarily isolated three-dimensional toric Gorenstein singularity. The
edges of the polytope @ C A := [R* = 1] are dy,...,dy and we have di + --- +dy = 0. We
have the vector space

N
j=1

The lattice length of d; is denoted by #(d;) for j = 1,...,N. Let V < kY be the standard
inclusion given by t — t. We denote the lattice L := A N Z".
We define the ideal

N
Ji= (> _thd; | k>1) Cklty, .., tx]
j=1

and the affine scheme
M := Spec(k[t1, ...,tx]/J) C kN,

Let us denote
N " N
Fty,otn) =[]0 - Tt
i=1 i=1

with d € (¢(d1)Z x - -+ x £(dn)Z) N Spang{({d1,¢), ..., (dn, ) | c € A*}.

Denote by p the projection p : kN — kv /k(1,...,1), which on the level of regular functions
corresponds to the inclusion kft; —t; | 1 <4,j < N] C k[t1, ..., tn].

The following theorem generalizes [4, Theorem 2.4].

Theorem 5.4.2. The following holds:

1. J is generated by polynomials from k[t; — t;], i.e., M = p~ (M) for some affine closed
subscheme M C V/k(1,...,1).

2. J C k[t1,...,tn] is the smallest ideal that has the above property and on the other hand
contains 7.

Proof. The proof follows from Proposition 5.4.1 and the fact that for every ¢ € L* we have
((dl,c>, - (dN,c>) € (ﬁ(dl)Z X oo X Z(dN)Z).
O

In [4] Altmann proved that M is the versal base space for isolated three-dimensional Goren-
stein singularities and he also constructed a versal family. We conjecture that M is the versal
base space in degree —R* also for not necessarily isolated Gorenstein singularities.

5.5 A differential graded Lie algebra extending the cup product

In this subsection we construct a dgla extending the cup product from Theorem 5.2.3.
Let X, be a three-dimensional affine Gorenstein toric variety. We define

gz(*R) = @Tga;dimT:i(Spank(Ef)*)’
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for all R € M. The bracket [, ] is defined in the following way: [b1,b2] = 0 if for at least
one j € {1,2} holds that b; & g'(—kR*) for k > 1. Let ¢ be the linear form on N with
5(61) = 6(62) = 6(63) =1.

We define [, | : g'(=kR*) x g*(—IR*) = g*(—(k + )R*) as [b,c] := ((bU)1,...,(bUc)N),

where

(bUc); = tp(bj+1) = p(bj)) - (p(cjr1) = p(e))) + L(p(cjt1) = p(e))) - (P(bj+1) — (b))
B (k+1—1)0(d;)

and p(b;) € N (resp. p(cj) € N) are defined in the following way. Note first that g'(—R*) =
@;vzl Ng/a;R and g'(—kR*) = N, for all k > 2. Thus we have b = (by,...,by) and b; is
either an element of Ng/a;R or Ng. If b; € Ng we define p(b;) := b;. If b; € Nr/a;R, then we
identify b; with &; € (ajl)* as we did in Section 5.1. Now we project ; to R*L along the vector
a; for each j. The resulting element is defined as our p(b;) € R*Y c N. In the same way we
construct p(c;).

Differential on g is coming from the complex (Span,(E%)*), and with the above product | , |
we give a dgla structure on g. We can easily verify that the dgla g extends the cup product
from Theorem 5.2.3.

Let t = (t1,...,tn) € V be an arbitrary point in the versal base space in degree —R* for
X, conjectured in Section 5.4, i.e., t € V satisfies Z;VZI t;‘?dj = 0 for all £ € N. From ¢t
we can construct an MC element of the dgla g as follows: we define x* := (0,tdy, t¥d; +
thdy, ..., Zj\;l t?dj) € g'(—kR*) for k > 1. We can easily verify that

v ={at = Gk, 2k |2 1) e ot (kR
E>1

satisfy the Maurer-Cartan equation: in degree —kR* the MC equation dx + %[ZL‘, x] reduces to
dz® + 3y 5[, 2¥] = 0. We have da* = (—thdy, —t5ds, .., —tXdy), p(m?) —p(a:?_H) = t?dj
and thus

