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Chapter 1

Introduction

1.1 The Origins of Quantum-Chemistry

In the introduction to an article about the exchange interaction of indistinguishable par-
ticles [1] (1929) Paul Dirac famously stated that “The underlying physical laws necessary
for [...] the whole of chemistry are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much too complicated to be soluble.”
This situation has hardly changed since despite the impressive progress of computers. In
1926 Schrödinger [2] succeeded in predicting the spectral lines of the hydrogen atom with
perfect accuracy. The correctness of his equation was demonstrated early on for one- and
two-electron systems such as He, H+

2 and H2. Together with the harmonic oscillator and the
rigid rotor, which were also solved by Schrödinger, these are still the only few examples for
which an exact solution can be obtained either by analytical or by numerical means. Never-
theless the knowledge of the electronic structure has advanced greatly thanks to the clever
approximate solutions that were developed in the meantime. These approximations were
accepted despite the huge simplifications inherent in them because they could reconcile
experimental observations known to chemists and spectroscopists such as the multiplet
structure of atomic spectra or the extraordinary stability of benzene with quantum me-
chanical principles. The first milestone was the explanation of the chemical bond between
neutral atoms by Heitler and London [3]. Another milestone on the road to a manageable
description of electronic structure was laid in 1928 by Hartree [4]. (The method was cor-
rected later by Fock [5] to take into account the indistinguishability of electrons.) Hartree
replaced the mutual interaction of electrons in an atom by a central non-Coulomb field that
is generated by the charge distribution of all electrons. This mean field approximation in
conjunction with the spherical symmetry reduced the Schrödinger equation, which for an
atom with N electrons is a 3N dimensional partial differential equation, to an ordinary dif-
ferential equation so that it could be integrated numerically using pen and paper. This also
introduced the important concept of the single particle orbital, that delineates the region
in space where an electron can be found. This intuitive picture of non-interacting electrons
has become the centerpiece of many models in physical chemistry. It is for instance pos-
sible to predict the course of some photochemical reactions using only the conservation
of orbital symmetry, that is to say without any calculations (These Woodward-Hoffmann
rules were awarded the 1981 Nobel prize in chemistry [6]).

A major step in tackling large molecules was undertaken by Erich Hückel in a series of
articles [7] in 1931. It was known for quite some time that heats of formation and stabil-
ities of the benzene molecule and several heteroaromatic rings such as pyrrole could not
be explained by Kekulé’s idea of single and double bonds, that are constantly swapping
places. Lewis structures of molecules were based on little more than distributing electrons
over bonds without violating the number valences each atom can have. Hückel surmised
that the number of 6 electrons in the benzene ring, that were not used up in any single
bond, was related to the extraordinary stability. Applying the laws of quantum mechanics
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for wavefunctions approximated as linear combinations of atomic p-orbitals arranged in a
circle he showed that closed shells of π electrons occur in rings for 2,6 and 10 electrons.

Quantum chemistry experienced a boost by the advent of electronic computation. With
computational resources being initially scarce early calculations were limited to π-electronic
systems (e.g. the Pariser-Parr-Pople method [8]) where semiempirical approximations
were employed for the electronic integrals. Calculations based on first principles (ab-
initio), that relied on nothing more than fundamental constants, became feasible because of
improved integral routines and faster computers. With the introduction of Gaussian basis
sets by Boys [9] and well-defined, reproducible quantum chemical models (such as HF/6-
31G*) mainly by Pople [10] through the development of the Gaussian program, quantum
chemistry methods were formalized. Model chemistries could be improved consistently
by increasing the basis set on the one hand (eventually up to the Hartree-Fock limit) and
the level of correlation (up to the full-configuration interaction limit) on the other hand.
A host of quantum chemical methods, denoted by acronyms such as MP2, FCI, CCSD,
CISD(T), MRCI-CASSCF, that are referred to pejoratively as alphabet soup, were invented
to add static and dynamic correlation effects to the mean-field solutions leading to gigantic
linear algebra problems. Provided sufficient computational power, the electronic structure
of any small molecule could at least in principle be determined with chemical accuracy
(1 kcal/mol). But to the extent that the accuracy of a wavefunction-based calculation in-
creases, the understanding gets buried in the numerics.

In his 1999 Nobel lecture [11] Walter Kohn brings two arguments that speak against
wavefunction-based quantum mechanics: The first is practical in nature and states that
the scaling behaviour of wavefunction-based methods is so steep, that they encounter an
’exponential wall’, which essentially precludes their application to all but the smallest sys-
tems. The second one is more philosophical: Even if computational power were no issue,
the number of bits needed to fully record the wavefunction of a large molecule would easily
exceed the number of particles in the universe. The exponential wall is also encountered in
another form known as the ‘Van Vleck catastrophe‘: The overlap between the exact wave-
function and an approximate wavefunction decreases exponentially with the number of
degrees of freedom, requiring unrealistically high accuracies. The concept of a wavefunc-
tion thus loses its meaning for very large systems. On the other hand, expectation values
such as the total energy or density etc. retain their meaning.

1.2 DFT - the Workhorse of Theoretical Chemistry

In the 1960s the theoretical foundations for density functional theory (DFT) were laid, but
it was not until the 1990s that it was widely adopted in theoretical chemistry and material
sciences. The Hohenberg-Kohn theorem proves that the total electron density determines
the Hamiltonian and thus the ground state wavefunction uniquely (up to an unimpor-
tant global phase factor), so that if we know the density all other information about the
system can be derived from it. Whereas the wavefunction is a complex function depend-
ing on the coordinates of all electrons, the density is only of function of 3 spatial coor-
dinates and can be easily visualized. Using the density as the basic quantity that carries
all the information comes with a catch: The functional that relates the density to the to-
tal energy is unknown and the searches for the holy grail of the exact density functional
were all frustrated. Nonetheless, computationally feasible approximate density function-
als proved very successful for describing molecules around their equilibrium structures.
Starting from the local density approximation (LDA) many different functionals were de-
veloped. Some of them contain free parameters that have to be fitted, while some are built
around the paradigm that density functionals should respect certain relations known to
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be true for the exact (but unknown) functional (PBE). Others attempt to fix known short-
comings of simpler functionals (such LC-PBE). Although density functionals are some-
times arranged into a hierarchy that resembles the different rungs of a (Jacob’s) ladder [12]
(leading from the simplest and local density approximation to increasingly more complex
exchange-correlation functionals and eventually to quantum mechanical heaven), there is
no guarantee that the accuracy increases as we climb up the ladder. The choice of the func-
tional depends on the problem at hand. Although the Hohenberg-Kohn theorems are exact
and apply to any system, the approximate density functionals are often too simplistic for
biradicals, bond breaking and many other situations.

The Runge-Gross theorem [13], which in analogy with the Hohenberg-Kohn theorem
for the ground state established the one-to-one relation between a time-dependent Hamil-
tonian and a time-dependent density, allowed the extension of DFT to excited states. The
formulation of linear-response time-dependent DFT by Casida [14] gave a practical method
for computing excited states. Its use of the adiabatic approximation, which neglects the his-
tory of the density, leads to the wrong description of charge transfer in the excited state:
charge transfer states occur at energies that are lower than the electrostatic energy required
to separate two charges.

Nowadays DFT calculations are ubiquitous in chemistry, biochemistry and material
science; not only in an academic setting but also in industry due to their favorable scaling
with system size. Likewise the number of studies and publications using DFT in one way
or the other has exploded in the last decade. DFT and TD-DFT are routinely used for
parametrizing force fields in pharmaceutical companies or screening potential dyes for use
in light-emitting diodes. DFT has become the method of choice for getting a first overview
of the electronic structure of a material, despite all its shortcomings.

Conventional DFT calculations for the total energy scale as O(N3) with the number of
atoms. Linear scaling approaches that employ special tricks such as sparse matrix alge-
bra, localization of orbitals and fast Fourier transforms achieve a scaling of O(N) on large
computer clusters [15]. Single point calculations on 10 000s of atoms are thus feasible. The
’crossover point’ is a measure for the minimal system size where linear scaling codes out-
perform cubic-scaling approaches. This number is still relatively high, so that the speed-up
that can be achieved by parallelization for medium-sized molecules saturates quickly.

TD-DFT calculations, which give access to the excitation spectra of materials, scale for-
mally as O(N4) because of the number of Coulomb matrix elements that have to be eval-
uated. With density fitting using auxiliary basis sets the scaling can be reduced to O(N3)
[16]. This limits the applicability of TD-DFT to 100s of atoms, although test calculations
on much larger systems have been reported [16]. It is important to keep in mind that the
O(·) notation informs only about the relative increase in running time for large numbersN ,
but not about actual running times. These depend on the scaling prefactor and vary with
the details of the implementation and system (gapped or metallic, exchange-correlation
functional, basis set, etc.).

Another point is that in practice limited computer resources have to be shared between
different users. Hogging an entire computer cluster to perform a linear scaling calculation
on a single molecular geometry that outputs a single number after running for days, is not
a fruitful scientific proposition. The typical workflow for investigating the photophysical
properties of a material from a theoretical perspective consists of many steps that require
the electronic structure, such as optimizations of the geometry in the ground and excited
state, searches for transition states, prediction of absorption and emission spectra, etc. If
we add to this (non-adiabatic) molecular dynamics simulations to gain information about
reaction rates or free energies, then the required electronic structure calculations number in
the millions. To obtain statistically significant rate constants for photochemical reactions,
simulations have to be repeated many times with different initial conditions. Since the
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computational effort scales linearly with the number of simulations and number of time
steps, the size of systems, whose photochemistry can be investigated with ab initio TD-
DFT, is one or two orders of magnitude smaller than for single point calculations. State
of the art non-adiabatic dynamics simulations based on TD-DFT (such as the study of the
photochemistry of benzylideneaniline [17], previtamin D [18] or pyrene dimer [19]) are
limited to dozens of atoms. The bottom line is that dynamics simulations require more
efficient electronic structure methods. This is the main motivation of this thesis.

1.2.1 Tight-binding DFT

Tight-binding DFT (abbreviated as DFTB) [20] is a highly efficient simplified version of TD-
DFT that relies on several semiempirical approximations. The origins of the tight-binding
approximation go back to the 1954 article [21] by Slater and Koster. In their study of peri-
odic potentials they replaced the Bloch waves that extend over the entire crystal by linear
combinations of atomic orbitals and assumed that the matrix elements are non-zero only
between orbitals located on nearby centers. Many of the non-zero matrix elements are re-
lated by symmetry. Knowing the non-redundant matrix elements at certain high-symmetry
points in the Brillouin zone allowed to determine the entire band structure of several crystal
structures. Initially tight-binding studies were limited to calculations of the band structure.

Later it was realized that a tight-binding scheme can be interpreted as a Taylor ex-
pansion of density functional theory around a stationary reference density [22]. The pa-
rameters of the tight-binding model can thus be extracted from atomic DFT calculations.
In molecules chemical bonding is accompanied by redistribution of charge from less to
more electronegative atoms. To account for deviations from a reference density of indi-
vidually neutral atoms, the self-consistency cycle was added by Elstner and Frauenheim
[22] to equilibrate the charges (SCC-DFTB). While in full DFT, the Kohn-Sham Hamilto-
nian depends implicitly on the electronic density, in SCC-DFTB it depends on the charge
deviations from the reference density on each atom. The price to be paid for the high
efficiency [23] of tight-binding DFT is a strong dependence on the parametrization: Ma-
trix elements for constructing the Hamiltonian are precalculated for atomic orbitals that
vary with the chosen functional (electronic parametrization). Since only the valence elec-
trons are accounted for in the electronic parametrization, the repulsion between the nuclei
and core electrons has to be fitted to pairwise potentials (repulsive parametrization). This
means that there is no unique tight-binding DFT method. Parametrizations can be op-
timized for certain molecule classes, however transferable parameter sets need to find a
balanced description of different systems. The working equations of tight-binding DFT are
very similar to the older wavefunction-based semiempirical methods, the difference being
that the parameters in semiempirical methods are fitted to experimental data such as heats
of formation or bond lengths, while tight-binding DFT is fitted to theoretical quantities
(computed with full DFT), which are much easier to obtain.

Tight-binding DFT permits atomistic modelling of materials on the nanoscale [24]. The
speed of DFTB even allows to explore chemical reactivity in real time. This was demon-
strated with a haptic device that permits a user to touch and manipulate molecules with
her fingers and feel the resisting forces [25]. Different extensions of DFTB were made,
among them the non-equilibrium Green’s function formalism for modeling transport phe-
nomena of electronic semiconductor devices [26]. Most important for our purposes is
Niehaus’ extension for the calculations of optical properties by adapting TD-DFT to the
tight-binding scheme [27]. Unfortunately the tight-binding approximation inherits all the
shortcomings of TD-DFT, that become more problematic with increasing system size. With
a local exchange-correlation functional unphysical low charge-transfer states show up in
the spectra of large molecular aggregates. Since the wrong charge-transfer states are dark,
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the absorption spectrum is not affected, however, in non-adiabatic molecular dynamics
simulations these artificial electronic states trap the wavepacket and present a distorted
picture of the dynamics. In this thesis a long-range correction is introduced that suppresses
spurious charge-transfer states.

1.3 Time-Resolved Spectroscopy

Excited electronic states are extremely short-lived and often decay to the ground state
within femto- or picoseconds via different mechanisms with emission of radiation or with-
out. Despite their transient nature excited states and the mechanisms by which they decay
play important roles in photosynthesis, vision and many technological applications (such
as organic solar cells or light-emitting diodes). For a molecule to be excited it has to absorb
a photon. This happens all the time in our eyes, where a small chromophore is excited
and changes its shape, so as to signal to the surrounding protein that a photon has been
absorbed. This information is passed on to the nervous system and eventually reaches the
brain that assembles a colorful image. The initial steps in vision are extremely fast. The
photon is absorbed within an attosecond (10−18 of a second) while isomerization of the
retinal molecule takes femtoseconds (10−15 of a second). Something similar occurs in the
green leaves of plants: Chlorophylls are arranged in circles that function as antennas for
harvesting sun light. After the absorption of a photon the excitation hops between differ-
ent chlorphylls until it is channeled into the reaction center. There the photon energy is
expended to split water and extract the electrons for reducing carbon dioxide. The trans-
port of the excitation energy to the reaction center happens within picoseconds (10−12 of a
second). The chromophores in the eye and the photosystem return quickly to their original
state after performing their duty. No permanent change is caused by the interaction with
light.

Studying these processes on their natural time-scales was not possible, until ultrafast
light pulses became available. One cannot simply synthesize and isolate excited molecules
and store them in a flask on a shelf. This means that experiments for the characterization of
excited states have to create them in situ and probe them before they disappear, requiring
very high time-resolution. These time-resolved experiments can be compared to making a
movie of a hummingbird flapping its wings. Only if the frames are taken at a rate faster
than the flapping motion, can the different positions of the wings be distinguished and
analyzed. Of course no mechanical shutter of a camera can operate at a frequency of 1015

Hz. However electromagnetic fields in the visible and infrared range oscillate with such
frequencies, e.g. infrared light with a wavelength of 800nm corresponds to a frequency of
≈ 3.7× 1014 Hz. The role of the shutter is then taken by a sequence of precisely timed light
pulses that probe the sample with femto- or picosecond time resolution.

The discovery of the laser in the 1960s therefore revolutionized photochemistry and
spectroscopy. A laser amplifies the spontaneous emission of a gain medium sandwiched
between two mirrors. Through one of the mirrors, which is partially transparent, it emits
a coherent beam of identical photons. By modulating the quality factor (reflectivity) of the
output mirror, the laser beam can be chopped into pulses of nanosecond duration [28]. To
achieve femtosecond pulses, a technique called mode-locking is employed, where a fixed
phase relation between different modes propagating in the resonator is established, so that
the superposition of them creates a train of ultrashort pulses.

Ahmed Zewail [29] was one of the pioneers that exploited the new laser technology
in photochemistry. His goal was to watch the motion of the atoms in a photochemical
reaction. Before that only the educts and products could be observed but the transition
state through which the reaction proceeds remained elusive. In a series of pump-probe
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experiments conducted on NaI several important concepts were proven: Firstly the nu-
clear wavepacket is highly localized (≈ 0.1 Å) and spreads very little up to several ps.
Therefore the intuitive classical picture of a molecular trajectory is applicable. The nu-
clear wavepacket moves on a trajectory like a marble on a curved surface. This justifies
the notion of a reaction path leading from educts to photoproducts. Secondly, although in
the vacuum chamber a huge random ensemble of molecules is excited at the same time,
all identical molecules follow the same trajectory and the signal is thus amplified. These
findings are also relevant for the theoretical side, since they tell us that we can model the
dynamics of an excited molecule by a classical nuclear trajectory that moves on the elec-
tronic adiabatic potential energy surfaces.

Since Zewail’s proof of principle studies, time-resolved spectroscopy has evolved into
a valuable tool for studying light-induced dynamics in biologically relevant systems, also
thanks to the availability of faster and cheaper laser systems. Time-resolved fluorescence
and continuous wave transient-absorption spectroscopy are particularly popular since they
require only a single short pulse to initiate the dynamics. By recording the intensity and de-
polarization of the spontaneous emission or the change of the absorbance one can monitor
how fast the initial excitation decays and propagates through the system. In photoelectron
spectroscopy the second pulse ionizes the system and is sensitive to changes in the ioniza-
tion potentials and character of the electronic wavefunction. There is a price to be paid for
the high time-resolution, though. It is not straightforward to extract information from the
time-resolved spectra about the underlying dynamics because different physical processes
can happen that lead to overlapping signals.

FIGURE 1.1: Schematic diagram of singlet and triplet potential energy sur-
faces and photochemical processes. Radiative transitions are indicated by
arrows: absorption (A), stimulated emission (SE), fluorescence/spontaneous
emission (F). Non-radiative or non-adiabatic transitions: internal conversion
(IC) without change of spin, intersystem crossing (ISC) between different
spin states. Other processes: internal vibrational redistribution of energy
(IVR), dissociation in the excited state (D). Some of the different paths the
nuclear wavepacket can take after excitation to S2 are traced by the blue, red

and green curves.
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Fig. 1.1 gives a schematic overview of some of the various deactivation processes [30]:
Initially the nuclear wavepackets sits in the ground state, which is usually a singlet state,
S0. By absorbing a photon from the radiation field of the first pulse it can be excited to a
higher lying electronic state Sn, if the photon energy matches the excitation energy. In the
excited state the potential energy surface belonging to the new electronic configuration is
different, the nuclei start moving downhill. If other potential energy surfaces come close or
even cross, the wavepacket can partially hop to another surface and continue its path there.
This process is called internal conversion and is a non-adiabatic event, since in the vicinity
of an intersection the adiabatic potential energy surfaces cannot be separated. It occurs be-
tween states of the same multiplicity (singlet-singlet, triplet-triplet) and allows electronic
relaxation without the emission of radiation. The points where the surfaces cross are re-
ferred to as the intersection seam. Viewed in the space perpendicular to the intersection
seam, the two potential energy surfaces have the shape of two cones meeting at their tips.
These conical intersections act as efficient funnels through which the wavepacket can cross
non-radiatively from one surface to the other. If the ground state is connected through a
series of intersections with the higher lying states it is possible that the system returns all
the way to the ground state converting the absorbed photon energy into vibrational energy.
On the other hand, if a large energetic gap exists between the ground and higher excited
states, the nuclear wavepacket can only return to the ground state by spontaneous emis-
sion of a photon. Since part of the initial energy has been converted into kinetic energy,
the wavelength of the emitted photon is always larger than that of the initially absorbed
photon. The wavepacket can also be dumped to the ground state by the second light pulse
due to stimulated emission. Spin states with different multiplicities interact only very
weekly via spin-orbit coupling. However, if the wavepacket spends enough time in an
excited singlet state that lies slightly above a triplet state, the wavepacket can change its
spin state in a process called intersystem crossing. This process is favoured if the vibra-
tional levels of the two spin states overlap and its rate increases if heavy atoms are present.
The two-dimensional sketch in Fig. 1.1 conceals that large molecular systems have many
nuclear degrees of freedom, so that the wavepacket is spreading on a highly dimensional
manifold. If initially the excitation is confined to a few vibrational modes, it can quickly
distribute over other modes leading to vibrational relaxation. The number of vibrational
modes can be very high, especially when the excited system forms part of a molecular crys-
tal or is coupled to an environment such as a solvent. These vibrational modes act as a heat
bath that takes up the excess energy.

It is important to note that photochemical reactions are not governed by the same rules
as reactions on the ground state. There is no time to establish equilibrium between prod-
ucts and educts, since everything happens very fast. Reactions are determined by the
shape of the potential energy surfaces and the location of the intersections and can even
be controlled to some degree by shaping the light pulse [31], [32]. Depending on the vi-
brational modes into which the energy of the light pulse is initially injected, a molecule
can undergo isomerization or conformational changes or simply break up into fragments.
In large molecular aggregates, where the initial excitation is delocalized over many chro-
mophores, no breaking of chemical bonds is observed and the molecular structure remains
intact. However, additional processes have to be considered such as the transfer of excita-
tion between different subunits or the transfer of charge. In addition initially delocalized
excitations can localize and be trapped. Investigating these effects on an atomistic level is
important not only for understanding how photosynthesis works but also for designing
new materials that can act as light emitting devices or solar cells.

Many of the different processes highlighted in bold print compete with each other or
happen in sequence, which makes it hard to distinguish them: The fluorescence can be
diminished because of intersystem crossing. Vibrational relaxation or internal conversion
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in a band of close electronic state both lead to a lowering of the emission energy. The in-
terpretation of time-resolved experiments is thus complicated by the overlap of different
signals. Some experimental techniques such as 2D spectroscopy or angle-resolve photo-
electron spectroscopy try to spread the signal over additional axes to disentangle the dif-
ferent processes. But the analysis of the additional spectral information is still far from
straightforward. Therefore experiments in photochemistry often have to be accompanied
by theoretical calculations. One approach for interpreting time-resolved measurements is
to try to simulate the experiment as faithfully as possible on a computer. In such a the-
oretical experiment every bit of information is directly accessible. Even the shape of the
light-pulse can be included explicitly [33], [34]. The final outcome is then compared with
the experimental outcome and if the two match the underlying dynamics can be deduced.
These simulations are extremely time-consuming and require efficient electronic structure
methods to be feasible at all. In this thesis one such method will be presented.

1.4 This Thesis

The goal of this thesis is to develop a method that allows to simulate light-induced dy-
namics in large molecular systems. This requires an effective way of computing potential
energy surfaces and the non-adiabatic couplings between them. Since TD-DFT offers the
best compromise between accuracy and speed, but is still too slow for the purpose of large
scale simulations, a tight-binding approximation based on TD-DFT is used. Large molec-
ular aggregates pose challenges to existing tight-binding DFT methods: The most serious
problem is the presence of unphysical charge transfer states in the low-energy region of
the spectrum. Therefore an extension for tight-binding TD-DFT is developed that shifts
these states to their correct energetic position by adding a long-range correction. Such a
correction already exists for full TD-DFT and is based on the idea that Hartree-Fock the-
ory describes long-range charge transfer correctly, while the absence of exact exchange in
non-hybrid density functionals is to blame for its failure. The exchange integrals of the
Coulomb interaction are approximated differently depending on the distance: At short
range the DFT exchange is used, while at long range it is substituted by the exact Hartree-
Fock exchange.

The main methodological contribution of this work is the incorporation of the long-
range correction into tight-binding DFT. Analytical gradients for excited state energies are
worked out using the auxiliary functional approach. Being able to compute excite state gra-
dients analytically is an important prerequisite for exploring light-induced reaction mech-
anisms and running molecular dynamics simulations.

The second contribution consists in using the developed electronic structure method
as a driver for simulations of the non-adiabatic dynamics, in a way that is suitable for
large molecules. Not all techniques that work for isolated small molecules can be carried
over to larger molecular assemblies. When molecules aggregate many almost degenerate
electronic states arise that are only weakly coupled. When surfaces come close or the nu-
clear velocity is large, the Born-Oppenheimer approximation that allows the separation
between fast electronic and slow nuclear degrees of freedom, breaks down. In this situa-
tion the electrons do not remain in the instantaneous eigenstate of the current electronic
Hamiltonian but show a tendency to populate nearby eigenstates. The most popular and
straightforward theoretical approach for treating such non-adiabatic transitions is Tully’s
surface hopping [35] method. With a probability that is roughly proportional to the elec-
tronic populations of the instantaneous eigenstates, the nuclear trajectory hops to another
state and continues its motion on the new state.
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In large molecular assemblies many of the electronic states are only weakly coupled
but cross frequently, leading to numerical instabilities that require special care. Arrange-
ments of chromophores that couple only weakly to each other are ubiquitous in nature
and technological applications: light-harvesting antennas, dyes and organic photovoltaic
devices, to name only a few. If a molecular aggregate contains many identical units, bands
of exciton states develop, with many states in a small energy interval. As the physical
coupling between the states decreases, the energy splitting between the exciton states de-
creases and the non-adiabatic couplings become more and more peaked. In the extreme
case of no diabatic coupling, the exciton states become degenerate and the non-adiabatic
couplings turn into δ-functions. Since the labels of adiabatic states are tied to the ener-
getic order, every time two states switch their order, the non-adiabatic coupling exhibits a
singularity that ensures the probability for hopping is 100%. This is problematic for nu-
merical integration schemes, as the singularity may be missed if the nuclear time step is
not small enough to resolve a peak in the non-adiabatic coupling. Also the integration
of the electronic Schrödinger equation is unstable if some coupling matrix elements are
huge. Following the work of Granucci et al. [36] this problem is solved by integrating the
electronic coefficients in a local diabatic basis.

As a byproduct of this thesis a code for tight-binding TD-DFT and molecular dynamics
simulations has been implemented from scratch and published [37]. Developing one’s own
code has the advantage that new ideas can be tested much more easily than when relying
on an existing code. Also the strengths and limitations of a method can be understood
much better when one is intimately familiar with its inner workings.

1.5 Outline

The first chapter is a recapitulation of the basics of non-relativistic molecular quantum me-
chanics and density functional theory, which may be skipped. The actual thesis is divided
into three parts that are subsumed under the titles “Electronic Structure”, “Dynamics” and
“Applications”. The nature of the first two parts is methodological. In chapter 3 tight-
binding TD-DFT is derived as an approximation to full time-dependent density functional
theory and the long-range correction is introduced. In chapter 4 the charge transfer prob-
lem in DFT is examined. Chapters 5 and 6 focus on the parametrization of the electronic
Hamiltonian and the fitting of repulsive potentials. Systematic tests of the long-range cor-
rected TD-DFTB method are performed in chapter 7. Analytical excited state gradients for
long-range corrected TD-DFTB are derived in chapter 8. The theory underlying the surface
hopping method, in particular in its formulation using a local diabatic basis, is reviewed
in chapter 9. The scope of application of the developed methodology is demonstrated in
the last part. Chapter 10 collects results from non-adiabatic molecular dynamics simula-
tions that shed light on the formation of excited dimers (excimers) in oligofluorenes and
the molecular crystal of pyrene. The last chapter concludes with a summary and a critical
assessment of tight-binding DFT.
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Chapter 2

Theoretical Background

In this chapter basic aspects of wavemechanics and density functional theory are summa-
rized. The presentation draws mostly on the two books [1] and [2] and the classical articles
in the field.

2.1 Basic Wavemechanics

Chemical systems are described by the time-dependent Schrödinger equation, which in
atomic units reads

ι̇
∂

∂t
Ψ = ĤΨ (2.1)

If relativistic effects are neglected, the Hamiltonian for an atom or molecule consisting of
N electrons and M nuclei is given by

Ĥ = T̂e + Vee + Vne + T̂n + Vnn (2.2)

It contains the kinetic energy of the electrons, T̂e =
∑N

i=1

(
−1

2∇
2
i

)
, the repulsion between

pairs of electrons at positions ri and rj , Vee =
∑

i<j
1

|ri−rj | , the attraction of electrons to the

nuclei with atomic numbers ZA and massesmA at positions RA, Vne =
∑N

i=1

∑M
A=1

(−ZA)
|ri−RA| ,

the kinetic energy of the nuclei, T̂n =
∑M

A=1

(
− 1

2mA
∇2
A

)
, and the repulsion between nuclei,

Vnn =
∑

A<B
ZAZB
|RA−RB | .

The nuclei are more than 2000 times heavier than the electrons and move much slower.
This is the basis for the Born-Oppenheimer approximation that separates the wavefunction
into the product of a nuclear and electronic part, Ψ = Ψelec ×Ψnuc. The nuclear wavefunc-
tion is further assumed to be highly localized so that the classical limit can be taken. The
nuclei are then treated as classical point particles whose positions enter as parameters into
the electronic Hamiltonian, which determines the electronic structure of the molecule via
the time-independent electronic Schrödinger equation

Ĥelec(R)Ψ
(i)
elec = E

(i)
elec(R)Ψ

(i)
elec (2.3)

with the electronic Hamiltonian

Ĥelec = Te + Vee +
N∑
i=1

v(ri) + Vnuc (2.4)

The first to terms Te+Vee are independent of the nuclear geometry, they only depend on the
number of electrons N , but have the same form for any electronic system. The molecular
geometry only enters through the so-called external potential v(r) =

∑M
A=1

(−ZA)
|r−RA| . The

nuclear kinetic and Coulomb energies are subsumed in the additive constant Vnuc, which
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does not influence the solutions. Solving the electronic Schrödinger equation 2.4 for the
ground state energy E(0) or excited state energies E(i) is the basic goal of any electronic
structure method.

The electronic eigenvalues E(i)
elec(R) depend parametrically on the nuclear geometry

R = (R1, . . . ,RM ). In a molecule, where the nuclei move and R(t) is time-dependent, the
electronic Hamiltonian changes and consequently the electronic wavefunctions and ener-
gies fluctuate. The adiabatic theorem [3] states that, if the changes of the nuclear geometry
are sufficiently slow, the electrons will remain in the same electronic state i belonging to
the instantaneous Hamiltonian Ĥelec(R(t)). How slow the changes have to be for the adia-
batic theorem to hold, depends on the energy separation between neighbouring electronic
states. If the electronic levels come close or intersect or the velocity of the nuclei is high,
adiabaticity breaks down and the electronic wavefunction may become a linear combina-
tion of instantaneous eigenstates. This process is called a non-adiabatic transition and will
be the subject of chapter 9 in this thesis.

For now, processes due to nuclear dynamics are neglected, the nuclear positions are
assumed to be fixed and the attention is limited to the electronic wavefunction (dropping
the subscript and denoting it simply by Ψ). In the position representation Ψ is a function
of N spatial coordinates ri and spin coordinates si, which are combined into the sym-
bol xi, Ψ = Ψ(x1,x2, . . . ,xN ). The wavefunction is normalized,

∫
Ψ∗ΨdxN = 1, so that

Ψ∗ΨdxN can be interpreted as the probability to find electrons with certain spins and po-
sitions. The probability should not change if two particles are exchanged, since electrons
are identical particles that cannot be distinguished. This imposes the additional restriction
on the wavefunction, that it can only change by a global phase, if two of its arguments are
swapped. More specifically electrons are Fermions (with half-integer spin) and the wave-
function should be antisymmetric under exchange of particles.

To obtain a basis for the N -particle Hilbert space, one starts with a basis for the 1-
particle Hilbert space consisting of orthonormal spin-orbitals ψi(x) = φi(r)σ(s), where φi
is a spatial orbital and σ is a two-dimensional unit vector in spin space. An antisymmetric
function for N electrons is constructed by selecting N single-particle spin orbitals with
indices I = {i1, i2, . . . , iN} and arranging them as the columns of a determinant, which
naturally has the desired antisymmetry under exchange of columns or rows:

ΨI(x1, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣
ψ1(x1) · · · ψN (x1)

...
. . .

...
ψ1(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣ (2.5)

All possible Slater determinants that can be constructed in this way form a complete or-
thonormal basis of the Hilbert space of all antisymmetric N -electron wavefunctions [4] .

Any trial vector Ψ̃ in that Hilbert space that is not equal to the ground state wavefunc-
tion has a higher energy than the ground state,

Ẽ =

∫
Ψ̃∗(xN )ĤΨ̃(xN )dxN ≥ E(0) (2.6)

This variational principle allows one to set up a trial wavefunction as a linear combination
of Slater determinants (also termed configurations) and find the best approximation to the
ground state wavefunction by optimizing the single-particle orbitals and/or the expansion
coefficients so that the expectation value of the energy becomes minimal. In its most direct
form, this approach requires the computation of huge numbers of matrix elements of the
type

HIJ =

∫
Ψ∗IĤΨJdx

N (2.7)
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and turns the Schrödinger equation into a gigantic linear algebra problem. Although
conceptually simple, this method is impractical unless the number of orbitals (the basis
set) and the number of configurations are limited to a finite size. Wavefunction-based
quantum chemistry algorithms differ in how the basis set and configurations are selected
and optimized: The basis functions may be numerically exact atomic orbitals, generalized
Gaussian-type or Slater-type functions fitted to reproduce atomic orbitals approximately,
or plane waves. The Hartree-Fock (HF ) method, which will be discussed below, uses only a
single Slater determinant and searches for the best orbitals. The complete active space self-
consistent field method (CASSCF ) [5] takes a small number of relevant configurations and
optimizes both the orbitals and the coefficients of the configurations. The resulting ground
state wavefunctions are good first approximations but the energy can always be lowered
by including more configurations, in particular those which differ by no more than 2 or 3
orbitals from the reference Slater determinants. The effect of the additional configurations
can be taken into account either perturbatively or explicitly by solving an enlarged linear
algebra problem using the optimized orbitals, resulting in methods termed MP2 (2nd or-
der Møller-Plesset perturbation theory [6]) or CISD(T) (configuration interaction with sin-
gle and double excitations from the Hartree-Fock ground state and perturbatively added
triple excitations). Coupled-cluster (CC ) [7] methods generate the linear combination im-
plicitly by application of a non-linear operator to a reference state, so that the number of
parameters that have to be optimized is reduced.

The accuracy of wavefunction calculations can be increased consistently by approach-
ing the limit of a complete basis for the the single-particle states and by including more
and more configurations until reaching the full configuration interaction limit. But the
wide application of these methods is hampered by the steep scaling of computation time
with the system size (determined by the number of basis functions and electrons N ): The
HF method scales nominally as N4, MP2 and CISD as N5 although tricks in the implemen-
tation such as localized orbitals and screening of electron integrals reduce the exponents
slightly.

2.1.1 Hartree-Fock approximation

The Hartree-Fock approximation consists in approximating the ground state by the best
single Slater determinant ΨHF of the form in eqn. 2.5. The expectation value for the energy
is given by

EHF =

∫
Ψ∗HFĤΨHFdx

N =
N∑
i=1

Hii +
1

2

N∑
i,j=1

(Jij −Kij) (2.8)

where

Hii =

∫
ψ∗i (x)

(
−1

2
∇2 + v(x)

)
ψi(x)dx (2.9)

and

Jij =
∫ ∫

ψi(x1)ψ∗i (x1) 1
|r1−r2|ψ

∗
j (x2)ψj(x2)dx1dx2 (2.10)

Kij =
∫ ∫

ψ∗i (x1)ψj(x1) 1
|r1−r2|ψi(x2)ψ∗j (x2)dx1dx2 (2.11)

are the matrix elements for the Coulomb interaction. Since the electronic density of a single
Slater determinant built from N orthonormal spin orbitals equals

ρ(r) =

∫
Ψ∗HF

N∑
i=1

δ(r− ri)ΨHFdx1 · · · dxN =

N∑
i=1

ψ∗i (r)ψi(r) (2.12)
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the first part of the Coulomb interaction can be identified as simply half the classical elec-
trostatic repulsion of the charge density with itself:

J [ρ] =
1

2

N∑
i,j=1

Jij =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ (2.13)

The second part Kij does not have a classical analogue and is due to the antisymmetry of
the wavefunction under exchange of particle labels. It is called the exchange energy. Since
Jii = Kii, this term is responsible for canceling the electrostatic interaction of an electron
with itself.

The minimization of the energy with respect to the orbitals is constrained to maintain
the orthogonality among orbitals by adding a Lagrange multiplier εij for each pair of or-
bitals. The necessary condition for a minimum becomes:

δ

EHF −
∑
ij

εij

(∫
ψ∗i (x)ψj(x)dx− δij

) = 0 (2.14)

Variation with respect to the orbitals leads to the Hartree-Fock equations

F̂ψi(x) =
N∑
j=1

εijψj(x) (2.15)

with the Fock operator

F̂ = −1

2
∇2 + v(r) + ĵ − k̂. (2.16)

The action of the operator ĵ on an orbital is

ĵψi(x) =

∫
ρ(r′)

|r− r′|
ψi(x)dr′ =

∫
VH(r)ψi(x)dr (2.17)

where the Hartree potential VH , the solution of the Poisson equation ∇2VH = −4πρ, is the
electrostatic potential generated by the electric charge of all electrons. The action of the
operator k̂ is

k̂ψi(x) =

N∑
k=1

∫
ψ∗k(x

′)ψi(x
′)

1

|r− r′|
dx′ψk(x) (2.18)

and cannot be expressed in the form of a local potential since it involves the exchange of
the orbital i for a weighted sum of the other orbitals.

Equation 2.15 can be brought into a more convenient form. A unitary transformation
mixing the N orbitals, ψ′ = Uψ, which is chosen to diagonalize the Hermitian matrix εij of
Lagrange multipliers, gives the canonical Hartree-Fock equations

F̂ ′ψ′i = ε′iψ
′
i (2.19)

This eigenvalue equation has to be solved self-consistently, since the Fock operator de-
pends on the orbitals through the Coulomb operator ĵ − k̂. Equation 2.19 is reminiscent
of the Schrödinger equation for a single electron (or many non-interacting electrons) in an
effective potential v̂eff = −1

2∇
2 + v(r) + ĵ− k̂. Even in the absence of electron interaction in

the Hamiltonian, the electrons still have to respect Pauli’s exclusion principle. Therefore in
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the ground state of the fictitious non-interacting system, for which the Hartree-Fock equa-
tions would give the exact single-particle orbitals, electrons occupy the lowest N orbitals
with the energies εi for i = 1, . . . , N . The Hartree-Fock energy in eqn. 2.8, however, is not
simply the sum of the occupied orbital energies, but is given by

EHF =
N∑
i=1

εi −
1

2

N∑
i,j=1

(Jij −Kij) (2.20)

Hartree-Fock theory is a mean-field approximation. What is neglected is the repulsion
felt by an electron from the others at their instantaneous positions [8]. Instead each electron
experiences only the averaged field of all other electrons (excluding the interaction with
itself). Since the motions of electrons in mean-field theory are uncorrelated, the missing
energy is called the correlation energy. It is defined as the difference between the exact
ground state energy and the Hartree-Fock energy:

Ecorr = E − EHF (2.21)

As such it is not an observable quantity. The Hartree-Fock orbitals are the starting point for
correlated calculations using methods such as configuration interaction or coupled cluster,
as mentioned above. Obtaining the missing correlation energy becomes very cumbersome
for large systems due to the exponential scaling of the dimension of the Hilbert space.
Nevertheless for chemical applications the correlation energy is often crucial. For systems
that are too large for correlated calculations, Hartree-Fock theory therefore has been mostly
superseded by density functional theory, which is superficially similar to Hartree-Fock the-
ory, but has the potential to give the exact ground state energy, at least in principle.

2.2 Basic Density Functional Theory

An alternative route to finding the energy and observable properties of the ground state,
which circumvents the determination of the wavefunction, is density functional theory.
Even in wavefunction theory, knowledge of the full ground state wavefunction is not re-
quired to evaluate the ground state energy exactly. In fact, the reduced density matrix of
2nd order [4] that can be obtained by integrating out all but two electronic coordinates,

γ2(x1x2,x
′
1x
′
2) =

N(N − 1)

2

∫
. . .

∫
Ψ∗(x1x2x3 · · ·xN )Ψ(x′1x

′
2x3 · · ·xN )dx3 · · · dxN

(2.22)
is sufficient, since the Hamiltonian contains only the one-particle operators

(
−1

2∇
)

and
v(r) and the two-particle operator |r − r′|−1. Therefore the energy expectation value for a
system with N > 1 electrons can be expressed in terms of γ2 exactly [4] :∫

Ψ∗ĤΨdxN = E[γ2] =

∫ ∫ [(
2

N − 1

(
−1

2
∇2

1 + v(r1)

)
+

1

|r1 − r2|

)
γ2(x′1x2,x1x2)

]
x′1=x1

dx1dx2

(2.23)
The square brackets in E[γ2] denote that the total energy is a functional of the 2nd order
reduced density matrix. However, trying to minimize the ground state energy by search-
ing for the optimal γ2 has not been successful so far, since the range of variation is not
clear; it is not known exactly which constraints γ2 has to fulfill to be derivable from an
antisymmetrized wavefunction according to eqn. 2.22 .
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Density functional theory goes beyond this by asserting that the total ground state en-
ergy is a functional of the electronic density alone:

E(0) = E[ρ(r)] (2.24)

The place of the wavefunction as the all-defining quantity is taken by the density

ρ(r) = N

∫
· · ·
∫

Ψ∗(rs1, r2s2, . . . , rNsN )Ψ∗(rs1, r2s2, . . . , rNsN )ds1dr2ds2 · · · drNdsN
(2.25)

which is a much simpler object than Ψ, since it only depends on three spatial coordinates
and that independently of the number of electrons.

The Hohenberg-Kohn theorem [9] proves in a very simple way by contradiction that
two external potentials v1(r) and v2(r) necessarily result in different ground state densities
ρ1(r) and ρ2(r). This establishes a bijective mapping between ground state density and
external potential:

ρ(r)↔ v(r) (2.26)

The density thus uniquely determines the external potentials. Since the Hamiltonians of
all molecules with N electrons only differ by the external potential, i.e. by the nuclear
geometry, the density uniquely determines the Hamiltonian and thus the ground state en-
ergy and all other properties. Several wavefunctions might give rise to the same density
but only one of them is the ground state. The minimization of the electronic energy as a
functional of the density can be mentally decomposed into a constrained search [10]:

E[ρ] = Min
ρ

{
Min
Ψ→ρ

∫
Ψ∗ (Te + Vee) ΨdxN +

∫
ρ(r)v(r)dr

}
(2.27)

The outer minimization ranges over all densities with ρ(~r)≥0 that integrate toN electrons.
The inner minimization extends over all wavefunctions that give rise to the particular den-
sity. This formulation is not useful in practical calculations, since it requires minimization
over all wavefunctions, but it brings out the idea, that the energy functional separates into
two parts: (1) A universal functional of the density,

F [ρ] = Min
ρ

{
Min
Ψ→ρ

∫
Ψ∗ (Te + Vee) ΨdxN

}
(2.28)

whose exact form in terms of the density ρ is unknown and (2) the electrostatic interaction
of the electron density with the external potential. If the functional F [ρ] were known, the
total energy of any molecule, defined by the molecular potential v(~r) and the number of
electrons N , could be obtained directly as

E[ρ] = F [ρ] +

∫
ρ(r)v(r)dr (2.29)

Some subtleties concerning the domain of the functional F [ρ] have to be noted. Not every
function ρ(r) of three coordinates is an acceptable input. For an acceptable density there
has to exist a potential v that gives rise to a ground state with that density. This require-
ment is called v-representability. A weaker requirement called N-representability limits
the domain to densities derived from N -electron wavefunctions [10]. In fact any positive,
well-behaved function ρ(r) that integrates to N is N-representable as can be shown by
a constructive proof [11]. The situation where an N -representable density that is not v-
representable would have a lower energy than the true v-representable ground state den-
sity can never occur by the proof in [10]. v-representability is therefore not an issue.
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The functional F can be broken down into the contributions from kinetic energy T ,
classical Coulomb repulsion, non-classical exchange K and the correlation energy:

F [ρ] = T [ρ] + J [ρ]−K[ρ] + Ecorr[ρ] (2.30)

J is known exactly (see eqn. 2.13) and it remains to find approximations for the other
functionals of the density.

2.2.1 Thomas-Fermi-Dirac Theory

The oldest approximation is Thomas-Fermi-Dirac theory [12]–[14], which predates the rig-
orous foundations of density functional theory. In Thomas-Fermi-Dirac theory the corre-
lation is neglected and approximate expressions are sought for T [ρ] and K[ρ] such that
E[ρ] ≈ EHF. The idea is to use exact expressions derived for the uniform electron gas
and apply them locally to systems with nonuniform densities such as atoms or molecules.
However, the general form of the kinetic and exchange functionals can be derived with-
out resorting to the homogeneous electron gas by assuming that locally the kinetic and
exchange energy are just functions t(·) and k(·) (not functionals) of the density:

T [ρ]−K[ρ] ≈
∫
t(ρ(r))dr−

∫
k(ρ(r))dr (2.31)

This assumption already determines the functional form of t(·) and k(·) as can be shown
by a scaling argument [2]: If the spatial coordinates are dilated by a factor λ, i.e. r → λr, a
scaled wavefunction and its electron density can be defined as:

Ψλ(rN ) = λ
3N
2 Ψ(λrN ) (2.32)

and
ρλ(r) = λ3ρ(λr) (2.33)

where rN = (r1, . . . , rN ) stands for the spatial coordinates of all electrons and the prefactors
λ

3N
2 and λ3 result from the normalization conditions requiring

∫
Ψ∗λΨλdr

NdsN = 1 and∫
ρλdr = N . The kinetic energy of the scaled wavefunction is

T [Ψλ] =

∫
Ψ∗(λrN )

(
N∑
i=1

−1

2
∇2

r

)
Ψ(λrN )

(
λ3NdrNdsN

)
. (2.34)

The variable transformation r′ = λr with∇r = ∇r′λ relates the kinetic energy of the scaled
wavefunction to that of the unscaled wavefunction:

T [Ψλ] = λ2T [Ψ] (2.35)

= λ2

∫
t(ρ(r))dr (2.36)

On the other hand, if the scaling relation is deduced directly from the local density approx-
imation in eqn. 2.31, one gets

T [ρλ] =

∫
t
(
λ3ρ(λr)

)
dr (2.37)

= λ−3

∫
t
(
λ3ρ(r′)

)
dr′. (2.38)
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Equating the integrands in eqns. 2.36 and 2.38 gives λ2t(ρ) = λ−3t
(
λ3ρ
)
. By renaming

λ3 = µ, one finds that t(·) is a homogeneous function of degree 5/3, i.e. t(µρ) = µ5/3t(ρ), or

t(ρ) = CFρ
5/3 (2.39)

A similar argument holds for the exchange energy. Because the Coulomb operator ex-
pressed in the scaled position variables is

1

|r1 − r2|
=

λ

|λr1 − λr2|
=

λ

|r′1 − r′2|
, (2.40)

the exchange energy scales as
K[Ψλ] = λK[Ψ] (2.41)

and one finds
k(ρ) = Cxρ

4/3. (2.42)

Thus the Thomas-Fermi-Dirac (TFD) energy functional becomes

ETFD[ρ] = CF

∫
ρ(r)5/3dr +

∫
v(r)ρ(r)dr + J [ρ]− Cx

∫
ρ(r)4/3dr. (2.43)

The prefactors CF and Cx cannot be determined by the scaling analysis alone; the deriva-
tion based on the homogeneous electron gas gives

CF = 2.8712 and Cx = 0.7386. (2.44)

Thomas-Fermi-Dirac theory has several deficiencies: The optimal density does not exhibit
the shell structure expected in atoms or molecules and compared to Hartree-Fock theory
the predictions for total energies are rather poor. Thomas-Fermi (TF) theory, which differs
from TFD by the absence of the exchange term K, does not even predict any binding for
molecules [15]. The failure is not surprising since the density in a molecule or atom is far
from uniformly distributed. To first order the inhomogeneity of the density can be taken
into account by making the functionals depend also on the gradient of the density ∇ρ(r).
For the kinetic energy functional the gradient correction due to Weizsäcker is [16]

TW [ρ] =
1

8

∫
|∇ρ(r)|2

ρ(r)
dr. (2.45)

Unfortunately, higher-order gradient corrections do not improve the kinetic functional.
A different road to evaluating the kinetic energy, the Kohn-Sham scheme, is the subject of
the next section.

