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Abstract. The interaction of carbon nanotubes with the molecular dipole switch 
spiropyran is expected to affect the optical response of the tubes. Until now, the need of 
anchor groups to immobilize the switches on the tubes has hindered experimental 
observation of effects of switching on the emission behavior of the tubes. Here we 
present spiropyran-carbon nanotubes complexes obtained by micelle swelling. This 
method does not require any anchor nor sophisticated chemistry to warrant close tube-
switch proximity. For the first time we observe the shifts predicted theoretically and 
their effect on the tubes’ excitation and emission energies.  
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1. Introduction 

The functionalization of carbon nanotubes (CNTs) with molecular moieties creates nanohybrids 

with new outstanding properties. By choosing the proper functionality, the characteristic features of 

CNTs can be altered in a controlled way, enabling new, sophisticated technological applications, e.g. 

switching of the conductance [1], emission enhancement [2] and energy transfer [3],[4]. In particular, 

the functionalization of carbon nanotubes with photochromic moieties, such as spiropyran, has been of 

great interest. They can be exploited for engineering sensors [5] and memory devices [5]-[7]. Spiropyran 

is a photochromic molecule consisting of a benzopyran and an indole moiety connected via a sp3 

hybridized carbon atom. For an overview of the properties of spiropyran, please refer to Ref. [8]. 

Spiropyran can be reversibly switched between the open merocyanine (MC) and the closed spiropyran 

(SP) conformation. During the isomerization process, driven by ultraviolet light, the carbon-oxygen 

bond breaks, converting the spiro center to an sp² hybridized carbon atom, leading to a co-planar 

arrangement of the benzopyran and indole moieties in the merocyanine form with the π-electron 

delocalized along the entire molecule, generating an absorption band in the visible around 590nm. The 

newly formed merocyanine is an extended π-conjugated system with a zwitterionic character. It is much 

more polar then the SP form, giving rise to a large dipole moment. 

The immobilization of the photochromic switches on the CNTs surface can be realized through 

different approaches, such as non-covalent functionalization, polymer wrapping and covalent 

functionalization [7],[9]-[12]. Here we focus on a new and simple functionalization approach which 

does not require sophisticated chemistry - the micelle swelling technique [13]. It allows investigating 

the interaction of molecular moieties when they lie in the close proximity of CNTs without the need of 

specialized surfactants comprising both CNT debundling and switchability [14]-[16]. 

The coupling of the molecular dipole moment with the excitons of the CNTs is expected to strongly 

affect the optical properties of the CNTs. Malic et al. predicted a shift of several meV in the exciton 

transition energies [17],[18]. Furthermore they investigated different tube-switch configurations and 

showed that the largest shifts are observed for a dipole orientation of 90° perpendicular to the tubes’ 

axis and optimal switch coverage of 0.25 nm-1. The Coulombic dipole-dipole interaction decreases with 

an increase in relative switch-tube distance; hence a close proximity is aimed to observe the strongest 

shift. The dipole distribution, on the other hand, has no measurable effect on the transition energies. At 

the same concentration, randomly and homogeneously distributed dipoles provide the same shifts of the 

excitonic energies.  

In our previous studies, we verified the theoretical predictions by Malic et al. and experimentally 

observed reversible shifts of the absorption bands of specially engineered SP-Pyrene molecules which 
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were non-covalently anchored onto the tubes via π-π stacking of the pyrene part [7],[19]. In these 

studies, the limiting factor to fully exploit the dipole-dipole interaction was the CNT-switch separation, 

which could not be made small at will, as in this approach it is limited by the necessity of an anchor 

group to be conjugated to the switch part [20], [21]. The studies showed that the interaction between 

molecular switches and CNTs increased with decreasing their distance.  The most significant effects, 

however, were observed on the merocyanine (with strong shifts of its absorption bands and an increase 

of the merocyanine lifetime with respect to the spiropyran form) and not on the tubes.  

Here we consider micelle swelling as a technique to minimize the tube-switch distance. It does not 

require any anchoring group to ensure the proximity of the switch to the nanotubes sidewall. Micelle 

swelling was introduced by Wang et al. [13] and established a new route to investigate the interaction 

of molecular moieties and CNTs. Roquelet et al. exploited it to transport the organic molecule porphyrin 

within the micelles solubilizing tubes, studying the energy transfer between porphyrins and CNTs [22]. 

