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1 Introduction

In this thesis, an algorithm for the numerical solution of population balance
systems is developed and investigated. Population balance systems (PBS) are
systems of partial (integro-)differential equations, which describe the develop-
ment of a population of particles in a fluid environment. A system of this
type is defined on a time interval (t0, t1) with variable t, a spatial domain Ωx

with variable x and a particle type space Ωm with variable m. It comprises a
population balance equation (PBE)

∂

∂t
f + u · ∇xf +∇mf = B(f)−D(f),

which is the “heart” of the population balance system; the incompressible
Navier–Stokes equations (momentum balance and mass balance)

∂

∂t
u− ν∆u+ (u · ∇)u+∇p = fu

∇ · u = 0;

and a number of convection-diffusion-reaction equations of the type

∂

∂t
c− ε∆c+ u · ∇c+ r(c) = fc.

Population balance systems can be used for the description of multiple physical
phenomena, but all of them have in common the presence of a large number
of small entities (“particles”), which are transported by a fluid flow, and inter-
act with each other and with the surrounding fluid. Those “particles” can be
particles in the physical sense: sediment particles in a submarine environment,
pollutant particles in the atmosphere, or crystals in a crystallization device are
conceivable. In more exotic applications of population balance equations, the
particles are, e.g., individuals in a herd of animals or genomes in a gene pool.
In this thesis, the model systems come from chemical engineering, in particular
from crystallization processes in fluid environments. Especially, we will regard
population balance systems which include particle coagulation. Therefore the
right-hand side of the PBE will always contain a coagulation integral term.
The PBE can thus be regarded as an extended version of the Smoluchowski
coagulation equation of Smoluchowski (1916).

Since population balance systems consist of three types of equations, each
of which makes very specific demands to the numerical methods used for their
solution, they are a natural application area for coupled methods of various
type. Coupled or “splitting” methods are those, in which different numerical
schemes are applied for each of the equations in the system, then coupling
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1 Introduction

the partial solutions after application of the individual schemes. The coupled
method which will be developed and applied in this thesis is new and special
in that way, that it brings together two very different numerical approaches.
While the Navier–Stokes equations and the convection-diffusion-reaction equa-
tions will be solved with advanced deterministic finite element methods from
the area of computational fluid dynamics (CFD), the population balance equa-
tion will be reformulated and solved in a stochastic manner, making use of a
highly developed stochastic particle simulation algorithm. Just as the particle
population is embedded into the fluid flow, this stochastic approach to its com-
putation will be embedded into a CFD simulation framework. The resulting
coupled solver will prove a powerful computational tool for the numerical solu-
tion of PBS: efficient, robust and flexible to extend. In the following we will
first gather several aspects which motivate the coupled approach, and then give
the outline of this thesis.

1.1 Motivation

In scientific computing, coupled methods are often useful for the numerical solu-
tion of systems of equations, when the system comprises very different types of
equations. In the PBS case, three types of equations occur. For the popula-
tion balance equation itself different numerical approaches have been proposed,
deterministic and stochastic ones. A standard reference for the numerics of
PBE is Ramkrishna (2000). Among the existing approaches stochastic meth-
ods of kinetic Monte Carlo type stand out because of their ability to include
microscale characteristics of the particles, while the convergence of the numer-
ical solution to the solution of the macroscopic PBE in a suitable notion of
convergence was proven for several cases of interest, notably the Smoluchowski
coagulation equation. From a computational point of view, classical methods
for PBEs suffer from a “curse of dimensionality”. The spaces on which they are
defined, combining spatial domain and type domain, can easily become four,
five or six dimensional – the computing time of classical methods like finite
difference schemes blows up in such settings. Stochastic particle methods do
not suffer from this issue.

The PBS has a multiscale character, which is done justice by a coupled
stochastic-deterministic approach. For the fluid and the transported quant-
ities a macroscopic modeling approach via classical PDEs seems rather nearby,
since to the human perception and to classical mechanics the fluid appears as
a homogeneous bulk, whose motion and composition can be well characterized
by means and averages. For the particles which are transported by the fluid,
this approach seems less obvious. Nevertheless it is the classical modeling as-
sumption of PBEs that the particle population is dense and fine enough to by
characterized by an averaged, macroscopic density function alone. But even in
the classical model the microscopic character of the particles enters, namely into
the formulation of source and sink terms which describe interactions of the par-
ticles with each other and with their fluid surroundings. Stochastic simulation
methods reflect this microscopic character way better. There, “representative”,

8



1.1 Motivation

“computational” or “notational” particles are present in model and simulation,
and those can be used to model microscopic processes to any desired level of
detail. Still, macroscopic quantities can be gained by averaging over the pop-
ulation of computational particles, allowing for results of the aforementioned
type, where the solution of the stochastic particle simulation (SPS) can be
shown to converge against a solution of the macroscopic PBE. In that sense,
the strong appeal of stochastic methods is the efficient yet exact introduction
of the microscale into the numerical solution of the PBS.

The other equations of the PBS are the incompressible Navier–Stokes equa-
tions (NSE) and a number of convection-diffusion-reaction equations (CDRE).
The complications of their analysis and numerics have motivated the emergence
of an extensive literature on the subject. A standard reference for the numerics
of CDRE is Roos et al. (2008), for the numerics of the incompressible NSE
John (2016) offers a good overview, at least for finite element approaches. Fi-
nite elements are the basic discretization method that is used for the solution
of NSE and CDRE in this thesis, yet several aspects justify their categorization
as “advanced” finite element methods. In particular, we make use of a domain
decompositioning method for the solution of the Navier–Stokes equations, as-
sess solvers for linear saddle point problems and identify a suitable solver for
to be applied in the full 3d setting, and make use of a specialized algebraic flux
correction scheme for the numerical stabilization of the CDRE. The assessment
of the solvers for saddle point problems, and the identification of an appropriate
solver for the considered NSE problem is an original contribution of this thesis.
This shows that the urge to solve the coupled PBS can also stimulate numerical
research connected to its component equations.

The particular stochastic particle simulation method which we use has been
developed, refined and applied in a relatively recent series of papers by the
research group of Prof. Markus Kraft at the University of Cambridge, see, e.g.,
Patterson et al. (2011) for a representative of that series. Its particular appeal,
beyond the mentioned general facts on SPS, is its computational efficiency and
the robustness of its implementation.

Coupling this stochastic particle simulation method into a CFD solver frame-
work is an undertaking which requires great attention to detail, although the
splitting scheme itself is rather simple. Especially the spatial extension to 2d
and 3d, which is the main contribution of this thesis, requires great care. Sim-
ilar methods, coupling CFD and stochastic methods in two or three dimensions
have mainly been proposed in the context of the Boltzmann equation, see, e.g.,
Wu and Lian (2003). For coagulating particles the work Liu and Chan (2017)
comes to mind, where an aerosol in a wind channel is simulated, using a similar
splitting scheme with different constituents.

The main result of this thesis, the instationary, fully coupled stochastic-
deterministic algorithm in 3d, can be regarded as the last bridge stone between
two lines of research which developed towards each other for some time now.
From the view of the SPS, where in Patterson and Wagner (2012) spatial in-
homogeneity and advective transport had come into play in 1d, the coupled
algorithm appears as an extension to 2d and 3d, enriching the simulation by a
thorough CFD flow computation. From the CFD point of view, in an approved
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1 Introduction

PBS framework (see Suciu (2013)), the most essential part has been exchanged,
blazing a trail towards higher dimensional particles: the solution scheme for the
central population balance equation. Since the author of this thesis received his
mathematical training mostly in classical analysis and numerics of PDEs, he
has the tendency to view things from the CFD perspective. This has influenced
several decisions during the work at this thesis.

1.2 Outline

Let us give the outline of the thesis. The first three chapters are devoted to
the introduction of the constituent equations of the population balance system,
and to the particular methods which we will use for their numerical solution. In
Chapter 2 the incompressible Navier–Stokes equations get introduced. We give
their discretization in time with variants of the Crank–Nicolson method and
in space with the finite element method. We then show how linear systems of
equations of saddle point type emerge from this discretization, discuss several
options for linear solvers for that type of system, and then show some results
on computing time assessments which we contributed to. Those were published
in Ahmed et al. (2018). In the final section of Chapter 2 we introduce a clas-
sical FEM domain decompositioning method that was used for the distributed
memory parallelization of ParMooN, our CFD code. This parallelization was
mainly done by Prof. Ganesan at IISc Bangalore, and extended to different
classes of saddle point solvers by ourselves. Descriptions of the method, the
software and some numerical results were published in Ganesan et al. (2016)
and Wilbrandt et al. (2017).

The rather short Chapter 3 introduces scalar PDEs of convection-diffusion-
reaction type, their discretization and variants of the finite element method
suitable for their solution. Especially, we describe a scheme of algebraic flux
correction type for the stabilization of the convective term in Section 3.2, and
a possibility to deal with systems of reactively coupled CDRE in Section 3.3.

Chapter 4 is devoted to the introduction of stochastic particle methods for the
solution of population balance equations, especially such which are suitable for
the Smoluchowski coagulation equation. We concentrate on such methods which
built on the Marcus–Lushnikov process, a very intuitive stochastic coagulation
model. The chapter starts with a short literature overview and proceeds with
a mathematical introduction of the Marcus–Lushnikov process. We go into
great detail here, re-introducing textbook definitions and properties of Markov
processes and some of their properties necessary for their simulation. The final
Section 4.3 introduces the actual stochastic simulation algorithm we employ,
mentioning and describing several variants and improvements.

After those introductory chapters, Chapter 5 has a central position and func-
tion. Here we introduce the population balance system in full, comment on
its inherent coupling mechanisms, find a formulation that is suitable with the
stochastic-deterministic method we have in mind, and finally give the coupling
algorithm. Having formulated the central problem and method of the thesis in
that way, we can proceed towards the main part, which comprises two modeling
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1.2 Outline

and simulation projects of crystallization devices.
In Chapter 6 an axisymmetric 2d simulation of an experimental flow tube

crystallizer for aspirin is performed with the stochastic-deterministic method.
Experimental results on the original device were published by a chemical engin-
eering group of TU Graz in Eder et al. (2010). Those experimental results are
reproduced with the new coupled simulation method, using a one-dimensional
particle model and an axisymmetric 2d spatial geometry.

Chapter 7 presents a full 3d simulation. There we model and simulate a crys-
tallization experiment of potassium alum in a fluidized bed crystallizer that is
operated by the process engineering group of Prof. Sundmacher at OVGU Mag-
deburg. Although the particle description is one-dimensional still, the spatial
environment is simulated in 3d, and the flow field is slightly turbulent. This
requires additional work on both the flow field simulation and the stochastic
particle simulation, including a turbulent model and a particle wall reflection
algorithm.

In Chapter 8 we first give a conclusion on what has been achieved in this
work, and then an outlook on what lies ahead. There we list open problems,
urging questions, and several ideas how to overcome those.

11





2 Numerical Methods for the
Incompressible Navier–Stokes
Equations

In this chapter we want to show how to gain numerical solutions of time-
dependent incompressible flow problems in reasonable computing time. Incom-
pressible flows are governed by the instationary, incompressible Navier–Stokes
equations (NSE). In introductory textbooks to computational fluid dynamics,
the instationary NSE are usually to be found in one of the last chapters (John
(2016), Ferziger and Perić (2002), Sohr (2001), Temam (1977)), or not at all
(Girault and Raviart (1986), Elman et al. (2005), Galdi (2011)). They con-
tain several mathematical features, each of which introduces difficulties of its
own, and it is sensible, not at last from an educational point of view, to intro-
duce them one after the other. For that purpose, textbooks carefully lead the
reader through the Stokes equations, the Oseen equations, and the steady-state
Navier–Stokes equations. Each of these equations introduces new difficulties,
and new basic concepts are to be understood. It is out of the scope of this
thesis to give such a profound introduction to the subtleties of the Navier–
Stokes equations. Nevertheless we want to introduce methods which are used
in the following chapters. We also want to depict our own understanding of
the different concepts necessary to compute a numerical approximation to a
solution of the NSE.

Thus we pursue a pragmatic approach. Our goal is to perform direct nu-
merical simulations of the NSE in the framework of the Galerkin finite element
method. Several paths lead to that goal, and there is a particular path which
we favor. We are going to follow this path and present the necessary details,
point out other directions one could take, but do not follow them. In doing so,
we hope to give the reader an understanding of how our simulation methods
work and how they are motivated.

We start from the formulation of the full instationary NSE in Section 2.1,
leaving out their derivation but commenting on the constituents of the equa-
tions and deriving a de-dimensionalized formulation. Section 2.2 deals with
discretizations of the NSE in time and space, namely variants of a one-step
theta-scheme and the finite element method. Then in Section 2.3 we dwell on
fast solvers for the resulting linear systems and present some of our own results
on that topic. Section 2.4 finally explains a domain decompositioning method
we use for parallel computation and goes into detail on the parallelization of
selected solvers for linear saddle point problems.

13



2 Numerical methods for the incompressible Navier–Stokes equations

2.1 The instationary Navier–Stokes equations for
incompressible flows

Let us start our investigation of the instationary Navier–Stokes equations for
incompressible flows from their dimensionalized form as given in (John, 2016,
p. 22). We will formulate them in 3d only, their 2d formulation is very similar.
Let Ω ⊆ R3 be a bounded Lipschitz domain and T ∈ R+. Then the equations
look as follows:

∂

∂t
u− ν∆u+ (u · ∇)u+∇P

ρ
=

f

ρ
in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω.

(2.1)

The first equation, the momentum equation, is derived from the principle of
conservation of linear momentum. It is actually a vectorial equation, consisting
of three coupled spatial components. The second equation, usually referred to
as continuity equation, is derived from the principle of conservation of mass. We
do not give the derivation from first principles of continuum mechanics here,
but refer the reader to the first chapters of John (2016) or Ferziger and Perić
(2002).

The target unknown function in (2.1) is the fluid velocity u : [0, T ]×Ω→ R3.
The velocity is a vectorial quantity, consisting of three spatial components, u =
(u1, u2, u3). Let for now all of the velocity components have the (derived) SI unit
m/s. The scalar function P is the pressure in Pascal (Pa). The pressure is often
interpreted as a Lagrangian multiplier for the continuity equation, punishing
violation of mass conservation in the variational formulation of the NSE, see
the note Ozanski (2015) for a good explanation of that intuition at the example
of the Stokes equations.

The coefficients appearing in the momentum equation are the kinematic vis-
cosity ν [m2/s] and the fluid density ρ [kg/m3]. Both are positive constants, a
feature which reflects the incompressibility and homogeneity of the fluid. In a
compressible setting a spatial dependency would be admitted to both. On the
right-hand side, f is a volume force acting on the fluid within Ω. This might be
gravitation, result from an electro-magnetic field, or could stem from another
source which is included in the particular model.

We should note that the equations have to be closed with boundary conditions
on ∂Ω and an initial condition u0. These must be compatible with each other
in the sense of u|∂Ω → u0|∂Ω for t → 0, and the initial conditions must be
divergence-free, ∇ · u0 = 0, in some sense, see (John, 2016, p.25). To be
precise, one requires u0 ∈ Hdiv(Ω) ((John, 2016, p.334, Definition 7.6)), where

Hdiv(Ω) :=
{
v ∈ L2(Ω) : ∇ · v = 0 in Ω and v · n = 0 on ∂Ω in trace sense

}
.

(2.2)
Since the choice of boundary conditions influences the formulation of a discrete-
in-space equivalent to (2.1), we will postpone the matter to Section 2.2. Even
there we will restrict ourselves to homogeneous Dirichlet (“essential”) boundary
conditions, for the sake of brevity. In applications we will use so-called natural
boundary conditions, too, see (John, 2016, p.27, Remark 2.27).
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2.1 The instationary Navier–Stokes equations for incompressible flows

We must further note that there are different possible formulations of the
NSE in addition to (2.1). Especially for the viscous term ν∆u and the con-
vective term (u · ∇)u there exist several different re-arrangements. The form
of the convective term given in (2.1) is known as its convective form. The
other formulations are equivalent in the continuous setting, but might lead
to non-equivalent spatial discretizations, depending on whether the continuity
condition is fulfilled exactly or only in an approximate sense for the discrete
functions.

It is convenient for the simulation of the NSE to introduce a de-dimension-
alized formulation of the equations. Within this formulation the number of
free coefficients is reduced to one, and with this Reynolds number one has
a useful dimensionless quantity at hand, with which flows can be classified.
Furthermore the process of de-dimensionalizing allows to bring the solution
values into a computationally convenient regime of floating point numbers. Al-
though not difficult, we want to make the point clear and therefore show the
de-dimensionalization in detail.

To de-dimensionalize Equation (2.1) we have to choose a characteristic length
L̃ and a characteristic velocity Ũ for the expected flow. A characteristic time

T̃ then follows1 by T̃ = L̃
Ũ

. For special, well-understood problems as a flow
through a straight tube, there are widely accepted standards how to choose the
characteristic quantities of the problem. For other, less wide-spread examples,
choosing characteristic quantities is a modeling decision. It is sometimes a
good starting point to choose the orders of magnitude of the SI units used to
describe the problem setup as characteristic values. To give an example: If the
flow domain is described in millimeters, L̃ = 10−3 m is usually a good choice.
This scaling is of no consequence for the analysis, but from a computational
point of view one tries to get results scaled in the order of 1, in order to avoid
rounding precision issues. With the characteristic quantities chosen, one defines
the de-dimensionalized variables

ũ =
u

Ũ
, x̃ =

x

L̃
, and t̃ =

t

T̃
.

De-dimensionalizing the Equations (2.1) is now simply a matter of coordinate
transformation. One aims at reformulating (2.1) in terms of

ũ(t̃, x̃) :=
u(t,x)

Ũ
.

We perform the transformation term by term and index the differential operat-
ors with the variable they act upon, to keep things clear. The transformations

1The characteristic time can be chosen independently, too, which yields a second dimension-
less coefficient: The Strouhal number. Since this number is of little consequence for what
follows, we omit its derivation here.
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are
∂

∂t
u(t,x) =

∂

∂t

(
Ũ ũ(

t

T̃
,
x

L̃
)

)
=
Ũ

T̃

∂

∂t̃
ũ(t̃, x̃),

ν∆u(t,x) = ν∆xŨ ũ(
t

T̃
,
x

L̃
) = ν

Ũ

L̃2
∆x̃ũ(t̃, x̃),

(u(t,x) · ∇x)u(t,x) =
Ũ2

L̃

(
ũ(t̃, x̃) · ∇x̃

)
ũ(t̃, x̃),

∇x
P (t,x)

ρ
=

1

L̃
∇x̃

P (t̃, x̃)

ρ
.

(2.3)

As de-dimensionalized momentum equation we obtain

Ũ

T̃

∂

∂t̃
ũ(t̃, x̃)− ν Ũ

L̃2
∆x̃ũ(t̃, x̃)

+
Ũ2

L̃

(
ũ(t̃, x̃) · ∇x̃

)
ũ(t̃, x̃) +

1

L̃
∇x̃

P (t̃, x̃)

ρ
= f̃(t̃, x̃). (2.4)

The continuity equation is transformed as

0 = ∇x · u(t,x) =
1

L̃
∇x̃ · ũ(t̃, x̃).

To get rid of the coefficient in front of the non-linear convective term, we mul-
tiply the momentum equation (2.4) with L̃/Ũ2:

∂

∂t̃
ũ(t̃, x̃)− ν

L̃Ũ
∆x̃ũ(t̃, x̃)

+
(
ũ(t̃, x̃) · ∇x̃

)
ũ(t̃, x̃) +

1

Ũ2
∇x̃

P (t̃, x̃)

ρ
=

L̃

Ũ2
f̃(t̃, x̃). (2.5)

In (2.5), due to the dependent choice of the characteristic time T̃ , also the time
derivative ended up with 1 as coefficient.

The inverse of the coefficient ν/L̃Ũ of the viscous term is known as Reynolds
number,

Re :=
L̃Ũ

ν
. (2.6)

The Reynolds number is an important characteristic number of a flow, it allows
for its classification. While a low Reynolds number indicates a slow, viscous
flow, a high Reynolds number of several thousand (or higher) is an indicator of
turbulent flows.

Let us now skip the tilde superscripts in the dimensionless notation, and
re-declare ν to be the dimensionless viscosity,

ν :=
1

Re
. (2.7)
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2.1 The instationary Navier–Stokes equations for incompressible flows

If we also re-define the right-hand side to be f, and introduce the dimensionless
pressure p := P

ρŨ2
, the full NSE in their de-dimensionalized form read

∂

∂t
u− ν∆u+ (u · ∇)u+∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω.
(2.8)

These equations are the basic model of incompressible fluid dynamics. It
is worth contemplating for a moment, why they are called full Navier–Stokes
equations. First of all, equations (2.8) offer a full description of the flow of an
incompressible fluid, details up to the smallest micro-scale can be resolved. On
the other hand, the term full Navier–Stokes equations is used, because they are
considered “complete” if compared with their simplified counterparts. There
are several options of reducing the complexity of the equations. Among those
are:

� Removing the time dependency and the time derivative ∂
∂tu. This results

in the stationary Navier–Stokes equations, which do not carry time de-
pendency. The simplification is only reasonable if a stationary behavior
of the flow is to be expected due to a low velocity or high viscosity, i.e.,
for low Reynolds numbers, and, obviously, for time-independent data.

� Starting from the stationary Navier–Stokes equations, removing the non-
linear convective term (u·∇)u. This results in the well-understood, linear
Stokes equations, which model a flow driven by viscous forces only. Such
flows are also called creeping flows.

� Starting from the stationary Navier–Stokes equations, replace the nonlin-
ear convective term by a linearized version (w·∇)u, with a known wind w.
These Oseen equations have no physical meaning, but appear as auxiliary
problems in several standard methods for solving the full Navier–Stokes
equations.

� Utilizing a turbulence model. Turbulence models such as the Variational
Multiscale (VMS) Method, the Large Eddy Simulation (LES) method or
the k-ε-method offer complexity reductions which are applicable for flows
with high Reynolds numbers.

All of these are firmly established in fluid dynamics. In contrast to these ap-
proaches, Equations (2.8) form the full Navier–Stokes equations.

The full NSE have three inherent sources of difficulties, as is remarked in
(John, 2016, p.23). These difficulties are:

� the coupling of velocity and pressure,

� the nonlinearity introduced with the convective term,

� the property of convection dominance, which gets more critical the higher
the Reynolds number becomes.
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2 Numerical methods for the incompressible Navier–Stokes equations

While the third source of difficulty is mainly a numerical concern, the other two
have also fundamentally driven (and overshadowed) the analysis of the NSE,
starting in the 1970s with the works Babuška (1970/1971) and Brezzi (1974).
All three of these difficulties still govern the numerical simulation of the NSE
today, and we will refer back to them occasionally.

2.2 Discretizing the Navier–Stokes equations

Analytical solutions to the Navier–Stokes equations are rare and only known
for very special cases. Applying numerical schemes to the NSE and resorting
to computational power is so common that the term “solving” the NSE is
widely used in the sense of finding a numerical approximation to a solution.
Since computers “understand” numerical problems only in the language of linear
systems of equations, the continuous equations have to be broken down to such.
For the full time-dependent NSE this is a process of multiple stages. They
have to be discretized in time, a way to deal with their non-linearity has to
be found, and finally a discretization in space is necessary. For this process
many variants exist, which have different scopes, advantages, disadvantages
and interconnections. It is out of the scope of this thesis to give an overview,
let alone discuss several of them in detail. We will instead only explain those
discretization strategies that we have sufficient experience with. These are the
ones used in the later chapters of this thesis.

The decision on a spatial discretization method gives direction to the entire
numerical scheme and is thus the most fundamental one. Here we opt for the
finite element method (FEM), which is most successful in structural mechan-
ics, but also widely acknowledged in computational fluid dynamics. The most
classical textbook on the application of FEM to the Navier–Stokes equations
is Girault and Raviart (1986), though restricted to the stationary case. A very
recent monograph which we make heavy use of is John (2016), another recent
introductory work is Layton (2008). For an introductory work on FEM, more
focused on the basics of the method than on its applications in CFD see Braess
(1997). The main alternatives to the FEM, the finite differences and finite
volumes method are presented from an engineer’s point of view in Ferziger and
Perić (2002).

Among the advantages of the FEM one has to highlight that its numerical
analysis is highly developed. Also it permits the use of unstructured spatial
meshes and thus allows for computations on complicated geometries. It blends
perfectly with state-of-the-art meshing programs. One disadvantage, as pointed
out in (Ferziger and Perić, 2002, p.37), which but only appears with unstruc-
tured meshes, is that the resulting matrices do not have as compact a band
sparsity structure as gained with finite volume or finite difference schemes on
structured meshes. This is less desirable for solvers. We will raise the issue of
fast solvers for the resulting equation systems in Section 2.3. Another drawback
of the FEM is that it does not, in general, maintain conservation laws fulfilled by
the continuous solutions. It is a valuable rule of thumb that numerical schemes
should reflect properties of the continuous equations. For the Navier–Stokes
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2.2 Discretizing the Navier–Stokes equations

equations, which derive from two conservation laws, this requirement holds es-
pecially true, and some effort had to be put into FEM historically to make it
suitable for the NSE.

Concerning the relation between temporal and spatial discretization, we ap-
ply what is known as horizontal method of lines, i.e., we apply the temporal
discretization first and derive the spatial discretization second. From the many
methods of temporal discretization available for stiff ordinary differential equa-
tions we will only present the second order convergent, implicit Crank–Nicolson
method. This method is widely used, as it is A-stable and easy to implement.
It also gives rise to an implicit-explicit (IMEX) method termed “stabilized lin-
early extrapolated Crank–Nicolson” (CNLE(stab), Ingram (2013)), which we
want to present towards the end of the chapter. Applying CNLE(stab) reduces
the computational work connected with the third step towards linear systems,
the linearization of the convective term. If not applying CNLE(stab), it is ne-
cessary to linearize the convective term. The most widely used methods here
are Picard and Newton iteration.

All in all we are concerned with what is known as “direct numerical simu-
lation”. In comparison to other approaches, no further modeling assumptions
are made to compute a discrete solution of (2.7).

2.2.1 Temporal discretization

We start with a description of the temporal discretizations that we will use
later. To get an intuition about the origin of the full scheme presented below,
let us sketch how a semi-discretization in time is achieved. Therfore we bundle
all spatial derivatives in an (unspecified) operator M. From the point of view of
time, the momentum equation of (2.8) presents itself as a vectorial first order
ordinary differential equation:

du

dt
= M(u, p).

The most straightforward way of discretizing an ordinary differential equation
of first order is to exchange the derivative by the forward difference and choose a
one-step theta-scheme for the right-hand side. Choose thus a (for now constant)
time step length ∆t ∈ R+, let n ∈ N, and θ ∈ [0, 1]. Then, with known old
solution uk, the new solution uk+1 is given implicitly (or explicitely, if θ = 0)
by:

uk+1 − uk
∆t

= (1− θ) M(uk, pk) + θM(uk+1, pk+1). (2.9)

The most prominent values for θ are 0 (explicit Euler scheme), 1 (implicit
Euler scheme), and 0.5, which corresponds to the popular Crank–Nicolson time
stepping scheme.
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2 Numerical methods for the incompressible Navier–Stokes equations

In the common Crank–Nicolson semi-discretization of (2.8),

uk+1 − uk
∆t

=
1

2
(ν∆uk − (uk · ∇)uk + fk)

+
1

2
(ν∆uk+1 − (uk+1 · ∇)uk+1 −∇pk+1 + fk+1) ,

∇ · uk+1 = 0,

(2.10)

one notices a discrepancy. Though the spatial part of the equation depends on
the pressure, besides the velocity, only the pressure of the current time step,
pk+1, appears in (2.11). The pressure of the previous time step pk is missing
from the formulation.2

The formulation (2.10) actually arises by applying the “recipe” (2.9) only
with respect to the velocity u and then supplementing the pressure pk+1 as
Lagrangian multiplier for the continuity equation. As is noted in Rang (2008),
this strategy is due to the lack of an initial pressure p0, which would close
the scheme. The disadvantage of (2.10) is that the pressure pk+1 is now actu-
ally an approximation to p(tk + 1

2∆t), i.e., to p at the wrong time. In Rang
(2008) a pressure corrected Crank–Nicolson scheme is investigated, in which p0

is included, which does but not grant any numerical advantages. Therefore we
might as well stick with (2.10).

Multiplying (2.10) with ∆t and reordering, we get at each time step k + 1 a
quasi-stationary Navier–Stokes problem:

uk+1 −
∆t

2
ν∆uk+1+

∆t

2
(uk+1 · ∇)uk+1 + ∆t∇pk+1

= uk +
∆t

2
(ν∆uk − (uk · ∇)uk + fk + fk+1)

∆t∇ · uk+1 = 0.

(2.11)

The continuity equation has been multiplied with ∆t, too, which makes the
computations easier, as we will see in Section 2.3. The numerical analysis also
benefits from this transformation.

Since it is closely connected to the time discretization, we consider this the
right place to present solution methods for the nonlinearity of (2.11). The most
common methods are the Picard and Newton iteration, see John (2006) for a
performance comparison of both.

For the Picard iteration, at time step k + 1, the convective term in (2.11) is
approximated as

(uk+1 · ∇)uk+1 ≈ (uk · ∇)uk+1.

The solution u0
k+1 of the resulting Oseen equations is then put as “wind” into

the convective term again, giving rise to an iterative solution procedure, where
at step n+ 1 the actual convective term is replaced as

(un+1
k+1 · ∇)un+1

k+1 ≈ (unk · ∇)un+1
k+1 .

2As we remember from Section 2.1, the coupling of velocity and pressure was the first of the
stated inherent difficulties of the NSE.
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2.2 Discretizing the Navier–Stokes equations

This iteration is conducted until a sufficiently small residual is reached.
The Newton iteration proceeds in the same spirit, yet there the convective

term at step n+ 1 is approximated as

(un+1
k+1 · ∇)un+1

k+1 ≈ −(unk+1 · ∇)unk+1 + (un+1
k+1 · ∇)unk+1 + (unk+1 · ∇)un+1

k+1 .

In John (2006) it is shown that for a 3d reference problem, the Picard iteration
is more efficient in terms of computational time than the Newton method, if
combined with a multigrid preconditioned iterative solver (see Section 2.3 for a
description of this kind of solver). A different picture is given by (John, 2016,
p.371, Example 7.57), where the Newton iteration combined with an iterative
solver is clearly faster than the Picard iteration. In general, the Picard iteration
has a larger convergence radius and is thus less dependent on the choice of the
initial iterate (John, 2016, p.319, Example 6.47).

Picard and Newton iteration can be applied to steady-state problems in the
same spirit, but there one has to come up with an a priori initial guess. For
time-dependent problems there exist very appealing approaches to combine time
stepping and linearization of the convective term into one. These approaches
are known as IMEX (implicit-explicit) schemes. We have particularly good
experience with the CNLE(stab) approach from Ingram (2013) (stable linearly
extrapolated Crank–Nicolson scheme), as we applied it for flow computations
published in Wiedmeyer et al. (2017).

The basic idea of IMEX schemes is to bypass the nonlinear iteration in each
time step by inserting a linear extrapolation from the former time steps as wind
into both convective terms. In the CNLE(stab) of Ingram (2013) the convective
term (uk+1 · ∇)uk+1 on the left-hand side of Equation 2.11 is replaced by

((2uk − uk−1) · ∇)uk+1

and the convective term (uk · ∇)uk on the right-hand side by

((2uk−1 − uk−2) · ∇)uk.

In this way, one obtains a linear scheme whose stability has been proven without
a limitation on the time step size in Ingram (2013). Also its implementation
into an existing finite element code is rather easy. As a last remark, note that
in order to perform an iteration of the CNLE(stab) scheme, two former velocity
solutions must be known. At the first step, where only one former solution is
known (i.e., the initial condition u0) this is not the case, and therefore u1 is
best gained using one of the two classical schemes.

2.2.2 Spatial discretization with the finite element method

The horizontal method of lines proceeds with defining a spatial discretization
of the time-discrete problem. We aim at the Galerkin finite element method,
and will therefore have to introduce function spaces (discrete and continuous)
and a weak formulation of the time discretized NSE.

Preliminarily, let us restate (2.11) in a more convenient fashion. Let τ := ∆t/2

and subsume the right-hand side of the momentum equation at time step k as
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2 Numerical methods for the incompressible Navier–Stokes equations

bk. We denote the wind in the convective term as wk. Note that bk and wk take
different forms depending on whether we use the Crank–Nicolson plus Picard
scheme or the CNLE(stab). The linearized problem3 at time step k can then
be stated as

uk − τν∆uk + τ(wk · ∇)uk + 2τ∇pk = bk,

2τ∇ · uk = 0.
(2.12)

The Galerkin finite element method introduces discrete function spaces, in
which a discretized version of (2.12) can be stated.

We have reached a point in our discussion, where we cannot ignore boundary
and initial conditions any longer. It is convenient for the presentation (and for
the analysis, but not so much for the computation) to allow only homogeneous
Dirichlet boundary conditions. For all k ∈ N∪{0} we impose upon the velocity
the condition

uk|∂Ω ≡ 0.

Dirichlet conditions such as this are also referred to as “essential” boundary
conditions in PDE literature, since they must be included into the choice of
solution spaces and cannot simply be absorbed in the weak formulation of the
equations.

For the time-discretized version of the instationary NSE, the continuous func-
tion spaces

V := H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
for each component of the velocity and

Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q(x)dx = 0

}
for the pressure offer an appropriate setting (John, 2016, pp.45-46). Both spaces
are Hilbert spaces, in the following we will only use the scalar product of L2

0,
and will denote it (·, ·). The dual pairing of V ′ and V is denoted with angular
brackets, < ·, · >. The vectorial versions V 3 and (V 3)′ are written as V and V′,
for their dual pairing we use the same angular brackets. Furthermore, the right-
hand side f must have been chosen in such a way that bk can be interpreted as
a continuous functional on V, i.e., bk ∈ V′.

The weak or variational formulation of equations (2.12) reads as follows.

Problem 2.2.1. Time-discretized and linearized Navier–Stokes equa-
tions. Given wk ∈ V with ∇ · wk = 0 and bk ∈ V′, find (uk, pk) ∈ (V, Q),
which solve the equation system

(uk,v) + τν(∇uk,∇v) + τ((wk · ∇)uk,v)− 2τ(∇ · v, pk) =< bk,v >

−2τ(∇ · uk, q) = 0

for all test functions (v, q) ∈ V×Q.

3In the case Crank–Nicolson plus Picard, a linear problem of that kind has to be solved
several times per time step. It would be closer to the reality to speak about the linearized
problems there.
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2.2 Discretizing the Navier–Stokes equations

The common procedure of finite element methods is to formulate Prob-
lem 2.2.1 in discrete function spaces instead of the continuous ones, which
then leads to an algebraic system of linear equations, as we demonstrate in
Section 2.3. The distinct feature of the conforming Galerkin method, which
we show here, is that all test and ansatz functions belong to the same discrete
space, which itself is a subspace of the continuous space.

Let thus Vh ⊆ V and Qh ⊆ Q be finite-dimensional subspaces of the con-
tinuous spaces. Those conformity conditions ensure that the formulation of
Problem 2.2.1 remains valid even if one replaces the continuous by the discrete
ansatz and test function spaces.

To introduce a notion of finite elements, we slightly reformulate a thorough
definition which we find useful, given by (Braess, 1997, p.72).

Definition 2.2.2. A finite element is a triple (T,Π,Σ) with the following prop-
erties:

(i) T is a closed polyhedron in Rd.

(ii) Π is a s-dimensional subspace of C(T ) with s ∈ N, where C(T ) is the
space of continuous functions from T to R. Functions forming a basis of
C(T ) are called shape functions.

(iii) Σ is a set of s linearly independent functionals on Π. From the linear
independence of Σ follows that each p ∈ Π is uniquely determined by the
s values (σ(p) : σ ∈ Σ).

In this definition, s is the number of degrees of freedom. We will come back
to that term in Section 2.2.3.

The crucial idea of the finite element method is to build up the spaces in
the discrete formulation of a PDE from finite elements as given in the above
Definition 2.2.2. To that aim, one demands a decomposition or mesh of the
domain Ω into polyhedra T . The mesh T must fulfill

Ω =
⋃
T∈T

T

and the polyhedra T only intersect on sets of measure zero (vertices, edges,
faces). A finite element space is gained by declaring a finite element on each
T ∈ T and ”patching“ the elementwise function spaces ΠT together to form a
space of real-valued functions on the whole domain Ω. This “patching” usually
proceeds with the aim of obtaining functions of a certain global regularity, e.g.,
C(Ω) or C1(Ω).

There are many concepts to obtain finite element spaces with that strategy,
depending on the choices of T , Π, and Σ, and we will not dwell upon the
matter further at this point. Let us just note that the most commonly used
finite element spaces restrict themselves to using just one class of geometric
shapes in T (e.g. triangles in 2d or hexahedra in 3d) and sets Π, and Σ whose
elements only differ by affine transformation. Such finite element spaces are
called affine families (Braess, 1997, pp.71-72). Affine families allow for a very
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far developed analysis of approximation and convergence properties, the basis
of which is the Bramble–Hilbert lemma (Braess, 1997, p.76). An affine family
possesses a reference element (Tref,Πref,Σref) - the elements of the family are
gained from the reference element via affine transformation.

A special trait of the Galerkin FEM for the Navier–Stokes equations is that,
due to the coupled nature of the equations, two finite element spaces must be
chosen for their spatial discretization. One is for the components of the velocity
and one is for the pressure function. It has been found in the 1970s (Babuška
(1970/1971), Brezzi (1974)) that these must be chosen in accordance to each
other. The spaces must be connected by the discrete inf-sup condition (John,
2016, p.55):

Definition 2.2.3. The discrete inf-sup condition for conforming finite
element spaces. Let Vh ⊆ V and Qh ⊆ Q be the conforming finite element
spaces used for the discretization of velocity and pressure, respectively. Further
denote by b : Vh × Qh → R, b(vh, qh) = −(∇ · vh, qh) the weak form of
the divergence operator. Then the pair (Vh, Qh) is said to fulfill the discrete
inf-sup condition, if there exists β > 0 such that

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖‖qh‖
≥ β. (2.13)

This condition is a property of the divergence operator, controlled by its
domain. In a non-conforming setting one has to replace the definition of b by a
discrete sum over the elements of T . For applications it is important, that the
parameter β is independent of the grid size, since 1

β enters the finite element

error estimation, and a behavior βh
h→0−→ 0 for the grid-size parameter h slows

down or rules out the convergence of the method (John, 2016, p.60).
The condition (2.13) can be regarded as a generalization of a coercitivity

condition for a bilinear operator, which is defined on the Cartesian product of
two different spaces – here Vh and Qh. It is a crucial ingredient of the well-
posedness of the discrete Problem 2.2.1 with V and Q replaced by their finite
element space approximations Vh and Qh.

Lots of effort has been put into showing inf-sup stability of different pairs
of finite elements which are used for the NSE, see (John, 2016, pp.73). How
extremely important this theoretical work is for practical computations is il-
lustrated in (Braess, 1997, pp.147) at the instance of the historically favored
Q1−P0 element pair. This pair violates the discrete inf-sup condition. In prac-
tice, its instable behavior had been observed frequently, but only the finding
of the discrete inf-sup condition provided an explanation of these instabilities.
Furthermore, in (Elman et al., 2005, p.285) it is stated how important stable ap-
proximations are for the convergence of iterative solvers. See also Section 2.3.2
on the matter of fast solvers.

2.2.3 Remarks on finite element terminology

One has to admit that often in the literature some terms are used which have
lost their original sharpness. The most prominent ones are, in our observation,
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element and degree of freedom. The term element is precisely given in Defini-
tion 2.2.2. To be strict, even that definition does not yet cover all entities called
finite elements, as for example geometrical shapes with curved boundaries are
not contained. It is common to use the term element as well for parts of the
entities defined in Definition 2.2.2, as for those assembled from them. It is used
in the literature for

� just the geometrical entity T ,

� the reference element of an affine family,

� the entire finite element space,

and, in the case of the Navier–Stokes equations with their tightly coupled ve-
locity and pressure discretization, for

� a pair of finite element spaces used for the discretization of the Navier–
Stokes equation.

Even fuzzier is the term degree of freedom (d.o.f.). In its original meaning,
it denotes the parameters left in a certain physical or mathematical model
to fit it to an actual case of application. This basically transfers to a finite
element approximation. Given a domain Ω ⊂ Rd with mesh T and a N -
dimensional finite element space Vh with basis (ϕh,k)k=1,..,N , each finite element
function vh ∈ Vh is determined uniquely by its coefficients (αk)k=1,..,N . Each
such coefficient, before determined, is a degree of freedom. One could put it
like this: The possibility to make a choice of one coefficient of a finite element
function is one degree of freedom. Usually there is a canonical way of choosing
a basis for Vh, which is extending the basis functions of the single elements
to the whole space. It is common to refer to each of the basis functions as
a degree of freedom. If the basis functions can be identified with points in Ω
or the reference element, it is common to call this point a degree of freedom,
too. This occurs when finite elements whose interpolation conditions Σ consist
of point evaluations of functions or their derivatives are used to build up Vh.
Finally, if the degrees of freedom are numbered and a matrix is put up as
described in Section 2.3.1, the indices of that matrix’ rows and columns are
referred to as degrees of freedom, too. We dwell so deeply on these matters,
because the terms will accompany us throughout this thesis and will appear
with all meanings explained here, usually without explicitely indicating with
which exactly.

2.3 Linear saddle point problems and solvers

In this section we will show how a finite element approximation to Problem 2.2.1
leads to a system of linear algebraic equations, and how to solve such a system
efficiently. We will explain the characteristics and difficulties of saddle point
problems and present some of our own results on a comparison of linear solvers
applied to them.
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2.3.1 Deriving a discrete saddle point problem

As in the preceding section, let Vh and Qh be finite element spaces for the
velocity components and the pressure. Let the spaces fulfill the discrete inf-
sup condition (2.13). Both spaces come with a set of natural basis vectors,
depending on the particular choice of finite elements. We write

Vh =
⊕

i=1,...,N

ϕi Qh =
⊕

i=1,...,M

ψi. (2.14)

Here N,M ∈ N are the vector space dimensions of Vh and Qh. A possible
discrete velocity solution function at time step k, uk,h ∈ Vh, has a unique
representation as

uk,h =

(
N∑
i=1

u
(1)
i ϕi,

N∑
i=1

u
(2)
i ϕi,

N∑
i=1

u
(3)
i ϕi

)
,

and we collect the coefficients as

ū :=
(
u(1), u(2), u(3)

)
∈ R3N .

The indices k and h are deliberately left out in the above definition, as we will
not need them from here.

In the same spirit, the right-hand side bk,h of the discrete momentum equation
is uniquely determined by a vector of real coefficients,

b̄ =
(
b(1), b(2), b(3)

)
∈ R3N .

For the pressure p we get the representation

pk,h =
M∑
i=1

piψi, (2.15)

with the coefficients vector

p̄ = (pi)i=1,...,M ∈ RM . (2.16)

Thus, a solution (u, p) of the fully discretized Problem 2.2.1 is uniquely de-
termined by the 3N +M unknown real coefficients (ū, p̄).

In order to gain the same number of linear equations from Problem 2.2.1, one
withdraws to a finite set of test functions. As the momentum equation is linear
in the test function v and the continuity equation linear in the test function
q, any pair (u, p) of ansatz functions that solves momentum and continuity
equation for all basis functions of Vh and Qh will solve the equations for any
pair of functions from (Vh × Qh). As there are 3N basis functions of Vh and
M basis functions of Qh, this yields the required number of linear equations.

We will now illustrate how the matrix that represents the linear system is
derived. We will have to keep in mind that the actual discrete space we are
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dealing with for the coupled problem is the Cartesian product Vh×Vh×Vh×Qh.
Let us therefore fix some notation first.

The building blocks of the discrete weak formulation are the bases of Vh and
Qh, as in (2.14). With Vh let us denote the Cartesian product Vh × Vh × Vh.
A basis of this space is formed by elements of the structure

ϕ
(1)
i =

ϕi0
0

 , ϕ
(2)
i =

 0
ϕi
0

 , and ϕ
(3)
i =

 0
0
ϕi

 ,

Equipped with this notation, a basis of Vh ×Qh is formed by{(
ϕ

(d)
i

0

)
,

(
0
ψj

)}
d = 1, 2, 3, i = 1, ..., N, j = 1, ...,M. (2.17)

The matrix A gained by inserting the elements of this basis into the weak
formulation exhibits a 4-by-4 block structure. The system of equations will
have a block structure like

A11 A12 A13 BT
1

A21 A22 A23 BT
2

A31 A32 A33 BT
3

B1 B2 B3 C



u1

u2

u3

p

 =


b1
b2
b3
0

 . (2.18)

The A blocks stand for the coupling of velocity test- and ansatz functions, the
B blocks for the coupling of pressure and velocity, the C block for the coupling
of pressure and pressure4 – in our case it is just 0. The transposed relation
between the B-blocks is the discrete counterpart of the adjoint relation of −∇·
(divergence) and ∇ operator, see e.g. (Braess, 1997, p.143).

Next, we will demonstrate for the convective term, how the entries of the
matrices are derived. Testing the convective term in the momentum equation

of Equation (2.2.1) with a basis test function of the type

(
ϕ

(d)
j

0

)
, fixed d and

j, gives the expression (we omit the factor −τ)(
(w · ∇u),

(
ϕ

(d)
j

0

))
. (2.19)

Writing it more detailed and developing the unknown u into the basis, we get
from this

(2.19) =

(w1
∂

∂x1
+ w2

∂

∂x2
+ w3

∂

∂x3

)
∑N

i=1 u
(1)
i ϕi∑N

i=1 u
(2)
i ϕi∑N

i=1 u
(3)
i ϕi

 ,

(
ϕ

(d)
j

0

) .

