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Introduction

The present thesis deals with the efficient adaptive numerical integration of dynam-
ical contact problems. This is the core problem in the fast and robust simulation
of stresses arising in a real patient’s knee joint for different kinds of loading situa-
tions. The topic is of high interest in the field of computer-assisted therapy planning,
which aims at the generation of a ”virtual patient“ [17]. This tool allows the design
of effective treatment options and precise surgery strategies within a clinical envi-
ronment. Potential tasks of patient-specific techniques in orthopedics are osteotomic
interventions and the construction and selection of implants or fixation devices.

For realistic predictions of therapeutical manipulations, numerical simulation and
optimization are applied on a detailed three-dimensional geometry of the individual
patient’s knee (obtained from anatomical CT or MRT image data). In view of a
reasonable clinical application, the necessary computations have to be performed on
local workstations in clinics within short time frames. Moreover, the solutions have
to be resilient enough to serve as a basis for responsible medical decisions. With
regard to these conditions, highest level requirements have to be set on the efficiency
and accuracy of the applied numerical techniques.

The appropriate approach to cope with this mathematical challenge is the con-
struction of an adaptive numerical integrator for the dynamical contact problem.
For this purpose, dynamical contact problems have to be analyzed precisely from
both the analytical and the numerical point of view.

Dynamical Contact Problems. In 1933, Antonio Signorini introduced the fric-
tionless static contact problem of a linearly elastic body with a rigid foundation [85],
which today is called Signorini problem. Since then, the modeling of contact phe-
nomena classically employs Signorini’s contact conditions in displacements, which
are based on a linearization of the physically meaningful non-penetrability of masses.

Following the same approach in the time-dependent case leads to highly nonlin-
ear second-order variational problems, where the actual zone of contact is a priori
unknown. When the phase of contact changes, shocks are caused, which identify
the hyperbolic structure of the problem. This inhibits general regularity of an evo-
lution, even if the rest of the data are smooth. Partial regularity results and some
discussion on the subject have been published in [13, 23, 68].

For dynamical contact problems between a linearly elastic body and a rigid foun-
dation that are formulated via Signorini’s contact conditions, the first existence and
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Introduction

uniqueness results were obtained by Duvaut and Lions [23]. They studied problems
with prescribed time-constant normal stresses where the contact surface is known in
advance. However, up to date, existence results have only been provided for special
cases such as some simple geometric settings and one-dimensional problems [68,83].
A general existence or even uniqueness theory in conjunction with pure linear elas-
ticity is still missing.

The serious mathematical problems encountered in proving well-posedness basi-
cally originate from the discontinuity of the velocities at contact. The assumption
of viscous material behavior allows at least the derivation of existence results for
unilateral dynamic contact problems: Jarušek analyzed a frictionless viscoelastic
body with singular memory [42,44]. Viscoelastic materials satisfying a Kelvin-Voigt
constitutive law were studied by Kuttler and Shillor [62] and Cocou [13]. Kuttler
and Shillor proved existence for the case of frictional contact and a moving rigid
foundation, while Cocou considered a problem with nonlocal friction. Migòrski and
Ochal investigated a class of problems modeled by hemi-variational inequalities [74].
In 2008, Ahn and Stewart established existence for frictionless dynamical contact
problems between a linearly viscoelastic body of Kelvin-Voigt type and a rigid obsta-
cle [6]. A survey of existence and uniqueness results is given in the monograph [25]
by Eck, Jarušek, and Krebeč.

The papers cited above primarily concern existence results for dynamical contact
problems. Uniqueness and continuous dependence on the initial data have not been
proven up to now, neither in the purely elastic nor in the viscoelastic case. The
fundamental mathematical difficulties with such results can be traced back to the
intrinsic non-smoothness of the problem emerging from Signorini’s contact condi-
tions. For this reason, the requirement of exact non-penetration of the bodies is
often relaxed by using regularization techniques in the analytical models. However,
for the medical applications discussed above, any violation of the contact constraints
is unacceptable.

Numerical Integration. Over the last decades, a large amount of work has been
done on the design of numerical methods for solving dynamical contact problems,
which is and remains a challenging task. An overview on several known time dis-
cretization schemes can be found, e.g., in the monograph [65] or in the papers [22,59].
Among them, the classical Newmark method is one of the most popular numerical
solvers, which is also used in the wide-spread finite element analysis program Nas-

tran. Unfortunately, it is well-known that this scheme may lead to an unphysical
energy blow-up during time integration and numerical instabilities at dynamical
contact boundaries may occur. For this reason, Kane, Repetto, Ortiz, and Mars-
den introduced a contact–implicit version which is energy dissipative in contact,
but still unable to suppress the undesirable oscillations [46]. Recently, Deuflhard,
Krause, and Ertel proposed a contact–stabilized variant, which avoids the unphysi-
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cal oscillations at contact interfaces and is still energy dissipative [19]. For related
stabilizations see [87, 88].

Laursen, Chawla, and Love have designed time integration schemes of New-
mark type with predominant focus on energy conservation of the discretized solu-
tion [66,67]. Such approaches typically lead to possible interpenetration originating
from a discretized persistency condition. However, the biomedical applications in
mind require strict non-penetration. For the same reason, enforcement with penalty
methods or enforcement with contact conditions in velocities are ruled out.

A different approach for reducing artificial oscillations at contact boundaries has
recently been suggested by Khenous, Laborde, and Renard [47, 48]. Their mass
redistribution method is based on completely removing the mass in a small strip
on the contact boundaries. The algorithm has been further improved by Hager,
Hüeber, and Wohlmuth in view of computational cost [31]. However, the scheme
is formulated within the method of lines framework, which in general inhibits the
development of efficient adaptivity in space. In contrast, the contact–stabilization
by Deuflhard et al. leaves the mass matrix unchanged and can easily be applied for
arbitrary spatial discretization.

In the absence of contact, any symmetric variant of Newmark’s method is equiva-
lent to the Störmer-Verlet scheme, which is well-known to be second-order consistent
and convergent (see, e.g., the textbook [33] of Hairer, Lubich, and Wanner). In the
presence of contact, the question of consistency and convergence has not been solved
yet for any of the discretization schemes presented above. This is due the high irreg-
ularities encountered at contact interfaces in the constrained problem, which inhibit
the derivation of viable estimates for the local discretization errors via the classical
approach.

Adaptivity. The efficient and reliable simulation of the motion of a human knee
joint requires a stable numerical integrator for dynamical contact problems, which
allows for adaptivity both in time and in space. An equidistant mesh can not be
expected to be adequate for reaching a given accuracy of the approximation with
a reasonable computational effort. However, until now, the topic of an adaptive
timestep control for discretizations of dynamical contact problems has completely
been avoided both in engineering and in mathematical literature. This is mainly
due to the lack of perturbation and consistency results in the constrained situation.

The present thesis will work out an efficient adaptive time integrator for friction-
less dynamical contact problems in viscoelasticity that are formulated on the basis
of Signorini’s contact conditions. Apart from medical treatment planning, the issue
is of wide need in many different application areas such as structural mechanics or
metal forming processes.
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Outline

Chapter 1 will deal with the mathematical model used to describe frictionless dy-
namical contact between two viscoelastic bodies fulfilling the Kelvin-Voigt material
law. Both the strong and weak problem formulation are presented, which are based
on Signorini’s contact conditions for bilateral contact. Moreover, conservation prop-
erties and the validity of a persistency condition will be discussed. Chapter 2 will
be devoted to the numerical integration of dynamical contact problems. Here, a de-
tailed theoretical and numerical analysis of the classical, the contact–implicit, and
the contact–stabilized Newmark method will be given. The presentation will moti-
vate the development of an improved contact–stabilized version, which is the time
discretization scheme of interest in this thesis.

In a first step towards an adaptive timestep control, a norm in function space
has to be determined in which a perturbation result is satisfied even in the presence
of contact. By reason of the present unclear situation in view of well-posedness
of dynamical contact problems, Chapter 3 will concentrate on a stability study
under perturbations of the initial data for both the elastic and the viscoelastic case.
This will necessitate the definition and interpretation of a stability condition that
characterizes a suitable class of contact problems. In a second step, the construction
of an adaptive timestep control requires the derivation of a consistency result and
the corresponding consistency order. In order to fill the lack of such knowledge for
Newmark methods under contact constraints, Chapter 4 starts with an investigation
of the Newmark schemes in function space. Then, consistency error estimates will be
derived in the specific norm found in the earlier perturbation theory and in a further
discrete norm. Moreover, the consistency behavior of the Newmark methods in the
special case of permanent active contact will be analyzed. Subsequently, a novel
proof technique will be introduced in Chapter 5, which allows showing convergence
of the improved contact–stabilized Newmark methods in both norms. This requires
in particular the derivation of perturbation results for the scheme, which are again
based on a suitable stability condition.

Finally, in Chapter 6, an adaptive timestep control will be devised in the improved
contact–stabilized Newmark method (ContacX). On the basis of a theoretical and
numerical investigation of an asymptotic error expansion of the Newmark scheme,
established extrapolation techniques will be transferred to the algorithm in order to
construct a comparative scheme of higher-order accuracy. This allows the suggestion
of a problem-adapted error estimator and timestep selection which also cover the
presence of contact. Moreover, the actually achieved global discretization error of the
adaptive timestep control will be discussed. In Chapter 7, an illustrative numerical
example will be given followed by a prototype of a dynamical simulation of a human
knee joint.
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1. The Motion of the Human

Knee as a Dynamical Contact

Problem

The first chapter of this thesis is dedicated to the analytical model that is chosen to
describe the main dynamics of a human knee joint. The considerations are restricted
to the main mathematical challenge that is a frictionless dynamical contact problem
between two viscoelastic bodies subject to Signorini’s contact conditions.

Section 1.1 contains a brief presentation of the anatomical structure of a human
knee related to the relevant biomechanical properties. After that, Section 1.2 deals
with a description of linear viscoelasticity of Kelvin-Voigt type and the definition
of linearized non-penetration conditions. The resulting dynamical contact problem
will be stated both in the strong and in the weak formulation in Section 1.3. In
Section 1.4, the so-called persistency condition and the conservation properties of
the system will be discussed.

1.1. The Human Knee

Setting up a mathematical model for the movement of a human knee necessitates
information on the existing anatomical and biomechanical system. Therefore, this
section will overview the basic parts composing the complex knee joint particularly
with regard to their biomechanics. A simplifying illustration of the anatomy is given
in Figure 1.1. More details on this topic can be found, e.g., in [11, 78].

The knee is an example for a hinge joint and links the thighbone – the femur –
and the two bones of the lower leg – the tibia and the fibula. In addition, the knee
joint contains the patella bone, which is commonly known as kneecap. Composed
of the tibiofemoral joint and the patellofemoral joint, the knee shows a two-joint
structure. The bones are connected by ligaments across the articulation, which
provide stability of the joint by controlling the relative motion of the bones.

In activities as walking and running, jumping, or stair climbing, the human knee
is subjected to forces, which are mainly produced by body weight, muscle forces, and
externally applied forces. In particular, the knee joint regularly sustains from high
stresses and moments that originate from intermittent impacts. Muscles develop
tensions, which are transmitted to bones via tendons attaching muscles to bones.

5



1. The Motion of the Human Knee as a Dynamical Contact Problem

patella

femur

tibia

ligaments
cartilage

fibula

Figure 1.1.: Anatomy of the human knee.

The interacting surfaces of femur, tibia, and patella are covered with layers of
articular cartilage. This tissue facilitates a smooth articulation by dissipating dan-
gerous amounts of energy. Moreover, cartilage has low friction characteristics, which
reduce sliding frictional forces in articulation such that a gliding movement occurs.
In the middle of the knee are the disc-shaped menisci acting as additional shock
absorbers. The joint is surrounded by a connective tissue capsule retaining synovial
fluid. This provides lubrication to the articular surfaces, which leads to a further
reduction of joint friction.

On the basis of this medical knowledge, the biomechanical behavior of the human
knee joint with all interacting components can be modeled as a large and heteroge-
neous time-dependent contact problem. Due to the high complexity, the following
considerations are focussed on the tibiofemoral joint, where the central mathemati-
cal difficulty is the correct modeling and simulation of articulation. For this reason,
the thesis at hand concentrates on the dynamical interplay of the two bones and the
covering cartilage. Bones mainly provide a simple linearly elastic material response
such that the slight viscosity can be disregarded. By contrast, articulating cartilage
displays both elastic and viscous properties [37]. Friction forces are negligible in a
normal knee joint. For simplification, anisotropic and heterogeneous effects will also
be neglected.

1.2. Basics of the Mathematical Model

In this section, an analytical model for the mechanical behavior of human bone and
cartilage will be presented, which is based on the Kelvin-Voigt constitutive law of
linear viscoelasticity. Moreover, the non-penetration constraints for modeling two-
body contact will be introduced, which are formulated following Signorini’s contact

6



1.2. Basics of the Mathematical Model

x

νφ(x)

φ(x)

ΓM
N

ΓS
D

ΓM
C

ΓS
C

ΩM

ΩS

u
S

u
M

Figure 1.2.: Notation for the two-body contact problem.

conditions in displacements. The concepts have been described briefly in [51–53] for
the viscoelastic case and in [19] for the purely elastic case.

At initial time t = 0, the volume of the two solid bodies under consideration
is identified with the closure of some domains ΩK , K ∈ {S, M}, which is called
reference configuration. According to the context of mortar methods, the notations
S and M stand for slave and master body, see, e.g. [90]. The domains are understood
to be open, bounded, and connected subsets in R

d with dimension d = 2, 3. In
addition, the bodies are assumed to have empty intersection. For the union of the
two domains, the abbreviation Ω := ΩS ∪ ΩM is used. The problem setting in the
initial configuration is illustrated in Figure 1.2.

Notations. As is standard in literature on continuum mechanics, tensor- and
vector-valued quantities are written in bold characters, e.g., σ and v with com-
ponents σij and vi, respectively. Indices i, j, l, m are in the range from 1 to d. The
scalar product in R

d is denoted by (·, ·), and the Euclidean vector norm is written
as | · |. The partial derivative with respect to the spatial variable xj is indicated by
a subindex j, e.g., v,j, and ∇ means the gradient of a vector field. The transpose of
a vector v is denoted by vT . Derivatives with respect to the time t are indicated by
dots ( ˙ ). For the sake of clear arrangement, the abbreviation v̄ := (v, v̇) is set for
a function v and its first time derivative v̇.

If the two bodies are subjected to initial velocities or to volume, surface, or contact
forces, they will undergo some deformation when time proceeds and take on a new
configuration. Hence, each material particle x ∈ Ω of the bodies in the reference
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1. The Motion of the Human Knee as a Dynamical Contact Problem

configuration is assigned to a new position in the deformed configuration at time
t > 0. The time interval of interest is [0, T ]. In elasticity, the final position of every
point is usually described by the deformation function

ϕ : Ω × (0, T ] −→ R
d . (1.1)

The displacement field is defined by the relation

u : Ω × (0, T ] −→ R
d , u(x, t) := ϕ(x, t) − x . (1.2)

This quantity commonly plays the role of unknowns in solid mechanics. The situ-
ation is sketched in Figure 1.3. According to the notation for the two bodies, the
displacements (and their time derivatives) are decomposed via u := (uS,uM).

Ω

x
ϕ(x, t)

u(x, t)

Figure 1.3.: Deformations and displacements.

Next, a short description of the basic concepts of linear viscoelasticity will be
given, which will be utilized for modeling the mechanics of human bone and cartilage
under deformation.

Linear Viscoelasticity. When the human knee is subjected to real physiological
loadings, the bones typically undergo small deformations only. Hence, this thesis
deals with the linearized second-order strain tensor

ε(v) :=
1

2

(
∇v + (∇v)T

)
. (1.3)

By definition, the linearized strain is invariant under translations, but not under
rotations. In particular, this means that the model used in the following is not
invariant under rigid body motions: a deformation is called rigid if it is writable as
a combination of translation and rotation around the origin.

The deformation of the two bodies under consideration causes stresses, which are
described by the stress tensor σ. The link between stress and strain is given by
constitutive relations providing the specific properties of a material. A material is
called elastic, if the stress tensor at a point x ∈ Ω only depends on the gradient of

8



1.2. Basics of the Mathematical Model

the displacements at x at the same time and possibly on x itself. By contrast, the
stress tensor of viscous material depends on the gradient of the velocities. The term
viscoelasticity means that the material presents both elastic and viscous properties.
As justified in Section 1.1, bone and articulating cartilage can be assumed to consist
of linearly elastic and viscoelastic material, respectively.

In rheology, elastic behavior is described by springs, which are elements providing
a connection between stress and strain. Viscous behavior is modeled by dashpots,
which exhibit a connection between stress and strain rate. In general, these elements
can be combined in serial or in parallel [35]. Here, the latter construction is chosen.
This leads to the Kelvin-Voigt constitutive law, where stress and strain or strain rate
obey the linear relationship

σ(u, u̇) := E ε(u) + V ε(u̇) . (1.4)

The proportionality factors E and V denote the fourth-order elasticity tensor and
viscosity tensor characterizing the material, respectively (see, e.g., [35]). Both ten-
sors are assumed to be sufficiently smooth, bounded, symmetric, and uniformly
positive definite, i.e., there are constants E0, V0 > 0 such that

(Eζ, ζ) ≥ E0|ζ|2 (V ζ, ζ) ≥ V0|ζ|2 (1.5)

for all symmetric second-order tensors ζ = (ζij), where |ζ| = (
∑

i,j ζ2
ij)

1/2. If the
viscosity tensor vanishes, the constitutive law reduces to Hooke’s law as used for
purely linear elastic springs. If the elasticity tensor vanishes, the resulting linear
relation between stress and strain rate is called Newton’s law. If both tensors are
equal to zero, the deformation of the material is rigid.

If the elasticity and viscosity tensors do not explicitly depend on the material
point x ∈ Ω, i.e., if the material behaves the same at all points, the material is said
to be homogeneous. If the tensors are invariant under rotations of the coordinate
system for a fixed point x ∈ Ω, i.e., if the material shows the same behavior in
all directions, the material is called isotropic at x. For homogeneous and isotropic
materials, the stress tensor for pure elasticity or viscosity is fully specified by only
two material parameters via

σ = λ (trε) Id + 2µ ε ,

where Id denotes the identity and tr the trace of a tensor. Materials behaving like
this are named St. Venant-Kirchhoff materials. The constants λ > 0 and µ > 0 are
called Lamé parameters. For the elasticity tensor, the notation

E ε(u) =
Eν

(1 + ν)(1 − 2ν)
(trε(u)) Id +

E

1 + ν
ε(u) (1.6)

is more prevalently used in the engineering literature. The two parameters E > 0
and 0 < ν < 1/2 are called Young’s modulus and Poisson ratio of the material,

9



1. The Motion of the Human Knee as a Dynamical Contact Problem

respectively. For more information on elasticity see, e.g., [12, 16, 71]. The viscous
component is usually expressed via

V ε(u̇) =
(
µbulk −

2

3
µshear

)
(trε(u̇)) Id + 2µshear ε(u̇) (1.7)

with the shear viscosity µshear > 0 and the bulk viscosity µbulk > 0 [30].

Each of the domain boundaries ΓK := ∂ΩK , K ∈ {S, M} is assumed to be de-
composed into three pairwise disjoint open subsets via ∂ΩK = Γ̄K

C ∪ Γ̄K
N ∪ Γ̄K

C : ΓK
D ,

the Dirichlet boundary, ΓK
N , the Neumann boundary, and ΓK

C , the possible con-
tact boundary, see Figure 1.2. The actual contact boundary is an unknown of
the problem, but is assumed to be contained in a compact strict subset of ΓK

C . For
abbreviation, Γ∗ := ΓS

∗ ∪ΓM
∗ with ∗ ∈ {D, N, C} is set in the following. Each bound-

ary segment is assumed to be smooth, i.e., ΓK
∗ ∈ C0,1 (for a precise definition see,

e.g., [95]). Then, Rademacher’s theorem allows introducing an associated outward
directed normal vector νK

∗ ∈ L∞ almost everywhere on each of the boundaries, cf.,
e.g., [12].

At the possible contact interfaces ΓC , the bodies may come into contact but must
not penetrate each other. Therefore, the displacements have to fulfill a condition
modeling the geometric non-penetration. A suitable formulation for dynamical con-
tact between two bodies with curved surfaces is given below.

Non-penetration condition. The commonly employed linearized non-penetration
condition [24] exploits the simplifying assumption of small deformations again. For a
precise formulation of this constraint, assume the existence of a bijective and smooth
contact mapping

φ : ΓS
C −→ ΓM

C , (1.8)

which identifies a priori the two possible contact boundaries with each other, see
Figure 1.2. If the bijection φ is the identity, the contact surfaces coincide or one
surface is contained in the other. The initial gap function in between the two bodies
is defined as

g : ΓS
C −→ R , g(x) := |x − φ(x)| , (1.9)

and the corresponding normalized outward normal vector is given by

νφ(x) :=





φ(x) − x

|φ(x) − x| , if x 6= φ(x) , x ∈ ΓS
C ,

νS
C(x) = −νM

C (x) , if x = φ(x) , x ∈ ΓS
C .

(1.10)

With respect to the relative displacement in normal direction,

[u(x, t) · ν]φ :=
(
uS(x, t) − uM(φ(x), t)

)
· νφ(x) , x ∈ ΓS

C , t ∈ [0, T ] , (1.11)

10



1.3. Strong and Variational Problem

the linearized non-penetration condition is defined via

[u(x, t) · ν]φ ≤ g(x) , x ∈ ΓS
C , t ∈ [0, T ] . (1.12)

In the following, the linearized non-penetration condition is also called Signorini
contact condition for simplicity. Since the condition is formulated in terms of the
reference configuration solely, the contact constraints can be computed easily. How-
ever, tangential displacements are not taken into account such that geometric pen-
etration might occur.

If the assumption of small displacements is fulfilled, the possible contact bound-
aries on slave and master side are very close to each other, and the outer normals
can be regarded to differ only slightly: νS

C ≈ −νM
C ◦ φ ≈ νφ. Then, the linearized

contact condition (1.12) is a close approximation of the geometrical non-penetration
condition [24]. In this case, the quantity [u · ν]φ is called the jump of u in normal
direction at the contact interfaces.

1.3. Strong and Variational Problem

In this section, a frictionless dynamical contact problem between two linearly vis-
coelastic bodies satisfying the Kelvin-Voigt material law will be stated, which is
based on Signorini’s contact conditions. In a first step, the strong problem formu-
lation will be presented. Afterwards, the weak formulation will be introduced in
terms of a variational inequality.

Contact stresses. The boundary stresses are defined as

σ̂(u, u̇) := σ(u, u̇) · ν on Γ , (1.13)

and the contact stresses are given by

σ̂C(u, u̇) := σ̂(uS, u̇S) on ΓS
C . (1.14)

The normal and tangential components of the contact stresses are denoted by

σνφ
(u, u̇) := σ̂C(u, u̇) · νφ on ΓS

C (1.15)

and
σt(u, u̇) := σ̂C(u, u̇) − σνφ

(u, u̇) · νφ on ΓS
C , (1.16)

respectively.

With these definitions, the strong formulation of a two-body dynamical contact
problem can be given [23, 49]. The problem amounts to the solution of a partial
differential equation from elastodynamics with additional contact constraints.

11



1. The Motion of the Human Knee as a Dynamical Contact Problem

Strong problem formulation.

ρü− div σ(u, u̇) = ρf on Ω × [0, T ] (1.17a)

u = 0 on ΓD × [0, T ] (1.17b)

σ̂(u, u̇) = π on ΓN × [0, T ] (1.17c)

[u · ν]φ ≤ g on ΓS
C × [0, T ] (1.17d)

σ̂
(
uM ◦ φ, u̇M ◦ φ

)
= −σ̂

(
uS, u̇S

)
on ΓS

C × [0, T ] (1.17e)
(
[u · ν]φ − g

)
σνφ

(u, u̇) = 0 on ΓS
C × [0, T ] (1.17f)

σνφ
(u, u̇) ≤ 0 on ΓS

C × [0, T ] (1.17g)

σt(u, u̇) = 0 on ΓS
C × [0, T ] (1.17h)

u(0) = u0, u̇(0) = u̇0 on Ω (1.17i)

In the first instance, the problem consists of an equation of motion (1.17a) rep-
resenting the balance law of momentum or Newton’s second law. This equation is
second-order in time and formulated on the undeformed reference configuration Ω.
The density of external volume forces applied to the bodies is denoted by f . The
mass density is given by ρ > 0 and may generally vary with the material points
x ∈ Ω. In what follows, ρ = 1 is set for ease of presentation.

With regard to mixed boundary conditions, the body is clamped at the Dirichlet
boundaries ΓD, where vanishing Dirichlet values are prescribed, see (1.17b). On the
Neumann parts ΓN of the boundaries, surface tractions π are acting, cf. (1.17c).
The contact conditions are stated on the remaining contact boundaries ΓC , where
the two bodies may potentially get into contact. Bearing the non-penetration condi-
tion (1.12) in mind, the relative displacements in normal direction must not exceed
the normal gap between the two bodies, cf. (1.17d). This constraint is the only
primal contact condition arising in the problem.

The statement of the problem is accompanied by the dual conditions (1.17e)–
(1.17h) on the boundary stresses developed at the possible contact boundaries.
These stresses can be interpreted as the contact forces that are necessary to prevent
interpenetration of the two bodies. By reason of Newton’s second law, (1.17e) gives
the equilibrium of the contact stresses at contact interfaces. The complementarity
condition (1.17f) states that stresses in normal direction are only generated where
contact is occurring. Finally, normal contact stresses have to be compressive or
equal to zero, cf. (1.17g).

In a normal human knee joint, frictional effects at contact surfaces are negligible.
Hence, the tangential stresses are assumed to be equal to zero, cf. (1.17h), which
enables the bodies to move freely in tangential directions. The displacement and
velocity fields at initial time are prescribed via (1.17i).

Notations. Let L2(Ω
K) be the space of square-integrable functions with the vector-

valued counterparts L2(Ω
K) := (L2(Ω

K))d, and the corresponding product space

12



1.3. Strong and Variational Problem

L2(Ω) := L2(Ω
S) × L2(Ω

M ). The Sobolev space of weakly differentiable functions
with derivatives in L2(Ω) is denoted by H1(Ω). The topological dual space is in-
dicated as (H1)∗(Ω). Scalar products are written in the form (·, ·)L2

and (·, ·)H1

with induced norms ‖v‖2
L2

:= (v,v)L2
and ‖v‖2

H1 := (v,v)H1, respectively. For the
dual pairing, the notation 〈·, ·〉(H1)∗×H1 is used, and the operator norm on (H1)∗ is
written as ‖·‖(H1)∗ . For details concerning Sobolev spaces see, e.g., [5]. For given Ba-
nach space V and times t0 < t < ∞, let C([t0, t],V) be the continuous functions and
Ck([t0, t],V), k ∈ N the k-times continuously differentiable functions v : [t0, t] → V.
The space L2(t0, t;V) consists of all measurable functions v : (t0, t) → V for which

‖v‖2
L2(t0,t;V) :=

∫ t

t0

‖v(t)‖2
V

dt < ∞

holds. Identifying L2(Ω) with its dual space yields the evolution triple

H1(Ω) ⊂ L2(Ω) ⊂
(
H1

)∗
(Ω)

with dense, continuous, and compact embeddings. With this in mind, the Sobolev
space W1

2(t0, t;H
1,L2) means the set of all functions v ∈ L2(t0, t;H

1(Ω)) that have
generalized derivatives v̇ ∈ L2(t0, t; (H

1)∗(Ω)), cf., e.g., [93, Section 23.6].

Generalized boundary conditions. The weak formulation of the dynamical con-
tact problem requires to deal with generalized boundary conditions for H1(Ω)-
functions. For this aim, a precise meaning of extensions of such functions to spaces
of functions defined on the boundary segments ΓD, ΓN , and ΓC is needed. The clas-
sical trace theorem [94, Appendix, Application (49)] states that, if Γ ∈ C0,1, there
exists a linear, continuous, and surjective operator γ : H1(Ω) → H1/2(Γ) such that
γ(u) is the classical boundary function of u with respect to Γ for all u ∈ C1(Ω̄).
If u ∈ H1(Ω), γ(u) is called the trace of u. The trace is uniquely determined as
an element of the space L2(Γ), i.e., up to surface measure zero. Here, L2(Γ) is the
space of square-integrable functions on Γ. The definition of H1/2(Γ) can also be
found in [94]. In the following, (H1/2)∗(Γ) denotes the corresponding dual space,
and the dual pairing is written as 〈·, ·〉(H1/2)∗×H1/2 .

Let γ∗ be the surjective trace maps that associate v ∈ H1(Ω) with the restric-
tions γ∗(v) to H1/2(Γ∗). Then, the Dirichlet boundary conditions give rise to the
subspaces

H1
D(Ω) :=

{
v ∈ H1(Ω)

∣∣ γD(v) = 0 a.e. on ΓD

}
⊂ H1(Ω) . (1.18)

This is the set of functions in H1(Ω) that are zero on ΓD in the sense of traces.
The non-penetration condition (1.12) for contact problems of Signorini type affects

only points at the possible contact boundaries of the domains. Hence, the definition
of the set of admissible displacements in H1

D(Ω) has to make use of the trace operator

13



1. The Motion of the Human Knee as a Dynamical Contact Problem

γC on ΓC . Let g ∈ H1/2(ΓC) be a given positive gap function. Then, the solution
space for displacements of the weak dynamical contact problem is the admissible set

K :=
{
v ∈ H1

D(Ω)
∣∣ [γC(v) · ν]φ ≤ g a.e. on ΓC

}
⊂ H1(Ω) . (1.19)

The set is non-empty, closed, and convex due to the linearization of the contact
constraints. For the above definition of the admissible set, the possible contact
boundaries ΓC have to be contained strictly in Γ\ΓD. Otherwise, the space H1/2(ΓC)
is not appropriate for dealing with traces on ΓC since the surjectivity of the trace
operator from H1

D(Ω) to H1/2(ΓC) may be lost. This technical difficulty can be
resolved by introducing a special subspace of H1/2(ΓC). For more details see [49,69].

Generalized forces. The internal forces can be written as a bilinear form

a(v,w) :=
∑

i,j,k,l

∫

Ω

EK
ijmlv

K
i,jw

K
l,m dx =

∫

Ω

Eε
(
vK

)
: ε

(
wK

)
dx , v,w ∈ H1 (1.20)

for the elastic part and

b(v,w) :=
∑

i,j,k,l

∫

Ω

V K
ijmlv

K
i,jw

K
l,m dx =

∫

Ω

Vε
(
vK

)
: ε

(
wK

)
dx , v,w ∈ H1 (1.21)

for the viscous part. Both bilinear forms are bounded in H1, i.e.,

|a(v,w)| ≤ E∞‖v‖H1‖w‖H1 , v,w ∈ H1 (1.22)

and
|b(v,w)| ≤ V∞‖v‖H1‖w‖H1 , v,w ∈ H1 , (1.23)

where the constants E∞ and V∞ only depend on E and V , respectively. The bilinear
forms give rise to seminorms

‖ · ‖2
a := a(·, ·) , ‖ · ‖2

b := b(·, ·) . (1.24)

Since the elasticity and viscosity tensors are positive definite, cf. (1.5), Korn’s second
inequality (A.2) yields the ellipticity of the bilinear forms under the assumption that
ΓD has positive measure:

|a(v,v)| ≥ E0cK‖v‖2
H1 , v ∈ H1

and
|b(v,v)| ≥ V0cK‖v‖2

H1 , v ∈ H1 .

In this case, ‖ · ‖H1 and ‖ · ‖a or ‖ · ‖b are equivalent norms on H1.
For the data, assume that f(·, t) ∈ (H1)∗(Ω) and π(·, t) ∈ (H1/2)∗(ΓN) for almost

every t ∈ [0, T ], which accounts for the forces acting on the volume and the tractions
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1.3. Strong and Variational Problem

on the Neumann boundaries. The sum of the external forces is represented by the
linear functional

fext(v) := 〈f ,v〉(H1)∗(Ω)×H1(Ω) + 〈π, γN (v)〉H−1/2(ΓN )×H1/2(ΓN ) , v ∈ H1 . (1.25)

Moreover, it is convenient to write the sum of elastic and external forces as

〈F(w),v〉(H1)∗×H1 := a(w,v) − fext(v) , v,w ∈ H1 , (1.26)

and the viscoelastic forces as

〈G(w),v〉(H1)∗×H1 := b(w,v) , v,w ∈ H1 . (1.27)

Variational problem formulation. The weak formulation of the contact prob-
lem can be derived via integration by parts and exploiting the boundary condi-
tions [23, 49]. This leads to a hyperbolic variational inequality that can be written
as follows: for almost every t ∈ [0, T ], find u(·, t) ∈ K with u ∈ C([0, T ],H1) and
u̇ ∈ W1

2(0, T ;H1,L2) such that for all v ∈ K
〈ü,v − u〉(H1)∗×H1 + 〈F(u),v − u〉(H1)∗×H1 + 〈G(u̇),v − u〉(H1)∗×H1 ≥ 0 (1.28)

and
u(0) = u0 , u̇(0) = u̇0 . (1.29)

Alternatively, the variational problem can be defined on the whole space H1. To
this end, the constraints u(·, t) ∈ K are incorporated by the characteristic functional

IK(u) =

{
0 if u ∈ K
∞ else

, u ∈ H1 .

Then, the variational inequality (1.28) can equivalently be formulated as the varia-
tional inclusion

0 ∈ ü + F(u) + G(u̇) + ∂IK(u) (1.30)

utilizing the set-valued subdifferential ∂IK of IK (see, e.g., [26]). The subdiffer-
ential enforces the fulfillment of the non-penetration condition by penalizing any
inadmissible displacement with infinite energy.

For a given solution u of the variational inequality (1.28), the contact forces
Fcon(u) ∈ (H1)∗ are defined by

〈Fcon(u),v〉(H1)∗×H1 := 〈ü + F(u) + G(u̇),v〉(H1)∗×H1 , v ∈ H1 (1.31)

for almost every t ∈ [0, T ]. Upon exploiting (1.28),

〈Fcon(u),u− v〉(H1)∗×H1 ≤ 0 (1.32)

for v ∈ K, and comparing (1.30) and (1.31) shows that −Fcon(u) ∈ ∂IK(u).
Provided the solution u is sufficiently smooth, the equivalence of the strong and

variational formulation of the dynamical contact problem can be shown via inte-
grating by parts with suitable smooth test functions.
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1. The Motion of the Human Knee as a Dynamical Contact Problem

Initial conditions. The generalized derivative u̇ ∈ W1
2(0, T ;H1,L2) is only de-

termined up to changes on a set of measure zero on [0, T ]. Nevertheless, the initial
conditions (1.29) for the velocities are formulated in a meaningful way: since the em-
bedding W1

2(0, T ;H1,L2) ⊂ C([0, T ],L2) is continuous, cf. [94, Section 33.1], there
exists a uniquely determined representative u̇ ∈ C([0, T ],L2). The initial conditions
are to be understood in this sense.

Remark 1.3.1. In the simple case of pure elasticity and vanishing external forces,
a solution of the dynamical contact problem (1.30) can be regarded as a stationary
point of the action integral ∫ T

0

L(v(t), v̇(t)) dt

with the Lagrange functional

L(v, v̇) :=
1

2
‖v̇‖2

L2
− a(v,v) − IK(v) ∈ R ∪ {∞}

under suitable initial and boundary conditions [46, 70]. This principle can also be
generalized to the viscoelastic problem.

As shown, for instance, in [6], the unilateral contact problem between a viscoelastic
body and a rigid foundation has at least one weak solution. However, uniqueness and
well-posedness are still open questions for solutions of dynamical contact problems.

Notation. In the following, for tn, tn+1 ∈ [0, T ], the state of a solution ū = (u, u̇)
of (1.28) is represented by

u(tn+1) = Φtn+1,tn(u(tn), u̇(tn)) , u̇(tn+1) = Φ̇tn+1,tn(u(tn), u̇(tn)) (1.33)

with the evolution operator

Φ̄tn+1,tn = (Φtn+1,tn , Φ̇tn+1,tn) : H1 × L2 −→ H1 × L2 . (1.34)

1.4. Conservation Properties and Persistency

Condition

In the final section of this introductory chapter, the influence of the contact con-
straints on the conservation of energy, linear and angular momentum in the system
will be studied. In particular, the validity of a persistency condition for viscoelastic
problems will be discussed in comparison with the purely elastic case.
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Linear momentum. The linear momentum of a state ū = (u, u̇) is defined as

L(u̇) :=

∫

Ω

u̇(x) dx . (1.35)

In the case of non-vanishing external forces acting on the volume or stemming from
Neumann or Dirichlet boundaries, the linear momentum cannot be expected to be
constant in time. Excluding these situations, the linear momentum is a conserved
quantity of the system as shown in the following theorem (compare, e.g., [66]).

Theorem 1.4.1. The variational problem (1.28) with fext = 0 and ΓD = ∅ conserves
the linear momentum.

Proof. Let t0, t ∈ [0, T ] be arbitrary times, and w ∈ Ω a test function that is
constant in time and in space. Due to ü ∈ W1

2(0, T ;H1,L2), integration by parts
yields, cf. [93, Proposition 23.23],

(
L(u̇(t)) − L(u̇(t0))

)
· w

= (u̇(t) − u̇(t0),w)L2

=

∫ t

t0

〈ü(s),w〉(H1)∗×H1 ds

= −
∫ t

t0

〈F(u(s)),w〉(H1)∗×H1 ds −
∫ t

t0

〈G(u(s)),w〉(H1)∗×H1 ds

+

∫ t

t0

〈Fcon(u(s)),w〉(H1)∗×H1 ds

= −
∫ t

t0

(∫

Ω

Eε(u(s)) : ε(w) dx
)

ds −
∫ t

t0

(∫

Ω

Vε(u̇(s)) : ε(w) dx
)

ds

+

∫ t

t0

〈Fcon(u(s)),w〉(H1)∗×H1 ds ,

where the problem formulation (1.31) has been used. The first two terms are equal
to zero since ε(w) = 0 by definition. Second, [w · ν]φ = 0 such that w ∈ K and
−w ∈ K. Thus, the last term including the contact forces vanishes as well due
to (1.32). This gives the result of the theorem.

Angular momentum. The angular momentum of a state ū = (u, u̇) is defined as

J (ū) :=

∫

Ω

u× u̇ dx . (1.36)

In order to examine the conservation properties of the angular momentum, let the
external forces be central forces meaning that

∫
Ω
(f +π)×u dx = 0 for f , π ∈ L2(Ω).
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1. The Motion of the Human Knee as a Dynamical Contact Problem

Via integration by parts, the angular momentum at arbitrary times t0, t ∈ [0, T ]
tested with a constant function w ∈ Ω can formally be written as
(
J (ū(t)) − J (ū(t0))

)
· w

= (u(t) × u̇(t) − u(t0) × u̇(t0),w)L2

= (u̇(s),w × u(s))L2

∣∣∣
s=t

s=t0

=

∫ t

t0

〈ü(s),w × u(s)〉(H1)∗×H1 ds −
∫ t

t0

(w, u̇(s) × u̇(s)〉(H1)∗×H1 ds

= −
∫ t

t0

〈F(u(s)),w × u(s)〉(H1)∗×H1 ds −
∫ t

t0

〈G(u(s)),w × u(s)〉(H1)∗×H1 ds

+

∫ t

t0

〈Fcon(u(s)),w × u(s)〉(H1)∗×H1 ds

= −
∫ t

t0

(∫

Ω

Eε(u(s)) : ε(w × u(s)) dx
)

ds −
∫ t

t0

(∫

Ω

Vε(u̇(s)) : ε(w × u(s)) dx
)

ds

+

∫ t

t0

〈Fcon(u(s)),w × u(s)〉(H1)∗×H1 ds

by using definition (1.31). The first two integral terms are equal to zero by arguments
from tensor analysis, see [66]. Hence, it remains to verify that the contact term

∫ t

t0

〈Fcon(u(s)),w × u(s)〉(H1)∗×H1 ds

vanishes. In the presence of contact, this requires that [(w × u) · ν]φ = 0 almost
everywhere on [t0, t]. This condition is equivalent to [uS − uM(φ)]× νφ = 0 on ΓS

C .
Hence, the gap uS − uM ◦ φ has to be parallel to the normal vector νφ. However,
this parallelism cannot be expected to hold in general since the transfer operator
φ originates from the reference configuration. Instead, angular momentum conser-
vation needs the utilization of an evolution dependent surface-to-surface mapping.
Nevertheless, the linearized non-penetration condition is consistent with the over-
all modeling assumption of small deformations, where angular momenta are of less
importance.

