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We study the entanglement Hamiltonian for fermionic hopping models on rings and open

chains and determine single-particle spectra, eigenfunctions and the form in real space. For

the chain, we find a commuting operator analogous to the ring and compare with its proper-

ties in both cases. In particular, a scaling relation between the eigenvalues is found for large

systems. We also show how the commutation property carries over to the critical transverse

Ising model.

I. INTRODUCTION

If one studies the entanglement properties of a quantum state [1, 2], the central quantity is

the reduced density matrix of one of the two subsystems. It can always be written in the form

ρ = exp(−H)/Z, and the operator H is now commonly called the entanglement Hamiltonian [3].

Its structure has been the subject of various recent studies, both in the continuum [4–13] and on

the lattice [13–19].

For a subsystem of length ℓ in a critical quantum chain, conformal field theory gives for various

cases a result of the form [7]

H = 2πℓ

∫ ℓ

0
dx β(x) T00(x) , (1)

where T00 is the energy density in the physical Hamiltonian [4–7] and β(x) is a weight factor

arising from the conformal mapping which relates the path integral in the actual geometry to that

for a strip. It has been viewed as a local inverse temperature and used to obtain the entanglement

entropy from thermodynamic relations [5, 8–10]. For an interval in an infinite chain, it is a parabola

β(x) = x/ℓ (1 − x/ℓ) vanishing linearly at the ends of the interval.

On the lattice, the situation is somewhat different and intriguing. On the one hand, H for an

interval in an infinite hopping chain does not have exactly the conformal form [17], but on the

other hand there exists a commuting operator T which is rather close to H and does have this

form.

In the present communication, we study H for finite free-fermion systems which are either rings
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or open chains. In a recent investigation, this was done already for an inhomogeneous model, the

so-called rainbow chain, for which also conformal results are available [13]. Here, however, we are

interested in the simpler homogeneous case, where a commuting operator exists and can serve as

a point of reference. For the ring (as for the infinite system), this property has been known for

quite a while, albeit in a different context [20, 21]. For a (simply divided) open chain, the result

is new and will be derived in Section 3. As for the ring, the commuting operator has exactly the

conformal form.

In dealing with a finite discrete system, one encounters a particular feature. If the particle

number is too small or too large, some states in the subsystem are definitely empty or definitely

filled. For calculations of the entanglement entropy as in [22], these play no role, but in the

entanglement Hamiltonian they lead to infinities, and H is not well defined. Excluding such cases,

we determine the properties of H from high-precision diagonalizations of the correlation matrix

as in [17] and compare them to those of the infinite systems and to those of the commuting

operator T . Here two features are to be mentioned. The single-particle eigenfunctions of the finite

and the infinite case are almost identical, while the eigenvalues differ clearly. Also the nearest-

neighbour hopping in H decreases significantly near the end of an open chain, in contrast to the

conformal result. We also discuss formulae for the spectra for large ℓ and the connection between

the eigenvalues of H and of T in analogy to the infinite case. Finally, it is shown that all the

features of the hopping model can also be found in the critical transverse-field Ising (TI) model by

properly relating both following [23]. In particular, there is an operator commuting with H also in

this case.

In the following Section 2 we formulate the problem and give the basic expressions. In Section

3, we present the determination of the commuting operator for the open chain and compare in

Section 4 the properties of H and T . In Section 5 we discuss some asymptotic properties, while

Section 6 contains a summary. Finally, in the appendix, we outline the steps necessary to map the

TI model to the hopping model.

II. SETTING

We consider the ground state of a system of spinless fermions hopping on a finite chain of L

sites n = 1, 2, . . . , L with Hamiltonian

Ĥ = −1

2

L′

∑

n=1

t (c†ncn+1 + c†n+1cn) +

L
∑

n=1

d c†ncn =

L
∑

m,n=1

Ĥm,nc
†
mcn . (2)
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We take the hopping t = 1 and use the site energy d to adjust the ground-state filling. For a

ring with periodic boundary conditions, L′ = L in the first sum, while for a chain with open ends,

L′ = L− 1.