Kreft et al. demonstrated that micelle swelling could be used to carry the orthogonal switchable 

molecules (DHA/VHF) into the micelles of the CNTs while retaining the molecule switching ability 

[23]. Micelle swelling can be adapted to create plasmonic hybrids comprising metallic nanoparticles and 

CNTs [2],[24] and to create nano-reactor environments to trigger polymerization around the CNTs to 

establish a bridge between covalent and non-covalent functionalization of the tubes [25]. 

Micelle swelling is beneficial in several ways; the micellar forces ensure the tubes and the switches 

to be confined within the hydrophobic core, providing direct proximity between nanotube and switches. 

It moreover provides excellent solubilization of the tubes and allows to control the switch-to-tube ratio 

within the micelles and thus the nanotube coverage by the switches.  Figure 1 schematically depicts the 

micelle swelling process. Molecular agents that are insoluble in water are solubilized in organic solvents 

and added to a solution with CNTs suspended in surfactant micelles, Fig. 1a. While stirring, the 

molecular agents are transported by the organic solvent into the hydrophobic environment of the 

Figure 1 Scheme of the micelle swelling approach: a) micelle suspended CNTs in water. b) After the addition of 
the organic solvent containing the molecule, both start to penetrate the micelle. c) The solvent will evaporate and 
the molecules will be encapsulated within the micelle core and arrange themselves around the CNTs.  
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micelles’ inner-core, Fig 1b. After a while, the organic solvents evaporate and the molecules are 

enclosed within the micelles already containing the CNTs, Fig. 1c. The micelle swelling thus ensures a 

strong interaction between CNTs and molecular switch, which increases the dipole-tube interaction 

compared to our previous studies, ensuring a contiguous position of the switch on the nanotubes surface 

2. Experimental 

CNTs were dispersed in SDS as described in Refs. [26] and [27]. A solution of CoMoCAT tubes 

(0.1 g/L) were dispersed in water with 1 wt% SDS and sonicated for 1h at 20W, followed by 

centrifugation at 31000 g. The prepared stock solution and was used  for preparing all of the samples to 

ensure identical amount of tubes in all experiments.  To transport molecules into the tubes-containing 

micelles, 150 µL of THF yielding, respectively, 0, 50, 100, 150 µg spiropyran were added to 3 mL of 

nanotube stock solution. The mixture was stirred for 48 h in a water quench at room temperature.  

For the optimization study, the temperature was adjusted to 30°C, 45°C and 55°C. The temperatures 

have been chosen to be lower than the boiling point of the solvent to avoid its evaporation before the 

switches are inside the micelles. After the swelling procedure, the samples were centrifuged for 10 min 

to remove bundles that might have been formed or tubes no longer enclosed by a micelle. The samples 

were divided into two groups: One set was prepared in complete darkness (we will refer to them as the 

DARK samples in the rest of this manuscript) while the other set was prepared under UV irradiation 

with a 366nm lamp (we will refer to this as the UV sample). In the case of the UV samples, the switch 

solution was irradiated already before adding it to the SWNT suspension. In this way we ensure that the 

molecules entering the micelles in the DARK samples were mostly in their SP form while in the UV 

samples were mostly in the MC form. Please note that, while irradiating the samples with UV light, we 

reach a photostationary state that is given by the balance between the SP-to-MC light induced 

isomerization and the MC-to-SP thermally induced back isomerization. The value of this ratio is the 

highest conversion rate we may achieve at the working temperatures and in the given solvent.  Thus, 

half of the final samples (the UV ones) were tubes coated with merocyanine and the other half (the 

DARK ones) with spiropyran.  
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3. Results and Discussion 

 Effect of the dipole coverage 

As predicted by Malic et al., the dipole-dipole interaction between the MC and the tubes leads to 

red shifts in the transition energies of the nanotubes. Up to now, the only experimental evidence of such 

shift were changes of the absorption bands of the carbon nanotubes [17],[20],[21]. It was impossible to 

conduct photoluminescence excitation (PLE) measurements of the tubes coated with MC, as the 

excitation radiation (500-800nm) required for performing a PLE map causes the back isomerization of 

MC into SP [9],[20],[21]. Absorption measurements, on the contrary, require less intensities; they do 

not trigger back isomerization and let us observe the influence of the dipole moment on the absorption 

bands of the tubes. The micelle swelling approach, however, offers the advantage to stabilize the state 

of the switch inside the micelle and to lock its state. The switch remains in its configuration and back 

isomerization is inhibited, making it possible to study the emission energies of CNTs decorated with 

spiropyran switches in both the SP and the MC form. Previous studies have shown that the lifetime of 

the merocyanine form gets longer as it gets closer to the nanotube sidewall, due to the increased π-π 

interaction between the merocyanine π-electron and the tubes[9],[20],[21]. If merocyanine is directly 

adsorbed onto the nanotube surface, then it is expected to be locked in its state without isomerizing back. 