2.2.2 Kohn-Sham Method

To evaluate the kinetic energy almost exactly Kohn and Sham [17] introduced the notion of
a fictitious system of non-interacting electrons that gives the same electron density as the
interacting system. For non-interacting electrons, the exact wavefunction is a single Slater
determinant of orthonormal spin-orbitals ψi(x), with the density given by

ρ(r) =

N/2∑
i=1

∑
s=↑,↓

|ψi(r, s)|2 (2.46)



2.2. Basic Density Functional Theory 23

and the kinetic energy by

Ts =

N/2∑
i=1

∑
s=↑,↓

∫
ψ∗i (r, s)

(
−1

2
∇2

)
ψi(r, s)dr. (2.47)

The orbitals are nothing more than an auxiliary construct introduced to parametrize the
density in such a way, that the kinetic energy may be calculated easily. Since for any ad-
missible density ρ(r), a set of orbitals satisfying eqn. 2.46 can always be found, it does
not matter if the energy is minimized as a functional of the density or as a functional of
the orbitals. The Euler-Lagrange equations for minimizing the energy with respect to the
orbitals are the so-called Kohn-Sham equations, which are very similar to the Hartree-Fock
equations. Their canonical form is(

−1

2
∇2 + veff(r)

)
ψi(x) = εiψi(x) (2.48)

The difference to HF theory is that the effective mean-field potential is local and accounts
both for exchange and correlation:

veff(r) = v(r) +
δ

δρ(r)
(T [ρ]− Ts[{ψi}i=1,...,N ] + J [ρ]−K[ρ] + Ecorr[ρ]) (2.49)

The kinetic energy of the non-interacting system, Ts[{ψi}i=1,...,N ], does not have to be ex-
actly the same as that of the interacting system, T [ρ] . The deviation between the two is also
absorbed into the effective potential. The computation of J [ρ] poses no problem. The parts
of the effective potential whose exact form is unknown, are combined into the exchange-
correlation potential, which is the functional derivative of the exchange-correlation energy:

Exc[ρ] = T [ρ]− Ts[{ψi}i=1,...,N ]−K[ρ] + Ecorr[ρ] (2.50)

vxc[ρ](r) =
δExc
δρ(r)

(2.51)

If the exact form of Exc[ρ] were known, solving the Kohn-Sham equations self-consistently
would produce N single-particle orbitals that would have the same density as the true
ground state. The Kohn-Sham method turns density functional theory into a practical tool
for quantum-chemistry. When the kinetic energy is computed from orbitals, even the local
density approximation gives rise to shell structure and reasonable binding in molecules.

Exc is usually rewritten in terms of the exchange and correlation energies εx and εc per
particle and volume (neglecting the small deviation from the kinetic energy):

Exc =

∫
ρ(r) (εx[ρ] + εc[ρ]) dr (2.52)

Finding improved approximations for Exc is an active field of research. While the ex-
act functional will probably never be discovered, many properties that the exact functional
must have, could be determined. These are used to guide the design of approximate den-
sity functionals with as few empirical or fitted parameters as possible. Many of these func-
tionals contain corrections to the local density approximation. The uniform electron gas,
for which the exchange and kinetic energy functionals are known exactly and the correla-
tion energy can be computed exactly by Monte-Carlo integration [18] (see Fig. 2.1), is still
a very important ingredient in all functionals.
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FIGURE 2.1: Energies per particle of the spin-compensated uniform electron
gas (n↑ = n↓). rs is defined as the radius of a sphere containing one electron

(small rs - high density, large rs - low density) [18]

2.2.3 Time-Dependent Density Functional Theory

In wavefunction theory excited states can be obtained as eigenfunctions belonging to higher
eigenvalues for a properly formulated eigenvalue problem in the Hilbert space. While the
accurate description of excited states may require more diffuse basis sets or the inclusion of
very large numbers of configurations, there is no conceptual difference to determining the
ground state. In Kohn-Sham DFT the explicit construction of the ground state wavefunc-
tion is avoided and the Slater determinant of Kohn-Sham orbitals only has significance
in as much as it determines the electron density of the system. The Kohn-Sham eigen-
value problem may be manipulated into producing excited states by placing electrons in
higher-lying orbitals instead of the lowest N and maintaining this occupation during the
self-consistent field (SCF) cycles. This ∆SCF-method (for recent work see [19]) is justified
if the excited states differ in spin- or spatial symmetry from the ground state. However,
if the symmetry of the ground and excited states are the same, the calculation collapses
to the ground state or is fraught with convergence problems. Another extension of DFT
to excited states, which requires only minor changes in the Kohn-Sham formalism, is the
constrained DFT method [20]. By adding constraints on the density (using Lagrange mul-
tipliers), which fix the total charge on certain fragments of a molecule, convergence to the
lowest state satisfying these constraints can be enforced. This method is particularly suit-
able for determining charge transfer states, for which the expected charge distribution is
known beforehand. The ∆SCF-method can also be understood as variant of constrained
DFT, in which the constraints are imposed on the orbital occupation.

A rigorous approach to excited states in the frame of DFT requires its extension to the
time domain. Time-dependent DFT (TD-DFT) is like its ground state counterpart an exact
theory. It is equivalent to the time-dependent Schrödinger equation, but practical calcu-
lations are always limited by the quality of approximations for the exchange-correlation
functional. The derivation relies on the time-dependent variational principle, according to
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which the wavefunction Ψ(t) has to make the action functional

A[Ψ(t),Ψ∗(t)] =

∫
〈Ψ(t) | ι̇ ∂

∂t
− Ĥ(t) | Ψ(t)〉dt (2.53)

stationary. The Euler-Lagrange equation following from δA
δΨ = 0 is the time-dependent

Schrödinger equation. Runge and Gross showed [21] that in analogy with the Hohenberg-
Kohn theorem for the ground state, the density ρ(r, t) determines the nuclear potential
v(r, t) up to an additive constant. (The proof that the mapping v(r, t)→ ρ(r, t) is invertible
is not as simple as for the ground state and is subject to certain restrictions). When the
initial state Ψ(t = 0) is given and the external potential v(r, t) is known for all times, the
total Hamiltonian Ĥ(t) and thus the entire time-evolution of the system are uniquely deter-
mined. Therefore the Runge-Gross theorem states that the time-dependent wavefunction
is a functional of the time-dependent density and the initial state (up to an unimportant
global phase). The action in eqn. 2.53 is therefore also a functional of the density (instead
of Ψ and Ψ∗). By separating out the external potential and writing

A[ρ(r, t)] =

∫
〈Ψ(t) | ι̇ ∂

∂t
− T̂ − V̂ee | Ψ(t)〉dt︸ ︷︷ ︸
B[ρ(r,t)]

−
∫
ρ(r, t)v(r, t)dt (2.54)

it is clear that the part called B[ρ(r, t)] is universal for any system with N electrons. Since
ρ(r, t) determines the action as uniquely as does the wavefunction, one can also obtain
the stationary states by variation with respect to ρ(r, t), i.e. δA

δρ(r,t) = 0, or by variation
with respect to the time-dependent orbitals of a non-interacting electron system giving rise
to the same density, i.e. δA

δψi(r,t)
= 0. The Euler-Lagrange equations for the last type of

variation are the time-dependent Kohn-Sham equations(
−1

2
∇2 + veff(r, t)

)
ψi(x, t) = ι̇

∂

∂t
ψi(x, t) (2.55)

The time-dependent effective potential is given by

veff(r, t) = v(r, t) +

∫
ρ(r, t)

|r− r′|
dr′ + vxc(r, t) (2.56)

where vxc(r, t) is the functional derivative of the exchange-correlation part of the action,

Axc[ρ(r, t)] =

∫ (
〈Ψ(t) | V̂ee | Ψ(t)〉 − J [ρ(r, t)]

)
dt (2.57)

with respect to the time-dependent density,

vxc(r, t) =
δAxc
δρ(r, t)

. (2.58)

Everything that is hard to compute has been lumped into Axc and any deviation between
the kinetic energy in the interacting and the non-interacting system has been again ne-
glected. As in ground state DFT the potential vxc[ρ](r, t) is unknown, but finding its exact
form is a much taller order still, since it depends on the density at all positions and all
times. In the adiabatic approximation the exchange-correlation potential for time-dependent
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DFT is taken as the exchange-correlation potential for the ground state evaluated at the in-
stantaneous density ρt:

vxc[ρ](r, t) ≈ vxc[ρt](r) (2.59)

The adiabatic approximation is a local approximation in time, similarly as the local den-
sity approximation is a local approximation in space. It implies that the same functionals
developed for the ground state can be employed in time-dependent density functional the-
ory. The neglect of the history of the density is dictated by the need for computational
simplicity rather than being justified theoretically.

The time-dependent Kohn-Sham equations 2.55 open different paths to excited states
and electron dynamics: (1) Starting with the ground state Kohn-Sham orbitals the effect
of an external electric field can be studied by propagating the orbitals in time. (2) In the
absence of an external field, the excitation spectrum is obtained more efficiently via time-
dependent linear response theory: If a system in its ground state is exposed to a weak
oscillating electric field the mean polarizability blows up when the frequency of the field
coincides with an excitation energy. The excitation energies and oscillator strengths can
therefore be identified as the poles and pole strengths of the mean polarizability, for which
expressions can be derived in the frame of TD-DFT [22]. The resulting non-Hermitian
eigenvalue problem is known as Casida’s equation.

Casida’s equation. A simplified derivation assumes that the ground state Kohn-Sham
orbitals and energies are known from the time-independent Kohn-Sham equations

Ĥ0
KSφ

0
i (x) = εiφ

0(x) (2.60)

where the KS Hamiltonian Ĥ0
KS is defined in eqn. 2.48. A weak perturbation will induce a

time-evolution in the orbitals. To linear order, the perturbed orbitals are

φi(x, t) = e−ι̇εit
(
φ0
i (x) + δφi(x, t)

)
. (2.61)

e−ι̇εit is the dynamical phase of the unperturbed orbital, while the induced time-dependence
is contained in δφi(x, t). If the perturbing field with frequency ω is in resonance with the
system, the response of the orbitals to the field should oscillate with the same frequency.
The orbital perturbation can be expanded into a linear combination of the unperturbed
virtual orbitals:

δφi(x, t) =
∑
b∈virt

(
e−ι̇ωtXib + eι̇ωtYib

)
φ0
b(x) (2.62)

Since the Kohn-Sham Hamiltonian depends on the orbitals via the density, the perturbation
will also induce a change in the Hamiltonian, to linear order,

ĤKS = Ĥ0
KS + δHKS (2.63)

with

δHKS =

∫ ∫
δHKS[ρ](r, t)

δρ(r′, t′)
δρ(r′, t′)dr′dt′

≈
∫
δHKS[ρt=0](r)

δρ(r′)

∑
j∈occ

(
φ0∗
j (x′)δφj(x

′, t) + φ0
j (x
′)δφ∗j (x

′, t)
)
dx′.

(2.64)

From the first to the second line in eqn. 2.64 the adiabatic approximation was made and
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the density change was expressed in terms of the orbital changes. To first order the time-
dependent Kohn-Sham equation for the occupied orbitals i, ĤKSφi = ι̇ ∂∂tφi, becomes:(

Ĥ0
KS − εi − ι̇

∂

∂t

)
δφi(x, t) + δHKSφ

0
i (x) = 0 (2.65)

Substituting eqns. 2.62 and 2.64 into the perturbed Kohn-Sham equation 2.65, multiplying
from the left by a virtual orbital φ0∗

a (x), integrating and using the orthogonality of the
unperturbed orbitals gives∫

φ0∗
a (x)

(
Ĥ0
KS − εi − ι̇

∂

∂t

)
δφi(x, t)dx =

∑
b∈occ

δab (εa − εi)
(
e−ι̇ωtXib + eι̇ωtYib

)
− δabω

(
e−ι̇ωtXib − eι̇ωtYib

) (2.66)

and∫
φ∗a(x)δĤKSφi(x)dx =∑

j∈occ

∑
b∈virt

{∫ ∫
φ0∗
j (x′)φ0

b(x
′)
δHKS[ρ](r)

δρ(r′)
φ0∗
a (x)φ0

i (x)dx′dx×
(
e−ι̇ωtXjb + eι̇ωtYjb

)
+

∫ ∫
φ0∗
b (x′)φ0

j (x
′)
δHKS[ρ](r)

δρ(r′)
φ0∗
a (x)φ0

i (x)dx′dx×
(
eι̇ωtX∗jb + e−ι̇ωtY ∗jb

)}
(2.67)

The above integrals involving four orbitals can be abbreviated in analogy with the two-
electron integrals (in chemist’s notation) as

[kl|mn] =

∫ ∫
φ0∗
k (x′)φ0

l (x
′)
δHKS[ρ](r)

δρ(r′)
φ0∗
m (x)φ0

n(x)dx′dx (2.68)

Since eqn. 2.65 must hold for all times t and since e−ι̇ωt and eι̇ωt are independent of each
other, the perturbed Kohn-Sham equations can be split into two equations. If one further
assumes, that the orbitals are real so that X∗jb = Xjb and Y ∗jb = Yjb, one finds:

∑
j∈occ

∑
b∈virt

δijδab(εa − εi)
(
Xjb

Yjb

)
+

(
[jb|ai] [bj|ai]
[bj|ai] [jb|ai]

)(
Xjb

Yjb

)
= ω

(
Xia

−Yia

)
(2.69)

By introducing the matrices

Aia,jb = δijδab(εa − εi) + [jb|ai] (2.70)
Bia,jb = [bj|ai] (2.71)

which operate on the direct product space of occupied and virtual spin orbitals (with di-
mension Nocc ×Nvirt), Casida’s equation may be written compactly as:(

A B
−B −A

)(
X
Y

)
= ω

(
X
Y

)
(2.72)

The length of the eigenvectors is fixed by the normalization condition 〈X+Y | X−Y〉 = 1.
Special methods have been developed to solve this non-Hermitian eigenvalue problem
[23]. For non-hybrid functionals it is convenient to transform it into a Hermitian eigenvalue
problem. Adding and subtracting the upper and lower blocks of eqn. 2.72, one obtains the
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equivalent equations

(A + B)(X + Y) = ω(X−Y) (2.73)
(A−B)(X−Y) = ω(X + Y) (2.74)

It then follows that

(A−B)(A + B)(X + Y) = (A−B)ω(X−Y) = ω2(X + Y) (2.75)

If (A − B) is positive definite (for non-hybrid functionals it is in fact diagonal), the trans-
formation

F = (A−B)−1/2(X + Y) (2.76)

turns eqn. 2.75 into the Hermitian eigenvalue problem

(A−B)1/2(A + B)(A−B)1/2F = ω2F (2.77)

Note that the eigenvalues are now the squares of the excitation energies.
TD-DFT “wavefunctions”. A column FI of the matrix of eigenvectors may be given

the meaning of a TD-DFT “wavefunction” for the I-th excited state. The “wavefunction”
of the excited state Ψ̃I is a linear combination of all single excitations i→ a from the Kohn-
Sham reference determinant Ψ0:

Ψ̃I =
∑
ia

CIiaâ
†
aâiΨ0 (2.78)

The normalized excitation coefficients are related to the eigenvector FI by

CIia =
√
ωIF

I
ia (2.79)

The reader might raise the eyebrow at this point and ask why the wavefunction concept is
brought back again through the backdoor. The “wavefunction” Ψ̃I is certainly not iden-
tical to the ΨI that would come out of wavefunction theory. Like the non-interacting
Kohn-Sham system, that was introduced to compute the kinetic energy exactly, it should
be understood merely as an aid to simplify computations; the TD-DFT “wavefunction”
allows to classify excited states by symmetry, compute oscillator strengths and evaluate
non-adiabatic couplings in the same manner as in wavefunction theory.

In the end, from a technical point of view, the implementations of Kohn-Sham DFT
and Hartree-Fock are very similar. Likewise, TD-DFT is based on working equations that
are almost identical to TD-HF or the Random Phase Approximation (RPA). The advantage
of DFT is that it already contains a part of the correlation energy despite being a mean-
field theory. As single-reference methods, DFT and TD-DFT work best around equilibrium
geometries and become less reliable in the region of bond formation and breaking, and fail
completely for systems with considerable multi-reference character such as biradicals.

In addition, approximate DFT is afflicted by some new problems, which are absent in
Hartree-Fock theory. Most important in the context of this thesis is the failure of many
functionals to describe long-range charge transfer correctly (see chapter 4 later), which
can be traced back to the local density approximation (LDA) in the exchange-part of the
functionals. Another source of error in LDA is the spurious interaction of an electron with
itself. The simplest example for this is the hydrogen atom: Although it has only a single
electron, in LDA the exchange-correlation potential is not zero and the repulsion of the
electron from its own density raises the ground state energy by more than 50% above the
exact value of -0.5 Hartree. Rydberg states of molecules are also affected, since they contain
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electrons in diffuse hydrogen-like orbitals, so that the Rydberg series does not converge
to the ionization energy. In a molecule with total nuclear charge Z and N electrons, the
electrostatic potential experienced by a loosely-bound electron at a distance r from the
ionic core should tend to ((N − 1)− Z) /r, i.e. be slightly attractive for an overall neutral
molecule, but LDA assumes (N − Z)/r, i.e. no attraction for N = Z. Therefore LDA fails
to predict the binding of an extra electron in anions [24].

New functionals attempt to fix these shortcomings by adding gradient corrections which
enforce the proper asymptotic limit [25] or self-interaction corrections [26] rather than try-
ing to come closer to the exact functional. The most important families of functionals are
reviewed shortly in the next section.

2.2.4 The Zoo of Density Functionals

Functionals are often developed separately for the exchange- and the correlation-part.
Most of them contain one or more of the following ingredients:

LSDA. The local spin density approximation [27], [28] (LSDA) distinguishes between
densities for spin-up and spin-down electrons and allows for spin-polarization. Exc de-
pends not only on the total density ρ(r) = ρ↑(r) + ρ↓(r) but also on the relative excess
of spin-up electrons ζ(r) = [ρ↑(r) − ρ↓(r)]/ρ(r). As in LDA, the expressions of the spin-
polarized uniform electron gas are transferred locally to the inhomogeneous situation in
molecules or atoms, so that the exchange-correlation energy density εLSDA

xc (r) depends only
on the density and spin polarization at the same position r:

ELSDA
xc [ρ↑, ρ↓] ≈

∫
ρ(r)εLSDA

xc (ρ(r), ζ(r)) dr (2.80)

LSDA improves, for example, the description of dissociation in H2, which requires that
the spin-pairing of the electrons may be broken in order to lower the energy of the two
separated hydrogen radicals.

GGA. The generalized gradient approximation (GGA) [29] allows for inhomogeneities
in the density to have an effect on εxc via the local density gradient:

EGGA
xc [ρ↑, ρ↓] =

∫
ρ(r)εGGA

xc (ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)) dr (2.81)

Compared to LDSA, GGA improves atomization energies and softens bonds.
Hybrids and Range-Separation. Since Hartree-Fock theory does not suffer from self-

interaction (see section 2.1.1) and charge transfer problems related to the approximate ex-
change functionals, these errors can be partially repaired by hybrid functionals which re-
place a fixed amount of the DFT exchange-energy by “exact exchange”. Exact exchange
refers to the Hartree-Fock expression EHF

x = −1
2

∑
i,jKij (see eqn. 2.8) evaluated for the

Kohn-Sham orbitals. Hybrid functionals still show a wrong asymptotic behaviour of the
exchange energy (for large interelectronic distances), unless the fraction of exact exchange
reaches 100%. Range-separated hybrids (RSH) are based on the observation, that mostly
the wrong asymptotic long-range behaviour of the pure, i.e. non-hybrid, functionals is
to blame for aforementioned deficiencies. The Coulomb potential is formally split into a
short- and long-range part,

1

r
=

(
1

r

)sr

+

(
1

r

)lr

=
1− [α+ β erf(µr)]

r
+
α+ β erf(µr)

r
, (2.82)

where erf(·) is the error function and µ is an adjustable parameter (R = 1
µ is the distance

at which the switch from short to long range happens). For the short range part of the



30 Chapter 2. Theoretical Background

Coulomb interaction, the exchange energy is computed from the density, but for the long-
range part the exact HF exchange is calculated from the orbitals:

ERSHx = Esr
x + Elr,HF

x (2.83)

For α = 0 and β = 1, tuning of µ allows to interpolate smoothly between Hartree-Fock
exchange (µ = +∞) and pure DFT exchange (µ = 0), with the long-range corrected (LC)
functionals [30] lying in between the two extreme cases. The Coulomb-attenuated method
(CAM) [31] adds a small fraction of exact HF exchange independently of distance. Values
of µ, α and β for common functionals are shown in table 2.1.

Functional µ α β

HF +∞ 0 1
LDA 0 0 1

LC [30] 0.4− 0.53 0 1
CAM [31] 0.33 0.19 0.47

TABLE 2.1: Share of short-, long-range and exact exchange for different types
of functionals according to eqn. 2.82.

The combinatorics of different approximations and corrections for Ex and Ec produces
a large number of unique density functional approximations and new ones are added reg-
ularly. The most-used functional B3LYP, for instance, is the following linear combination
of local, GGA-like and hybrid building blocks [32]:

EB3LYP
xc = (1− a0)ELSDA

x + a0E
HF
x + ax∆E88

x + acE
LYP
c + (1− ac)EVWN

c (2.84)

where ∆E88
x [25] is a gradient correction for the exchange energy, ELYP

c [33] and EVWN
c [28]

are two gradient-corrected correlation functionals and a small fraction of exact Hartree-
Fock exchange EHF

x is mixed in, too. The parameters a0 = 0.2, ax = 0.72 and ac = 0.81
were fitted to heats of formation of small molecules.

2.2.5 Semiempirical DFT

Semiempirical molecular orbital theories such as the PPP, MNDO or AM1 models for
closed-shell molecules rely on the following expression for computing the total ground
state energy,

E =
∑
µ,ν

PµνH
′
µν +

1

2

∑
µ,ν,λ,σ

PµνPλσ

[
(µν|λσ)′ − 1

2
(µσ|λν)′

]
, (2.85)

where Pµν is a density matrix and H ′µν and (µν|λσ)′ are a parametrized single-particle
Hamiltonian and electron integrals. The methods differ by which terms are neglected or
how the remaining terms are assembled from parameters for each element. The dash (´ ) in-
dicates that the values of the matrix elements are set at will (usually by a fitting procedure),
rather than being computed as integrals of some orbitals.

Expression 2.85 looks like the total energy in Hartree-Fock theory. However, semiem-
pirical methods are not parametrized to reproduce total HF energies. A large amount of
correlation energy is included by modifying H ′µν and the electron integrals. In the MNDO
method [34], for instance, the semiempirical electron integrals are much smaller than the
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analytical integrals, because they contain correlation effects. The parameters for the Hamil-
tonian and the integrals are fitted to experimental geometries, heats of formation and ion-
ization energies. The models often succeed in predicting molecular properties better than
Hartree-Fock theory. From the point of wavefunction theory it is difficult to justify why
the mean-field expression 2.85 should be able to account for correlation. After the discov-
ery of density functional theory it was noted that the semiempirical MO methods can be
understood as an approximation to Kohn-Sham theory [35].

The tight-binding DFT method presented in the next chapter is derived directly from
density functional theory and as opposed to the other semiempirical methods mentioned
above, the parametrization is based on DFT calculations rather than experimental data.
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Chapter 3

Tight-binding TD-DFT with
long-range correction

Tight-binding DFT (DFTB) [1]–[3] and its time-dependent formulation TD-DFTB [4], [5] are
semi-empirical methods based on (TD)-DFT [6]–[8] that inherit many of the advantages
and shortcomings of the latter. The failure of TD-DFT to describe charge transfer states
[9] is particularly severe if one deals with extended molecules or oligomers with a large
degree of conjugation. These charge transfer states, which appear at unphysically low
energies, can be removed if a long-range exchange term is included, leading to the long-
range corrected TD-DFT [10].

In the tight-binding formulation this correction can also be included at some additional
computational cost. The possibility to include a range separated functional into DFTB has
been explored before by Niehaus and Della Sala [11]. They generate the pseudo atom basis
starting from a full DFT calculation on a single atom with a range-separated functional.
This changes the electronic parametrization and makes the pseudoatoms depend on the
long-range correction. Then they consistently add the first order correction arising from the
long-range correction in the tight-binding Kohn-Sham equations and the linear response
formalism.

Here instead, a much simpler (maybe less rigorous) approach is proposed, where the
existing electronic parameters (pseudo atoms and Hubbard parameters) are left untouched.
Since the usual DFTB parametrizations are based on a local density approximation (LDA),
the long-range exchange can be incorporated by simply adding the attenuated exact ex-
change energy Elr

x to the total electronic ground state energy. For the calculation of ex-
cited states, a long-range correction term is added to the coupling matrix in the spirit of
CAM-B3LYP [12]. The exchange integrals are then approximated by products of transition
charges as usual. The distance at which the exact exchange is gradually switched on is
controlled by new a parameter Rlr (equivalent to 1/µ in the notation of Ref. [10]) that can
be adjusted to fit excitation energies to CAM-B3LYP results or experimental values.

Parts of this chapter were already published by the author in Refs. [13] and [14] and are
reproduced with permission.

3.1 TD-DFTB : Expansion around Reference Density

Many review articles have been written about DFTB [15], [16], for a pedagogical introduc-
tion see [3]. To make clear at which points we introduce modifications, we recapitulate
here the basics of DFTB and TD-DFTB. Some aspects that are only touched upon in this
section will be elaborated in full detail in later chapters.
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To derive the DFTB Hamiltonian, one starts with the full DFT energy functional [17]

E[ρ] =
∑
α

fa〈φα |
(
−1

2
∇2 +

∫
Vextρ

)
| φα〉+

1

2

∫ ∫ ′ ρρ′

|~r − ~r′|
+ Exc[ρ] + Enuc (3.1)

where φα are the Kohn-Sham orbitals of the system of non-interacting electrons with the
occupation numbers fα, Vext is the potential the nuclei exert on the electrons, as well as any
external electric field, Exc is the exchange-correlation functional and Enuc the energy due
to Coulomb repulsion between nuclei. One proceeds by expanding the energy around a
reference density, ρ = ρ0 + δρ, to second order in δρ. The reference density ρ0 is a superpo-
sition of atomic densities of the individually neutral atoms, while the redistribution of the
electron density δρ is a result of the chemical bonding.

After rearranging the expansion of the energy functional,

E[ρ0 + δρ] ≈
∑
α

fα〈φα |
(
−1

2
∇2 + Vext + VH [ρ0] + Vxc[ρ0]

)
| φα〉

+
1

2

∫ ∫ ′(δ2Exc[ρ0]

δρδρ′
+

1

|~r − ~r′|

)
δρδρ′

− 1

2

∫
VH [ρ0]ρ0(~r) +

(
Exc[ρ0]−

∫
Vxc[ρ0]ρ0(~r)

)
+ Enuc,

(3.2)

the energy is partitioned into terms depending on the reference density and the orbitals
(Ebs), the density fluctuations (Ecoul,xc) and the repulsive energy (Erep) , which stands for
everything else not covered by the first two terms:

E[ρ0 + δρ] ≈
∑
a

fa〈φa | H[ρ0] | φa〉 band structure energy Ebs

+
1

2

∫ ∫ ′(δ2Exc[ρ0]

δρδρ′
+

1

|~r − ~r′|

)
δρδρ′ Coulomb + part of xc energy Ecoul,xc

+ Enuc + everything else repulsive energy Erep

(3.3)

To approximate Ecoul,xc one assumes that the charge fluctuation δρ can be decomposed
into spherically symmetric contributions centered on the atoms, δρ =

∑Nat
I ∆qIFI(|~r− ~RI |),

where ∆qI are the excess Mulliken charges on atom I :

Ecoul,xc[ρ0 + δρ] =
1

2

∫ ∫ ′(δ2Exc[ρ0]

δρδρ′
+

1

|~r − ~r′|

)
δρδρ′

=

Nat∑
I

Nat∑
J

EIJcoul,xc

(3.4)

For partial charges sitting on different atoms, I 6= J , only the electrostatic interaction is
taken into account (depending on the distanceRIJ of the atomic centers) and any exchange
or correlation interaction is neglected, since the exchange correlation functional is assumed
to be local. The interaction energy of charge with itself on the same atom is controlled by
the Hubbard parameters UH , which can be obtained from experimental ionization energies
and electron affinities, or ab-initio calculations. This leads to a partitioning of EIJcoul,xc into
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pairwise contributions:

EIJcoul,xc =

{
1
2∆qI∆qJ

∫ ∫ ′ FIF ′J
|~r−~r′| I 6= J

1
2UH (∆qI)

2 I = J

}
=

1

2
∆qI∆qJγIJ(RIJ) (3.5)

The approximate DFTB energy is now a function of the partial Mulliken charges instead
of the density:

EDFTB[{∆qI}] =
∑
α

fα〈φα | H[ρ0] | φa〉+
1

2

∑
IJ

γIJ(RIJ)∆qI∆qJ + (E[ρ]− EDFTB)︸ ︷︷ ︸∑
I<J V

IJ
rep (RIJ )

(3.6)

All the deviations from the true energy are absorbed into the repulsive potential, which
ideally should only depend on the molecular geometry but not on the charge distribution.
In a rough approximation, these deviations can be decomposed into contributions from
pairs of atoms, V IJ

rep(RIJ), and be adjusted to higher-level DFT methods.
Fitting [18] and validating [19] the repulsive potentials is the most time-consuming part

of parametrizing the DFTB method. Properly adjusted repulsive potentials are crucial for
molecular dynamics simulations, structure optimization or vibrational spectra, but they
have no influence on the electronic absorption spectra. Fitting repulsive potentials is the
subject of chapter 6.

The Kohn-Sham orbitals are expanded into a minimal set of pseudo-atomic orbitals
{| µ〉}, which are compressed by a confining potential, since orbitals in a molecule are less
diffuse than in the free atoms:

| φi〉 =
∑
µ

ciµ | µ〉 (3.7)

A variation of the energy with respect to the Kohn-Sham orbitals, under the constraint
that the orbitals are normalized, leads to the DFTB equivalent of the Kohn-Sham equations
with the DFTB Hamiltonian (in the basis of atomic orbitals µ and ν):

HDFTB
µν = 〈µ | H[ρ0] | ν〉︸ ︷︷ ︸

H0
µν

+
1

2
〈µ | ν〉︸ ︷︷ ︸
Sµν

Nat∑
K=1

(γIK + γJK) ∆qK µ ∈ I, ν ∈ J (3.8)

where µ ∈ I means that the atomic orbital µ belongs to atom I .
The Kohn-Sham equations are solved self-consistently: In each step the new partial

Mulliken charges ∆qI and the new Hamiltonian are computed from the orbital coefficients
of the previous iteration and the resulting Kohn-Sham equations are solved to give the next
orbital coefficients. These steps are repeated until the charge distribution and the density
matrix do not change anymore.

The charge consistency loop equilibrates the partial charges so that the total energy can-
not be lowered further by moving charge from a region of low electronegativity to a region
of high electronegativity. In its simplest form, charge equilibration could be achieved by as-
signing experimental ionization potentials and electron affinities to each atom and finding
the charge distribution that equalizes the electronegativity [20]. In charge-consistent DFTB
the effect of the hybridization of an atom and the overlap of orbitals on its electronegativity
is also considered.

Excited states are calculated in the framework of linear-response TD-DFT, which was
adapted to tight-binding DFT by Niehaus [4]. The working equations of TD-DFT were
derived in section 2.2.3, here they will be adapted to the tight-binding formulation. A
converged DFT calculation provides the single-particle Kohn-Sham orbitals, and to a first
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approximation excitation energies are differences of virtual and occupied Kohn-Sham en-
ergies ωovσ = εvσ − εoσ.

The coupling matrix

Kovσ,o′v′σ′ =

∫ ∫
φoσ(~r1)φvσ(~r1)

[
1

|~r1 − ~r2|
+

δ2Exc
δρσ(~r1)δρσ′(~r2)

]
φo′σ′(~r2)φv′σ′(~r2)d3r1d

3r2

(3.9)
represents the response of the Kohn-Sham potential to a perturbation of the electron den-
sity and is responsible for adding a correction to the Kohn-Sham orbital energy differences.

In linear-response TD-DFT excited states are computed from the Hermitian eigenvalue
problem [7]

(A−B)1/2(A + B)(A−B)1/2 ~FI = Ω2
I
~FI (3.10)

where the matrices A and B contain the coupling matrix:

Aovσ,o′v′σ′ = δo,o′δv,v′δσ,σ′(εvσ − εoσ) +Kovσ,o′v′σ′ (3.11)
Bovσ,o′v′σ′ = Kovσ,v′o′σ′ (3.12)

The solution of eqn. (3.10) provides the excitation energies EI = ~ΩI as eigenvalues and
the coefficients for single excitations from occupied to virtual orbitals (o→ v)

~CIovσ =
1√
ΩI

∑
o′∈occ

∑
v′∈virt

∑
σ′

[
(A−B)1/2

]
ovσ,o′v′σ′

~F Io′v′σ′ (3.13)

as eigenvectors.
In the absence of a non-local exchange term, (A−B) is effectively diagonal so that eqn.

(3.10) can be simplified to yield Casida’s equation [7]:

∑
o′∈occ

∑
v′∈virt

∑
σ′

[
δo,o′δv,v′δσ,σ′ (εvσ − εoσ)2 + 2

√
εvσ − εoσKovσ,o′v′σ′

√
εv′σ′ − εo′σ′

]
F Io′v′σ′ = Ω2

IF
I
ovσ

(3.14)
with the coefficients

CIovσ =

√
εvσ − εoσ

ΩI
F Iovσ. (3.15)

In the Tamm-Dancoff approximation [21], [22] excitation energies and coefficients are
calculated from a different eigenvalue problem that results from eqn. (3.10) by setting
B = 0: ∑

o′∈occ

∑
v′∈virt

∑
σ′

Aovσ,o′v′σ′C
I
o′v′σ′ = ΩIC

I
ovσ (3.16)

Using the Tamm-Dancoff (TDA) approximation in conjunction with a long-range cor-
rection (which will be introduced later) can sometimes be advantageous for two reasons:

• Firstly, it has been shown [23], [24] that TDA excitation energies can actually be better
than those obtained from the full solution of the LR-TD-DFT equation 3.10, in partic-
ular, when singlet-triplet instabilities would lead to imaginary excitation energies.

• Secondly, when (A−B) is not diagonal, the full solution requires the computation of
the matrix square root (A − B)1/2 which is computationally demanding unless one
resorts to an iterative algorithm [25] specifically designed to deal with eqn. (3.10).

The tight-binding approximation consists in replacing transition densities φo(~r)φv(~r)
by transition charges qovA (defined later), so that the coupling matrix in eqn. 3.9 simplifies
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to

Kov,o′v′ ≈
Nat∑
A=1

Nat∑
B=1

qovA γABq
o′v′
B . (3.17)

Similarly, the transition dipoles between Kohn-Sham orbitals are reduced to sums over
transition charges on different atoms:

〈o | ~r | v〉 ≈
∑
A

~RAq
ov
A (3.18)

Note how in going from eqn. (3.4) to the eqn. (3.5) and in approximating the coupling
matrix in eqn. (3.17) the exchange-correlation term has been neglected for charge distri-
butions on different atoms, arguing that the xc-functional is local. This is where the long-
range correction will be put to work. Eqn. (3.18) is usually a reasonable approximation,
unless orbitals o and v are located on the same atom.

3.1.1 Long-range correction for TD-DFTB

The Coulomb potential is separated into a long-range and a short-range part [26], [27],
where the position of the smooth transition between the two regimes is controlled by a
parameter Rlr:

1

r
=

1− erf
(

r
Rlr

)
r︸ ︷︷ ︸

short range

+
erf
(

r
Rlr

)
r︸ ︷︷ ︸

long range

(3.19)

The short range part of the exchange energy is treated with DFTB while for the long-range
part the exact Hartree-Fock exchange is used. Since in DFTB a local exchange correlation
functional is employed, the short range term is essentially neglected.

The electron integrals of the screened Coulomb potential (for real-valued orbitals)

(ij|ab)lr =

∫ ∫
φi(~r1)φj(~r1)

erf
(
r12
Rlr

)
r12

φa(~r2)φb(~r2)d3r1d
3r2 (3.20)

are approximated as in DFTB [3]: The transition densities between different orbitals pkl(~r) =
φk(~r)φl(~r) are decomposed into atom-centered contributions:

pkl(~r) =

Nat∑
A

pklA (~r) (3.21)

Next, the monopole approximation is made assuming that the transition density due to
atom A is spherically symmetric around that center:

pklA (~r) = qklAFA(|~r − ~RA|) (3.22)

In fact, the exact form of the functions FA(r) is not known [3]. They can be assumed to
be Gaussian [3] or Slater functions [11], but in either case the width of the density profile
should be inversely proportional to the Hubbard parameter U of the atom. This will be
explained in more detail in chapter 5.
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With these approximations the long-range two-center integrals can be written in terms
of transition charges qijA and qabB :

(ij|ab)lr =
∑
A

∑
B

qijAq
ab
B

∫ ∫
FA(|~r1 − ~RA|)

erf
(
r12
Rlr

)
r12

FB(|~r2 − ~RB|)d3r1d
3r2 (3.23)

The transition charges are defined as:

qijA =
1

2

∑
µ∈A

∑
ν

(
ciµc

j
ν + ciνc

j
µ

)
Sµν . (3.24)

where Sµν is the overlap matrix between the atomic orbitals µ and ν and ciµ is the coefficient
of the atomic orbital µ in the molecular orbital i.

Assuming a Gaussian- or a Slater-function form forFA(r) the integral for the unscreened
Coulomb potential can be performed analytically [3] and the result is defined as the γ-
matrix:

γAB =

∫ ∫
FA(|~r1 − ~RA|)FB(|~r2 − ~RB|)

|~r1 − ~r2|
d3r1d

3r2 (3.25)

The γ-matrix describes the change of the Coulomb energy due to charge redistribution
between the atoms A and B. Charge fluctuations are assumed to be spherically symmetric
around each atom but the exact functional form is unknown. Slater and Gaussian functions
are obvious candidates, since the Coulomb integrals are well-known for these functions.
In some DFTB-implementations, the γ-matrix is based on Slater functions (presumably
DFTB+ and the older code by Seifert) while in others it is based on Gaussian functions
(Hotbit [3]).

If the charge fluctuation around an atomic centerA is modelled by a Gaussian function,

FA(|~r − ~RA|) =
1(

2πσ2
A

)3/2 exp

(
−(~r − ~RA)2

2σ2
A

)
(3.26)

the Coulomb integral between two such charge distributions separated by a distance R =

|~RA − ~RB| reads:

γAB =
erf(CABR)

R
(3.27)

with
CAB =

1√
2(σ2

A + σ2
B)

(3.28)

In the limit, that the charge distributions are centered at the same position, the γ-matrix
becomes:

lim
R→0

γAA = lim
R→0

erf
(

R
2σA

)
R

=
1√
πσA

(3.29)

The width parameter σA is fixed by the requirement, that the second derivative of the
electronic energy with respect to the charge fluctuations on an atom of type A should be
given by the Hubbard parameter UA, that is γAA(R = 0) = UA [3].

lim
R→0

γAA
!

= UA ⇔ σA =
1√
πUA

(3.30)
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For the long-range part the Coulomb potential is replaced by the attenuated Coulomb
potential, giving the long-range γ-matrix

γlr
AB =

∫ ∫
FA(|~r1 − ~RA|)

erf
(
r12
Rlr

)
r12

FB(|~r2 − ~RB|)d3r1d
3r2 (3.31)

from which the electron integrals with the long-range part of the Coulomb potential can be
calculated as:

(µλ|σν)lr ≈
∑
A

∑
B

γlr
ABq

µλ
A qσνB (3.32)

For charge fluctuations that have the form of Gaussians, integration of eqn. 3.31 gives:

γlr
AB =

erf(C lrR)

R
(3.33)

with
C lr =

1√
2
(
σ2
A + σ2

B + 1
2R

2
lr

) (3.34)

For atomic orbitals the transition densities in eqn. 3.32 are simply:

qµλA =
1

2
(δ(µ ∈ A) + δ(λ ∈ A))Sµλ (3.35)

Here δ(µ ∈ A) is equal to 1 if the atomic orbital µ is centered on the atomA and 0 otherwise.
The long-range electron integrals in the basis of atomic orbitals can now be approxi-

mated as:

(µλ|σν)lr ≈
∑
A

∑
B

γlr
ABq

µλ
A qσνB = SµλSνσ

∑
A

∑
B

1

4
γlr
AB (δ(µ ∈ A) + δ(λ ∈ A)) (δ(σ ∈ B) + δ(ν ∈ B))

=
1

4
SµλSνσ

∑
A

∑
B

γlr
AB {δ(µ ∈ A)δ(σ ∈ B) + δ(µ ∈ A)δ(ν ∈ B)

+δ(λ ∈ A)δ(σ ∈ B) + δ(λ ∈ A)δ(ν ∈ B)}

=
1

4
SµλSνσ

{
Γlr
µσ + Γlr

µν + Γlr
λσ + Γlr

λν

}
(3.36)

where the abbreviation Γlr
µσ =

∑
A

∑
B γ

lr
ABδ(µ ∈ A)δ(σ ∈ B) has been introduced.

The additional contribution to the total energyEelec = EDFTB+Elr
x due to the long-range

exchange is [11]:

Elr
x = −1

4

∑
µ,λ,σ,ν

∆Pµσ∆Pλν(µλ|σν)lr (3.37)

where µ, λ, σ and ν enumerate atomic orbitals. ∆Pµσ = Pµσ − P 0
µσ is the difference be-

tween the density matrix that is computed from the molecular orbital coefficients Cµ,i as
Pµ,σ = 2

∑
i∈occ CµiC

∗
σi and the reference density matrix P 0

µ,ν that describes the individually
neutral atoms.

Minimization of the total energy with respect to the density matrix leads to the Kohn-
Sham Hamiltonian

HKS
µν = HDFTB

µν +Hx,lr
µν (3.38)
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with an additional term:

Hx,lr
µν = −1

2

∑
λσ

∆Pλσ(µλ|σν)lr

(3.36)
= −1

8

∑
λσ

∆PλσSµλSνσ

{
Γlr
µσ + Γlr

µν + Γlr
λσ + Γlr

λν

}
= −1

8

{∑
σ

(
Γlr
µσ

(∑
λ

Sµλ∆Pλσ

))
Sσν

+ Γlr
µν

∑
σ

∑
λ

(Sµλ∆Pλσ)Sσν

+
∑
σ

∑
λ

(
Sµλ

(
∆PλσΓlr

λσ

))
Sσν

+
∑
λ

Sµλ

((∑
σ

∆PλσSσν

)
Γlr
λν

)}

(3.39)

It is important to perform the sums over the indices in such an order that they can be
implemented efficiently by nested matrix multiplications.

The long-range contribution to the exchange energy in eqn. 3.37 can be computed as:

Elr
x = −1

8

{∑
µ,σ

(∑
λ

Sµλ

(∑
ν

∆PλνSνσ

))
∆PµσΓlr

µσ +
∑
µ,σ

(∑
λ

Sµλ∆Pλσ

)(∑
ν

∆PµνSνσ

)
Γlr
µσ

}
(3.40)

In the linear response formulation of TD-DFT the long-range correction leads to an
additional term in the coupling matrix, which shifts the excitation energies of the charge
transfer states up. The corrections to the A- and B-matrices read (after separating the
problem into separate singlet and triplet cases [28]):

SAov,o′v′ = δo,o′δv,v′(εv − εo) + 2Kov,o′v′ +K lr
ov,o′v′

SBov,o′v′ = 2Kov,v′o′ +K lr
ov,v′o′

}
for singlets (3.41)

and
TAov,o′v′ = δo,o′δv,v′(εv − εo) +K lr

ov,o′v′

TBov,o′v′ = K lr
ov,v′o′

}
for triplets, (3.42)

where the additional long-range coupling is given by:

K lr
ov,o′v′ = −(oo′|vv′)lr ≈ −

∑
A

∑
B q

oo′
A γlr

AB (RAB) qvv
′

B (3.43)

K lr
ov,v′o′ = −(ov′|vo′)lr ≈ −

∑
A

∑
B q

ov′
A γlr

AB (RAB) qo
′v
B . (3.44)

o, o′ are occupied and v, v′ are unoccupied molecular orbitals. In addition to the transi-
tion charges between occupied and unoccupied orbitals, qovA , which are needed for con-
structing the coupling matrix anyway, one has to calculate transition charges between
occupied-occupied orbitals, qoo

′
A , and between virtual-virtual orbitals qvv

′
B .

In this approximation the quality of triplet excitation energies is expected to be much
lower, as they are essentially equal to differences between Kohn-Sham orbital energies.
Triplet states will be left aside in this work, since spin-unrestricted DFTB [29] is necessary
to describe them quantitatively and since they are dark in absorption spectra.
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The oscillator strengths of singlet states are obtained as

f I =
4

3

∣∣∣∣∣∑
o∈occ

∑
v∈virt

〈o | ~r | v〉
√

ΩIC
I
ov

∣∣∣∣∣
2

. (3.45)

For larger molecules, constructing the entire coupling matrices and solving the Her-
mitian eigenvalue problem in eqn. (10) for all states becomes inefficient, in particular
since one needs to compute the matrix square root (A − B)1/2. Instead one solves the
non-Hermitian eigenvalue problem(

A B
B A

)(
~XI

~YI

)
= ΩI

(
1 0
0 −1

)(
~XI

~YI

)
(3.46)

iteratively for the lowest few states using an algorithm akin to Davidson diagonaliza-
tion, which is described in reference [30]. The algorithm only requires the evaluation of the
matrix-vector products (A + B)~v and (A−B)~v, which in the tight-binding approximation
become

∑
j,b

(A+B)ia,jbvjb = (εa − εi)via + 4
∑
A

qiaA

∑
B

γAB
∑
jb

(
qjbB vjb

)
−
∑
A

∑
j

qijA

(∑
B

γlr
AB

(∑
b

qabB vjb

))

−
∑
A

∑
b

qibA

∑
B

γlr
AB

∑
j

qjaB vjb


(3.47)

and

∑
j,b

(A−B)ia,jbvjb = (εa − εi)via +
∑
A

∑
b

qibA

∑
B

γlr
AB

∑
j

qjaB vjb


−
∑
A

∑
j

qijA

(∑
B

γlr
AB

(∑
b

qabB vjb

))
,

(3.48)

respectively.
The computational effort can be reduced by noting that in molecular dynamics simula-

tions the eigenvalue problem needs to be solved many times for similar geometries: One
can first solve for the lowest few states including excitations from all occupied to all vir-
tual orbitals, and then select the active space containing those highest occupied and lowest
unoccupied orbitals that are actually needed to fully describe the states of interest. In sub-
sequent calculations the TD-DFTB problem is solved in the reduced active space only.