To diagonalize Ĥ, one has to find the eigenfunctions Φq and eigenvalues ωq of the matrix Ĥ.

For a ring this gives

Φq(n) =

√

1

L
exp(iqn) , q =

2πk

L
, k = 0,±1,±2, . . . ,+L/2 , (3)

while for the open chain

Φq(n) =

√

2

L+ 1
sin(qn) , q =

πk

L+ 1
, k = 1, 2, . . . , L . (4)

The eigenvalues are given in both cases by ωq = − cos q+ d. The entanglement properties are then

determined by the correlation matrix Cm,n in the ground state

Cm,n = 〈c†mcn〉 =
∑

|q|<qF

Φ∗
q(m)Φq(n) , (5)

where the sum is over the occupied states. This gives for the ring

Cm,n =
α

π

sin qF (m− n)

sinα(m− n)
, α = π/L , (6)

where qF = 2α(K + 1/2) if the 2K + 1 momenta with k = 0,±1,±2, . . . ,±K are occupied. For

the chain, one finds [22]

Cm,n =
α

π

[

sin qF (m− n)

sinα(m− n)
− sin qF (m+ n)

sinα(m+ n)

]

, α = π/2(L+ 1) , (7)

where also qF = 2α(K + 1/2) if the K momenta with k = 1, 2, . . . ,K are occupied.

Note that the Fermi momentum qF used here (as in [22]) lies between the last occupied and

the first unoccupied q-value, while α is half the spacing of the momenta. As can be seen, the two

expressions for Cm,n are closely related, with the chain formula given by the ring expression minus

an “image term” where n → −n. Only the values of α in the two cases are different. However, if

one considers a ring with 2L + 2 = 2(L + 1) sites and a chain with L sites, they become exactly

equal. As dicussed below, this allows to “embed” the chain problem into a ring [22].

We divide the system in two parts and consider as subsystem the one with sites i = 1, 2, . . . , ℓ.

The corresponding entanglement Hamiltonian is then [14, 24]

H =

ℓ
∑

i,j=1

Hi,jc
†
i cj , (8)
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and the matrixHi,j is given in terms of the eigenfunctions φk(i) and eigenvalues ζk of the correlation

matrix Ci,j restricted to the subsystem

Hi,j =

ℓ
∑

k=1

φk(i) εk φk(j) , (9)

where εk = ln[(1− ζk)/ζk].

The relation between chain and ring can be used as follows. Consider a subsystem in a ring

with 2ℓ + 1 sites numbered i = −ℓ, . . . , 0, . . . , ℓ. The eigenfunctions of Ci,j are either symmetric

or antisymmetric under reflection of i, and it is easy to see that the antisymmetric ones are the

eigenfunctions (with the same eigenvalue) of the chain correlation matrix (7) in the subsystem with

the ℓ sites i = 1, 2, . . . , ℓ. One only has to multiply them by
√
2 to obtain the normalization in the

chain. Thus, in principle, one has only to solve the ring problem. In the limit L→ ∞, one obtains

the connection between subsystems in infinite and at the end of semi-infinite chains noted in [25].

III. COMMUTING OPERATOR

A remarkable property of the hopping model is that the correlation matrix C, and therefore

also the matrix H, commute with a tridiagonal matrix T of the form

T =























d1 t1

t1 d2 t2

t2 d3 t3
. . .

. . .

tℓ−1 dℓ























. (10)

The significance of this feature is twofold. Mathematically, the Jacobi-type matrix T has a simple

(i.e. non-degenerate) spectrum and the eigenvectors can be obtained without numerical problems,

in contrast to the situation with C. Physically, it has the structure of Ĥ in (2) and describes a

hopping model in the subsystem with spatially varying parameters, if one forms

T =
ℓ

∑

i,j=1

Ti,jc
†
i cj . (11)

This operator then commutes with the entanglement Hamiltonian, [H,T ] = 0.

