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Abstract

For an affine toric variety Spec(A) we give a convex geometric description of the Hodge decom-
position of its Hochschild cohomology. Under certain assumptions we compute the dimensions
of the Hodge summands T 1

(i)(A), generalizing the existing results about the André-Quillen co-
homology group T 1

(1)(A). We prove that every Poisson structure on a possibly singular affine
toric variety can be quantized in the sense of deformation quantization. Furthermore, we give a
convex geometric description of the Harrison cup product formula T 1

(1)(A)×T 1
(1)(A)→ T 2

(1)(A),
which gives us the quadratic equations of the versal base space. Moreover, a differential graded
Lie algebra g controlling Poisson deformations of an arbitrary affine variety is constructed. In
the toric case we simplify the computation of the Poisson cohomology groups Hk(g).
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1 Introduction

Deformation theory appeared as the investigation of how many complex structures may appear
on a fixed compact manifold. In 19th century Riemann [60] already mentioned 3g − 3 moduli
determining the complex structure of an algebraic curve of genus g ≥ 2.

Following Gerstenhaber’s approach [31] we consider deformations of algebras. Let k be a field
of characteristic 0 and let A be a k-algebra. A deformation of A over an Artin ring B is a pair
(A′, π), where A′ is a B-algebra and π : A′⊗B k → A is an isomorphism of k-algebras. Two such
deformations (A′, π1) and (A′′, π2) are equivalent if there exists an isomorphism of B-algebras
φ : A′ → A′′ such that it is compatible with π1 and π2, i.e., such that π1 = π2 ◦ (φ⊗B k).
Let us additionally assume that A is equipped with a Poisson structure. Deforming the

product in the direction of the chosen Poisson structure on A leads us to the problem of
deformation quantization, which has been appearing in the literature for many years and was
established by Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer in [9]. A major result,
concerning the existence of deformation quantization is Kontsevich’s formality theorem [40,
Theorem 4.6.2], which implies that every Poisson structure on a real manifold can be quantized,
i.e., admits a star product. Kontsevich [39] also extended the notion of deformation quantization
into the algebro-geometric setting. From Yekutieli’s results [71], [72] it follows that on a smooth
algebraic variety X (under certain cohomological restrictions) every Poisson structure admits
a star product. As in Kontsevich’s case, the construction is canonical and induces a bijection
between the set of formal Poisson structures up to gauge equivalence and the set of star products
up to gauge equivalence.
When X = Spec(A) is a smooth affine variety, we use the following formality theorem:

there exists an L∞-quasi-isomorphism between the Hochschild differential graded Lie algebra
C•(A)[1] and its cohomology complex H•(A)[1], extending the Hochschild-Kostant-Rosenberg
quasi-isomorphism of these complexes. Dolgushev, Tamarkin and Tsygan [22] proved an even
stronger statement by showing that the Hochschild complex C•(A) is formal as a homotopy
Gerstenhaber algebra. Consequently, every Poisson structure on a smooth affine variety can be
quantized.
In this thesis we drop the smoothness assumption and consider the deformation quantization

problem for possibly singular affine toric varieties. In the singular case the Hochschild-Konstant-
Rosenberg map is no longer a quasi-isomorphism and thus also the n-th Hochschild cohomology
group is no longer isomorphic to the Hodge summand Hn

(n)(A) ∼= HomA(Ωn
A|k, A). Therefore,

other components of the Hodge decomposition come into play, making the problem of deforma-
tion quantization interesting from the cohomological point of view. For arbitrary singularities,
many parts of the Hodge decomposition are still unknown. The case of complete intersections
has been settled in [30], where Frønsdal and Kontsevich also motivated the problem of defor-
mation quantization on singular varieties. In the toric case Altmann and Sletsjøe [6] computed
the Harrison parts of the Hodge decomposition.
Deformation quantization of singular Poisson algebras does not exist in general; see Mathieu

[47] for counterexamples. For known results about quantizing singular Poisson algebras we refer
the reader to [63] and references therein. The associative deformation theory for complex ana-
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lytic spaces was developed by Palamodov in [56] and [57]. For recent developments concerning
the problem of deformation quantization in derived geometry, see [15].
Studying noncommutative deformations (also called quantizations) of toric varieties is im-

portant for constructing and enumerating noncommutative instantons (see [17], [18]), which
is closely related to the computation of Donaldson-Thomas invariants on toric threefolds (see
[37], [16]).
Considering only commutative deformations of algebras, the whole information about the

singularity of A is encoded in the so called versal base space. In the case of complete intersection
singularities, the versal base space is obtained by certain perturbations of the defining equations.
As soon as we leave the class of complete intersections, computing the versal base space becomes
a challenging problem.
For toric surfaces Kollár and Shepherd-Barron [38] showed that there is a correspondence

between certain partial resolutions (P-resolutions) and reduced versal base components. More-
over, Arndt [7] obtained equations for the versal base space. Furthermore, in [21] and [67]
Christophersen and Stevens give a simpler set of equations for each reduced component of
the versal base space. Altmann [4] constructed the versal family for isolated toric Gorenstein
singularities.
In [5] Altmann also constructed infinitely many one-parameter deformations for non-isolated

three-dimensional toric Gorenstein singularities and explained that the answers to the following
questions would provide important information about three-dimensional flips.

1. Which sets of one-parameter families belong to a common irreducible component of the
base space?

2. How can those families be combined to find a general fiber of this component?

Note that if X = Spec(A) is not an isolated singularity, the versal base space is infinite di-
mensional. However, as long as T 2

(1)(A) < ∞, we can still present the versal base space as an
analytic set of finite definition (see e.g. [69]).
In order to better understand the commutative deformation theory of X, we need to under-

stand the cup product T 1
(1)(A)×T 1

(1)(A)→ T 2
(1)(A), which will also give us quadratic equations

of the versal base space and thus provide a partial answer to the first question above. A for-
mula for computing the cup product for toric varieties that are smooth in codimension 2 was
obtained in [3]. Since this formula is especially simple in the case of three-dimensional isolated
toric Gorenstein singularities, it helped Altmann to construct the versal base space in [4]. The
cup product of toric varieties was also analyzed by Sletsjøe [65].
In recent years there has been a lot of interest in Poisson deformations, i.e., in deformations

of a pair consisting of a variety and a Poisson structure on it (see [28], [33], [52], [53], [54]).

1.1 Main results

We now provide an overview of the thesis and state our main results. Some parts of this
dissertation have appeared in [27]. We expect that the reader is familiar with the language of
algebraic and toric geometry on the level of [34] and [20].
In Chapter 2 we recall definitions and some techniques for computing Hochschild cohomology.

Let Hn(A) denote the n-th Hochschild cohomology group of A and let

Hn(A) ∼= Hn
(1)(A)⊕ · · · ⊕Hn

(n)(A)
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be its Hodge decomposition. The higher André-Quillen cohomology groups Tn−i(i) (A) are isomor-
phic to Hn

(i)(A) for i = 1, ..., n. Analyzing the Künneth spectral sequence and using Michler’s
results in [49], [50], give us the following.

Main result 1 (Proposition 2.4.5, Theorem 2.5.9): Let X = Spec(A) be smooth in
codimension d. For each i ≥ 1 and 0 ≤ j ≤ d + 1, we have T j(i)(A) ∼= ExtjA(Ωi

A|k, A). For
reduced isolated hypersurfaces in AN of dimension ≥ 2 we obtain that

Hn(A) ∼=

{
HomA(Ωn

A|k, A)⊕A/( ∂f∂x1 ,
∂f
∂x2

, ..., ∂f
∂xN

) if n < N

A/( ∂f∂x1 ,
∂f
∂x2

, ..., ∂f
∂xN

) if n ≥ N.

In Chapter 3 we compute the Hochschild cohomology for affine toric varieties. Let Xσ =
Spec(A) be an affine toric variety given by a cone σ = 〈a1, ..., aN 〉 ⊂ NR. We have A =
k[σ∨ ∩M ], where M is the dual lattice of the lattice N , and k is a field of characteristic 0.
For an element R ∈ M , let T k,R(i) (A) ∼= Hk+i,R

(i) (A) denote the degree R part of the k-th higher

André-Quillen cohomology group T k(i)(A). The results describing T k,R(i) (A) are obtained using
spectral sequence arguments on the double complex defined in Section 3.3.

Main result 2 (Theorem 3.4.3): Let Xσ = Spec(A) be an affine toric variety that is smooth
in codimension d. Let i ≥ 1 be a fixed integer. Then the k-th cohomology group of the complex

0→ C̄i(i)(Mk; k)→ ⊕Nj=1C̄
i
(i)(Spank E

R
j ; k)→ · · · → ⊕τ≤σ,dim τ=d+1C̄

i
(i)(Spank E

R
τ ; k) (1.1)

is isomorphic to T k,−R(i) (A) for k = 0, ..., d (C̄i(i)(Mk; k) is the degree 0 term). Moreover, if X
is an isolated singularity (i.e. dim(X) = d+ 1), then

T k,−R(i) (A) ∼=

{
Coker

(
⊕τ≤σ,dim τ=d C̄

i
(i)(K

R
τ ; k)→ C̄i(i)(K

R
σ ; k)

)
if k = dim(X)

H
k−dim(X)+i
(i) (KR

σ ; k) if k ≥ dim(X) + 1.

Analyzing the complex (1.1) for d = 1 gives us a formula for T 1
(i)(A) in the case of toric

surfaces (see Section 3.5). For higher dimensional toric varieties we obtain the following. Let

A(R) := [R = 1] = {a ∈ NR | 〈a,R〉 = 1} ⊂ NR

be an affine space. We define the cross-cut of σ in degree R to be the polyhedron Q(R) :=
σ ∩ [R = 1] ⊂ A(R).

Main result 3 (Proposition 3.6.2, Theorem 3.6.7): If Q(R) lies in a two-dimensional
affine space, we have

dimk T
1,−R
(i) (A) = max

{
0,

N∑
j=1

V i
j (R)−

∑
djk∈Q(R)

Qijk(R)−
(
n

i

)
+ siQ(R)

}
. (1.2)

Moreover, if X = Spec(A) is an n-dimensional affine cone over a smooth toric Fano variety
(n ≥ 3), then

T 1
(i)(A) =

{
N − n if i = n− 1
0 otherwise .
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The numbers V i
j (R), Qijk(R) and siQ(R) are easily computed and thus the equation (1.2) gives

us an explicit formula for T 1
(i)(−R) in the case of three-dimensional affine toric varieties (see

Subsection 3.6.1).
In Chapter 4 we consider the problem of deformation quantization on singular affine toric

varieties. We assume additionally that our field k is also algebraically closed. Using some of
the results from Chapter 3, together with Maurer-Cartan formalism, Kontsevich’s formality
theorem (or more precisely its Corollary 4.3.3) and the GIT quotient construction for an affine
toric variety without torus factors, we obtain the following.

Main result 4 (Theorem 4.4.4): Every Poisson structure on an affine toric variety can be
quantized.

In Chapter 5 we analyze commutative deformations of affine toric varieties. They are con-
trolled by the Harrison differential graded Lie algebra, which has cohomology groups isomorphic
to T k(1)(A), k ≥ 0.
In particular, we are interested in affine Gorenstein toric varieties, which are obtained by

putting a lattice polytope Q ⊂ A into the affine hyperplane A × {1} ⊂ A × R =: NR and
defining σ := Cone(Q), the cone over Q. Then the canonical degree R∗ equals (0, 1). Focusing
on three-dimensional Gorenstein toric varieties, we arrange the rays a1, ..., aN of σ in a cycle
and we define aN+1 := a1 and dj := aj+1 − aj . Altmann [4] showed that T 1

(1)(−R
∗) ∼= V/k · 1,

where V := {t = (t1, ..., tN ) ∈ kN |
∑N

j=1 tjdj = 0} denotes the set of (generalized) Minkowski
summands. The complex (1.1) for i = 1 and R = 2R∗ is in the case of three-dimensional
Gorenstein singularities equal to

0→ Nk
ψ−→ NN

k
δ−→ ⊕Nj=1(Nk/δjdj)

η−→ (Spank R
∗)∗ → 0, (1.3)

where ψ(x) = (x, ..., x), δ(b1, ..., bN ) = (b1− b2, b2− b3, ..., bN − b1), η(q1, ..., qN ) =
∑N

j=1 qj and

δj :=

{
0 if the 2-face 〈aj , aj+1〉 is smooth
1 if the 2-face 〈aj , aj+1〉 is not smooth.

Main result 5 (Theorem 5.1.5, Theorem 5.2.3): Let Xσ = Spec(A) be an arbitrary
toric variety and let R,S ∈ M . We give a convex geometric description of the Harrison cup
product T 1,−R

(1) (A)× T 1,−S
(1) (A)→ T 2,−R−S

(1) (A). Focusing on three-dimensional toric Gorenstein

singularities, the cup product T 1,−R∗
(1) (A)× T 1,−2R∗

(1) (A)→ T 2,−R∗
(1) (A) equals the bilinear map

V/(k · 1)× V/(k · 1) 7→ ker η/ im δ (1.4)

(t, s) 7→ (s1t1d1, ..., sN tNdN ).

In particular, we show that for three-dimensional Gorenstein isolated singularities our cup prod-
uct formula agrees with Altmann’s formula in [3], which was obtained with different methods.
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In Section 5.4, using the cup product formula (1.4) and following Altmann’s construction in
[4], we conjecture a set of equations of the versal base space of Gorenstein toric singularities in
degree −R∗. In Section 5.5 we construct a differential graded Lie algebra on the complex (1.3),
which extends the cup product formula (1.4).
In Chapter 6 we study Poisson deformations, i.e., deformations of a pair consisting of a va-

riety and a Poisson structure on it.

Main result 6 (Theorem 6.1.3, Proposition 6.2.2): We construct a differential graded
Lie algebra g controlling the Poisson deformations. Focusing on toric varieties we also simplify
the computation of the Poisson cohomology groups Hk(g) and the cup product of the Hochschild
differential graded Lie algebra H2(A)×H2(A)→ H3(A).
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2 Differential graded Lie algebras and
deformation theory

In this chapter we study differential graded Lie algebras and their applications to deformation
theory. In Section 2.1 we recall formal deformation theory, where one of the most important
results is Schlessinger’s criterion for a functor to have a hull or to be prorepresentable. In Section
2.2 we use the language of differential graded Lie algebras to define the cotangent complex,
which is essential for studying deformations of affine varieties. In Section 2.3 we construct
the Hochschild differential graded Lie algebra and prove that it controls the deformations of
associative algebras. Section 2.4 relates Hochschild cohomology groups in the case of normal
affine varieties with Ext groups. Finally, in Section 2.5 we provide an explicit calculation of
the Hochschild (co)-homology groups in the case of reduced isolated hypersurfaces.

2.1 Formal deformation theory

Let k be a field of characteristic 0 and let X be a variety, i.e., an integral scheme over k, such
that the structure morphism X → Spec(k) is separated and of finite type.

Definition 1. A local deformation of X is a cartesian diagram

Spec(k)

X

S

X

........................................................... ............

................................................................................ ......................
...... i

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

π

where π is a flat morphism and S = Spec(B) where B is a local k-algebra with residue field k,
and X is identified with the fibre over the closed point.

If B = k[t]/t2 is the ring of dual numbers, then we speak of a first order deformation. Given
two local deformations of X

Spec(k)

X

S

X

........................................................... ............

................................................................................ ......................
...... i1

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

π1

Spec(k)

X

S

X ′

........................................................... ............

................................................................................ ......................
...... i2

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

π2

parametrised by the same base S = Spec(B), an isomorphism of local deformations is defined
to be a morphism f : X → X ′ of schemes over S inducing the identity on the closed fibre, i.e.,
such that the diagram in Figure 2.1 is commutative.
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X

S

X

X
...................................................................................................................................... ........

....

π1

..................................................................................................................................................................................................................... ............
f

..................................................................................................................................
....
............

i1

...................................................................................................................................... ........
....

i2

..................................................................................................................................
....
............

π2

Figure 2.1: A commutative diagram of local deformations

Before we define the above construction as a functor, we need the following definitions. An
Artin ring is a ring A in which every descending sequence of ideals

· · · ⊂ I3 ⊂ I2 ⊂ I1 ⊂ A

stabilizes, i.e., there exists n such that we have Im = In for all m ≥ n. Let (R,mR) and (S,mS)
be local rings. A morphism f : R→ S is a local morphism if f(mR) ⊂ mS .

Definition 2. Let A be the category of local Artin k-algebras with the residue field k (with
local homomorphisms as morphisms).

Definition 3. The completion R̂ of a local ring (R,mR) is the inverse limit of the factor rings

R̂ := lim←−
n∈N

(R/mn
R).

We say that R is complete if the natural morphism R→ R̂ is an isomorphism.

Definition 4. Let Â be the category of complete noetherian local k-algebras R such that
Rn = R/mn

R is in A for all n ∈ N. Note that A is a subcategory of Â.

Let S denote the category of sets.

Definition 5. We define the covariant functor D̂efX : Â → S of local deformations up to
isomorphism.

We want to know if this functor is representable, i.e., if there exists a noetherian local k-
algebra B and a local deformation

Spec(k)

X

Spec(B)

X

..................................................... ............

......................................................................................................... ......................
...... i

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

π

which is universal, i.e., such that any other local deformation (over a base Spec(A)) is obtained
by pulling back under a unique Spec(A)→ Spec(B).
We first analyze the restriction of D̂efX to A.
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Definition 6. Let us denote by DefX the restriction of the functor D̂efX to A. We call DefX
the deformation functor of X.

We consider a covariant functor F : A → S, such that F (k) is a set that contains just one
element (we denote this set with ∗).

Definition 7. A covariant functor F : A → S (with F (k) = ∗) is called a functor of Artin
rings. To every complete local k-algebra R we can associate a functor of Artin rings hR by

hR(A) := Hom(R,A).

A functor that is isomorphic to hR for some R is called prorepresentable.

Remark 1. Let R ∈ Â and let A ∈ A with mn
A = 0 for some n. It holds that Hom(R,A) =

Hom(R/mn
R, A).

One of the most important results of classical formal deformation theory is Schlessinger’s
criterion for a functor F to be pro-representable. Before we recall this criterion we need some
definitions.
Note that the category A has fibered direct products. If A′ → A and A′′ → A are morphisms

in A, we take A′ ×A A′′ to be the set-theoretic fibered product

{(a′, a′′) | a′ and a′′ have the same image in A}.

The ring operations extend naturally, giving another object of A, and this object is also the
categorical fibered direct product in A.
By ε and εi we will always mean indeterminates annihilated by the maximal ideal, and in

particular of square zero (e.g., the algebra k[ε] has dimension 2 and k[ε1, ε2] has dimension 3
as a k-vector space).

Definition 8. We call F (k[ε]) the tangent space of F .

The tangent space of a functor hR is equal to the dual vector space of mR/m
2
R.

There is a bijection between the set F̂ (R) := lim←−n∈N F (R/mn
R) and the set of morphisms

Hom(hR, F ) (see [35, Chapter 15]).

Definition 9. Let R ∈ Â and choose ξ ∈ F̂ (R). By above ξ corresponds to a morphism
hR → F . We call such a pair (R, ξ) a pro-couple.

If F is pro-representable and (R, ξ) is a pro-couple corresponding to the isomorphism hR → F ,
then we say that the pro-couple (R, ξ) pro-represents the functor F .
For every f : R→ S we denote

F̂ (f) : F̂ (R)→ F̂ (S)

to be the map induced by the maps F (R/mn
R)→ F (S/mn

S), n ≥ 1.

Definition 10. A morphism F → G is called smooth if for any surjective morphism A → B
in A, the map

F (A)→ F (B)×G(B) G(A)

is surjective.
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Definition 11. A functor F is smooth if the morphism F → ∗ is smooth, i.e., if F (A)→ F (B)
is surjective for every surjective morphism A→ B.

Definition 12. Let (R, ξ) be a pro-couple for F : A → S corresponding to a morphism
hR → F . Then (R, ξ) is called a hull of F if the corresponding map hR → F is smooth and
the induced map

Hom(R, k[ε])→ F (k[ε])

on tangent spaces is bijective.

Definition 13. A small extension in A (resp. Â) is a short exact sequence

e : 0→M → B → A→ 0,

where B → A is in A (resp. Â) and mBM = 0. Thus M is a B/mB-vector space. A small
extension is called principal if dimB/mB (M) = 1.

Definition 14. Given a functor F : A → S and morphisms f : A′ → A, g : A′′ → A in A, let
f ∗ g be the natural map

F (A′ ×A A′′)→ F (A′)×F (A) F (A′′). (2.1)

Let us introduce Schlessinger’s conditions (H1), (H2), (H3) and (H4).

Definition 15. (H1) The map (2.1) is surjective if g : A′′ → A is a principal small extension.

(H2) The map (2.1) is bijective if A′′ = k[ε] and A = k.

(H3) Conditions (H1) and (H2) hold (which implies that F (k[ε]) is a k-vector space) and
F (k[ε]) is a finite dimensional k-vector space.

(H4) The map (2.1) is bijective if g : A′′ → A is a principal small extension.

We now present Schlessinger’s criterion.

Theorem 2.1.1. Let F : A → S be a functor of Artin rings. Then F has a hull if and only if
F satisfies (H1), (H2) and (H3). Furthermore, F is pro-representable if and only if in addition
F satisfies (H4).

Proof. See Hartshorne [35, Theorem 16.2].

Theorem 2.1.2. Let X be a scheme over k. Then the functor DefX (see Definition 6) has a
hull under either of the following hypothesis:

• X is affine with isolated singularities,

• X is projective.

Proof. See Hartshorne [35, Theorem 18.1].

Definition 16. If the pro-couple (R, ξ) of a functor F is a hull, then we say that (R, ξ) is a
versal family for F .

Remark 2. Note that our definition of a versal family is the same as the definition of a
miniversal family in [35] and a semiuniversal couple in [64].
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A functor which has infinite-dimensional tangent space does not have a versal family.

Definition 17. Let (R, ξ) and (S, η) be two pro-couples of a functor F . A morphism of pro-
couples

f : (R, ξ)→ (S, η)

is a morphism f : R→ S in Â such that F̂ (f)(ξ) = η. We call f an isomorphism of pro-couples
if in addition f : R→ S is an isomorphism.

Proposition 2.1.3. If (R, ξ) and (S, µ) are versal families for F , there exists an isomorphism
of versal families (R, ξ) ∼= (S, µ) which is not necessarily unique.

Proof. See [64, Proposition 2.2.7].

Definition 18. If the deformation functor DefX has a versal family (R, ξ), then R is by
Proposition 2.1.3 uniquely determined up to isomorphism and we call R the versal base space.

2.2 Differential graded (Lie) algebras and the cotangent complex

In the last thirty years differential graded Lie algebras have become a very important tool
in deformation theory. Using the language of differential graded Lie algebras we define the
cotangent complex, which plays a crucial role in the deformation theory of affine varieties. We
will follow Manetti [45], [46].

2.2.1 Differential graded (Lie) algebras

Definition 19. We denote by G the category of Z-graded k-vector spaces. Objects of G are
k-vector spaces endowed with a Z-graded direct sum decomposition (V ∈ G =⇒ V = ⊕i∈ZVi).
If a ∈ Vi ⊂ V for some i, we say that a has degree i and we denote it by |a| = i. Morphisms in
G are degree-preserving linear maps.

Given two graded vector spaces V,W ∈ G we denote by Homn
k(V,W ) the vector space of

k-linear maps f : V →W such that f(Vi) ⊂Wi+n for every i ∈ Z. Observe that Hom0
k(V,W ) =

HomG(V,W ) is the space of morphisms in the category G. Given V,W ∈ G we set

V ⊗W := ⊕i∈Z(V ⊗W )i, where (V ⊗W )i = ⊕j∈ZVj ⊗Wi−j ,

Hom∗(V,W ) := ⊕n Homn
k(V,W ).

Definition 20. We denote by DG the category of Z-graded differential k-vector spaces (also
called complexes of vector spaces). The objects of DG are pairs (V, d), where V = ⊕i∈ZVi is
an object of G and d : V → V is a linear map called the differential, such that d(Vi) ⊂ Vi+1

and d2 = d ◦ d = 0. Morphisms in DG are degree-preserving linear maps commuting with the
differentials.

We will often consider G as the full subcategory of DG whose objects are the complexes (V, 0)
with trivial differential.
Given (V, d) in DG we define Zi(V ) := ker(d : V i → V i+1), Bi(V ) := im(d : V i−1 → V i)

and we call H i(V ) := Zi(V )/Bi(V ) the i-th cohomology group of V .
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Definition 21. A morphism in DG is called quasi-isomorphism if it induces an isomorphism
in cohomology. A differential graded vector space (V, d) is called acyclic if

H(V ) := ⊕i∈ZH i(V ) = 0.

For every integer n ∈ Z we denote by k[n] ∈ G ⊂ DG the object with homogenous components
equal to

k[n]i :=

{
k if i+ n = 0
0 otherwise.

Definition 22. Given n ∈ Z, the shift functor [n] : DG → DG is defined by setting V [n] =
k[n] ⊗ V , V ∈ DG, f [n] = Idk[n] ⊗ f , f ∈ MorDG . More informally, the complex V [n] is the
complex V with degrees shifted by n, i.e., V [n]i = Vi+n, and differentials multiplied by (−1)n.

Definition 23. An associative graded algebra is a Z-graded vector space A = ⊕Ai ∈ G endowed
with a product Ai ×Aj → Ai+j satisfying the properties:

1. a(bc) = (ab)c,

2. a(b+ c) = ab+ ac, (a+ b)c = ac+ bc,

3. ab = (−1)|a||b|ba for a, b homogeneous (Koszul sign convention).

Definition 24. A differential graded algebra (dg-algebra for short) is the data of an associative
graded algebra A and a k-linear map d : A→ A, called differential, with the properties:

1. d(An) ⊂ An+1, d2 = 0,

2. d(ab) = d(a)b+ (−1)|a|ad(b) (graded Leibnitz rule).

Definition 25. A differential graded Lie algebra (dgla for short) is the data of a Z-graded
differential vector space (g, d) together with a bilinear map [ , ] : g× g→ g (called bracket) of
degree 0 such that

1. [a, b] = −(−1)|a||b|[b, a] (graded skewsymmetry),

2. [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]] (graded Jacobi identity),

3. d[a, b] = [da, b] + (−1)|a|[a, db] (graded Leibnitz rule).

A morphism f : (g, dA) → (h, dB) of differential graded algebras is a morphism of graded
algebras commuting with differentials (i.e. dAfn = fn+1dB for every n).

2.2.2 The Maurer-Cartan equation and gauge equivalence

Definition 26. For a dgla g we define the functor of Artin rings MCg : A → S by

B 7→
{
x ∈ g1 ⊗mB | d(x) +

1

2
[x, x] = 0

}
.

MCg is said to be the Maurer-Cartan functor associated to g. Elements of MCg(B) are the
Maurer-Cartan elements of the dgla g⊗mB.
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Definition 27. Let G denote the category of groups and let g be a dgla. We define the functor
Gg : A → G given by

B 7→ exp(g0 ⊗mB),

where exp is the standard exponential functor on Lie algebras. Gg is said to be the gauge
functor associated to g.

Remark 3. Note that the functor Gg is well defined since mn
B = 0 for some n ∈ N.

The gauge functor Gg acts naturally on the Maurer-Cartan functor MCg by the formula

Gg(B)×MCg(B)→ MCg(B)

(eb, x) 7→ x+
∞∑
n=0

[b, ·]n

(n+ 1)!
([b, x]− d(b)).

This action is called the gauge action. Note that the image is indeed an element in MCg(B)
(see e.g. Manetti [45]).

Definition 28. Let g be a dgla. The deformation functor of g is the functor of Artin rings
Defg : A → S given by

B 7→ MCg(B)

Gg(B)
.

We say that a dgla g controls a functor F , if Defg ∼= F holds.

Example 1. Let g be a dgla with H1(g) <∞. To find the solution space of the MC equation
for g we use the following procedure (also called the power series Ansatz; see [66, pp. 64]). We
choose a basis t1, ..., tn of H1(g) and representatives ϕ1, ..., ϕn ∈ g1 of this basis. We construct
the local ring R of the solution space of the MC equation as a quotient of k[[t1, ..., tn]]. Let
m = (t1, ..., tn) denote the maximal ideal of k[[t1, ..., tn]]. Over R1 := k[[t1, ..., tn]]/m2 we have
the solution

∑n
i=1 tiϕi. To find higher order terms we write

ϕ =
∑
|α|>1

tαϕα,

where we use multi-variable power series and multi-index notation (t = (t1, ...., tn)). The
primary obstruction comes from∑

|α|=2

tαdϕα +
1

2

∑
|i|=|j|=1

titj [ϕi, ϕj ] = 0. (2.2)

We can express the class of [ϕi, ϕj ] in H2(g) in terms of a basis Ω1, ...,Ωs as
∑

k c
k
ijΩk. The

equation (2.2) is solvable if and only if

g
(k)
2 :=

1

2

∑
|i|=|j|=1

ckijt
itj = 0,

for all k = 1, ..., s. Set R2 := k[[t1, ..., tn]]/(g2 + m3), where g2 = (g
(1)
2 , ..., g

(s)
2 ) and continue

this procedure as in [66]. In many examples (especially when we are considering deformations
of toric varieties) we can find the local ring R of the solution space of the MC equation after
finitely many steps.
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2.2.3 Differential graded modules

Definition 29. Let (A, d) be a dg-algebra. An A-dg module is a differential graded vector
space (M,d), together with two associative distributive multiplication maps A × M → M ,
M ×A→M with the properties:

1. AiMj ⊂Mi+j , MiAj ⊂Mi+j ,

2. am = (−1)|a||m|ma, for homogenous a ∈ A, m ∈M ,

3. d(am) = d(a)m+ (−1)|a|ad(m).