4The pressure-pressure coupling is not present for our chosen discretization, but is apparent
for certain stabilizing discretization, as, e.g., PSPG.
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Evaluating the scalar product yields that terms stemming from the d-th com-
ponent are non-zero. Thus we can advance

(2.19) =
N∑
i=1

u
(d)
i

((
3∑
e=1

we
∂

∂xe
ϕi

)
, ϕj

)
, (2.20)

where the scalar product is from L2(Ω):

(2.19) =

N∑
i=1

(∫
Ω

3∑
e=1

(
we

∂

∂xe
ϕiϕj

)
dx

)
u

(d)
i . (2.21)

From this expression we can see that the convective term is responsible for
filling the blocks A11, A22 and A33 of A with non-symmetric (in i and j) integ-
ral expressions

∫
Ω

∑3
e=1(we

∂
∂xe

ϕiϕj) dx. In assembling A efficiently, integral
expressions of this type are evaluated using quadrature formulas elementwise.
Since for most finite elements the basis functions are elementwise polynomial,
that evaluation is exact.

Let us make some further remarks from a computational point of view. From
that perspective, the Navier–Stokes equations contain “good” and “bad” terms.
The “good” terms are those that are due to time discretization and the viscous
term. Both contribute symmetrically to the diagonal A blocks, which is be-
neficial for many solvers. From the convective term comes a non-symmetric
contribution, which is less favorable. The off-diagonal A blocks would only be
filled if we had chosen a different form of the convective term, see, e.g., (John,
2016, pp.285). Finally, note that all blocks are only sparsely filled with entries.
This is due to the local character of the integral expressions, stemming from
the localization of FE basis functions. The sparsity of the system and its saddle
point structure are two features which sparked a lot of research effort of effective
solvers for such linear systems. In the following section, we take a closer look
at a selection of such solvers.

2.3.2 Solvers for saddle point problems

In this section we want to present some strategies for solving linear systems of
the saddle point type (2.18), and compare their efficiency in different areas of
application. This chapter contains material which has been published in Ahmed
et al. (2018).

We will start from the same system as we do in Ahmed et al. (2018). Let us
recast System (2.18) as

A :=

(
A BT

B 0

)(
ū
p̄

)
=

(
b̄
0

)
, (2.22)

which we want to call the generic discrete saddle point problem. The zero
block is due to using inf-sup stable finite element spaces, which means that no
stabilizing pressure-pressure coupling has to be applied.

In (Elman et al., 2005, p.285) it is stated that the distinct feature of Sys-
tem (2.22) is its indefiniteness. This indefiniteness is fundamental, meaning
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that it does neither vanish nor degrade when refining the mesh. As with many
features of the NSE, this is already encountered when dealing with the Stokes
equations. The Navier–Stokes equations bring as further difficulty the non-
symmetry of the A block and therefore the entire matrix, which is caused by
the convective term (see Section 2.3.1). These two features – indefiniteness and
non-symmetry, disable the use of several standard solvers for linear systems.
Furthermore, both Stokes and Navier–Stokes equation cause the lower right
zero block when spatially discretized with inf-sup stable elements. This causes
zero entries on the diagonal, meaning that further standard preconditioners,
like the Jacobi or Gauss-Seidel iteration, cannot be applied. It is therefore ne-
cessary to look out for specialized solver alternatives. It is especially worthwhile
to find fast specialized solvers, because in a CFD finite element simulation the
solving of the linear system of equations is often, especially in 3d problems, the
most time consuming part.

In general, solvers for linear systems of equations can be grouped into the
two main classes of direct and iterative methods. Direct methods compute an
LU factorization of A , and thus transform the initial system to a system with
a triangular matrix, which can be solved easily. Iterative methods, on the other
hand, use an initial guess for a solution and define an iterative procedure, in
which new solution approximations are computed. A broad class of iterative
solvers are Krylov subspace methods. In a Krylov subspace method a series of
stacked subspaces of the solution space is created iteratively, and the solution
is searched within those subspaces.

A definite advantage of direct solvers is that the factorization of A can be
stored and reused to solve the same system with different right-hand sides again
and again. An advantage of iterative methods is that one can fix an accuracy
up to which the system should be solved, e.g., in terms of the residual, and
stop the procedure when that accuracy is reached. It is a characteristic feature
of iterative solvers that they bring up sub-systems and subproblems, to whose
solution one can again choose among direct and iterative solvers, and exploit
either of the two stated advantages, as we shall see soon.

Roughly speaking, direct solvers perform best for small and medium sized
problems. The larger the problem is, the more likely it is that an iterative
solver will be the faster alternative.5

As for iterative solvers, in order to develop their full potential, it is necessary
to provide the solver with additional information about the problem to be
solved. This process is known as preconditioning, we will briefly explain the
general idea. Let us write System (2.22) in shorthand as

A x̄ = b̄. (2.23)

Then one way to “inform” the solver about the problem, consists in multiplying
equation (2.23) from the left with a fitting square matrix P−1, thus letting the

5What “small” and “medium sized” mean here is totally problem or problem class dependent.
It is just a reliable perception that at some point iterative solvers become more efficient,
due to their better asymptotic scaling.
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solver deal with

P−1A x̄ = P−1b̄

instead of the original problem. This approach is denoted by left precondition-
ing. In the other strategy, right preconditioning, one inserts P−1P between A
and x̄, and then solves the two-stage problem

A P−1ȳ = b̄,

Px̄ = ȳ.

If the preconditioner P is chosen appropriately, a clustering of the eigenvalues
is obtained, which is favorable for Krylov subspace methods (Elman et al., 2005,
p.177), leading to faster convergence.

In approximating A −1 the inverse of the preconditioner carries information
about the system to the solver. A “perfectly informed” preconditioner would
be the matrix A itself. As the calculation of A −1 is in general by far too
costly, and would render the Krylov method wrapped around it utterly useless,
P−1 must instead be constructed by cleverly exploiting the structure of the
underlying problem. It has to fulfill two opposing demands: P should combine
a good approximation to A with a feasible computational effort when applying
its inverse.

To do both of these demands justice, it is necessary to develop precondition-
ers that are specifically tailored to a certain class of problems and are able to
exploit their distinct properties. In the case of saddle point problems like (2.22),
which stem from the Navier–Stokes equations, especially the natural block-wise
composition of the system matrix and its origin from a finite element discretiz-
ation can be made beneficial.

In our work Ahmed et al. (2018) we compared two such tailored precondition-
ers. Those are the Least Squares Commutator preconditioner (LSC) of Elman
et al. (2007); Elman and Tuminaro (2009) and the coupled geometric multigrid
preconditioner with specialized smoothers. Those preconditioners stand rep-
resentative for two classes of NSE preconditioners, which one might call split
and coupled methods. Split methods like the LSC exploit the saddle point
structure of A by treating the block rows belonging to momentum and con-
tinuity equation separately. Coupled methods treat the entire matrix at once.
In Ahmed et al. (2018) different variants and setups of both LSC and geometric
multigrid were assessed in terms of computing time, applied to different ver-
sions of a CFD benchmark problem. Complementary, the wide-spread package
UMFPACK was included in the assessment, as a representative of the direct
solvers. Direct solvers are often used as “black box” solvers, therefore it was
interesting to compare it with more specialized methods.

All solvers were applied to a well established benchmark problem known
as flow around cylinder example, see Turek and Schäfer (1996), where it was
introduced. In this example a stationary or weakly time-dependent flow of a
viscous incompressible fluid through a rectangular channel, streaming around
a cylindrical obstacle has to be computed. There is a 3d and a 2d version of
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this example, where the 2d version features a plan view of the channel. See
Figure 2.1 for pictures of our a priori meshes for the problem. Those should
also convey an idea of the problem setup. For the time-dependent problem the
solution possesses a prominent flow structure, known as Kármán vortex street,
see Figure 2.2.

Both problems, 2d and 3d, possess a stationary and an instationary version
that are accepted as benchmark problems. In our comparison we regarded all
four combinations. In the instationary case we solved the full time-dependent
Navier–Stokes equations (2.8), using basically the same spatial and temporal
discretization techniques as described in Section 2.2. In the stationary case,
their stationary analogon was solved.

In all problem settings, four different finite element discretizations with inf-
sup stable finite element pairs were used. The idea was to try out one approx-
imation with a continuous pressure approximation and one with a discontinuous
first order pressure approximation on both a triangular (tetrahedral) and quad-
rilateral (hexahedral) grid. The velocity spaces were then chosen accordingly,
such as to guarantee inf-sup stability. The problem sizes were varied by gradu-
ally refining the a priori grids uniformly. This allowed for a variation of the
number of degrees of freedom and thus illustrated the asymptotic behavior of
the different solving strategies and offered some insight on application areas.

Let us in the following describe the two preconditioning strategies, which
were in the focus of the comparison in Ahmed et al. (2018). Both were used as
preconditioners for the FGMRES method, which is a popular iterative method
and belongs to the class of Krylov subspace methods. It was introduced in
Saad (1993). FGMRES can be used for any type of matrix, regardless of its
symmetry (other than, e.g., the MINRES method) or even its definiteness (as,
e.g., the CG method), which makes it suitable for the indefinite, non-symmetric
Problem (2.22). Its advantage over its predecessor GMRES is that it can be
used with a different preconditioner in every iteration. This enables the use of
iterative methods for subproblems of the preconditioner, from which both LSC
and multigrid preconditioning benefit. The drawback of FGMRES is that it
needs double the amount of memory, compared to GMRES.

After the description of the preconditioning strategies, we will give a discus-
sion of some of the results of Ahmed et al. (2018).

Least-squares commutator preconditioner The LSC preconditioner is de-
rived from the LU decomposition of the matrix A and the approximation of
the pressure Schur complement by keeping a certain operator commutator error
small. A complete and self-contained introduction can be found in the textbook
Elman et al. (2005), here we give our own reformulation of that introduction.

Let us start with a formal block-wise Gaussian elimination of A from (2.22).
This gives the LU decomposition

A =

(
I 0

BA−1 I

)(
A BT

0 −BA−1BT

)
= LU. (2.24)
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Figure 2.1: Initial grids of the flow around cylinder example. 2d triangles (upper
left), 2d quadrilaterals (upper right), 3d tetrahedra (lower left), and
3d hexahedra (lower right).

Figure 2.2: Flow around cylinder example, 2d instationary, solution snapshot.
At intermediate Reynolds number a characteristic flow pattern, the
Kármán vortex street, develops behind the cylindric obstacle.

The lower right matrix block is the Schur complement S of A ,

S := −BA−1BT .

Since from (2.24) it follows that A U−1 = L, which has perfectly clustered
eigenvalues, the upper triangular factor U is a good starting point for building
preconditioners. Its drawback is the appearance of the Schur complement,
which is not explicitly available and even if this would be the case, it is a dense
matrix, since A−1 is not sparse in general. The difficulty to construct a better
computable approximation to the Schur complement is addressed by the LSC
preconditioner.

The basic idea of the LSC preconditioner is to look for a regular matrix Ap ∈
Rm×m acting on (coefficients of) the pressure space that solves the equation

BTAp = ABT (2.25)

and thus gives, by transforming Equation (2.25) equivalently and multiplying
with B from the left,

−BA−1BT = −BBTA−1
p . (2.26)

The right-hand side of Equation (2.26) is a more convenient form of the Schur
complement. For this form, applying U as a preconditioner requires approxim-
ating the action of

(
−BBTA−1

p

)−1
, which is more easily done now since Ap is

known and BBT is positive definite and symmetric.
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The remaining difficulty is that BT is a full rank rectangular matrix and so
Equation (2.25) is in general an overdetermined system and can only be solved
in a minimizing sense

min
Ap

∥∥ABT −BTAp
∥∥ , (2.27)

with some matrix norm ‖ · ‖ that is to be defined.
One proceeds by recollecting the origin of the matrices in Equation (2.27) as

discrete counterparts of the underlying continuous operators from the Navier–
Stokes equations. In fact the matrix BT stems from the finite element discret-
ization of the gradient operator and the matrix A from a convection-diffusion
operator acting on the velocity space,

−ν∆ + um · ∇.

The unknown matrix Ap is further assumed to originate from the discretization
of a hypothetical convection-diffusion operator acting on the pressure space.
Problem (2.27) can then be interpreted as minimizing the discrete commutation
error of velocity and pressure convection-diffusion operator with the gradient
operator. To foster this interpretation, one has to account for the concrete
choice of the finite element spaces and to introduce appropriate weights by
multiplying with the inverses of the velocity and pressure mass matrices Q ∈
Rn×n and P ∈ Rm×m.

One now replaces (2.27) by the minimizing problem

min
Ap

∥∥Q−1AQ−1BT −Q−1BTP−1Ap
∥∥ . (2.28)

Observe that by multiplication from the left with BA−1Q and from the right
with A−1

p P the right term inside the norm gives rise to a formula for the ap-
proximation of the Schur complement S:

S = −BA−1BT ≈ −BQ−1BTA−1
p P =: SLSC. (2.29)

The last ingredient of the LSC is to specify the minimization problem (2.28)
as minimizing columnwise in a Q-weighted vector norm

‖v‖Q = 〈Qv, v〉
1
2 .

This choice leads to the eponymous least squares problems

min
[ap]j

∥∥[Q−1AQ−1BT ]j −Q−1BTP−1[ap]j
∥∥
Q
, j = 1, . . . ,m,

where the unknowns [ap]j are the columns of Ap. The first order optimality
conditions read

P−1BQ−1BTP−1 [ap]j =
[
P−1BQ−1AQ−1BT

]
j
, ∀j ∈ {1, . . . ,m}.

In this way, one obtains the representation

Ap = P
(
BQ−1BT

)−1 (
BQ−1AQ−1BT

)
. (2.30)
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The LSC Schur complement is finally obtained by replacingQ−1 with the inverse
of the diagonal of Q, D−1

Q := (diag(Q))−1 in (2.30) and inserting the arising
formula into (2.29) :

SLSC = −
(
BD−1

Q BT
)(

BD−1
Q AD−1

Q BT
)−1 (

BD−1
Q BT

)
. (2.31)

This expression approximates the lower right block in (2.24), i.e., the Schur
complement S.

One step of application of the LSC is given in pseudocode in Algorithm 1.
Note that in the application of the preconditioner, two pressure Poisson type
problems have to be solved (Steps 2.1 and 2.3) by inverting the first and last
term in parentheses in Equation (2.31). Additionally, a sub-system for the
velocity has to be solved (Step 3.2), inverting the upper left matrix in (2.24).
For these subproblems, one can exploit the aforementioned advantages of each
solver class.

For the pressure subproblem we used a direct solver, which is especially useful
in the time dependent case. The system is relatively small, compared to the
entire system, and its entries do not depend on time. Therefore it is possible
to re-use the once computed inverse of the system in all time steps, which gives
a great efficiency advantage over iterative methods. For the solving of the ve-
locity subsystem, the authors of Elman et al. (2005) distinguish between an
“ideal” and an “iterative” version of the LSC preconditioner (and its prede-
cessor, the PCD preconditioner). For the ideal version one uses a direct solver
for the velocity subproblem, which gives fast convergence of the outer itera-
tion, but is comparably slow, since the velocity subproblem is hardly smaller
than the entire problem. The iterative version is way more efficient. Here, the
velocity subproblem is solved with an iterative routine which is suitable for non-
symmetric matrices. In (Elman et al., 2005, pp.359) the authors recommend
to use a geometric or algebraic multigrid method for the velocity subproblem.
With that or any other suitable iterative method, it is sufficient to solve the
subproblem with relatively low accuracy only or perform just a fixed number of
iterations and nevertheless experience fast convergence of the outer iteration.
The Algorithm 1 must then receive an initial solution (u0, p0) as additional
input.

Finally, note that the use of iterative methods for a subproblem, if not ap-
plied with a fixed number of iterations, necessitates an outer iterative method
which allows for flexible preconditioning – as does the already mentioned Krylov
subspace method FGMRES.

Geometric multigrid methods The other class of preconditioners which we
assessed in Ahmed et al. (2018) were geometric multigrid methods. Originally
developed as a solver framework, they showed to develop their full potential
when used as preconditioners. Multigrid methods were extraordinarily popular
during the 1990s and early 2000s, a standard monography is Hackbusch (2003).
The methods show asymptotically optimal behavior and are well applicable to
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Algorithm 1 Least Squares Commutator Preconditioner

Input: A =

(
A BT

B 0

)
, b =

(
bu
bp

)
, velocity mass matrix Mv

Output: Approximate solution xLSC =

(
u
p

)
to A x = b

Part 1 Set up Poisson matrix P
1.1 : D−1

v ← (diagMv)
−1

1.2 : P ←
(
BD−1

v BT
)

Part 2 Schur complement subsystem
2.1 : Solve Px = bp and update b∗p ← x . First Poisson solve

2.2 : b∗p ← −BD−1
v AD−1

v BT b∗p
2.3 : Solve Px = b∗p and update p← x . Second Poisson solve

Part 3 Velocity subsystem
3.1 : bu,tmp ← bu −BT p
3.2 : Solve Ax = bu,tmp and update u← x . Velocity solve

return (u, p)

academic problems as the flow around cylinder example, where a hierarchy of
spatial grids is easily obtained.

Given such a hierarchy of grids, the general idea of multigrid methods is to
damp high frequency error contributions on fine grids and damp the low fre-
quency error contributions on coarse grids, where they appear as high frequency
contributions. This grid-wise damping is achieved by applying one or more steps
of another iterative method, a process known as smoothing. The choice of that
iterative method, the smoother, is key to the efficiency of the method for a
certain problem or problem class. On the coarsest grid, where the problem
is typically small, often a direct solver can be applied. Passing information
between the grids is performed by grid transfer operators, e.g., L2−projection.
As we listed in (Ahmed et al., 2018, p.496), in order to define a certain geometric
multigrid method, one has to specify the following constituents:

� the grid hierarchy,

� the grid transfer operators, i.e., restriction and prolongation,

� the grid cycle, i.e., the sequence in which the levels of the grid hierarchy
are addressed,

� the smoother, i.e., an approximate solver on levels which are not the
coarsest one,

� the solver on the coarsest grid.

In Ahmed et al. (2018), we made use of a grid hierarchy gained by a successive
uniform refinement of the initial grid. As grid transfer operators we used L2-
projections that are described in Schieweck (2000). The employed grid cycle
was the F-cycle, which is a hybrid between the standard V- (one recursive
call) and W-cycle (two recursive calls). As smoothers we used several versions
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of a block Gauss–Seidel method known as Vanka smoother, see Vanka (1986)
for their original introduction. Smoothers of that class are, to our experience,
the most efficient smoother option for coupled multigrid preconditioning of the
Navier–Stokes equations.

Results of the assessment and discussion In this paragraph we want to
briefly present and discuss the most important findings of our work Ahmed
et al. (2018). There, the solving strategies presented above were applied to the
flow around cylinder benchmark problem, both in 2d and 3d, stationary and
instationary. The 3d instationary example needed a slight modification of the
inflow condition in order to exhibit a truly instationary behavior. All discret-
izations were performed using the same or similar finite element techniques as
described earlier in this chapter. A Picard iteration was used to resolve the
non-linearity coming from the Crank–Nicolson time discretization, and it had
to reduce the residual below a threshold of 10−8 in the Euclidean norm. We
used four different finite elements both in 2d and 3d, those were P2/P1 and
P bubble

2 /P disc
1 on triangular/tetrahedral grids as well as Q2/Q1 and Q2/P

disc
1

on quadrilateral/hexahedral grids. In the stationary case, the most interesting
question was, how the different solvers behave with respect to computing time
when refining the grid and thus raise the number of degrees of freedom of the
problem. In the time-dependent case we were more interested in the dependence
of computing time on the time step length.

Proceeding as such, we could identify use cases for the different solvers, and
give some advice on how to “fine tune” the solvers, regarding the many versions
and parameters with which iterative solvers can be tweaked and tuned.

The direct solver UMFPACK was used as a black box solver and served as
a reference point. The LSC preconditioner was implemented and tested in a
standard version and in the version of Elman and Tuminaro (2009), the “bound-
ary corrected LSC”. We also compared the application of a direct (UMFPACK)
and an iterative (BiCGstab with SSOR preconditioning) solver as sub-solver
for the velocity subproblem. The multigrid preconditioner was tested in two
versions, a standard approach and the “multiple discretization multilevel” ap-
proach of John et al. (2002). Both were used with three different Vanka smooth-
ers: the Cell Vanka smoother for discontinuous-pressure type discretizations,
the Patch Vanka smoother for continuous-pressure type discretizations and the
Nodal Vanka smoother for both types.

The methods were implemented in the integrated research code ParMooN
(Ganesan et al. (2016); Wilbrandt et al. (2017)) and executed sequentially on
HP BL460c Gen9 workstations with 2x Xeon CPUs (2600 MHz clock rate).

Let us now describe our findings. When it comes to the stationary problem,
we found that the FGMRES + LSC preconditioner is the best choice for continu-
ous pressure approximations and the multigrid preconditioner with Cell Vanka
smoother the fastest choice for discontinuous approximations. See Figure 2.3
for a representative illustration of the computing times with a discontinuous
pressure finite element pair in 2d. With discontinuous pressure the Cell Vanka
smoother can be used, and this strategy showed to be superior to both the
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nodal and the patch Vanka. The LSC strategy was not competitive here, but
for continuous pressure and small or medium sized problems it was the fastest
option, only for the larger problems did the multigrid with Nodal Vanka take
the lead. The version of the LSC with iterative solver for the velocity sub-
problem did not seem a good choice in the stationary case, as it was hard to
make that solver converge, and if that succeeded, it was usually slower than the
version with the direct solver. In the stationary case, the LSC showed the same
asymptotic behavior as the UMFPACK direct solver. The UMFPACK solver
was superior only for the smallest problems, but it offers a good starting point
for checking implementations and debugging due to its robustness.

In the stationary 3d case the findings did very much conform with those in
stationary 2d, with the additional observation that the UMFPACK solver could
only handle the one or two smallest problems, and the largest problems (3 levels
of uniform refinement, around 107 to 3 · 107 d.o.f.) could only be solved with
the multigrid approaches.

The solvers showed a somewhat different behavior for the instationary prob-
lems. In 2d, especially the FGMRES + LSC(ite) strategy excelled, because
contrary to all other candidates, the total computing time actually decreased,
when choosing smaller time-steps. Though already among the fastest options
for (the coarsest) time step 0.01, it was unbeatable for the smallest examined
time step 0.0025, save the P bubble

2 /P disc
1 element, were FGMRES + standard

multigrid with Cell Vanka smoother was always superior. We attributed this
behavior of the LSC(ite) to the better properties of the A-block of the matrix
due to a smaller time-step, when the impact of the mass matrix is greatest.
Obviously, the LSC(ite), especially the BiCGstab iteration used for the velo-
city sub-solve, profited most from this circumstance. On the Q2/Q1 Taylor–
Hood discretization, the time advantage of LSC(ite) was the most remarkable.
In 3d, the picture was essentially the same (see Figure 2.4). Except for the
P bubble

2 /P disc
1 element, were Cell Vanka multigrid performed best, the LSC(ite)

strategy was superior to all others, showing a decrease in total computing time
with smaller time-step. For the largest time-step, the inner iteration did not
converge, there either standard multigrid or LSC(dir) were the fastest choice.

To conclude our findings in the stationary case:

� for small and medium sized problems with continuous pressure discretiz-
ation, the FGMRES + LSC(dir) approach is a recommendable option,

� for problems with discontinuous pressure discretization and large prob-
lems in general, the standard multigrid strategy with Cell Vanka smoother
(discontinuous p) or Nodal Vanka smoother (continuous p) should be pur-
sued,

� the UMFPACK solver should best be used as a solver for sub-systems of
the iterative methods only, and not as a stand-alone solver.

In the instationary case we can conclude:

� the FGMRES + LSC strategy with an iterative solver for the velocity
subproblem is the solver of choice for both 2d and 3d. If the iteration of
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0.01 0.005 0.0025

time step

102

103

104

105

co
m
p
u
ti
n
g
 t
im

e
 i
n
 s
e
c.

P2/P1

0.01 0.005 0.0025

time step

103

104

105

co
m
p
u
ti
n
g
 t
im

e
 i
n
 s
e
c.

Q2 /Q1

UMFPACK
FGMRES + MG(nodal, F(1,1))
FGMRES + MDML(nodal, F(1,1))
FGMRES + MG(patch, F(1,1))
FGMRES + MDML(patch, F(1,1))
FGMRES + LSC(dir)
FGMRES + LSC(ite)

Figure 2.4: Instationary flow around cylinder in 3d: computing times on grid of
first refinement level for different time step sizes. Only results for
continuous-pressure discretizations are shown here. Figure taken
from (Ahmed et al., 2018, p.510)

the velocity subproblem (BiCGstab) does not converge, it is often recom-
mendable to choose a smaller time step rather than a different solver.

� For the (somewhat exotic) P bubble
2 /P disc

1 element, the FGMRES + Cell
Vanka multigrid strategy is a worthwhile, often the fastest, alternative.

With that we conclude our excursus to the performance of solvers for linear
saddle point systems. Especially the findings on the instationary 3d problem
will guide us later in this thesis. We included in Ahmed et al. (2018) a section
containing some remarks on the parallelization and parallel performance of the
solvers. In the following section, we want to describe in detail the parallelization
of our own finite element code and the connected parallel solvers for linear
systems.
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2.4 A finite element domain decompositioning method

The solvers presented and assessed in Section 2.3 have in common that they
were implemented and run in sequential execution, i.e., using one processor at a
time. This is fair enough if one aims at assessing the efficiency of the algorithms
themselves, but in order to catch up with the state of the art, it is necessary
to regard parallelization of the linear solvers and the finite element method
in general. In view of the capacities of super computers, their ever increasing
number of processors, and the huge problem size which CFD examples reach
easily, it is indispensable to use parallel code and parallelized linear solvers.
For that purpose, we make use of the parallelized finite elements research code
ParMooN. It is a subsequently parallelized version of the in-house finite elements
package MooNMD (see John and Matthies (2004)), and it was presented in the
articles Ganesan et al. (2016) and Wilbrandt et al. (2017). Most of the material
of this section was published in Wilbrandt et al. (2017).

ParMooN supports a single program, multiple data (SPMD) approach on par-
allelism, making use of the Message Passing Interface (MPI) standard (see MPI-
Forum (2015)). It relies on a decomposition of the domain, which is de-facto
standard for parallelized finite element codes. Decomposing the computational
domain and distributing it among the processes naturally leads to a paralleliz-
ation of matrix-vector operations, if the matrix in question belongs to the finite
element discretization of a partial differential equation. The localized character
of the finite element method, reflected in the sparsity of the arising matrix,
limits the computational overhead of communications.

In the following section we will present the domain decompositioning ap-
proach of ParMooN (Section 2.4.1), and how this can be turned to a paralleliz-
ation of the finite element method (Sections 2.4.2 and 2.4.3). Additionally, we
describe our parallelization of the LSC preconditioner in Section 2.4.4. This ma-
terial was neither part of Wilbrandt et al. (2017) nor of Ahmed et al. (2018).
Finally, we present some results on the parallel efficiency of ParMooN when
applied to certain CFD problems in Section 2.4.5.

2.4.1 Decomposing the domain – own cells and halo cells

The first step of the parallelization is the cell-wise distribution of the computa-
tional domain among the participating processes. In MPI terminology, process
denotes a stream of execution of a parallel program. All started processes ex-
ecute the same code (“single program”) and hold their own data (“multiple
data”). The number of processes is in principle the user’s choice. The pro-
cesses are numbered with non-negative integers starting from 0, the process
with number 0 is called the root process or just root, and it often gets assigned
specific tasks.

ParMooN makes use of the METIS graph partitioning tool Karypis and Ku-
mar (1995) for the domain decompositioning. At program start, all processes
read in the same geometry and perform the same initial domain refinement
steps. Upon reaching the first refinement level on which to perform computa-
tions, the root process calls the METIS library to compute a disjunct domain
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decomposition, i.e. to determine which process is going to be in charge of which
mesh cells.

Next, root communicates the METIS output to the other processes. Each
process is informed about which of the cells it will be responsible for. These
cells are called own cells of a process. Each process then deletes a number of
cells, maintaining only its own cells plus those cells which share a boundary
face, edge or vertex with an own cell. In domain decompositioning methods
these cells are commonly referred to as halo cells. A glance at Figure 2.5 might
clarify that expression – the halo cells form a one-layer thick halo around the
set of own cells.

The own cells are further divided into dependent and independent cells. The
interface between halo cells and own cells is simply called the interface, and all
own cells which share a piece of interface are called dependent, all other own
cells are called independent cells.

The requirements on the domain decomposition are twofold: The computa-
tional load must be balanced (comparable number of cells on each process), and
the needed amount of communication must be small (interface area as small as
possible). Due to the deletion of cells, each process stores only a part of the
entire problem (multiple data), but all process execute the same program code
(single program). With its domain reduced to own cells plus halo, each process
will set up a finite element space on that domain. Thus, one process can and
will perform all further computations only on its known part of the domain.
All tasks which are of global nature require communication between the pro-
cesses. The organization of this communication is the subject of the following
subsections.
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2.4.2 Types of degrees of freedom

The domain decompositioning approach that is pursued in ParMooN naturally
gives rise to a parallelization of those operations which are required when setting
up and solving a finite element problem. A very important class among these
are matrix-vector operations. During an introduction to the parallelization
concept, we consider it helpful to keep matrix-vector multiplication, where the
matrix stems directly from a finite element discretization, as an example in
mind.

Firstly, the degrees of freedom (d.o.f.) on a certain process P need to be
classified. Each d.o.f. will be assigned a class, depending on its localization in
space and the classes of d.o.f. it couples with. Here, coupling of two d.o.f. means
that their supports intersect on a set of non-zero measure, i.e., they belong to
the same cell. This transfers directly into a property of the finite element
matrix A: the coupling of d.o.f. i and j will lead to non-zero entries aij and
aji. This connection is essential for the transfer of the domain decomposition
into a parallelization of matrix-vector multiplication.

Next, we will list and shortly describe the d.o.f. classes in ParMooN. All
d.o.f. that are localized in a cell known to P are called known d.o.f.. These are
divided into master and slave d.o.f.. For a d.o.f. i, being a master d.o.f. on P
means that P is responsible for the value of i – what that responsibility means
exactly will be clarified below. Every d.o.f. in the entire problem is master on
exactly one process. All known d.o.f. of P , which are not master on P are
called slave d.o.f.. A d.o.f. can be slave on more than one process. The set of
known d.o.f. on P is divided as

DP
known = DP

master

·
∪DP

slave.

The next level of classification, below the master and slave distribution, con-
tains the classes of independent, dependent, interface, and halo d.o.f..

Independent d.o.f. All d.o.f. which lie in the own cells of P , but not in its
dependent cells, are called independent d.o.f.. All P ’s independent d.o.f. are
set as master d.o.f., they are not even known to any other process. They only
couple to other master d.o.f. of P .

Dependent d.o.f. Those d.o.f. lying in P ’s dependent cells, but not in its halo
cells, are called dependent d.o.f.. P is master of all its dependent d.o.f.. This
denotation is motivated by the fact that dependent d.o.f. are in vicinity to the
domain interface and therefore admit a certain dependency on other processes.

Interface d.o.f. All d.o.f. which lie on the intersection of dependent cells
and halo cells, i.e., are located directly on the interface, are called interface
d.o.f.. These d.o.f. are known to all adjacent processes as interface d.o.f., too.
Only one of these processes will take master responsibility for a certain interface
d.o.f.. On P , those interface d.o.f. which are master, are called master interface
d.o.f., all others, for which neighboring processors take master responsibility,
are called slave interface d.o.f. of P .
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Halo d.o.f. All d.o.f. which lie in halo cells but not on the interface are called
halo d.o.f.. Since all of them are dependent d.o.f. to neighboring processes, one
of these will take master responsibility for them, on P all halo d.o.f. are slave
d.o.f..

The above further classification of the d.o.f. is designed to yield a disjunct
dissection of the classes master and slave d.o.f.:

DP
master = DP

independent

·
∪DP

dependent

·
∪DP

interface master

DP
slave = DP

interface slave

·
∪DP

halo.

Splitting halo d.o.f. and dependent d.o.f. It is convenient to refine the
d.o.f. classification even one more step, in order to reduce the communication
overhead of the program. The halo d.o.f. of P are further divided into Halo(α)
d.o.f. and Halo(β) d.o.f.. Halo(α) d.o.f. are those, which couple with at least
one (interface) master d.o.f. of P , while Halo(β) d.o.f. couple solely to other
slave d.o.f. (interface d.o.f. and other halo d.o.f.).

A corresponding splitting of the dependent d.o.f. is performed. Those, which
are connected to at least one (interface) slave d.o.f. are called Dependent(α)
d.o.f., all those which are connected to master d.o.f. only (interface master,
other dependent, independent) are called Dependent(β) d.o.f.. Note that all
Dependent(β) d.o.f. of process P will be Halo(β) d.o.f. on all other processes
where they are known. For Dependent(α) d.o.f. the matter is not as simple.
Each of them is Halo(α) to at least one neighboring process, but can be Halo(β)
to others. The relations are illustrated in Figure 2.6.

Note that this last level of classification described above does only make
sense for problems containing only one finite element space. For a coupled
problem like the Navier–Stokes equations it is not applicable, because the sets
of interface masters and slaves will differ between both spaces, thus disabling a
clear distinction between Halo/Dependent α and β d.o.f..

2.4.3 Operations, consistency and communication

Consistency levels There are basically two ways to store a global value distrib-
utedly in parallel computations. The first option is called consistent storage,
the other is called inconsistent or additive storage. Consistent storage means
that all processes which know a value also store it correctly, the value is the
same over all processes which know it and the same as it would be in a sequen-
tial environment. We consider the term “inconsistent” storage rather deceptive,
and will not use it. In our opinion, “additive” is much more to the point. In
additive storage a global value is the sum of the values over all processes where
it is known. In ParMooN, and in other parallel finite element codes which make
use of a halo cell layer, mainly consistent storage and weakened concepts thereof
play a role.

We will introduce now four stacked stages of consistency which can hold for
finite element vectors in ParMooN, i.e., coefficient vector representations of
functions from a finite element space. We call a finite element vector:
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.

� level-0-consistent, if consistency holds only with regard to master d.o.f..
Each master d.o.f. on each process holds the same value as it would in
a sequential computation. The values of slave d.o.f. are in an undefined
storage state. Every parallel scalar-vector, vector-vector or matrix-vector
operation must result in a finite element vector of at least this consist-
ency level, otherwise the parallel implementation is faulty. During the
implementation of such operations care must be taken of not losing level-
0-consistency.

� level-1-consistent, if all master d.o.f. (level-0-consistency) and all slave
interface d.o.f. are in consistent state. The values of all halo d.o.f. are in
an undefined storage state.

� level-2-consistent, if consistency is established for all but the Halo(β) d.o.f.
The values of Halo(β) d.o.f. are in an undefined storage state, while all
other values are consistent.

� level-3-consistent, if all its d.o.f. are stored consistently. No d.o.f. values
are in undefined storage state. This is the “actual” consistent storage
state.

The main insight behind this classification is that in the presence of a halo
cell layer, several algebraic operations have weaker consistency requirements of
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their input data, than the full level-3-consistency. Restoring a certain state
of consistency requires a certain amount of inter-process communication – the
lower the required state of consistency, the lower the required amount of commu-
nication. Therefore, introducing the above categorization and updating always
to the lowest possible consistency level will save some communication overhead
and thus computing time.

Parallelizing algebraic operations Following the procedure of a finite element
simulation, after the domain has been decomposed, each process assembles a
finite element matrix on all its known cells. Maintaining the halo cell layers
assures that all information to assemble the rows belonging to master d.o.f.
is available on P . The complete finite element matrix will therefore be in a
consistency state which one could term row-wise level-1-consistency – all rows
belonging to master and slave interface d.o.f. are in consistent storage state.

Looking at matrix-vector multiplication of a row-wise level-1-consistent finite
element matrix with a level-3-consistent finite element vector, the resulting
finite element vector will be level-1-consistent.

Multiplication of a finite element vector with a consistent scalar will maintain
the current consistency level, as will vector-vector addition. Scalar products
require level-0-consistency of both vectors, where all slave d.o.f. will be skipped,
and a globally additive reduce operation to get a consistent result.

Enforcing level-3-consistency of a finite element vector in ParMooN is al-
ways required when operations that require knowledge of the represented finite
element function even on the halo cells is necessary. Such operations are for
example matrix assembling with an input finite element function6, grid transfer
operations in multigrid, or gradient recovery. Level-3-consistency is also neces-
sary for the input vector of a matrix-vector multiplication, if the matrix belongs
to a coupled problem, see the remark in Section 2.4.2.

Enforcing certain consistency levels is a matter of communication. For each
d.o.f. for which an update is necessary, the process where it is master on
communicates its value to all processes where it is slave on, these simply reset its
value to the received value. The required infrastructure is set up just once for a
certain finite element space and can be reused whenever an update is necessary.
In the next paragraph, we describe that communication infrastructure in some
more detail.

Organizing communication When setting up the communication structure,
for each non-independent master d.o.f. d, all those slave d.o.f. on other pro-
cesses that are globally identical to d must be found. Certain master types
match with certain slave types, forming three distinct pairs of master–slave
relations. These relations are depicted in Table 2.1. To restore a certain con-
sistency level, an update along the lines of one or more of these relations will
be required.

6Think of the nonlinear term in the Navier–Stokes equations or the initial conditions in any
time-dependent problem
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Table 2.1: Master-slave relationship of d.o.f. types.

Relation (shorthand) Master type updates Slave type

Interface (IMS) Interface M. −→ Interface Sl.
Dependent(α)–Halo(α) (DHα) Dependent(α) −→ Halo(α)
Dependent(β)–Halo(β) (DHβ) Dependent(β) −→ Halo(β)

Note that it is not immediately possible to globally identify a d.o.f. in Par-
MooN, since each process creates its finite element space only across its own
cells and numbers its d.o.f. locally, unaware of the other processes. To globally
identify a d.o.f. in ParMooN we make use of a global cell number of a cell it
is located in. Such a global cell number must be given to each cell before de-
composing the domain, and is kept during the entire computation. When after
decompositioning only uniform refinement steps are applied, a globally unique
cell number can be given to children cells, too.7 The consistent cell number and
a likewise consistent cell-local d.o.f. number makes it possible to identify each
d.o.f. globally.

Let us finish with some ParMooN-specific implementation details. The com-
munication structure is separated into a data class “ParFEMapper”, and a
control class “ParFECommunicator”. The process of setting up the ParFEMap-
per and ParFECommunicator requires some communication itself, this part is
skipped here. We will just give an overview and description of those data
fields of ParFEMapper which are relevant when updating the d.o.f. of a certain
master-slave relation. These data fields are corresponding for all three relations
(see Table 2.1), and we pick the interface (IMS) relation as an example.

For the IMS update, the ParFECommunicator wraps a call to the MPI func-
tion MPI Alltoallv, whereby every process can send a different number of
different values of the same type (MPI DOUBLE in our case) to each other
process. To control the MPI Alltoallv call, the ParFEMapper stores the
following data fields, where mpi size is the total number of processes and
nInterfaceSlaves is the number of interface slaves local to process P . The
syntax of the listed data members is C-style, since ParMooN is a C++ code.

� int* sendBufIMS: The send buffer, filled with the values of all interface
masters, each one possibly appearing more than once, which will then be
sent to the other processes. Its total length equals the sum over all values
of sendCountsIMS.

� int* sendCountsIMS: The send counts, an array of size mpi size.
Lists how many values P has to send to each other process.

� int* sendDisplIMS: The send displacement, array of size mpi size.
It lists, where in the array sendBufIMS the message for a certain process
begins. For our purpose, we do neither work with overlap nor gaps, so

7A combination of parallelism and adaptive mesh refinement is not yet enabled in ParMooN.
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sendDisplIMS[i] will simply hold the sum of sendCountsIMS[0]
to sendCountsIMS[i-1].

� int* recvBufIMS: The receive buffer, will be filled with sent values
from the other processes in the communication routine. Its size equals
nInterfaceSlaves.

� int* recvCountsIMS: The receive counts, of size mpi size. It lists
how many values are to be received from each process. The sum of its
values will equal nInterfaceSlaves.

� int* recvDisplIMS: The receive displacement, analogous to send dis-
placement. No gaps, no overlap.

Besides that data that is needed in the immediate control of MPI Alltoallv,
the ParFEMapper holds two arrays which allow to interpret the sent and re-
ceived data, by mapping between send buffer or receive buffer and the local
d.o.f.. These arrays are:

� int* sentDofIMS: Interpret sentDofIMS[i]= d as: The i-th place
in the send buffer sendBufIMS has to be filled with the value of local
d.o.f. d.

� int* rcvdDofIMS: Interpret rcvdDofIMS[i]= d as: The i-th value
in the receive buffer recvBufIMS should update local d.o.f. d.

In the same manner the communication for DH(α) and DH(β) are organized.
To set a certain level-0-consistent finite element vector into level-1-consistency,
only a IMS update is required. For restoring level-2-consistency, an additional
DH(α) update is necessary, and for level-3-consistency a DH(β) update on top.

2.4.4 Parallelization of the LSC preconditioner

Given the parallel data structure of ParMooN, the Least Squares Commutator
preconditioner can be parallelized very efficiently. A parallelized version of the
LSC algorithm known from Section 2.3.2 is given as Algorithm 2. There, at
several places consistency updates of finite element vectors as described above
are necessary, in order to maintain level-0-consistency after the matrix-vector
multiplications.

The key issue in the parallelization is the computation of the pressure convec-

tion-diffusion matrix (Step 1.2). Remember that the matrix B = (bij)
i∈{1,...,N}
j∈{1,...,3M}

is a finite element matrix, and therefore

bij 6= 0⇔ d.o.f. i and j are in the same cell.

Its (diagonally scaled) multiple with its own transposed from the right, P =
BD−1

v BT , has a denser structure in general, since

pij 6= 0⇔ ∃k ∈ {1, ..., 3M} s.t. bik 6= 0 and bkj 6= 0

⇔ ∃ pressure d.o.f. k which shares a cell with i and a cell with j.
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Figure 2.7: Total solving time (left) and time for the computation of BD−1
v BT

(right) depending on the number of processes for a parallelized ver-
sion of the LSC preconditioner, applied to a 3d time-dependent
Navier–Stokes example problem of approximately 125,000 d.o.f..

Therefore the matrix P does contain cell-wise next-to-nearest-neighbor inter-
actions. This means especially that the parallelization strategy as described
above, which was tailored to finite element matrices containing only nearest-
neighbor interactions of finite element cells will not succeed for matrix-vector
multiplications with the matrix P . Yet is it possible to compute an additively
stored version of P . To show this quite plainly, it is for all i and j, disregarding
the diagonal scaling,

pij =
∑
k

bikbkj . (2.32)

The contributions bikbkj are correct on that process where k is master, due
to the fact that B is a finite element matrix. If therefore each process adds
only those contributions to its portion of P , where the “intermediary” d.o.f. is
master, one finally finds the matrix P in additive storage. This matrix can then
be handed over to the MUMPS solver, see Amestoy et al. (2001), an distributed
memory direct solver, which supports additive storage of the system matrix.

As in the sequential case, for time-dependent problems one must compute
the pressure Poisson matrix P only once, and can re-use its factorization for
multiple applications of the LSC preconditioner.

The solver for the velocity subsystem must be parallelized, too. The ideal
version of the preconditioner, using again the MUMPS solver for this system,
showed to be useful for debugging purposes but not very efficient. For the iter-
ative version, we achieved good results with a parallelized BiCGstab algorithm,
preconditioned with a parallelized (block) SSOR sweep.

We include here some illustrative results of the performance of the paral-
lelized version of the LSC preconditioner, see Figure 2.7. We chose a version
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Algorithm 2 Parallelized Least Squares Commutator Preconditioner

Input: A =

(
A BT

B 0

)
, b =

(
bu
bp

)
in consistency level 3, mass matrix Mv

Output: Approximate solution xLSC =

(
u
p

)
to A x = b

Part 1 Set up Poisson matrix P
1.1 : D−1

v ← (diagMv)
−1

1.2 : P ←
(
BD−1

v BT
)

. Parallelized version.
Part 2 Schur complement subsystem

2.1 : Solve Px = bp and set b∗p ← x . using MUMPS solver
2.2 : Update b∗p to consistency level 3

2.3 : b∗u ← −D−1
v BT b∗p

2.4 : Update b∗u to consistency level 2
2.5 : b∗u ← D−1

v Ab∗u
2.6 : Update b∗u to consistency level 3
2.7 : b∗p ← Bb∗u
2.8 : Solve Px = b∗p and set p← x . using MUMPS solver

Part 3 Velocity subsystem
3.1 : Update p to consistency level 3
3.2 : bu,tmp ← bu −BT p
3.3 : Solve Ax = bu,tmp and set u← x . Parallel iterative solver

return (u, p)

of the time-dependent 3d Navier–Stokes problem of the batch crystallizer of
Chapter 7, with approximately 125,000 degrees of freedom, and a time step
length of 10−2 s. It is spatially discretized with 3d Taylor–Hood elements
P2/P1, and the simulation was run for 10 s, starting from a zero initial solution
and gradually increasing the inflow over the first 0.1 s. A Smagorinsky turbu-
lence model with relatively large Smagorinsky coefficient of 10−2 is used. After
10 seconds of simulated time the inflow had reached the top of the crystallizer
device, and we chose that time to end the illustrative assessment. We ran those
computations with 1, 2, 4, 8, 16 and 24 processes, repeating each run five times,
disregarding the fastest and slowest run and averaging over the remaining three
runs. This averaged total solving time is plotted on the left side of Figure 2.7.
Although initially a good parallel speedup can be achieved, the curve flattens
out soon, with 24 processes the communication overhead consumes the speed-
up and the computation is slower than with 16 processes. This behavior is to
be expected for a relatively small problem like the studied one. Very interest-
ing is the speedup achieved in an initial program part, the computation of the
pressure Poisson matrix BD−1

v BT Here, initially super-linear speed-up can be
achieved, which is supposedly due to cache effects, Additionally, there is still
an observable speed-up in this program part when comparing the run with 16
processes to that with 24 processes.
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2.4.5 Parallel performance of ParMooN

The parallel scaling of certain other linear solvers implemented in ParMooN
was examined and presented in Wilbrandt et al. (2017). Three different CFD
benchmark problems of different type were solved, those were: a steady-state
convection-diffusion problem, a time-dependent convection-diffusion problem
and a steady-state incompressible Navier–Stokes system. In all cases, an FG-
MRES iteration with the “native” geometric multigrid method was compared
to several parallel solvers from the PETSc library (Balay et al. (2017)) on a
Q2/Q1 or Q2/P

disc
1 spatial discretization. Among the PETSc solvers were the

FGMRES with SSOR or algebraic multigrid (BoomerAMG) preconditioning
and the direct solver MUMPS.