The property is known to hold in the following cases: an interval in an infinite chain [26, 27],

an interval at the end of a semi-infinite chain [27] and an interval in a finite ring [20, 21]. In the

following, we prove it also for an interval at the end of a finite chain.
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Since C and T are symmetric, their commutator can be written as

[C, T ]i,j = (CT )i,j − (CT )j,i . (12)

Inserting the explicit form

Tk,j = tj−1δk,j−1 + djδk,j + tjδk,j+1 , (13)

writing C = C− − C+ and using the symmetries of the matrices C±, one finds

[C+, T ]i,j = C+
i,j−1(tj−1 − ti−1) + C+

i,j+1(tj − ti) + C+
i,j(dj − di) , (14)

and

[C−, T ]i,j = C−
i,j−1(tj−1 − ti) + C−

i,j+1(tj − ti−1) + C−
i,j(dj − di) . (15)

One sees that only differences of the t’s and d’s appear, which leaves two additive constants free. If

the factors multiplying the C’s can be made to cancel the denominators, a much simpler expression

will result. This can actually be achieved by choosing them as

ti = cos 2α(i +
1

2
) , di = d cos 2αi , (16)

and using the difference formula for the cosine. Then, for example, the first term in (15) becomes,

up to the factor α/π,

C−
i,j−1(tj−1 − ti) =

sin qF (i− j + 1)

sinα(i− j + 1)
2 sinα(i+ j) sinα(i− j + 1)

= 2 sin qF (i− j + 1) sinα(i+ j) . (17)

Somewhat amazingly, this works for all terms in (14) and (15) and one ends up with

[C, T ]i,j =
α

π
(4 cos qF + 2d) [sin qF (i− j) sinα(i+ j)− sin qF (i+ j) sinα(i− j)] . (18)

This expression then vanishes if one chooses d = −2 cos qF , and this holds for all sites i, j in the

interior. On the left boundary (i = 1 or j = 1), the coefficient t0 appears which is not contained

in T , but it is multiplied by Ci,0 or C0,j which vanish. On the right boundary (i = ℓ or j = ℓ), the

equations (14) and (15) contain the coefficient tℓ, which also does not appear in T . But it can be

given the value zero by subtracting a constant from all ti. Subtracting also a convenient constant

from all di, the final expressions are

ti = cosα(2i + 1)− cosα(2ℓ+ 1) ,

di = −2 cos qF (cos 2αi − cos 2αℓ) .
(19)
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Qualitatively, both quantities have their maxima at the left boundary, decrease towards the interior

and vanish at i = ℓ, i.e. at the right end of the subsystem. The diagonal terms are zero for half

filling, qF = π/2, which is possible for even L. Then, for a half-chain, ℓ = L/2, the hopping

elements take a simple form, if the numbering r = ℓ− i starts from the middle of the chain

t̃r = sin(2αr) , r = 1, 2, . . . , ℓ− 1 . (20)

By keeping ℓ fixed and letting L → ∞, one can recover the result for an interval at the end of a

half-infinite chain. Then α → 0 and the cosine functions can be expanded near their maxima to

obtain the parabolic laws

ti = 2α2(ℓ+ 1 + i)(ℓ − i) ,

di = −4α2 cos qF (ℓ+ i)(ℓ− i) .
(21)

The general formula (19) also gives the result of Grünbaum [20] for the ring in the particular

case of a subsystem between i = −ℓ and i = ℓ. On a ring, where C = C−, one can shift the

arguments of the cosines, i.e. the position of the subsystem. If it lies between i = 1 and i = ℓ, one

obtains by shifting, subtracting different constants in (19) and converting to sines

ti = sinαi sinα(ℓ− i) ,

di = −2 cos qF sinα(i− 1) sinα(ℓ− i) .
(22)

Up to a prefactor, which will be included later, all these expressions correspond exactly to those

obtained for the entanglement Hamiltonian within conformal field theory [7]. In that case, the

trigonometric functions arise from the specific conformal mappings, whereas for T , as seen above,

their origin lies in the functional form of the correlation matrix.