Let (A, dA), (N, dN ) and (M,dM ) be dg-algebras. The tensor product N ⊗AM is defined as
the quotient of N ⊗kM by the graded submodules generated by all elements na⊗m−n⊗am.
The tensor product N⊗AM has a natural structure of an A-dg-module with a(n⊗m) := an⊗m
and the differential

d(n⊗m) = dN (x)⊗ y + (−1)qx⊗ dM (y),

with x ∈ N , |x| = q, y ∈M .
Given two A-dg modules (M,dM ), (N, dN ) we denote

Homn
A(M,N) := {f ∈ Homn

k(M,N) | f(am) = f(m)a,m ∈M,a ∈ A},

Hom∗A(M,N) := ⊕n∈ZHomn
A(M,N).

The graded vector space Hom∗A(M,N) has a natural structure of an A-dg-module with
(af)(m) := af(m) and the differential

d : Homn
A(M,N)→ Homn+1

A (M,N), df = dN ◦ f − (−1)nf ◦ dM .

Note that f ∈ Hom0
A(M,N) is a morphism of A-dg-modules if and only if df = 0.

Definition 30. A homotopy between two morphisms of dg-modules f, g : M → N is an element
h ∈ Hom−1

A (M,N) such that f − g = dh = dNh+ hdM . We also say that f is homotopic to g.

The relation f is homotopic to g is an equivalence relation.

Definition 31. We say that dg-modules M and N are homotopically equivalent if there exist
maps f : M → N and g : N → M such that f ◦ g is homotopic to idN and g ◦ f is homotopic
to idM .

Given a morphism of dg-algebras B → A and an A-dg-module M we set:

DernB(A,M) := {φ ∈ Homn
k(A,M) | φ(ab) = φ(a)b+ (−1)n|a|aφ(b), φ(B) = 0},

Der∗B(A,M) := ⊕n∈ZDernB(A,M).

As in the case of Hom∗, there exists a structure of an A-dg-module on Der∗B(A,M) with
(aφ)(b) := aφ(b) and the differential

d : DernB(A,M)→ Dern+1
B (A,M), dφ = dMφ− (−1)nφdA.

Given φ ∈ DernB(A,M) and f ∈ Homm
A (M,N) their composition fφ belongs to Dern+m

B (A,N).
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Proposition 2.2.1. Let B → A be a morphism of dg-algebras: there exists an A-dg module
ΩA|B together with a closed derivation d : A → ΩA|B (i.e. δd = 0, where δ is the differential
of ΩA|B) of degree 0, such that for every A-dg module M the composition with d gives an
isomorphism

Hom∗A(ΩA|B,M) ∼= Der∗B(A,M).

Proof. The construction is similar to the case of algebras. We define the graded vector space

FA = ⊕Adx,

where the direct sum runs through homogenous elements x ∈ A. We define |dx| = |x|. FA is
an A-dg-module with a(bdx) := abdx and the differential

δ(adx) = δadx+ (−1)|a|ad(δx),

where we also denote by δ the differential of A. Note that in particular δ(dx) = d(δx). Let
I ⊂ FA be the homogenous submodule generated by the elements

d(x+ y)− dx− dy, d(xy)− x(dy)− (−1)|x||y|y(dx), d(b) for b ∈ B.

Since δ(I) ⊂ I, the quotient ΩA|B := FA/I is still an A-dg-module.

Definition 32. The module ΩA|B is called the module of relative Kähler differentials of A over
B.

For basic properties of the module of Kähler differentials in the case of algebras see Mat-
sumura [48].

2.2.4 The cotangent complex

In this subsection we define the cotangent complex using differential graded algebras and their
semifree resolutions. Note that original idea by Quillen [61] was to define it using simplicial
algebras and free simplicial resolutions. Palamodov [55] used the Tyurina resolution.

Definition 33. A dg-algebra (R, s) with differential s is called semifree if:

1. The underlying graded algebra R is a polynomial algebra over k: k[xi | i ∈ I].

2. There exists a filtration ∅ = I(0) ⊂ I(1) ⊂ · · · ,∪n∈NI(n) = I, such that s(xi) ∈ R(n) for
every i ∈ I(n+ 1), where by definition R(n) = K[xi | i ∈ I(n)].

Note that R(0) = k and R = ∪R(n).

Definition 34. A semifree resolution of a dg-algebra A is a surjective quasi-isomorphism
R→ A where R is a semifree dg-algebra.

Theorem 2.2.2. Every dg-algebra A admits a semifree resolution.

Proof. We prove it just in the case of algebras (i.e. A has only one non-zero degree A0); for a
general proof see Manetti [46]. We can find a surjective map P0 := k[xi0 | i0 ∈ I0] → A, for
some index set I0 (mapping xi0 to the generators of A). Now we take generators ai1 , i ∈ I1 of
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the kernel of the above map, and we define P−1 := k[xi1 | i1 ∈ I1] → P0, mapping xi1 to ai1 .
We continue with this procedure and we get that the complex

· · ·P−2 → P−1 → P0 → 0

is quasi-isomorphic to A = A0. Moreover, we see that P• → A is a semifree resolution with the
filtration I(n+ 1) := Ii0 ∪ · · · ∪ Iin , for n ≥ 0.

Proposition 2.2.3. Let R→ A be a semifree resolution of A. The homotopy class of the A-dg
module LA|k := ΩR|k ⊗R A is independent from the choice of the resolution.

Proof. See Manetti [46].

Definition 35. We call LA|k the cotangent complex of A.

It is important to choose a semifree resolution as we will see in the following example.

Example 2. Let A be the dg-algebra k[x]
x−→ k[x], which is non-zero in degrees −1 and 0. There

exists a surjective quasi-isomorphism between A and the dg-algebra that have k in degree 0 as
the only non-zero degree. We have H0(ΩA|k) 6= 0 since δ(dx) = d(δx) holds and thus we can
not get dx in the image. Thus we obtain that Ωk|k = 0 is not in the same homotopy class as
ΩA|k. The problem is that A is not a semifree resolution of k.

In the next example we compute the cotangent complex in the case of reduced hypersurfaces.

Example 3. Let X = Spec(A) be a reduced hypersurface, where

A = k[x1, ..., xN ]/(f(x1, ..., xN )).

A semifree resolution of A is given by R = k[x1, ..., xn, y], where y has degree −1 and xi have
degree 0 for all i. The differential s is given by s(y) = f . We have

ΩR|k ∼= Rdx1 ⊕ · · · ⊕Rdxn ⊕Rdy

and
s(dy) = d(s(y)) = d(f) =

∑
i

∂f

∂xi
dxi.

The cotangent complex LA|k is therefore

0→ Ady
s−→ ⊕ni=1Adxi → 0.

Definition 36. Let X = Spec(A) and we look on the cotangent complex LA|k as a chain
complex (terms with degree −i become terms with degree i). The n-th homology group of the
cotangent complex LA|k is called the n-th Andre-Quillen homology group and denoted by

Tn(A) := Hn(LA|k).

The n-th Andre-Quillen cohomology group is the n-th cohomology group of HomA(LA|k, A),
denoted by

Tn(A) := Hn(HomA(LA|k, A)).

Remark 4. For i = 0, 1, 2, T i(A) has the same meaning as in books of Hartshorne [35] and
Sernesi [64] (they use the notation T i(A|k,A)).
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2.3 The Hochschild differential graded Lie algebra

In this section we will obtain modules T i(A) as a cohomology groups of another complex,
called the Harrison complex, which is quasi-isomorphic to the cotangent complex. Moreover,
the Harrison complex is the subcomplex of the Hochschild complex. We will see their role in
deformation theory.

2.3.1 The Hochschild complex

Let A be an associative algebra. Consider the A-module Cn(A) := A ⊗ A⊗n (where ⊗ = ⊗k
and A⊗n = A ⊗ · · · ⊗ A, n factors). It is an A-module through multiplication on the left A
factor.

Definition 37. The Hochschild boundary is the k-linear map ∂ : Cn = A ⊗ A⊗n → Cn−1 =
A⊗A⊗(n−1), given by the formula

∂(a, a1, ..., an) :=
n∑
i=0

(−1)idi(a, a1, ..., an),

where

d0(a, a1, ..., an) := (aa1, a2, ..., an)

di(a, a1, ..., an) := (a, a1, ..., aiai+1, ..., an) for 1 ≤ i < n,

dn(a, a1, ..., an) := (ana, a1, ..., an−1).

It holds that ∂ ◦ ∂ = 0 and thus we get the complex C•(A) that is called the Hochschild
chain complex. The corresponding homology groups are called Hochschild homology groups and
denoted by H•(A). The complex C•(A), where Cn(A) is the space of k-linear maps f : A⊗n →
A, is called the Hochschild (cochain) complex. Note that every element φ ∈ HomA(Cn, A) is
completely determined by the k-linear map f : A⊗n → A:

φ(a, a1, ..., an) = af(a1, ..., an).

The differential is given by

(df)(a1 ⊗ · · · ⊗ an) := a1f(a2 ⊗ · · · ⊗ an)+∑n−1
i=1 (−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)+

(−1)nf(a1 ⊗ · · · ⊗ an−1)an.

The corresponding cohomology groups are called Hochschild cohomology groups and denoted
by H•(A).

Definition 38. The circle product of Hochschild cochains f ∈ Cm(A), g ∈ Cn(A) is the
element f ◦ g ∈ Cm+n−1(A) given by

f◦g(a1⊗· · ·⊗am+n−1) :=

m∑
i=1

(−1)(i−1)(n+1)f(a1⊗· · ·⊗ai−1⊗g(ai⊗· · ·⊗ai+n−1)⊗ai+n⊗· · ·⊗am+n−1).

Definition 39. The Gerstenhaber bracket [f, g] of f ∈ Cm(A), g ∈ Cn(A) is

[f, g] := f ◦ g − (−1)(m+1)(n+1)g ◦ f.
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Proposition 2.3.1. It holds that d[f, g] = [f, dg] + (−1)n+1[df, g].

Proof. See Gerstenhaber [31].

Lemma 2.3.2. The Gerstenhaber bracket defines a dgla structure on the shifted complex g :=
C•(A)[1].

Proof. Since we are shifting the complex, we also change the differential (by Definition 22). It
turns out that the shifted differential dg is equal to dg = [m, ·], where m ∈ C2(A) belongs to
algebra multiplication (m(a, b) = a · b). Simple computation shows that if f ∈ Cn(A) with
n odd, we have dg(f) = [m, f ] = d(f). If n is even, then we have dg(f) = [m, f ] = −d(f).
Note that [·, ·] defines a graded Lie algebra structure on g (see Schedler [63, Remark 4.1.4]) and
that the condition dg[f, g] = [dgf, g]+(−1)|f |[f, dgg] is equivalent to the graded Jacobi identity,
which is satisfied.

2.3.2 The Hodge decomposition of the Hochschild complex

We will now recall the construction of the decomposition of the Hochschild complex from
Gerstenhaber-Schack [32].
In the group ring Q[Sn] of the permutation group Sn one defines the shuffle si,n−i to be∑
(sgnπ)π, where the sum is taken over those permutations π ∈ Sn such that

π(1) < π(2) < · · · < π(i)

and
π(i+ 1) < π(i+ 2) < · · · < π(n).

We assume that 0 < i < n, setting s0,n = sn,0 = 0. We denote a1 ⊗ · · · ⊗ an ∈ A⊗n by
(a1, ..., an) and define an action of the permutations group Sn on A⊗n as follows: π(a1, ..., an) =
(aπ−11, ..., aπ−1n), π ∈ Sn. With this action we can consider A⊗n as a Q[Sn]-module.

Theorem 2.3.3. There are canonical decompositions

Hn(A) ∼= H(1)
n (A)⊕ · · · ⊕H(n)

n (A),

Hn(A) ∼= Hn
(1)(A)⊕ · · · ⊕Hn

(n)(A),

which are also known as the Hodge decompositions of the Hochschild (co-)homology.

We sketch the proof following [32], where they use Barr’s theorem (see [10]): let sn :=∑n−1
i=1 si,n−i, then ∂sn = sn−1∂ holds.
An element of a finite-dimensional algebra over a field must be a root of some monic polyno-

mial with coefficients in that field. The polynomial of the lowest degree is called the minimal
polynomial. The next proposition describes the minimal polynomial of sn as an element of
Q-algebra Q[Sn].

Proposition 2.3.4. The minimal polynomial of sn is

µn(x) =

n∏
i=1

(x− (2i − 2)) = (x− (2n − 2))µn−1(x).

Proof. See [32].

25



Thus µn has the form (x−λ1) · · · (x−λn), where λi = 2i−2. Let en(j) be the j-th Lagrange
interpolation polynomial evaluated at sn, i.e.,

en(j) =
(∏
i 6=j

λj − λi
)−1

∏
i 6=j

(sn − λi).

Proposition 2.3.5. The en(j) are mutually orthogonal idempotents whose sum is the unit
element. Moreover, in Q[Sn] it holds that

λ1en(1) + λ2en(2) + · · ·+ λnen(n) = sn. (2.3)

Proof. Following [32, Theorem 1.2]: multiplication by sn is an operator on the n-dimensional
subspace of Q[Sn] spanned by 1, sn, s

2
n, ..., s

n−1
n . It has n distinct eigenvalues λ1, ..., λn. With

the choice of an eigenvector basis is this multiplication representable by the n× n matrix with
λi on the diagonal. The proof easily follows.

From Proposition 2.3.5 we get the decomposition Cn(A) = ⊕jen(j)Cn(A) and since ∂en(j) =
en−1(j)∂ holds (see [32, Theorem 1.3]), we also obtain the decomposition of H•(A). We denote
C

(j)
n (A) := en(j)Cn(A) and the corresponding homology groups of the complex C(j)

• byH(j)
n (A).

We define Cn(j)(A) := {f ∈ Cn(A) | f ◦ sn = (2j − 2)f}. From Proposition 2.3.5 we obtain that
Cn(A) = Cn(1)(A) ⊕ · · · ⊕ Cn(n)(A). The Hochschild differential d respects this decomposition
and we denote the cohomology groups of the subcomplex C•(j)(A) by Hn

(j)(A). We obtain the
decomposition of H•(A) and thus conclude the proof of Theorem 2.3.3.

Example 4. C2
(1)(A) = {f ∈ C2(A) | f(a, b) = f(b, a)}, since s2 = s1,1 = id − (12) and thus

f ◦ s2(a, b) = 0 means f(a, b)− f(b, a) = 0. C2
(2)(A) = {f ∈ C2(A) | f(a, b) = −f(b, a)}, since

f ◦ s2(a, b) = 2f(a, b) means f(a, b) = −f(b, a).

The following result is classical.

Proposition 2.3.6. It holds that H(n)
n (A) ∼= Ωn

A|k, the n-th exterior power of the module of

Kähler differentials. If X = Spec(A) is smooth, then Hn(A) ∼= H
(n)
n (A).

Proof. See Loday [43, Theorem 4.5.12] and Weibel [70, Section 9.4].

Definition 40. The complex C•(1)(A) is called the Harrison complex and its cohomology groups
are called the Harrison cohomology groups, denoted by

Harn(A) := Hn
(1)(A).

Remark 5. Note that the Gerstenhaber bracket is not graded product with respect to the
Hodge decomposition, i.e., in general it does not hold that [·, ·] : Hn+1

(j+1)(A) × Hm+1
(k+1)(A) →

Hn+m+1
(j+k+1). The image can be bigger (Bergeron and Wolfgang [11] gave counterexamples). On

the other hand for j = k = 0 we have [·, ·] : Hn+1
(1) (A) ×Hm+1

(1) (A) → Hn+m+1
(1) (A), which give

us an important differential graded Lie algebra as we will see in the following.

Proposition 2.3.7. The Gerstenhaber bracket induces the dgla structure on the complex C•(1)(A)[1].

Proof. See [10].

Definition 41. The dgla from Proposition 2.3.7 is called the Harrison dgla and denoted by
C•(1)(A)[1].
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2.3.3 Relations between the Hochschild and cotangent complex

The following proposition relates the cotangent and Harrison complex.

Proposition 2.3.8. The complex LA|k[1] is quasi-isomorphic to the Harrison chain complex
C(1)
• (A).

Proof. See Quillen [61] or Loday [43, Proposition 4.5.13].

There exist some "operations" on the cotangent complex to get complexes that are quasi-
isomorphic to C•(i)(A) for i > 1. This can be done using the derived exterior powers ∧iLA|k of
a cotangent complex LA|k (see Illusie [36], Loday [43, Section 3.5.4] or Buchweitz-Flenner [13],
[14] for definitions). We only define the derived exterior power of a complex with two non-zero
terms (by Example 3 we know that this is the case for LA|k, where A is the algebra of regular
functions of a reduced hypersurface).

Definition 42. Let d : L → E be a morphism of locally free OX -modules on a scheme X,
where L has rank 1 and E has finite rank. Let K : L→ E be the chain complex, with E lying
in the degree 0. We define the derived exterior power ∧q(K) of the complex K to be the chain
complex

L⊗q → E ⊗ L⊗q−1 → · · · → ∧q−nE ⊗ L⊗n → · · · → ∧qE,

with the differentials dn(x0 ⊗ x⊗n1 ) = (x0 ∧ dx1)⊗ x⊗(n−1)
1 , where ∧qE is degree 0 term.

Proposition 2.3.9. Definition 42 agrees with the general definition of the derived exterior
power given in [36].

Proof. See Saito [62, Chapter 4].

We define higher Andre-Quillen homology groups T (i)
n (A) for i ≥ 1 by putting

T (i)
n (A) := Hn(∧i(LA|k)).

We also define higher Andre-Quillen cohomology groups

Tn(i)(A) := Hn(HomA(∧iLA|k, A)).

With our notation Tn(A) = T
(1)
n (A) and Tn(A) = Tn(1)(A) hold.

Theorem 2.3.10. The complexes ∧i(LA|k)[i] and C(i)
• (A) are quasi-isomorphic for each i =

1, ..., n and it holds that
Harn(A) = Hn

(1)(A) ∼= Tn−1
(1) (A)

or more generally
Hn

(i)(A) ∼= Tn−i(i) (A).

Proof. See Quillen [61] or Loday [43, Proposition 4.5.13].
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2.3.4 The Hochschild cohomology and deformation theory

This subsection is very classical. We follow [63]. Recall that a Hochschild two-cocycle is an
element γ ∈ Homk(A⊗A,A), satisfying

aγ(b⊗ c)− γ(ab⊗ c) + γ(a⊗ bc)− γ(a⊗ b)c = 0. (2.4)

This has a nice interpretation in terms of infinitesimal deformations.

Definition 43. An infinitesimal deformation of an associative algebra A is an algebra Aε :=
(A[ε]/(ε2), ∗) such that a ∗ b ∼= ab (mod ε).

We say that two infinitesimal deformations γ1, γ2 are equivalent if there is a k[ε]/(ε2)-module
automorphism of Aε which is the identity modulo ε and maps γ1 to γ2. Such a map has the
form φ := id +ε · φ1 for some linear map φ1 : A→ A, i.e., φ1 ∈ C1(A). It holds that

φ−1(φ(a) ∗γ φ(b)) = a ∗γ+dφ1 b.

Proposition 2.3.11. H2(A) is the vector space of equivalence classes of infinitesimal defor-
mations of A.

Proof. An infinitesimal deformation is given by a linear map γ : A⊗A→ A, by the formula

a ∗γ b = ab+ εγ(a⊗ b).

Then the associativity condition of ∗γ in (A[ε]/(ε2), ∗γ) is exactly (2.4). The above computation
also shows us that equivalence classes agree.

Remark 6. Starting with a Harrison cocycle gives us commutativity of the above star product.

Definition 44. A one-parameter formal deformation of an associative algebra B is an asso-
ciative algebra B} = (B[[}]], ∗), such that

a ∗ b = ab (mod}),

for each a, b ∈ B. We require that ∗ is associative, k[[}]]-bilinear and continuous, which means
that (∑

m≥0

bm}m
)
∗
(∑
n≥0

cn}n
)

=
∑
m,n≥0

(bm ∗ cn)}m+n.

Suppose now that we have an infinitesimal deformation given by γ1 : A⊗A→ A. To extend
this to a second-order deformation, we require γ2 : A⊗A→ A, such that

a ∗ b := ab+ εγ1(a⊗ b) + ε2γ2(a⊗ b)

defines an associative product on A⊗ k[ε]/ε3.
Looking at the new equation in second degree, this can be written as

aγ2(b⊗ c)− γ2(ab⊗ c) + γ2(a⊗ bc)− γ2(a⊗ b)c = γ1(γ1(a⊗ b)⊗ c)− γ1(a⊗ γ1(b⊗ c)). (2.5)

The LHS is dγ2(a ⊗ b ⊗ c), so the condition for γ2 to exists is exactly that the RHS is a
Hochshild coboundary. Moreover, the RHS is equal to 1

2 [γ1, γ1]. So this element defines a
class of H3(A) which is the obstruction to extending the above infinitesimal deformation to a
second-order deformation.
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Remark 7. More generally we can consider n-th order deformation, i.e., a deformation over
k[ε]/(εn+1). We can show that the obstruction to extending an n-th order deformation

∑n
i=1 ε

iγi
(where here εn+1 = 0) to an (n+ 1)-st order deformation

∑n+1
i=1 ε

iγi (now setting εn+2 = 0), is
also a class in H3(A).

Corollary 2.3.12. If H3(A) = 0, then all first-order deformations extend to a one-parameter
formal deformation.

2.3.5 Deformations of associative algebras

We consider the following deformation problem.

Definition 45. A deformation of A over an Artin ring B is a pair (A′, π), where A′ is a B-
algebra and π : A′ ⊗B k → A is an isomorphism of k-algebras. Two such deformations (A′, π1)
and (A′′, π2) are equivalent if there exists an isomorphism of B-algebras φ : A′ → A′′ such that
it is compatible with π1 and π2, i.e., such that π1 = π2 ◦ (φ⊗B k).

A functor that encodes this deformation problem is

DefA : A → S

B 7→ {deformations of A over B}/ ∼ .

It is a well known fact that this deformation problem is controlled by the Hochschild dgla.
In the following we will give a complete proof. Some ideas are taken from [63, Sections 4.3,4.4]
and [45].

Lemma 2.3.13. Let g be a dgla and let ξ ∈ MC(g). The map dξ : y 7→ dy + [ξ, y] defines a
new differential on g. Moreover, (g, dξ, [·, ·]) is also a dgla.

Proof. An explicit verification, see Schedler [63, Proposition 4.2.3].

Definition 46. We call the dgla (g, dξ, [·, ·]) given in Lemma 2.3.13 the twist by ξ, and denote
it by gξ.

Lemma 2.3.14. Maurer-Cartan elements of g are in bijection with Maurer-Cartan elements
of gξ by the correspondence

ξ + η ∈ g↔ η ∈ gξ.

Proof. We immediately see that dξ(η)+ 1
2 [η, η] = d(ξ+η)+ 1

2 [ξ+η, ξ+η], using that dξ+ 1
2 [ξ, ξ] =

0.

Definition 47. Let V be a vector space. We denote by Cn(V ) the space of k-linear maps
V ⊗n → V . The C•(V )[1] is a dgla with Gerstenhaber bracket and zero differential.

Lemma 2.3.15. Let V be a vector space. Giving an associate product on V is the same as
giving an element µ ∈ C2(V ) satisfying 1

2 [µ, µ] = 0, which is the MC equation for the dgla
C•(V )[1].

Proof. We define the multiplication on V by a·b := µ(a, b). It holds that (ab)c−a(bc) = 1
2 [µ, µ].

The dgla C•(V )[1] has trivial differential and thus 1
2 [µ, µ] is the MC equation.
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Lemma 2.3.16. Let A be an algebra. We set A0 to be as a vector space equal to A but viewed
as an algebra with trivial multiplication. Let µ ∈ C2(A0) represent the multiplication on A. It
holds that C•(A)[1] = C•(A0)[1]µ.

Proof. It follows from Lemma 2.3.2, since the differential on A is given by d = [µ, ·].

Lemma 2.3.17. Let B be an Artin ring. MC elements of C•(A⊗mB)[1] are in bijection with
associative products of the vector space A0 ⊗B, giving the known product on A modulo mB.

Proof. Let µ ∈ C2(A0) represent the multiplication on A. Then associative products of the
vector space A0 ⊗B, giving the known product on A modulo mB are given by

[µ+ ξ, µ+ ξ] = 0 (2.6)

for ξ ∈ C2(A ⊗mB). Since [µ, µ] = 0 and the differential on C•(A ⊗mB)[1] is given by [µ, ·],
we see that equation (2.6) give us an MC element ξ. We can also reverse this proof.

Proposition 2.3.18. The Hochschild dgla C•(A)[1] controls the functor DefA, i.e., the defor-
mation functor of C•(A)[1] is isomorphic to DefA.

Proof. Let us for short denote g := C•(A)[1]. Elements of MCg(B) are the Maurer-Cartan
elements of the dgla g ⊗mB. By Lemma 2.3.17 there exists a bijection between elements of
MCg(B) and associative products of the vector space A0 ⊗B, giving the known product on A
modulo mB.
To conclude the proof we need to show that two products ∗ and ∗′ on A0⊗B are equivalent

(in the sense of Definition 45) if and only if the corresponding elements γ, γ′ ∈ MCg(B) are
gauge equivalent. If the products are equivalent we can easily see that there exists α ∈ g0⊗mB

such that
a ∗′ b = exp(α)(exp(−α)(a) ∗ exp(−α)(b)). (2.7)

As before let µ ∈ C2(A0) denote the multiplication on A.
Rewriting (2.7) gives us

(µ+ γ′)(a⊗ b) = exp(α)(exp(−α)(a) ∗ exp(−α)(b)) = exp(adα)(µ+ γ)(a⊗ b),

where the last equality follows from basic theory of Lie groups (see [63, Section 4.4]).
Thus it follows that

(µ+ γ′) = exp(adα)(µ+ γ) =

µ+ γ +
∞∑
i=0

(adα)n

(n+ 1)!
([α, µ+ γ]) =

µ+ γ +
∞∑
i=0

(adα)n

(n+ 1)!
([α, γ]− dα),

where we used that dα = [µ, α] = −[α, µ]. We see that γ and γ′ are gauge equivalent. We can
also reverse the argument and show the other direction.
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2.3.6 Deformations of commutative algebras

Consider the following deformation problem. Let A be a commutative algebra (by that we
always mean a commutative and associative algebra). A commutative deformation of A over
an Artin ring B is a pair (A′, π), where A′ is a commutative B-algebra, such that the natural
mapmB⊗BA′ → A′ is injective and π : A′⊗Bk → A is an isomorphism of k-algebras. Two such
deformations (A′, π1) and (A′′, π2) are equivalent if there exists an isomorphism of B-algebras
φ : A′ → A′′ such that it is compatible with π1 and π2, i.e., such that π1 = π2 ◦ (φ ⊗B k). A
functor that encodes this deformation problem is

CDefA : A → S

B 7→ {commutative deformations of A over B}/ ∼ .

Lemma 2.3.19. A′ is flat over B.

Proof. It is enough to prove that TorB1 (k,A′) = 0 by [23, Theorem 6.8]. After tensoring the
exact sequence

0→ mB → B → k → 0

with A′ we obtain

0→ TorB1 (k,A′)→ mB ⊗B A′ → B ⊗B A′ → k ⊗B A′ → 0.

By the assumption the map mB ⊗B A′ → B ⊗B A′ is injective and thus TorB1 (k,A′) = 0.

Corollary 2.3.20. Let X = Spec(A). Functors CDefA and DefX are isomorphic.

Proposition 2.3.21. The Harrison dgla C•(1)(A)[1] controls the functor CDefA, i.e., the de-
formation functor of C•(1)(A)[1] is isomorphic to CDefA.

Proof. The proof is very similar to the proof of Proposition 2.3.18. Commutativity we get by
restricting C2(A) to C2

(1)(A) (see Example 4). Other steps are the same.