Such a behavior was already observed for MC on a gold surface [28].  

As the theoretical predictions suggest optimal dipole-dipole interaction for specific dipole coverage, 

we varied the SP/MC switch concentrations in the micelle swelling to verify the effect of the coverage 

onto the optical response of the tubes. Figure 2a) and b) depict the absorption spectra for the different 

switch concentrations in darkness and under UV radiation, respectively, identifying the state of the 

switch. The characteristic MC peaks at 390nm and 500nm are observed in both the DARK (Fig.2a) and 

Figure 2 Differential absorption spectra (reference spectrum: Pristine CNTs) of the DARK a) and UV samples 
b) with different switch concentrations.  c) Absorption spectra of the 150 µMol/L samples in comparison to 
the pristine tubes.  
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the UV (Fig.2b) sample. The increase in switch concentration shows an increase in the bands intensities. 

The absorption of the UV sample includes an additional peak around 400 nm, which is associated with 

stacked MC [29]. It is interesting to note that Fig. 2a) indicates the presence of the MC peak even in the 

DARK sample, which should only exhibit the ring-closed SP form. The micelle swelling process inserts 

the molecules into a highly complex environment made of carbon nanotubes, water, THF and SDS. This 

presumably affects the SP/MC equilibrium point and leads to such behavior. As water is polar, the 

hydrophobic SP is trapped in the special limited hydrophobic tube-micelle environment. This special 

environment and the limited space between the micelle and the tube can lead to the presence of MC in 

the DARK sample.  

Albeit the locked MC state and the presence of the MC in the DARK sample indicates tube-switch 

interaction, the main goal of this study was to observe the influence on the transition energies of the 

CNTs for both the excitation and the emission of the tubes. The PLE measurements show clear 

differences between the UV and the DARK samples. A first striking feature is that, with increasing 

Figure 3 a) Average luminescence of the tubes excited at 650nm, obtained by the emission peak areas divided 
by the area of the absorption band after background removal. b) Emission of the (7,5) tube in the DARK sample 
and  emission of the (7,5) tube of the UV irradiated sample. c) Pseudo PLE map of all the tubes left of the 
DARK sample, right of the UV sample (an excerpt of the PLE map is published in [31]). 
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switch concentration, the emission yield from the DARK samples rises. The UV samples exhibit the 

opposite behavior with a decrease in tubes emission with increasing switch concentration. This behavior 

is depicted for the (7,5)1  tube in Figure 3a). We believe that the increase of emission of the DARK 

sample is due to the fact that the SP, which is a non-planar moiety, promotes exfoliation of small 

nanotube bundles and yield their further debundling, in a similar fashion as cholate derivatives do 

exfoliate the tubes.  The interaction between strong MC dipoles within the micelle core and the ionic 

head of the surfactant could lead to destabilization of the micelles, resulting in a loss of tubes.  

The presence of the switch, though, does not only affect the overall intensity emitted from our 

samples. As predicted by the theory, the dipole-dipole interaction of the switch and the CNTs changes 

the exciton energies of the tubes. The emission by the (7,5) tube species in Figure 3b) demonstrates that 

the transistion energies in the DARK sample remain constantly. The points scatter by 2meV around the 

pristine nanotube position, for both emission and excitation energies. The UV sample, on the other hand, 

exhibits a shift of 9 meV for the E11 transition (emission energies) and 12 meV for the E22 transition 

(excitation energies). This trend is also observed for the other tubes. The pseudo PLE map in Fig. 3c) 

compares the transition energies for the DARK and UV samples. The tubes in the DARK sample hardly 

show any peak shift with increasing switch concentration. Contrary, the UV samples exhibit diverse 

shifts for different nanotube chiralities and switch concentrations as highlighted by the bent arrows in 

the right panel.  The fact, that the shift increase with higher switch coverage of the tubes indicates that 

the given switch concentration is still below the optimal dipole coverage of 0,25 /nm. When surpassing 

this value lateral dipole-dipole interactions start interfering with the dipole-exciton interaction, leading 

to a decrease of the effective switch influence on the transition energies of the tubes. This phenomenon 

was experimentally observed by Kreft et al. for the switching molecule DHA/VHF and reported in 

reference [23]: The shifts increase by increasing the coverage of the tube and, after reaching a critical 

coverage, the shift will decrease. In our case, we observed a monotonous trend of continuous increase 

of the shift intensity by increasing the switch concentration and do not observe reduction of the shifts. 