IV. ENTANGLEMENT HAMILTONIAN

We now turn to the properties of H as obtained from numerical calculations. In order to avoid

eigenvalues ζ = 0 or ζ = 1 in C, which lead to ε = ±∞, the total particle number N should satisfy

ℓ ≤ N ≤ L− ℓ [21]. If L is even and the subsystem is half the total one, ℓ = L/2, this forces also

N = L/2, i.e. half filling, and in this section we will always consider this case. To find the large

eigenvalues εk reliably, we worked with 3ℓ/2 digits in the diagonalization of C which is possible

using Mathematica as in [17].

In Fig. 1, the εk for an interval of ℓ = 25 sites in a ring with L = 50 are shown, together

with those in an infinite system. Due to half filling, the spectra are symmetric about zero, and the
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odd number of sites gives one vanishing eigenvalue. One sees that both spectra are rather similar,

but the absolute values of the εk are larger for the ring, in particular at the upper and lower end.

This leads to a smaller entanglement entropy, and the difference is well described by the conformal

result

Sinf − Sring =
1

3
ln
π

2
≈ 0.1505 , (23)

which follows from the general expression SCFT = 1/3 ln (L/π sinπℓ/L) + k [28]. Note that this

smaller entanglement is in contrast to the decay of the correlations across the subsystem which is

slower for the ring, because C1,j has to increase again beyond j = L/2.
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FIG. 1: Left: Single-particle eigenvalues εk for a subsystem of ℓ = 25 sites in a half-filled ring of L = 50

sites and in an infinite system. Right: Eigenvectors φk(i) for the four smallest k in both cases.

In spite of the clear difference of the eigenvalues, the eigenvectors φk(i) in both cases look

essentially identical. This is illustrated for the four lowest (most negative) εk on the right of Fig.

1. The feature remains valid all the way through the spectrum and actually even improves as one

moves into the centre. We have also checked it for larger L. As a result, one can obtain the small

εk of the finite ring rather well by taking the eigenvectors φ∞k of the infinite system and forming

ζ ′k = 〈φ∞k |Cring|φ∞k 〉. For the large εk, which come from ζ ′k very close to zero or one, the tiny

eigenvector differences matter and the resulting values lie close to those of the infinite system.

Next, we compare the eigenvalues λk of the commuting matrices T for the ring and the infinite

system and the same parameters. Due to the half filling, the diagonal terms in T are zero. To be

consistent with the CFT formulae [7] in the continuum limit and to normalize with respect to ℓ,

we divide the ti in (22) (and thus T ) by a factor and write

ti =
sinαi sinα(ℓ− i)

αℓ sinαℓ
, α = π/L . (24)
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FIG. 2: Left: Eigenvalues λk of T for ring and infinite system. The parameters are the same as in Fig. 1.

Right: Comparison of εk/ℓ and πλk for the ring.

Then ti ≃ i/ℓ for small i independent of L. For ℓ = L/2, the prefactor is simply 2/π and ti becomes

ti =
1

π
sin

πi

ℓ
, (25)

while for L→ ∞, one obtains the standard expression of the infinite system

ti ≃ t̄i =
i

ℓ

(

1− i

ℓ

)

. (26)

The resulting λk are shown in Fig. 2 on the left and look very similar to the εk. In particular,

the absolute values for the ring are again larger. In the infinite system, εk/ℓ and −πλk are known

to lie rather close to each other [17], and the right part of Fig. 2 demonstrates that this also holds

for the ring. The connection between the two quantities will be further analyzed in Section 5.

Results for the normalized matrix elements

hi,j = −Hi,j/ℓ , (27)

whith Hi,j given by (9), are shown in Fig. 3. On the left, the nearest-neighbour hopping hi,i+1 is

plotted (maximal value 1.09) together with the corresponding quantity πti according to (25) which

is seen to lie somewhat below it (maximal value 1) and the parabolic law πt̄i of the infinite system

(26) which again lies lower (maximal value π/4). On the right, the hopping hi,i+3 is plotted, which

has no counterpart in T , is smaller by a factor of about 25 and increases with a higher power near

the boundaries.

Finally, we turn to the open chain. According to the remarks in Section 2, the previous cal-

culations also give the result for a subsystem of ℓ = 12 sites at the end of a chain with L = 24.