2t%d;
Uyt = J )
(ZE T )] k—1
In the sum >, ., 3[2% 2] we have k — 1 summands from which it follows that @ is an MC
element.
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6 Poisson deformations

Poisson deformations are deformations of a pair consisting of a variety and a Poisson structure
on it. Lately there has been a lot of interest in these deformations, see for example results of
Namikawa [52],[53], [54] or Kaledin and Ginzburg [33].

In Section 6.1 we construct a differential graded Lie algebra structure controlling Poisson
deformations. In Section 6.2 we give a convex geometric description of the Hochschild cup
product and simplify the computation of Poisson cohomology groups.

6.1 A differential graded Lie algebra controlling Poisson
deformations

We consider the following deformation problem.

Definition 66. A Poisson deformation of a Poisson algebra A over an Artin ring B is a
pair (A’,7), where A’ is a Poisson B-algebra and m : A’ ® g k — A is an isomorphism of
Poisson k-algebras. Two such deformations (A’,71) and (A", m2) are equivalent if there exists
an isomorphism of Poisson B-algebras ¢ : A’ — A” such that it is compatible with m; and 7o,
i.e., such that m =m0 (¢ ®p k).

A functor that encodes this deformation problem is
PDefg: A— S

B — {Poisson deformations of A over B}/ ~ .

In the following we define a dgla that controls the above deformation problem. Consider the

double complex given in Figure 6.1.

The map d,, is defined as d,, := —[uy, -] : C"(A) — C"1(A), where p, € C(22) (A) is a Poisson
structure { , } of A. In the double complex in Figure 6.1 we restrict d, on the chosen domains
and codomains. Note that we have d[u,, f] = [pp, df] + 0 by Proposition 2.3.1, and thus we
really obtain a double complex. We denote its total complex by D*.

We define the bracket [, ], on D* as follows: let C"(A) = C(”l)(A) - 0C, (A) and define

[, ]p 1 C™(A) x C™(A) — C™F7H(4)
[(f1s s ) (91 s )l o= (12 g1)s oo D [Fir G55 ooes [fims )

i+j=k
where we restrict [f;, g;] to C'(T;L_:rj’fl; (A).

This bracket defines a dgla structure on D*[1]: the shifted differential d[1] is equal to [pp, ]
and the shifted differential d[1] is equal to [y, -],, where p is the commutative multiplication
on A. We denote the shifted differential of D*[1] by d. It is given by d = [i + ptp, -], We can
immediately check that the bracket [, ], and differential d equip D*[1] with the structure of a
dgla. We denote this dgla by Cp(A)[1].
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dp dp dp

C(ll) (A) ———— > 0(22)(14) _— C(?’g)(A) —_—
Figure 6.1: The double complex controlling the Poisson deformations

Remark 20. Note that the Gerstenhaber bracket is not graded with respect to the Hodge
decomposition and thus the above product is not the Gerstenhaber bracket. By Lemma 4.1.3
we have [, ulp = 1, ], (1, pplp = (10 pp] and [pp, piplp = €slpip, pip)-

To show that the functor PDef4 is controlled by the dgla Cp(A)[1] we first need a few
Lemmata. Some ideas are taken from [63, Sections 4.3 and 4.4]. Let V be a vector space.
Recall from Definition 47 that C™(V) is the space of k-linear maps V&" — V. Following the
Hodge decomposition we define C'("z.)(V) ={feC™V)| fos,=(2"—-2)f)}. Thus we can
define C;(V)[1] to be a dgla with the Lie bracket [, ], and zero differential.

Lemma 6.1.1. Let V be a vector space. Giving the Poisson algebra structure on V' is the same
as giving an element (i, j1p) € C’(Ql)(V) &> C(22)(V) satisfying 3[p, 1] = [, o) = 5 [1ps plp = 0,
i.e., (i, pp) is an MC element of Cp(V)[1].