Energy. In the context of evolution problems in elasticity, the total energy of a
state ū = (u, u̇) has the form

E(ū) := Ekin(u̇) + Epot(u) (1.37)

with the kinetic energy

Ekin(u̇) :=
1

2
‖u̇‖2

L2
(1.38)
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1.4. Conservation Properties and Persistency Condition

and the elastic potential energy

Epot(u) :=
1

2
‖u‖2

a . (1.39)

For problems in viscoelasticity, the additionally appearing viscous energy is induced
by means of

Evisco(u̇) := ‖u̇‖2
b . (1.40)

In the case of pure linear elasticity, the total energy of the system is in general
expected to be preserved throughout the evolution. However, up to now, energy
conservation could only be shown for one-dimensional problems, where the contact
boundaries reduce to a single point. In this case, the variation of total energy is
equal to the work of the external forces, which particularly means that the contact
forces do not contribute to any work [25, 68].

Persistency condition. In higher dimensions, a proof of energy conservation typ-
ically exploits the additional requirement

σνφ

d
dt

(
[γC(u) · ν]φ − g

)
= 0 on ΓS

C × [0, T ] , (1.41)

which is commonly known as persistency condition [66]. This condition states that
the relative velocities in normal direction have to be zero at active contact bound-
aries. The persistency condition is well-known to be sufficient for energy conserva-
tion, but widely disputed since the physical meaning is unclear [65].

Analyzing the proof in the later Theorem 1.4.3 shows that condition (1.41) can
be weakened to the generalized persistency condition

〈Fcon(u(t)), u̇(t)〉(H1)∗×H1 = 0 , a.e. t ∈ [0, T ] (1.42)

in function space. The validity of this condition is provable for solutions of the
viscoelastic problem. For this aim, the next theorem adopts the presentation for
unilateral contact problems in [6] and references therein.

Theorem 1.4.2. A solution of the variational problem (1.28) satisfies the general-
ized persistency condition (1.42).

Proof. Definition (1.31) of the contact forces and the continuity of the linearly vis-
coelastic forces, see (1.22) and (1.23), lead to

‖Fcon(u)‖L2(0,T ;(H1)∗)

≤ c
(
‖ü‖L2(0,T ;(H1)∗) + ‖F(u)‖L2(0,T ;(H1)∗) + ‖G(u)‖L2(0,T ;(H1)∗)

)

≤ c
(
‖ü‖L2(0,T ;(H1)∗) + ‖u‖L2(0,T ;H1) + ‖u̇‖L2(0,T ;H1)

)

< ∞
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1. The Motion of the Human Knee as a Dynamical Contact Problem

such that Fcon(u) ∈ L2(0, T ; (H1)
∗
). Since the generalized time derivative u̇ is con-

tained in L2(0, T ;H1), u̇(t) exists for almost every t ∈ [0, T ] even in the classical
sense by reason of the generalized main theorem of calculus (compare, e.g., [93, Prob-
lem 23.5]). If t is chosen such that Fcon(u(t)) and u̇(t) exists and condition (1.28)
holds, then

〈
Fcon(u(t)),

u(t + h) − u(t)

h

〉
(H1)∗×H1

{
≥ 0 if h > 0

≤ 0 if h < 0

and, for almost every t ∈ [0, T ],

〈Fcon(u(t)), u̇(t)〉(H1)∗×H1 = lim
h→0

〈
Fcon(u(t)),

u(t + h) − u(t)

h

〉
(H1)∗×H1

= 0 .

The above proof of the generalized persistency condition requires the velocities
to be sufficiently smooth, namely u̇ ∈ L2(0, T ;H1). This regularity assumption is
satisfied for solutions of the viscoelastic contact problem, but not for those of the
purely elastic problem in general. However, the following theorem shows that the
generalized persistency condition is necessary for energy conservation of dynami-
cal contact problems. This result only requires to exclude that the bodies under
consideration are exposed to external forces.

Theorem 1.4.3. The variational problem (1.28) with fext = 0 conserves the total
energy including the viscous energy.

Proof. Since ü ∈ W1
2(0, T ;H1,L2), integration by parts, cf. [93, Proposition 23.23],

and definition (1.31) of the variational problem lead to

E(ū(t)) − E(ū(t0))

=
1

2
‖u̇(t)‖2

L2
+

1

2
‖u(t)‖2

a −
1

2
‖u̇(t0)‖2

L2
− 1

2
‖u(t0)‖2

a

=

∫ t

t0

〈ü(s), u̇(s)〉(H1)∗×H1 ds +

∫ t

t0

a(u(s), u̇(s)) ds

= −
∫ t

t0

b(u̇(s), u̇(s)) ds +

∫ t

t0

〈Fcon(u(s)), u̇(s)〉(H1)∗×H1 ds .

Exploiting the generalized persistency condition of Theorem 1.4.2 in the last line of
this relation yields

E(ū(t)) +

∫ t

t0

Evisco(u̇(s)) ds = E(ū(t0)) .
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As a consequence of the above investigations, the conservation of linear momentum
and total energy and the validity of a discretized persistency condition will play
a major role for a suitable realization of numerical integration in the subsequent
chapter.
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2. Newmark Methods

In the last decades, a large variety of algorithms has been proposed for the numerical
solution of dynamical contact problems with Signorini’s conditions. However, all
these discretizations are uniform in space and in time, although adaptivity is strongly
needed for the efficient simulation of many practical applications. In particular,
adaptive mesh refinement is required at timepoints when contact is gained or lost
and at spatial points near varying active contact boundaries.

There are two principal choices for an adaptive spatiotemporal integration of
time-dependent partial differential equations (PDEs) [10,20,64]: the method of lines
(MOL), which is still the more popular one, and the method of time layers (MOT),
also known as Rothe method. As discussed below, the approaches differ in the
sequence of discretization. For equidistant grids in space and in time, the sequence
does not play a role by reason of commutativity.

MOL The method of lines is a wide-spread framework for the adaptive solution
of time-dependent PDEs, where discretization is performed first in space and
then in time. In general, this approach creates a large block-structured initial
value problem of ordinary differential equations (ODEs) (see the schematic
presentation in Figure 2.1, left). While adaptive time-stepping can be realized
as in the case of ODEs, an appropriate updating of the spatial mesh from
time to time is subject to severe limitations. Hence, the method of lines leads
to considerable and well-known difficulties with regard to adaptivity both in
space and in time.

MOT The method of time layers, first used by Rothe around 1930 [80], discretizes
first the time and then the space (see Figure 2.1, right). Around 1990, the
setting has been used by Bornemann to realize full adaptivity in space and time
for parabolic equations [9, 10]. Ten years later, Lang extended the approach
to nonlinear parabolic problems [64].

The underlying idea is to consider the time-dependent PDE as an abstract
Cauchy problem in an appropriate function space. The initial value problem
is virtually integrated by applying adaptive time-stepping schemes for ODEs in
function space, while the sequence of stationary PDEs is assumed to be solved
exactly. For an actual numerical realization, the elliptic boundary value prob-
lems in each timestep can be discretized efficiently by finite element methods.
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2. Newmark Methods

In contrast to the method of lines, this gives the possibility to refine the spa-
tial mesh adaptively over all time layers. From the analytical point of view,
the time integration is considered as perturbed by the numerical solution of
the elliptic subproblem. The magnitude of the perturbation can be controlled
independent of the time discretization by prescribing a certain accuracy (the
user-defined tolerance) to the finite element code.

x

t

x

t

Figure 2.1.: Left: method of lines, right: method of time layers (inspired by [20]).

The method of time layers naturally allows combining adaptive integration in time
with multigrid methods that are adaptive in space. Therefore, this setting is the
favored spatiotemporal discretization for the dynamical contact problem posed in
the previous chapter.

Many time-stepping schemes for dynamical contact problems are based on the
most popular numerical integrator in structural dynamics: the classical Newmark
method, which will be introduced in Section 2.1. However, in the presence of contact,
the scheme leads to spurious instabilities at dynamical contact boundaries and even
causes an uncontrollable behavior of the total energy during time integration. In
the last years, several variants of Newmark’s method have been designed to avoid
these deficits. An energy dissipative modification will be described in Section 2.2.
In Section 2.3, a contact–stabilization of this algorithm will be presented, which
additionally prevents artificial oscillations at contact interfaces. Finally, the contact–
stabilized Newmark method will be further improved with regard to a discrete per-
sistency condition in Section 2.4. In order to complete the theoretical analysis of the
four types of Newmark methods, in Section 2.5, the advantages and disadvantages
will be confirmed by numerical findings for a Hertzian contact problem.

In the method of time layers, the space discretization has no influence on the
time discretization apart from its perturbing character. From the algorithmic point
of view, this allows using a finite element code as a black box for time integration.
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2.1. Classical Newmark Method

Hence, only the semi-discretization in time is subject to the present thesis, while the
spatial discretization is mostly ignored. However, the main cause for the occurrence
of numerical instabilities in many Newmark methods is an undesirable interaction
of space and time discretization. Therefore, in this chapter, the space-time discrete
system will be examined.

Discretization in time. In order to fix notation, let the continuous time interval
[0, T ] be subdivided by N△ + 1 discrete timepoints

0 = t0 < t1 < · · · < tN△
= T

forming a mesh △ = {t0, t1, . . . , tN△
} on [0, T ]. In addition, let

τn = tn+1 − tn , n = 0, . . . , N△

denote the (not necessarily equidistant) timesteps. The discrete quantities un and
u̇n are assumed to be given by algorithmic approximations of the solution u(tn) and
the velocity u̇(tn).

Discretization in space. The discretization in space is realized by piecewise linear
finite elements. Let Ωh be a polyhedral domain partitioned into triangles or tetra-
hedra with h > 0 the maximal diameter, and let the sequence of triangulations be
shape regular. Denote the corresponding finite element space by Sh. In this setting,
Kh ⊂ Sh has to be understood as a discrete approximation of the set of admissible
displacements. If Nh denotes the set of vertices contained in Ωh ∪ Γh,N ∪ Γh,C , then
Kh means the set

Kh :=
{
vh ∈ Sh

∣∣ [vh · νh]φh
≤ gh ∀ p ∈ Nh ∩ Γh,C

}
, (2.1)

where νφh
, φh, and gh are suitable approximations of νφ, φ, and g. Details of the

spatial discretization are omitted here and can be found in [49, 56–58,90].

2.1. Classical Newmark Method

The most wide-spread time-stepping scheme for solving dynamical contact problems
is the family of classical Newmark methods as examined by Newmark in 1959 [76].
The algorithms form a subset of the Hilber-Hughes-Taylor (HHT) family of temporal
integrators, which are sometimes also called α-methods [40, 41].

The underlying concept of the discretizations are Taylor expansions of displace-
ments and velocities neglecting terms of higher order. For an arbitrary equation of
motion, the discrete evolution is described by the finite difference equations

un+1
h = un

h + τ u̇n
h +

τ 2

2

(
(1 − 2β)ün

h + 2βün+1
h

)

u̇n+1
h = u̇n

h + τ
(
(1 − γ)ün

h + γün+1
h

)
,

(2.2)

25



2. Newmark Methods

where τ is a given timestep and un
h, u̇n

h, and ün
h are approximations of u(tn), u̇(tn),

and ü(tn), respectively. The traditional algorithmic parameters γ, 2β ∈ [0, 1] de-
termine the stability and accuracy characteristics of the schemes [65, 79]. The
straightforward application of the Newmark integrators (2.2) to the variational in-
clusion (1.30) of the dynamical contact problem reads as follows.

Classical Newmark method (N-CL)h.

un+1
h,pred = un

h + τ u̇n
h

0 ∈ un+1
h − un+1

h,pred +
τ 2

2

(
F2β(un

h,u
n+1
h ) + G2β(u̇n

h, u̇
n+1
h ) − F̃2β

con(u
n
h,u

n+1
h )

)

u̇n+1
h = u̇n

h − τ
(
Fγ(un

h,un+1
h ) + Gγ(u̇n

h, u̇n+1
h ) − Fγ

con(u
n
h,u

n+1
h )

)
(2.3)

where, for ease of writing, the shorthand notations

Fλ(un
h,u

n+1
h ) := (1 − λ)F(un

h) + λF(un+1
h ) , λ ∈ [0, 1] (2.4)

and

F̃2β
con(u

n
h,u

n+1
h ) := (1 − 2β)Fcon(u

n
h) − 2β∂IKh

(un+1
h ) (2.5)

are introduced.
Clearly, implicit Newmark methods with 2β > 0 require the solution of a varia-

tional inclusion in the second line of (2.3) in each timestep. Once the problem is
solved, the contact forces Fcon(u

n+1
h ) are defined via

τ 2

2

〈
2βFcon(u

n+1
h ),vh

〉
:=

〈
un+1

h − un+1
h,pred +

τ 2

2

(
F2β(un

h,u
n+1
h ) + G2β(u̇n

h, u̇n+1
h )

− (1 − 2β)Fcon(u
n
h)

)
,vh

〉
, vh ∈ H1 . (2.6)

Hence, the contact forces Fγ
con(u

n
h,un+1

h ) entering in the algebraic expression for the
velocities in the third line of (2.3) are provided by the residual of the variational
inclusion in the second line.

Due to the high nonlinearity of the non-penetration constraints, the most expen-
sive part of the time discretization scheme is the solving of the variational problem.
The choice of a suitable algorithm will be discussed in Section 2.5.

For n > 0, the discrete displacements and velocities un
h and u̇n

h and the contact
forces Fcon(u

n
h) are known from the calculation of the previous timestep. In the first

step, u0
h and u̇0

h are given by the initial values of the variational problem (1.28). The
contact forces Fcon(u

0
h) are zero if no contact is detected at initial time. Otherwise,

a suitable approximation of this quantity is needed in the initial configuration.
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2.1. Classical Newmark Method

Trapezoidal rule. The Newmark family contains many well-known and widely-
used algorithms as special cases, which correspond to different available choices of
the parameters. The most popular member in structural dynamics applications is
the trapezoidal rule or average acceleration method, which is obtained by setting the
symmetric parameters 2β = γ = 1

2
[41,65,86]. The resulting scheme is an example for

an implicit integrator, and the second and the third line of algorithm (2.3) decouple
for viscoelastic materials, cf. Remark 2.2.1.

In the unconstrained case, the method is second-order consistent and uncondi-
tionally stable [65]. Moreover, linear momentum and total energy of the discrete
evolution are preserved, see [33, 65] for the purely elastic case. Proofs of these
conservation properties in viscoelasticity are presented in Theorem 2.4.1 and Theo-
rem 2.4.2. By reason of the excellent characteristics in the absence of contact, the
symmetric Newmark scheme is of great practical interest and prevalent in common
use in the community of computational mechanics. In the case of contact constraints,
however, the situation must be reexamined.

Conservation properties. Also in the presence of contact, the family of Newmark
integrators conserves the linear momentum of the discrete evolution. A proof in the
case of pure elasticity can be found in [59] for 2β = γ = 1

2
. This proof can easily

be transferred to arbitrary choices of parameters as well as linear viscoelasticity,
compare Theorem 2.4.1. As discussed in Section 1.4 for the continuous problem, the
angular momentum is not expected to be preserved by the discretized system.

The desirable energy conserving property in pure elasticity only holds in the case
of permanent contact, i.e., if the active contact boundaries do not change during
the timestep [65]: while the detection of a new contact point decreases the energy
of the discretized system, the release of an existing contact point increases the
energy. Unfortunately, loss and regain of energy do not balance such that the energy
cannot be guaranteed to remain bounded during time integration. In particular, an
unwanted energy blow-up may occur.

Artificial oscillations. Depending on parameter specification, the improper hand-
ling of the non-penetration condition by Newmark methods evokes instabilities at
contact boundaries. These show up as unwanted oscillations in displacements, ve-
locities, and contact stresses, see [19,59] and the numerical tests in Section 2.5. The
phenomenon, known as bouncing, can be attenuated by increasing γ to values larger
than 1/2 at the expense of degrading the order of accuracy.

Throughout this thesis, the trapezoidal rule with symmetric parameters is iden-
tified as classical Newmark method. This algorithm is chosen due to its valuable
numerical features in the unconstrained situation. A reliable time discretization
scheme should not trigger spurious oscillations during the phase of contact. In addi-
tion, a tight energy conservation should be achieved to guarantee a good long-time
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2. Newmark Methods

behavior of the discrete evolution. These demands have motivated the design of al-
ternative time integrators in the last years, which will be described in the following
sections.

2.2. Contact–Implicit Newmark Method

In order to overcome the poor energy conservation of the classical Newmark method,
Kane, Repetto, Ortiz, and Marsden [46] developed an energy-dissipative version of
the algorithm in 1999. For the purely elastic problem, they proposed a fully implicit
treatment of the contact forces by replacing the term F̃

1/2
con(un

h,un+1
h ) in the classical

scheme with the subdifferential ∂IK(un+1
h ). The generalization to viscoelasticity has

been given in [53] and can be found below.

Contact–implicit Newmark method (N-CI)h.

un+1
h,pred = un

h + τ u̇n
h

0 ∈ un+1
h − un+1

h,pred +
τ 2

2

(
F1/2(un

h,u
n+1
h ) + G1/2(u̇n

h, u̇n+1
h ) + ∂IKh

(un+1
h )

)

u̇n+1
h = u̇n

h − τ
(
F1/2(un

h,un+1
h ) + G1/2(u̇n

h, u̇n+1
h ) − Fcon(u

n+1
h )

)
(2.7)

where the contact forces Fcon(u
n+1
h ) are defined via

τ 2

2

〈
Fcon(u

n+1
h ),vh

〉
(H1)∗×H1

:=
〈
un+1

h − un+1
h,pred +

τ 2

2

(
F1/2(un

h,u
n+1
h ) (2.8)

+G1/2(u̇n
h, u̇

n+1
h )

)
,vh

〉

(H1)∗×H1
, vh ∈ H1 .

Remark 2.2.1. A simple calculation shows that for (N-CL)h and (N-CI)h

u̇n+1
h = u̇n

h +
2

τ

(
un+1

h − un+1
h,pred

)
= −u̇n

h +
2

τ

(
un+1

h − un
h

)
.

Hence, the viscoelastic part G1/2(u̇n
h, u̇n+1

h ) is identical to G
(

u
n+1

h −un
h

τ

)
, which results

in a decoupling of the second and the third line of the schemes.

Energy dissipativity. In contrast to (N-CL)h, the implicit handling of the non-
penetration constraints in (N-CI)h leads to energy dissipativity of the discrete evo-
lution in the presence of contact. If un+1

h is not in contact or if un+1
h is only in

contact where un
h has already been in contact, the algorithm is even energy con-

serving (including the viscous energy). Hence, the largest loss of energy is expected
when the two bodies get in contact for the first time, compare the numerical inves-
tigations in Section 2.5. Furthermore, the modification (N-CI)h still preserves the
linear momentum of the system. For pure elasticity, the conservation properties of
the scheme have been verified in [19]. The proofs can be transferred to viscoelasticity
as in Theorem 2.4.1 and in Theorem 2.4.2.
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2.3. Contact–Stabilized Newmark Method

Artificial oscillations. Unfortunately, the instabilities of (N-CL)h at contact in-
terfaces are still present in (N-CI)h, cf. [19] and the numerical computations in
Section 2.5. In view of the construction of a stable Newmark scheme in the follow-
ing section, a simple geometric argument is given here, which explains the origin of
the spurious oscillations for both (N-CL)h and (N-CI)h.

Assume that contact is found over several timesteps so that

un
h · νφh

= un+1
h · νφh

on ΓC,h .

Then, Remark 2.2.1 yields an undesirable reversion of the normal component of the
discrete velocities at contact boundaries:

u̇n+1
h · νφh

= −u̇n
h · νφh

+
2

τ

(
un+1

h − un
h

)
· νφh

= −u̇n
h · νφh

on ΓC,h (2.9)

(the formal calculation also holds for the tangential components). Therefore, new
contact points of (N-CL)h and (N-CI)h are likely to be detached in the next but one
timestep. The zigzagging of the velocities can be confirmed by numerical tests as
well, cf. Section 2.5.

2.3. Contact–Stabilized Newmark Method

In 2007, Deuflhard, Krause, and Ertel [19] designed a contact–stabilized variant of
the contact–implicit Newmark method in linear elasticity, which completely removes
the spurious oscillations at contact boundaries and is still energy dissipative in the
presence of contact. The generalization to the viscoelastic case has been devised
in [53].

The key idea for the achievement of the stabilization does not only originate from
the above geometric argument, but also from a physical reason for the oscillations
observed in (N-CL)h and (N-CI)h. In a dynamical contact problem, the contact
forces Fcon equilibrate the internal and external forces F+G on account of Newton’s
third law of motion [28]. For the construction of a time discretization scheme, this
translates to the physically reasonable requirement that the normal components of
the discrete forces balance at the contact interfaces, i.e.,

F1/2
(
un

h,u
n+1
h

)
· νφh

+ G
(un+1

h − un
h

τ

)
· νφh

= Fcon

(
un+1

h

)
· νφh

on ΓC,h . (2.10)

Discretization in space assigns a mass to the discrete boundaries, although they have
measure zero in the continuous problem. Thus, the contact forces in (N-CL)h and
(N-CI)h take effect on un

h + τ u̇n
h if this quantity causes penetration of the bodies.

In other words, the entries of the mass matrix at contact boundaries are transferred
into contributions to the contact forces without any physical meaning. Hence, the
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2. Newmark Methods

interaction of the discretization in space and time can be understood to be the main
cause for the undesirable oscillations in Newmark methods.

The lack of the force equilibrium (2.10) suggests the adding of a stabilization
procedure on the energy dissipative scheme (N-CI)h, which removes the unphysical
part of the discrete contact forces. The modification of Deuflhard et al. can easily
be incorporated into (N-CI)h by replacing the linear predictor step in the first line
of algorithm (2.7) by a special nonlinear one, while the remaining steps are left
unchanged. The contact–stabilized version of Newmark’s method reads as follows.

Contact–stabilized Newmark method (N-CS)h.

0 ∈ un+1
h,pred −

(
un

h + τ u̇n
h

)
+ ∂IKh

(
un+1

h,pred

)

0 ∈ un+1
h − un+1

h,pred +
τ 2

2

(
F1/2

(
un

h,un+1
h

)
+ G

(un+1
h − un

h

τ

)
+ ∂IKh

(
un+1

h

))

u̇n+1
h = u̇n

h − τ
(
F1/2

(
un

h,u
n+1
h

)
+ G

(un+1
h − un

h

τ

)
− Fcon

(
un+1

h

))
(2.11)

with contact forces

τ 2

2

〈
Fcon(u

n+1
h ),vh

〉
(H1)∗×H1

:=
〈
un+1

h − un+1
h,pred +

τ 2

2

(
F1/2

(
un

h,u
n+1
h

)
(2.12)

+G
(un+1

h − un
h

τ

))
,vh

〉

(H1)∗×H1
,vh ∈ H1 .

The additional variational inclusion in the predictor step can equivalently be writ-
ten as the convex minimization problem

min
vh∈Kh

∥∥vh − un
h − τ u̇n

h

∥∥
L2(Ωh)

. (2.13)

Hence, the contact–stabilized predictor can be considered as the L2-projection of
the standard predictor onto the discrete admissible set Kh in each timestep.

Due to the definition (2.1) of Kh, the discrete L2-projection requires the evaluation
of the normal trace of un

h + τ u̇n
h. The trace on contact boundaries is well-defined

for finite element functions in Sh, but not for arbitrary L2-functions. However, the
effect of the L2-projection vanishes if the spatial grid is refined, see Section 4.1, which
is another strong hint that the oscillations in (N-CL)h and (N-CI)h are caused by
the spatial discretization solely. In consequence, the discrete boundary mass causes
artificial oscillations at contact interfaces on the one hand, but allows removing the
oscillations by means of the discrete L2-projection on the other hand.

The projection is defined on the whole domain Ωh, while Kh only acts as a restric-
tion to the points at possible contact boundaries. Hence, during the predictor step,
the approximated solution may temporarily penetrate the interior of the domain,
although un+1

h,pred ∈ Kh is admissible in the sense of the definition of Kh. This is due
to the fact that the contact–stabilized predictor was not constructed to guarantee
non-penetration, but to achieve a force balance on the contact boundaries.
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2.3. Contact–Stabilized Newmark Method

Remark 2.3.1. If the L2-projection is realized with the full mass matrix, the con-
strained minimization problem can be solved with optimal complexity by using a
monotone multigrid method [57]. If a lumped mass matrix is used instead, the
variational inclusion is interpretable as a local projection onto the set of admissible
displacements. In this case, all unknowns decouple, and the nonlinear predictor step
can be carried out pointwise on the possible contact boundaries. Hence, the costs
for solving the additional variational problem are negligible and do not influence the
overall efficiency of the Newmark method.

Energy dissipativity. The contact–stabilized scheme (N-CS)h is still energy dissi-
pative in the presence of contact and energy conserving if un+1

h,pred and un+1
h are not

in contact (including the viscous energy). In addition, the energy of the discrete
evolution is preserved when the contact boundaries predicted by un+1

pred and un+1
h co-

incide with those given by un
h. Therefore, most of the total energy is expected to

be lost in the phase of detaching, which is in contrast to the behavior of (N-CI)h,
cf. Section 2.5. The energy conservation of (N-CS)h has been analyzed for the
purely elastic case in [19]. A corresponding result in viscoelasticity can be derived
by following the proof of Theorem 2.4.2. The linear momentum of the system is also
preserved, for a proof compare Theorem 2.4.1.

Avoidance of artificial oscillations and a discrete persistency condition. In
contrast to (N-CL)h and (N-CI)h, the validity of the force equilibrium (2.10) in
(N-CS)h immediately prevents the occurrence of spurious oscillations.

Assume that un+1
h,pred predicts un+1

h at the contact boundaries, i.e.,

un+1
h,pred · νφh

= un+1
h · νφh

on ΓC,h .

The update formula for the velocities, third line of algorithm (2.11), leads to

u̇n+1
h = u̇n

h +
2

τ

(
un+1

h − un+1
h,pred

)
.

This directly yields the conservation of the normal components of the velocities
during the phase of contact:

u̇n+1
h · νφh

= u̇n
h · νφh

+
2

τ

(
un+1

h − un+1
h,pred

)
· νφh

= u̇n
h · νφh

on ΓC,h . (2.14)

The relation corresponds to the discretized version (2.10) of Newton’s axiom of
equilibrium forces. As a result, the spurious oscillations in displacements and contact
forces disappear in (N-CS)h, see the numerical example in Section 2.5.

The constant velocities at active contact boundaries result in the relation
〈
Fcon(u

n+1
h ), u̇n+1

h

〉
(H1)∗×H1 =

〈
Fcon(u

n+1
h ), u̇n

h

〉
(H1)∗×H1 (2.15)
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2. Newmark Methods

if un+1
h,pred is in contact wherever un+1

h is in contact. Thus, (N-CS)h does not fulfill a
discrete persistency condition

Pn+1
h :=

〈
Fcon(u

n+1
h ), u̇n+1

h

〉
(H1)∗×H1 = 0 (2.16)

during phases of permanent contact as does the continuous problem, cf. Section 1.4.
For (N-CL)h and (N-CI)h, the sign of Pn+1

h is even alternating by reason of the
zigzagging (2.9) of the velocities. The observations signify the lack of a discrete
persistency condition for all three types of Newmark methods.

2.4. Improved Contact–Stabilized Newmark

Method

The violation of a discrete persistency condition by the previous Newmark methods
stimulates to improve the energy dissipative and contact–stabilized scheme, which
is the topic of the present section.

For space-time discretizations, condition (2.16) is only fulfilled at permanent ac-
tive contact boundaries if the normal components of the velocities vanish, i.e.,

u̇n+1
h · νφh

= 0 on ΓC,h if un
h · νφh

= un+1
h · νφh

on ΓC,h .

The contact–stabilization in (N-CS)h leads to constant velocities during phases of ac-
tive contact, cf. (2.14), but the values are not equal to zero. In order to overcome this
deficiency, the update formula for the velocities in the third line of algorithm (2.11)
has to be modified adequately. For this purpose, the contact–stabilized predictor
can be reused, which is interpretable as a correction of the discrete velocities of the
last step.

Improved contact–stabilized Newmark method (N-CS+)h.

0 ∈ un+1
h,pred −

(
un

h + τ u̇n
h

)
+ ∂IKh

(
un+1

h,pred

)

0 ∈ un+1
h − un+1

h,pred +
τ 2

2

(
F1/2

(
un

h,u
n+1
h

)
+ G

(un+1
h − un

h

τ

)
+ ∂IKh

(
un+1

h

))
(2.17)

u̇n+1
h = u̇n

h + Gcon

(
un+1

h,pred

)
− τ

(
F1/2

(
un

h,u
n+1
h

)
+ G

(un+1
h − un

h

τ

)
− Fcon

(
un+1

h

))

where the contact forces Fcon(u
n+1
h ) are defined by (2.12). In this spirit, the varia-

tional inclusion in the contact–stabilized predictor step is also characterized in terms
of some element Gcon(u

n+1
h,pred) ∈ ∂IKh

(un+1
h,pred) via

τ
(
Gcon(u

n+1
h,pred),vh

)
L2

:=
(
un+1

h,pred − un
h − τ u̇n

h,vh

)
L2

, vh ∈ L2 . (2.18)
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2.4. Improved Contact–Stabilized Newmark Method

The variational problem in the second line of (2.17) can equivalently be formulated
as the variational inequality

〈
Fcon(u

n+1
h ),un+1

h − vh

〉
(H1)∗×H1 ≤ 0 , ∀vh ∈ Kh , (2.19)

and the predictor step can be rewritten as

(
Gcon(u

n+1
h,pred),u

n+1
h,pred − vh

)
L2

≤ 0 , ∀vh ∈ Kh . (2.20)

Avoidance of artificial oscillations and fulfillment of a discrete persistency
condition. In contrast to the three previous Newmark methods, the suggested
modification (N-CS+)h of the contact–stabilized scheme enables vanishing normal
components of the velocities at contact boundaries: assume that contact is found
over several timesteps such that

un
h · νφh

= un+1
h,pred · νφh

= un+1
h · νφh

on ΓC,h .

Then, the modified update formula for the velocities in the third line of algo-
rithm (2.17) leads to

u̇n+1
h −

un+1
h,pred − un

h

τ
=

2

τ

(
un+1

h − un+1
h,pred

)
,

which directly yields the desired property

u̇n+1
h · νφh

=
un+1

h,pred − un
h

τ
· νφh

+
2

τ

(
un+1

h − un+1
h,pred

)
· νφh

= 0 on ΓC,h (2.21)

in the case of permanent active contact. Figure 2.2 shows a comparative illustration
of this issue for the four Newmark schemes under consideration.

As a consequence, the validity of a discrete persistency condition follows immedi-
ately:

Pn+1
h =

〈
Fcon(u

n+1
h ), u̇n+1

h

〉
(H1)∗×H1 = 0 on ΓC,h (2.22)

if un
h and un+1

h,pred are in contact wherever un+1
h is in contact. In particular, this

covers the situation of permanent active contact, but probably not the timestep
when contact is found initially. This leads to the conjecture that the poor energy
conservation of (N-CS)h is improved by (N-CS+)h in the phase of detaching, but
not when contact is detected for the first time. The conjecture will be verified by
the numerical tests in Section 2.5.

The new variant of Newmark’s method still preserves the linear momentum of the
system as proven in the following theorem.
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Figure 2.2.: Normal component of velocities at permanent active contact boundaries.
Top: (N-CL)h and (N-CI)h, middle: (N-CS)h, bottom: (N-CS+)h.

Theorem 2.4.1 (Linear momentum conservation). The improved contact–stab-
ilized Newmark method (N-CS+)h conserves the linear momentum if fext = 0 and
ΓD = ∅.

Proof. The change of the linear momentum in two successive timesteps is tested
against an arbitrary vector w ∈ H1 that is constant in space and in time. Inserting
the third line of (2.17) into this quantity yields

(
L(u̇n+1

h ) − L(u̇n
h)

)
· w

=
(
u̇n+1

h − u̇n
h,w

)
L2

= −τ
〈
F1/2(un

h,un+1
h ),w

〉
(H1)∗×H1 − τ

〈
G

(un+1
h − un

h

τ

)
,w

〉

(H1)∗×H1

+ τ
〈
Gcon(u

n+1
h,pred),w

〉
(H1)∗×H1 + τ

〈
Fcon(u

n+1
h ),w

〉
(H1)∗×H1

= −τ

∫

Ω

Eε
(un

h + un+1
h

2

)
: ε(w) dx− τ

∫

Ω

Vε
(un+1

h − un
h

τ

)
: ε(w) dx

+ τ
〈
Gcon(u

n+1
h,pred),w

〉
(H1)∗×H1 + τ

〈
Fcon(u

n+1
h ),w

〉
(H1)∗×H1 .

The first two terms vanish by the choice of the test function since ε(w) = 0. Due to
[w · νh]φh

= 0 on ΓC,h, both w ∈ Kh and −w ∈ Kh. Therefore, the last two terms
containing Gcon(u

n+1
h,pred) and Fcon(u

n+1
h ) are also equal to zero by reason of (2.19)

and (2.20), respectively. This leads to the wanted linear momentum conservation.

The next theorem shows that the modification of the velocity update in (N-CS+)h

does not change the energy dissipativity of the contact–stabilization in the presence
of contact.
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Theorem 2.4.2 (Energy dissipativity). Consider the improved contact–stabilized
Newmark method (N-CS+)h with fext = 0. If un+1

h,pred and un+1
h are not in contact,

the algorithm is energy conserving (including the viscous energy). If un+1
h,pred and un+1

h

are only in contact where un
h has already been in contact, the algorithm is also energy

conserving. Otherwise, the algorithm is energy dissipative.

Proof. Combining the second and the third line of algorithm (2.17) leads to

u̇n+1
h − u̇n

h =
2

τ

(
un+1

h − un+1
h,pred

)
+ Gcon

(
un+1

h,pred

)

u̇n+1
h + u̇n

h =
2

τ

(
un+1

h − un
h

)
− Gcon

(
un+1

h,pred

)
.

Thus, the change in kinetic and potential energy between two successive timesteps
can be written as

(
Ekin(u̇

n+1
h ) + Epot(u

n+1
h )

)
−

(
Ekin(u̇

n
h) + Epot(u

n
h)

)

=
1

2

(
u̇n+1

h − u̇n
h, u̇

n+1
h + u̇n

h

)
L2

+
1

2
a
(
un+1

h + un
h,u

n+1
h − un

h

)

=
2

τ 2

(
un+1

h − un+1
h,pred,u

n+1
h − un

h

)
L2

+
1

τ

(
Gcon(u

n+1
h,pred),u

n+1
h,pred − un

h

)
L2

− 1

2

(
Gcon(u

n+1
h,pred),Gcon(u

n+1
h,pred)

)
L2

+
〈
F1/2(un

h,u
n+1
h ),un+1

h − un
h

〉
(H1)∗×H1

= −
〈
G

(un+1
h − un

h

τ

)
,un+1

h − un
h

〉

(H1)∗×H1
+

〈
Fcon(u

n+1
h ),un+1

h − un
h

〉
(H1)∗×H1

+
1

τ

(
Gcon(u

n+1
h,pred),u

n+1
h,pred − un

h

)
L2

− 1

2

(
Gcon(u

n+1
h,pred),Gcon(u

n+1
h,pred)

)
L2

by using the third line of (2.17). If viscous energy is taken into account, the energy
balance is of the form

E
(
ūn+1

h

)
+ τEvisco

(un+1
h − un

h

τ

)
− E

(
ūn

h

)

=
〈
Fcon(u

n+1
h ),un+1

h − un
h

〉
(H1)∗×H1 +

1

τ

(
Gcon(u

n+1
h,pred),u

n+1
h,pred − un

h

)
L2

− 1

2

∥∥∥
un+1

h,pred − un
h

τ

∥∥∥
L2

.

By exploiting (2.19) and (2.20) with vh = un
h, the right-hand side of the expression

is less or equal to zero,

E
(
ūn+1

h

)
+ τEvisco

(un+1
h − un

h

τ

)
≤ E

(
ūn

h

)
,

which yields energy dissipativity of the scheme.
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(N-CL)h (N-M)h (N-CS)h (N-CS+)h

linear momentum conserved conserved conserved conserved

energy blow-up dissipative dissipative dissipative

contact instable instable stable stable

persistency condition no no no fulfilled

Table 2.1.: Comparison of the Newmark methods.

In Table 2.1, the numerical characteristics of the four Newmark methods are
summarized. Throughout this thesis, the improved contact–stabilized Newmark
method is the time integration scheme of interest due to its benefits.

2.5. Numerical Comparison

In the foregoing sections of this chapter, four variants of the Newmark method have
been presented, analyzed, and compared with regard to the most relevant physical
properties of the system. Now, a numerical study of the energy conservation, the
stability behavior, and the fulfillment of a discrete persistency condition will be
performed.

Stationary contact problems. The nonlinear variational problem in the second
line of the four Newmark methods can be rewritten as a static two-body contact
problem discretized in space, which is of the form

u ∈ Kh : J (u) ≤ J (v) ∀v ∈ Kh

with a quadratic functional

J (v) =
1

2
a(v,v) − l(v) ,

where a(·, ·) is a self-adjoint, positive definite bilinear form, and l is a linear func-
tional on Sh (cf., e.g., [57]). Constrained minimization problems of this type are
known to admit a unique solution [8, 36].

Stationary contact problems can be solved efficiently by using the adaptive mono-
tone multigrid methods developed by Kornhuber and Krause [55–58]. These meth-
ods discretize the problem without any regularization of the Signorini constraints
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2.5. Numerical Comparison

such that no algorithmic parameters have to be chosen. Moreover, the nonlinear
problems are solved with optimal multigrid complexity, i.e., at the cost of solving
a linear system of equations. Recently, the algorithm has been further improved
by Gräser and Kornhuber to the so-called truncated nonsmooth Newton multigrid
method (TNNMG) [29]. This solver enters the fast linear convergence speed al-
most immediately in practical applications. The resulting space-time discretization
provides stability, accuracy, and efficiency.

Algorithmic realization. The implementation of the different integration schemes
is carried out within the frame of the Distributed and Unified Numerics Environment
Dune [2]. For discretization in space, the finite element toolbox UG [3] is utilized.
The information transfer at the contact interfaces ΓC is realized by means of non-
conforming domain decomposition or mortar methods, see [89, 90]. Among the
possible solvers for variational inequalities, TNMMG is selected. For the L2-scalar
product, a lumped mass matrix is used, which reduces the cost for computing the
contact–stabilized predictor steps of (N-CS)h and (N-CS+)h, cf. Remark 2.3.1.

