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Chapter 1

Introduction

In this thesis we apply methods from algebraic topology to problems arising from geometry,
combinatorics and functional analysis. The questions are related to Grassmannians, parti-
tions of measures and waists of spheres, whereas the methods include spectral sequences,
a cohomological index theory and the equivariant obstruction theory.

In Chapter 2| we consider amplituhedra — images of nonnegative Grassmannians under
maps induced by a linear map. They were introduced by physicists Arkani-Hamed &
Trnka [5] as objects that conjecturally model the scattering amplitudes of certain quantum
field theories. More general, Grassmann polytopes, as introduced by Lam [52], are images
of restrictions of the above mentioned maps to closed positroid cells — cells in a CW
decomposition of the nonnegative Grassmannian [68, Def. 3.2, Thm. 3.5].

Let k> 1, m >0 and n > k + m be integers and let Z be a (k + m) X n matrix, such
that the induced map

Z : GZU(R™) — Gp(R¥™)

given by N
Z(span(V)) = span(VZ "),

is well defined, where V' is a matrix whose row span span(V’) is an element of GEO(R”),
and Z T is the transpose of the matrix Z. The image Z (e) of a closed positroid cell € in the
CW decomposition of GEO(R”) is called a Grassmann polytope, an it is denoted by Pz(e).
If in addition all maximal minors of the matrix Z are positive, the image of the map 7 is
called an amplituhedron, denoted by A,, . (Z), see Definition for more details.

The topology of amplituhedra and Grassmann polytopes has been known only in a
few cases, when they turn out to be homeomorphic to balls. The case m = 0 is trivial,
whereas when m = 1 Karp & Williams [51], Cor. 6.18] have shown that the amplituhedron
is homeomorphic to a ball. For k£ = 1 the amplituhedron is a cyclic polytope of dimension
m on n vertices [77]. Similarly, for k¥ = 1 the Grassmann polytopes are also polytopes.
For n = k 4+ m the map ZR" — RFt™ is a linear isomorphism, and consequently the
amplituhedron is homeomorphic to the totally nonnegative Grassmannian GEO(R"), which
was proved to be a ball by Galashin, Karp & Lam [36, Thm. 1.1], and the Grassmann
polytope is homeomorphic to the closed positroid cell €, which is again homeomorphic to a
ball, as shown by Rietsch & Williams [72]. Finally, Galashin, Karp & Lam [36, Thm. 1.2]
proved that the cyclically symmetric amplituhedra, amplituhedra arising from particularly
chosen matrices Z, are homeomorphic to balls whenever m is even.
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2 Chapter 1 Introduction

We show that Grassmann polytopes are contractible for every n,k and m such that
n = k+m+1, and that amplituhedra are homeomorphic to balls whenever n = k+m+1 and
m is even. The proofs depend on the classical topological results of Smale [74, Main Thm.]
and Whitehead [85, Thm. 1], and on the recent result on cyclically symmetric amplituhedra
of Galashin, Karp & Lam [36, Thm. 1.2].

In Chapter [3] and Chapter ] we study measure partitions. The classical measure par-
tition problems ask whether for a given set of measures in a Euclidean space (for ex-
ample, volumes of convex bodies) there exists a certain partition of the ambient space that
equiparts each of the given measures. One of the first measure partition results is the
well-known ham-sandwich theorem, which states that given any d measures in R?, there
exists a hyperplane cut that equiparts each of the measures.

Convex partitions, i.e., partitions into convex subsets, have been studied intensively.
For example, Griinbaum asked in 1960 [40), Sec.4 (v)], motivated by the ham-sandwich
theorem, whether any given measure in R? can be cut by k affine hyperplanes into 2%
equal pieces. Hadwiger [42] and Ramos [70] asked an even more general question, that has
motivated a lot of research on convex partitions, see for example [15].

In Chapter [3] we give conditions under which for any finite collection of functions on the
set of convex partitions, there exists a partition of the Euclidean space into convex prisms
— products of convex sets of prescribed dimension, such that each of the functions gets
equalized. In particular, specifying these functions to be measures, we claim an existence
of a convex partition into prisms that equiparts each of the given measures. Similarly,
we consider partitions by regular linear fans, and we give conditions under which for any
finite collection of functions on the set of convex partitions, there exists a partition of
the ambient space by regular linear fans into convex subsets, such that each of the given
functions gets equalized on that partition. These two results are proved using theorems
about non-existence of certain equivariant maps, which are also provided in Chapter
They are, however, proved using the Fadell-Husseini ideal valued cohomological index
theory [32].

Chapter [4]is motivated by the conjecture of Holmsen, Kyn¢l and Valculescu [45, Conj. 3]
on partitions of finite colored sets, such that each subset contains points of many colors.
We give a few analogous continuous results. Recall that the ham-sandwich theorem implies
that for given d measures in RY, there exists a (convex) partition of R? into two half-spaces
such that each of them has non-zero measure with respect to each of the d measures.
We consider convex partitions of R? such that every subset in the partition has positive
measure with respect to at least ¢ measures, even when ¢ > d. The first result, which gives
a sufficient condition on the number of measures in R%, such that there exists a convex
partition with such a property, has an elementary geometric proof. However, the next two
results have stronger statements — one gives, in addition, an equipartition of one of the
measures, and the other one gives an equipartition of the sum of the measures. It turns
out that topological methods are needed in order to prove the equipartition results. We
use a novel configuration space/test map scheme — for the first time the test space is the
union of an affine arrangement. Thus we show non-existence of equivariant maps from the
space of equipartitions into the union of an affine arrangement.

Next, Chapter [5] presents an application of the equivariant obstruction theory on a
question from functional analysis. The celebrated waist of the sphere theorem of Gromov
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[39, Sec. 1] states that for all integers n > k > 1 and for every continuous map f : S™ — R¥,
there exists a point z € R¥ such that the n-dimensional volume of the tubular neighborhood
f71(2) +e C S™ is at least as big as the n-dimensional volume of the tubular neighborhood
of an equatorial (n — k)-sphere S"~* C S" for every & > 0.

We prove that, if f is additionally Z,-equivariant for some prime p, and if the action of
Zyp on S™ is free and an orientation preserving isometry, we can choose z to be the origin
in R¥, i.e., the volume of the tubular neighborhood of the inverse image f~1(0) is at least
as big as the volume of the tubular neighborhood of an equatorial (n — k)-sphere. The
proof follows the ideas of Gromov [39] and Memarian [60], and depends on the theorem
which claims that there is no equivariant map between the wreath product of classical
configuration spaces and a certain sphere. The non-existence of such a map is proved
using equivariant obstruction theory, and the necessary equivariant CW model for the
wreath product of configuration spaces is also developed in Chapter [}

Finally, in Chapter [6] we get back to Grassmannians, where we consider their combin-
atorial analogues. More precisely, we study oriented matroid Grassmannians, also called
MacPhersonians, which were introduced by MacPherson [56], and firstly used by Gel’fand
and MacPherson in order to give a combinatorial formula for Pontrjagin classes [38]. An
oriented matroid Grassmannian is the order complex of the set of all oriented matroids
of given rank and number of elements, ordered by weak maps. Every MacPhersonian is
conjectured to be homotopy equivalent to the corresponding Grassmannian, which was
proved by Babson [7] for rank 2. For higher rank, this question is still open.

The results of Chapter [6] follow from substantial computations that we run in order
to construct MacPhersonians in rank 3 and 4. In particular, since the construction of
the MacPhersonian for all but smallest parameters is beyond computational limits, we
construct subcomplexes that are fixed under some group action. Then we are allowed to
use results of Floyd [34] and Chang & Skjelbred [26] that compare properties of a whole
topological space and of its invariant subspace. All examples that we were able to compute
support the conjecture.

In order to make this thesis approachable for the reader, we introduce the Fadell-
Husseini index theory [32] and the equivariant obstruction theory [30, Sec.II.3] in the
Appendix, where we also summarize their properties.






Chapter 2

Nonnegative (Grassmannians,
Grassmann polytopes and amplituhedra

In this chapter we present results from the paper Some more amplituhedra are contractible,
which is a joint work with Pavle V.M. Blagojevi¢, Pavel Galashin and Giinter M. Ziegler
[16].

Introduction and statement of the main result

Introduction

Let n and k be integers such that n > k > 1. If Maty, ,, denotes the space of all real k x n
matrices of rank k, then the real Grassmannian Gy (R"™) — the space of all k-dimensional
linear subspaces of R™ — can be defined as the orbit space Gi(R") = GLj \ Maty ,. The
totally nonnegative part of the Grassmannian may be defined quite analogously:

Definition 2.1.1 (Postnikov [68 Sec.3]). Let n > k > 1 be integers, let Matf% be the
space of all real k x n matrices of rank k all whose maximal minors are nonnegativé, and let
GLZr denote the group of all real k x k matrices with positive determinant, which acts freely
on Mat,i% by matrix multiplication from the left. The totally nonnegative Grassmannian

G,%O(R”) is the orbit space GEO(R”) = GL; \Mat,i%.

The totally nonnegative Grassmannian was introduced and studied by Postnikov in
2006 [68, Sec. 3], building on works by Lusztig [64] and by Fomin & Zelevinsky [35]. Sub-
sequently, the geometric and combinatorial properties of the totally nonnegative Grass-
mannian were studied intensively. Rietsch & Williams showed that the totally nonnegative
Grassmannian is contractible [72, Thm. 1.1]; an earlier argument by Lusztig |55 Sec. 4.4]
can also be adapted to prove the same. Galashin, Karp & Lam [36, Thm. 1.1] proved that
GEO(R”) is indeed homeomorphic to a closed k(n — k)-dimensional ball.

In 2014, the physicists Arkani-Hamed & Trnka [5, Sec. 9] introduced the amplituhedra
as certain images of the totally nonnegative Grassmannians. They conjectured that their
geometry describes scattering amplitudes in some quantum field theories. For a gentle
introduction to amplituhedra in physics and mathematics consult [23]. Shortly after, Lam
introduced Grassmann polytopes [52], which generalize amplituhedra.
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Chapter 2 Nonnegative Grassmannians,
6 Grassmann polytopes and amplituhedra

Postnikov [68, Def. 3.2, Thm. 3.5] defined a CW decomposition of the totally nonneg-
ative Grassmannian G%O(R”) such that each cell, also called a positroid cell, is indexed by
the associated matroid — a positroid — of rank k£ on n elements, see also [69]. Moreover,
Rietsch & Williams [72] showed that the closures of positroid cells are contractible and
that their boundaries are homotopy equivalent to spheres.

Definition 2.1.2. Let £ > 1, m > 0 and n > k + m be integers, and let Z be a real
(k +m) x n matrix such that the induced map

7 : G°(R™) — Gp(RF™)

given by N
Z(span(V)) = span(VZ ") (2.1)

is well defined. Here V € Matig, span denotes the row span of a matrix, and Z ' is

the transpose of the matrix Z. The image Z (e) of a closed positroid cell € in the CW
decomposition of the nonnegative Grassmannian G%O(R”) is called a Grassmann polytope,
denoted by Pz(e). If e is the maximal cell, which for this CW decomposition means
€ = GEO(R"), and all (kK 4+ m) x (k 4+ m) minors of the matrix Z are positive, then the
Grassmann polytope Pz(e) is called an amplituhedron and is denoted by A, . m(2).

The previous definition in particular means that if vy,...,vpy € R™ are linearly inde-
pendent row vectors, then

Z(span{vl, CeUE)) = span{leT, A kaT}.

The map Z is well defined if Span(VZT) is a k-dimensional subspace of R¥*™ for every
V e Mat;?l The fact that the map Z is well defined when Z is a matrix with positive
maximal minors was established by Arkani-Hamed & Trnka in [5] and by Karp in

[50, Thm.4.2]. Lam [52, Prop.15.2], however, considers a larger class of matrices Z for
which the map Z is still well defined.

The structure of the amplituhedron is known only in a few cases. The case m = 0
is trivial, whereas when m = 1 Karp & Williams [51, Cor.6.18] have shown that the
amplituhedron is homeomorphic to a ball. For £ = 1 the amplituhedron is a cyclic polytope
of dimension m on n vertices [77], and for n = k+m the map Z is a linear isomorphism, and
consequently the amplituhedron is homeomorphic to the totally nonnegative Grassmannian
G%O(R”), which is a ball by [36, Thm. 1.1]. Finally, Galashin, Karp & Lam [36, Thm. 1.2]
proved that the cyclically symmetric amplituhedra, amplituhedra arising from particularly
chosen matrices Z, are homeomorphic to balls whenever m is even. The topology of other
Grassmann polytopes is unknown.

Main results
Our first result gives a family of contractible Grassmann polytopes.

Theorem 2.1.3. Let k > 1 and m > 0 be integers, and let Z be a real (k+m) x (k+m+1)
matriz such that the map Z - G>0(Rk+m+1) — Gp(RF*™) 4s well defined. Then the

Grassmann polytope Pz (e) is contractible for every positroid cell e in the CW decomposition
of GEO (Rk—l-m-i—l)'



2.1 Introduction and statement of the main result 7

The proof of Theorem relies on classical results of Smale [74, Main Thm.] and
Whitehead [85, Thm. 1].
The following is a consequence of Smale’s result [74, Main Thm.].

Theorem 2.1.4 (Smale). Let X andY be path connected, locally compact, separable metric
spaces, and in addition let X be locally contractible. Let f: X — Y be a continuous
surjective proper map, that is, any inverse image of a compact set is compact. If for every
y €Y the inverse image f~'({y}) is contractible, then the induced homomorphism

f#: TI'Z(X) — TI'Z(Y)
s an isomorphism for all 1 > 0.

Recall that a continuous map f: X — Y between topological spaces X and Y
is a weak homotopy equivalence if the induced map on the path connected components
fu: mo(X) — mo(Y') is bijective, and for every point xg € X and for every integer n > 1
the induced map fy: m,(X, 29) — m (Y, f(20)) is an isomorphism.

Theorem 2.1.5 ([85, Thm.1]). Let X and Y be topological spaces that are homotopy
equivalent to CW complexes. Then a continuous map f: X — Y is a weak homotopy
equivalence if and only if it is a homotopy equivalence.

Since Theorem [2.1.5| requires that spaces have the homotopy type of a CW complex,
the following theorem is a necessary ingredient in the proof of Theorem [2.1.3

Theorem 2.1.6. Let kK > 1, m > 0 and n > k + m be integers, and let Z be a real
(k + m) x n matriz such that the map Z is well defined. Then for every positroid cell
e in GEO(R”), the Grassmann polytope Pz (e) is homotopy equivalent to a countable CW
complex. Moreover, if n = k+m+1, the Grassmann polytope Pz(e) is homotopy equivalent

to a finite CW complex.

In order to apply Theorem to the map Z , we need to understand its fibers. Thus
we prove the following theorem.

Theorem 2.1.7. Let k > 1 and m > 0 be integers, and let Z be a real (k+m) x (k+m+1)
matriz such that the map Z is well defined. Then for every positroid cell e and for every
point y € P(e), the inverse image (Z]s)"*({y}) = Z~*({y}) Né under the restriction map
Z|e @ — Pyle) is contractible.

The proof of Theorem [2.1.7] is postponed to the next section, whereas the proof of
Theorem [2.1.6] is given in Section [2.4] Here we show that Theorem [2.1.7 in combination
with Theorem and Theorem [2.1.5] implies our main result.

Proof of Theorem [2.1.3 Let e be a positroid cell in the CW decomposition of G,?O (RF+m+1),
We apply Theorem to the map Z:e—P z(e). The spaces € and Pyz(e), as well
as the map Z , satisfy assumptions of Theorem Furthermore, Theorem implies
that for every y € €, the fiber Z~1({y}) is contractible. Thus, from Theorem we have
that the map Z is a weak homotopy equivalence.

The closed positroid cell € is a CW complex. Furthermore, the Grassmann polytope
Pz(e) is homotopy equivalent to a CW complex, by Theorem Thus, from Theorem
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we conclude that the map Z is a homotopy equivalence. Hence, the Grassmann
polytope Pz(e) is homotopy equivalent to the closed positroid cell e, which is contractible,
see [72]. O

In Theorem [2.1.6] we show that Grassmann polytopes are homotopy equivalent to CW
complexes, using classical topological results. However, an even stronger result holds.

Theorem 2.1.8. FEvery Grassmann polytope is a semialgebraic set. In particular, it admits
a triangulation.

Note that Theorem claims that every Grassmann polytope Pz(e) can be triangu-
lated in a classical sense, thus there exists a simplicial complex T" and a homeomorphism
T — Pyz(e). This is, however, not a triangulation in terms of [52].

In particular, the above theorem gives an implicit answer to [52), Problem 15.9], which
asks to describe a Grassmann polytope by inequalities. A related question in the case
m = 2 was investigated in [4]. We note that a very similar argument to ours was also given
by Arkani-Hamed, Bai & Lam in [3| Appendix J].

The proof of Theorem [2.1.8]is given in Section [2.5

Theorem in particular implies that all amplituhedra Agm41%m(Z) are contract-
ible. Our next result shows that if in addition m is even, they are homeomorphic to balls.