However, this is rather small, and we present here the results of a calculation for ℓ = 40. One sees
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FIG. 3: Entanglement Hamiltonian for an interval of ℓ = 25 sites in a ring with L = 50. Left: Nearest-

neighbour hopping (top curve), together with πti for the ring (middle) and πt̄i for the infinite system

(bottom). Right: Hopping to third neighbours. Note the different vertical scales.

that the nearest-neighbour hopping increases from the centre towards the free boundary with a

maximum about twice the value for the ring. While the overall shape is roughly that of the right

part in the ring, there is one conspicuous difference: before one reaches the free boundary, there

is a break in the curve and the last value decreases. This feature also appears in the hopping to

the third neighbours shown on the right and is even stronger there. It comes from the eigenvectors

φk(i), which all vanish at i = 0 and thus approach zero already inside the subsystem. However, the

effect depends on the magnitude of the largest eigenvalues and does not appear if ℓ is too small.

It also does not appear in ti which can be written as Hi,i+1 in (9) with εk replaced with λk. One

should mention that a decrease of the hopping near the boundary was also found in the rainbow

chain, but there it takes place rather gradually [13].

For the comparison on the left, ti in (19) was rescaled to read

ti =
cos(2i+ 1)α− cos(2ℓ+ 1)α

(2ℓ+ 1)α sin(2ℓ+ 1)α
, α = π/2(L + 1) . (28)

For the half-chain, this gives again a factor of 2/π and

ti =
2

π
sin

π(ℓ− i)

2ℓ+ 1
. (29)

Note that in [7, 13] the subsystem is at the right end of the chain, which leads to an interchange

of sines and cosines in the formula for the weight factor.

As to the scaling behaviour, one finds that the hi,j collapse very well for different sizes, if plotted

against i/ℓ. The only exception is the vicinity of the boundary in the case of the chain.
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FIG. 4: Entanglement Hamiltonian for ℓ = 40 sites at the left end of a chain with L = 80 sites. Left:

Nearest-neighbour hopping (top curve) together with πti for the chain (middle) and πt̄i for the half-infinite

system (bottom). Right: Third-neighbour hopping. Note the different vertical scales.

V. ASYMPTOTICS

In this section, we study in more detail the behaviour of the eigenvalues of H and T for half

filling and large subsystems, i.e. for large ℓ. We do this separately for the low-lying eigenvalues,

the maximal ones and for the overall spectra.

A. Low-lying eigenvalues

In the infinite system, the asymptotic analysis of Slepian [25, 26] gives the low εk as solutions

of the equation

π

2

(

k − 1

2
− qF ℓ

π

)

=
εk
2π

ln(2ℓ sin qF )− ϕ
( εk
2π

)

, (30)

where ϕ(y) = arg Γ(1/2 + iy). This can be solved explicitly for small εk by using the linear

approximation ϕ(y) ≃ ψ(1/2) y with ψ(y) denoting the digamma function and ψ(1/2) ≃ −1.963.

Now, it was observed in [13] that the first gap in the entanglement spectrum for the rainbow

chain is given by such a formula, but with ℓ in the logarithm replaced with the corresponding

conformal length L. This suggests to try this ansatz for the complete low-lying spectrum, using

L = ℓf(r) , f(r) =
sinπr

πr
, r =

ℓ

L
(31)

for the ring and 2L for the chain. Note that the logarithm ln(2L sin qF ) differs from the quantity

ln(2πn̄L) which appears in the equation for the continuous ring [25], where n̄ = N/L denotes the
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density. However, in the limit of small density, using n̄ = qF/π on the lattice, both expressions

coincide.

In terms of the scaled quantities

η = −εk
ℓ
, κ =

k − 1/2

ℓ
, (32)

the equation then becomes, for half filling,

1

2
− κ =

2

π

[

η

2π
ln 2L − 1

ℓ
ϕ

(

ηℓ

2π

)]

. (33)

The spectral parameter κ varies in the range 0 < κ < 1 with κ = 1/2 corresponding to the centre

of the spectrum. The solutions are shown in Fig. 5 on the left for three different ratios r together

with the real data for ℓ = 25. One sees that the formula describes them very well up to the middle

of the spectrum (η ≃ 1) and correctly gives the increase of η with r noted already in Section 4.