Hertzian contact. In 1882, Heinrich Hertz published one of the first works in clas-
sical contact mechanics [39], where he treated a static contact problem in elasticity.
Hertz considered two bodies pressed to each other, which have a symmetry such
that the problem effectively reduces to a two-dimensional geometry. In addition, he
assumed that the section of the contact surfaces through the plane perpendicular
to the symmetry axis is conic. His analytical computations of some characteristic
quantities can be applied to several special applications as, e.g., the contact of a cir-
cular cylinder, a half-cylinder, or a sphere with a rigid foundation. Such problems
are commonly referred to as Hertz-type or Hertzian contact [49].

Figure 2.3.: Computational mesh of the test problem.

In the following numerical comparison of the four Newmark methods, a Hertzian
contact in two space dimensions is selected as an illustrative test problem. The initial
configuration at time t0 = 0 is a semicircle with radius 0.15. The semicircle has an
initial distance 0.05 to a rigid plate in the horizontal and is moving downwards at
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2. Newmark Methods

speed u̇0 = (0,−1). The specifications of the elastic and viscous material parameters
are listed in Table 2.2. The underlying triangulation results from 5 refinement steps
of a coarse grid triangulation with 3 vertices. Within a circle of radius 0.08 around
the bottom of the semicircle, the grid is refined further two times. The computational
mesh is shown in Figure 2.3. A sixth circle of the boundary located at the bottom
is considered as the possible contact boundary. The remaining part of the boundary
is traction-free and no volume forces occur, i.e., fext = 0. For discretization in time,
the constant timestep τ = 5 · 10−4 is chosen, and the computations are carried out
until T = 0.015.

parameter value
Young’s modulus 104

Poisson ratio 0.3
shear viscosity 10−3

bulk viscosity 10−3

Table 2.2.: Material specifications of the test problem.

In the following, the properties of the four Newmark’s algorithms will be exam-
ined for the above test problem. The considered characteristics are the temporal
evolutions of the total energy, the number of active contact points, and the contact
forces and velocities at contact boundaries.

Total energy. Figure 2.4 illustrates the temporal evolution of the total energy of
the Newmark methods normalized to the initial energy of the system (including the
viscous energy). During the phase of contact, the classical scheme (N-CL)h produces
an energy blow-up of more than 50% together with appreciable oscillations. The
three variants (N-CI)h, (N-CS)h, and (N-CS+)h are dissipative in the presence of
contact with a slight energy loss of about 0.02%. Moreover, there is clear numeri-
cal evidence that the loss of energy stems from the variation of the active contact
boundary: for (N-CS)h, the largest energy dissipation is generated when the semi-
circle leaves the plate. In contrast, (N-CI)h and (N-CS+)h loose most energy in the
moment when the semicircle gets in contact with the plate for the first time. This
behavior is more in accordance with the mathematical and physical structure of the
problem since finding contact is much more nonlinear and irregular than detaching
contact. In the absence of contact, all Newmark methods preserve the total energy
of the system.

Active contact. In Figure 2.5, the number of active contact points is given over
a selective interval of time for all four Newmark methods. In more detail, this is
the number of vertices at boundaries where contact actually occurs. Although the
quantity should behave smooth, the classical scheme (N-CL)h generates numerous
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Figure 2.4.: Comparison of the total energy normalized to total energy at initial
time including viscous energy (grey: phase of contact).
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artificial oscillations (1232) in displacements. The dissipative modification (N-CI)h

produces a much more stable active contact boundary, but still exhibits some oscil-
lations (242). Only the contact–stabilized versions (N-CS)h and (N-CS+)h do not
show any spurious oscillations (0) on the whole time interval.

Contact forces. Figure 2.6 presents the normal components of the contact forces
evaluated at the south pole of the semicircle for the four Newmark methods. The
classical scheme (N-CL)h produces high artificial oscillations in the contact forces
during the whole phase of contact. The contact forces of (N-CI)h show extremely
large values in the initial phase of contact and a highly oscillatory zigzagging during
the remaining contact phase. The contact–stabilization in (N-CS)h and (N-CS+)h

clearly eliminates both the overshooting phenomenon and the spurious oscillations.

Velocities. A deeper insight into the origin of the undesirable instabilities in active
contact and in contact forces can be gained from Figure 2.7. Here, the normal
components of the velocities of (N-CI)h, (N-CS)h, and (N-CS+)h at the south pole
are plotted over a segment of timesteps. While the sign of the velocities of (N-
CI)h is zigzagging in every timestep, the contact–stabilization does not evoke any
artificial oscillations: once a node is in contact, the velocities of (N-CS)h remain the
same during the phase of contact. The improved variant (N-CS+)h even features
vanishing normal components of the velocities. This reflects the actual physical
behavior of the system.

Discrete persistency condition. In Figure 2.8, the time evolution of the discrete
quantity Ph introduced in (2.16) is plotted for all four types of Newmark’s method.
As expected by the investigations of the contact forces and velocities at the south
pole, the classical scheme (N-CL)h shows an extremely oscillatory behavior of this
quantity. The modification (N-CI)h produces a large peak in Ph when the bodies get
into contact followed by a zigzagging in the remaining contact phase. The evolution
of Ph for the contact–stabilization (N-CS)h is similar to the one of the contact force
at the south pole. Finally, the improved contact–stabilized method (N-CS+)h fulfills
the discrete persistency condition (2.16) over large phases of active contact.
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Figure 2.5.: Comparison of the number of active contact points (zoom).
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Figure 2.6.: Comparison of the normal components of the contact forces at the south
pole (grey: phase of contact).
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3. A Perturbation Result –

Viscosity and Physical Energy

Norm

In order to cope with the challenge of an efficient simulation of real life problems
as, e.g., the motion of the human knee, an adaptive control of timesteps for the
improved contact–stabilized Newmark method is desirable. Primarily, this purpose
requires a realistic estimation of the local discretization error within a problem-
adapted norm [18]. Hence, a necessary preparatory step is to find a norm in which
a perturbation result for dynamical contact problems can be expected. Such a
norm will moreover provide the basis for a proof of convergence of the improved
contact–stabilized Newmark method by applying the established proof technique for
discretizations of evolution problems by Hairer, Nørsett, and Wanner (also known
as “Lady Windermere’s Fan”, cf. [34]).

Unfortunately, results concerning the continuous dependence of dynamical contact
problems with Signorini conditions on the initial data are not yet existing in mathe-
matical literature, neither in the purely elastic nor in the viscoelastic case. The lack
of well-posedness results mainly originates from the Signorini contact conditions on
the unknown displacement field. The constraints lead to nonsmooth and nonlinear
variational inequalities of hyperbolic structure, which inhibit a general regularity of
the solution at contact interfaces and lead to shock waves after impacts. This causes
serious and unresolved mathematical difficulties in the analysis of these problems.

The present chapter is intended to be a first step towards the stability of dynam-
ical contact problems with Signorini conditions under perturbations of the initial
data [50, 51]. In Section 3.1, the essential mathematical problems in the derivation
of a perturbation result for linearly elastic bodies in the presence of contact will
be pointed out. To this end, the focus is on viscoelastic materials fulfilling the
Kelvin-Voigt constitutive law. In Section 3.2, a class of problems will be found that
satisfy a perturbation result in a non-trivial choice of mixed norms in function space.
This characterization will be given in form of a stability condition on the contact
stresses at the contact boundaries and will be interpreted in Section 3.3. Finally, in
Section 3.4, two well-established approximations of the classical Signorini condition
in linear viscoelasticity will be discussed, the Signorini condition formulated in ve-
locities and the model of normal compliance. Both problems are even satisfying a
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3. A Perturbation Result – Viscosity and Physical Energy Norm

sharper version of the stability condition, and a perturbation result can be proven
by application of the same techniques.

3.1. Elasticity

The first three sections of this chapter deal with the continuous dependence on the
initial data for dynamical contact problems with Signorini conditions in displace-
ments. In a first step, the classical contact problem in pure linear elasticity is under
consideration. Here, the fundamental difficulties with a characterization of a class
of problems satisfying a perturbation result will be analyzed.

The underlying mathematical model of dynamical contact between two linearly
elastic bodies based on Signorini’s contact conditions is formulated as follows (com-
pare Section 1.3 for the viscoelastic case). For almost every t ∈ [0, T ], find u(·, t) ∈ K
with ü(·, t) ∈ (H1)

∗ such that

〈ü,v − u〉(H1)∗×H1 + 〈F(u),v − u〉(H1)∗×H1 ≥ 0 , ∀ v ∈ K (3.1)

and
u(0) = u0, u̇(0) = u̇0 . (3.2)

The contact forces Fcon(u) ∈ (H1)∗ for a given solution u of this variational inequal-
ity are defined via

〈Fcon(u),v〉(H1)∗×H1 := 〈ü + F(u),v〉(H1)∗×H1 , v ∈ H1 (3.3)

for almost every t ∈ [0, T ].

Notation. Consider a quantity v and its perturbation ṽ. Then,

δv := v − ṽ . (3.4)

The study of stability starts with a formal derivation of a relation that describes
the dynamical behavior of an initial perturbation in the energy norm of the system.
Let u and ũ be two solutions of the linearly elastic contact problem (3.1) with
initial values u(0) = u0, u̇(0) = u̇0 and ũ(0) = ũ0, ˙̃u(0) = ˙̃u0. Assume that δu̇ is
contained in W1

2(0, T ;H1,L2), which may not be satisfied in general. Nevertheless,
integrating (1.31) from 0 to t with t ∈ [0, T ] and using v = δu̇ as a trial function
yields

t∫

0

〈ü(s), δu̇(s)〉(H1)∗×H1 ds +

t∫

0

a(u(s), δu̇(s)) ds

=

t∫

0

fext(δu̇(s)) ds +

t∫

0

〈Fcon(u(s)), δu̇(s)〉(H1)∗×H1 ds .
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After performing the same formal calculation with (1.31) for ũ instead of u, the
resulting equation for ũ can be subtracted from the equation for u above. The
linearity of the functional fext leads to

t∫

0

〈δü(s), δu̇(s)〉(H1)∗×H1 ds +

t∫

0

a(δu(s), δu̇(s)) ds

=

t∫

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗×H1 ds .

Under the regularity assumption δu̇ ∈ W1
2(0, T ;H1,L2) on the velocities and ac-

celerations, the left-hand side of the expression can be reformulated by applying
integration by parts in time (see, e.g., [93, Proposition 23.23]). The calculation
yields the following result.

Lemma 3.1.1. Let u and ũ be two solutions of (1.28) with initial values u(0) = u0,
u̇(0) = u̇0 and ũ(0) = ũ0, ˙̃u(0) = ˙̃u0, respectively. Furthermore, assume that
δu̇ ∈ W1

2(0, T ;H1,L2). Then, for all t ∈ [0, T ],

1

2
‖δu̇(t)‖2

L2
+

1

2
‖δu(t)‖2

a

=
1

2
‖δu̇0‖2

L2
+

1

2
‖δu0‖2

a +

t∫

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗×H1 ds .
(3.5)

In the absence of contact, the two left-hand terms and the first two right-hand
terms in (3.5) show the continuous dependence of the solution on the initial values.
In the presence of contact, this structure is disturbed by the additional contact term
on the right-hand side.

In order to gain some insight into this result, the focus is turned to the simpler
problem of ordinary differential equations. In this case, the impulsive constraint
forces Fcon concentrate at times when the (rigid) bodies collide, see Figure 3.1.
From the analytical point of view, these forces cannot be modeled as functions in
time anymore, but rather as distributions or measures.

From the numerical point of view, the given situation is treated in terms of ”switch-
ing functions“ used to identify ”switching points“ as their local zeros. Once these
points are determined, they can be used to restart the integration (cf., e.g., [18,
Chapter 8.2]). If such methods are not applied, a loss of regularity would occur even
in the ODE case. In the PDE case, each spatial point gives rise to a corresponding
switching time, which is why such a treatment cannot carry over. However, the
contact forces can still be expected to be very irregular.

In order to estimate the contact term, information on the time derivatives of
the displacements at the contact boundaries are needed. Unfortunately, a purely

47



3. A Perturbation Result – Viscosity and Physical Energy Norm

Figure 3.1.: Switching point for a trajectory in the ODE case.

elastic formulation is in general not capable of providing such information. This fact
originates from the underlying assumption that the dependence of internal stresses
on velocities can be neglected. Therefore, there is no way to define a class of elastic
contact problems just by demanding a kind of stability on the contact stresses. A
perturbation result for linearly elastic contact problems would necessarily require
estimates on the velocities at the contact boundaries.

Actually, the problem is linked to the additional regularity assumption on the
solutions, which is needed for the validity of Lemma 3.1.1. Due to the hyper-
bolic structure of purely elastic contact problems, the Signorini solutions are not
as smooth as the initial data allow. Therefore, in the following section, attention
will be directed to materials with viscoelastic behavior as they are commonly used
for modeling articular cartilage in the human knee joint (compare the introductory
Chapter 1).

3.2. Viscoelasticity

In this section, a class of linearly viscoelastic contact problems with Signorini con-
ditions will be characterized that satisfy continuous dependence on the initial data.
Under a stability condition on the contact stresses, a perturbation result in a special
mix of norms in function space will be proven.

Viscosity leads to higher regularity of the solutions, which justifies the formal
calculation for purely elastic problems as performed in Section 3.1. Furthermore,
viscoelastic models are in general capable of providing information on the time
derivatives of the solutions at the contact boundaries.

At first, a result for the viscoelastic problem will be given that corresponds to
Lemma 3.1.1 in the purely elastic case.

Lemma 3.2.1. Let u and ũ be two solutions of (1.28) with initial values u(0) = u0,
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3.2. Viscoelasticity

u̇(0) = u̇0 and ũ(0) = ũ0, ˙̃u(0) = ˙̃u0, respectively. Then, for all t ∈ [0, T ],

1

2
‖δu̇(t)‖2

L2
+

1

2
‖δu(t)‖2

a +

t∫

0

‖δu̇(s)‖2
b ds

=
1

2
‖δu̇0‖2

L2
+

1

2
‖δu0‖2

a +

t∫

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗×H1 ds .

Proof. As in the purely elastic case, the viscoelasticity equations (1.28) for u and ũ

are integrated from 0 to t and tested with v = δu̇. Then, subtracting one from the
other gives

t∫

0

〈δü(s), δu̇(s)〉(H1)∗×H1 ds +

t∫

0

a(δu(s), δu̇(s)) ds +

t∫

0

b(δu̇(s), δu̇(s)) ds

=

t∫

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗×H1 ds

due to the linearity of the external forces. Integration by parts (see, e.g., [93, Propo-
sition 23.23]) leads to the expression of the lemma.

This result motivates the introduction of the following mix of norms in function
space.

Physical energy norm. For a function v̄ = (v, v̇) : [t, t + τ ] → H1 × L2 with
v̇ ∈ L2(t, t + τ ;H1), define

‖v̄‖2
E(t,τ) := ‖v̄(t + τ)‖2

E +

t+τ∫

t

‖v̇(s)‖2
b ds (3.6)

in terms of the reduced norm

‖v̄(t + τ)‖2
E :=

1

2
‖v̇(t + τ)‖2

L2
+

1

2
‖v(t + τ)‖2

a . (3.7)

Obviously, this norm may be interpreted as a sum of the kinetic energy, mea-
sured in L2, and the potential energy, measured in the usual energy norm in H1,
including the viscoelastic part. Therefore, it will be called the physical energy norm
throughout this thesis.

Even in the case of linear viscoelasticity, the dynamical contact problem with
Signorini conditions in displacements may be ill-posed in the presence of contact.
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Hence, a characterization of problems will be given for which the continuous de-
pendence of the solutions on the initial values holds. The result presented in the
lemma above shows that a stability condition is necessary for the time integral over
the contact forces applied to the velocities. The perturbations in displacements and
velocities will be measured in the canonical norm on L2(0, T ;H1).

Stability condition. Let

∣∣∣
t∫

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗×H1 ds
∣∣∣

≤ ε
(
κ‖δu‖L2(0,t;H1) + ‖δu̇‖L2(0,t;H1)

)
‖δu̇‖L2(0,t;H1)

(3.8)

hold for all t ∈ [0, T ] with ε ≥ 0 sufficiently small and κ ≥ 0.

The precise meaning of the requirement “ε sufficiently small” will be given in the
following perturbation theorem. The validity of this demand will be found to be
absolutely fundamental for the derivation of a perturbation result in the viscoelastic
case. The stability condition on the contact forces is formulated in integrals over
time, and hence, the assumption does not have a meaning for every single timepoint.
Especially, this is true for the basic requirement that ε is small. A detailed interpre-
tation and motivation of the stability condition will be presented in the following
Section 3.3.

For the class of viscoelastic problems satisfying the stability condition above, the
following perturbation result holds.

Theorem 3.2.2. Let ū = (u, u̇) and ¯̃u = (ũ, ˙̃u) be two solutions of (1.28) with
initial values u(0) = u0, u̇(0) = u̇0 and ũ(0) = ũ0, ˙̃u(0) = ˙̃u0, respectively. Further-
more, assume the stability condition (3.8) with ε

V0 cK
< 1. Then, for all t ∈ [0, T ],

‖δū(t)‖2
E + α

t∫

0

‖δu̇(s)‖2
b ds ≤

(
‖δū0‖2

E + ct‖δu0‖2
L2

)
· eκ̃2t (3.9)

with α ∈ [0, 1), c ≥ 0, and κ̃ ≥ 0.

Remark 3.2.3. If the Dirichlet boundaries do not vanish, i.e., if meas(ΓD) > 0, or
if a part of the contact boundaries is active in the whole time interval [0, T ], then

‖δū(t)‖2
E + α

t∫

0

‖δu̇(s)‖2
b ds ≤ ‖δū0‖2

E · eκ̃2t . (3.10)

In this case, the propagated perturbation of the solution measured in physical energy
norm does no longer depend on the initial perturbation of the displacements in L2-
norm [51].
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Proof. By means of Lemma 3.2.1, the stability condition (3.8) leads to

‖δū(t)‖2
E +

t∫

0

‖δu̇(s)‖2
b ds

≤ ‖δū0‖2
E +

∣∣∣
t∫

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗×H1 ds
∣∣∣

≤ ‖δū0‖2
E + εκ‖δu‖L2(0,t;H1)‖δu̇‖L2(0,t;H1) + ε‖δu̇‖2

L2(0,t;H1)

for all t ∈ (0, T ). For an arbitrary parameter α < 1, Young’s inequality in the form

ab ≤ 1

4 V0 cK (1 − α)
a2 + V0 cK (1 − α) b2

gives

‖δū(t)‖2
E +

t∫

0

‖δu̇(s)‖2
b ds

≤ ‖δū0‖2
E +

ε2κ2

4 V0 cK (1 − α)
‖δu‖2

L2(0,t;H1) + (ε + V0 cK (1 − α)) ‖δu̇‖2
L2(0,t;H1) .

For almost every t > 0, the velocities u̇(t) and ˙̃u(t) are contained in H1 with a trace
on the boundary. If meas(ΓD) > 0 or if a part of the contact boundaries remains
active in the time interval, then δu(t) = 0 leads to δu̇(t) = 0 for almost every t on
the segment of the boundaries. Thus, the simplified Korn’s inequality (A.2) can be
applied [51]. In the general case, inequality (A.1) and the estimate (1.5) yield

‖δū(t)‖2
E +

t∫

0

‖δu̇(s)‖2
b ds

≤ ‖δū0‖2
E +

ε2κ2

4 V0 c2
K (1 − α)

t∫

0

( 1

E0

‖δu(s)‖2
a + ‖δu(s)‖2

L2

)
ds

+
( ε

cK

+ V0 (1 − α)
) t∫

0

( 1

V0

‖δu̇(s)‖2
b + ‖δu̇(s)‖2

L2

)
ds ,
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which is equivalent to

‖δū(t)‖2
E + α̃

t∫

0

‖δu̇(s)‖2
b ds

≤ ‖δū0‖2
E +

c

2 E0

t∫

0

‖δu(s)‖2
a ds +

c

2

t∫

0

‖δu(s)‖2
L2

ds + V0(1 − α̃)

t∫

0

‖δu̇(s)‖2
L2

ds

with constants

α̃ = α − ε

V0 cK
, c =

ε2κ2

2 V0 c2
K (1 − α)

.

In order to ensure the non-negativity of the integral term on the left-hand side, let
ε be such small that ε

V0 cK
< 1 and choose α < 1 such that α̃ ≥ 0. The inequalities

of Young and Hölder lead to

‖δu(s)‖2
L2

=
∥∥∥δu(0) +

∫ s

0

δu̇(η) dη
∥∥∥

2

L2

≤
(
‖δu(0)‖L2

+

∫ s

0

‖δu̇(η)‖L2
dη

)2

≤ 2
(
‖δu(0)‖2

L2
+

(∫ s

0

‖δu̇(η)‖L2
dη

)2)

≤ 2
(
‖δu(0)‖2

L2
+ s

∫ s

0

‖δu̇(η)‖2
L2

dη
)

and

‖δū(t)‖2
E + α̃

t∫

0

‖δu̇(s)‖2
b ds

≤ ‖δū0‖2
E + ct‖δu0‖2

L2
+

c

2 E0

t∫

0

‖δu(s)‖2
a ds +

(
ct2 + V0(1 − α̃)

)
t∫

0

‖δu̇(s)‖2
L2

ds .

This yields

‖δū(t)‖2
E + α̃

t∫

0

‖δu̇(s)‖2
b ds ≤ ‖δū0‖2

E + ct‖δu0‖2
L2

+ κ̃2

t∫

0

‖δū(s)‖2
Eds

with
κ̃2 = max

( c

2 E0
, cT 2 + V0(1 − α̃)

)
.
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3.3. Interpretation of the Stability Condition

Note that u ∈ C([0, T ],H1) and u̇ ∈ C([0, T ],L2). Together with Lebesgue’s theo-
rem of calculus (cf., e.g., [94, Appendix, Application (25c)]) and u̇ ∈ L2(0, T ;H1),
this fact gives the continuity of the left-hand side with respect to t ∈ [0, T ]. Now,
the result of the theorem is a direct consequence of Gronwall’s lemma as presented
in Appendix A.

The perturbation theorem given above is the main result of this section and sug-
gests to use viscoelastic modeling throughout this thesis. Coming back to dynamical
contact problems in the context of orthopaedic surgery planning mentioned in the
introduction (the motion of the knee), cartilage may be interpreted as the nature’s
reflection of the above mathematical insight.

3.3. Interpretation of the Stability Condition

In order to interpret and to motivate the stability condition (3.8), the first aim is
to localize the contact stresses on a segment of the possible contact boundaries. On
the basis of such a localization, a sufficient criterion for the validity of the stability
condition will be given.

The considerations are motivated by the intuition that perturbations in the con-
tact forces are effective only on a small part of the contact boundaries, namely where
the original solution is in contact and the perturbed is not, or vice versa. However,
due to the lack of regularity of the solutions, the following presentation is more
a heuristic argumentation rather than a rigorous proof. For simplification, let the
possible contact boundaries and the bijective mappings between the two possible
contact boundaries coincide, i.e., ΓC = Γ̃C and φ = φ̃. This is the case of interest
with regard to the analysis of the global discretization error in Chapter 5 and in
Chapter 6.

In a first step, the purpose is to conceptualize the part of the possible contact
boundaries where the solution of the dynamical contact problem (1.28) is actually
in contact. For almost every t ≥ 0, the natural definition of the active contact
boundaries of a displacement u is

ΓC(t) =
{
x ∈ ΓC

∣∣ [u · ν]φ = g
}
⊂ ΓC .

In the general case, the lack of regularity results for dynamical contact problems
prohibits the introduction of actual contact boundaries in this way. This is due to
the fact that definition (1.19) of the admissible set only yields a non-penetration
condition up to boundary sets of measure zero. Hence, the definition above neces-
sitates the additional assumption that the solution is continuous on the possible
contact boundaries, which is satisfied, e.g., if u ∈ L2(0, T ;H2(Ω)) (for a definition
of this space see, e.g., [5, 93]). A general definition of segments of the boundaries
requires a more subtle mathematical approach.
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The key for understanding the local behavior of functions in H1(Ω) is the concept
of (Sobolev) capacity. The elements in the Sobolev space are equivalence classes of
functions that agree almost everywhere in Ω. By using the notion of capacity, the
almost everywhere equivalence can be refined.

Sobolev capacity. Let E be a subset of R
d, and

S(E) :=
{
u ∈ H1(Rd)

∣∣u = 1 on an open set containing E
}

. (3.11)

Then, the Sobolev capacity of E is defined as

cap(E) := inf
u∈S(E)

‖u‖2
H1(Rd) ∈ [0,∞] . (3.12)

A property is said to hold quasieverywhere, abbreviated q.e., if it holds except on a
set E ⊂ Ω of capacity zero. It easily follows from the Poincare inequality that each
set of capacity zero has Lebesgue measure zero as well. For each u ∈ H1(Ω), there is
a function v ∈ H1(Ω) such that u = v almost everywhere, and v is quasicontinuous,
i.e., v is continuous when restricted to a set whose complement has arbitrary small
capacity. This quasicontinuous representative is unique up to a set of capacity zero.
For details concerning Sobolev capacity see, e.g., [38].

By means of the notion of capacity, the item of active contact boundaries for
dynamical contact problems can be introduced as follows.

Active contact boundaries. For almost every t ≥ 0, the active contact boundaries
of a solution u of (1.28) are defined as

ΓC(t) :=
{
x ∈ ΓC

∣∣ [u · ν]φ = g
}

q.e. (3.13)

or
Γ̃C(t) :=

{
x ∈ ΓC

∣∣ [ũ · ν]φ = g
}

q.e. (3.14)

for a perturbed solution ũ.

The critical part of the actual contact boundaries means the set where the solution
is in contact and the perturbed solution is not, or vice versa, see Figure 3.2.

Critical contact boundaries. The critical contact boundaries are given by the
symmetric difference

Γ∗
C(t) := (ΓC(t) ∪ Γ̃C(t)) \ (ΓC(t) ∩ Γ̃C(t)) (3.15)

for almost every t ≥ 0. This set can equivalently be written as

Γ∗
C(t) =

{
x ∈ ΓC

∣∣ [u(t) · ν]φ < g, [ũ(t) · ν]φ = g or

[u(t) · ν]φ = g, [ũ(t) · ν]φ < g
}

q.e.
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Figure 3.2.: Critical contact boundaries Γ∗
C(t).

Localization of contact stresses. Using the preliminary definitions, the difference
of the contact forces is intended to be written as an operator acting on the critical
contact boundaries Γ∗

C(t) only, i.e.,

∫ t

0

〈δFcon(u(s)), δu̇(s)〉(H1)∗(Ω)×H1(Ω) ds

= 〈δσ̂∗(u, u̇), δu̇〉L2(0,t;(H1/2)∗(Γ∗

C(s)))×L2(0,t;H1/2(Γ∗

C(s)))

(3.16)

for all t ≥ 0 with a functional δσ̂∗(u, u̇) ∈ L2(0, t; (H
1/2)∗(Γ∗

C(s))). The proof of
this representation is based on a trace theorem that generalizes the definition of the
normal stresses. Several formulations of such a theorem can be found, e.g., in [7]
and [49]. Under less strict assumptions, a generalized version of the theorem will be
derived in Appendix B. Here, only a brief sketch how to validate (3.16) is given due
to the technicality of the proof.

The first idea of the argumentation is the fact that the support of the contact forces
is given by the union ΓC(t) ∪ Γ̃C(t) of the actual contact boundaries. This yields
a representation of the contact forces via a functional in L2(0, T ; (H1/2)∗(ΓC(t) ∪
Γ̃C(t))). In a second step, the reduction of the contact forces onto the critical subset
Γ∗

C(t) is motivated in analogy to the persistency condition in Section 1.4: if it holds
[δu(t)·ν]φ = 0 on ΓC(t)∩Γ̃C(t), then even [δu̇(t)·ν]φ = 0 for almost every t. Under
the additional regularity assumption div σ(u, u̇), div σ(ũ, ˙̃u) ∈ L2(0, T ;L2(Ω)), the
trace theorem mentioned above gives a representation of the contact forces in the
form (3.16).

By means of the localization of the contact stresses, Lemma 3.2.1 can be refor-
mulated in the following way.

Lemma 3.3.1. Let ū = (u, u̇) and ¯̃u = (ũ, ˙̃u) be two solutions of (1.28) with initial
values u(0) = u0, u̇(0) = u̇0 and ũ(0) = ũ0, ˙̃u(0) = ˙̃u0, respectively. Furthermore,
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‖δū(t)‖2
E +

t∫

0

‖δu̇(s)‖2
b ds

= ‖δū0‖2
E + 〈δσ̂∗(u, u̇), δu̇〉L2(0,t;(H1/2)∗(Γ∗

C(s)))×L2(0,t;H1/2(Γ∗

C(s))) .

(3.17)

Using this new representation of the integral term on the right-hand side, a variant
of the original stability condition (3.8) on the contact stresses can be found.

Localized stability condition. Let

‖δσ̂∗(u, u̇)‖L2(0,t;(H1/2)∗(Γ∗

C (s))) ≤ ε
(
κ‖δu‖L2(0,t;H1(Ω)) + ‖δu̇‖L2(0,t;H1(Ω))

)
(3.18)

hold for all t ∈ [0, T ] with ε ≥ 0 sufficiently small and κ ≥ 0.

In order to show that the stability condition (3.18) is reasonable, the special case
of quasistatic contact problems in viscoelasticity will be discussed.

Quasistatic contact problems. This type of problems results from the dynamical
contact problem (1.28) by setting

ü = 0 ,

which yields the following problem formulation in the form of a variational inequal-
ity: for almost every t ∈ [0, T ], find u(·, t) ∈ K with u(·, t) ∈ C([0, T ],H1) and
u̇ ∈ L2(0, T ;H1) such that

〈F(u),v − u〉(H1)∗×H1 + 〈G(u̇),v − u〉(H1)∗×H1 ≥ 0 , ∀ v ∈ H1 (3.19)

and
u(0) = u0, u̇(0) = u̇0 . (3.20)

The corresponding contact forces Fcon(u) ∈ (H1)∗ are given by

〈Fcon(u),v〉(H1)∗×H1 := 〈F(u),v〉(H1)∗×H1 + 〈G(u̇),v〉(H1)∗×H1 , v ∈ H1 (3.21)

for almost every t ∈ [0, T ].
If the contact forces can be characterized as stresses on the active contact bound-

aries, i.e.,

‖δFcon(u)‖L2(0,t;(H1)∗(Ω)) = ‖δσ̂(u, u̇)‖
L2(0,t;(H1/2)∗(ΓC(s)∪Γ̃C (s)))

for all t ∈ [0, T ], then the definition (3.21) of the contact forces and the continuity
of the linearly viscoelastic forces, cf. (1.22) and (1.23), directly lead to

‖δσ̂(u, u̇)‖
L2(0,t;(H1/2)∗(ΓC (s)∪Γ̃C(s)))

≤ c
(
‖δF(u)‖L2(0,t;(H1)∗(Ω)) + ‖δG(u̇)‖L2(0,t;(H1)∗(Ω))

)

≤ c
(
‖δu‖L2(0,t;H1(Ω)) + ‖δu̇‖L2(0,t;H1(Ω))

)
.
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Moreover, assume that

‖δσ̂∗(u, u̇)‖L2(0,t;(H1/2)∗(Γ∗

C(s))) ≤ ε‖δσ̂(u, u̇)‖
L2(0,t;(H1/2)∗(ΓC(s)∪Γ̃C(s)))

is satisfied for all t ∈ [0, T ] with ε small. This yields the perturbation estimate

‖δσ̂∗(u, u̇)‖L2(0,t;(H1/2)∗(Γ∗

C(s))) ≤ ε c
(
‖δu‖L2(0,t;H1(Ω)) + ‖δu̇‖L2(0,t;H1(Ω))

)
. (3.22)

In the quasistatic case, the validity of the localized stability condition is found
to be equivalent to the requirement that “ε is sufficiently small” for all t ∈ [0, T ].
This condition corresponds to the intuition that, for small perturbations, the critical
part of the actual contact boundaries is only a small part of the possible contact
boundaries. The requirement is formulated for an integral over time, which cannot
be referred to every single timepoint in general. Thus, the critical part of the actual
contact boundaries only needs to be small for almost every timepoint, but points of
exception may arise.

The characterization of a class of viscoelastic contact problems suggested above
seems to be reasonable at least in the case of a small variation in the velocities.
Thus, if the dynamical problem shows a behavior similar to the one of the qua-
sistatic problem, continuous dependence on the initial data might be satisfied in the
viscoelastic case.

3.4. Approximations of the Signorini Condition

In the last section of this chapter, two well-established approximations of the vis-
coelastic contact problem with the classical Signorini condition in displacements will
be discussed, which have been suggested in the recent years.

Jarušek and Eck investigated dynamical contact problems with unilateral contact
constraints formulated on the field of velocities instead of displacements (see, e.g.,
[43, 45] for solvability and the monograph [25]). This approach leads to a much
simpler mathematical structure due to the monotonicity of the corresponding multi-
valued contact operator. Unfortunately, employing the Signorini contact conditions
in velocities describes the physical behavior correctly only in a short period of time.
Once the two bodies have lost contact, they will never regain it. Thus, the bodies
can only get into contact if they touch each other already at initial time. The model
of Jarušek and Eck is actually only applicable to the process of loosing contact,
which is entirely improper for biomechanical modeling of, e.g., the motion of the hu-
man knee. However, a perturbation result in physical energy norm was proven [50],
which gives the unique solvability of the dynamical contact problem with Signorini’s
condition in velocities. This leads to the conjecture that the stability condition is
mainly necessary in the initial phase of finding contact.

Martins and Oden proposed the widely-used normal compliance condition of con-
tact [72]. This model is based on a penalization of the exact Signorini condition in
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displacements, which leads to a much simpler mathematical problem. The model
assumes that the normal stresses on the contact boundaries only depend on the nor-
mal displacement field, which results in a relaxation of the non-penetration of mass.
One of its main advantages is the higher regularity of the solutions in time [63].
Martins and Oden presented existence and uniqueness results for both linearly elas-
tic and viscoelastic materials, but their proof of uniqueness unfortunately exhibits
a fundamental error in the estimation of norms (they used a norm inequality in the
wrong direction). The model of normal compliance was utilized in various papers,
see, e.g., [14, 54, 60, 61] and the monograph [49]. However, for the medical applica-
tions in mind (such as the movement of the knee joint), a mutual interpenetration
of the bodies is unacceptable, and normal compliance models are ruled out. Never-
theless, a perturbation result in physical energy norm was proven for this penalty
approach [51], which leads to the uniqueness of the normal compliance problem for
two viscoelastic bodies. The result further motivates the stability condition used in
this section since the approximating penalty solution satisfies the assumption even
in a sharper version.
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4. Consistency – Bounded

Variation

In this chapter, interest is focused on the consistency behavior of the classical
Newmark method, the improved energy dissipative version due to Kane et al., the
contact–stabilized Newmark method suggested by Deuflhard et al., and its improved
variant in the presence of contact [53]. The results will have numerical consequences
for the construction of an adaptive timestep control, which will be worked out in
Chapter 6.

In the unconstrained situation, the symmetric Newmark scheme is equivalent to
the Störmer-Verlet scheme, which is well-known to have consistency two (see, e.g.,
the textbook [33]). However, in the constrained situation, the question of consistency
of Newmark methods has not been addressed up to now, neither in the engineering
nor in the mathematical literature. The classical discretization error analysis would
not supply any consistency at all because of the intrinsic discontinuities at contact
interfaces.

The present chapter fills this gap by means of a novel proof technique. As a
preparatory step, the stability of dynamical contact problems under perturbations
of the initial data has been studied in Chapter 3. This has led to the idea about the
physical energy norm in function space, which will be exploited for the following error
analysis. In Section 4.1, all four variants of Newmark methods will be compared
in detail in the method of time layers framework. Section 4.2 contains the main
consistency result in physical energy norm. This estimate requires a regularity
assumption on the solution and its derivatives, which is quite different from the
classical approach. In Section 4.3, consistency results will be given in some norm of
the local error in displacements only. Finally, in Section 4.4, the consistency error
will be estimated in the special case of permanent active contact boundaries.

4.1. Newmark Methods in Function Space

As indicated in Chapter 2, this thesis uses the method of time layers, in which
discretization is performed first in time and then in space. A crucial ingredient of
this approach is the existence of a continuous counterpart of the implementable,
space-discretized time integration scheme. Hence, in this section, focus is on the
limit h → 0 of the Newmark methods (N-CL)h, (N-CI)h, (N-CS)h, and (N-CS+)h,

59



4. Consistency – Bounded Variation

which will be discussed in the following setting: let τ be a fixed temporal step size,
SH a fixed space discretization via finite elements, and un

H , u̇n
H fixed initial values.

Now, consider a family of quasi-uniform refinements Sh of SH with h → 0. The
analysis will turn out that the solution un+1

h,CL has a limit un+1
CL and interestingly,

un+1
h,CI and un+1

h,CS(+) possess a common limit, which will be called un+1
CI/CS(+). This leads

to only two numerical methods in function space, which will be called (N-CL) and
(N-CI/CS(+)) in the following.

In a first step, the different predictor steps will be compared. Summarizing the
predictors of all four methods and taking into account the initial values un

H , u̇n
H ,

gives

un+1
h,pred,CL/CI = un

H + τ u̇n
H

0 ∈ un+1
h,pred,CS(+) −

(
un

H + τ u̇n
H

)
+ ∂IKh

(
un+1

h,pred,CS(+)

)
,

i.e., (N-CL)h and (N-CI)h have the same predictors, which remain constant as h
tends to zero, while the predictor step of (N-CS(+))h contains a variational inclu-
sion and changes, as h tends to zero, since Kh changes. This variational inclusion is
necessarily defined after discretization in space via finite elements, since the normal
trace of a L2-function is not evaluable in general. As noted in (2.13), the predic-
tor step of (N-CS(+))h can equivalently be formulated as the L2-projection of the
given finite element function un

H + τ u̇n
H onto the discrete admissible set Kh. By

definition (2.1), this set is related to the pointwise behavior of elements in Sh along
the possible contact boundaries. Therefore, a modification of the classical predictor
is mainly caused near the contact interfaces, while the nodes in the interior of the
domain are changed only slightly.

Now, an important result concerning the predictor step of (N-CS(+))h in compar-
ison to the one of (N-CL)h and (N-CI)h will be proven in the spatial limit h → 0:
the predictor un+1

h,pred,CS(+) converges to un+1
h,pred,CL/CI in L2. This is due to the fact

that the contact boundaries have measure zero.

Lemma 4.1.1. Consider un
H , u̇n

H ∈ SH and a family of quasiuniform refinements
Sh of SH . Then, the predictor un+1

h,pred,CS(+) converges to un+1
h,pred,CL/CI for h → 0, i.e.,

lim
h→0

∥∥un+1
h,pred,CS(+) − un+1

h,pred,CL/CI

∥∥
L2

= 0 .

Proof. Due to the properties of the discrete L2-projection defined in (2.13),
∥∥un+1

h,pred,CS(+) − un
H − τ u̇n

H

∥∥
L2

≤
∥∥vh − un

H − τ u̇n
H

∥∥
L2

for all admissible vh ∈ Kh. Let vh such that vh = un
H + τ u̇n

H at the nodes in the
interior of the domain and vh = un

H at the nodes of the possible contact boundaries.
This function is admissible due to the fact that non-penetration refers only to the
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4.1. Newmark Methods in Function Space

possible contact boundaries, compare (2.1). Denoting by Sh the small stripe of finite
elements along the contact boundaries, vh coincides with un

H +τ u̇n
H on Ωh \Sh. This

gives the estimate
∥∥un+1

h,pred,CS(+) − un
H − τ u̇n

H

∥∥
L2

≤
∥∥τ u̇n

H

∥∥
L2(Sh)

.