2.4 The Hochschild cohomology of normal affine varieties

Not much is known for the groups Hn
(i)(A) in the case when i 6= 1, n. In this subsection we

show that when A is normal (i.e. the algebra of regular functions on a normal variety) we can
say more about other parts.

Lemma 2.4.1. Let A and B be abelian categories and let F : A → B be an exact covariant
functor. If (A, d) is a chain (resp. cochain) complex in A, then

H•F (A) ∼= F (H•(A)),

respectively
H•F (A) ∼= F (H•(A)).

A similar statement holds also for a contravariant functor.
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Proposition 2.4.2. Let P0 ← P1 ← P2 ← · · · be a complex of projective A-modules. Then
there is a first-quadrant spectral sequence

Ep,q2 = ExtpA(Hq(P•), A)⇒ Hp+q(Hom(P•, A)),

with differentials d2 : Ep,q2 → Ep−1,q+2
2 .

Proof. Let A → Q• be an injective resolution and consider the first-quadrant double complex
Hom(P•, Q•). We have two spectral sequences. First one gives us

Epq1 = Hq(Hom(Pp, Q•)) = Hom(Pp, Hq(Q•)),

where we used the projectivity of Pp and Lemma 2.4.1. Thus we getEpq∞ = Epq2 = Hp(Hom(P•), A)
if q = 0 and 0 otherwise. From this we see that Hn(tot•(Hom(P•, Q•))) = Hn(Hom(P•), A).
The second spectral sequence gives us

Epq1 = Hq(Hom(P•, Qp)) = Hom(Hq(P•), Qp),

where we used the injectivity of Qp and Lemma 2.4.1. Hence

Epq2 = ExtpA(Hq(P•), A)⇒ Hp+q(tot•(Hom(P•, Q•))) = Hp+q(Hom(P•), A)

and thus we finish the proof.

Definition 48. The spectral sequence from Proposition 2.4.2 is called the Künneth spectral
sequence.

Proposition 2.4.3. Let R be a ring and let M and N be finitely generated R-modules. If
annM + annN = R then ExtrR(M,N) = 0 for every r. Otherwise depth(annM,N) is the
smallest number r such that ExtrR(M,N) 6= 0.

Proof. See Eisenbud [23, Proposition 18.4].

Proposition 2.4.4. For R Cohen-Macaulay it holds that gr(M) := depth(annM,R) = dimR−
dimM , where dimM := dimR/ annM .

Proof. From Eisenbud [23, Theorem 18.7] we know that for every proper ideal I in a Cohen-
Macaulay ring R we have depth(I,R) = dimR− dimR/I. Using I = annM we get our result
that gr(M) := depth(annM,R) = dimR− dimM .

Proposition 2.4.5. Let X = Spec(A) be smooth in codimension d. For each i ≥ 1 and
0 ≤ j ≤ d+ 1, we have T j(i)(A) ∼= ExtjA(Ωi

A|k, A).

Proof. Since each term of ∧iLA|k is a projective A-module for each i ≥ 1, we have a Künneth
spectral sequence:

Ep,q2 = ExtpA(T (i)
q (A), A)⇒ T p+q(i) (A).

Modules T (i)
q (A) have support on the singular locus for q ≥ 1 by Proposition 2.3.6. Since A

is smooth in codimension d, we have ExtpA(T
(i)
q (A), A) = 0 for q ≥ 1 and p = 0, 1, ..., d; here we

used Proposition 2.4.4: since for q ≥ 1 it holds that dim
(
T

(i)
q (A)

)
≤ dimA − d − 1, we have

gr(T
(i)
q (A)) ≥ d+ 1. If q ≥ 1 it follows that Ep,q2 = 0. Thus we have

Ep,q2 = ExtpA(T
(i)
0 (A), A) = Ep,q∞ = T p(i)(A).

We conclude the proof using T (i)
0 (A) = Ωi

A|k, which holds by Theorem 2.3.6.
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Corollary 2.4.6. Let A be a coordinate ring of a normal variety. We have the Hodge decom-
positions

H2(A) = Ext1
A(Ω1

A|k, A)⊕HomA(Ω2
A|k, A)

H3(A) = Ext2
A(Ω1

A|k, A)⊕ Ext1
A(Ω2

A|k, A)⊕HomA(Ω3
A|k, A).

Moreover, for each i ∈ N we have T 1
(i)(A) ∼= Ext1

A(Ωi
A|k, A) and T 2

(i)(A) ∼= Ext2
A(Ωi

A|k, A).

Proof. We use Proposition 2.4.5 for d = 1 and the Hodge decomposition.

2.5 The Hochschild (co-)homology of affine hypersurfaces

In this section we will compute Hochschild (co-)homology of a reduced affine hypersurface
X ⊂ AN . The results describing the Hochschild homology were already obtained by Michler
[49], [50]. Here we obtain the results in a little bit different way. The main part of this section
is the computation of the Hochschild cohomology. The main result of this section is Theorem
2.5.9, which will also give us a more complete view on the results that we will obtain in the
next chapter (see Example 8).

2.5.1 The Hochschild homology of reduced affine hypersurfaces

Let X = Spec(A), where A = k[x1, ..., xN ]/(f(x1, ..., xN )). We write for short A = P/f and
ΩP for Ωk[x1,...,xN ]|k.

Proposition 2.5.1. The derived exterior power ∧iLA|k is isomorphic to the chain complex

0→ A
∧df−−→ Ω1

P ⊗P A
∧df−−→ · · · ∧df−−→ Ωi

P ⊗P A→ 0, (2.8)

where Ωi
P ⊗P A is degree 0 term.

Proof. From Example 3 we know that LA|k is isomorphic to

0→ Ady
s−→ ⊕Ni=1Adxi → 0.

We can use Definition 42 with L = Ady and E = ⊕ni=1Adxi and thus we get that ∧qLA|k is
isomorphic to

L⊗q → E ⊗ L⊗q−1 → · · · → ∧q−nE ⊗ L⊗n → · · · → ∧qE,

where ∧q−nE ⊗ L⊗n ∼= ⊕1≤p1<···<pq−n<nA(dxp1 ∧ · · · ∧ dxpq−n)⊗Ady ∼= Ωq−n
P ⊗P A and differ-

entials agree since s(dy) = df .

Lemma 2.5.2. The cokernel of the map Ωk−1
P ⊗P A

∧df−−→ Ωk
P ⊗P A is equal to Ωk

A|k.

Proof. See [51, Lemma 3].

Corollary 2.5.3. H0(∧iLA|k) ∼= Ωi
A|k (this we already know by Theorem 2.3.6). From definition

of differentials ∧df of the complex (2.8) we have

H0(∧NLA|k) ∼= ΩN
A|k
∼= A/(

∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xN
).
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Lemma 2.5.4. The k-the homology (for 0 < k < i) of the chain complex (2.8) is equal to
tors(Ωi−k

A|k ).

Proof. See [44, Lemma 4.11] or [19, pp. 7].

Let us focus now in the case when A is an isolated hypersurface singularity.

Lemma 2.5.5. If A has an isolated singularity at the origin as the only singular point, then
we have tors(ΩN−1

A|k ) ∼= ΩN
A|k (an isomorphism of A-modules is given by the exterior derivative

ΩN−1
A|k → ΩN

A|k) and tors(Ωi
A|k) = 0 for i < N − 1 and i > N .

Proof. See Michler [51, Theorem 2] or [49, Proposition 3].

Corollary 2.5.6. Let A be a hypersurface in AN with an isolated singularity at the origin. We
have

Hn(∧NLA|k) ∼=
{

ΩN
A|k if n = 0, 1

0 otherwise.

Proposition 2.5.7. Let A be a hypersurface in AN with an isolated singularity at the origin.
For n ≥ N we have

H(i)
n (A) ∼=

{
ΩN
A|k if 2i− n = N − 1, N

0 otherwise.

For n < N we have

H(i)
n (A) ∼=

{
Ωn
A|k if i = n,

0 otherwise.

Proof. It follows from the results above, see also [50].

Corollary 2.5.8. For n ≥ N it holds that

dimkHn(A) = dimk⊕ni=1H
(i)
n (A) = dimk(Ω

N
A|k) = dimk

(
A/(

∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xN
)
)
,

which is the Tyurina number of the hypersurface.

Proof. It follows from the Hodge decomposition and Proposition 2.5.7.

Example 5. Let X = Spec(A) be the Gorenstein toric surface defined by the polynomial

p(x, y, z) = xy − zr+1.

For n ≥ 3 we have dimkHn(A) = r, the Milnor number of the surface.

2.5.2 The Hochschild cohomology of isolated hypersurface singularities

In this subsection we compute the Hochschild cohomology for reduced isolated hypersurface
singularities.

Theorem 2.5.9. Let A be a reduced isolated hypersurface singularity in AN , N ≥ 3. We have

Hn(A) ∼=

{
HomA(Ωn

A|k, A)⊕A/( ∂f∂x1 ,
∂f
∂x2

, ..., ∂f
∂xN

) if n < N

A/( ∂f∂x1 ,
∂f
∂x2

, ..., ∂f
∂xN

) if n ≥ N.
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Proof. If n < N , then by Proposition 2.4.5 it follows that

Hn(A) ∼= HomA(Ωn
A|k, A)⊕ Ext1

A(Ωn−1
A|k , A)⊕ · · · ⊕ Extn−1

A (Ω1
A|k, A).

We denote by C• := ∧NLA|k the complex

0→ A
∧df−−→ Ω1

P ⊗P A
∧df−−→ · · · ∧df−−→ ΩN

P ⊗P A→ 0.

A perfect pairing Ωk
P ⊗P ΩN−k

P → ΩN
P
∼= P induces a perfect pairing

Ck ⊗A CN−k → CN ∼= A,

where Ck is degree k term of the complex C•. From this we get that the complex

0→ HomA(CN , A)→ HomA(CN−1, A)→ · · · → HomA(C0, A)→ 0 (2.9)

is isomorphic to C•. Looking on the complex (2.9) as a cochain complex HomA(C•, A) with
HomA(CN , A) of degree 0, we see that

Hn(HomA(C•, A)) ∼= HN−n(C•).

Using Corollary 2.5.6 we thus obtain

Hn(HomA(C•, A)) ∼= HN−n(C•) ∼=
{

ΩN
A|k if n = N − 1, N

0 otherwise.
(2.10)

Note that we have Ωj
P = 0 for j ≥ N + 1 since ΩP is a free module of rank N . Using Lemma

2.5.4 and Lemma 2.5.5 we thus see that for i ≥ N we have

T j(i)(A) ∼=

{
A/( ∂f∂x1 ,

∂f
∂x2

, ..., ∂f
∂xN

) if j = i− 1, i

0 otherwise.

Moreover, using again Lemma 2.5.4 and Lemma 2.5.5 we see that

0→ A
∧df−−→ Ω1

P ⊗P A
∧df−−→ · · · ∧df−−→ Ωk

P ⊗P A→ 0

is quasi-isomorphic to Ωk
A|k for k ≤ N − 1. From the equation (2.10) it follows that

ExtjA(Ωk
A|k, A) = 0,

if j 6= 0, k − 1, k (k ≤ N − 1). Thus we see that in the decomposition

Ext1
A(Ωn−1

A|k , A)⊕ · · · ⊕ Extn−1
A (Ω1

A|k, A)

only one direct summand is nonzero and isomorphic to ΩN
A|k
∼= A/( ∂f∂x1 ,

∂f
∂x2

, ..., ∂f
∂xN

). The
Hodge decomposition concludes the proof.

Example 6. Let X = Spec(A) be the Gorenstein toric surface defined by the polynomial

p(x, y, z) = xy − zr+1.

We obtain that for n ≥ 3 we have dimkH
n(A) = r, the Milnor number of the surface.
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3 The Hochschild cohomology of toric
varieties

In Section 3.1 we briefly recall basic definitions of toric geometry. We analyze the Hochschild
complex in the case of toric varieties in Section 3.2. Section 3.3 contains a construction of an
important double complex of convex sets. Using the spectral sequence arguments we are able to
give a convex geometric description of the Hodge decomposition of the Hochschild cohomology
for affine toric varieties in Section 3.4 (see Theorem 3.4.3). As an application we explicitly
calculate T 1

(i)(A), for all i ∈ N, in the case of two and three-dimensional toric varieties (see
Proposition 3.5.2 and Proposition 3.6.2). The two-dimensional case is considered in Section 3.5
and the three-dimensional case is considered in Section 3.6, where we also compute T 1

(i)(A) for
affine cones over smooth toric Fano varieties in arbitrary dimensions (see Theorem 3.6.7).

3.1 Toric geometry

Let k be our field of characteristic 0. LetM,N be mutually dual, finitely generated, free Abelian
groups; we denote byMR, NR the associated real vector spaces obtained via base change with R.
Assume we are given a rational, polyhedral cone σ = 〈a1, ..., aN 〉 ⊂ NR with apex in 0 and with
a1, ..., aN ∈ N denoting its primitive fundamental generators (i.e. none of the ai is a proper
multiple of an element of N). We define the dual cone σ∨ := {r ∈MR | 〈σ, r〉 ≥ 0} ⊂MR and
denote by Λ := σ∨ ∩M the resulting semi-group of lattice points. Its spectrum Spec(k[Λ]) is
called an affine toric variety. For λ ∈ Λ we denote by xλ the monomial corresponding to λ.
Since Λ is saturated, Spec(k[Λ]) is normal (see e.g. [20, Theorem 1.3.5]).

Definition 49. A variety X is called Q-Gorenstein if the double dual of some tensor product
of ωX is an invertible sheaf on X.

The following facts about toric Q-Gorenstein varieties can be found in [2, Section 6.1]. For an
affine toric variety given by a cone σ = 〈a1, ..., aN 〉 we have that X is Q-Gorenstein if and only
if there exists a primitive element R∗ ∈M and a natural number g ∈ N such that 〈aj , R∗〉 = g
for each j = 1, ..., N . X is Gorenstein if and only if additionally g = 1. In particular, toric
Q-Gorenstein singularities are obtained by putting a lattice polytope P ⊂ A into the affine
hyperplane A × {g} ⊂ NR := A × R and defining σ := Cone(P ), the cone over P . Then the
canonical degree R∗ equals (0, 1).

From now on we will try to simplify the results obtained in the previous chapter using the
lattice grading that comes with toric varieties.

3.2 Grading of the Hochschild cohomology

Definitions and statements in this subsection already appeared in [6] for i = 1. We give a
generalization for arbitrary i ≥ 1.
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Let A = ⊕i∈ZAi be a graded k-algebra. If a0, ..., ap are homogenous elements, define the
weight of a0 ⊗ · · · ⊗ ap ∈ A⊗p+1 to be w =

∑
|ai|, where |ai| = j means that ai ∈ Aj . This

makes the tensor product A⊗p+1 into a graded k-module. Since differentials preserve the weight,
this equip both Hp(A) and Hp(A) with the structure of graded k-modules.

In the case when Spec(A) is an affine toric variety there exists M -grading on A. Let A =
k[Λ] = k[σ∨ ∩M ].

Definition 50. We say that an element f ∈ Cn(A) has degree R ∈M if f maps an element with
weight w to an element of degreeR+w in A. This means that f is of the form f(xλ1⊗· · ·⊗xλn) =
f0(λ1, .., λn)xR+λ1+···+λn . We need to take care that the expression is well defined, i.e., that
f0(λ1, ..., λn) = 0 for R+ λ1 + · · ·λn 6∈ Λ (in the following we will also use R+ λ1 + · · ·λn 6≥ 0
since we can look on M as a partially order set where positive elements lie in the cone Λ). Let
Cn,R(A) denote the degree R elements of Cn(A) and let Cn,R(i) (A) denote the degree R elements
of Cn(i)(A).

We would like to understand the space Cn,R(A) better and the following definition will be
useful.

Definition 51. L ⊂ Λ is said to be monoid-like if for all elements λ1, λ2 ∈ L the relation
λ1 − λ2 ∈ Λ implies λ1 − λ2 ∈ L. Moreover, a subset L0 ⊂ L of a monoid-like set is called full
if (L0 + Λ) ∩ L = L0.

For any subset P ⊂ Λ and n ≥ 1 we introduce Sn(P ) := {(λ1, ..., λn) ∈ Pn |
∑n

v=1 λv ∈ P}.
If L0 ⊂ L are as in the previous definition, then this gives rise to the following vector spaces
(1 ≤ i ≤ n):

Cn(i)(L,L \ L0; k) := {ϕ : Sn(L)→ k | ϕ ◦ sn = (2i − 2)ϕ, ϕ vanishes on Sn(L \ L0)},

which turn into a complex with the differential

dn : Cn−1
(i) (L,L \ L0; k)→ Cn(i)(L,L \ L0; k),

(dnϕ)(λ1, ..., λn) :=

ϕ(λ2, ..., λn) +

n−1∑
i=1

(−1)iϕ(λ1, ..., λi + λi+1, ..., λn) + (−1)nϕ(λ1, ..., λn−1).

Definition 52. By Hn
(i)(L,L\L0; k) we denote the Hochschild cohomology groups of the above

complex C•(i)(L,L \ L0; k).

Lemma 3.2.1. For all R ∈M it holds that

Cn,−R(i) (A) ∼= Cn(i)(Λ,Λ \ (R+ Λ); k).

Proof. For f ∈ Cn,−R(i) (A), we have f(xλ1 ⊗ · · · ⊗ xλn) = f0(λ1, .., λn)xλ1+···+λn−R and then the
isomorphism is given by f 7→ f0.

It is a trivial check that Hochschild differentials respect the grading given by the degrees
R ∈ M . Thus we get the Hochschild subcomplex C•,−R(i) and we denote the corresponding
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cohomology groups by Hn,−R
(i) (A) ∼= Tn−i,−R(i) (A). When the ring A will be clear from the

context, we will also write Hn
(i)(−R) ∼= Tn−i(i) (−R).

From definitions it follows that Cn(i)(A) = ⊕RCn,−R(i) (A), Cn(A) = ⊕RCn,−R(A) andHn
(i)(A) =

⊕RHn,−R
(i) (A), Hn(A) = ⊕RHn,−R(A).

Proposition 3.2.2. Let R ∈M and let A = k[Λ]. We have

Tn−i,−R(i) (A) ∼= Hn
(i)(Λ,Λ \ (R+ Λ); k). (3.1)

Proof. We use Lemma 3.2.1 and the decomposition of the Hochschild cohomology.

Remark 8. In next chapters we will also use the positive grading

Tn−i,R(i) (A) ∼= Hn
(i)(Λ,Λ \ (−R+ Λ); k).

Poisson structures lie in T 0
(2)(A), which is non-zero for positive degrees (R ∈ Λ).

3.3 A double complex of convex sets

In this section we follow the paper [6] verbatim. Arguments mentioned in [6] in the case i = 1
works also for arbitrary i ≥ 1 using the definitions from Section 3.2.
Let σ = 〈a1, ..., aN 〉. For τ ⊂ σ let us define the convex sets introduced in [6]:

KR
τ := Λ ∩ (R− int τ∨). (3.2)

The above convex sets admit the following properties:

• KR
0 = Λ and KR

aj = {r ∈ Λ | 〈aj , r〉 < 〈aj , R〉} for j = 1, ..., N .

• For τ 6= 0 the equality KR
τ = ∩aj∈τKR

aj holds.

• Λ \ (R+ Λ) = ∪Nj=1K
R
aj .

We have the following double complexes C•(i)(K
R
• ; k) for each i ≥ 1 (see Figure 3.1). We

define Cq(i)(K
R
τ ; k) := Cq(i)(K

R
τ , ∅; k) and

Cq(i)(K
R
p ; k) := ⊕τ≤σ,dim τ=pC

q
(i)(K

R
τ ; k) (0 ≤ p ≤ dimσ).

The differentials δp : Cq(i)(K
R
p ) → Cq(i)(K

R
p+1; k) are defined in the following way: we are

summing (up to a sign) the images of the restriction map Cq(i)(K
R
τ ; k) → Cq(i)(K

R
τ ′ ; k), for any

pair τ ≤ τ ′ of p and (p+1)-dimensional faces, respectively. The sign arises from the comparison
of the (pre-fixed) orientations of τ and τ ′ (see also [20, pp. 580] for more details).

Example 7. The map δ : ⊕Nj=1C
q
(i)(K

R
aj ; k)→ ⊕〈aj ,ak〉≤σC

q
(i)(K

R
aj ∩K

R
ak

; k) is simply given by:
(f1, ...., fN ) gets mapped to fj − fk ∈ Cq(i)(K

R
aj ∩K

R
ak

; k).

The following results (obtained in [6] for i = 1) can also be generalized to i > 1:
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Figure 3.1: The double complex C•(i)(K
R
• ; k)

Lemma 3.3.1. The canonical k-linear map Cq(i)(Λ,Λ \ (R + Λ); k) → Cq(i)(K
R
• ; k) is a quasi-

isomorphism, i.e., a resolution of the first vector space.

Proof. For r ∈ Λ ⊂M we define the k-vector space

V q
(i)(r) := {ϕ : {λ ∈ Λq |

∑
v

λv = r} → k | ϕ ◦ sn = (2i − 2)ϕ}.

Then our complex Cq(i)(K
R
• ; k) splits into a direct product over r ∈ Λ. Its homogenous factors

equal
0→ V q

(i)(r)→ V q
(i)(r)

{j | r∈KR
aj
} → V q

(i)(r)
{τ≤σ | dim τ=2; r∈KR

τ } → · · · .

On the other hand, denoting H+
r,R := {a ∈ NR | 〈a, r〉 < 〈a,R〉} ⊂ NR, the relation r ∈ KR

τ

is equivalent to τ \ {0} ⊂ H+
r,R. Hence, the complex for computing the reduced cohomology of

the topological space ⋃
τ\{0}⊂H+

r,R

(τ \ {0}) ⊂ σ

equals
0→ k → k

{j | r∈KR
aj
} → k{τ≤σ | dim τ=2; r∈KR

τ } → · · ·
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if σ ∩H+
r,R 6= ∅ (i.e. if r ∈ ∪jKR

aj ) and it is trivial otherwise. Since ∪τ\{0}⊂H+
r,R

(τ \ {0}) is con-

tractible, this complex is always exact. Thus, Cq(i)(K
R
• ; k) =

∏
r∈Λ V

q
(i)(r)

{τ≤σ | dim τ=•; r∈KR
τ }

has
∏
r∈Λ\(∪jKR

aj
) V

q
(i)(r) = Cq(i)(Λ \ (R + Λ),Λ; k) as cohomology in 0, and it is exact else-

where.

Corollary 3.3.2. Let i ≥ 1 be a fixed integer. For q ≥ i and p ≥ 0 there is a spectral sequence

Ep,q1 = ⊕dim τ=pH
q
(i)(K

R
τ ; k)⇒ T p+q−i,−R(i) (A) = Hp+q,−R

(i) (A).

Proof. We use first the differentials δp and then the differentials dn.

Proposition 3.3.3. Tn−i,−R(i) (A) = Hn
(

tot•(C•(i)(K
R
• ; k))

)
for 1 ≤ i ≤ n.

Proof. We use first the differentials dn and Lemma 3.3.1 and then the differentials δp.

Proposition 3.3.4. If τ ≤ σ is a smooth face, then Hq
(i)(K

R
τ ; k) = 0 for q ≥ i+ 1.

Proof. We proceed by induction on dim τ , i.e., we may assume that the vanishing holds for all
proper faces of τ . Let r(τ) be an arbitrary element of int(σ∨ ∩ τ⊥) ∩M , i.e., τ = σ ∩ [r(τ)]⊥.
Then, via Rg := R − g · r(τ) with g ∈ Z, one obtains an infinite (if τ 6= σ) series of degrees
admitting the following two properties:

• KRg
τ = KR

τ for any g ∈ Z (since Rg = R on τ), and

• KRg
τ ′ 6= ∅ implies τ ′ ≤ τ for any face τ ′ ≤ σ and g � 0 (since 〈aj , Rg〉 ≤ 0 if aj 6∈ τ).

In particular, in degree −Rg with g � 0 the first level of our spectral sequence is shaped as
follows:

• For p < dim τ only Hq
(i)(K

R
τ ′ ; k) with τ ′ ≤ τ appear as summands of Ep,q1 . By induction

hypothesis they vanish for q ≥ i+ 1 and by definition they vanish for q < i.

• For p = dim τ it follows that Ep,q1 = Hq
(i)(K

R
τ ; k).

• All vector spaces Ep,q1 vanish beyond the [p = dim τ ]-line.

Hence, the differential dr : Ep,qr → Ep+r,q−r+1
r are trivial for r ≥ 1, i − 1 ≤ q and r ≥ 1,

q ≥ i+ 1 and we obtain

T q+dim τ−i
(i) (−Rg) = Hq

(i)(K
R
τ ; k) for g � 0, q ≥ i+ 1. (3.3)

Let Tn(i)(τ) := Tn(i)(Spec(k[τ∨ ∩M ])) and similarly Tn(i)(σ) := Tn(i)(A). We have

Tn(i)(σ)⊗k[σ∨∩M ] k[σ∨ ∩M ]xr(τ) = Tn(i)(τ) = 0 for n ≥ 1, (3.4)

since k[τ∨ ∩M ] equals the localization of k[σ∨ ∩M ] by the element xr(τ). The last equality
holds by Proposition 2.3.6 since τ is a smooth face. From (3.4) we see that any element
of T q+dim τ−i

(i) (−Rg) ⊂ T q+dim τ−i
(i) will be killed by some power of xr(τ), which implies that

Hq
(i)(K

R
τ ; k) = 0 by (3.3).
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3.4 The Hochshild cohomology in degree −R ∈M

The main result in this section is Theorem 3.4.3. The results in this subsection do not follow
immediately from [6] as in Section 3.3.
The first reason that computations of Tn(i)(−R) become more challenging for i > 1 is that it

is not immediately clear how to generalize an easy description of H1
(1)(K

R
τ ; k) to H i

(i)(K
R
τ ; k).

Definition 53. We say that f ∈ Cn(n)(L,L \ L0; k) is multi-additive if it is additive on every
component, provided that the sum of all entries lies in L. Being additive in the first component
means f(a+ b, λ2, ..., λn) = f(a, λ2, ..., λn) + f(b, λ2, ..., λn), with a+ b+λ1 + · · ·+λn ∈ L. We
denote

C̄n(n)(L,L \ L0; k) := {f ∈ Cn(n)(L,L \ L0; k) | f is multi-additive}.

In the case n = 1 it holds trivially that H1
(1)(L,L \ L0; k) equals C̄1

(1)(L,L \ L0; k). Some
additional effort is necessary to show this for n > 1. Note that computations of Hn

(n)(K
R
τ ; k)

are still easier than computations of Hn
(i)(K

R
τ ; k), i 6= n, because in the case i = n we do not

have coboundaries.

Proposition 3.4.1. We have

Hn
(n)(L,L \ L0; k) = C̄n(n)(L,L \ L0; k)

for all n ≥ 1.

Proof. That every multi-additive function f ∈ Cn(n)(L,L \ L0; k) satisfies df = 0 is obvious by
definition of d. For the other direction we use the following computation (similarly as in the
proof of Loday [43, Proposition 1.3.12]):
we have ∑

σ df(λσ−1(1), ..., λσ−1(n+1)) = (3.5)

n!
(
f(λ1, λ3, λ4, ..., λn+1) + f(λ2, λ3, λ4, ..., λn+1)− f(λ1 + λ2, λ3, λ4, ..., λn+1)

)
,

where the sum is taken over all permutations σ ∈ Sn+1 such that σ(1) < σ(2).
The proof of (3.5) for n = 1 is trivial, let us prove it for n = 2:

df(λ1, λ2, λ3)− df(λ1, λ3, λ2) + df(λ3, λ1, λ2) =
f(λ2, λ3)− f(λ1 + λ2, λ3) + f(λ1, λ2 + λ3)− f(λ1, λ2)
−
(
f(λ3, λ2)− f(λ1 + λ3, λ2) + f(λ1, λ3 + λ2)− f(λ1, λ3)

)
+f(λ1, λ2)− f(λ3 + λ1, λ2) + f(λ3, λ1 + λ2)− f(λ3, λ1) =
2f(λ2, λ3) + 2f(λ1, λ3)− 2f(λ1 + λ2, λ3).

Let us prove (3.5) for general n: we first sum over all permutations σ ∈ Sn+1 such that σ(1) <
σ(2) with additional condition σ(1) = 1. In this sum we have the summand n!f(λ2, λ3, λ4, ..., λn+1):∑

σ∈Sn+1 | σ(1)<σ(2),σ(1)=1

df(λσ−1(1), ..., λσ−1(n+1)) = n!f(λ2, λ3, λ4, ..., λn+1) + · · · .