Providing an experimental demonstration of the changes in excitation and emission energy for carbon 

nanotubes decorated with SP/MC, as predicted by Malic et al. [17].  

 

Effect of the dipole intensity 

To further confirm the theoretical predictions, we monitored the shifts of the exciton energies for 

dipole switches with varying dipole moment. We compared the dependence of the energy shifts on the 

magnitude of the dipole moment. To this purpose, we use two different derivatives of the spiropyran 

                                                           
1   CNTs are cylinders made of rolled graphene sheets. The different species are each described by its 

characteristic chiral vector (n1,n2). 
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molecule of comparable size, sketched in Fig. 4: i) spiropyran, which has only one phenyl ring in the 

benzopyran part, highlighted in blue in Fig. 4c), ii) spirooxazine, which has two phenyl rings, 

highlighted in red in Fig. 4d). All derivatives undergo the ring opening and closing isomerization. By 

increasing the amount of rings, the structures get more and more extended and the dipole moment 

becomes smaller (13.9 D for spiropyran, 6.64 D for spirooxazine) in the ring open form [31]. Those 

derivatives thus allow us to change the strength of the dipole moment while keeping orientation and 

coverage constant. The bar chart in Fig. 4a) shows the shifts of the E11 transition energies and Fig 4b) 

the shifts of the E22 transition energies of the different tubes (150 µmol) for the different switches in 

their mero form. The biggest shift is observed for the one-ring derivative, whereas the switches with 

lower dipole moments induce smaller shifts. This supports the prediction that the change in exciton 

energy is proportional to the magnitude of the dipole.  

      Improving the micelle filling and composition 

We further improve our samples and studied the influence of the temperature on the production of 

our SP/MC-CNTs hybrids. At higher temperatures the micelles expand [32], giving the switches more 

space to re-arrange, improving the homogeneity of the switch coating on the tubes’ surface, hence 

optimizing the micelle swelling process.  To prevent the solvent to evaporate before entering the micelles 

we worked below the boiling point of THF (60°C), namely at 30°C, 40°C, and 55°C. Fig. 5a) displays 

the influence of the temperature on the emission intensity of the resulting UV samples. The plain 

micelle-encapsulated tubes without any switch show a decrease in intensity with increasing temperature. 

All chiralities behave in the same manner, as it can be seen in the first column of Fig. 5a). The other two 

columns depict the behavior for sample with different amount of switches, 100 µmol/L in Fig 5a) middle 

Figure 4 Shifts in transition energy for the one (blue) and two (red) ring spiropyran derivative for for a) E11 
transition energies and b) E22 transition energies. Schematic illustration of the SP derivatives c) Spiropyran -
one aromatic ring, d) Spirooxazin -two aromatic Rings  
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panel and 150 µmol/L switch concentration in Fig 5a) right panel. Those samples show a distinct 

increase in intensity for higher production temperatures. This behavior can be explained when 

considering the micellization process. An increase in temperature results in a more pronounced 

movement of the SDS molecules making it more difficult for the anionic molecule to remain 

encapsulated within the micellar core. Some micelle break, triggering the CNTs re-bundling or 

precipitation, resulting in quenched luminescence. The increase in intensity of the UV samples, on the 

other hand, indicates a stabilization of the micelles. The presence of the dipole moment of the switch 

reduces the polarity of the surfactants by forming MC-SDS ion pairs (Fig. 5c), making the micelle less 

ionic [33]. The size of nonionic micelles enlarges with increasing temperature, thus more and more 

switches content is able to stabilize and penetrate the micelle [32]. Fig. 5c) sketch the stabilization 

Figure 5 a) Photoluminescence intensities of the samples prepared under UV radiation. The different 
producing temperatures (T=30°C, 45°C, 55°C) are indicated through the different plotting colours. From left 
to right the intensities of the different concentrations are displayed (c = 0µmol/L, 100µmol/L, 150µmol/L). 
From top to bottom the different chiralities corresponding to the different excitation energies (λ22 = 590nm, 
650nm, 730nm) are shown. Additional mechanism influencing the micelle swelling process: b) Schematic 
structure of the merocyanine- SDS ion pair with a water molecule as stabilization. c) Schematic structure of 
the new SDS-switch hybrid micelle. Due to the incorporation of the switch into the micelle less switch content 
is in close proximity of the CNTs. 
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process of the expanded outer shell: The SDS-MC ion pair, the water molecule between the methyl-

group on the indolinic part, and the oxygen of the benzopyran moiety stabilizes the ion pairs.  