Theorem 2.1.9. Let k > 1 be an integer, let m > 0 be an even integer, and let
Z € Matyym k+m+1 be a matriz with all (k+m) x (k4+m) minors positive. Then the amp-
lituhedron Aksm+1,km(Z) induced by the matriz Z is homeomorphic to a km-dimensional

ball.

The proof of Theorem [2.1.9]is presented in Section We remark that the combin-
atorics of the amplituhedron in the case n = k + m + 1 with m even has been recently
studied in detail in [37].

Acknowledgement

We are grateful to Rainer Sinn for sharing the knowledge about semialgebraic sets, to
Thomas Lam, whose great observations improved the generality of this chapter, and to
Steven Karp for helpful comments.

Proof of Theorem |2.1.7

Let £ > 1,m > 0 and n > k + m be integers and let Z be a real (k 4+ m) x n matrix such
that the map Z is well defined. Since the action of the group GLZr on Matf% is free, there
is a fibration ’

GL;} — Matg), — GZ'(R™). (2.2)

The matrix Z, as in Definition induces a map

Z : Mat — Matyppm,
Vo — VZT,
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which is again well defined, see for example [62, Prop. 15.2].

Let e be a positroid cell in the CW decomposition of GEO (R™), and let I, C ([z]) be the
family of nonbases (dependent sets) of cardinality k of the matroid that defines the cell e.
The maximal minors of a £ X n matrix are indexed by the set ([Z}). Denote by Mat,ig(e)

the set of all matrices V & Mat,%% whose minors indexed by elements of I, are equal to
zero. Then every point in e C GEO(R”) is represented by a matrix in Mat%?l(e), and the

row span of every such matrix lies in €. In other words, € = GL; \Mat,f%(e). Thus the
restriction of the fibration ({2.2)) is a fibration

GL} — Mat{) () — é. (2.3)

Note that if e is the maximal positroid cell, the set Mat,??l(e) is the whole set Mat,?%.
Denote by Pz(e) the image of the set Mat%%(e) under the map Z. With a usual abuse

of notation, we consider maps Z : Mati%(e) — Py(e) and Z : @ —» P(e). Then there
exists a commutative diagram of spaces and continuous maps

~

—

Matf%(e) —Z 5 Pyle)

|,

e —%2 Pz(e),

where vertical maps send any matrix to its row span.

The proof of Theorem [2.1.7] splits into the following two lemmas.

Lemma 2.2.1. Let k > 1 and m > 0 be integers, n = k+ m + 1, and let Z be a real
(k + m) x n matriz such that the map Z is well defined. Then for every positroid cell
e in the CW decomposition of GEO(R”) and for every W € %, the inverse image
Z71{w}) C Mat,igl(e) is nonempty and convex.

Proof. The matrix Z induces a linear map

R® — Rk™ (2.4)
v UZT,

where v € R" is a row vector. Since n = k + m + 1, the kernel of the map is
1-dimensional. Fix a generator a € R™ of that kernel.

Choose an arbitrary point W € P/Z@, and let U and V be any two points in Z~1({W}).
Our goal is to show that for every A € [0, 1] the convex combination (1 — A\)U + AV also
belongs to Z~1({W}).

Since UZT =V ZT = W, the rows of the matrix V —U belong to ker(Z). Consequently,
there exists a row vector x € R¥ such that V — U = x "a, where a is also considered as a
row vector. Thus we have to show that for every A € [0, 1] the convex combination

1-=NU+NV =U+Iz"a (2.5)
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belongs to the space Mati%(e), this means that every k x k minor of the matrix (2.5
is nonnegative, and in addition that all the minors of the matrix indexed by the
nonbases I, C ([Z]) of the matroid corresponding to e are equal to zero.

A k x k submatrix of the matrix is of the form

Uti, + AT104, ... UL, + AT104,
: : , (2.6)
Uki, + ATy .. Ui, + ATRAG,
where
UL ... Ulp
U=| : S, z=(x1.xg), a=(a1...a,),
Ukl ... Ukp
and 1 < i1 < -+ < i < n. The matrix (2.6) can be transformed using row operations

into a matrix that contains the variable A only in one row. Therefore, every k x k minor
of the matrix (2.5 is a polynomial of degree at most 1 in the variable A. Since it takes
nonnegative values for A = 0 and A = 1, it is also nonnegative for all A € [0,1]. Thus for
every A € [0,1], the point (1 — A\)U + AV belongs to Matf%. Similarly, if {i1,...,it} is a
nonbasis of the matroid corresponding to e, then the determinant of the matrix is
zero for A = 0 and A = 1, so it is a constant zero-polynomial, meaning that the matrix ([2.5)
belongs to Mat,i% (e) for every A € [0,1]. Consequently the set Z~1({W}) is convex. [

Lemma 2.2.2. Let k > 1,m > 0 and n > k + m be integers. For every positroid cell e
and for every W € Py(e), the inverse images

Z7'({W}) C Matip(e) CMaty,  and  Z '({span(W)}) C e C GF'(R")
are homeomorphic.

Proof. Let ¢: Z7Y{W}) — ZY({span(W)}) be defined by o(U) = span(U), where
U € Z71({W}), and span denotes the row span. We prove that ¢ is a homeomorphism.
Clearly, ¢ is continuous, so it suffices to find a continuous map

¥ Z7 ({span(W)}) — Z71({W}),

such that ¢ o ¢ is the identity map on Z‘l({span(W)}) and 1) o ¢ is the identity map on
Z7Y{W}). Let L € Z71({span(W)}). Then there exists a matrix K € Mat,f%(e) whose
rows span the subspace L. Since

span(KZ") = span(W),

there exists a unique C' € GLy, such that KZT = CW. Now define v as (L) = C7'K. Tt
can be seen using the Cauchy-Binet formula that det(C) > 0. Thus, C™'K € Mat,i%(e).
Even though we have defined the map v using an arbitrarily chosen matrix K such that
span(K) = L, it can be checked directly that the definition of ¢ does not depend on a
choice of K.

In order to prove that the map v is continuous, we need to show that the choice of
a matrix K can be made continuously on Z~!({span(W)}). The choice of a matrix K is



2.3 Proof of Theorem 2.1.@ 11

equivalent to the choice of a positively oriented basis for the subspace L C R™. Therefore,
we need a continuous section of the fiber bundle (2.3)) restricted to the set Z~!({span(W)}).
Since the base space e is contractible, the fiber bundle is trivial. In particular, its
restriction on Z = ({span(W)}) is also trivial, so it admits a continuous section. Therefore,
the bases for elements of Z~!({span(1¥)}) can be chosen continuously. On the other hand,
the matrix C' is a solution of the linear system KZ' = CW, which depends continuously
on K, thus it also depends continuously on L.
Lastly,

p(¥(L)) = p(C™'K) = span(C~'K) = span(K) = L,
holds for every L € Z~!({span(W¥)}), and
U(ep(U)) = Y(span(U)) = C7'U,
for every U € Z~Y({W}), where C is the unique k x k matrix such that
W=2U)=U0z" =cw,
hence C' is the identity matrix. O
Finally, Lemma and Lemma complete the proof of Theorem [2.1.

Proof of Theorem [2.1.9

Let k> 1, m >0 and n > k + m be integers, and suppose in addition that m is even. Let
S € GL,, be given by

S(x1,...,2) = (Toy. .., 20, (1) Lay).

Denote by Zy € Matyyy,, the matrix whose rows are the eigenvectors of the matrix
S+ ST that correspond to the largest k +m eigenvalues. It was shown in [36, Lemma 3.1]
that all (kK +m) x (k+ m) minors of the matrix Z, are positive, thus it defines an amp-
lituhedron Ay, .m(Zo), called cyclically symmetric amplituhedron. Galashin, Karp & Lam
[36, Thm.1.2] showed that A, 1, (Zp) is homeomorphic to a closed km-dimensional ball
whenever the parameter m is even.

We conclude the proof of Theorem by showing that the amplituhedra A,, j ,(2)
and Ay, k.m(Zo) are homeomorphic.

From [50}, Cor. 1.12(ii)] we know that entries of every nonzero vector of ker(Zy) and of
ker(Z) are nonzero, and they alternate in sign. Since n = k+m+ 1, the kernels of matrices
Z and Zj are 1-dimensional. Let a = (ay,...,a,) € R™ be a generator of the kernel of Z
and let b = (by,...,b,) € R" be a generator of the kernel of ZUD Choose them in such a
way that a; and b; have the same sign. Consequently, for every 1 < ¢ < n, the entries a;
and b; have the same sign. Let D be an n x n diagonal matrix D = diag(%, el Z—:) The
matrix ZD has the same kernel as the matrix Zp, and since the diagonal entries of the
matrix D are positive, all maximal minors of the matrix ZD are positive. The fact that
the matrices ZD and Zj have the same kernel implies that they have the same row spans,
as well. In particular, there exists a matrix C' € GL;er such that Zy = CZD.

Tt follows from the cyclic symmetry of Zo that b; = (—1)*"* for 1 <i < n. See [36] for details.
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Multiplication by D on the right gives a homeomorphism D: Matl,i?1 — Mat,i%, which
induces a homeomorphism D : GEO(R”) — GEO(R”). Furthermore, multiplication by C'T
on the right gives a homeomorphism C' : Maty, 4, — Maty g4y, thus the induced map

C : Gg(RF™) — G(R¥t™) is also a homeomorphism. Hence, we obtain the commutative
diagram of spaces and maps

~ ~

> D > Z c
Mat,;g —_— Mat,;?l —— Mat p+m < Maty, k4m

I A

GEU(R") 2= GP(R") —%— Gu(RF™) S Gi(RFT™).

The image of the composition CoZoD of the maps in the lower row of the diagram
is the cyclically symmetric amplituhedron A, ,,(Zo) and the image of the map Z is
the amplituhedron A, i, (Z). Since the maps C and D are homeomorphisms, these two
amplituhedra are homeomorphic. Finally, the fact that the cyclically symmetric amp-
lituhedron A,, ;1 (Zp) is homeomorphic to a km-dimensional ball [36, Thm. 1.2], when m
is even, concludes the argument that every amplituhedron A, j ,(Z) is homeomorphic to
a km-dimensional ball whenever n = k +m + 1 and m is even.

Proof of Theorem [2.1.6

Let e be a positroid cell in the nonnegative Grassmannian GEO (R™), and let Z be a matrix
that defines the Grassmann polytope Pz(e). By [61, Thm. 1], the Grassmann polytope
P z(e) has the homotopy type of a countable CW complex if and only if it has the homotopy
type of an absolute neighborhood retract (ANR). Furthermore, by [22, p.240] the space
Pz(e) is an ANR if it is compact and locally contractible, see also [43], p.389]. Since the
closed positroid cell € is compact, the Grassmann polytope Pz(e) is also compact. Thus,
it remains to show that Pz(e) is locally contractible.

Applying the Gram-Schmidt orthogonalization on the fibration , we obtain a fibra-
tion

SO(k) — E1 — e, (2.7)

where the total space E] is a subspace of the orthonormal Stiefel manifold. Similarly, we
obtain a fibration
SO(k) — Eo — Py(e). (2.8)

We also consider a commutative diagram of spaces and continuous maps

E1L>E2

L

e %2, Pz(e),

where the horizontal maps are induced by the matrix Z, and the vertical maps send any
frame to its span.
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By [31} p. 81], every Euclidean neighborhood retract (ENR) is locally contractible. On
the other hand, if Ey is an SO(k)-ENR, then the orbit space Pz(e) is an ENR,
[30, Prop.I1.8.9]. Finally, since Es is a compact space with a free SO(k)-action, it is an
SO(k)-ENR, [47, Thm.2.1], which completes the argument that the Grassmann polytope
Pz(e) has a homotopy type of a countable CW complex.

Finally, if n = k+m+1 by Theorem[2.1.7/and Theorem[2.1.4] P (e) is simply connected,
so by [61, Prop.1 + Remark] it is homotopy equivalent to a finite CW complex.

Proof of Theorem [2.1.8

Let e be a positroid cell in the CW decomposition of the nonnegative Grassmannian
GfO(R”). Set d = (]H,;m), and consider the Veronese embedding

v:RPI — R

that maps every point = (x1 : ... : 247) € RP?"! to the matrix

LT g dxd
oo ERTL
vl g )

The embedding v maps every linear line z € R? to the matrix of the projection R? — z.
Consider also the map
v: R — RIX4

given by

(@1, 2g) — | ] e R,

Now we obtain the commutative diagram of spaces and maps

Maty 0 —Z— Matyjoym —— R\ {0} —L— RI*d

] ; Js

GEO (Rn) Z G (Rker) v RPd-1 v Rdxd’

where 7 : G (RF+™) — RP?~1 is the Pliicker embedding, v : Maty, 1, — R\ {0} maps
every matrix to the tuple of its k& x k minors, and 7 : R?\ {0} — RP?~! is the quotient
map.

Since the Grassmann polytope Pz(e) is embedded into RP?~! via «, and the projective
space RP4~! is embedded in R?*? via v, we show that v(y(Pz(e))) is semialgebraic. The
commutativity of the diagram above implies that

v(1(P2(e)) = v(x(1(P£()))) = v(v(P7(e))) = v(v(Z(Matz®(e))))-

The set Mat,%?l(e) C R**" is semialgebraic. Since the map Z is multiplication by a matrix,

—

the set Pz(e) is also semialgebraic. Furthermore, every coordinate of the map ~ is given
by a polynomial, thus *y(P/Z@) c R4\ {0} is semialgebraic, as well. Finally, the map
v : R — R4 ig g regular rational map, thus it maps semialgebraic sets to semialgebraic
sets, see [28, Sec.2.2.1].






Chapter 3

Equipartitions by prisms and regular fans

Results in this chapter are joint with Pavle V.M. Blagojevi¢.

Introduction

Partitions of measures are classical, well-studied, but still very challenging problems. For
example, the ham-sandwich theorem, proved by Banach in 1938, claims that every collec-
tion of d measures in R? can be simultaneously partitioned into halfs by one hyperplane
cut. In 1960 Griinbaum [40, Sect. 4(v)] asked, whether any proper convex body in R? can
be divided by d affine hyperplanes into 2¢ pieces of equal volume. A positive answer in the
plane follows by a direct application of the ham-sandwich theorem. Hadwiger answered
this question positively in [42] for d = 3, whereas Avis [6] gave a negative answer for d > 5.
The case d = 4 is still a hard open problem.

Here we consider two naturally related problems — partitions of the Euclidean space
into prisms on the one hand, and partitions by regular linear hyperplane fans on the other
hand.

Definition 3.1.1. An ordered collection of subsets (C,...,CP) of R? is a partition of R?
into p subsets if

(1) U, ¢V =R,

(2) int(C7) # O for every 1 < j < p, and

(3) int(C7) Nint(C*) =P for all 1 < j < k < p.
A partition (C1,...,CP) is called convez if all subsets C', ..., CP are convex.

Definition 3.1.2. Let dy,...,d, > 1 and m > 0 be integers. A prism in R% x- . . x R% xR™
is a product
Cpx- X Clp xR® CRE x ... x R%* x R™,

where each C; C R% is convex. A partition of R x --. x R% x R™ into p* prisms is a
family of prisms
(CF" x - X G} X R™)1<ji<p,.. 1 <jnsps

where (C},...,C?) is a convex partition of R% into p subsets, for every 1 < i < k. Denote
by PP(dy,...,ds; p) the set of all partitions of R% x --- x R% x R™ into p* prisms. In case
when dy = -+ = dj, we use a simplified notation PP(d, k, p).

15
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An example of a prism and a partition into prisms for k =2, m = 0,d; = 2,d> = 1 and
p =5 is given in Figure and Figure Figure shows convex partitions of R? and
R, and one prism in R? = R? x R induced by them. Moreover, Figure shows a partition
of R? x R into 25 prisms.

In this chapter we consider only partitions of R% x - .- x R% x R™ into prisms, where
all spaces R%, ... R% are partitioned into exactly p convex subsets. One could, however,
apply the same methods on more general partitions, such that the spaces R%, ... R% are
not necessarily partitioned into the same number of subsets.

Since prisms are convex subsets of R4 x --- x R% x R™, every partition into prisms is
a convex partition. The space C (Rd, n) of all convex partitions of the Euclidean space R4
into n convex pieces was endowed with a metric by Leén and Ziegler in [53]. Therefore,
we can see PP(dy,...,dg;p) as a topological space with the topology inherited from the
metric space C(R¥++detm pk)

o

e

Figure 3.1: A convex partition of R? into 5 subsets, a convex partition of R into 5 subsets,
and a prism in R? x R.

Example 3.1.3. For k = 1 every convex partition (C',...,CP) of R? gives a partition
(C' xR™,...,CP x R™)
of R? x R™ into p prisms.

Example 3.1.4. The hyperplane arrangement of k coordinate hyperplanes in R* partitions
RF =R x --- x R into 2¥ prisms. The convex subsets C} and C? that partition R are the
ray of nonnegative and the ray of nonpositive real numbers.