Then we sum with additional condition σ(2) = n+1, where the summand n!f(λ1, λ3, λ4, ..., λn+1)
appears: ∑

σ∈Sn+1 | σ(1)<σ(2),σ(2)=n+1

df(λσ−1(1), ..., λσ−1(n+1)) = n!f(λ1, λ3, λ4, ..., λn+1) + · · · .
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Finally, we restrict the sum on the condition σ(2) = σ(1) + 1 where we get the summand
−n!f(λ1 + λ2, λ3, ..., λn+1):∑

σ∈Sn+1 | σ(2)=σ(1)+1

df(λσ−1(1), ..., λσ−1(n+1)) = −n · (n− 1)!f(λ1 + λ2, λ3, ..., λn+1) + · · · .

From the above we can easily show the equality (3.5).

The next proposition will give us very useful formulas for Hn
(n)(K

R
τ ; k).

Proposition 3.4.2. Let τ ≤ σ be a smooth face. The injections C̄n(n)(SpankK
R
τ ; k)→ C̄n(n)(K

R
τ ; k)

are isomorphisms. Moreover, SpankK
R
τ = ∩aj∈τ SpankK

R
aj , and we have

SpankK
R
aj =


0 if 〈aj , R〉 ≤ 0
(aj)

⊥ if 〈aj , R〉 = 1
M ⊗Z k if 〈aj , R〉 ≥ 2.

Proof. We will prove the case n = 2, generalization to other n is then immediate. Let f ∈
C̄2

(2)(K
R
τ ; k). We want to show that f ∈ C̄2

(2)(SpankK
R
τ ; k).

Without loss of generality we can assume that τ = 〈a1, ..., am〉, with 〈ai, R〉 ≥ 2 for i = 1, ..., l
and 〈aj , R〉 = 1 for j = l + 1, ...,m, since if R was non-positive on any of the generators of τ ,
then KR

τ would be empty.
By smoothness of τ there exist elements r1, ..., rl such that 〈ri, ak〉 = δik for 1 ≤ i ≤ l and

1 ≤ k ≤ m. Hence for elements sv, sw ∈ KR
τ it holds that

f(sv, sw) =
l∑

i=1

l∑
u=1

〈ai, sv〉〈au, sw〉f(ri, ru) + f(pv, pw),

with pv := sv −
∑l

i=1〈ai, sv〉ri ∈ τ⊥ ∩M and pw := sw −
∑l

i=1〈ai, sw〉ri ∈ τ⊥ ∩M . We can
easily show that

∑
v

∑
w f(sv, sw) does depend only on s1 :=

∑
v sv and s2 :=

∑
w sw, and not

on the summands themselves:∑
v

∑
w

f(sv, sw) =
∑
v

(∑
i,j

〈ai, sv〉〈aj , s2〉f(ri, rj) + f(pv, s2 −
∑
i

〈ai, s2〉ri)
)

=

=
∑
i,j

〈ai, s1〉〈aj , s2〉f(ri, rj) + f(s1 −
∑
i

〈ai, s1〉ri, s2 −
∑
i

〈ai, s2〉ri).

Then, f(s1, s2) may be defined as this value. The second claim follows as in [6] by

∩ai∈τ SpankK
R
ai = ∩kj=l+1(aj)

⊥ = Spank(τ
⊥, r1, ..., rl) = SpankK

R
τ .

To shorten notation we write Mk (resp. Nk) instead of M ⊗Z k (resp. N ⊗Z k).

Remark 9. Note that 0 and 1-dimensional faces are always smooth. For τ = 0 we obtain
that C̄i(i)(Λ; k) ∼= C̄i(i)(Spank Λ; k) ∼= C̄i(i)(Mk; k). Thus if σ = 〈a1, ..., aN 〉 ⊂ Mk

∼= kn, then
f ∈ C̄i(i)(Λ; k) is completely determined by the values f(sk1 , ..., ski), for 1 ≤ k1 < · · · < ki ≤ n,
where s1, ..., sn ∈ Λ are linearly independent (k-basis in kn).
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Let E be a minimal set that generates the semigroup Λ := σ∨∩M . E is called a Hilbert basis.
We write ERj := E ∩KR

aj , E
R
jk := E ∩KR

aj ∩K
R
ak

for a 2-face 〈aj , ak〉 ≤ σ and ERτ := ∩aj∈τERj
for faces τ ≤ σ.

Theorem 3.4.3. Let Xσ = Spec(A) be an affine toric variety that is smooth in codimension
d. Let i ≥ 1 be a fixed integer. Then the k-th cohomology group of the complex

0→ C̄i(i)(Mk; k)→ ⊕jC̄i(i)(Spank E
R
j ; k)→ · · · → ⊕τ≤σ,dim τ=d+1C̄

i
(i)(Spank E

R
τ ; k) (3.6)

is isomorphic to T k,−R(i) (A) for k = 0, ..., d (C̄i(i)(Mk; k) is the degree 0 term).
Moreover, if X is an isolated singularity (i.e. dim(X) = d+ 1), then

T k,−R(i) (A) ∼=

{
Coker

(
⊕τ≤σ,dim τ=d C̄

i
(i)(K

R
τ ; k)→ C̄i(i)(K

R
σ ; k)

)
if k = dim(X)

H
k−dim(X)+i
(i) (KR

σ ; k) if k ≥ dim(X) + 1.

Proof. By Corollary 3.3.2 we have

Ep,q1 = ⊕τ≤σ,dim τ=pH
q
(i)(K

R
τ ; k)⇒ T p+q−i,−R(i) (A) = Hp+q,−R

(i) (A),

for q ≥ i and p ≥ 0. By the assumption j-dimensional faces are smooth for j ≤ d. From
Proposition 3.3.4 it follows that E0,q

1 = E1,q
1 = · · · = Ed,q1 = 0, for q ≥ i + 1. Thus Ep,i2 =

Ep,i∞ = ⊕τ≤σ,dim τ=pH
i
(i)(K

R
τ ; k) for d + 1 ≥ p ≥ 1. It follows that T k,−R(i) (A) is isomorphic to

the k-th cohomology group of the complex

H i
(i)(Λ; k)→ ⊕jH i

(i)(K
R
aj ; k)→ · · · → ⊕τ≤σ,dim τ=d+1H

i
(i)(K

R
τ ; k).

We conclude the first part using Proposition 3.4.1 and Proposition 3.4.2.
If X is an isolated singularity, then we also have Ep,q1 = 0 for p ≥ d + 2. Thus Ed+1,q

2 =

Ed+1,q
∞ = Hq

(i)(K
R
σ ; k) for q ≥ i+ 1, which finishes the proof.

Corollary 3.4.4. Since toric varieties are smooth in codimension 1, we obtain that T 1
(i)(−R)

is isomorphic to the cohomology group of the complex

C̄i(i)(Mk; k)→ ⊕jC̄i(i)(Spank E
R
j ; k)→ ⊕〈aj ,ak〉<σC̄

i
(i)(Spank E

R
jk; k). (3.7)

3.5 The Hochschild cohomology of toric surfaces

In this section we compute dimk T
1,−R
(i) (A) for all i ∈ N in the case when A is a two-dimensional

affine toric variety (a two-dimensional cyclic quotient singularity). Let X(n, q) denote the

quotient by the Z/nZ-action ξ →
(
ξ 0
0 ξq

)
, (ξ = n

√
1). X(n, q) is given by the cone σ =

〈a1, a2〉 = 〈(1, 0); (−q, n)〉. We can develop n
n−q into a continued fraction

n

n− q
= b1 +

1

b2 +
1

. . . +
1

br

(bi ≥ 2). Then E is given as the set E = {w0, ..., wr+1}, with elements wi ∈ Z2 and
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1. w0 = (0, 1), w1 = (1, 1), wr+1 = (n, q),

2. wi−1 + wi+1 = bi · wi (i = 1, ..., r).

We now compute T 1,−R
(i) (A) for toric surfaces A = A(n, q) = k[Λ := 〈w0, wr+1〉 ∩M ].

Proposition 3.5.1. For i > 2 we have T 1,−R
(i) (A) = 0. Otherwise we have

dimk T
1,−R
(i) (A) =

max{0,dimk C̄
i
(i)(Spank E

R
1 ; k) + dimk C̄

i
(i)(Spank E

R
2 ; k)− dimk C̄

i
(i)(Spank E

R
12; k)− ci},

where

ci :=

{
2 = dimk C̄

1
(1)(Mk; k) if i = 1

1 = dimk C̄
2
(2)(Mk; k) if i = 2.

Proof. It follows immediately from (3.7): the map f : ⊕jC̄i(i)(K
R
aj ; k)→ C̄i(i)(K

R
a1 ∩K

R
a2 ; k) give

us ker f = C̄i(i)(K
R
a1 ; k) + C̄i(i)(K

R
a2 ; k) − dim(im f), where dim(im f) = dim C̄i(i)(K

R
a1 ∩K

R
a2 ; k)

since f is surjective. The number ci is the dimension of C̄i(i)(Λ; k) since the map

C̄i(i)(Λ; k)→ ⊕jC̄i(i)(K
R
aj ; k)

is injective.

We obtain the following corollaries:

Corollary 3.5.2. Focusing on T 1,−R
(2) (A) we can easily check that

h2
(2)(Λ; k) := dimkH

2
(2)(Λ; k) = dimk C̄

2
(2)(Λ; k) = 1

and that h2
(2)(K

R
ai ; k) := dimkH

2
(2)(K

R
ai ; k) ≤ 1 for i = 1, 2. We consider four different cases for

the multidegree R ∈M ∼= Z2:

• R = w1 (or analogously R = wr). We obtain E1 = {w0} and E2 = {w2, ..., wr+1}. We
have

dimk C̄
2
(2)(Spank E

R
1 ; k) = dimk C̄

2
(2)(Spank E

R
12; k) = 0

and thus Proposition 3.5.1 yields T 1,−R
(2) (A) = 0.

• R = wi (2 ≤ i ≤ r − 1). We obtain E1 = {w0, ..., wi−1} and E2 = {wi+1, ..., wr+1}. We
have dimk C̄

2
(2)(Spank E

R
12; k) = 0,

dimk C̄
2
(2)(Spank E

R
1 ; k) = dimk C̄

2
(2)(Spank E

R
2 ; k) = 1

and thus Proposition 3.5.1 yields dimk T
1,−R
(2) (A) = 1.

• R = l · wi(1 ≤ i ≤ r, 2 ≤ l ≤ bi for r ≥ 2, or i = 1, 2 ≤ l ≤ b1 for r = 1). We obtain
E1 = {w0, ..., wi} and E2 = {wi, ..., wr+1}. We have dimk C̄

2
(2)(Spank E

R
12; k) = 0,

dimk C̄
2
(2)(Spank E

R
1 ; k) = dimk C̄

2
(2)(Spank E

R
2 ; k) = 1

and thus Proposition 3.5.1 yields dimk T
1,−R
(2) = 1.
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• For the remaining R ∈M , either E1 ⊂ E2 or E2 ⊂ E1 or #(E1∩E2) ≥ 2. In these cases
hold either dimk C̄

2
(2)(Spank E

R
j ; k) = 0 for some j, or we have dimk C̄

2
(2)(Spank E

R
12; k) 6=

0. Thus in all these cases Proposition 3.5.1 yields T 1,−R
(2) (A) = 0.

Corollary 3.5.3. Results for T 1,−R(A) (already appeared in [59]):

• R = w1 (or analogously R = wr). We obtain dimk T
1(−R) = 1(or 0 if r = 1).

• R = wi (2 ≤ i ≤ r − 1). We obtain dimk T
1(−R) = 2.

• R = l · wi(1 ≤ i ≤ r, 2 ≤ l ≤ ai) for r ≥ 2, or i = 1, 2 ≤ l ≤ a1 for r = 1). We obtain
dimk T

1(−R) = 1.

• For every other degree R, we obtain that T 1(−R) = 0.

The following example shows that in the case of Gorenstein toric surfaces the computations
in this chapter agree with the computations in the previous chapter.

Example 8. Let Xσn = Spec(An) be the Gorenstein toric surface, given by the polynomial
f(x, y, z) = xy − zn+1 in A3. From Theorem 2.5.9 we know that H3(An) ∼= An/(

∂f
∂x ,

∂f
∂y ,

∂f
∂z ),

which has dimension as a k-vector space equal to n (the Milnor number of the hypersurface).
From the Hodge decomposition and Corollary 2.4.6 we have

H3(An) ∼= T 0
(3)(An)⊕ T 1

(2)(An)⊕ T 2
(1)(An) ∼= ⊕2

i=0 ExtiAn(Ω3−i
An|k, An).

Using Corollary 3.5.2 we can be even more precise: the cone σn is given by

σn = 〈(1, 0), (−n, n+ 1)〉.

Its continued fraction has r = 1, b1 = n + 1 and thus we have dimk T
1,−R
(2) (An) = 1 for the

degrees R = (2, 2), ..., (n+1, n+1) and dimk T
1,−R
(2) (An) = 0 for other degrees. Thus we proved

that
H3(An) ∼= T 1

(2)(An) ∼= Ext1(Ω2
An|k, An) ∼= An/(

∂f

∂x
,
∂f

∂y
,
∂f

∂z
)

and they have dimension n as k-vector spaces. In particular, it holds that Ext2
An(ΩAn|k, An) =

Hom(Ω3
An|k, An) = 0, which can also be easily checked using the results from Section 2.5.

3.6 The Hochschild cohomology of higher dimensional toric
varieties

In this section we compute T 1,−R
(i) (A) for higher dimensional toric varieties. Altmann [4], [5]

described a relation between the computation of T 1
(1)(−R) and the convex geometry of Q(R)

(using Minkowski summands of Q(R)). We will develop another approach that will also allow
us to compute T 1

(i)(−R) for i > 1. At the end we will obtain explicit formulas for 3-dimensional
toric varieties (see Proposition 3.6.2). As far as we know the techniques that we use to obtain
these calculations are new even in the case i = 1. In this section we also obtain a formula for
T 1

(i)(−R) for affine cones over smooth toric Fano varieties in arbitrary dimension (see Theorem
3.6.7).
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Let a cone σ = 〈a1, ..., aN 〉 represent an n-dimensional toric variety, n ≥ 3. For R ∈ M we
define an affine space

A(R) := [R = 1] = {a ∈ NR | 〈a,R〉 = 1} ⊂ NR.

The cross-cut of σ in degree R is the polyhedron

Q(R) := σ ∩ [R = 1] ⊂ A(R).

The compact part of Q(R) is generated by its vertices āj := aj/〈aj , R〉 for j satisfying 〈aj , R〉 ≥
1. We write d1, ..., dK ∈ R⊥ for the compact edges of Q(R). For each compact 2-face ε < Q(R)
we define its sign vector ε ∈ {0,±1}K to be

εi :=

{
±1 if di is an edge of ε
0 otherwise,

where the signs are chosen so that the oriented edges εidi fit into a cycle along the boundary
of ε. In particular,

∑
i εidi = 0.

Let us recall Altmann’s construction. It can be divided into three steps (see [5]):

• Step 1: T 1(−R) equals the complexified (in our case C will be replaced by a field k)
cohomology of the complex

NR → ⊕j(SpanRERj )∗ → ⊕〈aj ,ak〉<σ(SpanRE
R
jk)
∗. (3.8)

• Step 2:

We can represent an element of ⊕j(SpanRERj )∗ by a family of elements{
bj ∈ NR if〈aj , R〉 ≥ 2,
bj ∈ NR/R · aj if〈aj , R〉 = 1.

We choose now "new coordinates"

b̄j := bj − 〈bj , R〉āj ∈ R⊥, which is well-defined even in the case 〈aj , R〉 = 1;

sj := −〈bj , R〉 for j meeting 〈aj , R〉 ≥ 2 (inducing an element of W(R) defined below).

We can relate this coordinates with Minkowski summands of a polytope Q(R) and thus
we obtain that T 1(−R) ⊂ VC(R)⊕WC(R)/(1, 1),

where

V (R) := {(t1, ..., tK) ∈ RK |
∑
i

tiεidi = 0} for every compact 2-face ε < Q(R)},

W (R) := R#{vertices of Q(R) not in N}.

• Step 3:

We describe the relations between elements (t, s) ∈ V (R)⊕W (R).
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We already generalized Step 1 (see Corollary 3.4.4). Now we use another approach that will
also give us explicit formulas for all i (we also do not know how to generalize Step 2 and Step
3). In the three-dimensional case we obtain a formula for T 1

(i)(−R) for all i that can be easily
computed and depends only on basic combinatorial properties of the cone (see Proposition
3.6.2). In particular, we obtain explicit formulas also in the case i = 1 and we will see that for
isolated and Gorenstein singularities our formula agrees with Altmann’s formula obtained with
Minkowski summands (see Corollary 3.6.3 and Corollary 3.6.4).

Lemma 3.6.1. Let Y be a toric surface given by σ = 〈a1, a2〉 ⊂ NR ∼= R2. We have
dimk Spank E

R
12 = max{0,W1(R) +W2(R)− 2− dimk T

1,−R
(1) (Y )}, where

Wj(R) :=


2 if 〈aj , R〉 > 1
1 if 〈aj , R〉 = 1
0 if 〈aj , R〉 ≤ 0.

Proof. It follows immediately by Proposition 3.5.1.

Remark 10. Wj(R) is a number and is not related to Altmann’s notation of W (R) defined
above. The same for V i

j (R) defined below.

Let djk := āj āk denote the compact edges of Q(R) (for 〈aj , ak〉 ≤ σ, 〈aj , R〉 ≥ 1, 〈ak, R〉 ≥ 1).
We denote the lattice N ∩ Spank〈aj , ak〉 by N̄jk and its dual by M̄jk. Let R̄jk denote the
projection of R to M̄jk.

Proposition 3.6.2. If the compact part of Q(R) lies in a two-dimensional affine space we have

dimk T
1
(i)(−R) = max

{
0,

N∑
j=1

V i
j (R)−

∑
djk∈Q(R)

Qijk(R)−
(
n

i

)
+ siQ(R)

}
,

where

V i
j (R) :=


(
n
i

)
if 〈aj , R〉 > 1(

n−1
i

)
if 〈aj , R〉 = 1

0 if 〈aj , R〉 ≤ 0,

Qijk(R) :=

{ (Wj(R)+Wk(R)+n−4−dimk T
1
〈aj,ak〉

(−R̄jk)

i

)
if 〈aj , R〉, 〈ak, R〉 6= 0

0 otherwise,

siQ(R) :=

{
dimk ∧i

(⋂
djk∈Q(R) Spank E

R
jk

)
if Q(R) is compact

0 otherwise.

Proof. From Theorem 3.4.3 we know that T 1
(i)(−R) is the cohomology group of the complex

C̄i(i)(Mk; k)→ ⊕jC̄i(i)(SpankE
R
j ; k)→ ⊕〈aj ,ak〉≤σC̄

i
(i)(Spank(E

R
jk); k).

Let f := (f1, ..., fN ) ∈ ⊕jC̄i(i)(SpankE
R
j ). We see that V i

j (R) = dimk(∧iSpankERj ). Assume
now that SpankERj , SpankE

R
k 6= ∅, otherwise we have SpankERjk = ∅. We can easily verify that

Qijk(R) = dimk(∧iSpankERjk): we have dimk(SpankERjk) = n − 2 + dimk(SpankĒ
R̄jk
jk ), where
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Ējk is a generating set of 〈aj , ak〉∨∩ M̄jk. From Lemma 3.6.1 we know that dimk(SpankĒR̄jk) =

max{0,Wj(R) +Wk(R)− 2− dimk T
1
〈aj ,ak〉(−R̄jk)}. Thus we have

dimk T
1
(i)(−R) = max

{
0,

N∑
j=1

V i
j (R)−

∑
djk

Qijk(R)−
(
n

i

)
+ si},

where si equals the dimension of the domain of restrictions (that we get with restricting fj = fk
on Spank E

R
jk) that repeats. We can easily verify that si = siQ(R).

3.6.1 Computations of T 1
(i)(A) for three-dimensional toric varieties

Using Proposition 3.6.2 we can easily compute T 1
(i)(−R) for three-dimensional affine toric va-

rieties. From straightforward computation of the formula in Proposition 3.6.2 we obtain the
following corollary.

Corollary 3.6.3. Let X be an isolated 3-dimensional toric singularity. Without loss of gener-
ality we can assume that generators a1, ..., aN are arranged in a cycle (we define aN+1 := a1).
We have the following formulas:

dimk T
1
(1)(−R) =

{
max

{
0,#{āj | āj ∈ N, i.e., 〈aj , R〉 = 1} − 3

}
if R > 0

#{āj | āj ∈ N, not contained in a noncompact edge} if R 6> 0,

dimk T
1
(2)(−R) =

{
max

{
0,#{āj | āj ∈ N}+ C(R)− 3

}
if R > 0

max
{

0,#{āj | āj ∈ N}+ C(R)− 2
}

if R 6> 0,
dimk T

1
(3)(−R) = max{0, C(R)− 1},

dimk T
1
(i)(−R) = 0 for i ≥ 4,

where C(R) := #{chambers with 〈aj , R〉 > 1} and a chamber with 〈aj , R〉 > 1 means 〈aj , R〉 >
1 for j = j0, j0 +1, ..., j0 +k for some j0, k ∈ N and 〈aj , R〉 ≤ 1 for j = j0−1 and j = j0 +k+1.

Proof. We use Theorem 3.6.2 with n = 3. We also have T 1
〈aj ,aj+1〉(−R̄j,j+1) = 0 for all j since X

is smooth in codimension 2. Let m1 be a number of aj with 〈aj , R〉 = 1 (i.e. m1 is the number
of lattice vertices of the polytope Q(R)) and m2 be a number of vertices aj with 〈aj , R〉 > 1.
If R > 0 we have N = m1 +m2 and thus we can easily compute that

siQ(R) = dimk ∧i
⋂
j

SpankE
R
j,j+1 =

(
max{0, 3−m1}

i

)
.

For i = 1 we have
∑N

j=1 V
1
j (R) = 3m2 + 2m1,

∑N
j=1Wj(R) = 2m1 +m2 and thus

∑
dj

Q1
j,j+1(R) = 2

N∑
j=1

(Wj(R))−N = 4m2 + 2m1 −m1 −m2 = 3m2 +m1.

Thus we see that T 1
(1)(−R) = max{0,m1 − 3}.

For i = 2 we have

Q2
j,j+1(R) =


3 if V 2

j (R) = V 2
j+1(R) = 3

1 if V 2
j (R) = 2, V 2

j+1(R) = 3 or V 2
j (R) = 3, V 2

j+1(R) = 2

0 otherwise
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and thus

V 2
j (R)−Q2

j,j+1(R) =


1 if 〈aj , R〉 = 1 and 〈aj+1, R〉 = 1
0 if 〈aj , R〉 = 1 and 〈aj+1, R〉 = 2
2 if 〈aj , R〉 = 2 and 〈aj+1, R〉 = 1
0 if 〈aj , R〉 = 2 and 〈aj+1, R〉 = 2
0 otherwise,

from which we easily obtain the formula that we want.
For i = 3 we have

∑N
j=1 V

3
j (R) = m2,

Q3
j,j+1(R) =

{
1 if V 3

j (R) = V 3
j+1(R) = 3

0 otherwise

and the formula follows.
If R 6> 0 we do not have any compact 2-faces in Q(R). We define the index set S for vertices

that do not lie on unbounded edges of Q(R) (note that |S| = m1 + m2 − 2). We denote two
vertices that lie on unbounded edges by k and l.
For i = 1 Theorem 3.6.2 gives us (since Wj(R) = V 1

j (R)− 1 if 〈aj , R〉 > 0) the following:

N∑
j=1

V 1
j (R)−

N∑
j=1

Q1
j,j+1(R)− 3 =

= V 1
k (R) + V 1

l (R) +
(∑
j∈S

V 1
j (R)

)
−
(
2(
∑
j∈S

V 1
j (R)) + V 1

k (R) + V 1
l (R)− 3(m1 +m2 − 1)

)
− 3 =

= −
(∑
j∈S

V 1
j (R)

)
+ 3(m1 +m2 − 2),

which equals #{āj | āj ∈ N, not contained in a noncompact edge}.
In the following we denote for short C := C(R). We consider the case i = 2. Let āl denote

the vertex that lies on an unbounded edge and has the highest index l (recall that generators
aj are arranged in a cycle). We consider two cases: first if 〈al, R〉 = 1, then we compute
that

∑l−1
j=1(V 2

j (R) − Q2
j,j+1(R)) = C + m1, thus to get dimk T

1
(2)(−R) we also need to add

V 2
l (R)− 3 = −2. If 〈al, R〉 > 1 we see that

l−1∑
j=1

(V 2
j (R)−Q2

j,j+1(R)) = C +m1 − 2.

Note that we get −2 because in C + m1 we count also the last chamber and the last vertex
with 〈aj , R〉 = 1 and thus we need to subtract 2. We also need to add V 2

l (R)− 3 = 0. In both
cases (if 〈al, R〉 = 1 or if 〈al, R〉 > 1) we obtain the same formula, i.e.,

dimk T
1
(2)(−R) = C +m1 − 2.

For i = 3 we again consider two cases: first if 〈al, R〉 = 1, then we compute that

l−1∑
j=1

(V 3
j (R)−Q3

j,j+1(R)) = max{0, C − 1}.
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If 〈al, R〉 > 1, then we see that

l−1∑
j=1

(V 3
j (R)−Q3

j,j+1(R)) = max{0, C − 1} − 1.

In both cases we obtain the same formula

dimk T
1
(3)(−R) = max{0, C − 1}.

Remark 11. Note that in the case i = 1 we obtain the same formula as Altmann in [1].

Let X be a three-dimensional toric Gorenstein singularity given by a cone σ = 〈a1, ..., aN 〉,
where a1, ..., aN are arranged in a cycle. Let s1, ..., sN be the fundamental generators of the
dual cone σ∨, labelled so that σ ∩ (sj)

⊥ equals the face spanned by aj , aj+1 ∈ σ. Let R∗

denote the degree such that 〈R∗, ai〉 = 1 for all i (R∗ exists for Gorenstein toric varieties).
With `(j) we denote the length of the edge dj . With P we denote the polytope σ ∩ [R∗ = 1].
The following corollary is also obtained with a straightforward computation of the formula in
Proposition 3.6.2.

Corollary 3.6.4. Let X be a three-dimensional toric Gorenstein singularity given by a cone
σ = 〈a1, ..., aN 〉, where a1, ..., aN are arranged in a cycle. It holds that T 1

(1)(−R) is non-trivial
in the following cases:

• R = R∗ with dimk T
1
(1)(−R) = N − 3,

• R = qR∗ (for q ≥ 2) with dimk T
1
(1)(−R) = max{0,#{j | q ≤ `(j)} − 2},

• R = qR∗ − psj with 2 ≤ q ≤ `(j) and p ∈ Z sufficiently large such that R 6∈ int(σ∨). In
this case dimk T

1
(1)(−R) = 1.

Additional degrees exist only in the following two (overlapping) exceptional cases:

• P contains a pair of parallel edges dj, dk, both longer than every other edge. Then
dimk T

1
(1)(−qR

∗) = 1 for q in the range

max{`(l) | l 6= j, k} < q ≤ min{`(j), `(k)}},

• P contains a pair of parallel edges dj, dk with distance d (d := 〈aj , sk〉 = 〈ak, sj〉) and
it holds that `(k) > d ≥ max{`(l) | l 6= j, k}. In this case dimk T

1
(1)(−R) = 1 for

R = qR∗ + psj with 1 ≤ q ≤ `(j) and 1 ≤ p ≤ (`(k)− q)/d.

T 1
(2)(−R) is non-trivial in the following cases:

• R = R∗ with dimk T
1
(2)(−R) = N − 3,

• R = qR∗ (for q ≥ 2) with dimk T
1
(2)(−R) = max{0, 2 ·#{j | q ≤ `(j)} − 3},

• R = qR∗ − psj with 2 ≤ q ≤ `(j) and p ∈ Z sufficiently large such that R 6∈ int(σ∨). In
this case dimk T

1
(2)(−R) = 2.
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Additional degrees exist only in the following two (overlapping) exceptional cases:

• P contains a pair of parallel edges dj, dk, both longer than every other edge. Then
dimk T

1
(2)(−qR

∗) = 2 for q in the range

max{`(l) | l 6= j, k} < q ≤ min{`(j), `(k)}},

• P contains a pair of parallel edges dj, dk with distance d = 〈aj , sk〉 = 〈ak, sj〉 and it holds
that `(k) > d ≥ max{`(l) | l 6= j, k}. In this case dimk T

1
(2)(−R) = 2 for R = qR∗ + psj

with 1 ≤ q ≤ `(j) and 1 ≤ p ≤ (`(k)− q)/d.

T 1
(3)(−R) is non-trivial in the following cases:

• R = qR∗ (for q ≥ 2) with dimk T
1
(3)(−R) = max{0,#{j | q ≤ `(j)} − 1},

• R = qR∗ − psj with 2 ≤ q ≤ `(j) and p ∈ Z sufficiently large such that R 6∈ int(σ∨). In
this case dimk T

1
(3)(−R) = 1.