The examinations were performed with from 2 to 24 processors. The prob-
lems had from 1 to 10 million d.o.f, and they had in common that the solvers
showed good parallel scaling only up to 8 to 16 processors, as was to be expected
the scaling was better for larger problems. While for the convection-diffusion
problems the native multigrid solver was mostly outperformed by the SSOR
preconditioned FGMRES of PETSc, for the stationary Navier–Stokes problem,
the ParMooN FGMRES with multigrid preconditioning had a clear advantage
over the external solver, here the PETSc implementation of FGMRES with LSC
preconditioner. To give an idea of the type of results discussed in Wilbrandt
et al. (2017), we include here the results for that stationary Navier–Stokes as-
sessment in graphical form, see Figures 2.8 and 2.9. Both show solving time
comparisons for the 3d stationary flow around cylinder example, which is de-
scribed in Section 2.3.2. We used Q2/P

disc
1 elements, because the discontinuous

pressure discretization enabled the use of the Cell Vanka smoother in the geo-
metric multigrid preconditioner. Figure 2.8 shows the results of a solver time
comparison for refinement level 2 (taking the hexahedral grid shown in Fig-
ure 2.1 as reference level 0), which yields a Navier–Stokes problem of around
0.9 million degrees of freedom. Figure 2.9 depicts the same for refinement level 3
(around 7 million d.o.f.), plus results on strong scaling for the ParMooN FG-
MRES with multigrid solver strategy. For this large problem relatively good
scaling can be observed for up to 24 processors.
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Figure 2.8: Left: Steady-state flow around cylinder example in 3d, solver times
against number of processors with different parallelized linear solv-
ers. Refinement level 2, around 0.9 million d.o.f.. Right: Closeup
of solver time against number of processors for ParMooN FGMRES
with geometric multigrid preconditioner. Figures taken from (Wil-
brandt et al., 2017, p.87).
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Figure 2.9: Steady-state flow around cylinder example in 3d, solver times (left)
and scaling (right) on refinement level 3. The scaling is computed
by 2·t2/(p·tp), where p is the number of processors and tp the corres-
ponding time from the left picture. Figures taken from (Wilbrandt
et al., 2017, p.87).
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3 Numerical Methods for
Convection-Diffusion-Reaction
Equations

Time-dependent convection-diffusion-reaction equations (CDRE) are scalar sec-
ond order partial differential of the generic type

∂c

∂t
− ε∆c+ u · ∇c+ r(c) = f in (0, tend)× Ωx. (3.1)

As usual, an initial condition and boundary conditions have to be added in
order to close the equation (3.1). Let in the following the domain Ωx be a
sufficiently regular and connected subset of R2 or R3. The interval (0, tend) is
the temporal domain.

Usually, the unknown function c : (0, tend)×Ωx → R+
0 describes a macroscopic

physical quantity in a fluid environment, e.g., a concentration of a chemical
species, heat, or a moment of a particle size distribution. For the following
explanations we stick to the notion of a chemical species concentration.

The spatial terms on the left-hand side, and the phenomena modeled by them,
are eponymous for this type of PDE. Convective transport is introduced by the
term u · ∇c. There, u is a velocity field, the concentration c is transported in-
ertialess by that field. The second order term −ε∆c models diffusive transport.
The diffusion parameter ε ∈ R+ is typically small compared to ‖u‖. If that is
the case, ε

‖u‖ << 1, the CDRE is of convection-dominated type. The zeroth

order term r(c) models concentration gain and loss due to reaction, with the
real-valued reaction function r. In case r is (affine) linear, so is the entire equa-
tion (3.1). In that case, we re-use the variable r in order to denote a reaction
coefficient function, replacing the term r(c) with some r(t,x)c. In case it is not,
the non-linearity of the PDE is still restricted to the zeroth order term, and
therefore not as essential as in the case of the Navier–Stokes equations, where
the first order term is affected. Such a CDRE is also referred to as quasilinear.

The present chapter highlights a numerical methods which tackles a com-
mon problem of (systems of) convection-diffusion-reaction equations. A typical
feature of convection-dominated CDRE is admitting solutions with sharp in-
terior and boundary layers. Those layers are usually due to the dominant
convective term or forcing boundary conditions, and only the presence of the
second order term allows for smooth solutions at all. Examples in 1d can be
used to illustrate the issue, and the issues that standard numerical methods
face (Roos et al., 2008, Chapter 1). Essentially, on grids which are not fine
enough to resolve the small spatial scales of the layers, standard methods either
produce oscillatory solutions or solutions with a smeared layer. The construc-
tion and analysis of “stabilized” methods for CDRE, i.e., such methods, which
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3 Numerical methods for convection-diffusion-reaction equations

do neither produce oscillations nor smeared layers, have been an active field
of research for several decades now. In the finite element community different
“upwind stabilization” methods have been proposed, and from their ranks come
the gold standard methods like the SUPG (Stream Upwind Petrov–Galerkin)
method (Brooks and Hughes (1982)), see also the list in (Roos et al., 2008,
p.84). These methods have in common that directed additional diffusion is
introduced into the discretization. In applications, one is interested in physic-
ally consistent solutions, and at this point there is a problem with the classical
methods. They tend to produce spurious over- and undershoots of the solution
in the vicinity of steep interior or boundary layers. Yet in recent years a family
of promising methods has emerged, they are called algebraic flux correction
methods, and their main difference to upwind schemes is that they work on an
algebraic level, i.e., after the PDE has been discretized and transferred to a
linear system of equations. These methods are mathematically guaranteed to
be free of over- and undershoots, and their practical usefulness in comparison
to classical methods has been proven, i.a., in John and Schmeyer (2008).

One representative of algebraic flux correction methods, which is suitable
for time-dependent CDRE, is the linear Crank–Nicolson FEM-FCT scheme of
Kuzmin (2009). It will be used throughout this thesis in order to numerically
stabilize CDRE, and shall be introduced in the following.

For that purpose, this chapter is organized as follows. In Section 3.1 the
temporal (Crank–Nicolson) and spatial (FEM) discretization of Equation (3.1)
is introduced. Section 3.2 introduces and explains the mentioned algebraic
flux correction scheme. Section 3.3 finally offers a short digression to numerical
schemes for the treatment of systems of CDRE that are coupled via the reactive
term.

3.1 Finite element discretization

We will not enter the analysis of equations of type (3.1). Let us just briefly
comment that, in order to gain analytical results, further regularity assump-
tions on the coefficient functions have to be made. Typical cases are constant
coefficients, or smooth functions u, r, and f (Roos et al., 2008, p.427), where
u and r are bounded away from zero. In our purely numerical presentation,
it is sufficient to require L∞-boundedness of the coefficient functions in time
and space. This is the setting of John and Schmeyer (2008), which is a survey
article on finite element methods for convection–diffusion equations. Let thus
in the following u ∈ L∞(0, tend;W 1,∞(Ωx))d be divergence-free with spatial
dimension d, r ∈ L∞(0, tend;L∞(Ωx)), and f ∈ L2(0, tend;L2(Ωx)).

Our first discretization step is time discretization. Here and in the following
we regard only the semi-implicit Crank–Nicolson scheme, as we did for the
Navier–Stokes equations. Let ∆t ∈ R+ be the constant time step size, and cn

denote the discrete solution at time step n. The Crank–Nicolson discretization
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3.2 The linear Crank–Nicolson FEM-FCT scheme

gives the following equation (a stationary CDRE) in each time step:

cn+1 +
∆t

2

(
−ε∆cn+1 + un+1 · ∇cn+1 + rn+1cn+1

)
=

cn − ∆t

2

(
−ε∆cn + un · ∇cn + rncn −

(
fn + fn+1

))
. (3.2)

The spatial discretization is performed by application of the finite element
method, as was described for the Navier–Stokes equations in Section 2.2. As
usual, one has different options for the choice of a finite element space Vh. As-
sume such boundary conditions that the same space can be used as test- and
ansatz space, e.g., homogeneous Neumann boundary conditions. In order to
apply the algebraic flux correction scheme of Kuzmin (2009), the discrete space
must be of first order (with the only notable exception of (Kuzmin (2008)),
as is remarked in (Barrenechea et al., 2016, p.2428)). The finite element dis-
cretization is based on a variational formulation of Equation (3.2). A function
cn+1
h ∈ Vh is called discrete solution to the CDRE in the (n+ 1)st time step if

(
cn+1
h , ϕh

)
+

∆t

2

((
ε∇cn+1

h ,∇ϕh
)

+
(
un+1
h · ∇cn+1

h + rn+1
h cn+1

h , ϕh
))

=

(cnh, ϕh)− ∆t

2

(
(ε∇cnh,∇ϕh) +

(
unh · ∇cnh + rnhc

n
h −

(
fnh + fn+1

h

)
, ϕh

))
(3.3)

holds for all test functions ϕh ∈ Vh, and the boundary conditions are fulfilled,
too. We skip those details here. Note that all coefficient functions must be
projected to Vh in the discretization, this is denoted by the subscript h in the
above equation.

Aforementioned standard stabilization methods proceed by modifying the
Galerkin discretization, which is Equation (3.3). Algebraic flux corrections
schemes, on the other hand, work one level higher: on the level of finite element
matrices. This procedure is the subject of the following section.

3.2 The linear Crank–Nicolson FEM-FCT scheme

Converting the fully discretized convection-diffusion-reaction equation (3.3) to
an algebraic linear system of equations is performed in the same manner as
has been shown for the Navier–Stokes equations in Section 2.3.1. Picking a
nodal basis Φ := (ϕi)i=1,...,N of the finite element space Vh and reducing the
equation (3.3) to the basis elements gives a linear system of equations for the
coefficients of the solution function in the basis Φ. This system can be written
in the following way:(

M +
∆t

2
Kn+1

)
cn+1 =

(
M− ∆t

2
Kn

)
cn +

∆t

2

(
fn+1 + fn

)
. (3.4)

The unknown cn+1 is the solution coefficient vector, i.e.,
(
cn+1 · Φ

)
will be

the finite element solution. The other objects are the mass matrix M, the
stiffness matrices Kn+1 and Kn, and the right-hand side vectors fn+1 and fn,
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3 Numerical methods for convection-diffusion-reaction equations

where stiffness matrices and right-hand sides depend on the time step, as will
be shown below.

The mass matrix stems from the spatial discretization of the time derivate,
it is

M = (mij) =
(

(ϕj , ϕi)
)
i,j=1,...,N

.

The stiffness matrix assembles the terms from the spatial discretization of dif-
fusion, convection, and reaction terms, i.e.,

Kn =
(
ε(∇ϕj ,∇ϕi) + (un · ϕj , ϕi) + (rnϕj , ϕi)

)
i,j=1,...,N

.

The interesting case is that of dominant convection. This motivated the symbol
for the stiffness matrices: K for German “Konvektion”.

The algebraic flux correction (AFC) scheme which is to be presented in this
section was formally introduced in Kuzmin (2009), yet it builds on a more com-
plex series of publications by the same author and affiliates. That work resulted
in two families of AFC schemes for finite element discretizations: schemes of
Total Variation Diminishing type (TVD), which are suitable for stationary and
weakly time-dependent problems, and schemes of Flux Corrected Transport
type (FCT), which are suitable for more strongly time-dependent problems
that call for a (semi-)implicit time discretization. See the overview in (Kuzmin
and Möller (2005)) for a comparison of both approaches, and the introduction
to Barrenechea et al. (2015) for a short historical survey. Note that our survey
of the method follows in parts that of (Suciu, 2013, pp.26).

The common idea of AFC schemes is to maintain a discrete maximum prin-
ciple by adding “enough” artificial diffusion, and then strategically taking away
a part of that artificial diffusion. This is performed by the application of flux
limiters, which usually depend on an intermediate solution. In that sense, AFC
schemes are predictor-corrector methods. The Crank–Nicolson FEM-FCT ap-
proach is semi-implicit as the time-stepping scheme itself, and it uses a forward
Euler solution as a predictor step.

All methods of the FEM-FCT family start with the formulation of a non-
oscillatory low order scheme, which initially replaces (3.4). The matrix

ML := diag
(
mi

)
i=1,...,N

with mi :=

n∑
j=1

(ϕj , ϕi)

is the lumped mass matrix, and

Dn =
(
dnij
)
i,j=1,...,N

,

with

dnij = max{−knij , 0,−knji} and dnii = −
N∑

j=1,j 6=i
dnij

is the artificial diffusion matrix. The overly diffusive stiffness matrix is defined
as

Kn
L := Kn + Dn.
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3.2 The linear Crank–Nicolson FEM-FCT scheme

Then the low-order scheme, comprising the above low-order operators, is(
ML +

∆t

2
Kn+1
L

)
cn+1 =

(
ML −

∆t

2
Kn
L

)
cn +

∆t

2

(
fn+1 + fn

)
. (3.5)

In the next step, one decomposes the difference of the residuals of the low-order
scheme (3.5) and the Galerkin scheme (3.4). For a given approximate solution
c̃n+1 these residuals are

rL =

(
ML +

∆t

2
Kn+1
L

)
c̃n+1 −

(
ML −

∆t

2
Kn
L

)
cn − ∆t

2

(
fn+1 + fn

)
for the low-order scheme, and

rG =

(
M +

∆t

2
Kn+1

)
c̃n+1 −

(
M− ∆t

2
Kn

)
cn − ∆t

2

(
fn+1 + fn

)
for the Galerkin scheme. Each component ri of their difference

r := rL − rG = (ML −M)
(
(c̃n+1 − cn

)
+

∆t

2

(
Dn+1c̃n+1 + Dncn

)
can be decomposed into so-called raw antidiffusive fluxes rij . For their defini-
tion, observe that

ri =
∑
j 6=i

(
(mL,ij −mij)

(
c̃n+1
j − cnj

)
+

∆t

2

(
dn+1
ij c̃n+1

j + dnijc
n
j

))
+ (mL,ii −mii)

(
c̃n+1
i − cni

)
+

∆t

2

(
dn+1
ii c̃n+1 + dniic

n
) (3.6)

=
∑
j 6=i

(
(−mij)

(
c̃n+1
j − cnj

)
+

∆t

2

(
dn+1
ij c̃n+1

j + dnijc
n
j

))

+
∑
j 6=i

(
mij

(
c̃n+1
i − cni

)
− ∆t

2

(
dn+1
ij c̃n+1

i + dnijc
n
i

)) (3.7)

=
∑
j 6=i

((
mij −

∆t

2
dn+1
ij

)(
c̃n+1
i − c̃n+1

j

)
−
(
mij +

∆t

2
dnij

)(
cni − cnj

))
.

(3.8)

In step (3.7) the definitions of matrices ML and D were used. Write the above
sum as

ri =
N∑

j=1,j 6=i
rij .

The raw antidiffusive fluxes rij are transformed into limited antidiffusive fluxes
by multiplying each of them with a solution-dependent flux limiter αij(c̃

n+1) ∈
[0, 1] that will be defined later.

The general FEM-FCT flux corrected (or: high-order) scheme is the low-order
scheme plus a correction term:(

ML +
∆t

2
Kn+1
L

)
cn+1

=

(
ML −

∆t

2
Kn
L

)
cn + r∗

(
cn+1

)
+

∆t

2

(
fn+1 + fn

)
. (3.9)
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The corrected fluxes

r∗i :=
∑
j 6=i

αij
(
cn+1

)
rij
(
cn+1

)
are gathered in the implicit flux correction vector r∗

(
cn+1

)
.

Immediately one notices two things. The first observation is that scheme (3.9)
is equal to scheme (3.5) (low-order) if αij ≡ 0, and equal to scheme (3.4) (Galer-
kin) if αij ≡ 1. Secondly, the flux correction term introduces a non-linearity
to the equation. The further handling of that non-linearity distinguishes dif-
ferent algorithms of the FEM-FCT family. In the following we give a scheme
which is an explicit-implicit formulation, requires just one solution of a linear
system per time step, and is a good compromise between computational effort
and accuracy.

The idea of the linear Crank–Nicolson FEM-FCT scheme is to compute the
raw antidiffusive fluxes and the correction factors around an intermediate solu-
tion cn+ 1

2 , which is the explicit part of the low order scheme (3.5). Multiplying
the general scheme (3.9) with M−1

L gives(
I +

∆t

2
M−1

L Kn+1
L

)
cn+1

= cn − ∆t

2
M−1

L Kn
Lcn + M−1

L r∗
(
cn+1

)
+

∆t

2
M−1

L

(
fn+1 + fn

)
(3.10)

Note that the explicit part cn+ 1
2 := cn − ∆t

2 M−1
L Kn

Lcn of that system corres-
ponds to the solution of a forward Euler low-order scheme with a time step size
of ∆t

2 . It can be used in order to gain a linearized form of the flux correction
vector r∗. For that purpose the approximation

cn+ 1
2 ≈ cn+1 + cn

2

is made, reordering gives

cn+1 ≈ 2cn+ 1
2 − cn. (3.11)

This approximation is used for the computation of the raw fluxes,

rn+ 1
2 := r(2cn+ 1

2 − cn).

The correction factors α
n+ 1

2
ij are computed for the explicit approximation (3.11).

Inserting the resulting limited fluxes

r
∗,n+ 1

2
i :=

∑
j 6=i

α
n+ 1

2
ij r

n+ 1
2

ij

into (3.10) componentwise gives the final Crank–Nicolson FEM-FCT scheme.
For the computation of the limiting factors, usually Zalesak’s flux limiter

(Zalesak (1979)) is used, we do not repeat its formulation here.
The AFC scheme presented above was already implemented in the software

package ParMooN, and the algorithm will be used for all convection-diffusion-
reaction problems encountered in the numerical Chapters 6 and 7.
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3.3 A note on systems of convection-diffusion-reaction equations

3.3 A note on systems of convection-diffusion-reaction
equations

In the later course of this thesis, when population balance systems are intro-
duced (Chapter 5) and solved numerically (Chapters 6 and 7), we will encounter
only such convection-diffusion-reaction equations that are coupled to each other
indirectly via a population balance equation. The reason is that the crystal-
lizer systems we model contain just one dissolved species and a solute. Yet in
chemical and biological applications one regularly encounters systems contain-
ing a number of different transported species, whose concentrations are directly
coupled to each other by certain reaction terms. Therefore the incorporation of
a system of reactively coupled CDRE seems a natural extension of the proposed
methods for population balance systems.

A system of M reacting transported species c1, ..., cM can be written in the
generic form

∂c1
∂t
− ε1∆c1 + u · ∇c1 + r1(c1, ..., cM ) = f1

∂c2
∂t
− ε2∆c2 + u · ∇c2 + r2(c1, ..., cM ) = f2

...

∂cM
∂t
− εM∆cM + u · ∇cM + r3(c1, ..., cM ) = fM ,

or in vectorial form, with obvious notation, as

∂c̄

∂t
−E∆c̄+ U∇c̄+R(c̄) = F. (3.12)

The vectorial function R := (r1, ..., rM ) : RM → RM contains the (eventu-
ally nonlinear) reaction terms. Systems of the type (3.12) contain two further
sources of numerical difficulty: nonlinearity and nonnegativity. Both issues are
closely connected with each other, and closely connected to the time discretiza-
tion. Therefore, complete numerical schemes for systems like (3.12) are usually
fully integrated methods, solving all these difficulties at once.

A strategy that was pursued in Suciu (2013) was a Crank–Nicolson discret-
ization in time, followed by a Picard-type iteration (usually only one step) in
order to resolve the nonlinearity introduced by R. In addition, clipping of
negative concentrations was performed in order to avoid spurious negative con-
centration. This is a common strategy (Formaggia and Scotti, 2011, p.1268)
to avoid the problem of negative concentrations, which several time-stepping
schemes (among them all one-step θ-schemes except for the implicit Euler, see
Formaggia and Scotti (2011)) face.

An interesting alternative to such an ad-hoc approach are Patankar-type
methods. Those were originally invented by Patankar (1980) and used in the
context of heat transfer, and the main idea entered the collective memory as
Patankar trick. Consider a system of ODEs with production (i.e., source) terms
P (c̄) = (p1, ..., pM ) and destruction (i.e., sink) terms D(c̄) = (d1, ..., dM )

˙̄c = P (c̄)−D(c̄)
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and discretize it with the forward Euler method. Then for i = 1, ...,M it is
defined

cn+1
i = cni + ∆t (pi(c̄

n)− di(c̄n)) .

The “traditional” Patankar trick consists in scaling the troublesome destruc-
tion terms (those introduce non-positiveness) with the quotient of old and new
solution:

cn+1
i = cni + ∆t

(
pi(c̄

n)− di(c̄n)
cn+1
i

cni

)
.

This forward-Euler–Patankar scheme is unconditionally positive, i.e., preserves
positivity of the numerical solution for any time step ∆t. Based on it in a series
of publications starting with Burchard et al. (2003), so-called modified Patankar
schemes were developed. By scaling not only the destruction terms, but the pro-
duction terms, too, schemes that are positivity preserving and mass conserving
were developed, even higher-order Runge-Kutta schemes. So far, applications
of modified Patankar schemes in the context of partial differential equations are
few and relatively recent. We are aware of Meister and Ortleb (2014) (shallow
water equations), Mabuza et al. (2014) (fluid structure interaction), and the
short analysis in Ortleb and Hundsdorfer (2017). In Mabuza et al. (2014) they
were used in combination with linear ALE-FCT schemes similar to the scheme
presented in Section 3.2, and within a Crank–Nicolson discretization.

If the coupled algorithm of this thesis is ever applied to a population balance
system comprising multiple chemical species that are coupled in their reaction
term, we propose to follow the route taken in Mabuza et al. (2014) with the
modified Patankar–Crank–Nicolson scheme.
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4 Stochastic Particle Methods

In the mathematics of coagulating particles there are two fundamental ap-
proaches: A deterministic and a stochastic approach. Both approaches are
built around the same set of ODEs, the Smoluchowski coagulation equation,
which will be introduced first of all.

Let M be a one-dimensional particle state space. To fix ideas, let m ∈ M
describe the mass of a particle in a continuous and unbounded manner, and
therefore set M = (0,+∞). Other common choices for the particle state space
would be Z+ or {1, ..., N}. The time t should lie in (0,+∞). The coagulation
kernel K(m1,m2) gives the (time-independent) rate at which a specific pair of
particles of masses m1 and m2 coagulates. The unknown function f(t,m) gives
the number of particles of mass m at time t in some predefined, homogeneous
volume. Thus one can picture f as a spatially homogeneous mass-concentration
spectrum evolving in time. Two-particle coalescence, i.e, the merging of two
particles, forming a new, larger particle of their combined mass, is the only
physical process present in the equation and is the only cause of changes in the
spectrum f . With these preliminary considerations, the Smoluchowski coagu-
lation equation reads

∂

∂t
f(t,m) =

1

2

∫
m1,m2∈M
m1+m2=m

K(m1,m2)f(t,m1)f(t,m2) dm1dm2

−
∫
M
K(m1,m)f(t,m1)f(t,m) dm1 ∀m ∈M. (4.1)

This equation is a non-linear integro-differential equation, or from a different
view, it is a system of such equations, since it contains one equation for each m ∈
M. Depending on the choice ofM, it gives in total a finite, countably infinite or
even uncountably infinite number of equations. The equation (4.1) has appeared
under the names stochastic coagulation equation, stochastic coalescence equation
or just coagulation equation. We will use the last option.

The coagulation equation is used to describe the time evolution of a popula-
tion of particles of different masses, which interact with each other by coagu-
lation. If the particles are physical particles like crystals, molecules or water
droplets, the term “collision growth” is often used instead of “coagulation”. We
will use these terms interchangeably.

The equation (4.1) is central for both the deterministic and the stochastic
approach to coagulation mathematics, but in different ways. Although both
approaches describe first and foremost different numerical strategies to the
solution of equation (4.1), there is more to it: they introduce a difference on
the modeling level, which we want to describe briefly.

In the deterministic approach, the coagulation equation is derived by typical
infinitesimal reasoning. The search for solutions, both analytical and numerical,
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and their properties, proceeds with the instruments of the theory of differential
equations. The stochastic approach, on the other hand, starts with the for-
mulation of a stochastic process that describes state and change of state of a
coagulating particle population. If the stochastic process is in accordance with
the deterministic theory, one will find a link between the coagulation equa-
tion and the Kolmogorov forward equation of the process. In that sense, the
coagulation equation arises naturally from the stochastic theory. Concluding,
one could put it like this: While the deterministic approach starts from the
coagulation equation, the stochastic approach results in it. And while the de-
terministic approach opens up different numerical strategies after the equation
is formulated, the stochastic approach yields a numerical strategy en passant.
This we will see in the remainder of this chapter.

Further thoughts on the subject, how stochastic processes lead to ODEs on
the modeling level, and on what modeling assumptions the formulation of a
stochastic process itself grounds, can be found in (van Kampen, 1981, ch. III.2).

In this work, we will focus on the stochastic approach, because we have in
mind to use a stochastic simulation algorithm as part of our coupled method.
The deterministic approach to mathematical coagulation and the resulting nu-
merical methods will not be regarded beyond this introduction.

Let us elaborate on the history and interpretation of the coagulation equation
(4.1), before we give the outline of the chapter. The original formulation ap-
peared in Smoluchowski (1916), and it had been studied from the view of partial
differential equations before the stochastic approach emerged in the 1960s. This
might be a reason, why a central concern within the literature on the stochastic
approach is to establish a connection between stochastic approach and coagula-
tion equation. The original coagulation equation can be regarded as a reduced
version of a population balance equation. This type of equations is surveyed in
the textbook Ramkrishna (2000). With some knowledge of partial differential
equations, one will have no difficulties to grasp a good “working interpretation”
of Equation (4.1). The equation describes the time evolution of the space aver-
age of a fixed class of particles identified by their mass m. There are only two
ways how the number of particles of mass m can change within an infinitesimal
time dt. First, by coagulation of two smaller particles whose masses add up
to m, which raises the number of m-particles. Let m1 and m2 be such masses.
As was mentioned before, K(m1,m2) is the rate at which a specific pair of
particles with these masses coagulates. The rate at which any pair of particles
of masses (m1,m2) coagulates depends on the availability of such pairs, there-
fore on f(t,m1) and f(t,m2), in the form K(m1,m2)f(t,m1)f(t,m2). For this
gain of m-particles by coagulation, the first integral term (the “gain term”) is
responsible. The second significant event is a particle of mass m coagulating
with any other particle and thus “disappearing” from the class of m-particles.
The second integral term in (4.1) is responsible for that loss (“loss term”), the
explanation is very similar to that of the gain term. The net change rate is
then the difference of gain and loss term.

The coagulation kernel K is derived using a physical model of the coagulation
process. The physical relevance of solutions of (4.1) is significantly influenced
by the quality of this model. Therefore, kernel choice is a fundamental modeling
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decision, which determines physical and analytical properties of the equation,
and also implies numerical consequences.

The coagulation equation can be modified and expanded in order to depict
a wider range of physical phenomena. This can be done by replacing one of
the mathematical entities in the formulation of Equation (4.1). Doing so is
necessary when one aims at a more sophisticated particle description and has
to exchange the mass-only state space M for a higher dimensional space. It is
also necessary when one incorporates a spatial dependency of f , turning it into
a particle number concentration. Modifications of (4.1) can also be achieved
by adding further terms on either side of the equality sign. Phenomena which
make such a modification necessary include, e.g., particle growth, transport,
breakage and particle insertion by nucleation or inflow.

Let us now give the structure of this chapter. In Section 4.1 we give a liter-
ature overview over stochastic particle methods. In Section 4.2 we present a
specific branch of stochastic coagulation modeling, the Marcus–Lushnikov pro-
cess. We include a short introduction to the theory of Markov jump processes.
The stochastic simulation algorithm is rooted in the theory of Markov jump
processes, and the Marcus–Lushnikov process in particular, which is why we
decided to include Section 4.2, before turning to the more applied subjects. In
the main section, 4.3, we describe the stochastic simulation algorithm, which
will be part of our coupled algorithm, and the software Brush, in which it is
implemented.

4.1 Literature review

In this section we want to give a short, and by no means complete, overview
over the literature regarding stochastic approaches to the coagulation equation.

The most basic review article of the field is Aldous (1999). A more recent
overview article on the usage of stochastic methods in coalescence theory is
Berestycki (2009), but it leaves out the whole theory of Marcus–Lushnikov pro-
cesses, which form the basis of our stochastic simulation approach. For our
purposes, Aldous (1999) is the survey article of choice. Therein the author
claims (although he calls it a “gross oversimplification”) that in pre-2000 re-
search, there have been two waves of theoretical interest in the coagulation
equation. According to this perspective, the first wave occurred in the 1960s
in the physical chemistry community and resulted in the deterministic theory.
The stochastic theory is, according to the author, the fruit of the second wave
of interest in the 1980s. There the leading researchers had a background in stat-
istical physics. A survey of the first wave was given in Drake (1972). A more
recent survey on the achievements of the deterministic theory can be found in
Laurençot and Mischler (2004).

The most general survey paper of the “second wave” stochastic theory is
Aldous (1999) itself, although it deals in large parts with constructions of
stochastic processes given by the author in the 1990s. Therefore, besides sum-
marizing the 1980s theory, it can be regarded as an initial paper of a third
wave of interest, whose emergence it predicts, and which we want to name the
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Markovian approach to coalescence. This wave is the latest one, it is mainly
conveyed by applied probabilists, and in our opinion works like Norris (1999),
Eibeck and Wagner (2001), Deaconu et al. (2002), Wagner and Eibeck (2003),
Yaghouti et al. (2009), and Patterson (2013) belong to this third wave.

The works of this period are characterized by a great depth of mathematical
theory, especially theory of Markov processes as laid out in Ethier and Kurtz
(1986). Stochastic processes in general and Markov jump processes will be
introduced in greater detail in Section 4.2.1, here we only give a short overview.
A Markov process is a stochastic process (Xt)t∈R+

0
that possesses the Markov

property, i.e., for each finite set of times {t0, ..., tn} ⊆ R+
0 (in ascending order)

holds

P (Xt = x|Xt0 = xt0 , ..., Xtn = xtn) = P (Xt = x|Xtn = xtn).

This equation has a fundamental consequence. A Markov process is fully char-
acterized by just two probability distributions – an initial distribution and a
transition probability distribution. Although it is well known in all communities
dealing with stochastic processes that stochastic processes become considerably
more accessible when they possess the Markov property, it seems to us that the
third wave of mathematical coagulation literature is especially aware of that fact
and its theoretical consequences. This is why we called it Markovian approach
to coalescence theory here.

Let us proceed with the literature overview. As was mentioned before, in
the center of our attention is a stochastic process known as Marcus–Lushnikov
process, because our numerical method as well as related analysis has its roots
in the study of this process. Therefore we will concentrate on literature which
gives some insight into the theory of Marcus–Lushnikov processes.

To the best of our knowledge, versions of the concept appeared at three
different places independently between the late 1960s and early 1970s, which
founded three different lines of literature which only converged in the third-
wave literature. The first of these lines was initiated by Marcus (1968), who
was the first to present the construction of the process. The process was then
reformulated in Lushnikov (1978a) and Lushnikov (1978b). The authors of these
articles are eponymous for the process. All three articles establish connections
between the process and the coagulation equation.

The second place where the process appeared was within the work of Daniel T.
Gillespie in Gillespie (1972) and Gillespie (1975). In Gillespie (1972) the process
is presented, a physical heuristic for its derivation is given, and it is shown how
the coagulation equations arise from the stochastic dynamics of the Marcus–
Lushnikov process under additional, simplifying, assumptions. Gillespie (1975)
shows a way to simulate the process numerically by a two-stage Monte Carlo
method. It is an interesting and seemingly often overlooked fact that the theory
developed in Gillespie (1972) and the algorithm presented in Gillespie (1975)
for the coagulation of cloud droplets were transferred by the same author to
systems of spatially homogeneous chemical reactions (Gillespie (1976, 1977)).
The algorithm turned into a classic of computational chemistry, known as the
Gillespie SSA, where SSA stands for stochastic simulation algorithm. Yet it is
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seldom that one finds this connection noted in the literature, a notable excep-
tion being Wagner and Eibeck (2003). We find it necessary to point out this
connection, because it establishes the usefulness of introductory material from
computational chemistry for our purpose. In that sense, an excellent, prac-
tical introduction to the Gillespie SSA is Erban et al. (2007). A good reference
for the basic connection of stochastic and deterministic models (for chemical
reactions!) is Kurtz (1972).

The third place of independent emergence of the Marcus–Lushnikov process
is Shah et al. (1977), and it focuses on developing a stochastic algorithm. This
work is mainly known and cited in the engineering community specializing
on population balance equations, e.g., in the standard reference Ramkrishna
(2000), and we only mention it for the sake of completeness.

In order to prepare the understanding of third-wave articles, a detailed know-
ledge of Markov processes and their applications is required. A good introduct-
ory work explaining the usefulness of Markov processes in science is van Kampen
(1981). Note also the short remarks on non-Markovian processes by the same
author, van Kampen (1998), which is a quick read and underlines the import-
ance of Markov processes in a dialectic way. A textbook on Markov processes
with infinite-dimensional state spaces, which contains the powerful theory that
is used, e.g., in Norris (1999) and Wagner and Eibeck (2003), is Ethier and
Kurtz (1986). The existence proof in Patterson (2013) for a stochastic pro-
cess including not only coagulation, but also particle birth, particle removal
and, notably, convective particle transport is based on the theory of piecewise
deterministic Markov processes as developed and presented in the textbook
Davis (1993). This framework is very interesting, because it allows for seamless
integration of an external transport mechanism into the stochastic formulation.

Apart from Gillespie (1975) and Shah et al. (1977), there are several more
references which present the basic ideas of stochastic simulation algorithms.
The most relevant publications, describing versions of the algorithm that we
will use later, as it was used for the simulation of soot formation, are Patterson
et al. (2011) and Patterson and Wagner (2012). A review article on previous
stochastic simulation methods is Sabelfeld et al. (1996).

At this point we conclude the literature review and move on to the closer
examination of the Marcus–Lushnikov process.

4.2 The Marcus–Lushnikov process

In this section we introduce the Marcus–Lushnikov process, which is a classical
stochastic model for binary particle coagulation in a finite volume setting. It
models coagulation as a continuous-time Markov process with finite state space.
To fix ideas, consider a spatially homogeneous system of coalescing particles
in some finite volume. Every particle is identified by its mass alone. The
particle mass is given in terms of integer multiples of a unit mass m0, i.e., an
i-particle has mass i · m0. With this interpretation in mind, we will in the
following speak about particles “of mass i”, where “of mass i ·m0” would be
correct. Note that with this assumption the inner coordinate space is discrete
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and one-dimensional. Since the setting requires a finite volume, the total mass
M within the system is finite, M < ∞. Let M be an integer multiple of m0,
thus M = N ·m0. Consequently the inner coordinate space is finite. The main
idea of the Marcus–Lushnikov process is to represent the state of the system at
time t as

XML(t) = (n1, ..., nN ).

There ni ∈ {0, ..., N} for all i ∈ {1, ..., N}. The interpretation is as follows.
The value (

XML(t)
)
i

= n

means that at time t there are n particles of mass i in the system – each
component of

(
XML(t)

)
counts the number of particles of a certain mass in the

system.
The conservation of mass within the particle system is expressed by the equa-

tion
N∑
i=1

i · ni = N,

which must hold for all states XML(t).
Randomness enters the Marcus–Lushnikov process through the assumption

of random coagulation jumps. A coagulation jump happens at a random time
and changes the state of the system like

(n1, ..., nN ) −→ (n1, ..., ni − 1, ..., nj − 1, ..., nj+i + 1, ..., nN ).

In this example, a particle of mass i and a particle of mass j merged into a
particle of mass i+ j.

Jumps of this type are supposed to happen at a stochastic rate

χcoag(i, j) = K(i, j)
ninj
N

,

which is obviously dependent on the current state of the system. Behind this
formula is the assumption that within an infinitesimal time, coagulation of two
specific particles of masses i and j happens with probability

K(i, j) dt,

where K is a coagulation kernel as known from the deterministic theory (Al-
dous, 1999, p.25), and dt an infinitesimal time span. This probability is then
multiplied with the number of potential i- and j-partner particles, and scaled
with 1

N for reasons explained later.

In the remainder of this section we proceed as follows. In Section 4.2.1 we
introduce the notion and some important properties of Markov jump processes.
An exact definition of the Marcus–Lushnikov process as a time-continuous,
finite-state Markov process will be given in Section 4.2.2, its manifestations
in the literature are discussed in Section 4.2.3. In Section 4.2.4 we show two
canonic ways of establishing a connection between a stochastic process and a
deterministic equation, and point out some classical results in that direction for
the Marcus–Lushnikov process. In Section 4.2.5 we briefly raise some modeling
strategies beyond the basic Marcus–Lushnikov process.
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4.2.1 Markov jump processes

The Marcus–Lushnikov process belongs to a certain class of stochastic processes,
which have a continuous time variable and map to a finite state space. The
trajectories of these processes exhibit jumps, which explains the name jump
processes. One observes the connection to the notion of “jump functions” in
analysis. The theory of Markov jump processes, i.e., jump processes which
additionally possess the Markov property, is very comprehensibly introduced
in the textbook Norris (1998). In this subsection we want to provide the basic
notions, so that we are able to give a precise definition of the Marcus–Lushnikov
process in the next subsection. We base the following introduction on Norris
(1998).

From now on assume that all appearing random variables are defined on the
same probability space (Ω,F, P ). Let us begin with the definition of a stochastic
process.

Definition 4.2.1. Let E be a countable set with power set E and let T be an
index set. A stochastic process is a family of random variables

(Xt)t∈T : (Ω,F, P ) −→ (E,E).

The codomain E which the random variables share is called the state space of
the process. An element i ∈ E is called a state of the process.

For ω ∈ Ω fixed, we call

X(t, ω) := Xt(ω) : T −→ E

a path or trajectory of the process.

Although this definition can be extended to non-countable state spaces with
different sigma algebras, we settle for the countable case. The index set T is
usually interpreted as the time. For a stochastic process the information

X(t, ω) = i

means that at time t the process finds itself in the state i. The variable ω
from the sample space Ω, which is left unspecified, describes the underlying
randomness. In practice two choices of time sets T are of interest. These are
given in the following definition.

Definition 4.2.2. A stochastic process (Xt)t∈T is called

(i) discrete-time, if T = N0, and

(ii) continuous-time, if T = R+
0 .

For a discrete-time stochastic process we write (Xn)n∈N0 , and for a contin-
uous-time stochastic process we write (Xt)t≥0. These symbol conventions trans-
fer accordingly to processes with a non-zero starting time t0 6= 0.

In order to allow for further analysis, stochastic processes need to be equipped
with additional structure. The most common and fundamental class of pro-
cesses are those that possess the Markov property. Loosely speaking, the
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Markov property states that the past states of a process do not influence its
future, provided its present state is known.

For a countable state space E, the definition and characterization of a Markov
process makes use of two related classes of matrices, which we shall introduce
in the next definition.

Definition 4.2.3. A matrix Q = (qij)i,j∈E with real valued entries is called a
Q matrix if

(i) qii < 0 ∀i ∈ E,

(ii) qij ≥ 0 ∀i, j ∈ E, i 6= j, and

(ii)
∑

j∈E qij = 0 ∀i ∈ E.

Definition 4.2.4. A matrix P = (pij)i,j∈E with real valued entries is called a
stochastic matrix if

(i) pij ∈ [0, 1] ∀i, j ∈ E, and

(ii)
∑

j∈E pij = 1 ∀i ∈ E.

That is to say, each row of P can be interpreted as a probability distribution on
E.

Given an arbitrary Q-matrix Q, one can naturally define a stochastic matrix
Π, which is called the jump matrix of Q.

Definition 4.2.5. Let Q = (qij)i,j∈E be a Q-matrix. Then one defines its jump
matrix Π = (πij)i,j∈E as

πij =


qij
−qii : i 6= j and qii 6= 0

1 : i = j and qii = 0

0 : else.

The jump matrix Π is indeed a stochastic matrix, as one verifies by elementary
calculation.

We will now give the definition of a discrete-time Markov process, which will
then be used in the next step to define continuous-time Markov processes as in
(Norris, 1998, p.94).

Definition 4.2.6. Let (Xn)n∈N0 be a discrete-time stochastic process with a
countable state space E and P = (pij)i,j∈E a stochastic matrix. Let further λ
be a probability distribution on E. Then (Xn)n∈N0 is called a discrete-time
Markov process with transition matrix P and initial distribution λ, if for all
times n ≥ 0 and states i0, ..., in+1 ∈ E holds:

(i) P(X0 = i0) = λ(i0), and

(ii) P(Xn+1 = in+1|X0 = i0, ..., Xn = in) = pinin+1.
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Short hand for this definition is “(Xn)n∈N0 is Markov(λ, P )”. The definition
comprises an interpretation of the stochastic matrix P . We stated above that
each row of P forms a probability distribution on the state space E. If the
process (Xn)n∈N0 is in state i ∈ E at some time n, then the row Pi gives the
probability distribution of the following state, i.e, the state at time n + 1. To
put it even simpler: The matrix entry pij gives the probability that a process
which is in state i at time n will be in state j at time n+ 1. This is why P is
called the “transition” matrix of (Xn)n∈N0 . It gives the transition probabilities
between possible states. Note that this formulation in terms of the elementary
properties pij is only possible due to the countability of the state space E.

The Markov property can be extracted from this definition. It follows imme-
diately from (ii) and can be stated as follows.

Definition 4.2.7. A stochastic process (Xn)n∈N0 with countable state space is
said to possess the Markov property, if for any n ∈ N, and any i0, ..., in+1 ∈ E
holds:

P(Xn+1 = in+1|X0 = i0, ..., Xn = in) = P(Xn+1 = in+1|Xn = in).

This is the rigid formulation of the Markov property, which was explained be-
fore less formal: the future of the process does not depend on its past, provided
its present is known. In Definition 4.2.7 the statement Xn+1 = in+1 is the
“future” of the process, its state at time n + 1. Further, X0 = i0, ..., Xn = in
is its past, i.e., all the states it visited so far. Its present state is Xn = in.
The above property states that the probability of a certain future state in+1 is
solely conditioned on the most recent state in, and independent of the former
history of the process. The Markov property can be extended to processes with
uncountable state spaces or continuous time parameters, and it could be used
for the definition of Markov processes. This path is followed, e.g., in (Breiman,
1992, p.129,319).

But note the following. Since the setting we are interested in is that of
a countable state space, every process that is regarded here is a jump process.
That is a process, whose trajectories look like piecewise constant functions with
isolated1 jumps. Jump processes form a subclass of Markov processes. In the
following, we want to present three possible definitions of Markov jump pro-
cesses, all of which are equivalent and given in Norris (1998). These definitions
reveal additional structure of the processes, and are therefore favored over a
definition, which uses the Markov property alone. The three characterizations
are called “jump chain - holding time characterization”, “infinitesimal char-
acterization” and “transition probability characterization”. For the first one,
we must introduce the concepts jump time, holding time and jump chain of a
continuous-time jump process.

Definition 4.2.8. Let (Xt)t≥0 be a continuous-time jump process with count-
able state space E. Then the real valued random variables (Jn)n∈N0 defined

1Should the jumps not be isolated but possess accumulation points, that phenomenon is
called explosion.
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as

Jn =

{
0 : n = 0

inf {t ≥ Jn : Xt 6= XJn} : n > 0

are the jump times of (Xt)t≥0 (with the convention inf ∅ =∞).
The holding times (Sn)n∈N are defined as

Sn =

{
Jn − Jn−1 : Jn <∞
∞ : else.

The jump chain (Yn)n∈N0 of (Xt)t≥0 is a discrete-time process on the same
state space E defined by

(Yn)n∈N0 := (XJn)n∈N0
.

Interpretation of these quantities is fairly easy. The jump times are just those
times at which the process (Xt)t≥0 “jumps”, i.e., changes state, for the n-th
time. They are random variables themselves. Holding times are complementary
random variables, which measure the time of abidance of a process in its n-th
state. The holding time Sn before the n-th jump can only be finite if an n-th
jump does occur in finite time, this is the reason for the distinction of cases in
the definition. Examining the jump chain of a process means looking at the
process as if the jump times were purely ordinal, disregarding the time intervals
and regarding only the order in which the jumps occur.

Finally one needs the notion of a right-continuous process.