3.1.2 Slater-Koster rules for dipole matrix elements

Transition dipole matrix elements determine the oscillator strengths in TD-DFT calcula-
tions of excited states. In DFTB they are usually approximated by transition charges located
on the individual atoms,

〈ψi | ~r | ψj〉 =
∑
α

~Rαq
ij
α , (3.49)
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where ~Rα is the position vector of atom α,

| ψi〉 =
∑
µ

ciµ | µ(~r − ~Rµ)〉 (3.50)

| ψj〉 =
∑
ν

cjν | ν(~r − ~Rν)〉 (3.51)

are Kohn-Sham molecular orbitals in the basis of atom-centered numerical orbitals, and the
transition charges are defined as

qijα =
1

2

∑
µ∈α

∑
ν

(
ciµc

j
νSµν + ciνc

j
µSνµ

)
(3.52)

This approximation fails if a transition happens between molecular orbitals on the same
atom, which are orthogonal by construction. In this case the overlap matrix simplifies to
the identity matrix and the Mulliken approximation leads to vanishing transition charges.
Therefore the excitation energies for localized n → π∗ excitations are not shifted by the
TD-DFT coupling matrix and no improvement of these energies relative to the Kohn-Sham
energies is achieved [29]. Moreover, the oscillator strengths, which determine the shape of
the spectrum, can sometimes be sensitive to the way transition dipole matrix elements are
computed. For example, in reference [29] an on-site correction to the dipole matrix element
is introduced, so that the 2Π states of nitric oxide, which would be dark using the Mulliken
approximation, gain a small oscillator strength.

However, the oscillator strengths can also be calculated without approximation from
the transition dipoles between atomic orbitals which are assembled using the Slater-Koster
rules [31]. (Apparently this approach has already been implemented in other DFTB codes,
but is not well documented in the literature). Slater-Koster rules are covered in more detail
in section 5.2.2 later.

For transitions comprising orbitals on different atoms the oscillator strengths derived
from the Mulliken charges and from the tabulated dipole matrix elements are very similar.
However, when the transition is confined to a single atom, the Mulliken approximation
can miss states which have weak oscillator strengths. As an example, consider the acrolein
molecule, where the S1 state is characterized by an excitation from the n to the π∗ orbital on
the oxygen. Since the oxygen is much more electronegative than the carbon it is bound to,
both the n and the π∗ orbitals consist largely of the atomic oxygen orbitals. The oscillator
strength is very small, but it is not zero. Fig.3.1 compares the absorption spectra when the
oscillator strengths are calculated from Mulliken charges or transition dipoles, respectively.
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FIGURE 3.1: Absorption spectrum of acrolein. The molecular structure was
optimized at the BLYP [32], [33]/cc-pVTZ [34] level, and a range-separation
parameter of Rlr = 20.0 bohr was used in the LC-TD-DFTB calculation. With
the Mulliken approximation (green curve) several states disappear, although
they have a small oscillator strength. For example, the lowest excited states
at ≈ 3 eV is of n→ π∗ character and has a tiny oscillator strength of 4 · 10−4

which cannot be seen in the green curve.

3.2 TD-DFTB : Similarity with Semiempirical Methods

The working equations of tight-binding DFT are usually derived from a second order ex-
pansion of the DFT energy functional around a reference density that is a superposition of
the electron densities of individually neutral atoms [1], [3], [4]. From an operational point
of view, the equations are very similar to semiempirical quantum-chemical methods [35] or
charge self-consistent Hückel theory [36] with non-orthogonal s-,p- and d-orbitals. Like in
Hückel theory, the interaction between atomic orbitals (denoted by Greek letters µ, ν etc.)
is characterized by a Hamiltonian matrix H0

µν and the overlap matrix Sµν .
The matrix elements depend on geometry and are derived from atomic DFT calcula-

tions. Matrix elements for atomic valence orbitals of pairs of (pseudo)atoms are calculated
in certain orientations (ppπ, ssσ, ppσ, etc.) by numerical integration [3] and are tabulated
for all distances. From these tables matrix elements and their gradients can be constructed
for all orientations using Slater-Koster rules [37].

The electrons reside in molecular orbitals that are linear combinations of the atomic
orbitals:

φi(~r) =
∑
µ

Cµiφµ(r) (3.53)

with the density matrix

Pµν = 2

Nelec/2∑
i=1

CµiCνi. (3.54)
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Chemical bonding causes a redistribution of electronic charge from less to more elec-
tronegative atoms. Therefore the total energy contains additional terms for the Coulomb
interaction between the partial charges:

ELC-DFTB =
∑
µ,ν

PµνH
0
µν + ECoulomb + E

long-range
exchange + Vrepulsive (3.55)

The repulsive potential is a sum over atom pairs (A,B) and only depends on the distance
RAB between the atoms. It absorbs the interaction between the nuclei and core electrons
and is fitted to reproduce DFT energies:

Vrepulsive =
∑
A,B

V
rep
AB (RAB) (3.56)

The residual electron-electron interaction is split into Coulombic interaction at short
range and exchange interaction at long range:

ECoulomb =
1

2

∑
µ,σ,λ,ν

(
Pµσ − P 0

µσ

) (
Pλν − P 0

λν

)
(µσ|λν) (3.57)

E
long-range
exchange = −1

4

∑
µ,σ,λ,ν

(
Pµσ − P 0

µσ

) (
Pλν − P 0

λν

)
(µλ|σν)lr (3.58)

The 0th order Hamiltonian H0
µν already accounts for all interactions between electrons in

the neutral atoms. ECoulomb and Eexchange are the residual Coulomb and exchange ener-
gies due to the charge redistribution, which is described by the difference density matrix
∆Pµν = Pµν − P 0

µν . The reference density matrix P 0
µν is a diagonal matrix, since in the

reference system the energy levels (n, l,m) of each atom are occupied as if the atom were
isolated:

P 0
µν = δµν × (occupancy of level (nµ, lµ,mµ) in neutral atom Aµ) (3.59)

(Note that in the previous publication by the author [38] in eqn. (32) the long-range con-
tribution is calculated using the full density matrix Pµν instead of ∆Pµν . The reason is,
that the pseudo orbitals, which define the 0th-order Hamiltonian, were generated with the
non-hybrid functional PBE. As the 0th-order Hamiltonian does not include any long-range
exchange term, the full density matrix Pµν has to be used. A more consistent approach,
however, would be to compute pseudo orbitals with a long-range corrected functional such
as LC-PBE, in which case eqn. 3.58 is correct.)

Now the tight-binding approximations are made to the 2-electron integrals:

(µλ|σν) =

∫ ∫
φµ(1)φλ(1)

1

r12
φσ(2)φν(2)d1d2

≈
∑
A,B

γABq
µλ
A qσνB (3.60)

(µλ|σν)lr =

∫ ∫
φµ(1)φλ(1)

erf
(
r12
Rlr

)
r12

φσ(2)φν(2)d1d2

≈
∑
A,B

γlr
ABq

µλ
A qσνB (3.61)

with the transition charges on atom A (in the atomic orbital basis):

qµλA =
1

2
(δ(µ ∈ A) + δ(λ ∈ A))Sµλ (3.62)
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The matrices γAB and γlr
AB are defined in Ref. [38]. In short, the γ-matrices describe

the Coulomb interaction between spherically symmetric charge distributions (modelled as
Gaussians or Slater functions) centered on the atoms A and B. The total charge is smeared
out over these charge clouds and amounts to the transition charges assigned to the partic-
ular atom according to eqn.3.62. 3- and 4-center integrals are neglected. Replacing con-
tinuous (transition) densities by atom-centered partial (transition) charges is a very simple
form of density fitting [39] with the spherical Gaussians of Slater functions playing the role
of the auxiliary basis functions.

This approximation works very well usually, with the exception of π-electron systems
containing heteroatoms. For conjugated alternant hydrocarbons the partial charges on the
carbons are zero [36] so that charge self-consistent and non-consistent tight-binding cal-
culations will give the same results. In the presence of heteroatoms this will not be the
case anymore and the assumption that the partial charge cloud is spherically symmetric
becomes a source of error, as evident from the following example: If a carbon atom is
replaced by a heteroatom in an aromatic ring (e.g. turning benzene into pyridine), the het-
eroatom will acquire some negative charge. The charge will be placed in a π-orbital, that
has its maximum above and below the molecular plane and is certainly not spherically
symmetric.

Minimizing the total energy ELC-DFTB under the constraint that the molecular orbitals
are orthogonal leads to Kohn-Sham equations for the coefficientsCµi. These equations need
to be solved self-consistently, since the MO coefficients determine the density matrices,
which in turn enter the Coulomb and exchange terms in the energy expression.

Excited states. As noted several times already, in linear-response TD-DFT [40], excita-
tion energies ω of singlet states are obtained from the non-Hermitian eigenvalue problem(

A B
B A

)(
~X
~Y

)
= ω

(
1 0
0 −1

)(
~X
~Y

)
(3.63)

with

Aia,jb = δijδab(εa − εi) + 2(ia|jb)− (ij|ab)lr (3.64)
Bia,jb = 2(ia|jb)− (ib|aj)lr (3.65)

after making the tight-binding approximations of eqns.3.60 and 3.61 to the 2-electron inte-
grals.

The non-Hermitian eigenvalue problem is solved for the lowest eigenvectors with a
Davidson-like iterative algorithm [30], which entails the evaluation of matrix products A·~v
and B · ~v.

The use of a minimal basis set reduces the size of the matrices A and B, and the use of
transition charges speeds up their evaluation. Without long-range correction the evalua-
tion of the matrix products can be performed in a particularly efficient order [41]:

(A + B) · ~v =

(
nested sums reduce to matrix

multiplications of lower dimensions

)
(3.66)

With the long-range correction some of the simplicity of the formulae (multiplication of
matrices vs. tensor-products) is lost. With long-range correction the fast execution times
needed for MD simulations can still be achieved by restricting the excitations (i→ a) to an
active space composed of excitations from the highest M occupied to the lowest N virtual
molecular orbitals. Alternatively the excitation space could be truncated by selecting the
single-orbital transitions with the highest oscillator strengths down to a certain threshold
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as proposed in Ref. [42]. If the active space is chosen reasonably, the only side-effect is a
small systematic increase in the excitation energies as shown in the next section 3.3.

3.3 Computational cost of long-range exchange and reduction of
active space

Tight binding DFT has been designed for large systems that are out of reach with full
DFT. For large systems the charge transfer problem is particularly severe, so that some
form of correction becomes mandatory. Unfortunately, the introduction of exact exchange
partly destroys the efficiency of tight binding TD-DFT. The evaluation of the matrix prod-
uct (A ± B)~v (see eqns. 3.47 and 3.48) that comes up in the iterative solution of the TD-
DFTB equations requires nested summations over orbital indices i, j, a, b. Eqns. 3.67 and
3.68 below show only the relevant parts of the summation with and without long-range ex-
change. Without exact exchange the summations can be disentangled; the innermost sum∑

jb

(
qjbB vjb

)
only depends on the atom index B:

∑
A

qiaA

∑
B

γAB
∑
jb

(
qjbB vjb

) (3.67)

The inclusion of exact exchange adds two additional terms, the first of them is

−
∑
A

∑
j

qijA

(∑
B

γlrAB

(∑
b

qabB vjb

))
. (3.68)

The innermost sum
∑

j q
ja
B vjb still depends on three indices, B,a and b. The computational

effort becomes comparable to the full LC-TD-DFT equations with a minimal basis set.
One solution is to solve the TD-DFTB equations in a reduced active space: only single

excitations from the highest Nact. occ to the lowest Nact. virt orbitals are considered. This
approach is usually avoided in DFT calculations since many orbital transitions with low
amplitude can still lower the energy considerably even if the excitation is dominated by a
single orbital transition. The excitation energies will be higher compared to the full active
space, but the shape of the potential energy surfaces will be similar.

The effect of an active space on the excitation energies of crystalline pyrene is visualized
in Fig. 3.2. From the crystal structure of pyrene [43] 3 dimers with parallel molecular planes
were selected. The molecular planes of the other nearest neighbour dimers are orthogonal
so that the interaction is expected to be small. Surprisingly, the energy is still lowered by
0.1 eV if the active space is increased from 100 active occupied and virtual orbitals to 200,
although one would not expect excitations from HOMO−100− x to LUMO+100 + x to be
of any importance to the lowest excited state. This counter-intuitive effect should be kept
in mind when restricting the space of excitations. In particular in non-adiabatic dynamics
simulations it is tempting to use a reduced active space as the speed-up allows to reach
larger time scales.
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FIGURE 3.2: Dependence of excitation energies on active space. The number
of active occupied and virtual orbitals are marked on the horizontal axis.
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Chapter 4

Charge-Transfer States

Charge transfer in the excited state is a one of the most fundamental photophysical pro-
cesses. It is responsible for the beautiful colors of transition metal complexes and plays the
central role in the conversion of electromagnetic energy into electric current in organic solar
cells or the inverse process in organic light emitting diodes. At the same time these elec-
tronic states are notoriously difficult to describe with time-dependent density functional
theory, since the exchange parts of most density functionals have the wrong asymptotic
form: they decay to quickly.

4.1 Spurious Charge-Transfer States in TD-DFT(B)

In the following, we illustrate the charge-transfer problem in TD-DFT and TD-DFTB and
its solution employing a long-range correction with an example: In Ref. [1] Dreuw used a
π-stacked pair of ethylene and tetrafluoroethylene to demonstrate that long-range charge
transfer states require non-local exchange. In tetrafluoroethylene the frontier orbitals lie
almost 2 eV higher than in ethylene because of the additional nodes between the carbon
and fluorine atoms which increase the kinetic energy of the orbitals (see Fig.4.1). At small
distances the lowest excitation involves charge transfer from the HOMO of tetrafluoroethy-
lene to the LUMO of ethylene. As the distance between the molecules increases the energy
of the charge transfer should go up to reflect the fact that it costs energy to separate charges,
whereas excitations that are localized on either molecule should not depend on the dis-
tance.

FIGURE 4.1: a) Parallel stack of ethylene and tetrafluoroethylene. b) Frontier
orbitals of individual ethylene and tetrafluoroethylene molecules. The LC-
TD-DFTB orbital energies are given in eV together with the LC-PBE/TZVP
energies in brackets for comparison. At large separations the overlap be-
tween the HOMO (on tetrafluoroethylene) and the LUMO (on ethylene) van-

ishes.

Charge transfer over longer distances can be mentally decomposed into three separate
steps: ionization of the donor (requiring the ionization energy IEdonor), moving the charge
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to the acceptor molecule against the Coulomb force and adding the electron to the acceptor
orbital (releasing the electron affinity EAacceptor). The total energy balance of these steps
gives the approximate energy of the charge transfer state:

ECT = IEdonor − EAacceptor −
1

R
(4.1)

In the TD-DFT(B) picture charge transfer can be viewed as a single excitation from the
HOMO (localized on the donor) to the LUMO (localized on the acceptor). If the space of
excitation is restricted to only these two orbitals, the long-range TD-DFT excitation energy
becomes (cf. eqn. 3.64):

ECT =εL − εH + 2(HL|HL)− (HH|LL)lr (4.2)
R→∞−→ − EAacceptor − (−IEdonor) + 0− 1

R
(4.3)

The orbital energies εH and εL of the HOMO and LUMO, respectively, approximately corre-
spond to minus the ionization ionization energy and electron affinity. The electron-integral
(HL|HL) vanishes at large separations, since the HOMO and LUMO are localized on dif-
ferent molecules, so that φH(r)φL(r) → 0. The long-range part of the exchange integral
(HH|LL)lr approaches 1

R . Without this term, asymptotically the energy of the charge trans-
fer state would be equal to the orbital energy difference.

In Fig. 4.2 the potential energies of the lowest 10 excited states are plotted against the
distance between the molecular planes. Since tight-binding DFT is parametrized on the
basis of atomic DFT calculations using the PBE functional, the tight-binding results are
compared with PBE [2], [3]/TZVP [4] and its long-range corrected version LC [5]-PBE.
Despite the much lower computational cost, tight binding DFT with and without long-
range exchange behaves in the same way as PBE and LC-PBE, respectively:

Without exact exchange the− 1
R term is missing, so that the energy of the charge transfer

state flattens out as a function of R like the local excitations as soon as the overlap between
donor and acceptor molecule goes to zero. In the presence of long-range exchange the
charge transfer state has the correct asymptotic − 1

R behaviour and cuts through the local
excited states whose excitation energies remain constant.

The states with charge transfer character are highlighted in red in Fig. 4.2 to guide the
eye. The difference densities between the 1st excited state and the ground state are shown
for a separation of R=6 Å. Without any exact exchange the lowest excitation has charge
transfer character for all distances, although it should become a local excitation for R � 3
Å.

Because of the vanishing overlap between the donor orbital and the acceptor orbital at
large separation the transition dipole moment between these two orbitals vanishes, so that
long-range charge transfer states are dark in the absorption spectrum. Although charge
transfer states do not show up in the absorption spectrum, they can trap excitations when
they are populated indirectly and are very important for organic photovoltaic devices. The
problem of charge transfer states is not limited to the situation where one molecule acts
as a donor and the other as an acceptor, so that a charge transfer state is expected in the
low energy spectrum. In fact, any weakly coupled system such as a molecular crystal
or a polymer with chromophore units is susceptible to this problem. Without long-range
exchange the spectrum will be contaminated by unphysical charge transfer states that lie
below the lowest local excitation. If two arbitrary identical molecules are placed infinitely
far apart, so that they do not interact in any way, the local HOMO-LUMO excitation will
be degenerate with a charge transfer from the HOMO of one molecule to the LUMO of the
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FIGURE 4.2: Scan of adiabatic potential energy curves for ethylene-
tetrafluoroethylene, a) with long-range correction, b) without. c) LC-
PBE/TZVP and d) PBE/TZVP. The transition densities in a) and b) show
the character of the lowest excited state. Without long-range exchange the
lowest state has charge transfer character, whereas it should be a local exci-

tation.

other. This jump of a charge over a very long distance is an obviously unphysical artifact
of density functional approximations that neglect exact long-range exchange.

These problems will also appear in the simulations of excited state non-adiabatic dy-
namics where the unphysical low-lying charge transfer states will lead to artificial non-
radiative relaxation channels. Therefore, the simulations of non-adiabatic dynamics in
molecular aggregates at the TD-DFT(B) level should be generally performed only in com-
bination with long-range correction.

4.2 Diagnosing charge transfer states

Visual inspection of the orbitals involved in an excitation is normally required to character-
ize an excited state as a charge transfer (CT) state. Different “metrics” have been devised to
identify charge-transfer states automatically and warn about possible failures of TD-DFT.
We will take these metrics and adapt them to the tight-binding framework.

The authors of Ref. [6] introduced a simple numeric test for detecting problematic
excitations. They quantified the degree of spatial overlap between occupied and virtual
orbitals of an excited state I using the quantity

Λ =
∑
o∈occ

∑
v∈virt

(
CIov
)2 ∫ |φo(~r)||φv(~r)|d3r, (4.4)
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whereCIov is the coefficient for the single excitation from the Kohn-Sham Slater determinant
that replaces the occupied orbital o by the virtual orbital v in the excited state I (see eqn.
3.13).

They found that the error of DFT functionals without long-range correction such as
PBE [7] and B3LYP [8], [9], correlates with the value of Λ, which can vary between 0.0 and
1.0. Values below 0.5 indicate a charge transfer or Rydberg excitation, for which PBE and
B3LYP will probably be in large error.

Unfortunately, the integral over products of orbital squares is difficult to calculate in
DFTB without resorting to numerical integration. Therefore we replace the integral by

Oov =

∫
|φo(~r)|2|φv(~r)|2d3r (4.5)

and define the new quantity

Λ2 =
∑
o∈occ

∑
v∈virt

(
CIov
)2 Oov√

OooOvv
(4.6)

that should behave similarly to Λ from eqn. 4.4 . Applying again the monopole approxi-
mation from chapter 3, Oov can be approximated by

Oov ≈
∑
A

∑
B

qooA q
vv
B

∫
FA(|~r − ~RA|)FB(|~r − ~RB|)d3r︸ ︷︷ ︸

ΩAB

. (4.7)

The overlap integral ΩAB of the spherical charge distributions centered on atoms A and B
can be performed analytically assuming that F has a Gaussian profile:

FA(~r) =
1(

2πσ2
A

)3/2 exp

(
− |~r|

2

2σ2
A

)
(4.8)

where the width of the distribution is inversely proportional to the Hubbard parameter of
atom A (see eqn. 29 of Ref. [10]):

σA =
1√
π

1

UA
. (4.9)

The integral is:

ΩAB =
1(

2π
(
σ2
A + σ2

B

))3/2 exp

(
−1

2

1

σ2
A + σ2

B

(
~RA − ~RB

)2
)

(4.10)

For extended molecular systems the analysis of charge transfer by looking at the or-
bitals can become very cumbersome as the grids on which they are stored have to be very
large. In section 4.3 we provide an alternative analysis method in terms of the difference
density between ground and excited stated, which is partitioned into atomic contributions.

4.3 Analyzing charge transfer with density differences

Since the Λ-metric [6] cannot detect all problematic charge transfer excitations, Guido et.al.
introduced the ∆r [11]- and Γ [12]-metrics. In particular the ∆r-metric has an intuitive
interpretation as the electron-hole distance.

We can define a similar quantity at the tight-binding level. To this end, we start with
the density difference between the excited state and the ground state, ∆ρI = ρI − ρ0. In
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the linear response regime the Kohn-Sham “wavefunction” of the excited state I is a linear
combination of single excitations from the Kohn-Sham ground state Slater determinant:

| ΨI〉 =
∑
v∈virt

∑
o∈occ

CIvoâ
†
vâo | Ψ0〉 (4.11)

The operator for the electron density in second quantization reads (in the basis of Kohn-
Sham orbitals):

ρ̂(~r) =
∑
α

∑
β

â†αâβφ
∗
α(~r)φβ(~r) (4.12)

Here, o and o′ denote occupied, v and v′ virtual and α and β general Kohn-Sham or-
bitals. Combining eqns. 4.11 and 4.12, the density of state I becomes:

ρI(~r) = 〈ΨI | ρ̂ | ΨI〉 =
∑
o,o′

∑
v,v′

∑
α,β

φ∗α(~r)φβ(~r)CI∗voC
I
v′o′〈Ψ0 | â†oâvâ†αâβ â

†
v′ âo′ | Ψ0〉 (4.13)

By using anti-commutation relations for Fermions, and the fact that the ground state only
contains occupied orbitals (so âv | Ψ0〉 = â†o | Ψ0〉 = 0), the expression for the density can
be reduced to [13]:

ρI(~r) =
∑
o

∑
v,v′

CI∗voC
I
v′oφ

∗
v(~r)φv(~r)−

∑
v

∑
o,o′

CI∗voC
I
vo′φ

∗
o′(~r)φo(~r) +

∑
o

|φo(~r)|2 (4.14)

= ρp(~r)− ρh(~r) + ρo(~r) (4.15)

In the exciton picture, the I-th excited state can be described by a bound particle-hole pair.
The first term in eqn. 4.14 can be identified with the particle, the second term belongs to the
hole, while the last term is just the ground state density. The difference density between
the ground and excited state is the sum of the particle and hole densities:

∆ρI = ρI − ρ0 = ρe + ρh (4.16)

Since tight-binding DFT deals with partial charges instead of a continuous density distri-
bution, we have to coarse-grain the density to an atomic resolution. Again, the transition
charges are approximated as a sum of spherically symmetric charge distributions centered
on the individual atoms:

φ∗v(~r)φv′(~r) =
∑
A

qvv
′

A FA(|~r − ~RA|) (4.17)

φ∗o(~r)φo′(~r) =
∑
A

qoo
′

A FA(|~r − ~RA|) (4.18)

The particle and hole densities are partitioned into atomic contributions,

ρe =
∑
A

∑
o,v,v′

CI∗voC
I
v′oq

vv′
A FA(|~r − ~RA|) =

∑
A

qeAFA(|~r − ~RA|) (4.19)

ρh =
∑
A

∑
v,o,o′

CI∗voC
I
vo′q

oo′
A FA(|~r − ~RA|) =

∑
A

qhAFA(|~r − ~RA|) (4.20)

qeA and qhA are the particle and hole charges.
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The average positions of the particle and the hole result from the weighted average of
all charges.

~re =

∑
A q

e
A
~RA∑

A q
e
A

(4.21)

~rh =

∑
A q

h
A
~RA∑

A q
h
A

(4.22)

The particle-hole separation de−h = |~re − ~rh| indicates the spatial extent of the exciton.
In chapter 7 we will assess the quality of LC-TD-DFTB by computing excited states for a

large molecule test set. In this context, the charge transfer metrics will come handy, as they
allow to quantify the degree of charge transfer as a single number. The computational cost
of evaluating the metrics is minimal so that the analysis of the charge transfer character of
each excited state can be performed automatically in every calculation.
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Chapter 5

Electronic Parametrization

A tight binding DFT method is not uniquely specified unless the details of the parametriza-
tion are given. This chapter introduces the main aspects of the electronic parametrization:
the computation of free and confined pseudoatoms, the generation of Slater-Koster tables
for matrix elements of the overlap and Hamiltonian and the γ-approximation, which sim-
plifies the self-consistent charge calculations.

5.1 Pseudoatoms

Tight-binding DFT is a mean-field theory, where electrons move independently in an effec-
tive potential generated by all other electrons and occupy molecular orbitals. These molec-
ular orbitals are approximated as a linear combinations of atom-centered atomic orbitals.
A minimal basis set is used, that attributes exactly one basis function to each atomic orbital
(1s, 2s, 2p, etc.). This is in contrast with most ab initio methods, where the number of basis
functions, be it plane waves or atom-centered contractions of Gaussian basis functions, is
much larger than the number of electrons. In ab initio methods the quality of the basis set
can be improved consistently by adding plane waves with higher frequencies or Gaussians
with different exponents or angular momenta. In this way in principle the basis set limit
can be reached, that is the result a quantum chemistry method would give if a complete
basis set were employed. Since the variational flexibility of the basis set can be increased
by adding more basis functions, the functional form of an individual basis function is not
extremely critical: Although the radial part of an atomic orbital decays exponentially, e−αr,
a suitably chosen linear combination of Gaussian functions,

∑
i cie

−αir2 , can approximate
such a function very well.

In tight-binding DFT, we only dispose of a single basis function per atomic orbital. This
lack of variational flexibility is compensated by numerically exact atomic orbitals [1], i.e.
the numerically exact solutions of the atomic Kohn-Sham equations. The atomic Kohn-
Sham problem is solved on a radial grid and the resulting orbital energies and 2-center
matrix elements between orbitals of different atom types are tabulated beforehand in a for-
mat that allows to construct the tight-binding Hamiltonian quickly by using Slater-Koster
rules. This procedure will be explained below in section 5.2.2. For the moment we focus
on the solution of the atomic Kohn-Sham problem.

In molecules or the solid state, orbitals are less diffuse as compared to the free atom, so
that free atomic orbitals do not constitute a good basis for representing molecular orbitals.
Therefore the atoms are placed in a quadratic confinement potential, that compresses the
orbitals and shifts the orbital energies up. Since the resulting electronic structure deviates
from the free atom, the confined atoms are referred to as pseudoatoms (see Fig.5.1). The
atomic orbitals used to compute the matrix elements are taken from the confined pseu-
doatoms, whereas the orbital energies that are diagonal elements of the DFTB Hamiltonian
in the atomic basis, are taken from the free pseudoatoms.
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In the following I will describe in detail how the atomic Kohn-Sham equations are
solved numerically. (The solution methods employed are much older than Kohn-Sham
theory, though, and go back to the earliest calculations of atomic structures by Hartree [2],
[3].) The starting point are the Kohn-Sham equations [4]:

Ĥφi(~r) = εiφi(~r) (5.1)

where the Kohn-Sham Hamiltonian contains an effective potential that is a functional of
the electron density ρ:

Ĥ = −1

2
∇2 + Veff[ρ(~r)] (5.2)

The eigenvalue problem 5.1 has to be solved self-consistently since the density depends
itself on the occupied atomic spin orbitals φi:

ρ(~r) =
∑
i∈occ

|φi(~r)|2 (5.3)

In an atom with N electrons usually the orbitals with lowest eigenenergies εi are occupied.
However, some atoms have non-standard orbital occupations, that have to be maintained
in the self-consistent cycle. For instance in potassium, the 4s orbital is filled before the 3d
orbital, so that the electronic configuration can be described as [Ar]4s1.

The effective potential

Veff = −Z
r

+

∫
d3r′

ρ(~r′)

|~r − ~r′|︸ ︷︷ ︸
VHartree

+Vxc[ρ] + Vconf(~r) (5.4)

contains the attraction to the nucleus with charge Z, the electrostatic repulsion between
electrons VHartree (including the self-interaction), the exchange-correlation potential Vxc and
the confinement potential

Vconf =

(
r

r0

)2

(5.5)

Element r0 / bohrs
H 1.084
C 2.657
N 2.482
O 2.307
F 1.993
Cl 3.566
Br 4.195
I 4.859

TABLE 5.1: Confinement radii, computed as 1.85× the covalent radius as
reported in Ref.[5], r0 = 1.85rcov

The confinement radius r0 is chosen as r0 = 1.85rcov, where rcov is the covalent radius
[5] (see table 5.1). The exchange-correlation potential Vxc[ρ] is a complicated functional of
the density ρ, whose exact form is essentially unknown but for which a variety of approx-
imations exist. The open source library libxc [6] implements many functionals, so that in
principle any local functional can be chosen for computing the pseudoatoms. We chose the
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PBE [7] functional from the class of GGA (generalized gradient approximation) function-
als, whose value at the position ~r depends on the density ρ and its gradient∇ρ at the same
position. Most DFTB parametrizations rely on this functional.

FIGURE 5.1: Radial wavefunctions of Kohn-Sham orbitals for a) the free
carbon atom and b) the carbon atom in a quadratic confinement potential

Vconf(r) =
(
r
r0

)2
.

Due to the spherical symmetry of atoms, the Kohn-Sham equations can be separated
into a radial and angular part. In spherical coordinates (r, θ, φ) the action of the Laplace
operator on a function f is

∇2f(r, θ, φ) =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2

{
1

sin(θ)

∂

∂θ

(
sin(θ)

∂f

∂θ

)
+

1

sin(θ)2

∂f2

∂φ2

}
. (5.6)

The Laplace operator can be split into two parts that contain only derivatives with respect
to r or the angular variables θ and φ:

∇2f = ∇2
rf +

1

r2
∇2
θ,φf (5.7)

Since the total electronic wavefunction is spherically symmetric, the density is only a func-
tion of the radius r,

ρ(~r) = ρ(r) (5.8)

which implies that the Kohn-Sham Hamiltonian has the same symmetry.
The radial part of the Laplace operator has the following convenient property:

∇2
r

(
u(r)

r

)
=
u
′′
(r)

r
(5.9)

The spherical symmetry allows to write the wavefunction as the product of a radial and an
angular function:

φi = φn,l,m(r, θ, φ) = Rn,l(r)Ỹl,m(θ, φ) =
un,l(r)

r
Ỹl,m(θ, φ) (5.10)

The angular functions Ỹlm(θ, φ) are the real spherical harmonics listed in table 5.2. They are
linear combination of the complex spherical harmonics Yl,m(θ, φ) that are eigenfunctions of
∇2
θ,φ:

∇2
θ,φYl,m(θ, φ) = −l(l + 1)Yl,m(θ, φ) (5.11)
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Symbol l m Ỹlm(θ, φ)

s 0 0 1
2
√
π

py 1 −1 1
2

√
3
π sin(θ) sin(φ)

pz 1 0 1
2

√
3
π cos(θ)

px 1 1 1
2

√
3
π cos(φ) sin(θ)

dxy 2 −2 1
4

√
15
π sin(θ)2 sin(2φ)

dyz 2 −1 1
2

√
15
π cos(θ) sin(θ) sin(φ)

dz2 2 0 1
8

√
5
π (1 + 3 cos(2θ))

dzx 2 1 1
2

√
15
π cos(θ) cos(φ) sin(θ)

dx2−y2 2 2 1
4

√
15
π cos(2φ) sin(θ)2

TABLE 5.2: Real spherical harmonics that constitute the angular part of the
atomic s-,p- and d-orbitals, φn,l,m(r, θ, φ) = Rn,l(r)Ỹlm(θ, φ).

The atomic orbitals are labelled by the multi-index i = (n, l,m) with the principle quan-
tum number n, and the angular quantum numbers l = 0, . . . , n−1 andm = −l, . . . , 0, . . . , l.
The effects of the kinetic operator and potential operators on this ansatz are(

−1

2
∇2

)
φn,l,m = −1

2

(
∇2
r +∇2

θ,φ

) un,l(r)
r

Ỹl,m(θ, φ)

= − 1

2r

(
u
′′
(r)− l(l + 1)

r2
u(r)

)
Ỹl,m(θ, φ)

(5.12)

and
Veffφn,l,m = Veff

1

r
un,l(r)Ỹl,m(θ, φ) (5.13)

so that after cancelling a factor of 1
r Ỹl,m the Kohn-Sham equations(

−1

2
∇2 + Veff

)
φn,l,m = εn,l,mφn,l,m (5.14)

turn into a second-order differential equation for the radial function un,l(r):

−1

2

d2

dr2
un,l(r) +

[
Veff(r) +

1

2

l(l + 1)

r2

]
un,l(r) = εn,lun,l(r) (5.15)

subject to the normalization condition∫ ∞
0

r2|Rn,l(r)|2dr =

∫ ∞
0
|un,l(r)|2dr = 1. (5.16)

When solving these radial equations self-consistently, in each iteration the new radial
density ρ(r) is determined from the radial wavefunctions of the occupied orbitals:

ρ(r) =
1

4πr2

∑
i∈occ

|uni,li(r)|
2 (5.17)

To obtain the new effective potential, the exchange correlation functional is evaluated and
the Hartree potential is computed by numerical integration on the radial grid. In spherical
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coordinates the integration over the spherically symmetric electron density is

VHartree(~r) =

∫
d3r′

ρ(r′)

|~r − ~r′|

=

∫ ∞
0

r′2dr′
∫ π

0
sin(θ′)dθ′

∫ 2π

0
dφ′

ρ(r′)√
r2 + r′2 − 2rr′ cos(θ′)

.

(5.18)

The integral over the angles θ′ and φ′ gives∫ 2π

0
dφ′
∫ π

0
sin(θ′)

1√
r2 + r′2 − 2rr′ cos(θ′)

dθ′ =
2π

rr′

[√
r2 + r′2 − 2rr′ cos(θ′)

]θ′=π
θ′=0

=
2π

rr′
(
|r + r′| − |r − r′|

)
.

(5.19)

The remaining integral over the radius r′ has to be performed numerically,

VHartree(r) = 2π

∫ ∞
0

dr′
r′

r

(
|r + r′| − |r − r′|

)
ρ(r′), (5.20)

distinguishing the cases where r′ is smaller or greater than r:

|r + r′| − |r − r′| =

{
r + r′ − (r − r′) = 2r′ if r′ < r

r + r′ + (r − r′) = 2r if r′ ≥ r
(5.21)

Splitting the integral in regions where r′ < r or r′ ≥ r leads finally to the expression

VHartree(r) = 4π

∫ r

0

r′2

r
ρ(r′)dr′ + 4π

∫ ∞
r

r′ρ(r′)dr′. (5.22)

5.1.1 Shooting method

Eqn. 5.15 has the form of a radial Schrödinger equation for a single electron in a potential
Veff. There exist infinitely many solutions, but only for discrete values of the energy εi.
Asymptotically for r → 0 and r → ∞ we know the solutions, however only for certain
energies can the inner and the outer solutions be matched smoothly in an intermediate
region.

For r → 0 the term ∝ 1
r2

dominates and the limiting form of eqn. 5.15 becomes

d2u

dr2
=
l(l + 1)

r2
u(r) (5.23)

which has the solution
uinner(r) = Arl+1 (5.24)

as can be easily verified. For very large radii, r → ∞, the effective potential vanishes,
Veff → 0, so that the radial Schrödinger equation reduces to the limiting form

d2u

dr2
= −2εu(r) (5.25)

with the solution
uouter(r) = Be−

√
2(−ε)r. (5.26)

The other solution where u(r) grows exponentially is discarded because it is unphysical.
The decaying solution can only be normalized for negative energies ε < 0. The slope of the
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inner solution uinner depends on the angular momentum quantum number l, while the de-
cay constant of the outer solution uouter is determined by the energy ε. If we propagate the
inner solution outwards and the outer solution inwards using the full radial Schrödinger
equation, until reaching an intermediate position rm, the constantsA andB can be adjusted
such that the inner and outer solutions match continuously at rm and such that the total
wavefunction is normalized (see Fig.5.2):

uinner(rm) = uouter(rm) (5.27)∫ rm

0
|uinner(r

′)|2dr′ +
∫ ∞
rm

|uouter(r
′)|2dr′ = 1 (5.28)

However, since there are only two free parameters A and B, in general it will not be possi-
ble to satisfy the third condition, that requires that the first derivative is also continuous at
the matching point rm (see Fig.5.3):

u′inner(rm) = u′outer(rm) (5.29)

As the matching point we use the classical turning point of the effective potential, which is
defined as the largest position, where the total energy equals the potential energy, V (rm) =
ε. At this point a classical particle moving in the potential would change direction as all
kinetic energy is converted into potential energy.

The satisfaction of all three matching conditions happens only for discrete energies, and
this defines the eigenenergies and associated eigenfunctions. This observation provides a
recipe for finding eigenfunctions in a certain energy interval. The shooting method [8],
[9] apparently derives its name from target practice. We ‘shoot‘ an outer solution inwards
towards the matching point and adjust the energy according to the mismatch of the deriva-
tives. Expressed in more rigorous language, the eigenvalue problem is transformed into a
root finding problem. The roots of the mismatch function

g(ε) = u′inner(rm)− u′outer(rm) (5.30)

are precisely the eigenenergies.

g(εi) = 0 ⇒ εi is an eigenenergy (5.31)

They are found by scanning g(ε) as a function of the energy and by searching for sign
changes in an energy interval, that indicate the presence of at least one root. Bisection of
the interval narrows down the root εi to very high precision.

Since the outer solution has to be propagated thousands of times for different energies,
an efficient numerical integration algorithm is required. The Numerov method [9], [10]
is particular suitable for second order differential equations because it allows a large step
size.

The shooting method thus provides the lower part of the spectrum for a given effective
potential. The following bullet points summarize the self-consistency cycle:

• In the first iteration the effective potential is computed for a density guess that can
for instance be obtained by scaling the density of an atom with less electrons.

• Then the lowest eigenfunctions are determined using the shooting method for l =
0, 1, ..., lmax. This requires some approximate knowledge of the energy interval, that
contains the lowest eigenenergies. lmax is chosen at least as large as the l-value of the
highest occupied orbital.
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• The solutions are classified by the number of radial nodes, which determine the prin-
cipal quantum number n. The n-th wavefunction with angular momentum l should
have (n− 1)− l nodes. If this is not the case, some eigenfunctions have been missed
and the energy interval that is searched has to be adjusted.

• The energy levels are filled according to increasing energy (Aufbau principle) un-
less the atom has a special electronic configuration. Each l-shell (n, l) may contain
at most 2(2l + 1) electrons because of the degeneracy with respect to the magnetic
quantum number that affects only the angular part of the wavefunction and because
each spatial orbital (n, l,m) may be occupied by two electrons with different spin.

• After determining the wavefunctions of the occupied orbitals the new electronic den-
sity and effective potential is computed. In the next cycle the energy interval is
scanned again for the new eigenenergies and eigenfunctions. This is repeated un-
til the total energy and the eigenfunctions do not change anymore.

The resulting self-consistent total energies for the lightest 10 elements H-Ne of the pe-
riodic table are shown in table 5.3.

FIGURE 5.2: Shooting method for bound states. The asymptotic inner and
outer solutions are extended to the matching point. The r → 0 behaviour
is determined by the potential Vl ≈ − l(l+1)

r2 , while the r →∞ behaviour is
determined by the energy E. Matching is only possible if E = eigenenergy.

5.1.2 Scattering States

As a digression I would like to mention that the radial Schrödinger equation allows to
compute the continuous part of the spectrum, as well. For positive energies ε > 0 the
asymptotic solution becomes an oscillating function:

uouter(r) = B+e
+ι̇
√

2εr +B−e
−ι̇
√

2εr (5.32)

Since both the + and the − solutions are physically possible, the inner and outer solutions
can always be matched smoothly as demonstrated in Fig.5.4. The matching conditions de-
termine the coefficients B+ and B−. Any positive energy leads to a scattering state with
momentum k =

√
2ε, that becomes a linear combination of the two asymptotic solutions.

The radial wavefunction cannot be normalized to 1 since it represents an unbound electron.
The correct scaling factor can be found by comparing with Coulomb waves. Asymptoti-
cally the electron only feels the Coulomb attraction that remains if the positive nucleus
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FIGURE 5.3: Different “shots” for the hydrogen 1s orbital. Matching the
inner and outer solution such that u(r) is everywhere continuously differen-
tiable imposes a quantization condition on the energy ε. The wavefunctions
are not normalized. The potential Veff(r) is shown as a green dashed line.
Because of the self-interaction error in DFT, the best matching is found for

an energy of −0.211 instead of the exact value of −0.5 Hartree.

Z element state DFTa) (numerical orbitals) HFb) (Slater orbitals)

1 H 2S −0.218 08c) −0.500 00(exact)
2 He 1S −2.834 25 −2.861 68
3 Li 2S −7.333 46 −7.432 73
4 Be 1S −14.442 61 −14.573 02
5 B 2P −24.333 85 −24.529 06
6 C 3P −37.725 84 −37.688 62
7 N 4S −54.384 79 −54.400 93
8 O 3P −74.883 91 −74.809 40
9 F 2P −99.005 05 −99.409 35
10 Ne 1S −128.084 33 −128.547 10

TABLE 5.3: DFT and Hartree-Fock total energies (in a.u.) for the ground
states of atoms H-Ne. a) local density approximation with PBE functional,
Kohn-Sham equations were solved on a radial grid using the shooting
method, b) values from Ref. [11]. c) For a single electron the self-interaction
error causes the DFT energy to deviate from the exact value of -0.5, which

would be obtained by setting the xc-potential to 0.

with charge Z is screened by the Ncore = Z − 1 bound electrons. Therefore, up to a phase
shift, the amplitude of the radial wavefunction for r → ∞ should coincide with that of
Coulomb waves.
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FIGURE 5.4: Radial wavefunctions of continuum states. In the limit
Veff(r)

r→∞−→ 0 the asymptotic solutions are linear combinations of regular
and irregular Coulomb functions.

5.2 0-th order Hamiltonian

The 0-th order Hamiltonian describes the interactions between atomic orbitals that are non-
orthogonal because they are localized on different atomic centers. If tight-binding DFT
is understood as a Taylor expansion of DFT [12] around a reference density ρ0, the 0-th
order term accounts for the interaction of atoms that are individually neutral. Denoting
the electron density of an isolated atom A at position RA by ρ0,A, the reference density is
expressed as a superposition of all atomic densities in the molecule:

ρ0(r) =
∑
A

ρ0,A(r) (5.33)

This is a very rough approximation to the true electron density since electronic charge flows
from less to more electronegative atoms if they are brought in contact so that covalent or
ionic bonds can form. The next correction consists in partial Mulliken charges that are
smeared out over spherically symmetric charge clouds as shown in the case of water in
Fig.5.5:

ρ(r) ≈ ρ0(r) +
∑
A

δρA(r) (5.34)

In the oldest version of DFTB [13] the charge fluctuations δρA are neglected altogether.
In DFTB2 [14] the Taylor expansion is truncated after the 1st correction, but there exists
variants such as DFTB3 [15] that include higher-order corrections. The main difference
between DFTB and other semiempirical methods is that charge fluctuations are limited
to monopoles, while older semiempirical methods already include interactions between
partial dipoles and quadrupoles that can account for polarization effects [16].

In this section we explain how the matrix elements for the 0-th order Hamiltonian,
H0
µν = 〈µ | Ĥ[ρ0] | ν〉, are obtained. In contrast to ab initio methods, where every calcu-

lation is preceded by a costly evaluation of all matrix elements for the chosen basis set, in
DFTB the matrix elements are precalculated for each atom pair and are stored in a format,
that allows to assemble the matrix elements for any molecule with very low computational
effort. This is made possible by the two-center approximation that neglects 3- and 4-center
integrals and the Slater Koster rules [17], that are derived below. The presentation follows
closely Ref. [18].
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FIGURE 5.5: Electron density for water. a) The reference density ρ0 is a su-
perposition of neutral atomic densities. b) The first order corrections are
spherically symmetric charge clouds whose charge content is proportional

to the partial Mulliken charges on each atom.

5.2.1 Matrix elements

Orbital µ is localized on atom I and orbital ν on atom J . The matrix elements we are
interested in are the overlap

Sµν =

∫
φ∗µ(~r − ~Rµ)φν(~r − ~Rν)d3r, (5.35)

the 0-th order Hamiltonian

H0
µν =

∫
φ∗µ

(
−1

2
∇2 + Veff[ρ0]

)
φνd

3r (5.36)

and, since later we intend to compute transition dipoles between excited states, the matrix
elements of the dipole operator

~Dµν =

∫
φ∗µ~rφνd

3r. (5.37)

Because of the localized nature of the atomic orbitals, to a good approximation the inte-
grands vanish for positions ~r that are not in the vicinity of atoms I and J . Therefore in the
two-center approximation the reference density used for calculating the matrix elements
between orbitals µ ∈ I and ν ∈ J becomes

ρ0(r) ≈ ρ0,I(r) + ρ0,J(r) (5.38)

and the effective potential is approximated as

Veff[ρ0] = Veff[ρ0,I ] + Veff[ρ0,J ] (5.39)

although this approximation cannot be justified rigorously since the density functional is
certainly not linear.

Veff[ρ0,I ] = V conf
eff [ρ0,I ]− Vconf,I(r) (5.40)

is the effective potential of the confined pseudoatom I with the density ρ0,I that has been
determined self-consistently minus the confinement potential. The confined pseudo atom
is calculated in a confinement potential to compress the basis function, but the confinement
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potential does not represent a physical interaction and should therefore not affect the ma-
trix elements. With these approximations the 0-th order Hamiltonian for the interaction
between orbitals µ and ν becomes

Ĥ0 = −1

2
∇2 + V conf

eff,I (r1)− Vconf,I(r1) + V conf
eff,J (r2)− Vconf,J(r2). (5.41)

r1 = |~r− ~Rµ| and r2 = |~r− ~Rν | denote the distances of the electron to the centers of the two
atoms.

When simplifying the integral 5.36 we exploit the fact that the orbitals are eigenfunc-
tions of those parts of the total Hamiltonian that belong to the atoms I or J :(

−1

2
∇2 + V conf

eff [ρ0,I ]

)
| µ〉 = εconf

µ | µ〉 with µ ∈ I (5.42)(
−1

2
∇2 + V conf

eff [ρ0,J ]

)
| ν〉 = εconf

ν | ν〉 with ν ∈ J (5.43)

Using the eigenvalue equation for the orbital ν, the integral for H0
µν becomes

H0
µν = 〈µ | Ĥ0 | ν〉 = εconf

ν Sµν + 〈µ | V conf
eff [ρ0,I ]− Vconf,I(r1)− Vconf,J(r2) | ν〉 (5.44)

For the diagonal elements µ = ν, the orbital energies of the free pseudo atoms are used to
ensure the correct limit of the total energy for completely dissociated atoms:

H0
µµ = εfree

µ (5.45)

The matrix elements for the overlap and Hamiltonian can be viewed as functions of the
relative position ~Rµν = ~Rν − ~Rµ of the centers of the orbitals:

Sµν(~Rµν) =

∫
d3r1φ

∗
µ(~r1)φν(~r2) (5.46)

H0
µν(~Rµν) =

∫
d3r1φ

∗
µ(~r1)

[
εconf
µ + V conf

eff [ρ0,I ]− Vconf,I(r1)− Vconf,J(r2)
]

︸ ︷︷ ︸
h(r1,r2)

φν(~r2) (5.47)

where ~r2 = ~r1 − ~Rµν . It is important to note that the expression h(r1, r2) in square brackets
under the integral has rotational symmetry around the axis R̂µν passing through the two
centers. Let us denote by f(r1, r2) a general function that has this symmetry. The integral

Fµν(~Rµν) =

∫
d3r1φ

∗
µ(~r1)f(r1, r2)φν(~r2) with ~r2 = ~r1 − ~Rµ (5.48)

encompasses both the Hamiltonian and overlap matrix elements, if we set f(r1, r2) =
h(r1, r2) or f(r1, r2) = 1.