Additional degrees exist only in the following two (overlapping) exceptional cases:

• P contains a pair of parallel edges dj, dk, both longer than every other edge. Then
dimk T

1
(3)(−qR

∗) = 1 for q in the range

max{`(l) | l 6= j, k} < q ≤ min{`(j), `(k)}},

• P contains a pair of parallel edges dj, dk with distance d = 〈aj , sk〉 = 〈ak, sj〉 and it holds
that `(k) > d ≥ max{`(l) | l 6= j, k}. In this case dimk T

1
(3)(−R) = 1 for R = qR∗ + psj

with 1 ≤ q ≤ `(j) and 1 ≤ p ≤ (`(k)− q)/d.

And we have T 1
(i)(−R) = 0 for i ≥ 4.

Proof. We distinguished the following cases.

• Let R = R∗.

We see that siQ(R∗) = 0 for all i. By Corollary 3.5.3 we also have T 1
〈aj ,aj+1〉(−R̄

∗
j,j+1) = 0

for all j. By Proposition 3.6.2 we have dimk T
1(−R∗) = dimk T

1
(2)(−R

∗) = N − 3 and
T 1

(i)(−R
∗) = 0 for i > 2.

• Let R = qR∗, where q ≥ 2.

We have
∑N

j=1 V
i
j (R) =

(
3
i

)
N . A two face 〈aj , aj+1〉 ⊂ N̄j,j+1

∼= Z2 is a Gorenstein cyclic
quotient singularity of type A`(j)−1. Let us define v := #{j | q ≤ `(j)}.

For i = 1 we have
∑N

j=1Q
1
j,j+1(R) = 3N−v (since for q ≤ `(j) we have dimk T

1
〈aj ,ak〉(−qR̄) =

1). Thus dimk T
1
(1)(−R) = v − 3 + s1

Q(R) holds by Proposition 3.6.2.

In the case i = 2 we have
∑N

j=1Q
2
j,j+1(R) =

(
2
2

)
v +

(
3
2

)
(N − v) = 3N − 2v. Thus

Proposition 3.6.2 gives us that dimk T
1
(2)(−R) = 2v − 3 + s2

Q(R).
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For i = 3 we have
∑N

j=1Q
3
j,j+1(R) = N−v. By Proposition 3.6.2 we have dimk T

1
(3)(−R) =

v − 1 + s3
Q(R).

We now compute dimk ∩jSpankERj,j+1 (and thus siQ(R) for all i). We have

dimk ∩j Spank E
R
j,j+1 ≥ 1

since Spank{R} ⊂ ∩j Spank E
R
j,j+1 for all j = 1, ..., N (note that we are in the case

R = qR∗ for q ≥ 2). If dimk ∩jSpankERj,j+1 = 3, then trivially T 1
(i)(−R) = 0 for all i.

Now we will show

CLAIM: For R = qR∗ we have dimk ∩jSpankERj,j+1 = 2 if and only if P consists of parallel
edges dj , dk and Spank E

R
l,l+1 = NR holds for all l ∈ {1, ..., N} \ {j, k} (in particular, we

have SpankERj,j+1 = Spank{a⊥j ∩ a⊥j+1, R} and Spank{a⊥k ∩ a⊥k+1, R} = SpankERk,k+1).

Proof: we need to show that a ∈ SpankERj,j+1 if and only if a ∈ SpankERk,k+1. Since
Spank{R} ⊂ SpankERj,j+1, SpankE

R
k,k+1, it is enough to show that

a ∈ a⊥j ∩ a⊥j+1 =⇒ a ∈ SpankE
R
k,k+1

and
a ∈ a⊥k ∩ a⊥k+1 =⇒ a ∈ SpankE

R
j,j+1.

Let a ∈ a⊥j ∩a⊥j+1. Since dj and dk are parallel, we have ak+1 = ak+α(aj+1−aj), thus we
see that 〈a, ak+1〉 = 〈a, ak〉, which implies that a ∈ SpankERk,k+1 = Spank{a⊥k ∩a⊥k+1, R} =
{c ∈Mk | 〈c, ak〉 = 〈c, ak+1〉}, since R also has a property that 〈R, ak+1〉 = 〈R, ak〉. The
same for the other direction and thus we prove the claim.

From this we immediately obtain formulas that we want (note that the exceptional cases
are given when dimk ∩jSpankERj,j+1 = 2 and v = 2.

• Let R 6> 0. We immediately see that the only possible cases for having a non-zero
T 1

(i)(−R) are when R = qR∗−psj with 2 ≤ q ≤ l(j) and p ∈ Z sufficiently large such that
R 6∈ int(σ∨). In these cases dimk T

1
(1)(−R) = dimk T

1
(3)(−R) = 1 and dimk T

1
(2)(−R) = 2.

• Let R > 0 and R 6= qR∗. We can check (as we did above) that T 1
(i)(−R) = 0 for all i,

except when P contains a pair of parallel edges dj , dk with distance d = 〈aj , sk〉 = 〈ak, sj〉
and it holds that `(k) > d ≥ max{`(l) | l 6= j, k}. In this case we have dimk T

1
(1)(−R) =

dimk T
1
(3)(−R) = 1 and dimk T

1
(2)(−R) = 2 for R = qR∗ + psj with 1 ≤ q ≤ `(j) and

1 ≤ p ≤ (`(k)− q)/d.

We see that in the case i = 1 our formulas agree with the ones given in [5].

3.6.2 Computations of T 1
(i)(A) for affine cones over smooth toric Fano varieties

We start with the following observation.
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Remark 12. When Q(R) is not contained in a two-dimensional affine space, we can still follow
the proof of Proposition 3.6.2 and we obtain that

dimk T
1
(i)(−R) ≥

N∑
j=1

V i
j (R)−

∑
djk∈Q(R)

Qijk(R)−
(
n

i

)
. (3.9)

The cycles in Q(R) give us some repetitions on the restrictions (fj = fk on SpankERjk) and
thus it is hard to obtain a formula for dimk T

1
(i)(−R) in higher dimensions. For every tree T in

Q(R) we obtain also upper bounds:

dimk T
1
(i)(−R) ≤

N∑
j=1

V i
j (R)−

∑
djk∈T

Qijk(R)−
(
n

i

)
, (3.10)

since no cycles appear in T .

We focus now on higher dimensional toric varieties. Let us consider the special case of
Q-Gorenstein toric varieties that are smooth in codimension two.

Lemma 3.6.5. Let Y be a Q-Gorenstein variety which is smooth in codimension two. If R ∈M
is a degree such that 〈aj , R〉 ≥ 2 for some j ∈ {1, ..., N}, then T 1

(i)(−R) = 0 for all i ≥ 1.

Proof. The hyperplane H := {a ∈ NR | 〈a, gR − R∗〉 = 0} subdivides the set of generators
of σ: HR

≤0 := {aj | 〈aj , R〉 ≤ 0}, HR
1 = {aj | 〈aj , R〉 = 1} and HR

≥2 = {aj | 〈aj , R〉 ≥ 2}.
We fix a vertex āj0 of Q(R) with 〈aj0 , R〉 ≥ 2. Skipping some of the edges, we can arrange
Q(R) into a tree T with the main vertex āj0 , the set of leaves equal to HR

1 and the set of
inner vertices equal to HR

≥2 \ āj0 . From the equation (3.10) we see that dimk T
1
(i)(−R) ≤∑N

j=1 V
i
j (R)−

∑
djk∈T Q

i
jk(R)−

(
n
i

)
and we can easily verify that this is ≤ 0.

Deformation theory of affine varieties is closely related to the Hodge theory of smooth pro-
jective varieties. We will use the following recent result.

Theorem 3.6.6. Let X = Spec(A) be an affine cone over a projective variety Y . On T q(i)(A)

we have a natural Z grading and if Y is arithmetically Cohen-Macaulay and ωY ∼= OY (m), then

T q(i)(A)m =

{
Hn−i,q

prim (Y ) if i > q

Hn−q−1,i
prim (Y ) if i ≤ q,

where T q(i)(A)m denotes the degree m ∈ Z elements of T q(i)(A) and Hp,q
prim(Y ) is the primitive

cohomology, namely the kernel of the Lefschetz maps

Hp,q(Y )→ Hp+1,q+1(Y ).

Proof. See [25, Corollary 3.4].

We will apply Theorem 3.6.6 to the case of Fano toric varieties, where reflexive polytopes
come into the play.
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Definition 54. A full dimensional lattice polytope P ⊂ MR is called reflexive if 0 ∈ int(P )
and, moreover, its dual

P∨ := {a ∈ NR | 〈a, P 〉 ≥ −1}

is also a lattice polytope. Here the expression 〈a, P 〉means the minimum over the set {〈a, r〉 | r ∈
P}.

Reflexive polytopes lead to interesting toric varieties that are important for mirror symmetry.
There is a one-to-one correspondence between Gorenstein toric Fano varieties and reflexive
polytopes (see [20, Theorem 8.3.4]).
If X is a Gorenstein affine toric variety given by σ = Cone(P ), where P is a reflexive

polytope, then X is an affine cone over a smooth Fano toric variety Y , embedded in some Pn
by the anticanonical line bundle.

Theorem 3.6.7. Let X = Spec(A) be an n-dimensional affine cone over a smooth toric Fano
variety Y (n ≥ 3). Then T 1

(i)(A) = 0 for n ≥ 4 and i = 2, ..., n−2. Moreover, dimk T
1
(n−1)(A) =

N − n and T 1
(k)(A) = 0 for k ≥ n ≥ 3. Furthermore, dimk T

1
(1)(A) = N − 3 for n = 3 and

T 1
(1)(A) = 0 for n > 3.

Proof. It holds that Hp,q(Y ) = 0 for p 6= q (see e.g. [12]) and thus also Hp,q
prim(Y ) = 0. By

Theorem 3.6.6 we have T 1
(i)(A)−1 = 0 for n ≥ 4 and i = 2, ..., n − 2. Following the proof of

Lemma 3.6.5, we see that if R 6= R∗ = (0, 1) we have the following options:

1. there exists aj , such that 〈aj , R〉 ≥ 2, which implies that T 1,−R
(i) (A) = 0 for all i ≥ 1 by

Lemma 3.6.5.

2. HR
≥2 = 0 and HR

1 = {aj ∈ F} for a facet F . There exists s ∈M such that 〈s, aj〉 = 0 for
all aj ∈ F . If T 1,−R

(i) (A) 6= 0 for some i, then dimk T
1,−R+αs
(i) (A) 6= 0 for infinitely many

α ∈ Z. Thus dimk T
1
(i)(A) = ∞, which is a contradiction since T 1

(i)(A) is supported on

the singular locus and A is an isolated singularity. Thus T 1,−R
(i) (A) = 0 for all i ≥ 1.

3. HR
≥2 = HR

1 = 0, which trivially implies that T 1,−R
(i) (A) = 0.

Now we focus in the case i = n − 1. Above we saw that T 1,−R
(n−1)(A) = 0 if R 6= R∗. The

inequality (3.9) is in the case R = R∗, i = n − 1 an equality since no restrictions repeat and
thus we obtain

dimk T
1,−R∗
(n−1) (A) = max

{
0,

N∑
j=1

V n−1
j (R∗)−

∑
djk∈Q(R∗)

Qn−1
jk (R∗)−

(
n

n− 1

)}
.

Since V n−1
j (R∗) =

(
n−1
n−1

)
= 1 and Qn−1

jk (R∗) =
(
n−2
n−1

)
= 0 we obtain T 1,−R∗

(n−1) (A) = N − n. With
the same procedure we immediately see that T 1

(k)(A) = 0 for k ≥ n. Finally we focus on the
case i = 1. With the same computations as above we see that dimk T

1
(1)(A) = 0 if n > 3.

If n = 3, then dimk T
1
(1)(A)−1 = dimk T

1
(1)(A) as above and T 1

(1)(A) = H1,1
prim(Y ) by Theorem

3.6.6. We have dimkH
1,1
prim(Y ) = N − 3 by [20, Theorem 9.4.11] and thus we conclude the

proof.
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Remark 13. From Theorem 3.6.6 and Theorem 3.6.7 it follows that

dimkH
1,1
prim(Y ) = N − n = rk(pic(Y ))− 1.

For i = n− 2 we can generalize Theorem 3.6.7 to the following:

Proposition 3.6.8. Let X = Spec(A) be an n-dimensional Q-Gorenstein variety given by
σ = Cone(P ), where P is a simplicial polytope. Then T 1

(n−2)(A) = 0.

Proof. The only non-clear part is when X is Gorenstein and we consider the degree R = R∗.
From the proof of Proposition 3.6.2 we see that

dimk T
1,−R∗
(n−2) (A) = max

{
0,

N∑
j=1

V n−2
j (R∗)−

∑
djk∈Q(R∗)

Qn−2
jk (R∗)−

(
n

n− 2

)}
,

since no restrictions repeat. Let e denote the number of edges in Q(R∗). Since V n−2
j (R∗) =(

n−1
n−2

)
= n− 1 and Qn−2

jk (R∗) =
(
n−2
n−2

)
= 1, we obtain

dimk T
1
(n−2)(−R

∗) = max{0, N(n− 1)− e− n(n− 1)/2}.

For simplicial polytopes it holds that e ≥ N(n− 1)−n(n− 1)/2 by the lower bound conjecture
proved in [10] and thus dimk T

1
(n−2)(−R

∗) = 0.

Remark 14. For i = 1 we can generalize Theorem 3.6.7 to the following: Q-Gorenstein
toric varieties that are smooth in codimension 2 and Q-factorial (or equivalently simplicial) in
codimension 3 are globally rigid (see [68] or [2] for the affine case).

55



4 Deformation quantization

In Section 4.1 we compute the Gerstenhaber bracket in the toric setting. Poisson structures from
a deformation point of view are analyzed in Section 4.2. We introduce the notion of deformation
quantization of a Poisson structure. In Section 4.3 we present the formality theorem, which
implies that every Poisson structure on a smooth affine variety can be quantized. The formality
theorem can not be generalized to singular affine varieties (see Example 10). On the other hand
we manage to prove that every Poisson structure on a possibly singular affine toric variety can
be quantized (see Theorem 4.4.4 in Section 4.4), which is the main result of this chapter.
For basic theory of Poisson structures we refer the reader to [41]. For motivation and known

results about quantizing (singular) affine Poisson varieties we refer to [30] and [63]. In [63] it
is considered the quantization problem for the nilpotent cone (the nilpotent cone Nilg ⊂ g∗

is the set of elements φ ∈ g∗ such that for some x ∈ g we have ad(x)φ = φ). In the special
case when g = sl2 we obtain that Nilg is a Gorenstein toric surface. Using deformation of
Calabi-Yau algebras Etingof and Ginzburg [24] analyze quantization of affine surfaces in C3

and quantization of del Pezzo surfaces. For quantization of singular projective varieties see
results of Palamodov [56], [57] and [58].

4.1 The Gerstenhaber bracket for toric varieties

Recall the orthogonal idempotents e1 := e3(1), e2 := e3(2) and e3 := e3(3) of the group ring
Q[S3] from the Subsection 2.3.2.

Lemma 4.1.1. It holds that

e1(a, b, c) =
1

6

(
2(a, b, c)− 2(c, b, a) + (a, c, b)− (b, c, a) + (b, a, c)− (c, a, b)

)
,

e2(a, b, c) =
1

2

(
(a, b, c) + (c, b, a)

)
,

e3(a, b, c) =
1

6

(
(a, b, c)− (c, b, a)− (a, c, b) + (b, c, a)− (b, a, c) + (c, a, b)

)
.

Proof. Elementary computations (see also [56]).

If A = k[σ∨ ∩M ] = k[Λ], we can use the grading of M to rewrite the Gerstenhaber bracket.
Very important will be the formula of the Gerstenhaber bracket [f, g] for f ∈ C2,−R(A) and
g ∈ C2,−S(A). We can write (similarly as in the proof of Lemma 3.2.1) [f, g] ∈ C3,−R−S(A) as:

[f, g](xλ1 ⊗ xλ2 ⊗ xλ3) = f(g(xλ1 ⊗ xλ2)⊗ xλ3)− f(xλ1 ⊗ g(xλ2 ⊗ xλ3))+

+ g(f(xλ1 ⊗ xλ2)⊗ xλ3)− g(xλ1 ⊗ f(xλ2 ⊗ xλ3))

=
(
f0(−S + λ1 + λ2, λ3)g0(λ1, λ2)− f0(λ1,−S + λ2 + λ3)g0(λ2, λ3)+

+ g0(−R+ λ1 + λ2, λ3)f0(λ1, λ2)− g0(λ1,−R+ λ2 + λ3)f0(λ2, λ3)
)
xλ−R−S ,

56



where λ = λ1 + λ2 + λ3.
In general we have the following.

Lemma 4.1.2. Let A = k[Λ], f(xλ1 , ..., xλm) =
∑p

i=0 fi(λ1, ..., λm)x−Ri+λ1+···+λm ∈ Cm(A)
and g(xλ1 , ..., xλn) =

∑r
j=0 gj(λ1, ..., λn)x−Sj+λ1+···λn ∈ Cn(A), where

fi ∈ Cm(Λ,Λ \ (Ri + Λ); k),

for i = 0, .., p and gj ∈ Cn(Λ,Λ \ (Sj + Λ); k) for j = 0, ..., r. Then

[f, g](xλ1 , ..., xλm+n−1) =
∑
i,j

[fi, gj ]x
−Ri−Sj+λ1+···λm+n−1 ,

where

[fi, gj ] := fi ◦ gj − (−1)(m+1)(n+1)gj ◦ fi ∈ Cm+n−1(Λ,Λ \ (Ri + Sj + Λ); k),

where fi ◦ gj(λ1, ..., λm+n−1) :=

m∑
u=1

(−1)(u−1)(n+1) ·fi(λ1, ..., λu−1,−Sj +λu+ · · ·+λu+n−1, λu+n, ..., λm+n−1)gj(λu, ..., λu+n−1).

Proof. It follows from the isomorphism in Lemma 3.2.1.

For defining and deforming Poisson structures in the next section, the following computations
will be useful.

Lemma 4.1.3. If p, q ∈ C2
(2)(A), we have

[p, q] = p(q(a, b), c)− p(a, q(b, c)) + q(p(a, b), c)− q(a, p(b, c)).

Projecting give us:

e1[p, q] =
2

3
p(q(a, c), b)− 1

3
p(a, q(b, c)) +

1

3
p(q(a, b), c)+

+
2

3
q(p(a, c), b)− 1

3
q(a, p(b, c)) +

1

3
q(p(a, b), c),

e2[p, q] = 0,

e3[p, q] =
2

3

(
p(q(a, b), c) + p(q(b, c), a) + p(q(c, a), b)+

+ q(p(a, b), c) + q(p(b, c), a) + q(p(c, a), b)
)
.

If we have p, q ∈ C2
(1)(A), then [p, q] = e1[p, q]. If we have p ∈ C2

(1)(A) and q ∈ C2
(2)(A), then

[p, q] = e2[p, q].
In particular, when p = q we have

[p, p] = 2
(
p(p(a, b), c)− p(a, p(b, c))

)
,

with

e1[p, p] = 2
(2

3
p(p(a, c), b)− 1

3
p(a, p(b, c)) +

1

3
p(p(a, b), c)

)
e2[p, p] = 0 (4.1)

e3[p, p] =
4

3

(
p(p(a, b), c) + p(p(b, c), a) + p(p(c, a), b)

)
. (4.2)

Proof. Everything is straightforward and easy computation; see also [56].
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4.2 Poisson structures

Definition 55. A Poisson algebra is a k-vector space A equipped with two mulltiplications
(F,G) 7→ F ·G and (F,G) 7→ {F,G}, such that

• (A, ·) is a commutative associative algebra over k, with unit 1,

• (A, {·, ·}) is a Lie algebra over k,

• the two multiplications are compatible in the sense that

{a · b, c} = a · {b, c}+ b · {a, c}, (4.3)

where a, b and c are arbitrary elements of A.

The Lie bracket {·, ·} is then called the Poisson bracket (or the Poisson structure).

Definition 56. Let X = Spec(A) be an affine variety and suppose that A is equipped with a
Lie bracket {·, ·} : A× A→ A, which makes A into a Poisson algebra. Then we say that X is
an affine Poisson variety, or simply a Poisson variety.

Definition 57. Let (X1, {·, ·}) and (X2, {·, ·}2) be two Poisson varieties. A morphism of
varieties ψ : X1 → X2 is called a Poisson morphism or a Poisson map if the dual morphism
ψ∗ : O(X2)→ O(X1) is a morphism of Poisson algebras.

Proposition 4.2.1. Let A be a coordinate ring of a variety (not necessarily smooth). An
element p ∈ C2

(2)(A) such that dp = 0 (i.e. p ∈ H2
(2)(A) ∼= HomA(Ω2

A|k, A)) and e3([p, p]) = 0 ∈
C3

(3)(A) determines the Poisson structure and every Poisson structure on A is obtained in this
way.

Proof. Condition dp = 0 gives us all properties of a Poisson algebra except the Jacobi identity of
(A, {·, ·}). We now use computations from the previous section saying that e3([p, p]) = 0 if and
only if p(p(a, b), c)+p(p(b, c), a)+p(p(c, a), b) = 0 (see (4.2)), which gives us the Jacobi identity.
We can also easily see that all Poisson structures come in this way since HomA(Ω2

A|k, A) is the
space of skew-symmetric biderivations.

Lemma 4.2.2. If A is smooth (or more generally when Har3(A) = 0), then the condition
e3([p, p]) = 0 is equivalent to the condition [p, p] = 0 ∈ H3(A).

Proof. We have e2([p, p]) = 0 (see (4.1)) and e1([p, p]) = 0 ∈ T 2
(1)(A) because T 2

(1)(A) ∼=
Har3(A) = 0.

Proposition 4.2.3. Every Poisson structure p on an affine toric variety Spec(k[Λ]) is of the
form

p(xλ1 , xλ2) =
d∑
i=0

fi(λ1, λ2)xRi+λ1+λ2 , (4.4)

where fi ∈ C̄2
(2)(Λ,Λ\(−Ri+Λ); k), Ri ∈M . We call fi(λ1, λ2)xRi+λ1+λ2 the Poisson structure

of degree Ri and we call p the Poisson structure of index (R0, ..., Rd).
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Proof. A Poisson structure p is an element of H2
(2)(k[Λ]; k) such that e3[p, p] = 0. From Propo-

sitions 3.2.2 and 3.4.1 we know that

Hn,R
(n) (k[Λ]) = Hn

(n)(Λ,Λ \ (−R+ Λ); k) ∼= C̄n(n)(Λ,Λ \ (−R+ Λ); k).

Thus p is of the form (4.4), and e3[p, p] = 0 gives us additional restrictions on fi, i = 0, .., d.

Example 9. For every hypersurface given by a polynomial g(x, y, z) in A3, we can define a
Poisson structure πg on the quotient k[x, y, z]/g, namely:

πg := ∂x(g)∂y ∧ ∂z + ∂y(g)∂z ∧ ∂x + ∂z(g)∂x ∧ ∂y,

i.e., we contract the differential 1-form dg to ∂x ∧ ∂y ∧ ∂z. Consider the toric surface An
given by g(x, y, z) = xy − zn+1. We would like to express πg in the form (4.4). We see that
πg(x, y) = −(n+ 1)zn, πg(z, x) = x and πg(y, z) = y hold.
In this case Λ is generated by S1 := [0, 1], S2 := [1, 1] and S3 := [n + 1, n], with a relation

S1 + S3 = (n + 1)S2. We would like to find f of the form (4.4), such that f = πg. With a
simple computation we see that f will be of degree S2:

f(xλ1 , xλ2) = f0(λ1, λ2)x−S2+λ1+λ2 ,

where f0(S1, S3) = −(n + 1). The function f0 is with this completely determined by skew-
symmetry and bi-additivity.

Recall from Definition 44 that a one-parameter formal deformation of A is an associative
algebra (A[[}]], ∗), such that

a ∗ b = ab (mod}).

Definition 58. We say that a Poisson structure p ∈ H2
(2)(A) can be quantized if there exist

γ2, γ3,... in C2(A), such that

a ∗ b := ab+
1

2
p(a⊗ b)} + γ2(a⊗ b)}2 + γ3(a⊗ b)}3 + · · ·

is a one-parameter formal deformation.

Remark 15. By Lemma 4.2.2 we know that when X = Spec(A) is smooth, a Poisson structure
p on X can be extended to a second order deformation (i.e. γ2 always exists (mod }3)). In the
next section we will present the formality theorem, which implies that we can actually deform p
to any order, i.e., p can be quantized. In general (when X is singular) there exist obstructions
to the existence of a quantization (see Schelder [63, Remark 2.3.14] or Mathieu [47]).

Proposition 4.2.4. One-parameter formal deformations (A[[}]], ∗) of an associative algebra A
are in bijection with Maurer-Cartan elements of a dgla g :=

(
}C•(A)[1]

)
[[}]].

Proof. Let γ :=
∑

m≥1 }mγm ∈ g1. Here γm ∈ C2(A) for all m, since g is shifted. To γ ∈ g
we associate the star product f ∗ g = fg +

∑
m≥1 }mγm(f ⊗ g). We need to show that ∗ is

associative if and only if γ satisfies the Maurer-Cartan equation. This follows from a direct
computation (see Schedler [63, Remark 4.3.2] for a more conceptual explanation):
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f ∗ (g ∗ h)− (f ∗ g) ∗ h =∑
m≥1

}m ·
(
fγm(g ⊗ h)− γm(fg ⊗ h) + γm(f ⊗ gh)− γm(f ⊗ g)h

)
+

+
∑
m,n≥1

}m+n
(
γm(f ⊗ γn(g ⊗ h))− γm(γn(f ⊗ g)⊗ h)

)
=

= −dgγ − γ ◦ γ = −
(
dγ +

1

2
[γ, γ]

)
,

where we denote by dg the differential of g (see Lemma 2.3.2).

Thus we see that we can quantize p = γ1 if and only if there exist γ2, γ3,... solving the
equation

dgγ +
1

2
[γ, γ] = 0,

where γ =
∑

m≥1 }mγm.
We need to solve the following system of equations:

0 = dgγ1

0 = dgγ2 +
1

2
[γ1, γ1]

0 = dgγ3 + [γ1, γ2]

...

0 = dgγn +
1

2

n−1∑
i=1

[γi, γn−i]

...

In general it is very hard to compute this equations and also the process may never end.
Next section describes an alternative way to solve this equations using the formality theorem.

4.3 The formality theorem

In this section we show that there exists a quasi-isomorphism between the Hochschild complex
and its cohomology complex (with zero differentials), called the Hochschild-Kostant-Rosenberg
(HKR) morphism. However this does not extend to a dgla morphism on shifted complexes,
since it does not preserve the Lie bracket. The idea of Kontsevich was to correct this and show
that the HKR morphism actually extends to an L∞-morphism, which we now define.

Let g = ⊕l∈Ngl be a graded Lie algebra. For x ∈ gl we write |x| = l. Let ḡ be a vector
space g with the grading d0 defined by d0(x) = |x| − 1. The symmetric algebra that plays an
important role in what follows is the graded commutative algebra S•ḡ. On S•ḡ we consider the
following grading:

d0(x1 · · ·xl) :=

l∑
i=1

|xi| − l =

l∑
i=1

d0(xi).
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Let g = ⊕l∈Zgl and h = ⊕l∈Zhl be two differential graded Lie algebras. We will be mainly
interested in graded linear maps Φ : S•(g[1]) → h[1] of degree 0. For n ∈ N we denote by Φn

the restriction of Φ to Sn(g[1]). The fact that Φ is graded of degree 0 means that Φn maps
gk1 · · · gkn to hk1+···+kn+1−n for all k1, ..., kn ∈ Z (the restriction of Φn to gk1 ...gkn we denote
by Φ(k1,...,kn)). In particular, Φ(1,...,1) maps g1 · · · g1 to h1. This fact will be useful when we will
consider solutions of the Maurer-Cartan equations associated to g and h.

Definition 59. If there exists a map Φ : S•(g[1])→ h[1] we call such a map pre-L∞-morphism
(see also [40, pp. 14-15]).

Definition 60. Using the natural isomorphism Sn(g[1]) ∼= (∧n(g))[n] we say that a pre-L∞-
morphism F is an L∞-morphism if and only if it satisfies the following equation for any n =
1, 2, ... and homogenous elements γi ∈ g :

dΦn(γ1 ∧ · · · ∧ γn)−
n∑
i=1

±Φn(γ1 ∧ · · · ∧ dγi ∧ · · · ∧ γn) =

1

2

∑
k,l≥1,k+l=n

1

k!l!

∑
σ∈Sn

±[Φk(γσ(1) ∧ · · · ∧ γσ(k)),Φl(γσ(k+1) ∧ · · · ∧ γσ(n))]

+
∑
i<j

±Φn−1([γi, γj ] ∧ γ1 ∧ · · · ∧ γ̂i ∧ · · · ∧ γ̂j ∧ · · · ∧ γn).