Definition 4.2.9. A continuous-time jump process (Xt)t≥0 with countable state
space E is called right-continuous if for each ω ∈ Ω the trajectory

X(t, ω) := Xt(ω) : T −→ E

is continuous from the right in any t ∈ T.

Now we can proceed to the three defining characterizations of continuous-time
Markov processes with finite state space (Norris, 1998, p.94).

Definition 4.2.10. Let (Xt)t≥0 be a right-continuous process with finite state
space E, and Q = {qij}i,j∈E a Q-matrix with jump matrix Π. Let further λ :=
X0 be a probability distribution on E. Then (Xt)t≥0 is called a continuous-
time Markov process with initial distribution λ and generator matrix Q, if
one of the following equivalent characterizations holds.

(i) “Jump chain - holding time” characterization
The jump chain (Yn)n∈N0 of (Xt)t≥0 is discrete-time Markov(λ,Π) and for
each n ∈ N the holding times S1, ..., Sn are independent random variables
with Si ∼ Exp(−qYiYi).

(ii) Infinitesimal characterization
For all t, h ≥ 0, conditional on Xt = i, Xt+h is independent of (Xs: s < t)
and, as h ↓ 0,

sup
t≥0

P(Xt+h = j|Xt = i) = δij + qijh+ o(h).

holds for all j ∈ I.
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(iii) Transition probability characterization
For all n ∈ N, all times 0 ≤ t0 ≤ t1 ≤ ... ≤ tn+1, and all states i0, ..., in+1

holds

P(Xtn+1 = in+1|Xt0 = i0, ..., Xtn = in) = pinin+1(tn+1 − tn), (4.2)

where P (t) = {pij(t)}i,j∈E, t ≥ 0 is the unique matrix solution of the
“backward equation”

∂

∂t
P (t) = QP (t), P (0) = 1 (4.3)

and the “forward equation”

∂

∂t
P (t) = P (t)Q, P (0) = 1. (4.4)

The symbol 1 denotes the corresponding unity matrix.

As short hand one writes “(Xt)t≥0 is Markov(λ,Q)” for any process that can
be characterized by one of the above conditions.

If E is countably infinite, (ii) cannot be used for the characterization of a
Markov process, and the forward equation is not necessarily equivalent to the
backward equation. Both properties hold only under the additional requirement
of minimality of the process. This notion leads to the topic of explosions of jump
processes, which we do not want to raise here.

The equivalence of the three characterizations is shown in (Norris, 1998,
pp.94). That a Q-matrix and an initial distribution are indeed enough to con-
struct a Markov process, and that such a process possesses the Markov property
(even in a strong sense) is shown in the same place.

Each of the three characterizations has its own advantages. The jump chain -
holding time characterization reduces the definition of a Markov jump process to
the declaration of an initial distribution and a Q-matrix, which is very conveni-
ent when defining a stochastic process. It also explicitely decouples jump chain
and waiting times, which opens up the common Markov chain Monte Carlo
strategy for the computer simulation of a Markov jump process. The infinites-
imal definition links the Markov property to the notion of differentiability. The
transition probability characterization introduces a differential equation and Q
as the “generator matrix”, opening up for semigroup theory.

Equipped with a clear notion of a continuous-time Markov jump process, we
can now proceed to introducing an example that is used in the stochastic theory
of coagulation: the Marcus–Lushnikov process.

4.2.2 Definition of the Marcus–Lushnikov process

Although the Marcus–Lushnikov process (ML process) is a common notion
in the literature on stochastic coagulation, there is no single generally used
definition. In this subsection we give our own formal definition of the process.
In the following Subsection 4.2.3 we want to discuss how this definition relates
to those definitions given in the most prominent places in the literature. We

69



4 Stochastic particle methods

also discuss, what questions the literature dealt with and what results were
achieved. In Subsection 4.2.4 we comment on one specific type of result, the
connections between the ML process and the classical deterministic coagulation
equation. Finally, we give a brief outlook on adaptations of the ML process and
further stochastic models of coagulation in Subsection 4.2.5.

We start with the definition of the ML process as a Markov jump process.
We use the characterizations of Definition 4.2.10. According to these charac-
terizations, in order to define a specific Markov jump process, it is enough to
define a state space, a Q-matrix and an initial distribution. Let us start with
the sheer definition, and proceed to the interpretation afterwards.

Definition 4.2.11. Let N ∈ N. The state space of the N -particle Marcus–
Lushnikov process is defined as

EML :=

{
n = (n1, ..., nN ) ∈ (N0)N |

N∑
i=1

i · ni = N

}
.

For n,m ∈ EML we write n
i,j−→m, if there are i, j ∈ {1, ..., N} with

m = n− ei − ej + ei+j ,

where ei, ej, ei+j denote unit vectors in (N0)N .
Let K : R×R −→ R+

0 be a symmetric coagulation kernel and h ∼ 1
N a scaling

parameter. Then the Q-matrix QML :=
{
qnm | n,m ∈ EML

}
of the N -particle

Marcus–Lushnikov process is defined elementwise as

qnm =


hK(i, j)ninj − δijhK(i, i)

(
ni(ni+1)

2

)
: n

i,j−→m

−
∑

k∈EML,k 6=n qnk : n = m

0 : else.

Let finally λinit be a probability distribution on EML.
The continuous-time stochastic process (XML)t≥0 that has state space EML and
is Markov(λinit, Q

ML) is called the N -particle Marcus–Lushnikov process
with initial distribution λinit.
If λinit has the form λinit (N · e1) = 1, the process is called monodisperse, in
any other case it is called polydisperse.

The process is well-defined because EML is countable (even finite) and be-
cause QML is a Q-matrix by construction.

Let us now come to an interpretation of the process as a stochastic model
for particle coagulation. The monodisperse ML process describes the stochastic
time evolution of a system of N uniform “unit particles” in a control volume,
which are subject to coagulation, forming larger particle aggregates. We call
such a system a particle ensemble. The ensemble can find itself in different
states, i.e., all the states which have a representation in the state space EML.
An element of EML is an N -tuple which encodes the information, how many
particle aggregates of which “type” are present in the ensemble. The “type”
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4.2 The Marcus–Lushnikov process

Figure 4.1: The state space EML of the 4-particle Marcus–Lushnikov process,
all five possible states are illustrated and listed. Each blue circle
represents a physical particle of unit mass, particles that overlap
have coagulated and form a larger particle aggregate.

of the aggregate is simply the number of unit particles it consists of. This
interpretation of the state space is illustrated in Figure 4.1. The number N is
at the same time the number of unit particles in the ensemble and the type of
the largest possible aggregate. The condition

N∑
i=1

i · ni = N

on the elements of EML is mass conservation – the total mass in the system
must be N times the mass of a unit particle at any time.

The ensemble changes state, i.e., jumps, at stochastic intervals. The jumps
that are possible are those between states that are connected by the relation

n
i,j−→m, (4.5)

which was given in the definition above. If two states n and m stand in that
relation, it means that m may arise from n by a single two-particle coagulation,
where one particle is of type i and the other is of type j. The stochastic rate
at which such coagulations happen is given by qnm, the respective entry in the
Q-matrix.2 Let us have a closer look at the definition of qnm. The interesting

2This follows, e.g., from the infinitesimal characterization of a Markov jump process with
finite state space.
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case, n and m standing in Relation (4.5), means especially that n 6= m. If also
i 6= j, the jump rate from state n to m is

qnm = hK(i, j)ninj .

As is common in macro- and mesoscopic models of coagulation, the entire phys-
ics of the coagulation process itself is hidden in the kernel K. The ML process
can be used as a stochastic framework for any reasonable coagulation kernel
K, which is a big advantage. The value K(i, j) gives the rate of a specific pair
of one i-type and one j-type particle coagulating. But as the ML process does
not distinguish between individual particles, this rate must be multiplied by
the number of possible ij-pairings, i.e., by ni · nj . The scaling parameter h is
of order 1

N . It keeps the total number of expected coagulations per infinites-
imal time of order N , which is important if the particles in the ML process are
regarded as representatitives of a certain number of physical particles.

For the diagonal case i = j, the rate expression with the Kronecker delta
reduces to

qnm = hK(i, i)
ni(ni − 1)

2
.

The factor ni(ni−1)/2 is just the number of possible pairings of particles of type
i, the scaling factor h plays the same role as it did before.

The matrix entries qnn give the rate of staying in state n, compare the jump
chain - holding time characterization of a Markov process. It is chosen as
the additive inverse of the sum of the other entries in the same row, so as to
guarantee the Q-matrix property of QML.

The initial distribution λinit gives the probabilities in which state the process
starts at time 0. A monodisperse initial distribution means that the process
starts from the state N ·e1 = (N, 0, ..., 0) with probability 1. This is the state of
N separate unit particles. Every initial distribution which allows for any other
initial state with non-zero probability is called polydisperse, as was stated in
the definition.

Let us close this subsection with an interesting point concerning the applic-
ability of the Marcus–Lushnikov process. In its original form, as we presented it
above, it does not contain any spatial information. Yet it assumes that the par-
ticles move in space, so that they can come near each other and coagulate. As
those events are assumed to happen stochastically, a source of random particle
movement must be present, and implicitly enter the model via the coagulation
kernel K. In the case of particles embedded in a fluid environment such a
source of randomness could be Brownian motion or turbulence, cf. (Marcus,
1968, p.133).

4.2.3 The process in the literature

In this subsection we want to point out some prominent places in the literat-
ure where the ML process emerged. For each of these, we will describe what
version of the ML process is introduced, how it relates to our definition in
Definition 4.2.11, and we will comment on the further results on the ML pro-
cess gained in these original contributions.

72



4.2 The Marcus–Lushnikov process

The eponymous works Marcus (1968) and Lushnikov (1978a) introduce the
state space that we denoted EML. The analysis of the process is done in terms
of the probability of elementary events,

pn0n(t) := P(XML(t) = n | XML(0) = n0). (4.6)

For the time evolution of these probabilities of elementary events an ad-hoc
formulation of the master equation is set up. A master equation can be for-
mulated for any time-continuous Markov process. It is a gain-loss equation for
the probability of finding the process in a certain state n at time t, conditional
on some initial state n0. The master equation set up in Marcus (1968); Lush-
nikov (1978a) turns out to be the forward equation in the transition probability
characterization of Definition 4.2.10, with the matrix QML. By showing this
equivalence, we establish the connection between “our” process (XML)t≥0 and
the process introduced in the original works.

The master equation from the original works reads, in the notation of (4.6),

d

dt
pn0n(t) =

∑
{
m|∃i,j:m i,j−→n

} qmnpn0m(t)−
∑

{
m|∃i,j:n i,j−→m

} qnmpn0n(t). (4.7)

In this equation, the states n0, n, and m are from EML, and the values qmn,
qnm are just off-diagonal entries of QML. The equations state, loosely speaking,
that the probability to find the process in state n at time t changes with a
rate, which decomposes into gain- and loss terms. The first sum on the right-
hand side contains the gain terms: the probabilities of the process at t being
in some state m, from which the state n can be reached by one coagulation
event, multiplied with the rate at which such a coagulation event ought to
happen (qmn). Conversely, the second sum assembles all loss terms, i.e., state
probabilities and rates of leaving state n at time t.

Let us now show that (4.7) is a “diagonal-free” form of the forward equation
of Definition 4.2.10. Firstly, note that the property (4.2) can be simplified to
comprising just the two times t0 = 0 and t1 = t. It then reads

P(X(t) = i1 | X(0) = i0) = pi0i1(t),

with pi0i1(t) solving the component (i0, i1) of the matrix differential equation
(4.4).

Choosing two arbitrary states n and n0 of the Marcus–Lushnikov process,
the corresponding component equation of (4.4) is the evolution equation

d

dt
pn0n(t) =

∑
m

pn0m(t)qmn. (4.8)

Note here that the left-hand sides of (4.7) and (4.8) are equal. Both equa-
tions describe the time evolution of the probability of an elementary event,
conditional on the initial state XML(0). The right-hand side of (4.8) can be
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rearranged as follows:∑
m

pn0m(t)qmn =
∑
m 6=n

pn0m(t)qmn + pn0n(t)qnn

=
∑
m 6=n

pn0m(t)qmn −
∑
m 6=n

pn0n(t)qnm.
(4.9)

This holds, because QML is a Q-matrix and thus has zero row sums. Combining
(4.8) and (4.9), one can see that (4.8) is equivalent to (4.7), because from both
sums in (4.9) all those terms where m and n do not stand in the coagulation
relation drop out. With this, it was shown that the master equation of Marcus
(1968); Lushnikov (1978a) defines exactly the process (XML)t≥0, yet the defini-
tion in these original works is less formal. We comment briefly on the results of
the papers. Proceeding from the elementary probability characterization of the
process sketched above, Marcus (1968) formulates a rather unwieldy represent-
ation of P(XML(t) = n | XML(0) = n0), which is based on the summation of all
paths of (XML)t≥0 which could possibly have led to state n from n0. In both
works it is further shown that the time evolution of the expected values of the
ML process are described by the classical coagulation equation, supposed the
numbers of particles of different classes are uncorrelated in a certain sense. We
will discuss that kind of result in Subsection 4.2.4.

Besides those two closely connected works, the same stochastic process was
introduced in Gillespie (1972). There the process is examined componentwise,
each particle size type n is regarded separately. Expressing it in our notation,
the object of interest in Gillespie (1972) is P((XML(t))n = m). This is the
probability of the elementary event m of the n-component of the Marcus–
Lushnikov process. Let us briefly give an outline of Gillespie (1972). For
P((XML(t))n = m), the author derives the master equation by basic combinat-
orial reasoning. This makes it necessary to find infinitesimal rates for possible
coagulation jumps, those rates that appear in the off-diagonals of QML. In his
derivation, the author faces the problem that the components of the Marcus–
Lushnikov process do depend on each other probabilistically, i.e., that the state
of (XML(t+ δt))n does not depend on the state of (XML(t))n alone. This is an
interesting example for a more general result: isolated components of a Markov
process are in general not Markov themselves, see (van Kampen, 1981, p.79).
The author can thus only continue his chain of reasoning by assuming that the
components are stochastically independent. This makes it possible to derive
the componentwise master equations. These equations simplify considerably
when ignoring diagonal coalescence, i.e., the coagulation of even-sized particles,
and these simplified master equations then give rise to the classical coagulation
equation. It appears as the evolution equation for the expected value.

The more recent contributions to the field, following what we called the
Markovian approach in Section 4.1, like Guiaş (1997); Norris (1999); Eibeck
and Wagner (2001); Deaconu et al. (2002), are mathematically very rigorous.
In defining (XML)t≥0 they employ the “jump time - holding time” character-
ization. Additionally, the authors choose a more general state space for the
process. Instead of mapping to a subset of ZN , there (XML)t≥0 maps into the
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4.2 The Marcus–Lushnikov process

set Mf of finite measures on (0,∞). Admissible as states of the ML process
are then all those µ ∈ Mf which can be written as a sum of unit masses, see
(Norris, 1999, p.95),

µ =

p∑
i=1

δmi .

In this expression each summand can be interpreted as a particle of mass mi.
The process (XML)t≥0 is then used as a tool to gain existence and uniqueness
results for the coagulation equation, with different coagulation kernels K. The
proofs make use of advanced stochastical and measure theoretical tools, and we
refrain from restating any of these results here. Besides using the ML process as
a tool for examining the coagulation equation, it appears as the central object
of interest itself, as in Chapter 4 of Norris (1999), or the works Eibeck and
Wagner (2001); Wagner and Eibeck (2003). In order to appreciate the results
therein, which establish a connection between (XML)t≥0 and the coagulation
equation, we turn towards that type of results now.

4.2.4 Macroscopic equation, weak law of large numbers and
deterministic limit

In this section we regard two types of results that establish a connection between
the Marcus–Lushnikov process (XML)t≥0 and the coagulation equation. This
means that a stochastic process and a phenomenological, macroscopic differen-
tial equation get linked to each other. This cannot only be done for the ML
process, but other stochastic processes allow for such a link to a deterministic
equation, too. In the following paragraphs, we sketch two canonical way of
establishing such a connection, and comment on some successful attempts of
doing this for the ML process in the literature.

The idea of the first way is discussed in some generality in (van Kampen,
1981, pp.130). The basic idea is to show that the expected value of the process
solves the macroscopic equation. Therefore, one has to derive such an equation
from the forward- or master equation. We sketch the idea here.

Let an arbitrary Markov process (Yt)t≥0 with state space E describe some
physical system in a stochastic manner. The process contains information on
a mean value of the state of the system and information on the fluctuations
around this mean.

If one starts with a deterministic description of the same system, in writing
down a macroscopic equation, one expresses the hope that the stochastic fluc-
tuations of the system around its mean are sufficiently small to describe the
evolution of the system by an equation which contains only the mean value y.
Information on the fluctuations around the mean is neglected in the macroscopic
equation.

A link between both descriptions can by achieved by formulating the determ-
inistic mean value y as the expected value of the process (Yt)t≥0:

y(t) := EYt.

An evolution equation for the expected value y can be gained from the master
equation of the process. If one can show that the master equation yields a
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differential equation for the expected value of the process, and that differential
equation is the same as the macroscopic equation, one has established the de-
sired connection. The process introduces fluctuations into the description of a
phenomenon, whose mean value is described by the macroscopic equation.

It is common knowledge in the physics community (see, e.g., Erban et al.
(2007)) that a connection as sketched above can easily be derived from the
master equation, if the model is linear, because the expectation is linear, too.
But regarding the Marcus–Lushnikov process, not only does it have quadratic
terms, which come from diagonal coagulation jumps of the form

(n0, ..., nN ) −→ (n0, ..., ni − 2, ..., n2i + 1, ..., nN ),

but to make things worse, all other jumps are essentially bi-linear. With these
insights, it seems only natural that in Gillespie (1972), where a result of that
type is derived, the author has to neglect diagonal coagulation (to drop the
quadratic terms) and must assume stochastic independence (to get a grip on
the bilinear terms). Only this enables to establish the classical connection
between the ML process and the coagulation equation.

A closely related, yet more general way to establish a connection between
process and macroscopic equation can be formulated in terms of a law of large
numbers. The idea is made explicit in “Open Problem 3” of (Aldous, 1999,
p.34). It is requested there to show for the Marcus–Lushnikov process a con-
vergence in probability

XML(t)
P−→ f(t, ·) for N →∞, (4.10)

pointwise in t, where the limit f(t, ·) is a deterministic function solving the
coagulation equation. The process should belong to a general kernel K, subject
only to rather weak boundedness conditions. The limiting procedure N −→∞
means letting the number of particles in a monodisperse initial distribution, i.e.,
the mass in the system, go to infinity. Note that at the same time the scaling
parameter h goes to zero, keeping the product h ·N constant, therefore keeping
the total rate of coagulations events in O(N).

This limiting procedure is known as deriving the hydrodynamic limit of the
microscopic model. Naming results of this type “weak law of large numbers”
(WLLN) might be somewhat misleading, if one has the classical weak law of
large numbers in mind. The term “large numbers” here does not refer to in-
dependent random variables with the same probability distribution, but to the
large number of unit particles, and its relation to the classical WLLN is due
to the type of convergence, i.e., convergence in probability. Another parallel is
the identification of the limiting function as a function solving the coagulation
equation - as was explained in the preceding paragraph, this is a property which
one expects from the expected value. In classical WLLN results, the limit would
be some common expected value.

A classical paper containing results in the WLLN direction for the ML process
is Hendriks et al. (1985). A more recent line of development includes Jeon
(1998); Norris (1999); Eibeck and Wagner (2001); Fournier and Giet (2004). An
interesting contribution is Jacquot (2010), which establishes a hydrodynamic
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limit for a related stochastic process, whose state space is able to keep track of
the history of each single particle agglomeration.

Finally, we want to share some thoughts on the usefulness of results of the
discussed type. First of all, the connection between process and coagulation
equation is useful for the mutual verification of the models. Whether the pro-
cess should justify the equation, or the equation should justify the process, de-
pends on the viewpoint. Because the Smoluchowski coagulation equation is the
historically earlier model, the convergence of (XML)t≥0 to its solutions can be
used to justify that the ML process is a valid coagulation model. On the other
hand, since (XML)t≥0 is a convincing microscopic model of coagulation, and
richer in detail (fluctuations!) than the coagulation equation, its convergence
behavior can be used to justify the macroscopic equation with equal rights.

Another use of those results are convergence proofs for computer algorithms
based on the Marcus–Lushnikov process. They are of interest for showing that
these algorithms yield a solution to the actual coagulation equation. Especially
WLLN-type results can be used to show that by increasing the number N of
computational particles, one has reason to expect a convergence towards the
solution of the coagulation equation. Before we have a closer look on a class of
simulation algorithms for the ML process (see Section 4.3), we want to give a
short outlook beyond the subject of the current section.

4.2.5 Beyond the Marcus–Lushnikov process

It goes without saying that the Marcus–Lushnikov process is not the only
stochastic model for coagulation. Yet the process is strikingly elegant, because
it is at the same time very simple and very general. It is simple, because its
construction blends very smoothly into the theory of time-continuous Markov
jump processes. Also its state space is fairly simple, and the definitions of its
jumps and jump rates are very comprehensible. One the other hand, it is rather
general. This is mainly, because it is constructed in the same way for any kernel
K and for any initial distribution λinit. Another trait that contributes to its
generality is its adaptability. In defining additional jumps, further phenomena
as fragmentation (Gueron (1998); Guiaş (1997); Norris (1999)), insertion (Pat-
terson and Wagner (2012)) and particle removal can be included. Note that
particle insertion in general makes use of an infinite (yet countable) state space.

On top of that, the process can be extended to more general state spaces.
Choosing a more general state space enables one to use more complex particle
descriptions. When one extends it by more sophisticated constructions, phe-
nomena like spatial inhomogeneity, diffusive and/or convective transport are
within range. Of course, these modifications will make it hard to recognize the
original ML process in it. A very interesting theoretical approach in that dir-
ection is the application of the theory of “piecewise-deterministic Markov pro-
cesses” from Davis (1993) in Patterson (2013), which allows for a deterministic
change of the process in between jumps, as do appear under the transporting
effect of a laminar flow field.

One might ask, up to which point it is still just to call a stochastic model of
coalescence a Marcus–Lushnikov process. To us it seems a good idea to keep
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(XML)t≥0 in mind as a “pivot”, starting from which one can understand and
classify other stochastic coagulation models.

A relatively recent overview article on these is Berestycki (2009), which dis-
cusses several stochastic models apart from (XML)t≥0 with applications in popu-
lation genetics. See also the very comprehensible constructions in (Aldous, 1999,
Chps. 3,4) for special coagulation kernels, which give an idea, what possibilities
there are in the stochastic theory of coagulation beyond the Marcus–Lushnikov
process.

4.3 Stochastic simulation algorithms

In this section we want to present in detail the stochastic simulation algorithm
(SSA), which we employ for the solution of population balance equations. The
SSA in its many recent forms is the result of more than forty years of combined
research effort. It has been improved and extended by different research groups
on different occasions, and with different scopes of application in mind. It was
developed further within different communities, and different names were coined
for it, among them “Kinetic Monte Carlo”, “Dynamic Monte Carlo”, “Dir-
ect Simulation Monte Carlo”, “Population Balance Monte Carlo” or “Gillespie
SSA”. The last of these names gives credit to Gillespie (1977), where the al-
gorithm was introduced as a tool for the simulation of reactive chemical sys-
tems. This work is still exceedingly well-cited in the chemical community. Two
years earlier, in Gillespie (1975), the same author presented a similar stochastic
algorithm for the simulation of water droplet growth in a cloud. This sim-
ulation approach stands in direct relation to the Marcus–Lushnikov process,
and it is the basis of the simulation algorithm we use. As was sketched above,
the algorithm underwent several changes and improvements. By now it has a
“layered” appearance, with different layers of improvement and enhancement
shining through.

In order to keep the balance between comprehensibility and completeness
of presentation, we will present each of the major improvements separately.
We start with the basic, Direct Simulation Monte Carlo (DSMC), version in
Subsection 4.3.1, setting it in relation to the Marcus–Lushnikov process and
Markov jump processes in general. In Subsections 4.3.3 to 4.3.5 we present
the major extensions and algorithmic improvements one after the other, basing
each of them on the simple DSMC algorithm. By proceeding in that manner,
we hope to keep the presentation well-ordered and more comprehensible, than
by stating the complete SSA in its entirety at once.

4.3.1 The direct simulation Monte Carlo algorithm

The direct simulation Monte Carlo (DSMC) algorithm, as it was introduced in
Gillespie (1975) and described, e.g., in Patterson and Wagner (2012), builds on
a very fundamental insight on Markov jump processes. As can be seen from the
“jump chain - holding time” - characterization in (4.2.10), in any Markov jump
process the jump chain (Yn)n∈N and the holding times (Sn)n∈N are independent
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of each other. In other words: what jump will occur next and when it will occur
are independent and can therefore be simulated separately.

The state space of the DSMC encompasses individual particles. The state of
the simulated particle ensemble at some time t is represented as

XSSA(t) =
(
mi(t)

)
i=1,...,N(t)

.

Here, contrary to our notation of the Marcus–Lushnikov process, N(t) is not
the number of “unit” particles, but the number of individual particles of any
size that are present in the system at time t. Therefore N(t) may vary in time,
this does not run contrary to mass balance. The values mi are the internal
coordinates of the particles, for simplicity picture once more mi ∈ N+ and mi

describing the mass of particle i.
Note for the sake of completeness that the state of the Marcus–Lushnikov

process XML(t) can be recovered from XSSA(t) by counting the number of
individual particles of the same masses. For some mass m ∈ N+ the relation is

(
XML(t)

)
m

=

N(t)∑
i=1

δ
((
XSSA(t)

)
i
,m
)
.

In that sense, the Marcus–Lushnikov process is a cumulated version of the
SSA process. The individual-particle approach of the SSA has some advant-
ages. Firstly, it allows for non-integer or multi-dimensional particle descriptions
straightforwardly, by replacing the inner coordinate space of the mi. Secondly,
it allows for modern object-oriented implementation, as each individual particle
can be realized as an instance of a general particle class.

The most basic DSMC algorithm starts from an initial state XSSA(0) that
was sampled according to some initial distribution λinit, and then advances the
state step by step, computing next jump time and next state alternately, until
some end-time tend is hit. The only possible jumps are coagulation jumps. In
the individual-particle state space those jumps take the form

(mI), (mJ) −→ (mI +mJ), (4.11)

and a renumbering of the particles will be necessary afterwards. Also, the jump
reduces the current total number of particles N(t) by 1. The coagulation of two
distinct particles I and J takes place at rate

λcoag(I, J) = hK(mI ,mJ),

with coagulation kernel K and scaling parameter h as in the definition of the
ML process. Underlying here is the assumption that all possible coagulations
are independent of each other. This implicit assumption was also present in the
formulation of the Marcus–Lushnikov process. The common justification is that
the overall number of particles is sufficiently large, so that interdependencies of
coagulation events can be neglected.

The pairwise coagulation rates give the non-zero entries of the jump matrix
ΠSSA, in that row which belongs to the current state of the system. Note that
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the rows and columns of this jump matrix are indexed with states of XSSA and
not with individual particle numbers. Which of the possible jumps will happen
next is discretely distributed according to the elementary probabilities

pIJ := P(I and J coagulate) =
λcoag(I, J)

λcoag
, (4.12)

where λcoag equals the sum of the individual jump rates:

λcoag :=
1

2

N(t)∑
i=1

N(t)∑
j=1
j 6=i

λcoag(i, j).

The factor 1
2 rules out double counting due to the symmetry of K. The holding

time of the process is exponentially distributed with parameter λcoag. Let τ0 = 0
and let τk be the time of the k-th jump, then the current holding time τ(t) :=
τk+1 − τk is distributed as

τ(t) ∼ Exp(λcoag). (4.13)

After each step, the jump rates λcoag and their sum have to be recalculated.
With this, we have all ingredients assembled, and the basic version of the SSA
is given in pseudo-code style as Algorithm 3. Most details of the algorithm
will be examined in the following subsections. We will not go into detail on
how random variables of a certain distribution get machine-generated, since
implementations of such algorithms are available in wide-spread programming
libraries like C++ boost, and based mainly on transformations of uniformly
distributed random numbers. Algorithms of that kind are described, e.g., in
Chapter 2 of Asmussen and Glynn (2007).

Based on Algorithm 3 we will now proceed to presenting those details and
major enhancements that constitute our version of the SSA.

4.3.2 Majorant kernels and reduction of computational complexity

The only jump type that is present in the basic SSA, coagulation, is of quadratic
(or rather: bilinear) nature. By that we mean that, just like in the determ-
inistic coagulation equation, terms that are bilinear in the unknowns appear,
because every coagulation event naturally involves two partners. This leads to
big computational effort, especially in Step 5 of Algorithm 3, when programmed
naively. The first algorithmic improvement which we want to present here was
introduced in Eibeck and Wagner (2001). It transfers a common scheme of
stochastic simulation, the acceptance-rejection method, to the SSA. Its key in-
gredient is a majorant kernel K̂, whose summation is less expensive than that
of K. As an illustrative example should serve the additive coagulation kernel

K(mi,mj) = mi +mj .

Step 5 in the SSA requires the computation and summation of all possible jump
rates. This requires O(N(t)2) operations (we skip the dependence on t in the
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Algorithm 3 The basic version of the direct simulation Monte Carlo algorithm
(DSMC or SSA).

Input: end time tend, initial distribution λinit

Step 0.1: Simulate initial state XSSA(0) according to λinit, set t := 0.
Step 0.2: Compute and store all individual jump rates λcoag(i, j).
Step 1: Generate holding time τ according to (4.13).
if t+ τ ≥ tend or N(t) = 1 then

terminate
else

Step 2: Generate pair (I, J) of coagulating particles according to (4.12).
Step 3a: Set t := t+ τ , update state XSSA(t) according to (4.11).
Step 3b: Do necessary renumbering of particles.
Step 4: Update those jump rates λcoag(i, j) that depend on former I

or J .
Step 5: Compute sum λcoag of jump rates.
goto Step 1.

end if

following occurrences of Landau notation). With an overall expected number
of jumps in the order of N , this leads to a computational complexity of O(N3),
which is not satisfactory.

If we regard the Marcus–Lushnikov case m ∈ N+ and additionally assume
m ≥ 2, then a simple majorant kernel is

K̃(mi,mj) := mimj .

Indeed K(mi,mj) ≤ K̃(mi,mj) holds for all mi,mj ≥ 2. Connected to the
majorant kernel are the majorant jump rates

λ̃coag(I, J) :=
K̃(mI ,mJ)

N

with scaling parameter N . The majorant kernel K̃, and with it the majorant
jump rates, sum in O(N), because

λ̃coag :=
1

2N

∑
i 6=j

mimj =
1

N

N(t)∑
i=1

mi

2

− 1

N

N(t)∑
i=1

m2
i

 ,

can be computed inO(N) operations. The main idea of the acceptance-rejection
scheme is to determine jump times according to this majorizing rate, and then
decide for each event whether it is a “real” jump or a numerical artifact, a “ficti-
tious” jump. The first stage of this process is to decide, which pair of particles
(I, J) is involved in the jump. This is sampled according to the majorizing
elementary property

p̃i :=
mi∑N(t)
i=1 mi
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for the first coagulation partner I, and the same for the second coagulation
partner J . Both steps can be performed in O(N).3 The second stage is the
decision, whether the current jump is real or fictitious. The (I, J)-jump is
rejected as fictitious with probability

Pfict = 1− λcoag(I, J)

λ̃coag(I, J)
. (4.14)

The acceptance-rejection scheme changes the overall order of Algorithm 3, and
it changes Steps 4 and 5. Instead of updating all involved jump rates, the com-
putation of λ̃coag is the first task. Then, after a jump time has been determined
and two coagulation partners were chosen, only for (I, J) must the real coagu-
lation rate λcoag(I, J) be determined, in order to evaluate (4.14). If the jump is
identified as fictitious, only the time t is updated, and the state of the system
is left unchanged.

The extra cost for the procedure is connected to the number of fictitious
jumps that are introduced. One has to make sure that for a given kernel K the
majorant kernel K̃ is chosen such that the acceptance efficiency

λcoag(I, J)

λ̃coag(I, J)

is large enough. If it is too small, the additional work introduced with ficti-
tious jumps exceeds the savings due to the majorant scheme, i.e., a locking
phenomenon occurs.

A propose of a majorant for the Brownian coagulation kernel, with some
asymptotic analysis of the acceptance efficiency and some numerical examples
can be found in Goodson and Kraft (2002). A nice write-up for a more general
kernel is presented in Patterson et al. (2011).

In the latter reference, another aspect for the reduction of the computational
complexity, going back to Patterson (2007), is described. We will skip the details
here, and only give a coarse overview. The amendment consists in introducing a
binary tree data structure for the state of the ensemble. In that data structure
each particle is represented by a leaf of a binary tree, and the non-leaf nodes
contain summed up particle properties. That data structure can be initialized
in O(logN) operations, and allows for all further necessary operations to be
performed in either O(1) or O(logN).

With a total number of coagulations below N(0) (remember that each co-
agulation event reduces the number of particles by 1), the total computational
complexity isO(N logN), if both algorithmic improvements are combined. This
is a huge gain compared to the O(N3) of the basic SSA.

4.3.3 The stochastic weighted algorithm

The basic DSMC experienced a major improvement in terms of variance reduc-
tion, when it was reformulated as the “Stochastic Weighted Algorithm” (SWA).
The algorithm was initially introduced as “Mass Flow Algorithm” in Eibeck and

3Even if programmed naively.
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Wagner (2001), the term SWA appears in Patterson et al. (2011), where also a
very accessible formulation of the algorithm can be found. Another beneficial
source on the subject is Kolodko and Sabelfeld (2003), where a class of weighted
methods is introduced. A substantial literature overview on the subject can be
found in Chapter 1 of Patterson and Kraft (2007). Two more recent propos-
als in the same direction are the “Weighted Flow Algorithm” of DeVille et al.
(2011) and “Differentially-Weighted Monte Carlo” of Zhao et al. (2010).

Particle weighting is a trait that is implicitly present even in the basic version
of the Marcus–Lushnikov process and the DSMC. There, the coagulation jump
rate is weighted with a parameter h that scales with 1

N . This scaling reflects the
fact that even if more particles are incepted into the ensemble, its density is kept
constant. This constant density shows itself in the property that the number
of effective particle collisions is O(N). What is actually happening is that the
volume of the system is raised, when more particles are added into the ensemble.
This point is interesting. One has to bring to mind that the ensemble which the
Marcus–Lushnikov process models and the DSMC simulates is a representative
or control volume Vcontrol of a larger, well-mixed particle containing system like
a cloud or a sooting flame. The number of particles present in the system is a
computational choice, their density is enforced by the physics, and this relation
is mediated by the scaling parameter h.

Going one step further, each particle in the ensemble can be understood as a
purely computational particle, representing just as many physical particles as
the relation of control volume and physical volume. Following this perception,
one can ask why not each computational particle should represent a different
number of physical particles.

This idea is made explicit in the SWA and related schemes. The SWA of
Patterson et al. (2011) extends the algorithmic state space by tagging each
computational particle with a real-valued weight wi ∈ [0, wmax], which can be
interpreted as the number of physical particles per unit volume, which the
computational particle represents. The state of the process at time t is then

XSWA(t) = (mi, wi)i=1,...,N(t).

The weighting changes the coagulation jumps, both the rate and the form of
the update. Instead of removing a computational particle, a shifting of weight
from the second to the first particle is performed, the second particle is left
unchanged. The (I, J)-coagulation jump in weighted form is(

mI , wI
)
,
(
mJ , wJ

)
−→

(
mI +mJ , γ(mI , wI ,mJ , wJ)

)
,
(
mJ , wJ

)
.

A proposal for a symmetric weight shift function that ensures mass conservation
is

γ(mi, wi,mj , wj) =
wiwj
wi + wj

.

See Patterson et al. (2011) for the proposal of a whole class of such shifting
functions γ. The jump rate of an individual coagulation jump is

λSWA
coag (I, J) = hK(mI ,mJ)wJ ,
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where only the weight of the second particle enters. Besides the changing of the
state space and the re-definition of the coagulation jump, the SWA proceeds
just like the DSMC, and the techniques presented in the former (and following)
subsections can be applied to it, with the necessary modifications.

An advantage of the SWA is the variance reduction (proven first in Eibeck and
Wagner (2001)), which becomes especially apparent when advection is involved
(see Subsection 4.3.5). The reason is that in the basic SSA large areas of the
particle mass spectrum tend to “depopulate”, which makes the algorithm prone
to stochastic noise. In the SWA, this “depopulation” is prevented, since each
coagulation event changes just one particle.

Another advantage is that the number of computational particles can be
kept constant in the SWA. This is convenient from a computational viewpoint,
because no additional measures to keep the number of computational particles
in a convenient regime must be taken. On top of that, the data structure which
administers the computational particles is easier to handle if the number of
particles does not change, as, e.g., no renumbering is required.

4.3.4 Linear process deferment

Extending the basic SSA to particle systems which include more processes than
just coagulation is, in principle, straightforward. In this subsection we want
to present a numerical trick to deal in particular with particle surface reaction
processes. Surface reaction processes are linear in that sense that the terms
which describe them mathematically involve just one particle, usually to the
first power.

In many model systems, linear processes happen a lot more frequently than bi-
linear processes. On the other hand, one occurrence of a linear process leads to
only slight changes of the affected particle, when compared to coagulation. This
observation sparked the idea of Patterson (2007), to “defer” specific linear pro-
cesses. This strategy distinguishes the “Linear Process Deferment Algorithm”
(LPDA).

In Patterson (2007) one finds an in-depth description in measure theoretic
formulation, and a numerical comparison to a less involved operator-splitting
approach, both methods applied to the simulation of soot formation in model
flames. The measure-theoretic formulation of the DSMC dates back to Eibeck
and Wagner (2001), and allows for better analysis of the convergence behavior
towards a deterministic limes. We will not switch to that formulation here, but
stick to our simpler notation.

Let an additional (linear) process R (for reaction) be present in the system.
A single occurrence of a reaction jump changes a single particle I:

(mI) −→ (R(mI)).

The rate of this specific jump, λreac(I), depends on just one particle. The sum
of all reaction jump rates of all particles in the system is

λreac :=

N(t)∑
i=1

λreac(i).
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In a straightforward DSMC approach, the holding time of the new ensemble
would be simulated as an exponentially distributed random variable with the
summed parameter

λ := λreac + λcoag,

and the type of the next jump would be determined by sampling according to

P(reaction jump) =
λreac

λ
, and P(coagulation jump) =

λcoag

λ
.

In the LPDA, the linear processes (or rather: those that are chosen for defer-
ment) are disregarded in the computation of the holding time, and made good
for as soon as a particle is chosen for a non-deferred jump. In the implement-
ation, all particles must hold a time tag of their last update. Whenever two
particles (I, J) are chosen for a coagulation event, the linear processes which
they might have experienced since their last update are performed. Updates of
deferred events should also be performed just before output about the particle
ensemble is written.

The reduction of computing time when applying this method is greatest when
the frequency of linear processes dominates bi-linear ones. In Patterson (2007),
three orders of magnitude could be gained in terms of computing time for certain
simulations of sooting flames, without a severe loss in accuracy.

4.3.5 Spatial inhomogeneity and advective transport

The SSA and its variants have been extended recently to cover systems with
spatial inhomogeneity, and especially advective transport by an external flow
field. Examples are Zhao and Zheng (2013), as well as Lee et al. (2015) and
Patterson and Wagner (2012). For our short presentation of the key points,
we stick to the latter source, though the main idea is the same in all cases. It
goes back to the Bird algorithm for the Boltzmann equation (Bird (1970)) and
consists essentially in a splitting scheme, splitting the particle transport (“free
streaming”) and the particle interaction step. Consider a constant splitting
time ∆tsplit. In the original Boltzmann application, the interaction step meant
computing particle collisions, where particles exchanged momentum. In our
Smoluchowski coagulation framework, the interaction step means computing
particle coagulations, and, in extended versions, other particle processes.

Some fundamental alterations must be conducted in order to adapt the SSA to
spatial inhomogeneity. The particle state space is complemented by a bounded
spatial domain Ω ⊆ Rd, d ∈ {1, 2, 3}, which must then be discretized into a
finite number of physically sensible and computationally feasible compartments
Kj , j = 1, ...,M . In Patterson and Wagner (2012) the spatial domain is one-
dimensional, and the compartments are just equally spaced sub-intervals.

Each computational particle gets tagged with a spatial coordinate xi ∈ Ω. All
particles whose spatial coordinate is located in the same cell Kj are regarded
as one ensemble, and during the particle interaction step only particles within
the same ensemble may interact. The state of the entire process at time t is
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now

XSSA(t) =
⋃

j∈1,...,M

(mj
i ,x

j
i )i=1,...,Nj(t),

where the coordinates of all particles in the same ensemble Kj were marked
with superscript j.

An external flow field u is responsible for the transport of the particles. In
the free streaming step, each computational particle is moved as if following the
trajectories of the numerical velocity field u (up to first order)

xji −→ xji + ∆tsplitu(xji ).

This transport step, inherited from the Bird algorithm, is performed for each
particle, and whether the relocated particle does still belong to the same cell
must be checked. If not, the particle must be relocated to the ensemble of the
new cell.

The particle interaction step poses the difficulty that whenever two particles
coagulate, the position of the new particle must be determined, without un-
wanted side effects. Two examples for such unwanted side-effects were noted
in Patterson and Wagner (2012). If inserting the new particle, e.g., at the
midpoint in between the two former positions, the particles amass more and
more at the midpoint of the cell. Also, coagulation will “pull back” mass
from the out-streaming periphery of a cell towards its in-streaming boundary,
therefore numerically slowing down the particles. To avoid these side-effects,
Patterson and Wagner (2012) proposed choosing a new particle position y, of a
particle which emerged from coagulation of the particles

(
mI ,xI

)
and

(
mJ ,xJ

)
stochastically, distributed according to the elementary probabilities

P(y = xI) =
mI

mI +mJ
, and P(y = xJ) =

mJ

mI +mJ
.

This stochastic center-of-mass approach mitigates the two issues addressed
above. The necessary changes when combining SWA and spatial inhomogeneity
are addressed in the same work.

The SSA which we employ in our coupled method comprises all the extensions
and algorithmic improvements which were described above. Note that combin-
ing all of them at once into one algorithm brings additional complexity, and
adaptations are necessary. How should the stochastic weight of particle that
moves into another cell be re-computed? How does one formulate the LPDA
when fictitious coagulation jumps are present? We refrain from answering all of
these questions here. The simulation framework Brush, developed at the Chem-
ical Engineering Department of Cambridge University, contains a combination
of all the algorithmic variants which we described above. Instead, we now move
on to the coupling of that algorithm with advanced finite element methods for
the external fluid quantities, which is the main undertaking of this thesis.
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5 The Coupled Algorithm for
Population Balance Systems

The aim of this chapter is to pinpoint and describe the type of population
balance systems on which this work focuses, and outline the coupling algorithm
which we use for their numerical solution. We intend this description to be
so general that it can serve as a foundation to the simulation projects in the
following chapters and can easily be transferred to similar problems.

The coupled model can be used to represent a system of species and particle
populations that are transported in a flow and interact with each other. The in-
teraction phenomena which are included in the basic model are particle growth
by surface attachment (subsequently: growth) and particle collision growth (co-
agulation). Other phenomena that the model could be adapted to include dissol-
ution and breakage of particles, particle nucleation and reaction of transported
species with each other.

In the basic version of the model system five macroscopic quantities appear.
These are the fluid velocity u and fluid pressure P , a species concentration c,
the temperature T and a particle size distribution f . One must keep in mind
that the species described by c will be that same species which the particles
described by f consist of, but in dissolved, i.e., fluid, state.

The domain of the unknown functions consists of a spatial and a temporal
part, and, in the case of f , of an inner coordinate space that describes the
particles. We denote the spatial domain (physical space) by Ωx ⊆ Rd with
d ∈ {2, 3}. The time interval is Ωt = (0, tend), with an arbitrary end time tend.
The spatial unit is m, the temporal unit s. The inner coordinate space (property
space) is denoted by Ωm. The type of property space is a defining feature of the
particular model. Multi-dimensional property spaces are conceivable, discrete
or continuous ones, the space can be bounded or unbounded. As before, we
stick to a univariate, unbounded, continuous property space: Ωm = (0,∞) and
interpret the inner coordinate as particle mass (in kg).

To fix ideas, let us comment on the units of the functions. Each compon-
ent of the fluid velocity u is given in m/s, the pressure P in Pa. The species
concentration is a molar concentration (mol/m3). Temperature T is given in K.
The function f is a number density function defined on the particle state space
Ωt × Ωx × Ωm. In our mass-based approach it would be more appropriate to
call f the particle mass distribution, yet the notion particle size distribution
(PSD) is more convenient. The unit of the PSD is 1/m3·kg.

The system consists of four partial differential equations1 and one integro-
differential equation. These are the Navier–Stokes equations for u and P ,

1Counting the Navier–Stokes equations as two.
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convection-diffusion-reaction equations for T and c, and a population balance
equation for f .

The equations are instationary and the spatial domain is bounded. Therefore
initial and boundary conditions will have to be supplied for each quantity.
Boundary conditions depend heavily on the example, therefore we will not
incorporate their formulation in the following presentation of the basic model,
but postpone them to the concrete numerical examples.

In the basic model, the coupling of the equations occurs by the terms that
are responsible for particle surface growth. Particle surface growth is strongly
dependent on temperature and species concentration in the surrounding fluid.
Therefore it links the quantities c, T , and f mutually to each other.