The atomic orbitals consist of a radial part Rnl(r) and a real spherical harmonic as the
angular part Ỹl,m(θ, φ):

φµ(~r) = Rnµ,lµ(r)Ỹlµ,mµ(θ, φ) (5.49)

The radial part Rn,l(r) is specific to each atom type and is obtained by numerically
solving the radial Schrödinger equation for the atomic Kohn-Sham Hamiltonian with a
local exchange correlation functional as explained in the previous section 5.1 about pseu-
doatoms. For the valence s and px, py and pz orbitals (l,m) would take the values (0, 0),
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(1, 1), (1,−1) and (1, 0) respectively. The valence shell of carbon, for instance, requires two
radial functions, RC

n=2,l=0(r) for the 2s orbital, and RC
n=2,l=1(r) for the three 2p orbitals.

Decomposing the orbitals µ and ν into their radial and angular parts the integral in eqn.
5.48 becomes (in spherical coordinates):

Fµν =

∫ ∞
0

r2
1dr1

∫ π

0
sin(θ1)dθ1

∫ 2π

0
dφ1R

∗
nµ,lµ(r1)Ỹlµ,mµ(θ1, φ1)f(r1, r2)Rnν ,lν (r2)Ỹlν ,mν (θ2, φ2)

(5.50)

where r2 = |~r1 − ~Rµν |, θ2 and φ2 depend on the integration variables r1, θ1 and φ1 as
illustrated in Fig.5.7a).

5.2.2 Slater-Koster rules

We wish to find a way to precalculate these integrals and tabulate them, so that at runtime
no integrals have to be solved. At first it seems, as if one had to solve the integral for all
possible relative arrangement in 3D space (expressed by ~Rµν) of the two orbitals. Slater-
Koster rules [17] allow to break the integral down to a set of few elementary integrals,
that only depend on the relative distance, and from which the integrals for any relative
orientation can be assembled quickly.

To derive the Slater-Koster rules for Hamiltonian and overlap matrix elements, we be-
gin by rotating the coordinate system such that ~Rµν points along the z axis (Fig. 5.7a and
b). Since spherical harmonics form a representation of the rotation group SO(3) for each
angular momentum l, the action of this rotation is to mix spherical harmonics with differ-
ent m but the same l. For (complex) spherical harmonics the mixing is described by the
Wigner D-matrices. Analogously, real spherical harmonics, as they are used for orbitals,
will be transformed by combinations of those D-matrices, which will be called D̃-matrices:

R~Rµν→ẑ

[
Ỹlm(θ, φ)

]
=

l∑
m′=−l

D̃l
m,m′(A,B,Γ)Ỹl,m′(θ, φ) (5.51)

The D̃matrices are expressed as functions of three Euler anglesA,B and Γ. In order to align
the vector ~Rµν (whose spherical coordinates areR,Θ and Φ) with the z-axis, the angles have
to be set to A = π

2 , B = Θ and Γ = Φ. In the integral 5.50 both spherical harmonics have to
be rotated leading to:

Fµν =

∫
d3r′φ∗µ(~r′)f(r1, r2)φν(~r′ − ~Rµν)

=

lµ∑
m1=−lµ

lν∑
m2=−lν

(
D̃
lµ
mµ,m1

)∗ (
D̃lν
mν ,m2

)
×
∫ ∞

0
r2

1dr1

∫ π

0
sin(θ1)dθ1R

∗
nµ,lµ(r1)Rnν ,lν (r2)f(r1, r2)

×
∫ 2π

0
dφỸ ∗lµ,m1

(θ1, φ)Ỹlν ,m2(θ2, φ)︸ ︷︷ ︸
φ
(2)
i(lµ,lν ,m1,m2)

(θ1,θ2)

(5.52)

The rotated coordinate systems and mixing of spherical harmonics is depicted in Fig.5.7b)
and c).
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Since after the rotation the z-axes for both orbital centered coordinate systems coincide,
one has φ1 = φ2 and the φ integral can be done analytically [19]. For s, p and d orbitals 14
different expressions φ(2)

i (θ1, θ2) result, which are listed in table 5.4.
The remaining two-dimensional integrals over r1 and θ1 are best performed in cylindri-

cal coordinates ρ, z as defined in Fig.5.7d. The variable transformations are given by

r1 =
√
ρ2 + (z − h)2 (5.53)

r2 =
√
ρ2 + (z + h)2 (5.54)

θ1 = arctan2(ρ, z − h) (5.55)
θ2 = arctan2(ρ, z + h) (5.56)

where h =
Rµν

2 is half the distance between the two atomic centers (see Fig.5.7d ). Since the
orbitals are highly peaked at the atomic positions and decay exponentially towards larger
distances, a grid with sampling points clustered around the two atomic centers (see Fig.
5.7e ) is most suited for accurate quadrature.

In total, one has to calculate the 14 two-dimensional integrals

Fi(Rµν) =

∫
dz

∫
ρdρR∗nµ,lµ(i)(r1)Rnν ,lν(i)(r2)φ

(2)
i (θ1, θ2)f(r1, r2) (5.57)

as functions of the orbital separation.
The matrix element between two orbitals that are centered on atoms separated by the

vector ~Rµν is constructed as a linear combination of these 14 basic integrals:∫
d3r′φ∗µ(~r′)f(r1, r2)φν(~r′ − ~Rµν) =

∑
i

T
(2)
i (x, y, z)Fi(Rµν) (5.58)

The coefficients T (2)
i (x, y, z) depend on the directional cosines of ~Rµν , i.e. x = cos(α),

y = cos(β) and z = cos(γ) as labelled in Fig.5.7a), and account for the relative orientation
of the orbitals.

The basic Slater-Koster integrals for overlap and Hamiltonian have the following form
(i = 1, . . . , 14):

Si(Rµν) =

∫
dz

∫
ρdρR∗nµ,lµ(i)(r1)Rnν ,lν(i)(r2)φ

(2)
i (θ1, θ2) (5.59)

Hi(Rµν) =

∫
dz

∫
ρdρR∗nµ,lµ(i)(r1)Rnν ,lν(i)(r2)φ

(2)
i (θ1, θ2)

[
εconf
µ + V conf

eff (r2)− Vconf,I(r1)− Vconf,J(r2)
]

(5.60)

(5.61)

These integrals are solved once numerically for a sequence of distances and are stored in
Slater-Koster tables. The values of Si(r) andHi(r) for the distance r = Rµν are interpolated
between the tabulated points using splines. In Fig.5.8 the Slater-Koster tables for the atom
pair carbon-nitrogen are plotted as an example. The angular functions φi(θ1, θ2) that enter
the different integrals are shown in table 5.4. The angular momenta lµ(i) and lν(i) of the
radial wavefunctions that have to be combined with the respective angular functions φ(2)

i

can be deduced from table 5.4. The global phases of the radial wavefunctions (+ or -) are
arbitrary, but the same phases have to be used in every integral.



80 Chapter 5. Electronic Parametrization

The Slater-Koster rules for the overlap and Hamiltonian matrix elements follow the
general rule in eqn. 5.58:

Sµν =
∑
i

T
(2)
i (x, y, z)Si(Rµν) (5.62)

Hµν =
∑
i

T
(2)
i (x, y, z)Hi(Rµν) , i = 1, .., 14 (5.63)

None of the sums contains more than 3 different integrals Si or Hi. The full expressions
for computing these sums are given in table 5.5. A simple application of the Slater-Koster
rules is illustrated in Fig. 5.6.

FIGURE 5.6: Slater-Koster rules reduce two-center matrix elements of the
Hamiltonian between arbitrarily oriented atomic orbitals to a linear combi-
nation of basic integrals, here H(ppπ)(r) and H(ppσ)(r). The coefficients
depend on the relative orientation while the integrals are functions of the

relative distance alone.

i φ
(2)
i (θ1, θ2) lµ(i) lν(i)

1 1
2 0 0

2
√

3
2 cos(θ2) 0 1

3
√

5
4

(
3 cos(θ2)2 − 1

)
0 2

4
√

3
2 cos(θ1) 1 0

5 3
4 sin(θ1) sin(θ2) 1 1

6 3
2 cos(θ1) cos(θ2) 1 1

7 3
√

5
8 sin(θ1) sin(2θ2) 1 2

8
√

15
4 cos(θ1)

[
3 cos(θ2)2 − 1

]
1 2

9
√

5
4

(
3 cos(θ1)2 − 1

)
2 0

10 3
√

5
8 sin(2θ1) sin(θ2) 2 1

11
√

15
4

[
3 cos(θ1)2 − 1

]
cos(θ2) 2 1

12 15
16 sin(θ1)2 sin(θ2)2 2 2

13 15
4 cos(θ1) cos(θ2) sin(θ1) sin(θ2) 2 2

14 5
8

[
3 cos(θ1)2 − 1

] [
3 cos(θ2)2 − 1

]
2 2

TABLE 5.4: Angular functions that enter the numerical Slater-Koster inte-
grals for overlap Si(r) (in eqn. 5.59) and the Hamiltonian Hi(r) (in eqn.

5.59).
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orb. φµ orb. φν
(lµ,mµ) symbol (lν ,mν) symbol Rule for Sµν = 〈φµ | φν〉 or H0

µν = 〈φµ | Ĥ0 | φν〉
(0, 0) s (0, 0) s H1(r)
(0, 0) s (1,−1) py yH2(r)
(0, 0) s (1, 0) pz zH2(r)
(0, 0) s (1, 1) px xH2(r)
(0, 0) s (2,−2) dxy

√
3xyH3(r)

(0, 0) s (2,−1) dyz
√

3yzH3(r)
(0, 0) s (2, 0) dz2 −1

2(x2 + y2 − 2z2)H3(r)

(0, 0) s (2, 1) dzx
√

3xzH3(r)

(0, 0) s (2, 2) dx2−y2
√

3
2 (x− y)(x+ y)H3(r)

(1,−1) py (0, 0) s yH4(r)
(1,−1) py (1,−1) py (x2 + z2)H5(r) + y2H6(r)
(1,−1) py (1, 0) pz yz(H6(r)−H5(r))
(1,−1) py (1, 1) px xy(H6(r)−H5(r))
(1,−1) py (2,−2) dxy x

(
(x2 − y2 + z2)H7(r) +

√
3y2H8(r)

)
(1,−1) py (2,−1) dyz z

(
(x2 − y2 + z2)H7(r) +

√
3y2H8(r)

)
(1,−1) py (2, 0) dz2 −1

2y
(
(x2 + y2 − 2z2)H8(r) + 2

√
3z2H7(r)

)
(1,−1) py (2, 1) dzx xyz

(√
3H8(r)− 2H7(r)

)
(1,−1) py (2, 2) dx2−y2 −1

2y
(
2(2x2 + z2)H7(r) +

√
3(y2 − x2)H8(r)

)
(1, 0) pz (0, 0) s zH4(r)
(1, 0) pz (1,−1) py yz(H6(r)−H5(r))
(1, 0) pz (1, 0) pz (x2 + y2)H5(r) + z2H6(r)
(1, 0) pz (1, 1) px xz(H6(r)−H5(r))
(1, 0) pz (2,−2) dxy xyz(

√
3H8(r)− 2H7(r))

(1, 0) pz (2,−1) dyz y
(
(x2 + y2 − z2)H7(r) +

√
3z2H8(r)

)
(1, 0) pz (2, 0) dz2 z3H8(r)− 1

2

(
(x2 + y2)z(H8(r)− 2

√
3H7(r)

)
(1, 0) pz (2, 1) dzx x

(
(x2 + y2 − z2)H7(r) +

√
3z2H8(r)

)
(1, 0) pz (2, 2) dx2−y2 −1

2

(
(x− y)(x+ y)z(2H7(r)−

√
3H8(r))

)
(1, 1) px (0, 0) s xH4(r)
(1, 1) px (1,−1) py xy(H6(r)−H5(r))
(1, 1) px (1, 0) pz xz(H6(r)−H5(r))
(1, 1) px (1, 1) pz (y2 + z2)H5(r) + x2H6(r)
(1, 1) px (2,−2) dxy y

(
(−x2 + y2 + z2)H7(r) +

√
3x2H8(r)

)
(1, 1) px (2,−1) dyz xyz

(√
3H8(r)− 2H7(r)

)
(1, 1) px (2, 0) dz2 −1

2

(
x((x2 + y2 − 2z2)H8(r) + 2

√
3z2H7(r))

)
(1, 1) px (2, 1) dzx z

(
(−x2 + y2 + z2)H7(r) +

√
3x2H8(r)

)
(1, 1) px (2, 2) dx2−y2 x(2y2 + z2)H7(r) + 1

2

√
3x(x− y)(x+ y)H8(r)

(2,−2) dxy (0, 0) s
√

3xyH9(r)
(2,−2) dxy (1,−1) py x

(
(x2 − y2 + z2)H10(r) +

√
3y2H11(r)

)
(2,−2) dxy (1, 0) pz xyz(

√
3H11(r)− 2H10(r))

(2,−2) dxy (1, 1) px y
(
(−x2 + y2 + z2)H10(r) +

√
3x2H11(r)

)
(2,−2) dxy (2,−2) dxy (x2 + z2)(y2 + z2)H12(r) + ((x2 − y2)2 + (x2 + y2)z2)H13(r) + 3x2y2H14(r)
(2,−2) dxy (2,−1) dyz xz

(
−(x2 + z2)H12(r) + (x2 − 3y2 + z2)H13(r) + 3y2H14(r)

)
(2,−2) dxy (2, 0) dz2

1
2xy

(
(x2 + y2 + 2z2)H12(r)− 4z2H13(r)−

√
3(x2 + y2 − 2z2)H14(r)

)
(2,−2) dxy (2, 1) dzx yz

(
−(y2 + z2)(H12(r)−H13(r)) + 3x2(H14(r)−H13(r))

)
(2,−2) dxy (2, 2) dx2−y2

1
2x(x− y)y(x+ y) (H12(r)− 4H13 + 3H14(r))

(2,−1) dyz (0, 0) s
√

3yzH9(r)
(2,−1) dyz (1,−1) py z

(
(x2 − y2 + z2)H10(r) +

√
3y2H11(r)

)
(2,−1) dyz (1, 0) pz y

(
(x2 + y2 − z2)H10(r) +

√
3z2H11(r)

)
(2,−1) dyz (1, 1) px xyz

(
−2H10(r) +

√
3H11(r)

)
(2,−1) dyz (2,−2) dxy xz

(
−(x2 + z2)H12(r) + (x2 − 3y2 + z2)H13(r) + 3y2H14(r)

)
(2,−1) dyz (2,−1) dyz (x2 + y2)(x2 + z2)H12(r) + ((y2 − z2)2 + x2(y2 + z2))H13(r) + 3y2z2H14(r)
(2,−1) dyz (2, 0) dz2 −1

2

√
3yz

(
(x2 + y2)H12(r)− 2(x2 + y2 − z2)H13(r) + (x2 + y2 − 2z2)H14(r)

)
(2,−1) dyz (2, 1) dzx xy

(
−(x2 + y2)H12(r) + (x2 + y2 − 3z2)H13(r) + 3z2H14(r)

)
(2,−1) dyz (2, 2) dx2−y2

1
2yz

(
(3x2 + y2 + 2z2)H12(r)− 2(3x2 − y2 + z2)H13(r) + 3(x− y)(x+ y)H14(r)

)
(2, 0) dz2 (0, 0) s −1

2(x2 + y2 − 2z2)H9(r)

(2, 0) dz2 (1,−1) py −1
2y
(
(x2 + y2 − 2z2)H11(r) + 2

√
3z2H10(r)

)
(2, 0) dz2 (1, 0) pz z3H11(r)− 1

2(x2 + y2)z
(
H11(r)− 2

√
3H10(r)

)
(2, 0) dz2 (1, 1) px −1

2x
(
(x2 + y2 − 2z2)H11(r) + 2

√
3z2H10(r)

)
(2, 0) dz2 (2,−2) dxy

1
2

√
3xy

(
(x2 + y2 + 2z2)H12(r)− 4z2H13(r)− (x2 + y2 − 2z2)H14(r)

)
(2, 0) dz2 (2,−1) dyz −1

2

√
3yz

(
(x2 + y2)H12(r)− 2(x2 + y2 − z2)H13(r) + (x2 + y2 − 2z2)H14(r)

)
(2, 0) dz2 (2, 0) dz2

1
4

(
3(x2 + y2)2H12(r) + 12(x2 + y2)z2H13(r) + (x2 + y2 − 2z2)2H14(r)

)
(2, 0) dz2 (2, 1) dzx −1

2

√
3xz

(
(x2 + y2)H12(r)− 2(x2 + y2 − z2)H13(r) + (x2 + y2 − 2z2)H14(r)

)
(2, 0) dz2 (2, 2) dx2−y2

1
4

√
3(x− y)(x+ y)

(
(x2 + y2 + 2z2)H12(r)− 4z2H13(r)− (x2 + y2 − 2z2)H14(r)

)
(2, 1) dz2 (0, 0) s

√
3xzH9(r)

(2, 1) dz2 (1,−1) py xyz
(
−2H10(r) +

√
3H11(r)

)
(2, 1) dz2 (1, 0) pz x

(
(x2 + y2 − z2)H10(r) +

√
3z2H11(r)

)
(2, 1) dz2 (1, 1) px z

(
(−x2 + y2 + z2)H10(r) +

√
3x2H11(r)

)
(2, 1) dz2 (2,−2) dxy yz

(
−(y2 + z2)(H12(r)−H13(r)) + 3x2(H14(r)−H13(r))

)
(2, 1) dz2 (2,−1) dyz xy

(
−(x2 + y2)H12(r) + (x2 + y2 − 3z2)H13(r) + 3z2H14(r)

)
(2, 1) dz2 (2, 0) dz2 −1

2

√
3xz

(
(x2 + y2)H12(r)− 2(x2 + y2 − z2)H13(r) + (x2 + y2 − 2z2)H14(r)

)
(2, 1) dz2 (2, 1) dzx (x2 + y2)(y2 + z2)H12(r) + (x4 + x2(y2 − 2z2) + z2(y2 + z2))H13(r) + 3x2z2H14

(2, 1) dz2 (2, 2) dx2−y2 −1
2xz

(
(x2 + 3y2 + 2z2)H12(r) + 2(x2 − 3y2 − z2)H13(r) + 3(y2 − x2)H14(r)

)
(2, 2) dx2−y2 (0, 0) s

√
3

2 (x− y)(x+ y)H9(r)

(2, 2) dx2−y2 (1,−1) py −1
2y
(
2(2x2 + z2)H10(r) +

√
3(y2 − x2)H11(r)

)
(2, 2) dx2−y2 (1, 0) pz −1

2(x− y)(x+ y)z
(
2H10(r)−

√
3H11(r)

)
(2, 2) dx2−y2 (1, 1) px x(2y2 + z2)H10(r) +

√
3

2 x(x− y)(x+ y)H11(r)
(2, 2) dx2−y2 (2,−2) dxy

1
2x(x− y)y(x+ y) (H12(r)− 4H13(r) + 3H14(r))

(2, 2) dx2−y2 (2,−1) dyz
1
2yz

(
(3x2 + y2 + 2z2)H12(r)− 2(3x2 − y2 + z2)H13(r) + 3(x− y)(x+ y)H14(r)

)
(2, 2) dx2−y2 (2, 0) dz2

√
3

4 (x− y)(x+ y)
(
(x2 + y2 + 2z2)H12(r)− 4z2H13(r)− (x2 + y2 − 2z2)H14(r)

)
(2, 2) dx2−y2 (2, 1) dzx −1

2xz
(
(x2 + 3y2 + 2z2)H12(r) + 2(x2 − 3y2 − z2)H13(r) + 3(y2 − x2)H14(r)

)
(2, 2) dx2−y2 (2, 2) dx2−y2

1
4

(
((x− y)2 + 2z2)((x+ y)2 + 2z2)H12(r) + 4(4x2y2 + (x2 + y2)z2)H13(r) + 3(x2 − y2)2H14(r)

)
TABLE 5.5: Slater Koster rules for overlap or Hamiltonian matrix elements between s-,p- and d-orbitals. To obtain the rules for
overlapsHi(r) should be replaced by Si(r). r = |~Rµν | is the distance between the orbital centers and x,y and z are the directional

cosines defining the orientation of the vector ~Rµν = ~Rν − ~Rµ pointing from orbital µ to orbital ν.
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FIGURE 5.7: a) Local coordinate systems 1 and 2 around orbitals µ and ν. The
spherical coordinates of a position ~r′ can be specified with respect to either
axis. The direction of the vector ~Rµν joining the two orbital centers is defined
by the directional cosines x = cos(α), y = cos(β) and z = cos(γ). b) After
rotating the coordinate systems ~Rµν coincides with the z-axes. c) The rotated
spherical harmonics are linear combinations of spherical harmonics aligned
with the axes. d) Cylindrical coordinates. e) Grid for integration. Two polar
grids centered at the atomic positions are merged for an efficient distribution
of sampling points around both atoms (implementation of Hotbit [18]). The
plane is divided into rectangles or triangles, whose size increases away from

each center.
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FIGURE 5.8: Tabulated Slater-Koster integrals of the atom pair carbon-
nitrogen for overlaps, Si(r), 0-th order Hamiltonian, H0

i (r), and dipoles,
Di(r), from which the matrix elements Sµν , H0

µν and ~Dµν can be assembled
via Slater-Koster rules. Since the valence orbitals of second row atoms are of
s- and p-type only, the integrals listed in table 5.4 that involve d-orbitals are

missing.



84 Chapter 5. Electronic Parametrization

5.2.3 Slater-Koster rules for dipole matrix elements

The Slater-Koster rules for the matrix elements of the dipole operator differ from those for
scalar operators such as the Hamiltonian, since the dipole operator has to be rotated as well
when the vector ~Rµν is aligned with the z-axis.

The dipole matrix element between two atomic orbitals µ and ν can be rewritten, so
that it depends on the relative position ~Rµν = ~Rν − ~Rµ of the two centers and the overlap
of the two orbitals:

〈µ(~r − ~Rµ) |~r | ν(~r − ~Rν)〉 =

∫
d3rφ∗µ(~r − ~Rµ)~rφν(~r − ~Rν)

~r′=~r−~Rµ
=

∫
d3r′φ∗µ(~r′)

(
~r′ + ~Rµ

)
φν(~r′ + ~Rµ − ~Rν)

=

∫
d3r′φ∗µ(~r′)~r′φν(~r′ − ~Rµν) + ~Rµ

∫
dr′3φ∗µ(~r′)φν(~r′ − ~Rµν))

(5.64)

The second summand in the last line of eqn. 5.64 can be calculated from Slater-Koster
rules for the overlap matrix elements between orbitals µ and ν

~Rµ

∫
d3r′φ∗µ(~r′)φν(~r′ − ~Rµν) = ~RµSµν(~Rµν), (5.65)

whereas the first summand needs special treatment as it contains the dipole operator. The
Cartesian components of the dipole operator can be written in terms of px, py and pz orbitals
located at the origin:

x =

√
4π

3
rpx (5.66)

y =

√
4π

3
rpy (5.67)

z =

√
4π

3
rpz (5.68)

Therefore the dipole matrix element can be understood as the overlap of three orbitals at
two centers:

• the orbital µ at the origin,

• a vector of p-orbitals representing the direction of the position operator, also centered
at the origin

• and the orbital ν at the center ~Rµν = ~Rν − ~Rµ.

Decomposing the orbitals µ and ν into their radial and angular parts and expressing
the dipole operator by eqns.5.66, 5.67 and 5.68, the integral for the first summand in eqn.



5.2. 0-th order Hamiltonian 85

5.64 becomes (in spherical coordinates):∫
d3r′φ∗µ(~r′)~r′φν(~r′ − ~Rµν) =

∫ ∞
0

r2
1dr1

∫ π

0
sin(θ1)dθ1

∫ 2π

0
dφ1︸ ︷︷ ︸

d3r1

×R∗nµ,lµ(r1)Ỹ ∗lµmµ(θ1, φ1)︸ ︷︷ ︸
φ∗µ(~r1)

√
4π

3
r1

 Ỹ1,1(θ1, φ1)
Ỹ1,−1(θ1, φ1)
Ỹ1,0(θ1, φ1)


︸ ︷︷ ︸

~r1

Rnν ,lν (|~r1 − ~Rµν |)Ỹlνmν (θ2, φ2)︸ ︷︷ ︸
φν(~r2)

(5.69)

In the integral 5.69 all three spherical harmonics have to be rotated leading to:

∫
d3r′φ∗µ(~r′)~r′φν(~r′ − ~Rµν) =

lµ∑
m1=−lµ

1∑
m2=−1

lν∑
m3=−lν

(
D̃
lµ
mµ,m1

)∗ D̃1
1,m2

D̃1
−1,m2

D̃0
0,m2

 D̃lν
mν ,m3︸ ︷︷ ︸

~T
(3)
i(lµ,lν ,mµ,mν,m1,m2,m3)

×
∫ ∞

0
r2

1dr1

∫ π

0
sin(θ1)dθ1r1R

∗
nµ,lµ(r1)Rnν ,lν (r2)

×
√

4π

3

∫ 2π

0
dφỸ ∗lµ,m1

(θ1, φ)Ỹ1,m2(θ1, φ)Ỹlν ,m3(θ2, φ)︸ ︷︷ ︸
φ
(3)
i(lµ,lν ,m1,m2,m3)

(θ1,θ2)

(5.70)

The angular integrals φ(3)
i (θ1, θ2) now involve three spherical harmonics. Table 5.6 con-

tains all unique such angular integrals. The remaining two-dimensional integral is again
performed in cylindrical coordinates (z, ρ):

Di(Rµν) =

∫
dz

∫
ρdρR∗nµ,lµ(i)(r1)Rnν ,lν(i)(r2)φ

(3)
i (θ1, θ2)r1 (5.71)

i φ
(3)
i (θ1, θ2) lµ(i) lν(i)

1 3
8
√
π

sin(θ1) sin(θ2) 0 1

2
√

3
4
√
π

cos(θ1) 0 0
3 3

4
√
π

cos(θ1) cos(θ2) 0 1
4 3

8
√
π

sin2(θ1) 1 0

5 3
8

√
3
π sin2(θ1) cos(θ2) 1 1

6 3
8

√
3
π sin(θ1) cos(θ1) sin(θ2) 1 1

7 3
4
√
π

cos2(θ1) 1 0

8 3
√

3
4
√
π

cos2(θ1) cos(θ2) 1 1

TABLE 5.6: List of the angular functions that enter the integrals Di(r).

In total, one has to calculate the 8 two-dimensional integralsDi(Rµν) as a function of the
orbital separation and save them to a file. At runtime the tables are converted to splines
and the dipole matrix elements are constructed as linear combinations with orientation-
dependent coefficients ~T (3)

i (x, y, z):
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∫
d3r′φ∗µ(~r′)~r′φν(~r′ − ~Rµν) =

∑
i

~T
(3)
i (x, y, z)Di(Rµν) (5.72)

The Slater-Koster rules for computing
∑

i
~T

(3)
i Di(r) are summarized in table 5.7. So far

only s- and p-orbital are considered. Since the rules were obtained from a computer algebra
program written for the software package Mathematica [20], rules for d-orbitals could also
be obtained easily. The integrals needed for dipole matrix elements between the valence
orbitals of carbon and nitrogen are shown in Fig. 5.8 c) as a function of the interatomic
distance.

orb. φµ coord. orb. φν Rule for 〈φµ(~r − ~Rµ) |
(
~r − ~Rµν

)
| φν(~r − ~Rν)〉

s y s yD2(r)
s y py (x2 + z2)D1(r) + y2D3(r)
s y pz yz(D3(r)−D1(r))
s y px xy(D3(r)−D1(r))
s z s zD2(r)
s z py yz(D3(r)−D1(r))
s z pz (x2 + y2)D1(r) + z2D3(r)
s z px xz(D3(r)−D1(r))
s x s xD2(r)
s x py xy(D3(r)−D1(r))
s x pz xz(D3(r)−D1(r))
s x px (y2 + z2)D1(r) + x2D3(r)
py y s (x2 + y2)D4(r) + y2D7(r)
py y py y(x2 + z2)(D5(r) + 2D6(r)) + y3D8(r)
py y pz z((x2 + z2)D5(r) + y2(D8(r)− 2D6(r)))
py y px x((x2 + z2)D5(r) + y2(D8(r)− 2D6(r)))
py z s yz(D7(r)−D4(r))
py z py z((x2 − y2 + z2)D6(r) + y2(D8(r)−D5(r)))
py z pz y((x2 + y2)D6(r)− z2(D5(r) +D6(r)−D8(r)))
py z px xyz(D8(r)−D5(r)− 2D6(r))
py x s xy(D7(r)−D4(r))
py x py x((x2 − y2 + z2)D6(r) + y2D8(r)− y2D5(r))
py x pz xyz(D8(r)−D5(r)− 2D6(r))
py x px y(x2(D8(r)−D5(r)) + (z2 − x2 + y2)D6(r))
pz y s yz(D7(r)−D4(r))
pz y py z(y2(D8(r)−D5(r)) + (x2 − y2 + z2)D6(r))
pz y pz y((x2 + y2)D6(r)− z2(D5(r) +D6(r)−D8(r)))
pz y px xyz(D8(r)−D5(r)− 2D6(r))
pz z s (x2 + y2)D4(r) + z2D7(r)
pz z py y((x2 + y2)D5(r) + z2(D8(r)− 2D6(r)))
pz z pz (x2 + y2)z(D5(r) + 2D6(r)) + z3D8(r)
pz z px x((x2 + y2)D5(r) + z2(D8(r)− 2D6(r)))
pz x s xz(D7(r)−D4(r))
pz x py xyz(D8(r)−D5(r)− 2D6(r))
pz x pz x((x2 + y2)D6(r)− z2(D5(r) +D6(r)−D8(r)))
pz x px z(x2(D8(r)−D5(r)) + (y2 − x2 + z2)D6(r))
px y s xy(D7(r)−D4(r))
px y py x(y2(D8(r)−D5(r)) + (x2 − y2 + z2)D6(r))
px y pz xyz(D8(r)−D5(r)− 2D6(r))
px y px y(x2(D8(r)−D5(r)) + (y2 − x2 + z2)D6(r))
px z s xz(D7(r)−D4(r))
px z py xyz(D8(r)−D5(r)− 2D6(r))
px z pz x((x2 + y2)D6(r)− z2(D5(r) +D6(r)−D8(r)))
px z px z(x2(D8(r)−D5(r)) + (y2 − x2 + z2)D6(r))
px x s (y2 + z2)D4(r) + x2D7(r)
px x py y((y2 + z2)D5(r) + x2(D8(r)− 2D6(r)))
px x pz z((y2 + z2)D5(r) + x2(D8(r)− 2D6(r)))
px x px x(y2 + z2)(D5(r) + 2D6(r)) + x3D8(r)

TABLE 5.7: Slater-Koster rules for dipole matrix elements (for s and p-
orbitals). For clarity the distance between orbital centers is named r instead

of Rµν .



5.3. γ-approximation 87

5.3 γ-approximation

The 0-th order Hamiltonian accounts for the interaction between the neutral atoms. The
total density computed from the occupied orbitals,

ρ(~r) =
∑
i∈occ

|φi(~r)|2, (5.73)

differs from the reference density by

δρ(~r) = ρ(~r)− ρ0(~r). (5.74)

The residual Coulomb interaction not included in the 0-th order Hamiltonian is

Ecoul =
1

2

∫
d3r

∫
d3r′

δρ(~r)δρ(~r′)

|~r − ~r′|
. (5.75)

To simplify the evaluation of this integral a very crude form of density fitting [12] is
applied. The difference density is split into atomic contributions, each of which is propor-
tional to the partial Mulliken charges

δρ(~r) = ρ(~r)− ρ0(~r) =
∑
i∈occ

|φi(~r)|2 − ρ0(~r) ≈
∑
A

δρA(~r) =
∑
A

∆qAFA(~r − ~RA) (5.76)

∆qA are the partial Mulliken charges on atom A and FA(~r) is a spherically symmetric
monotonically decaying function (e.g. a Gaussian or Slater function) centered at the atomic
position ~RA. FA(r) integrates to 1,

∫
FA = 1, such that the total charge concentrated in the

charge cloud ∆ρA integrates to
∫
δρA = ∆qA.

The Coulomb integrals between the functions FA(~r) at different centers can be per-
formed analytically which yields the γ-matrix, that is a function of the distance between
the atomic centers A and B:

γAB =

∫ ∫
FA(~r − ~RA)FB(~r′ − ~RB)

|~r − ~r′|
d3rd3r′ (5.77)

This reduces the Coulomb integral in eqn. 5.75 to a matrix product between the partial
Mulliken charges and the γ-matrix:

ECoul =
1

2

∑
A,B

γAB∆qA∆qB (5.78)

The fitted density can differ considerably from the original δρ(~r) as can be appreciated
in Fig.5.9 for a molecule as simple as water. An improvement could be achieved by aug-
menting the auxiliary basis set (the FA’s) by at least dipoles (xFA(r), yFA(r) and zFA(r)).
Unfortunately this extension leads to difficulties in the self-consistent field (SCF) conver-
gence.

The diagonal elements of the γ-matrix are related to the ability of an atom to accumulate
additional charge. The total energy of an atom is approximately a quadratic function of the
excess charge (see Fig.5.10):

EA(∆q) = EA(0) +
∂EA
∂q

∆q +
1

2

∂2EA
∂q2︸ ︷︷ ︸
UH

∆q2 (5.79)
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FIGURE 5.9: Density fitting. a) difference between electron density of water
and the reference density ρ0 where each atom is individually neutral. The
additional charge on the oxygen is distributed in a pz-orbital. b) The den-
sity fit using only spherically symmetric charge clouds (atomic monopoles)
attributes more charge to the oxygen but that shape of the charge cloud is

incorrect.

The curvature is known as the Hubbard parameter UH . By comparison with equation 5.78
it is clear that the integral for the γ-matrix in eqn. 5.77 should reduce to the Hubbard
parameter for charge clouds located at the same atom of type A:

γAA = UA (5.80)

With DFT it is possible to investigate atoms with excess charges that are not multiples
of a charge unit e−. Experimentally, however, we can only observe discrete points on the
curve, where one, two, three, etc. electrons are added or removed. These energies corre-
spond to the ionization energies IE or electron affinitiesEA. The curvature around ∆q = 0
can be estimated by finite differences:

UH =
∂2E

∂N2
= E(N + 1)− 2E(N) + E(N − 1)

= [E(N − 1)− E(N)]− [E(N)− E(N + 1)]

= IE − EA,

(5.81)

where N is the number of electrons in the neutral atom. For electronegative atoms the
minimum of the total energy lies closer to the anion region and for electropositive atom
closer to the cation region.

In large atoms the excess charge is smeared out over a larger region reducing the elec-
trostatic repulsion. It is therefore easier to add or remove charge from a large atom, so that
the curvature of the E(∆q) is flatter than for a small atom. The curvature (or Hubbard pa-
rameter) therefore tells us indirectly how extended the charge cloud is. A large curvature
means that the charge cloud is very compact while a small curvature is indicative of a very
diffuse charge cloud.

In table 5.8 the Hubbard parameters used in our parametrization listed. In the period
of halogens the Hubbard parameters decreases with increasing size of the atom.
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FIGURE 5.10: The Hubbard parameter is defined as the curvature of the to-
tal atomic energy as a function of the excess charge. The finite difference

approximation for the second derivative gives UH = ∂2EA

∂q2 ≈ IE − EA.

Element A IE EA UA
H 13.598 0.754 12.844
C 11.260 1.262 9.998
N 14.534 − 14.422
O 13.618 1.461 12.157
F 17.423 3.401 14.022
Cl 12.968 3.613 9.355
Br 11.814 3.364 8.450
I 10.451 3.059 7.392

Au 9.226 2.309 6.917

TABLE 5.8: Experimental ionization energy [21], electron affinity [22] and
Hubbard parameter UH for selected elements in eV. For nitrogen no experi-
mental electron affinity has been measured, since the anion N− is not stable.
The Hubbard parameter UN is taken from the electronic parametrization of

the DFTB-code Hotbit.
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Chapter 6

Repulsive Potentials

The most difficult part of the parametrization in tight-binding DFT is the fitting of the re-
pulsive potentials. They determine total energies, vibrational frequencies, reaction barriers
etc., while electronic spectra are not influenced by them.

In ab initio quantum chemistry the repulsive potential poses no particular problem, it is
simply given by the Coulomb energy

∑
A<B

ZAZB
|~RA−~RB |

for all nuclei. In semiempirical meth-
ods such as the Austin Model 1 (AM1) [1] and DFTB, the size of the quantum-mechanical
problem is reduced by dividing the electrons into two groups:

• Core electrons occupy the lowest atomic energy levels and are not perturbed by
chemical bonding. If two atoms are brought in close contact the core electrons re-
pel mostly because of Pauli’s exclusion principle.

• Valence electrons are not strongly attached to the atom and can participate in bond-
ing by occupying molecular orbitals that have large probability amplitudes in the
space between atoms.

If only valence orbitals are included in the Hamiltonian, the repulsive energy contains not
just the Coulomb interaction between the bare ions but also the repulsion between the core
electrons. But since this repulsion depends on the shape of the core orbitals, we cannot
expect to find a simple expression for this energy.

DFTB differs from other semiempirical methods such as AM1 [1] or PM3 [2] in that
the parameters are not fitted to experimental quantities such as heats of formation, ioniza-
tion potentials, bond lengths etc. but to computed quantities from another (higher-level)
quantum-chemistry method, that is chosen as a reference. While compiling and select-
ing experimental data is tedious work, computational chemistry can provide the electronic
structure quickly for any geometry. The downside is of course that the reference method
itself can be in serious error.

In DFTB the repulsive energy is defined as the difference between the energy of some
reference DFT-method (e.g. LC-PBE/6-311+G*) and the electronic DFTB energy:

Erep = Eref − Eelec,DFTB (6.1)

In this way, Erep contains not only the interaction between the ionic core but also other
deviations between the full DFT and the tight-binding approximation. The hope is that by
fitting the repulsive potential to a set of representative molecular geometries, the quality
of DFT can be attained at the cost of a tight-binding calculation. The authors of Ref. [3]
claim that DFTB can achieve chemical accuracy for reaction barriers of a wide range of
organic chemical reactions. But it should be kept in mind that this quality is the result of
a complicated, mostly manual, fitting process. Whenever the electronic parametrization of
the DFTB model is changed, the fitting has to be repeated.

In the conventional fitting approach the repulsive potential for each combination of el-
ements is constructed individually. Segments of the curve VAB(r) for different ranges of
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bond lengths are generated using molecules that contain a variety of A − B bond lengths.
Only one bond length is varied such that all other repulsive interactions remain approxi-
mately unchanged. Ideally the repulsive force should be a vector parallel to the bond, so
that its projection onto the bond vector gives directly the derivative of the repulsive poten-
tial, dVABdr (ri) at this bond length ri. Finally a spline is fitted through the points and after
integrating the curve over r we obtain the repulsive potential VAB(r).

This procedure is illustrated in Fig. 6.1 for the H-H potential: The segment of the curve
for small distances was generated by stretching the covalent H-H bond in the hydrogen
dimer, while the segment for large bond lengths is created by scaling the methane molecule
uniformly. Since methane is highly symmetric there is only one H-H distance for each
scaling factor so that dVHHdr can be uniquely determined (assuming that the C-H potential is
already available).

This approach has many shortcomings and relies heavily on human intervention:

• It is difficult to identify bonds that can be stretched without affecting other parts of
the molecule and where the repulsive force is parallel to the bond that is being varied.

• Segments derived from different molecules do not necessarily overlap, so that there
is no unique best fit. For instance in Fig. 6.1a at a distance of r = 1.5, the data points
from the hydrogen dimer and the scaled methane lie more than 2 eV apart. This
can be addressed by assigning higher weights to those points that are deemed more
important.

• Before fitting the repulsive potential for a new atom combination the potentials for
all other elements present in the fit geometries have to be fixed, so that there is a
dependence on the order in which elements are parametrized.

• The parametrization is not only very time consuming but it also lacks reproducibil-
ity unless all details about the fit geometries, distortions, weights, cutoffs etc. are
provided. The articles about DFTB parametrization usually omit these.

FIGURE 6.1: Fit of repulsive potential for H-H. a) Spline fit to derivative
curve dV

dr obtained by stretching the hydrogen dimer and scaling methane
uniformly. Grey error bars are inversely proportional to the weights given to

each point. b) Integrated repulsive potential.
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Since the manual fitting is so tedious, different routes towards automatization of the
repulsive parametrization were explored in the literature. In an early attempt genetic algo-
rithms [4] were tried so as to replace the human with a computer, that would find the best
fit by trial and error.

In the iterative Boltzmann method, put forward in Ref. [5], the radial distribution func-
tion of bulk water is related to the repulsive potentials for O-H and O-O. The differences
in the radial distributions functions, that were calculated from trajectories of molecular dy-
namics simulations, for DFT vs. tight-binding DFT, are translated into corrections to the
repulsive potentials. In this way repulsive potentials are optimized that are specific to a
certain material and reproduce the selected reference DFT method very well but are not
transferable.

6.1 Least square fit of repulsive potentials

The method for fitting repulsive potentials, that will be described below, is based on the
work in Refs. [6] and [7]. A series of representative geometries is selected, called the fit
steps, and a linear least square fit determines the repulsive potentials such that the DFTB
total energy agrees with the selected reference electronic structure method modulo a con-
stant energy shift.

The repulsive potential can be decomposed into a sum of one-body, two-body, three-
body etc. terms. For simplicity the expansion is truncated after the two-body terms, al-
though some deviations between DFTB and DFT such as the neglect of 3- and 4-center
integrals cannot be corrected in this way. The repulsive potential has thus the form:

Erep({~r}(s)) =
∑
A

∑
i∼A

VA +
∑
AB

∑
i<j

ij∼AB

VAB(|~ri − ~rj |) + . . . (6.2)

{~r}(s) denotes the positions of all nuclei in the fit step s, ~ri is the position vector of the i-th
atom. The atoms are classified by types or elements (e.g. H,C,N,O), i ∼ A means that the
i-th atom belongs to the element A, while ij ∼ AB denotes that the pair of atoms i, j is of
type AB. The one-body terms VA are geometry-independent energy offsets, that account
for the orbital energies of the neglected core electrons. The two-body terms VAB(r) are
short-ranged and decay quickly to 0 for r →∞.

In order to perform a least square fit, the repulsive potential for atom pairAB is written
as a linear combination of basis functions:

VAB(r) =
n∑
k=1

f(AB,k)(r)x(AB,k) (6.3)

x is a vector holding the coefficients of the basis functions for all atom pairs. (AB, k) is
a multi-index enumerating the type of the atom-pair AB and the degree k of the basis
function.

The basis functions for the two-body terms are inverse cutoff polynomials, that vanish
smoothly at the cutoff radius rcutoff

AB :

f(AB,k)(r) =

(r−rcutoff
AB )

2

r2+k
if r ≤ rcutoff

AB

0 if r > rcutoff
AB

(6.4)
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The one-body terms are contained in the (AA, k = 0) elements of x:

VA = x(AA,0) (6.5)

With these definitions, the repulsive energy for geometry s can be written as a matrix-
vector product

E
(s)
rep =

∑
AB

n∑
k=0

As,(AB,k)x(AB,k) (6.6)

The elements of matrix A are determined by the geometry and the choice of the basis
functions:

As,(AB,k) =


∑
i<j

ij∼AB

f(AB,k) (|~ri − ~rj |) if k ≥ 1

∑
i∼A 1 = n

(s)
A if k = 0

(6.7)

Here n(s)
A is the number of atoms of type A in geometry s. The linear combination in eqn.

(6.6) is fitted to reproduce the repulsive energy for geometry s,

ys = E
(s)
ref − E

(s)
elec,DFTB. (6.8)

This translates into the following system of linear equations∑
(AB,k)

As,(AB,k)x(AB,k) = ys, (6.9)

which has to be solved in a least square sense, since usually the number of fit steps s =
1, . . . , Ns is much larger than the number of basis functions.

To avoid oscillating repulsive potentials with local minima we have to impose an addi-
tional constraint on the form of the repulsive potential VAB . It should be strictly repulsive,
i.e. a monotonically decreasing function. To this end we select m equidistant points rµ,
µ = 1, . . . ,m, from the interval (0, rcutoff

AB ] and require that the derivative V ′AB should be
non-positive at these points:

d

dr
VAB

∣∣∣∣
r=rµ

=
n∑
k=1

f ′(AB,k)(rµ)x(AB,k) ≤ 0 (6.10)

After defining the matrix

C(AB,µ),(AB′,k) =

{
δAB,AB′f

′
(AB,k)(rµ) if k ≥ 1

0 if k = 0
(6.11)

this inequality constraint and the system of linear equations (6.9) can be combined into
the following mathematical problem statement

minimize
x

‖Ax− y‖2 subject to Cx ≤ 0. (6.12)

6.2 Selection of fit paths

We limit ourselves to fitting repulsive potentials for the elements H,C,N and O, since most
organic molecules are composed of these four elements. The literature is full of DFTB
parametrization for these basic elements in combination with halogens [8], transition metal
elements [9] and other elements relevant for materials science such as silicon or titanium.
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However, the repulsive parameters are not transferable between methods using different
electronic parametrizations. The addition of the long-range correction and the use of Gaus-
sian functions for representing charge fluctuations requires in principle a completely new
fit. It seems only reasonable that for long-range corrected tight-binding DFT the reference
method should also employ a long-range corrected DFT functional (LC-PBE). We will at-
tempt to fit new potentials for LC-DFTB, but it will turn out that the automatic fit described
here produces repulsive potentials that are inferior to the old “handmade” ones for DFTB.
Nevertheless, the procedure is described so as to encourage possible improvements.

The repulsive potentials are very sensitive to the choice of fit geometries. Since there
is only a single repulsive potential for each combination of elements, the fit geometries
should ideally cover different ranges of bond lengths and chemical environments. For
transition metals a separate repulsive potential could be fitted for each oxidation state,
but for elements from the second row of the periodic table we assume that one repulsive
potential fits all oxidation states. This is in stark contrast with force field methods, where a
different atom type is defined for each bonding situation. In DFTB the repulsive potential
between two carbon atoms depends only on the distance but not on whether they have
oxidation numbers −I , −II or −III .

For instance, ethene, ethane, ethyne and benzene contribute four segments on the curve
of the C-C repulsive potential: for the single bond C C (≈ 1.54 Å ), the double bond
C C (≈ 1.33 Å ), the triple bond C C (≈ 1.20 Å ) and the aromatic bond (≈ 1.40
Å ). To add more points, in each equilibrium geometry one C atom is displaced randomly
within a sphere of radius 0.75 Å around its original position [6]. Another possibility for in-
creasing the number of fit geometries consists in compressing or elongating certain bonds.
The disadvantage is that the resulting geometries have high potential energies and more
weight is given in the fit to regions of the potential energy surface that are rarely accessed
during a molecular dynamics simulation.

For want of better criteria a list of small molecules was compiled (shown in Fig. 6.2)
that

• belong to a variety of functional groups ( alcohols, ketones, ethers, carboxylic acids,
amines, heteroaromatics and others) and

• contain bonds for all combinations of atoms from the set H,C,N and O.

This selection is by no means unique and it is hard to assess whether a different set of
molecules would yield better or worse repulsive potentials.