Here are first two equations in the explicit form:

dΦ1(γ1) = Φ1(dγ1),

dΦ2(γ1 ∧ γ2)− Φ2(dγ1 ∧ γ2)− (−1)γ1Φ2(γ1 ∧ dγ2) = Φ1([γ1, γ2])− [Φ1(γ1),Φ1(γ2)].

Definition 61. Let g and h be two differential graded Lie algebras and let Φ : S•g[1] → h[1]
be an L∞-morphism. Then Φ is called an L∞-quasi-isomorphism if the morphism Φ•1 : H•g→
H•h, induced by the restriction Φ1 : g→ h of Φ to g, is an isomorphism.

Definition 62. A pointed differential graded Lie algebra g is a dgla, with the differential given
by dz(y) := [z, y], for some z ∈ g with the property [z, z] = 0. The graded Jacobi identity
implies dz ◦ dz = 0 (see [41, pp. 373]).

We can naturally extend Φ to S•g[1][[}]] and thus we get a map Ω̃Φ : }g[[}]]→ }h[[}]] defined
by:

Ω̃Φ(x) :=
∑
k∈N

1

k!
Φk(x

k).

Proposition 4.3.1. Let g and h be two pointed differential graded Lie algebras. Let Φ :
S•g[1] → h[1] be an L∞-morphism and let x be an MC element of }g[1][[}]]. Then Ω̃Φ(x)
is an MC element of }h[1][[}]].

Proof. See [41, Proposition 13.41(1)].

Definition 63. A dgla g is formal if there exists a pair of L∞-quasi-isomorphisms of differential
graded Lie algebras

g← f→ h

with h having trivial differentials.
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Now we present the formality theorem (see [40], [22]):

Theorem 4.3.2. Let X = Spec(A) be a smooth affine variety. There exists an L∞-quasi-
isomorphism between the Hochschild dgla C•(A)[1] and the dgla H•(A)[1] (i.e. the cohomology
complex H•(A)[1] is a graded Lie algebra with trivial differential). In particular, the Hochschild
dgla C•(A)[1] is formal.

Proof. We only sketch an idea of the proof. The map HKRn : ∧nA Derk(A,A)→ Cn(A) defined
by

HKRn(ξ1 ∧ · · · ∧ ξn)(a1 ⊗ · · · ⊗ an) :=
1

m!

∑
σ∈Sn

sgn(σ)ξσ(1)(a1) · · · ξσ(n)(an), (4.5)

gives an isomorphism of A-modules ∧nA Derk(A,A) and Hn
(n)(A) (see Loday [43]). We have

Hn(A) ∼= HomA(Ωn
A|k, A) ∼= Hn

(n)(A)

and by (4.5) they are also isomorphic to ∧nA Derk(A,A). There exists a quasi-isomorphism of
complexes H•(A) and C•(A) also called the Hochschild-Kostant-Rosenberg quasi-isomorphism:
HKR : H•(A)→ C•(A) is given by

HKR(ξ1 ∧ · · · ∧ ξn)(a1 ⊗ · · · ⊗ an) := HKRn(ξ1 ∧ · · · ∧ ξn)(a1 ⊗ · · · ⊗ an).

As already mentioned in the introduction, HKR morphism does not extend to a dgla mor-
phism on shifted complexes C•(A)[1] and H•(A)[1], since it does not preserve the Lie bracket.
Kontsevich [40] manage to construct an explicit sequence of linear maps Φn : Sn(H•(A)[1])→
C•(A)[1], where Φ1 is the map HKR and other Φn satisfy conditions of an L∞-morphism (see
also [22] for a more general proof). Since Φ1 is a quasi-isomorphism, we obtain an L∞-quasi-
isomorphism of differential graded Lie algebras by Definition 61.

Corollary 4.3.3. Every Poisson structure π on a smooth affine variety Spec(A) can be quan-
tized.

Proof. A Poisson structure π is trivially an MC element of H•(A)[1]. By Theorem 4.3.2 there
exists an L∞-quasi-isomorphism Φ between C•(A)[1] and H•(A)[1], with Φ1 = φ, where we
denote the HKR morphism by φ. H•(A)[1] is trivially pointed dgla and C•(A)[1] is pointed
dgla by the proof of Lemma 2.3.2. Thus by Proposition 4.3.1 we know that Ω̃Φ(π) is an
MC element of }C•(A)[1][[}]]. From Proposition 4.2.4 we know that we have a star product
a ∗ b = ab+ Φ1(π) + · · · = ab+ π

2 + · · · by definition of φ: Φ1(π) = φ(π) = π
2 . Thus π can be

quantized by Definition 58.

Remark 16. Since for singular varieties in general we have Hn
(i)(A) 6= 0 for i 6= n we see that

the HKR quasi-isomorphism can not be generalized to singular varieties. And thus also the
formality theorem and Corollary 4.3.3 can not be generalized to singular varieties.

Recall now the functors MCg and Defg of a dgla g from Subsection 2.2.2.

Theorem 4.3.4. If f : g → h is an L∞-quasi-isomorphism, then the induced maps MCg →
MCh and Defg → Defh are isomorphisms.

Proof. See Manetti [45, Chapter IX].
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Example 10. If g is formal with dimkH
1(g) = n <∞, then by Theorem 4.3.4 the local ring of

the solution space of the MC equation for g (see Example 1) is isomorphic to k[[t1, ..., tn]]/(g),
where g is generated by quadratic equations. Let Xσ = Spec(A) be an isolated toric singularity,
such that its versal base space can not be generated only by linear and quadratic equations (for
example if σ = Cone(P ), where P is an octagon or more generally when P is "thick" enough;
see [4] for more details). We know that the deformation functor of the Harrison dgla C•(1)(A)[1]
is isomorphic to the functor DefXσ by Corollary 2.3.20 and Proposition 2.3.21. Moreover, by
Theorem 2.1.2 we know that H1(C•(1)(A)[1]) <∞. As a corollary we obtain that in these cases
the Harrison dgla C•(1)(A)[1] is not formal and thus also the Hochschild dgla C•(A)[1] is not
formal. On the other hand we will show in the next section that Corollary 4.3.3 is still satisfied
for singular toric varieties.

4.4 Deformation quantization of affine toric varieties

In this section we prove that every Poisson structure on an affine toric variety can be quantized.
We will use the Maurer-Cartan formalism, Kontsevich’s formality theorem (or more precisely its
Corollary 4.3.3) and the GIT quotient construction for an affine toric variety Spec(A) without
torus factors: we can write Spec(A) = AN//G for some group G. This construction works over
an algebraically closed field k of characteristic 0. Our proof works also in the case of affine toric
varieties with torus factors.
Let X be a toric variety without torus factors, i.e., given by a full-dimensional cone σ =
〈a1, ..., aN 〉 ⊂ NR. We recall now the construction that presents X as a GIT quotient AN//G,
where G is a group (see e.g. [20, Chapter 5]). We have a short exact sequence

0→M
g−→ Zσ(1) → Cl(X)→ 0,

where Cl(X) is the class group of X, σ(1) = N the number of ray generators and for R ∈ M
we have the injective map g(R) = 〈R, a1〉e1 + · · ·+ 〈R, aN 〉eN , where {ei | i = 1, ..., N} is the
standard basis for ZN . We have X = AN//G, where G = HomZ(Cl(X), k∗); here we need the
assumption that k is also algebraically closed. Moreover, the class group is of the form

Cl(X) ∼= Z× Z× · · ·Z× Zp1 × Zp2 × · · ·Zpk

and thus our group G is of the form

G ∼= k∗ × · · · × k∗ ×Gp1 ×Gp2 × · · ·Gpk ,

where Gpi are groups of pi-th roots of unity.
The map g induces a semi-group isomorphism between Λ ⊂ M and its image ΛG := g(Λ).

This map determines the isomorphism of k-algebras G′ : k[Λ]→ k[x1, ..., xN ]G, with G′(xR) =

xg(R) := x
〈R,a1〉
1 · · ·x〈R,aN 〉N . Elements that lie in ΛG are G-invariant elements. Thus we have

X = Spec(k[x1, ..., xN ])//G = Spec(k[x1, ..., xN ]G).

Example 11. Let σ = 〈(1, 0), (−(n− 1), n)〉, σ∨ = 〈(0, 1), (n− 1, n)〉. The map g : M ∼= Z2 →
Z2 is given by g(λ1, λ2) = λ1e1 +(nλ2− (n−1)λ1)e2. We see that the degrees of the generators
of the ring of invariants are g(0, 1) = (0, n), g(1, 1) = (1, 1) and g(n, n− 1) = (n, 0). Thus the
ring of invariants is k[xn, xy, yn].
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Proposition 4.4.1. For λ,R ∈M it holds that

λ ∈ ∪j∈IKR
aj if and only if g(λ) ∈ ∪j∈IKg(R)

ej ,

where I = {1, ..., N} and Kg(R)
ej are the convex sets (3.2) of the cone 〈e1, ..., eN 〉 ⊂ RN .

Proof. By the definition of g we know that 〈g(λ), ej〉 = 〈λ, aj〉 and 〈g(R), ej〉 = 〈R, aj〉. For
g(λ) ∈ ∪jKg(R)

ej there exists j such that 〈g(λ), ej〉 < 〈g(R), ej〉 which means that there exists j
such that 〈λ, aj〉 < 〈R, aj〉, which is equivalent to λ ∈ ∪jKR

aj .

Every affine toric variety can be decomposed into the product of a torus and a toric variety
without torus factors. Let A = k[σ∨ ∩M ] and X = Spec(A) be a toric variety without torus
factors. Let Tk = Spec(k[Zk]) and Ak = k[Λ × Zk] (A0

∼= A). We denote Xk = Spec(Ak) =
X × Tk. Let Yk = AN × Tk = Spec(Bk), where Bk = k[NN0 × Zk] and N0 is the set of
natural numbers with 0. We define the lattices M̃ := M × Zk, Ñ := N × Zk and the map
g′ : Λ× Zk → NN0 × Zk with

g′(λ, µ) = (g(λ), µ).

We now briefly recall basic definitions and propositions from Poisson geometry.

Definition 64. Let V2 be a subvariety of an affine Poisson variety (V1, {·, ·}) and let p : V2 → P
be a surjetive map, where P is also an affine variety. We say that the triple (V1, V2, P ) :

V1

V2

P

............................................
....
............

................
............................................................ ........

....

p

is Poisson reducible if there exists a Poisson structure {·, ·}P on P , such that for every x ∈ V2,

{F,G}P (p(x)) = {F̄ , Ḡ}(x),

for all F,G ∈ O(P ) and for all extensions F̄ , Ḡ of F ◦ p and G ◦ p. If V1 = V2, then the Poisson
structure {·, ·}P is called a reduced Poisson structure of the Poisson structure {·, ·}.

The next propositions are important for proving that every Poisson structure on an affine
toric variety can be quantized.

Proposition 4.4.2. Every Poisson structure p on Xk can be seen as a reduced Poisson structure
of some Poisson structure P on Yk.

Proof. From Proposition 4.2.3 we know that every Poisson structure on Xk is of the form

p(xλ1 , xλ2) =

d∑
i=0

fi(λ1, λ2)xRi+λ1+λ2 ,

where fi ∈ C̄2
(2)(Λ× Zk, (Λ× Zk) \ (−Ri + (Λ× Zk)); k), Ri ∈ M̃ .

We now construct a Poisson structure P on a smooth affine variety Yk:

P (xλ, xµ) =
d∑
i=0

Fi(λ, µ)xg
′(Ri)+λ+µ,
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where Fi has the property that Fi(g′(λ1), g′(λ2)) = fi(λ1, λ2), for each i.
STEP 1: Functions Fi with the above property exist for each i:

We choose k+n linearly independent vectors s1, ..., sk+n ∈ Λ×Zk such that s1, ..., sk ∈ 0×Zk
and sk+1, ..., sk+n ∈ Λ× 0. Note also that fi are completely determined by the values fi(sj , sl),
for 1 ≤ j < l ≤ k + n by Remark 9. Since g′ is injective we can choose Fi ∈ C̄2

(2)(N
N
0 × Zk; k),

such that Fi(g′(sj), g′(sl)) = fi(sj , sl), for 1 ≤ j < l ≤ k + n.
Let t1, ..., tN−n ∈ NN0 be chosen such that sk+1, ..., sk+n, t1, ..., tN−n determine an R-basis

of RN . We choose Fi such that Fi(tj , tl) = 0 for 1 ≤ j, l ≤ N − n and Fi(sj , tl) = 0 for
j = 1, ..., k + n and l = 1, ..., N − n (this will be important to prove the Jacobi identity for P
in Step 3). We easily see that Fi(g′(λ1), g′(λ2)) = fi(λ1, λ2) holds.
STEP 2: P is well defined:

For P (xλ1 , xλ2) to be well defined, it must hold for each i that Fi(λ, µ) = 0 for g′(R) + λ +
µ 6≥ 0. We need to check that this agrees with the property Fi(g

′(λ1), g′(λ2)) = fi(λ1, λ2):
without loss of generality we assume that λ1, λ2 ∈ Λ × 0. We have Fi(g(λ1), g(λ2)) = 0 for
g(R) + g(λ1) + g(λ2) 6≥ 0 or equivalently for g(λ1 + λ2) ∈ NN0 \ NN0 (−g(R)) = ∪j∈IK−g(R)

ej ,
where I = {1, ..., N}. By Proposition 4.4.1 this is equivalent to λ1 + λ2 ∈ ∪j∈IK−Raj and we
indeed have fi(λ1, λ2) = 0 for R+ λ1 + λ2 6≥ 0.
STEP 3: P satisfies the Jacobi identity:

We have e3(3)([p, p])(xλ1 , xλ2 , xλ3) = 0, since p is a Poisson structure. Using Lemma 4.1.2 and
the equalities Fi(g′(λ1), g′(λ2)) = fi(λ1, λ2) from Step 1, we see that

e3(3)([P, P ])(xg
′(λ1), xg

′(λ2), xg
′(λ3)) = 0.

Since e3(3)[P, P ] ∈ H3
(3)(Yk) we can use Proposition 3.4.1 and thus from the construction of Fi

in Step 1 (Fi(tj , tl) = 0 and Fi(sj , tl) = 0) we immediately see that e3(3)[P, P ] = 0. Thus the
Jacobi identity is satisfied.

Let g denote the differential graded Lie algebra
(
}C•(Ak)[1]

)
[[}]] and let h denote the differ-

ential graded Lie algebra
(
}C•(Bk)[1]

)
[[}]].

Proposition 4.4.3. Let γ(xλ1 , xλ2) :=
∑

m≥1 }mγm(xλ1 , xλ2) ∈ h1 be an MC element of the
dgla h, where γ1 is a Poisson structure on Yk of index (g′(R0), ..., g′(Rd)). Then γ induces an
MC element γ̃(xλ1 , xλ2) :=

∑
m≥1 }mγ̃m(xλ1 , xλ2) ∈ g1 of the dgla g, where γ̃1 is a reduced

Poisson structure (on Xk) of the Poisson structure γ1 and it has index (R0, ..., Rd).

Proof. We prove it only for d = 0 and k = 0 (i.e. for γ1 of degree R0 on a toric variety X = X0

without torus factors). The rest follows immediately, just the notation is more tedious.
We know that γm(xλ1 , xλ2) = γ0m(λ1, λ2)xmg(R)+λ1+λ2 , where

γ0m ∈ C2(NN0 ,NN0 \ NN0 (−mg(R)); k).

We define γ̃0m(λ, µ) := γ0m(g(λ), g(µ)) and γ̃ :=
∑

m≥1 }mγ̃m(xλ, xµ), where

γ̃m(xλ, xµ) = γ̃0m(λ, µ)xmR+λ+µ.

We first need to check that γ̃(xλ, xµ) =
∑

m≥1 }mγ̃m(xλ, xµ) is well defined, i.e., if mR+λ+
µ 6≥ 0, then γ0m(g(λ), g(µ)) = 0. This can be done as in Step 2 of Proposition 4.4.2.
Looking only at G-invariant elements (i.e. λ = g(λ′) and µ = g(µ′) for some λ′, µ′ ∈ Λ) in the

MC equation for γ and using Lemma 4.1.2, we see that the MC equation also holds for γ̃.
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Theorem 4.4.4. Every Poisson structure p on an affine toric variety can be quantized.

Proof. As above let Xk denote an arbitrary affine toric variety. By Proposition 4.2.3, p is of
the form p(xλ1 , xλ2) =

∑d
i=0 fi(λ1, λ2)xRi+λ1+λ2 for some Ri ∈ Λ×Zk. By the construction in

the proof of Proposition 4.4.2 this Poisson structure can be seen as a reduced Poisson structure
of P on Yk:

P (xλ, xµ) =
d∑
i=0

Fi(λ, µ)xg
′(Ri)+λ+µ,

where the functions Fi have the property that Fi(g′(λ1), g′(λ2)) = fi(λ1, λ2). Since P is a
Poisson structure on the smooth affine variety Yk, we know by Corollary 4.3.3 that P can be
quantized. In other words, there exists a one-parameter formal deformation and by Lemma 4.2.4
we know that this corresponds to an MC element γ(xλ1 , xλ2) :=

∑
m≥1 }mγm(xλ1 , xλ2) ∈ h1,

where γ1 is of index (g′(R0), ..., g′(Rd)). By Proposition 4.4.3 we know that this give us an MC
element

γ̃(xλ1 , xλ2) :=
∑
m≥1

}mγ̃m(xλ1 , xλ2) ∈ g1,

where γ̃1 is a reduced Poisson structure on Xk of the Poisson structure γ1 and it has index
(R0, ..., Rd). By the construction we have γ̃1 = p. Using again Lemma 4.2.4 we see that p can
be quantized.
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5 Commutative deformations of toric
varieties

In Section 5.1 we give a convex geometric description of the Harrison cup product formula
T 1

(1)(A) × T 1
(1)(A) → T 2

(1)(A). We show that our cup product formula in the case of three-
dimensional isolated Gorenstein toric varieties recovers Altmann’s cup product formula obtained
in [3]. This is done in Section 5.2. In Section 5.3 we analyze the cup product formula between
non-negative degrees. In Section 5.4 we conjecture a set of equations defining the versal base
space in degree −R∗ for not necessarily isolated Gorenstein singularities. In Section 5.5 we
extend our cup product formula to a differential graded Lie algebra structure on Altmann’s
deformation complex.

5.1 The Harrison cup product formula for toric varieties

In this section we give a formula for the cup product of toric varieties, extending Altmann’s
cup product formula for toric varieties that are smooth in codimension 2 (see [3]). Note that
Altmann obtained the cup product formula with different methods (using Laudal’s cup prod-
uct).

Definition 65. The Lie bracket [ , ] of the Harrison dgla induces a product T 1
(1)(A)×T 1

(1)(A)→
T 2

(1)(A) that we call the (Harrison) cup product.

We denote Tn(A) := Tn(1)(A) for n ≥ 0. We now recall some results obtained by Sletsjøe in
[65]. For R ∈M we have an exact sequence of complexes:

0→ C•(1)(Λ,Λ \ (R+ Λ); k)→ C•(1)(Λ; k)→ C•(1)(Λ \ (R+ Λ); k)→ 0.

Note that Hk
(1)(Λ; k) = 0 for k ≥ 2 by Proposition 3.3.4. Thus we can write the corresponding

long exact sequence in cohomology and we get the following.

Corollary 5.1.1. The sequence

0→ H1
(1)(Λ,Λ \ (R+ Λ); k)→ H1

(1)(Λ; k)→ H1
(1)(Λ \ (R+ Λ); k)

d−→ H2
(1)(Λ,Λ \ (R+ Λ); k)→ 0

is exact and
Hn

(1)(Λ \ (R+ Λ); k) ∼= Hn+1
(1) (Λ,Λ \ (R+ Λ); k)

for n ≥ 2. These isomorphisms are induced by the map d.

Remark 17. Here with the map d we mean that we first extend a function from Λ \ (R + Λ)
to the whole of Λ by 0 and then we apply our differential d. Both maps we will denote by d
and the meaning will be clear from the context.
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Let σ = 〈a1, ..., aN 〉 and Λ(R) := Λ+R forR ∈M . Let ξ be an element fromH1
(1)(Λ\Λ(R); k).

We extend (not additively) ξ to the whole of Λ by 0 (i.e. ξ(λ) = 0 for λ ∈ Λ(R)). This extended
function we denote by ξ0. We have T 1,−R(A) ∼= H2

(1)(Λ,Λ \ (R + Λ); k) by Proposition 3.2.2
and the surjective map

H1
(1)(Λ \ (R+ Λ); k)

d−→ H2
(1)(Λ,Λ \ (R+ Λ); k)

by Corollary 5.1.1. Thus we see that every element of T 1(−R) can be written as dξ0 for some
ξ ∈ H1

(1)(Λ \ Λ(R); k).

Proposition 5.1.2. Let R,S ∈ M and let ξ and µ be elements from H1
(1)(Λ \ Λ(R); k) and

H1
(1)(Λ \ Λ(S); k), respectively. It holds that

[dξ0, dµ0] = dC,

where
C(λ1, λ2) := (5.1)

ξ0(λ1)µ0(λ2) + ξ0(λ2)µ0(λ1)− dξ0(λ1, λ2)µ0(−R+ λ1 + λ2)− dµ0(λ1, λ2)ξ0(−S + λ1 + λ2).

Proof. See [65, Theorem 4.8].

Sletsjøe [65] claimed that Proposition 5.1.2 gives us a nice cup product formula, but unfor-
tunately there is a mistake at the end of the paper: in [65] it was written that only the first
two terms of C(λ1, λ2) matter for the computations of the cup product formula and that the
other two vanish with d. This is not correct since dξ0 6∈ C2

(1)(Λ,Λ \ Λ(R + S); k), which was
wrongly assumed (see [65, pp. 128]). We only have dξ0 ∈ C2

(1)(Λ,Λ \ Λ(R); k).
Thus we need to consider C(λ1, λ2) with all 4 terms and we will try to simplify this using

the double complex C•(1)(K
R
• ; k) (see Figure 3.1 for i = 1). On KR+S

aj (j = 1, ..., N) we define
the function

hj(λ) := −(ξj · µj)(λ) + ξj(−S + λ)µj(λ) + µj(−R+ λ)ξj(λ),

where ξj is an additive extension (not necessarily unique) of ξ from KR
aj to the whole of lattice

M (note that it is possible to extend ξ by Remark 9 since the rays aj are smooth cones). If
〈aj , R〉 = 1 holds, then we can extend it to M ∩ a⊥j and consequently to the whole of M (not
uniquely). Similarly we define µj .
As we will see there is a close connection between dhj and C(λ1, λ2). For λ ∈ Λ we define

ξ0
j (λ) :=


ξ(λ) if λ ∈ KR

aj

ξj(λ) if λ ∈ KR+S
aj ∩

(
∪k;k 6=j K

R
ak

)
0 otherwise

and similarly we define µ0
j . Note that ξ(λ) = ξj(λ) for λ ∈ KR

aj . Note also that on KR+S
aj the

functions ξ0
j (λ) and ξ0(λ) are in general different for λ ∈ KR+S

aj ∩
(
∪k;k 6=j K

R
ak

)
. The following

proposition gives us a nice interpretation of the cup product.

Proposition 5.1.3. On KR+S
aj (i.e. for (λ1, λ2) ∈ Λ × Λ such that λ1 + λ2 ∈ KR+S

aj ) it holds
that

d(hj)(λ1, λ2) = C0(λ1, λ2) := (5.2)

ξ0
j (λ1)µ0

j (λ2) + ξ0
j (λ2)µ0

j (λ1)− dξ0
j (λ1, λ2)µ0

j (−R+ λ1 + λ2)− dµ0
j (λ1, λ2)ξ0

j (−S + λ1 + λ2).
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Proof. We have

d(hj)(λ1, λ2) =

− ξj(λ2)µj(λ2) + ξj(−S + λ2)µj(λ2) + µj(−R+ λ2)ξj(λ2)−(
− ξj(λ1 + λ2)µj(λ1 + λ2) + ξj(−S + λ1 + λ2)µj(λ1 + λ2) + µj(−R+ λ1 + λ2)ξj(λ1 + λ2)

)
− ξj(λ1)µj(λ1) + ξj(−S + λ1)µj(λ1) + µj(−R+ λ1)ξj(λ1).

We will compute dhj(λ1, λ2) in terms of ξ0
j and µ0

j (so far we compute dhj in terms of ξj and
µj) for different choices of λ1 and λ2. We can then simply check that in each of these cases the
equality (5.2) is satisfied.

1. λ1 6≥ R,S and λ2 6≥ R,S:

• λ1 + λ2 ≥ R,S:
We have dhj(λ1, λ2) = ξj(λ1)µj(λ2) + ξj(λ2)µj(λ1) − ξj(−S + λ1 + λ2)

(
µj(λ1) +

µj(λ2)
)
− µj(−R+ λ1 + λ2)

(
ξj(λ1) + ξj(λ2)

)
.

• λ1 + λ2 ≥ R, λ1 + λ2 6≥ S:
dhj(λ1, λ2) = ξj(λ1)µj(λ2) + ξj(λ2)µj(λ1)− µj(−R+ λ1 + λ2)

(
ξj(λ1) + ξj(λ2)

)
.

• λ1 + λ2 6≥ R, λ1 + λ2 ≥ S:
dhj(λ1, λ2) = ξj(λ1)µj(λ2) + ξj(λ2)µj(λ1)− ξj(−S + λ1 + λ2)

(
µj(λ1) + µj(λ2)

)
.

• λ1 + λ2 6≥ R,S
dhj(λ1, λ2) = ξj(λ1)µj(λ2) + ξj(λ2)µj(λ1).

In all four cases above we have dhj = C0, since ξ0
j (λk) = ξj(λk) and µ0

j (λk) = µj(λk)
hold for k = 1, 2.

2. λ1 6≥ R,S and λ2 ≥ R,S
We have ξj(λ1) = ξ0

j (λ1) and µj(λ1) = µ0
j (λ1). Note that these equalities does not

necessarily hold for λ2. We also know that λ1 + λ2 ≥ R,S and thus we have

dhj(λ1, λ2) = ξj(λ1)µj(λ2) + ξj(λ2)µj(λ1)− ξj(−S + λ1 + λ2)
(
µj(λ1) + µj(λ2)

)
+

ξj(−S + λ2)µj(λ2) + µj(−R+ λ2)ξj(λ2) =

= ξj(λ1)µj(λ2) + ξj(λ2)µj(λ1)−
(
ξj(λ1) + ξj(−S + λ2)

)(
µj(λ1) + µj(λ2)

)
−
(
µj(−R+ λ2) + µj(λ1)

)(
ξj(λ1) + ξj(λ2)

)
+ ξj(−S + λ2)µj(λ2) + µj(−R+ λ2)ξj(λ2) =

= −µj(λ1)
(
ξj(λ1) + ξj(−S + λ2)

)
− ξj(λ1)

(
µj(−R+ λ2) + µj(λ1)

)
.

On the other hand we have

C0(λ1, λ2) = −ξ0
j (λ1)

(
µ0
j (−R+ λ2) + µ0

j (λ1)
)
− µ0

j (λ1)
(
ξ0
j (−S + λ2) + ξ0

j (λ1)
)
.

Since λ2 ∈ KR+S
aj we have −R + λ2 6≥ S and −S + λ2 6≥ R and thus µ0

j (−R + λ2) =

µj(−R + λ2) and ξ0
j (−S + λ2) = ξj(−S + λ2). It follows that the equality dhj = C0 is

satisfied in this case.

3. λ1 6≥ R, λ2 6≥ R; λ1 6≥ S, λ2 ≥ R
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• λ1 + λ2 ≥ S
We have dhj(λ1, λ2) = ξj(λ2)µj(λ1) + ξj(λ1)µj(λ2) + µj(−R+ λ2)ξj(λ2)− ξj(−S +
λ1 + λ2)

(
µj(λ1) + µj(λ2)

)
−
(
µj(λ1) + µj(−R+ λ2)

)(
ξj(λ1) + ξj(λ2)

)
,

C0(λ1, λ2) = ξ0
j (λ1)µ0

j (λ2)−ξ0
j (λ1)(µ0

j (−R+λ2)+µ0
j (λ1))−(µ0

j (λ1)+µ0
j (λ2))ξ0

j (−S+
λ1 + λ2) and thus the equality (5.2) is satisfied.

• λ1 + λ2 6≥ S
We have dhj(λ1, λ2) = ξj(λ2)µj(λ1)+ ξj(λ1)µj(λ2)+µj(−R+λ2)ξj(λ2)−

(
µj(λ1)+

µj(−R+ λ2)
)(
ξj(λ1) + ξj(λ2)

)
,

C0(λ1, λ2) = ξ0
j (λ1)µ0

j (λ2) − ξ0
j (λ1)(µ0

j (−R + λ2) + µ0
j (λ1)) and thus the equality

(5.2) is satisfied.