The model which we use is essentially that one of Hackbusch et al. (2012) and
Suciu (2013). The main differences are that we choose particle mass instead of
particle diameter as the internal coordinate and that we reformulate the growth
term in the PBE in order to make it more inclined to the stochastic formulation.
In the remainder of this chapter we will write down the macroscopic model
equations and give an interpretation for each of them (Section 5.1), explain
their inherent coupling (Section 5.2), and finally give our coupled algorithm in
a pseudo-code like fashion (Section 5.3).

5.1 The constituent equations

In this subsection we present the constituent equations and point out some
modeling concerns connected to them. For details on their numerical treatment,
we refer to the respective chapters of this thesis.

5.1.1 Velocity field

In general, the velocity field u is determined by the full, instationary, incom-
pressible Navier–Stokes equations. For certain examples, simplifications of the
NSE can be chosen, for example a stationary version of the equations for laminar
flows or the Stokes equations for creeping flows. Several academic examples,
like plug flows or pipe flows, admit choosing an analytic expression for u. The
full incompressible Navier–Stokes equations and their numerics are treated in
detail in Chapter 2 of this thesis. In their dimensioned form they read

∂

∂t
u− ν∆u+ (u · ∇)u+∇P

ρ
=

f

ρ
in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.

Besides the vectorial fluid velocity u the fluid pressure P appears as an un-
known. The parameter ν [m2/s] is the kinematic viscosity of the fluid and
ρ [kg/m3] its density. These parameters are assumed to be constant in space
and time.

Note that none of the other unknown quantities, c, T , or f , appears anywhere
in these equations. In our model the fluid velocity is connected to the other
quantities only by a one-way coupling. The fluid flow field is responsible for the
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transport of the other quantities, but it is not influenced by their state in any
way. This is a modeling decision, and it is typically justified with the relatively
small size of the transported particles and the low fluctuations of concentration
and temperature. Excluding such backcoupling is also an economic decision.
The direct numerical simulation of the NSE is computationally very expensive,
and therefore it is occasionally very beneficial, if it does not have to be re-
computed at each time step but can, e.g., be computed and stored in a pre-step.

Still, the fluid velocity plays a role beyond the pure transport of the other
quantities. Namely, it is the driving force behind particle collision, and the
modeling of the coagulation (collision growth) must be done accordingly. This
means choosing a coagulation kernel that fits the physical properties of the flow.

5.1.2 Fluid temperature and species concentration

The basic model further contains two convection-diffusion equations. They
describe quantities that are transported by the fluid flow with advection velocity
u, and are subject to diffusion. The first such quantity is the temperature T [K].
The energy balance reads

∂

∂t
T −DT∆T + u · ∇T = gT Igrowth(c, T, f) in (0, tend)× Ωx. (5.1)

The second quantity is a species concentration c [mol/m3]. Let it for our purposes
denote the molar concentration of the solute, although different concentration
measures could be chosen. Its convection-diffusion equation is

∂

∂t
c−Dc∆c+ u · ∇c = gcIgrowth(c, T, f) in (0, tend)× Ωx. (5.2)

From a mathematical point of view, T and c play very similar roles in the
model system, both of them act as transported species. Numerical methods
for convection-diffusion equations as (5.1) and (5.2) are described in Chapter 3
The parameters DT [m2/s] and Dc [m2/s] are constant diffusion parameters. The
terms that contain the fluid velocity u model the advective transport. On
the right-hand side, Igrowth [kg/m3·s] is a term that measures the intensity of
the particle growth by attachment of dissolved material. It depends on all
transported quantities, i.e., on c, T , and f , and on the spatial coordinate x.
The term manifests itself as an integral over the property space Ωm, having the
form

Igrowth(c, T, f, t,x) =

∫
Ωm

G(c, T,m)f(t,x,m) dm. (5.3)

A particle growth model must be chosen for the growth rate G. Proper choices
of such models depend on the example, see the chapters on numerical examples
for some options.

The constant scaling parameters gT [K·m3/kg] and gc [mol/kg] scale the influence
of the growth intensity on the respective quantity linearly. In those parts of
(0, tend) × Ωx where particle growth appears, Igrowth will be positive. In the
remaining parts it is zero, thus Igrowth ≥ 0. Since particle growth by attachment
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goes along with “consumption” of the dissolved material, we expect growth to
lead to a sink in Equation (5.2), thus gc < 0. At the same time energy will
be released when material crystallizes, i.e., molecule bonds are formed, and
thus energy released. This is why growth leads to a source term on the right-
hand side of (5.1), gT > 0. That is to say, the formation of crystals from
a solute is usually exotherm (Mullin, 2001, p.62), but there are examples for
endotherm crystallization processes, too, e.g., the crystallization of anhydrous
sodium sulfate from an aqueous solution.

5.1.3 Particle number density function

The particle number density function, or particle size distribution, f [1/m3·kg]
is subject to a population balance equation. Our stochastic approach to the
solution of that type of integro-differential equations is described in detail in
Chapter 4. In the univariate case which is studied here, the equation for f is

∂

∂t
f + u · ∇f +G(c, T )

∂

∂m
f = C(f) in (0, tend)× Ωx × Ωm. (5.4)

This equation must hold on a higher-dimensional domain than the previous
ones, because of the internal coordinate m [kg] for the particle description.
The domain comprises temporal, physical, and property space; it is called the
particle state space. Equation (5.4) is a classical formulation for a population
balance, when the PSD is changed by transport along both the external and the
internal coordinate. It appears, e.g., in (Ramkrishna, 2000, p.20, Eq. (2.7.9))
and is the basis of the model that is used in Hackbusch et al. (2012); Suciu
(2013).

The second term on the left-hand side describes advective transport of the
population by the velocity u. The third term models transport along the in-
ternal coordinate. In our case it is a growth term which accounts for particle
growth by attachment of dissolved material to crystals in the fluid. The growth
rate G depends on concentration and temperature, and on the particle mass
m. It is the same rate that appears in (5.3). The dependence on c and T is
via a supersaturation model. The higher the supersaturation of the surround-
ing fluid, the greater one expects G to be. To model the dependence on m,
it is sensible to choose a particle geometry description and let G depend on
the surface area of a particle of mass m. In Chapter 6 we will choose the so-
called Nyvilt model for the solubility (for dependence of G on c and T ) and a
simple spherical particle geometry (for dependence of G on m). In Chapter 7
a polynomial solubility model will be used, and the same simple geometry.

The term on the right-hand side is a sink-and-source term for particles of
size m by further mechanisms. In our case, the only further mechanism is
collision growth (coagulation). Coagulation is modeled as in the Smoluchowski
coagulation equation: Particles of size m are created by collision of smaller
particles at rate

C+(f, t,x,m) =
1

2

∫
Ωm

Kcoag(m− µ, µ)f(t,x,m− µ)f(t,x, µ) dµ.
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At the same time, particles of size m collide with other particles, forming larger
particle aggregates, and therefore disappear from the equation for size m at
rate

C−(f, t,x,m) =

∫
Ωm

Kcoag(m,µ)f(t,x,m)f(t,x, µ) dµ.

The function Kcoag [m3/s] is the coagulation kernel. It encodes the physics of
the coagulation process and must be chosen according to the modeled system.
The source expression C+ and the sink expression C− form the net change of
the particle population due to coagulation,

C = C+ − C−.

Note that (5.4) with these coagulation terms on the right-hand side can also be
regarded as a version of the classical Smoluchowski coagulation equation that
is extended by a spatial coordinate x, particle transport, and particle growth.

We intend to solve population balance equations with the stochastic particle
method that is described in detail in Chapter 4. One finds that for this method
the classical formulation (5.4) is not suitable. To be more precise, the growth
term on the left-hand side does not fit into the framework and has to be refor-
mulated. We perform this in the next paragraph.

Reformulation of the growth term Remember that for the solution of the
PBE (5.4) we want to use the stochastic particle method that is presented in
Patterson and Wagner (2012). It is based essentially on two sources: G.A.
Bird’s direct simulation Monte Carlo algorithm for the Boltzmann equation
(Bird (1970)) and Gillespie’s stochastic algorithm for the simulation of collision
growth phenomena in clouds (Gillespie (1972, 1975)). While the Bird algorithm
provides a way to deal with the advective transport part (by splitting), the
Gillespie algorithm gives a tool to treat the coagulation part of the equation
(by formulating a jump process). Particle growth, which is the third feature
of the basic model PBE, is included in neither of these original sources, nor is
it considered in Patterson and Wagner (2012). Yet in a previous publication,
Patterson et al. (2011), particle surface reaction is included in model and sim-
ulation. The way it is done there is closely related to the publications Gillespie
(1976, 1977), where a stochastic algorithm similar to that one introduced in
Gillespie (1972) is applied to chemical reactions. To conclude this short digres-
sion into the literature: our aim is to simulate growth as a stochastic jump
process, and therefore we have to find a different formulation of (5.4). The key
is to understand particle growth as a particle surface reaction rather than as
convective transport along the internal coordinate axis. Let us compare those
two approaches and find the link between them.

Let for the moment the particle number density function f : (0, tend)×Ωm →
R+

0 only depend on time t and the internal (mass) coordinate m, i.e., assume
spatial homogeneity. Further, let particle growth by attachment be the only
reason for f to change, thus disregarding coagulation.

First, let us sketch the derivation of a population balance equation under
the concept of “particle growth as transport along the inner coordinate axis”.
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This sketch follows the presentation in (Ramkrishna, 2000, pp.16). The main
assumption is that for each m ∈ Ωm there exists a (time-independent) growth
rate G(m) at which any particle of mass m grows. Fix an arbitrary interval
[a, b] ⊆ Ωm in the property space. The particle number balance in the interval
[a, b] is then given as

d

dt

∫ b

a
f(t,m) dm = G(a)f(t, a)−G(b)f(t, b).

On the right-hand side, the first term is the particle number flux into [a, b]
through a due to growth, and the second term the flux out of [a, b] through
b. If one assumes smoothness of f and G, both the time derivative and the
right-hand side can be written under the integral,∫ b

a

(
∂

∂t
f(t,m) +

∂

∂m
(G(m)f(t,m))

)
dm = 0.

In a next step, the equation can be reduced to the integrand, because of the
arbitrary choice of [a, b] and the smoothness of G and f . This gives the final
PBE (with the time derivative isolated on the left-hand side again),

∂

∂t
f(t,m) = − ∂

∂m
G(m)f(t,m). (5.5)

Assuming that G(m) ≡ const., and re-introducing the left-out features (ad-
vection, coagulation, dependence on c and T ), one regains (5.4). The feature,
which we want to emphasize, is that particle growth appears as a transport
term in this form of the PBE.

In the second approach, which will allow for a more straightforward stochastic
formulation, one starts with regarding particle surface growth as a chemical
reaction. Each particle type m ∈ Ωm acts as a chemical species and f(t,m) can
be interpreted as the number concentration of the species at time t. We stick
to the assumption of spatial homogeneity here. One states that each growth
reaction for a particle means a mass gain of µ > 0. The growth reactions can
be written as

m
rm−→ m+ µ,

where rm is the rate at which this growth reaction takes place. A standard
ODE description of this reacting system gives for every m

∂

∂t
f(t,m) = rm−µf(t,m− µ)− rmf(t,m). (5.6)

The first term on the right-hand side stands for gain of m-type particles by
growth of particles of size m− µ, the second term for loss of m-type particles.
Comparing (5.5) and (5.6) yields that in order to connect transport-based and
reaction-based growth modeling,

− ∂

∂m
G(m)f(t,m) ≈ rm−µf(t,m− µ)− rmf(t,m) (5.7)
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5.1 The constituent equations

must be fulfilled in some sense. Abbreviating ϕ(t,m) := rmf(t,m) for all
m ∈ Ωm, we observe

ϕ(t,m− µ)− ϕ(t,m) = −µϕ(t,m− µ)− ϕ(m)

−µ
= −µ

(
∂

∂m
ϕ(t,m) + o(µ)

)
,

if ϕ is smooth. Thus, up to first order,

rm−µf(t,m− µ)− rmf(t,m) = −µ ∂

∂m
(rmf(t,m))

holds, and one can interpret the approximated equation (5.7) in this way.
This leads to the following conclusion. If one wants both approaches to model

the same physical process from a macroscopic (first order) point of view, the
identity

G(m) = µrm (5.8)

must hold.

The final formulation of the PBE Replacing the particle growth terms in
(5.4) accordingly gives the following formulation of the basic model population
balance equation:

∂

∂t
f + u · ∇f = C(f) + G(c, T, f) in (0, tend)× Ωx × Ωm. (5.9)

Here one fixes a mass growth increment µ [kg] and sets, using (5.7) and (5.8),

G(c, T, f,m) =
G(c, T,m− µ)

µ
f(m− µ)− G(c, T,m)

µ
f(m).

The form (5.9) of the PBE is better suited to be treated with the stochastic
particle algorithm, as we will show next.

The Markov jump process formulation In order to solve the population bal-
ance equation (5.9) with the stochastic simulation algorithm, one must put it in
the form of a Markov jump process. This formulation must comprise the same
phenomena as the PBE does. In addition, the jump heights and jump rates
must reflect the properties of the terms in the PBE. The equation is split into
a transport part (advection, left-hand side) and a particle process part (growth
and coagulation, right-hand side) (Patterson and Wagner, 2012, p.B292). The
spatial domain Ωx is discretized into N compartments Kj , j ∈ {1, ..., N}. Each
compartment, or cell, holds a particle ensemble Ej . The particles are allowed
to interact with each other within their current ensemble. In that sense, co-
agulation and growth are de-localized2 within the cells. Advection and particle
interaction are simulated alternately. While advection is a deterministic step,
governed by the fluid velocity u, the particle processes are simulated with the
SSA. For a more detailed description of the algorithm, see Chapter 4.

2In that sense that particles do not have to meet in the same point in space in order to
coagulate. It is enough for them to be contained in a common cell.
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5 The coupled algorithm for population balance systems

Let us now formulate the stochastic jump process that takes place in each cell.
Our presentation follows closely that one in Patterson et al. (2011). For the
sake of simplicity, we give the jump process in terms of the “direct simulation
algorithm” described in (Patterson and Wagner, 2012, Ch. 2.1). It has the
advantage to spare some stochastic subtleties of the actually used stochastic
weighted algorithm (Patterson and Wagner, 2012, Ch. 2.2).

Fix a spatial cell and the respective particle ensemble, (K, E). Each particle
ei in E is represented by a spatial and an internal coordinate,

ei = (xi,mi),

with xi ∈ K ⊆ Ωx and mi ∈ Ωm. The entire ensemble, consisting of NE
particles, is thus

E = (e1, ..., eNE ).

The state of the ensemble can change by particle growth jumps and by particle
coagulation jumps. Starting at some time t, the system persists in state E(t)
for an exponentially distributed waiting time τ ,

P (τ ≥ s) = exp(−λ(E)s).

The waiting time parameter λ(E) is the sum of the individual rates of all jumps
that are possible in E(t). Assembling these in a growth jump rate λgrow and a
coagulation jump rate λcoag gives:

λ(E) = λgrow(E) + λcoag(E).

Growth jump rate and coagulation jumps and their rates are treated separately
in the following paragraphs.

Particle growth jumps A particle growth jump by a fixed growth height µ
changes the state of a certain particle ei in E according to

ei = (xi,mi) −→ (xi,mi + µ) =: ẽi.

Growth jumps in E happen at the total rate

λgrow(E) =

NE∑
i=1

G(c, T,mi)

µ
.

The particle ei for which the next growth jump occurs is chosen uniformly with
probability

G(c, T,mi)

µ
(λgrow(E))−1 .

In this expression, c and T are assumed to be constant (in space) within the
cell K.

94
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Particle coagulation jumps Coagulation jumps affect two particles, denote
them by ei and ej (with i < j). A coagulation jump has the form

ei, ej −→ (ξ(xi,xj),mi +mj) =: ẽi

The particle ej is removed from the ensemble. The placement of the new particle
ẽi can be done in several ways. A simple, yet “dangerous” choice is to place
the new particle halfway between the two coagulated ones:

ξ(xi,xj) :=
xi + xj

2
.

This is dangerous as it can easily lead to numerical instabilities. A more stable
approach is stochastic placement, with the center of mass as the expected value.

The total rate of coagulation jumps is the sum of all individual coagulation
jump rates of particle pairs. It is calculated as

λcoag(E) =
1

2NE

NE∑
i,j=1

K(mi,mj).

As in the particle growth case, the choice of two particles for a coagulation
jump is made uniformly at random with the probabilities

P (ei and ej chosen for coagulation) =
K(mi,mj)

2NE
.

With these definitions of jumps and jump rates, the stochastics of the process
are sufficiently defined. Evidently, correlations between particles are neglected.

Note that the stochastic reformulation can be interpreted as an extension of
the Marcus–Lushnikov process (see Subsection 4.2). Compared to the Marcus–
Lushnikov process, the state space is changed from number-based to particle-
based and the model is extended by spatial coordinates, advective transport,
and particle growth. In this sense, the jump process defined here is to the
Marcus–Lushnikov process as the population balance equation (5.4) is to the
Smoluchowski coagulation equation.

5.1.4 Overview of the basic model system

Let us now, in compact form, repeat the entire system of equations that form
our basic model. The domain consists of the temporal domain (0, tend), physical
space Ωx, and property space Ωm. Together they form the particle state space.
Fluid velocity u, temperature T , molar concentration c, and particle number
density f must fulfill the following set of equations.

Navier–Stokes equations:

∂

∂t
u− ν∆u+ (u · ∇)u+∇P

ρ
=

f

ρ
in (0, tend)× Ωx [m/s2]

∇ · u = 0 in [0, tend]× Ωx [1/s]
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Convection-diffusion-reaction equations:

∂

∂t
T −DT∆T + u · ∇T = gT Igrowth(c, T, f) in (0, tend)× Ωx [K/s]

∂

∂t
c−Dc∆c+ u · ∇c = gcIgrowth(c, T, f) in (0, tend)× Ωx [mol/s]

Population balance equation:

∂

∂t
f + u · ∇f = C(f) + G(c, T, f) in (0, tend)× Ωx × Ωm [1/m3·kg·s].

The inherent coupling of these equations due to the particle growth term and
the coupled algorithm is the subject of the following subsection.

5.2 The inherent coupling

In this subsection we want to derive a classification of the inherent coupling of
the model system. We are interested in the question how the coupling of the
equations transfers to a coupling of the two algorithms, the stochastic particle
simulation and the deterministic flow simulation. Which program part is re-
sponsible for which part of the model system? Which communication is neces-
sary between the two components of the simulation?

These questions are addressed in the following. We start from the mechanisms
that are responsible for the coupling, then lead over to a taxonomy of the
coupling phenomena and finally deduce a practical coupling strategy.

Two mechanisms are responsible for the coupling of the equations. Firstly,
there is a one-way coupling of the fluid velocity u to the system of the other
equations. This is due to the transport of the quantities c, T , and f with
the fluid flow. The velocity, which is itself determined from the Navier–Stokes
equations, appears as a coefficient in the other equations.

Secondly, the other unknown quantities are coupled to each other via particle
surface growth. Concentration and temperature in the surrounding fluid affect
the mass growth rate G of the crystals. Crystal growth leads to a local rise
in fluid temperature and a local drop in concentration of dissolved species. A
schematic overview of the coupling of the equations of the basic model system
is diagrammed in Figure 5.1.

A relatively simple extension of the basic system consists in adding more
dissolved species to the model and couple them to each other and to the tem-
perature by including species reaction. Such a model has been examined in John
and Roland (2010). Figure 5.2 displays the coupling scheme of this extension.

In order to understand the nature of the coupling, we want to state that it
can be systemized on three different levels. These are the level of functions, the
level of equations, and the level of modeled phenomena. For the Figures 5.1 and
5.2 we used the level of functions. This level can be easily linked to the level
of equations, because there is a one-to-one correspondency between functions
and equations. Each unknown function can be identified with one equation
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Temperature T

velocity
field u PSD f
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coefficients
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sources
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Figure 5.1: The coupling scheme of the basic model system. The fluid velocity
field is one-way coupled to the species-particles system.

where it appears as the main unknown, e.g., u (and P ) with the Navier–Stokes
equations, c and T with their respective transport equation, and f with the
PBE. In all other equations, the function will either appear as a coefficient or
on the right-hand side. This observation leads to the level of phenomena. We
found that considering coupling on this level is a suitable intellectual tool for
setting up the splitting scheme.

Each physical phenomenon that can be modeled can be understood as de-
picted in Figure 5.3. A phenomenon is driven by coefficients. They can either
be constant or depend on variable quantities within the system. Each phe-
nomenon has then effects on the system. These can be of primary nature, i.e.,
directly change a variable quantity, or of secondary nature, i.e., change the coef-
ficients of another phenomenon. In our model system, consider for example the
phenomenon of particle growth. It is modeled to depend on concentration c,
temperature T , and particle number density f . That means, c, T , and f enter
that phenomenon as coefficients. Particle growth has a primary effect on all
of these quantities, too, because by growth concentration is depleted, temper-
ature raised, and the particle number density shifted towards bigger particles.
Secondary effects of particle growth are visible in just one other phenomenon:
Depending on the kernel, particle coagulation becomes more (or less) likely, the
bigger the particles are.

Note that secondary effects are always mediated by a primary effect, and
which phenomenon was responsible in the first place is of no concern to the
secondary effect. In the governing equations, primary effects show themselves
as right-hand sides, i.e., source and sink terms, while secondary effects manifest
themselves as coefficients.

In our model system, two classes of quantities are distinguished. The first
class, fluid quantities, comprises u, c, and T . The second class, the particle
quantities, consists only of the particle number density f .

With these notions at hand, we can state the following basic “formula” for
our coupling approach:

Statement 5.2.1. Three guidelines determine the coupling strategy on the phe-
nomenon level.
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Figure 5.2: The coupling scheme of an extended model system. Species reaction
leads to an internal coupling of the advected quantities.

(a) All phenomena that exhibit a primary effect on a particle quantity are
subject to the stochastic simulation algorithm.

(b) All phenomena that exhibit primary effects solely on fluid quantities are
subject to the flow simulation.

(c) “Communications” between the simulations are either in terms of right-
hand sides (primary effects) or coefficients (secondary effects).

In our model system, each phenomenon with particle coefficients has also
a primary effect on the particle quantity, and it will thus never be necessary
to communicate coefficients from the stochastic simulation to the flow simula-
tion. On the other hand, it is never necessary to communicate right-hand sides
from the flow simulation to the stochastic simulation due to (a). That is, all
phenomena, which exhibit a primary effect on a particle quantity are treated
already within the stochastic simulation. Here is our approach on communica-
tion between the parts of the simulation in a nutshell:

Statement 5.2.2. The stochastic particle simulation receives coefficients from
the flow simulation, the flow simulation receives right-hand sides in return.

A less “philosophical” approach on the coupling, more inclined towards com-
putational mathematics by just stating the splitting scheme, is given in the next
subsection.
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PHENOMENON

Coefficients

Primary Effects

Secondary Effects

Figure 5.3: Each modeled physical phenomenon is determined by coefficients,
and has primary and secondary effects.

5.3 The coupling algorithm

Before giving the algorithm, we have to agree on some more notation. For the
computational domain we use the following symbols. The spatially discretized
version of the particle state space is Ωk, part := (0, tend)×Ωk

x×Ωm. The spatially
discretized version of the space for the fluid quantities is Ωh, fluid := (0, tend)×
Ωh
x. The subscripts k and h do not have any concrete interpretation yet. They

do just indicate that the spatial component of the computational domains might
be discretized differently for the particles and for the fluid. This necessitates
some transfer of functions between Ωk

x and Ωh
x. Although the relation of these

computational domains is unspecified at the moment, we will use the term
“projection” for each operation that transfers functions between them, despite
the precise mathematical meaning of that term.

The coupling algorithm, in pseudo code style, is given in Algorithm 4. The al-
gorithm itself is a splitting scheme, and can be written down relatively simple.
As so often, governing is in the details here. The constituents are the fluid
solver, the stochastic particle simulation, and some means of projecting func-
tions between these two entities. The latter can be pictured as a communication
layer. In the pseudocode, “advance the SPS” means to run the stochastic sim-
ulation from its state Ek(tn−1) = (E1, ..., EN ) at time tn−1 to its state Ek(tn) at
time tn. This means, perform as many transport splitting steps and all jumps
of the particle ensembles that ought to occur in the time span [tn−1, tn]. In
the formulation of Algorithm 4 we assumed a stationary velocity field u. If
u is time-dependent (as in the system of Chapter 7), one has to include its
update into the time-loop. Equipped with this description of the model, the
coupling philosophy and the pseudo-code version of the coupling algorithm, we
can proceed towards practical applications of the resulting coupled method.
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5 The coupled algorithm for population balance systems

Algorithm 4 Coupling of computational fluid dynamic simulation (CFDS) and
stochastic particle simulation (SPS)

Input: Ωk, part and Ωh, fluid, initial and boundary data, ∆t.

PRECOMPUTING:
Compute u by solving the Navier–Stokes equations in the CFDS.
Project u into Ωk

x.
Initialize the SPS, c0, and T 0 with initial data.

TIME LOOP:
n := 0
t0 := tstart + ∆t
while tn < tend do

n := n+ 1.
tn := tn−1 + ∆t
PART A

Project cn−1 and Tn−1 to Ωk
x

Update the growth coefficients in the SPS with cn−1 and Tn−1

Advance the SPS to time tn

Compute Ingrowth from the SPS ensembles.
PART B

Project Ingrowth to Ωh
x.

Update the source and sink terms in the CFDS with Ingrowth.
Compute cn and Tn with the CFDS.

end while

POST-PROCESSING
Perform post-processing on the gathered data
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6 A 2d Axisymmetric Simulation of a
Tubular Flow Crystallizer

This chapter is devoted to the modeling and simulation of an experimental flow
crystallizer. We will use the coupling technique that was expounded in the
previous chapter for the solution of this model system.

A flow crystallizer is a device for the production of crystalline substances.
It consists mainly of a long, thin tube that is usually coiled up for practical
reasons. A three-component dispersion is pumped into the tube at the one end,
which will be called the inlet. The dispersion contains a solvent, a solute and
seed crystals, which consist of the same material as the solute. The dispersion is
warm and highly saturated. While the dispersion flows through the tube, mech-
anisms that result in a change of the crystal size distribution are excited. Such
mechanisms include nucleation, surface attachment growth, particle collision
growth, or particle breakage. The occurrence and intensity of these processes
are controlled by several parameters. Among these are the fluid composition,
the fluid velocity, the shape and makeup of the tube, and the surrounding tem-
perature. At the tube outlet product crystals with properties different from the
input crystals can be collected.

Flow crystallizers are a promising technology, e.g., in pharmaceutical pro-
duction. They allow for very regular particle growth that can be accurately
controlled. Regular shape and size are desirable properties of crystals that are
used in medicants, as more accurate crystals mean better control over their
medicinal effect. From a technical point of view flow crystallizers are interest-
ing for two more reasons. Firstly, they can be operated continuously and do
not, at least in theory, operate in intervals as the alternative batch crystallizers
do. Secondly, knowledge transfer from the laboratory to the industry is rel-
atively easy. Wherever fluids are involved, there are big differences between
different scales, and so a typical development issue would be that a system
behaves totally different at small scale (laboratory) and big scale (industry).
This problem of scale-up does not apply to flow crystallizers: scaling up to the
industrial measure does not mean bigger or longer tubes, it means more tubes,
operated simultaneously (Eder et al., 2010, p.2247). Thus, the conditions in
the individual tube stay the same in experiment and application. The problem
of scale-up underlines the need for effective computer simulations in the field
of industrial crystal growth, although for flow crystallizers it is admittedly less
severe for the mentioned reason.

The main alternative to flow crystallizers are batch crystallizers. A batch
crystallizer consists mainly of a large vessel in which a crystal suspension is
stirred. Due to the shape of the vessel and the evolving flow field, crystals are
held hovering in the center of the container and grow there. The most im-
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

portant growth mechanism in a batch crystallizer is collision growth, while in
a flow crystallizer surface growth is largely responsible for the size gain of the
crystals. One reason for this difference is the nature of the flow field. In a batch
crystallizer a turbulent flow field develops, see the investigations in Chapter 7.
The crystals follow the turbulent vortices, which results in a lot of effective
particle collisions. Particles stick to each other and form larger aggregates. A
flow crystallizer on the other hand is operated at laminar conditions, the flow
field trajectories are aligned and particle collisions happen less frequently, sur-
face growth takes the lead. This effect is desired, since it leads to relatively
uniform particle growth, and it is boosted by cooling the flow crystallizer from
the outside. As temperature drops, so does the solubility of the crystal ma-
terial. Supersaturation of the surrounding solution increases, and the need to
reduce supersaturation is the driving force behind surface attachment growth.
One must confine the above statement to tube crystallizers operated at low
velocity and smooth curvature. As soon as either velocity or curvature hit a
critical number, a secondary flow structure (Dean vortices) begins to develop
and particle coagulation becomes much more likely.

Collision growth can be an obstacle to the operation of a tube crystallizer, as
can excessive primary nucleation (Eder et al., 2010, p.2249). Both can easily
lead to blockage of the typically rather thin tube and thus cross the aim of a
continuous operation of the crystallizer. A second issue is the goal to achieve a
sharp size distribution of the product crystals. Collision growth runs contrary
to this aim, because each collision event will result in a sudden jump of the size
of the involved crystals, thus broadening the particle size distribution.

The flow crystallizer that is in the focus of this chapter was set up and
operated by the group of Prof. Khinast at TU Graz. The crystalline model
substance was acetylsalicylic acid (ASA), commonly known by its brand name
aspirin. The solvent was pure ethanol (EtOH). Results were first reported in
Eder et al. (2010). Modified setups were presented later in Eder et al. (2011)
and Eder et al. (2012). The first of these works contains, alongside experimental
data, a 1d ODE model of the experiment, and computational results that were
gained with it. The work Besenhard et al. (2014) by the same group contains
a model and simulation for the setup in Eder et al. (2012). Recently, the
group applied the method to crystallization growth of the enzyme lysozyme
(Neugebauer and Khinast (2015)).

The work (Eder et al. (2010)) is well cited, since the continuous operation of
a flow crystallizer needs careful fine-tuning of parameters, in which the authors
succeeded. The authors found four different parameter setups for which they
could operate the crystallizer up to fifteen minutes without blockage, main-
taining almost steady-state conditions at the outlet. In addition, ASA is not
a commonplace engineering model substance, but an indispensable medicant,
and therefore the experiments point in a distinct practical direction.

The simulations that will be presented in this chapter were performed in the
spirit of a proof-of-concept example, proving the applicability of the stochastic-
deterministic approach. The example is well feasible with the classical PBS and
PBE methods, such as direct discretization : simulation (Suciu (2013)), method
of moments (Marchisio et al. (2003)), or an operator splitting approach (Ahmed
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et al. (2011)). Therefore, the example would be fit for a direct comparison of
their effectivity and efficiency. This undertaking is not in the scope of this
work and might be the subject of further studies. Instead, this chapter should
prove the viability of our new coupled method by reproducing experimental
results with reasonable computational effort, and enable us to identify further
questions and directions of enhancement of the method.

The simulations are done in 2d, and we use a simple, one-dimensional particle
model, by assuming spherical crystals. The reduction of the 3d geometry to a
2d computational grid has two steps. The first step is stretching out the coiled
up tube, the second step is the assumption of axisymmetry. Thanks to these
simplifications, we profit from a very easy geometry throughout this chapter.

The chapter is organized as follows. For a start, in Section 6.1 we state the
mathematical model and connect it to the general model of Chapter 5.1. We
also describe the experiment and insert a subsection on general modeling con-
siderations. We postpone the detailed derivation of modeling parameters from
the data reported in Eder et al. (2010) to an appendix (6.4) at the end of the
chapter. In Section 6.2 we address computational issues, show computational
results and comment on insights gained from the computations. In the final
discussion in Chapter 6.3 we give an outlook on a 3d version of the algorithm.

6.1 Modeling a tube crystallizer

Let us present the mathematical model of the ASA tube crystallizer. We aim
at a certain brevity of presentation, details on different aspects are given in
Section 6.4. First of all the experiment to be modeled and simulated will be
described. Then we list several general modeling considerations, which include
considerations on the fluid density, the axisymmetric geometry, and the particle
model. Note that in the following, we are going to use the terms particles and
crystals interchangeably. The first term is closer to the mathematical model,
the second term more related to the actual physical system. A nice glossary on
particle terms can be found in (Randolph and Larson, 1988, p.17 f). Finally
we go through all the equations, giving their parameters, boundary and initial
conditions.

6.1.1 The experiment

In the experimental setup, as described in Eder et al. (2010), the crystallization
takes place in a 15 m long polysiloxane tube that is coiled up in a box of
dimensions 0.41 m × 0.24 m × 0.26 m. The inner diameter of the tube is
2 mm and the outer diameter is 4 mm, i.e., the tube has a wall thickness
of 1 mm. The fluid that flows through the crystallizer is a mixture that is
fed from two vessels. The first vessel contains a warm solution of ASA in
ethanol, close to supersaturation. The second contains a well-mixed ASA seed
crystal suspension, consisting of ethanol, dissolved ASA, and undissolved ASA
in crystalline form. One peristaltic pump per vessel pumps the contents into a
Y-fitting, from there the mixture flows into the tube. The temperature in the
box, which contains the tube, is held at 24.3±1 °C. That is cool compared to the
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temperature of the fluid at the inlet (see Table 6.1). The cooling results in a drop
of supersaturation and thus in crystal surface growth. At inflow and outflow
of the crystallizer a microscope and a specialized camera were installed, which
allowed to gather data on the in- and outflowing crystals. With a connected
computer an approximation of the crystal size distribution at in- and outflow
could be determined from this data. In a supposedly strenuous process, the
experimentators figured out four configurations to steadily operate the flow
crystallizer, meeting several requirements at once. These requirements can be
formulated as follows.

� Comparing inflowing and outflowing crystals, the peak of the crystal size
distribution should move significantly towards larger particles, i.e., signi-
ficant surface growth should take place within the device.

� The peak of the product crystal size distribution should be sharp, i.e., the
particles at the outflow should be rather evenly sized.

� The tube should not be blocked due to excessive crystal growth.

� Finally, as much crystalline material as possible, given the other require-
ments, should be produced within a certain operating time.

The four parameter configurations, or “setups”, which the experimentators
identified, will accompany us throughout this chapter. It is our declared goal to
computationally reproduce the experimental results for all four parameter sets.
The target variables of the simulation are the mean d̄ and standard deviation σ
of the particle diameter at the outflow. We aim at reproducing them for all four
setups. There are several constraints which we will also use for the validation
and verification of our computational results. These are:

� mean and standard deviation of the crystal diameter at the inflow,

� mass flow rate of crystalline ASA at the outflow, and

� the conservation of the mass flux throughout the tube.

Those target quantities of the experiments are listed in Table 6.1.

6.1.2 General modeling considerations

There are some general restrictions guiding the entire modeling process. They
are required to keep the model simple and the computing time feasible.

General assumptions on the particles The particles in the model represent
physical entities, they represent ASA crystals of different sizes. Generally speak-
ing, we employ what would be called a “quasihomogeneous” approach. This
means that we regard the entire computational domain to be continuously filled
with homogeneous matter. Its suspension character and its microscopic features
are ignored at first. The particles then get re-introduced as zero-dimensional
objects, which interact with the fluid only via their particle size distribution,
i.e., a macroscopic observable.
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Table 6.1: Top: Target data at the inlet. Crystal mass flow rate Qin, crystal
mass flux ṁin, particle number mean diameter d̄in, particle diameter
standard deviation σ(d)in, suspension temperature Tin. Bottom: Tar-
get data at the outlet. First number refers to the end time of the
experiment (15, 11, 9, 9 minutes), number in brackets to an inter-
mediate measurement time (9, 7, 6, 5 minutes).

Quantity Qin ṁin d̄in σ(d)in Tin

Unit m3/s kg/s µm µm K

Setup 1 1.9e-7 0.0156 90 38 307.6
Setup 2 2.9e-7 0.0258 81 26 312.9
Setup 3 3.8e-7 0.0324 91 27 313.1
Setup 4 4.2e-7 0.0378 85 29 313.7

Quantity ṁout d̄out σ(d)out Tout

Unit kg/s µm µm K

Setup 1 0.0888 243 (233) 65 (62) 297.5
Setup 2 0.1512 214 (215) 50 (43) 297.5
Setup 3 0.1932 192 (183) 49 (41) 297.5
Setup 4 0.195 166 (186) 44 (45) 297.5

This quasihomogeneous approach has consequences for the particle model:
The particles have a position but no extension. They are described by the
particle size distribution, which is a cumulated quantity. Finally, the particles
are assumed to follow the streamlines of the macroscopic velocity field and
do not backcouple on the velocity field. As for the internal coordinates, we
make use of a one-dimensional model, particle mass m [kg] is the only inner
coordinate.

Constant density In order to stay in the framework of incompressible fluids
with non-varying density, the density ρsusp of the fluid is kept constant. As
the authors of Eder et al. (2010) do not provide a value for the density of
the suspension, we deduce one from the information on the inflowing fluids.
This process includes assumptions on the way ASA and EtOH mix. Especially,
the assumption of constant density means that phase transition of ASA from
dissolved to solid form, does not influence the density. Both phases are assumed
to contribute to the overall density in the same way. The constant density of
the suspension is

ρsusp = 916.87 kg/m3.

For the derivation of this value from the experimental data, see Section 6.4.2.

Modeling domain Let us agree first that the computations will comprise only
the 15 m long main portion of the tube, excluding the vessels, the Y-fitting
and the mixing zone of the device. Also, the computational domain spans only
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

Figure 6.1: The modeling domain (symbolic), with denotations of the bound-
ary pieces and the coordinates. The dashed line is the “spurious
boundary”, i.e., the symmetry axis.

the inner part of the tube, that part where the fluid flows. Although it might
be of interest for the energy balance to simulate heat transport through the
polysiloxane material, the tube wall is not part of the computational domain.
This requires some assumptions on the boundary conditions for the energy
balance equation, as we shall see in Section 6.1.6.

On top of that the geometry of the tube interior is simplified. The originally
coiled up tube is straightened out, and an axisymmetric 2d approach is pursued.
The meridian modeling domain is depicted in Figure 6.1. To fix notations: Λ is
the 2d simulation domain, while Ω will denote the three-dimensional cylinder
which is gained by rotation of Λ. The boundaries of Λ are in- and outflow
boundary Γin and Γout. The wall boundary is Γwall, and Γsymm is the spurious
(i.e., non-physical) symmetry boundary in the center of the tube. The bound-
aries of Ω go unnamed, since we give all boundary conditions for the meridian
domain only. As for the cylindrical variables, z ∈ [0, 15] is the axial variable and
r ∈ [0, 0.001] is the radial variable, their values are given in m. Both directions
are also depicted in Figure 6.1.

Some notation As it is our goal to simulate four different setups of the crys-
tallizer, we use the superscript [i] with i ∈ {1, ..., 4} for the distinction of the
data. Often, when some general statement should hold for all four setups, we
skip the superscript.

From time to time it will be necessary to distinguish between quantities con-
nected to different parts of the simulation domain or its surroundings. This we
will denote with subscripts. It should be clear at all times, what these super-
scripts refer to. Let us just remark that subscripts seed and sol refer to the two
inflow streams (“seed stream” - containing crystals, “solution stream” - ASA-
EtOH solution without crystals), which then combine to the “feed stream”,
subscripted feed.

6.1.3 Velocity field

The velocity field is precomputed by solving the Navier–Stokes equations, which
reduce to the Stokes equations in the tube setting. Backcoupling from the
particles, concentration or temperature is not contained in the model. The
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6.1 Modeling a tube crystallizer

same approach was pursued in Hackbusch et al. (2012) and Anker et al. (2015),
there it is justified by the small gradients of temperature and concentration
and the general diluteness of the solution. These descriptions do not quite
apply to the crystallizer regarded here, but to keep things simple, we stick to
the approved principle throughout this chapter. A very pragmatic vindication
of our no-backcoupling approach is that even the one-dimensional plug flow
model presented in Eder et al. (2010) delivered acceptable results. We have
thus reasons to expect the simulation not to fail due to the lack of backcoupling.

In Subsection 6.4.3 the Reynolds numbers and Dean numbers of the flows are
calculated. All turn out to be small enough to expect laminar flows without
secondary vortices (see Table 6.6 for the numbers).

A laminar flow in a tube or pipe develops a parabolic velocity profile. For
this well-understood case, the analytic solution to the Navier–Stokes equations
is given by the Law of Hagen–Poiseuille. In order to verify the correctness of
our axisymmetric finite elements implementation, we decided to precalculate the
solution numerically anyway, by solving the (axisymmetric) stationary Navier–
Stokes equations (c.f. Equation (6.12)). The de-dimensionalized equations read
in their strong form on Ω:

−ν∆u+ u · ∇u+∇p = 0

−∇ · u = 0.

The dimensionless viscosity ν is just 1
Re , and the Reynolds number depends

on the parameter set, see Table 6.6. The Navier–Stokes equations must be
put into weak formulation and transformed to their axisymmetric formulation
(Section 6.4.1). A solution u = (ur, uz) of the axisymmetric version of the
Navier–Stokes equations should fulfill the following boundary conditions:

ur = 0 and uz = u[i]
max

(
0.0012 − r2

)
on Γin

u = 0 on Γwall

(ν∇u− pI)n = 0 on Γout.

The axisymmetry boundary conditions on Γsymm close the equation (see Equa-
tion (6.14)):

ur = 0 and
∂uz
∂r

= 0 on Γsymm.

The data u
[i]
max depends on the parameter setup. We use the values

u[1]
max = 0.1209 m/s

u[2]
max = 0.1824 m/s

u[3]
max = 0.2419 m/s

u[4]
max = 0.2673 m/s.

They are chosen in such a way as to ensure the mass flow rates Qin listed in
Table 6.6. These maximum velocities are double the mean velocities, a well-
known trait of parabolic flows.
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

The solution of the equation is only expected to transport the fully-developed
profile at Γin through the whole tube. This means in particular that ur ≡ 0 in
Γ, which simplifies several of the following considerations.

6.1.4 Particle size distribution equation

The population balance equation to solve is the one that was derived in Sec-
tion 5.1.3. We repeat it here, now taking into account the one-dimensional
particle model, with inner coordinate m [kg]. The equation reads:

∂

∂t
f + u · ∇f = C(f) + G(c, T, f) in (0, tend)× Ω× [0,∞).

The sought function f [1/m3kg] is the particle number density. The end time
tend depends on the experimental setup and will be given later.

The corresponding Markov jump process formulation is as described in Sec-
tion 5.1.3. We give the boundary conditions in terms of the stochastic formu-
lation, see Section 6.4.5 for details on the derivation and implementation.

At the inflow boundary Γin particles are inserted into the simulation domain,
i.e., into the particle ensembles of those cells, which border the inception bound-
ary. Particle inceptions are simulated as inception jumps, meaning that each
ensemble E in contact to Γin gets equipped with an additional jump rate

λin(E)

and a corresponding jump, which adds a new particle to the ensemble. The
inception jump rates are chosen such that in the very first layer of cells a
certain ASA crystal mass concentration is achieved on expectation. The jump
rates, superscripted with the respective parameter setup number, are

λ
[1]
incept = 395 · 106uz

λ
[2]
incept = 661 · 106uz

λ
[3]
incept = 486 · 106uz

λ
[4]
incept = 552 · 106uz.

Their unit is #particles/m2s. Note that the velocity component uz, which is or-
thogonal to the inception boundary, must be included in the formulation of
the inception jump rate here. This is because the target particle concentra-
tion in a cell is proportional to the velocity in that cell. The differences of the
inception jump rates are due to the different input particle size distributions,
see Table 6.1. The position within a cell and the amount of ASA of which a
newly incepted particle consists are determined stochastically. For details on
this process see Section 6.4.5.

It is not necessary to formulate wall and symmetry axis boundary conditions
at Γwall and Γsymm, since ur = 0 means that no wall or axis collisions happen.

At the outflow boundary particles are removed from the computation when
the free-streaming step transports them to a point beyond Γout. This corres-
ponds to standard outflow conditions, as we use them for the concentration and
energy balance equations.
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6.1 Modeling a tube crystallizer

In the following two paragraphs we give the of coagulation rate and the surface
growth rate.

Coagulation rate Recall the general form of the coagulation term

C(f, t,x,m) =
1

2

∫
Ωm

K(m− µ, µ)f(t,x,m− µ)f(t,x, µ) dµ

−
∫

Ωm

K(m,µ)f(t,x,m)f(t,x, µ) dµ.

There are plenty of options for defining the coagulation kernel K. Let us state
two “traditional” kernels, which will be used in computations later. The first
is the additive shear flow kernel, which is usually suitable for the laminar flow
regime (Barthelmes et al. (2003)). In terms of particle mass, the coagulation
kernel gives the likeliness that two ‘near’ particles of masses m1 and m2 coagu-
late in an infinitesimal time interval. It has the form

K(m1,m2) = κadd(m1 +m2), (6.1)

and the unit is m3/s. The scaling parameter κadd [m3/s·kg] must be modeled or
determined experimentally.

A second, simpler option is the constant coagulation kernel

K(m1,m2) = κconst, (6.2)

where the scaling parameter is also to be specified.

Growth rate For the growth term we stick to the semi-empirical model used
in Lindenberg et al. (2009) and Besenhard et al. (2014). It is leaned on the
Arrhenius equation for the reaction speed constant of temperature dependent
equations, but multiplied with a monomial supersaturation term. In Lindenberg
et al. (2009) the model is used for a diameter-based 1d particle description.
There the growth rate is:

Gd(c, T ) = kG1 exp

(
−kG2

RT

)
(csat(T )− c)kG3 .