The group Z, acts on a partition (C1,...,CP) of R? by cyclically permuting the sets
g-(CY,....,CP) = (C9TL,. .., CITP),

where the addition of indices is done modulo p.
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Figure 3.2: A partition of R? = R? x R into 25 prisms.

Let Z’; = Gy x -+ x G be an elementary abelian group, where G1 = --- = Gj, = Z,.
Then there is a Z’;—action on PP(dy,...,dy;p) defined on every partition
(C’{l X oo X C]z,k X Rm)léﬁép,...,lﬁjkﬁp € PP(dy,...,dx;p) by

(g1, -5 k) - (O X - X CFF x R™) = (C"H o xx CFFHIE 5 R™),

for every (g1,...,9x) € G1 X -+ x G and every 1 < ji,...,jr < p, where the addition of
indices is modulo p.

The symmetric group &« acts on RP" by permuting coordinates. This action induces a
Zk-action on RP" via the regular embedding (reg) : Zk — &, [1, Ex. 2.7, page 100], which
is given by the left translation action of Z]; on itself, so that to each element g € Z’; we
associate permutation Lg: Z’; — Z’; from &, given by Ly(z) =g+ .

Now we are ready to state the first result of this chapter.

Theorem 3.1.5. Letd > 1, k> 1, r > 1 and m > 0 be integers, and let p be a prime
such that d > rp*~1 with at least one of the following conditions satisfied

(a) p=2, or

(b) 4 divides p— 1, or

(¢c) k is even, or

(d) r is even.

For every collection Fy,...,F, : PP(d,k,p) — RP" of continuous Z’;—equivam'ant maps,
and for every absolutely continuous probability measure . on R?, there exists a partition
(C7F X - X OFF X R™)1<j,<p,...1<ii<p € PP(d, k,p) of

R x --- x RY x R™ into p* prisms such that

1
oy ==,
uw(Cy) p
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Jor every 1 < i < k, 1 < j < p, and such that all functions Fy,...,F. equalize on the
partition (C]" x -+ x CJF X R™)1<j,<p,..1<jp<p, this means that each function takes the
same value on all prisms in the partition.

If we choose functions Fi, ..., F; to be finite absolutely continuous probability measures
on R*¥+™  then Theorem becomes a measure partition result saying that for every
collection of finite absolutely continuous measures p1,...,u, on RFd+™ - there exists a
partition (C{l X oo X C,]fk X Rm)l§j1§p,...,1§jk§p S PP(d, k‘,p) of Rd X oo X Rd x R™ into
p" prisms such that

. . 1
ps(CfF x -+ x CfF x R™) = WSGR“*’“),

for every prism C{l X oo X C,Z;’“ x R™ in the partition (C’{1 X oo X C,Z’“ XR™)1<j1<p,... 1<ju<p
and for every 1 < s <.

The case k = 1, m = 0 and r = d of Theorem [3.1.5] with F; being a finite abso-
lutely continuous probability measure on R? (volume, for example), is the problem posed
by Nandakumar and Ramana Rao [65], that has been answered positively whenever the
number of subsets in the partition of R? is a prime power, see [49] and [21, Thm. 1.3].

A closed half-hyperplane in R? is the set
H,={x € H | (z,v) >0},

for some hyperplane H C R and some vector v € H. Tts boundary is the (d — 2)-dimensional
linear space

{z € H| (z,v) = 0}.
Our second result considers partitions of the Euclidean space by regular linear p-fans.

Definition 3.1.6. Let p > 2 be an integer. A p-fan in R? is the union of p closed half-
hyperplanes in R? with a common boundary. A p-fan is called regular if the angle between
any two successive half-hyperplanes is 2?”, and it is called linear if the origin is contained

in the common boundary of the half-hyperplanes.

Note that a regular 2-fan in R is just a hyperplane in R%.

For every p > 2 a regular p-fan Q partitions R¢ into p convex pieces C',...,CP. A
collection of k regular fans (Qq, ..., Q) partitions R? into p* convex subsets, some of
them being possibly empty, as follows: If a p-fan @Q; partitions R? into p convex subsets
Cl,...,CP forevery 1 <i <k, then the collection of subsets (C{'N- - -NCI*)1<j, <p....1<jn<p
is a convex partition of R% into p* subsets.

Definition 3.1.7. Denote by LFP(d, k, p) the set of all partitions of the Euclidean space
R? by k regular linear p-fans.

Similarly as before, the space LFP(d, k, p) is a subspace of the metric space C(R?, p*) of
all convex partitions of R? into p* pieces, thus it is equipped with the inherited topology.
There is a Z’;—action on the space LFP(d, k,p). Let again Z’; = Gp X -+ x Gf, be an
elementary abelian p-group, where G1 & --- = G}, = Z,,. Then the action is given on every

partition (C{' N+ N CP*)1<jy<p....1<j,<p € LFP(d, k,p) by

(91, 08) - (CF' - NG = (O NN OGP,
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for every (g1,...,9k) € Z]; and for every 1 < ji,...,Jr < p, where the addition of indices
is modulo p.

Since a hyperplane is a regular 2-fan, one can consider partitions by regular g-fans as a
generalization of the Griinbaum—Hadwiger—-Ramos mass partition problem, see for example
the results of Simon [73] in the complex space. Our next result gives equipartitons of the
real Fuclidean space by regular linear fans.

Theorem 3.1.8. Let d,k,v > 1 and m > 0 be integers and let p > 2 be a prime such

that d > M;Q(p_l). Additionally, assume that at least one of the following conditions is
satisfied

(a) p=2, or

(b) 4 divides p— 1, or

(¢c) k is even, or

(d) r is even.

Then for every collection Fy,...,F, : LFP(2d,k,p) — RP" of continuous Z];—equivariant
maps, there exists a partition (C* 0 --- N C)i<ji<p. . 1<ju<p € LFP(2d,k,p) of R* by
k regular linear p-fans into p* conver subsets such that each of the functions F,...,F,
equalizes on the partition (CJ" N ---N Cik)1§j1§p7,,,71§jk§p, that is, every F; takes the same
value on each convexr subset in the partition.

Again, choosing the functions Fi, ..., F, to be finite absolutely continuous measures,
Theorem translates into a measure partition result: Given any collection 1, ...,
of finite absolutely continuous measures in R?¢, there is a partition
(C NN CF)i<ji<p. a<ju<p € LEP(2d, k,p) of R?? by k regular linear p-fans into p*
convex subsets such that

A . 1
MS(C{I n---n Ci;k) = ﬁﬂs(RZd%

for every 1 < ji,...,jr < pandevery 1 < s <r.

Solutions to partition problems have often been obtained using tools from algebraic
topology. Here we first develop configuration space/test map (CS/TM) schemes in Section
B:2] in order to move from a partition problem to a question of non-existence of equivariant
maps, which is then answered in Section using the ideal-valued index theory of Fadell
and Husseini [32].

From convex partitions to equivariant topology

In this section we develop CS/TM schemes in order to prove Theorems [3.1.5| and [3.1.8]
They will lead to statements about non-existence of equivariant maps, Theorem [3.2.3 and
Theorem which will be proved in Section

Convex partitions into prisms

In order to partition R*¥+™ into p* prisms, it is necessary to partition each copy of R? into
p convex sets. Following [21], denote by EMP(u, p) the set of convex partitions of R? into
p subsets that equipart the measure p on R%.
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Definition 3.2.1. Let X be a topological space and let p > 1 be an integer. A configuration
space is the set of all p-tuples of pairwise disjoint points in X:

Conf(X,p) = {(z1,...,xp) € XP | z; # x; for every i # j}.
Blagojevi¢ and Ziegler [2I), Sec. 2] showed the existence of an &,-equivariant map
Conf(R?, p) — EMP(p, p),

thus every point in the configuration space Conf(u, p) defines a convex equipartition of the
measure u in R?.
Additionally, we need the following definition.

‘/1/l—{(‘,‘[17-.',$d)€R |$]+-..+x!_0}

It is a (d — 1)-dimensional linear subspace of R

Now we are ready to develop the CS/TM scheme for equipartitions by prisms.

Since every point in Conf(R?, p) defines a partition of R? into p convex sets that are
in addition equipartitons of the measure u, the product Conf(]Rd,p)Xk can be embedded
into PP(d, k,p), and it represents needed partitions. Moreover, the space Conf(R?, p)**
inherits the Z’;—action. The group Z’; acts on Conf (Rd, p)Xk in such a way that each copy
of Z, cyclically permutes the p points in R? that define an element of the configuration
space Conf(R?, p).

Define functions G1, ..., Gy : PP(d, k,p) — W C RP* as

Go((Cf %+ X CPF XR™) 1<y <, 1<ju<p) =

(Fs(CF* x -+ x CYF me)—ik > Fy(CJ' x --- x CIF x R™))

1<i<k
1<5:<p

1<a1<p,...1<ap<p’

for every 1 < s < r and every partition (C’{1 X oo X C’i’“ X R™)1<ji<p,.. 1<ju<p Of Rkd+m
into p* prisms. In other words, for a partition

P=(C{ x - x O xR™)1<j,<p...1<jr<p € PP(d, k,p),

the value of the coordinate (a1, ...,a) of G5 equals the value of Fs on the prism
Cy' x -+ x Cp* x R™ with the average value of F, on the whole partition P subtracted.
The maps G1,...,G, are Zl;—equivariant by construction. Moreover, Gs(P) = 0 € W if
and only if the value of the function F; is the same on every prism of the partition P, for
every 1 < s <r.

Assume now that the statement of Theorem [3.1.5]does not hold. More precisely, assume
that for every partition P € PP(d, k,p), at least one of the functions Fi,..., F,. does not
equalize on P. This, in particular, means that the image of the function

G = (Gi,...,Gy) : PP(d, k,p) — W'
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does not hit the origin 0 € Wﬁr. After restricting the domain to Conf(RY, p)**¥ and
composing the map G with the projection to the unit sphere in the linear space W;,%T, we

obtain a Z’;—equivariant map
Conf(R?, p)*k — S(WPEE’"). (3.1)

However, we will show in Theorem [3.2.3] that such a map cannot exist. Thus, the proof
of Theorem follows from the CS/TM scheme above and from Theorem

Theorem 3.2.3. Letd > 2, k > 1 and r > 1 be integers and let p be a prime. If d > rp*~1
and one of the following conditions is satisfied

(a) p=2, or

(b) 4 divides p— 1, or

(¢c) k is even, or

(d) r is even,

then there is no Z’;—equivam'ant map Conf(R?, p)*F — S(Wﬁr).

The proof of Theorem [3.2.3]is be given in Section [3.4]

Convex partitions by regular linear fans

In this section we develop a CS/TM scheme that leads to a proof of Theorem

Let us first consider the case when p > 3 is a prime. Every point in the sphere §2¢1
defines a regular linear p-fan in R2?. Indeed, each point ¢ € S%¢~1 ¢ R?? is a normal
vector of an oriented hyperplane H, in R??. Since we can see S2?~1 as the join (S')*? of
d copies of the unit circle, the group Z, acts on S2d=1 by simultaneously acting on each
copy of S by rotations. Denote by ¢ = ¢, qo, . .. , gp the points of S§2d=1 that are in the
orbit of ¢, where g;1+1 = ¢ - ¢;, for every i € Z,, where g = 1 is the generator of Z, seen
as an additive group. The points g1, ..., q, define p linear hyperplanes H,, ..., Hy, in R4
whose intersection is a linear (d — 2)-dimensional subspace V' of R%. The union of these
hyperplanes can be seen as

p
UHy =UxVCR*xV =R,
=1

where U is the union of p lines in V', the orthogonal complement of V. Denote by ¢; the
line Hy, N VL c U, for every 1 < i < p. It is not hard to see that the points ¢, ..., qp lie
on a circle in V1, and that the vector defined by ¢; is orthogonal to the line ¢;, for every
1 <@ < p. Consequently, the points q1,...,q, define orientations of lines ¢1,...,¢,, and
the angle between any two consecutive lines is exactly %. An example for p = 3 is shown

in Figure Moreover, the order of points qi, ... g, on the unit circle in V1 defines an
orientation of V. If we consider each line ¢; as a union of two half-lines emanating from
the origin, then the line arrangement (¢1,...,¢,) defines two regular linear p-fans in vt
one of them having the positive and one of them having the negative orientation, as shown
in Figure Choose the one with the positive orientation and denote by ET, e ,E; its
half-lines, Figure m Then ET x V C Hy, is a half-hyperplane and the half-hyperplanes
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Ef xV, ... ,E; x V define a regular linear p-fan in R2?. Furthermore, this construction is
Zyy-invariant.
Using the above construction, we obtain a Zlg—equivariant map

(§24=Hk s LFP(2d, k, p) (3.2)

from the product of spheres into the space of all partitions of R2¢ by k regular linear p-fans.

We are now ready to develop the CS/TM scheme needed for proving Theorem in
the case when p > 3.
Let Fy,...,F, : LFP(2d,k,p) — RP" be continuous Z’;—equivariant maps. Define maps

Gi,..., Gy : LFP(2d, k,p) — W, C R?" as

Gs((C N N O 1<gi<pyi<jnsn) =

(F(CP 0 NG = — 37 F(Cf n-n )
1<i<k
1<5:<p

1
pk 1<a1<p,...1<ap<p’
for every partition (C7' N- - 'ﬂclzk)lgjlgp’m’lgjkgp € LFP(2d, k,p) and for every 1 < s <.

In other words, the map G is obtained from the map Fs by subtracting coordinatewise
the average of F; on all pieces of the partition. Furthermore, define a map

G = (Gy,...,G,) : LFP(2d, k,p) — Wﬁr.

Since the maps G1,...,G, are Zlg—equivariant, the map G is Z’Ij—equivariant, as well. Note
that the image of a partition under G is zero in W;,'ir if and only if all functions Fy, ..., F;
equalize on that partition.

Assume now that the statement of Theorem [3.1.8is false, thus assume that there are
functions Fi,..., F, such that there is no partition in LFP(2d, k, p) on which all of them
equalize. For such functions F, ..., F,, we obtain a Zl;—equivariant function
G : LFP(2d,k,p) — W;ET \ {0}. After composing with a retraction to the unit sphere in

Wﬁr on the right, and with the map (3.2) on the left, we obtain a Z’;—equivariant map
(§2d-hHk S(WﬁT). (3.3)

Let us for the sake of completeness consider the case when p = 2. Every regular
linear convex 2-fan is a linear hyperplane. Since every point of the sphere S2¢~1 defines
an oriented hyperplane in R? we can identify the space LFP(2d, k,2) with (S2¢~1)xk,
Similarly as above, assuming that the statement of Theorem [3.1.§] is false, we obtain a
Z’g-equivariant map

(S247H)E — S(W). (3.4)

Non-existence of maps (3.3 and (3.4]) will be shown in Theorem which yields a
contradiction. Therefore, the above CS/TM scheme together with Theorem yields
the proof of Theorem [3.1.8

Theorem 3.2.4. Let d > 2, k > 1 and r > 1 be integers and let p be a prime. If

d > 7 (p=1) and one of the following conditions is satisfied
2 g
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(a) p=2, or

(b) 4 divides p— 1, or

(¢c) k is even, or

(d) r is even,

then there is no Z’;—equivam'ant map (S24—1)xk —zk S(Wﬁr).

The proof of Theorem is postponed to Section

Remark 3.2.5. The choice of the sphere S2?~! as a configuration space is not optimal.
Regular linear fans in R?¢ can as well be parametrized by the Stiefel manifold Va(R??),
whose cohomological index can be computed from the work of Makeev [57], and which
turns out to give more optimal results. We thank the referee Roman Karasev, and invite
the reader to see the subsequent paper for more details.

The Fadell-Husseini index of the sphere S(IV,;")

In order to prove Theorem and Theorem |3.2.4] we use the Fadell-Husseini ideal valued
index theory, see the original paper by Fadell and Husseini [32] and Appendix [B of this
thesis for more details.

Let Y be a space with an action of a finite group G, and let R be a commutative ring
with unit. The Fadell-Husseini index of Y with respect to the group G and coefficients
R is the kernel ideal of the map in equivariant cohomology induced by the G-equivariant
map py: Y — pt

Indexq(Y;R) = ker(py: Hi(pt, R) — HE(Y, R))
= ker(H*(BG,R) — H*(EG xg Y, R)).

The rest of this section will be devoted to estimations of the Fadell-Husseini index of
the sphere S (Wﬁr).

For the purposes of this chapter, the group G will be Z’Ij and the ring R will be the

finite field F,,, for some prime p and some integer k > 1.
Note that Indexz (S (W;ET); [F,) is an ideal in H* (Z’; ;Fp,), the cohomology of the group

Z’; with coefficients in the field I, that is given by:

H*(Z5:Fy) = TWolty,... ts], deg(t;) = 1,
H*(Z];;Fp) = Fplt1,....ts) ® Ale1, ..., ek, deg(e;) =1, deg(t;) = 2, if p is odd,
where Aley, ..., er] denotes the exterior algebra generated by the elements e, ..., eg.