The fitting proceeds then in the following steps:

1. The fit paths are created by dislocating selected atoms randomly 5 times within a
sphere of 0.2 Å and 0.75 Å. In this way a range of perturbed versions of the same
molecule are generated. This is illustrated in Fig.6.3.

2. For each geometry s the total reference (LC-PBE/6-311+G*) and electronic DFTB en-
ergies are computed and stored in the vector y of eqn. (6.8)

3. The basis set for fitting of eqn. (6.4) is used with a maximum degree of n = 8 and
cutoff radii of 1.3 for H-H, 2.1 for H-X and 2.3 for X-Y, where X and Y can be any of
the three elements C,N and O.

4. The matrices A and C are assembled according to eqn. (6.7) and (6.11) and the least
square problem (6.12) is solved for the coefficients x.

The result of this fit is shown in Fig. 6.4. At first glance the curves look reasonable in
the sense that atoms with more core electrons repel stronger. The average and maximum
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FIGURE 6.2: Molecules used in fitting repulsive potentials for H,C,N and
O. By randomly dislocating the red atoms or by stretching adjacent bonds
from their equilibrium geometry, fit paths with many different interatomic
distances are created. Although all repulsive potentials are produced in a
single fit, the structures are sorted by the atom pairs (in blue), for which they
were selected. The molecules in the dashed box (acetonitrile, ethanimine and

prop-2-imine) were added later to improve the peptide bond.

FIGURE 6.3: Fit path generated from formaldehyde equilibrium structure.
By shifting the oxygen randomly within a sphere of 0.75 Å additional C=O

bond lengths between 1.19 Å and 1.52 Å are produced.

errors of the fit amount to 0.0012 and 0.19 Hartree, respectively. The energy offsets for
each element are determined to be VH = −0.17061, VC = −36.184, VN = −52.091 and
VO = −71.778 Hartree.
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FIGURE 6.4: Repulsive potentials for H,C,N and O. The dots show which
bond lengths are present in the fit paths.

6.3 Validation of fit

In order to gauge the quality of the fit a subset of the geometries from Fig.6.2 is optimized
both with LC-PBE/6-311+G* [10], [11] and with LC-DFTB, and the bond lengths, bond
angles and dihedrals are compared in table 6.1. Although all geometries from the test set
also form part of the training or fitting set, the deviations are significant. The reason is that
we are not fitting several one-dimensional curves but a set of high-dimensional potential
energy surfaces with a restricted basis set of pairwise potentials.

I would like to draw the reader’s attention to the dihedral angle of the dipeptide in
table 6.1 (coloured in red), that deviates significantly from the 180◦ expected for a peptide
bond.

The planarity of the peptide bond is usually explained by the two resonance structures
shown in Fig. 6.5: In one of them the C-N bond has a partial double bond character. The
π-orbitals forming the C=N bond have to be perpendicular to the bond, while in the other
resonance structure the π-orbitals of carbon and oxygen are perpendicular. Therefore the
C=O and C=N bonds are forced to lie in a plane.

The non-planarity is related to the fact that the C-N bond in the dipeptide is as long
as the C-N bond in dimethylamine (both 1.41 ), although the C-N peptide bond should be
shorter than a C-N amine bond. In the selection of fitting geometries most C-N bonds are
single bonds, where the nitrogen is pyramidalized. Therefore the fit gives too much weight
to the C-N single bond and too little weight to the C=N bond. The potential is too repulsive
and pushes the nitrogen and carbon atoms too far apart.

The matrix elements of the electronic Hamiltonian vary greatly for bond lengths be-
tween 1.2 and 1.5 (see Fig. 6.6a), so that the interaction between the π-orbitals is drasti-
cally decreased in a C-N single bond versus a C-N bond with partial double bond character.
Therefore the chemical environment of the nitrogen that is bonded to two carbons and one
hydrogen via single bonds becomes the same as in dimethylamine, leading to pyramidal-
ization. This completely wrong shape of the peptide bond can be corrected by making the
C-N potential less repulsive, so that the π-orbitals can come close enough to interact.
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Ref. DFTB
hydrogen molecule

r(H −H) 0.7518 0.9469
methane

r(C −H) 1.0890 1.1756
∠(H − C −H): 109.5 109.5

ethane
r(C − C) 1.5192 1.4931
r(C −H) 1.0912 1.1781
∠(H − C −H): 106.7 107.4

ethene
r(C = C) 1.3136 1.2713
r(C −H) 1.0861 1.1724
∠(H − C −H): 116.6 116.2

ethine
r(C − C) 1.1881 1.1648
r(C −H) 1.0681 1.1607

benzene
r(C − C) 1.3777 1.3518
r(C −H) 1.0858 1.1687

Ref. DFTB
water

r(O −H) 0.9587 0.9748
∠(H −O −H) 108.5 98.3

methanol
r(C −O) 1.3954 1.3878
r(O −H) 0.9587 0.9744
∠(C −O −H) 110.5 102.4

formaldehyde
r(C = O) 1.1895 1.1500
∠(H − C = O) 121.6 125.2

acetic acid
r(C − C) 1.4817 1.5282
r(C = O) 1.1940 1.1845
r(C −OH) 1.3324 1.4115
r(O −H) 0.9668 0.9750
∠(C −O −H) 107.9 102.3

dimethylether
r(C −O) 1.3857 1.3845
∠(C −O − C) 112.1 109.3

furan
r(C −O) 1.3384 1.3099
∠(C −O − C) 107.1 106.3

Ref. DFTB
ammonia

r(N −H) 1.0098 1.0622
∠(H −N −H) 35.3 40.6

dimethylamine
r(N −H) 1.0103 1.0588
r(C −N) 1.4328 1.4080
∠(C −N −H) 111.0 104.1

nitrobenzene
r(N = O) 1.1981 1.2325
r(C −N) 1.4560 1.4376
∠(O = N −O) 125.8 124.2
∠(C − C −N −O) 90.0 90.0

dipeptide (peptide bond)
r(N −H) 1.0079 1.0548
r(C −N) 1.3419 1.4062
r(C = O) 1.2092 1.1891
∠(H −N − C = O) −176.3 −145.4

TABLE 6.1: Comparison of selected geometries optimized with the reference
method LC-PBE/6-311+G* vs. LC-DFTB using the automatically fitted re-
pulsive potentials. Bond lengths in Å and bond angles and dihedrals in de-

grees.

Fig.6.6 shows that, as the C-N bond length is shortened the ppπ orbital interaction is
stabilized while the ppσ interaction is destabilized. Depending on the balance between the
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electronic Hamiltonian and the repulsive potential, a C-N peptide bond will have more π
or more σ character, leading either to a planar peptide bond or a pyramidalized nitrogen.

This suggests that, in order to make the peptide bond planar, we have to include more
fit geometries with C-N double or triple bonds to give more weight to shorter bond lengths.
Indeed, after adding acetonitrile, ethanimine and prop-2-imine to the fit geometries and
repeating the fit, the DFTB description of the peptide bond is significantly improved. The
dihedral angle of the peptide bond as calculated with the new repulsive potentials becomes
∠(H − C −N = O) = −173.5◦ in agreement with DFT.

FIGURE 6.5: Resonance structures for peptide bond. Because of the partial
double bond character of the C-N bond the peptide bond is planar.

FIGURE 6.6: a) Electronic matrix elements between atomic orbitals on carbon
and nitrogen as a function of atom separation. b) repulsive potential for C-
N. Distances for single, double, triple and partial double bonds are marked

by vertical arrows.

In Ref. [12] DFTB2 was applied to proteins. The authors also observed a small pyra-
midalization of the nitrogens in the peptide bond. Nevertheless, the relative energies of
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important secondary structural motifs, that depend mostly on the dihedral angles in the
peptide backbone, showed good agreement with B3LYP. This shows that peptides can in
principle be described qualitatively correctly, but it all relies on finding suitable repulsive
C-N potentials and there seems to be no clear recipe for this.

This peptide example demonstrates that the fitting of repulsive potentials is very intri-
cate and can have side effects that are very difficult to trace back.

Comparison of a few reaction energies given in table 6.2 shows that the accuracy of the
automatically fitted repulsive potentials is far from the 1 kcal/mol required for thermo-
chemistry. It is quite surprising how some DFTB parametrizations (in particular DFTB3
with dispersion correction) [3] give reaction energies and barrier heights that deviate only
a few kcal/mol from the best reference values.

E(products) - E(educts)
[kcal/mol]

Reaction Ref. DFTB
ethane + 1 H2 −→ 2 methane −21.1 −6.2
ethene + 2 H2 −→ 2 methane −70.7 −43.8
ethyne + 3 H2 −→ 2 methane −130.8 −74.1
benzene + 9 H2 −→ 6 methane −204.5 −120.1

TABLE 6.2: Reaction energies for reducing different hydrocarbons com-
pletely to methane. Educts and products were optimized using the refer-
ence method LC-PBE/6-311+G* and LC-DFTB with the automatically fitted

repulsive potentials.

One is thus faced with the problem that high-quality repulsive potentials are not yet
available for the new LC-DFTB method. In applications of LC-DFTB one can choose be-
tween reusing repulsive potentials that were originally published for conventional DFTB
or using the potentials that were specifically fitted for LC-DFTB in the automatic way just
described. In both cases there will be small deviations as compared to full DFT; in the first
case, because the repulsive potentials were fitted for a different electronic parametriza-
tion, in the second case, because more manual work is needed to refine the automatically
fitted potentials. These small errors, however, are only relevant for thermochemistry ap-
plications. Electronic spectra calculated with LC-TD-DFTB do not depend on the repulsive
potentials. In photochemistry the energy differences that drive the dynamics are on the or-
der of several eV (1 eV ≈ 23 kcal/mol) and the overall error is dominated by the accuracy
of excitation energies, rather than the errors of the repulsive potentials.
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Chapter 7

Benchmarks: Systematic Test
Calculations

In this chapter the long-range corrected TD-DFTB method is subjected to systematic test-
ing. This process is called benchmarking and relies on standardized test sets of molecules,
that allow to compare the performance of different methods. The test sets are compiled
based on the criterion that they should contain representative cross sections of “chemical
space”. Although the success of a computational method is eventually gauged by how well
it reproduces experimental observations, benchmarking is a purely computational proce-
dure: Excitation energies computed with the new method, in this case LC-TD-DFTB, are
compared with energies obtained from a higher-level method, such as LC-TD-PBE, and the
error is taken as the mean square deviation, even if the reference method itself is in error
with experimental excitation energies. Statements about the accuracy of method derived
from benchmarking should therefore be taken with a grain of salt. But then on the other
hand direct comparison with experiment for a large set of molecules would be very diffi-
cult, since, for instance, band maxima and vertical excitation energies differ, the energetic
positions of dark states are often unknown or the assignment of symmetry labels based on
experimental information, if available at all, is not always unique.

With these caveats in mind, benchmarks are performed for two published test sets in
order to demonstrate that the long-range correction improves excited state energies in the
DFTB method. Since the motivation for the long-range correction was the wrong descrip-
tion of charge transfer, the set of molecules from the database in Ref. [1] is selected, which
contains molecules known to exhibit problematic charge transfer states (test set 1). Sec-
tion 7.1 focuses on those excited states where charge transfer plays a role. For these states
there is a correlation between the error (relative to CAM-B3LYP/cc-pVTZ) and the Λ2 met-
ric for detecting charge transfer states, that was adapted for tight-binding DFT in chapter
4. LC-TD-DFTB is shown to reduce the errors for charge transfer states (where Λ2 ≈ 0)
drastically.

On the other hand the correction should not significantly impair the description of local
excitations. To test this, in section 7.2 benchmarks are computed for the lowest 10 excited
states of the molecules from Ref. [2], which contains a compilation of common organic
molecules (test set 2).

7.1 Benchmarks for Charge Transfer States

The structures of the test molecules were taken from the database [3] that has been pub-
lished by the authors of Ref. [1]. The molecules N2, CO, H2CO and HCl, whose low-lying
excited states are partly of Rydberg character, were excluded because the minimal basis set
of occupied valence orbitals used in DFTB is not suitable for describing Rydberg states. In
the calculations labeled as LC-TD-DFTB the long-range correction as described in chapter
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3 was included 1 , Casida’s equation 3.46 was used for solving the linear response equa-
tions and the transition dipoles were assembled from Slater-Koster files. In the calculations
labeled as TD-DFTB the long-range correction was absent and the transition dipoles were
calculated using transition charges. For comparison the excitation energies and oscillator
strengths were also determined with full TD-DFT using the CAM-B3LYP [5] functional and
the cc-pVTZ [6] basis set as implemented in the Gaussian 09 [7] program package.

7.1.1 Benchmark Results

FIGURE 7.1: HOMO-LUMO gaps for the molecules from the test set 1. The
names of the molecules encoded by the numbers on the x-axis can be found
in the first column of table 7.1. As expected from a long-range corrected
functional the HOMO-LUMO gaps are larger for LC-DFTB than for DFTB.

Before analyzing the impact of the LC-correction on excited states in detail, it is worth-
while to have a look at the HOMO-LUMO gaps of all molecules in the test set plotted in
Fig. 7.1. The inclusion of Hartree-Fock exchange increases the HOMO-LUMO gaps, mov-
ing them closer to the CAM-B3LYP values. This is a first indication that LC-DFTB behaves
like DFT with a hybrid or range-separated functional.

Energies and oscillator strengths of specific excitations computed with TD-DFTB, LC-
TD-DFTB and CAM-B3LYP are compared in Table 7.1. In the analysis of excited states the
metrics of charge transfer, the weighted overlap between occupied and virtual orbitals Λ2,
and the particle-hole separation de−h, which were defined in chapter 4, prove useful.

Peptides. The first molecules in the test set 1 are three model peptides of increasing
length, a dipeptide, a β-dipeptide and a tripeptide. The labels n(Oi), π(Ni) and π∗i , which
are used to classify the excited states, refer to the lone electron pair on the the i-th oxygen,

1The reported benchmark results are the same as published in [4], where the the long-range exchange
energy in eqn. 3.58 was calculated using the full density matrix P instead of ∆P = P −P0. This behaviour can
be reproduced by setting the option lc_implementation=”old” in the configuration file of the DFTBaby
program. Also, in the meantime the parametrization has changed, so that the current version of the program
will produce slightly different numbers.
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the binding π-orbital containing the i-th nitrogen and the anti-bonding π-orbital on the i-th
carbonyl group. The ordering of the carbonyl groups and atoms is depicted in Fig. 7.2.

The energies of the lowest localized excitations are well reproduced both by TD-DFTB
and LC-TD-DFTB. The energies of charge transfer excitations are underestimated, although
LC-TD-DFTB puts them much closer to the CAM-B3LYP results and correctly predicts that
the band of charge transfer states should be located above the local excitations. As opposed
to this, TD-DFTB produces charge transfer states that lie below the lowest local excitation.
This problem gets worse as the peptide grows: In the tripeptide TD-DFTB erroneously
predicts the lowest excitation to be a long-range charge transfer from n(O1) to π∗3 with an
energy of 4.59 eV, whereas the CAM-B3LYP energy of this excitation would be 8.68 eV.

FIGURE 7.2: Peptide structures. a) dipeptide, b) β-dipeptide and c) tripep-
tide. The carbonyl groups used to classify the excitations are encircled.

Fig.7.3 shows that in the β-dipeptide, the n(O1)→ π∗2 excitation leads to a separation of
positive and negative charge over a distance of 10.0 bohr. This long-range charge transfer
also shows its signature in the the very small value of Λ2 = 0.01.

Acenes. The next molecules are the smallest 4 polyacenes Naphthalene (n=1), An-
thracene (n=2), Tetracene (n=3) and Pentacene (n=4). The large degree of conjugation leads
to orbitals that are delocalized over the entire molecule. TD-DFTB underestimates the en-
ergies of all states consistently by < 0.5 eV, and this error remains stable with the size of
the acenes. With LC-TD-DFTB the B2u states deviate no more than 0.1 eV from the CAM-
B3LYP reference values.

N-phenylpyrrole. In this heterocyclic aromatic compound, TD-DFTB underestimates
local excitations by ≈ 1 eV while LC-TD-DFTB is correct to within 0.1 eV. Without long-
range correction the lowest state with A1 symmetry has charge transfer character (Λ2 =
0.02). The long-range correction shifts this state to higher energies so that the lowest A1

state now belongs to a local excitation (Λ2 = 0.49), as it should.
The second B2 and A1 states, which involve an electron transfer from the pyrrole ring

to the benzene ring, are predicted far too low in energy by TD-DFTB.
DMABN. 4-(N,N-dimethylamino)benzonitrile (DMABN) possesses a low-lying charge

transfer state that is formed when the nitrogen on one side of the phenyl ring donates
charge to the -C≡N group on the opposite side. Although the ordering of the states is cor-
rect even without long-range correction, LC-TD-DFTB comes much closer to the reference
values than plain TD-DFTB.
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FIGURE 7.3: Difference density ∆ρ for the 3rd excited state (at the LC-TD-
DFTB level of theory) of the β-dipeptide. An exciton is formed as an electron
jumps from the first carbonyl group to the second leaving a positive hole be-
hind. The radii of the red (blue) circles are proportional to the hole (particle)

charges on each atom.

Polyacetylenes. As with the acenes, TD-DFTB energies are too low by 0.5 eV as com-
pared to the LC-TD-DFTB and CAM-B3LYP values.

7.1.2 Correlation between errors and Λ2

When the deviations of the excitation energies relative to the CAM-B3LYP values are plot-
ted against the degree of spatial overlap Λ2 (see Fig. 7.4), a clear correlation is visible. Λ2

values close to 0.0 can be associated with charge transfer states, values around 0.5 with
local excitations and values close to 1.0 with strongly delocalized excitations. For some
excited states the Λ2 values lie in the medium range, although visual inspection of the or-
bitals classifies them as having charge transfer character. For charge transfer states, the
long range correction reduces the maximum error from -4.0 to -2.0 eV. For local excitations,
TD-DFTB and LC-TD-DFTB have similar errors - TD-DFTB underestimates energies by at
most 0.5 eV, while LC-TD-DFTB overestimates them by the same amount. For strongly de-
localized excitations, as they occur in the acene series, LC-TD-DFTB shifts the error to the
positive region with respect to TD-DFTB, and reduces somewhat the absolute values of the
error.

Table 7.2 gives the mean errors averaged over the whole set of test molecules. In sum-
mary, energies of localized, charge transfer as well as delocalized states are systematically
improved by LC-TD-DFTB. In particular, the long range correction improves the energies
of delocalized and charge transfer states while the energies of the localized states are only
marginally better.

Benchmark calculations on a more general test set of common organic molecules in-
cluding the 10 lowest excited states are compiled in the next section.
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Molecule State Λ2 Type TD-DFTB LC-TD-DFTB CAM-B3LYP
1 Dipeptide A” n(O1)→ π∗1 0.61 L 5.48 (0.000) 5.33 (0.000) 5.68 (0.001)

A” n(O2)→ π∗2 0.75 L 5.44 (0.000) 5.40 (0.000) 5.92 (0.001)
A’ π(N1)→ π∗2 0.08 CT 5.54 (0.002) 6.23 (0.015) 7.00 (0.010)
A” n(O1)→ π∗2 0.20 CT 4.92 (0.000) 5.98 (0.000) 7.84 (0.000)

2 β-dipeptide A” n(O1)→ π∗1 0.77 L 5.47 (0.000) 5.39 (0.000) 5.67 (0.001)
A” n(O2)→ π∗2 0.77 L 5.45 (0.000) 5.39 (0.000) 5.76 (0.000)
A’ π(N1)→ π∗2 0.56 CT 5.64 (0.000) 7.37 (0.558) 7.42 (0.328)
A” n(O1)→ π∗2 0.01 CT 5.05 (0.000) 6.71 (0.000) 8.38 (0.008)

3 Tripeptide A” n(O1)→ π∗1 0.59 L 5.51 (0.000) 5.34 (0.000) 5.72 (0.001)
A” n(O2)→ π∗2 0.58 L 5.50 (0.000) 5.37 (0.000) 5.93 (0.001)
A” n(O3)→ π∗3 0.72 L 5.44 (0.000) 5.43 (0.000) 6.00 (0.001)
A’ π(N1)→ π∗2 0.07 CT 5.56 (0.002) 6.25 (0.014) 6.98 (0.014)
A’ π(N2)→ π∗3 0.16 CT 5.78 (0.002) 6.52 (0.032) 7.68 (0.102)
A” n(O1)→ π∗2 0.19 CT 4.93 (0.000) 5.99 (0.000) 7.78 (0.000)
A” n(O2)→ π∗3 0.28 CT 5.16 (0.000) 6.33 (0.000) 8.25 (0.000)
A’ π(N1)→ π∗3 0.03 CT 5.20 (0.000) 8.35 (0.000) 8.51 (0.007)
A” n(O1)→ π∗3 0.01 CT 4.59 (0.000) 9.04 (0.000) 8.68 (0.000)

4 Acene (n=1) B2u 0.83 DL 4.27 (0.007) 4.53 (0.006) 4.62 (0.000)
B1u 0.77 DL 4.02 (0.044) 4.84 (0.046) 4.67 (0.071)

5 Acene (n=2) B1u 0.77 DL 3.00 (0.047) 3.84 (0.067) 3.53 (0.076)
B2u 0.83 DL 3.66 (0.026) 4.02 (0.021) 4.04 (0.001)

6 Acene (n=3) B1u 0.74 DL 2.32 (0.040) 3.19 (0.073) 2.76 (0.071)
B2u 0.82 DL 3.27 (0.056) 3.69 (0.047) 3.65 (0.003)

7 Acene (n=4) B1u 0.72 DL 1.85 (0.033) 2.74 (0.076) 2.22 (0.064)
B2u 0.81 DL 3.01 (0.100) 3.48 (0.087) 3.39 (0.008)

8 N-phenylpyrrole B2 0.48 L 3.96 (0.005) 4.98 (0.003) 5.06 (0.013)
A1 0.49 L 3.99 (0.000) 5.07 (0.458) 5.12 (0.365)
B2 0.29 CT 4.30 (0.009) 5.24 (0.015) 5.27 (0.015)
A1 0.02 CT 4.51 (0.352) 6.18 (0.000) 5.92 (0.179)

9 DMABN B 0.37 L 4.27 (0.023) 4.47 (0.022) 4.72 (0.024)
A 0.49 CT 4.52 (0.308) 4.95 (0.453) 4.91 (0.520)

10 Polyacetylene (n=2) Bu 0.68 DL 5.57 (0.500) 6.21 (0.420) 6.04 (0.706)
11 Polyacetylene (n=3) Bu 0.69 DL 4.54 (0.813) 5.10 (0.707) 5.03 (1.110)
12 Polyacetylene (n=4) Bu 0.69 DL 3.88 (1.133) 4.43 (0.995) 4.39 (1.533)
13 Polyacetylene (n=5) Bu 0.69 DL 3.41 (1.437) 3.98 (1.269) 3.94 (1.961)

TABLE 7.1: TD-DFTB and LC-TD-DFTB excitation energies and reference
values from TD-DFT calculations at the CAM-B3LYP/cc-pVTZ level. Ener-
gies are in eV and oscillator strengths are given in brackets. The type of
excitation (L = local, CT = charge transfer, DL = delocalized) was assigned
by inspecting the dominant pair of occupied and virtual orbitals in the tran-

sitions. The Λ2 values are calculated for LC-TD-DFTB.

Method Total Local Charge Transfer Delocalized
TD-DFTB 1.13 0.51 2.22 0.46

LC-TD-DFTB 0.46 0.34 0.83 0.17

TABLE 7.2: Mean errors (in eV) relative to the CAM-B3LYP excitation ener-
gies for the molecules in the test set 1. The long-range correction particularly

improves energies of delocalized and charge transfer states.
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FIGURE 7.4: Deviation of excitation energies from CAM-B3LYP reference
values for a) TD-DFTB and b) LC-TD-DFTB plotted against Λ2 (a measure of
spatial overlap defined in eqn. 4.6), local excitations (N), charge transfer ex-
citations (•), delocalized excitations (�). The states were classified by visual
inspection of the dominant orbital transitions. The area into which errors
from charge transfer states fall without long-range correction is highlighted

in pink.
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7.2 Benchmarks for Common Organic Molecules

The second test set from Ref. [2] contains medium-size organic molecules that cover the
most important chromophore classes such as polyenes, nucleobases, aromatic and het-
eroaromatic cycles and compounds containing carbonyl groups. The properties of the va-
lence excited states in Ref. [2] were generated with high-level ab initio theories such as
CASPT2 or CCSD. This makes them unsuitable as reference data, since one cannot expect
a semiempirical method based on DFT to be of comparable quality as wavefunction-based
correlated methods. The comparison would only highlight the shortcomings of density
functional theory versus wavefunction methods. The more pertinent question is how the
tight-binding approximation affects excited states as compared to the more expensive full
TD-DFT calculations. Therefore only the geometries were taken from the test set and new
reference data was generated from full DFT calculations with and without long-range cor-
rection using the quantum-chemistry software package Gaussian 09 [7]. In addition exper-
imental ionization energies were compiled from the literature for the test molecules and
are compared with the HOMO energies in section 7.2.1 below.

Two types of benchmark calculations were performed:
PBE/cc-pVTZ vs. TD-DFTB. First the implementation of “conventional” TD-DFTB

without long-range correction was contrasted with TD-DFT. The TD-DFT energies and os-
cillator strengths of the lowest 10 singlet states were calculated with the PBE [8] functional
and the cc-pVTZ [6] basis set. For the TD-DFTB calculations the parametrization described
in the main text was used, in summary:

• Slater-Koster tables were generated from confined pseudo-atomic orbitals (using the
confinement radii from table 5.1 and the PBE local exchange-correlation functional)
as described in chapter 5.

• Spherical charge fluctuations around the atomic centers were modelled with Gaus-
sian functions, with their widths determined by the Hubbard parameters in table 5.8.

• The long-range correction was omitted (by taking γlr = 0).

LC-PBE/cc-pVTZ vs. LC-TD-DFTB. Then the long-range corrected versions of both
full DFT and tight-binding DFT were compared. In the Gaussian calculation the long range
correction of Iikura[9] was applied to the PBE functional, keeping the cc-pVTZ basis set.
The LC-TD-DFTB calculations were run with the following setup:

• The same 0-th order Hamiltonian as in the previous calculation was employed.

• The Coulomb potential was separated into a short and long-range part using the error
function (erf) with Rlr = 3.03 bohr.

• The exchange energy was computed only for the long-range part using the entire
density matrix P (see note following equation 3.59).

In the tight-binding calculations the symmetry group of each molecule was detected au-
tomatically by testing which symmetry operations leave the nuclear geometry unchanged.
Then the excited states were assigned to irreducible representations based on the transfor-
mation properties of the transition densities under symmetry operations. The states were
ordered by energy within each irreducible representation. No attempt was made to reorder
the states within an irreducible representation manually, although this might be necessary
so as to compare only states with the same electronic character. Therefore the errors ob-
tained are upper bounds.



112 Chapter 7. Benchmarks: Systematic Test Calculations

7.2.1 Benchmark Results

A detailed comparison of all excited states as computed with or without the LC-correction
is given in tables 7.3 and 7.4, respectively. Overall, for the lowest valence excited states
the agreement between full DFT and tight-binding DFT is acceptable in both cases (with
and without LC-correction). For higher excited states the deviations can be as high as 10
eV (see for example the 3A2 state in formaldehyde in table 7.4), since the minimal basis set
of DFTB cannot accommodate the diffuse states. This finding cautions against the appli-
cation of TD-DFTB to any other states but the lowest few. Overall the errors are larger for
molecules with heteroatoms (O and N) than for pure hydrocarbons. The long-range cor-
rection tends to increase the HOMO-LUMO gaps and generally leads to an increase of the
excitation energies, with the exception of the nitrogen containing compounds pyridazine
and tetrazine, where the monopole approximation in DFTB is probably to blame for the in-
consistent behaviour. The mean deviations between the full TD-DFT and the tight-binding
results are summarized in table 7.5. The average deviation between tight-binding and full
DFT increases 0.5 eV if the long-range correction is added. The largest portion of the error
is due to the highest five excited states, whose description is poor, anyway, because of the
reasons just mentioned.

Ionization energies

The LC-correction has a tendency to reduce the HOMO energy. According to Koopmans’
theorem the first ionization energy of closed-shell molecule equals the energy of the high-
est molecular orbital (HOMO). Strictly speaking, the theorem is only valid in Hartree-Fock
theory, whereas the HOMO energy in density functional theory has no such intuitive mean-
ing2 . Nevertheless, in table 7.6 the negative of the HOMO energies are shown next to
experimental ionization potentials. The inclusion of Hartree-Fock exchange at long range
moves the -HOMO energies closer to the ionization potential, reducing the average devia-
tion from 3.2 to 1.5 eV (see table 7.7).

2The relation between ionization potential and HOMO energy in DFT is elucidated in §7.6 of the book [10].
There it is shown that in a theory with fractional occupation numbers the energy of a HOMO filled by 1/2 an
electron can be interpreted as the negative of the ionization energy, i.e. εHOMO(n = 1/2) = −I .
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Molecule (Sym.)
Irrep TD-DFT TD-DFTB

Ethene (D2h)
B1g 7.77 ( 0.00) 7.99 ( 0.00)
B3u 7.82 ( 0.03) 12.80 ( 0.18)
B1u 7.89 ( 0.33) 7.45 ( 0.39)
B1g 8.51 ( 0.00) 14.18 ( 0.00)
B2g 8.64 ( 0.00) 8.78 ( 0.00)
B2g 9.42 ( 0.00) 16.40 ( 0.00)
B3g 9.67 ( 0.00) 18.97 ( 0.00)
Au 10.33 ( 0.00) 9.95 ( 0.00)
B2u 10.52 ( 0.17) 17.05 ( 0.01)
B1u 10.56 ( 0.22) 16.64 ( 0.40)

Butadiene (C2h)
Bu 5.66 ( 0.60) 5.45 ( 0.85)
Ag 6.37 ( 0.00) 6.36 ( 0.00)
Au 6.61 ( 0.00) 6.33 ( 0.00)
Au 6.91 ( 0.00) 7.07 ( 0.00)
Bg 6.95 ( 0.00) 7.41 ( 0.00)
Au 7.20 ( 0.02) 8.64 ( 0.00)
Bg 7.63 ( 0.00) 8.59 ( 0.00)
Au 7.76 ( 0.00) 10.38 ( 0.00)
Ag 8.21 ( 0.00) 8.05 ( 0.00)
Bg 8.42 ( 0.00) 9.31 ( 0.00)

Hexatriene (C2h)
Bu 4.54 ( 0.98) 4.42 ( 1.40)
Ag 5.09 ( 0.00) 5.02 ( 0.00)
Bg 6.11 ( 0.00) 5.66 ( 0.00)
Bg 6.14 ( 0.00) 6.31 ( 0.00)
Bu 6.26 ( 0.00) 6.11 ( 0.01)
Au 6.51 ( 0.00) 6.30 ( 0.00)
Bg 6.55 ( 0.00) 7.11 ( 0.00)
Au 6.56 ( 0.00) 7.42 ( 0.00)
Ag 6.83 ( 0.00) 6.55 ( 0.00)
Bg 6.96 ( 0.00) 8.38 ( 0.00)

Octatetraene (C2h)
Bu 3.84 ( 1.35) 3.76 ( 1.95)
Ag 4.21 ( 0.00) 4.13 ( 0.00)
Bu 5.47 ( 0.00) 5.23 ( 0.02)
Au 5.68 ( 0.00) 5.31 ( 0.00)
Au 5.85 ( 0.00) 5.88 ( 0.00)
Ag 5.86 ( 0.00) 5.61 ( 0.00)
Bu 6.01 ( 0.06) 5.97 ( 0.14)
Bg 6.04 ( 0.00) 5.71 ( 0.00)
Ag 6.08 ( 0.00) 5.95 ( 0.00)
Au 6.27 ( 0.00) 6.30 ( 0.00)

Cyclopropene (C2v)
B2 6.17 ( 0.05) 6.82 ( 0.19)
B1 6.33 ( 0.00) 6.67 ( 0.01)
A2 7.44 ( 0.00) 7.90 ( 0.00)
B1 7.49 ( 0.02) 12.68 ( 0.18)
A2 7.58 ( 0.00) 10.28 ( 0.00)
B1 7.61 ( 0.00) 14.56 ( 0.07)
B2 8.66 ( 0.01) 9.85 ( 0.09)
A1 8.74 ( 0.06) 12.81 ( 0.66)
B2 8.79 ( 0.13) 13.08 ( 0.03)
A1 8.82 ( 0.19) 16.12 ( 0.07)

Cyclopentadiene (C2v)
B2 4.94 ( 0.08) 4.46 ( 0.13)
A2 6.10 ( 0.00) 6.66 ( 0.00)
A1 6.12 ( 0.01) 6.02 ( 0.08)
A2 6.91 ( 0.00) 7.23 ( 0.00)
B1 7.12 ( 0.01) 6.50 ( 0.00)
A2 7.27 ( 0.00) 9.29 ( 0.00)
B1 7.31 ( 0.00) 6.95 ( 0.00)
A2 7.64 ( 0.00) 9.75 ( 0.00)
B2 7.67 ( 0.07) 8.81 ( 0.02)
B1 7.70 ( 0.00) 9.36 ( 0.00)

Norbornadiene (C2v)
A2 4.50 ( 0.00) 5.18 ( 0.00)
B2 5.03 ( 0.01) 6.93 ( 0.04)
B1 6.04 ( 0.01) 5.35 ( 0.02)
A2 6.58 ( 0.00) 6.37 ( 0.00)
B2 6.64 ( 0.11) 7.98 ( 0.01)
A1 6.83 ( 0.01) 7.15 ( 0.04)
B1 6.87 ( 0.02) 6.72 ( 0.31)
A2 6.95 ( 0.00) 7.48 ( 0.00)
A1 6.99 ( 0.00) 7.49 ( 0.00)
A1 7.05 ( 0.03) 7.70 ( 0.00)

Molecule (Sym.)
Irrep TD-DFT TD-DFTB

Naphthalene (D2h)
B1u 4.06 ( 0.04) 3.95 ( 0.12)
B2u 4.23 ( 0.00) 4.22 ( 0.02)
B3g 5.06 ( 0.00) 5.08 ( 0.00)
B2u 5.76 ( 1.13) 5.64 ( 1.54)
Ag 5.88 ( 0.00) 5.84 ( 0.00)
B1u 5.89 ( 0.13) 5.61 ( 0.28)
B1g 5.93 ( 0.00) 5.52 ( 0.00)
Au 6.07 ( 0.00) 7.03 ( 0.00)
B2g 6.08 ( 0.00) 5.70 ( 0.00)
Ag 6.21 ( 0.00) 5.96 ( 0.00)

Furan (C2v)
B2 6.16 ( 0.15) 5.91 ( 0.18)
A1 6.41 ( 0.00) 6.43 ( 0.01)
A2 6.64 ( 0.00) 8.66 ( 0.00)
B1 7.34 ( 0.01) 7.95 ( 0.00)
A2 7.45 ( 0.00) 9.39 ( 0.00)
B1 7.77 ( 0.00) 8.47 ( 0.00)
B1 7.90 ( 0.01) 10.10 ( 0.00)
A1 8.24 ( 0.37) 7.92 ( 0.61)
B1 8.35 ( 0.00) 11.06 ( 0.01)
A2 8.43 ( 0.00) 9.62 ( 0.00)

Pyrrole (C2v)
A2 5.37 ( 0.00) 8.90 ( 0.00)
B1 6.18 ( 0.00) 8.72 ( 0.00)
A1 6.32 ( 0.00) 6.44 ( 0.01)
B2 6.42 ( 0.15) 6.26 ( 0.16)
A2 6.69 ( 0.00) 9.81 ( 0.00)
B1 6.88 ( 0.01) 9.59 ( 0.00)
A2 7.31 ( 0.00) 9.84 ( 0.00)
B1 7.47 ( 0.01) 9.99 ( 0.00)
B1 7.53 ( 0.00) 10.94 ( 0.01)
A2 7.63 ( 0.00) 10.68 ( 0.00)

Imidazole (Cs)
A” 5.74 ( 0.00) 6.22 ( 0.00)
A” 5.92 ( 0.00) 7.25 ( 0.02)
A’ 6.31 ( 0.05) 6.31 ( 0.17)
A’ 6.41 ( 0.08) 6.69 ( 0.02)
A’ 6.91 ( 0.05) 7.86 ( 0.43)
A” 7.07 ( 0.00) 8.89 ( 0.00)
A” 7.16 ( 0.01) 9.66 ( 0.00)
A” 7.19 ( 0.01) 9.92 ( 0.00)
A” 7.35 ( 0.00) 9.94 ( 0.00)
A’ 7.72 ( 0.02) 8.72 ( 0.39)

Pyridine (C2v)
B1 4.35 ( 0.00) 4.76 ( 0.00)
A2 4.46 ( 0.00) 5.00 ( 0.00)
B2 5.37 ( 0.03) 5.34 ( 0.03)
A1 6.23 ( 0.01) 5.66 ( 0.02)
A1 6.48 ( 0.00) 7.03 ( 0.68)
A2 7.02 ( 0.00) 6.99 ( 0.00)
B2 7.12 ( 0.16) 6.91 ( 0.66)
A2 7.22 ( 0.00) 7.98 ( 0.00)
B2 7.32 ( 0.35) 8.11 ( 0.01)
B1 7.44 ( 0.01) 7.23 ( 0.00)

Pyrazine (D2h)
B3u 3.55 ( 0.00) 4.13 ( 0.00)
Au 4.04 ( 0.00) 4.65 ( 0.00)
B2g 5.09 ( 0.00) 5.48 ( 0.00)
B2u 5.27 ( 0.07) 5.23 ( 0.09)
B1g 5.56 ( 0.00) 6.00 ( 0.00)
B1u 6.42 ( 0.05) 5.74 ( 0.07)
Ag 6.81 ( 0.00) 8.11 ( 0.00)
Au 6.96 ( 0.00) 6.95 ( 0.00)
B2u 7.12 ( 0.05) 7.17 ( 0.60)
B1u 7.49 ( 0.19) 7.45 ( 0.64)

Pyrimidine (C2v)
B1 3.77 ( 0.00) 4.37 ( 0.00)
A2 4.00 ( 0.00) 4.62 ( 0.00)
A2 5.10 ( 0.00) 5.64 ( 0.00)
B1 5.33 ( 0.00) 5.88 ( 0.00)
B2 5.59 ( 0.02) 5.50 ( 0.02)
A1 6.47 ( 0.03) 5.92 ( 0.03)
B2 6.57 ( 0.00) 7.25 ( 0.66)
A1 7.32 ( 0.26) 7.12 ( 0.63)
A1 7.49 ( 0.00) 8.34 ( 0.02)
B2 7.58 ( 0.34) 8.23 ( 0.00)

Molecule (Sym.)
Irrep TD-DFT TD-DFTB

Pyridazine (C2v)
B1 3.14 ( 0.00) 3.76 ( 0.00)
A2 3.54 ( 0.00) 4.33 ( 0.00)
A2 4.99 ( 0.00) 5.12 ( 0.00)
B1 5.43 ( 0.00) 5.69 ( 0.00)
A1 5.46 ( 0.01) 5.30 ( 0.03)
B2 5.78 ( 0.00) 5.75 ( 0.00)
B2 6.32 ( 0.00) 6.82 ( 0.65)
A1 6.60 ( 0.01) 7.19 ( 0.66)
B2 7.07 ( 0.20) 7.92 ( 0.01)
B2 7.28 ( 0.20) 9.75 ( 0.00)

Tetrazine (D2h)
B3u 1.84 ( 0.00) 2.63 ( 0.00)
Au 2.86 ( 0.00) 3.80 ( 0.00)
B1g 4.12 ( 0.00) 6.12 ( 0.00)
Au 4.59 ( 0.00) 4.88 ( 0.00)
B2g 4.78 ( 0.00) 4.95 ( 0.00)
B2g 5.23 ( 0.00) 9.01 ( 0.00)
B2u 5.46 ( 0.05) 5.20 ( 0.08)
B3u 5.64 ( 0.01) 6.04 ( 0.00)
B1g 5.87 ( 0.00) 6.82 ( 0.00)
B1g 6.53 ( 0.00) 8.20 ( 0.00)

Formaldehyde (C2v)
A2 3.79 ( 0.00) 4.74 ( 0.00)
B2 7.06 ( 0.08) 14.80 ( 0.19)
A1 8.68 ( 0.03) 8.88 ( 0.35)
B1 8.77 ( 0.00) 8.54 ( 0.00)
B2 9.52 ( 0.02) 20.04 ( 0.51)
A2 9.66 ( 0.00) 9.50 ( 0.00)
A1 9.94 ( 0.29) 17.53 ( 0.15)
B1 10.70 ( 0.01) 13.06 ( 0.18)
A1 11.81 ( 0.06) 18.62 ( 0.66)
A2 12.28 ( 0.00) 19.63 ( 0.00)

Acetone (C2v)
A2 4.19 ( 0.00) 4.35 ( 0.00)
B2 5.85 ( 0.03) 8.81 ( 0.06)
A1 7.31 ( 0.00) 8.23 ( 0.44)
A2 7.54 ( 0.00) 7.95 ( 0.00)
A2 7.58 ( 0.00) 9.29 ( 0.00)
B2 7.63 ( 0.04) 13.64 ( 0.04)
B1 8.12 ( 0.00) 7.86 ( 0.01)
A1 8.35 ( 0.00) 9.69 ( 0.01)
B2 8.51 ( 0.03) 15.71 ( 0.05)
B1 8.55 ( 0.01) 9.26 ( 0.00)

Benzoquinone (D2h)
B1g 1.86 ( 0.00) 1.74 ( 0.00)
Au 1.99 ( 0.00) 2.14 ( 0.00)
B3g 3.39 ( 0.00) 3.70 ( 0.00)
B3u 4.33 ( 0.00) 4.12 ( 0.01)
B2g 4.43 ( 0.00) 4.52 ( 0.00)
B1u 4.51 ( 0.21) 4.30 ( 0.70)
B1g 5.20 ( 0.00) 5.16 ( 0.00)
Au 5.25 ( 0.00) 5.42 ( 0.00)
B1g 5.41 ( 0.00) 5.82 ( 0.00)
B2g 5.73 ( 0.00) 5.23 ( 0.00)

Formamide (Cs)
A” 5.46 ( 0.00) 5.89 ( 0.00)
A’ 6.15 ( 0.02) 8.10 ( 0.47)
A” 6.92 ( 0.01) 9.55 ( 0.01)
A’ 7.00 ( 0.10) 10.06 ( 0.09)
A” 7.68 ( 0.00) 10.97 ( 0.01)
A’ 7.91 ( 0.28) 14.68 ( 0.22)
A’ 8.25 ( 0.04) 15.57 ( 0.03)
A” 8.93 ( 0.00) 12.46 ( 0.00)
A” 9.70 ( 0.00) 14.11 ( 0.15)
A” 10.10 ( 0.02) 14.82 ( 0.00)

Acetamide (Cs)
A” 5.40 ( 0.00) 5.58 ( 0.00)
A’ 5.67 ( 0.03) 7.79 ( 0.40)
A” 6.51 ( 0.01) 9.16 ( 0.01)
A’ 6.82 ( 0.00) 9.50 ( 0.20)
A’ 7.36 ( 0.08) 10.85 ( 0.00)
A’ 7.54 ( 0.13) 13.91 ( 0.01)
A” 7.67 ( 0.00) 9.72 ( 0.01)
A’ 8.09 ( 0.01) 15.10 ( 0.10)
A” 8.13 ( 0.00) 10.90 ( 0.00)
A” 8.15 ( 0.00) 12.14 ( 0.00)

Molecule (Sym.)
Irrep TD-DFT TD-DFTB

Propanamide (Cs)
A” 5.43 ( 0.00) 5.56 ( 0.00)
A’ 5.74 ( 0.03) 7.80 ( 0.38)
A’ 6.49 ( 0.00) 9.04 ( 0.08)
A” 6.53 ( 0.01) 8.84 ( 0.00)
A’ 7.19 ( 0.02) 9.69 ( 0.11)
A” 7.22 ( 0.00) 9.04 ( 0.01)
A’ 7.33 ( 0.12) 11.08 ( 0.00)
A” 7.71 ( 0.01) 9.69 ( 0.00)
A’ 7.90 ( 0.03) 12.95 ( 0.08)
A” 7.97 ( 0.00) 10.99 ( 0.00)

Cytosine (Cs)
A” 3.76 ( 0.00) 3.58 ( 0.00)
A’ 4.21 ( 0.01) 4.22 ( 0.03)
A” 4.49 ( 0.00) 4.67 ( 0.00)
A’ 4.93 ( 0.06) 5.06 ( 0.09)
A” 5.22 ( 0.00) 5.17 ( 0.00)
A” 5.54 ( 0.00) 6.27 ( 0.00)
A’ 5.55 ( 0.01) 6.43 ( 0.33)
A” 5.73 ( 0.00) 7.29 ( 0.00)
A” 5.87 ( 0.00) 7.94 ( 0.00)
A’ 5.88 ( 0.01) 6.56 ( 0.50)

Thymine (Cs)
A” 4.04 ( 0.00) 3.83 ( 0.00)
A’ 4.59 ( 0.07) 4.86 ( 0.14)
A” 4.75 ( 0.00) 4.45 ( 0.00)
A’ 5.31 ( 0.06) 5.10 ( 0.18)
A” 5.32 ( 0.00) 5.45 ( 0.00)
A’ 5.83 ( 0.06) 6.29 ( 0.15)
A” 5.84 ( 0.00) 6.07 ( 0.00)
A’ 6.01 ( 0.06) 7.00 ( 0.11)
A” 6.11 ( 0.00) 7.18 ( 0.00)
A” 6.67 ( 0.00) 7.45 ( 0.00)

Uracil (Cs)
A” 3.92 ( 0.00) 3.80 ( 0.00)
A” 4.71 ( 0.00) 4.43 ( 0.00)
A’ 4.75 ( 0.05) 4.91 ( 0.03)
A’ 5.19 ( 0.04) 5.11 ( 0.24)
A” 5.23 ( 0.00) 5.49 ( 0.00)
A’ 5.83 ( 0.01) 6.49 ( 0.14)
A” 6.04 ( 0.00) 6.12 ( 0.00)
A” 6.10 ( 0.00) 7.44 ( 0.00)
A’ 6.13 ( 0.10) 7.25 ( 0.76)
A’ 6.68 ( 0.01) 7.27 ( 0.14)

Adenine (Cs)
A” 4.28 ( 0.00) 4.53 ( 0.00)
A’ 4.58 ( 0.11) 4.68 ( 0.26)
A’ 4.99 ( 0.05) 5.00 ( 0.05)
A” 5.02 ( 0.00) 5.26 ( 0.00)
A” 5.16 ( 0.00) 5.48 ( 0.00)
A’ 5.56 ( 0.06) 5.63 ( 0.07)
A” 5.63 ( 0.00) 6.02 ( 0.00)
A” 5.69 ( 0.00) 6.22 ( 0.00)
A’ 5.83 ( 0.09) 5.89 ( 0.24)
A” 5.95 ( 0.00) 6.37 ( 0.01)

TABLE 7.3: PBE/cc-pVTZ vs. DFTB. Excitation energies (eV) and oscillator
strengths in brackets for common organic chromophores from test set 2.
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Molecule (Sym.)
Irrep LC-TD-DFT LC-TD-DFTB