Proof. Let (u,p1p) be an MC element of C5(V)[1]. We define the multiplication on V' by
a-b:= p(a,b) and the Poisson structure by {a,b} := pp(a,b). The product - is commutative
and associative if and only if u € 0(21)(1/) and 3[u, 1] = 0 (see also Subsection 2.3.6). Now we
show that ji, defines a Poisson structure. Since p, € C?Q)(V), everything except the Jacobi

identity is clear. The Jacobi identity we get from 1[4, pp], = 0 as in Lemma 4.1.3 (note that
we have [y, tplp = €3[pp, pip]). We now show the following claim:

{a,b-ct = {a,b}c+{a,c}b (ie. :up(a7 (b, c)) = M(Mp(av b),c) + :u(lu’p(a’ c),b))
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holds if and only if [p, ptp] = 0. Assume that

F((I, b7 C) = :U’p(a7 :u(ba C)) - M(Mp(av b)7 C) - ,u(lu‘p(a7 C)v b) =0
holds. We have

F(a,b,c) + F(c,a,b) =
('u[p(a,l]i(b, ) — p(pp(a,b), c) — p(ppa, c), b)) + (up(e, u(a, b)) — p(pp(c, a),b) — p(pp(c,b), a)) =
—[Mps M-

and thus we see one direction. For the other direction we compute

s 1] (@, b, €) + [pp, (@, ¢, b) = [pp, ] (b, @, ¢) =
- 0) 1) 01—l o)+ r00) = ) 1400 s )~
(1p(ba, ) — pip(b, ac) + pp(b,a)c — (a,c )b) (: o

2

Hp

(= plabe) + ppla, B)e + pip(a,c)b) =
To shorten the notation we wrote ab = p(a, b) and similarly for other elements. Thus the claim
is proved. The other direction of the proof follows immediately. O

Definition 67. The Poisson product on the vector space V is a pair (-,{ , }), such that
(V,-,{, }) is a Poisson algebra.

Lemma 6.1.2. Let B be an Artin ring. MC elements of Cy(A ® mp)[1] are in bijection with
Poisson products of the vector space Ay @ B, giving the known Poisson product on A (modulo

mB).

Proof. Let (p, pp) € 0(1) (Ag) ® 0(22)(140) represent the Poisson bracket on Ag. Then Poisson
products on the vector space Ay ® B, giving the known product on A (modulo mp) are obtained
by

[(:Uv :up) + (57 gp)a (M? :UJp) + (57 gp)]p =0, (61)
for (§,&p) € 0(21)(14 ®mp) ® 0(22)(/1 ®@ mp). Since [(i, ip), (i, tp)]p = 0 and the differential on

Cy(A®mp)[1] is given by [(u, p1p), -], then we see that the equation (6.1) gives us MC elements
(€,&p) of Cp(A®mp)[1]. O

Theorem 6.1.3. The functor PDef 4 is controlled by the dgla Cy(A)[1].

Proof. We write for short g := Cp(A)[1]. By Lemma 6.1.2 there exists a bijection between
MCy4(B) and Poisson products of the vector space Ag ® B giving the known Poisson product
on A (modulo mp).

To conclude the proof we show that two Poisson products (-,{, }) and (,{, }) on Ay ®
B are equivalent (in the sense of Definition 66) if and only if the corresponding elements
(v,7), (7, 7,) € MCy(B) are gauge equivalent. Since the products are equivalent we can easily
see that there exists o € g° ® mp such that

a b= exp(a) (exp(—a)(a) - exp(—a)(b)). (6.2)

{a, b} = exp(a)({exp(—a)(a), exp(—a) () }'). (6.3)
As above let (p, pp) € C(zl)(Ao) @ C(22) (Ap) represent the Poisson bracket of A.
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From (6.2) we obtain