On the right, the results for λk ≡ λ are plotted, with the curves given by the linear approximation

λ = η/π. Again, this gives a rather good desription of the data. Thus the ring spectra follow from

Slepian’s formula by a simple rescaling within the logarithm.
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FIG. 5: Low-lying asymptotics for ℓ = 25 sites in rings with different ratios r = ℓ/L. Shown is the scaled

index 1/2− κ vs. η (left) and vs. λ (right). The symbols are the numerical data.

We note that, for large ηℓ/2π, the expression (33) simplifies because one can write

ϕ(y) = Im ln Γ(1/2 + iy) ≃ y (ln y − 1) , (34)

which leads to

1

2
− κ ≃ η

π2

(

1− ln
η

4πf(r)

)

, (35)
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and shows the correction to the linear term and its functional dependence on r explicitly. In par-

ticular, the spectrum η is nonanalytic around the centre, signalling the transition to a logarithmic

density of states, which is responsible for the lnL scaling of the entanglement.

B. Maximal eigenvalues

We now turn to the scaling of the maximal eigenvalues. For λmax, the asymptotic limit is rather

easy to obtain, since the corresponding eigenfunction has Gaussian form, see k = 1 on the right of

Fig. 1. Writing

λmax =
∑

i,j

φ1(i)Ti,jφ1(j) ≃ 2

∫ 1

0
dx t(x)φ21(x) , x = j/ℓ , (36)

inserting t(x) from (24) as well as φ1(x)

t(x) =
sinπrx sinπr(1− x)

πr sinπr
, φ1(x) =

e−
(x−1/2)2

4σ2

(2πσ2)1/4
, (37)

and extending the integration to ±∞, since the width of the Gaussian is σ ∝ 1/
√
ℓ, one can

evaluate (36) to obtain

λmax =
e−2(πrσ)2 − cosπr

πr sinπr
. (38)

Up to corrections of order 1/ℓ, the exponential function is equal to one. The asymptotic value

therefore is

λmax =
tan(πr/2)

πr
, (39)

and lies between 2/π ≃ 0.637 for r = 1/2 and 1/2 for r = 0. In Fig. 6, numerical data are shown

and one sees that they approach this limit (from below, in accordance with (38)) as ℓ increases.

To obtain ζmax and the resulting εmax is much more difficult. Taking the expectation value of

C with a continuum limit as in (36) gives an εmax which is proportional to ℓ, but with incorrect

prefactor. The reason has to be sought in the rapid oscillations of C. We therefore present only

numerical results on the right side of Fig. 6. They can be fitted with an ansatz εmax = aℓ+b ln ℓ+c

as for the infinite case. The asymptotic value ηmax = a is given by the slope of these curves, which

shows a slow increase with r similarly to λmax.

C. Relation between η and λ

The difference between the matrix h in the entanglement Hamiltonian and the commuting πT

is completely due to their different spectra, see Fig. 2. Therefore, the first step in finding a
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FIG. 6: Maximal eigenvalues for rings as functions of ℓ for different ratios r = ℓ/L. Left: λmax. The

dash-dotted lines are the values (39). Right: εmax. The slopes are, from top to bottom, a = 2.333, 1.947,

1.797.

general relation between both quantities, is to connect their spectra. In the infinite system, this

was possible with the help of an asymptotic integral expression for η which contained a parameter

B simply related to λ via B = 2λ. This led to the formula [17]

η = πλ 3F2

(

1

4
,
1

2
,
3

4
; 1,

3

2
; [2λ]2

)

, (40)

with a generalized hypergeometric function 3F2.