Ethene (D2h)
B1u 7.88 ( 0.39) 9.78 ( 0.56)
B1g 8.22 ( 0.00) 9.30 ( 0.00)
B3u 8.95 ( 0.03) 14.34 ( 0.20)
B2g 9.58 ( 0.00) 11.00 ( 0.00)
B1g 9.61 ( 0.00) 16.10 ( 0.00)
B2g 10.20 ( 0.00) 18.67 ( 0.00)
B3g 11.09 ( 0.00) 20.88 ( 0.00)
Au 11.48 ( 0.00) 11.87 ( 0.00)
Au 11.95 ( 0.00) 25.60 ( 0.00)
B2u 12.16 ( 0.42) 18.78 ( 0.01)

Butadiene (C2h)
Bu 6.16 ( 0.75) 6.67 ( 0.89)
Au 7.57 ( 0.00) 7.29 ( 0.00)
Ag 8.26 ( 0.00) 7.30 ( 0.00)
Au 8.35 ( 0.00) 8.66 ( 0.00)
Bg 8.40 ( 0.00) 8.83 ( 0.00)
Au 8.55 ( 0.00) 10.39 ( 0.00)
Ag 8.59 ( 0.00) 10.10 ( 0.00)
Bg 8.66 ( 0.00) 10.23 ( 0.00)
Au 8.75 ( 0.03) 12.04 ( 0.00)
Bg 9.90 ( 0.00) 11.00 ( 0.00)

Hexatriene (C2h)
Bu 5.17 ( 1.17) 5.44 ( 1.39)
Ag 7.32 ( 0.00) 6.39 ( 0.00)
Bg 7.37 ( 0.00) 6.70 ( 0.00)
Ag 7.63 ( 0.00) 7.85 ( 0.00)
Bg 7.67 ( 0.00) 7.88 ( 0.00)
Au 7.90 ( 0.00) 7.51 ( 0.00)
Bu 8.04 ( 0.01) 7.20 ( 0.00)
Bg 8.07 ( 0.00) 8.60 ( 0.00)
Au 8.20 ( 0.01) 9.22 ( 0.01)
Bg 8.25 ( 0.00) 10.13 ( 0.00)

Octatetraene (C2h)
Bu 4.54 ( 1.61) 4.71 ( 1.87)
Ag 6.49 ( 0.00) 5.75 ( 0.00)
Ag 6.89 ( 0.00) 6.76 ( 0.00)
Au 7.25 ( 0.00) 6.44 ( 0.00)
Au 7.33 ( 0.00) 7.46 ( 0.00)
Bg 7.58 ( 0.00) 6.97 ( 0.00)
Bu 7.75 ( 0.09) 6.69 ( 0.00)
Au 7.81 ( 0.00) 7.68 ( 0.00)
Ag 7.83 ( 0.00) 7.14 ( 0.00)
Bu 7.98 ( 0.01) 8.34 ( 0.14)

Cyclopropene (C2v)
B2 6.63 ( 0.09) 8.13 ( 0.13)
B1 6.73 ( 0.00) 7.53 ( 0.01)
A2 7.60 ( 0.00) 9.68 ( 0.00)
B1 8.88 ( 0.03) 14.19 ( 0.19)
A2 8.95 ( 0.00) 11.95 ( 0.00)
B1 9.20 ( 0.00) 16.89 ( 0.05)
A2 9.96 ( 0.00) 13.08 ( 0.00)
B2 10.13 ( 0.05) 11.18 ( 0.30)
A1 10.23 ( 0.23) 14.94 ( 0.72)
A1 10.62 ( 0.23) 17.98 ( 0.03)

Cyclopentadiene (C2v)
B2 5.39 ( 0.09) 5.55 ( 0.18)
A1 7.61 ( 0.03) 6.42 ( 0.06)
A2 7.83 ( 0.00) 7.79 ( 0.00)
A2 8.14 ( 0.00) 8.59 ( 0.00)
B1 8.26 ( 0.00) 7.48 ( 0.00)
A1 8.44 ( 0.60) 8.84 ( 0.37)
B1 8.55 ( 0.01) 8.19 ( 0.00)
B1 8.75 ( 0.02) 10.55 ( 0.00)
A2 8.78 ( 0.00) 10.63 ( 0.00)
A2 9.06 ( 0.00) 11.28 ( 0.00)

Norbornadiene (C2v)
A2 5.51 ( 0.00) 6.43 ( 0.00)
B2 6.56 ( 0.08) 8.11 ( 0.05)
B2 7.68 ( 0.20) 8.69 ( 0.03)
A2 7.75 ( 0.00) 7.82 ( 0.00)
B1 7.87 ( 0.01) 6.42 ( 0.02)
B1 8.10 ( 0.01) 8.13 ( 0.21)
A1 8.44 ( 0.00) 7.89 ( 0.04)
A1 8.58 ( 0.04) 8.58 ( 0.00)
B2 8.68 ( 0.00) 9.65 ( 0.10)
A2 8.76 ( 0.00) 8.91 ( 0.00)

Molecule (Sym.)
Irrep LC-TD-DFT LC-TD-DFTB

Naphthalene (D2h)
B2u 4.72 ( 0.00) 4.44 ( 0.01)
B1u 4.90 ( 0.08) 5.16 ( 0.22)
B2u 6.33 ( 1.38) 6.37 ( 1.73)
B3g 6.60 ( 0.00) 6.41 ( 0.00)
B1u 6.61 ( 0.33) 6.96 ( 0.55)
Ag 6.83 ( 0.00) 6.23 ( 0.00)
B1g 7.32 ( 0.00) 6.51 ( 0.00)
B3g 7.33 ( 0.00) 7.37 ( 0.00)
B2g 7.48 ( 0.00) 7.03 ( 0.00)
Au 7.93 ( 0.00) 8.45 ( 0.00)

Furan (C2v)
B2 6.41 ( 0.15) 7.31 ( 0.24)
A1 7.48 ( 0.00) 6.92 ( 0.03)
A2 8.26 ( 0.00) 9.35 ( 0.00)
A1 8.56 ( 0.48) 9.30 ( 0.78)
B1 8.94 ( 0.03) 8.74 ( 0.01)
A2 9.10 ( 0.00) 10.38 ( 0.00)
B1 9.10 ( 0.00) 9.94 ( 0.00)
B2 9.35 ( 0.16) 9.19 ( 0.26)
B1 9.50 ( 0.00) 11.76 ( 0.00)
A2 9.66 ( 0.00) 11.57 ( 0.00)

Pyrrole (C2v)
B2 6.64 ( 0.15) 7.66 ( 0.21)
A1 7.16 ( 0.01) 7.06 ( 0.02)
A2 7.18 ( 0.00) 10.66 ( 0.00)
B1 8.04 ( 0.00) 10.28 ( 0.00)
A1 8.32 ( 0.49) 9.25 ( 0.74)
A2 8.47 ( 0.00) 12.05 ( 0.00)
B1 8.54 ( 0.03) 11.26 ( 0.00)
B2 8.78 ( 0.27) 9.05 ( 0.42)
B1 9.12 ( 0.01) 12.17 ( 0.00)
A2 9.16 ( 0.00) 12.09 ( 0.00)

Imidazole (Cs)
A’ 6.83 ( 0.17) 7.25 ( 0.05)
A” 7.06 ( 0.01) 5.09 ( 0.00)
A’ 7.50 ( 0.02) 7.84 ( 0.18)
A” 7.60 ( 0.00) 7.94 ( 0.02)
A” 8.17 ( 0.00) 10.54 ( 0.00)
A’ 8.64 ( 0.37) 9.12 ( 0.51)
A” 8.76 ( 0.01) 11.38 ( 0.00)
A” 8.95 ( 0.00) 12.04 ( 0.00)
A” 9.19 ( 0.00) 12.17 ( 0.00)
A” 9.61 ( 0.01) 12.72 ( 0.00)

Pyridine (C2v)
B1 5.27 ( 0.00) 4.75 ( 0.00)
B2 5.66 ( 0.05) 5.40 ( 0.01)
A2 5.80 ( 0.00) 3.35 ( 0.00)
A1 6.56 ( 0.02) 7.38 ( 0.13)
B2 7.64 ( 0.50) 7.87 ( 0.86)
A1 7.64 ( 0.53) 8.13 ( 0.76)
A2 8.12 ( 0.00) 8.18 ( 0.00)
B1 8.60 ( 0.01) 8.24 ( 0.00)
A2 8.87 ( 0.00) 8.74 ( 0.00)
B1 9.12 ( 0.00) 8.41 ( 0.00)

Pyrazine (D2h)
B3u 4.33 ( 0.01) 4.30 ( 0.00)
Au 5.35 ( 0.00) 3.13 ( 0.00)
B2u 5.44 ( 0.12) 5.40 ( 0.04)
B2g 6.04 ( 0.00) 5.43 ( 0.00)
B1u 6.71 ( 0.08) 7.39 ( 0.24)
B1g 7.44 ( 0.00) 3.89 ( 0.00)
B1u 8.03 ( 0.41) 8.71 ( 0.64)
Au 8.10 ( 0.00) 8.18 ( 0.00)
B2u 8.20 ( 0.37) 8.06 ( 0.82)
B3u 9.05 ( 0.01) 8.41 ( 0.00)

Pyrimidine (C2v)
B1 4.79 ( 0.01) 3.50 ( 0.00)
A2 5.21 ( 0.00) 3.01 ( 0.00)
B2 5.91 ( 0.05) 5.54 ( 0.01)
A2 6.28 ( 0.00) 5.37 ( 0.00)
B1 6.60 ( 0.01) 4.97 ( 0.00)
A1 6.88 ( 0.05) 7.57 ( 0.23)
A1 7.82 ( 0.43) 8.27 ( 0.62)
B2 8.03 ( 0.45) 8.28 ( 0.86)
A2 8.97 ( 0.00) 8.13 ( 0.00)
B1 9.14 ( 0.00) 8.66 ( 0.00)

Molecule (Sym.)
Irrep LC-TD-DFT LC-TD-DFTB

Pyridazine (C2v)
B1 4.00 ( 0.01) 2.77 ( 0.00)
A2 4.89 ( 0.00) 2.55 ( 0.00)
A1 5.77 ( 0.03) 5.38 ( 0.01)
A2 6.03 ( 0.00) 5.23 ( 0.00)
B2 6.68 ( 0.00) 7.53 ( 0.04)
B1 6.80 ( 0.01) 4.70 ( 0.00)
B2 7.51 ( 0.47) 7.86 ( 0.80)
A1 7.85 ( 0.45) 8.21 ( 0.84)
A2 8.70 ( 0.00) 8.28 ( 0.00)
B2 9.15 ( 0.01) 9.30 ( 0.01)

Tetrazine (D2h)
B3u 2.58 ( 0.01) 1.99 ( 0.00)
Au 4.24 ( 0.00) 1.98 ( 0.00)
B1g 5.17 ( 0.00) 3.36 ( 0.00)
Au 5.58 ( 0.00) 5.18 ( 0.00)
B2u 5.62 ( 0.08) 5.35 ( 0.04)
B2g 5.85 ( 0.00) 3.53 ( 0.00)
B3u 7.00 ( 0.01) 5.07 ( 0.00)
B2g 7.04 ( 0.00) 5.38 ( 0.00)
B1u 7.14 ( 0.00) 7.72 ( 0.36)
B1g 7.54 ( 0.00) 4.95 ( 0.00)

Formaldehyde (C2v)
A2 3.84 ( 0.00) 4.72 ( 0.00)
B2 8.88 ( 0.10) 14.46 ( 0.12)
B1 9.12 ( 0.00) 9.73 ( 0.01)
A1 9.66 ( 0.09) 11.10 ( 0.45)
A2 10.29 ( 0.00) 10.88 ( 0.00)
B2 10.53 ( 0.05) 21.62 ( 0.08)
A1 10.85 ( 0.32) 17.56 ( 0.46)
B1 12.48 ( 0.03) 14.14 ( 0.19)
A2 13.99 ( 0.00) 22.47 ( 0.00)
B1 14.18 ( 0.06) 19.65 ( 0.05)

Acetone (C2v)
A2 4.43 ( 0.00) 4.25 ( 0.00)
B2 8.59 ( 0.03) 9.16 ( 0.06)
B1 9.11 ( 0.00) 8.61 ( 0.01)
A2 9.17 ( 0.00) 8.40 ( 0.00)
A1 9.25 ( 0.22) 9.10 ( 0.36)
B2 10.15 ( 0.03) 13.51 ( 0.02)
A1 10.45 ( 0.04) 11.28 ( 0.21)
A2 10.46 ( 0.00) 10.17 ( 0.00)
B2 10.69 ( 0.05) 15.88 ( 0.07)
B1 11.09 ( 0.10) 9.89 ( 0.00)

Benzoquinone (D2h)
B1g 3.07 ( 0.00) 1.68 ( 0.00)
Au 3.30 ( 0.00) 2.06 ( 0.00)
B3g 4.62 ( 0.00) 4.36 ( 0.00)
B1u 5.70 ( 0.58) 4.92 ( 0.70)
B1g 6.60 ( 0.00) 5.53 ( 0.00)
B3u 6.81 ( 0.00) 3.57 ( 0.00)
B2g 7.01 ( 0.00) 3.90 ( 0.00)
Au 7.68 ( 0.00) 5.28 ( 0.00)
B2g 7.69 ( 0.00) 6.10 ( 0.00)
B3g 7.77 ( 0.00) 6.73 ( 0.00)

Formamide (Cs)
A” 5.61 ( 0.00) 5.89 ( 0.00)
A’ 8.02 ( 0.16) 8.53 ( 0.62)
A” 8.34 ( 0.01) 10.78 ( 0.02)
A” 9.26 ( 0.00) 12.85 ( 0.02)
A’ 9.28 ( 0.17) 12.08 ( 0.10)
A’ 9.62 ( 0.18) 14.03 ( 0.28)
A” 10.26 ( 0.00) 14.66 ( 0.00)
A” 10.69 ( 0.00) 14.89 ( 0.00)
A’ 10.95 ( 0.02) 15.44 ( 0.04)
A’ 11.32 ( 0.00) 18.15 ( 0.02)

Acetamide (Cs)
A” 5.73 ( 0.00) 5.50 ( 0.00)
A’ 8.08 ( 0.16) 8.20 ( 0.54)
A” 8.19 ( 0.01) 10.39 ( 0.02)
A’ 8.81 ( 0.09) 10.85 ( 0.22)
A” 9.44 ( 0.00) 10.88 ( 0.00)
A’ 10.01 ( 0.06) 12.43 ( 0.03)
A” 10.24 ( 0.00) 12.30 ( 0.01)
A” 10.49 ( 0.00) 14.20 ( 0.00)
A’ 10.51 ( 0.01) 13.55 ( 0.01)
A’ 10.72 ( 0.00) 14.55 ( 0.18)

Molecule (Sym.)
Irrep LC-TD-DFT LC-TD-DFTB

Propanamide (Cs)
A” 5.77 ( 0.00) 5.48 ( 0.00)
A’ 8.06 ( 0.15) 8.20 ( 0.53)
A” 8.19 ( 0.01) 10.20 ( 0.02)
A’ 8.84 ( 0.07) 10.41 ( 0.13)
A” 9.41 ( 0.00) 10.58 ( 0.00)
A’ 9.70 ( 0.05) 11.50 ( 0.09)
A” 9.96 ( 0.00) 11.41 ( 0.01)
A” 10.20 ( 0.00) 12.10 ( 0.00)
A’ 10.21 ( 0.04) 12.59 ( 0.02)
A’ 10.32 ( 0.14) 12.71 ( 0.08)

Cytosine (Cs)
A’ 5.27 ( 0.09) 4.98 ( 0.05)
A” 5.62 ( 0.00) 3.54 ( 0.00)
A” 6.15 ( 0.00) 4.11 ( 0.00)
A’ 6.45 ( 0.23) 5.42 ( 0.04)
A” 7.01 ( 0.00) 4.52 ( 0.00)
A’ 7.08 ( 0.46) 6.84 ( 0.62)
A” 7.39 ( 0.00) 5.54 ( 0.00)
A” 7.53 ( 0.00) 8.16 ( 0.00)
A’ 7.71 ( 0.18) 6.94 ( 0.98)
A” 7.98 ( 0.01) 8.25 ( 0.00)

Thymine (Cs)
A” 5.28 ( 0.00) 3.68 ( 0.00)
A’ 5.51 ( 0.23) 5.17 ( 0.20)
A” 6.61 ( 0.00) 4.57 ( 0.00)
A’ 7.17 ( 0.12) 5.61 ( 0.04)
A’ 7.37 ( 0.25) 6.83 ( 0.35)
A” 7.58 ( 0.00) 5.38 ( 0.00)
A” 8.13 ( 0.00) 6.04 ( 0.00)
A’ 8.27 ( 0.30) 7.34 ( 1.21)
A” 8.33 ( 0.00) 7.88 ( 0.00)
A” 8.76 ( 0.00) 8.29 ( 0.00)

Uracil (Cs)
A” 5.26 ( 0.00) 3.73 ( 0.00)
A’ 5.68 ( 0.22) 5.26 ( 0.15)
A” 6.55 ( 0.00) 4.56 ( 0.00)
A’ 7.24 ( 0.06) 5.60 ( 0.05)
A’ 7.49 ( 0.23) 6.98 ( 0.45)
A” 7.77 ( 0.00) 5.45 ( 0.00)
A” 8.07 ( 0.00) 6.07 ( 0.00)
A’ 8.18 ( 0.36) 7.40 ( 1.06)
A” 8.28 ( 0.00) 7.98 ( 0.00)
A” 9.04 ( 0.01) 8.40 ( 0.00)

Adenine (Cs)
A’ 5.64 ( 0.23) 5.16 ( 0.08)
A” 5.70 ( 0.00) 3.53 ( 0.00)
A’ 5.70 ( 0.10) 5.64 ( 0.42)
A” 6.32 ( 0.00) 4.54 ( 0.00)
A” 6.66 ( 0.00) 5.08 ( 0.00)
A’ 6.99 ( 0.48) 6.62 ( 0.40)
A” 7.21 ( 0.02) 5.86 ( 0.00)
A’ 7.39 ( 0.05) 6.96 ( 0.24)
A’ 7.48 ( 0.21) 7.31 ( 0.30)
A” 7.61 ( 0.00) 6.09 ( 0.00)

TABLE 7.4: LC-PBE/cc-pVTZ vs. LC-DFTB. Excitation energies (eV) and
oscillator strengths in brackets for common organic chromophores from

test set 2.
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Compared methods Errors (eV)
TD-DFTB vs. PBE/cc-pVTZ 1.42
LC-TD-DFTB vs. LC-PBE/cc-pVTZ 1.92

TABLE 7.5: Mean errors (in eV) for the lowest 10 excited states of the com-
mon organic chromophores in the test set 2.

Molecule DFTB LC-DFTB
IP / eV -HOMO / eV -HOMO / eV

Ethene 10.51 7.18 10.35
Butadiene 9.07 6.32 9.21
Hexatriene 8.42 5.87 8.58
Octatetraene - 5.60 8.18
Cyclopropene 9.67 6.63 9.86
Cyclopentadiene 8.57 5.81 8.89
Norbornadiene 8.38 6.12 9.25
Naphthalene 8.14 5.87 8.60
Furan 8.88 5.74 8.51
Pyrrole 8.21 5.42 8.15
Imidazole 8.81 5.50 7.29
Pyridine 9.26 6.33 7.71
Pyrazine 9.00 6.06 7.52
Pyrimidine 9.33 6.05 7.38
Pyridazine 8.74 5.83 6.93
Tetrazine 9.14 5.60 6.65
Formaldehyde 10.88 6.76 8.01
Acetone 9.70 6.12 7.24
Benzoquinone 10.00 6.42 7.33
Formamide 10.16 5.97 6.80
Acetamide 9.69 5.77 6.51
Propanamide - 5.69 6.46
Cytosine 8.45 5.20 6.06
Thymine 9.00 6.10 6.83
Uracil 9.20 6.16 6.89
Adenine 8.30 4.75 6.32

TABLE 7.6: Ionization energies for molecules from test set 2. Experimental
ionization energies from NIST’s chemistry webbook are compared with the

-HOMO energies computed with DFTB and LC-DFTB.

Method Errors (eV)
TD-DFTB 3.16
LC-TD-DFTB 1.54

TABLE 7.7: Mean deviations (in eV) between -HOMO and the experimental
ionization potentials.
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7.3 Concluding Remarks

In summary, LC-DFTB behaves like a (range-separated) hybrid functional in the sense, that
HOMO-LUMO gaps are increased and ionization energies and energies of charge transfer
states are improved. The increase of the HOMO-LUMO gap has a pleasant side effect on
convergence in the self-consistent field cycle: A small HOMO-LUMO gap leads to con-
vergence problems since the occupied and virtual orbitals constantly switch order. Upon
inclusion of the long-range correction these problems often disappear.

Since the long-range correction improves the description of charge transfer states sig-
nificantly but gives slightly inferior results in general, the decision for using DFTB or LC-
DFTB depends on the system at hand. The average errors hide that the deviations are
not uniform for all states. Applications of tight-binding DFT should therefore always be
accompanied by test calculations with DFT to identify outliers.

The assignment of electronic character based on Λ2 is not fail-proof, since states can
have partial charge transfer in spite of a large Λ2. The diagnostic can be relied on for the
extreme cases Λ2 ≈ 0 or Λ2 ≈ 1, which signify that to a large degree of certainty a charge
transfer state is present or not, respectively. If TD-DFTB produces many low-lying states
with Λ2 = 0, these are most likely spurious and can be remedied by the LC-correction.
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Chapter 8

Analytic Gradients

Gradients of the ground state and excitation energies are needed for determining extremal
points of the potential energy surfaces and give the forces that drive dynamics simulations.
Gradients can be obtained by numerical differentiation of the energy with respect to each of
the 3Nat Cartesian coordinates. However, this approach becomes very inefficient for large
molecules. Therefore any electronic structure method that aspires to be a useful tool for
studying the photochemistry of medium-sized to large molecules has to provide analytic
formulae for the gradients. For the gradients of total energies, a special technique exists
that circumvents the computation of gradients of the molecular orbital (MO) coefficients
by introducing an auxiliary functional [1].

Gradients of molecular properties, such as Mulliken charges, are required in metady-
namics [2] simulations, if charges of molecular fragments are chosen as the collective coor-
dinates. In this case the computation of gradients of the MO coefficients cannot be avoided,
and a set of linear equations generally called the Coupled-Perturbed Kohn-Sham (CPKS)
[3] equations has to be solved.

In this chapter Furche’s auxiliary function method (section 8.1) and the derivation of
CPKS equations (section 8.2) are sketched in the context of tight-binding DFT. The material
is rather technical but might be helpful to those interested in implementing their own TD-
DFT(B) code.

8.1 Analytic gradients of ground and excited state energies

Efficient analytic gradients of TD-DFT excited state energies became first available with
Furche’s auxiliary functional method [1], that avoids the time-consuming computation of
gradients of the MO coefficients. Chiba [4] adapted this idea to long-range corrected func-
tionals. Heringer [5] made the necessary simplifications for tight-binding DFT and we
now complete this list with excited state gradients for long-range corrected tight-binding
TD-DFT.

The following convention is used for orbital indices:

• p,q,r,s,t,u: general MO indices

• i,j,k,l: occupied MO indices

• a,b,c,d: virtual MO indices

• Greek small letters: AO indices
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An auxiliary functional [1], [5] is defined that is variational in all arguments:

L(X,Y,Ω, C, Z,W ) =
1

2

{
( ~X + ~Y )(A + B)( ~X + ~Y ) + ( ~X − ~Y )(A−B)( ~X − ~Y )

}
− Ω

(
~X2 − ~Y 2 − 1

)
+
∑
i,a

ZiaHia −
∑

p,q,p≤q
Wpq(Spq − δpq)

(8.1)

The minimization of this functional leads to the following conditions:

∂L

∂ | X,Y 〉
= 0⇒ TD-DFT linear response equations (8.2)

∂L

∂Ω
= 0⇒ excitation vectors (X,Y) are orthonormal (8.3)

∂L

∂Z
= 0⇒ Kohn-Sham equations Hia = 0 (8.4)

∂L

∂W
= 0⇒ Kohn-Sham orbitals are orthonormal (8.5)

The functional should also be stationary with respect to variations of the molecular
orbital coefficients C, this requirement determines the Lagrange multipliers Z and W :

∂L

∂C
= 0⇒ determines Z and W (8.6)

8.1.1 Determination of the Lagrange multipliers

Excited states with excitation energies Ω are the stationary points of the functional

G[X,Y,Ω, C] =
1

2

{
( ~X + ~Y )(A + B)( ~X + ~Y ) + ( ~X − ~Y )(A−B)( ~X − ~Y )

}
−Ω

(
~X2 − ~Y 2 − 1

)
(8.7)

which is part of the auxiliary functional L in Eqn. 8.1. The equations for the Lagrange
multipliers are easier to deal with, if Eqn. 8.6 is transformed into(

∂L

∂C

)T
C = 0 or componentwise

∑
µ

∂L

∂Cµp
Cµq = 0. (8.8)

On the next few pages expressions for calculating

Qpq =
∑
µ

∂G

∂Cµp
Cµq (8.9)

are derived.
This involves transforming the derivatives with respect to the MO coefficients of the

0-th order Hamiltonian ∑
µ

∂H0
rs

∂Cµp
Cµq = H0

qsδpr +H0
qrδps (8.10)

the overlap matrix ∑
µ

∂Srs
∂Cµp

Cµq = Sqsδpr + Sqrδps = δqsδpr + δqrδps (8.11)
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and the electron repulsion integrals∑
µ

∂(rs|tu)

∂Cµp
Cµq = δpr(qs|tu) + δps(rq|tu) + δpt(rs|qu) + δpu(rs|tq), (8.12)

for which the tight-binding approximations will be made later.
The Kohn-Sham Hamiltonian at the DFTB level with long-range correction reads:

Hrs = H0
rs +

∑
k∈occ

(2(rs|kk)− (rk|ks)lr)−
∑
γ,δ

(
(rs|γδ)− 1

2
(rγ|δs)lr

)
P 0
γδ︸ ︷︷ ︸

from reference density

(8.13)

The transformed MO derivatives of the Hamiltonian are∑
µ

∂Hrs

∂Cµp
Cµq =H0

qsδpr +H0
qrδps

+
∑
k∈occ

2 [δpr(qs|kk) + δps(rq|kk) + δpk(rs|kq) + δpk(rs|qk)]

−
∑
k∈occ

[δpr(qk|ks)lr + δps(rk|kq)lr + δpk(rk|qs)lr + δpk(rq|ks)lr]

− δpr
∑
γ,δ

(
(qs|γδ)− 1

2
(qγ|δs)

)
P 0
γδ − δps

∑
γ,δ

(
(qr|γδ)− 1

2
(qγ|δr)lr

)
P 0
γδ

= δpr

H0
qs +

∑
k∈occ

[2(qs|kk)− (qk|ks)lr]−
∑
γ,δ

(
(qs|γδ)− 1

2
(qγ|δs)lr

)
P 0
γδ


+ δps

H0
qr +

∑
k∈occ

[2(rq|kk)− (rk|kq)lr]−
∑
γ,δ

(
(qr|γδ)− 1

2
(qγ|δr)lr

)
P 0
γδ


+ δ(p ∈ occ) {2(rs|pq)− (rp|qs)lr + 2(rs|qp)− (rq|ps)lr}

=δprHqs + δpsHqr + δ(p ∈ occ) {4(rs|pq)− (rp|qs)lr − (rq|ps)lr}
= (δprδqs + δpsδqr) εq + δ(p ∈ occ) {4(rs|pq)− (rp|qs)lr − (rq|ps)lr}
= (δprδqs + δpsδqr) εq + δ(p ∈ occ) ((A+B)rs,pq − δprδqs (εs − εr))
=δpsδqrεr + δprδqs (δ(p ∈ occ)εp + δ(p ∈ virt)εq) + δ(p ∈ occ)(A+B)rs,pq.

(8.14)

The A and B matrices for singlet states are

SAia,jb = δijHab − δabHij + 2(ia|jb)− (ij|ab)lr (8.15)
SBia,jb = 2(ia|jb)− (ib|aj)lr. (8.16)

Adding and subtracting A and B gives

S(A+B)ia,jb = δijHab − δabHij + 4(ia|jb)− (ij|ab)lr − (ib|aj)lr (8.17)
S(A−B)ia,jb = δijHab − δabHij + (ib|aj)lr − (ij|ab)lr, (8.18)
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The transformed MO derivatives of the sum and differences,∑
µ

∂(A+B)kc,ld
∂Cµp

Cµq =

δklεk (δpdδqc + δpcδqd)− δcdεc (δpkδql + δplδqk)

+ δpk(A+B)qc,ld + δpl(A+B)kc,qd + δpc(A+B)kq,ld + δpd(A+B)kc,lq

+ δcdδpkδql(εl − εk) + δp∈occ (δkl(A+B)cd,pq − δcd(A+B)kl,pq) ,

(8.19)

and∑
µ

∂(A−B)kc,ld
∂Cµp

Cµq =

δklεk (δpdδqc + δpcδqd)− δcdεc (δplδqk + δpkδql)

+ δpk(A−B)qc,kd + δpl(A−B)kc,qd + δpc(A−B)kq,ld + δpd(A−B)kc,lq

+ δcdδpkδql(εl − εk) + δp∈occ (δkl(A+B)cd,pq − δcd(A+B)kl,pq) ,

(8.20)

appear in the MO derivatives of the G functional

Qpq =
∑
µ

∂G

∂Cµp
Cµq =

∑
ia,jb

1

2

{
(X + Y )ia

(∑
µ

∂(A+B)ia,jb
∂Cµp

Cµq

)
(X + Y )jb

+(X − Y )ia

(∑
µ

∂(A−B)ia,jb
∂Cµp

Cµq

)
(X − Y )jb

} (8.21)

To simplify Eqn. 8.21 the TD-DFT equations are exploited:

∑
jb

(A+B)ia,jb(X + Y )jb = Ω(X − Y )ia (8.22)

∑
ia

(X + Y )ia(A+B)ia,jb = Ω(X − Y )jb (8.23)∑
ib

(A−B)ia,jb(X − Y )jb = Ω(X + Y )ia (8.24)∑
ia

(X − Y )ia(A−B)ia,jb = Ω(X + Y )jb (8.25)

Different cases have to be considered depending on whether the indices p, q belong to oc-
cupied or virtual orbitals:
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Case p = i ∈ occ, q = j ∈ occ∑
µ

∂(A+B)kc,ld
∂Cµi

Cµj =

− δcdεc (δikδjl + δilδjk)

+ δik(A+B)jc,ld + δil(A+B)kc,jd

+ δcdδikδjl(εj − εi)
+ δkl(A+B)cd,ij − δcd(A+B)kl,ij

(8.26)

∑
µ

∂(A−B)kc,ld
∂Cµi

Cµj =

− δcdεc (δikδjl + δilδjk)

+ δik(A−B)jc,kd + δil(A−B)kc,jd

+ δcdδikδjl(εj − εi)
+ δkl(A+B)cd,ij − δcd(A+B)kl,ij

(8.27)

Then

Qij =
∑
c

Ω [(X + Y )ic(X − Y )jc + (X − Y )ic(X + Y )jc]

−
∑
c

εc [(X + Y )ic(X + Y )jc + (X − Y )ic(X − Y )jc]

+ (εj − εi)
1

2

∑
c

[(X + Y )ic(X + Y )jc + (X − Y )ic(X − Y )jc]

+
∑
c,d

(A+B)ij,cd
1

2

∑
k

[(X + Y )kc(X + Y )kd + (X − Y )kc(X − Y )kd]

−
∑
k,l

(A+B)ij,kl
1

2

∑
c

[(X + Y )kc(X + Y )lc + (X − Y )kc(X − Y )lc]

(8.28)

Case p = i ∈ occ, q = a ∈ virt∑
µ

∂(A+B)kc,ld
∂Cµi

Cµa =

δik(A+B)ac,ld + δil(A+B)kc,ad

+ δkl(A+B)cd,ia − δcd(A+B)kl,ia

(8.29)

∑
µ

∂(A−B)kc,ld
∂Cµi

Cµa =

δik(A−B)ac,ld + δil(A−B)kc,ad

+ δkl(A+B)cd,ia − δcd(A+B)kl,ia

(8.30)
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Then

Qia =
∑
k,c,d

(A+B)ac,kd(X + Y )ic(X + Y )kd

+
∑
k,c,d

(A−B)ac,kd(X − Y )ic(X − Y )kd

+
∑
c,d

(A+B)ia,cd
1

2

∑
k

[(X + Y )kc(X + Y )kd + (X − Y )kc(X − Y )kd]

−
∑
k,l

(A+B)ia,kl
1

2

∑
c

[(X + Y )kc(X + Y )lc + (X − Y )kc(X − Y )lc]

(8.31)

Case p = a ∈ virt, q = i ∈ occ∑
µ

∂(A+B)kc,ld
∂Cµa

Cµi = δac(A+B)ki,ld + δad(A+B)kc,li (8.32)

∑
µ

∂(A−B)kc,ld
∂Cµa

Cµi = δac(A−B)ki,ld + δad(A−B)kc,li (8.33)

Then

Qai =
∑
k,l,c

(A+B)ki,lc(X + Y )ka(X + Y )lc +
∑
k,l,c

(A−B)ki,lc(X − Y )ka(X − Y )lc (8.34)

Case p = a ∈ virt, q = b ∈ virt∑
µ

∂(A+B)kc,ld
∂Cµa

Cµb = δklεk (δadδbc + δacδbd)

+ δac(A+B)kb,ld + δad(A+B)kc,lb

(8.35)

∑
µ

∂(A−B)kc,ld
∂Cµa

Cµb = δklεk (δadδbc + δacδbd)

+ δac(A−B)kb,ld + δad(A−B)kc,lb

(8.36)

Then

Qab =
∑
k

Ω [(X + Y )ka(X − Y )kb + (X − Y )ka(X + Y )kb]

+
∑
k

εk [(X + Y )ka(X + Y )kb + (X − Y )ka(X − Y )kb]
(8.37)
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After defining the vectors

Uab =
∑
i

[(X + Y )ia(X − Y )ib + (X − Y )ia(X + Y )ib] (8.38)

Uij =
∑
a

[(X + Y )ia(X − Y )ja + (X − Y )ia(X + Y )ja] (8.39)

Vab =
∑
i

εi [(X + Y )ia(X + Y )ib + (X − Y )ia(X − Y )ib] (8.40)

Vij =
∑
a

εa [(X + Y )ia(X + Y )ja + (X − Y )ia(X − Y )ja] (8.41)

Tab =
1

2

∑
i

[(X + Y )ia(X + Y )ib + (X − Y )ia(X − Y )ib] (8.42)

Tij =
1

2

∑
a

[(X + Y )ia(X + Y )ja + (X − Y )ia(X − Y )ja] (8.43)

one obtains

Qij = ΩUij − Vij + (εj − εi)Tij +
∑
a,b

(A+B)ij,abTab −
∑
k,l

(A+B)ij,klTkl (8.44)

Qia =
∑
c

(X + Y )ic
∑
k,d

(A+B)ac,kd(X + Y )kd +
∑
c

(X − Y )ic
∑
k,d

(A−B)ac,kd(X − Y )kd

+
∑
c,d

(A+B)ia,cdTcd −
∑
k,l

(A+B)ia,klTkl

(8.45)

Qai =
∑
k

(X + Y )ka
∑
l,c

(A+B)ki,lc(X + Y )lc +
∑
k

(X − Y )ka
∑
l,c

(A−B)ki,lc(X − Y )lc

(8.46)

Qab = ΩUab + Vab (8.47)

Now, the DFTB approximations for two-electron integrals in terms of transition charges
are introduced:

(rs|tu) =
∑
A,B

qrsA γABq
tu
B (8.48)

(rs|tu)lr =
∑
A,B

qrsA γ
lr
ABq

tu
B (8.49)

(8.50)

We define the linear operators H+ and H− (with the restriction on the indices, δprδqs =
0) and make use of the γ-approximation for the electron integrals. The summation limits
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for r, s depend on the nature of the vector vrs.

H+
pq [vrs] =

∑
r,s

(A+B)pq,rsvrs

=
∑
r,s

(4(pq|rs)− (pr|qs)lr − (ps|qr)lr) vrs

=
∑
A,B

∑
r,s

(
4qpqA γABq

rs
B − q

pr
A γ

lr
ABq

qs
B − q

ps
A γ

lr
ABq

qr
B

)
vrs

= 4
∑
A

qpqA

(∑
B

γAB

(∑
rs

(qrsB vrs)

))

−
∑
A

∑
r

qprA

(∑
B

γlr
AB

(∑
s

qqsB vrs

))
−
∑
A

∑
s

qpsA

(∑
B

γlr
AB

(∑
r

qqrB vrs

))
(8.51)

and

H−pq [vrs] =
∑
r,s

(A−B)pq,rsvrs

=
∑
r,s

((ps|qr)lr − (pr|qs)lr) vrs

=
∑
A,B

∑
r,s

(
qpsA γ

lr
ABq

qr
B − q

pr
A γ

lr
ABq

qs
B

)
vrs

=
∑
A

∑
s

qpsA

(∑
B

γlr
AB

(∑
r

qqrB vrs

))
−
∑
A

∑
r

qprA

(∑
B

γlr
AB

(∑
s

qqsB vrs

))
(8.52)

and also

Gij =(εj − εi)Tij +
∑
a,b

(A+B)ij,abTab −
∑
k,l

(A+B)ij,klTkl

= 4
∑
A

qijA

∑
B

γAB

∑
a,b

qabb Tab −
∑
k,l

qklBTkl


+ 2

∑
A

(∑
k

qikA

(∑
B

γlr
AB

(∑
l

qljBTkl

)))

− 2
∑
A

(∑
a

qiaA

(∑
B

γlr
AB

(∑
b

qjbB Tab

)))
=H+

ij [
~T v−v]−H+

ij [
~T o−o]

(8.53)

Finally one finds

Qij = ΩUij − Vij +H+
ij [
~T v−v]−H+

ij [
~T o−o] (8.54)

Qia =
∑
c

(X + Y )icH
+
ac

[
~X + ~Y

]
+
∑
c

(X − Y )icH
−
ac

[
~X − ~Y

]
(8.55)
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+H+
ia

[
~T v−v

]
−H+

ia

[
~T o−o

]
(8.56)

Qai =
∑
k

(X + Y )kaH
+
ki

[
~X + ~Y

]
+
∑
k

(X − Y )kaH
−
ki

[
~X − ~Y

]
(8.57)

Qab = ΩUab + Vab (8.58)

Now we need to find the equation for determining Z:∑
µ

∂L

∂Cµp
Cµq =

∑
µ

∂G

∂Cµp
Cµq︸ ︷︷ ︸

Qpq

+
∑
ia

Zia
∑
µ

∂Hia

∂Cµp
Cµq −

∑
r,s,r≤s

Wrs

∑
µ

∂Srs
∂Cµp

Cµq
!

= 0 (8.59)

The first term on the right hand side was determined above, Eqns. 8.55-8.58, the second
and third terms containing the sought for Lagrange multipliers Z and W are∑

ia

Zia
∑
µ

∂Hia

∂Cµp
Cµq =

∑
ia

Zia [(δpaδqi + δpiδqa) εi + δp∈occ(A+B)ia,pq]

= Zqpεq + Zpqεp + δ(p ∈ occ)
∑
ia

Zia(A+B)ia,pq

(8.60)

and ∑
r,s,r≤s

Wrs

∑
µ

∂Srs
∂Cµp

Cµq =
∑
r,s,r≤s

Wrs (δqsδrp + δqrδsp)

=
∑
r,s,r≤s

(Wpqδqsδpr +Wqpδqrδps)

=


Wpq p < q

Wqp p > q

Wpq +Wqp p = q

= (1 + δpq)Wpq since Wpq = Wqp.

(8.61)

This leads to the following equation for determining Z:

Qpq + (Zqpεq + Zpqεp) + δp∈occ
∑
ia

Zia(A+B)ia,pq = (1 + δpq)Wpq (8.62)

The equation can be specialized for the occ-virt and the virt-occ blocks:

Qia + Ziaεi +
∑
jb

(A+B)ia,jbZjb = (1 + δia)Wia for p ∈ occ = i and q ∈ virt = a

(8.63)

Qai + Ziaεi = (1 + δai)Wai for p ∈ virt = a and q ∈ occ = i
(8.64)
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Subtracting the previous two equations gives (with Wia = Wai) the Z-vector equation:∑
jb

(A+B)ia,jbZjb = Qai −Qia (8.65)

The matrix becomes in the DFTB approximation:

(A+B)ia,jb = δijδab(εa − εi) + 4
∑
A,B

qiaA γABq
jb
B −

∑
AB

qijAγ
lr
ABq

ab
B −

∑
A,B

qibAγ
lr
ABq

ja
B (8.66)

∑
k,b

(A+B)ij,kbZkb = H+
ij [
~Z] (8.67)

After solving this system of linear equations for Z, the other Lagrange multiplier W
can be determined as

Wij =
1

1 + δij

Qij +
∑
k,b

(A+B)ij,kbZkb

 =
1

1 + δij

(
Qij +H+

ij [
~Z]
)

(8.68)

Wia = Wai = Qai + Ziaεi (8.69)

Wab =
1

1 + δab
Qab (8.70)

8.1.2 Assembling the gradient

At the stationary point of L

L(X,Y,Ω, C, Z,W ) = Ω⇒ dL

dR
=
dΩ

dR
(8.71)

where d
dR stands for the total derivative with respect to an external parameter such as a

nuclear coordinate. Since L is variational in all parameters,

dL

dR
=
�
��

�
��*0

∂L

∂ | X,Y 〉
·∂ | X,Y 〉

∂R
+
�
�
�7

0
∂L

∂Ω
·∂Ω

∂R
+
�
�
�7

0
∂L

∂C
·∂C
∂R

+
�
�
�7

0
∂L

∂Z
·∂Z
∂R

+
�
�
��

0
∂L

∂W
·∂W
∂R

+
∂L

∂R
(8.72)

only the partial derivative ∂L
∂R survives.
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The partial derivative of the G functional is

∂G

∂R
=

1

2

∑
ia,jb

[
(X + Y )ia

{
δij
∂Hab

∂R
− δab

∂Hij

∂R
+ 4

∂(ia|jb)
∂R

− ∂(ij|ab)lr

∂R
− ∂(ib|aj)lr

∂R

}
(X + Y )jb

+ (X − Y )ia

{
δij
∂Hab

∂R
− δab

∂Hij

∂R
+
∂(ib|aj)lr

∂R
− ∂(ij|ab)lr

∂R

}
(X − Y )jb

]
=

1

2

{∑
a,b

∂Hab

∂R

∑
i

[(X + Y )ia(X + Y )ib + (X − Y )ia(X − Y )ib]

−
∑
i,j

∂Hij

∂R

∑
a

[(X + Y )ia(X + Y )ja + (X − Y )ia(X − Y )ja]

+4
∑
ia,jb

∂(ia|jb)
∂R

(X + Y )ia(X + Y )jb

−
∑
ia,jb

∂(ij|ab)lr

∂R
[(X + Y )ia(X + Y )jb + (X − Y )ia(X − Y )jb]

−
∑
ia,jb

∂(ib|aj)lr

∂R
[(X + Y )ia(X + Y )jb − (X − Y )ia(X − Y )jb]

}
.

(8.73)

The gradient of the excitation energy Ω becomes

dΩ

dR
=
∂G

∂R
+
∑
ia

Zia
∂Hia

∂R
−
∑

p,q,p≤q
Wpq

∂Spq
∂R

=
∑
a,b

∂Hab

∂R
Tab −

∑
i,j

∂Hij

∂R
Tij +

∑
ia

∂Hia

∂R
Zia −

∑
p,q,p≤q

Wpq
∂Spq
∂R

+ 2
∑
ia,jb

∂(ia|jb)
∂R

(X + Y )ia(X + Y )jb

− 1

2

∑
ia,jb

∂(ij|ab)lr

∂R
[(X + Y )ia(X + Y )jb + (X − Y )ia(X − Y )jb]

− 1

2

∑
ia,jb

∂(ib|aj)lr

∂R
[(X + Y )ia(X + Y )jb − (X − Y )ia(X − Y )jb] .

(8.74)

At this point, we switch to the AO basis where the Greek letters α, β, γ, δ denote atomic
orbitals (AO). Transforming the gradients with respect to R of the overlap matrix into the
AO basis gives

∂Spq
∂R

=
∑
α,β

CαpCβq
∂Sαβ
∂R

. (8.75)

Remembering that the density matrix is defined as

Pγδ = 2
∑
k

CγkCδk, (8.76)
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we find for the gradient of the Hamiltonian matrix in AO basis:

∂Hpq

∂R
=
∂H0

pq

∂R
+
∑
k

(
2
∂(pq|kk)

∂R
− ∂(pk|kq)lr

∂R

)
−
∑
γδ

(
∂(pq|γδ)
∂R

− 1

2

∂(pγ|δq)lr

∂R

)
P 0
γδ

=
∑
α,β

CαpCβq
∂H0

αβ

∂R
+
∑
α,β,γ,δ

∂(αβ|γδ)
∂R

CαpCβq

(∑
k

2CγkCδk

)

− 1

2

∑
α,β,γ,δ

∂(αδ|γβ)lr

∂R
CαpCβq

(∑
k

2CγkCδk

)

−
∑
α,β

CαpCβq

(
∂(αβ|γδ)

∂R
− 1

2

∂(αδ|γβ)lr

∂R

)
P 0
γδ

=
∑
α,β

CαpCβq

∂H0
αβ

∂R
+
∑
γ,δ

(
∂(αβ|γδ)

∂R

(
Pγδ − P 0

γδ

)
− 1

2

∂(αδ|γβ)lr

∂R

(
Pγδ − P 0

γδ

))︸ ︷︷ ︸
∂Hαβ
∂R

(8.77)

At this point we specify how the gradients of the electron integrals look in the γ-approximation.
A,B enumerate atoms, α ∈ A means that the atomic orbital α is centered on atom A. The
γ-matrix in the AO basis reads:

γαβ =
∑
A,B

γABδ(α ∈ A)δ(β ∈ B) (8.78)

With the γ-approximation the Coulomb integrals in AO basis simplify to

(αβ|γδ) =
1

4
SαβSγδ (γαγ + γαδ + γβγ + γβδ) (8.79)

and the electron integrals for long-range part of Coulomb potential simplify to

(αβ|γδ)lr =
1

4
SαβSγδ

(
γlr
αγ + γlr

αδ + γlr
βγ + γlr

βδ

)
(8.80)

with the gradients

∂(αβ|γδ)
∂R

=
1

4

(
∂Sαβ
∂R

Sγδ + Sαβ
∂Sγδ
∂R

)
[γαγ + γαδ + γβγ + γβδ]

+
1

4
SαβSγδ

[
∂γαγ
∂R

+
∂γαδ
∂R

+
∂γβγ
∂R

+
∂γβδ
∂R

] (8.81)

and a similar expression where γ is replaced by γlr.
Next we will transform each term in Eqn. 8.74 separately into the AO basis:

• transform terms with two indices∑
a,b

∂Hab

∂R
Tab =

∑
αβ

∂Hαβ

∂R

∑
a,b

CαaCβbTab︸ ︷︷ ︸
T v-v
αβ

(8.82)
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∑
i,j

∂Hij

∂R
Tij =

∑
αβ

∂Hαβ

∂R

∑
i,j

CαiCβjTij︸ ︷︷ ︸
T o-o
αβ

(8.83)

∑
i,a

∂Hia

∂R
Zia =

∑
αβ

∂Hαβ

∂R

∑
i,a

CαiCβaZia︸ ︷︷ ︸
Zαβ

(8.84)

−
∑

p,q,p≤q
Wpq

∂Spq
∂R

= −
∑
αβ

∂Sαβ
∂R

∑
p,q,p≤q

CαpCβqWpq︸ ︷︷ ︸
Wαβ

(8.85)

• transform Coulomb integrals which have 4 indices

2
∑
ia,jb

∂(ia|jb)
∂R

(X + Y )ia(X + Y )jb = 2
∑
ia,jb

∑
α,β,γ,δ

∂(αβ|γδ)
∂R

CαiCβaCγjCδb(X + Y )ia(X + Y )jb

=2
∑
α,β,γ,δ

∂(αβ|γδ)
∂R

(∑
ia

CαiCβa(X + Y )ia

)
︸ ︷︷ ︸

(X+Y )αβ

∑
jb

CγjCδb(X + Y )jb



=2
∑
α,β,γ,δ

∂(αβ|γδ)
∂R

(X + Y )αβ(X + Y )γδ

(8.86)

• transform first long-range term

− 1

2

∑
ia,jb

∂(ij|ab)lr

∂R
[(X + Y )ia(X + Y )jb + (X − Y )ia(X − Y )jb]

=− 1

2

∑
α,β,γ,δ

∂(αβ|γδ)lr

∂R

∑
i,j,a,b

CαiCβjCγaCδb [(X + Y )ia(X + Y )jb + (X − Y )ia(X − Y )jb]

=− 1

2

∑
α,β,γ,δ

∂(αβ|γδ)lr

∂R

{(∑
ia

CαiCγa(X + Y )ia

)∑
jb

CβjCδb(X + Y )jb


+

(∑
ia

CαiCγa(X − Y )ia

)∑
jb

CβjCδb(X − Y )jb

}
=− 1

2

∑
α,β,γ,δ

∂(αβ|γδ)lr

∂R
{(X + Y )αγ(X + Y )βδ + (X − Y )αγ(X − Y )βδ}

(8.87)
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• and similary the second long-range term

− 1

2

∑
ia,jb

∂(ib|aj)lr

∂R
[(X + Y )ia(X + Y )jb − (X − Y )ia(X − Y )jb]

=− 1

2

∑
α,β,γ,δ

∂(αβ|γδ)lr

∂R
{(X + Y )αγ(X + Y )δβ − (X − Y )αγ(X − Y )δβ} .