(1 +7")(a ®b) = exp(a)(exp(—a)(a) * exp(—a)(b)) = exp(ad a)(p+ ) (@ ®b).  (6.4)
From (6.3) we obtain
(1p +7p) (@ ® b) = exp(a)(exp(—a)(a) * exp(—a)(b)) = exp(ad a) (s + ) (a @ D). (6.5)

Elements (,7,) € MCy(B) and (7/,7,) € MCy(B) are gauge equivalent if

(V) = (v w) + (7, 9)]p — d(@)) (6.6)

holds.
Since d(a) = [(7, 'yp) alp = —[o, (7,7p)]p, we see that (6.6) holds if and only if the equations
(6.4) and (6.5) hol O

6.2 The cup product of the Hochschild dgla and the Poisson
cohomology in the toric setting

Definition 68. The cup product of the Hochschild dgla is the map
[, ]: H*(A) x H*(A) — H?(A).

In the next lemma we recall some computations from Chapter 4.

Lemma 6.2.1. For an element p € H(QQ) (A) and an element q € H(21)(A) we have the following:

e e3p,p| = 0 is the Jacobi identity,

e [p,q] = e2lp,q] and [q,q] = e1[q, q].

Proof. The equation eg[p, p] = 0 is the Jacobi identity by the proof of Proposition 4.2.1. Equa-
tions [p, q] = e2[p, ¢] and [q, ¢] = e1]q, ¢] hold by Lemma 4.1.3. O

Using the Hodge decomposition, the isomorphism T (A) = H(Ql)(A) (from Theorem 2.3.10)
and Lemma 6.2.1, we see that the cup product of the Hochschild dgla consists of the products
TYHA) x TYHA) — T?(A), T'(A) x H(22) (A) — Hé) (A) and Hé)(A) x Hpy(A) — HP(A).

In Chapter 4 we showed that every Poisson structure p € H? B )(A) on an affine toric variety
X, = Spec(A) can be quantized, which implies that [p,p] = 0 € H3(A). In Chapter 5 we
analyzed the cup product T!(A) x TH(A) — T?(A). In this section we will analyze the product
[,]:TYA) x H(22)(A) — H(?’Q)(A) in the toric setting.

From Section 5.1 we recall the following: Let o = (ay,...,any) and R, S € M. Let p be an
clement from H L (A \ A(S); k). We extend (not additively) u to the whole of A by 0 (i.e.

w(\) =0 for p € A(S ))- ThlS extended function we denote by u%. We have
TH=5(A) = HE) (A AN (S + A)s k)
by Proposition 3.2.2 and the surjective map

HY (AN (S + M) k) S HZ (A AN (S +A): k)



by Corollary 5.1.1. Thus we see that every element of T (—S) = H(21)(—S) can be written as
dp® for some u € H(l)(A \A(S); k).

The following proposition simplifies the product [, ] : TH(A4) x H(22) (A) — H}

®) (A) in the
toric setting.

Proposition 6.2.2. Let u € H H(ANA(S); k) and € € H(Q)(A,A \A(R); k). Let

G(A1, A2) i= G1(A1, he) — Ga(M1, Aa) € Chy (A k),
where
G1(A1, A2) i= (=5 + A1 + A2, Aa) (A1) + £(A1, =S + A1+ Aa) i’ (o),
Go(A, Xa) := EOL, )’ (A1 + X2 — R).
Let A\ja3 := A1 + Ao + As.

1. [f /\1 + )\2 > S, )\2 + )\3 > S we have dG(/\l,)\z,)\g) = [E,d,uo]()\l,)\g,)\g).
2. If M1+ X2 25, Ao+ A3 > S we have

(dG - [57 dlu’o]) ()‘1, )\2, )\3) =
10(A1) (E(=S + 123, A2) + E(A2, A3)) + 10(A2) (€A1, =S + Aiaz) — E(A1, A3)).

3. If M+ 22> 8, Ao+ A3 2.5 we have

(dG — €, dpu°]) (A1, A2, As) =
10(A2) ((A1, A3) — £(=S + A123, Ag)) + 10(A3) (£(—5 + Aras, A2) — £(A1, A2)).