Applying the Hölder inequality with meas(Sh) = O(h) leads to

τ
∥∥u̇n

H

∥∥
L2(Sh)

≤ (meas(Sh))
1

2
− 1

p

∥∥τ u̇n
H

∥∥
Lp(Sh)

≤ Ch
1

2
− 1

p

∥∥τ u̇n
H

∥∥
Lp

with the Lebesgue space Lp for p > 2 (see, e.g., [5, Theorem 2.14]). Since u̇n
H ∈ H1

and H1 →֒ Lp for p < 2d
d−2

with the space dimension d = 2, 3 (Sobolev embedding,
cf., e.g., [5]), there exists a constant C independent of h such that

∥∥un+1
h,pred,CS(+) − un

H − τ u̇n
H

∥∥
L2

≤ Ch
1

2
− 1

p

∥∥τ u̇n
H

∥∥
Lp

≤ Ch
1

2
− 1

p −→ 0

for 2 < p < 2d
d−2

. Since un+1
h,pred,CL/CI = un

H + τ u̇n
H by definition, this yields the result

of the proposition.

As a next step, the aim is to prove that the difference between (N-CS(+))h and
(N-CI)h becomes smaller and smaller for h → 0.

Lemma 4.1.2. Consider un
H , u̇n

H ∈ SH and a family of quasiuniform refinements
Sh of SH . Then,

lim
h→0

(∥∥un+1
h,CI − un+1

h,CS(+)

∥∥
H1

+
∥∥u̇n+1

h,CI − u̇n+1
h,CS(+)

∥∥
L2

)
= 0 .

Proof. After discretization in space, the variational inclusions in the second line
of (2.7), (2.11), and (2.17) can be written as the variational inequality, cf. (2.19),
(
un+1

h ,un+1
h − vh

)
L2

≤
(
un+1

h,pred,u
n+1
h − vh

)
L2

− 1

2
τ 2

〈
F1/2

(
un

h,un+1
h

)
+ G

(un+1
h − un

h

τ

)
,un+1

h − vh

〉

(H1)∗×H1
, ∀ vh ∈ Kh ,

where un+1
h denotes the algorithmic solutions of (N-CI)h, (N-CS)h, or (N-CS+)h.

Set vh = un+1
h,CS(+) in the inequality for un+1

h,CI and vh = un+1
h,CI in the inequality for

un+1
h,CS(+). Then, adding both inequalities yields the estimate

∥∥un+1
h,CI − un+1

h,CS(+)

∥∥2

L2
+

τ 2

4

∥∥un+1
h,CI − un+1

h,CS(+)

∥∥2

a
+

τ

2

∥∥un+1
h,CI − un+1

h,CS(+)

∥∥2

b

≤
(
un+1

h,pred,CI − un+1
h,pred,CS(+),u

n+1
h,CI − un+1

h,CS(+)

)
L2

.
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4. Consistency – Bounded Variation

The inequalities of Cauchy-Schwarz and Korn (A.1) lead to
∥∥un+1

h,CI − un+1
h,CS(+)

∥∥
H1≤ C

∥∥un+1
h,pred,CI − un+1

h,pred,CS(+)

∥∥
L2

with a constant C > 0 independent of h, and Lemma 4.1.1 gives
∥∥un+1

h,CI − un+1
h,CS(+)

∥∥
H1

≤ C
(∥∥un+1

h,pred,CI − un
H − τ u̇n

H

∥∥
L2

+
∥∥un+1

h,pred,CS(+) − un
H − τ u̇n

H

∥∥
L2

)

−→ 0 .

In order to prove the corresponding result for the velocities, a simple calculation
shows that for (N-CI)h and (N-CS)h

u̇n+1
h,CI/CS = u̇n

H +
2

τ

(
un+1

h,CI/CS − un+1
h,pred,CI/CS

)

and for (N-CS+)

u̇n+1
h,CS+ =

1

τ

(
un+1

h,pred,CI/CS(+) − un
H

)
+

2

τ

(
un+1

h,CS+ − un+1
h,pred,CS+)

)

in L2 such that

lim
h→0

∥∥u̇n+1
h,CI − u̇n+1

h,CS(+)

∥∥
L2

= lim
h→0

2

τ

∥∥un+1
h,CI − un+1

h,CS(+)

∥∥
L2

= 0 .

In order to present the main result of this section, the corresponding Newmark
algorithms are formulated in function space. Naturally, these schemes are completely
independent of any spatial discretization argument.

Classical Newmark method (N-CL).

un+1
pred = un + τ u̇n

0 ∈ un+1 − un+1
pred +

τ 2

2

(
F1/2

(
un,un+1

)
+ G

(un+1 − un

τ

)
− F̃1/2

con

(
un,un+1

))

u̇n+1 = u̇n − τ
(
F1/2

(
un,un+1

)
+ G

(un+1 − un

τ

)
− F1/2

con

(
un,un+1

))
(4.1)

where the contact forces Fcon(u
n+1) are defined via

τ 2

2

〈
Fcon(u

n+1),v
〉
(H1)∗×H1

:=
〈
un+1 − un+1

pred +
1

2
τ 2

(
F1/2

(
un,un+1

)
(4.2)

+G
(un+1 − un

τ

))
,v

〉
(H1)∗×H1

, v ∈ H1 .

Due to Lemma 4.1.2, (N-CI)h, (N-CS)h, and (N-CS+)h correspond to the same
method in function space:
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4.1. Newmark Methods in Function Space

Contact–implicit and (improved) contact–stabilized Newmark method
(N-CI/CS(+)).

un+1
pred = un + τ u̇n

0 ∈ un+1 − un+1
pred +

1

2
τ 2

(
F1/2

(
un,un+1

)
+ G

(un+1 − un

τ

)
+ ∂IK

(
un+1

))

u̇n+1 = u̇n − τ
(
F1/2

(
un,un+1

)
+ G

(un+1 − un

τ

)
− Fcon

(
un+1

))
(4.3)

with contact forces

τ 2

2

〈
Fcon(u

n+1),v
〉
(H1)∗×H1

:=
〈
un+1 − un+1

pred +
1

2
τ 2

(
F1/2

(
un,un+1

)
(4.4)

+G
(un+1 − un

τ

))
,v

〉

(H1)∗×H1
, v ∈ H1 .

The variational problems in the second line of (N-CL) and (N-CI/CS(+)) admit
a unique solution [49]. Moreover, the variational inclusions can equivalently be
formulated as the variational inequalities

〈
Fcon(u

n+1),un+1 − v
〉
(H1)∗×H1 ≤ 0 , ∀ v ∈ K . (4.5)

Finally, assume that the closed convex set K ⊂ H1
D is approximated by the closed

convex sets Kh ⊂ Sh in the following way (compare [49, Remark 4.2.2]).

Assumption 4.1.3.

(i) ∀ v ∈ K , ∃ vh ∈ Kh such that ‖vh − v‖H1 → 0 as h → 0 , and

(ii) for wh ∈ Kh “wh → w weakly as h → 0” implies w ∈ K

This leads to a convergence result concerning the spatial limit h → 0 of the
space-discretized Newmark schemes.

Theorem 4.1.4. Let Assumption 4.1.3 hold. Then, the Newmark method (N-CL)h

converges for h → 0 to (N-CL), i.e.,

lim
h→0

(∥∥un+1
h,CL − un+1

CL

∥∥
H1 +

∥∥u̇n+1
h,CL − u̇n+1

CL

∥∥
L2

)
= 0 , (4.6)

and the Newmark methods (N-CI)h, (N-CS)h, and (N-CS+)h converge for h → 0 to
the same limit (N-CI/CS(+)), i.e.,

lim
h→0

(∥∥un+1
h,CI − un+1

CI/CS(+)

∥∥
H1 +

∥∥u̇n+1
h,CI − u̇n+1

CI/CS(+)

∥∥
L2

)
= 0 (4.7)

and
lim
h→0

(∥∥un+1
h,CS(+) − un+1

CI/CS(+)

∥∥
H1 +

∥∥u̇n+1
h,CS(+) − u̇n+1

CI/CS(+)

∥∥
L2

)
= 0 . (4.8)
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4. Consistency – Bounded Variation

Proof. The second line of all four Newmark methods consists of an elliptic variational
inequality. For (N-CL)h, this inequality is given by

(
un+1

h − un+1
h,pred,vh − un+1

h

)
+

τ 2

2
a
(un

h + un+1
h

2
,vh − un+1

h

)

+
τ 2

2
b
(un+1

h − un
h

τ
,vh − un+1

h

)

≥ τ 2

2
fext

(
vh − un+1

h

)
+

τ 2

2

〈1

2
F̃con

(
un

h

)
,vh − un+1

h

〉

(H1)∗×H1
, ∀ vh ∈ Kh

while for (N-CI)h and (N-CS(+))h the problem reads

(
un+1

h − un+1
h,pred,vh − un+1

h

)
+

τ 2

2
a
(un

h + un+1
h

2
,vh − un+1

h

)

+
τ 2

2
b
(un+1

h − un
h

τ
,vh − un+1

h

)

≥ τ 2

2
fext

(
vh − un+1

h

)
, ∀ vh ∈ Kh .

For all four Newmark methods, the bilinear forms on the left-hand side of the in-
equalities are continuous and elliptic on H1

D, while the right-hand side contains
a bounded, linear functional on H1

D. Under the approximation assumptions made
above, a convergence theory for h → 0 is well-known for both minimization problems
(cf. [49, Remark 4.2.2]). This theory yields that the solutions of all four Newmark
schemes (N-CL)h, (N-CI)h, (N-CS)h, and (N-CS+)h converge to the solution of the
corresponding scheme in function space for h → 0. For (N-CL)h, this means that

∥∥un+1
h,CL − un+1

CL

∥∥
H1

−→ 0 for h → 0 .

In addition,

u̇n+1
h,CL = −u̇n

h,CL +
2

τ

(
un+1

h − u̇n
h,CL

)

and

u̇n+1
CL = −u̇n

CL +
2

τ

(
un+1 − u̇n

CL ,
)

yield ∥∥u̇n+1
h,CL − u̇n+1

CL

∥∥
L2

−→ 0 .

Concerning the spatial limit of (N-CI)h and (N-CS(+))h for h → 0, Lemma 4.1.2
shows that the limit of all three methods is equal. Since the limit of (N-CI)h is given
by the solution of (N-CI/CS(+)), the spatial limit of (N-CS(+))h is also identical to
the solution of (N-CI/CS(+)), i.e.,

∥∥un+1
h,CI − un+1

CI/CS(+)

∥∥
H1 −→ 0 ,

∥∥un+1
h,CS(+) − un+1

CI/CS(+)

∥∥
H1 −→ 0 .
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4.1. Newmark Methods in Function Space

Following the same argumentation for the velocities as presented for (N-CL)h yields

∥∥u̇n+1
h,CI − u̇n+1

CI/CS(+)

∥∥
L2

−→ 0 ,
∥∥u̇n+1

h,CS(+) − u̇n+1
CI/CS(+)

∥∥
L2

−→ 0 .

In consequence of this result, the following analysis of consistency errors within
the framework of the method of time layers only refers to (N-CL) and (N-CI/CS(+)).

Remark 4.1.5. (N-CL) and (N-CI/CS(+)) satisfy the relation

un+1 − un

τ
=

u̇n + u̇n+1

2
.

Notations. For the proofs to follow, define the discrete evolution operator

Ψ̄tn+1,tn =
(
Ψtn+1,tn , Ψ̇tn+1,tn

)
: H1 × L2 −→ H1 × L2 (4.9)

of (N-CL) and (N-CI/CS(+)) for tn, tn+1 ∈ △τ via

un+1 = Ψtn+1,tn
(
un, u̇n

)
, u̇n+1 = Ψ̇tn+1,tn

(
un, u̇n

)
(4.10)

in analogy to the continuous problem. Furthermore, let

ǫ(t, ū, τ) = (ǫ(t,u, τ), ǫ(t, u̇, τ)) (4.11)

denote the consistency error with

ǫ(t,u, τ) := Ψt+τ,tū(t) − Φt+τ,tū(t) (4.12)

the consistency error in position variables and

ǫ(t, u̇, τ) := Ψ̇t+τ,tū(t) − Φ̇t+τ,tū(t) (4.13)

the consistency error in velocity variables. For ease of presentation, the quantity

ǫ̃(s, u̇, τ) :=
un+1 − un

τ
− u̇(s) , s ∈ [t, t + τ ] (4.14)

is introduced.
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4.2. Consistency Error in Physical Energy Norm

This section contains the main consistency results, in the presence of contact, for
the classical, the contact–implicit, and the (improved) contact–stabilized Newmark
method. Within the physical energy norm suggested by the previous perturbation
result in Chapter 3, an estimate for the local discretization error will be derived.

The presentation starts with the analysis of the discretization error for the New-
mark scheme (N-CI/CS(+)), which afterwards will be transferred to the classical
scheme (N-CL).

Lemma 4.2.1. Assume that ü(·, t), Fcon(u(·, t)) ∈ (H1)∗ for all t ∈ [0, T ]. Then,
for initial values un = u(t) and u̇n = u̇(t), the local error Ψ̄− Φ̄ = (Ψ−Φ, Ψ̇− Φ̇)
of (N-CI/CS(+)) satisfies

∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

−
〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1

=

t+τ∫

t

a
(
u(s) − u(t) + u(t + τ)

2
, ǫ̃(s, u̇, τ)

)
ds

−
t+τ∫

t

〈Fcon(u(s)) − Fcon(u(t + τ)), ǫ̃(s, u̇, τ)〉(H1)∗×H1 ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)
〈ü(s) − ü(t + τ), ǫ̃(t, u̇, τ)〉(H1)∗×H1 ds .

(4.15)

Remark 4.2.2. If the active contact boundaries do not change during the time
interval of interest, the result of the lemma above simplifies in the following manner.
The term on the right-hand side of the estimate that is containing the contact forces
can be written as

−
t+τ∫

t

〈Fcon(u(s)) − Fcon(u(t + τ)), ǫ̃(s, u̇, τ)〉(H1)∗×H1 ds

= −1

τ

t+τ∫

t

〈
Fcon(u(s)),un+1 − un

〉
(H1)∗×H1 ds

+
〈
Fcon(u(t + τ)),un+1 − u(t + τ)

〉
(H1)∗×H1

due to the persistency condition (cf. Theorem 1.4.2). Under the assumption that
[(un+1 − un) · ν]φ = g − g = 0 on ΓC , both un+1 − un ∈ K and −(un+1 − un) ∈ K.

66



4.2. Consistency Error in Physical Energy Norm

The same is valid for the difference un+1 − u(t + τ) if [(un+1 − u(t + τ)) · ν]φ = 0
on ΓC . Hence, the signs of the contact forces, cf. (1.31), yield the relation

t+τ∫

t

〈Fcon(u(s)) − Fcon(u(t + τ)), ǫ̃(s, u̇, τ)〉(H1)∗×H1 ds = 0 .

This observation leads to the conjecture that, in the special case of permanent active
contact, a much better consistency order can be proven. A detailed discussion of this
problem will be presented in Section 4.4. The knowledge will become important for
the construction of an adaptive timestep control for the improved contact–stabilized
Newmark method in Chapter 6.

Proof. The local error of the velocities in L2-norm can be written as

1

2

∥∥u̇n+1 − u̇(t + τ)
∥∥2

L2
=

1

2

∥∥∥u̇n +
2

τ

(
un+1 − un − τ u̇n

)
− u̇(t + τ)

∥∥∥
2

L2

,

cf. Remark 4.1.5. Since u̇ ∈ W1
2(0, T ;H1,L2), integration by parts (see, e.g., [93,

Proposition 23.23]) yields

1

2

∥∥u̇n+1 − u̇(t + τ)
∥∥2

L2

=
1

2

∥∥∥u̇n +
2(s − t)

τ 2

(
un+1 − un − τ u̇n

)
− u̇(s)

∥∥∥
2

L2

∣∣∣
s=t+τ

s=t

=

t+τ∫

t

〈 2

τ 2

(
un+1 − un − τ u̇n

)
− ü(s),

u̇n +
2(s − t)

τ 2

(
un+1 − un − τ u̇n

)
− u̇(s)

〉
(H1)∗×H1

ds .

By means of

u̇n +
2(s − t)

τ 2

(
un+1 − un − τ u̇n

)
− u̇(s)

=
un+1 − un

τ
−

(
1 − 2(s − t)

τ

)(un+1 − un

τ
− u̇n

)
− u̇(s) ,
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the term on the right-hand side can be split up as

1

2

∥∥u̇n+1 − u̇(t + τ)
∥∥2

L2

=

t+τ∫

t

〈 2

τ 2

(
un+1 − un − τ u̇n

)
− ü(s),

un+1 − un

τ
− u̇(s)

〉
(H1)∗×H1

ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)〈
ü(s) − 2

τ 2

(
un+1 − un − τ u̇n

)
, ǫ̃(t, u̇, τ)

〉
ds .

Inserting the definitions of the continuous and discrete contact forces (1.31) and (4.4)
into the first term gives (due to the linearity of the external forces)

1

2

∥∥u̇n+1 − u̇(t + τ)
∥∥2

L2

= −
t+τ∫

t

a
(un + un+1

2
− u(s),

un+1 − un

τ
− u̇(s)

)
ds

−
t+τ∫

t

b
(un+1 − un

τ
− u̇(s),

un+1 − un

τ
− u̇(s)

)
ds

+

t+τ∫

t

〈
Fcon(u

n+1) − Fcon(u(s)),
un+1 − un

τ
− u̇(s)

〉
(H1)∗×H1

ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)〈
ü(s) − 2

τ 2

(
un+1 − un − τ u̇n

)
, ǫ̃(t, u̇, τ)

〉
ds .

(4.16)

The first term representing the purely elastic material behavior can be reformulated
by the fundamental theorem of calculus (cf. [94, Appendix, Application (25c)]) as

−
t+τ∫

t

a
(un + un+1

2
− u(s),

un+1 − un

τ
− u̇(s)

)
ds

= −1

2

t+τ∫

t

a
(
un+1 − u(t + τ),

un+1 − un

τ
− u̇(s)

)
ds

+

t+τ∫

t

a
(
u(s) − un + u(t + τ)

2
,
un+1 − un

τ
− u̇(s)

)
ds
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= −1

2
a
(
un+1 − u(t + τ),un+1 − u(t + τ)

)

+

t+τ∫

t

a
(
u(s) − u(t) + u(t + τ)

2
,
un+1 − un

τ
− u̇(s)

)
ds .

The third term containing the contact forces can be written as

t+τ∫

t

〈
Fcon(u

n+1) − Fcon(u(s)),
un+1 − un

τ
− u̇(s)

〉
(H1)∗×H1

ds

=

t+τ∫

t

〈
Fcon(u(t + τ)) − Fcon(u(s)),

un+1 − un

τ
− u̇(s)

〉
(H1)∗×H1

ds

+
〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1 .

Summing up these expressions yields

1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +

t+τ∫

t

∥∥ǫ̃(s, u̇, τ)‖2
b ds

−
〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1

=

t+τ∫

t

a
(
u(s) − u(t) + u(t + τ)

2
, ǫ̃(s, u̇, τ)

)
ds

−
t+τ∫

t

〈Fcon(u(s)) − Fcon(u(t + τ)), ǫ̃(s, u̇, τ)〉(H1)∗×H1 ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)〈
ü(s) − 2

τ 2

(
un+1 − un − τ u̇n

)
, ǫ̃(t, u̇, τ)

〉
ds .

Due to
t+τ∫

t

(
1 − 2(s − t)

τ

)
ds = 0 ,

the constant term 2
τ2 (u

n+1−un−τ u̇n) in the last line can be replaced by an arbitrary
functional in (H1)∗ that is constant in time. Choosing ü(t+ τ), the last term on the
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t+τ∫

t

(
1 − 2(s − t)

τ

)〈
ü(s) − 2

τ 2

(
un+1 − un − τ u̇n

)
, ǫ̃(t, u̇, τ)

〉

(H1)∗×H1
ds

=

t+τ∫

t

(
1 − 2(s − t)

τ

)
〈ü(s) − ü(t + τ), ǫ̃(t, u̇, τ)〉(H1)∗×H1 ds .

Due to the admissibility of the continuous and discrete solutions u(t + τ) and
un+1, 〈

Fcon(u
n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)

〉
(H1)∗×H1 ≤ 0 (4.17)

holds, see (1.31) and (4.5). Hence, in a next step, this term on the left-hand side
of equality (4.15) can be omitted. In order to derive consistency error estimates for
the contact–implicit and the (improved) contact–stabilized scheme, the inequalities
of Korn and Young will be exploited.

Lemma 4.2.3. Assume that ü(·, t), Fcon(u(·, t)) ∈ (H1)∗ for all t ∈ [0, T ]. Then,
for initial values un = u(t) and u̇n = u̇(t), the local error Ψ̄− Φ̄ = (Ψ−Φ, Ψ̇− Φ̇)
of (N-CI/CS(+)) satisfies

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

≤ C
[( t+τ∫

t

∥∥∥u(s) − u(t) + u(t + τ)

2

∥∥∥
2

H1
ds

)1/2

+
( t+τ∫

t

‖u̇(s) − u̇(t)‖2
H1 ds

)1/2

+
( t+τ∫

t

∥∥∥u̇(s) − u̇(t) + u̇(t + τ)

2

∥∥∥
2

H1
ds

)1/2

+
( t+τ∫

t

‖ü(s) − ü(t + τ)‖2
(H1)∗ ds

)1/2

(4.18)

+
( t+τ∫

t

‖Fcon(u(s)) − Fcon(u(t + τ))‖2
(H1)∗ ds

)1/2]
.

Proof. Omitting the term (4.17) on the left-hand side of (4.15) by positivity and
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splitting up the last term on the right-hand side leads to
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∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

≤
t+τ∫

t

a
(
u(s) − u(t) + u(t + τ)

2
, ǫ̃(s, u̇, τ)

)
ds

−
t+τ∫

t

〈Fcon(u(s)) − Fcon(u(t + τ)), ǫ̃(s, u̇, τ)〉(H1)∗×H1 ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)〈
ü(s) − ü(t + τ)), ǫ̃(s, u̇, τ)

〉
(H1)∗×H1 ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)〈
ü(s) − ü(t + τ)), u̇(s) − u̇(t)

〉
(H1)∗×H1 ds .

After using the continuity of the bilinear forms a and b in H1, cf. (1.22) and (1.23),
the inequality of Young is applied to find the estimate

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

≤ C
[( t+τ∫

t

∥∥∥u(s) − u(t) + u(t + τ)

2

∥∥∥
2

H1
ds

)1/2

+
( t+τ∫

t

‖Fcon(u(s)) − Fcon(u(t + τ))‖2
(H1)∗ ds

)1/2

+
( t+τ∫

t

‖ü(s) − ü(t + τ)‖2
(H1)∗ ds

)1/2]
·
( t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
H1 ds

)1/2

+ C
( t+τ∫

t

‖ü(s) − ü(t + τ)‖2
(H1)∗ ds

)1/2( t+τ∫

t

‖u̇(s) − u̇(t)‖2
H1 ds

)1/2

.

(4.19)

Due to the inequalities of Korn (A.1) and Cauchy-Schwarz and Remark 4.1.5, a
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simple calculation shows that
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( t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
H1 ds

)1/2

≤ C
( t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds +

t+τ∫

t

∥∥∥u̇(s) − u̇n + u̇n+1

2

∥∥∥
2

L2

ds
)1/2

≤ C
( t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds +

τ

4
‖ǫ(t, u̇, τ)‖2

L2

)1/2

+ C
( t+τ∫

t

∥∥∥u̇(s) − u̇(t) + u̇(t + τ)

2

∥∥∥
2

L2

ds
)1/2

.

Hence, (4.19) yields an inequality of the type

x ≤ 2a · x1/2 + b2

where a, b, x ≥ 0. Writing (
x1/2 − a

)2 ≤ a2 + b2 ,

gives the inequality

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

≤ a +
√

a2 + b2 ≤ 2a + b .

The result of the lemma is obtained due to cd ≤ 1
2
(c2 + d2).

Classical consistency theory. For the sake of comparison, the classical theory
will be discussed in the following. There, the continuous solution is assumed to
be k-times continuously differentiable with respect to time t. In order to obtain
the highest possible consistency order, one would make the assumption that the
velocities, the accelerations, and the contact forces satisfy

u̇ ∈ C1
(
[0, T ],H1

)
, ü ∈ C1

(
[0, T ], (H1)∗

)

and
Fcon(u) ∈ C1

(
[0, T ], (H1)∗

)
.

Inserting these regularity assumptions into the right-hand side of (4.18) would yield
an error estimate of the kind

‖Ψ̄ − Φ̄‖E(t,τ) = O
(
τ 3/2

)
,

72



4.2. Consistency Error in Physical Energy Norm

i.e., a consistency order 3/2. Upon applying standard techniques (as “Lady Win-
dermere’s Fan”, [33]), one would lose one order of τ for convergence. Unfortunately,
in the presence of contact, the velocities and accelerations are even not continuous.
The assumption of boundedness of these quantities leads to an estimate of the form

‖Ψ̄ − Φ̄‖E(t,τ) = O
(
τ 1/2

)
, (4.20)

i.e., to a consistency order −1/2. This, again upon applying standard techniques,
would not yield any convergence. That is why a detailed discretization error analysis
for the Newmark methods has been missing up to now. Obviously, a more advanced
concept is required to treat this complex situation.

Bounded variation. Let (V; ‖ · ‖V) be a Banach space. The total variation of a
function v : [t0, t] → V is defined as

TV(v, [t0, t],V) := sup
{ n∑

j=1

‖v(tj) − v(tj−1)‖V : a = t0 < t1 < . . . < t = b
}
,

i.e., as the supremum of the above differences taken over all partitions of [t0, t]
into finitely many subintervals. As usual, BV([t0, t],V) denotes the set of all func-
tions from [t0, t] into V that have bounded variation, i.e., for which the property
TV(v, [t0, t],V) < ∞ holds. Let v : [t0, t] → V be a function of bounded variation.
Note that TV(v, [t0, t],V) is only a seminorm on the linear space BV([t0, t];V),
while the norm

‖v‖BV([t0,t];V) := ‖v(a)‖V + TV(v, [t0, t],V)

makes BV([t0, t];V) complete. Moreover, the intriguing property

TV(v, [t0, t1], X) + TV(v, [t1, t], X) = TV(v, [t0, t], X) , for t0 < t1 < t (4.21)

holds for every function of bounded variation. This feature will become fundamental
for the novel convergence theory presented in Chapter 5. Observe that the left-
and right-hand limit exists at every t ∈ [t0, t]. However, a function with bounded
variation need not to be continuous. It can be shown that it is only continuous
except at countable many points of [t0, t] (compare, e.g., [84] for these notations and
results).

In the following, the considerations are restricted to dynamical contact problems
where the following assumption holds.

Assumption 4.2.4.

u̇ ∈ BV
(
[0, T ],H1

)
, ü ∈ BV

(
[0, T ],

(
H1

)∗)
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Since the displacements u(·, t), t ∈ [0, T ] are absolutely continuous in H1, they are
especially of bounded variation, i.e., u ∈ BV([0, T ],H1). By definition (1.31) of the
contact forces, Assumption 4.2.4 leads to Fcon(u) ∈ BV([0, T ], (H1)∗). In particular,
the velocities u̇(·, t), the accelerations ü(·, t) and the contact forces Fcon(u(·, t)) have
to be defined in H1 and (H1)∗, respectively, for every time t ∈ [0, T ]. The assumption
of bounded variation excludes the case of highly oscillatory functions in time.

In all of the following theorems, the term

R(u, [t, t + τ ]) := TV
(
u, [t, t + τ ],H1

)
+ TV

(
u̇, [t, t + τ ],H1

)

+ TV
(
ü, [t, t + τ ],

(
H1

)∗) (4.22)

will arise.

Lemma 4.2.5. Let Assumption 4.2.4 hold. Then, for initial values un = u(t) and
u̇n = u̇(t), the local error Ψ̄ − Φ̄ = (Ψ − Φ, Ψ̇ − Φ̇) of (N-CI/CS(+)) satisfies

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

= R(u, [t, t + τ ]) · O
(
τ 1/2

)
.

Proof. The regularity assumptions on the solution lead to

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

=
(

sup
s∈[t,t+τ ]

∥∥∥u(s) − u(t) + u(t + τ)

2

∥∥∥
H1

+ sup
s∈[t,t+τ ]

‖u̇(s) − u̇(t)‖H1

+ sup
s∈[t,t+τ ]

‖u̇(s) − u̇(t + τ)‖H1 + sup
s∈[t,t+τ ]

‖ü(s) − ü(t + τ)‖(H1)∗

+ sup
s∈[t,t+τ ]

‖Fcon(u(s)) − Fcon(u(t + τ))‖(H1)∗

)
· O

(
τ 1/2

)

=
(
TV

(
u, [t, t + τ ],H1

)
+ TV

(
u̇, [t, t + τ ],H1

)

+TV
(
ü, [t, t + τ ],

(
H1

)∗)
+ TV

(
Fcon(u), [t, t + τ ],

(
H1

)∗)) · O
(
τ 1/2

)
.

At this point, the consistency error estimate in the lemma above is formulated
within the usual kinetic and potential part of the physical energy norm, while the
viscoelastic part is slightly modified [53]. In the following theorem, the result will
be further improved to an estimate in the proper physical energy norm.

Theorem 4.2.6. Let Assumption 4.2.4 hold. Then, for initial values un = u(t) and
u̇n = u̇(t), the local error Ψ̄ − Φ̄ = (Ψ − Φ, Ψ̇ − Φ̇) of (N-CI/CS(+)) satisfies

‖Ψ̄ − Φ̄‖E(t,τ) = R(u, [t, t + τ ]) · O
(
τ 1/2

)
. (4.23)
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Proof. In view of an estimate for the physical energy norm of the consistency error,
the relation

Ψ̇t+s,tū(t) − Φ̇t+s,tū(t) = −u̇(t) +
2

s

(
Ψt+s,tū(t) − u(t)

)
− Φ̇t+s,tū(t)

=
(
Φ̇t+s,tū(t) − u̇(t)

)
+ 2

(Ψt+s,tū(t) − u(t)

s
− Φ̇t+s,tū(t)

)
,

cf. Remark 4.1.5, yields

( t+τ∫

t

∥∥Ψ̇t+s,tū(t) − Φ̇t+s,tū(t)
∥∥2

b
ds

)1/2

≤
( t+τ∫

t

∥∥Φ̇t+s,tū(t) − u̇(t)
∥∥2

b
ds

)1/2

+ 2
( t+τ∫

t

∥∥∥
Ψt+s,tū(t) − u(t)

s
− Φ̇t+s,tū(t)

∥∥∥
2

b
ds

)1/2

=
(
TV

(
u̇, [t, t + τ ],H1

)
+ sup

s∈[t,t+τ ]

∥∥∥
Ψt+s,tū(t) − u(t)

s
− Φ̇t+s,tū(t)

∥∥∥
b

)
· O

(
τ 1/2

)
.

Concerning the second term in this estimate, Lemma 4.2.5 leads to

∥∥∥
Ψt+τ0,tū(t) − u(t)

τ0

− Φ̇t+τ0,tū(t)
∥∥∥

b

=
( t+τ0∫

t

∥∥∥
Ψt+τ0,tū(t) − u(t)

τ0
− Φ̇t+τ0,tū(t)

∥∥∥
2

b
ds

)1/2

· τ−1/2
0

≤
( t+τ0∫

t

∥∥∥
Ψt+τ0,tū(t) − u(t)

τ0
− Φ̇t+s,tū(t)

∥∥∥
2

b
ds

)1/2

· τ−1/2
0

+
( t+τ0∫

t

∥∥Φ̇t+s,tū(t) − Φ̇t+τ0,tū(t)
∥∥2

b
ds

)1/2

· τ−1/2
0

≤ C · R(u, [t, t + τ0]) + TV
(
u̇, [t, t + τ0],H

1
)
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for all τ0 > 0, and choosing τ0 = s for all s ∈ [t, t + τ ] gives

( t+τ∫

t

∥∥Ψ̇t+s,tū(t) − Φ̇t+s,tū(t)
∥∥2

b
ds

)1/2

=
(
TV

(
u̇, [t, t + τ ],H1

)
+ sup

s∈[t,t+τ ]

(
R(u, [t, t + s]) + TV

(
u̇, [t, t + s],H1

)))

· O
(
τ 1/2

)

= R(u, [t, t + τ ]) · O
(
τ 1/2

)
.

The desired result follows from combining this estimate with the one of Lemma 4.2.5.

Finally, the consistency result for the contact–implicit or the (improved) contact–
stabilized Newmark method will be transferred to the classical Newmark method.
This algorithm utilizes in every timestep the contact forces from the step before.
The following consistency theory is based on the assumption that the contact forces
Fcon(u

n) are identical to the contact forces Fcon(u(t)) of the variational inequal-
ity (1.28). This approach is reasonable in view of the novel convergence theory in
Chapter 5, but too restrictive for a classical convergence theory. Moreover, the con-
sistency result is not applicable for an adaptive stepsize control of (N-CL) in the
way of Chapter 6.

Since the schemes (N-CL) and (N-CI/CS(+)) differ only in the treatment of the
contact forces, the proofs above have to be modified only marginally under this
assumption.

Theorem 4.2.7. Let Assumption 4.2.4 hold. Then, for Fcon(u
n) − Fcon(u(t)) = 0

in (H1)∗ and initial values un = u(t) and u̇n = u̇(t), the local error Ψ̄ − Φ̄ =
(Ψ −Φ, Ψ̇ − Φ̇) of (N-CL) satisfies

‖Ψ̄ − Φ̄‖E(t,τ) = R(u, [t, t + τ ]) · O
(
τ 1/2

)
. (4.24)

Proof. Performing the same calculations as in the proof of Lemma 4.2.1, the con-
tact forces Fcon(u

n+1) in expression (4.16) have to be replaced by 1
2
(Fcon(u

n) +
Fcon(u

n+1)). Then,

−
t+τ∫

t

〈
Fcon(u(s)) − Fcon(u

n) + Fcon(u
n+1)

2
,
un+1 − un

τ
− u̇(s)

〉
(H1)∗×H1

ds

= −
t+τ∫

t

〈
Fcon(u(s)) − Fcon(u(t)) + Fcon(u(t + τ))

2
,
un+1 − un

τ
− u̇(s)

〉
(H1)∗×H1

ds

+
1

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1
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and the last term on the right-hand side is again non-positive. In analogy to
Lemma 4.2.1, this yields

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

− 1

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1

=

t+τ∫

t

a
(
u(s) − u(t) + u(t + τ)

2
, ǫ̃(s, u̇, τ)

)
ds

−
t+τ∫

t

〈
Fcon(u(s)) − Fcon(u(t)) + Fcon(u(t + τ))

2
, ǫ̃(s, u̇, τ)

〉
(H1)∗×H1

ds

+

t+τ∫

t

(
1 − 2(s − t)

τ

)
〈ü(s) − ü(t + τ), ǫ̃(t, u̇, τ)〉(H1)∗×H1 ds .

Applying the inequalities of Korn (A.1) and Young again, the corresponding result
to Lemma 4.2.3 holds, namely

(∥∥Ψ̄t+τ,tū(t) − Φ̄t+τ,tū(t)
∥∥2

E
+

t+τ∫

t

‖ǫ̃(s, u̇, τ)‖2
b ds

)1/2

≤ C
[( t+τ∫

t

∥∥∥u(s) − u(t) + u(t + τ)

2

∥∥∥
2

H1
ds

)1/2

+
( t+τ∫

t

‖u̇(s) − u̇(t)‖2
H1 ds

)1/2

+
( t+τ∫

t

∥∥∥u̇(s) − u̇(t) + u̇(t + τ)

2

∥∥∥
2

H1
ds

)1/2

+
( t+τ∫

t

‖ü(s) − ü(t + τ)‖2
(H1)∗ ds

)1/2

+
( t+τ∫

t

∥∥∥Fcon(u(s)) − Fcon(u(t)) + Fcon(u(t + τ))

2

∥∥∥
2

(H1)∗
ds

)1/2]
.

Finally, the total variations can be introduced in the same way as in the proof of
Lemma 4.2.5, and the proof of Theorem 4.2.6 gives the estimate of the theorem.

At first glance, the results above seem to be no progress beyond the mere bounded-
ness condition of the classical consistency theory, see (4.20). In fact, the total varia-
tions on the right-hand side of the estimate do not contribute to any additional order
in τ . However, due to the telescoping property (4.21), the terms R(u, [t, t+τ ]) on the
right-hand side sum up to total variations over the whole time interval [0, T ]. Hence,
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4. Consistency – Bounded Variation

global convergence of the improved contact–stabilized Newmark method (which is
the algorithm of interest) will be shown in Chapter 5 without losing the order τ as
in the classical theory.

In order to analyze the consistency and convergence of the displacements in L2-
norm, a further (weaker) norm will be needed. In the next section, a norm will be
presented, which will turn out to be a discrete norm (depending on τ).

4.3. Consistency Error in a Discrete Displacement

Norm

In addition to the previous results concerning the local error of Newmark methods
in the physical energy norm, here, a consistency result will be given in a discrete
norm containing the displacements only.

Notation. For v ∈ H1 and τ > 0, the discrete displacement norm is denoted by

‖v‖2
τ := ‖v‖2

L2
+

τ 2

4
‖v‖2

a +
τ

2
‖v‖2

b . (4.25)

The proofs to follow are less complicated than the ones in Section 4.2, but based
on similar principles. Again, the total variation of the continuous solution will show
up. First, a result equivalent to the one of Lemma 4.2.1 will be presented, which
gives a representation of the error in the considered norm.

Lemma 4.3.1. Assume that u̇(·, t) ∈ H1 and ü(·, t), Fcon(u(·, t)) ∈ (H1)∗ for all
t ∈ [0, T ]. Then, for initial values un = u(t) and u̇n = u̇(t), the local error of
(N-CI/CS(+)) satisfies

‖ǫ(t,u, τ)‖2
τ −

τ 2

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1

= −
t+τ∫

t

( s∫

t

〈ü(r) − ü(t + τ), ǫ(t,u, τ)〉(H1)∗×H1 dr
)

ds

+
τ 2

4
a(u(t + τ) − u(t), ǫ(t,u, τ)) − τ

2

t+τ∫

t

b(u̇(s) − u̇(t + τ), ǫ(t,u, τ)) ds .

(4.26)
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4.3. Consistency Error in a Discrete Displacement Norm

Proof. The consistency error of the positions in the L2-norm can be written as

∥∥un+1 − u(t + τ)
∥∥2

L2

=
(
un + τ u̇n − u(t + τ),un+1 − u(t + τ)

)
L2

− τ 2

2
a
(un + un+1

2
,un+1 − u(t + τ)

)
− τ 2

2
b
(un+1 − un

τ
,un+1 − u(t + τ)

)

+
τ 2

2

〈
Fcon(u

n+1),un+1 − u(t + τ)
〉

(H1)∗×H1

=
(
un + τ u̇n − u(t + τ),un+1 − u(t + τ)

)
L2

+
τ 2

2

〈
ü(t + τ),un+1 − u(t + τ)

〉
(H1)∗×H1

− τ 2

2
a
(un + un+1

2
− u(t + τ),un+1 − u(t + τ)

)

− τ 2

2
b
(un+1 − un

τ
− u̇(t + τ),un+1 − u(t + τ)

)

+
τ 2

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1

which is equivalent to

‖ǫ(t,u, τ)‖2
L2

+
τ 2

4
‖ǫ(t,u, τ)‖2

a +
τ

2
‖ǫ(t,u, τ)‖2

b

− τ 2

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1

= (u(t) + τ u̇(t) − u(t + τ), ǫ(t,u, τ))L2
+

τ 2

2
〈ü(t + τ), ǫ(t,u, τ)〉(H1)∗×H1

− τ 2

4
a(u(t) − u(t + τ), ǫ(t,u, τ)) − τ 2

2
b
(u(t + τ) − u(t)

τ
− u̇(t + τ), ǫ(t,u, τ))

)
.