The unit of Gd is m/s. The model is formulated in terms of absolute supersatur-
ation. The parameters kG were experimentally determined (Lindenberg et al.
(2009)) to be

kG1 = 3.21 · 10−4 m/s

kG2 = 2.58 · 10−4 J/mol

kG3 = 1.

For our mass-based approach we have to reformulate Gd to Gm [kg/s], the mass
growth speed. Because the simple model assumes spherical particles, there is
the following dependency of particle mass on particle diameter:

m =
π

6
d3ρASA.
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

Using the chain rule and Gd = d
dtd, one calculates

Gm(c, T,m) =
d

dt
m =

d

dd
m

d

dt
d =

π

2
d2ρASAGd(c, T ).

Setting AO(m) = πd(m)2, the surface area of a spherical ASA particle of mass
m, one obtains

Gm(c, T,m) =
1

2
AO(m)ρASAGd(c, T ). (6.3)

This particle mass growth rate depends linearly on the particle surface area.
Another modeling decision concerns the supersaturation csat(T ). We use here
a fitted Nyvilt model. Depending on T [K]:

csat(T ) = 1027.769+−2500.906
T

−8.323 log10(T )

as was suggested and given in Eder et al. (2010), see also Section 6.4.2.

6.1.5 Concentration balance equation

The concentration balance equation is a convection-diffusion equation. Its
strong formulation in Cartesian coordinates is

∂c

∂t
−D∆c+ u · ∇c = − 1

MASA
Igrowth(c, T, f) on Ω× (0, tend). (6.4)

The unknown function c [mol/m3] describes the molar concentration of dissolved
ASA. The diffusion coefficient D ought to be the diffusion coefficient of dissolved
ASA in EtOH. As we are not aware of an exact value in the literature, we use the
diffusion coefficient of another model substance, urea, in ethanol (Anker et al.
(2015)). Since any numerical stabilization for convection-diffusion equations
introduces spurious diffusion, the exact value of D is not as important as its
order of magnitude. We set

D = 1.35 · 10−9 [m2/s].

The precomputed velocity is u [m/s], and MASA [kg/mol] is the molar mass of
ASA as given in Table 6.2.

On the right-hand side, the term Igrowth is the surface growth intensity of the
ASA crystals. As was stated in Section 5.1.2, Igrowth measures the occurrence
of particle surface growth and has units kg/m3s. With the definition of Igrowth

given in (5.3), and the discussion of the growth term in the former section, the
growth intensity term takes the form

Igrowth(c, T, f, t,x) =

ρASA

2

∫
[0,∞)

AO(m)kG1 exp

(
−kG2

RT

)
(csat(T )− c)f(t,x,m) dm. (6.5)

The boundary conditions for the axisymmetric re-formulation of (6.5) are
c = 1511.3 on Γin

∂c

∂nΓ
= 0 on Γwall ∪ Γout ∪ Γsymm.
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6.1 Modeling a tube crystallizer

Table 6.2: Material constants of ASA and ethanol, used throughout this
chapter.

Quantity MASA MEtOH ρASA ρEtOH

Unit kg/mol kg/mol kg/m3 kg/m3

Value 0.18016 0.04607 1350 790

Interestingly enough, the boundary conditions at outflow, wall and symmetry
boundary are all the same, although its interpretation differs. At Γwall it de-
scribes impermeability, at the outflow Γout it is a natural outflow condition,
and at the symmetry axis Γsymm it is the necessary symmetry condition that
will be derived in Section 6.4.1. The origin of the Dirichlet value at the inflow
Γin from the experimental data is discussed in Section 6.4.2.

Finally the equation is closed with an initial condition. We assume that there
is no ASA present in the crystallizer before the experiment starts, thus one has

c(0, ·) = 0 on Ω.

6.1.6 Energy balance equation

The energy balance comes, as did the concentration balance, in shape of a
convection-diffusion equation. In its 3d strong formulation it reads

∂T

∂t
+ u · ∇T − λEtOH

ρsuspCEtOH
∆T =

∆hcryst

ρsuspCEtOH
Igrowth(c, T, f) on Ω× (0, tend).

(6.6)

The sought quantity T is the temperature in Kelvin, u once more the precom-
puted velocity field. On the right-hand side appears again Igrowth, the growth
intensity as was discussed above. The constants which scale the influence of
the source term and the relation of diffusive and advective transport are

λEtOH = 0.1676 [W/m·K] (thermal conductivity of ethanol)

ρsusp = 916.87 [kg/m3] (assumed density of the suspension)

CEtOH = 2441.3 [J/kg·K] (specific heat capacity of ethanol)

∆hcryst = 1.6541 · 105 [J/kg] (specific heat of crystallization).

Note that where no other assumptions from the authors of the experimental
paper were available (thermal conductivity and specific heat capacity of the
suspension), we used the values of the solvent instead. The constant ∆hcryst

is the specific heat of fusion of ASA. In Eder et al. (2010) we found the molar
heat of fusion of ASA to be 29800 J/mol, which is assumed to be the same as
the molar heat of crystallization. Dividing by MASA we get the specific heat of
ASA crystallization as given above. It is the heat that will be released when
one kilogram of dissolved ASA changes phase from dissolved to crystalline state.
Both sides of Equation (6.6) have units T/s.
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

As have the preceding equations, (6.6) has to be put into its 2d axisymmetric
formulation. We give the boundary conditions for that formulation. Those
boundary conditions are

T = T
[i]
feed on Γin

∂T

∂nΓ
= 0 on Γout ∪ Γsymm

T = T
[i]
wall on Γwall.

The Dirichlet value at the inflow, Tfeed, depends on the parameter set i. The
respective values come from measurements reported in Eder et al. (2010), and
are given in Table 6.1. The Neumann conditions at outflow and symmetry axis
are the same conditions that were used for the concentration balance equation.
The wall boundary condition is special though, since here we prescribe the
heat loss through the tube wall by imposing a temperature profile. This is a
concession to excluding the tube wall from the modeling domain. For details
see Section 6.4.4.

The equation is closed with an initial condition. We assume that the entire
tube finds itself at ambient temperature before the hot suspension is pumped
into it. Therefore

T (0, ·) = 297.5 K on Ω

is the initial condition.

6.2 Simulating the ASA tube crystallizer

In this chapter we want to put the modeling the was done so far to some
numerical use. With the aim of reproducing the experimental results in all four
setups, the general method and the specific model are brought together in a
series of computer simulations. Firstly, in Section 6.2.1, we give the details
on the computation. In Section 6.2.2 we present our results, which include
a parameter study of the coagulation intensity parameter κ for the constant
coagulation kernel, and the reproduction of the experimental data.

6.2.1 Details on the computation

For the numerical simulation of the example we used two in-house code bases,
the finite element CFD package ParMooN (Ganesan et al. (2016); Wilbrandt
et al. (2017)) and the stochastic particle simulation code Brush (Patterson
et al. (2011)). A custom C++ interface layer between those two, which man-
aged conversion and communication, was implemented. The 2d axisymmetric
computational domain was discretized regularly into 5×150 rectangles, see Fig-
ure 6.2. This simple grid is used for all parts of the simulation, i.e., it is at the
same time the finite element mesh for u, c, and T , and the grid of ensemble
cells for the SPS.

The Navier–Stokes equations were discretized with inf-sup stable Q2/Q1-
elements, and for the convection-diffusion equations Q1-elements were used.
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6.2 Simulating the ASA tube crystallizer

This meant a problem size of 7528 d.o.f. for the Stokes equation and of 906
d.o.f for both convection-diffusion equations. Those systems are so small and so
sparse that we could use a sequential direct solver (UMFPACK) for the arising
linear systems. Some performance profiling proved that the time spent in those
solvers was too small to justify further optimization effort here. In the SPS,
computing time is dominantly determined by the number of computational par-
ticles per ensemble. We restricted the number of computational particles per
cell to 128, which showed to be a good compromise of computing time and
accuracy. We also fixed the maximal number concentration of ASA particles
to 1.2 · 1011 1/m3. This meant that each computational particle, upon insertion
to the simulation domain, stood representative for 937.5 physical particles per
cubic centimeter. These numbers could be kept constant in space in time, and
could also be chosen the same for all four parameter setups.

Information transfer between SPS and CFD was done with L2-projection
operators. In fact, the Q2-velocity was projected to a Q0 function for both ap-
plications. The reason is that otherwise (projection to Q1 for the CDREs, Q0

for the SPS), an unwanted numeric effect takes place. Since c and T get trans-
ported with that velocity which is found at the respective quadrature points,
they will be transported with a different velocity than f , which is transported
only by the Q0−velocity in the ensemble cell. It arises a lag between fluid
quantities and particle transport, the conservation of mass flux in the tube will
be lost.

The time step we chose was ∆t = 0.025. With a coarser time step the
CFL-like condition of the linear Crank–Nicolson FEM-FCT-scheme for the
convection-diffusion equations would be hurt, and a finer time step did not
produce significantly better results, as several prestudies showed. The same
time step was used for CFD and SPS, i.e., there was exactly one transport step
plus one process step per ∆t = 0.025 in the SPS.

The simulations were performed on widely available computing workstations
(HP BL460c Gen9 2xXeon, Fourteen-Core 2600MHz). We used eight cores per
run, to make use of the inherent shared memory parallelism in the SPS. One
simulation run took between 20 and 45 minutes, depending on the parameter
setup and the choice of the coagulation parameter.

We ran simulations for all four parameter sets. In all cases, the simulated
time was the reported operating time of the experimental tube crystallizer plus
100 seconds. Those additional 100 seconds are the “recording time”, from which
most of the results that are given in the next section were obtained.

Some more words are in order to collect further algorithmic or purely compu-
tational aspects which sped up computation considerably. For the SPS, we made
use of the “linear process deferment algorithm” (LPDA) that was proposed in
Patterson et al. (2006) and readily implemented in Brush (see Section 4.3.4).
Instead of recomputing jump rates and updating particle properties after each
occurrence of a “linear” process (particle inception and surface growth) the up-
dates are deferred until the occurrence of a coagulation event and then made
good for. Due to the relative rareness of coagulation events compared to growth
events, this led to five to ten times faster computations in our setup.

An opportunity for speeding up the computations offered itself in caching

113



6 A 2d axisymmetric simulation of a tubular flow crystallizer

Figure 6.2: The computational mesh consists of 750 considerably stretched rect-
angular grid cells, aligned in five layers. The graphic above is scaled
by a factor 500 in radial direction.

data that was necessary for transferring functions between the two simulation
programs. We could re-use the geometric multigrid implementation of Par-
MooN, as long as the grids for SPS and CFD stood in a hierarchical relation
to each other. In the current example, where the grids were identical, this was
trivially the case.

6.2.2 Computational results

Simulations were conducted for all four parameter sets, with the goal to re-
produce the average particle diameter d̄ and its standard deviation σ as they
were observed at the outlet of the experimental flow crystallizer (see Table 6.1).
On top of that, the simulations had to fulfill several side conditions, so as to
prove their physical plausibility. The coagulation kernel K and the coagulation
intensity parameter κ had to be determined. In a first, unsuccessful attempt
we tried the additive coagulation kernel (6.1). The simulations performed with
this kernel led to an excessive coagulation of large particles, resulting in an
almost unchanged median but unphysically large outliers of the particle size
distribution, when increasing the value of κ. Another try was conducted using
the Brownian coagulation kernel (see Chapter 7), but it yielded results very
comparable to those gained with the constant coagulation kernel, for which we
settled finally. With that kernel we were able to produce physically reasonable
results. Values for κ were chosen between 10−13 and 10−11, in order to de-
termine that value, which allowed for the best fitting of the experimental d̄ at
the outlet. The outlet particle size distributions achieved with this parameter
study are shown in Figure 6.3. These results were gained by recording the
properties, especially the particle mass and diameter, of each particle that left
the simulation domain at the outflow, over 10 seconds after the end time of the
experiment. The properties of each measured stochastic particle were weighted
with the product of its stochastic weight and the volume of the ensemble cell it
belonged to last. Thus, the boxplots in Figure 6.3 are weighted boxplots of the
”raw“ output data of the computational particles. As the results are qualitat-
ively similar for all four parameter sets, only the slowest and fastest setup are
shown there.

It can be seen that increasing the coagulation parameter leads to a moderate
increase of the median distribution, which is as expected. On the other hand,
it also leads to an increased variance, as can be seen by the stretch of the boxes
and whiskers. This effect was expected, too, since each collision growth event
moves one particle far to the right of the median particle size. Collision growth
is, due two its big jump height and relative sparseness, less uniform than surface
growth, which happens often and results in small size increases only. One can
also see that the number and the range of outliers increases, but not as severely
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Figure 6.3: Boxplots of PSD for fastest and slowest parameter set, with dif-
ferent choices of the coagulation parameter κ in the constant co-
agulation kernel. Box whiskers stretch to 1.5 interquartile range of
lower/upper quartile, X-axis scale is only ordinal.

as was the case for the additive kernel.

The dependence of the mean particle diameter on κ, disregarding standard
deviation, is given in Figure 6.4 for all four parameter sets.

Comparing the results of the parameter studies to the experimental results,
best-fitting values of κ could be determined, these range between 5 · 10−13 and
10−12. The simulation results proved rather sensitive to the parameter. For
the two slow setups, Setups 1 and 2, κ1 = 9 · 10−13 and κ2 = 10−12 proved
to be the best choices. For the faster flowing setups, the best parameters
were half an order of magnitude smaller, κ3 = 6 · 10−13 and κ4 = 5 · 10−13.
The results (number mean diameter d̄ and standard deviation σ) that were
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Figure 6.4: Mean particle diameter at the outflow, in dependence of κ, constant
coagulation kernel. Data is averaged over 100 seconds past the end
time of the respective experiment.

Table 6.3: Computational results for all four parameter sets at the outflow
boundary, averaged over the given time interval. (Number) mean
particle diameter d̄, standard deviation σ, maximal observed particle
diameter dmax, crystalline ASA mass flux ϕm and mass flow rate ṁ,
scaled so as to easily compare with the experimental data (Table 6.1).

Setup Time [s] d̄ [µm] σ [µm] dmax [µm] ϕm [kg/m2s] ṁ [g/min]

1 [900,1000] 238 85 953 7.443 1.40
2 [660,760] 215 73 858 11.571 2.18
3 [540,640] 189 56 682 15.088 2.84
4 [540,640] 176 54 645 16.499 3.12

gained with these κ are given in Table 6.3, one should compare them to the
experimental values in Table 6.1. One notices that, although the average could
be reproduced sufficiently well, our computational results exhibit a somewhat
too high standard deviation. The standard deviation of the computed particle
size distribution is about 1.1 to 1.5 times as high as the standard deviation
of the experimental data. The values were gained by averaging in time over
all computational particles that left the computational domain at the outflow
within the 100 s “recording time” described above. We also list the diameter
of the largest observed particle. Those values are somewhat too large, and if
they appeared in the actual experiment (tube diameter is 2000 µm), blockage
would be very likely. Indeed, the authors of Eder et al. (2010) report the largest
observed particles to be of diameter 500 µm, and observed no blockage. Finally,
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Figure 6.5: Time-averaged development of mass flux of crystalline and dissolved
ASA along the tube, all four setups, best coagulation parameter. In
all cases, stationary conditions were reached and the total ASA mass
flux is constant (in space, on time average) along the tube.

the mass flux and mass flow rate of crystalline ASA (averaged over 100 s) is
given in Table 6.3. These values are remarkably close to those reported by
the experimentators, see Table 6.1. They serve as one of the side conditions
mentioned in the introduction, underpinning the plausibility of the results.

Figures 6.5 and 6.6 show more results in the same spirit, supporting physical
plausibility. In Figure 6.5 the ASA mass flux throughout the tube is shown,
averaged over 50 s “recording time”, when stationary conditions have already
been reached for a while. One can see that the total ASA mass flux (crystalline
plus dissolved ASA) is constant in z. This is as expected, since the velocity field
is divergence-free and ASA mass must neither be lost nor gained. The green
and blue lines show how dissolved ASA is used up by surface growth of the
crystals. This process takes place, until supersaturation is zero and equilibrium
of dissolved and crystalline ASA is reached. One can see that surface growth
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Figure 6.6: Time-averaged mass flux for four different coagulation parameters κ,
in the first 10 m of the tube crystallizer after steady-state conditions
have been reached.

is quickest in the slowest setup (1), where equilibrium is reached essentially
within the first 3 meters of the tube. The faster the flow, the further in the
tube equilibrium is reached. In the fastest setup (4), it is not reached before
meter 8.

Figure 6.6 shows the first 10 meters of the tube in a close-up. It illustrates
an expected, but interesting effect. There is a growth delay by coagulation. In
the figure the mass flux for four different, well apart coagulation parameters
κ is shown. One observes that the higher the coagulation parameter is, the
shallower is the slope of the mass flux curve, i.e., the slower is the transition of
ASA from dissolved to crystalline state by surface growth. The reason for this
effect is the surface dependence of the growth intensity Gm (see Equation (6.3)).
Collision growth maintains mass, but the total crystal surface area is reduced
by each coagulation event. Therefore after coagulation less crystal surface is
available for new material to attach, and surface growth is slowed down. This
effect is clearly visible in Figure 6.6.

Finally, Figure 6.7 shows the net effect of the (simulated) operation of the
flow crystallizer. For all four parameter setups, the initial (at z = 0) and
final (at z = 15) distribution is given, in terms of probability. The data was
gained the same way as described before, but applying the same procedure at
both outlet and inlet. It can be seen that in all four cases the peak of the
distribution moves towards the right, and additionally the initial sharpness is
somewhat smeared. This effect is the stronger, the slower the flow is, i.e., the
more time the particles have to form larger aggregates by coagulation. One can
also observe that the histograms of the slowest setup are somewhat ”jagged“.
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6.2 Simulating the ASA tube crystallizer

Table 6.4: Number mean particle diameter in µm and standard deviation (in
brackets), for all four parameter setups and the particular optimal
coagulation parameter. The given values refer to the first, second,
third and fourth 25 s of the 100 s “recording” time interval at the
end of each simulation.

Setup First 25 s Second 25 s Third 25 s Fourth 25 s

1 240.53 (85.92) 239.60 (85.24) 235.61 (83.51) 237.57 (87.15)
2 213.60 (73.11) 215.05 (73.94) 215.87 (72.90) 214.51 (73.62)
3 189.05 (56.46) 188.29 (56.81) 189.60 (56.55) 189.16 (56.26)
4 175.17 (53.06) 176.63 (53.43) 175.12 (53.22) 175.95 (54.47)

This is due to the lower number of in- and outflowing computational particles
per second. The effect could be attenuated somewhat by collecting data for an
even longer period of time.

Several further simulations and postprocessing steps were performed in or-
der to foster the reliability of our results. All gave positive results. First we
checked the stochastic stability of the final results of Table 6.3. This we did by
sectioning the 100 s “recording time” at the end of each experiment into four
25 s intervals and comparing mean diameter and standard deviation of those
particles leaving the tube within these intervals. The results are satisfactory
conform, and they are shown in Table 6.4. The values are closer together for
the faster flowing setups, which is a direct consequence of the higher number of
computational particles leaving the domain. We then made sure that our ap-
proach of simulating a single trajectory of the stochastic process was sufficient,
by running ten independent realizations of one example. We picked the fastest
flowing setup again, with optimal coagulation parameter. Averaging the results
of these runs (first 10 s of the recording time) gave a mean of 175 µm and, and
a mean standard deviation of 53 µm. The fluctuations of the individual runs
about those mean values can be quantified by their standard deviation: it is
0.62 for the mean values and 0.64 for the individual standard deviations. We
consider both standard deviations sufficiently small to justify the one-trajectory
approach in this case.

For the fastest flowing parameter setup we performed grid refinement tests.
The grid was refined only in flow direction, thus reducing the stretch somewhat.
The results for the best coagulation parameter showed a slight, but systematic
dependence on the grid size. The finer the grid, the smaller was the number
mean diameter, and the higher the standard deviation. Additionally, we per-
formed the same grid refinement tests for a no-coagulation setup in order to
exclude the SPS coagulation algorithm as a source for this dependency. The
dependency was qualitatively and quantitatively the same for that setup, see
Table 6.5 for the data.

All in all, with our new coupled method, we were able to reproduce the
experimentally number mean diameter sufficiently well, with a very similar co-
agulation parameter for all four setups. The results are also physically plausible,
except for a few outliers in size, which do but hardly influence the overall mean-
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

Table 6.5: Results of grid refinement tests. Parameter setup 4, two choices of
coagulation parameter κ, five refinement levels. Values are particle
number mean diameter and standard deviation in brackets, both in
units µm. One observes a slight decline of the mean value and a
slight increase of the standard deviation with refinement.

N cells 150×5 300×5 600×5 1200×5 1500×5

κ = 5 · 10−13 176 (54) 175 (54) 175 (54) 174 (57) 174 (58)
κ = 0 140 (31) 140 (30) 140 (31) 139 (33) 138 (34)
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Figure 6.7: Simulation results for all four setups, best coagulation parameter
κ. Particle size distribution at inlet and outlet is shown, measured
over time interval [0 s, 10 s] (inlet) and the following intervals at the
outlet: [900, 950] (setup 1), [660, 710] (setup 2), [540, 590] (setup 3),
[540, 590] (setup 4).

ingfulness of the simulation results. The main problem is the overestimation of
the standard deviation, the experimental PSD showed less variance. We can
identify two sources of variance. One is particle coagulation, the other is the
spread in residence time in the tube crystallizer that gets introduced by the
discrete parabolic flow profile. The first source of variance could be reduced
by re-modeling the proportion of surface growth and collision growth, favoring
surface growth even more. Surface growth does not introduce as much variance
as collision growth does. The second source of variance could be dealt with
by either taking a step back towards a 1d model and transporting all particles
with the same velocity, or by augmenting the 2d model. Experimental and
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numerical results from Wiedmeyer et al. (2017) suggest that smaller particles
travel slower through a tube crystallizer, since they follow the flow microstruc-
ture, thus spending more time in the crystallizer, having more time to grow.
If this conjecture was applicable to the ASA crystallizer, too, then capturing
the effect in the model could counterbalance the variance introduced with the
different streaming layers, thus keeping the standard deviation even closer to
the experimental data.

6.3 Outlook to 3d

In this section we want to come to a conclusion about the undertaking of this
chapter and point out a further direction, focusing on the extension of the
method to three spatial dimensions. We will comment on those difficulties that
were overcome already and those that lie still ahead when extending the method
to 3d in the subsequent chapter.

The newly developed coupling method was successfully applied to the axisym-
metric 2d simulation of a flow crystallizer. Experimental results could be well
reproduced for four different operating conditions of the crystallizer. The sim-
ulation results are physically plausible in all cases, and the computing time was
within reasonable bounds. To conduct these simulations it was necessary to find
a coupled formulation of the system in question, and to choose accurate and ef-
ficient numerical schemes for each subproblem. Transfer of information between
the CFD simulation and the SPS had to be implemented and made efficient.
The stochastic simulation had to be adapted to two spatial dimensions, since
preceding simulations that included advection focused on the 1d case only. To-
gether with the collected simulation experience we consider these achievements
a good base for the extension of the method to a full 3d framework.

From the CFD perspective this almost certainly leads to larger problems,
with more degrees of freedom and denser matrices, which means that the ap-
plication of more sophisticated solvers, like those discussed in Section 2.3, will
be necessary. Additionally, full 3d simulations are generally used in the con-
text of non-stationary, but instationary laminar, or even turbulent flows. This
increases the need for efficient, exact and robust discretizations and solvers for
the CFD part of the simulation, both for the velocity field itself and for the
transported quantities.

Adapting the SPS to be performed in a 3d flow domain, on the other hand,
will require great attention to details, and these details are the main challenges
to overcome. Several of the difficulties described below might have appeared
in 2d already, but were not apparent in the ASA crystallizer example, because
there all streamlines of the flow were aligned. One problem in the extension to
3d will be the choice and inclusion of a 3d geometry library that can be used
to represent the spatial discretization of the computing domain for the SPS,
managing the cells which hold the ensembles of computational particles. This
library must fulfill several requirements, these are listed in Section 7.1.4. One
of the requirements is an efficient search algorithm, which can be used to locate
particles after the transport step. In case all particles move only within their
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

former cell or just to neighboring cells (as was the case for the axisymmetric 2d
example), then locating all N computational particles after the transport step
can be done in O(N) with a rather naive approach. But if particles overleap
cells, a more refined technique, like directional search, will be required to keep
the computational effort within bounds. An issue that is closely connected to
the geometry are wall boundary conditions. We will have to formulate and
implement a scheme which mimics particle-wall collisions. This also makes
demands on the 3d geometry library.

All in all, a proof of concept of the new coupled stochastic-deterministic
method for population balance systems has been achieved. Yet some work lies
ahead before the method can be applied in the context of a full instationary 3d
simulation – that is the subject of the subsequent, final chapter of this thesis.

6.4 Details on the modeling

In this section we provide details on the modeling of the axisymmetric 2d ex-
ample. The order follows roughly that order in which the subjects appear in
Section 6.1, where a briefer description of the model was given. Now we want
to give background information on modeling decisions and features like the
axisymmetric formulation (Subsection 6.4.1), fluid density and assumptions on
the fluid composition (Subsection 6.4.2) and compute Dean number and Reyn-
olds number of the flow (Subsection 6.4.3). We will further deduce the pre-
scribed temperature field at the boundary (Subsection 6.4.4), and finally write
some words about the implementation of axisymmetric particle inception in the
SPS (Subsection 6.4.5).

Note that this section is not intended to be read at once, but the reader is
expected to “jump” to any topic of interest from Section 6.1, which is the main
chapter on the modeling.

6.4.1 The 2d axisymmetric setup

We aim at simulating the 3d flow crystallizer in two dimensions only. 2d sim-
ulations are in general computationally cheaper than 3d simulations, because
they typically contain a smaller number of degrees of freedom, and especially
because the arising matrices are sparser. Of course the problem must allow
for such a reduction of the dimension. This is the case if, e.g., one dimension
can be ruled out by the symmetry of the problem. That is exploited in the
axisymmetric approach which we will pursue here.

Before settling on the axisymmetric approach and the modifications it makes
necessary, let us comment on the main alternative which comes to mind. We
would like to term it the “longitudinal section approach”. Both approaches
are depicted in Figure 6.8. Both have in common that the originally coiled
up tube is straightened out. The longitudinal section approach proceeds by
making a longitudinal “cut” through the straightened out tube. With this,
one gains a rectangular domain. Each mesh cell of this domain is thought of
as representing a prism, cuboid or triangular, depending on the 2d grid. This

122



6.4 Details on the modeling

Figure 6.8: The longitudinal section approach (left) and the axisymmetric ap-
proach (right) in a schematic graphic. The grey surfaces represent
the 2d computational domains. The longitudinal section approach
is unsuitable for a circular tube cross section.

leads to the defining assumption that the quantities within the tube do not vary
in the direction orthogonal to the cut plane.

There are several problems with the longitudinal section approach. First
of all, the assumption of constant functions in x-direction is questionable.
Secondly, the cross section of the represented tube is square or rectangular,
unless each layer of cells gets “stretched” in the x-direction with an individual
value, thus approximating a circular cross section. This approach leads straight
into other difficulties. A third problem concerns boundary conditions. It is not
possible to impose boundary conditions on the side walls of the domain, since
these do not appear in the geometry at all. In addition, the boundary con-
ditions on top and bottom wall are hard to model, because the proportion of
surface area to volume will be different than in the real tube. Finally, the flow
conditions in a tube with circular cross section cannot be accurately simulated
with this approach. The slow-flowing layers near the wall will always be under-
represented, the influence of the fast-flowing layers in the center is overrated.1

Summing up all these objections, it seems clear enough that the longitudinal
section approach is a dead end here.

The axisymmetric method is a more sophisticated (and more realistic) ap-
proach to reduce the problem to two dimensions. It exploits the axisymmetry
of the domain and postulates axisymmetry of the solution, i.e., one restricts
the search for a solution to axisymmetric functions. The main advantage of the
axisymmetric model is that it can represent a tube with circular cross section
in two dimensions, maintaining the “correct” spatial relation of flow conditions.
A major shortcoming of the modeling approach is that non-axisymmetric forces
cannot be included.

1Especially this point troubled us in a first, unsuccessful, attempt to simulate the tube
crystallizer with a longitudinal section approach.
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The axisymmetric approach is frequently pursued in applied CFD literat-
ure, note, e.g., its application to a similar population balance system in Anker
et al. (2015). Nevertheless, there is only a modest amount of theoretical works
concerned with it. Ruas (2003) critically observes: “As far as axisymmetric
two-dimensional problems are concerned, corresponding quadrilateral or trian-
gular methods originally studied for plane flows have simply been applied all
along.” A notable exception in form of a textbook is Bernardi et al. (1999), and
almost all theoretical results which we use or cite here can be found there. The
textbook focuses on spectral methods, but the basics (and that is all we need
here) of axisymmetric Stokes and Navier–Stokes equations are introduced in
Chapters 1, 2, and 9. Furthermore, Ruas (2003) deals with numerical analysis
of standard finite element methods for the axisymmetric Stokes equations. See
also references therein for some further works in the same direction.

From an applied mathematician’s point of view, it is a rather elementary task
to gain an axisymmetric formulation of the Navier–Stokes equations, which can
then be “fed” to a finite element code. We will show how it is done, along the
lines of Ganesan and Tobiska (2008). The process can be summarized as follows:
The standard weak formulation of the time-discretized NSE is transformed to
cylindrical coordinates, then all terms that disappear due to symmetry assump-
tions are canceled and finally the azimuthal coordinate ϕ is integrated out, giv-
ing a factor of 2π on both sides of the equation, which can be divided away.
Cylindrical coordinates are the most important ingredient, because they reflect
the symmetry properties of the problem and allow for the final reduction to 2d.

From a theoretical point of view things get more involved, because the trans-
formation leads to a setting of weighted Sobolev spaces. Weighted Sobolev spaces
are a generalization of standard Sobolev spaces, for which most of the classical
Navier–Stokes and finite element analysis has been performed. In our case they
arise naturally: The transformation of integrals to cylindrical coordinates adds,
as functional determinant, the factor r (the radial coordinate) to each and every
integrand. This additional factor must be treated as part of the functional norm,
i.e., r is the weight that constitutes the weighted Sobolev space. To grasp the
general idea, let Λ be a domain in Rd and σ : Λ→ R+ a non-negative (positive
a.e.) weight function. Then for p ≥ 1 and any measurable real-valued function
u : Λ→ R one declares the σ-weighted Lp-norm

‖u‖p;σ :=

(∫
Λ
|u|pσ(x) dx

) 1
p

.

The σ-weighted Lp-space Lp(Λ, σ) is the space of all measurable functions for
which the above integral exists,

Lp(Λ, σ) = {u : ‖u‖p;σ <∞} .

Now the weighted Sobolev space W k,p(Λ, σ), k ∈ N0, consists of all those meas-
urable functions, whose distributional derivatives up to order k exist and lie in
Lp(Λ, σ). In the following definition, α is a multiindex in the usual sense and
notation. The space is defined as

W k,p(Λ, σ) = {u : ‖Dαu‖p;σ <∞ ∀α with |α| ≤ k} .
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That space is consequently equipped with the weighted Sobolev norm

‖u‖k,p;σ =

 ∑
α: |α|≤k

‖Dαu‖p
 1

p

.

A semi-norm can be introduced by regarding only derivatives in the above
formula, and in the case p = 2 a scalar product is introduced in the obvious
fashion. We will not dwell on elementary properties of these spaces, all of them
are Banach, and the W k,2(Λ, σ) are Hilbert, the interested reader is referred
to Kufner (1980), which is an early standard reference for weighted Sobolev
spaces.

One also learns from that work that weighted Sobolev spaces have been de-
veloped as a framework for partial differential equations with singularities2 at
the boundary ∂Λ. Therefore in Kufner (1980) the weight function comes always
in terms of the distance of a point x to a certain “dangerous” portion of the
domain boundary.

Note that in the definitions above one can also make use of the option to
introduce different weights for each α-derivative, yet this is not necessary in
our case. Anyway, the spaces we are interested in are only those with weights r
or r−1 and p = 2. In cylindrical coordinates r gives the distance of a point from
the symmetry axis Γsymm. This symmetry axis is a part of the boundary, and
in some sense it is that part of ∂Γ where the problem has singularities. So to
speak, although in our application the need for weighted Sobolev spaces arises
from transformation, in the outcome the weight performs just as was motivated
by Kufner (1980): it measures the distance from that boundary part which
contains singularities.

In the remainder of this chapter we derive the 2d axisymmetric formulation
of the Navier–Stokes equations, the boundary conditions at the symmetry axis,
and cite theoretical results which ensure well-definedness. In a second paragraph
we do the same for the convection-diffusion equations, and in a final paragraph
describe necessary adaptations to the stochastic particle method, in order to
use it in an axisymmetric version.

Axisymmetric 2d Navier–Stokes equations. As was stated below, we follow
the idea of Ganesan and Tobiska (2008) to transfer the weak formulation of
all equations to the new domain. This approach means essentially application
of integral transformation, and it is therefore more accessible to a reader with
background in mathematics, than the more physical approach in Bernardi et al.
(1999), where the strong formulation is transformed. The gained variational
formulations are the same.

We start from the de-dimensionalized, time-discretized formulation of the
NSE, as given in Problem 2.2.1, but take a step back from there to the fully
nonlinear problem (and skip the time step subscript k everywhere). Let us write
the appearing bi- and trilinear forms in their full integral notation. We sum up

2Such singularities may have different sources: perturbed ellipticity, boundary data or details
of the boundary geometry.
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the three components of the momentum balance equations in order to gain one
scalar equation. Recall that b stands for the entire right-hand side of the time-
discretized problem. It contains terms that can be treated identically to those
on the left-hand side when it comes to axisymmetry. Here is the formulation:∫

Ω
u · v dx− τν

∫
Ω
∇u : ∇v dx+ τ

∫
Ω

(u · ∇)u · v dx

+2τ

∫
Ω
∇p · v dx =

∫
Ω
b · v dx

(6.7)

2τ

∫
Ω

(∇ · u)q dx = 0. (6.8)

In the above formulation, u is the vector of Cartesian velocity components.
Whenever we want to make that fact explicit, we write ucart for the vector of
components and ux, uy, and uz for the components. If ex, ey, and ez denote
the unit vectors of the Cartesian coordinate system, then

ucart = uxex + uyey + uzez

holds, and accordingly for the Cartesian velocity test function v.
Let ψ : [0,∞) × [0, 2π) × R → R3 denote the standard cylindrical coordin-

ate transformation, ψ(r, ϕ, z) = (r cosϕ, r sinϕ, z). A change of the reference
system to cylindrical coordinates by ψ is what is called a passive transform-
ation. The velocity vector field as a physical object stays untouched, but its
components change along the change of the basis. One now seeks a cylindrical
velocity

ucyl = urer + uϕeϕ + uzez,

which is physically equivalent to ucart. The vectors er, eϕ, and ez are the unit
vectors of the cylindrical coordinate system, each of them tangential to the
respective coordinate plane. In contrast to the Cartesian system, the vectors
er and eϕ vary in space. The transformation from cylindrical to Cartesian unit
vectors, in terms of (r, ϕ, z), is given asex

ey
ez

 =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

er
eϕ
ez

 .

The transposed transformation (note that the matrix is orthogonal) applied to
the Cartesian velocity vector components gives the cylindrical velocity vector
components.3 In terms of (r, ϕ, z), the transformation of the velocity compon-
ents reads:

ux ◦ψ = ur cosϕ− uϕ sinϕ

uy ◦ψ = ur sinϕ− uϕ cosϕ

uz ◦ψ = uz.

3This is done in the spirit of “(contravariant) physical components” as introduced, and distin-
guished from actual co- and contravariant components, in (Hung, 2002, p.6). Coordinate
transformation is a complicated business.
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The same relation is gained in Menküc and Wiechmann (2004), which is a useful
source for anyone, who appreciates retracing transformations of any kind step
by step.4 When it comes to the pressure, it is a scalar quantity, and it is not
affected by the transformation like the velocity. The relation between “old”
and “new” pressure is the identity

pcart ◦ψ = pcyl.

So far, the relations hold for any velocity field and pressure. Since we are only
interested in axisymmetric solutions, we remove the dependency of any quantity
on the angle ϕ. This means in particular that all partial derivatives in ϕ are
zero:

∂

∂ϕ
ur = 0,

∂

∂ϕ
uϕ = 0,

∂

∂ϕ
uz = 0, and

∂

∂ϕ
p = 0. (6.9)

Additionally, we adopt the assumption of zero tangential velocity from Ganesan
and Tobiska (2008),

uϕ = 0, (6.10)

which simplifies the upcoming calculations significantly. This assumption is
motivated by the most basic example of an axisymmetric flow, the parabolic
velocity solution in a pipe.

We end up with the reduced identities

ux ◦ψ = ur cosϕ, uy ◦ψ = ur sinϕ, uz ◦ψ = uz, p ◦ψ = p. (6.11)

These equations hold accordingly for the test functions v and q.
Let us now assume that Ω is an axisymmetric domain, and introduce Λ ⊂

[0,∞)×R with Λ× [0, 2π) = ψ−1(Ω). One can picture Ω as gained by rotation
of Λ around the z-axis and call Λ the “meridian domain” (Bernardi et al.,
1999, p.11). With the functional determinant ‖detψ‖ = r of the cylindrical
coordinates, all integrals in (6.7) can be transformed successively. For the first
integral, which comes from the time discretization, one has (see (Ganesan and
Tobiska, 2008, p.124))∫

Ω
u · v dx =

∫
Ω
uxvx + uyvy + uzvz dx

=

∫
Λ×[0,2π)

(ur cosϕvr cosϕ+ ur sinϕvr sinϕ+ uzvz) r drdϕdz

=

∫
Λ×[0,2π)

(
urvr cos2 ϕ+ urvr sin2 ϕ+ uzvz

)
r drdϕdz

=

∫
Λ×[0,2π)

(urvr + uzvz) r drdϕdz

= 2π

∫
Λ
u · v r drdz.

4As does the author of these pages.
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In the first step we used the transformation theorem and the identities (6.11)
at once, and in the last step we made use of the assumption (6.10).

In the same way one proceeds for the other terms. They do but present the
difficulty of comprising differential operators, and these must be transformed
into the new coordinate system, too. This is achieved by longish calculations
in the spirit of Menküc and Wiechmann (2004). Yet these calculations are
simplified enormously by the symmetry assumptions. Let us only give the
resulting transformed integrals of the remaining terms of the left-hand side of
the momentum balance equation (constant prefactors were left out). They read∫

Ω
∇u : ∇v dx = 2π

∫
Λ

(
∇r,zu : ∇r,zv +

urvr
r2

)
r drdz∫

Ω
(u · ∇)u · v dx = 2π

∫
Λ

((u · ∇r,z)u) · v r drdz∫
Ω
∇p · v dx = 2π

∫
Λ

(∇r,zp) · v r drdz.

It is somewhat astounding that the latter two of the above integrands differ
from their 2d Cartesian equivalents only by the factor r. This is due to the
axisymmetry of the problem, and not in general the case when transforming
these integrals from Cartesian to cylindrical coordinates. Yet this circumstance
is extremely helpful when adapting a standard (Cartesian) 2d finite element
code to the axisymmetric formulation, because all one has to do is multiply the
terms in these integrals with the coordinate r.5

The right-hand side of the momentum balance equation is skipped here, be-
cause no terms with new differential structure appear therein. In particular,
the term

∫
Ω f · v dx can be treated just as the first integral, if the data f is

assumed to be axisymmetric, too.
We finally transform the divergence integral of the continuity equation, where

another additional term appears. This is∫
Ω

(∇ · u)q dx = 2π

∫
Λ

(
∇r,z · u+

ur
r

)
q r drdz.

With all the integral terms transformed, one can easily write down the complete,
time-discrete axisymmetric Navier–Stokes equations in their weak formulation
(with b̃ subsuming the right-hand side terms). This equivalent to (6.7) is∫

Λ

[
u · v − τν

(
∇r,zu : ∇r,zv +

urvr
r2

)
+τ((u · ∇r,z)u) · v + 2τ(∇r,zp) · v

]
r drdz =

∫
Λ
b̃ · v r drdz

(6.12)

2τ

∫
Λ

(
∇r,z · u+

ur
r

)
q r drdz = 0. (6.13)

The question for well-definedness of that weak formulation brings us to the
weighted Sobolev spaces which were mentioned earlier. It will become apparent

5And add the additional terms in viscous term and continuity equation, of course.
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that radial and axial velocity component need different ansatz spaces. Introduce
the spaces

H1(Λ, r) := W 1,2(Λ, r) V 1(Λ, r) := H1(Λ, r) ∩ L2(Λ, r−1).

These can be used as velocity ansatz and test spaces. Indeed, H1(Λ, r) suf-
fices for the axial component uz, while the additional regularity of V 1(Λ, r) is
required for the radial component ur, as will become clear shortly. The space
L2(Λ, r) will suffice for the pressure. For the incorporation of boundary con-
ditions in the sense of traces see (Bernardi et al., 1999, p.203). To show the
well-definedness of the bilinear integrals is now an exercise in the application of
Hölder’s inequality. The well-definedness of the trilinear form makes use of the
Sobolev-embedding of H1(Ω) into L4(Ω), which transfers to an embedding of
V 1(Λ, r) into L4(Ω, r), see (Bernardi et al., 1999, p.204). Boundary conditions
at the symmetry axis Γsymm arise necessarily here. They are ((Ganesan and
Tobiska, 2008, p.125))

ur = 0 on Γsymm and
∂uz
∂r

= 0 on Γsymm. (6.14)

The Dirichlet condition for ur is a consequence of the requirement ur ∈ V 1(Λ, r),
which is easy to see if one assumes ur to be continuous on Γ. In the non-
continuous case it holds, too. This can be looked up in ((Bernardi et al., 1999,
p.29)) and references therein.

The Neumann condition for uz arises, as is common for conditions of this
type, as a natural boundary condition when assuming regularity of the solution
and recovering the strong formulation of the equation. When showing this,
we restrict ourselves to the viscous term. Assume u to be a classical, smooth
solution. We make use of the identity∫

Γ
(f∇ ·G+G · ∇f) dx =

∫
∂Γ
f(G · n)dS, (6.15)

for a scalar function f and a smooth vector field G. The identity is a gener-
alization of Green’s formula and follows directly from the divergence theorem.
Setting G = r∇r,zuz and f = vz, we can proceed as follows. By definition one
has:∫

Λ

(
∇r,zu : ∇r,zv +

urvr
r2

)
r drdz

=

∫
Λ

(
∇r,zur · ∇r,zvr +∇r,zuz · ∇r,zvz +

urvr
r2

)
r drdz.

Regard only the second term of the right-hand side and apply (6.15):∫
Λ

(∇r,zuz · ∇r,zvz) r drdz

= −
∫

Λ
∇r,z · (r∇r,zuz)vz r drdz +

∫
∂Λ
vz(r∇r,zuz · n)dS.
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

The boundary term on the right-hand side contains a contribution from the
symmetry axis: ∫

Γsymm

vz(r∇r,zuz · n) dS =

∫
Γsymm

vzr
∂uz
∂r

dS.

As there is no term on the right-hand side of (6.12) to balance this contribution,
one may conclude that ∂uz/∂r = 0 must hold in a variational sense, and therefore
the boundary condition arises naturally.

Axisymmetric 2d convection-diffusion equations The transformation of the
convection-diffusion equations to axisymmetry is fairly easy compared to the
NSE, because c is just a scalar quantity. The transformation is given in (Anker
et al., 2015, p.99), we restate the resulting equations here. A time-discretized
model equation with test function χ and bundled right-hand side b in Cartesian
coordinates and weak form is∫

Ω
cχ dx+ τε

∫
Ω
∇c · ∇χ dx+ τ

∫
Ω

(u · ∇c)χ dx =

∫
Ω
bχ dx. (6.16)

The time step subscript has been left out again. As before, we assume that the
data is axisymmetric. This includes in particular the velocity field u, which
acts as a parameter here. Additionally, we only look for such solutions, which
are axisymmetric themselves, i.e., fulfill

∂c

∂ϕ
= 0.

As it was for the NSE, this assumption will substantially simplify the integrands.
Transforming the integrals on the left-hand side one by one (ignoring prefactors)
gives ∫

Ω
cχ dx = 2π

∫
Λ
cχ r drdz∫

Ω
∇c · ∇χ dx = 2π

∫
Λ
∇r,zc · ∇r,zχ r drdz∫

Ω
(ucart · ∇c)χ dx = 2π

∫
Λ

(ucyl · ∇r,zc)χ r drdz,

the right-hand side follows accordingly. Well-definedness of the above integrals
is assured if one demands c, χ ∈ H1(Λ, r) with the weighted Sobolev space
as defined in the preceeding paragraph. A boundary condition for c at the
symmetry axis arises naturally, the calculation is the same as was done for uz
above. The condition is

∂c

∂z
= 0 on Γsymm,

which should hold in the sense of a distributional derivative. This remark
concludes our short discussion of axisymmetric convection–diffusion equations.
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Axisymmetric stochastic particle method When it comes to the transforma-
tion of the population balance equation, we stick to a remark in (Anker et al.,
2015, p.99). Due to the nature of the velocity field that we apply later, which
has uϕ = 0 by assumption and even ur = 0, the transport term does not
change in the weak formulation beyond the multiplication with the functional
determinant r. In a more general setting, the axisymmetric formulation of the
PBE would require a more in-depth discussion, but here we restrict ourselves
to discussing the necessary amendments of the stochastic particle method.