4. If M+ X 25, do+ A3 2 S we have

(dG — [€,du°]) (A1, Az, Az) = P (A1) (§(=S + Aizs, A2) + E(A2, A3))+
+ 12(N2) (E(A1, =S + A123) — E(—S + M2z, A3)) +
10(A3) (£(—S + 123, A2) — E(A1, A2)).

Proof. We first compute

[, dp®) (A1, Ao, As) =

= &(=S 4+ A1+ A2, Ag) (10(M) + 12(X2) — 10(A1 + A2))

— &1, =S+ X2+ A3) (10(N2) + 1P (A3) — 10 (A2 + A3))

- duo(—R + A1+ Ao, A)EN L A2) — dpP (A, —R 4 Az + A3)E(A2, A3) =
1O (E(=S 4+ A1+ A2, Az) — £(X2, A3))
10(A2) (E(=S + A1+ A2, Az) — E(M1, =S + Aa + A3))
1OA3) (= €L =S + A2 + A3) + (A1, A2)) — 01 + M)E(—S + A1 + A2, Az)
12 (Aa + A3)E(A1, =S 4 Mg + A3) — dGa(A1, A2, A3),
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where we use the fact that £ is bi-additive.
We now compute
dG1(A1, Ao, A3) =
=E(=S 4+ XAa + A3, A3) 10 (N2) + E(Na, =S + Ao + A3)p’(A3)
—E(—=S + A1+ A2+ A3, 03) P (A1 + A2) — EO + Ag, =S+ A1+ A2+ M) (N3)
+ (=S + A+ da 4+ A3, A0 + X3) (A1) + AL, =S + A+ Ao + A3)p’ (A2 + A3)
— (=S + A1+ A2, M)’ (A1) — (A, =S + A1+ M)’ (Na).

We need to consider the following cases:

LA+X>28X+A32>8
We have pu®(A1 + A2) = u®(A2 + A3) = 0. Thus we compute

dG1(A1, A2, \3) =
= 1P A1) (E(=S + M + X2, A3) + £z, X)) +
10(N2) (E(=S + A2 + A3, Az) — (A1, =S + A1+ o))+
10(A3) (= €A1, =S + X2 + A3) — E(Xa, A1)).
It holds that

g(—S + )\2 + >\3a /\3) - 5()\17 _S + )‘l + >\2) =
=8(=S 4+ A+ A2+ A3, Az) — (A1, As)
=&AL, =S+ A+ A2+ A3) +€(M, A3) =
=&(=S+ A+ A2, A3) —&(M, =S+ A2+ A3)
and thus we see that in this case dG(A1, A2, A3) = [€, du®] (M1, A2, A3) holds.

2. A+ X zS, Ao+ A3 > S
We have %Az + A3) = 0 and p%(A\1 + A2) = p%(A1) + u®(A2). It holds that

dG1(M1, A2, A3) =
= 1P(AD)E(=S + A1+ Az + Az, ) 4+ 10 (A2) (E(—S + A2 + A3, Ag) — E(—=5 + A1+ Ao + A3, A3))+
+ MO(AS)(é—(AZa =S+ A+ A3) =&AL+ A, =S+ A+ A2+ >\3)),

€, du)( A1, A2, A3) =
= 1P (M) (=€(A2, A3)) + 1 (M) (=6 (A1, =S + Ag + A3))+
10(A3) (= €A1, =S + X2+ A3) + £(A1, A2)).