For finite rings or chains, the numerics show clearly, that there is an analogous relation between

these quantities which, however, depends on the ratio r = ℓ/L. This is demonstrated on the left

of Fig. 7 for the half-ring with r = 1/2 and compared to the infinite case r = 0.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

η/
π

λ

λ

ℓ=25, r=0
ℓ=51, r=0

ℓ=25, r=1/2
ℓ=51, r=1/2

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0  0.1  0.2  0.3  0.4  0.5  0.6

η/
π

λ

λ

r=0
r=1/6

r=5/14
r=1/2

FIG. 7: Functional relation η(λ). Shown is the ratio η/πλ. Left: half-ring and infinite chain for two values

of ℓ. The solid red line is the asymptotic 3F2 function in Eq. (40). Right: The relation for ℓ = 25 and four

different values of r.
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On the right, the r-dependence for the case ℓ = 25 is shown in more detail. One can see that,

starting from an infinite system, η/πλ decreases at first, but finally, close to the half-ring, becomes

larger again. This holds in particular for the maximal values. As a consequence, the ratio of the

hopping matrix elements hi,i+1/πti also shows such a non-monotonous behaviour as a function of r.

Another consequence is that the scaling function for η/πλ cannot have the simple form F (λ/λmax),

but must depend on r in a more complicated way.

In the infinite system, the asymptotic analysis of the eigenvalues εk was actually carried out

by considering the reduced overlap kernel Aq,q′ between the occupied momentum states via the

equations [25]

Aq,q′ =
ℓ

∑

i=1

Φ∗
q(i)Φq(i),

∑

|q′|<qF

Aq,q′ϕk(q
′) = ζkϕk(q), ζk =

∑

|q|<qF

|ϕk(q)|2 , (41)

but using a commuting differential operator to determine the eigenfunctions. This technique can

not be applied in finite rings, since the momenta are discrete and Aq,q′ is a matrix. In fact, for

the half-filled half-ring it has exactly the same form as Ci,j with i → q and qF → ℓ/2 and the

commuting quantity is again the matrix T but with momentum indices. Therefore, one has to

treat a discrete problem. There are analogues of WKB techniques for difference equations [29], but

we have not pursued this.

VI. DISCUSSION

We have studied free fermions hopping on finite rings and open chains and determined the en-

tanglement Hamiltonian from numerical calculations. This comprised the single-particle eigenvalue

spectrum as well as the functional form in real space with the focus on half-filled systems. While

these quantities depend on the aspect ratio r = ℓ/L, the main feature was the same as for sub-

systems in infinite systems: There is a difference between the properties of H and the commuting

operator T which is the lattice analogue of the conformal entanglement Hamiltonian. We showed

that such a T does exist also for a subsystem at the end of an open chain and describe in the

Appendix how to infer it for the transverse Ising model.

In contrast to the infinite case, the number of analytical results was limited, because the basic

eigenvalue problem involves a finite matrix, and a simple continuum limit for the case of large

subsystems is in general not sufficient. Even for T , which is tridiagonal, the problem is complicated,

since the matrix elements are trigonometric functions. Nevertheless we could find some analytical

expressions for large ℓ for the small and large eigenvalues, but the general scaling function relating
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η and λ, and therefore h and T , is still to be found.

In a broader context, the most intriguing feature is the existence of a simple commuting operator.

The treatment in Section 3 shows the mechanism in a very transparent way. One can also prove

[30] that a translationally invariant correlation matrix commuting with a tridiagonal matrix with

simple spectrum must have the form (6). But T does not seem to fit into the scheme of conserved

quantities in the integrable spin models, and a physical explanation is still missing. One should also

mention that if one uses πℓ T in place of H in the reduced density matrix, the resulting correlation

function is not translationally invariant on a ring, although the deviations are rather small. One

can say that a nonlinear relation between H and T , as found in the infinite case, is necessary to

restore this symmetry

Acknowledgments

We thank P. Calabrese and E. Tonni for helpful discussions. V. E. acknowledges funding from

the Austrian Science Fund (FWF) through Project No. P30616-N36.

Appendix: Commuting operator for the TI chain

The transverse-field Ising model is known to be closely related to the XX chain which in turn

is equivalent to the hopping model without site energies [31–34]. This allows to find a commuting

operator also for the TI chain without going through a separate calculation.