(8.88)

Everything put together, the gradient of the excitation energy becomes

dΩ

dR
=

∑
αβ

∂Hαβ

∂R

{
T v-v
αβ − T o-o

αβ + Zαβ
}
−
∑
αβ

∂Sαβ
∂R

Wαβ

+ 2
∑
α,β,γ,δ

∂(αβ|γδ)
∂R

(X + Y )αβ(X + Y )γδ

− 1

2

∑
α,β,γ,δ

∂(αβ|γδ)lr

∂R

{
(X + Y )αγ [(X + Y )βδ + (X + Y )δβ ] + (X − Y )αγ [(X − Y )βδ − (X − Y )δβ]

}.

(8.89)

Now we define two linear operators acting on a vector space with dimension Norb ×
Norb:

~Fαβ[v] =
∑
γ,δ

∂(αβ|γδ)
∂R

vγδ

=
1

4

{ ∂Sαβ
∂R

[∑
γ

γαγ

(∑
δ

Sγδ (vγδ + vδγ)

)
+
∑
γ

(∑
δ

Sγδ (vγδ + vδγ)

)
γβγ

]

+ Sαβ

[ ∑
γ

γαγ

(∑
δ

∂Sγδ
∂R

(vγδ + vδγ)

)
+
∑
γ

(∑
δ

∂Sγδ
∂R

(vγδ + vδγ)

)
γβγ

+
∑
γ

∂γαγ
∂R

(∑
δ

Sγδ (vγδ + vδγ)

)
+
∑
γ

(∑
δ

Sγδ (vγδ + vδγ)

)
∂γβγ
∂R

]}
(8.90)
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and

~F lr
αβ[v] =

∑
γ,δ

∂(αγ|βδ)lr

∂R
vδγ

=
1

4

{
γlr
αβ

(∑
γ

∂Sαγ
∂R

(∑
δ

Sβδvδγ

))
+
∑
δ

((∑
γ

∂Sαγ
∂R

vδγ

)
γlr
αδ

)
Sβδ

+
∑
γ

∂Sαγ
∂R

((∑
δ

Sβδvδγ

)
γlr
βγ

)
+
∑
γ

∂Sαγ
∂R

(∑
δ

Sβδ

(
γlr
δγvδγ

))

+ γlr
αβ

(∑
γ

Sαγ

(∑
δ

∂Sβδ
∂R

vδγ

))
+
∑
δ

((∑
γ

Sαγvδγ

)
γlr
αδ

)
∂Sβδ
∂R

+
∑
γ

Sαγ

((∑
δ

∂Sβδ
∂R

vδγ

)
γlr
βγ

)
+
∑
γ

Sαγ

(∑
δ

∂Sβδ
∂R

(
γlr
δγvδγ

))

+
∂γlr

αβ

∂R

∑
γ

Sαγ

(∑
δ

Sβδvδγ

)
+
∑
δ

((∑
γ

Sαγvδγ

)
∂γlr

αδ

∂R

)
Sβδ

+
∑
γ

Sαγ

((∑
δ

Sβδvδγ

)
∂γlr

βγ

∂R

)
+
∑
γ

Sαγ

(∑
δ

(
∂γlr

δγ

∂R
vδγ

)
Sβδ

)}

(8.91)

Finally the gradient of the excitation energy becomes:

dΩ

dR
=

∑
α,β

∂Hαβ

∂R

{
T v-v
αβ − T o-o

αβ + Zαβ
}
−
∑
α,β

∂Sαβ
∂R

Wαβ

+ 2
∑
α,β

(X + Y )αβ ~Fαβ[(X + Y )γδ]

− 1

2

∑
α,β

(X + Y )αβ ~F
lr
αβ[(X + Y )γδ + (X + Y )δγ ]

− 1

2

∑
α,β

(X − Y )αβ ~F
lr
αβ[(X − Y )δγ − (X − Y )γδ]

(8.92)

8.1.3 Gradient of electronic energy of the ground state

After defining the energy-weighted density matrix

P en
αβ = 2

∑
k

εkCαkCβk (8.93)

the gradient of the ground state energy becomes:

dE0

dR
=
∑
αβ

(
∂H0

αβ

∂R
Pαβ +

1

2

(
~Fαβ[P − P0]

(
Pαβ − P 0

αβ

)
− 1

2
~F lr
αβ[P − P0]

(
Pαβ − P 0

αβ

))
−
∂Sαβ
∂R

P en
αβ

)
(8.94)

In the Coulomb part the density difference, P − P0, has to be used because the gradient

belonging to the reference density P0 is already contained in
∂H0

αβ

∂R .
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8.1.4 Gamma-matrices

Here we give expressions for the γ-matrices that are required for calculating electron in-
tegrals and their gradients in Eqn. 8.81. For charge fluctuations that have the form of
Gaussians, the γ-matrix becomes:

γAB =
erf (CABR)

R
. (8.95)

R is the distance between the atomic centers A and B and

CAB =
1√

2
(
σ2
A + σ2

B

) (8.96)

depends on the widths σA and σB of the charge clouds on the two atoms. The widths are
determined by the atom-specific Hubbard parameters UA as

σA =
1√
πUA

. (8.97)

The long-range γ-matrix has the same form,

γlr
AB =

erf
(
C lr
ABR

)
R

, (8.98)

where
C lr
AB =

1√
2
(
σ2
A + σ2

B + 1
2R

2
lr

) (8.99)

depends on the range-separation parameter Rlr.

8.2 Derivatives of the MO coefficients

The mathematical problem of finding derivatives of eigenvectors and eigenvalues is solved
in [6]. In the next section the general recipe is formulated, which will then be applied to
the DFTB Hamiltonian for the ground state.

8.2.1 Derivatives of Eigenvalues and Eigenvectors

Statement of the problem: Given symmetric matrices H(p) ∈ RN×N and S(p) ∈ RN×N ,
that depend on some external parameters p, and the generalized eigenvalue problem

H(p)X = S(p)XΛ (8.100)

how does one calculate the derivative of the eigenvectors X ∈ RN×N and eigenvalues Λ
(diagonal RN×N matrix) with respect to p?

Since in the ground state calculation, the Kohn-Sham Hamiltonian depends on the MO
coefficients itself, a slightly more general problem has to be attacked, where H can also
depend on X :

H(X, p)X = S(p)XΛ (8.101)

So, assuming that one has solved eqn. 8.101 for X and Λ and knows the derivatives
∂H
∂p and ∂S

∂p , how does one obtain ∂X
∂p and ∂Λ

∂p ?
The eigenvectors satisfy

XTSX = 1 (8.102)
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and form a basis of the whole vector space RN×N . Since the derivative vectors ∂X
∂p are part

of the same vector space, they can be written in the basis of the eigenvectors:

∂X

∂p
= XC (8.103)

where the coordinate matrix C has to be determined.
Taking the total derivative d

dp of both sides of eqn. 8.101 one gets:

∂H

∂p
X − ∂S

∂p
XΛ− SX

∂Λ

∂p
= −H ∂X

∂p
− ∂H

∂X
· ∂X
∂p

X + S
∂X

∂p
Λ (8.104)

Since H depends also implicitly on p through X , a partial derivative with respect to the
eigenvectors appears. One defines the matrix function F , that given the derivative of the
eigenvectors accounts for the change in H :

F

(
∂X

∂p

)
=
∂H

∂X
· ∂X
∂p

(8.105)

If H does not depend on the eigenvectors, F = 0.
Now, eqn. 8.103 is used to get rid of ∂X

∂p and eqn. 8.104 is multiplied from the left by
XT . This leads to:

XT ∂H

∂p
X −XT ∂S

∂p
XΛ−XTSX︸ ︷︷ ︸

=1

∂Λ

∂p
= −XTHXC −XTF

(
∂X

∂p

)
X + XTSX︸ ︷︷ ︸

=1

CΛ

(8.106)
With the help of the original eigenvalue eqn. 8.101 and eqn. 8.102 one can simplify

XT HX︸ ︷︷ ︸
=SXΛ

= XTSX︸ ︷︷ ︸
=1

Λ = Λ, (8.107)

so that after rearranging eqn. 8.106 becomes:

CΛ−ΛC = XT

(
∂H

∂p
+ F

(
∂X

∂p

))
X −XT ∂S

∂p
XΛ− ∂Λ

∂p
(8.108)

Now consider the individual components (i, j) of left hand side of this matrix equation
(remembering that Λ is diagonal, Λij = λijδij):

(CΛ−ΛC)ij =

N∑
a=1

(Ciaδajλj − δiaλaCaj) = Cij (λj − λi) (8.109)

If i 6= j and the eigenvalues are non-degenerate one can divide the right hand side of eqn.
8.108 by λi−λj to solve for Cij . Note that for off-diagonal elements, the dependence on ∂Λ

∂p
disappears from the right hand side of eqn. 8.108, because Λ is diagonal. The off-diagonal
entries of C can be found for non-degenerate eigenvalues as

Cij =
1

λj − λi

(
XT

[
∂H

∂p
+ F

(
∂X

∂p

)
− λj

∂S

∂p

]
X

)
ij

for i 6= j (8.110)

The diagonal elements of C are obtained by differentiating eqn. 8.102:

∂XT

∂p
SX + XT ∂S

∂p
X + XTS

∂X

∂p
= 0 (8.111)
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Using
∂XT

∂p
=

(
∂X

∂p

)T
= (XC)T = CTXT (8.112)

we get

CT XTSX︸ ︷︷ ︸
1

+XT ∂S

∂p
X + XTSX︸ ︷︷ ︸

1

C = 0 (8.113)

Solving for the diagonal elements Cii gives:

Cii = −1

2

(
XT ∂S

∂p
X

)
ii

(8.114)

These equations for Cij have to be solved self-consistently if F 6= 0, since then F de-
pends on ∂X

∂p = XC: Starting with C = 0, one computes a new approximation to C
according to eqns. 8.110 and 8.114 and determines F from eqn. 8.105. F is then substituted
back and a new value for C is found. This procedure is repeated until C does not change
anymore.

The diagonal elements of eqn. 8.108 provide the eigenvalue derivatives, since then the
left hand side vanishes and the right hand side can be solved for ∂Λ

∂p :

∂λi
∂p

=

(
XT

[
∂H

∂p
+ F

(
∂X

∂p

)
− λi

∂S

∂p

]
X

)
ii

(8.115)

For F the previously found converged value should be used.
If two or more eigenvalues are the same, the iterative scheme in eqn. 8.110 breaks down.

Even if all eigenvalues are different, the sequence of C matrices may diverge. This is no
surprise, since eqn. 8.110 is similar to Jacobi’s iterative method, which does not converge
for all matrices, either.

8.2.2 DFTB Hamiltonian

The DFTB Hamiltonian with long-range correction can be decomposed as

Hµν = H0
µν +Hcoul

µν +Hx,lr
µν (8.116)

where the last two terms depend implicitly on the density matrix P:

Hcoul
µν =

1

2
Sµν

∑
κ

(Γµκ + Γνκ)
∑
λ

(P − P 0)κλSκλ (8.117)

and
Hx,lr
µν = −1

8

∑
λσ

(P − P 0)λσSµλSνσ

{
Γlr
µσ + Γlr

µν + Γlr
λσ + Γlr

λν

}
(8.118)

S is the overlap matrix between atomic orbitals, H0 is the 0-th order Hamiltonian, P0 is the
reference density and Γ and Γlr are the (long-range) γ-matrices in the AO-basis.

The Hamiltonian depends explicitly on the nuclear coordinates through the matrix el-
ements of the 0-th order Hamiltonian, the γ-matrices and the overlap matrix. This depen-
dence is contained in the partial derivative of H with respect to p, that is taken with the
density matrix held constant:

∂H

∂p
=
∂H0

∂p
+
∂Hcoul

∂p

∣∣∣∣∣
P=const

+
∂Hx,lr

∂p

∣∣∣∣∣
P=const

(8.119)
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The implicit dependence on the nuclear coordinates is due to the density matrix

Pα,β = 2
∑
i∈occ

Xα,iXβ,i (8.120)

which depends only on the coefficients of the occupied molecules orbitals:

∂Pα,β
∂Xγ,k

= 2
∑
i∈occ

(δαγδikXβ,i +Xα,iδβγδik) = 2δ(k ∈ occ) (δαγXβ,k + δβγXα,k) (8.121)

Here δ(k ∈ occ) is understood to be 1 if k is a doubly occupied orbital and 0 if k is an unoc-
cupied orbital. In the following Greek letters α, β, γ, δ and µ, ν enumerate atomic orbitals,
while Latin letters i, j, k, l enumerate molecular orbitals. By using eqn. 8.103 and applying
the chain rule 8.121, we can write eqn. 8.105, that accounts for the implicit dependence due
to the MO coefficients X , as:

F

(
∂X

∂p

)
µ,ν

=
∑
γ,l

∂Hµ,ν

∂Xγ,l

∂Xγ,l

∂p

eqn.8.103
=

∑
γ,l

∂Hµ,ν

∂Xγ,l
(XC)γ,l

=
∑
γ

∑
l,k

∂Hµ,ν

∂Xγ,l
Xγ,kCk,l

=
∑
k,l

∑
α,β,γ

∂Hµ,ν

∂Pα,β

∂Pα,β
∂Xγ,l

Xγ,kCk,l

eqn. 8.121
=

∑
k,l

∑
α,β,γ

∂Hµ,ν

∂Pα,β
2δ(l ∈ occ) (δαγXβ,l + δβγXα,l)Xγ,kCk,l

= 2
∑
k

∑
l∈occ

∑
α,β

∂Hµ,ν

∂Pα,β
(Xα,kXβ,l +Xα,lXβ,k)Ck,l

(8.122)

Transforming this matrix into the basis of molecular orbitals gives:(
XTF

(
∂X

∂p

)
X

)
i,j

=
∑
µ,ν

Xµ,iXν,jF

(
∂X

∂p

)
µ,ν

=
∑
k

∑
l∈occ

2
∑
µ,ν

Xµ,iXν,j

∑
α,β

∂Hµ,ν

∂Pα,β
(Xα,kXβ,l +Xα,lXβ,k)

Ck,l

(8.123)

Now we go back to eqn. 8.108, and consider only the off-diagonal elements (where i 6= j),
that can be rearranged as

(CΛ−ΛC)ij −
(
XTF

(
∂X

∂p

)
X

)
ij

=

(
XT ∂H

∂p
X

)
ij

−
(
XT ∂S

∂p
XΛ

)
ij

(8.124)
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Since in the context of DFTB the eigenvalues λi are the Kohn-Sham orbital energies, from
now on we call them εi instead. Plugging eqn. 8.123 into eqn. 8.124 leads to:

∑
k,l

{
δkiδlj [εj − εi]−2δ(l ∈ occ)

∑
µ,ν

Xµ,iXν,j

∑
α,β

∂Hµ,ν

∂Pα,β
(Xα,kXβ,l +Xα,lXβ,k)

}
Ck,l

=
∑
γ,δ

(
Xγ,i

[
∂Hγ,δ

∂p
− εj

∂Sγ,δ
∂p

]
Xδ,j

)
for i 6= j

(8.125)

This equation has the form of a matrix equation for the off-diagonal elements of Ci,j . The
diagonal elements are already determined by eqn. 8.114

Ck,k = −1

2

∑
γ,δ

Xγ,k
∂Sγ,δ
∂p

Xδ,k (8.126)

On the left hand side the summation extends over all k’s and l’s, whereas i and j are
restricted to be different. Therefore we need to separate the terms where k = l and bring
them to the other constants on the right hand side. This leads to

∑
k 6=l

{
δkiδlj [εj − εi]− 2δ(l ∈ occ)

∑
µ,ν

Xµ,iXν,j

∑
α,β

∂Hµ,ν

∂Pα,β
(Xα,kXβ,l +Xα,lXβ,k)

}
Ck,l

=
∑
γ,δ

Xγ,i

[
∂Hγ,δ

∂p
− εj

∂Sγ,δ
∂p

]
Xδ,j − 2

∑
k∈occ

∑
µ,ν

Xµ,iXν,j

∑
α,β

∂Hµ,ν

∂Pα,β
Xα,kXβ,kXγ,k

∂Sγ,δ
∂p

Xδ,k


for i 6= j

(8.127)

If the off-diagonal elements of the matrixCi,j are flattened into a vector cij with a double
index ij = 1, . . . , Norb(Norb − 1), the above equation has the form of a matrix equation:∑

k 6=l
Aij,klckl = B

(p)
ij (8.128)

Gradients with respect to the nuclear coordinate p only appear on the right hand side.
To find more compact expressions for Aij,kl and the right hand side B(p)

ij , we define the
following tensor with 4 indices:

hijkl =
∑
µ,ν

Xµ,iXν,j

∑
α,β

∂Hµ,ν

∂Pα,β
Xα,kXβ,l (8.129)

Finally the components of the left and right-hand sides of the CPKS equation A~c = B(p)

become:

Aij,kl = δkiδlj [εj − εi]− 2δ(l ∈ occ) (hijkl + hijlk) (8.130)

B
(p)
ij =

∑
γ,δ

Xγ,i

[
∂Hγ,δ

∂p
− εj

∂Sγ,δ
∂p

]
Xδ,j − 2

∑
k∈occ

hijkk
∑
γ,δ

Xγ,k
∂Sγ,δ
∂p

Xδ,k (8.131)

The double indices ij and kl run over all pairs (i, j) and (k, l) where i 6= j and k 6= l,
respectively.
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An amount of memory of the order (Norb(Norb− 1))2 would be required to store all ele-
ments of Aij,kl. With this scaling any computer will run out of memory even for medium-
sized molecules. Therefore the system of linear equations in eqn. 8.128 has to be solved
iteratively for each derivative ∂

∂p , so that only matrix products of the form
∑

klAij,klC
(p)
kl are

needed. The superscript (p) indicates that the solution C(p) is different for each derivative
∂
∂p . Once it is found the gradients of the MO coefficients for orbital i are calculated as

∂Xµ,i

∂p
=
∑
j

Xµ,jC
(p)
j,i (8.132)

For the gradients of the orbital energies eqn. 8.115 is rewritten as:

∂εi
∂p

=
∑
µ,ν

Xµ,i

[
∂Hµ,ν

∂p
+ F

(
∂X

∂p

)
µ,ν

− εi
∂Sµ,ν
∂p

]
Xν,i

=
∑
µ,ν

Xµ,i

[
∂Hµ,ν

∂p
− εi

∂Sµ,ν
∂p

]
Xν,i +

(
XTF

(
∂X

∂p

)
X

)
ii

=
∑
µ,ν

Xµ,i

[
∂Hµ,ν

∂p
− εi

∂Sµ,ν
∂p

]
Xν,i +

∑
k

∑
l∈occ

2(hiikl + hiilk)Ck,l

=
∑
µ,ν

Xµ,i

[
∂Hµ,ν

∂p
− εi

∂Sµ,ν
∂p

]
Xν,i + 4

∑
k∈occ

hiikkCk,k + 2
∑
k 6=l

∑
l∈occ

(hiikl + hiilk)Ck,l

eqn.8.126
=

∑
γ,δ

Xγ,i

[
∂Hγ,δ

∂p
− εi

∂Sγ,δ
∂p

]
Xδ,i − 2

∑
k∈occ

hiikk
∑
γ,δ

Xγ,k
∂Sγ,δ
∂p

Xδ,k + 2
∑
k 6=l

∑
l∈occ

(hiikl + hiilk)Ck,l

eqns.8.130,8.131
= B

(p)
ii −

∑
k 6=l

Aii,klC
(p)
k,l

(8.133)
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Chapter 9

Surface hopping

Tully’s surface hopping [1] is a stochastic method for simulating non-adiabatic events in
molecular dynamics that takes place on multiple electronic potential energy surfaces. De-
spite its successes it cannot be derived rigorously from the time-dependent variational
principle or any other principle. It is an ad hoc procedure that works very well in practice
and combines well with quantum chemistry methods that make the Born-Oppenheimer
separation between the fast electronic (denoted by ~r) and the slow nuclear degrees of free-
dom (denoted by ~R).

For a fixed nuclear geometry ~R, a quantum chemistry code gives a manifold of elec-
tronic wavefunctions Ψi(~r; ~R) with adiabatic energies {Ei(~R)}i=1,2,..., that depend para-
metrically on the nuclear coordinates. The nuclear wavefunction is kept out of the equation
but its hidden presence manifests itself in the form of Berry phases: When the electronic
wavefunction is transported adiabatically around a point of energetic degeneracy (coni-
cal intersection) back to its starting location, it acquires a sign change, which would be
cancelled by the phase of the nuclear part of the wavefunction.

In surface hopping, the nuclear wavefunction is approximated by a delta-function, or
point (~R, ~P ) in phase space. An ensemble of trajectories drawn from some distribution
f(~R, ~P ) (Wigner distribution, Boltzmann distribution, etc.) can be given different inter-
pretations: either as the finite spread of the quantum-mechanical wavepacket due to the
Heisenberg uncertainty principle and/or the uncertainty about the phase space positions
of the classical nuclei due to the finite temperature. This ambiguity makes surface hopping
a perfect match for simulations at room temperature, which usually are affected by both
types of uncertainty.

The electrons exert forces on the nuclei, which are different for each electronic Born-
Oppenheimer state i. Assuming the electrons are in state c, the equation of motion for the
classical nucleus A is given by Newton’s equation:

mA
~̈RA = −~∇AEc (9.1)

This defines a nuclear trajectory ~R(t) propagating on the ”current” electronic state c. When
electronic states come close in energy or cross, the Born-Oppenheimer separation breaks
down and transitions between electronic states need to be considered. A trajectory is re-
stricted to move on one surface at a time, but a sudden hop can transfer it to another sur-
face, leading to a discontinuity in the acceleration. To determine the propensity to switch
to another state, the nuclear trajectory is equipped with an electronic wavefunction which
is a linear combination of the instantaneous adiabatic eigenstates:

Ψ(~r; ~R(t)) =
∑
k

Ck(t)Ψk(~r; ~R(t)) (9.2)

The modulus squared of a coefficient, |Ck(t)|2, gives the probability of the trajectory to
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move on the potential energy surface k. When a trajectory starts initially on the electronic
state i, then Ck(t = 0) = δki. The time-evolution of the coefficients along the trajectory is
governed by the time-dependent Schrödinger differential equation. To make clear which
non-adiabatic effects are included and which are not, it will be derived in some length.

The Hamiltonian of the total system

Ĥ = T̂nuc + Ĥelec(~r; ~R) (9.3)

is split into the nuclear kinetic energy T̂nuc =
∑Nat

A=1

(
− ~2

2mA
~∇2
A

)
and the electronic Hamil-

tonian Ĥelec(~r; ~R) that comprises the remaining interactions that do not depend on the
nuclear momenta. The electronic wavefunctions Ψk(~r; ~R(t)) are the eigenfunctions of the
electronic Hamiltonian,

ĤelecΨk(~r; ~R(t)) = EkΨk(~r; ~R(t)) (9.4)

but not of the total Hamiltonian, since

〈Ψi | Ĥ | Ψj〉 =

Nat∑
A=1

(−~2)

2mA
���

���
�

〈Ψi | ~∇2
A | Ψj〉 + δijEj(~R) (9.5)

The first term involving ~∇2 is neglected, not necessarily because it is small, but simply
because this quantity is not readily available from quantum chemistry codes. When sub-
stituting the ansatz in eqn.9.2 into the electronic time-dependent Schrödinger equation
ι̇~ ∂
∂t | Ψ〉 = Ĥelec | Ψ〉 one needs to keep in mind the parametric dependence of Ψi on ~R(t):

ι̇~
∑
i=1

(
dCi
dt
| Ψi〉+ Ci | ~∇~RΨi〉 ·

d~R

dt

)
=
∑
i

Ci(t)Ei(~R(t)) | Ψi〉 (9.6)

Multiplication from the left with 〈Ψj(~R(t)) | and using the orthogonality of electronic states
at the same nuclear geometry, 〈Ψj(~R(t)) | Ψi(~R(t))〉 = δji, gives:

ι̇~
dCj
dt

=
∑
i

(
Ei(~R(t))δji − ι̇~〈Ψj | ~∇~RΨi〉 ·

d~R

dt

)
Ci(t) (9.7)

Although the non-adiabatic coupling vector ~Dji = 〈Ψj | ~∇~RΨi〉 appears in the eqn. 9.7 its
calculation is not needed for the propagation of the electronic degrees of freedom since the
scalar product between the non-adiabatic coupling vector and the nuclear velocity vector
can be approximated by overlaps between electronic wavefunctions at successive nuclear
time steps:

〈Ψj | ~∇~RΨi〉 ·
d~R

dt
= 〈Ψj |

d

dt
Ψi〉

≈ 1

2∆t

(
〈Ψj(~r; ~R(t)) | Ψi(~r; ~R(t+ ∆t))〉 − 〈Ψj(~r; ~R(t+ ∆t)) | Ψi(~r; ~R(t))〉

)
(9.8)

Expressions for calculating these scalar couplings between singlet TD-DFTB “wavefunc-
tions“ are derived at the end of this chapter.

The integration of Newton’s equation 9.1 (with a time step of ∆t ≈ 0.1 fs ) and the
electronic Schrödinger equation 9.7 (with a much smaller time step ∆telec ≈ 10−5 fs) are
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intertwined. After each nuclear time step, the electronic density matrix,

ρkl(t) = C∗k(t)Cl(t) (9.9)

is calculated and the probability for changing the current electronic state from i to j is
calculated according to the formula [2]:

Pi→j = Θ(−ρ̇ii)Θ(ρ̇jj)
(−ρ̇ii) ρ̇jj

ρii
∑

k Θ(ρ̇kk)ρ̇kk
∆t (9.10)

where Θ(x) is the Heaviside step function, which is 1 for x ≥ 0 and 0 otherwise. This for-
mula is an improvement over Tully’s original “fewest switches” formula [1], since it only
considers rates of change. This leads to a smoother variation of the hopping probabilities
and makes the numerical integration more stable. The diagonal elements of the density ma-
trix, ρkk(t), are called the quantum populations. The unprovable tenet of surface hopping is
that the average numbers of trajectories on each electronic state (the trajectory populations)
approach the quantum populations in the limit of a very large ensemble of trajectories. The
off-diagonal elements ρkl are called quantum coherences.

Electronic Decoherence. The lack of a nuclear wavefunction leads to the phenomenon
of over-coherence: After a trajectory leaves a region of strong non-adiabatic coupling, the
induced coherences do not decay but remain constant. Coherence should also be lost when
a wavepacket splits and the two branches move into different directions, so that their over-
lap vanishes after some time. In surface hopping with trajectories that move independently
and like classical, point-like particles, this does not happen: In the electronic wavefunction
the coherences persist after leaving the region where the coupling between potential energy
surfaces is strong. The only type of decoherence which is included in surface hopping, are
shifts in the dynamic phases due to the fluctuations of the adiabatic energies along the tra-
jectory. To account for all effects of quantum decoherence consistently, trajectories would
have to be equipped with a nuclear wavefunction and be allowed to interact. Approaches
which do this, such as the “multiple spawning dynamics” [3], include decoherence but
lose the conceptual and computational simplicity of surface hopping. Decoherence can be
added for classical, independent trajectories by ad hoc procedures such collapsing the elec-
tronic wavefunction after a surface jump or decrementing the coherences smoothly as the
energy gap increases [4]. Overlap decoherence can be evaluated approximately for a single
trajectory by placing ancillary frozen Gaussian wavepackets on the current and neighbour-
ing electronic states and following their short time evolution [5]. Quantum decoherence is
an important factor when (1) the wavepacket crosses the region of strong non-adiabatic
coupling multiple times or (2) moves in regions of weak coupling for a long period of time.
In the case of ultrafast and irreversible transitions, where the jumps occur at conical in-
tersections, the fewest switching algorithm is usually sufficient. In this implementation of
surface hopping no measures for correcting decoherence are taken.

Momentum Rescaling. During a surface hop the potential energy has a discontinuity,
unless a surface hop occurs exactly at a conical intersection. To restore energy conservation
the momentum is rescaled uniformly (~p→ s~p) so that the change in kinetic energy T offsets
the change in potential energy caused by the hop from i to j:

Ei + T = Ej + s2T. (9.11)

If the quadratic equation for the scaling factor s,

s =

√
1 +

Ei − Ej
T

, (9.12)
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does not have a real solution, the surface hop is rejected and the trajectory continues on
the old potential energy surface. This happens when a slow trajectory attempts to hop to a
higher energy level that could not be reached even if all kinetic energy would be converted
to potential energy.

Local diabatization. The integration of eqn.9.7 in the adiabatic basis becomes numeri-
cally unstable if the non-adiabatic couplings are strongly peaked. This happens when two
adiabatic states become degenerate. Using the relations∇〈Ψi | Ψj〉 = 0 and∇〈Ψi | Ĥelec | Ψj〉 = (∇Ei) δij ,
which hold because the Ψi are normalized eigenfunctions of the electronic Hamiltonian,
the non-adiabatic coupling vector can be expressed as

〈Ψi | ~∇Ψj〉 =
〈Ψi |

(
~∇Ĥelec

)
| Ψj〉

Ej − Ei
for i 6= j. (9.13)

The energy difference in the denominator shows that the non-adiabatic coupling diverges
at points of degeneracy. Alternatively, the electronic Schrödinger equation can be trans-
formed into a locally diabatic basis, in which the couplings become smooth functions of
the nuclear displacement [6], [7]. This integration scheme has been developed by Granucci
and Persico and implemented in the dynamics program Newton X [8]. Because of its im-
portance for weakly coupled chromophores a detailed derivation is given.

The electronic wavefunction can be expanded in a diabatic basis:

| Ψ(~R(t))〉 =
∑
k

Dk(t) | Φk(~R(t))〉 (9.14)

The diabatic basis {Φk} is related to the adiabatic basis {Ψi} by a unitary transformation
T:

| Ψi〉 =
∑
j

| Φj〉Tji (9.15)

which transforms the expansion coefficients according to

Di(t) =
∑
j

TijCj(t) (9.16)

The diabatic basis is characterized by the fact that, at least locally around some reference
geometry ~R(0), it remains constant for displacements of the nuclear trajectory ~R(∆t):

〈Φi |
d

dt
Φj〉 = 〈Φi | ~∇~R | Φj〉 ·

d~R

dt
= 0 (9.17)

The reference geometry is chosen as the nuclear geometry at the beginning of a nuclear
time step, ~R(t = 0). At this reference geometry the adiabatic and diabatic bases coincide:

T(t = 0) = 1 (9.18)
| Ψi(0)〉 =| Φi(0)〉 (9.19)
Ci(0) = Di(0) (9.20)

At the end of the nuclear time step t = ∆t, the adiabatic wavefunction i will have evolved
into a mixture of diabatic states:

| Ψi(∆t)〉 =
∑
j

| Φj(∆t)〉Tji(∆t) (9.21)
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The overlap matrix between adiabatic states at the beginning and end of the time step can
formally be written using the diabatic basis:

Sij(∆t) = 〈Ψi(0) | Ψj(∆t)〉 =
∑
k

〈Φi(0) | Φk(∆t)〉Tkj(∆t) (9.22)

Substituting a Taylor expansion of the diabatic states in eqn.9.22,

| Φj(∆t)〉 ≈| Φj(0)〉+ | dΦj

dt
〉
∣∣∣
t=0

∆t (9.23)

and using the equality of the adiabatic and diabatic states at t = 0, shows that

Sij(∆t) =
∑
k

δik + 〈Φi |
dΦk

dt
〉︸ ︷︷ ︸

≈0

∆t

Tkj(∆t). (9.24)

Because of the defining property of the diabatic basis in eqn. 9.17, the diabatic-to-adiabatic
transformation matrix is equal to the overlap matrix:

T(∆t) ≈ S(∆t) (9.25)

T should be exactly unitary, but S is not. Although the adiabatic states form an orthonor-
mal basis of the electronic Hilbert space at the nuclear geometry ~R(t), i.e.∑

k

| Ψk(~R(t))〉〈Ψk(~R(t)) |= 1, (9.26)

in practice the number of excited states has to be truncated, so that the resolution of the
identity incurs a small error ε:

Nst∑
k=1

| Ψk(~R(t))〉〈Ψk(~R(t)) |= 1 + ε. (9.27)

As a consequence S(∆t) is only approximately unitary(
S†(∆t)S(∆t)

)
ij

=
∑
k

〈Ψi(~R(t+ ∆t)) | Ψk(~R(t))〉〈Ψk(~R(t)) | Ψj(~R(t+ ∆t))〉

= δij + εij

(9.28)

To restore unitarity artificially, S(∆t) is orthogonalized by Löwdin’s procedure.
We get the diabatic Hamiltonian by transforming the adiabatic Hamiltonian E, which

is diagonal,
Eiδij = 〈Ψi | Ĥelec | Ψj〉, (9.29)

to the diabatic basis using T(∆t):

Hdiab = TET† (9.30)
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The electronic Schrödinger equation for the diabatic expansion coefficients becomes
particularly simple because the dynamic coupling vanishes in this basis:

ι̇~
dDj

dt
=
∑
i

(
Hdiab
ji − ι̇~

��
�
��
�

〈Φj |
d

dt
Φi〉

)
Di(t) (9.31)

The diabatic Hamiltonian is interpolated between the beginning of the time step (where
it agrees with the adiabatic one) and the end:

Hdiab (∆t/2) =
1

2

(
E(0) + Hdiab(∆t)

)
(9.32)

The diabatic Schrödinger equation can be integrated exactly by a matrix exponential,
giving the unitary propagator for advancing the diabatic coefficients to the end of the time
step:

U(∆t) = exp

(
− ι̇
~

Hdiab (∆t/2) ∆t

)
(9.33)

The adiabatic coefficients, from which the hopping probabilities are calculated, are ad-
vanced by transforming to the diabatic basis, applying the propagator and transforming
back:

~C(∆t) = T†(∆t) exp

(
− ι̇
~

1

2

[
E(0) + T(∆t)E(0)T†(∆t)

]
∆t

)
~C(0) (9.34)

The diagonal elements of the locally diabatic Hamiltonian, Hii(~R(t)), change smoothly
along the trajectory.

The basic idea of local diabatization is illustrated in figs.9.1 and 9.2. In fig.9.1 the type
of excited states that can occur for two weakly interacting chromophores A and B are de-
picted schematically: The localized excitations on each monomer are energetically close
and can hybridize to form a pair of delocalized exciton states. The ordering of the ex-
citon states depends on the geometric arrangement of the chromophores: In a head to
tail arrangement of the transition dipoles the bright state is lowered in energy (E(−→−→
) < E(−→←−), J-aggregate), while in a parallel arrangement the dark state is stabilized
(E(←−−→) < E(−→−→), H-aggregate). (The ordering is easy to remember when one considers
the attraction or repulsion between little bar magnets (“→” = “+−”) instead of transition
dipoles.) Double excitations are usually higher in energy and cannot be described with
linear response TD-DFT, anyway. The lowest adiabatic states are usually a superposition
of the exciton states with some fraction of charge transfer character, that varies with the
nuclear geometry.

Fig.9.2 shows adiabatic and local diabatic energies along a fictitious trajectory for two
completely uncoupled chromophores. The dashed line marks the current electronic state.
The locally excited states 1(S1, S0) and 1(S0, S1) are not coupled at all. The spikes in the
non-adiabatic coupling (d) are artifacts of the adiabatic representation, since adiabatic state
labels need to switch each time two electronic energy levels cross. After transforming
to a locally diabatic basis, the coupling is eliminated (e). The local diabatic energies (c)
smoothly connect energy levels at neighbouring time steps. The plot in (c) demonstrates
clearly that the character of the electronic state never changes despite the frequent surface
hops in (b).

Conical intersections with S0. Tight-binding TD-DFT inherits many problems from
full TD-DFT. One of them is the absence of conical intersections between the ground state
and any excited state[9]. There are two conditions for a conical intersection between two
electronic states:
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FIGURE 9.1: Types of excitations for a pair of weakly interacting chro-
mophores.

FIGURE 9.2: Energies (b,c) and couplings (d,e) in the adiabatic and locally
diabatic bases for a fictitious trajectory of a weakly coupled pair of molecules
A and B. a) The blue curve shows the ground state energy, the green and red
curves the energies of excitons localized on either the A or B molecule and
the turquoise line a doubly excited state that would be neglected in TD-DFT.

For details see main text.

• The energies of the two states have to be degenerate and

• the coupling between the states has to vanish.

In the space of N internal degrees of freedom the points where these two conditions are
satisfied form a N − 2 dimensional surface called the intersection seam. If the potential
energies of the two states are plotted around the conical intersection in two directions per-
pendicular to this surface, the potential energy surfaces have the characteristic form of a
double conus. Since linear-response TD-DFT lacks double excitations the coupling between
the ground state and all excited states vanishes due to Brillouin’s theorem independently
of the nuclear coordinates. Therefore the number of conditions is reduced and the inter-
section seam between the ground state and an excited state has the wrong dimensionality
N − 1 [9]. Movement along the non-adiabatic coupling vector does not lift the degeneracy
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and the potential energy surfaces have the shape of two intersecting planes instead of a
conus.

In our implementation of surface hopping the wrong topology of the intersection seam
is mitigated by giving special treatment to surface hops to the ground state:

• If the energy gap to the ground state falls below a threshold, a hop to the ground state
is forced irrespective of the quantum populations.

• After reaching the ground state, jumps back to higher states are suppressed and the
trajectory continues on S0.

Surface hopping trajectories are not very sensitive to the topology of the intersection
seam, since each trajectory explores the potential energy surface only along a one dimen-
sional path and the effects of Berry phases on the nuclear wavepacket are neglected. A
study on oxirane [10] showed that reasonable photochemical reaction paths are predicted
with TD-DFT in combination with surface hopping despite the absence of true conical in-
tersections to the ground state.

9.1 Scalar non-adiabatic couplings

In the following the procedure for calculating scalar non-adiabatic couplings in the frame
of TD-DFTB will be presented. The scalar product between the non-adiabatic coupling
vector and the nuclear velocity vector is defined in Eqn. 9.8 in terms of overlaps between
electronic wavefunctions at different times. The orbitals at slightly displaced nuclear ge-
ometries are not orthogonal anymore, so that the usual Slater-Condon rules [11] for overlap
matrix elements cannot be applied, if the bra and the ket wavefunctions belong to different
time steps. Below expressions are derived for overlaps between two configuration state
functions for Singlet states built from different sets of orbitals; to get the overlaps between
TD-DFTB “wavefunctions” one has to sum over all singly excited configuration state func-
tions in the bra and ket and weight them by their excitation coefficients.

φi denotes the i-th spatial KS orbital at time t and χj the j-th spatial KS orbital at time
t + ∆t. α and β denote the spin functions. | {orbitals}〉 represents a Slater determinant
of spin or spatial orbitals. i, j label occupied orbitals, a, b virtual orbitals and r, s general
orbitals. In the DFTB ground state of a closed shell molecule with N electrons the lowest
N/2 spatial orbitals are doubly occupied:

| ΨS
0 (t)〉 =| {φ1α, . . . , φiα, . . . , φN/2α;φ1β, . . . , φiβ, . . . , φN/2β}〉 (9.35)

The singly excited spin-paired configuration state functions are generated by the exci-
tation operator

ÊSia =
1√
2

(
â†aαâiα + â†aβ âiβ

)
, (9.36)

which replaces the occupied spatial orbital i by the unoccupied orbitals a:

| ΨS
ia(t)〉 = ÊSia | Ψ0(t)〉 =

1√
2

[
| {φ1α, . . . , φi−1α, φaα, φi+1α, . . . , φN/2α;φ1β, . . . , φiβ, . . . , φN/2β}〉

+ | {φ1α, . . . , φiα, . . . , φN/2α;φ1β, . . . , φi−1β, φaβ, φi+1β, . . . , φN/2β}〉
]

(9.37)
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The overlap between two singly excited configuration state functions at different times
becomes

〈ΨS
ia(t) | ΨS

jb(t+ ∆t)〉 =
1

2

(
〈{φ1α, . . . , φaα, . . . , φN/2α;φ1β, . . . , φiβ, . . . , φN/2β} |

+ 〈{φ1α, . . . , φiα, . . . , φN/2α;φ1β, . . . , φaβ, . . . , φN/2β} |
)

×
(
| {χ1α, . . . , χbα, . . . , χN/2α;χ1β, . . . , χjβ, . . . , χN/2β}〉

+ | {χ1α, . . . , χjα, . . . , χN/2α;χ1β, . . . , χbβ, . . . , χN/2β}〉
)
.

(9.38)

Since 〈α | α〉 = 1 and 〈α | β〉 = 0, the resulting determinants contain two blocks on the
diagonal, one for α spins, the other for β spins. The same products appear twice, therefore
on gets:

〈ΨS
ia(t) | ΨS

jb(t+ ∆t)〉 = 〈φ1, . . . , φa, . . . , φN/2 | χ1, . . . , χb, . . . , χN/2〉〈φ1, . . . , φi, . . . , φN/2 | χ1, . . . , χj , . . . , χN/2〉
+ 〈φ1, . . . , φa, . . . , φN/2 | χ1, . . . , χj , . . . , χN/2〉〈φ1, . . . , φi, . . . , φN/2 | χ1, . . . , χb, . . . , χN/2〉

(9.39)

The overlap between two Slater determinants built from different sets of orbitals can be
calculated as the determinant

〈φ1, . . . , φr, . . . | χ1, . . . , χs, . . .〉 = det


〈φ1 | χ1〉 . . . 〈φ1 | χs〉 . . .

... . . .
... . . .

〈φr | χ1〉 . . . 〈φr | χs〉 . . .
... . . .

... . . .

 . (9.40)

Denoting the overlap matrix between Kohn-Sham orbitals at different geometries by

Smo
r,s (t, t+ ∆t) = 〈φr | χs〉 (9.41)

the overlap can be obtained as the determinant of a (N/2×N/2)-dimensional submatrix of
Smo:

det
(
S(rows 1,...,r,...),(columns 1,...,s,...)

)
(9.42)
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Chapter 10

Non-Adiabatic Dynamics with
TD-DFT(B)

This chapter collects various simulations of non-adiabatic molecular dynamics in organic
molecules using the long-range corrected tight-binding DFT method developed in this the-
sis in conjunction with surface hopping. All simulations were performed with the self-
contained software package DFTBaby[1].

In the first section 10.1 the non-radiative decay from the lowest ππ∗ state in furan is
investigated. This example serves as a benchmark to verify the proper functioning of the
code since comprehensive studies of this system based on TD-DFT are available in the
literature [2]. Excellent agreement is found for the lifetime of the ππ∗ state and the types of
photoproducts observed shortly after the decay to the ground state.

The next two sections (10.2 and 10.3) are concerned with the mechanism of excimer
formation. The oligofluorenes of section 10.2 are of interest, because they belong to the class
of polyfluorenes, that find use as emitting layers in organic light emitting devices (OLEDs).
Their emission spectra are predicted and explained in terms of the geometrical distortions
that accompany the relaxation to the long-lived S1 state, from where the emission happens.
Finally section 10.3 compares the excimer formation in the pyrene dimer in the gas phase
and the crystal phase.

Part of the material presented here has been published previously in [1] and [3].

10.1 Photodynamics of Furan

The photodynamics of furan initiated by excitation of the 1B2(ππ∗) state at ≈ 6 eV has
been studied extensively both experimentally [4] and theoretically [2], [5]. It has been
established that the lowest valence excited state is flanked by a Rydberg state, which is
transiently populated. Fuji and coworkers employed time-resolved photoelectron velocity
map imaging to follow the ultrafast internal conversion to the ground state. The anisotropy
of the photoelectron angular distribution gave additional information about the character
of the electronic wavefunction so that the signal from the ππ∗ and the s-Rydberg state could
be disentangled. Trajectory-based molecular dynamics simulations [2] and simulations of
the anisotropy map [5] could explain the observed time scales: The initially pumped ππ∗

state decays to the ground state within 60 fs through a conical intersection that is associated
with out-of-plane vibration of the oxygen. The lower s-Rydberg state, that shows a bright
signal in the photoelectron spectrum, is populated temporarily but has little effect on the
nuclear motion. On the ground state the large excess energy may break the C-O bond and
lead to the formation of 2,3-butadienal and cycloprop-2-ene-1-carbaldehyde [2].

Since furan is amenable to a description with TD-DFT and at least the initial reaction
mechanism is well understood, this is a good model system for comparing non-adiabatic
dynamics simulations with full TD-DFT and tight-binding DFT. Because of the minimal
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valence basis set of tight-binding DFT, the s-Rydberg state is absent in the TD-DFT(B) spec-
trum. However, since the Rydberg character of the wavefunction never exceeds 30% (see
Fig.9a in Ref. [2]), this should not alter the dynamics of the internal conversion from the
ππ∗ state to the ground state.

Tight-binding DFT is more efficient than full TD-DFT, so that a much larger ensemble
of trajectories can be propagated for a longer time. The larger ensemble allows to identify
more intermediate photoproducts. Before proceeding to the comparison with the full TD-
DFT results from Ref. [2], a short summary is given of the computational setup for the
tight-binding simulation:

1. Furan was optimized at the DFTB level of theory (without the long-range correction)
and the Hessian matrix was computed by numerical differentiation of analytical gra-
dients. Approximating the ground state by a harmonic oscillator wavefunction, ini-
tial positions and momenta for N = 1000 trajectories were sampled from the Wigner
distribution.

2. Since sampling from the Wigner distribution is known to result in excessively hot
hydrogens, the initial conditions were equilibrated by running a molecular dynamics
simulation at constant temperature T=300 K for 1 ps. The velocities were rescaled
in each step so that the molecule is cooled down until the desired temperature is
reached, which is then held constant.