The next lemma follows from the work of Mann & Milgram [58], see also [18], Sect. 7.2.3].

Lemma 3.3.1 ([58], [18, Sect.7.2.3]). Let p be a prime. The Fadell-Husseini index
Indeng(S(Wﬁr);Fp) of the sphere S(W;Er) with respect to the group Z]; is generated by
the polynomial (", where

IT (a1t + - + agty), forp =2,
(01,..., ) EFE\ {0}
¢= !
( IT (1ty + -+ aktk)) , forp>3.
(

Cxl,...,ak)EFg\{O}
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The aim of the following lemma is to understand the polynomial (".

Lemma 3.3.2. Let k> 1 and r > 1 be integers and let p be a prime. If

(a) p=2, or

(b) 4 divides p— 1, or

(c) k is even, or

(d) r is even,

then the generator (" of the Fadell-Husseini index Indexzy, (S(Wﬁr);lﬁ‘p) contains

the monomial -
p(p—1) P " (p—1)
ryT T r 2
ity 2 ..ty

with a non-zero coefficient.

Proof. First let p =2. A direct computation shows that the polynomial

("= I1 (Qaty + -+ ayty)”
(a1,...,ar)EFE\{0}

contains the monomial #]t52 ... t}?kil with a coefficient 1.
Now let p > 3 be a prime. Let us first understand the polynomial

2

¢= 1T (caty + -+ + agty)
(a1,...,ak)€F§\{0}

Consider the set
Té“:{(al,...,ozk) EF’;\{O} |0# o <p/2and ajy; =--- = ag =0 for some 1 <i < k}.
For (aq,...,a) € F’; \ {0} the following holds:

(o1, ..., ) ET]LI,C if and only if (p — a1,...,p — ag) ¢T£.

Now, we can write ( as

N

¢ = II (ati++apti)((p—a)ti+ -+ (p — ap)ty)

N|=

p—1 2
= [(-1)™= [T  (ati+-+apte)’|

(0{1,...,011.6)6'11;g

where the computations are modulo p.
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Therefore, the Fadell-Husseini index of the sphere S (Wﬁr) is generated by

2

== II  (eati 4+ apti)?

(@1ees0p, ) ETY

k_
If w is an integer, i.e., 7 is even or k is even or 4 | p — 1, then (" = £ or (" = —¢,
where
£ = II  (cati+-+apty)
(Oél,...,Oék)ETé:
pp=1 ,.p(P=1) T:kal(pfl)
The polynomial £ contains the monomial ¢; * ¢, * ...t 2 with a coefficient that
is a power of (%)!, thus non-zero in [F,. Therefore, the coefficient of the monomial
yp=1 . p(p=1) P2 o)
2ty 2t P in the polynomial " is not zero. O

Remark 3.3.3. In the cases p = 2 and p = 3 we understand the polynomial " completely.
It equals

— P rpF =t
=D oyl o
ag
where the summation is over all permutations o of the set {1,...,k}.

The following lemma obtains better bounds for the index Indexzs(s (W;‘ZT); [F,) when
k=2andr=1.

Lemma 3.3.4. Let p > 3 be a prime.

2

p2-1 p-1

(1) If 4 | p — 1, then the coefficient of the monomial t; * ty * in the polynomial ¢, the
generator of the index Indeng(S(sz);Fp), s not equal to zero.

@=-12 (-1 (p+3)

(2) If 4 | p+ 1, then the coefficient of the monomial t; * t, * in the polynomial ¢,

the generator of the index IndeXZ%(S(sz);Fp), is not equal to zero.

Proof. Following the proof of Lemma we note that ( = & or ( = —¢&, where

2 p-1 p-1
p—1 p=1 p=1 L p1
= | I (a1t + asty) = <<2>l) 2 ty? (tg 1 ti} 1)172 .

(o1,02)€T?

p2—1 p =1

If 4 | p—1, the monomial ¢; * ¢, * has a non-zero coefficient in §. Similarly, if 4 | p + 1,
@=1% (-DE+3)
the coefficient of the monomial ¢, * ¢, * in £ is not zero. O

Proofs

As it has already been mentioned , we prove Theorem [3.2.3] and Theorem [3.2.4] using the
Fadell-Husseini index theory [32]. The key ingredient turns out to be its monotonicity
property.
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Proposition 3.4.1 (Monotonicity of the Fadell-Husseini index, [32, Sect.2]). Let G be a
finite group, R be a commutative ring with unit, and let X and Y be two spaces with a
G-action. If there is a G-equivariant map f: X — Y, then

Indexq(Y; R) C Indexq(X; R).

In order to prove Theorem we need to compare the Fadell-Husseini index of
the product of configuration spaces to the Fadell-Husseini index of the sphere S (W;ET).
Blagojevié¢, Liick and Ziegler computed the Fadell-Husseini index of the configuration space
[18, Thm. 6.1], which together with the product formula [32, Cor. 3.2] yields the following.

Lemma 3.4.2 ([I8, Thm.6.1],[32, Cor.3.2]). Let p be a prime and let k > 1 be an integer.
Then

<til>"'7tz>v ifp:2
d <k (d=1)(p—1) (d—1)(p—1)
Indexzz}g (Conf(R?,p)*";Fp) = q (ext; 2 ..., exty ,
(d*1>(1’*1)+1 (dfl)(P*1)+1
tl 2 7"'7tk 2 >7 pr237
where t1,...,tg, e1,...,ep are generators of H*(Z];;Fp).

Now we have assembled all ingredients needed for the proof of Theorem [3.2.3

Proof of Theorem [3.2.3 1If there is a Z’;—equivariant map Conf(R% p)** — § (Wﬁr), then
by Proposition the index of the sphere S(W;ET) is a subideal of the index of the

product of configuration spaces Conf(R%, p)**. Therefore, it suffices to show
Indexzy, (S(W;ET); F,) ¢ Indexzy, (Conf(R?, p)**; F,).

The ideal Index; (S(WE); [F,) contains the polynomial ¢", and if the integers p, k and r

satisfy the conditions ofp the theorem, then (" contains the monomial
pp=1 .p(@=1) PPl p-1)

tth; 2 t;, 2 by Lemma [3.3.2L If d > rp*~!, then by Lemma [3.4.2| the poly-
nomial " does not belong to the ideal Indele; (Conf(R?, p)*¥:F,), which concludes the
proof. O

Similarly as above, in order to prove Theorem we compare the index of the
product of spheres (52471)*¥ o the index of the sphere S (W;ET).

Lemma 3.4.3 ([32]). Let p > 2 be a prime and let k > 1 be an integer. Then

@3e,...8%, ifp=2,

Index, ((S24~1) k. F,) =
25T (tf,....th),  fp=3,

where t1,...,t, are generators of H*(Z’;; Fp).

Proof of Theorem[3.2.7]. Similarly as in the proof of Theorem [3.2.3] it suffices to show that
Indexz (SOWE); F,) € Indexzy (5215 ),

which follows from Lemma [3.3.1], Lemma [3.3.2] and Lemma [3.4.3] O
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Remark 3.4.4. If £ = 2 and r = 1, one can relax bounds on d in Theorem and

Theorem [3.2.4] and consequently in Theorem [3.1.5|and Theorem [3.1.8] using Lemma [3.3.4]
In particular, the statements of Theorem [3.1.5] and Theorem [3.2.3] are true under the

following conditions: &k = 2,r = 1,p > 3 is a prime, and

(a) d > % , Or

(b) 4|p—1and d> 2

On the other hand, the statements of Theorem and Theorem are true under

the following conditions: kK = 2,7 = 1,p > 3 is a prime, and
(a) d > (P—la(p-i-?’)

, OT

(b) 4|p—1and d>E—

Concluding remarks

Remark 3.5.1. One could talk about non-existence of Z]]j equivariant maps
Conf(R%, p) x --- x Conf(R%, p) — S(W@T) and S22 =1 x ... x §24—1 5 (WD) where

di,...,d are not necessarlly the same 1ntegers The Fadell Husseini index of tﬁe product
of conﬁguratlon spaces is:

Indexz (Conf(R%,p) x --- x Conf(R¥, p);F,) =

d dy, .
(. ), ifp=2
(d1—1)(p—1) (dp—1)(p—1)
<61t1 2 sy EEL 2 ,
(d1—=1)(p—1) (dp—1)(p—1)
GYe 3, s TN
t, 2 yee sy, 2 ), ifp >3,

and the Fadell-Husseini index of the product of spheres is:

Indeka(Sle_l e x Szd’f_l;Fp) _ {<t2d17. 22dk>7 %fp —9

P <t1,...,tkk>, if p> 3.
It suffices to show that the polynomial ¢" (or any of its monomials) is not an element of
the index of the domain of the map (the product of configuration spaces or the product of
spheres). For concrete parameters, these polynomials can be computed using, for example,
a computer algebra software.

Remark 3.5.2. In their study of Turdn numbers of bipartite graphs [13], Blagojevié¢, Bukh
and Karasev consider functions f : R x R? — R that are constant on some p-by-p grid.
The following is a generalization of [13, Thm. 2].

L and

Corollary 3.5.3. Let p be a prime and d,k and r be positive integers. If d > ’I“pk_
one of the following conditions is satisfied

(a) p=2, or

(b) 4 divides p— 1, or

(c) k is even, or
(d)

d) r is even,
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then for every collection of r continuous function fi,...,f. : (R)** — R, there is a
p X -+ X p grid on which all these functions are constant, i.e. there are sets

k
X1,..., X C R such that | X1| = --- = | Xi| = p and the functions fi,..., f, are constant
on X1 X -+ X Xp.
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Figure 3.3: The 3-fan in V+ determined by the points g1, g2 and gs.






Chapter 4

Cutting a part from many measures

This chapter is based on the paper with the same title [19], and it is a joint work with
Pavle V.M. Blagojevi¢ and Giinter M. Ziegler.

Introduction and statement of the main results

The classical measure partition problems ask whether for a given collection of measures,
the ambient Euclidean space can be partitioned in a prescribed way so that each of the
given measures gets cut into equal pieces.

The first example of such a result is the well known ham-sandwich theorem, conjectured
by Steinhaus and later proved by Banach. It claims that given d measures in R%, one
can cut R? by an affine hyperplane into two pieces so that each of the measures is cut
into halves. Motivated by the ham sandwich theorem, Griinbaum posed a more general
hyperplane measure partition problem in 1960 [40} Sec. 4 (v)]. He asked whether any given
measure in the Euclidean space R? can be cut by k affine hyperplanes into 2* equal pieces.
An even more general problem was proposed and considered by Hadwiger [42] and Ramos
[70]: Determine the minimal dimension d such that for every collection of j measures on
R? there exists an arrangement of k affine hyperplanes in R? that cut all measures into
2% equal pieces. For a survey on the Griinbaum-Hadwiger-Ramos hyperplane measure
partition problem consult [15].

Furthermore, in 2001 Bardny and Matousek [8] considered partitions of measures on
the sphere S? by fans with the requirement that each angle of the fan contains a prescribed
proportion of every measure.

Measure partition results can also be stated discretely — given a collection of finite sets
in R?, can the ambient space be partitioned in a prescribed way so that each of the given
sets gets cut into subsets of the same cardinality. It is not a rare case that a discrete
result follows from a continuous one. For example, the discrete ham-sandwich theorem
[59, Thm.3.1.2] is a corollary of the ham-sandwich theorem. It states that given any d
finite sets A1, ..., Ag in R?, there exists an affine hyperplane in R? which cuts each set A;
into two subsets of cardinality at most [ $|A;[].

In this chapter we prove a continuous result that is motivated by a discrete conjecture
of Holmsen, Kyncl & Valculescu [45, Con. 3]. We consider many measures in the Euclidean
space, and instead of searching for equiparting convex partitions (that in general do not

31
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exist for a large number of measures), we look for convex partitions that in each piece
capture a positive amount from a (large) prescribed number of the given measures.

Definition 4.1.1. Let d > 1 and n > 1 be integers. An ordered collection of closed subsets
(Cy,...,Cy) of R? is called a partition of R? if
(1) UL, C; = RY,
(2) mt( ;) # 0 for every 1 <i <n, and
(3) int(C )ﬂmt( )=0forall 1 <i<j<n.
A partition (C1,...,Cy) is called convex if all subsets C1, ..., C), are convex.

Letm>1,n>1,c>1andd > 1beintegers, and let M = (u1,. .., ptm) be a collection
of m finite absolutely continuous measures in R¢. Moreover, assume that 1 (RY) > 0, for
every 1 < j < m. We are interested in the existence of a convex partition (C1,...,Cy)
of R? with the property that each set C; contains a positive amount of at least ¢ of the
measures, that is

#{j:1<j<m, u(C;) >0} >,

for every 1 < ¢ < n. In the case when the measures are given by finite point sets, we
say that a point set X C R? is in general position if no d + 1 points from X lie in an
affine hyperplane in R%. For the point set measures in general position Holmsen, Kynél
and Valculescu proposed the following natural conjecture [45, Con. 3].

Conjecture 4.1.2 (Holmsen, Kyncl, Valculescu, 2017). Let d > 2, ¢ > 2, m > 2 and
n > 1 be integers with m > d and £ > d. Consider a set X C RY of In points in general
position that is colored with at least m different colors. If there exists a partition of the set
X into n subsets of size £ such that each subset contains points colored by at least d colors,
then there exists such a partition of X that in addition has the property that the convex
hulls of the n subsets are pairwise disjoint.

The conjecture was settled for d = 2 in the same paper by Holmsen, Kynél & Valculescu
[45]. On the other hand, if instead of finite collections of points one considers finite positive
absolutely continuous measures in R¢, Soberén [75] gave a positive answer on splitting d
measures in R? into convex pieces such that each piece has positive measure with respect to
each of the measures. Moreover, he proved existence of convex partitions that equipart all
measures. A discretization of Soberén’s result by Blagojevié, Rote, Steinmeyer and Ziegler
[20] gave a positive answer to Conjecture in the case when m = d. In addition, they
were able to show that the set X can be partitioned into n subsets in such a way that all
color classes are equipartitioned simultaneously.

In this chapter we prove three continuous results of a similar flavor, trying to come
closer to a positive answer to Conjecture in the case when m > d. The first of the
three results is the following.

Theorem 4.1.3. Letd > 2, m > 2, n > 2, and ¢ > d be integers. If m > n(c—d)+d, then
for every collection M = (u1, ..., m) of m positive finite absolutely continuous measures
on R, there exists a partition of R into n convex subsets (C1,...,Cy) such that each of
the subsets has positive measure with respect to at least ¢ of the measures i, ..., - In
other words,

#{ 1 <G <m, p(C) >0} > e

for every 1 < i <n.
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The following two theorems have stronger statements — in Theorem [£.1.4 we additionally
show that one of the measures can be equipartitioned without changing the bound on m,
and in Theorem we show that the sum of all the measures can be equipartitioned if
we allow the number m of measures to increase.

Theorem 4.1.4. Let d > 2, m > 2, and ¢ > 2 be integers, and let n = pF be a prime
power. If
dn n
mzn(c—d)+ =3 +1,

then for every collection M = (u1, ..., pm) of m positive finite absolutely continuous meas-
ures on RY, there exists a partition of R? into n convex subsets (Cy,...,C,) that equiparts
the measure i, with the additional property that each of the subsets has positive measure
with respect to at least ¢ of the measures p1,. .., thm- In other words,

fm(C1) = -+ = pn(Ca) = (R,

and
#{j:1<j<m, u(C;) >0} > ¢

for every 1 < i <n.

Theorem 4.1.5. Let d > 2, m > 2, and ¢ > 2 be integers, and let n = p* be a prime
power. If

(a) n(c—1) >m and max{m,n} > n(c—d)—l—d?” -, +n, or

(b) n(c—1) <m,

then for every collection M = (u1, ..., pm) of m positive finite absolutely continuous meas-
ures on R?, there exists a partition of R® into n convex subsets (C1,...,Cy) that equiparts
the sum of the measures p = p1 + -+ + pm with the additional property that each of the
subsets has positive measure with respect to at least ¢ of the measures p1, ..., hm- In other
words,
1 d 1 & d
p(Cr) == p(Cn) = —p(RY) = 37 pi5(R),
j=1

and
#{j: 1< <m, u(C;) >0} > ¢

for every 1 < i < mn.

Previous solutions for measure partition problems relied on a variety of advanced meth-
ods from equivariant topology. Different configuration space/test map schemes (CS/TM
schemes) related partition problems with the questions of non-existence of appropriately
constructed equivariant maps from configuration spaces into a suitable test spaces. For
example, in the proof of the ham-sandwich theorem a sphere with the antipodal action
appears as a test space. The test space in the Griinbaum—-Hadwiger—Ramos hyperplane
measure partition problem is again a sphere, but with an action of the sign permutation
group, while the test space in the Barany and Matousek fan partition problem is a com-
plement of an arrangement of linear subspaces equipped with an action of the Dihedral
or generalized quaternion group. In this chapter the proof of Theorem [4.1.3]is elementary
and it does not use any topology. However, the proofs of Theorem and Theorem
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rely on a novel CS/TM scheme presented in Theorem and Theorem For the
first time the test space is the union of an arrangement of affine subspaces, equipped in
this case with an action of a symmetric group.