If we compute (dGy — [€, du’]) (A1, A2, A3) we see that the term before p”(\3) vanishes
because

A2, =S+ A+ A3) —§( A1+ A2, =S+ A1+ A2+ A3) =

=&(A2, =S+ A1+ A2+ A3) —&(A2, A1) —E(A1 + A2, =S+ A1+ A+ A3) =

= —&{(A1, =S + A2 + A3) +§(A1, A2).
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3. M+ X >8 A+ A3 2S5

dG1(A1, A2, A3) =

= 1O (E(=S + M 4 g + Az, Ag + A3) — E(=S + A1+ Ao, Ao) ) +

+ 10 A2) (€A, =S + A1+ A2+ A3) — E(AL, =S + A1+ o))+

+ 10A3) (= €A1+ A2 =S + A1+ A2+ Az) + €A, =S + AL+ A2 + A3)),

€, du’) (M1, Ao, A3) =
= P (A1) (E(=S + A1+ Az, A3) — E(A2, Az)) + 10(A2)E(—=S + AL+ Az, Ag) + 1(A3)€ (A1, A2).

As before we see that in (dG1 — [¢, du]) (A1, A2, A3) the term before p(A;) vanishes.
4 M+XZ2S A+ 328
In this case we have

(dG — [&,dp]) (A1, A2, Az) = dG1(M1, A2, A3) =

= " (M)E(=S + M+ A2 + Az, Ao)+

+ 10(N2) (€A1, =S + A+ Ao+ Ag) — E(=S + A1 + Ao + A3, A3))+
+ 1P (A3)E(=S 4+ A + Ao + A3, Aa).

Corollary 6.2.3. Every element of T'(—S) = H(Ql)(—S) can be written as du® for some
p e HYy (A A(S); B).

Let € € H(22)(—R) = H(22)(A,A \ A(R); k). The product [du°, €] € H?Q)(—R — S) is equal to the

cohomological class of the element
(6(G),d(G) = [dp°,€]) € Cly) (K5 k) @ Cfyy (As k)

in the total complex of the complex C(‘2)(K.R;k‘) (see Section 3.3, where also the map 6 is

defined). Note that the map d(G) — [du°, €] has many zeros by Proposition 6.2.2 and thus we
can easily compute it (see Example 13).

After applying the differentials d on the double complex in Figure 6.1, we obtain for j, &k > 1:

B{* = B (4) = HIHLC A1),

where di = —[pp, ] E{’k — E{H’k. We have E%’Q = H(zl)(A) =~ T2(A) and E’12’2 = H?Q)(A).
The map d : Ell’2 — E12’2 is the special case of the product analyzed in Proposition 6.2.2.

In the following example we collect some results from previous chapters in order to compute
the Poisson cohomology groups of the Poisson structure defined in Example 9.
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Example 13. Let X, = Spec(A,) be the Gorenstein toric surface given by g(z,y,z) =
xy — 2" In Section 3.5 we saw that A, := o' N M is generated by S; := (0,1), So := (1,1
and S3 := (n + 1,n), with the relation S1 + S5 = (n + 1)S2. We have

1 HR=kSyfor2<k<n+1
0 otherwise

dimy, Hy) (—R) = dimy, Hiyy(—R) = {

by Corollary 3.5.3 and Example 8. Moreover, T?(A,,) = H(?’l)(An) = Ell’3 = 0 by Example 8.

From the proof of Theorem 2.5.9 it follows that for ¢ > 3 we have T(Iz) (Ap) =0if k#i—1,1
and
99 99 9y

TN A,) 2T (AR) 2 A/ (52, =, =—).
() = Ty () = 4,/ (5, 09

The later has k-dimension equal to n. Since Té.;l(An) =H (21’)_ 1(A,) and T(ii) (A,) 2 H (QZ’)(AH)
we see that Eék = EZF holds for every j, k > 1.

dq dy dy di

0 0 0 HEy) (An) —— H{x)(An)

0 & 0 — s (A D HT (4) — D

0 —T s H (A~ i (A) — D g
H2)(An) =2 i () — D g B
Hy(A) — s By (A) — B g — B g D

Figure 6.2: The spectral sequence terms E{k for 1 <j, k<5

We focus now on the Poisson structure 7, from Example 9. We proved that

(2™, 22?) = fo(A1, Ag)z 2t MHA2
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where fo is skew-symmetric and bi-additive with fy(S1,53) = —(n 4+ 1). Thus we see that

Ty € H(22’)_S2 (An). Let gn := Cp(An)[l]. From a straightforward computation we see that
dy : H(ll)(An) — H(22) (A,) is surjective (we can also check this using [33, Lemma 3.1]).
Let {f € TV 7%%2(A,) | 2 < k < n+ 1} be a basis of T'(A,) = H?,(A,), such that fi; is

1)
represented by i € C'(ll)(A \ A(kS2); k) with

() = a ifAX=aS;3, foraeN
A=Y 0 otherwise .