Since u̇ ∈ W1
2(0, T ;H1,L2), integration by parts (see, e.g., [93, Proposition 23.23])

can be used to write

‖ǫ(t,u, τ)‖2
τ −

τ 2

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1

= −
t+τ∫

t

(u̇(s) − u̇(t), ǫ(t,u, τ))L2
ds −

t+τ∫

t

(s − t)〈ü(t + τ), ǫ(t,u, τ)〉(H1)∗×H1 ds

− τ 2

4
a(u(t) − u(t + τ), ǫ(t,u, τ)) − τ

2

t+τ∫

t

b(u̇(s) − u̇(t + τ), ǫ(t,u, τ)) ds
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= −
t+τ∫

t

( s∫

t

〈ü(r) − ü(t + τ), ǫ(t,u, τ)〉(H1)∗×H1 dr
)

ds

− τ 2

4
a(u(t) − u(t + τ), ǫ(t,u, τ)) − τ

2

t+τ∫

t

b(u̇(s) − u̇(t + τ), ǫ(t,u, τ)) ds .

Due to

τ 2

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1 ≤ 0 , (4.27)

cf. (1.31) and (4.5), this term on the left-hand side of (4.26) can be omitted again. In
order to find a suitable estimate for the right-hand side of the error representation,
the same techniques can be used as those in the proof of Lemma 4.2.3.

Lemma 4.3.2. Assume that u̇(·, t) ∈ H1 and ü(·, t), Fcon(u(·, t)) ∈ (H1)∗ for all
t ∈ [0, T ]. Then, for initial values un = u(t) and u̇n = u̇(t), the local error of
(N-CI/CS(+)) satisfies

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥

τ
=

t+τ∫

t

( s∫

t

‖ü(r) − ü(t + τ)‖(H1)∗ dr
)

ds · O
(
τ−1/2

)

+ ‖u(t) − u(t + τ)‖H1 · O
(
τ 3/2

)
(4.28)

+

t+τ∫

t

‖u̇(s) − u̇(t + τ)‖H1 ds · O
(
τ 1/2

)
.

Proof. Omitting (4.27) and applying the continuity of the bilinear forms a and b in
H1 to (4.26), cf. (1.22) and (1.23), gives the estimate

‖ǫ(t,u, τ)‖2
τ ≤

( t+τ∫

t

( s∫

t

‖ü(r) − ü(t + τ)‖(H1)∗ dr
)

ds
)
‖ǫ(t,u, τ)‖H1

+ ‖u(t) − u(t + τ)‖H1‖ǫ(t,u, τ)‖H1 · O
(
τ 2

)

+
( t+τ∫

t

‖u̇(s) − u̇(t + τ)‖H1 ds
)
‖ǫ(t,u, τ)‖H1 · O(τ) .

After inserting the inequality of Korn (A.1) in the form

‖ǫ(t,u, τ)‖2
H1 ≤ C

(
‖ǫ(t,u, τ)‖2

L2
+ ‖ǫ(t,u, τ)‖2

b

)

in this estimate, the whole inequality can be divided by the square root of the
left-hand side. This yields the result of the theorem.
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4.3. Consistency Error in a Discrete Displacement Norm

In the presence of contact, the same assumption on the solution of (1.28) is made
as in Section 4.2. This leads to an estimate for the consistency error, which uses the
total variation of the continuous solution again.

Theorem 4.3.3. Let Assumption 4.2.4 hold. Then, for initial values un = u(t) and
u̇n = u̇(t), the local error of (N-CI/CS(+)) satisfies

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥

τ
= R(u, [t, t + τ ]) · O

(
τ 3/2

)
. (4.29)

Proof. Due to the regularity assumption, expression (4.28) can be estimated via:

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥

τ

=
(

sup
s∈[t,t+τ ]

‖ü(s) − ü(t + τ)‖(H1)∗ + ‖u(t) − u(t + τ)‖H1

+ sup
s∈[t,t+τ ]

‖u̇(s) − u̇(t + τ)‖H1

)
· O

(
τ 3/2

)

=
(
TV

(
ü, [t, t + τ ],

(
H1

)∗)
+ TV

(
u, [t, t + τ ],H1

)

+TV
(
u̇, [t, t + τ ],H1

))
· O

(
τ 3/2

)
.

Again, a corresponding consistency result for the classical Newmark method will
be proven, as done in Theorem 4.2.7 for the physical energy norm.

Theorem 4.3.4. Let Assumption 4.2.4 hold. Then, for Fcon(u
n) − Fcon(u(t)) = 0

in (H1)∗ and initial values un = u(t) and u̇n = u̇(t), the local error of (N-CL)
satisfies ∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)

∥∥
τ

= R(u, [t, t + τ ]) · O
(
τ 3/2

)
. (4.30)

Proof. Following the proof of Lemma 4.3.1 above, Fcon(u
n+1) has to be replaced by

1
2
(Fcon(u

n) + Fcon(u
n+1)), which yields

‖ǫ(t,u, τ)‖τ −
τ 2

4

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1

= −
t+τ∫

t

( s∫

t

〈ü(r) − ü(t + τ), ǫ(t,u, τ)〉(H1)∗×H1 dr
)

ds

− τ 2

4
a(u(t) − u(t + τ), ǫ(t,u, τ)) − τ

2

t+τ∫

t

b(u̇(s) − u̇(t + τ), ǫ(t,u, τ)) ds

+
τ 2

4

〈
Fcon(u(t)) − Fcon(u(t + τ)),un+1 − u(t + τ)

〉
(H1)∗×H1 .
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4. Consistency – Bounded Variation

Compared to Lemma 4.3.2, an additional term including contact forces occurs on
the right-hand side. Following the proof of Lemma 4.3.2 leads to

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥

τ
=

t+τ∫

t

( s∫

t

‖ü(r) − ü(t + τ)‖(H1)∗ dr
)

ds · O
(
τ−1/2

)

+ ‖u(t) − u(t + τ)‖H1 · O
(
τ 1/2

)

+

t+τ∫

t

‖u̇(s) − u̇(t + τ)‖H1 ds · O
(
τ 3/2

)

+ ‖Fcon(u(t)) − Fcon(u(t + τ))‖(H1)∗ · O
(
τ 3/2

)
.

Introducing the total variations as in the proof of Theorem 4.3.3 gives the result of
the theorem.

Finally, the estimate for the displacements measured in a-norm can be improved
by means of the inequality of Korn.

Corollary 4.3.5. Let Assumption 4.2.4 hold. Then, for initial values un = u(t)
and u̇n = u̇(t), the local error of (N-CI/CS(+)) satisfies

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥

a
= R(u, [t, t + τ ]) · O(τ) . (4.31)

For (N-CL), the same holds if in addition Fcon(u
n) − Fcon(u(t)) = 0 in (H1)∗.

Proof. The inequality of Korn (A.1) yields
∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)

∥∥
H1

≤ C
(∥∥Ψt+τ,tū(t) −Φt+τ,tū(t)

∥∥2

L2
+

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥2

b

)1/2
.

Hence, due to Theorem 4.3.3 and Theorem 4.3.4,
∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)

∥∥
H1 = R(u, [t, t + τ ]) · O(τ) .

The continuity of the bilinear form a in H1, cf. (1.22), gives the result of the corollary.

4.4. Consistency Error for Permanent Active

Contact

In the last part of this chapter, the local error behavior of the four Newmark methods
under consideration will be studied in the presence of time-constant active contact
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4.4. Consistency Error for Permanent Active Contact

boundaries. As noted in Remark 4.2.2, in this case, the schemes are expected to
provide an increased consistency order in comparison to the general free boundary
problem.

For permanent active contact and under strict complementarity, the variational
inequality (1.28) reduces to a linear parabolic equation with additional Dirichlet
boundaries that are fixed over time. The smoother the initial and boundary values
and the external forces of such a problem, the smoother are the solution and its
derivatives in time and space (compare, e.g., [27, Chapter 7.1]). This effect justifies
to perform the consistency error analysis of this section under optimal regularity
conditions.

As in the case of time-dependent active contact boundaries, the local discretization
error of the schemes will be investigated within the physical energy norm first.
Afterwards, the corresponding consistency result in the discrete displacement norm
will be presented.

Theorem 4.4.1. Let [u · ν]φ = g on ΓC × [t, t + τ ]. Furthermore, assume that
ü ∈ C2([t, t + τ ],L2) ∩ C1([t, t + τ ],H1). Then, for initial values un = u(t) and
u̇n = u̇(t), the local error Ψ̄ − Φ̄ = (Ψ −Φ, Ψ̇ − Φ̇) of (N-CI/CS(+)) satisfies

‖Ψ̄ − Φ̄‖E(t,τ) = O
(
τ 3

)
. (4.32)

For (N-CL), the same estimate holds if in addition [un+1 · ν]φ = g on ΓC for all τ .

Proof. In a first step, the scheme (N-CI/CS(+)) is considered. By means of the defi-
nitions of both the variational problem (1.31) and algorithm (4.3) and Remark 4.1.5,
a short calculation leads to

1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

=
1

2
(u̇(t) − u̇(t + τ), ǫ(t, u̇, τ))L2

− τ

2
a
(u(t) + un+1

2
, ǫ(t, u̇, τ)

)
+

1

2
a(ǫ(t,u, τ), ǫ(t,u, τ))

− τ

2
b
( u̇(t) + u̇(t + τ)

2
, ǫ(t, u̇, τ)

)
+

τ

2

〈
Fcon(u

n+1), ǫ(t, u̇, τ)
〉
(H1)∗×H1

=
1

2

(
u̇(t) + τ

ü(t) + ü(t + τ)

2
− u̇(t + τ), ǫ(t, u̇, τ)

)
L2

+
1

2
a(ǫ(t,u, τ), ǫ(t,u, τ) − τ

2
ǫ(t, u̇, τ))

+
τ

2

〈
Fcon(u

n+1) − 1

2
(Fcon(u(t)) + Fcon(u(t + τ))), ǫ(t, u̇, τ)

〉
(H1)∗×H1

.
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Using the relation

ǫ(t,u, τ) = un + τ
u̇(t) + u̇n+1

2
− u(t + τ)

=
τ

2
ǫ(t, u̇, τ) + u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ) ,

cf. Remark 4.1.5, the error representation can equivalently be written as

1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

=
1

2

(
u̇(t) + τ

ü(t) + ü(t + τ)

2
− u̇(t + τ), ǫ(t, u̇, τ)

)

L2

+
τ

4
a
(
u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ), ǫ(t, u̇, τ)

)

+
1

2

∥∥∥u(t) + τ
u̇(t) + u̇(t + τ)

2
− u(t + τ)

∥∥∥
2

a

− τ

2

〈
Fcon(u

n+1) − 1

2
(Fcon(u(t)) + Fcon(u(t + τ))), u̇(t) + u̇(t + τ)

〉
(H1)∗×H1

+
1

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),u(t + τ) − u(t)
〉
(H1)∗×H1

+
1

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1

+
1

2

〈
Fcon(u

n+1) − Fcon(u(t)),un+1 − u(t)
〉
(H1)∗×H1 .

(4.33)

The last two terms in this expression are less or equal to zero because of the sign of
the contact forces, cf. (1.31) and (4.5). Moreover, the assumption [(u(t+ τ)−u(t)) ·
ν]φ = 0 on ΓC leads to u(t + τ) − u(t) ∈ K and −(u(t + τ) − u(t)) ∈ K. Hence,

〈
Fcon(u

n+1) − Fcon(u(t + τ)),u(t + τ) − u(t)
〉
(H1)∗×H1 = 0

due to (1.31) and (4.5). In addition, a similar argument yields

〈
Fcon(u

n+1) − 1

2
(Fcon(u(t)) + Fcon(u(t + τ))), u̇(t)

〉

(H1)∗×H1

= lim
h→0

〈
Fcon(u

n+1) − 1

2
(Fcon(u(t)) + Fcon(u(t + τ))),

u(t + h) − u(t)

h

〉

(H1)∗×H1

= 0
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and
〈
Fcon(u

n+1) − 1

2
(Fcon(u(t)) + Fcon(u(t + τ))), u̇(t + τ)

〉
(H1)∗×H1

= lim
h→0

〈
Fcon(u

n+1)

−1

2
(Fcon(u(t)) + Fcon(u(t + τ))),

u(t + τ) − u(t + τ − h)

−h

〉

(H1)∗×H1

= 0 .

Summing up these relations leads to

1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

≤ 1

2

(
u̇(t) + τ

ü(t) + ü(t + τ)

2
− u̇(t + τ), ǫ(t, u̇, τ)

)

L2

+
τ

4
a
(
u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ), ǫ(t, u̇, τ)

)

+
1

2

∥∥∥u(t) + τ
u̇(t) + u̇(t + τ)

2
− u(t + τ)

∥∥∥
2

a
,

which can be further estimated to

1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

≤ 1

2

∥∥∥u̇(t) + τ
ü(t) + ü(t + τ)

2
− u̇(t + τ)

∥∥∥
L2

‖ǫ(t, u̇, τ)‖L2

+ C
(
τ
∥∥∥u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ)

∥∥∥
H1

‖ǫ(t, u̇, τ)‖H1

+
∥∥∥u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ)

∥∥∥
2

H1

)

by the continuity of the bilinear form a in H1, cf. (1.22). Inserting the inequality of
Korn (A.1) combined with (1.5) in the form

‖ǫ(t, u̇, τ))‖2
H1 ≤ 1

cK

(
‖ǫ(t, u̇, τ))‖2

L2
+

1

V0
‖ǫ(t, u̇, τ))‖2

b

)

into this estimate results in an inequality of the type

x ≤ 2a · x1/2 + b2

with a, b, x ≥ 0, which is equivalent to

(
x1/2 − a

)2 ≤ a2 + b2 .
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Thus,
x1/2 ≤ a +

√
a2 + b2 ≤ 2a + b ,

and this gives the inequality

(1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

)1/2

≤ C
(∥∥∥u̇(t) + τ

ü(t) + ü(t + τ)

2
− u̇(t + τ)

∥∥∥
L2

+
∥∥∥u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ)

∥∥∥
H1

)
.

Since the trapezoidal rule is of order 2 under the regularity assumptions of the
theorem (cf., e.g., [18]),

(1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

)1/2

= O
(
τ 3

)

holds. In particular,
‖ǫ(t, u̇, τ0)‖b = O

(
τ

5/2
0

)

for arbitrary τ0 > 0, and setting τ0 = s for s ∈ [t, t + τ ] leads to

(∫ t+τ

t

‖ǫ(t, u̇, s)‖2
b ds

)1/2

= O
(
τ 3

)
.

This yields the result of the theorem for (N-CI/CS(+)).
For (N-CL), definition (2.3) causes a modification of relation (4.33) in the form

1

2
‖ǫ(t, u̇, τ)‖2

L2
+

1

2
‖ǫ(t,u, τ)‖2

a +
τ

4
‖ǫ(t, u̇, τ)‖2

b

=
1

2

(
u̇(t) + τ

ü(t) + ü(t + τ)

2
− u̇(t + τ), ǫ(t, u̇, τ)

)

L2

+
τ

4
a
(
u(t) + τ

u̇(t) + u̇(t + τ)

2
− u(t + τ), ǫ(t, u̇, τ)

)

+
1

2

∥∥∥u(t) + τ
u̇(t) + u̇(t + τ)

2
− u(t + τ)

∥∥∥
2

a

− τ

2

〈1

2
(Fcon(u

n) + Fcon(u
n+1))

−1

2
(Fcon(u(t)) + Fcon(u(t + τ))), u̇(t) + u̇(t + τ)

〉

(H1)∗×H1

+
〈1

2
(Fcon(u

n) + Fcon(u
n+1))

−1

2
(Fcon(u(t)) + Fcon(u(t + τ))),un+1 − u(t)

〉
(H1)∗×H1

.
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Following the argumentation already used for (N-CI/CS(+)), the contact terms in
this expression are equal to zero since [(un+1 − u(t)) · ν]φ = 0 and [(u(t + τ) −
u(t)) · ν]φ = 0 on ΓC . Now, the proof can be finished in the same way as for
(N-CI/CS(+)).

The theorem above reveals that the local discretization errors of (N-CL) and (N-
CI/CS(+)) are of order 2 in physical energy norm if the active contact boundaries
do not vary within the timestep and the solution is sufficiently regular. This is in
contrast to the general problem of free contact boundaries, where higher regularity
would not entail an increase of the consistency order. In particular, the result
incorporates the unconstrained case, in which Newmark schemes are well-known to
be of order 2 for ODEs [33].

In a second step, the local discretization error in the presence of permanent active
contact is analyzed within the discrete displacement norm. Compared to Theo-
rem 4.4.1, the result is based on weakened regularity assumptions on the solution
and its derivatives. Permanent active contact boundaries are explicitly demanded
for (N-CL) only, but they are also essential for (N-CI/CS(+)) since they justify the
strong regularity assumptions.

Theorem 4.4.2. Assume that ü ∈ C1([t, t + τ ],L2) ∩ C([t, t + τ ],H1). Then, for
initial values un = u(t) and u̇n = u̇(t), the local error of (N-CI/CS(+)) satisfies

∥∥Ψt+τ,tū(t) − Φt+τ,tū(t)
∥∥

τ
= O

(
τ 3

)
. (4.34)

For (N-CL), the same estimate holds if in addition [(un+1 − u(t + τ)) · ν]φ = g on
ΓC for all τ .

Proof. For (N-CI/CS(+)), Lemma 4.3.1 gives

‖ǫ(t,u, τ)‖2
τ

= −
t+τ∫

t

( s∫

t

(ü(r) − ü(t + τ), ǫ(t,u, τ))L2
dr

)
ds

+
τ 2

4
a(u(t + τ) − u(t), ǫ(t,u, τ)) − τ

2

t+τ∫

t

b(u̇(s) − u̇(t + τ), ǫ(t,u, τ)) ds

+
τ 2

2

〈
Fcon(u

n+1) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉
(H1)∗×H1
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≤
t+τ∫

t

( s∫

t

‖ü(r) − ü(t + τ)‖L2
dr

)
ds · ‖ǫ(t,u, τ)‖L2

+ C
(
τ 2‖u(t) − u(t + τ)‖H1 + τ

t+τ∫

t

‖u̇(s) − u̇(t + τ)‖H1 ds
)
‖ǫ(t,u, τ)‖H1 ,

(4.35)

due to the continuity of the bilinear forms a and b in H1, cf. (1.22) and (1.23),
and the sign of the contact forces, cf. (1.31) and (4.5). Inserting the regularity
assumptions of the theorem into this expression results in

‖ǫ(t,u, τ)‖2
τ ≤ Cτ 3 ·

(
‖ǫ(t,u, τ)‖L2

+ ‖ǫ(t,u, τ))‖H1

)
.

Here, the inequality of Korn (A.1), the estimate (1.5), and the consistency order of
the displacements in a-norm (cf. the previous Theorem 4.4.1) lead to

‖ǫ(t,u, τ))‖H1 ≤ 1

c
1/2
K

(
‖ǫ(t,u, τ))‖2

L2
+

1

E0
‖ǫ(t,u, τ))‖2

a

)1/2

=
1

c
1/2
K

(
‖ǫ(t,u, τ))‖2

L2
+ O

(
τ 6

))1/2

=
1

c
1/2
K

‖ǫ(t,u, τ))‖L2
+ O

(
τ 3

)

such that
‖ǫ(t,u, τ)‖2

τ = O
(
τ 3

)
· ‖ǫ(t,u, τ)‖τ + O

(
τ 6

)
.

Finally, the binomial formula yields the desired result (compare, e.g., the proof of
Theorem 4.4.1).

For (N-CL), the additional term

τ 2

4

〈
Fcon(u

n) − Fcon(u(t + τ)),un+1 − u(t + τ)
〉

(H1)∗×H1

occurs on the right-hand side of (4.35). The assumption [(un+1 −u(t+ τ)) ·ν ]φ = 0
on ΓC leads to ±(un+1 − u(t + τ)) ∈ K. Hence, the whole contact term is equal
to zero, see (1.31) and (4.5). Following the proof of the theorem for (N-CI/CS(+))
gives consistency of order 2, too.

As shown in the theorem above, the consistency error measured in the discrete
displacement norm is of the same optimal order 2 as in physical energy norm. This
is in contrast to the general case of free contact, where the consistency error in the
discrete displacement norm is one order higher than in physical energy norm. The
result corresponds to the behavior of Newmark methods in the absence of contact,
where both displacements and velocities are of order 2 for ODEs [33].
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The optimal consistency order of the improved contact–stabilized Newmark
scheme in the case of permanent active contact will become fundamental for the
construction of an adaptive timestep control in Chapter 6.
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5. Convergence Theory

To date, the question of convergence of Newmark methods for dynamical contact
problems has been neglected in engineering and in mathematical literature com-
pletely. In the present chapter, the convergence of the improved contact–stabilized
Newmark scheme will be analyzed within the method of time layers, both in physical
energy norm and in discrete displacement norm.

The conventional approach to this challenge is applying the proof technique for
time discretizations of evolution problems by Hairer, Nørsett, and Wanner (also
known as “Lady Windermere’s Fan”, cf. [34]) to the algorithm. The procedure re-
quires results concerning the stability of dynamical contact problems under pertur-
bations of the initial data and consistency of the Newmark method, which have been
investigated in Chapter 3 and in Chapter 4. However, the special structure of the
consistency error estimate in the presence of contact would not give rise to any con-
vergence of the scheme in this traditional way. Therefore, the proof in this chapter
will utilize a second, less popular version of the classical Lady Windermere’s Fan
instead, which is based on a discrete perturbation result for the time discretization
scheme. Here, the telescoping property of the total variations will play a substantial
role.

The chapter is organized as follows. In Section 5.1, the focus is on the continuous
dependence of the Newmark methods on the initial data in discrete displacement
norm and in physical energy norm. This issue will need a discrete stability condition
on the contact forces of the algorithm. Afterwards, in Section 5.2, the mathematical
insights gained so far will be exploited to prove convergence of the contact–implicit
and (improved) contact–stabilized Newmark method in both norms.

5.1. Discrete Perturbation Results

The alternative proof technique of convergence for time discretizations of dynamical
contact problems requires information on the continuous dependence of the schemes
on the initial data. Within the discrete displacement norm, a perturbation result for
the contact–implicit and (improved) contact–stabilized Newmark method in function
space can be proven comparatively easy for one timestep. After performing several
steps, however, information on the stability behavior of the velocities is required in
addition. The proof of a perturbation result in physical energy norm will be based
on a stability condition on the contact forces of the algorithm, which is the discrete
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analogon to the one introduced in Chapter 3 for dynamical contact problems. The
assumption will again be motivated by localizing the discrete contact stresses on
small parts of the possible contact boundaries.

5.1.1. A Discrete Perturbation Result in Discrete

Displacement Norm

In this section, the stability of the Newmark methods under perturbations of the ini-
tial data will be analyzed within the discrete displacement norm. For (N-CI/CS(+)),
a discrete perturbation result will be derived. A corresponding estimate for (N-CL)
is not valid.

For (N-CI/CS(+)), the following strong relation holds between the initial pertur-
bations and the displacements of the scheme at the end of a timestep.

Lemma 5.1.1. Let uj+1 and ũj+1 be two solutions of (N-CI/CS(+)) with initial
values uj, u̇j and ũj, ˙̃uj, respectively. Then,

∥∥δuj+1
∥∥2

L2
+

τ 2
j

4

∥∥δuj+1
∥∥2

a
+

τj

2

∥∥δuj+1
∥∥2

b
− τ 2

j

〈
δFcon(u

j+1), δuj+1
〉
(H1)∗×H1

+
∥∥δuj+1 − δuj − τjδu̇

j
∥∥2

L2
+ τ 2

j

∥∥∥
δuj + δuj+1

2

∥∥∥
2

a
+

τ 3
j

2

∥∥∥
δuj+1 − δuj

τj

∥∥∥
2

b

=
∥∥δuj + τjδu̇

j
∥∥2

L2
+

τ 2
j

4

∥∥δuj
∥∥2

a
+

τj

2

∥∥δuj
∥∥2

b
.

(5.1)

Proof. Inserting the definition of algorithm (4.3) into the discrete displacement norm
of the perturbed solutions leads to

∥∥δuj+1
∥∥2

L2
+

τ 2
j

4

∥∥δuj+1
∥∥2

a
+

τj

2

∥∥δuj+1
∥∥2

b

−
∥∥δuj + τjδu̇

j
∥∥2

L2
− τ 2

j

4

∥∥δuj
∥∥2

a
− τj

2

∥∥δuj
∥∥2

b

=
(
δuj+1 − δuj − τjδu̇

j, δuj+1 + δuj + τjδu̇
j
)
L2

+
τ 2
j

4
a
(
δuj + δuj+1, δuj+1 − δuj

)
+

τj

2
b
(
δuj + δuj+1, δuj+1 − δuj

)

= 2
(
δuj+1 − δuj − τjδu̇

j , δuj+1
)
L2

−
∥∥δuj+1 − δuj − τjδu̇

j
∥∥2

L2

+ τ 2
j a

(δuj + δuj+1

2
, δuj+1

)
− τ 2

j

∥∥∥
δuj + δuj+1

2

∥∥∥
2

a

+ τ 2
j b

(δuj+1 − δuj

τj
, δuj+1

)
− τ 3

j

2

∥∥∥
δuj+1 − δuj

τj

∥∥∥
2

b
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= τ 2
j

〈
δFcon(u

j+1), δuj+1
〉
(H1)∗×H1 −

∥∥δuj+1 − δuj − τjδu̇
j
∥∥2

L2

− τ 2
j

∥∥∥
δuj + δuj+1

2

∥∥∥
2

a
− τ 3

j

2

∥∥∥
δuj+1 − δuj

τj

∥∥∥
2

b
.

The stability result for (N-CI/CS(+)) presented above is valid for arbitrary per-
turbations of the initial data without any further assumptions. Equation (5.1) shows
that, if the initial perturbations in displacements and velocities tend to zero, the
perturbations in displacements at the end of a timestep vanish both in L2-norm and
in H1-norm. In particular, this observation indicates the uniqueness of a discrete
solution of (N-CI/CS(+)), compare Chapter 2.

Remark 5.1.2. For the classical Newmark method, Lemma 5.1.1 is not valid due
to the same analytical reason that causes energy generation of the scheme in the
presence of contact. Performing the calculation in the proof above for (N-CL) yields
relation (5.1) up to an additional contact term

τ 2
j

〈
δFcon(u

j), δuj+1
〉
(H1)∗×H1

on the right-hand side. Due to the missing sign or, at least, the lack of an estimate
for this quantity, a perturbation result for (N-CL) in discrete displacement norm
can only be expected under extra assumptions. For this reason, the investigations
of this chapter concentrate on (N-CI/CS(+)).

In view of a convergence proof for (N-CI/CS(+)) in discrete displacement norm,
information about the stability of the scheme after performing several timesteps is
necessary. For an equidistant mesh of timesteps, the following theorem presents an
estimate for a multiple propagation of perturbations in displacements.

Theorem 5.1.3. Let un+1 and ũn+1 be two solutions of (N-CI/CS(+)) with initial
values u0, u̇0 and ũ0, ˙̃u0, respectively. Then,

∥∥δun+1
∥∥

τ
≤

∥∥δu0
∥∥

τ
+ τ

n∑

j=0

∥∥δu̇j
∥∥

L2
. (5.2)

Proof. Due to the sign of the discrete contact forces, cf. (4.5),
〈
δFcon(u

j+1), δuj+1
〉
(H1)∗×H1 ≤ 0 ,

Lemma 5.1.1 yields the estimate

∥∥δuj+1
∥∥2

L2
+

τ 2

4

∥∥δuj+1
∥∥2

a
+

τ

2

∥∥δuj+1
∥∥2

b

≤
∥∥δuj + τδu̇j

∥∥2

L2
+

τ 2

4

∥∥δuj
∥∥2

a
+

τ

2

∥∥δuj
∥∥2

b
.
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The triangle inequality for norms gives

(∥∥δuj+1
∥∥2

L2
+

τ 2

4

∥∥δuj+1
∥∥2

a
+

τ

2

∥∥δuj+1
∥∥2

b

)1/2

≤
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∥∥2

L2
+
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+

τ

2
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∥∥2
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)1/2

+ τ
∥∥δu̇j
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L2

.

Applying this estimate several times leads to
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+

τ 2
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∥∥δun+1
∥∥2

a
+

τ

2

∥∥δun+1
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2

∥∥δu0
∥∥2
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)1/2

+ τ

n∑

j=0

∥∥δu̇j
∥∥

L2
,

which is the result of the theorem.

The presented perturbation result in discrete displacement norm depends on the
L2-norm of the perturbed discrete velocities at every point of the time mesh. This
is a typical stability behavior for time discretizations of evolution problems. In
consequence, a proof of convergence for (N-CI/CS(+)) in discrete displacement norm
additionally requires a discrete perturbation result in physical energy norm.

5.1.2. Discrete Stability Condition

In the following two sections, the challenge is to derive a reliable discrete pertur-
bation result for (N-CI/CS(+)) in physical energy norm. In a first step, a class
of discretizations will be characterized that satisfy the necessary continuous depen-
dence on the initial data. To this end, a stability condition on the contact forces of
(N-CI/CS(+)) will be imposed, which will turn out to be the discrete analogon to
the continuous one in Section 5.1.2. The assumption can be interpreted by means
of a localization of the discrete contact forces on certain critical contact boundaries.

A short calculation gives the following lemma concerning the stability of (N-
CI/CS(+)) under perturbations of the initial data in physical energy norm. The
result corresponds to the one presented in Lemma 3.2.1 for the dynamical contact
problem.

Lemma 5.1.4. Let ūj+1 = (uj+1, u̇j+1) and ¯̃uj+1 = (ũj+1, ˙̃uj+1) be two solutions of
(N-CI/CS(+)) with initial values u0, u̇0 and ũ0, ˙̃u0, respectively. Then,

∥∥δūj+1
∥∥2

E
+ τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b
=

∥∥δūj
∥∥2

E
+ τj

〈
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uj+1 − uj

τj

〉

(H1)∗×H1
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and

∥∥δūn+1
∥∥2

E
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τj

〉

(H1)∗×H1
.

(5.3)

Proof. Inserting definition (4.3) of the Newmark scheme into the physical energy
norm of the perturbed solutions leads to

1

2
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)
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+ τj
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δFcon(u

j+1), δ
uj+1 − uj

τj

〉
(H1)∗×H1

,

where Remark 4.1.5 has been used. Propagating this relation over several timesteps
yields the second result of the lemma.

In the case of time-constant active contact boundaries (and especially in the ab-
sence of contact), the Newmark schemes under consideration depend continuously
on the initial data in physical energy norm. Though, the general case of time-
dependent active contact requires to handle the contact terms on the right-hand
side of relation (5.3). For this purpose, viscous material behavior is indispensable
since it provides information on the finite differences in displacements at contact
boundaries. Nevertheless, a reasonable stability condition on the term including
the contact forces is needed, compare the perturbation result for dynamical contact
problems in Chapter 3.

The stability condition will be motivated by the intuition that perturbations in the
contact forces are effective only on a small part of the possible contact boundaries.
Hence, the next aim is to localize the discrete contact stresses on a critical segment
of the contact boundaries.

Localization of contact stresses. For simplification, assume that the possible
contact boundaries and the bijective mappings between the two possible contact
boundaries coincide, i.e., ΓC = Γ̃C and φ = φ̃. This is the special case of interest
for the convergence analysis of the Newmark method in Section 5.2.

The discrete active contact boundaries of a time discretization can be defined by
means of the concept of Sobolev capacity (compare Section 3.3), namely

Γj+1
C :=

{
x ∈ ΓC

∣∣ [
uj+1 · ν

]
φ

= g
}
⊂ ΓC q.e. (5.4)
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for j + 1 = 0, . . . , N△ and

Γ̃j+1
C :=

{
x ∈ ΓC

∣∣ [ũj+1 · ν
]
φ

= g
}
⊂ ΓC q.e. (5.5)

for the perturbed solution. For (N-CI/CS(+)), the critical part of the discrete active
contact boundaries is the set

(Γ∗
C)j+1,j := (Γ∗

C)j+1 ∪ (Γ∗
C)j ∪ (Γ̃∗

C)j+1,j (5.6)

for j + 1 = 1, . . . , N△ where

(Γ∗
C)i : =

(
Γi

C ∪ Γ̃i
C

)
\

(
Γi

C ∩ Γ̃i
C

)
(5.7)

=
{
x ∈ ΓC

∣∣ [
ui · ν

]
φ

< g,
[
ũi · ν

]
φ

= g or
[
ui · ν

]
φ

= g,
[
ũi · ν

]
φ

< g
}

q.e.

and

(Γ̃∗
C)i+1,i :=

{
x ∈ ΓC

∣∣ [
uj · ν

]
φ

< g,
[
ũj · ν

]
φ

< g and
[
uj+1 · ν

]
φ

=
[
ũj+1 · ν

]
φ

= g
}

q.e.
(5.8)

The first two sets (Γ∗
C)j+1 and (Γ∗

C)j describe parts of the possible contact boundaries
where the discrete solution is in contact and the perturbed one is not, or vice versa.
The third component (Γ̃∗

C)j+1,j is a boundary segment where the initial solutions
are not in contact, while the final solutions are both in contact. This part of the
contact boundaries usually appears in the phase of detecting contact for the first
time. By virtue of the discrete perturbation result for (N-CI/CS(+)) in discrete
displacement norm, cf. Section 5.1.1, the critical set can be expected to become
successively smaller if the initial perturbations tend to zero.

In Appendix B, a trace theorem for the discrete contact stresses is proven under
the assumption that div σ(uj+1, u̇j+1), div σ(ũj+1, ˙̃uj+1) ∈ L2(Ω). Using the def-
initions above, the difference of the contact forces can be written as a functional
δσ̂∗(uj+1, u̇j+1) ∈ (H1/2)∗((Γ∗

C)j+1,j) acting on the critical contact boundaries only,
i.e.,

〈
δFcon(u

j+1), δ(uj+1 − uj)
〉
(H1)∗×H1

=
〈
δσ̂∗(uj+1, u̇j+1), δ(uj+1 − uj)

〉
(H1/2)∗((Γ∗

C )j+1,j)×H1/2((Γ∗

C)j+1,j )

(5.9)

for all j + 1 ∈ {1, . . . , N△}.

The localization of the contact stresses of (N-CI/CS(+)) on critical contact bound-
aries allows reformulating Lemma 3.2.1 in the following way.
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Lemma 5.1.5. Let ūj+1 = (uj+1, u̇j+1) and ¯̃uj+1 = (ũj+1, ˙̃uj+1) be two solutions
of (N-CI/CS(+)) with initial values u0, u̇0 and ũ0, ˙̃u0, respectively. Furthermore,
assume that (5.9) is valid. Then, for all n + 1 ∈ {0, . . . , N△},
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.

Remark 5.1.6. For (N-CL), the different contact term

n∑

j=0

τj

〈
δFcon(u

j) + δFcon(u
j+1), δ

uj+1 − uj

τj

〉

(H1)∗×H1

has to be localized on a critical part of the possible contact boundaries. For sure, this
critical set is larger than the one for (N-CI/CS(+)) introduced above. In general,
however, these modified critical contact boundaries are not expected to become
smaller if the initial perturbations tend to zero. This is due to the missing stability
result for (N-CL) in discrete displacement norm, cf. Remark 5.1.2.

In order to motivate a reasonable (localized) stability condition for (N-CI/CS(+)),
the special case of quasistatic contact problems will be analyzed in the following.

(N-CI/CS(+)) for quasistatic contact problems. Setting

uj+1 − uj − τ u̇j = 0

in definition (4.3) of (N-CI/CS(+)) yields

0 ∈ F1/2
(
uj ,uj+1

)
+ G

(uj+1 − uj

τ

)
+ ∂IK

(
uj+1

)
. (5.10)

The contact forces Fcon(u
j+1) ∈ (H1)∗ are given by

〈
Fcon(u

j+1),v
〉
(H1)∗×H1 (5.11)

:=
〈
F1/2(uj ,uj+1),v

〉
(H1)∗×H1 +

〈
G

(uj+1 − uj

τ

)
,v

〉

(H1)∗×H1
, v ∈ H1

for almost every t ∈ [0, T ].
Let the contact forces be represented by a functional acting on the active contact

boundaries only, i.e.,
∥∥Fcon(u

j+1)
∥∥

(H1)∗(Ω)
=

∥∥δσ̂(uj+1, u̇j+1)
∥∥

(H1/2)∗(Γj+1

C ∪Γ̃j+1

C )
,
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and assume that
( n∑

j=0

τj

∥∥δσ̂∗(uj+1, u̇j+1)
∥∥2

(H1/2)∗((Γ∗

C)j+1,j)

)1/2

≤ ε
( n∑

j=0

τj

∥∥δσ̂(uj+1, u̇j+1)
∥∥2

(H1/2)∗(Γj+1

C ∪Γ̃j+1

C )

)1/2

.

Then, definition (5.11) of the contact forces and the continuity of the linearly vis-
coelastic forces, cf. (1.22) and (1.23), lead to

∥∥δσ̂(uj+1, u̇j+1)
∥∥

(H1/2)∗(Γj+1

C ∪Γ̃j+1

C )

≤ c
(∥∥δF1/2(uj ,uj+1)

∥∥
(H1)∗(Ω)

+
∥∥∥δG

(uj+1 − uj

τ

)∥∥∥
(H1)∗(Ω)

)

≤ c
(∥∥∥δ

uj + uj+1

2

∥∥∥
H1(Ω)

+
∥∥∥δ

uj+1 − uj

τ

∥∥∥
H1(Ω)

)
,

and
( n∑

j=0

τj

∥∥δσ̂∗(uj+1, u̇j+1)
∥∥2

(H1/2)∗((Γ∗

C )j+1,j)

)1/2

≤ ε c
(( n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

H1(Ω)

)1/2

+
( n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τ

∥∥∥
H1(Ω)

)1/2)
.

(5.12)

As discussed above, for (N-CI/CS(+)), the critical part of the contact boundaries
is expected to be only a small segment of the possible contact boundaries for small
initial perturbations. This corresponds to the conjecture that the unknown constant
ε in the above estimate is also small. Hence, the discretization of a quasistatic con-
tact problem via (N-CI/CS(+)) motivates imposing the following localized stability
condition on the discrete contact stresses.

Localized discrete stability condition. Let
( n∑

j=0

τj

∥∥δσ̂∗(uj+1, u̇j+1)
∥∥2

(H1/2)∗((Γ∗

C )j+1,j)

)1/2

≤ ε
(
κ
( n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

H1(Ω)

)1/2

+
( n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
H1(Ω)

)1/2) (5.13)

hold for all n ∈ {0, . . . , N△ − 1} with ε ≥ 0 sufficiently small and κ ≥ 0.

The localized stability condition should be satisfied if (N-CI/CS(+)) behaves sim-
ilar to the corresponding discretization of the quasistatic contact problem, which is
the case for a small variation in the velocities. The non-localized discrete stability
condition reads as follows.
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Discrete stability condition. Let

∣∣∣
n∑

j=0

τj

〈
δFcon(u

j+1), δ
uj+1 − uj

τj

〉

(H1)∗×H1

∣∣∣

≤ ε
(
κ
( n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

H1

)1/2

+
( n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
H1

)1/2)

·
( n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

H1

)1/2

(5.14)

hold for all n ∈ {0, . . . , N△ − 1} with ε ≥ 0 sufficiently small and κ ≥ 0.