In the subsequent work [I7] we will make slight modifications of the CS/TM schemes
used in the proofs of Theorems and and obtain stronger results — not only that
one can guarantee each subset to cut a part from many measures, but one also gets that
each subset cuts a large part from many measures.

The rest of the chapter is organized as follows. The proofs of Theorem {.1.4] and
Theorem run in parallel and follow CS/TM schemes that are given in Section
The topological results about non-existence of equivariant maps are proved in Section
43l Finally, the proofs of Theorem [£.1.3] Theorem and Theorem are given
in Section [4.4L Note that the proof of Theorem can be read independently of the
previous sections.

Existence of a partition from non-existence of a map

In this section we develop CS/TM schemes that relate the existence of convex partitions
from Theorems[4.1.4land [£.1.5] with the non-existence of particular equivariant maps. These
two CS/TM schemes are very similar to each other.

Existence of an equipartition of one measure from non-existence of a map

Let d > 2, m >2,n>1, and ¢ > 2 be integers, and let ui,..., u, be finite absolutely
continuous measures on R?. Throughout the chapter we assume that m > ¢, since it is
a requirement that naturally comes from the mass partition problem. Following notation
from [21], let EMP(,,,,n) denote the space of all convex partitions of R? into n convex
pieces (C1,...,Cy) that equipart the measure p,,, as studied in [53], that is

pm(C1) = -+ = pm(C) = & pim(RY).
Now define a continuous map f: EMP (i, n) — Rm=1xn o2 (Rm=1)n a9
pm(Cr) m(C2) o m(Cy)
Cr. . ) s Mz(?l) m(?z) M2(¢n)
Mm—i(cl) Nm—l.(c2) Mm—l.(cn)

The symmetric group &,, acts on EMP (j,,,n) and (R™~1)" as follows
W-(Cl,...,cn):(Cﬂ(l),...,cﬂ(n)) and 7T~(}/1,...,Yn):(Yw(l),...,yw(n)),
where (C1,...,Cy) € EMP(tm,n), (Y1,...,Y,) € (R™H7 and 7 € &,,. These actions

are introduced in such a way that the map f becomes an &,-equivariant map. The image
of the map f is a subset of an affine set V C R(m=Dx7 = (Rm=1)n given by

V= {(y]k)eRm D Zy]k—,uj ) for every 1 < j <m_1}gR(m*1)X(n71)‘
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Consequently, we can assume that f: EMP(p,,,n) — V C Rm=1)xn,

Let 1 < i <mn, and let I C [m — 1] be a subset of cardinality |I| = m — ¢+ 1, where
[m — 1] denotes the set of integers {1,2,...,m —1}. Consider the subspace L;; of V given
by
Lri={(yjx) €V : ypi = 0 for every r € I},

and the associated arrangement

A=A(m,n,c)={L;;:1<i<n, ICm—-1], |[|=m—c+1}. (4.1)

The arrangement A is an &,-invariant affine arrangement in R™~1)*"  meaning that

w-Lr; € Afor every m € &,. Now we explain the key property of the arrangement A. Let
(C1,...,Cy) be a partition of R? with a property that at least one of the subsets C1, ..., Cy,
has positive measure with respect to at most ¢ — 1 of the measures pq, ..., ttm, which
means that (Cq,...,Cy) is not a partition we are searching for. Since, by construction
pm (C;) > 0 for every 1 < i < n, it follows that at least one of the subsets Ci,...,Cy,
has positive measure with respect to at most ¢ — 2 of the measures i, ..., tm—1. Then
there is a column of the matrix f(Cy,...,Cy,) € V C RM=DX" with at most ¢ — 2 positive
coordinates. In other words, there is a column of the matrix f(C1,...,C,) with at least
m — ¢ + 1 zeros, and consequently the matrix f(C1,...,Cy) is an element of the union
UA= ULUGA Lp,; of the arrangement A.

Let us now assume that for integers d > 2, m > 2, n > 1, and ¢ > 1, there exist
measures fi1, ..., ftm in R? such that in every convex partition (Ci,...,Cp) of R? that
equiparts u,, there is at least one set Cj, that does not have positive measure with respect
to at least ¢ measures, or equivalently it has measure zero with respect to at least m —c+1
of the measures p1, ..., iym. Consequently, f(C1,...,Cy) € JA for every convex partition
(C1,...,Cp) of R? that equiparts the measure p,,. In particular, this means that the
G ,-equivariant map f factors as follows

EMP (i, n)

U A(m7 n’ C),

Vv

where i: |JA — V is the inclusion and f: EMP(piyy,n) — UA is an &,-equivariant
map obtained from f by restricting the codomain. Thus, we have proved the following
theorem.

Theorem 4.2.1. Letd > 2, m > 2, n > 1, and ¢ > 2 be integers, and let py, ... pm be
positive finite absolutely continuous measures in R for every 1 < j < m. If there is no
G, -equivariant map

EMP (ttm,n) — UA(m,n,c),

then there exists a convex partition (C1,...,Cy) of R? that equiparts the measure fi,y, with
the additional property that each of the subsets C; has positive measure with respect to at
least ¢ of the measures [i1,. .., fbm, that is

i (C1) = -+ = i (Cp) = %Mm(Rd)v
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and
#{j:1<j5<m, puj(C;) >0} >¢

for every 1 < i <mn.

Existence of an equipartition of the sum of measures from non-existence
of a map

As we have already mentioned, the CS/TM scheme needed for proving Theorem
is very similar to the one presented in Section [£.2.I] Nevertheless, it will be separately
developed here.

Let d > 2, m>2,n>1, and ¢ > 2 be integers, and let p1,..., uy, be finite absolutely
continuous measures on R?. Denote by x the sum of the measures pi1, ..., fim, i.e.,

m
p= uj.
j=1

Similarly as in Section we define a continuous map f: EMP(u,n) — R™*™ as

p(C1)  w(C2) ... ua(Cy)
© ) s p2(Cr)  p2(Ca) ... pa(Ch)
m(.Cl) :um(.CZ) Nm(.Cn)

where the domain of the map f is the space of all convex partitions of R? that equipart
the measure . The map f is Gp-equivariant by construction.
The image of the map f is a subset of an affine set V C R™*" given by

V= {(yjk) eR™™ 3Ty = ,uj(]Rd) for every 1 < j < m, and

>t Yik = %M(Rd) for every 1 < k < n}

Now we define an affine arrangement that resembles the arrangement A from Section
[.2.1] Let 1 <i<mn,andlet I C[m]be a subset of cardinality || =m — ¢+ 1. Consider
the subspace L; i of 1% given by

Ly = {(yjx) € V iy =0 for every r € I},
and the associated &,-invariant arrangement
A=Am,n,e)={Li;:1<i<n, [C[m], [[]=m-c+1}. (4.2)

Following the steps from Section [£.2.1] we study the key property of the arrangement
A. Let (C1,...,Cy) be a convex partition of R? that does not satisfy the property asked
in Theorem More precisely, assume that for some ¢ the subset C; has positive
measure with respect to at most ¢ — 1 of the measures pq, ..., tm. This means that the
i-th column of the matrix f(Cy,...,C,) € R™ " has at least m — ¢ + 1 zeros. In other
words, f(C’l, ., Ch) € \UA. Therefore, we have obtained the following theorem.
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Theorem 4.2.2. Letd > 2, m > 2, n > 1, and ¢ > 2 be integers, and let p, ... pm be
positive finite absolutely continuous measures in R for every 1 < j < m. If there is no
G, -equivariant map

EMP(u,n) — U A(m,n,c),

then there exists a convex partition (C1,...,Cy) of R? that equiparts the measure
W= p1+ -+ pm with the additional property that each of the subsets C; has positive
measure with respect to at least ¢ of the measures pi1, ..., fbm, that is

H(C1) = - = u(C) = p(RY,

and
#{j: 1< <m, u(C;) >0} > ¢

for every 1 < i <n.

Non-existence of the equivariant maps

This section is devoted to the proof of (non)-existence of equivariant maps from the
space of regular convex partitions to appropriate affine arrangements. In section
we consider &,-equivariant maps EMP(p,,,n) — U A(m, n, c), whereas in Section [4.3.2)
Sp-equivariant maps EMP(u,n) — . A(m, n, ¢) will be considered for different values of
parameters d, m,n and c.

Non-existence of the equivariant map EMP(u,,,n) — U.A(m,n,c)

In order to understand the (non-)existence of an &,-equivariant map
EMP (ppn, n) — UA(m,n, ),

we first construct various equivariant maps and prove a few auxiliary lemmas. In the
following we use particular tools from the theory of homotopy colimits; for further details
on these methods consult for example [24], [84], or [78§].

Let X be a topological space and let n > 1 be an integer. The ordered configuration
space Conf(X,n) of n ordered pairwise distinct points of X is the space

Conf(X,n) = {(z1,...,2p) € X" |2; #x; forall 1 <i < j<n}

It was shown in [21] Sec. 2] that a subspace of EMP (p,, n) consisting only of regular convex
partitions can be parametrized by the configuration space Conf (]Rd, n). In particular, we
have the following lemma.

Lemma 4.3.1. There exists an G, -equivariant map

a: Conf(R% n) — EMP(pu,n).
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Let P = P(.A) denote the intersection poset of the arrangement A4 = A(m,n, ¢), ordered
by the reverse inclusion. The elements of the poset P are non-empty intersections of
subspaces in A, thus they are of the form

DA = ﬂ Lii={(yjx) €V C Rm—1)xn yj; =0, forall 1 <i<nandje€ L},

(i,1)eA
where A C [n] x (Tgﬁ;i]l) and I; = U ryea I. Alternatively, each poset element py can be
presented as an (m — 1) X n matrix (a;;), where aj;, = 0 if and only if j € I;. In other
words, a coordinate a; in the matrix presentation of py equals zero if and only if y;i =0
for every element (y;;) € px. An example of the poset P(A) for parameters n = 2,m = 3
and ¢ = 3 is shown in Figure

L{L2 {1 2.0y {2{L2)) {0, @20}

{1.{13} {142} {2.{13} {2,421}

Figure 4.1: Hasse diagram of the poset P(A(3,2,3)).

Let C be the P-diagram that corresponds to the arrangement A4 = A(m,n,c), that is
C(pa) = pa and C(par 2 par): par —> pas is the inclusion. The Equivariant Projection
Lemma [78, Lem. 2.1] implies the following.

Lemma 4.3.2. The projection map
hocolimp(4)C — colimp(4)C = UA

is an G, -equivariant homotopy equivalence. In particular, there exists an &, -equivariant
map

B: UA — hocolimp( 4 C.

Now, let @ be the face poset of the (n — 1)-dimensional simplex, or equivalently a
Boolean poset with 2" elements. Define the monotone map ¢: P — @ by

o(pp) ={i€n]:(iI) € A for some I C[m —1]}.

Thus, ¢ maps an element py to the set of indices of its columns that contain zeros. It is
important to notice that ¢ does not have to be surjective, and therefore we set
Q' =¢(P) CQ.

Next we consider the homotopy pushdown D of the diagram C along the map ¢ over
Q’'. This means that for ¢ € Q'

D(q) = hocolim¢_1(Q/Zq) C|‘P_1(leq) ~ A(@_I(leq)),

and for every ¢ > r in @’ the map D(q > r): D(q) — D(r) is the corresponding inclusion.
The next result follows from the Homotopy Pushdown Lemma [84, Prop. 3.12] adapted to
equivariant setting.
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Lemma 4.3.3. There is an &, -equivariant homotopy equivalence
hocolimg D — hocolimp 4 C.
In particular, there exists an &,,-equivariant map

7: hocolimp( 4y C — hocolimg D.

We introduce another Q’-diagram £ by setting for ¢ € @’ that

E(q) =

(q) A(p~'(1)), ifg=1¢€ Q" is the maximal element of Q,
pt, otherwise,

and for every ¢ > r in @' the map (¢ > r) to be the constant map. In addition, we
define a morphism of diagrams (¥, 9): D — &, where ¢: Q' — Q' is the identity map,
and ¥(q): D(q) — &£(q) is the identity map when ¢ is the maximal element, and constant
map otherwise. The morphism (¥, 1)) of diagrams induces an &,,-equivariant map between
associated homotopy colimits. Thus, we have established the following.

Lemma 4.3.4. There exists an G,,-equivariant map

0: hocolimg D — hocolimgy £.

In the final lemma we describe the hocolimg £ up to an &,-equivariant homotopy.
First note that if g, € Q are such that ¢ > r and ¢ € @', then r € Q. In particular, if
1€ @', then Q' = Q, where 1 is the maximal element of Q.

Lemma 4.3.5.
(i) If1 €@, that is Q' = Q, then there exists an &, -equivariant homotopy equivalence

hocolimgy € ~ A(Q\1) x A(p™ (1))

A

where 1 is the mazimal element of Q, and dim (A(p~'(1))) =nc—m —2n+1. In
particular, there exists an &, -equivariant map

n: hocolimg & — A(Q'\1) * A(p~*(1)).
(i) If 1 ¢ Q' then there exists an &,-equivariant homotopy equivalence
hocolimg € ~ A(Q'),
where dim(A(Q")) < n — 2. In particular, there exists an S,,-equivariant map
n: hocolimg & — A(Q').

Proof. (i) Let us first consider the case when 1 € Q. Then, since all the maps of the dia-
gram & are constant maps, the Wedge Lemma [84, Lem. 4.9] yields a homotopy equivalence

hocolimg £ ~ \/ (A(Q;q) *E(Q) VAQ) ~ AQ\1) * Alp~1(1)).

qeq’
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Furthermore, since for ¢ # 1 all the spaces £(q) are points, this homotopy equivalence is
an &,-equivariant homotopy equivalence.

The poset ngl(i) consists of all points pp € P that correspond to matrices which have
zeros in all columns. Since it is a subposet of P(A), every element of ¢~!(1) must contain
at least m — ¢+ 1 zeros in each column and at most n — 1 zeros in each row. The partial
order is given by

pa <py = (V€ m—1)(Vk € []) aze = 0= afy =0,

where py = (a;i) and pyr = (aj;). Maximal chains in the poset @~ 1(1) can be obtained
by removing zeros from a maximal element p, one by one, taking care that there must be
at least m — ¢ + 1 zeros in each column. Maximal elements of ¢ ~1(1) have exactly one
non-zero element in each row, thus (m — 1)(n — 1) zeros. Since 1 € @’ minimal elements,
however, have m — ¢ + 1 zeros in each column, thus n(m — ¢ + 1) zeros. Therefore, the
length of a maximal chain in ¢~!(1), and consequently the dimension of its order complex,
is nc —m — 2n + 1. In particular, we obtained that when 1 € Q' then nc —m —2n+1 > 0,
or equivalently n(c —2) +1 > m.

(ii) Let 1 ¢ Q. Then it is not hard to see that n(c — 2) + 1 < m. Again, the Wedge
Lemma [84, Lem. 4.9] yields a homotopy equivalence

hocolimg € ~ \/ (A(QL,) *&(q)) V A(Q) ~ AQ),

qeq)’

since now all the spaces £(q) are points for ¢ € Q.

From the assumption 1 ¢ Q' we get that Q' C Q\1 and consequently A(Q') C A(Q\1).
On the other hand A(Q\1) is homeomorphic with the boundary of an (n — 1)-dimensional
simplex and so dim(A(Q’)) <n — 2. O

In the example for parameters n = 2,m = 3,¢ = 3, the poset ¢~ (1) consists of two
points and no relations between them, as shown in red in Figure 4.1

Now we have assembled all the ingredients of the proof of the central result about the
non-existence of an &,,-equivariant map EMP (g, n) — J A.

Theorem 4.3.6. Let d > 2, m > 2, and ¢ > 2 be integers, and let n = p* be a prime
power. If m > n(c—d) + %" — % + 1, then there is no &, -equivariant map

EMP (piyn, n) — UA(m, n,c), (4.3)
where puy, is a finite absolutely continuous measure on RY, and the affine arrangement
A(m,n,c) is as defined in line (4.1)).

Proof. Let n = p* be a prime power. Denote by G 2 (Z/p)* a subgroup of the symmetric
group &,, given by the regular embedding (reg): G — &,,, for more details see for example
[1, Ex. I11.2.7].

In order to prove the non-existence of an &,-equivariant map (4.3[), we proceed by
contradiction. Let f: EMP(pp,n) — UJA(m,n,c) be an &,-equivariant map. Then
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from Lemmas [£.3.7] {.3.2], [£.3.3] [£.3.4] and [£.3.5] we get the following composition of
&,,-equivariant maps

EMP (i, ) / UA b hocolimp(4) C 2, hocolimg D 0, hocolimg £

4 |

=nodoyoBo fo
Conf(Ré,n)— — — — — — — — __ _g=moowefeloe L X

where A A .
L [A@\D=AE (), e,
-~ la@), it1¢qQ".
We will reach contradiction with the assumption that the map f exists by proving that,

under the assumption of the theorem, the map ¢ cannot exist. More precisely, we will
prove that there cannot exist a G-equivariant map

Conf(R4, n) — X. (4.4)
Our argument starts with the &,, and also G-equivariant map g: Conf(R? n) — X.
The map g induces a morphism between Borel construction fibrations:

id Xagg

EG x¢g Conf(R? n) EGxa X

S

BG BG,

that induces a morphism between corresponding Serre spectral sequences
EZ"(g): EX(p) — EXT(N).