If the desired temperature is called Td and the temperature at the i-th time step t, is
called Ti, the molecule was cooled down with the rate τ = 1 by rescaling the velocities
as

~vi+1 = s~vi (10.1)

s =

√
1 +

t

τ

(
Td
Ti
− 1

)
(10.2)

3. For the non-adiabatic dynamics all trajectories were lifted adiabatically from S0 to S1.
Then they were propagated at constant energy with a nuclear time step of 0.1 fs for
1 ps. When the excited state crossed S0, a hop to the ground state was forced, since
the couplings between S0 and higher states are unreasonably small and cannot be
described correctly with TD-DFT(B) due to Brillouin’s theorem. Surface hops from
the ground state back to an excited state were suppressed even if the energy levels
touch.

4. At the final time steps molecular fragments were identified and classified using Mor-
gan’s algorithm [6], [7]. The algorithm groups nuclear geometries with connectivities
that only differ by a permutation of identical nuclei into the same class and assigns
a unique label to each group. Since the molecules are hot, the bond lengths fluctu-
ate strongly, which makes the assignment of connectivities difficult. Therefore the
molecules were locally optimized before the classification step.

In Fig.10.1 the (diabatic) populations extracted from the full TD-DFT dynamics are com-
pared with the adiabatic populations of the tight-binding dynamics. (As the s-Rydberg
state is missing in TD-DFT(B), it would make no sense to compare adiabatic populations di-
rectly, since in TD-DFT the ππ∗ state is the S2 state while in TD-DFT(B) it is the S1 state.) In
spite of the missing s-Rydberg state, the agreement between the population curves for the
ππ∗ and S0 states are excellent. Initially around 50 fs are needed for the nuclear wavepacket
to approach the conical intersection. Then the population is quickly transferred to the
ground state within another 150 fs.
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FIGURE 10.1: Excited state populations of furan. Comparison between ap-
proximate diabatic populations from Ref. [2] (a) with adiabatic populations
from simulation with TD-DFT(B) (b). Because of the minimal basis set in

tight-binding DFT the s-Rydberg state is missing.

In Fig.10.2 a typical trajectory from the ensemble propagated with full TD-DFT (TD-
PBE0/6-311++G**) is contrasted with a typical one from the TD-DFT(B) ensemble. In both
cases the trajectory quickly reaches the conical intersection to S0. The excess energy of 6
eV is converted into kinetic energy, that is available for overcoming barriers on the ground
state. The first reaction step - that precedes any other rearrangements on the ground state
- is the electrocyclic ring closing shown in Fig.10.3. This step is dictated by the location
of the conical intersection and follows mostly the Woodward-Hoffmann rules: In the 5-
oxabicyclo[2.1.0]pent-2-ene intermediate the disrotatory ring closing reaction rotates both
hydrogens adjacent to the newly formed C-C bond in such a way that they point away
from the oxygen atom. The position of the hydrogens at the two stereocenters is not only
determined by conservation of orbital symmetry but also by conservation of momentum.
If the oxygen moves out of the plane in one direction other atoms have to move in the
opposite direction. Despite this, it should be kept in mind that the molecule is very hot
and can follow other reaction paths differing from the one prescribed by the Woodward-
Hoffmann rules (see inset in Fig.10.2a).

The 5-oxabicyclo[2.1.0]pent-2-ene molecule contains a strained epoxide. The C-O bond
breaks easily, giving way to further reactions. In Fig.10.4 the optimized intermediate pho-
toproducts after 1 ps are shown sorted by their abundance. The by far largest portion
of trajectories returns to hot furan. A significant portion of trajectories is found as 5-
oxabicyclo[2.1.0]pent-2-ene waiting to react further. The linear products have unsaturated
valencies and could transform into butadienal by the shift of a hydrogen. Alternatively
they could also turn into cycloprop-2-ene-1-carbaldehyde, when the valencies on the car-
bon atoms are saturated by forming a cyclopropene ring. In one trajectory the furan
molecule breaks up into ethine, methylene and carbon monoxide. The snapshot of pho-
toproducts 1 ps after the excitation shows great similarity with the TD-DFT simulation
where 2,3-butedienal and cycloprop-2-ene-1-carbaldehyde were also observed.

The distribution of photoproducts after 1 ps is not statistical and bears little resem-
blance to the product distribution at much later times. After a macroscopic length of time
(seconds or longer) the ensemble will thermalize and become a microcanonical ensemble,
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FIGURE 10.2: Adiabatic energy levels along two typical trajectories, (a) with
full DFT and (b) with tight-binding DFT. After hitting the conical intersection

to the ground state, the oxygen moves out of the molecular plane.

FIGURE 10.3: Electrocyclic ring closing reaction follows Woodward-
Hoffmann rules.

where all microstates having a total energy equal to the excess energy of≈ 6 eV are equally
probable. The excess energy is so large that barriers to many of the constitutional isomers
of furan can and eventually will be surmounted. But determining the final thermalized
product distribution is out of the scope of this chapter since it does not depend on the
mechanism of the internal conversion but only on the excess energy.

The furan example shows how tight-binding and full DFT complement each other. Each
method gives information that is not easily accessible with the other. To get the energetic
position of the s-Rydberg state right, ab initio DFT and a basis set with diffuse functions is
needed. On the other hand, the non-radiative deactivation of the ππ∗ state through a ring
puckering conical intersection is also described adequately by semiempirical DFTB. With
DFTB, simulations with large numbers of trajectories can be extended to picosecond times,
so that the reactions of the photoproducts on the ground state can be followed. Running the
same calculation with full DFT would have taken months or years on a computer cluster
instead of the few days with tight-binding DFT.
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FIGURE 10.4: Snapshot of optimized photoproducts after 1 ps. The strings of
letters are the unique Morgan labels used to classify the photoproducts. The
number of trajectories observed for each product are given in brackets (out
of 1000 trajectories). If the molecule breaks into n fragments, each fragment

is counted as 1/n.

10.2 Excimer Formation in Poly(fluorenemethylene)

10.2.1 Poly(fluorenemethylene)

Fluorene (shown in Fig. 10.5a) is an aromatic hydrocarbon that owes its name to its fluo-
rescence in the ultraviolet spectral region. It does not occur naturally, but a large variety of
synthetic fluorene-based copolymers have seen application in organic solar cells and light-
emitting devices (OLEDs). These materials are very promising for use in light-emitting
diodes because of their high fluorescence quantum yields. The polyfluorene backbone
makes for the high thermal and chemical stability that is needed in devices. The light
emitted by polyfluorenes can be tuned from blue to red by adding electron-withdrawing
or donation groups [8].

Commonly the fluorene units are connected via atoms in the aromatic ring, so as to
form long chains. Recently Rathore and coworkers [9] synthesized π-stacked arrays of
polyfluorenes (see Fig.10.9), which are linked through methylene bridges via the central
sp3 hybridized carbon atom. The linker atoms keep the cofacial chromophores in close
van der Waals contact and guarantee the electronic coupling between neighbouring units.
The existence of this coupling has been deduced experimentally from the decrease of the
ionization and oxidation potentials with increasing number of fluorene units.

Excimer formation is an undesirable effect in light harvesting devices or organic elec-
tronics, since it traps an excitation and stops the coherent propagation of a delocalized
excitation. The formation of excimers is accompanied by a geometric distortion as a pair
of molecules move closer to each other and align. In π-stacked polyfluorene the eclipsed



164 Chapter 10. Non-Adiabatic Dynamics with TD-DFT(B)

conformation, where the chromophore units are perfectly aligned, is not the one with low-
est energy. Instead neighbouring units are slightly rotated around the axis of the polymer
chain (see Fig. 10.6). The authors of Ref. [10] showed that an excitation can only be delo-
calized over many fluorene units, if they are all in the eclipsed conformation. On the other
hand this perfect π-stacking favours the formation of excimer pairs. As a result excitons
become localized to pairs of fluorene excimers and propagate by a hopping mechanism.

These conclusions were made based on TD-DFT calculations at stationary points of the
ground and first excited state. However, exciton propagation and excimer formation are
dynamic processes. It would therefore be interesting to exploit the speed of tight-binding
DFT (DFTB) to investigate the dynamics directly through simulation. Since tight-binding
DFT is not as reliable as full DFT, in a first step one has to check its ability to reproduce the
results from the previous TD-DFT study.

Fluorene monomer F1

First, the monomer unit 9,9-dimethyl-fluorene is optimized using tight-binding DFT (in-
cluding a long-range correction and a dispersion correction [11], [12]) in the S0 and S1

states. The HOMO and LUMO and the differences of bond lengths between the minima of
S0 and S1 are depicted in Fig.10.5. The same pattern of changes in bond lengths is observed
as in full DFT: bond lengths where the HOMO is antibonding and the LUMO is bonding
are shortened while bonds where the LUMO is antibonding and the HOMO is bonding
expand.

The vertical excitation energy of Eexc = 4.22 eV obtained with DFTB is a little bit too
low as compared to the B1LYP-40/6-31G(d) result of 4.89 eV. Although the relaxation on
S1 leads only to minor changes in the geometry, the emission energy is red-shifted by 0.88
eV relative to the excitation energy, Eem = 3.34 eV, while the full DFT calculations predict
an emission energy of 4.21 eV and consequently a red-shift of 0.68 eV.

FIGURE 10.5: Changes of bond lengths between minima on S0 and S1 as
calculated with DFTB. a) Labels of C-C bonds, b) bar plot showing differ-
ences. The S1 state consists of a HOMO to LUMO excitation, DFTB orbitals

are shown in c) and d), the transition density in e).

π-stacked fluorene dimer F2

For the fluorene dimer initially two structures are considered, the one in which a fluorene
molecule eclipses the other and the second one, where they are rotated by an angle of
approximately 21◦. Optimization with DFTB on the ground state shows that both of them
are local minima, but the rotated structure is 0.1 eV more stable than the eclipsed one. In
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turn, on the S1 surface the global minimum appears to be located at the eclipsed geometry
which is 0.1 eV more stable. Fig. 10.6 shows a relaxed scan along the angle between the
two fluorene units.

FIGURE 10.6: Relaxed scan of the potential energy curve for rotation around
the line passing perpendicularly through the point marked with a red x. The
geometries were relaxed using the AM1 [13] method in Gaussian [14], the
S0 and S1 energies were then computed using DFTB. In the ground state the
fluorene units are rotated by 21◦ (DFTB) or 15◦ (AM1), while in the S1 the

eclipsed geometry is preferred.

The frontier orbitals of the dimer can be approximately constructed as linear combi-
nation of the monomer HOMO and LUMO orbitals. The energetic order of the orbitals is
obvious from the condition that the energy should increases with the number of nodes. The
orbital combinations and possible singlet transitions are sketched in Fig. 10.7. Since only
excitations of (approximately) the same symmetry can mix, the lowest two excited state
have to contain the orbital transitions shown in Fig. 10.7a). The approximate expressions
are:

| S1〉 ≈
1√
2

[
1(H − 1→ L+ 1)−1(H → L)

]
(dark)

| S2〉 ≈
1√
2

[
1(H → L+ 1)−1(H − 1→ L)

]
(bright)

The lowest excited state S1 is dark since in the HOMO-LUMO transition the monomer
dipole moments would point in opposite directions canceling each other (see Fig.10.7b).
The S2 is the bright state since the monomer transition dipoles are parallel.

Fig.10.8 compares the orbital interactions in the rotated and eclipsed conformations. In
the ground state the two fluorene units are rotated slightly because this maximizes the con-
structive overlap between the monomer orbital H1 and H2 and thus stabilizes the HOMO.
The LUMO is destabilized in the rotated conformation. In the S1 excited state the eclipsed
conformation is preferred, since it favours the overlap between L1 and −L2 and stabilizes
the LUMO, which is occupied in S1.
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FIGURE 10.7: F2. a) Frontier orbitals in terms of monomer orbitals and pos-
sible excitations. b) Transition densities with monomer transition dipoles

superimposed.
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FIGURE 10.8: DFTB frontier orbitals for the rotated and the eclipsed local
minima of F2. The rotated geometry (left) is more stable in the ground state
because of the attractive overlap between H1 and H2 in the HOMO. In the
eclipsed geometry (right) the energy of the LUMO is lowered stabilizing the

S1 state.
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Oligomers F3-F5

The oligomers F3-F5 were also optimized using tight-binding DFT on the ground and first
excited states. In all of them the most stable conformation is the rotated one on S0 and the
eclipsed one on S1. The optimized geometry for F5 is shown in Fig. 10.9.

FIGURE 10.9: Optimized pentamer (F5) geometries on S0 and S1. Distances
are in Å.

In the π-stacked fluorene oligomers the S1 will not necessarily be the brightest elec-
tronic state. The excited state where all monomer transition dipoles are parallel will have
the highest oscillator strength, in F2 this is the 2nd, in F3 the 3rd, in F4 the 4th and in F5 the
5th excited state. By extrapolation one is led to assume that, no matter which higher state
Sn is excited, ultimately the lowest excited state will be populated through non-adiabatic
relaxation. The S1 state is separated through a large energy gap from the ground state and
can only decay through emission of a photon of energy Eem (fluorescence). Therefore the
emission spectrum can be calculated from the energy of the lowest accessible minimum on
the S1 surface. This is illustrated in Fig. 10.10: After vertical excitation with energy Eexc to
the bright state Sn the wavepacket can undergo non-adiabatic transitions through conical
intersections (CI) until it reaches the long-lived first excited state S1. The excess energy λ1

effects the relaxation in the individual fluorene units and the change of their orientation or
will be dissipated to the solvent.

Experimentally [15] the lowest peak in the absorption spectrum of the monomer is ob-
served at 302 nm which shifts to 305 nm in the dimer. In the emission spectrum the lowest
monomer peak is found at 315 nm and shifts to 394 nm for the dimer. Absorption and emis-
sion spectra of trimer, tetramer, pentamer and hexamer are almost indistinguishable from
the dimer spectra with tiny red shifts. Also, no exciton splitting was observed. This sug-
gests that the delocalization of an excitation is limited to two fluorene units. In table 10.1
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FIGURE 10.10: Energetics of excimer formation. Shown are the vertical ex-
citation energy to the brightest state Eexc, the emission energy Eem and the
structural reorganization energies in the ground and excited states λ0 and λ1

(adapted from [10]).

Eexc Eem λ0 λ1 n Eexc(exp.) Eem(exp.)
F1 4.22 3.34 0.44 0.44 1 4.11 3.94
F2 4.22 (4.15) 3.06 0.57 0.58 2 4.07 3.15
F3 4.35 (4.19) 3.08 0.63 0.63 3 4.05 3.14
F4 4.34 (4.17) 3.07 0.74 0.37 4 4.05 3.14
F5 4.34 (4.16) 3.02 0.84 0.48 5 4.05 3.14

TABLE 10.1: Absorption and fluorescence energies. Theoretical vertical ex-
citation energies Eexc = E(Sn//S0) − E(S0//S0) of the bright state Sn (in
brackets excitation energies of S1), emission energies Eem = E(S1//S1) −
E(S0//S1) and reorganization energies λ0 = E(S0//S1) − E(S0//S0) and
λ1 = E(Sn//S0) − E(S1//S1) where E(Sn//S0) means the total energy of
the n-th excited state at the minimum geometry on S0. Experimental excita-
tion and emission energies at the peak maxima are taken from Ref. [15]. All

energies in eV.

the theoretical and experimental emission and absorption lines are compared. In agree-
ment with experiment the largest red shift is seen between the monomer and the dimer,
while there is much less variation in the excitation (to S1) and emission energies between
the dimer and the longer oligomers F3-F5.

Non-adiabatic dynamics simulations

Non-adiabatic dynamics simulations are performed for the dimer F2, trimer F3 and tetramer
F4. The geometry is optimized on the ground state starting from the rotated conformation.
Subsequently the Hessian matrix is computed by numerical differentiation of the analytic
gradients. The Wigner distribution in the harmonic approximation is constructed from
the normal mode displacements and frequencies. 100 initial conditions for the initial posi-
tions and momenta are sampled at random from the Wigner distribution. A well-known
shortcoming of this approach is that hydrogen atoms have too large velocities. There-
fore the trajectories are propagated for 1 ps on the ground state at a constant temperature
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of T = 150K to arrive at an equilibrated distribution. For each equilibrated geometry
a TD-DFTB calculation is performed and the stick spectra from different trajectories are
combined and convolved with a Gaussian function to simulate a temperature-broadened
absorption spectrum (see Fig.10.16).

The trajectories are lifted vertically to the brightest excited state and are allowed to
evolve for 1 ps at constant energy. Non-adiabatic transitions between different electronic
states are accounted for by surface hopping. The energies of the S1 state at the end the
non-adiabatic simulation from different trajectories are combined to obtain a theoretical
fluorescence spectrum (see Fig.10.16).

The excited dimer F2 decays in less than 100 fs non-radiatively (see Fig.10.11) to the S1

state and rotates slowly towards the eclipsed conformation as evidenced by a plot of the
angle between the monomer units against time in Fig.10.12. In the trimer F3 and tetramer
F4 the bright states are S3 and S4, which also decay in less than 100 fs to the long-lived S1

state (see Fig.10.13). In the trimer one can observe how the excitation localizes on two of
the fluorene units which rotate towards each other to form an excimer, while the 3rd unit
is unaffected (see Fig. 10.14). In the tetramer the excitation can localize on any of the three
fluorene pairs, 1-2, 2-3 or 3-4, and depending on the initial conditions all three cases can
be observed among the ensemble of trajectories (see Fig. 10.15). The quantitative agree-
ment between the simulated absorption and emission spectra shown in Fig.10.16 with the
experimental spectra published in Ref. [10] (Fig. 1) suggests that the trajectories move on
reasonable potential energy surfaces and reach the correct S1 minimum, from which the
fluorescence is observed experimentally. In addition the dynamics simulation provides the
time-scale for the excimer formation: The rotation into the eclipsed conformation in F2,
F3 and F4 lasts approximately 1 ps, which is a lower bound for the formation time, since
one expects a damped oscillation around the new minimum. Since most of the trajecto-
ries for F4 show the formation of aligned pairs of fluorene units, one can expect that in
longer chains, too, the initially delocalized excitation will be trapped by the alignment of
neighbouring units.

FIGURE 10.11: Dimer F2. Adiabatic state populations averaged over 100
trajectories.
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FIGURE 10.12: Dimer F2. Dihedral angle (see inset) averaged over 100 trajec-
tories. In the ground state the geometry oscillates around the rotated struc-
ture (black curve). After vertical excitation to S2 and ultrafast non-adiabatic

transition to S1, the eclipsed geometry is reach after 1 ps (red curve).

FIGURE 10.13: Adiabatic state populations averaged over 50 trajectories for
the a) trimer F3 and b) tetramer F4.

This study of fluorene oligomers of different lengths exemplifies how tight-binding
DFT allows to treat much larger system than would be possible with ab initio DFT.

The photodynamics initiated by exciting the lowest bright electronic state was com-
pared for the dimer, trimer and tetramer bringing out a common pattern: In all oligomers
the electronic decay is ultrafast and ends in the first excited state. Then a slow rotation of
the fluorene units around the oligomer backbone sets in, since the energy of the S1 state is
lowered by the formation of pairs of eclipsed fluorenes.
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FIGURE 10.14: Trimer F3. Dihedral angles between fluorene units 1-2 and 1-
3 averaged over 50 trajectories. After 1 ps the fluorene units 1-2 are aligned

in the eclipsed conformation forming an excimer.
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FIGURE 10.15: Tetramer F4. a) superposition of all 50 trajectories at the last
time step (1ps). b), c) and d) Geometries of different trajectories after 1ps
with the fluorene units that form an excited dimer or timer marked by an

orange box.

FIGURE 10.16: Simulated absorption and emission spectra for F2,F3 and F4.
The stick spectra were convolved with a Gaussian of FWHM=0.01 Hartree.
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10.3 Excimer Formation in the Pyrene Dimer

Pyrene is another polycyclic aromatic hydrocarbon that exhibits fluorescence and has been
the subject of many theoretical [16] and experimental studies [17], [18]. It represents a pro-
totypical excimer forming system. The excited states both of the monomer and the excited
dimer live for hundreds of nanoseconds, but their fluorescence spectra can be easily dis-
tinguished. Therefore pyrene finds application as a fluorescent marker for studying inter-
nal dynamics of macromolecules in solution. Macromolecules can be labeled by attaching
pyrenyl groups covalently at distant locations [19]: A pyrene label, that has been excited by
UV light, diffuses through the solution dragging the covalently linked macromolecule with
it, until it encounters a second pyrene molecule to which is associates forming an excimer.
The encounter is signaled by fluorescence from the excimer state which is observable as a
broad peak around 480-500 nm, whereas the monomer emission takes place in the range of
380-400 nm.

The kinetics of excimer formation in solution is determined by the interplay of many
competing photophysical processes [20]: diffusion, association of monomers to excimers,
dissociation of the excimers, fluorescence from the monomer or excimer states and radi-
ationless decay. In pyrene these processes occur on the nanosecond timescale. Here, a
different process will be studied, that happens on the femto- to picosecond time scale: the
vibrational distribution of energy following excimer formation. To be able to treat the prob-
lem computationally, some simplifications have to be made such as neglecting the solvent
and concentrating on a single pair of already associated pyrene molecules in the gas phase
or the crystal.

Pyrene forms dimers both in the crystal and the gas phase due to the strong van der
Waals interaction between the planar molecules. A section of the crystal structure [21]
of pyrene is shown in Fig.10.17. Pyrene molecules belonging to the same dimer pair are
coupled electronically, but due to the orthogonal arrangement of nearest neighbour dimers,
the interaction between different dimers is much lower. Next-nearest neighbour dimers
are again parallel and could in principle allow for a delocalized excitation over a chain of
dimers.

The authors of [18] investigated the process of excimer formation in the crystal of
pyrene at room temperature using femtosecond time-resolved transient grating measure-
ments. They excited the S1 state with two spatially and temporally overlapping pump
pulses that form an interference pattern. Molecules are excited only if they are located
around the interference maxima. Since the optical density of the excited molecules is
higher, a second probe pulse can be diffracted on this induced grating. The intensity of
the diffraction signal can be used to monitor the excited state population. The population
remained constant for at least 800 ps after the pump pulses left the crystal, proving that the
excited state in pyrene is long-lived. The time variation of the intensity of the diffraction
signal in the first few picoseconds sheds light on the relaxation dynamics of the excimer:
The diffraction signal peaks strongly at around 1 ps to reach a constant high level at later
times. From this the authors concluded that the excimer formation is completed in 1 to 5
ps. In their view the relaxation process involves the localization of the initial excitation to
a single dimer pair and the dissipation of the excess energy to neighbouring dimers.

It will be shown below that non-adiabatic dynamics simulations at the tight-binding
DFT level confirm this interpretation.

As with the polyfluorenes, the geometrical rearrangement upon excimer formation can
be described in terms of the rigid relative motion of the monomer units. To quantify this
motion each pyrene unit is enclosed by a box of minimal volume [22], [23], the edges of
which define a right-handed coordinate system as shown in Fig.10.18a. The z-axis is par-
allel to the shortest edge of the lower pyrene molecule, while the x- and y-axis are aligned
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FIGURE 10.17: Crystal structure of pyrene. Two dimers that are nearest
neighbours are highlighted.

with the major and minor molecular axes. The vector joining the box centers is decomposed
into its components along these axes. The Rx and Rz displacements can be considered the
“reaction coordinates” of the excimer formation.

In the ground state the pyrene dimer is stable, however one pyrene molecule is shifted
by approximately 1.5 Å along the major molecule axis. In the 1st excited state the two
pyrene molecules prefer to eclipse each other and move closer together by approximately
0.2 Å . The vertical distance amounts to 3.0 Å in S0 and 2.8 Å in in S1 using tight-binding
DFT, which is systematically lower than the distance of 3.4 Åobtained from the crystal
structure. (This discrepancy is probably on account of the dispersion correction. It was
simply added to the repulsive potentials which were parametrized in the absence of a dis-
persion correction.) The different minima on S0 and S1 can be rationalized by considering
the interactions between the monomer frontier orbitals.

A pair of π-stacked pyrene molecules was extracted from the crystal structure and op-
timized on the ground state. 100 trajectories were sampled at random from the Wigner
distribution followed by equilibration on the ground state for 1 ps. The trajectories were
then lifted vertically to S1 and were propagated for 5 ps in the manifold of the lowest 5
electronic states.

After vertical excitation to S1, the wavepacket finds itself displaced from the S1 mini-
mum and moves downhill to oscillate in the potential well surrounding the S1 minimum.
As the kinetic energy is distributed among all vibrational modes, the directed motion sub-
sides resulting in the damped oscillations shown in Fig.10.18b. The internal vibrational
redistribution of energy (IVR) seems to occur equally rapidly for the vertical as for the hor-
izontal motion (≈ 2 ps). The rigid relative displacement can be modelled as a 2D harmonic
oscillator that is coupled to a much colder heat bath (the remaining vibrational modes). The
vertical and horizontal displacement modes lose energy to the heat bath until the bottom of
the S1 minimum (in the 2D space spanned by vertical and horizontal displacement modes)
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is reached. The result is the formation of a hot excimer in the eclipsed conformation.
Although the non-adiabatic dynamics simulation has been performed for a pyrene

dimer in the gas phase and not a crystal, the decay time for the damped oscillation of
Rx and Rz is consistent with the experimental observation that excimer formation occurs
within the first 5 ps. It should be kept in mind, though, that the gas phase dimer is not an
entirely realistic model for the crystal, where a large-scale horizontal motion is probably
more restricted.

FIGURE 10.18: a) Definition of the coordinate system and the displacement
vector R. b) Displacements averaged over all trajectories. After excitation to
the lowest bright state, the horizontal displacement Rx performs a damped
oscillation with a period of Th = 1 ps, whereas the vertical distance Rz oscil-
lates with a period of Tv ≈ 200 fs. After approximately 2.5 ps the oscillations

have died out and excimer formation is complete.

QM/MM calculation with periodic boundary conditions

The crystal environment is important as it can constrain the movement of the dimer and
serves as a heat bath that dissipates the initial electronic excitation. In the crystal structure
shown in Fig.10.17 the neighbouring dimer is oriented perpendicularly and can block the
horizontal displacement like a wall. In this section we will try to model the influence of
the crystal surroundings on the non-adiabatic dynamics of a single pyrene dimer using the
QM/MM method [24]. This approach only captures the mechanical interaction between
the selected dimer and the crystal. It assumes that the initial electronic excitation that is
delocalized over many units, has localized on a single pyrene pair and that we will follow
the ensuing dynamics from that point on.

The following setup is used: The pyrene unit cell is enlarged by duplicating the minimal
unit cell along all three axes until an entire pyrene dimer is contained in the supercell.

The total system is partitioned into an inner region I (containing the central dimer),
which is treated quantum mechanically with tight-binding DFT (QM part) and an outer
region O, which is described using the DREIDING [25] force field with periodic bound-
ary conditions (molecular mechanical or MM part). The total energy is computed using a
subtractive scheme:

E = EMM (I +O) + EQM (I)− EMM (I) (10.3)
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EMM includes all energy terms of the force field except for the non-bonded electro-
static term. Since hydrogen and carbon have similar electronegativities the partial charges
in pyrene are small, so that the electrostatic interactions in the MM calculations can be ne-
glected. The small polarization of the QM part by the partial charges in the MM part is also
ignored.

In the MM calculation periodic boundary conditions are applied so that atoms on one
end of the supercell are in contact with atoms on the opposite side through bonding or non-
bonding interactions. This ensures that the shape of the periodic supercell is not distorted
during the dynamics. Without periodic boundary conditions molecules on the surface of
the supercell would evaporate and cool the inner part.

The electronic structure of the inner region is described using non-periodic tight-binding
DFT, so discrete electronic energy levels result rather than continuous bands.

The initial conditions for 50 trajectories were generated by assigning random velocities
to the nuclei. The resulting trajectories were propagated for 1 ps on the ground state at a
constant temperature of T = 50K to obtain an equilibrated ensemble. Then all trajectories
were lifted adiabatically to the S1 state and allowed to evolve for another 5 ps. This simu-
lates the situation where the central pyrene dimer is excited and all other dimers are in the
ground state. No electronic coupling exists between the different dimers but vibrational
energy can flow from the central dimer to the crystal.

The results of the periodic QM/MM simulation are depicted in Fig.10.19. The formation
of the excimer can be traced by monitoring the relative displacements of the monomer
units. Compared to the gas phase simulation, the oscillations are faster and more strongly
damped. The large number of vibrational modes in the surrounding crystal introduces
some disorder so that it would be difficult to identify a single frequency for the oscillation.
Also the motion is not limited to the x-axis (longest molecular axis): Being confined to a
small cavity in the lattice that is bounded by vertical pyrene molecules on two sides, the
excitation energy is converted into motion both along the molecular x- and y-axis.

FIGURE 10.19: Pyrene crystal. a) Supercell for periodic QM/MM calculation
b) Relative displacements of the monomer units in the central pyrene dimer
following vertical excitation to S1, averaged over 50 trajectories. Relaxation
is faster in the crystal (bold lines) than in the gas phase (dashed thin lines).

This last simulation shows how tight-binding DFT can be deployed in multiscale mod-
eling. Very large systems including the crystal environment or a solvent can be treated
efficiently, if only the active region is described quantum mechanically using DFTB. In the
pyrene example the simplest type of (only mechanical) interaction between the classical
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and the quantum-mechanical regions was chosen. An electrostatic embedding scheme,
that would be more appropriate for simulations in polar solvents, could be implemented
easily, since a code for tight-binding DFT is relatively straightforward to modify.
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Chapter 11

Conclusion and Outlook

In this thesis a methodological framework for simulating light-induced dynamics in large
molecular assemblies has been developed. Challenges arising from the large size of the
electronic structure problem and the need to extend the simulations to long timescales
were addressed by a combination of semiempirical TD-DFTB with surface hopping. Spe-
cial attention has been paid to peculiarities of weakly coupled molecular aggregates: (1) Er-
roneous long-range charge transfer is fixed by including exact exchange for large distances.
In addition two measures of charge transfer were presented which can be extracted easily
from TD-DFTB calculations, the quantity Λ2 and the particle-hole separation. These can be
used to detect cases of problematic behaviour involving long charge-transfer character of
excited states. (2) Spikes in the non-adiabatic couplings are removed by a transformation
to a local diabatic basis. These two improvements significantly extend the applicability of
the TD-DFTB method to the simulation of ultrafast photodynamics in large systems such
as multichromophoric aggregates.

Full account was given of all the technical details concerning the implementation and
parametrization of long-range corrected tight-binding DFT. Being a semiempirical theory,
tight-binding DFT is heavily dependent on a parametrization for the electronic Hamilto-
nian and the repulsive potentials. To make the origin of the parametrization as transparent
as possible, the path to obtaining parameters, which starts with the computation of pseu-
doorbitals, the tabulation of Slater-Koster files and ends with the fitting of repulsive poten-
tials, has been fully documented. Many pages were devoted to the derivation of analytical
gradients of excited states. This will hopefully facilitate the inclusion of the new long-range
correction into other existing codes for tight-binding DFT.

The theoretical methods were implemented and released in the form of a software pack-
age that is able to perform single point calculations of absorption spectra, optimizations
of excited state geometries and non-adiabatic dynamics simulations, based on long-range
corrected tight-binding DFT. The code is suitable for investigating dynamical properties of
large organic molecules, provided that a more reliable higher-level method is used to filter
those molecules out where tight-binding TD-DFT is too simplistic.

As a first test case of the developed methods the furan molecule was chosen. The pho-
todynamics of this small aromatic molecule has been the topic of many theoretical and
experimental studies in the past so that its deactivation mechanism following excitation in
the ultraviolet is well understood. The results of simulations based on tight-binding TD-
DFT could be compared directly with equivalent simulations based on full TD-DFT. In both
cases the lifetime of the initially pumped π− π∗ state was determined to be less than 100 fs
with almost perfect agreement. The absence of the s-Rydberg state in the tight-binding cal-
culations had no influence on the photochemical reaction path: As expected furan relaxed
to the ground state through a conical intersection that is reached by puckering of the ring.
The speed of DFTB allowed to extend the dynamics simulations to much longer timescales
(over 1 ps) and to run ten times more trajectories than with ab initio TD-DFT, so that a sta-
tistically meaningful distribution of photoproducts could be extracted. More than 90% of
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the trajectories return to hot furan, while in a small fraction of them a C-O bond is broken
permanently leading to different linear and cyclic photoproducts.

After these encouraging tests, which proved that DFTB can reproduce results from
much more expensive ab initio simulations, the method was applied to the calculation of
excited state lifetimes and fluorescence spectra of fluorene oligomers of increasing length.
In all oligomers ultrafast internal conversions from the bright state through intermediate
states to the stable S1 state, which shows fluorescence, was observed. The atomistic sim-
ulations not only revealed the timescales for these transitions, but also the concomitant
geometrical changes. The wavefunctions of the cofacially stacked fluorene molecules over-
lap, which leads to an attractive interaction that is modulated by the node structure of
the frontier orbitals. The alignment of neighbouring fluorene units becomes energetically
favourable in the excited state. But it also acts as a trap for the excitation that is prevented
from propagating through the stack of fluorenes. To describe the interplay between the fast
electronic relaxation and the relatively slow orientational changes of the fluorene chain a
fully atomistic model was necessary. Each ingredient of the model is relatively simple: To
understand why the fluorene units reorient themselves in the excited state, it is sufficient to
look at the interactions of the frontier orbitals. The ensuing dynamics turns out to be also
quite simple: The fluorenes rigidly rotate around the polymer axis. However, information
about the lifetime of the electronic states and the time needed to form a excimer pair, could
only be got by simulations of the dynamics.

Finally the usefulness of tight-binding DFT for multiscale modeling was examined. In
this context, the excimer formation of pyrene was studied both in the gas phase and the
molecular crystal using a QM/MM approach. The equilibrium distances for the vertical
and parallel displacement of one monomer relative to the other are different in the excited
state than in the ground state. A vertical excitation therefore initiates oscillations around
the new equilibrium structure. These oscillations are damped by the internal vibrational
redistribution of energy that shifts kinetic energy from the rigid parallel and perpendicular
motion to undirected vibrations until the energy is almost randomly distributed over all
vibrational modes. The time needed for the oscillations around the new minimum to die
down completely can be equated with the excimer formation time. The gas phase simu-
lations showed that the excimer formation is completed within 4 to 5 oscillation periods,
in less than 5 ps, in agreement with experiment. The crystal environment imposes obvi-
ous steric constraints on the motion. Not surprisingly the parallel motion is blocked by
neighbouring perpendicular molecules. The surrounding crystal is like a heat bath that
absorbs the kicks from the oscillating excimer and dissipates the energy very effectively.
Consequently the excitation energy is turned into vibrational energy (of the crystal) much
quicker than in the gas phase.

These examples demonstrate that tight-binding DFT can in some cases give results of
comparable quality as full DFT but for a fraction of the computational cost. They also
illustrate the general strategy that should be followed when preparing a tight-binding cal-
culation: Results from tight-binding DFT always have to be verified and cross-checked by
ab initio DFT calculations. For each of the systems mentioned above preliminary DFT cal-
culations were performed to check whether tight-binding DFT is applicable. In the case of
furan, simulations for short times with few trajectories were run with full DFT. The agree-
ment with the tight-binding simulations on the first 200 fs justified the extension to much
larger timescales, that could not be reached with full DFT. For the pyrene excimer, scans of
the potential energy surfaces were performed with full DFT in parallel to the tight-binding
simulations and a few trajectories were run.

These initial validation steps sometimes end with the disappointing conclusion that
tight-binding DFT is not suitable for a particular molecule. The interesting question arises
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whether this failure can be somehow fixed or has to be accepted as irremediable. Tight-
binding DFT is a simplified model fitted to full DFT and the deviations can be explained
by two sources of errors: on the one hand the quality of the fit (the parametrization) and
on the other hand the limitations of the model it self.

The errors of long-range corrected TD-DFTB depend to a large degree on the right
choice of transferable parameters and more work needs to focus on optimizing them. Not
all of the parameters were fitted. For simplicity, some of the electronic parameters (the con-
finement radius r0 and the Hubbard parameter UH ) were derived from experimental data.
Previous work on the parametrization of DFTB by other groups has proven that, by fitting
the parameters to full DFT calculations on training sets of representative molecules, the
accuracy of ab initio electronic structure calculations for the ground state could be reached.
However, trying to improve a parametrization is a complicated task, because parameters
depend on each other and cannot be changed independently. This makes incremental im-
provements difficult, since after changing an electronic parameter, the entire parametriza-
tion has to be updated. The parametrization used so far was chosen to be physically rea-
sonable but there is still room for improvement.

Tight-binding TD-DFT can in some cases give results for excited states of comparable
quality as full TD-DFT, as demonstrated for furan. However, this claim is a bit of an over-
statement in general, as other problematic cases remain. Originally DFTB was designed for
ground state properties and most fits only take those into account. In the future one might
try to consider excited state properties as well, when adjusting the electronic parameters to
obtain a more balanced description of both ground and excited states.

Some of the problems of DFTB, however, are not just rooted in the parametrization but
in the method itself and its approximations. Extensive testing of TD-DFTB on different
classes of organic molecules that contain heteroatoms (N,O and S) has revealed serious
deficiencies related to the γ-approximation of electron integrals. In DFTB partial charges
in the ground state and transition charges in the excited states are modeled as monopoles
centered on atoms. In the case of heteroatoms this approximation is not justified, since
partial charge in a p-orbital is not distributed spherically symmetrically. It was not possible
to fix this problem within the framework of tight-binding DFT. The attempt to introduce
additional partial dipoles that can interact with each other was not successful and led to
convergence problems. Therefore in the previous chapter mostly results for hydrocarbons
were shown, since the partial charges are small and the monopole approximation works
fine for this molecule class. It might be possible to mitigate this shortcoming by tweaking
the electronic parameters. For instance, some implementations of tight-binding DFT such
as the DFTB+ code use separate Hubbard parameters for s- and p-orbitals.

Tight-binding DFT has a lot in common with much older semiempirical wavefunction-
based methods. Maybe one should drop the pretension to derive a semiempirical method
rigorously from density function theory and combine ideas from the older methods with
those from tight-binding DFT.

This work has mostly focused on the development and implementation of the long-
range corrected DFTB method. The result is a fully functional program for investigating
many aspects of light-induced dynamics in large molecules. The next step will be to harvest
the fruits and apply the method to open questions in photochemistry concerning energy
and electron transfer in aggregates. In view of the huge number of new dyes with unique
photophysical properties that are synthesized and studied experimentally every year, there
will be plenty of opportunities for using tight-binding DFT.
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Summary

This thesis deals with the question of how non-adiabatic dynamics that is induced in large
molecular aggregates by the irradiation with light, can be described efficiently from a theoret-
ical point of view. Quantum chemistry provides a host of electronic structures methods, most
of which, though, can only be applied to small molecules owing to their steep scaling of the
computational cost with the number of particles. Even with density functional theory (DFT)
only medium-sized molecules are accessible, since in non-adiabatic dynamics simulations the
electronic structure has to be computed for every of the hundreds of thousands of time steps.
In this setting semiempirical methods are an attractive alternative, in particular tight-binding
DFT (abbreviated as DFTB), which is an approximation derived from DFT. DFTB can be un-
derstood as a Taylor expansion of density functional theory around a reference density. This
parametrized method is one order of magnitude faster and inherits the advantages and defi-
ciencies of density functional theory.

Here, an extension of the DFTB method is presented, that is tailored to the special challenges
which large systems pose to the simulation of non-adiabatic dynamics. Firstly, in large, weakly
coupled aggregates the problem of the wrong description of charge transfer states that afflicts
DFT calculations, is particularly grave. Secondly, the large number of identical monomer units
leads to bands of almost degenerate exciton states. In the diabatic picture the coupling between
them is small, whereas it is very large in the adiabatic picture causing numerical instabilities
in the propagation of the electronic amplitudes. The first problem is solved by including a
correction to the energy functional consisting in a Hartree-Fock exchange term at long-range
(LC-correction), so that spurious charge transfer states at low energies disappear. To remove
the spikes in the non-adiabatic couplings, the electronic Schrödinger equation is integrated in
the diabatic picture. In addition a diagnostic measure for detecting problematic charge transfer
states was developed.

Special attention was paid to the technical details of the parametrization, that entails the
calculation of pseudoatoms, the tabulation of Slater-Koster files and the fitting of repulsive po-
tentials. Analytical gradients of the excitation energies, which drive the motion of the nuclei
on the potential energy surfaces of excited states, were worked out with the help of the auxil-
iary functional method. As a byproduct of this work a fully functional software package was
developed, that allows (1) to compute and visualize the electronic structure of molecules at the
LC-DFTB level of theory, (2) to optimize excited states and (3) to perform non-adiabatic molec-
ular dynamics simulations. For dynamics simulations, excited state energies, their analytic
gradients and scalar non-adiabatic couplings are computed using time-dependent LC-DFTB.
These quantities are fed into a molecular dynamics code, which integrates Newton’s equations
of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic ef-
fects are included by surface hopping.

As a first test case the furan molecule was chosen, as the non-radiative deactivation mech-
anism following excitation in the UV/VIS range of the electromagnetic spectrum is well un-
derstood for this small organic molecule: In agreement with full DFT calculations a lifetime
in the excited state of less than 100 fs was determined. Then the non-radiative relaxation of
oligofluorenes of increasing length was studied: The ultrafast non-radiative relaxation ends in
the first excited state, which exhibits fluorescence, and is accompanied by a slower reorien-
tation of the fluorene moieties that explains the lowering of the emission energy. Finally the
excimer formation of pyrene in the gas phase and the crystal were compared, with the crys-
tal environment modelled using a QM/MM approach: The energy released during excimer
formation is transformed into vibrational energy of the crystal in less than 5 ps.
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Kurzfassung

Diese Arbeit befasst sich mit der Frage, wie sich die nicht-adiabatische Dynamik, die in moleku-
laren Aggregaten durch Wechselwirkung mit Licht in Gang gebracht wird, aus theoretischer
Sicht effizient beschreiben lässt. Die Quantenchemie verfügt über eine Vielzahl von Meth-
oden zur Berechnung der elektronischen Struktur, von denen die meisten aber wegen der
steilen Skalierung des Rechenaufwandes mit der Teilchenzahl nur auf kleine Moleküle an-
wendbar sind. Selbst die Dichtefunktionaltheorie (DFT) stößt schnell an ihre Grenzen, da bei
Simulationen der nicht-adiabatischen Dynamik die elektronische Struktur für jeden Zeitschritt
und somit hunderttausende Mal hintereinander berechnet werden muss. Als Alternative bi-
eten sich daher semiempirische Methoden an, vor allem die auf DFT basierende tight-binding
Näherung, genannt DFTB. DFTB kann als eine Art Taylor-Entwicklung der Dichtefunktion-
altheorie um eine Referenzdichte verstanden werden. Diese parametrisierte Methode ist um
eine Größenordnung schneller und erbt die Vorzüge aber auch die Unzulänglichkeiten der
Dichtefunktionaltheorie.

Hier wird eine Weiterentwicklung der DFTB-Method vorgestellt, die den speziellen Schwierigkeiten
bei der Simulation nicht-adiabatischer Dynamik in großen Systemen Rechnung trägt. Zum
einen tritt in großen schwach gekoppelten Aggregaten das Problem der mit DFT falsch beschriebe-
nen Ladungstransferzustände in besonders gravierender Form auf. Zum anderen führt die
große Zahl identischer Moleküleinheiten zu Bändern dicht liegender, fast entarteter Exzitonzustände,
deren Kopplung im diabatische Bild klein, im adiabatischen Bild jedoch enorm hoch ist, was
numerische Instabilitäten in der Propagation der elektronischen Amplituden hervorruft. Das
erste Problem wird durch die Einführung eines langweitreichigen Hartree-Fock Austauschterms
im Energiefunktional (LC-Korrektur für engl. long-range correction) gelöst, so dass die un-
physikalisch niedrig liegenden Ladungstransferzustände verschwinden. Um die Spitzen in
den nicht-adiabatischen Kopplungen zu entfernen, wird die elektronische Schrödingergleichung
im diabatischen Bild integriert. Außerdem wurde eine Diagnostik zur Erkennung problema-
tischer Ladungstransferzustände entwickelt.

Besonderes Augenmerk wurde den technischen Details der Parametrisierung gewidmet,
die unter anderem aus der Berechnung von Pseudoatomen, der Tabellierung von Slater-Koster
Dateien und der Optimierung repulsiver Potentiale besteht. Analytische Gradienten der Anre-
gungsenergien, die für die Kernpropagation auf Potentialflächen angeregter Zustände benötigt
werden, wurden unter Verwendung der Z-Vektormethode ausgearbeitet. Als Nebenprodukt
dieser Arbeit ist ein voll funktionsfähiges Softwarepacket entstanden, das es ermöglicht, die
elektronische Struktur auf LC-DFTB Niveau zu berechnen und zu visualisieren, angeregte
Zustände zu optimieren und nicht-adiabatische Moleküldynamik im Rahmen der surface hop-
ping Methode zu simulieren.

Erste Testrechnungen wurden am Furan Molekül durchgeführt, da der Deaktivierungsmech-
anismums diese kleinen organischen Moleküls nach Anregung mit UV/VIS Strahlung gut
verstanden ist. In Übereinstimmung mit DFT-Rechnungen wurde eine Lebensdauer im an-
geregten Zustand von weniger als 100 fs ermittelt. Daraufhin wurde die nichtradiative Relax-
ation in Oligofluorenen unterschiedlicher Länge untersucht: Die ultraschnelle nicht-radiative
Relaxationsdynamik endet im fluoreszierenden ersten angeregten Zustand und ist von einer
langsamen Umorientierung der Fluoreneinheiten begleitet, durch welche sich die Abnahme
der Emissionsenergie erklären lässt. Schließlich wurde die Excimerbildung in Pyrene in der
Gasphase und im Kristall verglichen, wobei die Kristallumgebung durch einen QM/MM Ansatz
modelliert wurde: Die bei der Excimerbildung frei werdende Energie wird innerhalb on weniger
als 5 ps in Schwingungsenergie des Kristalls umgewandelt.
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tron imaging spectra from non-adiabatic molecular dynamics simulations”, The Jour-
nal of Chemical Physics, vol. 139, p. 134 104, 2013.



191

Selbständigkeitserklärung

Hiermit versichere ich, die vorliegende Dissertation eigenständig und ausschließlich unter
Verwendung der angegebenen Hilfsmittel, angefertigt zu haben. Alle öffentlichen Quellen
sind als solche kenntlich gemacht. Die vorliegende Arbeit ist in dieser oder anderer Form
zuvor nicht als Prüfungsarbeit zur Begutachtung vorgelegt worden.

Berlin,

Alexander Humeniuk





193

Acknowledgements

I would like to acknowledge the support of the many people and institutions that have
made this work possible.

First of all I would like to express my gratitude to Prof. Dr. Roland Mitrić for giving me
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and for co-refereeing this thesis.

I am grateful to Anja Röder and Ingo Fischer (JMU Würzburg), Aladdin Darghout and
Mark Casida (Université Grenoble), and Toshinori Suzuki (Kyoto University) for fruitful
collaborations.

I wish to thank my co-workers at FU and JMU Würzburg Dr. Polina Lisinetskaya, Dr.
Jens Petersen, Dr. Merle Röhr, Matthias Wohlgemuth, Dr. Evgenii Titov, Joscha Hoche,
Kevin Issler, Joachim Lindner, Michael Wenzel and David Fischermeier for the many sci-
entific discussions, the friendly atmosphere in the group and their support. In particular
I want to thank Dr. Jens Petersen for diligent proofreading of this thesis and Matthias
Wohlgemuth for his help with the computer cluster.

I am thankful to Brigitte Odeh, Marietta Wissmann (FU Berlin) and Maike Madera (JMU
Würzburg) for helping with administrative matters. I also appreciate the patience shown
by the administration and IT department of FU that allowed my to finish my PhD in Berlin
while the group of Prof. Mitrić slowly relocated to Würzburg.
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