We made essentially two changes to the code. To scale the properties of any
stochastic particle ensemble to the scale of its cell, the volume of the containing
cell must be computed in an axisymmetric fashion. If K is a 2d computational
cell which holds a particle ensemble, then K is actually the generating surface
of a rotational body Krot. So for the represented volume holds

V = 2πA(K)R,

where A(K) is the surface area of K and R the distance (r-component) of its
centroid.

A second necessary adaptation concerns the boundary conditions at the in-
sertion boundary, which is discussed in more detail in Section 6.4.5.

A further issue is the delocalization of coagulation, which is a consequence
of the spatial discretization approach of the SPS. Coagulation is discretized in
such a way that it may only happen between computational particles which are
located in the same ensemble, i.e., in the same cell. In the axisymmetric setup,
where the computational cells represent rotational bodies, this means that the
possible coagulation radiuses of the particles differ immensely. Particles in the
outermost cells can coagulate with other particles that are in the same “flow
layer”, yet at the opposite wall of the tube, since both are represented by the
same ensemble. In that sense, one might ask, whether the presence of particle
collision growth does not counter-indicate an axisymmetric approach.

Finally let us make two remarks on issues which should be tackled, but were
not, because our setup lacks the triggering features. First, if an independent
diffusion of the particles was included in the method, e.g., in style of random
diffusion jumps, it would be necessary to account for the deformation of space
by the transformation. Secondly, there was no call for boundary conditions
at the symmetry axis. Since in our case the radial velocity ur disappears,
particles move on trajectories that are strictly parallel to the axis. Therefore the
symmetry boundary does not have any influence. If there would be a non-zero
radial velocity component, boundary collisions could occur and one would have
to introduce reflecting conditions of some kind. In a fully three-dimensional
setting this problem will be faced in Chapter 7.

6.4.2 Solution density and inflow conditions for dissolved ASA

In modeling the system, especially when it comes to determining simulation in-
put parameters from the parameters given in Eder et al. (2010), it is indispens-
able to make assumptions on the density ρsusp (or just plain ρ in the following)
of the suspension in the crystallizer. Physically, many processes that take place
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in the tube will influence the density, and therefore ρ will vary in space and
time. Yet from a computational point of view, a varying density is a big issue,
because it enters the Navier–Stokes equation for the velocity as a parameter.
If it varies, Navier–Stokes numerics gets more and more involved. Therefore
it is useful to assume a constant density ρ in space and time throughout the
simulation. Here is a glance at the consequences: We must assume the density
to be unaffected by the local composition of the fluid, i.e., the variation in the
proportion of ethanol, crystalline and dissolved ASA, unaffected by changes in
the temperature field, and especially unaffected by the fluid pressure, which
leads to the incompressibility assumption in the Navier–Stokes equations. All
in all, we assume density variations to be small enough to be neglected in the
regarded system.

Determining a reasonable spatial and temporal mean value of the suspension
density, which can then be used as its constant value throughout the modeling
and simulation process is the aim of this section. We will try do so in accordance
to the experimental data and the assumptions (and measurements) which the
authors of Eder et al. (2010) make, but we must note that not all of these can
be fulfilled simultaneously.

To get the crystallizer started, the suspension that flows into the device comes
from two different vessels. One contains a hot, only slightly undersaturated
solution of ASA in ethanol. All quantities which describe the fluid in this vessel
are subscripted with “sol” in the following, suggesting that the vessel contains
a solution. A second subscript will denote the substance, which the quantity
refers to. To give an example, βdiss, sol [kg/m3] denotes the mass concentration
of dissolved (“diss”) ASA in the stream coming from the first vessel. Comple-
mentary, βEtOH, sol names the mass concentration of the solvent, ethanol, in the
solution stream.

The second vessel contains the seed crystals, surrounded by a ASA-EtOH
solution in equilibrium. We call the stream which comes from this vessel the
seed stream. Quantities connected to the seed stream are subscripted “seed”.
Thus, βdiss, seed is the mass concentration of dissolved ASA in the seed stream,
βcryst, seed is its mass concentration of crystalline ASA, and βEtOH, seed is the
mass concentration of ethanol in the seed stream. As described in Subsec-
tion 6.1.1, the two streams are combined into one in a Y-fitting. This combined
stream then feeds the tube crystallizer, and therefore we name it the feed stream
and all respective quantities get the subscript “feed”. We will now show how
we determined the density of the feed stream, and reason that its density is a
good approximation to the constant overall density.

In the combined feed stream three species will be present. Therefore we can
write

ρfeed = βEtOH, feed + βdiss, feed + βcryst, feed.

While passing through the crystallizer ASA will go from dissolved into undis-
solved state by surface growth, and the overall temperature of the suspension
will drop due to cooling. Since we assumed the density to be unaffected by
both these circumstances, the density of ρfeed will be preserved throughout the
tube. Therefore ρfeed must be modeled in such a way that it is representative
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for the entire system.
As is the density of any homogeneous substance, ρfeed is defined as

ρfeed =
mfeed

Vfeed
.

Since mass is conserved, we may write

ρfeed =
mEtOH, feed +mdiss, feed +mcryst, feed

Vfeed
.

One can see that the density of the suspension depends on how the volumes
of the components combine to the volume of the suspension. Since we are not
aware of any detailed model for our specific case, three sufficiently simple the-
oretical assumptions come to mind.

Assumption 1: Conservation of volume – ideal mixture. An ideal
mixture is one, where the volume of the components is preserved. Here that
would translate to

Vfeed = VEtOH, feed + Vdiss, feed + Vcryst, feed

.

Assumption 2: Conservation of solvent volume – ideal solution. A
second possibility is to assume that the volume of the solvent (EtOH) does not
change in the process of adding ASA:

Vfeed = VEtOH, feed

This approach leads to a significant rise of the suspension density. According
to (Randolph and Larson, 1988, p.82) the “ideal solution” assumption is fair
enough for “suspension density less than 15 %”. In our system, this amount is
exceeded by far, plus it is a suspension we deal with, not a solution.

Assumption 3: Preservation of solvent density. This is not an assump-
tion on the combined volume, but on the combined density itself. To consider
it here is motivated by a remark in (Eder et al., 2010, p.2256), which reads
“For the ASA-EtOH system, the [. . . ] saturated solution density ρsol,sat ([is]
assumed to be equal to the density of EtOH) [. . . ]”. The authors state this
when calculating the overall mass transfer coefficient. Although we do not deal
with a solution but with a suspension, for this assumption we would take eth-
anol to be the solvent and ASA (dissolved and crystalline) to be the solute.
Then the assumption would correspond to the choice:

ρfeed = ρEtOH.

The authors of Eder et al. (2010) give two more hints on the overall density.
The first is a measured density of the suspension at 40 °C, it is 898 kg/m3 (Eder
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et al., 2010, p.2253). The second is a conversion between molar concentration
and mole fraction. There the authors state that in the sol stream the relation
cdiss, sol = 2.19 · 103 mol/m3 ↔ χdiss, sol = 0.113 mol/mol holds for the amount of
dissolved ASA. A simple, yet tedious calculation shows that this relation holds
if and only if the “ideal solution” assumption holds.

Given the input data in Table 6.1, one can now exercise each of these as-
sumptions for the feed stream. We will postpone these details. Let us for the
moment conclude that

� for each of the three assumptions there is a hint in Eder et al. (2010) that
would justify it

� because we postulated the density to be unaffected by ASA phase trans-
ition, we must choose exactly one of the assumptions (and cannot, e.g.,
choose different ones for dissolved and crystalline ASA)

� since Assumption 1 (ideal mixture) gives the best approximation to the
value 898 kg/m3 given by the authors, we stick to that assumption.

That is to say, with Assumption 1 we gain as total density:

ρ = 916.87 kg/m3

and this value will be used furthermore.

Let us now go even further into detail and underpin the decision for As-
sumption 1 (ideal mixture) by giving the complete reasoning and calculation
behind that value. At the same time, we will sort out the composition of the
feed stream and thereby justify the inflow boundary values for crystalline and
dissolved ASA which were used in Subsections 6.1.4 and 6.1.5.

All four different parameter sets from Eder et al. (2010) have the ratio of the
volumetric flow rates from streams seed and sol in common. It is 1 : 3.5 in
each case. Also, the substance composition in the vessels is the same for each
parameter set. Let us start with the composition of the sol stream. The authors
state that the solution was gained by dissolving 0.05 kg of ASA per 0.1 kg of
ethanol. Thus we know the mass fractions wdiss, sol = 1

3 and wEtOH, sol = 2
3 .

Given the densities of ASA and EtOH (Table 6.2), one has VASA(0.05 kg) =
3.7 · 10−5 m3 and VEtOH(0.1 kg) = 12.66 · 10−5 m3. Depending on which of the
density/volume assumptions we follow, there will be different total densities in
the outcome. The one which leads us closest to the given ρ = 898 kg/m3 is the
ideal mixture assumption. With that assumption both volumes simply add up:

ρsol =
mdiss, sol +mEtOH, sol

Vsol
=

0.05 + 0.1

3.7 · 10−5 + 12.66 · 10−5
≈ 916.87 kg/m3.

(6.17)
Note that the “ideal solution assumption” overestimates the density severely
(1185 kg/m3), while the “preservation of solvent volume assumption” underes-
timates it (790 kg/m3).
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For the mass concentrations in the solution stream one obtains

βdiss, sol = wdiss, solρsol = 305.62 kg/m3

βEtOH, sol = wEtOH, solρsol = 611.25 kg/m3.

Let us now turn our attention to the seed stream. It consists of the same
mass fractions of ASA and EtOH, as does the sol stream, with the difference
that here a share of the ASA is in crystalline state. This, was our assumption,
does not affect the suspension density. We can conclude that the density is the
same as above: ρseed = ρsol. But we do still need the mass concentrations of
dissolved and crystalline ASA in order to determine inlet boundary conditions
for both. Recall that

ρseed = βdiss, seed + βcryst, seed + βEtOH, seed

holds. It is clear that βEtOH, seed = wcryst, seedρseed = 611.25 kg/m3 and that
βdiss, seed + βcryst, seed = wASA, seedρseed = 305.62 kg/m3. In order to determine
which part of this total ASA mass concentration is in dissolved form, one has to
know the solubility of ASA in EtOH at the given temperature Tseed = 24.6 °C
(Eder et al., 2010, p.2249). There the authors suggest a Nyvilt-type model with
fitted parameters. According to them, the temperature-dependent solubility of
ASA in EtOH can be modeled as

χASA, sat(T ) = 1027.769+−2500.906
T

−8.323 log10(T ),

with T in K. This relation is shown in Figure 6.9. Here the saturation concen-
tration is given in mole fraction, i.e., in mol dissolved ASA per mol of EtOH
and dissolved ASA. At the temperature Tseed this formula gives a mole fraction
χASA,sat ≈ 0.0611. Translating this into mass concentration of EtOH, crystal-
line and dissolved ASA in the seed stream will be achieved by the detour of
mass fractions w. ,seed. From the known χASA, sat one computes (by knowing
the molar masses of ASA and EtOH) the mass fraction of dissolved ASA in a
saturated ASA-EtOH solution. It is

wASA,sat =
χASA, satMASA

χASA, satMASA + (1− χASA, sat)MEtOH
= 0.2029 kg/kg.

In the seed stream the EtOH mass fraction is known, it is wEtOH, seed = 2
3 .

The leftover one third is distributed among dissolved and solid ASA. We then
proceed with the following equation for the EtOH mass fraction in the entire
seed stream:

wEtOH, seed = (wEtOH, seed + wdiss, seed) (1− wASA, sat) .

The intuition behind this equation is that in equilibrium 1−wASA, sat is the mass
fraction of EtOH at the sum of dissolved ASA and EtOH. Isolating wdiss, seed

and inserting the known values, one gets

wdiss, seed =
2
3

1− 0.2029
− 2

3
≈ 0.1697 kg/kg
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Figure 6.9: Solubility of ASA in EtOH (saturation concentration) according to
a fitted Nyvilt model. Left: In terms of mole fraction. Right:
In terms of molar concentration, under additional assumptions on
density and solution behavior.

and by subtraction

wcryst, seed = 1− wEtOH, seed − wdiss, seed ≈ 0.1637.

With the mass fractions known and the constant density of 916.87 kg/m3, we are
now able to give the different mass concentrations in the seed stream. They are

βdiss, seed = 155.59 kg/m3 βcryst, seed = 150.1 kg/m3 βEtOH, seed = 611.2 kg/m3.

The last step in calculating the composition of the feed stream is combining
the sol and seed stream. We recall that for each parameter set, they combine
in the volume ratio 1 : 3.5 (seed : sol). If for their mixing behavior we employ
the “ideal mixture” hypothesis again, we can write

βEtOH, feed =
1

4.5
βEtOH, seed +

3.5

4.5
βEtOH, sol = 611.2 kg/m3.

Accordingly, we get βdiss, feed = 272.28 kg/m3 and βcryst, feed = 33.35 kg/m3. In
terms of molar concentration, cdiss, feed = 1511.3 mol/m3 is the dissolved ASA
concentration at the inflow. These values form the basis for the inflow boundary
values in Subsections 6.1.4 and 6.1.5, and for the mass flow computation in
Subsection 6.4.4.

6.4.3 Reynolds number and Dean number of the flow

We will calculate the Reynolds and Dean number of the flow, to show that
it stays well in the laminar regime and the development of secondary (Dean)
vortices need not be expected.

Let us start with the Reynolds number. For a flow in a tube with spherical
cross section the Reynolds number is typically calculated as

Re =
dρū

µ
.
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Table 6.6: Key figures of the flow, for the four different parameter setups. Total
mass flow was calculated based on volumetric flow rate data in Eder
et al. (2010) and the density ρ = 916.87 kg/m3 calculated in Sec-
tion 6.4.2.

Quantity Total
mass flow

Mean
velocity

Reynolds
number

Dean
number

Unit kg/s m/s - -

Setup 1 0.000174 0.0605 11.1 1.6
Setup 2 0.000263 0.0912 16.7 2.4
Setup 3 0.000348 0.1209 22.2 3.1
Setup 4 0.000385 0.1337 24.5 3.5

Here d is the tube diameter, d = 0.002 m, and ρ is the density of the medium.
From the previous section we know that ρ = ρsusp = 916.87 kg/m3. Further µ is
the dynamic viscosity of the fluid. The authors of Eder et al. (2010) measured
µ with a rheometer and determined it to be µ = 0.01 kg/ms. Finally, ū is the
mean velocity, which was determined from the volumetric flow rates, which the
authors reported for the four different setups, see Table 6.6 for the precise data.
One can see that even for the fastest flowing setup the Reynolds number is only
24.5 and thus comfortably within the laminar regime.

For the calculation of the Dean number, which takes into account the curva-
ture of the pipe, we use the following formula:

De =

√
r

R
Re.

This is the recommended formula of (Berger et al., 1983, p.473), where several
different possible definitions of the Dean number for laminar curved pipe flows
are discussed. Here r is the inner tube radius, and R the radius of the coil.
The authors of Eder et al. (2010) report that the crystallizer was wound up on
a tube of diameter 0.1 m, therefore we set R = 0.05 m. The resulting Dean
numbers for all setups are listed in Table 6.6. One observes that the ratio of
inner radius to coil radius is so small that the Dean numbers stay in the order of
1. Comparing to the theoretical considerations in Dean (1928) and Hämmerlin
(1958) this is beyond the critical threshold Dean number of 37, where secondary
vortices start to develop.6 Therefore we have strong hints that the flow in the
experimental tube crystallizer can be well enough approximated by a classical
Hagen–Poiseuille type flow in a straightened out tube.

6.4.4 Details on the temperature profile at the wall boundary

In the energy balance equation, we prescribe the temperature field at the wall
boundary. This is done because the tubing material, whose thermal properties

6Note that the definitions of the critical number differ somewhat. In (Hämmerlin, 1958,

p.223) it is given as 2Re2d
R

= 5740. The threshold 37 given above is its translation to our
definition of De, which follows Berger et al. (1983).
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

determine the heat loss through the pipe wall, is not part of the simulation
domain. Instead we try to capture the influence of heat loss through the tube
wall with the following modeling assumptions.

We start from Newton’s law of cooling, applied to a two-dimensional cross-
section of the pipe, which we let move at constant speed uz through the pipe
for the moment. The law reads

dQ̃

dt
= hA(T (t)− Tamb). (6.18)

Here Q̃ [J/m] is the thermal energy per meter of the “slice”, T (t) [K] its tem-
perature at time t (assumed to be constant over the cross section), and Tamb =
297.5 K is the constant temperature of the surrounding air. The scaling con-
stants are the (one-dimensional) surface of heat exchange A = 2πrout [m] and
the heat transfer coefficient h [W/m2·K]. This coefficient encodes thickness and
insulation properties of the tubing:

h =

 rout

rinhin
+
rout ln

(
rout
rin

)
λtube

+
1

hout

−1

.

Terms like this appear frequently in the engineering literature (see, e.g., Har-
rison (2010)), the inserted values are taken from Eder et al. (2010) and listed
in Table 6.7.

The left-hand side of (6.18) can be replaced by applying the identity

dQ̃

dt
=

dT

dt
C̃, (6.19)

where C̃ [J/K·m] is the heat capacity per meter suspension, and with m̃susp [kg]
being the mass per meter suspension:

C̃ = m̃suspcp,susp,

where cp,susp [J/kg·K] is the specific heat capacity of the suspension.
Restating (6.18) by using (6.19) gives:

dT

dt
=

hA

m̃suspcp,susp
(T (t)− Tamb). (6.20)

As the slice is assumed to move with constant velocity uz (arising from the
parameter setup!) through the tube, a change of variables to axial position z
results in

dT

dz
=

hA

ṁsuspcp,susp
(T (z)− Tamb), (6.21)

where we replaced m̃suspuz = ṁsusp [kg/s], the total mass flow rate. The product
of mass flow rate and suspension specific heat capacity is computed as

ṁsuspcp,susp = ṁASAcp,ASA + ṁEtOHcp,EtOH,
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6.4 Details on the modeling

Table 6.7: Outer pipe radius rout, inner pipe radius rin, inner heat transfer coef-
ficient hin, outer heat transfer coefficient, hout, thermal conductivity
of the tubing material λtube, ambient temperature Tamb, and specific
heat capacity cp,· of ASA and EtOH.

Quantity rout rin hin hout λtube Tamb cp,ASA cp,EtOH

Unit mm mm W/m2·K W/m2·K W/m·K K J/kg·K J/kg·K

Value 2 1 306 70 0.3 297.5 1260 2400

Table 6.8: Initial temperature Tfeed and mass flow rates ṁ· of ASA and EtOH
in the four different parameter setups.

Quantity Tfeed ṁASA ṁEtOH

Unit K kg/s kg/s

Setup 1 307.6 0.000058 0.000116
Setup 2 312.9 0.000088 0.000175
Setup 3 313.1 0.000116 0.000232
Setup 4 313.7 0.000128 0.000257

with partial mass flow rates for ASA and EtOH based on the computations of
Section 6.4.2 (see Table 6.8).

Equation (6.21) is given as a one-dimensional heat balance equation in (Eder
et al., 2010, p.2256), we wanted to sketch its derivation from Newton’s law of
cooling here. Now we can proceed to its elementary solution.

Under the assumption that all coefficients stay constant, (6.21) is a linear
ordinary differential equation with constant coefficients. Given the obvious
initial condition

T (0) = Tfeed,

which depends on the parameter setup (Table 6.8), one gets a unique analytic
solution by the well-known variation of constant ansatz. That solution is

T (z) = Tamb + (Tfeed − Tamb) exp

(
− 2πrouth

ṁsuspcp,susp

)
.

This exponentially decaying temperature profile was inserted as wall boundary
condition into the mass balance equation of Subsection 6.1.6, in accordance to
the one-dimensional model in Eder et al. (2010).

6.4.5 Particle inception at the inflow boundary

Three requirements must be fulfilled concerning the particle inception at the
inflow boundary.

(1) The number mean and standard deviation of the diameter of the inserted
particles must be as reported in Eder et al. (2010), see Table 6.1.
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

(2) The ASA crystal mass concentration must be βcryst, feed = 33.35 kg/m3, as
was determined in Subsection 6.4.2.

(3) As we assume a well-mixed dispersion at the inflow, the incepted par-
ticles must distribute evenly across the entire inflow boundary Γin, in an
axisymmetric sense.

Let us deal with these requirements one after the other.

Inlet particle size distribution For each newly inserted particle its composi-
tion, i.e., its internal coordinate m must be determined. In the original source,
mean and standard deviation of the diameter of incepted particles are given,
and the authors supply histograms on the experimental inlet particle size dis-
tribution. These show distributions with one relatively sharp peak and a long
tail to the right, and resemble the graph of the density functions of log-normal
distribution. This, and the fact that log-normal distribution are relatively easy
to calculate and compute, gives the direction: Fit a log-normal distribution
to the given parameters and simulate the mass of any incepted particle as a
realization of that distribution.

A small source of trouble is that our model takes mass as an inner coordinate,
and our program takes the number of ASA molecules, while the original source
lists mean and standard deviation of the particle diameter. But, by exploiting
the relation of log-normal and exponential distribution, for a random variable
D (the diameter of a ball shaped particle) and its transform M := ρπ

6 D
3 (its

mass), the relation

D ∼ Lognormal
(
µ, σ2

)
⇒ M∼ Lognormal

(
3µ+ log

(ρπ
6

)
, (3σ)2

)
holds. Similarly, but with a different pre-factor, N , the number of ASA mo-
lecules, is related to D. Fitting a log-normal random variable D to the data
in Table 6.1 and transforming its parameters accordingly gives the paramet-
ers for the log-normal distribution N which are given in Table 6.9 for each
experimental setup.

Inception jump rate Inception jumps differ from coagulation and growth
jumps in so far as their rates depend on the velocity, that is to say on its
axial component uz. We assume that a homogeneous dispersion is fed into the
crystallizer at Γin, which means that the concentration of crystalline ASA must
be the same in all cells which border the inception boundary. The mass concen-
tration of crystalline ASA relates to the inception rate λincept and the expected
inception jump height E(∆m) [kg] as follows:

βcryst, feed = E(∆mass)
λincept

uz
.

Let us call λincept the surface inception rate, since it describes the number
of ASA crystals to be incepted per unit surface and time. Its unit is 1/m2s.
Since βcryst must be kept constant, the surface inception rate exhibits a linear
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6.4 Details on the modeling

Table 6.9: Parameters of the log-normal probability distribution of the random
variable N which determines the number of ASA molecules in a
newly incepted crystal. For example N [1] ∼ Lognormal

(
µ, σ2

)
with

µ = 34.83647 and σ2 = 1.476438. The column E(N ) holds the
expected value of N . Last column holds quotient of inception jump
rate and axial velocity.

Quantity µN σ2
N E(N ) · 1015 λincept/uz

Unit [·] [·] #molecules #jumps/cm3

Setup 1 34.83647 1.476438 2.817664 39564
Setup 2 34.61936 0.8825735 1.685179 66152
Setup 3 34.98913 0.759342 2.293378 48609
Setup 4 34.7459 0.9909942 2.019033 55213
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Figure 6.10: Radial component of the position of particle inceptions. Sampled
over 100 seconds, Setup 4. The jumps in the plot are due to the
different velocity components uz in the five layers, which have an
impact on the inception jump rate. Within each layer, the incep-
tion position probability grows linearly in r.

dependency on uz, λincept = λincept(uz). It must be chosen in such a way
that βcryst, feed = 33.35 kg/m3 upon expectation, as was seen in Section 6.4.2.
The expected mass gain E(∆mass) per mass gain can be computed from the
expected value E(N ) of numbers of ASA molecules (Table 6.9) per particle
by multiplication with the molar mass MASA. Inserting these values into the
above formula gives the constant values for λincept/uz. Determining λincept(E) for
a certain particle ensemble E includes scaling with the measure of its share of
the inception boundary, and multiplication with the velocity component uz(E).
Axisymmetry must be regarded when determining the surface area of Γin(E).
The values of λincept/uz, the basis of the computations, are given in Table 6.9.
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6 A 2d axisymmetric simulation of a tubular flow crystallizer

Inlet particle position distribution In order to ensure a spatially homogeneous
distribution of the particles across the cross section of the tube, it is necessary
to take axisymmetry into account when determining the position of a newly
incepted crystal. Assume a new crystal is to be incepted into ensemble E of cell
C, whose share of the inception boundary is a straight line with starting point
A = (ra, za) and end point B = (rb, zb). Assume that ra ≤ rb, i.e., A is closer
or as close as B to the symmetry axis. A lengthy calculation, which is based on
an application of the inverse sampling theorem, gives that drawing a uniform
random number u ∼ U([0, 1]) and setting the new position P = (rp, zp):

rp = ra + t(rb − ra)
zp = za + t(zb − za),

where

t =

√
r2
a + u(r2

b − r2
a)− ra

rb − ra
,

gives positions distributed in the sense of requirement (3). See Figure 6.10 for
a visualization of the outcome.
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7 A 3d Simulation Framework for a
Fluidized Bed Crystallizer

In this chapter we want to present a simulation framework for a class of crystal-
lizers making use of the coupled algorithm of Chapter 5. The main achievement
compared to the simulations performed in the preceding chapter is the extension
of the algorithm to an instationary, turbulent, full 3d setting.

Fluidized bed crystallizers (“Wirbelschichtkristaller”) are crystallization dev-
ices
which are used in chemical engineering in order to grow crystal fractions into
larger sizes. A photograph of a fluidized bed crystallizer is supplied as Fig-
ure 7.1. The central unit of the system is a bulgy vessel, here it has the form
of an upside-down bottle of 50 cm height. The vessel is part of a closed circuit
of a streaming suspension, which contains those chemical ingredients that are
necessary to excite the desired crystal growth mechanisms. The flow enters at
the bottom and exits through a filter at the top, entering a system of tubes and
pumps, leading it back in at the bottom. The crystals themselves are held, by
the filter and by choosing the inflow velocity low enough to avoid that particles
reach the filter at all, inside the vessel, where they grow over time. In contrast
to the tube crystallizer of the preceding chapter it is not surface attachment
growth, but collision growth that is mainly responsible for the crystal size gain.
Therefore, the resulting particles are aggregates, bringing along the distinct
properties of crystal aggregates: greater surface, higher porosity, and in gen-
eral less regular shapes than monocrystals gained by surface attachment growth
have. A small amount of surface attachment growth cannot be avoided, since
its main driving force, the supersaturation, is also a precondition for the form-
ation of small solid bridges between primary particles, and thus a precondition
of crystal agglomeration. A slight supersaturation is enforced by cooling, and
temperature control is possible, since the crystallization vessel is surrounded by
a cooling jacket and the pump and tube system are well isolated.

The main reason for particle collision growth inside a fluidized bed crystallizer
is the non-laminar velocity field. It is responsible for particles following non-
aligned trajectories, resulting in many collisions of particles of different sizes
in various angles. A certain percentage of those collisions is “effective” in the
sense that a solid bridge between two crystals gets formed: an aggregate is
born. Compared to the flow tube crystallizer of the preceding chapter, both
growth and aggregation rates are relatively low in the regarded fluidized bed
crystallizer, which means that longer run times are needed in order to observe
significant crystal growth – the residence time of the crystals in the device is
longer.

The crystallization device that is in the center of attention of this chapter
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7 A 3d simulation framework for a fluidized bed crystallizer

Figure 7.1: An experimental fluidized bed crystallizer, built up by the group
“Lehrstuhl für Systemverfahrenstechnik” at OVGU Magdeburg.
Engineering drawing and photograph are courtesy of Viktoria Wied-
meyer, 2018.

was built and operated by the group of Prof. Sundmacher at the univer-
sity of Magdeburg, and is currently under experimental investigation, too. It
is used for the crystallization of aluminum potassium sulfate dodecahydrate
(KAl(SO4)2 · 12H2O), a substance also known by its trivial name potash alum.
Potash alum has relatively narrow industrial use nowadays, e.g., it has med-
ical use as an astringent in deodorants or alum blocks applied on small skin
bleedings after shaving. Still it is of some interest as a model substance for
crystallization, since it is inexpensive to purchase, innocuous, aggregates easily,
and many of its material properties are well known. In addition it forms very
shape regular octahedral crystals, which is convenient from a modeling point of
view. Potash alum is soluble in water, and the solution kinetics are well known.
Therefore the crystallizer is fed with a slightly oversaturated solution of potash
alum in water, crystals are ideally only present in the main vessel, not in the
exterior pump and tube system.

In experimental operation mode, the device works in cycles of 30 to 40
minutes, holding relatively small amounts of crystals. The total crystal mass
held by the device during one experiment is of the order of several mg up to
3 g, corresponding to fractions of between 10−4 and 5 · 10−2, of the total mass
in the crystallizer. A pipette that can be positioned at variable heights in the
vessel continuously pulls a small amount of suspension out of the system, to-
wards a camera that takes pictures of the crystals (Figure 7.2). That way, after
very specialized and refined image processing and data post-processing steps,
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Figure 7.2: A snapshot of crystallizer suspension, containing aggregated potash
alum crystals (black) and some air bubbles (round shaped black
objects). Courtesy of Viktoria Wiedmeyer, 2017.

data on the development of the particle population in the crystallizer device is
obtained.

The primary goal of the experimental crystallizer is to obtain particles grown
to a very sharp and well defined size. A second goal is to observe and exploit a
height separation of different crystal fractions, i.e., to “harvest” different, well-
defined crystal fractions at different heights in the vessel.

For the simulation of the fluidized bed crystallizer we employed the coupled
stochastic-deterministic approach that was developed and explained in the pre-
ceding chapters of this thesis. It is clear that a stationary, axisymmetric 2d
simulation approach as was used in the case of the flow crystallizer in the pre-
ceding chapter will not lead to simulation success here. Although the geometry
of the crystallizer vessel allows for an axisymmetric simulation in principle, the
flow field within does not. This is, because the flow is expected to be instation-
ary, if not even in the transition to a turbulent regime. For the simulation of
turbulent flows, 2d simulations are not suitable, the step to full 3d must be
undertaken. Computing a turbulent flow is a challenging task all by itself, we
had to make use of specialized solvers (see Section 2.3) and of a turbulence
model. To be precise, we used a Smagorinsky-type turbulence model with rel-
atively few artificial viscosity, to get a grip on the mild turbulence of the flow.
Despite the task of simulating the instationary flow in the vessel within reas-
onable computing time, the step to 3d brought further challenges. First, our
stochastic particle simulation software Brush had to be equipped with a geo-
metry layer that was able to represent a discretization of a three dimensional
domain, and perform several specific tasks like point localization and compu-
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7 A 3d simulation framework for a fluidized bed crystallizer

tation of line-hull intersections. We made use of the mesh generation software
TetGen (Si (2015)), which had to be slightly adapted for our purpose of mesh
representation. At this place, we must thank Hang Si for his patient support
on the matter.

As a second step the stochastic particle method, which had only been used in
1d and 2d settings with simple flows before, had to be equipped with boundary
conditions in the particle transport step, in order to keep the particles within
the simulation domain. Also, we had to refrain from the comfortable assump-
tion that particles follow the macroscopic velocity field exactly. Keeping this
assumption up would have not allowed for to capture the desired size separa-
tion effect in the model. Instead we took a first step towards a more realistic
particle movement simulation by equipping the particles with a size depend-
ent sedimentation model. This enabled us to observe a size separation effect
in different layers of the simulated device. We are aware of the fact that this
inclusion of particle sedimentation, and even the applied model, can only be
a first step on the way to a detailed particle transport model. Particle drag
and lift should be included, the results of particle inertia and friction with the
surrounding, moving fluid molecules. A sedimentation model which is better
suited for aggregates, taking into account their higher porosity and larger sur-
face, should be used. Yet we think that the results that will be presented in
the following capture the effect quite sufficiently, and we consider this a good
motivation for working on the inclusion of more sophisticated transport models.

This chapter is organized as follows. First, in Section 7.1, we give the model
of the crystallizer system in the required level of detail. Alongside each part of
the model we comment on the numerical methods that were used for its solu-
tion. Section 7.2 is concerned with the presentation and discussion of numerical
results, first of the flow field, then of the coupled simulation which includes the
stochastic particle simulation. We end the chapter with a conclusion of the
achieved in Section 7.3. An outlook on possible extensions and enhancements
of the framework, and on further areas of application, is postponed to the final
Chapter 8 of this thesis.

7.1 Modeling, physical and numerical details

In this section the mathematical model and all the necessary physical details
for the crystallizer simulation framework will be supplied. Remember that
a population balance system consists of the equations for fluid velocity and
pressure (u, p) [m/s,Pa], temperature T [K] and concentration c [mol/m3]:

∂

∂t
u− µ

ρ
∆u+ (u · ∇)u+∇p

ρ
= g in (0, tend)× Ωx [m/s2]

∇ · u = 0 in (0, tend)× Ωx [1/s]

∂

∂t
T −DT∆T + u · ∇T = gT Igrowth(c, T, f) in (0, tend)× Ωx [K/s]

∂

∂t
c−Dc∆c+ u · ∇c = gcIgrowth(c, T, f) in (0, tend)× Ωx [mol/s]

(7.1)
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as well as the population balance equation for the mass-based particle popula-
tion density f [1/kg·m3·s] :

∂

∂t
f + u · ∇f = C(f) + G(c, T, f) in (0, tend)× Ωx × Ωm [1/m3·kg·s].

All of these equations have to be equipped with suitable initial- and bound-
ary conditions. The spatial domain Ωx is a sufficiently regular subset of R3

throughout this chapter, and the inner coordinate space Ωm is one-dimensional
and continuous, containing particle mass as the only inner coordinate. The end
time tend will be specified later. In order to present boundary conditions and
numerical details properly in the following, we specify the spatial domain that
is used for the simulations here. It comprises the inner part of the crystalliza-
tion vessel shown in Figure 7.1, excluding the inflow and the outflow part where
the filter is placed. In our approximation we also disregard any possible round-
ing at the inside, and instead assume the vessel to consist of a cylinder and a
bottom-up truncated cone. The cylindrical inflow piece is not simulated for two
reasons. Firstly to reduce the number of degrees of freedom in the computation,
secondly in order to enforce convexity of the domain. This is necessary for the
currently used particle location method, as will be explained later.

Formally, the computational domain is

Ωx =
{

(x, y, z) ∈ R3 :
√
x2 + y2 ≤ 0.075, 0.3 ≤ z ≤ 0.45

}
∪
{

(x, y, z) ∈ R3 :
√
x2 + y2 ≤ 0.01 + z · 0.065

0.3
, 0 ≤ z ≤ 0.3

}
.

The measures in the engineering drawing in Figure 7.1 are given in mm, in
the definition above we used SI units, thus m, instead. Pictures of discretized
versions of the domain are supplied in Figure 7.3.

The physical constants and function expressions appearing in the equations
above will be specified in the following, when examining the equations one by
one. Starting with the Navier–Stokes equations, and continuing with temperat-
ure balance, mass balance and population balance equation, we will proceed to
that task in the following subsections. We will often refer to certain “standard
configuration” or “standard setup” of the simulations. That standard setup
was chosen as a compromise between physical usefulness and computational
feasibility and used for extensive numerical tests. The standard discretization
of Ωx is given in Figure 7.4. It consists of 10752 tetrahedra, which are aligned
in flow direction. More details on the standard setup are given in the following.

7.1.1 The velocity field

As it was before, the velocity field is itself not influenced in any way by the
transported quantities, it is just one-way coupled into the system. But in con-
trast to the applications seen before, the velocity field is now truly instationary,
even turbulent, and therefore the governing equations have to be solved and
updated in each time step.
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7 A 3d simulation framework for a fluidized bed crystallizer

Figure 7.3: Two versions of the discretized computational geometry of the batch
crystallizer. Left : A coarser version without inlet (Ωx), this version
was used as the standard setup of coupled simulations. Right: A
finer version with inlet, it was used for parallel test computations
of the velocity field.

In the Navier–Stokes equations three parameters appear. On the right-hand
side, g is the downwards directed standard gravity, g = (0, 0,−9.80665) [m/s2].
The two remaining parameters in the Navier–Stokes equations, i.e., dynamic
viscosity µ [kg/m·s] and fluid density ρ [kg/m3] are system-dependent. For the
crystallizer they were determined to be

µ = 0.0014 kg/m·s and ρ = 1050 kg/m3

by the experimentalists. Both values are assumed to be constant throughout
the course of the simulation, which is in our opinion well justified, since the
temperature varies only about ±1K, and the crystal load is so small that its
variation hardly influences the macroscopic density and/or viscosity.

The flow in the crystallizer is generated by a pump, its control variable is
the mass flow per hour, ṁ [kg/h]. That mass flow rate varies between 50 and
200 kg/h, depending on the experimental setup. In a typical, “medium” setup,
with which we gathered a lot of computational experience, it is ṁ = 93 kg/h.
Assuming a parabolic inflow profile at the bottom inlet, this translates into a
characteristic average inflow velocity of

v ≈ 0.08 m/s.

Together with the choice of a characteristic length L = 0.1 m as a typical inner
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Figure 7.4: The discrete geometry of the “standard configuration”. The inlet
is cut off, the domain Ωx is regularly decomposed into 10752 tetra-
hedra of almost the same height. Left: Front view. Right: Top and
bottom view.

diameter, one can compute a dimensionless Reynolds number

Re =
ρ · v · L
ν

= 6000.

This is well in the critical regime between laminar and turbulent behavior, and
therefore a turbulent behavior may be expected with some right. Test runs
of direct simulations of the Navier–Stokes equations fostered that hypothesis.
Even on the finest test grid, the solver routines failed to converge at a relatively
early point. Therefore we had to apply a turbulence model. We opted for
a Large Eddy Simulation of Smagorinsky type. This relatively simple, but
very popular and widely used turbulence model effectively introduces artificial,
solution-dependent viscosity to the momentum balance equation, which then
turns into

∂

∂t
u−∇ · (ν + νSmago‖∇u‖F )∇u+ (u · ∇)u+∇p

ρ
= g.

The above is the gradient form of the strong formulation of the Smagorinsky
momentum equation, which is its most accessible form. The dimensionless vis-
cosity is ν := µ

ρ·L∞·v∞ with some length and velocity scale L∞ and v∞. Note
that in the above equation also the viscous term is non-linear, which means
that different solution spaces, a different time-discretized form and a different
Picard iteration have to be used. As Smagorinsky-type models were already
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implemented in ParMooN, we could make use of them here without digging too
much into the details. An introduction to turbulence modeling, Large Eddy
Simulations, and the Smagorinsky model is given in (John, 2016, Ch.8). The
additional viscosity parameter νSmago is a product of two factors, the squared
turbulent filter width δ2 and a numerical Smagorinsky coefficient CSmago. In
our applications, δ was chosen to be 2hk, and the Smagorinsky coefficient was
chosen in orders of magnitude between 1 · 10−5 and 1 · 10−3, depending on the
configuration, i.e., fineness of the grid and inflow velocity. In our standard setup
with ṁ = 93 kg/h, CSmago = 5·10−4 appeared to be a good choice, which allowed
to resolve the large vortices without adding overly much artificial viscosity.

Concerning solution methods, we could make good use of the knowledge layed
out in Chapter 2. A Crank–Nicholson time discretization paired with a Picard
iteration was used, for the standard configuration a relatively coarse, constant
time step of ∆t = 0.05 s showed to be suitable. As a solver for the linear
problem in each step of the Picard iteration, a flexible GMRES (Saad (1993))
preconditioned with the standard Least Squares Commutator Preconditioner
with iterative solver (BiCGstab with SSOR preconditioner) for the velocity
subproblem was used. This combination of solvers had turned out to be a
very recommendable choice for time-dependent saddle point problems in our
assessment Ahmed et al. (2018). We can confirm that observation once more.
For the standard setup, we restricted the number of Picard iterations to 5 and
the number of FGMRES iterations per step to 10. The linear solver terminated
after the initial residual was reduced by one order of magnitude (0.1), and
no target residual was given. This is important for time-dependent problems,
since with a fixed target residual it is possible that computations get stuck, and
the discrete does not change anymore over time. Requiring residual reduction
instead fixes that issue. The same is true for the inner iteration of the inexact
LSC preconditioner, i.e., the BiCGstab iteration. This was required to reduce
the (relatively large) initial residual by a factor 10−3. The outermost iteration,
the Picard iteration, was forced to be performed at least once per time step, and
was set to reduce the summed residual of momentum and continuity equation
below 5 · 10−9. This was usually achieved within the first one or two iterations.

We must further note that we were able to produce plausible flow results
only with a flow-aligned tetrahedral grid. That grid was gained in “Sandwich
grid” manner, by carrying forward a 2d triangle grid of a circle to a structured
3d tetrahedral grid of a cylinder, and then stretching that grid to the desired
shape of the crystallization vessel by applying a transformation. Unstructured
tetrahedral grids introduced too much artificial deviation, which could not be
made up with by further grid refinement due to limitations of the computing
time, and on structured quad grids we were not able to find a converging solver.
Therefore, the structured tetrahedral grid remained the grid of choice for the
flow computations.

We assumed as initial condition a fluid at rest, i.e., u ≡ 0 on Ωx. The
boundary conditions were a parabolic inflow at the bottom, and a parabolic
outflow at the top, where the filter is located in the experiment. At the walls
no-slip boundary conditions were used. Both inflow and outflow conditions were
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adapted to the mass flow rate, such that the system stayed divergence-free. In
the standard setup, this led to average inflow and outflow velocity of

vavg,in ≈ 0.0783 m/s, vavg,out ≈ 0.0014 m/s.

In order to avoid an impulsive start both these conditions were scaled by the
time t over the first second of the simulation.

7.1.2 The temperature field

The temperature field in the crystallization vessel is subject to a convection-
diffusion equation, with a source term due to particle growth on the right-hand
side.

Let us first give the still unspecified quantities in the energy balance equation
in System (7.1) and then proceed towards initial and boundary conditions and
finally comment on the numerical procedures used for the solution of the equa-
tion. As it was in the 2d tube crystallizer example (compare Section 6.1.6), the
diffusion coefficient DT of the temperature equation is given as the quotient
of thermal conductivity, suspension density and specific heat capacity of the
suspension. In contrast to the ASA crystallizer model, we were provided with
measurement data for the suspension, and did not have to refrain to parameters
of the solvent only. The parameters are

λsusp = 0.6 W/m·K (thermal conductivity of the suspension)

ρsusp = 1050 kg/m3 (density of the suspension)

Csusp = 3841 J/kg·K (specific heat capacity of the suspension).

And thus

DT =
λsusp

ρsuspCsusp
≈ 1.5 · 10−7 m2/s

is the diffusion coefficient. Note that, since numerical stabilization methods
will add artificial diffusion anyway, it is the order of magnitude of the diffusion
that is important in the computations, not so much the specific value.

On the right-hand side of the temperature equation stands a term that models
temperature sources due to crystallization, i.e., surface attachment growth. It
consists of the growth intensity Igrowth(c, T, f) and a positive scaling parameter

gT =
∆hcryst
ρsuspCsusp

.

The crystallization enthalpy of the dodecahydrate is ∆hcryst = 89.1 kJ/kg, res-
ulting in a scaling parameter gT = 0.0221 K·m3/kg. The growth intensity term
is an integral over the property space Ωm, we repeat here Equation (5.3):

Igrowth(c, T, f, t,x) =

∫
Ωm

G(c, T,m)f(t,x,m) dm. (7.2)

The growth rate model G will be presented in the subsequent chapter on the
particle size distribution.
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7 A 3d simulation framework for a fluidized bed crystallizer

Boundary conditions for the temperature equation were chosen rather simple
for the standard setup. The experiments were either run at constant temperat-
ure or by cooling down slightly and linearly over the course of a whole experi-
ment. The tube and pump system was well isolated, a cooling hull surrounding
the main crystallization vessel was used to ensure a certain temperature pro-
file. Since the temperature profile varied very slowly over time, we went for
Dirichlet boundary conditions everywhere. In the standard setup the boundary
value was a linear interpolation (in time) of the initial value Tstart = 288.95 K
(15.8°C) and the end temperature Tend = 288.35 K (15.2°C) at t = 30 min.

A question closely connected to the temperature is the solubility of the solvent
in the solute, in our case potash alum dodecahydrate in water. We used a fitted,
fourth-order solubility model communicated by the partner group at OVGU,
and published in Temmel et al. (2016). It is formulated in terms of mass potash
alum dodecahydrate per mass added water, i.e., a type of mass fraction. This
decision makes perfect sense from the experimentators point of view, since it
gives a recipe to produce a solution of the same concentration (“Dissolve 10 g
of potash alum dodecahydrate in 1 kg of water.”). At temperature T̃ [°C], the
hydrate-per-added-water mass fraction in equilibrium is

whyd,H2O+(T̃ ) = a1 + a2T̃ + a3T̃
2 + a4T̃

3 + a5T̃
4

[
kg hydrate

kg added water

]
, (7.3)

with coefficients

a1 = 0.0506 a2 = 0.0023 a3 = 7.76 · 10−5

a4 = −2.43 · 10−6 a5 = 4.86 · 10−8.

This solubility model is assured to be valid in a temperature range between 10
and 60 °C, and therefore valid for the relatively cool temperature at which the
model crystallizer is operated (around 15 °C). The solubility model will enter
the surface attachment growth model in Subsection 7.1.4 via the supersatura-
tion, since, as has been stated before, the need to reduce supersaturation is the
driving force behind surface attachment growth.

The temperature equation is discretized in time with the Crank–Nicholson
approach, and in space using P1 finite elements on the tetrahedral discretization.
Additionally, the linear Crank–Nicholson FEM-FCT method (see Section 3.2)
is used for algebraic stabilization. Since the resulting linear systems in every
time step are relatively small in the standard setup a “black box” direct solver
(UMFPACK) was used for their solution.