From Proposition 6.2.2 we can immediately see that dG = [mg,du?] holds (in all cases),

G(Ai,A2) = 0for A\i+ A2 2 R+S and thus 6(G) = 0. We conclude that [mg, fix]) =0 € Hé)(An)
for all 2 < k < n+ 1 and thus d; : H(zl)(An) — H(32) (A,,) is the zero map. Thus from the

spectral sequence arguments we are able to compute the most important cohomology groups
from deformation theory point of view: H'(g,) and H?(g,). We see that

Hl(gn) = H(21)(An) = Tl(An)

and
H2 (gn) = Hé) (An)’

Thus dimg H'(g,) = dimy T*(A,) = n (this was already proven with different methods in [33,

Lemma 3.1]) and also dimy H?(g,,) = dimy, Hé) (A,) =n.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Hochschild Kohomologiegruppen affiner torischer Va-
rietdten und ihre Anwendung in der Deformationsquantisierung und kommutativen Defor-
mationstheorie. Wir kénnen die n-te Hochschild Kohomologiegruppe in die direkte Summe
T(On) (A) @ T(ln_l)(A) S Tg)_l(A) zerlegen, wobei T(]‘Z?) (A) die hoheren André-Quillen Koho-
mologiegruppen sind.

Unter bestimmten Annahmen berechnen wir die Dimensionen der Hodge-Summanden T(li) (4),
was existierende Resultate iiber André-Quillen Kohomologiegruppen T(ll)(A) von Sletsjge und

Altmann aus [6] verallgemeinert. Insbesondere berechnen wir T} (A) fiir alle i € N im Falle
von zwei- und dreidimensionalen affinen torischen Varietéten. In héheren Dimensionen berech-
nen wir 7 (12.)(/1) fiir affine Kegel tiber glatten torischen Fano-Varietdten. Das Verstdndnis der
Hochschild Kohomologie ist wichtig fiir die Deformationsquantisierung. Ein Hauptergebnis
hinsichtlich der Existenz der Deformationsquantisierung ist Kontsevichs Formalitétssatz [40,
Theorem 4.6.2|, der impliziert, dass jede Poisson-Struktur auf einer reellen Mannigfaltigkeit
quantisiert werden kann, d.h. ein Sternprodukt zulésst.

Kontsevich [39] erweiterte auch den Begriff der Deformationsquantisierung auf den Kontext
der algebraischen Geometrie. Fiir singuldre Varietdten gilt Kontsevichs Formalitétstheorem
nicht mehr. Wir zeigen jedoch, dass jede Poisson Struktur auf einer moglicherweise singuléaren
affinen torischen Varietét im Sinne von Deformationsquantisierung quantisiert werden kann.

Fiir kommutative Deformationen torischer Varietdten geben wir eine konvex-geometrische
Beschreibung der Harrison Cup-Produktformel T(ll)(A) X T(ll)(A) — T(21)(A). Dies ermoglicht
eine Beschreibung der quadratischen Gleichungen des versellen Deformationsraums.

In dieser Arbeit erhalten wir des Weiteren einige allgemeinere Ergebnisse, die auch fiir Vari-
etdten, die nicht notwendigerweise torisch sind, gelten. Beispielsweise berechnen wir die n-ten
Kohomologiegruppen einer reduzierten isolierten Hyperflachensingularitdt. Aufserdem konstru-
ieren wir eine differentielle graduierte Lie Algebra g, die die Possion Deformationen einer all-
gemeinen affinen Varietét kontrolliert.
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