Consider a general open TI chain with Hamiltonian

ĤTI = −1

2

L
∑

n=1

hnσ
z
n − 1

2

L−1
∑

n=1

λn σ
x
nσ

x
n+1 . (A.1)

In terms of fermions, this becomes

ĤTI = −
L
∑

n=1

hn c
†
ncn − 1

2

L−1
∑

n=1

λn (c
†
ncn+1 + c†n+1cn)−

1

2

L−1
∑

n=1

λn (c
†
nc

†
n+1 + cn+1cn)

=

L
∑

n,m=1

[

Ân,mc
†
ncm +

1

2
B̂n,m(c†nc

†
m + cmcn)

]

, (A.2)

and is diagonalized by a Bogoliubov transformation involving two functions Φq(n) and Ψq(n). They

follow, together with the single-particle energies ωq, from the coupled (L× L) systems [35]

(Â+ B̂)Φq = ωqΨq , (Â− B̂)Ψq = ωqΦq . (A.3)
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The eigenvalues come in pairs (ωq,−ωq), and one can take e.g. the positive ones. Then the ground

state is the fermionic vacuum and the correlation matrix Km,n = 〈(c†m + cm)(c†n − cn)〉 combining

Cm,n = 〈c†mcn〉 and Fm,n = 〈c†mc†n〉 is given by

Km,n =
∑

q

Φq(m)Ψq(n) . (A.4)

The entanglement Hamiltonian H for a subsystem, which has again the form (A.2) but with

matrices Ai,j and Bi,j, can then be found from the restricted correlation matrix Ki,j and its

transpose K ′
i,j by solving the coupled (ℓ× ℓ) systems

K ′ φk = tanh(εk/2)ψk , K ψk = tanh(εk/2)φk , (A.5)

and constructing A and B from φk, ψk and the single-particle eigenvalues εk [24].

Now, it was pointed out in [23] that by writing (A.3) as a single (2L×2L) system for the vector

χ̂q = (Φq(1),Ψq(1),Φq(2),Ψq(2), . . . ,Ψq(L)) /
√
2 , (A.6)

the matrix M̂ in M̂χ̂q = ωq χ̂q has the form

M̂ = −

























0 h1

h1 0 λ1

λ1 0 h2

h2 0
. . .

. . .
. . .

























, (A.7)

and thus is the same as for an inhomogeneous hopping model with 2L sites and no site energies.

The factor
√
2 in (A.6) is included to have χ̂q,Φq and Ψq all normalized to one. If the TI chain is

homogeneous and critical, hi = λi = 1, M̂ is the same as 2Ĥ in (2). Therefore χ̂q has the form (4)

with L → 2L, and due to (A.4) and (A.6) the matrix Km,n and its transpose are submatrices of

the (2L× 2L) correlation matrix C of the hopping model [23]

Km,n = −2C2m−1,2n , K ′
m,n = −2C2m,2n−1 , (A.8)

where the minus sign appears because the ground state of the hopping model is half filled rather

than empty.

Finally, considering the subsystem of the first 2ℓ sites in the hopping model and writing the

eigenvectors of Ci,j in analogy to (A.6) as

χk = (φk(1), ψk(1), φk(2), ψk(2), . . . , ψk(ℓ)) /
√
2 , (A.9)
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one sees that the equation Cχk = ζk χk, or (1−2C)χk = tanh(εk/2)χk, is equivalent to the system

(A.5) and can be used to obtain H. The commuting matrix T , on the other hand, has the structure

of M̂ in (A.7) with parameters

hi = t2i−1 , λi = t2i , (A.10)

where the ti are given by (19) or (28) with L → 2L and ℓ → 2ℓ. Thus it describes a TI model

on ℓ sites where couplings and fields increase towards the boundary and where the Hamiltonian T
commutes with H.

The arguments used here are not restricted to the finite open chain, but hold also for rings

or infinite systems (with proper handling of the boundary conditions). Thus in all these cases

commuting operators follow from those of the half-filled hopping (XX) model.
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