Even if higher temperatures expand the micelles, competitive processes lower the composition of 

the final structures and only a tiny fraction of the switches is now penetrating and remaining within the 

micelle core. The other fraction will stabilize the hydrophilic shell of the micelle, resulting in a reduction 

of the overall dipole coverage of the tubes and thus affecting the shifts magnitude.  

The change of composition and morphology of the micelles swelled at higher temperatures changes 

the phenomenology of the optical response of the samples. The PLE measurements of the higher 

temperature samples display a different behavior than samples prepared at room temperature.  With an 

increase in temperature, we observe that the shifts do not correlate any more to the switch concentration, 

they rather depend upon the tube diameter, the larger the diameter the greater the shift. This behavior is 

depicted in Fig. 6a) for the 150 µL concentrated DARK and UV samples prepared at 55°C and compared 

to the 30°C ones. A similar but much weaker behavior is also observed for the other samples at higher 

temperatures and even at lower switch concentrations. It is worth noting that such diameter-dependent 

shift was not observed for the samples prepared at room temperature. The difference in the 

phenomenology is ascribed to the fact that by increasing the temperature, the separation between the 

tubes and the switches increases. This reduces their mutual Coulomb interaction. At higher temperatures, 

the MC dipoles are localized in the outer shell of the micelles, so far away to make the dipole-dipole 

induced shifts negligible and no constant dipole-induced shifts can be observed.  

The shifts we experimentally observe nicely follow the trend described by the Choi and Strano 

model for solvatochromic effects on CNTs [34]. Those shifts in the emission and absorption of a 

nanosystem originate from changes in the dielectric environment [35].  

Figure 6 a) Comparison of the shifts for different tube species between DARK and UV samples with a 
concentration of 150µmol/L prepared at 30°C (left panel) and 55°C (right panel). b) Solvatochromic shifts of 
the E11 transition of the150µmol samples prepared at 30°C and 55°C.  
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30°C E11 (eV3 nm-4) E22 (eV3 nm-4)  55°C E11 (eV3 nm-4) E22 (eV3 nm-4) 

DARK 0.074 0.27  DARK 0.082 0.28 

UV 0.076 0.29  UV 0.101 0.30 

   
   
   

 Table 1 depicts the values for the DARK and UV samples prepared, respectively, at 30°C and at 55°C. 

The values for the slope increase for the higher production temperature. The main changes can be 

observed in the emission (E11), e.g. the value for the UV sample rises from 0.076 eV3 nm-4 (30°C) to 

0.101 eV3 nm-4 (55°C), concluding that the formation of the SDS-MC hybrid surfactant is changing the 

dielectric environment of the tubes leading to higher solvatochromic shift which are known to be 

diameter tube dependent [34]. 

The increase in temperature stabilizes the micelles by incorporating the switches into their outer 

hydrophilic shell, which lowers the number of molecules at the surface of the CNT. The dipole-dipole 

interaction of the tubes and the switches becomes negligible. We observe the solvatochromic shifts of 

the CNT transition energies due to the change of the dielectric environment. Working at room 

temperature, therefore, is the best configuration to ensure the switches are closest the to the CNT 

sidewall. It is thus the most beneficial for observing the dipole-dipole induced shifts in the transition 

energies for CNTs decorated with molecular switches. 

4. Conclusion 

We demonstrated that micelle swelling is a simple and successful method to investigate the 

interaction of the dipole switch spiropyran with carbon nanotubes. We verified the theoretical 

predictions on the effect of the dipole moment of merocyanine on the excitation and emission energies 

of the CNTs. To further validate the predictions, we compared the shifts for molecules with similar 

morphologies but different intensity of their dipole moments. We investigated the effect of the 

temperature on the hybrid production process to identify the preparation conditions with the highest 

dipole coating of the tubes. 
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