Similarly as above we can check that the equality (5.2) is satisfied also in the remaining
cases.

We will now explain how to use Proposition 5.1.3 in order to compute the cup product
T 1(−R)× T 1(−S)→ T 2(−R− S).
From the double complex C•(1)(K

R
• ; k) in Figure 3.1 we know that C ∈ ⊕jC2

(1)(K
R+S
aj ; k) (i.e.

for each j we restrict C to KR+S
aj ) represents the cup product. Note that we have dC = δC = 0.

By Proposition 5.1.3 there exist functions hj , j = 1, ..., N , such that dhj = C0.

Lemma 5.1.4. For each j = 1, ..., N , there exist functions Fj ∈ C1
(1)(Λ \ Λ(R + S); k) such

that dFj = C − dhj.

Proof. It follows immediately since H2
(1)(K

R+S
aj ; k) = 0 by Proposition 3.3.4.

Collecting all the results gives us:

Theorem 5.1.5. Every element of T 1(−R) (resp. T 1(−S)) can be written as dξ0 (resp. dµ0)
for some ξ ∈ H1

(1)(Λ \ Λ(R); k) (resp. µ ∈ H1
(1)(Λ \ Λ(S); k)). The cup product [dξ0, dµ0] ∈

T 2(−R− S) is equal to

δ(F1, ..., FN ) + δ(h1, ..., hN ) ∈ T 2(−R− S).

Remark 18. An element δ(F1, ..., FN ) + δ(h1, ..., hN ) ∈ C1
(1)(K

R+S
2 ; k) is mapped to zero with

both maps d and δ and thus it is an element of T 2(−R − S). The functions Fj can be easily
constructed since the functions C − dhj have many zeros.

5.2 Deformations of three-dimensional affine Gorenstein toric
varieties

In this section we apply Theorem 5.1.5 to the case of three-dimensional affine Gorenstein toric
varieties.
Affine Gorenstein toric varieties are obtained by putting a lattice polytope Q ⊂ A into the

affine hyperplane A× {1} ⊂ A× R =: NR and defining σ := Cone(Q), the cone over Q. Then
the canonical degree R∗ equals (0, 1).
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Let Xσ be a three-dimensional affine Gorenstein toric variety given by a cone σ = 〈a1, ..., aN 〉,
where a1, ..., aN are arranged in a cycle. We will also write Gorenstein singularity for singular
Gorenstein variety. We define aN+1 := a1. Let us denote dj := aj+1 − aj and let

V := {t = (t1, ..., tN ) ∈ kN |
N∑
j=1

tjdj = 0}

denote the set of (generalized) Minkowski summands (see [4]).

Proposition 5.2.1. It holds that T 1(−R∗) ∼= V/k · 1.

Proof. See [5].

Remark 19. Note that if Xσ is isolated, we have T 1(−R∗) = T 1. In general T 1 is non-zero
also in other degrees (see Corollary 3.6.4).

The complex (3.6) for i = 1 and R = 2R∗ becomes

0→ Nk
ψ−→ NN

k
δ−→ ⊕j(Nk/δjdj)

η−→ (Spank R
∗)∗ → 0,

where ψ(x) = (x, ..., x), δ(b1, ..., bN ) = (b1− b2, b2− b3, ..., bN − b1), η(q1, ..., qN ) =
∑N

j=1 qj and

δj :=

{
0 if the 2-face 〈aj , aj+1〉 is smooth
1 if the 2-face 〈aj , aj+1〉 is not smooth.

Corollary 5.2.2. We have T 2(−2R∗) ∼= ker η/im δ and moreover, if Xσ is isolated we see that
T 2(−2R∗) ∼= (Mk/R

∗)∗ since the complex

NN
k

δ−→ NN
k

η−→ Nk

is exact.

5.2.1 The cup product T 1(−R∗)× T 1(−R∗)→ T 2(−2R∗)

In the case of isolated three-dimensional toric Gorenstein singularities Altmann [3] obtain the
following cup product

V/(k · 1)× V/(k · 1) 7→ (Mk/R
∗)∗ (5.3)

(t, s) 7→
N∑
j=1

sjtjdj .

We want to apply Theorem 5.1.5 to the case of three-dimensional toric Gorenstein singular-
ities. To do that we will first show how to construct a function ξj (defined on a⊥j ) from an
element t ∈ V . From Altmann’s construction (see [5, Section 2.7]) there exist bj ∈ R⊥ for
j = 1, ..., N such that ∀j it holds that

bj+1 − bj = tj(aj+1 − aj). (5.4)

Since
∑N

j=1 tjdj = 0 we have a solution of this system of equations, namely b2 = b1 + t1d1,
b3 = b1 + t1d1 + t2d2,..., bN = b1 +

∑N−1
i=1 tidi. Now we project bj ∈ R⊥ to a⊥j along the vector
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aj : we obtain bj := bj− 〈bj ,aj〉〈aj ,aj〉aj . Our function ξj ∈ (aj)
⊥ is defined by ξj(x) = 〈bj , x〉 = 〈bj , x〉.

Without loss of generality we can assume b1 = 0 and thus we obtain that ξj(x) = 〈
∑j−1

k=1 tkdk, x〉.
Note that we indeed have ξj − ξj+1 = 0 on a⊥j ∩ a⊥j+1.
Using Theorem 5.1.5 we will generalize Altmann’s cup product formula to the case of not nec-

essarily isolated toric Gorenstein singularities. Note that Altmann was using different methods
(Laudal’s cup product) in his proof.

Theorem 5.2.3. The cup product T 1(−R∗)× T 1(−R∗)→ T 2(−2R∗) equals the bilinear map

V/(k · 1)× V/(k · 1) 7→ ker η/ im δ

(t, s) 7→ (s1t1d1, ..., sN tNdN ).

We write for short R = R∗. We first need to compute the function

hj = −ξj(λ)µj(λ) + ξj(−R+ λ)µj(λ) + µj(−R+ λ)ξj(λ)

onK2R
aj and then compute hj−hj+1 onK2R

j,j+1 := K2R
j ∩K2R

j+1. We see that ξj(−R+λ)µj(λ) = 0

on K2R
aj since µj(−R+λ) = 0 for λ ∈ a⊥j (thus either ξj(−R+λ) = 0 or µj(λ) = 0). The same

argument holds for µj(−R+ λ)ξj(λ) = 0.
We have hj = −ξj(λ)µj(λ) and thus on K2R

j,j+1 it holds that

hj − hj+1 = (sjdj)(tjdj) + (sjdj)(

j−1∑
k=1

tkdk) + (tjdj)(

j−1∑
k=1

skdk). (5.5)

We now consider the function (dhj − C)(λ1, λ2) ∈ C2
(1)(K

2R
aj ; k). Let

λj ∈ Λ ∩ a⊥j ∩ a⊥j+1,

γj ∈ Λ ∩ a⊥j−1 ∩ a⊥j ,

λj1 ∈ P
j
1 := (K2R

aj ∩K
R
aj+1

) \ (a⊥j ∩ a⊥j+1),

λj2 ∈ P
j
2 := (KR

aj−1
∩K2R

aj ) \ (a⊥j−1 ∩ a⊥j ).

If 〈aj , aj+1〉 is smooth, then P j1 and P j2 are infinite sets contained in the lines parallel to a⊥j ∩a⊥j+1

and a⊥j−1 ∩ a⊥j , respectively. If 〈aj , aj+1〉 is not smooth, then P j1 = P j2 = ∅ and thus we can
easily see that dhj = C holds on K2R

aj . Moreover, K2R
j,j+1 ⊂ Spank(R

∗, a⊥j ∩ a⊥j+1) and thus
hj − hj+1 = 0 for a non-smooth 〈aj , aj+1〉 and this agrees with our cup product formula, since
tjsjdj = 0 on Nk/dj .
We focus now on the case when 〈aj , aj+1〉 is smooth. If λ ∈ P j1 ∪ P

j
2 , then 〈λ, aj〉 = 1. We

want to find the functions Fj ∈ C1
(1)(K

2R
aj ; k) for which dhj + dFj = C holds. Let

Fj(c) :=


−ξ(c)sjdj(c)− µ(c)tjdj(c) = ξ(c)sj + µ(c)tj if c ∈ P j1
ξ(c)sj−1dj−1(c) + µ(c)tj−1dj−1(c) = −ξ(c)sj−1 − µ(c)tj−1 if c ∈ P j2
0 otherwise.

Lemma 5.2.4. On K2R
aj (i.e. for (λ1, λ2) ∈ Λ × Λ such that λ1 + λ2 ∈ K2R

aj ) it holds that
dhj + dFj = C.
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Proof. We write the proof in a way that also becomes clear how we chose the functions Fj .
Recall the definitions of C and dhj = C0 (equations (5.1) and (5.2)). In order that functions
Fj satisfy the equation dhj + dFj = C on K2R

aj the following claims need to hold.
Claim 1: It holds that

Fj(λ
j + λj1) = (5.6)

= Fj(λ
j) + Fj(λ

j
1)− ξ(λj)sjdj(λj1)− µ(λj)tjdj(λ

j
1) =

= Fj(λ
j) + Fj(λ

j
1) + ξ(λj)sj + µ(λj)tj

and
Fj(γ

j + λj2) = Fj(γ
j) + Fj(λ

j
2)− ξ(γj)sj−1dj−1(λi2)− µ(γj)tj−1dj−1(λj2). (5.7)

Indeed, (C−dhj)(λj , λj1) = ξ(λj)sjdj(λ
j
1)+µ(λj)tjdj(λ

j
1), since ξ(λj) = ξ0

j (λj), ξ(λj1)−ξ0
j (λj1) =

tjdj(λ
j
1) and dξ(λj , λj1) = dξ0

j (λj , λj1) = 0 (similarly also for µ). With the same procedure we
obtain also the other equation and thus Claim 1 is proved.
Let zj1 := λj + γj + λj1 and zj2 := λj + γj + λj2, where λ

j 6= 0 and µj 6= 0.
Claim 2: Functions Fj must also satisfy the following equations:

Fj(λ
j + γj + λj1) = (5.8)

Fj(λ
j + λj1) + Fj(γ

j)− ξ(γj)sjdj(λj + λj1)− µ(γi)tjdj(λ
j + λj1)

+ ξ(−R+ zj1)sjdj(λ
j + λj1) + µ(−R+ zj1)tjdj(λ

j + λj1).

and

Fj(λ
j + γj + λj2) = (5.9)

Fj(γ
j + λj2) + F (λj) + ξ(λj)sj−1dj−1(γj + λj2) + µ(λj)tj−1dj−1(γj + λj2)

− ξ(−R+ zi2)sj−1dj−1(γj + λj2)− µ(−R+ zi2)tj−1dj−1(γj + λj2).

Proof of the Claim 2: It holds that

(C − dhj)(λj + λj1, γ
j) =

ξ(γj)sjdj(λ
j + λj1) + µ(γj)tjdj(λ

j + λj1) + ξ0
j (λj + λj1)µj0(−R+ zj1)+

µj0(λj + λj1)ξj0(−R+ zj1)− ξ(λj + λj1)µ(−R+ zj1)− µ(λj + λj1)ξ(−R+ zj1).

Since λj 6= 0 and µj 6= 0, we have −R+zj2 ≥ 0 and −R+zj1 ≥ 0. Thus ξj0(−R+zj1) = ξ(−R+zj1),
ξj0(λj1 +λj)−ξ(λj1 +λj) = −tjdj(λj1) and similarly for (C−dhj)(γj +λj2, λ

j). Thus we conclude
the proof of Claim 2. We can easily verify that our function F satisfies the properties (5.8),
(5.9) and that dFj + dhj = C indeed holds.

To conclude the proof of Theorem 5.2.3, we need to show that δ(F1, ..., FN ) + δ(h1, ..., hN ) =
(t1s1d1, ..., tNsNdN ). Recall the formula for hj − hj+1 on K2R

j,j+1 (see the equation (5.5)). We
distinguish the following cases

1. c ∈ P j1 : it holds that 〈aj , c〉 = 1, 〈aj+1, c〉 = 0 and thus we have Fj+1(c) = 0, Fj(c) =

ξ(c)sj + µ(c)tj , where ξ(c) =
∑j

i=1 tidi(c), µ(c) =
∑j

i=1 sidi(c). Using dj(c) = −1 we
obtain that

(Fj − Fj+1)(c) + (hj − hj+1)(c) = −sjtj .
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2. c ∈ P j+1
2 : it holds that 〈aj , c〉 = 0, 〈aj+1, c〉 = 1 and thus we have Fj(c) = 0, Fj+1(c) =

−ξ(c)sj − µ(c)tj , where ξ(c) =
∑j−1

i=1 tidi(c), µ(c) =
∑j−1

i=1 sidi(c). It follows that

(Fj − Fj+1)(c) + (hj − hj+1)(c) = tjsj .

3. c ∈ a⊥j ∩ a⊥j+1: it holds that (Fj − Fj+1)(c) + (hj − hj+1)(c) = 0.

4. c = R: it follows that (Fj − Fj+1)(c) + (hj − hj+1)(c) = 0.

Thus we completely described the element δ(F1, ..., FN ) + δ(h1, ..., hN ) ∈ ⊕Nj=1H
1
(1)(K

2R
j,j+1; k).

By [6, Proposition 5.4] we know that H1
(1)(SpankK

2R
j,j+1; k) ∼= H1

(1)(K
2R
j,j+1; k) since a 2-face

〈aj , aj+1〉 admits at most Gorenstein singularities. If 〈aj , aj+1〉 is smooth, then it holds that
dj(c) = −1 for c ∈ P j1 and dj(c) = 1 for c ∈ P j+1

2 . We see that our additive function,
corresponding to the δ(Fj) + δ(hj), is equal to tjsjdj . If 〈aj , aj+1〉 is not smooth, then the
corresponding function is equal to 0. Thus we conclude the proof of Theorem 5.2.3.

Corollary 5.2.5. If Xσ is an isolated Gorenstein singularity, then Theorem 5.2.3 gives us
Altmann’s cup product (5.3).

5.3 The cup product between non-negative degrees

Let Xσ be a non-isolated three-dimensional toric Gorenstein singularity. In this section we
compute the cup product T 1(−R)× T 1(−S)→ T 2(−R−S) for R,S 6≥ 0. If R and S have the
last entry equal to 0, then the computations in this section have implications in deformation
theory of projective toric varieties.
The following notation already appeared in Subsection 3.6.1. Let s1, ..., sN be the funda-

mental generators of the dual cone σ∨, labelled so that σ ∩ (sj)
⊥ equals the face spanned by

aj , aj+1 ∈ σ. With `(j) we denote the length of the edge dj . Let Rp,qj := qR∗ − psj with
2 ≤ q ≤ `(j) and p ∈ Z sufficiently large such that Rp,qj 6∈ int(σ∨). In this case we already know
that dimk T

1(−Rp,qj ) = 1 by Corollary 3.6.4.

Lemma 5.3.1. If #{aj | 〈aj , R〉 > 0} ≤ 2, then T 2(−R) = 0.

Proof. If #{aj | 〈aj , R〉 > 0} ≤ 1, then the statement is trivial. Without loss of generality
〈aj , R〉 > 0 for j = 1, 2 and 〈aj , R〉 ≤ 0 for other j. Now the statement follows from the fact
that T 2 = 0 for the Gorenstein surface 〈a1, a2〉 ⊂ NR ∼= R2 (see Example 8).

Proposition 5.3.2. Let R1 := Rp1,q1j and R2 := Rp2,q2k , where j and k are chosen such that
aj and ak are not neighbours (we allow j = k). The cup product T 1(−R1) × T 1(−R2) →
T 2(−R1 −R2) is zero.

Proof. Let ξ ∈ H1
(1)(Λ \ Λ(R1); k) and µ ∈ H1

(1)(Λ \ Λ(R2); k) represent basis elements for
T 1(−R1) and T 1(−R2), respectively. We will show that the cup product [dξ0, dµ0] ∈ T 2(−R1−
R2) is equal to zero. If j = k the statement follows from Lemma 5.3.1. Since aj and ak are not
neighbours, it holds that 〈aj , R1 +R2〉 ≤ 〈aj , R1〉 and 〈ak, R1 +R2〉 ≤ 〈ak, R1〉, from which it
follows that KR1+R2

ai ⊂ KR1
ai for i = j, j + 1, k, k + 1. Thus we have d(h1, ..., hN ) = C and by

Theorem 5.1.5 it follows that the cup product is equal to δ(h1, ..., hN ) ∈ ⊕Nj=1H
1
(1)(K

R1+R2
j,j+1 ; k).

We can easily see that hi = 0 if i 6= j, j + 1, k, k + 1 and

hi(λ) := −ξ(λ)µ(λ) + ξ(−R2 + λ)µ(λ) + µ(−R1 + λ)ξ(λ) ∈ C1
(1)(K

R1+R2
ai ; k),
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if i = j, j + 1, k, k + 1. We see that δ(h1, ..., hN ) = 0 and thus we conclude the proof.

The following example shows that we can also compute the cup product between the elements
of degrees R1 := Rp1,q1j and R2 := Rp2,q2j+1 .

Example 12. A typical example of a non-isolated, three-dimensional toric Gorenstein singu-
larity is the affine cone Xσ over the weighted projective space P(1, 2, 3). The cone σ is given
by σ = 〈a1, a2, a3〉, where

a1 = (−1,−1, 1), a2 = (2,−1, 1), a3 = (−1, 1, 1).

We obtain σ∨ = 〈s1, s2, s3〉 with

s1 = (0, 1, 1), s2 = (−2,−3, 1), s3 = (1, 0, 1).

T 1 is non-zero in degrees R1
α := 2R∗−αs3, R2

β := 2R∗− βs1 and R3
γ := 2R∗− γs1 with α ≥ 1,

β ≥ 1 and γ ≥ 2. Let us denote the corresponding basis element of R1
α, R2

β and R3
γ by z1

α, z2
β

and z3
γ , respectively.

We have
〈a1, R

1
α〉 = 〈a3, R

1
α〉 = 2, 〈a2, R

1
α〉 = 2− 3α,

〈a1, R
2
β〉 = 〈a2, R

2
β〉 = 2, 〈a3, R

2
β〉 = 2− 2β,

〈a1, R
3
γ〉 = 〈a2, R

3
γ〉 = 3, 〈a3, R

3
γ〉 = 3− 2γ.

By Lemma 5.3.1 we know that the only possible non-zero cup products can be [z1
1 , z

2
1 ] and

[z1
1 , z

3
2 ], since in other cases we have T 2(Rij + Rkl ) = 0. Using Theorem 5.1.5 we can easily

verify that [z1
1 , z

2
1 ] 6= 0 and [z1

1 , z
3
2 ] 6= 0. In this case the equations z1

1 · z2
1 = z1

1 · z3
2 = 0 already

define the whole versal base space. Stevens checked this using the computer algebra system
Macaulay, see [5, Section 5.2].

5.4 The versal base space of a three-dimensional toric
Gorenstein singularity

In this section we conjecture a set of equations of the versal base space of degree R∗ for not
necessarily isolated three-dimensional toric Gorenstein singularities. Note that in the isolated
case the equations were obtained by Altmann in [4].
For b ∈ Z we define

b+ :=

{
b if b ≥ 0
0 otherwise, b− :=

{
0 if b ≥ 0
−b otherwise.

We define an ideal I = (
∑N

i=1 biu
k
i | k ≥ 1) ⊂ k[u1, ..., uN ], where bi ∈ Z for all i = 1, ..., N

and it holds that
∑N

i=1 bi = 0. The following proposition will be very useful. In some parts of
the proof we follow [4] verbatim.

Proposition 5.4.1. (1) I is generated by polynomials from k[ui − uj ],

(2) I ⊂ k[u1, ..., uN ] is the smallest ideal that meets property (1) and on the other hand contains

r(u) :=
∏N
i=1 u

b+i
i −

∏N
i=1 u

b−i
i .
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Proof. We define

gk(u) :=
N∑
j=1

bju
k
j , for k ≥ 1.

We know that g1(u) =
∑N

j=1 bjuj and since
∑N

j=1 bj = 0, we have

g1(u) = b2(u2 − u1) + · · ·+ bN (uN − u1).

Replacing uj by uj − u1 as arguments in gk yields

gk(u2 − u1, ..., uN − u1) =

N∑
j=1

bj(uj − u1)k =

N∑
j=1

bj
( k∑
v=0

(−1)v
(
k

v

)
uv1u

k−v
j

)
=

k∑
v=0

(−1)v
(
k

v

)
uv1 ·

( N∑
j=1

bju
k−v
j

)
=

k−1∑
v=0

(−1)v
(
k

v

)
uv1gk−v(u),

from which (1) follows.
Without loss of generality we assume that b1, ..., bM ≥ 0, bM+1, ..., bN ≤ 0. After renaming

ui = xi, uM+j = yM+j (1 ≤ i ≤M, 1 ≤ j ≤ N −M),

we obtain

gk(x, y) =
( M∑
i=1

bix
k
i

)
−
( N∑
j=M+1

b−j y
k
j

)
,

r(x, y) = (xb11 · · ·x
bM
M )− (y

b−M+1

M+1 · · · y
b−N
N ).

Let S denote the multiset

S := {1, ..., 1, 2, ..., 2, ....,M, ...,M},

where i has multiplicity bi (for i = 1, ...,M) and thus

l := |S| = b+1 + · · ·+ b+N = b−1 + · · ·+ b−N .

For A ⊂ S we write xA :=
∏
i∈A xi, which is a monomial of degree |A|. We can generalize

arguments with symmetric polynomials made in [4, Lemma 3.3] as follows: let

sj(x) :=
∑

A⊂S,|A|=j

xA, for j = 1, ..., l.

We write gk(x) =
∑M

i=1 bix
k
i and gk(y) =

∑N
j=M+1 b

−
j y

k
j . Note that we have

g1(x) = s1(x) =

M∑
i=1

bixi.

We can show that there exist b̃k ∈ Q, (k = 1, ..., l) with bl 6= 0 such that

(xb11 · · ·x
bM
M ) = b̃1(b1x1 + · · ·+ bMxM )l +

l−1∑
k=2

b̃kgk(x)sl−k(x) + b̃lgl(x). (5.10)
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We choose b̃1 := b1!···bM !
l! and then we choose b̃2 such that b̃1(x1 + · · · + xM )l + b̃2g2(x)sl−2(x)

does not have monomials of the form xbi+1
i ·mi(x1, ..., x̂i, ..., xM ) (for each i = 1, ...,M), where

mi is a monomial of degree l− bi− 1. Such b̃2 exists and we see that we can naturally continue
this procedure, i.e., we choose b̃3 such that b̃1(x1 + · · · + xM )l + b̃2g2(x)sl−2(x) + b̃3g3(x)sl−3

does also not have monomials of the form xbi+2
i · m̃i(x1, ..., x̂i, ..., xM ) for each i = 1, ...,M . At

the end we obtain the equation (5.10).
We have s1(x) = g1(x), s2(x) = 1

2

(
(g1(x)2 − g2(x))

)
and as above we can easily verify that

for a fixed j (1 ≤ j ≤ l) there exist c̃i ∈ Q, (i = 1, ..., j) with c̃i 6= 0 such that

sj(x) = c̃1(x1 + · · ·xM )j +

j−1∑
i=2

c̃igi(x)sj−i(x) + c̃jgj(x).

Thus we see that for 1 ≤ k ≤ l we can write sk(x) = Pk(g1(x), ..., gk−1(x)) + ckgk(x),
sk(y) = Pk(g1(y), ..., gk−1(y)) + ckgk(y) for some polynomials Pk ∈ Q[z1, ..., zk−1] and non-
vanishing rational numbers ck. In particular, we have

r(x, y) = Pl(g1(x), ..., gl−1(x))− Pl(g1(y), ..., gl−1(y)) + clgl(x)− clgl(y).

We can conclude the proof following [4, Lemma 3.4]: each polynomial q(u) can be uniquely
written as

q(u) =
∑
v≥0

qv(u2 − u1, ..., uN − u1) · uv1.

If Ĩ ⊂ k[u] is an ideal generated by polynomials in u − u1 only, then for each q(u) ∈ Ĩ the
components qv are automatically contained in Ĩ, too. Hence, we should look for the components
of the polynomial p. In the polynomial ring k[X,Y , U ] we know that

r(U +X,U + Y ) = (U +X1)b1 · · · (U +XM )bM − (U + YM+1)b
−
M+1 · · · (U + YN )b

−
N

has sk(X)− sk(Y ) as the coefficient of U l−k (k = 1, ..., l).
We obtain

sk(X)− sk(Y ) = Pk(g1(X), ..., gk−1(X))− Pk(g1(Y ), ..., gk−1(Y )) + ckgk(X)− ckgk(Y )

=

k−1∑
v=1

qv(X,Y )gv(X,Y ) + ckgk(X,Y )

for some coefficients qv. If we show that I = (
∑N

j=1 u
k
j bj | 1 ≤ k ≤ l), then specialization (first

by U 7→ x1, Xi 7→ xi − x1, Yi 7→ yi − x1, then followed by the usual one) shows that the ideal
generated by the components rv(u− u1) of r equals I. We conclude the proof by showing that
I = (

∑N
j=1 u

k
j bj | 1 ≤ k ≤ l): we can generalize arguments with symmetric polynomials made

in [4, Lemma 3.3] as follows: for each k > l there exist polynomials Pk ∈ Q[s1, ..., sl], such that

gk(x)− gk(y) = Pk(s1(x), ..., sl(x))− Pk(s1(y), ..., sl(y)).

As in [4, Lemma 3.3] we conclude that

gk(x, y) =
l∑

v=1

gv(x, y) · zv(x, y),

for some polynomials zv. Thus we conclude the proof.
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Recall that Xσ is not necessarily isolated three-dimensional toric Gorenstein singularity. The
edges of the polytope Q ⊂ A := [R∗ = 1] are d1, ..., dN and we have d1 + · · · + dN = 0. We
have the vector space

V := {t = (t1, ..., tN ) ∈ kN |
N∑
j=1

tjdj = 0}.

The lattice length of dj is denoted by `(dj) for j = 1, ..., N . Let V ↪→ kN be the standard
inclusion given by t→ t. We denote the lattice L := A ∩ Zn.
We define the ideal

J := (

N∑
j=1

tkjdj | k ≥ 1) ⊂ k[t1, ..., tN ]

and the affine scheme
M := Spec(k[t1, ..., tN ]/J) ⊂ kN .

Let us denote

r̃(t1, ..., tN ) :=

N∏
i=1

t
d+i
i −

N∏
i=1

t
d−i
i ,

with d ∈
(
`(d1)Z× · · · × `(dN )Z

)
∩ Spank{(〈d1, c〉, ..., 〈dN , c〉) | c ∈ A∗}.

Denote by p the projection p : kN → kN/k(1, ..., 1), which on the level of regular functions
corresponds to the inclusion k[ti − tj | 1 ≤ i, j ≤ N ] ⊂ k[t1, ..., tN ].
The following theorem generalizes [4, Theorem 2.4].

Theorem 5.4.2. The following holds:

1. J is generated by polynomials from k[ti − tj ], i.e., M = p−1(M̄) for some affine closed
subscheme M̄ ⊂ V/k(1, ..., 1).

2. J ⊂ k[t1, ..., tN ] is the smallest ideal that has the above property and on the other hand
contains r̃.

Proof. The proof follows from Proposition 5.4.1 and the fact that for every c ∈ L∗ we have(
〈d1, c〉, ..., 〈dN , c〉

)
∈
(
`(d1)Z× · · · × `(dN )Z

)
.

In [4] Altmann proved that M̄ is the versal base space for isolated three-dimensional Goren-
stein singularities and he also constructed a versal family. We conjecture that M̄ is the versal
base space in degree −R∗ also for not necessarily isolated Gorenstein singularities.