Both formulations correspond to the (localized) stability conditions (3.8) and
(3.18) for the dynamical contact problem, in which the integrals are replaced by
sums over the discrete mesh of timesteps. The detailed meaning of the requirement
“ε ≥ 0 sufficiently small” will be given in the following perturbation theorem for
(N-CI/CS(+)) in physical energy norm.

5.1.3. A Discrete Perturbation Result in Physical Energy

Norm

In this section, the continuous dependence of (N-CI/CS(+)) on the initial values
will be shown in physical energy norm for the class of discretizations satisfying the
discrete stability condition (5.14). The discrete perturbation theorem presented
below corresponds to Theorem 3.2.2 for dynamical contact problems satisfying the
continuous stability condition. For most parts, even the proofs of the stability
estimates are similar.

Theorem 5.1.7. Let ūj+1 = (uj+1, u̇j+1) and ¯̃uj+1 = (ũj+1, ˙̃uj+1) be two solutions
of (N-CI/CS(+)) with initial values u0, u̇0 and ũ0, ˙̃u0, respectively. Furthermore,
assume the stability condition (5.14) with ε

V0 cK
< 1 and (5.17). Then, for all n+1 ∈

{0, . . . , N△},

∥∥δūn+1
∥∥2

E
+ α

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b
≤

(∥∥δū0
∥∥2

E
+ ctn+1

∥∥δu0
∥∥2

L2

)
eκ̃2tn+1 (5.15)

with α ∈ [0, 1), c ≥ 0, and κ̃ ≥ 0.

Remark 5.1.8. If the Dirichlet boundaries do not vanish, i.e., if meas(ΓD) > 0, or
if a part of the discrete contact boundaries is active in the whole time interval [0, T ],
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then the estimate does not depend on the initial perturbation of the displacements
in L2-norm, and

∥∥δūn+1
∥∥2

E
+ α

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b
≤

∥∥δū0
∥∥2

E
eκ̃2tn+1 . (5.16)

Proof. Inserting the stability condition (5.14) into the result of Lemma 5.1.4 yields

∥∥δūn+1
∥∥2

E
+

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+

∣∣∣
n∑

j=0

τj

〈
δFcon(u

j+1), δ
uj+1 − uj

τj

〉

(H1)∗×H1

∣∣∣

≤
∥∥δū0

∥∥2

E
+ εκ

( n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

H1

)1/2( n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

H1

)1/2

+ ε

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

H1
.

The inequality of Young in the form

ab ≤ 1

4 V0 cK (1 − α)
a2 + V0 cK (1 − α) b2

for an arbitrary parameter α < 1 leads to

∥∥δūn+1
∥∥2

E
+

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+

ε2κ2

4V0 cK (1 − α)

n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

H1

+ (ε + V0 cK (1 − α))

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

H1
.

Due to the first inequality of Korn (A.1) and the estimate (1.5),

∥∥δūn+1
∥∥2

E
+

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+

ε2κ2

4 V0 c2
K (1 − α)

n∑

j=0

τj

( 1

E0

∥∥∥δ
uj + uj+1

2

∥∥∥
2

a
+

∥∥∥δ
uj + uj+1

2

∥∥∥
2

L2

)

+
( ε

cK
+ V0(1 − α)

) n∑

j=0

τj

( 1

V0

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b
+

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

L2

)
,
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and with Remark 4.1.5, the estimate is equivalent to

∥∥δūn+1
∥∥2

E
+ α̃

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+

c

2 E0

n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

a
+

c

2

n∑

j=0

τj

∥∥∥δ
uj + uj+1

2

∥∥∥
2

L2

+ V0(1 − α̃)
n∑

j=0

τj

∥∥∥δ
u̇j + u̇j+1

2

∥∥∥
2

L2

,

where

α̃ = α − ε

V0 cK

, c =
ε2κ2

2 V0 c2
K (1 − α)

.

In order to make sure that the left-hand side of the inequality is non-negative, let
ε

V0 cK
< 1 and choose α < 1 such that α̃ ≥ 0. Due to the inequality of Young,

∥∥δūn+1
∥∥2

E
+ α̃

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+

c

2 E0

n∑

j=0

τj

2

(∥∥δuj
∥∥2

a
+

∥∥uj+1
∥∥2

a

)
+

c

2

n∑

j=0

τj

2

(∥∥δuj
∥∥2

L2
+

∥∥uj+1
∥∥2

L2

)

+ V0(1 − α̃)

n∑

j=0

τj

2

(∥∥δu̇j
∥∥2

L2
+

∥∥u̇j+1
∥∥2

L2

)

=
∥∥δū0

∥∥2

E
+

c

2 E0

n+1∑

j=0

τj−1 + τj

2

∥∥δuj
∥∥2

a
+

c

2

n+1∑

j=0

τj−1 + τj

2

∥∥δuj
∥∥2

L2

+ V0(1 − α̃)
n+1∑

j=0

τj−1 + τj

2

∥∥δu̇j
∥∥2

L2

holds with τ−1 := 0 and τn+1 := 0. Using Remark 4.1.5 again, the displacements can
be written as

δuj = δuj−1 + τj−1δ
u̇j−1 + u̇j

2
= δu0 +

j∑

i=1

τi−1δ
u̇i−1 + u̇i

2
= δu0 +

j∑

i=0

τi−1 + τi

2
u̇i
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for τ−1 := 0 and τj := 0, and the inequalities of Young and Cauchy-Schwarz lead to

∥∥δuj
∥∥2

L2
≤

(∥∥δu0
∥∥

L2
+

j∑

i=0

τi−1 + τi

2

∥∥δu̇i
∥∥

L2

)2

≤ 2
(∥∥δu0

∥∥2

L2
+

( j∑

i=0

τi−1 + τi

2

∥∥δu̇i
∥∥

L2

)2)

≤ 2
(∥∥δu0

∥∥2

L2
+

( j∑

i=0

τi−1 + τi

2

)( j∑

i=0

τi−1 + τi

2

∥∥δu̇i
∥∥2

L2

))

≤ 2
(∥∥δu0

∥∥2

L2
+ tj

j∑

i=0

τi−1 + τi

2

∥∥δu̇i
∥∥2

L2

)
.

This estimate yields

∥∥δūn+1
∥∥2

E
+ α̃

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+ ctn+1

∥∥δu0
∥∥2

L2
+

c

2 E0

n+1∑

j=0

τj−1 + τj

2

∥∥δuj
∥∥2

a

+ (ct2n+1 + V0(1 − α̃))
n+1∑

j=0

τj−1 + τj

2

∥∥δu̇j
∥∥2

L2

≤
∥∥δū0

∥∥2

E
+ ctn+1

∥∥δu0
∥∥2

L2
+ κ̃2

n+1∑

j=0

τj−1 + τj

2

∥∥δūj
∥∥2

E

with
κ̃2 = max

( c

2E0
, ct2n+1 + V0(1 − α̃)

)
.

Shifting the error components of index n+1 on the right-hand side of the inequality
to the left-hand side gives

(
1 − κ̃2 τn

2

)∥∥δūn+1
∥∥2

E
+ α̃

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
∥∥δū0

∥∥2

E
+ ctn+1

∥∥δu0
∥∥2

L2
+ κ̃2

n∑

j=0

τj−1 + τj

2

∥∥δūj
∥∥2

E
.

Assume that the timesteps τj are bounded by τ△ for all j = 0, . . . , N△ − 1. Now,
let ε or τ△ be such small that the left-hand side of the expression is positive, i.e.,

κ̃2 τ△
2

< 1 . (5.17)
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After dividing the whole estimate by 1 − κ̃2 τn

2
, the discrete Gronwall inequality

presented in Appendix A can be applied, which leads to

∥∥δūn+1
∥∥2

E
+

(
1 − κ̃2 τn

2

)−1

α̃
n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b

≤
(∥∥δū0

∥∥2

E
+ ctn+1

∥∥δu0
∥∥2

L2

)
·
(
1 − κ̃2 τn

2

)−1

e

(
1−κ̃2 τn

2

)−1

κ̃2(tn+1−
τn
2

) .

By means of

1 ≤
(
1 − κ̃2 τn

2

)−1

= 1 +
κ̃2 τn

2

1 − κ̃2 τn

2

≤ e
κ̃2 τn

2

1−κ̃2 τn
2 ,

the perturbation result

∥∥δūn+1
∥∥2

E
+ α̃

n∑

j=0

τj

∥∥∥δ
uj+1 − uj

τj

∥∥∥
2

b
≤

(∥∥δū0
∥∥2

E
+ ctn+1

∥∥δu0
∥∥2

L2

)
e

(
1−κ̃2

τ
△

2

)−1

κ̃2tn+1

holds.

5.2. Convergence

The present section is dedicated to the issue of global convergence of the improved
contact–stabilized Newmark method both in physical energy norm and in discrete
displacement norm. Together with the consistency results of Chapter 4, the discrete
perturbation estimates for the Newmark scheme in the previous section ultimately
provide the necessary preparations.

The common proof technique of convergence for time discretizations of evolu-
tion problems utilizes the classical “Lady Windermere’s Fan” by Hairer, Nørsett,
and Wanner [34] sketched in Figure 5.1. Thereby, the global discretization error
ūN△ − ū(T ) of an algorithm is regarded as the sum of the red-marked local errors
transported along the exact solution curves. This makes the approach dependent
on a perturbation result for the solution of the differential equality. The local er-
rors can be interpreted as consistency errors between the discretization scheme and
the continuous problem with different initial values, which are given by the discrete
trajectory. For dynamical contact modeled by Signorini’s conditions, however, each
initial value problem may exhibit high irregularities in the small timestep of interest.
In the worst case, the total variations of the solutions and its derivatives do not even
tend to zero for decreasing time intervals. Then, the consistency result for Newmark
schemes in Chapter 4 yields only order 1/2 for the relevant local errors in physical
energy norm. Summing up the local error contributions leads to an estimate for the
global error, which is one order below the local one. Hence, the classical theory is

103



5. Convergence Theory
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Figure 5.1.: Global error estimation along the discrete trajectory (blue: exact solu-
tion, green: numerical solution).
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ū
N∆−1

ū
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ū
2

1

ū
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Figure 5.2.: Global error estimation along the exact trajectory (blue: exact solution,
green: discrete solution).
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not appropriate to prove convergence of the Newmark methods under consideration
for dynamical contact.

In contrast, the second version of Lady Windermere’s Fan [34] outlined in Fig-
ure 5.2 performs the “error transport” along the numerical method. This proof
technique requires a perturbation result for the time discretization, which has been
analyzed for Newmark schemes in the previous section. The approach estimates the
global discretization error against a sum of local errors occurring along the exact
trajectory, which are again highlighted in red. The local errors are the consistency
errors between the time integration and the original evolution problem at every
single timepoint of the mesh. Due to the assumption of bounded variation on the
solution of the dynamical contact problem, the local discretization errors of the
Newmark methods are of minimal order 1/2 only at countably many timepoints, cf.
Chapter 4. These discrete critical timepoints do not alter the global convergence
behavior since the local error contributions sum up in a very special way (for a more
precise mathematical argumentation see the introduction of Section 5.2.1). In par-
ticular, the algorithm can be proven to converge with rate 1/2. In the following two
sections, the modified proof technique will be applied to the issue of convergence for
the improved contact–stabilized Newmark method in the presence of contact.

The following notations for a global error analysis make use of the continuous and
discrete evolution operators Φ̄ and Ψ̄.

Notations. With respect to a mesh △ of adaptive timesteps, the lattice function

ū△ := (u△, u̇△) : △ −→ H1 × L2 (5.18)

of a discretization is defined as

u△(tn+1) = Ψtn+1,tnū△(tn) , u̇△(tn+1) = Ψ̇tn+1,tnū△(tn) (5.19)

with
u△(t0) = u0 , u̇△(t0) = u̇0 . (5.20)

Let
ǫ△(ū, t) = (ǫ△(u, t), ǫ△(u̇, t)) (5.21)

denote the global error, where

ǫ△(u, t) := u△(t) − u(t) (5.22)

is the global error in position variables and

ǫ△(u̇, t) := u̇△(t) − u̇(t) (5.23)

is the global error in velocity variables. For a mesh of equidistant timesteps, the
notations ūτ =

(
uτ , u̇τ

)
and ǫτ (ū, t) =

(
ǫτ (ū, t), ǫτ (ū, t)

)
are used.
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5.2.1. Convergence in Physical Energy Norm

First, the proof technique sketched above will be applied to derive an estimate for the
global discretization error of (N-CI/CS(+)) in physical energy norm, which yields
convergence of the scheme in the presence of contact.

In order to point out the underlying idea of the novel convergence theory, the
approach will be described in more mathematical detail here. As explained above,
the global error is estimated against the sum of local discretization errors between
the Newmark scheme and the dynamical contact problem via a discrete perturbation
estimate, compare Figure 5.2. Due to the consistency result in Chapter 4, these local
errors are bounded by the quantity R(u, [t, t + τ ]) multiplied by τ 1/2 in physical
energy norm. At this point, the telescoping property (4.21) of the total variation is
essential. Since the total variations of the solution and its derivatives sum up over
the whole time interval, the relation

N△∑

i=1

R(u, [ti−1, ti]) = R(u, [0, T ])

holds. Hence, the global discretization error can be estimated against R(u, [0, T ])
multiplied by τ 1/2, which gives rise to convergence of (N-CI/CS(+)) with order 1/2.
In summary, the novel proof technique primarily takes advantage of the telescoping
property of the consistency errors, which ensures that no order is lost for convergence
in the presence of contact.

In physical energy norm, the proof of convergence for (N-CI/CS(+)) can be per-
formed in the general case of non-equidistant timesteps. Hence, a bound of the
timestep sizes is required, i.e.,

τj ≤ τ△ , for all j = 0, . . . , N△ − 1 . (5.24)

The following theorem contains the main convergence result of this chapter.

Theorem 5.2.1. Let Assumption 4.2.4 and Assumption (5.24) hold. Further-
more, assume that Theorem 5.1.7 with α ∈ [0, 1), is valid. Then, for initial val-
ues u0 = u(0) and u̇0 = u̇(0), the global error ǫ△(ū, T ) = (ǫ△(u, T ), ǫ△(u̇, T )) of
(N-CI/CS(+)) satisfies

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

= O
(
τ

1/2
△

)
. (5.25)

Proof. Following the notation of Figure 5.2, the global discretization error of (N-
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(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

≤
N△∑

i=1

(
‖ǫi(ū, T )‖2

E + α

N△∑

j=i+1

τj−1

∥∥∥
u

j
i − u

j−1
i

τj−1
− u

j
i−1 − u

j−1
i−1

τj−1

∥∥∥
2

b

)1/2

.

Here, the discrete perturbation result in physical energy norm, cf. Theorem 5.1.7,
leads to the estimate

(
‖ǫi(ū, T )‖2

E + α

N△∑

j=i+1

τj−1

∥∥∥
u

j
i − u

j−1
i

τj−1
− u

j
i−1 − u

j−1
i−1

τj−1

∥∥∥
2

b

)1/2

≤
(
‖ǫ(ti−1, ū, τi−1)‖2

E + c(T − ti−1)‖ǫ(ti−1,u, τi−1)‖2
L2

)1/2
e

κ̃2

2
(T−ti−1)

≤
(
‖ǫ(ti−1, ū, τi−1)‖E + c1/2T 1/2‖ǫ(ti−1,u, τi−1)‖L2

)
e

κ̃2

2
T ,

where a norm inequality has been used in the last line. Taking both estimates
together, Theorem 4.2.6 and Theorem 4.3.3 concerning the consistency error of (N-
CI/CS(+)) yield

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

≤
N△∑

i=1

(
‖ǫ(ti−1, ū, τi−1)‖E + c1/2T 1/2‖ǫ(ti−1,u, τi−1)‖L2

)
e

κ̃2

2
T

=
(
O

(
τ

1/2
△

)
+ O

(
τ

3/2
△

))
·

N△∑

i=1

R(u, [ti−1, ti]) .

Finally, the telescoping property (4.21) of the total variations gives

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

=
(
O

(
τ

1/2
△

)
+ O

(
τ

3/2
△

))
· R(u, [0, T ])

= O
(
τ

1/2
△

)
,

which is the convergence result of the theorem.

The result presented above shows that, in physical energy norm, (N-CI/CS(+))
converges with rate 1/2 to a solution of the dynamical contact problem in function
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space. In particular, the convergence holds in L2-norm for the velocities and in a-
norm for the displacements. The third term on the left-hand side of (5.25) contains
the finite differences in displacements measured in b-norm and summed up over the
time interval. This part of the global error estimate represents the viscous error
component scaled by an unknown factor α, which is given by the perturbation
result in physical energy norm and may be even zero. Hence, the last term does not
necessarily provide further information on the convergence of the scheme.

5.2.2. Convergence in Discrete Displacement Norm

Next, the global convergence of (N-CI/CS(+)) will be proven in the discrete dis-
placement norm for an equidistant mesh of timesteps. For this purpose, the same
concept will be utilized as in physical energy norm, which is based on the telescoping
property of the consistency errors of the algorithm.

Theorem 5.1.3 contains a perturbation result for (N-CI/CS(+)) in discrete dis-
placement norm, which still depends on the stability of the velocities of the scheme.
Therefore, the discrete perturbation Theorem 5.1.7 in physical energy norm will be
inserted into this result at first.

Lemma 5.2.2. Let ūj+1 = (uj+1, u̇j+1) and ¯̃uj+1 = (ũj+1, ˙̃uj+1) be two solutions of
(N-CI/CS(+)) with initial values u0, u̇0 and ũ0, ˙̃u0. Then,

∥∥δun+1
∥∥

τ
≤

(
1 + c1/2T 3/2e

κ̃2

2
T
)∥∥δu0

∥∥
τ

+ Te
κ̃2

2
T
∥∥δū0

∥∥
E

with c ≥ 0 and κ̃ ≥ 0.

Proof. The discrete perturbation result of Theorem 5.1.7 in physical energy norm
leads to

∥∥δūi
∥∥

E
≤

(∥∥δū0
∥∥2

E
+ cti

∥∥δu0
∥∥2

L2

)1/2

e
κ̃2

2
ti

≤
∥∥δū0

∥∥
E

+ c1/2T 1/2
∥∥δu0

∥∥
L2

e
κ̃2

2
T

for all i ∈ {0, . . . , n} by means of a simple norm inequality. Inserting this estimate
into the perturbation Theorem 5.1.3 in discrete displacement norm yields

∥∥δun+1
∥∥

τ
≤

∥∥δuj
∥∥

τ
+ τ

n∑

i=0

∥∥δūi
∥∥

E

≤
∥∥δu0

∥∥
τ

+ (n + 1)τ ·
∥∥δū0

∥∥
E
e

κ̃2

2
T + (n + 1)τ · c1/2T 1/2

∥∥δu0
∥∥

L2
e

κ̃2

2
T

≤
(
1 + c1/2T 3/2e

κ̃2

2
T
)∥∥δu0

∥∥
τ

+ Te
κ̃2

2
T
∥∥δū0

∥∥
E

.
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The perturbation result finally allows proving the convergence of (N-CI/CS(+))
in discrete displacement norm.

Theorem 5.2.3. Let Assumption 4.2.4 hold, and assume that Theorem 5.1.7 is
valid. Then, for initial values u0 = u(0) and u̇0 = u̇(0), the global error of (N-
CI/CS(+)) satisfies

‖ǫτ (u, T )‖τ = O
(
τ 1/2

)
. (5.26)

Proof. Following the same approach as in the proof of Theorem 5.2.1, the global
discretization error of (N-CI/CS(+)) in discrete displacement norm is split up via

‖ǫτ (u, T )‖τ ≤
N∑

i=1

‖ǫi(u, T )‖τ

using the notations of Figure 5.2. Applying the discrete perturbation Lemma 5.2.2
in discrete displacement norm on every single error component yields

‖ǫτ (u, T )‖τ ≤
N∑

i=1

((
1 + c1/2T 3/2e

κ̃2

2
T
)
‖ǫ(ti−1,u, τ)‖τ + Te

κ̃2

2
T‖ǫ(ti−1, ū, τ)‖E

)
.

The estimates for the consistency error in physical energy norm and discrete dis-
placement norm, cf. Theorem 4.2.6 and Theorem 4.3.3, lead to

‖ǫτ (u, T )‖τ =
(
O

(
τ 3/2

)
+ O

(
τ 1/2

))
·

N∑

i=1

R(u, [ti−1, ti]) .

By means of the telescoping property (4.21) of the total variations

‖ǫτ (u, T )‖τ =
(
O

(
τ 3/2

)
+ O

(
τ 1/2

))
· R(u, [0, T ]) = O

(
τ 1/2

)
,

which is the desired estimate for the global discretization error.

The convergence of (N-CI/CS(+)) turns out to have identical order in discrete
displacement norm and in physical energy norm. This is due to the evolutionary
structure of dynamical contact problems, which causes a dependence of the global
discretization error in displacements on the error in velocities. Actually, the conver-
gence order of displacements measured in L2-norm is in principle restricted by the
order of the velocities in L2-norm, which is usually lower.

The presented result shows global convergence of the displacements in L2-norm
with rate 1/2. The discrete displacement norm does not contribute to any conver-
gence of the displacements in a-norm or b-norm due to the scaling of these error
contributions with timestep size. By means of Korn’s inequality, the estimates for
the global error in displacements measured in L2-norm and a-norm can be com-
bined to find convergence of the displacements in H1-norm with identical order
1/2. The following corollary summarizes the insight on the global convergence of
(N-CI/CS(+)) in displacements and velocities gained in this chapter.
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Corollary 5.2.4. Let Assumption 4.2.4 hold, and assume that Theorem 5.1.7 is
valid. Then, for initial values u0 = u(0) and u̇0 = u̇(0), the global error of (N-
CI/CS(+)) satisfies

‖ǫτ (u̇, t)‖L2
= O

(
τ 1/2

)
(5.27)

and
‖ǫτ (u, t)‖H1 = O

(
τ 1/2

)
. (5.28)

Proof. The first estimate follows directly from Theorem 5.2.1. For the second esti-
mate, Korn’s inequality (A.1) is applied to find

‖ǫτ (u, t)‖H1 ≤ C
(
‖ǫτ (u, t)‖2

L2
+ ‖ǫτ (u, t)‖2

a

)1/2
= O

(
τ 1/2

)
,

where Theorem 5.2.1 and Theorem 5.2.3 have been used.
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In view of dynamical contact problems appearing in real life applications as, e.g.,
the motion of a human knee, an adaptive timestep control is of crucial importance
in order to increase the efficiency of the time integration. Phases of active contact
and, especially, moments when the two bodies get into or leave contact necessitate
a much higher temporal resolution than phases without any active contact. The
aim of this chapter is to work out such a device for the improved contact–stabilized
Newmark method [52].

The construction of an adaptive timestep control requires a realistic estimation
of the local discretization error (cf., e.g., the textbook [18]). For this purpose,
the physical energy norm will be exploited due to the perturbation result in the
presence of contact derived in Chapter 3. In order to construct a comparative scheme
of higher-order accuracy measured in this norm, extrapolation techniques will be
extended. This approach demands the existence of an asymptotic error expansion
of the local discretization error. In Section 6.1, an asymptotic error expansion of
the improved contact–stabilized Newmark method will be analyzed theoretically
as well as numerically. In Section 6.2, a problem-adapted error estimator and a
suitable timestep selection (called ContacX1) will be suggested, which also cover
the presence of contact. These techniques are based on the consistency order of the
improved contact–stabilized Newmark method as analyzed in Chapter 4. Finally,
the actually achieved global discretization error of the adaptive timestep control will
be estimated in Section 6.3.

As proven in Section 4.1, the (improved) contact–stabilized Newmark method
coincides with the contact–implicit Newmark scheme by Kane et al. [46] in function
space. Since this thesis uses the method of time layers, the numerical analysis in
this chapter covers all three Newmark methods simultaneously. Nevertheless, the
considerations are restricted to the improved contact–stabilized Newmark method
due to its nice numerical features, compare Chapter 2.

6.1. Towards an Asymptotic Error Expansion

The main challenge for an adaptive timestep control is the construction of a suit-
able error estimator. Usually, the numerical integrator of interest is compared to a

1by convention, ’X’ stands for extrapolation.
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second, higher-order discrete evolution. The construction of such a scheme can be
performed by means of extrapolation techniques, which are based on an asymptotic
error expansion. The scope of this section is to analyze the existence of such an
error representation for the improved contact–stabilized Newmark method.

6.1.1. Conical Derivative

An asymptotic error expansion of the improved contact–stabilized Newmark method
requires well-posedness results of (N-CS+) with respect to perturbations of the initial
data. Here, known results concerning the sensitivity of the scheme from [73] are
recalled.

In [73], an important result has been given that concerns the directional differen-
tiability of the solution u = u(f) ∈ K of an elliptic variational inequality

a(u,v − u) ≥ 〈f ,v − u〉V∗×V , ∀ v ∈ K

on a Hilbert space V. The convex set K is of the form K = {w ∈ V |w ≤ g a.e.}
with g continuous, a(·, ·) has to fulfill usual ellipticity and continuity assumptions,
and f ∈ V∗. Then, the mapping f −→ u(f) has a conical derivative Du(f)(·) on
V∗, and Du(f)(w) ∈ K̃u is the solution of the variational inequality

a(Du(f)(w),v −Du(f)(w)) ≥ 〈w,v −Du(f)(w)〉V∗×V , ∀ v ∈ K̃u

with a modified admissible set

K̃u = {w ∈ V |w ≤ 0 if u = g, a(u,w) = 〈f ,w〉V∗×V} .

The transfer of this insight to (N-CS+) yields the following sensitivity result.

Theorem 6.1.1 ( [73]). The discrete evolution operator possesses a conical deriva-
tive D̄Ψt+τ,t :=

(
DΨt+τ,t, ḊΨt+τ,t

)
, i.e.,

Ψt+τ,t(ū + hw̄) = Ψt+τ,tū + hDΨt+τ,tū(w̄) + θ(h, w̄)

and

Ψ̇t+τ,t(ū + hw̄) = Ψ̇t+τ,tū + hḊΨt+τ,tū(w̄) +
2

τ
θ(h, w̄)

where

lim
h→0

‖θ(h, w̄)‖H1/h = 0

for all h > 0 and ū = (u, u̇) , w̄ = (w, ẇ) ∈ H1×L2. The conical derivative is given
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0 ∈ wpred − (w + τẇ) + ∂IK̃Ψt+τ,tū(wpred)

0 ∈ DΨt+τ,tū(w̄) − wpred +
1

2
τ 2

(
F

(
w+DΨt+τ,tū(w̄)

2

)
+ G

(
DΨt+τ,tū(w̄)−w

τ

)

+ ∂IK̃Ψt+τ,tū

(
DΨt+τ,tv̄(w̄)

))

ḊΨt+τ,tū(w̄) = ẇ − τ
(
F

(
w+DΨt+τ,tū(w̄)

2

)
+ G

(
DΨt+τ,tū(w̄)−w

τ

)

−Fcon

(
DΨt+τ,tū(w̄)

))

(6.1)

with contact forces

τ 2

2

〈
Fcon

(
DΨt+τ,tū(w̄)

)
,v

〉
(6.2)

=
〈
DΨt+τ,tū(w̄) −wpred +

1

2
τ 2

(
F

(
w+DΨt+τ,tū(w̄)

2

)
+ G

(
DΨt+τ,tū(w̄)−w

τ

))
,v

〉

for v ∈ H1 and

K̃Ψt+τ,tū =
{
w ∈ H1

D

∣∣ [w · ν]φ ≤ 0 if
[
Ψt+τ,tū · ν

]
φ

= g,
〈
Fcon

(
Ψt+τ,tū

)
,w

〉
= 0

}
.

(6.3)

The conical derivative is defined via the Newmark scheme (N-CS+) on a modified
admissible set K̃Ψ

t+τ,t
ū. Strict complementarity implies that [DΨt+τ,tū(w̄) ·ν]φ = 0

on those parts of the possible contact boundaries where [Ψt+τ,tū · ν]φ = g. Then,
the variational inclusion in the second line of the scheme reduces to a minimization
problem with time-dependent Dirichlet boundaries. The theorem does not give any
information about the sensitivity of (N-CS+) in the special case of interest where h
coincides with the parameter τ .

Remark 6.1.2. A simple calculation shows that

ḊΨt+τ,tū(w̄) = ẇ +
2

τ

(
DΨt+τ,tū(w̄) −wpred

)
.

As proven in Lemma 4.1.1, the predictor wpred resulting from a L2-projection con-
verges to w + τẇ if the spatial discretization parameter h tends to zero. Hence, the
relation

ḊΨt+τ,tū(w̄) = −ẇ +
2

τ

(
DΨt+τ,tū(w̄) − w

)

holds in function space.

A central role for the construction of an adaptive timestep control is played by
the choice of norm in which the approximation error of the scheme is measured.
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The existing perturbation and consistency results for (N-CS+) suggest to use the
full physical energy norm ‖ · ‖E . In the absence of contact, the Newmark scheme
has pointwise consistency order 2 in positions as well as velocities. Hence, due to
the integral over time, the viscoelastic part of the physical energy norm is of higher
order than the kinetic and potential parts. In view of an adaptive timestep control,
the viscoelastic part is neglected, and only the reduced physical energy norm ‖ · ‖E

is used.

6.1.2. Extension of Extrapolation Techniques

For ordinary differential equations, a proof technique for an asymptotic error ex-
pansion can be found in [32]. Here, this approach will be extended to dynamical
contact problems.

Consider a discrete evolution

Ψ̄t+τ,t
∗ :=

(
Ψt+τ,t

∗ , Ψ̇t+τ,t
∗

)
: H1 × L2 −→ H1 × L2 (6.4)

which is defined via the formulas

Ψt+τ,t
∗ ū(t) := Ψt+τ,t

(
ū(t) + ē(t)τp

)
− e(t + τ)τp

Ψ̇t+τ,t
∗ ū(t) := Ψ̇t+τ,t

(
ū(t) + ē(t)τp

)
− ǫ(t + τ)τp .

(6.5)

For fixed initial time t0, the functions

ē := (e, ǫ) : [t0, T ] −→ H1 × L2 (6.6)

should have initial values equal to zero, i.e.,

e(t0) = 0 , ǫ(t0) = 0 . (6.7)

These functions will be specified in Section 6.1.3. For constant stepsize τ , the lattice
function

ū∗
τ =

(
u∗

τ , u̇
∗
τ

)
: △τ −→ H1 × L2 (6.8)

of the new evolution correlates with the one of (N-CS+) in the following way.

Lemma 6.1.3. For t ∈ △τ , the lattice functions (u∗
τ , u̇

∗
τ ) and (uτ , u̇τ ) satisfy the

relations

uτ (t) − u(t) − e(t)τp = u∗
τ (t) − u(t)

u̇τ (t) − u̇(t) − ǫ(t)τp = u̇∗
τ (t) − u̇(t) .

Proof. Definition (6.5) with initial values (6.7) yields

ū∗
τ (t0 + τ) = Ψ̄t0+τ,t0

∗ ū(t0)

= Ψ̄t0+τ,t0
(
ū(t0) + ē(t0)τ

p
)
− ē(t0 + τ)τp

= ūτ (t0 + τ) − ē(t0 + τ)τp

= Ψ̄t0+τ,t0ū(t0) − ē(t0 + τ)τp .
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An induction leads to

ū∗
τ (t) = Ψ̄t,t−τ

∗ ū∗
τ (t − τ)

= Ψ̄t,t−τ
(
ū∗

τ (t − τ) + ē(t − τ)τp
)
− ē(t)τp

= ūτ (t) − ē(t)τp

= Ψ̄t,t−τ ūτ (t − τ) − ē(t)τp

which gives the desired relation.

The lemma yields an asymptotic error expansion of order p for (N-CS+) if the
approximation error ū∗

τ−ū of the new scheme is of order o(τp). In order to gain more
information on this quantity, the error of the scheme after performing two timesteps
with stepsize τ/2 is considered for simplicity. The global error of a numerical in-
tegration is based on the continuous dependence of the scheme on the initial data.
In the general case of non-vanishing Dirichlet boundaries, the discrete perturbation
result for (N-CI/CS(+)) in Section 5.1.3 contains the initial perturbation of the dis-
placements in L2-norm in addition to the physical energy norm. In order to handle
with this term, let

‖Ψ − Φ‖L2
= ‖Ψ̄ − Φ̄‖E · O

(
τ−1

)
for τ → 0 . (6.9)

This assumption is more than reasonable since the consistency error of (N-CS+) is
expected to be even of one order higher in L2-norm than in physical energy norm,
cf. Chapter 4. Now, an estimate for the approximation error of the new scheme
(Ψ∗, Ψ̇∗) can be proven.

Theorem 6.1.4. Assume that Theorem 5.1.7 and Assumption (6.9) are valid. Then,

∥∥∥ū∗
τ
2

(t + τ) − ū(t + τ)
∥∥∥

E

≤ C ·
∥∥∥
(
Ψ̄

t+ τ
2
,t

∗ − Φ̄t+ τ
2
,t
)
ū(t)

∥∥∥
E

+
∥∥∥
(
Ψ̄

t+τ,t+ τ
2

∗ − Φ̄t+τ,t+ τ
2

)
ū
(
t +

τ

2

)∥∥∥
E

.
(6.10)

Proof. The error of a numerical scheme after performing two timesteps can be di-
vided into the consistency error of the second step and the propagation of the con-
sistency error of the first step, i.e.,

ū∗
τ
2
(t + τ) − ū(t + τ)

= Ψ̄
t+τ,t+ τ

2
∗ Ψ̄

t+ τ
2
,t

∗ ū(t) − Φ̄t+τ,t+ τ
2 Φ̄t+ τ

2
,tū(t)

= Ψ̄
t+τ,t+ τ

2
∗ Ψ̄

t+ τ
2
,t

∗ ū(t) − Ψ̄
t+τ,t+ τ

2
∗ Φ̄t+ τ

2
,tū(t) +

(
Ψ̄

t+τ,t+ τ
2

∗ − Φ̄t+τ,t+ τ
2

)
ū
(
t +

τ

2

)
.
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Due to definitions (6.5)–(6.7) and Theorem 5.1.7, the propagated consistency error
satisfies

∥∥∥Ψ̄
t+τ,t+ τ

2
∗ Ψ̄

t+ τ
2
,t

∗ ū(t) − Ψ̄
t+τ,t+ τ

2
∗ Φ̄t+ τ

2
,tū(t)

∥∥∥
E

=
∥∥∥Ψ̄t+τ,t+ τ

2 Ψ̄t+ τ
2
,tū(t) − Ψ̄t+τ,t+ τ

2

(
Φ̄t+ τ

2
,tū(t) + ē

(
t +

τ

2

)(τ

2

)p)∥∥∥
E

≤
(∥∥∥Ψ̄t+ τ

2
,tū(t) −

(
Φ̄t+ τ

2
,tū(t) + ē

(
t +

τ

2

)(τ

2

)p)∥∥∥
E

+cτ
∥∥∥Ψt+ τ

2
,tū(t) −

(
Φt+ τ

2
,tū(t) + ē

(
t +

τ

2

)(τ

2

)p)∥∥∥
L2

)
· eκ̃2τ

= C ·
∥∥∥Ψ̄t+ τ

2
,tū(t) −

(
Φ̄t+ τ

2
,tū(t) + ē

(
t +

τ

2

)(τ

2

)p)∥∥∥
E

= C ·
∥∥∥
(
Ψ̄

t+ τ
2
,t

∗ − Φ̄t+ τ
2
,t
)
ū(t)

∥∥∥
E

with a constant C > 0 independent of τ . This gives the estimate of the theorem.

In view of an asymptotic error expansion of (N-CS+), the results of Lemma 6.1.3
and Theorem 6.1.4 have to be combined. This yields that the functions (e, ǫ) have
to be constructed such that

∥∥Ψ̄t+τ,t
∗ − Φ̄t+τ,t

∥∥
E∥∥Ψ̄t+τ,t − Φ̄t+τ,t

∥∥
E

−→ 0 for τ → 0 , (6.11)

i.e., the consistency error of (Ψ∗, Ψ̇∗) in energy norm should be of higher order than
the one of (N-CS+) for arbitrary initial times.

6.1.3. Construction of a Higher-Order Scheme

The task of this section is to find a definition for the functions (e, ǫ) such that the
initial values (6.7) and condition (6.11) on the consistency error of the new scheme
are fulfilled. For this purpose, information about the pointwise error behavior of
(N-CS+) are needed. While such information is given in the absence of contact, up
to now, the only consistency result for (N-CS+) in the presence of contact is given
in energy norm (cf. Theorem 4.2.7). Hence, the following analysis of an asymptotic
error expansion of (N-CS+) is laid on a very general basis.

Assumption 6.1.5. Let the consistency error of (N-CS+) be of the form

Ψt+τ,tū− Φt+τ,tū = m(t) · τp+1 + r(t, τ) · τp

Ψ̇t+τ,tū− Φ̇t+τ,tū =

∫ t+τ

t

µ(s) ds · τp + ρ(t, τ) · τp

with m ∈ C([0, T ],H1) and ṁ, µ ∈ W1
2(0, T ;H1,L2). The quantities r(t, τ) and

ρ(t, τ) are not further specified at this moment, but they will be discussed in Sec-
tion 6.1.4.
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6.1. Towards an Asymptotic Error Expansion

In the following, the abbreviation m̄ := (m, µ) is often used. Please note that
the second line of Assumption 6.1.5 is not the derivative of the first one due to the
definition of the discrete evolution operator. The integral term in the consistency
error of the velocities is related to the viscoelastic part of the physical energy norm.
In the classical approach, a pointwise Taylor expansion of the consistency error of
the scheme would be expected. This is included in the ansatz if

∫ t+τ

t

µ(s) ds = µ(t) · τ + o(τ)

and
|r(t, τ)| = o(τ) , |ρ(t, τ)| = o(τ) .

For a perturbation of the initial values of (N-CS+),

Ψt+τ,t
(
ū + ēτp

)
− Ψt+τ,tū =

(
DΨt+τ,tū(ē) + p(t, τ)

)
· τp

Ψ̇t+τ,t
(
ū + ēτp

)
− Ψ̇t+τ,tū =

(
ḊΨt+τ,tū(ē) + π(t, τ)

)
· τp

(6.12)

is written where (DΨt+τ,tū(ē), ḊΨt+τ,tū(ē)) denotes the conical derivative of the
scheme introduced in Section 6.1.1. A short calculation shows that π(t, τ) =
2
τ
p(t, τ), and the notation p̄ := (p, π) is often used. The quantities p(t, τ) and

π(t, τ) are expected to be of order o(τ). In the case of time-constant Dirichlet
boundaries, the variational problem is linear and |p̄(t, τ)| = 0.

On the basis of these notations, a formula for the consistency error of the new
evolution (Ψ∗, Ψ̇∗) can be presented.

Lemma 6.1.6. Let Assumption 6.1.5 hold. Then, the consistency error (Ψ∗ − Φ,
Ψ̇∗ − Φ̇) satisfies

Ψt+τ,t
∗ ū(t) −Φt+τ,tū(t) =

(
DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)

)
· τp

+ (r(t, τ) + p(t, τ)) · τp

Ψ̇t+τ,t
∗ ū(t) − Φ̇t+τ,tū(t) =

(
ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
)
· τp

+ (ρ(t, τ) + π(t, τ)) · τp .

Proof. Inserting definition (6.5) into the consistency error yields

Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) = Ψ̄t+τ,t

(
ū(t) + ē(t)τp

)
− ē(t + τ)τp − Φ̄t+τ,tū(t) .