7.1.3 The concentration of dissolved potash alum

The equation for the concentration of dissolved aluminum potassium sulfate is
the second convection-diffusion equation in System (7.1). It has units mol/m3·s,
where the amount of substance refers to the number of KAl(SO4)2 molecules.
Potassium alum is a (dodeca)hydrate, i.e., its crystal structure incorporates
12 water molecules per unit cell. If it is dissolved, the crystal structure is
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destroyed, and the formerly bonded water molecules merge into the solvent
water. Therefore, the dissolved substance is an anhydrate and not a hydrate
anymore, a difference that will be encountered again when the growth model is
discussed.

In the concentration equation two constants appear: the diffusion coefficient
Dc and the growth intensity scaling parameter gc, which converts the intensity
of particle attachment growth Igrowth (see Equation (7.2)) into a loss of concen-
tration of dissolved material. The diffusion coefficient of KAl(SO4)2 in water
was reported by the group of Prof. Sundmacher to be

Dc = 5.4 · 10−10 m2/s.

The growth scaling coefficient is just, see Equation (6.4),

gc = − 1

Manhydrate

Manhydrate

Mhydrate
= − 1

Mhydrate
,

where the molar mass of the hydrate canceled out. The molar mass of the
potash alum hydrate is

Mhydrate = 0.47438 kg/mol. (7.4)

In the concentration equation, the loss of free water molecules due to bonding
in the hydrate crystal structure is disregarded. This assumption follows from
the primary assumption of constant density.

In order to formulate the boundary conditions, let Γin denote the inlet (bot-
tom) boundary of Ωx, Γout the outlet (top) boundary and Γwall the entire wall
boundary. The wall boundary is equipped with Neumann boundary conditions,

Dc
∂c

∂n
= 0 on Γwall,

where n is the outward pointing normal vector. This condition implies that
there is no change of concentration across the wall boundary. Together with
the convective field being 0 along that boundary, this leads to the interpretation
that no dissolved material passes the boundary. The same condition is posed
on the outflow boundary Γout, but since there the convective field points in the
direction of n, unhindered convective transport out of the domain (in reality:
through the filter) takes place.

For the inlet boundary condition we decided to implement a special, cyclic
Dirichlet boundary condition. The fluidized bed batch crystallizer is operated
as a closed system with regard to the dissolved species, which is a difference to
the temperature. The 3d simulation comprises only the crystallizer vessel itself,
the remainder of the device (tubes, filters, Y-fittings, pumps) is disregarded.
Still these parts have to be accounted for in the concentration balance, since
they are part of the fluid cycle. We pursue the following idea to model the
impact of this peripheral devices on the mass balance.

Let ∆t be the constant time step size and tcyc the “cycle time”, i.e., the
average time it takes for the fluid to travel one round through the entire device.
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7 A 3d simulation framework for a fluidized bed crystallizer

Assume that the quotient tcyc/∆t is a natural number ncyc – it is the number
of discrete time steps until the “fluid cycle” starts from the beginning. A list
cin,cyc =

(
cin,0, ..., cin,ncyc−1

)
[mol/m3] of inlet concentrations is initialized, we call

it the “inlet cycle”. On startup, all values in that list are set to some constant
initial concentration cstart. The values in the inlet cycle are chosen as inlet
boundary values one after the other, starting from the beginning once the end
is reached. This means that

c(tstart +m∆t, ·) = cin,(m mod ncyc) on Γin (7.5)

is the inlet boundary condition in the m-th discrete time step. The “consump-
tion” of dissolved species due to attachment growth is taken into account by
reducing a corresponding value in the inlet cycle at each time step. For that
purpose, the amount of consumed species in some time step must be determ-
ined, and it must be converted to a reduction of the corresponding inlet value,
which then receives an update in form of a subtraction.

Let n be the inward pointing normalized normal of Γin, u is the velocity field,
which is parabolic in space and constant in time, with maximum value umax

at the inlet. For an arbitrary time step m the inlet concentration cin,m from
the inlet cycle is “active”. The total inflowing amount of substance during this
time step is:

Cin,m = ∆t

∫
Γin

cin,mu · d~σ = ∆t cin,m

∫
Γin

u · n ds (7.6)

= ∆t cin,m

∫ R

0

∫ 2π

0
umax

(
1−

( r
R

)2
)
r dϕdr

(7.7)

= ∆t cin,m2πumax
R2

4
, (7.8)

with the inlet radius R = 0.01 m.

If m > ncyc−1, i.e., at least the first cycle has been finished, then cin,m must
be such that the amount of substance inflowing at time step m, Cin,m must take
into account the amount Clost,m−ncyc , which was lost at time step m−ncyc. The
simple equation reads

Cin,m = Cin,m−ncyc − Clost,m−ncyc . (7.9)

The loss term Clost,m−ncyc is just the spatial integral over the right-hand side of
the concentration balance equation, multiplied with ∆t. Combining equations
(7.6) and (7.9) we get an equation for ∆c = cin,m−ncyc − cin,m:

∆c =
Clost,m−ncyc

2πumax
R2

4

.

By implementing such cyclic inlet boundary conditions as described above, a
one- dimensional mass balance of the peripheral devices appears in the PBS.
Note that this is based on a certain mixing assumption: in the periphery, the
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fluid mixes so well that all the concentration sinks of one time step in the main
vessel manifest themselves in the inflow of a single time step, tcyc seconds later.

In the standard setup the initial condition cstart = 207 mol/m3 was chosen. This
value corresponds to the saturation concentration at 17 °C. The cycle time was
chosen as tcyc = 60 s. The numerical methods for the concentration equation
were those that were used for the temperature equation, see the preceding
Subsection 7.1.2.

7.1.4 The population balance of potash alum dodecahydrate
crystals

The numerical solution of the population balance equation for the potash alum
dodecahydrate crystals falls in the responsibility of the stochastic particle sim-
ulation (SPS) program Brush. The particle model which we use is a most
simple spherical model. In theory, the model is mass based, the inner coordin-
ate m ∈ Ωm describes particle mass in kg. In the program, the model is based
on number of hydrate molecules per particle. The conversion between both
worlds is done via Avogadro’s constant NA and the molar mass of potash alum
dodecahydrate, see Equation (7.4). Despite the simple particle model several
difficulties had to be overcome, especially due to the 3d geometry, and several
modeling decisions had to be made. This subsection is split into four para-
graphs, each of them dealing with one part of the model. Those paragraphs are
Convection and reflection, Sedimentation, Coagulation and Growth model.

Convection and reflection In the SPS, particle transport and particle inter-
action are separated by a splitting scheme. For the 3d simulation we used a
second order Strang splitting scheme that was already implemented in Brush
and is documented in Celnik et al. (2007). The main assumption that particles
follow the macroscopic velocity field inertialess1 is kept up, but gets extended
and in some sense broken by two more mechanisms: particle wall reflection and
particle sedimentation (which is postponed to the next paragraph).

In order to represent a 3d geometry, a mesh representation backend had to
be incorporated in Brush. After a failed attempt with the 3d Triangulations
package of CGAL (Jamin et al. (2018)), which was admittedly not designed for
the purpose of mesh representation, we decided to use a modified version of
Tetgen (Si (2015)) as a mesh representation. The necessary tasks

� representation of a user defined tetrahedral mesh

� computation of cell volumes

� point location

� computation of hull intersection points

could be realized within that framework. Especially the first point was critical,
since our flow computations required a grid aligned mesh (see Section 7.1.1),

1Except for the numerical inertia that gets introduced by the first order discretization of the
velocity field.
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Start reflection algorithm if
xold ∈ Ωx and xnew /∈ Ωx

znew < 0 Remove particle
from the simulation

Compute hull intersection point xhull

‖xold − xhull‖ < ε

Compute random inside reflection
starting at xhull to obtain x̃new

Compute perfect reflection
starting at xhull to obtain x̃new

x̃new ∈ Ωx

Reposition particle to x̃new

Yes

No

Yes

No

No

Yes

Figure 7.5: The particle reflection algorithm that was implemented in Brush.
The former position of the particle is xold, the new (outside) position
is xnew, with z-component znew. A small ε > 0 is given as wall
vicinity tolerance.

and a certain relationship of the grids of CFD and SPS is a necessity for an
efficient coupled algorithm (see Section 6.2.1).

Point location became necessary after each transport splitting step. After
each such step, it must be determined in which cell a particle is contained now.
For that purpose, Tetgen has a directed search algorithm implemented. For
that, a convex domain is a premise. In our case that was achieved by cutting
off the inflow, as is shown in Figure 7.4.

This point location is also able to detect if a particle has left the computa-
tional domain. If that case occurred, a decision had to be made, whether the
particle left through the inflow boundary Γin or “left” through the solid or filter
boundary Γwall∪Γout. In the first case, the particle was measured and removed
from the simulation. In the other case, a particle reflection was executed in or-
der to reposition the particle inside the domain. The “ideal” particle reflection
algorithm which we implemented is given in Figure 7.5.

Two different reflection mechanisms are incorporated in that algorithm: per-
fect reflection and random reflection, biased towards the inside of the domain.
Both model elastic wall collisions, i.e., no kinetic energy is absorbed in the col-
lision. Perfect reflection is performed when the start point xold of the particle
movement is well inside the domain (distance from the hull intersection point is
greater than some ε). Then, the new position x̃end of the particle is computed
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in a two stage process. The reflection direction e is

e = (xhull − xold)− 2 ((xhull − xold) · n) n,

where n is the outward pointing unit normal of that tetrahedra face where xhull

is located, and the norm of the reflection vector is set to be

‖x̃new − xhull‖ = ‖xnew − xhull‖.

Random reflection is performed whenever either the starting point of a reflection
is very close to the wall, or in case a double reflection would occur. Both these
cases are very prone to robustness errors, therefore we decided to handle them in
this safer manner. Random reflection is performed with an acceptance-rejection
scheme. Directions e on the “inward” half sphere of radius r := ‖xnew − xhull‖
are created by drawing two random numbers u1, u2 ∼ U [0, 1] and setting

e = r
(√

1− z2 cos (θ) ,
√

1− z2 sin (θ) , z
)
,

where

θ = 2πu1 and z = −1 + 2u2.

If the scalar product e · n is positive, the direction e is inverted, in order to
point inwards. Further, a check is performed whether xhull + e is inside the
domain. If so, that value is accepted and the particle moved there, otherwise,
e is rejected and another random reflection direction is generated.

The random reflection algorithm is a mean of avoiding reflection in cases
where serious robustness errors due to floating point arithmetic are to be ex-
pected. In fact there are more such cases, and several of them are just handled
by throwing exceptions and relocating particles to cell centers in the current
version of the program. In each computing run, the occurrence of such cases
is logged, and it turned out that around 10−5 % of all occurring reflections
fall into that category, therefore the issues did not get tracked down yet. Two
sources of remaining robustness problems come to mind – the first is that the
computational domain Ωx, though convex in theory, is not necessarily convex
in floating point representation. Therefore point location via directed search
is not guaranteed to give correct results. The second point are rounding er-
rors that occur when computing the hull intersection of lines that lie very close
and/or almost parallel to the hull.

Sedimentation As was mentioned in the introduction a desired effect of the
potash alum fluidized bed crystallizer is height separation of different crystal
size fractions. To reflect such a behavior in the simulation, the model must be
extended by some mechanism which exerts this feature. For that aim a simple
sedimentation model for spherical particles was implemented in Brush. The
model derivation and formulation can be found in (Berg, 1983, pp.58).

There, sedimentation of particles is modeled via a sedimentation rate, which
results in a downward sinking velocity of particles and differs for different
particle sizes. In order to apply the sedimentation rate that was proposed
in Berg (1983), the following assumptions must be made:
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� the particles are spherical

� the fluid velocity around the particles is so low that Stokes’ law is a good
enough approximation for the inverse particle mobility (frictional drag
coefficient).

If those statements can be assumed at least approximately, the above model
can be considered an approximation to start with. Its derivation starts from a
formula for the sinking velocity vs of a particle which is surrounded by moving
fluid molecules:

vs =
Fdown

f
. (7.10)

Here Fdown [N] is the force acting downwards, and f [kg/s] is the frictional drag
coefficient, which relates force and velocity. The frictional drag coefficient is
related to the particle mobility µ of the Einstein–Smoluchowski relation by
µ = 1

f . Specifying the forces acting downwards in (7.10), those are

‖Fdown‖ = (m− V ρ)g.

In this equation, m is the particle mass and V the particle volume, ρ =
1050 kg/m3 is the density of the displaced fluid, the standard gravity g = 9.81 m/s2

is known. As can be seen, the force depends linearly on the mass difference of
particle and displaced fluid. It remains to find a model for f , here is where
Stokes’ law for spherical particles in a viscous fluid at low velocity comes into
play, and thus the two assumptions made above. According to that model (see
(Berg, 1983, pp.58) for its detailed derivation) f can be approximated as

f = 3πµd,

with d being the diameter of the spherical particle, and the dynamic fluid
viscosity µ, which is known to be µ = 0.0014 kg/m·s for the model crystallizer.

Inserting everything into (7.10) and replacing m = V ρcryst (where ρcryst =
1760 kg/m3) one finally obtains the following equation for the additional, down-
wards directed velocity component:

vz = d2 · (ρcryst − ρfluid)g

18µ
.

For the sake of rigorousness, here is the mass-based formulation:

vz =

(
6
ρπ

) 2
3

(ρcryst − ρfluid)g

18µ
m

2
3 .

Numerical tests with this model showed that the sedimentation rate intro-
duced that way was far too high (see Section 7.2). Especially large particles
that entered the slow flow regimes at the sides of the inlet could not be moved
upwards against the gravity anymore. Depending on the boundary conditions
at the inlet (particle reflection or particle removal) this led to either excessive

158



7.1 Modeling, physical and numerical details

coagulation in the areas close to the inflow or to a significant loss of particles
through the inlet. In some test simulations up to 80 % of the total crystal mass
was lost over time that way.

As an ad-hoc remedy, we introduced a sedimentation scaling parameter σ ∈
[0, 1] with which the sedimentation effect could be down-scaled. With this,
better results without or at least with less mass loss could be achieved. In
the actual experiment the octahedral shape and aggregate nature of the potash
alum crystals lead to a greater particle surface and porosity, which suggests that
the actual sedimentation velocity is less than for spherical particles. Therefore,
a different modeling approach could be fruitful here. The results achieved with
the down-scaled spherical sedimentation model, which already show the desired
height separation, can be taken as a motivation for incorporating a more refined
sedimentation model.

Coagulation Collision growth, the dominant growth mechanism, is modeled
with an integral term as known from the Smoluchowski coagulation equation.
The Brownian coagulation kernel that will be used is temperature-dependent.
That dependence on T is indicated in the following formulation of the coagula-
tion integral:

C(f, T, t,x,m) =
1

2

∫
Ωm

KBrownian(T,m− µ, µ)f(t,x,m− µ)f(t,x, µ) dµ

−
∫

Ωm

KBrownian(T,m, µ)f(t,x,m)f(t,x, µ) dµ.

The choice of the coagulation kernel is usually a delicate matter. In a first
attempt of this framework we go for the Brownian kernel, since among the well-
established literature kernels it favors coagulation of small with large particles
over coagulation of equally sized particles and therefore guarantees relatively
uniform growth. With a dimensionless coagulation scaling parameter κ, the
mass-based kernel reads

K(T,m1,m2) = κ
2TkB

3µ

(
1

d(m1)
+

1

d(m2)

)
(d(m1) + d(m2)) [m3/s] .

In this equation d(m) is the diameter of a spherical potash alum crystal of mass
m, d(m) = 3

√
6m/ρcrystπ. Further, the Boltzmann constant kB [J/K] appears, and

µ denotes once more the dynamic viscosity of the surrounding fluid.
The particle interaction is subject to the stochastic particle simulation. Co-

agulation events take place as jumps in a Markov jump process, as is described
in Chapter 4. In particular, a stochastic weighted algorithm as described in
Subsection 4.3.3 is employed. The scaling parameter κ must, as usual, be fitted
by means of numerical experiments.

Growth model For the implementation of a surface attachment growth model
we could refer to very recent experimental results. In Temmel et al. (2016)
an experimentally validated growth model is given. It is an Arrhenius-type
equation, see also the corresponding paragraph in Subsection 6.1.4, where a
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similar model was used for the growth of ASA crystals. The potash alum
growth model is

Gd =

√
2

π
1
3

kG1 exp

(
−kG2

RT

)
(Shyd,H2O+ − 1)kG3 [m/s] (7.11)

with fitted parameters

kG1 = 5 · 107 m/s,

kG2 = 75 · 103 J/mol,

kG3 = 1.4.

The prefactor
√

2/π
1
3 is due to conversion from an octahedral to a spherical

particle model. The growth rate Gd is only computed for Shyd,H2O+ > 1, other-
wise it is set to 0. The quantity Shyd,H2O+ [kg/kg] is the relative supersaturation
of the solution. In the original reference the mass of dissolved hydrate per ad-
ded solvent (water) is used as a concentration measure. In order to use it in the
simulations, conversions have to be made. Let whyd,H2O+ [kg/kg] be the current
concentration in that measure and weq

hyd,H2O+(T ) [kg/kg] the concentration in
equilibrium, then the current (super)saturation is

Shyd,H2O+ =
whyd,H2O+

weq
hyd,H2O+(T )

. (7.12)

While the equilibrium concentration is given by the solubility curve (7.3) which
originates from Temmel et al. (2016), too, the current concentration whyd,H2O+

must be gained by conversion from “our” molar concentration c, which is in
units mol anhydrate per m3 solution. First, display whyd,H2O+ as a function
of the concentration measure wanhyd,H2O [kg/kg] (mass anhydrate per total mass
water), which is closer to our viewpoint:

whyd,H2O+ =
wanhyd,H2O

wanhyd,hyd − wanhyd,H2O
. (7.13)

Here, wanhyd,H2O = Manhydrate/Mhydrate is the constant mass fraction of anhydrate
in the dodecahydrate crystal. Proceed with

wanhyd,H2O =
c Manhydrate

ρsolution
. (7.14)

Inserting (7.14) into (7.13) and that into (7.12) gives a growth rate term in
dependence on T [K] and c [mol/m3], which is in accordance to our formulation of
the model system. This growth rate can be inserted into the term given in (5.9),
and into the growth intensity integrals on the right-hand sides of concentration
and temperature equation.

Concerning numerics, the growth term can do without a scaling parameter.
In the SPS, an LPDA approach (see Section 4.3.4) is used in order to reduce the
computational effort, while maintaining the order of convergence. Still, in the
regarded temperature regime, relative supersaturation and thus the growth rate
are relatively low, collision growth dominates (both in terms of computational
effort and in terms of effect on the system) in the simulations.
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7.2 Results of the 3d simulations

Figure 7.6: The development of the flow field in the startup phase, 56 kg/h mass
flow setup. Snapshots at times 1,5,7,10,12 and 15 s, unit is m/s.

7.2 Results of the 3d simulations

The 3d crystallizer computations were mainly performed for the “standard
setup”, which was set up to represent typical working conditions of the fluid-
ized bed crystallizer reported by the group of Prof. Sundmacher. The simulated
time was 1800 s (30 min), where in the first 30 s the flow field developed (see
Figure 7.6). Particles were inserted between seconds 30 and 40. Though in
the experiments particles were funneled into the device all at once, we simu-
lated insertion uniformly in the entire domain and stretched over the interval
[30 s, 40 s], since the SPS profits from a relatively uniform spatial distribution
of computational particles. Nevertheless, supporting simulations with insertion
at just one place were performed, too, in order to visualize the spreading of
particles in the device.

In the standard setup, 100 mg of crystalline material, divided equally between
two particle size fractions were added. The first fraction comprised 50 mg par-
ticles of diameter 75 µm, either monodisperse, or following a log-normal distri-
bution of 25 µm standard deviation. The second fraction contained particles of
125 µm diameter, again either monodisperse or log-normal with the same stand-
ard deviation. Although the theory is formulated in terms of particle mass, we
chose particle sphere equivalent diameter in µm for the following presentation,
since this quantity seems to be a more common particle description, making
the results of this chapter better comparable to similar works.

The geometry was the standard discretization of Ωx into 10752 tetrahedra,
see Figure 7.4 and the description in Section 7.1. To each discretization cell
an ensemble of maximum 256 computational particles was assigned. The con-
version from computational to physical particles in the SPS is mediated by the
number of physical particles which a full ensemble represents. In preliminary
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Table 7.1: Details on the flow-only computations, 300 seconds simulated time.
Time-step size ∆t, Smagorinsky coefficient CSmago, number of MPI
processes used in the computation, and total computing time (wall
time).

Setup ṁ (kg/h) ∆t (s) CSmago # proc. Comp. time (s)

Level 2 56 5 · 10−2 1 · 10−4 4 5050
93 5 · 10−2 1 · 10−4 8 3600

Level 3 56 5 · 10−2 1 · 10−4 8 25,700
93 5 · 10−2 1 · 10−4 8 36,920

Level 4 56 2 · 10−2 1 · 10−4 16 380,000
93 2 · 10−2 1 · 10−4 16 411,230

simulation runs, 5.0 ·108 # physical particles/m3 was determined to be a useful value
for a full ensemble here. Since due to sedimentation physical particles amass
at the bottom of the device, we found it necessary to multiply that value by
10 below 10 cm and by 100 below 5 cm in order to avoid permanent overfilling
of ensembles close to the bottom. This setup led to a total number of roughly
150000 computational particles in the simulation domain after completion of
the insertion at 40 s. That number is typically reduced by around 50% at
the end of a computing run due to sedimentation loss through the inlet and
overfilling/rescaling of ensembles.

Concerning the velocity field, the simulations in the standard setup were
complemented by grid refinement studies. Two different mass flow setups were
investigated both for the flow-only and the complete system. These were 56 kg/h,
leading to a maximum inflow velocity of 0.094 m/s, and 93 kg/h, i.e., 0.161 m/s

maximum inflow velocity. Both setups led to mildly turbulent flows. In the flow-
only computations 300 s were simulated, on three different refinement levels of
the same initial tetrahedra grid. The dimensions are:

� Level 2 (standard setup): 10,752 Tetrahedra, P2/P1 Galerkin discretiza-
tion of the Navier–Stokes equations resulted in 51768 degrees of freedom.

� Level 3: 86,016 tetrahedra, 385,644 d.o.f.

� Level 4: 688,128 tetrahedra, 2,974,932 d.o.f.

For these runs we could make use of the distributed memory parallelism of
ParMooN, and used the parallelized version of FGMRES and the LSC precon-
ditioner that was described in Section 2.4.4. The number of processes used in
the individual runs and the computing time for the 300 s numerical simulation
can be found in Table 7.1. There also the time step and the Smagorinsky para-
meter is given. While the latter was chosen the same for all runs, the constant
time step had to be reduced somewhat for the finest grid computations, in order
to ensure convergence of the iterative solver.

The computational grids and snapshot results of the computed velocity solu-
tion are given in Figure 7.7 in terms of the norm of the discrete velocity solution.
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7.2 Results of the 3d simulations

All figures are vertical cuts through the three-dimensional computing domain.
A distinct feature of all flow computations is the relatively stable primary flow
area in the middle, stretching from inflow (bottom) to outflow (top). At the top,
where the main flow hits the filter, vortices start to develop. These are much
more pronounced in the setup with higher mass flow rate. While in the 56 kg/h

setup the vortices mostly varied in size over time, in the 93 kg/h setup vortex
shedding could be observed. Occasionally those vortices got strong enough to
disturb the main flow in the center, which then rebuilt similar to the beginning.
While the vortices could be resolved rather clearly on the Level 4 grid, the res-
ults with the coarsest grid are, as could be expected, rather smeared. Yet since
the main features of the flow, i.e., central stream and vortices near the filter,
could be preserved in the whole, this geometry was used for those runs which
included particles and transport equations. This was mainly a concession to
simulation time. Still, the results on the grid refinement are a clear statement
for distributed-memory parallelization of the combined algorithm, since even for
the Level-2 setup a notable gain in speed could be obtained with a parallelized
solver for the velocity system.

Simulations for the entire population balance system were performed in se-
quential only. A typical run of 30 minutes simulated time took around 35 hours
computing time on a single core, where the majority of the time (around 75 %)
was spent in the flow computation.

The particle kinetics introduced in Section 7.1 left two dimensionless para-
meters unspecified: the sedimentation scaling parameter σ and the coagulation
scaling parameter κ. While κ can be used in order to fit simulation results to
experimental results (see, e.g., the 2d simulations in Chapter 6 for that proced-
ure), σ has to be treated differently. That parameter was initially introduced,
because the full sedimentation model of Section 7.1 resulted in a loss of large
particles through the inflow that was so severe that the effects of coagulation
and surface attachment growth were not at all visible in the development of the
PSDs anymore. As soon as a particle grew above some threshold, it quickly
left the simulation domain. For quantification of that effect we performed runs
with a fixed, small coagulation parameter (κ = 500), and measured the devel-
opment of the total mass in the system, in dependence on the sedimentation
parameter. Surface attachment growth was disabled for these computations,
since the mass transfer from dissolved to crystalline phase would have shad-
owed the mass loss through the inlet. The results of these no-growth runs are
plotted in Figure 7.8. One sees clearly that even for a sedimentation parameter
of σ = 0.25 the mass loss is considerable, around ten percent during the first
twenty minutes. For σ = 0.1 almost all mass was kept in the system. Therefore
all subsequent computations are performed with this sedimentation parameter.
Even for this heavily reduced sedimentation a layering of particle size fractions
in the crystallizer could be observed, as will be documented in the following.

With the sedimentation parameter fixed as such to σ = 0.1, runs with different
coagulation parameters could be performed, comparing the development of the
particle size distribution and/or its averaged quantities over the course of the
simulation for different coagulation parameters. The main goal was to examine
the dependence of the PSD on the height in the device, where the particle
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Figure 7.7: Flow simulation results (‖u‖) for three different grid refinement
levels, vertical cut plane. Top row: Computational grids, left to
right: refinement level 2, level 3, and level 4. Middle row: Solution
snapshots at 200 s on the respective grid, mass flow rate 56 kg/h.
Units are m/s. Bottom row: Solution snapshots at 200 s on the
respective grid, mass flow rate 93 kg/h.

164



7.2 Results of the 3d simulations

200 400 600 800 1000 1200

30
40

50
60

70
80

Time [s]

To
ta

l C
ry

st
al

 M
as

s 
[m

g]
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● σ = 0
σ = 0.1
σ = 0.25
σ = 0.5

Figure 7.8: Total crystal mass in the system during coagulation-only simula-
tions with different sedimentation parameters σ. Significant mass
loss occurs for σ = 0.5. For σ = 0.1 mass loss is almost 0. Start mass
was 77 mg, mass flow rate 56 kg/h, coagulation parameter κ = 500.

sampling was performed. Simulation data was gained by printing out snapshots
of all computational particles present in the simulation domain every 10 seconds.
This interval was large enough to ensure a complete exchange of particles in each
ensemble, thus reducing stochastic dependence, and allowing for averaging over
multiple of these snapshots without too much redundancy. This way, between
2 and 3 GB of data were collected per run. Additionally, all particles that left
the device through the inflow were logged. Different post processing steps could
be performed on those data.

Figures 7.9 and 7.10 show spatially summed, resp. averaged, quantities. In
Figure 7.9, the development of the total particle mass is shown for both flow
setups. A gain due to surface attachment growth is visible, as is mass loss
through the inlet. The latter is the more pronounced the greater the coagulation
parameter is, i.e., the larger particles exist. This is obvious, since larger particles
sediment faster and therefore leave the simulation domain more often, taking
with them a considerable part of the total mass. Note also that mass gain
due to particle growth is higher in the slower flowing setup. From Figure 7.10,
one learns that the difference in the development of the spatial average particle
diameter is less distinct between the two flow setups. The particles in the slower
setup grow only slightly larger than those in the faster setup upon average. As
was expected, a higher coagulation parameter results in larger particles in total.

Figure 7.11 itemizes the development of the average particle diameter accord-
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Figure 7.9: Development of the total crystal mass in the standard setup, de-
pending on coagulation scaling parameter κ. Sedimentation para-
meter is fixed at σ = 0.1. Higher coagulation rates result in larger
particles, which are more likely to slip out through the inflow due to
sedimentation. Left: 56 kg/h mass flow setup. Right: 93 kg/h mass
flow setup.
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Figure 7.10: Temporal development of the spatially averaged sphere equivalent
particle size diameter in the crystallizer device. Left: 56 kg/h mass
flow setup. Right: 93 kg/h mass flow setup.

ing to the sample height (z-coordinate) in the crystallizer, for both setups. The
data was collected by sampling over all computational particles which were
located in a certain height interval [z − 0.025, z + 0.025] of 5 cm width in a
certain time interval. This procedure led to sample sizes of around 20,000 com-
putational particles per time interval in the lower regions and of up to 100,000
computational particles per time interval in the higher regions of the device.
This difference in sample size is the main reason for the different variances
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Figure 7.11: Temporal development of the spatially averaged sphere equivalent
particle size diameter in different heights in the crystallizer device.
Height z is given in m above the inlet. Bottom row figures show
details of the top row figures (without the particles directly above
the inlet). Coagulation parameter is κ = 5000 and sedimentation
parameter is σ = 0.1. Left: 56 kg/h mass flow setup. Right: 93 kg/h

mass flow setup.

visible in the plotted curves. The figures show that the difference in average
particle size is the most distinct in the bottom of the crystallizer. While the
curves for heights 0, 0.05, 0.1 and 0.2 move within clearly distinguishable re-
gimes, there is hardly a difference between the curves for heights 0.3 and 0.4.
In fact, it even seems, as if the particles at height 0.4 are slightly larger than
those at 0.3, especially in the 56 kg/h setup. A possible reasons for this behavior
is as follows. Particles have a longer residence time in the vicinity of the filter,
where they get reflected repeatedly and travel slowly to the sides of the device.
This high residence time could lead to more coagulations taking place in those
cells close to the top boundary, which is visible in averaging.

Figure 7.12 shows not just averaged quantities, but the development of the
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7 A 3d simulation framework for a fluidized bed crystallizer

entire particle size distribution for both setups at different heights in the form of
histograms. Computational particles were organized in bins according to their
diameter, the length of the bar for a certain particle class gives the probability
of a random physical particle to fall into that class, according to the computed
distribution. No temporal averaging has been performed here, the histograms
represent particle populations at the given particular point in time. The sample
heights were chosen such that, according to the observations of Figure 7.11, one
could expect a perceptible shift in the PSD. This expectation was fulfilled, it
is clearly visible from the figure that in vicinity of the inlet (z = 0) a relatively
wide-spread population of large particle aggregates could be encountered, while
10 and 30 cm away from the inlet, smaller particles that had experienced less
collision and surface growth events resided.
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Figure 7.12: Snapshots of the PSD at different points in time and in different
heights in the crystallizer. All figures were gained with coagulation
parameter κ = 5000 and sedimentation parameter σ = 0.1. The
initial distribution is the sum of two log-normal distributions. First
and second row: 56 kg/h mass flow setup. Third and fourth row:
93 kg/h mass flow setup.
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7 A 3d simulation framework for a fluidized bed crystallizer

7.3 Summary of the findings

The model and simulation presented in this chapter have the characteristics of
a simulation framework. Just as the modeled fluidized bed crystallizer itself
is operated under different experimental conditions in order to find a config-
uration which gives the desired product particle distribution, the framework
can be extended, fitted and applied to different application scenarios. The nu-
merical results that were presented in this chapter were a demonstration that
the coupling algorithm of stochastic particle simulation and deterministic flow
solver that was successfully applied in a 2d setting before could be transferred
to 3d, giving plausible results in manageable computing time, and opening up
possibilities for further extensions which are out of scope for non-stochastic
methods.

Therefore we consider it a success that on top of the combination of SPS
and a turbulent flow computation, particle boundary reflection conditions and
a particle sedimentation model could be built into the simulation framework.
With those extensions we were able to carve out a dependence of the average
particle size on the sample height in the crystallizer. This result is the most
notable, and it is lined by the more basic result: A successful simulation of
particle collision growth and surface attachment growth, based on experimental
results, modeling decisions and empirical choices of numerical parameters, in
full 3d. Further supporting results are the simulation of a turbulent flow in a
non-standard geometry, using findings of Ahmed et al. (2018) on suitable solvers
for time-dependent flow problems and a distributed-memory parallelization of
the LSC preconditioner that was applied for these computations for the first
time.

Already in the presented state, the simulation framework is suited to be
used for different setups of the crystallization experiment. Examples of typical
changes to the setup are the initial amount of particles and their distribution in
physical and coordinate space, the inlet temperature and the cooling strategy at
the wall, the total experimenting time, or the total mass flow. Concerning the
mass flow, we found in numerical experiments that for a mass flow of 200 kg/h

our standard grid is not suitable anymore, and no convergence of the solvers
could be achieved. There, grid refinement is definitely necessary, possibly joined
by a more sophisticated turbulence model.

Several changes and refinements of the model and the simulation itself come
to mind, but since these are rather general in nature they will be the subject
of the subsequent chapter, which contains a conclusion of the findings of this
entire thesis, and an outlook on further enhancements and research directions.
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8.1 Conclusion

This thesis was concerned with the computer simulation of population balance
systems. In particular, a new simulation method that coupled advanced de-
terministic finite element methods to a stochastic particle simulation of Kinetic
Monte Carlo type was developed and applied. This process included a detailed
formulation of the coupled system in question, which was suitable for treatment
with the coupled method, and a presentation of the applied splitting scheme. In
general, two types of coupling were present in the model: the first was a one-way
coupling of the velocity field into the other equations, the second a coupling of
the transported quantities (particle population balance, species concentration,
system temperature) due to particle surface attachment growth. The second
coupling type pointed to a distinct area of application, i.e., chemical engineering
and in particular crystal growth in a moving fluid environment.

The coupled method was therefore applied to two model systems from chem-
ical engineering. The first system was a tube crystallizer for aspirin. It was
operated at relatively low fluid velocity, and therefore could be modeled with
a simplifying 2d axisymmetric approach, crossing out several difficulties of the
method which might have been encountered in a 3d setting. Simulations with
which experimental data from Eder et al. (2010) could be reproduced efficiently
and numerically robustly were performed, including particle collision growth
with a simple coagulation kernel. Thus the coupled method could prove its
practical applicability. In a second project, a fully instationary 3d simulation
with a turbulent flow field was conducted. This necessitated several adjust-
ments to the stochastic particle method, concerning the geometry representa-
tion and particle reflection boundary conditions. Additionally, a first step to-
wards a more refined particle movement simulation was undertaken by including
a simple particle sedimentation model. With those building blocks a fluidized
bed crystallizer for the model substance aluminum potassium sulfate dodecahy-
drate (potash alum) could be simulated, including flow field, concentration of
dissolved potash alum, system temperature, and population balance of the do-
decahydrate crystals. Here no quantitative validation with experimental results
was undertaken, yet some qualitative features, like crystal growth in general,
and especially a particle size layering in the device could be reproduced.

Since for the simulation of those population balance systems basically three
types of equations had to be solved with specialized methods, several results
on these methods were gained “en passant”. For the Navier–Stokes equations,
results of an assessment of fast linear solvers were presented, and the findings
entered the 3d simulation of the fluidized bed crystallizer in form of the applic-
ation of the Least Squares Commutator preconditioner for the time-dependent
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8 Conclusion and outlook

flow computations. Further, a classical domain decompositioning method was
presented in a new form, and used for the parallelization of the same precon-
ditioner, finally applied for subsidiary flow computations for the potash alum
crystallizer. Concerning convection-diffusion-reaction equations, for those a
non-standard algebraic stabilization method was applied in 2d and 3d, hope-
fully underlining the usefulness and feasibility of the approach to a wider public.
Finally, the stochastic particle simulation method was extended to axisymmet-
ric 2d and to full 3d, where in its original framework it had only been applied
to spatially homogeneous or 1d problems.

All in all, a new coupled stochastic-deterministic method for population bal-
ance systems in 2d and 3d has been proposed, implemented, and successfully
tested numerically.

8.2 Outlook

This thesis is no exception to the general rule of thumb that answering one
research question will give rise to ten others at least. That said, this last
section can be regarded as a to-do list of tasks, which could be performed next,
based on the achievements of this thesis.

The most urgent directions of method enhancement are in our opinion the ex-
tension to multidimensional particle spaces and the synchronization of the paral-
lelization of the computer algorithms for stochastic and deterministic methods.

Let us first dwell on the latter point. Currently ParMooN, the CFD code
that we used, profits from the implementation of a domain decompositioning
method, with which the entire process from (uniform) grid refinement, discretiz-
ation, matrix assembling, system solution and postprocessing can be performed
by a number of CPUs at once. The stochastic particle solver Brush on the other
hand relies on a shared-memory parallelization of the main loop. Currently, the
interface layer between both programs does only operate in sequential runs, i.e.,
in coupled simulations only one processor can be used. Since in 3d the flow com-
putations took the majority of the computing time, an implementation of an
interface that allows for data transfer between distributed-memory CFD and
shared-memory SPS would mean a severe improvement. In the long term, a
distributed-memory parallelization of the SPS should be the goal, since this
usually scales better to a large number of processors, and is a precondition for
the application of the coupled method in HPC.

When it comes to higher dimensional particle models, the SPS is a very
natural framework due to the presence of computational particles that mirror
real-world particles. Computational particles can contain further information
that comes with the greater number of internal coordinates way easier than non-
stochastic models, which rely on averaged particle properties. Beyond particle
mass, inner dimensions of interest could be a second or third parameter for the
geometry (needle shaped, elliptical, cuboid particles,...), the number of particles
contained in an aggregate, or further substances. The main challenge here is
to define a sensible addition operation on the inner coordinate space, which
represents coagulation, and likewise a coagulation kernel K, with a majorant
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that allows to keep computational effort under control. In this thesis, only one-
dimensional particle models were regarded, since our main goal was to extend
the number of spatial coordinates in the system. An extension to more property
coordinates should be the next step.

Further extensions come to mind. One option is to include further particle
processes like nucleation, breakage, or dissolution into the PBE. All of these
processes appeared in the PBE or SPS literature before, so adding them to
model and simulation should be at relatively low cost. Another possibility,
briefly touched earlier in this thesis, is the incorporation of fluid-fluid interac-
tions (chemical reactions) into the model. From the CFD point of view this
will require taking measurements that prevent reaction instabilities (see Sec-
tion 3.3).

Regarding particle movement, the implementation of a different sedimenta-
tion model comes to mind, a model which is closer to the physical reality of
crystal aggregates, and can do without a numerical scaling parameter. This
issue suggests a further possibility for an extension of the method. A more
sophisticated particle movement model should also include particle drag and
lift forces. This is relatively straightforward in the stochastic framework, which
allows to tag each particle with its current velocity and velocity gradient by
including them into its state space, and then computing drag and lift velocity
component on that basis – for a starting point we refer to the particle transport
models in Berg (1983). One aspect of particle sedimentation could be built
in at relatively low effort, namely a dependence of the sedimentation rate on
the number of primary particles forming an aggregate, a number which can
easily be tracked with the SPS. Aggregates have typically a greater surface
than primary particles of the same mass, therefore one can expect those to sink
slower than primary particles. Modeling and incorporating such a dependency
could already give interesting results.

So far, no backcoupling of the particles to the fluid velocity, for example by
letting the density vary, is included. Introducing any such approach will lead to
abandoning the “quasi-homogeneous” assumption that the classical PBE model
relies on, but it offers interesting opportunities for an extension of the method.

A question as old as coagulation modeling itself is that of the right choice
of the coagulation kernel. The coagulation kernel is usually rooted in assump-
tions on particle transport. The constant kernel used in Chapter 6 and the
Brownian kernel of Chapter 7 are probably not the ideal choices for the re-
spective crystallizer setups. Instead, at least in the fluidized bed crystallizer
setup, the transition regime kernel, which is suitable for the transition regime
between laminar and turbulent flow, could be given a try, or even a discrete
kernel gained from a kernel estimation procedure.

A final question has not been raised in this thesis, which focused on model-
ing and scientific computing, yet. From a mathematicians point of view, the
time has come to underpin the computational results with some numerical ana-
lysis. This task will not only require breaking down the model system to a
more handy form, but also choosing a suitable mathematical framework, which
brings together analysis and stochastics theoretically, just as this thesis did in
a practical way.
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Nicolas Fournier and Jean-Sébastien Giet. Convergence of the Mar-
cus–Lushnikov process. Methodol. Comput. Appl., 6(2):219–231, 2004.

Giovanni P. Galdi. An Introduction to the Mathematical Theory of the Navier-
Stokes Equations. Steady-state Problems. Springer Monographs in Mathem-
atics. Springer, New York, 2nd edition, 2011.

Sashikumaar Ganesan and Lutz Tobiska. An accurate finite element scheme
with moving meshes for computing 3D-axisymmetric interface flows. Internat.
J. Numer. Methods Fluids, 57(2):119–138, 2008.

Sashikumaar Ganesan, Volker John, Gunar Matthies, Raviteja Meesala,
Shamim Abdus, and Ulrich Wilbrandt. An object oriented parallel finite ele-
ment scheme for computations of pdes: Design and implementation. In 23rd
IEEE International Conference on High Performance Computing Workshops,
HiPC 2016 Workshops, Hyderabad, India, December 19-22, 2016, pages 106–
115, 2016.

Daniel T. Gillespie. The stochastic coalescence model for cloud droplet growth.
J. Atmospheric Sci., 29(8):1496–1510, 1972.

Daniel T. Gillespie. An exact method for numerically simulating the stochastic
coalescence process in a cloud. J. Atmospheric Sci., 32(10):1977–1989, 1975.

Daniel T Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys., 22(4):403–
434, 1976.

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem., 81(25):2340–2361, 1977.

Vivette Girault and Pierre-Arnaud Raviart. Finite Element Methods for Navier-
Stokes Equations, volume 5 of Springer Series in Computational Mathemat-
ics. Springer, Berlin, 1986.

Michael Goodson and Markus Kraft. An efficient stochastic algorithm for sim-
ulating nano-particle dynamics. J. Comput. Phys., 183(1):210–232, 2002.

Shay Gueron. The steady-state distributions of coagulation-fragmentation pro-
cesses. J. Math. Biol., 37(1):1–27, 1998.
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Zusammenfassung der Dissertation

In der vorliegenden Arbeit wird ein neuer Algorithmus zur numerischen Lösung
von Populationsbilanzsystemen vorgeschlagen, detailliert beschrieben und in
zwei Simulationsprojekten zur Anwendung gebracht. Die betrachteten Popula-
tionsbilanzsysteme stammen dabei aus dem Bereich der chemischen Verfahrens-
technik. Vor allem werden Kristallisationsprozesse in strömender Umgebung be-
trachtet. Die beschreibenden Populationsbilanzgleichungen sind Erweiterungen
der klassischen Smoluchowski-Koagulationsgleichung, und erben von dieser die
mit dem Koagulationsintegral verbundenen Schwierigkeiten, insbesondere in
Hinblick auf höherdimensionale Partikelmodelle.

In dem neuen Algorithmus werden zwei sehr unterschiedliche Bereiche der
numerischen Mathematik und des Wissenschaftlichen Rechnens zusammenge-
bracht, nämlich eine stochastische Partikelsimulation, die auf einer Markov-
prozess Monte-Carlo Methode aufbaut, und (deterministische) Verfahren der
numerischen Strömungsmechanik mit Finiten Elementen.

Stochastische Partikelsimulationen sind erprobte Methoden für die Lösung
von Populationsbilanzgleichungen. Ihre Stärken sind, dass sie mikroskopis-
che Informationen aus dem Modell aufnehmen können, gleichzeitig Konver-
genz gegen Lösungen der makroskopischen Gleichung bieten, und des Weiteren
numerisch effizient und robust sind. Die Einbettung einer solchen stochas-
tischen Methode in eine deterministische Strömungssimulation eröffnet daher
neue Möglichkeiten der Lösung gekoppelter Populationsbilanzsysteme, vor al-
lem in Hinblick auf den mikroskopischen Charakter der Interaktion von Parti-
keln.

Das durch die Einbettung einer stochastischen Partikelsimulation in eine Fi-
nite Elemente Simulation gewonnene Simulationsverfahren wird zunächst auf
ein Populationsbilanzsystem in einem, für die Herstellung von Aspirin ver-
wendeten, achsensymmetrisch zweidimensional modellierten Rohrkristaller an-
gewendet. Experimentelle Daten können in überschaubarer Rechenzeit re-
produziert werden. Zudem wird das Verfahren auf drei Raumdimensionen er-
weitert und für die Simulation eines experimentellen Wirbelschichtkristallers
benutzt. Dieses System ist voll instationär, die turbulente Strömung wird on-
the-fly mitberechnet.

Die verwendeten numerischen Verfahren aus den Bereichen der Simulation der
Navier–Stokes Gleichungen, der Konvektions-Diffusions-Reaktionsgleichungen
und der stochastischen Partikelsimulation werden ausführlich eingeführt, mo-
tiviert und diskutiert. Ebenso werden die Kopplungsphänomene in den betrach-
teten Populationsbilanzsystemen und der Kopplungsalgorithmus selbst einge-
hend besprochen. Darüber hinaus werden eigene Ergebnisse aus dem Bereich
der effizienten numerischen Simulation der Navier–Stokes Gleichungen präsen-
tiert, namentlich ein Vergleich von schnellen Lösern für Sattelpunktprobleme
und eine eigene Interpretation einer klassischen Gebietszerlegungs-Methode für
die Parallelisierung der Finiten Elemente Methode.
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Arbeit selbstständig und ausschließlich auf Grundlage der angegebenen Hilfs-
mittel und Hilfen angefertigt zu haben. Des Weiteren versichere ich, die Arbeit
oder Teile der Arbeit nicht schon einmal in einem früheren Promotionsverfahren
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