The crucial property of the morphism E;"*(g) we use is that E;’O (g) =id. A contradiction
with the assumption that there is a map ¢ is going to be obtained from analysis of the
morphism E;*(g). For that we first describe the spectral sequences E;*(\) and E;™(p).

The Serre spectral sequence of the fibration
Conf(R?,n) —— EG xg Conf(R%,n) —— BG
has the Fs-term given by
EY(\) = HY(BG; H? (Conf(R?,n); F,)) = H(G; H? (Conf(R%, n); F)).

Here H'(BG;H?(Y;Fp)) denotes the cohomology of BG with local coefficients in H’(Y;F))
determined by the action of the fundamental group of the base space m(BG) = G.
The second description uses the fact that cohomology of the classifying space BG of the
group G is by definition the cohomology of the group G with coefficients in the G-module
HI(Conf(R%, n);Fp). For more details on the cohomology with local coefficients consult
for example [44] Sec. 3.H]. The spectral sequence E;"*(\) was completely determined in the
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case k = 1, i.e., n = p a prime, by Cohen [27, Thm.8.2] and recently in [I8, Thm.6.1]. A
partial description of E;™(\) in the case k > 2 was given in [I8, Thm. 6.3 and Thm. 7.1].
In particular, for £k =1

Ey" (N = BTN = =BGy, (A and BT 000 = 2 BN,
(4.5)

while for k > 2
Ey*N) 2By () X E(é—l)(n—%)ﬂ()‘)' (4.6)

In the second step we consider the Serre spectral sequence of the fibration
X— FEG xqg X — BG
whose Fo-term is given by
Ey (p) = H'(BG; 1/ (X;Fy)) = H'(G; HY (X Fy)).
We conclude the proof by considering two separate cases.

(a) Let 1 € @', or equivalently nc —m — 2n +1 > 0. Then the simplicial complex
X = A(Q\1) * A(p~ (1)) is at most (nc —m — n)-dimensional, implying that E5”(p) = 0
for all j > nc —m —n + 1. Consequently,

Eiir]:fmfnJrQ (p) = E;l’gfmfnﬁi(p) == Ecl;g (p) (4'7)

Next, since the path-connected simplicial complex X does not have fixed points with
respect to the action of the elementary abelian group G, a consequence of the localization
theorem [46, Cor.1, p.45] implies that H*(G;F,) = E3%(p) 2 E*(p). Having in mind
, we conclude that

H*(G;Fy) = B;°(p) % B, (p)-

nc—m—n+2

For our proof, without loss of generality, we can assume that

HY(GiFy) = B3%p) 2 B2 (0) Z B iap): (4.8)

nc—m—n—+1 nc—m—n—+2

Now, from the assumption on m, we deduce that for k =1
d-=1)(n—-1)+1>nc—m-n+2,

and for k£ > 2

(d=1)(n-2)+1=nc—m-n+2.

Hence the fact that E3°(g) = id, in combination with relations (£.5)), (&.6) and (£.8), yields

a contradiction: the map E:fcofmfn 12(g) sends zero to a non-zero element. This concludes

the proof of the theorem in the case when nc —2n+1 > m.

(b) Let 1 ¢ @', or equivalently nc—m —2n+1 < 0. The simplicial complex X = A(Q’)
is at most (n — 2)-dimensional. Hence, E5”(p) = 0 for all j > n — 1, and

Eid(p) = EX (p) = -+ = EL(p). (4.9)
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The simplicial complex X is path-connected and without fixed points with respect to
the action of the elementary abelian group G. Consequence of the localization theorem
[46], Cor. 1, p.45] implies that H*(G;F,) = E3(p) 2 E*0(p). From (1.9) we have that

~ 1%,0
H*(G;Fp) = 57 (p) # E;°(p).
For our proof, without loss of generality, we can assume that

H(G;Fy) = E3°(p) = B2, (p) % E(p). (4.10)

n—1

Now, we need that for £k =1
(d=1)(n—=1)4+1>n,

and for k > 2
(d=1mn—-3)+1=n

is satisfied. Indeed, these conditions are satisfied for d > 2,p > 2 and n = p¥. Thus, the
fact that E;’O(g) = id with ([4.5)), and gives a contradiction: the map E*°(g)
sends zero to a non-zero element. This concludes the proof of the theorem in the case when
nc—2n+1 < m. O

The previous proof can also be phrased in the language of the iterated index theory
introduced by Volovikov in [82].

Non-existence of the equivariant map EMP(u,n) — U.A(m,n, c)

Motivated by Theorem in this section we study the (non-)existence of an &,-equivariant
map

EMP(p,n) — U A(m,n,c)

for different values of parameters d, m,n and c. Following the structure of Section |4.3.1
we first prove a few auxiliary lemmas in order to arrive to the topological result, Theorem
[4:22] at the end of this section.

Recalling that a subspace of EMP(u, n) consisting only of regular convex partitions can
be identified with the configuration space Conf(R%, n), see [21}, Sec. 2] for more details, we
obtain the following lemma.

Lemma 4.3.7. There exists an &, -equivariant map

&: Conf(R%,n) — EMP(u,n).

Denote by P = P(A) the intersection poset of the affine arrangement A. Its elements
are given by

(3,1)eA

where A C [n] x (m[fz]Jrl) and I; = J; en I An element py can also be seen as an m x n

matrix (a;i), where aj, = 0 if and only if j € Ij.
Next we consider a ﬁ—diagram C determined by the arrangement A= ﬂ(m, n,c). More

precisely, we define C(py) = pa and C(par 2 Par): par — Dar to be the inclusion. The
Equivariant Projection Lemma [78, Lem. 2.1] implies the following.
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Lemma 4.3.8. The projection map
hocolim];g — colim;CNZ Uj

is an G, -equivariant homotopy equivalence. In particular, there exists an &, -equivariant
map

B: U.Z — hocolimﬁg.
Recall that @ denotes the face poset of an (n — 1)-dimensional simplex, and define a
map @ : P — @ by
o(pp) ={i € n]: (:,I) € A for some I C [m]}.

Additionally, denote the poset @¢(P ) CQby Q. Note that if ¢,r € Q are such that ¢ € Q’
and r < ¢, then r is also an element of Q In particular, if ¢ = 1 is the maximal element

of Q and ¢ € Q’, then Q' = Q.

Let D be the homotopy pushdown of the diagram C along the map @ over @’ . This
means that

25( ) = hocohrn~ (Q’ Cb_l@/zq) ~ A(@*l(@%q))

for g e Q' , and the map 75(6] >r): ﬁ(q) — 15(7”) is the corresponding inclusion for every
g > r in @'. Once more, the Homotopy Pushdown Lemma [84, Prop.3.12] adapted to
equivariant setting yields the following fact.

Lemma 4.3.9. There is an S,,-equivariant homotopy equivalence
hocolimé, D — hocolim C.
In particular, there exists an &, -equivariant map

7+ hocolim C —>hocohm D.

Finally, we consider another Q’-diagram € by setting for ¢ € Q' that

E(q) =

. A1), ifg=1c¢ Q' is the maximal element of Q,
pt, otherwise,

and the map & (¢ = r) to be the constant map for every ¢ > r in Q/ . Similarly as we
have done it in Section we define a morphism of diagrams (U,¢): D — &, where
Uv: Q — Q' is the 1dent1ty map, and \Il( ): D(q) — 5( ) is the identity map when ¢ = 1
is the maximal element in @), and constant map otherwise. Since the morphism (¥, ) of
diagrams induces an G&,-equivariant map between associated homotopy colimits, we have
established the following.

Lemma 4.3.10. There exists an S, -equivariant map

0: hocohmé, D— hocohmé, E.
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Just like in Section |4.3.1} the final lemma will describe the hocolimé, £ up to an

G, -equivariant homotopy.

Lemma 4.3.11.
() Ifl e @, that is if Q' = Q, then there exists an S, -equivariant homotopy equivalence

hocolimg € ~ A(Q\1) * A(g~(1))
where 1 is the mazimal element of Q, and dim (A(g~1(1))) = nc — n — max{m,n}.
In particular, there exists an &, -equivariant map

7i: hocolimg € — A(Q\1) * A(g~1(1)).
(i) Ifl ¢ Q' then there ezists an &, -equivariant homotopy equivalence
hocolimé, E~ A(@’),
where dim(A(Q')) < n — 2. In particular, there exists an &,-equivariant map
n: hocolimé,§—> AQ).

Proof. The proof of the claim (ii) is identical to the proof of the second part of Lemma
4.3.5 For the claim (i) it suffices to compute the dimension of the simplicial complex
A(g~1(1)), since the rest of the proof follows the lines of the proof of the first part of
Lemma [£.3.5

The elements of the poset ¢~ '(1) are presented by matrices py = (a;) that contain
zeros in every column. The partial order is given by

where pp = (ajx) and pyr = (aj,) are elements of the poset ¢~ 1(1) € P. Maximal chains
in 3~ !(1) can be obtained by removing zeros one by one from a matrix that represents
a maximal element, taking care of the fact that every column has to contain at least
m — c+ 1 zeros. The maximal elements are presented by matrices that have at most n — 1
zeros in each row, and at most m — 1 zeros in each column. Thus, maximal elements are
presented by matrices with mn — max(m,n) zeros. The minimal elements, on the other
hand, are presented by matrices that contain n(m — c+ 1) zeros. Therefore, the dimension
of A(p~1(1)) is nc — n — max{m,n} > 0. Since ¢ > 2, this implies that n(c — 1) >m. O

Now we are ready to prove the central result about the non-existence of an
Sp-equivariant map EMP(p,n) — U A.

Theorem 4.3.12. Let d > 2, m > 2, and ¢ > 2 be integers, and let n = p* be a prime
power. If

(a) n(c—1) > m and max{m,n} > n(c—d) + %” — 5 +n, or

(b) n(c—1) <m,
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then there is no &, -equivariant map
EMP(u,n) — Uj(m,n, c), (4.11)

where p = p1 + -+ pm_is the sum of m finite absolutely continuous measures on R?, and
the affine arrangement A(m,n,c) is as defined in line (4.2)).

Proof. Tt is not surprising that this proof will follow the lines of the proof of Theorem [4.3.6]
Let n = p* be a prime power and denote by G = (Z/p)* a subgroup of the symmetric group
S, given by the regular embedding (reg): G — &,,.

The proof will proceed by contradiction. Therefore, assume that

f: EMP (s, n) —> U.ﬁ(m,n,c)

is an &,,-equivariant map. From Lemmas [£.3.7], [£.3.8] [.3.9] [£.3.70] and [£.3.11] we again get
a composition of &,-equivariant maps

f

EMP(p,n) U A ’ hocolim 5 c— hocolimé, D2, hocolimé, g

E:ﬁogo:y'oﬁo foa v
% {A(@\i) « A1), ifleq),
A@), if1¢ Q.

It suffices to show that the map g cannot exist, since that would contradict the existence
of the map f. Actually, we will prove here that there is no G-equivariant map

Conf(R%,n) — X. (4.12)

We start by considering the &,, and also G-equivariant map §: Conf(R%, n) — X. It
induces a morphism between Borel construction fibrations:

id XGE

EG x¢ Conf(R%,n) EGxa X

|,

BG id BG,

that induces a morphism between corresponding Serre spectral sequences
E2(g): EX7(p) — EX7(A).

Like in the proof of Theorem we use the fact that E3°(3) = id. Next we analyse the
morphism E;*(g). Since the spectral sequence E; " ()\) was already described in the proof
of Theorem we concentrate here on the spectral sequence Ey™(p).
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The Serre spectral sequence of the fibration
X — S EG X X —— BG
has the Fs-term given by
By (p) = H'(BG; W (X:Fy)) = H (G HY (X; ).
In order to conclude the proof, we consider two separate cases depending on the values of
m and n(c—1).

(a) Let 1 € Q' and let m satisfy the condition of the theorem. Then n(c—1) > m, so the
simplicial complex X = A(Q\1)* A(g~1(1)) is at most (nc — max{m,n} — 1)-dimensional.
This implies that E5”(p) = 0 for all j > nc — max{m,n}, and consequently,

E:icj:—maX{m,n}—i-l(ﬁ) = E:icjz—max{m,n}+2(ﬁ) =..-=EY (:5) (4-13)

Once more a consequence of the localization theorem [46, Cor.1, p.45] implies that
H*(G;Fp) = E;O(ﬁ) 2 [%0(p), since the path-connected simplicial complex X does not
have fixed points with respect to the action of the elementary abelian group G. Having in
mind we conclude that

H*(G;Fp) = Ey°(p) £ B (7).

nc—max{m,n}+1

For our proof, without loss of generality, we can assume that
~ #,0 /1~ ~u *,0 ~ *,0 ~
H*(G’FP) = E2 (,0) = Enc—max{m,n}—Q(p) % Enc—max{m,n}—l(’o)' (414)
Now, the assumption on m and n, means for k =1
(d=1)(n—1)+1>nc—max{m,n} + 1,

and for k > 2
(d—=1)(n—2)+1=nc—max{m,n} +1.

Therefore, the relations (4.5)), (4.6) and (4.14]), together with the fact that E;’O(g) = id,

yield a contradiction: the map E:L’cmax (man} +1(g) sends zero to a non-zero element. This

concludes the proof of the theorem in the case when n(c —1) > m.

(b) Let 1 ¢ @', or equivalently n(c — 1) < m. The simplicial complex X = AQ)
is at most (n — 2)-dimensional, by Lemma |4.3.11} which implies that FEy’(p) = 0 for all
j > n — 1. Consequently

B (p) = By (p) = -+ = EX(p). (4.15)

For the same reason as above, we have H*(G;F,) = E;’O(ﬁ) 2 EX0(p). This combined

with (4.15)) yields
H*(G;Fy) = B;°(p) % ().

Again, without loss of generality, we can assume that

H*(G:Fy) = By°(5) = B2 (p) 2 E3°(). (4.16)
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In order to complete the proof we need that for k£ =1
(d=1)(n—=1)4+1>n,

and for &k > 2
(d=1mn-73)+1=n

Indeed, both of these inequalities are satisfied, thus the fact that E;’O(g) = id with (4.5)),
([4.6) and (4.16) gives a contradiction: the map E}°(g) sends zero to a non-zero element.
This concludes the proof of the theorem in the case when n(c — 1) < m. O

Proofs

Finally, in this section proofs of Theorems [4.1.3] [.1.4] and [£.1.5] will be presented. The
proof of Theorem is completely geometric and it does not involve any topological
methods. In particular, it is independent from Sections [£.2] and [£.3] On the other hand,
the proofs of Theorem and Theorem heavily depend on the topological results
from the previous sections.

Proof of Theorem m

Let d,m,n and c be integers that satisfy assumptions of the theorem. Since the measures
W1, ..., Uy are positive and absolutely continuous, the interiors of their supports are non-
empty. For every 1 < j < m, choose a point v; € int(supp(y;)) in the interior of the
support of the measure m;, and denote by V the set {vi,...,v,}. Perturb the points
v1,..., Uy if necessary, so that they are in general position, i.e., no d + 1 of them lie in the

same affine hyperplane. The set P = conv(V) is a d-dimensional polytope in R?. Choose
any (d — 2)-dimensional face F' of the polytope P. Since the points in V' are in general
position, the face F' is a simplex, thus it has d — 1 vertices. First we want to find an affine
hyperplane in R? that contains F' and such that there are exactly ¢—d points of V on one of
its sides. This cuts R? into two half-spaces, one of which has positive measure with respect
to at least ¢ of the measures uq,..., un, because it intersects interiors of supports of at
least ¢ measures. Such a hyperplane exists. Indeed, since F' is a face of P = conv(V), there
is a supporting hyperplane H for F', that is a hyperplane that contains the face F' such
that all other points of P lie on one side of its sides, Figure Rotate the hyperplane
H around the (d — 2)-dimensional subspace of R? spanned by the face F' to the position
in which there are ¢ — d points on one of its sides and H contains another point of V', see
Figure Denote this point by w, and denote the open half-space that contains ¢ — d
points of V by HT, and by H~ denote the other open half-space determined by H .

Let V™ be the set V N H~, whose cardinality is m — ¢. Consider all half-hyperplanes
that contain F' in the boundary and a point of V™~ in the relative interior. Since the
set V is in general position, there are exactly m — ¢ such half-hyperplanes. Label them
Ki,..., K. in order, starting from the half-hyperplane that forms the smallest angle
with the half-hyperplane containing F' in its boundary and w in its relative interior, as

shown in Figure |4.2(c)l The union

HU{K. 2,Kyc—2y, s Kn—2)(c—2)}
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is an n-fan and every region defined by it intersects interiors of supports of at least ¢ of the
measures fi1, ..., fbym. An example for d =2, n =5 and ¢ = 4 is shown in Figure |4.2(d)|

(a) The face F and the hyperplane H. (b) The face F, the point w and the final posi-
tion of the hyperplane H.