Assumption 6.1.5 on the consistency error of (N-CS+) gives

Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) = Ψ̄t+τ,t

(
ū(t) + ē(t)τp

)
− Ψ̄t+τ,tū(t) − ē(t + τ) · τp

+ m̄(t) · τp+1 + r̄(t, τ) · τp .
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Using (6.12) leads to

Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) =

(
D̄Ψt+τ,tū(t)(ē(t)) − ē(t + τ) + τm̄(t)

)
· τp

+ (r̄(t, τ) + p̄(t, τ)) · τp .

The aim is to define the functions (e, ǫ) such that the terms of order p + 1 in the
consistency error of (Ψ∗, Ψ̇∗) vanish and the scheme is of higher order o(τ p+1). This
leads to the following definition of the functions (e, ǫ).

Variational problem for (e, ǫ). For almost every t ∈ [t0, T ], find e(·, t) ∈ K̃u(t)

with e ∈ C
(
[t0, T ],H1

)
and ė ∈ W1

2(t0, T ;H1,L2) such that for all v(t) ∈ K̃u(t)

〈ë − µ − ṁ + F(e) + G(ė − m),v − e〉(H1)∗×H1 ≥ 0 (6.13)

and

e(t0) = 0 , ė(t0) = m(t0) (6.14)

where

K̃u(t) =
{
w ∈ H1

D

∣∣ [w · ν]φ ≤ 0 if [u(t) · ν]φ = g, 〈Fcon(u(t)),w〉(H1)∗×H1 = 0
}

.
(6.15)

Further, set

ǫ(t) = ė(t) − m(t) , ∀ t ∈ [t0, T ] (6.16)

such that the initial values (6.7) are fulfilled. The contact forces Fcon(e) ∈ (H1)∗

are given by

〈Fcon(e),v〉(H1)∗×H1 := 〈ë−µ−ṁ+F(e)+G(ė−m),v〉(H1)∗×H1 , v ∈ H1 . (6.17)

In the case of strict complementarity, this is a parabolic equality with Dirichlet
boundaries that are varying in time. These boundaries correspond to the active con-
tact boundaries of the solution of the original variational inequality (1.28). Hence,
let e and its derivatives be of bounded variation in the same sense.

Assumption 6.1.7. Let the solution of (6.13) satisfy

ė ∈ BV
(
[t, t + τ ],H1

)
, ë ∈ BV

(
[t, t + τ ], (H1)∗

)
.

This leads to an estimate for the consistency error of the new evolution (Ψ∗, Ψ̇∗).
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6.1. Towards an Asymptotic Error Expansion

Lemma 6.1.8. Let Assumptions 6.1.5 and 6.1.7 hold. Then, the consistency error
Ψ̄∗ − Φ̄ = (Ψ∗ − Φ, Ψ̇∗ − Φ̇) satisfies

(∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp

∥∥2

E

+
τ

4

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
∥∥∥

2

b
· τ 2p

)1/2

≤
(1

2

∣∣∣
〈
Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)), (6.18)

ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
〉

(H1)∗×H1

∣∣∣
)1/2

· τp+1/2

+ R(e, [t, t + τ ]) · O
(
τp+1/2

)
+ o

(
τp+1

)

with R(e, [t, t + τ ]) defined in (4.22).

Remark 6.1.9. Due to the definition of the modified admissible sets (6.3) and
(6.15), the first term on the right-hand side of (6.18) can be written as a linear
functional on the part of the possible contact boundaries where Ψt+τ,tū(t) and u(t)
are actually in contact. Moreover, ḊΨt+τ,tū(t)(ē(t))−ǫ(t+ τ) is zero on the part of
the contact boundaries where the active sets of Ψt+τ,tū(t) and u(t+τ) are unchanged
and coincide with those of u(t). This is the same part of the contact boundaries on
which

∫ t+τ

t
µ(s) ds can be assumed to be zero by its definition as the consistency

error of (N-CS+). Hence, the contact term in the estimate (6.18) is only effective on
a small part of the possible contact boundaries, namely where the active sets vary
in time. For most initial times t, this part tends to a set of measure zero as τ → 0.
This effect corresponds to the consistency theory for permanent active contact in
Section 4.4, and will also become visible in the numerical examples of Section 6.1.4
and Section 7.1.

In Appendix B, a localization of contact stresses on a critical part of the possi-
ble contact boundaries has in detail been worked out for the interpretation of the
stability condition in Chapter 3. A similar argumentation would not yield further
insight here. Hence, the matter is rested by this heuristic discussion. Instead, a
rough estimate for the contact term on the right-hand side of (6.18) is used in the
main theorem.

Proof. By means of Lemma 6.1.6, the physical energy norm of the consistency error
is of the form

∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp

∥∥2

E

=
(1

2

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
∥∥∥

2

L2

+
1

2

∥∥DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)
∥∥2

a

)
· τ 2p .

(6.19)
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6. Adaptive Timestep Control

The aim is to insert the defining equations for e and ǫ into this estimate. For ease
of presentation, the abbreviation

v := ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds

is used in the following. Since ė, ṁ ∈ L2(t, t + τ ;H1), integration by parts is ap-
plicable. Using Remark 6.1.2 and relation (6.16), the term in a-seminorm can be
written as

DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)

=
τ

2

(
ḊΨt+τ,tū(t)(ē(t)) + ǫ(t)

)
−

∫ t+τ

t

ė(s) ds + τm(t)

=
τ

2
v +

∫ t+τ

t

ǫ(t + τ) + ǫ(t)

2
− ė(s) ds + τm(t) − τ

2

∫ t+τ

t

µ(s) ds

=
τ

2
v +

1

2

∫ t+τ

t

(ė(t + τ) − ė(s)) + (ė(t) − ė(s)) ds

− 1

2

∫ t+τ

t

(∫ t+τ

t

ṁ(η) + µ(s) dη
)

ds .

Due to the inequality of Young and the absolute continuity of the integral (see,
e.g., [94, Appendix, Application (20)]),

‖v‖L1(t,t+τ ;V) :=

∫ t+τ

t

‖v(s)‖V ds ≤ ‖v‖L2(t,t+τ ;V) · τ 1/2 = o
(
τ 1/2

)
(6.20)

for every fixed v ∈ L2(t, t + τ0;V) and for all τ ≤ τ0. Applying this result to
ṁ, µ ∈ L2(t, t + τ ;H1), the inequality of Korn (A.1) allows proving the estimate

∥∥DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)
∥∥

a

≤ τ

2
‖v‖a +

1

2

∫ t+τ

t

(
‖ė(t + τ) − ė(s)‖H1 + ‖ė(t) − ė(s)‖H1

)
ds

+
τ

2

(
‖ṁ‖L1(t,t+τ ;H1) + ‖µ‖L1(t,t+τ ;H1)

)

=
τ

2
‖v‖a + TV

(
ė, [t, t + τ ],H1

)
· O(τ) + o

(
τ 3/2

)
.

(6.21)
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sition 23.23]) and definition (6.16) yield

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
∥∥∥

2

L2

= ‖v‖2
L2

=
〈
ḊΨt+τ,tū(t)(ē(t)) − ǫ(t) −

∫ t+τ

t

ǫ̇(s) − µ(s) ds,v
〉

(H1)∗×H1

=
〈
ḊΨt+τ,tū(t)(ē(t)) − ǫ(t) −

∫ t+τ

t

ë(s) − ṁ(s) − µ(s) ds,v
〉

(H1)∗×H1

=
〈
ḊΨt+τ,tū(t)(ē(t)) − ǫ(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

−
〈∫ t+τ

t

ë(s) − ë(t) ds,v
〉

(H1)∗×H1
−

〈∫ t+τ

t

(∫ s

t

m̈(η) dη
)

ds,v
〉

(H1)∗×H1

≤
∣∣〈ḊΨt+τ,tū(t)(ē(t)) − ǫ(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

∣∣

+
(∫ t+τ

t

‖ë(s) − ë(t)‖(H1)∗ ds
)
‖v‖H1 + τ‖m̈‖L1(t,t+τ ;(H1)∗)‖v‖H1

=
∣∣〈ḊΨt+τ,tū(t)(ē(t)) − ǫ(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

∣∣

+ TV
(
ë, [t, t + τ ],H1

)
‖v‖H1 · O(τ) + ‖v‖H1 · o

(
τ 3/2

)

for the squared L2-norm. Now, the numerical scheme (6.1), the variational inequal-
ity (6.13), and definition (6.16) are inserted into the first term on the right-hand
side of this estimate. Then, Remark 6.1.2 and integration by parts lead to

〈
ḊΨt+τ,tū(t)(ē(t)) − ǫ(t) − τ(ë(t) − ṁ(t) − µ(t)),v

〉
(H1)∗×H1

= −τ 2

4

〈
F

(
ḊΨt+τ,tū(t)(ē(t)) + ǫ(t)

)
,v

〉
− τ

2

〈
G

(
ḊΨt+τ,tū(t)(ē(t)) − ǫ(t)

)
,v

〉

+ τ
〈
Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

= −τ 2

4
‖v‖2

a −
τ 2

4
a(ǫ(t) + ǫ(t + τ),v) +

τ 2

4
a
(∫ t+τ

t

µ(s) ds,v
)

− τ

2
‖v‖2

b −
τ

2
b(ǫ(t + τ) − ǫ(t),v) +

τ

2
b
(∫ t+τ

t

µ(s) ds,v
)

+ τ
〈
Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

= −τ 2

4
‖v‖2

a −
τ 2

4
a(ė(t) + ė(t + τ),v) +

τ 2

4
a
(
m(t) + m(t + τ) +

∫ t+τ

t

µ(s) ds,v
)

− τ

2
‖v‖2

b +
τ

2
b(ė(t + τ) − ė(t),v) +

τ

2
b
(∫ t+τ

t

ṁ(s) + µ(s) ds,v
)

+ τ
〈
Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1 .
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Due to estimate (6.20) and the inequality of Korn (A.1),

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
∥∥∥

2

L2

+
τ

2
‖v‖2

b

≤ −τ 2

4
‖v‖2

a +
τ 2

4

(
‖ė(t)‖H1 + ‖ė(t + τ)‖H1

)
‖v‖H1

+
τ 2

4

(
‖m(t)‖H1 + ‖m(t + τ)‖H1 + ‖µ‖L1(t,t+τ ;H1)

)
‖v‖H1

+
τ

2
‖ė(t + τ) − ė(t)‖H1‖v‖H1 +

τ

2

(
‖ṁ‖L1(t,t+τ ;H1) + ‖µ‖L1(t,t+τ ;H1)

)
‖v‖H1

+ τ
∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

∣∣

+
(
TV

(
ë, [t, t + τ ],H1

)
+ o

(
τ 1/2

))
‖v‖H1 · O(τ)

= −τ 2

4
‖v‖2

a + τ
∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

∣∣

+
(
TV

(
ė, [t, t + τ ],H1

)
+ TV

(
ë, [t, t + τ ],H1

)
+ o

(
τ 1/2

))
‖v‖H1 · O(τ)

holds. Adding the square of (6.21), the inequality of Young leads to

1

2

∥∥∥ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +

∫ t+τ

t

µ(s) ds
∥∥∥

2

L2

+
1

2

∥∥DΨt+τ,tū(t)(ē(t)) − e(t + τ) + τm(t)
∥∥2

a
+

τ

4
‖v‖2

b

=
τ

2

∣∣〈Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t)),v

〉
(H1)∗×H1

∣∣

+
(
R(e, [t, t + τ ]) · O(τ) + o

(
τ 3/2

))2
+

(
R(e, [t, t + τ ]) + o

(
τ 1/2

))
‖v‖H1 · O(τ) .

This is an estimate of the type

x2 +
τ

4
‖v‖2

b ≤ a2 + b‖v‖H1 · τ

with a, b > 0, and x2·τ 2p is the right-hand side of (6.19). The inequality of Korn (A.1)
yields

‖v‖H1 ≤ 1

cK

(
‖v‖2

L2
+ ‖v‖2

b

)1/2 ≤ 2

cK

(
x2 +

τ

4
‖v‖2

b

)1/2

· τ−1/2

for τ sufficiently small. Hence,

x2 +
τ

4
‖v‖2

b ≤ a2 +
2b

cK

(
x2 +

τ

4
‖v‖2

b

)1/2

· τ 1/2 ,

and by means of the binomial formula, this is equivalent to

((
x2 +

τ

4
‖v‖2

b

)1/2

− b

cK

· τ 1/2
)2

≤ a2 +
b2

c2
K

· τ .
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Finally, (
x2 +

τ

4
‖v‖2

b

)1/2

≤ a + b · O
(
τ 1/2

)
,

and (6.19) gives the result of the lemma.

With these rather lengthy preparations, the central theorem of this chapter can
be proven now.

Theorem 6.1.10. Let Assumptions 6.1.5 and 6.1.7 hold. Then, the consistency
error Ψ̄∗ − Φ̄ = (Ψ∗ − Φ, Ψ̇∗ − Φ̇) satisfies

∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp

∥∥
E

=
(∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1)∗

+ R(e, [t, t + τ ])
)
· O

(
τp+1/2

)

+ o
(
τp+1

)
(6.22)

with R(e, [t, t + τ ]) defined in (4.22).

Proof. With v := ḊΨt+τ,tū(t)(ē(t)) − ǫ(t + τ) +
∫ t+τ

t
µ(s) ds, Lemma 6.1.8 yields

(∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t) − (r̄(t, τ) + p̄(t, τ)) · τp

∥∥2

E
+

τ

4
‖v‖2

b · τ 2p
)1/2

≤
(1

2

∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1)∗

)1/2

‖v‖1/2

H1 · τp+1/2

+ R
(
e, [t, t + τ ]

)
· O

(
τp+1/2

)
+ o

(
τp+1

)
.

This is an estimate of the form
(
x2 +

τ

4
‖v‖2

b · τ 2p
)1/2

≤ a + b1/2‖v‖1/2

H1 · τp+1/2

with a, b, x > 0. The inequality of Young leads to
(
x2 +

τ

4
‖v‖2

b · τ 2p
)1/2

≤ a + αb · τp+1/2 +
1

α
‖v‖H1 · τp+1/2

with α > 0, and due to the inequality of Korn (A.1)

‖v‖H1 · τp+1/2 ≤ 1

cK

(
‖v‖2

L2
+ ‖v‖2

b

)1/2 · τp+1/2 ≤ 2

cK

(
x2 +

τ

4
‖v‖2

b · τ 2p
)1/2

holds for τ sufficiently small. Choosing α = 4/cK , the estimate above can be
reformulated as

1

2

(
x2 +

τ

4
‖v‖2

b · τ 2p
)1/2

≤ a +
4b

cK

· τp+1/2

such that
x = O

(
a + b · τp+1/2

)
.
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6.1.4. Discussion of Consistency Order

The purpose in the previous section was to construct the discrete evolution operator
(Ψ∗, Ψ̇∗) such that the resulting scheme is of higher consistency order in energy
norm than (N-CS+), compare condition (6.11). In order to analyze the actual order
of the scheme, the result of Theorem 6.1.10 will be discussed in detail.

First of all, the error estimate (6.22) contains the remainder term r̄(t, τ) of As-
sumption 6.1.5 on the consistency error of (N-CS+), which strongly depends on the
choice of the order p. The consistency result 4.2.7 in energy norm does not give any
information about the local behavior of the error in space. In order to gain some
insight into this problem, a numerical study concerning the spatial distribution of
the consistency error of (N-CS+) has been performed.

Numerical Experiment. As an illustrative test problem, the Hertzian contact in
2D from Section 2.5 with further five refinements within the circle around the bottom
of the semicircle has been selected. The elastic and viscous material parameters can
be found in Table 6.1.

parameter value
Young’s modulus 10
Poisson ratio 0.4
shear viscosity 10
bulk viscosity 10

Table 6.1.: Material specifications.

In order to get an approximation of the exact solution of the variational problem,
(N-CS+) is performed with an extremely high timestep resolution. The difference
between this fine reference solution and one large step of (N-CS+) acts as an indi-
cator for the consistency error of the scheme.

Figure 6.1 shows the time evolution of the estimated consistency error of (N-CS+)
in velocities as the timestep τ tends to zero. The domain where the error has a sig-
nificant value shrinks for decreasing timesteps. For small τ , the error is concentrated
near those parts of the contact boundary where the active set changes. Moreover,
the error seems to consist of two different parts, a regular one in the interior of
the domain and a second one at the changing active contact boundary. This effect
corresponds to the theoretical analysis of the consistency error as discussed in Sec-
tion 4.4 and Remark 6.1.9 and will become important for the timestep control in
Section 6.2.

The observations above lead to the following conjecture on the local behavior of
the consistency error. Due to the viscous material behavior, the irregularity of the
problem from the changing active contact boundaries is smoothened in the interior

124



6.1. Towards an Asymptotic Error Expansion

Figure 6.1.: Estimated spatial distribution of the temporal consistency error of (N-
CS+) in velocities for τ → 0 (4 snapshots). The error consists of two
parts: a regular one in the interior of the domain and a second one with
large values near the changing active contact boundary.

of the domain. If a suitable subdomain Ω̃ of Ω is picked with positive minimal
distance to the contact boundaries, maximal order of consistency p = 2 should be
found on Ω̃, eventually for small τ . However, the range of τ for which the asymptotic
behavior becomes visible most likely depends on the choice of Ω̃. Exhausting Ω by
a sequence of sets Ω̃k ⊂ Ω̃k+1 ⊂ . . . leads to maximal order of consistency on each
of these sets, but a lower total order of consistency on the whole domain Ω.

The local behavior of the consistency error (and the sensitivity) of (N-CS+) is
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‖r̄(t, τ) + p̄(t, τ)‖E(Ω̃) · τ 2 = o
(
τ 3

)

where the reduced physical energy norm with respect to the subdomain Ω̃ is denoted
by ‖ · ‖E(Ω̃). Applying the lower triangle inequality on the result of Theorem 6.1.10
with p = 2, the consistency error estimate

∥∥Ψ̄t+τ,t
∗ ū(t) − Φ̄t+τ,tū(t)

∥∥
E(Ω̃)

≤
(∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1(Ω))∗

+ R(e, [t, t + τ ])
)
· O

(
τ 5/2

)

+ ‖(r̄(t, τ) + p̄(t, τ))‖E(Ω̃) · τ 2 + o
(
τ 3

)

=
(∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1(Ω))∗

+ R(e, [t, t + τ ])
)
· O

(
τ 5/2

)

+ o
(
τ 3

)

holds on Ω̃. The discussion in Remark 6.1.9 has provided that the difference of the
contact forces Fcon(DΨt+τ,tū(t)(ē(t))) and Fcon(e(t)) only act on a small part of
the possible contact boundaries, which is expected to tend to zero for most times t
as τ → 0. However, for ease of presentation, this behavior has been neglected by
applying an (H1(Ω))∗-norm estimate. This norm depends on the behavior of the
differences DΨt+τ,tū(t)(ē(t))−e(t) and ḊΨt+τ,tū(t)(ē(t))−ǫ(t), which tend to zero
in H1 and in L2, respectively. For most times t, even an H1-convergence to zero of
order τ may be expected, and the assumption

∥∥Fcon

(
DΨt+τ,tū(t)(ē(t))

)
− Fcon(e(t))

∥∥
(H1(Ω))∗

= O(τ)

is reasonable. The quantity R(e, [t, t + τ ]) corresponds to the right-hand side of
the consistency result 4.2.7, which contains R(u, [t, t + τ ]) in turn. Since ē and ū

are defined via variational inequalities with coinciding active contact boundaries,
R(e, [t, t + τ ]) is expected to originate from a quantity that has a similar local
behavior as the consistency error of (N-CS+). However, since R(e, [t, t + τ ]) refers
to the whole domain Ω, the considerations are restricted to

R(e, [t, t + τ ]) = O(τ) ,

which again is a reasonable assumption, at least for most times t. Then,
∥∥Ψ̄t+τ,t

∗ ū(t) − Φ̄t+τ,tū(t)
∥∥

E(Ω̃)
= o

(
τ 3

)
, (6.23)

and the scheme (Ψ∗, Ψ̇∗) is of higher consistency order on Ω̃ than (N-CS+). In
summary, an asymptotic error expansion of (N-CS+) with order p = 2 is expected
that is visible on a subdomain in the interior.

126



6.2. Timestep Control

6.2. Timestep Control

In this section, the aim is to develop a strategy for choosing the size of timesteps
for the improved contact–stabilized Newmark method adaptively. This variant of
(N-CS+) will be called ContacX further on.

Ideally, an adaptive timestep control guarantees that the global discretization
error of the approximation is below a prescribed tolerance. However, global errors
are difficult to control since they consist of the actual consistency error as well as the
propagation of all errors that arise during time integration. Following the standard
approach, the intention is to control the actual consistency error in the reduced
physical energy norm such that

‖Ψ̄ − Φ̄‖E ≤ TOL (6.24)

where TOL is a local tolerance defined by the user. The idea behind is that smaller
consistency errors lead to a decrease of the global error, which will be analyzed
in Section 6.3. Since the local error cannot be determined exactly, a computable
estimate [

‖Ψ̄ − Φ̄‖E

]
≈ ‖Ψ̄ − Φ̄‖E (6.25)

is needed with the implementable condition

[
‖Ψ̄ − Φ̄‖E

]
≤ TOL . (6.26)

The construction of a problem-adapted error estimator is the main challenge in the

establishment of an adaptive timestep control. Let ¯̂
Ψ =

(
Ψ̂,

˙̂
Ψ

)
be a second discrete

evolution that is of higher accuracy than (N-CS+) for sufficiently small timesteps.
Then, the difference between the two numerical solutions

[
‖Ψ̄ − Φ̄‖E

]
:= ‖Ψ̄ − ¯̂

Ψ‖E (6.27)

is an error estimator. If the more accurate time integration scheme is even of higher
consistency order than (N-CS+), then the error estimator is asymptotically exact
(for more details see, e.g., [18]).

In order to develop a comparative scheme of higher order, the intention is to
employ extrapolation techniques, which require an asymptotic error expansion of
(N-CS+). As seen in the foregoing Section 6.1, the classical theory can not directly
be applied to dynamical contact problems due to the missing regularity at time-
dependent contact boundaries. In order to ensure a reliable timestep control, the
classical error estimator and timestep selection have to be adapted in the presence
of contact.
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6.2.1. Error Estimator in the Absence of Contact

In the absence of contact, (N-CS+) has pointwise optimal consistency order p = 2
both in displacements and in velocities. Furthermore, the consistency error has a
pointwise Taylor expansion due to the linearity of the problem. Hence, the results
of Section 6.1 yield the existence of an asymptotic error expansion of the Newmark
method.

ū11ūτ =

ū21ū τ

2
= ū22

Figure 6.2.: Extrapolation table in the absence of contact, compare Figure 6.3.

In order to construct a scheme of higher order, a one-step extrapolation method
is applied, see Figure 6.2. A second numerical solution with half timestep τ/2 is
computed, and then, the asymptotic error expansions

ū11(t + τ) = ū(t + τ) + ē(t + τ)τ 2 + o
(
τ 3

)

ū21(t + τ) = ū(t + τ) + ē(t + τ)
(τ

2

)2

+ o
(
τ 3

) (6.28)

of (N-CS+) are considered. The extrapolated method

ū22(t + τ) :=
1

1 − 22

(
ū11(t + τ) − 22ū21(t + τ)

)
(6.29)

is of higher consistency order in energy norm than (N-CS+) since

‖ū22(t + τ) − ū(t + τ)‖E

≤ 1

22 − 1

∥∥ū11(t + τ) − ū(t + τ) − ē(t + τ)τ 2
∥∥

E

+
22

22 − 1

∥∥∥ū21(t + τ) − ū(t + τ) − ē(t + τ)
(τ

2

)2∥∥∥
E

= o
(
τ 3

)
.

The subdiagonal error estimator
[
‖ū21(t + τ) − ū(t + τ)‖E

]
:= ‖ū21(t + τ) − ū22(t + τ)‖E (6.30)

is chosen since the computation should be continued with the higher-order solution
ū21(t + τ). The extrapolated solution ū22(t + τ) is not practical due to the missing
energy dissipativity of the scheme. The choice of a subdiagonal error estimator
avoids that condition (6.24) is over satisfied (see, e.g., [18]).

128



6.2. Timestep Control

6.2.2. Error Estimator in the Presence of Contact

If active contact boundaries are found in a time interval, the discussion on the
existence of an asymptotic error expansion of (N-CS+) in Section 6.1 has to be
taken into account.

Due to the theoretical insight in Section 4.4 or Remark 6.1.9 and the numerical
observations in Section 6.1.4, the consistency error seems to consist of two different
parts. The first one acts on points in the interior of the domain and is assumed
to be of optimal order p = 2. The second one becomes extremely large at points
near changing active contact boundaries. The extrapolated solution (6.29) is of
higher consistency order than (N-CS+) only at points that have already reached
the asymptotic phase p = 2. Hence, the classical error estimator (6.30) is only
applicable on a subdomain. If this subdomain grows as the timestep tends to zero,
the estimator becomes more and more accurate for small τ . However, the classical
approach underestimates the remainder terms in the asymptotic error expansion
near the critical changing contact boundaries.

In order to control the additional contribution to the consistency error in the pres-
ence of contact, a quantity X̄ = (X, Ẋ) is added to the model for the approximation
error. The term including X̄ may be of worst possible order p = 1/2 as shown by
the consistency result 4.2.7 up to sets of measure zero. The quantity should have a
significant value at points near those parts of the active contact boundaries that vary
within the timestep. In the limit τ → 0, the domain where the quantity vanishes
should increase.

Again, two numerical solutions with timesteps τ and τ/2 are computed, and the
ansatz

ū11(t + τ) ≈ ū(t + τ) + ē(t + τ)τ 2 + X̄(t + τ)τ 1/2

ū21(t + τ) ≈ ū(t + τ) + ē(t + τ)
(τ

2

)2

+ X̄(t + τ)
(τ

2

)1/2 (6.31)

for the approximation error is made. Within this model, the extrapolated solution
ū22(t + τ) from (6.29) satisfies

ū22(t + τ) ≈ ū(t + τ) +
1 − 22−1/2

1 − 22
X̄(t + τ)τ 1/2 .

In order to handle the low order term in this formula, the extrapolation table is
extended by a third solution with timestep τ/3, see Figure 6.3. This approximation
satisfies

ū31(t + τ) ≈ ū(t + τ) + ē(t + τ)
(τ

3

)2

+ X̄(t + τ)
(τ

3

)1/2

, (6.32)

and the extrapolated solution

ū32(t + τ) :=
1

22 − 32

(
22ū21(t + τ) − 32ū31(t + τ)

)
(6.33)
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ū11ūτ =

ū21ū τ

2
= ū22

ū31ū τ

3
= ū32

Figure 6.3.: Extrapolation table in the presence of contact, compare Figure 6.2.

yields

ū32(t + τ) ≈ ū(t + τ) +
22−1/2 − 32−1/2

22 − 32
X̄(t + τ)τ 1/2 .

In a next step, both extrapolation schemes are combined via

¯̂u(t + τ) :=
1

α − β

(
αū22(t + τ) − βū32(t + τ)

)
(6.34)

with

α =
22−1/2 − 32−1/2

22 − 32
, β =

1 − 22−1/2

1 − 22
(6.35)

such that
¯̂u(t + τ) ≈ ū(t + τ) .

As before, the computation is proceeded with the finest solution ū31(t + τ). Hence,
the subdiagonal error estimator

[
‖ū31(t + τ) − ū(t + τ)‖E

]
:=

∥∥ū31(t + τ) − ¯̂u(t + τ)
∥∥

E
(6.36)

is taken. Due to

[
‖ū31(t + τ) − ū(t + τ)‖E

]

≈
∥∥∥ū31(t + τ) − ū32(t + τ) − 22−1/2 − 32−1/2

22 − 32
X̄(t + τ)τ 1/2

∥∥∥
E

,

the constructed error estimator consists of two parts. The first one corresponds to
the classical estimator (6.30) with timestep τ/3. The second one is proportional
to the quantity X̄(t + τ) in the asymptotic error expansion and mainly acts near
the changing contact boundaries. Hence, the error estimator takes into account
the special structure of the consistency error of (N-CS+) as shown by the theoret-
ical investigations in Section 4.4 or Remark 6.1.9 and the numerical experiment in
Section 6.1.4.
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6.2.3. Combined Timestep Strategy

The construction of an adaptive timestep control requires a suggestion for the new
timestep from the actual information. Usually, this timestep is given by the optimal
timestep τ ∗ for the actual step, which is characterized by

‖ū21(t + τ ∗) − ū(t + τ ∗)‖E ≈ ρ · TOL , (6.37)

or
‖ū31(t + τ ∗) − ū(t + τ ∗)‖E ≈ ρ · TOL (6.38)

with a safety factor ρ < 1.

No contact. In the absence of contact, ē(t + τ) ≈ ¯̇e(t) · τ is taken. Inserting this
approximation into the asymptotic error expansion (6.28) of (N-CS+) yields

ū21(t + τ) − ū(t + τ) ≈ ¯̇e(t)τ ·
(τ

2

)2

for all τ up to terms of higher order. This leads to

ū21(t + τ ∗) − ū(t + τ ∗) ≈ (ū21(t + τ) − ū(t + τ)) ·
(τ ∗

τ

)3

.

Taking the energy norm of this approximation and inserting condition (6.37), the
optimal timestep τ ∗ can be predicted by the classical timestep formula

τ ∗ = 3

√
ρ · TOL

‖ū21(t + τ) − ū22(t + τ)‖E
· τ . (6.39)

Contact. In the presence of contact, ansatz (6.32) for the discretization error of
(N-CS+) and assumption ē(t + τ) ≈ ¯̇e(t) · τ yield

ū31(t + τ ∗) − ū(t + τ ∗) ≈ ē(t + τ)
(τ

3

)2(τ ∗

τ

)3

+ X̄(t + τ ∗)
(τ ∗

3

)1/2

.

In order to make sure that τ ∗ < τ if ‖ū31(t+ τ)− ¯̂u(t+ τ)‖E > ρ ·TOL, the relation

ū31(t + τ) − ¯̂u(t + τ) ≈ ē(t + τ)
(τ

3

)2

+ X̄(t + τ)
(τ

3

)1/2

and the triangle inequality are used to find that

‖ū31(t + τ ∗) − ū(t + τ ∗)‖E

&
∥∥ū31(t + τ) − ¯̂u(t + τ)

∥∥
E
·
(τ ∗

τ

)3

+
∣∣∣‖X̄(t + τ ∗)‖E

(τ ∗

3

)1/2

− ‖X̄(t + τ)‖E

(τ

3

)1/2(τ ∗

τ

)3∣∣∣ .
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Due to condition (6.38), the optimal timestep should fulfill

ρ · TOL =
∥∥ū31(t + τ) − ¯̂u(t + τ)

∥∥
E
·
(τ ∗

τ

)3

+
∣∣∣‖X̄(t + τ ∗)‖E

(τ ∗

3

)1/2

− ‖X̄(t + τ)‖E

(τ

3

)1/2(τ ∗

τ

)3∣∣∣ .

(6.40)

The quantity X̄(t+τ ∗) does not necessarily tend to zero as τ → 0. Thus, the careful
assumption ‖X̄(t + τ ∗)‖E = ‖X̄(t + τ)‖E is taken, and the optimal timestep τ ∗ is
determined by

∥∥ū31(t + τ) − ¯̂u(t + τ)
∥∥

E

(τ ∗

τ

)3

+ ‖X̄(t + τ)‖E

(τ

3

)1/2∣∣∣
(τ ∗

τ

)1/2

−
(τ ∗

τ

)3∣∣∣

= ρ · TOL .
(6.41)

Subtracting the first equation of the approximations (6.31) from the second one
and (6.32) from the second equation of (6.31) yields

ū11(t + τ) − ū21(t + τ) ≈ ē(t + τ)
(
1 − 1

22

)
τ 2 + X̄(t + τ)

(
1 − 1

21/2

)
τ 1/2

ū21(t + τ) − ū31(t + τ) ≈ ē(t + τ)
( 1

22
− 1

32

)
τ 2 + X̄(t + τ)

( 1

21/2
− 1

31/2

)
τ 1/2 .

By taking suitable differences of these approximations and using definitions (6.29)
and (6.33), the unknown quantity X̄(t + τ) may be estimated via

X̄(t + τ)
δ − γ

δ

1 − 1
21/2

1 − 1
22

τ 1/2

≈ 1

1 − 1
22

(ū11(t + τ) − ū21(t + τ)) − 1
1
22 − 1

32

(ū21(t + τ) − ū31(t + τ))

= 22(ū21(t + τ) − ū22(t + τ)) − 32(ū31(t + τ) − ū32(t + τ))

(6.42)

with

γ =
( 1

21/2
− 1

31/2

)(
1 − 1

22

)
, δ =

( 1

22
− 1

32

)(
1 − 1

21/2

)
.

The next stepsize proposal is gained from (6.41) by computing τ ∗ as the root of a
scalar function. For τ ∗ = τ , the left-hand side of (6.41) is larger than the right-hand
side due to ‖ū31(t + τ)− ¯̂u(t + τ)‖E ≥ TOL. In the limit τ ∗ → 0, the left-hand side
is zero, and less than the positive right-hand side. Hence, the corresponding scalar
function has at least one root since all terms are continuous in τ ∗

In the case of vanishing X̄(t + τ), the defining equation (6.41) reduces to the
classical stepsize formula (6.39).
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Switch between no contact and contact. A certain difficulty in timestep se-
lection arises if a switch between contact and no contact occurs in a timestep. In
this case, the quantity X̄ is very large at the timepoint when the two bodies are in
contact, but zero in the absence of contact. In order to ensure an efficient timestep
selection, a suitable assumption on the behavior of this quantity in time is needed.

For this aim, the current timestep is divided into phases of no contact, contact,
and a switch between no contact and contact. The approximations with stepsize
τ/2 and τ/3 give the information in which part of the interval the switch occurs, cf.
Figure 6.4.

0
τ
3

−

τ
2

−

2τ
3

+

τ

+

τ ∗

X̄(t + τ ∗)

X̄(t + τ)

Figure 6.4.: Model assumption on X̄(t + τ) (‘+’ and ‘–’ indicate whether contact
occurs or not).

If the stepsize τ ∗ touches an interval where no contact occurs,

X̄(t + τ ∗) = 0 (6.43)

is taken, and within an interval with contact, the assumption

X̄(t + τ ∗) = X̄(t + τ) (6.44)

is made. For a subinterval [tj , tj+1] with a switch between no contact and contact,
a linear interpolation is used such that

X̄(t + τ ∗) =
( t + τ

tj+1 − tj
− t + tj

tj+1 − tj

)
· X̄(t + τ) . (6.45)

If no contact has been found in an accepted timestep, the controller accesses to the
last rejected step with active contact boundaries. The optimal stepsize τ ∗ is given
by (6.40) as the root of a scalar function.
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6.3. Global Discretization Error

In the previous section, an adaptive variant of the improved contact–stabilized New-
mark method has been suggested that keeps the local discretization error in the
reduced physical energy norm below a user-defined tolerance. However, controlling
the global discretization error of the scheme is of interest originally. In this last sec-
tion, the focus is on the actually achieved accuracy by the adaptive timestep control
ContacX at the end of the time integration. The notations used in the following
are introduced in Section 5.2.

The global discretization error ǫ△(ū, T ) at final time T can be considered as the
propagation of all local discretization errors occurring during time integration. De-
composing the global error as sketched in Figure 5.1 gives access to those consistency
errors that are bounded by the adaptive timestep control, namely

‖ǫ(tj , ū, τj)‖E ≈
[
‖ǫ(tj , ū, τj)‖E

]
≈ TOL , for all j = 1, . . . , N△ (6.46)

due to (6.25) and (6.26). Estimating the propagation of these local errors requires
the application of the perturbation result for the dynamical contact problem in
Chapter 3. This is in contrast to the approach applied for the convergence theory in
Chapter 5, which is based on a discrete perturbation theorem (compare Figure 5.2).

In the case of vanishing Dirichlet boundaries, the perturbation result in physical
energy norm contains the initial perturbation of the displacements in L2-norm. This
norm is not controlled by the adaptive timestep control. However, since the consis-
tency order of Newmark methods is expected to be higher in physical energy norm
than in L2-norm, cf. Chapter 4, the assumption

‖ǫ(tj ,u, τj)‖L2
= ‖ǫ(tj , ū, τj)‖E · o(1) for τj → 0 , for all j = 1, . . . , N△ (6.47)

is reasonable (compare Assumption (6.9)). Furthermore, let the adaptive timesteps
be bounded as in Assumption (5.24).

The following theorem gives a heuristic bound for the global discretization error
of ContacX, which only depends on the user-defined local tolerance TOL and the
number of performed timesteps N△.

Theorem 6.3.1. Assume that Theorem 3.2.2 with α ∈ [0, 1) and Assumptions
(5.24), (6.46), and (6.47) are valid. Then, the global error of (N-CI/CS+) satisfies

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

. TOL · N△ (6.48)

in the limit τ△ → 0. In particular,

‖ǫ△(ū, T )‖E . TOL · N△ . (6.49)
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Proof. Referring to Figure 5.1, the global discretization error in physical energy
norm can be decomposed via

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

≤
N△∑

i=1

(
‖ǫi(ū, T )‖2

E + α

N△∑

j=i+1

τj−1

∥∥∥
ui(tj) − ui(tj−1)

τj−1
− ui−1(tj) − ui−1(tj−1)

τj−1

∥∥∥
2

b

)1/2

.

Here, the error contributions ǫi(ū, T ) denote the propagation of the local discretiza-
tion errors ǫ(ti−1, ū, τi−1) by the variational inequality (1.28) of the dynamical con-
tact problem. Applying perturbation theorem 3.2.2 on every single error component
yields the estimate

(
‖ǫ△(ū, T )‖|2E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

≤
N△∑

i=1

(
‖ǫ(ti−1, ū, τi−1)‖E + c(T − ti−1)‖ǫ(ti−1, ū, τi−1)‖L2

)
· eκ̃2(T−ti−1)

with constants c, κ̃ > 0 independent of the adaptive timesteps. Now, the local error
control (6.46) as well as assumption (6.47) can be inserted into this expression. This
leads to the approximate bound

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

.

N△∑

i=1

(TOL + TOL · o(1)) · eκ̃2(T−ti−1)

= TOL · (1 + o(1)) ·
N△∑

i=1

·eκ̃2(T−ti−1)

for the global error. Reordering the sum and inserting the upper bound (5.24) of
the adaptive timesteps gives

(
‖ǫ△(ū, T )‖2

E + α

N△∑

j=1

τj−1

∥∥∥
ǫ△(u, tj) − ǫ△(u, tj−1)

τj−1

∥∥∥
2

b

)1/2

. TOL ·
N△−1∑

k=0

eκ̃2tk
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6. Adaptive Timestep Control

≤ TOL ·
N△−1∑

k=0

eκ̃2kτ△

= TOL ·
(
eκ̃2τ△

)N△ − 1

κ̃2τ△
,

where the closed expression for geometrical series has been used in the last step.
Finally, taking the limit τ△ → 0 yields the result of the theorem.

The theorem presented above gives a rough guide for assessing the influence of the
prescribed local tolerance TOL on the global discretization error measured in phys-
ical energy norm. The first term provides information about the actually achieved
error in displacements and velocities measured in a-norm and L2-norm, respectively.
The additional sum of the finite differences in displacements in b-norm over the time
interval is scaled by a factor α from the perturbation result, which may be equal
to zero. Hence, this part of the error estimate does not necessarily yield further
information.