5.5 A differential graded Lie algebra extending the cup product

In this subsection we construct a dgla extending the cup product from Theorem 5.2.3.
Let Xσ be a three-dimensional affine Gorenstein toric variety. We define

gi(−R) := ⊕τ≤σ;dim τ=i(Spank(E
R
τ )∗),
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for all R ∈ M . The bracket [ , ] is defined in the following way: [b1, b2] = 0 if for at least
one j ∈ {1, 2} holds that bj 6∈ g1(−kR∗) for k ≥ 1. Let ` be the linear form on N with
`(e1) = `(e2) = `(e3) = 1.
We define [ , ] : g1(−kR∗) × g1(−lR∗) → g2(−(k + l)R∗) as [b, c] :=

(
(b ∪ c)1, ..., (b ∪ c)N

)
,

where

(b ∪ c)j :=
`(p(bj+1)− p(bj)) · (p(cj+1)− p(cj)) + `(p(cj+1)− p(cj)) · (p(bj+1)− p(bj))

(k + l − 1)`(dj)

and p(bj) ∈ N (resp. p(cj) ∈ N) are defined in the following way. Note first that g1(−R∗) =⊕N
j=1NR/ajR and g1(−kR∗) = NN

R , for all k ≥ 2. Thus we have b = (b1, ..., bN ) and bj is
either an element of NR/ajR or NR. If bj ∈ NR we define p(bj) := bj . If bj ∈ NR/ajR, then we
identify bj with ξj ∈ (a⊥j )∗ as we did in Section 5.1. Now we project ξj to R∗⊥ along the vector
aj for each j. The resulting element is defined as our p(bj) ∈ R∗⊥ ⊂ N . In the same way we
construct p(cj).
Differential on g is coming from the complex (Spank(E

R)∗)• and with the above product [ , ]
we give a dgla structure on g. We can easily verify that the dgla g extends the cup product
from Theorem 5.2.3.
Let t = (t1, ..., tN ) ∈ V be an arbitrary point in the versal base space in degree −R∗ for

Xσ conjectured in Section 5.4, i.e., t ∈ V satisfies
∑N

j=1 t
k
jdj = 0 for all k ∈ N. From t

we can construct an MC element of the dgla g as follows: we define xk := (0, tk1d1, t
k
1d1 +

tk2d2, ....,
∑N−1

j=1 tkjdj) ∈ g1(−kR∗) for k ≥ 1. We can easily verify that

x = {xk = (xk1, . . . , x
k
N ) | k ≥ 1} ∈

⊕
k≥1

g1(−kR∗)

satisfy the Maurer-Cartan equation: in degree −kR∗ the MC equation dx+ 1
2 [x, x] reduces to

dxk +
∑

u+v=k
1
2 [xu, xv] = 0. We have dxk = (−tk1d1,−tk2d2, ..,−tkNdN ), p(xkj )− p(xkj+1) = tkjdj

and thus

(xu ∪ xv)j =
2tkjdj

k − 1
.

In the sum
∑

u+v=k
1
2 [xu, xv] we have k − 1 summands from which it follows that x is an MC

element.
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6 Poisson deformations

Poisson deformations are deformations of a pair consisting of a variety and a Poisson structure
on it. Lately there has been a lot of interest in these deformations, see for example results of
Namikawa [52],[53], [54] or Kaledin and Ginzburg [33].
In Section 6.1 we construct a differential graded Lie algebra structure controlling Poisson

deformations. In Section 6.2 we give a convex geometric description of the Hochschild cup
product and simplify the computation of Poisson cohomology groups.

6.1 A differential graded Lie algebra controlling Poisson
deformations

We consider the following deformation problem.

Definition 66. A Poisson deformation of a Poisson algebra A over an Artin ring B is a
pair (A′, π), where A′ is a Poisson B-algebra and π : A′ ⊗B k → A is an isomorphism of
Poisson k-algebras. Two such deformations (A′, π1) and (A′′, π2) are equivalent if there exists
an isomorphism of Poisson B-algebras φ : A′ → A′′ such that it is compatible with π1 and π2,
i.e., such that π1 = π2 ◦ (φ⊗B k).

A functor that encodes this deformation problem is

PDefA : A → S

B 7→ {Poisson deformations of A over B}/ ∼ .
In the following we define a dgla that controls the above deformation problem. Consider the

double complex given in Figure 6.1.
The map dp is defined as dp := −[µp, ·] : Cn(A)→ Cn+1(A), where µp ∈ C2

(2)(A) is a Poisson
structure { , } of A. In the double complex in Figure 6.1 we restrict dp on the chosen domains
and codomains. Note that we have d[µp, f ] = [µp, df ] + 0 by Proposition 2.3.1, and thus we
really obtain a double complex. We denote its total complex by D•.
We define the bracket [ , ]p on D• as follows: let Cn(A) = Cn(1)(A)⊕· · ·⊕Cn(n)(A) and define

[·, ·]p : Cm(A)× Cn(A)→ Cm+n−1(A)

[(f1, ..., fm), (g1, ..., gn)]p := ([f1, g1], ...,
∑
i+j=k

[fi, gj ], ..., [fm, gn]),

where we restrict [fi, gj ] to Cm+n−1
(i+j−1)(A).

This bracket defines a dgla structure on D•[1]: the shifted differential dp[1] is equal to [µp, ·]p
and the shifted differential d[1] is equal to [µ, ·]p, where µ is the commutative multiplication
on A. We denote the shifted differential of D•[1] by d̃. It is given by d̃ = [µ + µp, ·]p. We can
immediately check that the bracket [ , ]p and differential d̃ equip D•[1] with the structure of a
dgla. We denote this dgla by C•p(A)[1].
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Figure 6.1: The double complex controlling the Poisson deformations

Remark 20. Note that the Gerstenhaber bracket is not graded with respect to the Hodge
decomposition and thus the above product is not the Gerstenhaber bracket. By Lemma 4.1.3
we have [µ, µ]p = [µ, µ], [µ, µp]p = [µ, µp] and [µp, µp]p = e3[µp, µp].

To show that the functor PDefA is controlled by the dgla C•p(A)[1] we first need a few
Lemmata. Some ideas are taken from [63, Sections 4.3 and 4.4]. Let V be a vector space.
Recall from Definition 47 that Cn(V ) is the space of k-linear maps V ⊗n → V . Following the
Hodge decomposition we define Cn(i)(V ) := {f ∈ Cn(V ) | f ◦ sn = (2i − 2)f)}. Thus we can
define C•p(V )[1] to be a dgla with the Lie bracket [ , ]p and zero differential.

Lemma 6.1.1. Let V be a vector space. Giving the Poisson algebra structure on V is the same
as giving an element (µ, µp) ∈ C2

(1)(V ) ⊕ C2
(2)(V ) satisfying 1

2 [µ, µ] = [µ, µp] = 1
2 [µp, µp]p = 0,

i.e., (µ, µp) is an MC element of C•p(V )[1].

Proof. Let (µ, µp) be an MC element of C•p(V )[1]. We define the multiplication on V by
a · b := µ(a, b) and the Poisson structure by {a, b} := µp(a, b). The product · is commutative
and associative if and only if µ ∈ C2

(1)(V ) and 1
2 [µ, µ] = 0 (see also Subsection 2.3.6). Now we

show that µp defines a Poisson structure. Since µp ∈ C2
(2)(V ), everything except the Jacobi

identity is clear. The Jacobi identity we get from 1
2 [µp, µp]p = 0 as in Lemma 4.1.3 (note that

we have [µp, µp]p = e3[µp, µp]). We now show the following claim:

{a, b · c} = {a, b}c+ {a, c}b (i.e. µp(a, µ(b, c)) = µ(µp(a, b), c) + µ(µp(a, c), b))
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holds if and only if [µ, µp] = 0. Assume that

F (a, b, c) := µp(a, µ(b, c))− µ(µp(a, b), c)− µ(µp(a, c), b) = 0

holds. We have

F (a, b, c) + F (c, a, b) =(
µp(a, µ(b, c))− µ(µp(a, b), c)− µ(µp(a, c), b)

)
+
(
µp(c, µ(a, b))− µ(µp(c, a), b)− µ(µp(c, b), a)

)
=

−[µp, µ].

and thus we see one direction. For the other direction we compute

[µp, µ](a, b, c) + [µp, µ](a, c, b)− [µp, µ](b, a, c) =(
µp(ab, c)− µp(a, bc) + µp(a, b)c− µp(b, c)a

)
+
(
µp(ac, b)− µp(a, cb) + µp(a, c)b− µp(c, b)a

)
−(

µp(ba, c)− µp(b, ac) + µp(b, a)c− µp(a, c)b
)

=
2
(
− µp(a, bc) + µp(a, b)c+ µp(a, c)b

)
= −2F (a, b, c).

To shorten the notation we wrote ab = µ(a, b) and similarly for other elements. Thus the claim
is proved. The other direction of the proof follows immediately.

Definition 67. The Poisson product on the vector space V is a pair (·, { , }), such that
(V, ·, { , }) is a Poisson algebra.

Lemma 6.1.2. Let B be an Artin ring. MC elements of C•p(A ⊗mB)[1] are in bijection with
Poisson products of the vector space A0 ⊗ B, giving the known Poisson product on A (modulo
mB).

Proof. Let (µ, µp) ∈ C2
(1)(A0) ⊕ C2

(2)(A0) represent the Poisson bracket on A0. Then Poisson
products on the vector space A0⊗B, giving the known product on A (modulomB) are obtained
by

[(µ, µp) + (ξ, ξp), (µ, µp) + (ξ, ξp)]p = 0, (6.1)

for (ξ, ξp) ∈ C2
(1)(A⊗mB)⊕ C2

(2)(A⊗mB). Since [(µ, µp), (µ, µp)]p = 0 and the differential on
C•p(A⊗mB)[1] is given by [(µ, µp), ·], then we see that the equation (6.1) gives us MC elements
(ξ, ξp) of C•p(A⊗mB)[1].

Theorem 6.1.3. The functor PDefA is controlled by the dgla C•p(A)[1].

Proof. We write for short g := C•p(A)[1]. By Lemma 6.1.2 there exists a bijection between
MCg(B) and Poisson products of the vector space A0 ⊗ B giving the known Poisson product
on A (modulo mB).
To conclude the proof we show that two Poisson products (·, { , }) and (·′, { , }′) on A0 ⊗

B are equivalent (in the sense of Definition 66) if and only if the corresponding elements
(γ, γp), (γ

′, γ′p) ∈ MCg(B) are gauge equivalent. Since the products are equivalent we can easily
see that there exists α ∈ g0 ⊗mB such that

a ·′ b = exp(α)(exp(−α)(a) · exp(−α)(b)), (6.2)

{a, b}′ = exp(α)({exp(−α)(a), exp(−α)(b)}′). (6.3)

As above let (µ, µp) ∈ C2
(1)(A0)⊕ C2

(2)(A0) represent the Poisson bracket of A.
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From (6.2) we obtain

(µ+ γ′)(a⊗ b) = exp(α)(exp(−α)(a) ∗ exp(−α)(b)) = exp(adα)(µ+ γ)(a⊗ b). (6.4)

From (6.3) we obtain

(µp + γ′p)(a⊗ b) = exp(α)(exp(−α)(a) ∗ exp(−α)(b)) = exp(adα)(µp + γp)(a⊗ b). (6.5)

Elements (γ, γp) ∈ MCg(B) and (γ′, γ′p) ∈ MCg(B) are gauge equivalent if

(γ′, γ′p) = (γ, γp) +
∞∑
n=0

[α, ·]n

(n+ 1)!
([α, (γ, γp)]p − d̃(α)) (6.6)

holds.
Since d̃(α) = [(γ, γp), α]p = −[α, (γ, γp)]p, we see that (6.6) holds if and only if the equations

(6.4) and (6.5) hold.

6.2 The cup product of the Hochschild dgla and the Poisson
cohomology in the toric setting

Definition 68. The cup product of the Hochschild dgla is the map

[ , ] : H2(A)×H2(A)→ H3(A).

In the next lemma we recall some computations from Chapter 4.

Lemma 6.2.1. For an element p ∈ H2
(2)(A) and an element q ∈ H2

(1)(A) we have the following:

• e3[p, p] = 0 is the Jacobi identity,

• [p, q] = e2[p, q] and [q, q] = e1[q, q].

Proof. The equation e3[p, p] = 0 is the Jacobi identity by the proof of Proposition 4.2.1. Equa-
tions [p, q] = e2[p, q] and [q, q] = e1[q, q] hold by Lemma 4.1.3.

Using the Hodge decomposition, the isomorphism T 1(A) ∼= H2
(1)(A) (from Theorem 2.3.10)

and Lemma 6.2.1, we see that the cup product of the Hochschild dgla consists of the products
T 1(A)× T 1(A)→ T 2(A), T 1(A)×H2

(2)(A)→ H3
(2)(A) and H2

(2)(A)×H2
(2)(A)→ H3(A).

In Chapter 4 we showed that every Poisson structure p ∈ H2
(2)(A) on an affine toric variety

Xσ = Spec(A) can be quantized, which implies that [p, p] = 0 ∈ H3(A). In Chapter 5 we
analyzed the cup product T 1(A)×T 1(A)→ T 2(A). In this section we will analyze the product
[ , ] : T 1(A)×H2

(2)(A)→ H3
(2)(A) in the toric setting.

From Section 5.1 we recall the following: Let σ = 〈a1, ..., aN 〉 and R,S ∈ M . Let µ be an
element from H1

(1)(Λ \ Λ(S); k). We extend (not additively) µ to the whole of Λ by 0 (i.e.
µ(λ) = 0 for µ ∈ Λ(S)). This extended function we denote by µ0. We have

T 1,−S(A) ∼= H2
(1)(Λ,Λ \ (S + Λ); k)

by Proposition 3.2.2 and the surjective map

H1
(1)(Λ \ (S + Λ); k)

d−→ H2
(1)(Λ,Λ \ (S + Λ); k)
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by Corollary 5.1.1. Thus we see that every element of T 1(−S) ∼= H2
(1)(−S) can be written as

dµ0 for some µ ∈ H1
(1)(Λ \ Λ(S); k).

The following proposition simplifies the product [ , ] : T 1(A) × H2
(2)(A) → H3

(2)(A) in the
toric setting.

Proposition 6.2.2. Let µ ∈ H1
(1)(Λ \ Λ(S); k) and ξ ∈ H2

(2)(Λ,Λ \ Λ(R); k). Let

G(λ1, λ2) := G1(λ1, λ2)−G2(λ1, λ2) ∈ C2
(2)(Λ; k),

where
G1(λ1, λ2) := ξ(−S + λ1 + λ2, λ2)µ0(λ1) + ξ(λ1,−S + λ1 + λ2)µ0(λ2),

G2(λ1, λ2) := ξ(λ1, λ2)µ0(λ1 + λ2 −R).

Let λ123 := λ1 + λ2 + λ3.

1. If λ1 + λ2 ≥ S, λ2 + λ3 ≥ S we have dG(λ1, λ2, λ3) = [ξ, dµ0](λ1, λ2, λ3).

2. If λ1 + λ2 6≥ S, λ2 + λ3 ≥ S we have(
dG− [ξ, dµ0]

)
(λ1, λ2, λ3) =

µ0(λ1)
(
ξ(−S + λ123, λ2) + ξ(λ2, λ3)

)
+ µ0(λ2)

(
ξ(λ1,−S + λ123)− ξ(λ1, λ3)

)
.

3. If λ1 + λ2 ≥ S, λ2 + λ3 6≥ S we have(
dG− [ξ, dµ0]

)
(λ1, λ2, λ3) =

µ0(λ2)
(
ξ(λ1, λ3)− ξ(−S + λ123, λ3)

)
+ µ0(λ3)

(
ξ(−S + λ123, λ2)− ξ(λ1, λ2)

)
.

4. If λ1 + λ2 6≥ S, λ2 + λ3 6≥ S we have(
dG− [ξ, dµ0]

)
(λ1, λ2, λ3) = µ0(λ1)

(
ξ(−S + λ123, λ2) + ξ(λ2, λ3)

)
+

+ µ0(λ2)
(
ξ(λ1,−S + λ123)− ξ(−S + λ123, λ3)

)
+

+ µ0(λ3)
(
ξ(−S + λ123, λ2)− ξ(λ1, λ2)

)
.

Proof. We first compute

[ξ, dµ0](λ1, λ2, λ3) =

= ξ(−S + λ1 + λ2, λ3)
(
µ0(λ1) + µ0(λ2)− µ0(λ1 + λ2)

)
− ξ(λ1,−S + λ2 + λ3)

(
µ0(λ2) + µ0(λ3)− µ0(λ2 + λ3)

)
+ dµ0(−R+ λ1 + λ2, λ3)ξ(λ1, λ2)− dµ0(λ1,−R+ λ2 + λ3)ξ(λ2, λ3) =

= µ0(λ1)
(
ξ(−S + λ1 + λ2, λ3)− ξ(λ2, λ3)

)
+ µ0(λ2)

(
ξ(−S + λ1 + λ2, λ3)− ξ(λ1,−S + λ2 + λ3)

)
+ µ0(λ3)

(
− ξ(λ1,−S + λ2 + λ3) + ξ(λ1, λ2)

)
− µ0(λ1 + λ2)ξ(−S + λ1 + λ2, λ3)

+ µ0(λ2 + λ3)ξ(λ1,−S + λ2 + λ3)− dG2(λ1, λ2, λ3),
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where we use the fact that ξ is bi-additive.
We now compute

dG1(λ1, λ2, λ3) =

= ξ(−S + λ2 + λ3, λ3)µ0(λ2) + ξ(λ2,−S + λ2 + λ3)µ0(λ3)

− ξ(−S + λ1 + λ2 + λ3, λ3)µ0(λ1 + λ2)− ξ(λ1 + λ2,−S + λ1 + λ2 + λ3)µ0(λ3)

+ ξ(−S + λ1 + λ2 + λ3, λ2 + λ3)µ0(λ1) + ξ(λ1,−S + λ1 + λ2 + λ3)µ0(λ2 + λ3)

− ξ(−S + λ1 + λ2, λ2)µ0(λ1)− ξ(λ1,−S + λ1 + λ2)µ0(λ2).

We need to consider the following cases:

1. λ1 + λ2 ≥ S, λ2 + λ3 ≥ S
We have µ0(λ1 + λ2) = µ0(λ2 + λ3) = 0. Thus we compute

dG1(λ1, λ2, λ3) =

= µ0(λ1)
(
ξ(−S + λ1 + λ2, λ3) + ξ(λ3, λ2)

)
+

+ µ0(λ2)
(
ξ(−S + λ2 + λ3, λ3)− ξ(λ1,−S + λ1 + λ2)

)
+

+ µ0(λ3)
(
− ξ(λ1,−S + λ2 + λ3)− ξ(λ2, λ1)

)
.

It holds that

ξ(−S + λ2 + λ3, λ3)− ξ(λ1,−S + λ1 + λ2) =

= ξ(−S + λ1 + λ2 + λ3, λ3)− ξ(λ1, λ3)

− ξ(λ1,−S + λ1 + λ2 + λ3) + ξ(λ1, λ3) =

= ξ(−S + λ1 + λ2, λ3)− ξ(λ1,−S + λ2 + λ3)

and thus we see that in this case dG(λ1, λ2, λ3) = [ξ, dµ0](λ1, λ2, λ3) holds.

2. λ1 + λ2 6≥ S, λ2 + λ3 ≥ S:
We have µ0(λ2 + λ3) = 0 and µ0(λ1 + λ2) = µ0(λ1) + µ0(λ2). It holds that

dG1(λ1, λ2, λ3) =

= µ0(λ1)ξ(−S + λ1 + λ2 + λ3, λ2) + µ0(λ2)
(
ξ(−S + λ2 + λ3, λ3)− ξ(−S + λ1 + λ2 + λ3, λ3)

)
+

+ µ0(λ3)
(
ξ(λ2,−S + λ2 + λ3)− ξ(λ1 + λ2,−S + λ1 + λ2 + λ3)

)
,

[ξ, dµ](λ1, λ2, λ3) =

= µ0(λ1)(−ξ(λ2, λ3)) + µ0(λ2)(−ξ(λ1,−S + λ2 + λ3))+

+ µ0(λ3)
(
− ξ(λ1,−S + λ2 + λ3) + ξ(λ1, λ2)

)
.

If we compute
(
dG1 − [ξ, dµ0]

)
(λ1, λ2, λ3) we see that the term before µ0(λ3) vanishes

because

ξ(λ2,−S + λ2 + λ3)− ξ(λ1 + λ2,−S + λ1 + λ2 + λ3) =

= ξ(λ2,−S + λ1 + λ2 + λ3)− ξ(λ2, λ1)− ξ(λ1 + λ2,−S + λ1 + λ2 + λ3) =

= −ξ(λ1,−S + λ2 + λ3) + ξ(λ1, λ2).
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3. λ1 + λ2 ≥ S, λ2 + λ3 6≥ S:

dG1(λ1, λ2, λ3) =

= µ0(λ1)
(
ξ(−S + λ1 + λ2 + λ3, λ2 + λ3)− ξ(−S + λ1 + λ2, λ2)

)
+

+ µ0(λ2)
(
ξ(λ1,−S + λ1 + λ2 + λ3)− ξ(λ1,−S + λ1 + λ2)

)
+

+ µ0(λ3)
(
− ξ(λ1 + λ2,−S + λ1 + λ2 + λ3) + ξ(λ1,−S + λ1 + λ2 + λ3)

)
,

[ξ, dµ0](λ1, λ2, λ3) =

= µ0(λ1)
(
ξ(−S + λ1 + λ2, λ3)− ξ(λ2, λ3)

)
+ µ0(λ2)ξ(−S + λ1 + λ2, λ3) + µ0(λ3)ξ(λ1, λ2).

As before we see that in
(
dG1 − [ξ, dµ]

)
(λ1, λ2, λ3) the term before µ(λ1) vanishes.

4. λ1 + λ2 6≥ S, λ2 + λ3 6≥ S
In this case we have(

dG− [ξ, dµ]
)
(λ1, λ2, λ3) = dG1(λ1, λ2, λ3) =

= µ0(λ1)ξ(−S + λ1 + λ2 + λ3, λ2)+

+ µ0(λ2)
(
ξ(λ1,−S + λ1 + λ2 + λ3)− ξ(−S + λ1 + λ2 + λ3, λ3)

)
+

+ µ0(λ3)ξ(−S + λ1 + λ2 + λ3, λ2).

Corollary 6.2.3. Every element of T 1(−S) ∼= H2
(1)(−S) can be written as dµ0 for some

µ ∈ H1
(1)(Λ \ Λ(S); k).

Let ξ ∈ H2
(2)(−R) ∼= H2

(2)(Λ,Λ \ Λ(R); k). The product [dµ0, ξ] ∈ H3
(2)(−R − S) is equal to the

cohomological class of the element

(δ(G), d(G)− [dµ0, ξ]) ∈ C2
(2)(K

R+S
1 ; k)⊕ C3

(2)(Λ; k)

in the total complex of the complex C•(2)(K
R
• ; k) (see Section 3.3, where also the map δ is

defined). Note that the map d(G) − [dµ0, ξ] has many zeros by Proposition 6.2.2 and thus we
can easily compute it (see Example 13).

After applying the differentials d on the double complex in Figure 6.1, we obtain for j, k ≥ 1 :

Ej,k1 = Hj+k−1
(j) (A)⇒ Hj+k−1(C•p(A)[1]),

where d1 = −[µp, ·] : Ej,k1 → Ej+1,k
1 . We have E1,2

1 = H2
(1)(A) ∼= T 2(A) and E2,2

1 = H3
(2)(A).

The map d1 : E1,2
1 → E2,2

1 is the special case of the product analyzed in Proposition 6.2.2.
In the following example we collect some results from previous chapters in order to compute

the Poisson cohomology groups of the Poisson structure defined in Example 9.
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Example 13. Let Xσn = Spec(An) be the Gorenstein toric surface given by g(x, y, z) =
xy − zn+1. In Section 3.5 we saw that Λn := σ∨n ∩M is generated by S1 := (0, 1), S2 := (1, 1)
and S3 := (n+ 1, n), with the relation S1 + S3 = (n+ 1)S2. We have

dimkH
2
(1)(−R) = dimkH

3
(2)(−R) =

{
1 if R = kS2 for 2 ≤ k ≤ n+ 1
0 otherwise

by Corollary 3.5.3 and Example 8. Moreover, T 2(An) ∼= H3
(1)(An) = E1,3

1 = 0 by Example 8.
From the proof of Theorem 2.5.9 it follows that for i ≥ 3 we have T k(i)(An) = 0 if k 6= i − 1, i
and

T i−1
(i) (An) ∼= T i(i)(An) ∼= An/(

∂g

∂x1
,
∂g

∂x2
,
∂g

∂x3
).

The later has k-dimension equal to n. Since T i−1
(i) (An) ∼= H2i−1

(1) (An) and T i(i)(An) ∼= H2i
(i)(An)

we see that Ej,k2 = Ej,k∞ holds for every j, k ≥ 1.

H1
(1)(An)

H2
(1)(An)

0

0

0 0 0 H8
(4)(An) H9

(5)(An)

0

0

0

0

H2
(2)(An)

H3
(2)(An)
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(2)(An)

0

0

0

H5
(3)(An)

H6
(3)(An)

0

0

0

H7
(4)(An)

........................................................................................... ............
d1

............................................................................................................................... ............
d1
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d1
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d1
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................................................................................................................................................................... ............
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................................................................................................................................................................... ............
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............................................................................................................................... ............
d1

Figure 6.2: The spectral sequence terms Ej,k1 for 1 ≤ j, k ≤ 5

We focus now on the Poisson structure πg from Example 9. We proved that

πg(x
λ1 , xλ2) = f0(λ1, λ2)x−S2+λ1+λ2 ,
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where f0 is skew-symmetric and bi-additive with f0(S1, S3) = −(n + 1). Thus we see that
πg ∈ H2,−S2

(2) (An). Let gn := C•p(An)[1]. From a straightforward computation we see that
d1 : H1

(1)(An)→ H2
(2)(An) is surjective (we can also check this using [33, Lemma 3.1]).

Let {µ̄k ∈ T 1,−kS2(An) | 2 ≤ k ≤ n + 1} be a basis of T 1(An) ∼= H2
(1)(An), such that µ̄k is

represented by µk ∈ C1
(1)(Λ \ Λ(kS2); k) with

µk(λ) =

{
a if λ = aS3, for a ∈ N
0 otherwise .

From Proposition 6.2.2 we can immediately see that dG = [πg, dµ
0
k] holds (in all cases),

G(λ1, λ2) = 0 for λ1 +λ2 6≥ R+S and thus δ(G) = 0. We conclude that [πg, µ̄k] = 0 ∈ H3
(2)(An)

for all 2 ≤ k ≤ n + 1 and thus d1 : H2
(1)(An) → H3

(2)(An) is the zero map. Thus from the
spectral sequence arguments we are able to compute the most important cohomology groups
from deformation theory point of view: H1(gn) and H2(gn). We see that

H1(gn) ∼= H2
(1)(An) ∼= T 1(An)

and
H2(gn) ∼= H3

(2)(An).

Thus dimkH
1(gn) = dimk T

1(An) = n (this was already proven with different methods in [33,
Lemma 3.1]) and also dimkH

2(gn) = dimkH
3
(2)(An) = n.
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Zusammenfassung

In dieser Arbeit untersuchen wir die Hochschild Kohomologiegruppen affiner torischer Va-
rietäten und ihre Anwendung in der Deformationsquantisierung und kommutativen Defor-
mationstheorie. Wir können die n-te Hochschild Kohomologiegruppe in die direkte Summe
T 0

(n)(A)⊕ T 1
(n−1)(A)⊕ · · · ⊕ Tn−1

(1) (A) zerlegen, wobei T k(i)(A) die höheren André-Quillen Koho-
mologiegruppen sind.
Unter bestimmten Annahmen berechnen wir die Dimensionen der Hodge-Summanden T 1

(i)(A),
was existierende Resultate über André-Quillen Kohomologiegruppen T 1

(1)(A) von Sletsjøe und
Altmann aus [6] verallgemeinert. Insbesondere berechnen wir T 1

(i)(A) für alle i ∈ N im Falle
von zwei- und dreidimensionalen affinen torischen Varietäten. In höheren Dimensionen berech-
nen wir T 1

(i)(A) für affine Kegel über glatten torischen Fano-Varietäten. Das Verständnis der
Hochschild Kohomologie ist wichtig für die Deformationsquantisierung. Ein Hauptergebnis
hinsichtlich der Existenz der Deformationsquantisierung ist Kontsevichs Formalitätssatz [40,
Theorem 4.6.2], der impliziert, dass jede Poisson-Struktur auf einer reellen Mannigfaltigkeit
quantisiert werden kann, d.h. ein Sternprodukt zulässt.
Kontsevich [39] erweiterte auch den Begriff der Deformationsquantisierung auf den Kontext

der algebraischen Geometrie. Für singuläre Varietäten gilt Kontsevichs Formalitätstheorem
nicht mehr. Wir zeigen jedoch, dass jede Poisson Struktur auf einer möglicherweise singulären
affinen torischen Varietät im Sinne von Deformationsquantisierung quantisiert werden kann.
Für kommutative Deformationen torischer Varietäten geben wir eine konvex-geometrische

Beschreibung der Harrison Cup-Produktformel T 1
(1)(A) × T 1

(1)(A) → T 2
(1)(A). Dies ermöglicht

eine Beschreibung der quadratischen Gleichungen des versellen Deformationsraums.
In dieser Arbeit erhalten wir des Weiteren einige allgemeinere Ergebnisse, die auch für Vari-

etäten, die nicht notwendigerweise torisch sind, gelten. Beispielsweise berechnen wir die n-ten
Kohomologiegruppen einer reduzierten isolierten Hyperflächensingularität. Außerdem konstru-
ieren wir eine differentielle graduierte Lie Algebra g, die die Possion Deformationen einer all-
gemeinen affinen Varietät kontrolliert.
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