(c) Labellings of the half-hyperplanes in H~. (d) A 5-fan that cuts R? into convex pieces so
that each piece has positive measure with re-
spect to at least 4 measures.

Figure 4.2: An example of a fan partition of R? for n = 5 and ¢ = 4.

Remark 4.4.1. As a consequence of the previous proof, there is a convex partition

(C1,...,Cp) of R such that each piece C; has positive measure with respect to at least
c of the measures pq, ..., m, and additionally all pieces C1,...,C), have positive meas-
ure with respect to d — 1 measures p;,,...,u;, ,, where F' = conv{v;,,...,v;, ,} and

vj, € relint(supp(p;,)), for every 1 < k < d — 1. In contrast to the statement of Theorem
we cannot guarantee an equipartition, and we cannot choose which measure will be
contained in each piece.
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Proof of Theorem m

Let d > 2, m > 2, and ¢ > 2 be integers, and let n > 2 be a prime power. Under the assump-
tions of the theorem on m, Theorem yields the non-existence of an &,-equivariant
map

EMP (i, p) — U A(m,n,c).

Consequently, Theorem [£.2.1] implies that for every collection of m measures py, ..., fiy, in
R? there exists a convex partition (C1,...,C,) of R? with the property that each of the
subsets C; has positive measure with respect to at least ¢ of the measures u1, ..., tn. In

other words,
#{j:1<j<m, p(Ci) >0} > ¢

for every 1 <1 < n.

Remark 4.4.2. In order to prove the non-existence of the G-equivariant map
f : EMP(pm,n) — U.A, one could directly try to show that there is no G-equivariant map
Conf (R4, n) — J.A = colim p(4) C. However, since the dimension of the order complex of
P(A) is

dim(A(P(A))) =nc—n—c,

this method proves Theorem only for ¢ < d, which follows directly from the result of
Soberén [75].

Proof of Theorem m

Proof. Let d > 2 and ¢ > 2 be integers, let n > 2 be a prime power and let m > 2 be an
integer that satisfies the conditions of the theorem. Theorem [4.3.12]yields the non-existence
of an &,-equivariant map

EMP (1, p) — | JA(m, n, ),

and Theorem implies that for every collection of m measures i1, ..., ftm, in R? there
exists a convex partition (C1,...,C,) of R? with the property that each of the subsets C;
has positive measure with respect to at least ¢ of the measures 1, ..., tin. In other words,

415 <m, uy(Ch) >0} = ¢

for every 1 <1i¢ < n. O



Chapter 5

Waists of spheres

The results of this chapter are obtained jointly with Pavle V.M. Blagojevi¢ and Roman
Karasev.

Introduction

Let S” C R™! be the unit n-dimensional sphere centered at the origin. For X C S™ and
€ > 0 denote by X + ¢ the e-tubular neighborhood of X in S™, i.e.,

X+e= U B(z,¢),
rzeX

where B(z,¢) denotes here the intersection of S™ with the open Euclidean ball in R**1 of
radius € centered at . Moreover, let vol denote the n-dimensional spherical volume. The
following is the celebrated Gromov’s waist of the sphere theorem.

Theorem 5.1.1 ([39, Sec.1]). Let n > k > 1 be integers, and let f : S* — RF be a
continuous map. Then there exists z € R* such that

vol(f71(2) +¢€) > vol(S" % +¢),
for every e > 0, where S*™F denotes the equatorial (n — k)-dimensional sphere in S™.

See, for example, the essay of Guth [41] for a nice exposition about Theorem its
history and relevance.

If the map f in the previous theorem is the restriction of the projection R"*1 — RF to
the first k coordinates, then f~1(0) = S"~*. Thus, informally said, the waist of the sphere
theorem claims that every continuous map f : S® — RF has a fiber that is at least as big
as the largest fiber of the projection.

However, Theorem does not specify which fiber of the map f is such that its
tubular neighborhood has a large volume. Our main result puts some restrictions on the
map f in order to claim that the tubular neighborhood of f~!(0) has a large volume.

Let p be a prime and let Z, = Z/pZ denote the cyclic group on p elements. If the action
of Zy, on S™ is an isometry that preserves orientation, then Z, also acts on SO(n+1), where
SO(n-+1) is the special orthogonal group. Denote by Indexz, (SO(n +1);Fp) € Hy (BZp;Fy)

ol
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its Fadell-Husseini index. For details about the Fadell-Husseini index see the original paper
of Fadell and Husseini [32] and Appendix
For a Z,-representation R, let e(R) denote the Euler class of the fiber bundle

R — EZy xz, R — BZy,. (5.1)

Theorem 5.1.2. Let n > k > 1 be integers and let p be a prime. Suppose that the action
of Zy on S™ is free and that it is an orientation-preserving isometry. Moreover, let R be a
Zy-representation of dimension k such that

e(R) ¢ Indexz, (SO(n + 1);Fp).
If f: 8™ — R is a Zy-equivariant map, then
vol(f71(0) + &) > vol(S"F +¢),

for every e > 0.

Example 5.1.3. Here we give an example of a free Z,-action on S™ that preserves orient-
ation.

Assume that n = 2m + 1 is odd and see the sphere S™ as the join of m copies of S*. If
S1 is embedded in the complex plane C, then the group Z,, acts on S I by multiplication
with the p-th roots of 1. This induces an action on the whole S™ given by

g-MT1 BB M) =A(g-21) B - B A9 Tm),

for every g € Zp, x1,...,%m € St and Ai,..., A\ >0, such that Ay +---+ \,,, = 1. This
Zy,-action is free, preserves orientation and is an isometry on S™.

In order to prove Theorem Gromov [39] used partitions of the sphere S™ into 2
pieces that are "flat” [39, Thm. 4.4.A], which were parametrized by the wreath product of
spheres. Existence of such a partition was shown using topological methods — non-vanishing
of the top Stiefel-Whitney class of a vector bundle [39, Lemma 5.1].

We partition the sphere into p’ "flat” pieces, and parametrize such partitions by the
wreath product of configuration spaces. An existence of such a partition is proved in
Theorem [5.2.5] The key ingredient in the proof of Theorem [5.2.5] is Theorem [5.3.10]
which claims that there is no equivariant map from the wreath product of configuration
spaces to a certain sphere. Since the proof of Theorem [5.3.10] depends on the equivariant
obstruction theory [30), Sec. I1.3], we develop an invariant CW model for the wreath product
of configuration spaces.

Remark 5.1.4. In [39] beside Theorem Gromov proved some results on waists for
Gaussian measures. Theorem [5.3.10|can be used to prove analogues of results in [39] Sec. 3],
too.

The proof of Theorem [5.1.2] is given in the next section. However, it uses Theorem
5.2.5] whose proof is presented in the last section. Before that, we develop an invariant
CW model for the wreath product of configuration spaces in Section where we also
state the main topological ingredient, Theorem [5.3.10] The proof of Theorem [5.3.10) is,
however, given in Section [5.4]
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Proof of Theorem |5.1.2

The proof of the main result, Theorem [5.1.2] resembles the Gromov’s proof of Theorem
5.1.1} and we build on the Memarian’s work [60], who gave a detailed proof of Theorem
5.1.1| based on [39].

Gromov [39] Sec. 5] used iterated partitions of the sphere S™, where in each step every
existing subset was cut into two. Such partitions were encoded by a full rooted tree T' of
degree 2, and the group of automorphisms of 7" acted on the space of partitions. Moreover,
the space of partitions was identified with a Cartesian product of spheres.

Here we partition S™ iteratively, so that in each step every existing set gets cut into p
subsets. Such partitions are parametrized by the product of the special orthogonal group
and the wreath product of configuration spaces Conf(R?, p) equipped with an action of the
product of the cyclic group Z, and the wreath product of copies of Z,, for an appropriate
integer d.

A subset S C S™ is said to be convez if it lies in a hemisphere in S™ and if the cone
over it cone(S) € R**! is convex.

Definition 5.2.1. Let n > 1 and r > 1 be integers. An ordered collection of open subsets
(C1,...,Cp) of 8™ is called a partition of S™ if

(1) Ui, C; = S™, where C; denotes the closure of the set C;,

(2) C; # 0 for every 1 <i <r, and

(3) C;inCj=0foralll <i<j<r.
A partition (C1,...,C,) is called convex if all subsets C1, ..., C, are convex.

Remark 5.2.2. In Chapter [3| and Chapter 4| we used partitions of the Euclidean space
into closed subsets. Here we work with open subsets of the sphere in order to use results
from [60].

We also define the wreath product of the copies of the group 7Z,.

Definition 5.2.3. Let p > 2 be a prime, £ > 1 an integer, and denote by Z, the finite
cyclic group on p elements. Define the wreath product Z}f as follows:

(1) Zi)l = va
2) Z¢ =728z, = (2P 1 2y, for > 2.
Furthermore, for an integer £ > 1 define an embedding «, ¢ : ng — & by:

(1) ap1 : Z, — S, maps elements of Z, to cyclic permutations, i.e., ap1(9)(7) = g + 1,
for every ¢ € Z, and for every g € Zj.

(2) For £ > 2,

ape-1(gny)(@), if1<i< pt1
@p,z(gh...,gp,h)(i) = .
ape-1(gnp) (@), if p* —pTt+1 <0 <pf

for every 1 < i < p® and for every (g1,...,gp,h) € (Z;,(Zfl))xi’ X Ly = Z;f.
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Denote by [n]; the set of integers [n]; = {(j—1)n+1,...,jn}, and write [p‘] = {1,...,p}
as

=" u- U

Then for every (g1,...,9p, h) € Z;f and for every 1 < j <p, g; € Z;(Z_l) C &p¢-1 permutes

elements of [pffl]j, and h € Z, permutes the blocks e, [P

W sa .
Z, is a Sylow p-subgroup of the symmetric group 6.

p- Thus, the group

Let us now have a look at partitions of S™ that are invariant under the action of
the group Z, x Z;f for some integer ¢. As expected, they are defined iteratively. Let
Py = (Ci,... ,C;) be a convex partition of S™ into p subsets, such that g - C; = Cyy; for
every g € Zjy, where the addition is in Z,. Such partitions are called Z,-invariant. Now let
(>1.If Py = (CF1L L. ,Cﬁ;l) is a (Zy x deil))—invariant partition (where we assume
that ZY is a trivial group), define a partition

Py = (Cf,...,q’jm)

by partitioning each set Cf_l into p sets Cfgi_pﬂ, ...t

i in a Zy-equivariant manner, i.e.,

K . .
pi—J

14 . .
Cpi*j+g+p’ if g > J,

for every g € Z,. In combination with the (Z, x Zgg_l))—action on Py, we obtain a

(Zy x Z;f)—action on P,. Note that the partition P, consists of p*! open convex sets.

Denote by CO(S™) the family of open convex subsets of S™, equipped with a topology
induced by the Hausdorff distance. A center map is any continuous map

c:CO(S™) —s S™

Definition 5.2.4 ([60, Def.3.1]). Let n > k > 0 be integers and let ¢ > 0. A set
S € CO(S™) is called a (k,e)-pancake if there exists a convex set S C S™ of dimension k
such that

dist(x,9") < ¢

for every x € S.

Recall that for a group G and a G-representation V', we denote by e(V') the Euler class
of the fiber bundle
V —EGxgV — BG.

Moreover, Index¢(X; F) denotes the Fadell-Husseini index [32] of the space X with respect
to the group G and coefficients F. The following is an adaptation of [60, Thm. 4].

Theorem 5.2.5. Let n > k > 1 be integers, let p be a prime, let R be a k-dimensional
representation of Zy, such that e(R) ¢ Indexz, (SO(n + 1);F,), let Zy, act isometrically,
orientation-preservingly and freely on S™, and let ¢ : CO(S™) — S™ be a Zy-equivariant
center map. If f : S™ — R is a Zp-equivariant map, then for every e > 0 there exists an
integer ic, such that for every i > i. there exists a (Zp X Zg)-invariant partition 11 of S™
into p't1 pieces, such that
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(1) Every convex subset S € 11 is a (k,e)-pancake,
(2) f(c(S)) =0 for every S €11, and
(3) all convez subsets S € Il have the same volume.

The proof of Theorem [5.2.5]is postponed to Section [5.5)

Let us now recall some notation from [60] needed for the proof of Theorem
Following [60, Def. 5.1], consider a set of probability measures on S™
vol ’S

MC" = {ug = ~ol(S) | S ecosm).

The vague closure (thus the closure in the vague topology) of MC™ in the space of
probability measures on S™ is called the space of convezly derived probability measures on
S™ and it is denoted by MC. A subspace of MC consisting of measures whose support

has dimension k is denoted by MCF, and MCSF = U?:o MCE. Moreover, to every finite
convex partition IT of S™, we associate an atomic probability measure m(IT) defined by

m(Il) =)

Sell

vol(S)
vol(Sm) "Hs?

where 0, denotes the Dirac measure associated to the point ug € MC", see [60, Def. 5.2].
Denote by CP the vague closure of the set

{m(II) | II is a finite convex partition of S"}

in the space of probability measures on MC.
Definition [60, Def.5.3] gives certain center maps, to which we will apply Theorem
For a measure p € CP and for r > 0, consider a function v,, : S™ — R given by

() = p(B(z, 7)),

where B(z,7) C S™ is the intersection of S™ with a Euclidean ball in R"*! of radius r
centered at x. Denote by M, (u) C supp(u) the set of maximal points of the function v,
on the support of the measure p. Then for every S € CO(S™), the center ¢, (5) is defined to
be the barycenter of conv(M, (us)). Note that such a defined center map is Z,-equivariant.

Analogously to [60, Def.5.4], we define a set of convex partitions in CP that are r-
adapted to a continuous map f : 5™ — R as

FAf)={II'" € CP |0 € f(conv(M,(u)) for every u € supp(Il')}.

Proof of Theorem[5.1.3. Here we follow the proof of [60, Thm. 1].
Let us first assume that f : S — R is a smooth generic Z,-equivariant map. Then
f710) is (n — k)-dimensional, so there exists a constant W, such that

vol(f71(0) +7) < Wrk, (5.2)

for every r > 0.
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For every » > 0 and for the center map ¢, as defined above, Theorem yields
partitions IT of S™, such that m(II) € F2(f), by Property (2). Property (1), however,
means that supports of subsets in II can be chosen to be contained in arbitrarily thin
neighborhoods of at most k-dimensional subsets of S™. Thus, since the space F2(f) is
closed in CP, see [60}, Cor.5.10], it follows that for every r > 0, there exists a partition
I, € MC=F, such that m(II,) € FO(f).

An analogue of [60, Prop. 6] implies that there exists a constant ¢ > 0, such that for
every r > 0 small enough and for every I € MC=F with m(II) € Fo(f), the following

holds
k
vol(£71(0) + g) > 3" (vol ("~ + r)m(IT) (MCY)). (5.3)
(=0

Recall that m(II) is a probability measure on MC, and that MC* is a subspace of MC.
Moreover, an analogue of [60, Prop. 5] claims that for every £ > 0 and for every sequence
of reals r; > 0, such that r; — 0 as i — oo

vol(f71(0) + &) > vol(S" % + &) lim sup m(I1,, ) (MCF) (5.4)
1—>00
holds.
Inequalities (5.2)) and ([5.3]) imply that
b 0 l w k
(vol(S™ " + r)m(IL,)(MC")) < re,

for every r > 0 small enough. Letting r to tend to zero, we obtain that m(IL,.)(MC’)
tends to zero for every ¢ < k, and consequently that m(IL,)(MCF) tends to 1 as r — 0. In
particular, limsup;_, ., m(IL,,)(MC¥) = 1, which together with (5.4) gives

vol(f71(0) + &) > vol(S" % +¢),

for every € > 0.

Assume now that f : S — R is a continuous Zp-equivariant map. Then it is a uniform
limit of smooth generic maps f;. Moreover, we can choose these maps to be Z,-equivariant.
As we have just shown,

vol(f;1(0) + ) = vol(S" " +¢),

holds for every integer j and for every € > 0.
Let 6; =| fj — f ||oo- Then §; — 0 as j — oo and fj_l((]) C f~1(B(0,4;)). Hence,
vol(F7H(B(0,6)) + &) = vol(f71(0) + &) = vol($"~* + <),

for every integer j and for every € > 0. Since the volume is a continuous function and

o0

FH0) +e= N (FHB(0,) +e),

Jj=1

it follows that
vol(f71(0) + &) > vol(S"F + ¢),

for every € > 0. O
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A CW model for the partition space

In Theorem we aim for (Z, x Zg)—invariant partitions of the sphere S™. The space
of such partitions will be parametrized by the Cartesian product of the special orthogonal
group with the wreath product of configuration spaces. Since we want to apply the equivari-
ant obstruction theory according to tom Dieck [30, Sec.II.3], we need a ZZ—invariant CW
model for the wreath product of configuration spaces. Therefore, we first recapitulate the
CW model for the configuration space developed by Blagojevié¢ and Ziegler [21], Sect. 3],
and later develop a CW model for the wreath product of configuration spaces.