The question how the number N△ of required timesteps depends on the tolerance is
still open. In general, a reduction of the tolerance increases the number of timesteps,
and the achieved global error is not proportional to the tolerance. In order to
gain more insight into this problem, the dependence of the number of timesteps
on the tolerance will be investigated in the first numerical example of Chapter 7.
The numerics will show that the number of timesteps grows much slower than the
prescribed tolerance decreases. Hence, the actually achieved global discretization
error of ContacX is expected to tend to zero.
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7. Numerical Results

In the last chapter of this thesis, two numerical examples will conclude the theo-
retical establishment of the adaptive timestep control ContacX for the improved
contact–stabilized Newmark method. The main purpose is to demonstrate the prac-
tical performance of the adaptive integrator for the simulation of dynamical contact
problems. Moreover, numerical findings will illustrate the close connection with the
theoretical insight of the previous chapters.

First, the 2D Hertzian contact of Section 2.5 is chosen as a simple test problem.
The characteristic quantities of the adaptive control, as the history of timesteps
and the number of accepted and rejected timesteps, will be presented. In view of
the theoretical analysis of the global discretization error achieved by ContacX in
Section 6.3, a numerical study on the relation between the number of timesteps and
the prescribed tolerance will be given. Furthermore, the behavior of the estimated
quantity X̄ will be investigated in time and space with regard to its motivation in
Chapter 6.

Next, a much more complex 3D application problem will be exhibited as a real-
world example for an adaptive numerical integration via ContacX: the simulation
of the motion of a human knee including bones and cartilage. Again, the adap-
tively chosen timesteps beyond contact and the number of timesteps, rejected and
accepted, will be discussed. At the end, the time evolution of computed stresses and
energies in the knee joint will be illustrated.

The implementation of ContacX is done within the same software environment
as the numerical example in Section 2.5. As suggested in Chapter 6, the proposal
of the adaptive controller for the next timestep is obtained from the scalar equa-
tions (6.40) or (6.41). Therefore, the open source code zeroin is utilized, which
returns an estimate for the root of a scalar function within a given range with pre-
scribed accuracy.

7.1. Hertzian Contact Problem

In this section, a Hertzian contact problem in 2D will be treated as a first illustrative
example (Example 1) for the suggested adaptive numerical integrator ContacX.
The configuration of the test problem is identical with the one in Section 2.5, though
the material parameters are chosen as in Table 7.1. The parameters for the adaptive
timestep control are given in Table 7.2, where E(0) denotes the initial energy of the
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parameter value
Young’s modulus 10
Poisson ratio 0.4
shear viscosity 10−3

bulk viscosity 10−3

Table 7.1.: Example 1: Material specifications.

parameter value
tolerance TOL 10−4 · E(0)
safety factor ρ 0.9
initial timestep 10−2

maximal timestep 1
maximal growth factor for timesteps 10

Table 7.2.: Example 1: Specifications for adaptive timestep control.

Figure 7.1 shows the size of the adaptively chosen timesteps. When the semicircle
is entering the phase of contact, the controller reduces the timesteps significantly.
Then, the timesteps increase moderately up to the moment when the body removes
from the plate. At this moment, depending on the desired time tolerance, the con-
troller reduces the timesteps again. However, this reduction is much less distinctive
than in the moment when the body gets into touch with the plate for the first time.
This is due to the higher regularity of dynamical contact problems when contact is
lost compared to the timepoint when contact is found initially. In the absence of
contact, the growth in timesteps is considerable.

The numerical integration has carried out 48 timesteps, while only 3 of them have
been rejected. Figure 7.2 shows that the repeats only occur when the semicircle gets
into contact with the plate for the first time.

Table 7.3 contains the number of accepted and rejected timesteps for different
tolerances and refinement levels of the spatial grid. For small tolerances, the adaptive
timestep control requires a sufficiently high resolution of the grid near the changing
active contact boundaries in order to avoid effects of spatial discretization.

In Theorem 6.3.1, an estimate for the achieved global discretization error of Con-

tacX has been presented, which refers to the number of performed timesteps N△

and the user-defined tolerance TOL. However, the dependence of the number of
timesteps on the tolerance is still an open problem. In Figure 7.3, the product of
the number of accepted timesteps and the prescribed tolerance is plotted against the
tolerance for different grid refinements (with values taken from Table 7.3). For this
test problem, the product of timesteps and tolerance becomes smaller and smaller
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Figure 7.1.: Example 1: Timestep history beyond contact (grey: phase of contact).
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Figure 7.2.: Example 1: Time evolution of the number of rejected timesteps (grey:
phase of contact).
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7. Numerical Results

j (nodes) / TOL 10−3 · E(0) 10−4 · E(0) 10−5 · E(0)
5 (1617) 17 (2) 45 (3) 144 (24)
6 (2759) 17 (2) 47 (3) 142 (18)
7 (7288) 18 (2) 48 (3) 133 (11)
8 (25054) 18 (2) 49 (3) 132 (8)
9 (95375) 18 (2) 51 (3) 143 (9)

Table 7.3.: Example 1: Total number of timesteps (number of rejected timesteps)
depending on tolerance TOL and refinement level j of the grid (or number
of nodes).

as the tolerance decreases. Combining this numerical observation with the result
of Theorem 6.3.1 leads to the conjecture that the adaptive numerical integrator
ContacX converges if the user-defined tolerance or the maximal timestep tends to
zero. As expected for algorithms designed in function space, the behavior observed
in Figure 7.3 is independent of the spatial mesh.
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·
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j = 7
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j = 9

Figure 7.3.: Example 1: Product of the number of accepted timesteps N△ and the
tolerance TOL vs. TOL for different refinement levels j of the grid.

Figure 7.4 shows the time evolution of the (reduced) physical energy norm of the
quantity X̄ introduced in Section 6.2. The norm of X̄ becomes extremely large at
the timepoint when the semicircle gets into contact with the plate for the first time.
In Figure 7.5, the spatial distribution of Ẋ can be found for a fixed timepoint in
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7.1. Hertzian Contact Problem

parts of the possible contact boundaries where the active contact set changes.
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Figure 7.4.: Example 1: Time evolution of ‖X̄‖E (grey: phase of contact).

Figure 7.5.: Example 1: Estimated spatial distribution of Ẋ(t + τ)|t=0.0524.
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7. Numerical Results

7.2. Motion of the Human Knee

As an example for a real life problem, in this section, the adaptive timestep controller
ContacX will be utilized to integrate the motion of a human knee (Example 2).
The computational results will have qualitative relevance only.

The numerical simulation is carried out for a prototype of a knee joint, which in-
corporates the femur and the tibia bone covered by articular cartilage. As indicated
in the introductory part of this thesis, the two bones are modeled with an isotropic,
homogeneous, and linear elastic material, while the layering cartilage is modeled
as a linear viscoelastic tissue. For human bones, many experimental results con-
cerning material parameters have been published, but the range of values spreads
widely. The values used for the two bones in the following simulation are taken
from [15] as an average of different measurements and can be found in Table 7.4.
Unfortunately, retrieving realistic parameters for articulating cartilage is much more

parameter value
Young’s modulus 17 GPa
Poisson ratio 0.3

Table 7.4.: Example 2: Material specifications of bone.

difficult. The size of the values for elasticity given in Table 7.5 have been chosen on
the basis of [21, 91]. Viscous material parameters for cartilage could not be found
in literature, and the values for viscosity in Table 7.5 are only a rough estimation.

parameter value
Young’s modulus 10 MPa
Poisson ratio 0.4
shear viscosity 10 MPa
bulk viscosity 10 MPa

Table 7.5.: Example 2: Material specifications of cartilage.

As in the PhD thesis of Sander [82], the geometry of the two bones was selected
as the left distal femur and proximal tibia from the Visible Human data set [4].
By image segmentation and using the grid generator of Amira [1], a computational
model of the bones was constructed, which consists of two tetrahedral grids with
378 and 306 vertices for tibia and femur, and 1328 and 1044 elements, respectively.
In a second step, the grids were refined further two times. Beyond that, a certain
additional distance between femur and tibia was set in order to accomplish a suitable
dynamical simulation. On the parts of femur and tibia that are usually covered by
articular cartilage, a thin layer of prisms was fixed with a thickness of 1.5 mm [91].
The computational grid consisting of femur, tibia, and covering cartilage is shown

142



7.2. Motion of the Human Knee

in Figure 7.6. At initial time, the two components of the knee joint are moving in
vertical direction towards each other with velocity u̇0 = ±(0, 0, 0.1) m/s.

Figure 7.6.: Example 2: Initial configuration.

Details concerning mortar and nonmortar contact boundaries and the contact
mapping in between can be found in [82]. The coupling of elastic bones and vis-
coelastic cartilage is performed by means of mortar element methods, see the bach-
elor thesis [92].

The parameters for the adaptive timestep control are given in Table 7.6.

parameter value
tolerance TOL 10−5 · E(0)
safety factor ρ 0.9
initial timestep 10−2 s
maximal timestep 10−1 s
maximal growth factor for timesteps 10

Table 7.6.: Example 2: Specifications for adaptive timestep control.

Figure 7.7 shows the history of adaptive timesteps as they have been chosen by
the controller for the integration of the movement of the knee. As already observed
for the simple Hertzian contact in Section 7.1, the timesteps decrease significantly
when the two bones covered by cartilage are getting into contact initially. During
the phase of contact, the timesteps increase, but they are reduced slightly when the
two bones or, more precisely, the covering cartilage loose contact. In the absence of
contact, the timesteps grow considerably again.

143



7. Numerical Results

0.05 0.10

10−1

10−2

10−3

Time (s)

S
iz

e
of

ti
m

es
te

p
s

(s
)

0

Figure 7.7.: Example 2: Timestep history beyond contact (grey: phase of contact).

The adaptive numerical integration of the motion of the knee model via ContacX

requires 17 timesteps in total. Thereof, only 2 timesteps have been rejected just
before active contact between the articular cartilage has been detected for the first
time.

The thesis will be finished by a presentation of some computational results on
the dynamics of the knee joint. Figure 7.8 illustrates the distribution of the stresses
occurring in femur, tibia, and articulating cartilage at various single timepoints.
The stresses arise at the contact interfaces for the first time and then, are spreading
wavelike over the whole bones as time proceeds.

In Figures 7.9–7.12, the energy of the system is plotted during the considered time
interval. As predicted in Chapter 2, the total energy is preserved in the absence of
contact and dissipative in the presence of contact. The progression of potential and
kinetic energy in time oppose each other: the potential energy is maximal in the
presence of contact and minimal in the absence of contact, while the kinetic energy
is minimal at contact and maximal without. Viscous energy is lost during the phase
of active contact mostly.
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t = 0.0100 t = 0.0309 t = 0.0400

t = 0.0493 t = 0.0598 t = 0.0717

t = 0.0851 t = 0.1002 t = 0.1263

Figure 7.8.: Example 2: Time evolution of the spatial distribution of stresses.
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Figure 7.9.: Example 2: Total energy (grey: phase of contact) including and exclud-
ing viscous energy (dashed and solid).
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Figure 7.10.: Example 2: Potential energy (grey: phase of contact).
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Figure 7.11.: Example 2: Kinetic energy (grey: phase of contact).
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Figure 7.12.: Example 2: Viscous energy (grey: phase of contact).

147





Conclusion

In this thesis, an adaptive numerical integrator for dynamical contact problems
(ContacX) has been presented. The solver is based on a contact–stabilized New-
mark method, for which an automatic timestep control has been constructed within
the time layer approach.

The theoretical foundation has been laid on the derivation of consistency and per-
turbation results. Viscous material behavior and the choice of a problem-adapted
norm was found to be important. In fact, these findings even led to a novel con-
vergence theory for the Newmark scheme in function space. The essential idea is
to integrate over discontinuities appearing only at a few timepoints in the presence
of contact. As it turned out, the requirement of bounded variation of the solution
is absolutely crucial. A refinement of the numerical analysis needs supplementary
knowledge about uniqueness, regularity, and well-posedness of the dynamical contact
problem.

In a first attempt towards an adaptive timestep control, non-standard extrapo-
lation techniques accounting for the special structure of the problem at dynamical
contact have been worked out. For this purpose, a theoretical investigation of an
asymptotic error expansion has been performed, which has been supported by nu-
merical experiments. An illustrative example has shown a detailed agreement be-
tween the theoretical estimates and the numerical observations. Moreover, the code
ContacX has been demonstrated to be reliable, robust, and efficient for practical
applications.

On the basis of ContacX, a fast and accurate simulation of human motion with
regard to computational surgery planning comes into reach.
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A. Inequalities

Korn’s inequalities. On Ω, the inequality of Korn

cK ‖v‖2
H1 ≤ ‖v‖2

L2
+ ‖ε(v)‖2

L2
, ∀ v ∈ H1 (A.1)

holds, where cK > 0 is a constant depending only on Ω and ΓD. Under the additional
assumption that ΓD ⊂ ∂Ω is connected with meas(ΓD) > 0, the inequality reduces
to

cK ‖v‖2
H1 ≤ ‖ε(v)‖2

L2
, ∀ v ∈ H1

D
. (A.2)

Proofs of Korn’s inequalities can be found, for instance, in [75, 77].

Gronwall’s inequality. Let δ, λ be two mappings from an interval [0, T ] into [0,∞).
Assume that δ is continuous, λ is integrable, C ≥ 0, and

δ(t) ≤ C +

∫ t

0

λ(s)δ(s) ds , ∀ t ∈ [0, T ] .

Then,

δ(t) ≤ C exp
(∫ t

0

λ(s) ds
)

, ∀ t ∈ [0, T ] .

A proof of this generalized version of the inequality of Gronwall is presented, e.g.,
in [84, Section 30.8].

Discrete Gronwall’s inequality. Let (an), (bn) be two nonnegative sequences. As-
sume that ρ ≥ 0 and

an ≤ ρ +

n−1∑

j=0

bjaj , n = 0, 1, . . . .

Then,

an ≤ ρ exp
(n−1∑

j=0

bj

)
, n = 0, 1, . . . .

For this discrete version of Gronwall’s inequality see, e.g., [18, Exercise 7.7].
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B. Interpretation of Contact

Stresses

In Chapter 3 and Chapter 5, stability conditions have been derived for which a per-
turbation result for dynamical contact problems and the improved contact–stabilized
Newmark method hold in physical energy norm. The necessary assumptions on the
contact stresses have been motivated by the formulation and interpretation of lo-
calized versions of the conditions. In this part of the appendix, the underlying
localization of the contact forces on active and critical contact boundaries will be
justified by means of an abstract trace theorem.

B.1. An Abstract Trace Theorem

In the following, a generalized trace theorem will be proven, which provides the
basis for characterizing contact forces as functionals acting on the active contact
boundaries only. Similar but less general formulations of this theorem can be found,
e.g., in [7, 49].

Theorem B.1.1. Let U, V, W be Banach spaces. Assume that A : U → V∗ is
linear and continuous and γ : V → W linear, continuous, and surjective. If

〈Au,v〉V∗×V = 0 , ∀u ∈ U , ∀ v ∈ ker γ , (B.1)

then there exists a linear and continuous operator π : U → W∗ satisfying

〈Au,v〉V∗×V = 〈πu, γv〉W∗×W , ∀u ∈ U , ∀ v ∈ V . (B.2)

Proof. Due to the continuity of γ, the kernel ker γ is a closed subspace of the
Banach space V [81, Theorem 1.18], and the factor space V/ kerγ is a Banach space
again [81, Theorem 1.41]. Hence, the linear, continuous, and surjective mapping γ

induces the bijective mapping

γ0 : V/ kerγ −→ ran γ = W ,

which is linear and continuous [81, Chapter 1, Exercise 9]. By Banach’s open map-
ping principle [81, Theorem 2.12], the inverse operator

γ−1
0 : W −→ V/ ker γ
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of the mapping is continuous (and linear). In turn, the inverse has a uniquely
determined linear and continuous dual operator

(γ−1
0 )∗ : (V/ kerγ)∗ −→ W∗ ,

see [81, Theorem 4.10]. Assumption (B.1) directly yields that the range of A is
a subset of the annihilator of the kernel of γ, i.e., ranA ⊂ (ker γ)⊥. Because of
(ker γ)⊥ = (V/ kerγ)∗ [81, Theorem 4.9], it even holds Au ⊂ (V/ ker γ)∗ for all
u ∈ U. Hence, the linear and continuous operator

π := (γ−1
0 )∗A : U ⊃ U −→ W∗

is well-defined. A simple calculation shows that

〈γ∗πu,v〉W∗×W =
〈(

γ−1
0 γ

)∗
Au,v

〉
W∗×W

=
〈
Au, γ−1

0 γv
〉
V∗×bbaV

.

Now, write v ∈ V as a sum of an element of ker γ and a representative of the
equivalence class γ−1

0 γv ∈ (V/ kerγ). Then, the relation

〈
Au, γ−1

0 γv
〉
V∗×V

= 〈Au,v〉V∗×V , ∀ u ∈ U , ∀v ∈ V

holds due to ranA ⊂ (ker γ)⊥. This gives the desired trace theorem.

B.2. Localization on Active Contact Boundaries

In a first step, the abstract trace theorem will be applied to derive a characterization
of the contact forces of the continuous problem as functionals acting on the active
contact boundaries. The underlying definition of the active contact boundaries ΓC(t)
of a solution u of (1.28), for almost every t, is based on the concept of Sobolev
capacity, compare Section 3.3.

Theorem B.2.1. For T > 0, let γC : L2(0, T ;H1
D(Ω)) → L2(0, T ;H1/2(ΓC(t)))

denote a linear, continuous, and surjective trace operator. Further, define UD as
the closure of

D =
{
v ∈ C∞([0, T ] × Ω̄))

∣∣ σ̂(v, v̇) = 0 on ΓC \ ΓC(t) × [0, T ]
}

with respect to the canonical norm on

U =
{
v ∈ L2(0, T ;H1(Ω))

∣∣ v̇ ∈ L2(0, T ;H1(Ω)),

div σ(v, v̇) ∈ L2(0, T ;L2(Ω)),

σ̂(v, v̇) ∈ L2(0, T ;L2(ΓN))
}

.
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B.2. Localization on Active Contact Boundaries

If u is a solution of the variational problem (1.28) with u ∈ UD, then

∫ T

0

〈Fcon(u(t)),v(t)〉(H1(Ω))∗×H1(Ω) dt = 〈π(u), γCv〉 , ∀ v ∈ L2(0, T ;H1
D(Ω))

(B.3)
with a continuous operator π : UD → L2(0, T ; (H1/2)∗(ΓC(t))).

Proof. First of all, the trace operator γC can be taken as the composition of the
classical trace operator γ : L2(0, T ;H1(Ω)) → L2(0, T ;H1/2(Γ)) with the restric-
tion operator from L2(0, T ;H1/2(Γ)) to L2(0, T ;H1/2(ΓC(t))). By definition, this
mapping is linear, continuous, and surjective.

For T > 0, define the linear operator A : UD ⊃ D → L2(0, T ; (H1)∗(Ω)) as

〈Au,v〉 :=

∫ T

0

a(u(t),v(t)) + b(u̇(t),v(t)) dt−
∫ T

0

(∫

ΓN

σ̂(u(t), u̇(t)) · v(t)
)

dt

+

∫ T

0

(∫

Ω

div σ(u(t), u̇(t)) · v(t) dx
)

dt , v ∈ L2(0, T ;H1
D(Ω))

for u ∈ D. This mapping is continuous in L2(0, T ; (H1)∗(Ω)) due to

|〈Au,v〉|
≤ C

(
‖u‖L2(0,T ;H1(Ω)) + ‖u̇‖L2(0,T ;H1(Ω)) + ‖σ̂(u, u̇)‖L2(0,T ;L2(ΓN ))

)
‖v‖L2(0,T ;H1(Ω))

+ ‖ div σ̂(u, u̇)‖L2(0,T ;L2(Ω))‖v‖L2(0,T ;L2(Ω)) .

A classical integration by parts in space leads to

〈Au,v〉 =

∫ T

0

(∫

ΓC(t)

σ̂(u(t), u̇(t)) · v(t) da
)

dt .

Since

ker γC =
{
v ∈ L2(0, T ;H1

D(Ω))
∣∣γC(v) = 0 a.e. on ΓC(t) for a.e. t ∈ [0, T ]

}
,

it holds
〈Au,v〉 = 0, ∀u ∈ D , ∀ v ∈ ker γC .

By means of UD = D̄‖·‖U , the linear and continuous operator A can be extended to
UD [93, Proposition 18.29], and a classical density argument leads to

〈Au,v〉 = 0 , ∀u ∈ UD , ∀ v ∈ ker γC .

Now, the trace theorem B.1.1 gives the existence of a linear and continuous operator
π : UD → L2(0, T ; (H1/2)∗(ΓC(t))) such that

〈Au,v〉 = 〈π(u), γCv〉 , ∀ u ∈ UD , ∀v ∈ L2(0, T ;H1
D(Ω)) .
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B. Interpretation of Contact Stresses

If u is a weak solution of the variational problem (1.28) and u ∈ D ⊂ UD, then u

satisfies the strong problem formulation as well, and

〈Au,v〉 =

∫ T

0

〈Fcon(u(t)),v(t)〉 dt , ∀v ∈ L2(0, T ;H1
D(Ω)) .

By a density argument, this relation can be extended to all solutions u ∈ UD, which
yields the result of the theorem.

The theorem above shows that the contact forces of a solution u of (1.28) can
be localized on the active contact boundaries under additional regularity assump-
tions on the dynamical contact problem. The most important one is the condition
div σ(u, u̇) ∈ L2(0, T ;L2(Ω)), which is necessary in order to perform integration
by parts in space within the proof above. However, it is not clear up to now if
dynamical contact problems provide this regularity in general.

B.3. Localization on Critical Contact Boundaries

In a second step, the abstract trace theorem B.2.1 will be applied in order to prove
the representation (3.16) of the contact forces of the continuous problem, which
has motivated the introduction of the (localized) stability condition for dynamical
contact problems in Chapter 3.

In the following, the possible contact boundaries and the bijective mappings be-
tween the two possible contact boundaries are assumed to be identical. The def-
inition of the critical part Γ∗

C(t) of the active contact boundaries for a solution u

of (1.28) and its perturbation ũ, for almost every t, has been given in Section 3.3.
The assumptions and notations allow presenting the central theorem of this ap-
pendix.

Theorem B.3.1. For T > 0, let γ∗
C : VC → L2(0, T ;H1/2(Γ∗

C(t))) denote a linear,
continuous, and surjective trace operator, where

VC =
{
v ∈ C∞([0, T ]× Ω̄))

∣∣ [v · ν]φ = 0 a.e. on ΓC(t) ∩ Γ̃C(t) for a.e. t ∈ [0, T ]
}

.

Further, define UD as the closure of

D =
{
v ∈ L2(0, T ;C∞(Ω̄))

∣∣ v̇ ∈ L2(0, T ;C∞(Ω̄)),

σ̂(v, v̇) = 0 on ΓC \ (ΓC(t) ∪ Γ̃C(t)) × [0, T ]
}

with respect to the canonical norm on

U =
{
v ∈ L2(0, T ;H1(Ω))

∣∣ v̇ ∈ L2(0, T ;H1(Ω)),

div σ(v, v̇) ∈ L2(0, T ;L2(Ω)),

σ̂(v, v̇) ∈ L2(0, T ;L2(ΓN))
}

.
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If u and ũ are solutions of the variational problem (1.28) with u, ũ ∈ UD, then

∫ T

0

〈
Fcon(u) − Fcon(ũ), u̇(t)) − ˙̃u(t)

〉
dt =

〈
π(u) − π(ũ), γ∗

C(u̇(t) − ˙̃u(t))
〉

(B.4)

with a continuous operator π : UD → L2(0, T ; (H1/2)∗(Γ∗
C(t))).

Proof. First, a trace operator from VC to the set

{
v ∈ L2(0, T ;H1/2(Γ))

∣∣ [v · ν]φ = 0 a.e. on ΓC(t) ∩ Γ̃C(t) for a.e. t ∈ [0, T ]
}

is chosen and concatenated with the canonical restriction to L2(0, T ;H1/2(Γ∗
C(t))).

This yields the existence of the linear, continuous, and surjective operator γ∗
C .

The linear and continuous operator A : UD ⊃ D → V∗
C is defined as

〈Au,v〉 :=

∫ T

0

a(u(t),v(t)) + b(u̇(t),v(t)) dt−
∫ T

0

(∫

ΓN

σ̂(u(t), u̇(t)) · v(t) da
)

dt

+

∫ T

0

(∫

Ω

div σ(u(t), u̇(t)) · v(t) dx
)

dt , v ∈ VC

for u ∈ D, and integration by parts in space leads to

〈Au,v〉 =

∫ T

0

(∫

ΓC(t)∪Γ̃C (t)

σ̂(u(t), u̇(t)) · v(t) da
)

dt .

Due to ker γ∗
C = {v ∈ L2(0, T ;H1

D(Ω)) |v = 0 on ΓC(t) ∪ Γ̃C(t)}, it holds

〈Au,v〉 = 0, ∀u ∈ D , ∀ v ∈ ker γ∗
C .

Since D is dense in UD, the linear and continuous operator A can be extended to
UD [93, Proposition 18.29], and a classical density argument leads to

〈Au,v〉 = 0 , ∀u ∈ UD , ∀ v ∈ ker γ∗
C .

Now, the trace theorem B.1.1 yields the existence of a continuous operator π :
UD → L2(0, T ; (H1/2)∗(Γ∗

C(t))) satisfying

〈Au,v〉 = 〈π(u), γ∗
Cv〉 , ∀ u ∈ UD , ∀ v ∈ VC .

If u ∈ D ⊂ UD and solution of the variational problem (1.28), then

〈Au,v〉 =

∫ T

0

〈Fcon(u(t)),v(t)〉 dt , ∀ v ∈ VC ,
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and the same is valid for the perturbed solution ũ ∈ D ⊂ UD. Thus,

∫ T

0

〈Fcon(u)−Fcon(ũ),v〉 dt = 〈Au−Aũ,v〉 = 〈π(u)−π(ũ), γ∗
Cv〉 , ∀ v ∈ VC .

By the generalized main theorem of calculus (compare, e.g., [93, Problem 23.5]),
the time derivative u̇(t) exists in the classical sense for almost every t ∈ [0, T ] and
coincides with the generalized derivative in L2(0, T ;H1(Ω)). For t such that u̇(t)
exists and condition (1.28) holds,

[u̇(t) · ν]φ = lim
h→0

[u(t + h) · ν]φ − [u(t) · ν]φ
h

= lim
h→0

[u(t + h) · ν]φ − g

h

=

{
≥ 0 if h > 0

≤ 0 if h < 0

on ΓC(t) and hence, [u̇(t) ·ν]φ = 0. The same argumentation leads to [ ˙̃u(t) ·ν]φ = 0
on Γ̃C(t) for almost every t ≥ 0. This yields that u̇, ˙̃u ∈ VC , which directly gives
the result of the theorem.

B.4. Interpretation of Discrete Contact Stresses

The last section of this appendix is dedicated to the localization of the contact
stresses of the contact–implicit and (improved) contact–stabilized Newmark method
on certain critical contact boundaries.

For stationary Signorini problems, the dual interpretation of contact forces as
functionals on the active contact boundaries is well-known, cf. [49, Chapter 5] or [58,
Chapter 2]. For this reason, the derivation of this result on the basis of Green’s
Theorem will not be presented here. Instead, the contact forces of (N-CI/CS(+))
will be directly localized on the critical contact boundaries (Γ∗

C)j+1,j introduced in
Section 5.1.2.

Denote by Γj+1
C and Γ̃j+1

C the active contact boundaries of a discrete solution
uj+1 and a perturbed solution ũj+1, respectively. Moreover, assume again that the
possible contact boundaries and the bijective mappings between the two possible
contact boundaries coincide, i.e., ΓC = Γ̃C and φ = φ̃.

Theorem B.4.1. For j + 1 ∈ {1, . . . , N△}, let (γ∗
C)j+1,j : V

j+1,j
C → H1/2((Γ∗

C)j+1,j)
denote a linear, continuous, and surjective trace operator, where

V
j+1,j
C =

{
v ∈ H1

D(Ω)
∣∣ [v · ν]φ = 0 a.e. on (Γj+1

C ∪ Γ̃j+1
C ) \ (Γ∗

C)j+1,j
}

.
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Further, define U
j+1
D as the closure of

Dj+1 =
{
v̄ ∈ C∞(Ω̄)

∣∣ σ̂(v, v̇) = 0 on ΓC \ (Γj+1
C ∪ Γ̃j+1

C )
}

with respect to the canonical norm on

Uj+1 =
{
v̄ ∈ H1(Ω)

∣∣ div σ(v, v̇) ∈ L2(Ω), σ̂(v, v̇) ∈ L2(ΓN)
}

.

If uj+1 and ũj+1 are discrete solutions of (N-CI/CS(+)) with uj+1, ũj+1 ∈ U
j+1
D ,

then
〈
Fcon(u

j+1) − Fcon(ũ
j+1), (uj+1 − ũj+1) − (uj − ũj)

〉

=
〈
πj+1,j(uj+1) − πj+1,j(ũj+1), (γ∗

C)j+1,j((uj+1 − ũj+1) − (uj − ũj))
〉 (B.5)

with a continuous operator πj+1,j : U
j+1
D → (H1/2)∗((Γ∗

C)j+1,j).

Proof. The linear, continuous, and surjective trace operator (γ∗
C)j+1,j can be chosen

as the trace operator from V
j+1,j
C to the set

{
v ∈ H1/2(Γ)

∣∣ [v · ν]φ = 0 a.e. on (Γ∗
C)j+1,j \ Γj+1

C ∩ Γ̃j+1
C

}

concatenated with the canonical restriction to H1/2((Γ∗
C)j+1,j).

Define the linear operator A : U
j+1
D ⊃ Dj+1 → (V j+1,j

C )∗ as

〈Aūj+1,v〉 := a(uj+1,v) + b(u̇j+1,v) −
∫

ΓN

σ̂(uj+1, u̇j+1) · v da

+

∫

Ω

div σ(uj+1, u̇j+1) · v dx , v ∈ V
j+1,j
C

for uj+1 ∈ Dj+1. This mapping is continuous in (H1)∗(Ω) since
∣∣〈Aūj+1,v〉

∣∣ ≤C
(
‖uj+1‖H1(Ω) + ‖u̇j+1‖H1(Ω) + ‖σ̂(uj+1, u̇j+1)‖L2(ΓN )

)
‖v‖H1(Ω)

+ ‖ div σ̂(uj+1, u̇j+1)‖L2(Ω)‖v‖L2(Ω) .

Integration by parts in space leads to

〈Aūj+1,v〉 =

∫

Γj+1

C ∪Γ̃j+1

C

σ̂(uj+1, u̇j+1) · v da .

By means of ker(γ∗
C)j+1,j = {v ∈ H1

D(Ω) |v = 0 on Γj+1
C ∪ Γ̃j+1

C },

〈Aūj+1,v〉 = 0 , ∀ uj+1 ∈ Dj+1 , ∀ v ∈ ker(γ∗
C)j+1,j

holds. Since Dj+1 is dense in U
j+1
D , the linear and continuous operator A can be

extended to U
j+1
D [93, Proposition 18.29], and a classical density argument leads to

〈Aūj+1,v〉 = 0 , ∀ uj+1 ∈ U
j+1
D , ∀ v ∈ ker(γ∗

C)j+1,j .
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The trace theorem B.1.1 yields the existence of a continuous operator πj+1,j :
U

j+1
D → (H1/2)∗((Γ∗

C)j+1,j) that satisfies

〈Aūj+1,v〉 =
〈
πj+1,j(uj+1), (γ∗

C)j+1,jv
〉
, ∀ uj+1 ∈ U

j+1
D , ∀ v ∈ V

j+1,j
C .

For a solution u ∈ Dj+1 ⊂ U
j+1
D of (N-CI/CS(+)),

〈Aūj+1,v〉

= 〈F(uj+1),v〉 + 〈G(u̇j+1),v〉 − 〈f ,v〉 +

∫

Ω

div σ(uj+1, u̇j+1) · v dx

= − 2

τ 2
j

(
uj+1 − uj − τju̇

j ,v
)
−

〈
F(uj),v

〉
−

〈
G(u̇j),v

〉
+

〈
Fcon(u

j+1),v
〉

− 〈f ,v〉 +

∫

Ω

div σ(uj+1, u̇j+1) · v dx

=
〈
Fcon(u

j+1),v
〉

for all v ∈ V
j+1,j
C , and the same is valid for the perturbed solution ũj+1 ∈ Dj+1 ⊂

U
j+1
D . Hence,

〈
Fcon(u

j+1) − Fcon(ũ
j+1),v

〉

= 〈Aūj+1 − A˜̄uj+1,v〉
=

〈
πj+1,j(uj+1) − πj+1,j(ũj+1), (γ∗

C)j+1,jv
〉
, ∀ v ∈ V

j+1,j
C .

The difference of the perturbations in displacements at the beginning and at the
end of a timestep satisfies (uj+1 − ũj+1) − (uj − ũj) ∈ V

j+1,j
C , since

(Γj+1
C ∪ Γ̃j+1

C ) \ (Γ∗
C)j+1,j

= (Γj+1
C ∪ Γ̃j+1

C ) \ (Γ∗
C)j+1 ∩ (Γj+1

C ∪ Γ̃j+1
C ) \ ((Γ∗

C)j ∪ (Γ̃∗
C)j+1,j)

= (Γj+1
C ∩ Γ̃j+1

C ) ∩ (Γj+1
C ∪ Γ̃j+1

C ) \ ((Γ∗
C)j ∪ (Γ̃∗

C)j+1,j)

= (Γj+1
C ∩ Γ̃j+1

C ) \ ((Γ∗
C)j ∪ (Γ̃∗

C)j+1,j)

= Γj+1
C ∩ Γ̃j+1

C ∩ Γj
C ∩ Γ̃j

C .

This leads to the result of the theorem.
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List of Symbols

Acronyms

(N-CL)h classical Newmark method

(N-CI)h contact–implicit Newmark method

(N-CS)h contact–stabilized Newmark method

(N-CS+)h improved contact–stabilized Newmark method

(N-CL) classical Newmark method in function space

(N-CI/CS(+)) contact–implicit and (improved) contact–stabilized Newmark
method in function space

ContacX adaptive improved contact–stabilized Newmark method

General Notations

Ω reference configuration

Γ, ΓD, ΓN , ΓC boundary of Ω, Dirichlet-, Neumann-, and contact boundaries

u displacements

Φ̄ evolution operator of continuous solution

K admissible set

IK characteristic functional of K

φ contact mapping

νφ normal vector

[u · ν]φ relative displacement of u in direction of νφ

g gap function

i



List of Symbols

ε strain tensor

σ, σ̂ stress tensor and boundary stresses

E, V elasticity and viscosity tensor

E0, V0 constant for positive definite elasticity and viscosity tensor

a, b bilinearform of elastic and viscous forces

F, G functional of elastic and viscous forces

fext external forces

Fcon contact forces

L linear momentum

E , Ekin, Epot, Evisco total, kinetic, elastic, and viscous energy

v̄ function v and its first derivative v̇

δv perturbation of v

Numerics

Ωh polyhedral reference configuration

τ , h timestep and maximal spatial diameter

N△ number of discrete timepoints

ūn,ūn
h approximations of ū(tn)

un
pred, un

h,pred predictor for approximations of u(tn)

Ψ̄ evolution operator of discrete solution

ū△,ūτ lattice function

Kh discrete admissible set

Sh finite element space

Fλ(u,v) weighting of F(u) and F(v)

ǫ(t, ū, τ) local error

ii



List of Symbols

ǫ△(u, t), ǫτ (ū, t) global error

[v] estimation of v

TOL tolerance

X̄ non-standard quantity in asymptotic error expansion

Function Spaces and Norms

L2 Lebesgue space

H1, H1
D Sobolev space and Sobolev space with Dirichlet values

H1/2 space of traces

C([t0, t],V) set of continuous functions v : [t0, t] → V

Ck([t0, t],V) set of k-times continuously differentiable functions v : [t0, t] → V

L2(t0, t;V) set of square-integrable functions v : [t0, t] → V

W1
2(t0, t;H

1,L2) set of all functions v ∈ L2(t0, t;H
1) with v̇ ∈ L2(t0, t; (H

1)∗)

‖ · ‖V, (·, ·)V norm and scalar product on V

V∗, 〈·, ·〉V∗×V dual space of V and dual pairing

‖ · ‖a, ‖ · ‖b seminorms from bilinearforms a and b

‖ · ‖E(t,τ), ‖ · ‖E physical energy norm and reduced physical energy norm

‖ · ‖τ discrete displacement norm

TV(v, [t0, t],V) total variation of a function v : [t0, t] → V

BV([t0, t],V) set of all functions v : [t0, t] → V with bounded variation

R(u, [t, t + τ ]) sum of total variations of u

cK constant in Korn’s inequality

iii
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Zusammenfassung

Die vorliegende Dissertation ist der schnellen und stabilen numerischen Lösung von
dynamischen Kontaktproblemen gewidmet, wie sie beispielsweise bei der Modellie-
rung und Simulation des menschlichen Ganges auftreten. Adaptivität bietet hier die
Möglichkeit effektive Algorithmen zu konstruieren, die mit vertretbarem Rechenauf-
wand eine vorgegebene Genauigkeit erreichen.

Der Fokus der Dissertation liegt auf dynamischem Kontakt zwischen zwei visko-
elastischen Körpern, der durch die Signorini-Bedingung modelliert wird. Dies führt
auf nichtglatte und nichtlineare Variationsungleichungen, für die bisher lediglich die
Existenz einer Lösung nachgewiesen ist, während Eindeutigkeit und stetige Abhän-
gigkeit von den Anfangsdaten nach wie vor ungelöste Probleme darstellen. Für die
numerische Zeitintegration bietet sich das kontaktstabilisierte Newmarkverfahren
von Deuflhard et al. an, das im Gegensatz zu den meisten anderen Diskretisierun-
gen sowohl energiedissipativ als auch frei von numerischen Instabilitäten ist.

Im Rahmen dieser Arbeit wird zunächst das kontaktstabilisierte Newmarkver-
fahren unter dem Aspekt einer diskreten Persistenzbedingung weiter entwickelt.
Ziel ist es dann, für diesen Algorithmus eine adaptive Steuerung der Zeitschritt-
weite zu konstruieren. Als erster notwendiger Schritt wird hierzu die “physikalische
Energienorm” im Funktionenraum eingeführt, in der ein Störungsresultat für eine
Klasse von dynamischen Kontaktproblemen hergeleitet werden kann. Im zweiten
Schritt werden in dieser Norm neuartige Konsistenzresultate für unterschiedliche
Newmarkverfahren bewiesen. Mit Hilfe einer Modifikation der Beweistechnik “Lady
Windermere’s Fan” läss t sich dann die Konvergenz des verbesserten kontaktsta-
bilisierten Newmarkverfahrens im Rahmen der Zeitschichtenmethode nachweisen.
Hierfür ist zusätzlich die Untersuchung von Störungsresultaten für die diskrete Evo-
lution notwendig. Die adaptive Steuerung der Zeitschrittweiten erfordert schließlich
die Konstruktion eines Verfahrens höherer Ordnung, um daraus einen Schätzer für
den Konsistenzfehler zu erhalten. Hierfür werden speziell angepasste Extrapolati-
onsmethoden entwickelt, die auf einer modifizierten asymptotischen Entwicklung
des Fehlers basieren.

Abschließend wird die adaptive Variante des verbesserten kontaktstabilisierten
Newmarkverfahren an verschiedenen Beispielen getestet. Dabei zeigt sich eine deut-
liche Übereinstimmung von theoretischen Erkenntnissen und numerischen Experi-
menten. Sowohl für ein einfaches Testproblem als auch für die Simulation der Bewe-
gung des menschlichen Knies verhält sich der Algorithmus sehr stabil und effizient.
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