A CW model for the configuration space

Let d > 1 and p > 2 be integers. Now we describe a finite CW complex that is an
equivariant deformation retract of the configuration space Conf(R%,p), as introduced in
[21, Sect. 3].

Definition 5.3.1. Let X be a topological space and let p be an integer. The (ordered)
configuration space Conf(X,p) is the set

Conf(X,p) = {(z1,...,2p) € XP | ; # x; for every 1 <i < j <p}
of all p-tuples of pairwise distinct points in the topological space X.

Denote by F(d, p) the set
F(d,p) = {(0,1) | 0 € &, is a permutation, and 7 € {1,... ,dypr—1,

We will also write the pair (o,%) as (01<4,02<i, - <i,_,0p), where 0 = 7102...0) € G,
is a permutation and i = (i1,...,4p-1) € {1,...,d}?~1. Moreover, let us define a partial
order on the set F(d, p).

Definition 5.3.2. Let d > 1 and p > 2 be integers. For (0,1) = (01<i;02<i, - <i,,_,0p)
and (0',4') = (01 <y 09<y -+ <y_ 0},) elements of F(d, p), we say that
-

(0,4) < (o/,4)

holds if and only if:
whenever ...op ... <j ...0¢... appear in this order in (¢o’,4’), then
either ...op ... <,
or...op...<;, ...0k...appear in this order in (o, %) with i5 < i.

.0¢ ... appear in this order in (o,1) with ig < i,
A CW complex is called regular if every every attaching map of cells is a homeomorph-
ism on the closed cell, i.e., it does not make identifications on the boundary.

Let 7 > 1 be an integer. Denote by W, the orthogonal complement of the one-
dimensional diagonal in R":

WT:{(ml"-"xT)ERT]x1+'-'+xr:()},

It is an (r — 1)-dimensional linear subspace of R".
The following theorem describes the CW model for the configuration space Conf(R?, p).
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Theorem 5.3.3 ([2I, Thm. 3.13]). Let d > 1 and p > 2 be integers. Then there is a finite
reqular CW complex F(d,p) whose cells are indexed by strings in F(d, p), and the inclusion
relations between the cells are given by:

The cell &(o,1) associated to (o,1) lies in the boundary of the cell &(o’,1') associated to
(o/,4) if and only if (0,4) < (0’,4') in terms of Definition[5.3.9

The dimension of the CW complex F(d,p) is (d — 1)(p — 1), and the dimension of a
cell ¢(o,4) is (i1 + -+ +ip—1) — (p— 1), where © = (i1,...,%p—1).

The barycentric subdivision sd F(d,p) of the CW complex F(d,p) has a geometric real-
ization in Wﬁd C R¥P which is an Sp-equivariant strong deformation retract of the
configuration space Conf(R?, p).

The group &), acts on the poset F(d,p) by 7 - (0,1) = (7o, 1), which induces an action
on the barycentric subdivision sd F(d,p) given on vertices by 7 - v(o,t) = v(7wo, 1), where

{v(o,1) | (0,%) € F(d,p)} is the set of vertices of sd F(d,p).

Every cell of the CW complex F(d, p) is given by its combinatorial data
(0,4) = (01<i,02<i, - - - <i,_,0p), and it can be graphically presented by p points 25, ..., 7o,
in R%, such that the first iz, — 1 coordinates of the points oi, and oy, , are the same, and
the ig-th coordinate of the point o is smaller than the ix-th coordinate of the point o1,
for every 1 < k < p — 1. For further details, consult [21, Sect. 3].

Example 5.3.4. Vertices of the CW complex F(d, p) correspond to strings (o,1) € F(d, p),
such that ¢y = --- = 4,1 = 1. There are exactly p! of them, one for each permutation
o € 6,. For a permutation o = o1...0, € &,, the combinatorial data for the zero-
dimensional cell ¢(o,1) is given by

(01<102<y -+ <10p)a

and it can be graphically represented by p points z1,...,x, in R? such that

T1(Tey) < -+ < T1(24,), where m : RY — R is the projection to the first coordinate. A
vertex that corresponds to the combinatorial data (6<15<12<17<11<14<13<48) in F(2,8)
is depicted in Figure [5.1] on the left.
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Figure 5.1: Graphical presentation of cells in F(2,8).

Maximal cells of the CW complex F(d,p), on the other hand, correspond to strings
(0,%1) € F(d,p), such that iy = --- =i,y = d. There are also exactly p! of them, one for
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each permutation o € &,. Similarly as above, for a permutation ¢ = o01...0, € G, the
combinatorial data for the maximal cell ¢(o, %) is given by

(01<402<q - <40p),

and it can be graphically presented by p points x1,...,z, € R?, such that wj(x1) = = mi(zp)
for every 1 < j < d—1, and mg(z0,) < -+ < 74(2s,), where 7, : R? — R denotes the
projection to the k-th coordinate, for every 1 < k < d. An example for combinatorial data
(3<26<97<95<98<92<94< 1) is shown in Figure on the right.

Example 5.3.5. Let d > 1 and p > 2 be integers, and pick a maximal cell ¢(o’,4") of
F(d,p). Let us examine the boundary of the cell ¢(o”, 7).

Since ¢(0”,4') is a maximal cell, we have that 7} = --- =4, ; = d. According to Theorem
a cell ¢(o, 1) lies in the boundary of the cell ¢(o’,4') ifand only if ...op ... <gq...00...
appear in this order in (¢/,¢") whenever they appear the same way in (c,%). In Figure
a few cells in the boundary of the maximal cell ¢(3<26<27<25<28<22<94<1), which is
shown in Figure [5.1] are depicted.
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Figure 5.2: Some of the «cells in the boundary of the maximal cell

é(3<26<27<25<28<22<24<21).

Let us now concentrate on cells of codimension one, that is, of dimension (d—1)(p—1)—1.
They are given by strings (o,%) € F(d,p), such that i; +--- 4+ i,_1 = d(p — 1) — 1. Thus,
their combinatorial data is

(01<a02<q " <qok<d—10k+1<d " - <dOp),

for some permutation o € &, and some 1 < k < p — 1. In particular, all codimension
one faces in the boundary of a maximal cell ¢(o’,¢") can be obtained by splitting the set
of integers [p] = {1,...,p} into two nonempty sets — those that are on the left-hand side
of the symbol <;_1 and those that are on the right-hand side of the symbol <;_1 in the
combinatorial presentation (01<go2<q---<q0k<d—10k+1<d---<d0p). The order of the
integers o1, ...,0) and oj41,...,0p is the same as their order in (0”,7’).

For computing the equivariant obstruction cocycle in [21], Sec.4.1], one needs the fol-
lowing property of the geometric realization of sd F(d, p).
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Lemma 5.3.6 ([21, Lemma 4.1]). Let d > 1 and p > 2 be integers and denote by
g: WpEBd — W;B(d_l) the &, -equivariant linear projection map obtained by deleting the last
row from any matric (yi,...,Yp) € Wﬁad of row sum 0.

Then the map g maps all mazimal cells of F(d,p) C Wfd homeomorphically onto the
same star-shaped neighborhood sd B(d — 1,p) of 0 in Wﬁ(d_l).

The symmetric group acts on sd B(d—1,p) by homeomorphisms that reverse orientation
according to sgn 1. Therefore, the maximal cells and the codimension one cells in F(d, p)
can be oriented in such a way that the &p-action changes the orientations according to
sgn 91, and the boundary of every mazimal cell is the sum of all codimension one cells in
its boundary with +1 coefficients.

A CW model for the wreath product of configuration spaces

In this section we follow the presentation of [I7), Sec. 2], where Ptolemaic epicycles embed-
dings are introduced. These are embeddings of products of spheres into a configuration
space that are invariant under the action of a Sylow 2-subgroup of a symmetric group.
We introduce embeddings of products of configuration spaces into a (larger) configuration
space that are invariant under the action of a Sylow p-subgroup of the symmetric group.

Definition 5.3.7. For integers d > 1,p > 2 and ¢ > 1 define the space Cy(d, p) by
(1) Ci(d,p) = Conf(R?, p), and

(2) Ce(d,p) = (Cr-1(d,p))*? x C1(d, p), for £ > 2.

Moreover, the left action of the group Zif is defined as follows:

(1) For £ = 1, the group Zg = Zy cyclically permutes the elements of the p-tuples in
Ci(d, p) = Conf(R? p):

g-(z1,...,2p) = (Tgg1, .-, Tgtp),
for every g € Z,, and for every (z1,...,x,) € Conf(R%, p), where the addition of indices
is in Z,,.
(2) For £ > 2,

(glv v 7gp7h) : (le' . 'avay) = (gh+1 ' Xh-i—lv «o s Ghtp Xh-‘rpah : Y)7

for every (gi1,...,9p,h) € Z;;(Z_I) V 2y = fo and for every
(X1,...,X,,Y) € (Cpi(d,p))*P x Ci(d, p) = Cy(d, p), where the addition of indices is
in Zy.

By induction one can see that the space Cy(d,p) is homeomorphic to the product of

pgfl
configuration spaces Conf(R%,p)”™ (=),
The space Cy(d,p) can be embedded in the configuration space Conf(R%,p%) via a
p-adic Ptolemaic epicycles embedding, that resembles the Ptolemaic epicycles embedding
from [I7, Sec.2]. The embedding Lzl’p : Cy(d, p) — Conf(R?, p*) is given by:
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(1) For £ =1, the map L({l’p : C1(d, p) — Conf(R?, p) is the identity.

(2) For £ > 2, let (X1,...,X,,Y) € Cy(d,p) = (Cp_1(d,p))*P x C1(d,p). Then
Y = (y1,---,9Yp) € C1(d,p) = Conf(R%, p) defines p pairwise distinct points in R%. Choose
pairwise disjoint open balls By, ..., B, C R%, such that Bj is centered at y; for every
1 < j < p. Then there are homeomorphisms ¢; : R — Bj, for every 1 < j < p.
Denote by (7, ... ,x;,z_l) the image L?fl (X;) € Conf(R?, p*~1). Then

d7
(X, X, Y) = (gol(ﬂ),---,tpl(wée_l), cey (@), ,<pp(x£e_1)).

The group &, acts on Conf(R?, p) by
T (@1, ) = (T 1) - Trp))s

for every permutation 7 € &,¢. Since the group Z;f is a subgroup of &, there is a

Z}f-action on Conf(R?, pf), which turns the embedding Lzl’p into a Z;f—equivariant map.

Example 5.3.8. Figure shows the image of a point in C3(2,3) under the embedding
Lg’?’. More precisely, in Figure a point (1, xe,r3) € C1(2,3) = Conf(R?,3) is shown
together with pairwise disjoint balls centered at points x1,x9 and x3. We identify these
balls with R? via homeomorphisms, and we choose an element of each copy of Conf(R?, 3).
These are triples of pairwise disjoint points in R?, as shown in blue in Figure Figure
shows pairwise disjoint balls in R? centered at these blue points, too. Finally, we
identify each of these nine balls with R?, and choose an element in each copy of Conf(R?, 3).
This way, we obtain an element of C3(2, 3), which is presented by 27 pairwise distinct points
in R?, as in Figure In other words, an element of C3(2, 3) is presented by an element
of Conf(R?,27).

The action of the wreath product Zy, Z;, ! Z, on C3(2,3) can be seen as follows. Let
G1, G2 and G3 be groups that are isomorphic to Z,. Then we can see the group 7, Zy1 Zy,
as

Zp L Zp Ty =2 (G52 % Go)™3 x Gy

The group G cyclically permutes the red points (and the balls centered at these points).
Each copy of Gy cyclically permutes the three blue points within one big circle, and each
copy of the group Gj cyclically permutes the three black points within one small circle.
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Figure 5.3: An embedding L?,}’?’ : 03(2,3) = Conf(R?,27).
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Let us define a Z;f—action on the FEuclidean space RP'.

Definition 5.3.9. Let p and ¢ be positive integers. The left action of the group Zg on the
space RP' is defined by:

(a) For ¢ =1,
g-(x1,...,2p) = (Tg1,- -, Tgip),
where the addition of indices is in Z,,.

1

(b) For ¢ > 2, see elements of RP’ as real p x p*~1 matrices. Then

U1 Gh+1 - Uh+1
(glv"'agp7h)' = )
Up Ih+p " Vh+p
U1
e-1) _ : pxp' ! o~ o
for every (g1,...,9p,h) € Zp 1Ly, =7} and forevery | : [ €R ~ RP", where
Up

the addition of indices is in Z,.

Recall that W, denotes the space W, = {(x1,...,2,) € R" | 1 + -+ + 2, = 0}, for
an integer 7 > 1. The subspace W, C RP' inherits the Z;f—action from Definition

Furthermore, an action of Z;f can be defined componentwise on Wﬁ(dfl) by

g‘(Xla”'uXd—l):(g'Xla"'7g'Xd—1)7

for every g € Z;f and for every Xy,..., Xq_1 € W,,. Moreover, the unit sphere S (Wﬁ(d_l))

(d-1)

in the linear space Wﬁ inherits the Zg—action from the ambient space.

We can now state the key topological ingredient needed for the proof of Theorem [5.2.5
whose proof is postponed to Section

Theorem 5.3.10. Let d and ¢ be positive integers and let p > 2 be a prime. Then there
18 Mo Z;f -equivariant map

Celd, p) — SW5'Y).

Remark 5.3.11. By [2I, Thm. 1.2], we know that an &,-equivariant map

Conf(R%,n) — S(Wyw (d_l)) exists if and only if n is not a prime power. From the above
constructions follows that the composition

d,p

Ce(d, p) i> Conf(R?, p*) —— S(Wﬁ(d—l))
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of Z;f—equivariant maps exists whenever p is not a prime. Combining it with the statement

of Theorem [5.3.10, we obtain that a Zg—equivariant map Cy(d,p) — S (Wﬁ?(d*l)) exists if
and only if pis a prime.

Since the proof of Theorem depends on the equivariant obstruction theory, we
need to develop an invariant CW model for the wreath product of configuration spaces.
For integers d,¢ > 1 and p > 2, denote by Cy(d, p) the CW complex

(1) Ci(d,p) = F(d,p), and
(2) Ci(d,p) = (Co—1(d,p))*P x F(d,p) for £ > 2.

‘1
In particular, the CW complex Cy(d,p) is the product Cp(d,p) = F(d, p)x(l;j) of ppz%ll

copies of the CW complex F(d, p) introduced in Theorem m Thus, cells in Cy(d, p) are
products of ’;f%ll cells in the CW complex F(d,p). The cell complex Cy(d,p) is given a
Z¥-action:

P

(1) For £ =1, the group ZY} = Z, acts on C1(d,p) = F(d, p) as described in Theoremm

(2) For £ > 2, the group Z;f = (Z;)(E_l))Xp X Zy, acts on Cy(d,p) = (Co—1(d,p)) P x Ci(d, p)
by
(917 o 7gp7h) . (Xh .. 'JXp7Y) = (gh+1 : Xh+17 cee 7gh+p : Xh+p7 h - Y)7
for every g1,...,gp € Z;,(Zfl), heZy, Xi1,...,Xp €Cd,p),and Y € C1(d, p).

Remark 5.3.12. There is a commutative diagram of Z]Zf-equivariant maps.

Conf(R%, p*) —— F(d,p') —— sz‘id e 9 Wﬁ(dq)

d,p
: ] Jq

!

” 0 ¢
Cold,p) —— Cold,p) —— (W) 50 Ly (w050

Here

e r is the deformation retraction from Theorem and 7’ is the product of such
deformation retractions,

e i is the embedding from Theorem and 7’ is the product of such embeddings,
e g is as defined in Lemma and ¢’ is the product of such maps, and
e ¢ is an isomorphism.

Example 5.3.13. Let us have a look at some cells in the CW complex C3(2, 3), which we
can see as
C3(2,3) = (X3 x X2)® x X1 2 X1 x X3 x X3,

where X1, X9 and X3 are CW complexes isomorphic to F(2, 3).
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The vertices (zero-dimensional cells) of the CW complex C3(2, 3) are products of vertices
in F(2,3). Let ef be a vertex in X1, let €2, e3 and e3 be (not necessarily distinct) vertices
in Xy, and let e3,...,e3 be vertices in X3. Then

e=clx(e? xed xed)x (el x - xed)

is a vertex in C3(2,3). Every vertex eg is determined by its combinatorial data

6{ = é(ag,i)’

where o] € 3 is a permutation, and ¢ = (1,1,1). Thus, the 13 permutations o/, for
1 <3j<3 1<i< 37! determine the vertex e in C3(2,3). Consequently, the CW
complex C3(2,3) has 63

Assume that el = ¢(3<11<12). Then we can present the vertex e graphically, similarly
as in Example @ However, instead of dots, we use circles for points, see Figure
The vertices ] = ¢(3<12<11), €3 = &(1<12<;3) and €3 = ¢(2<11<;3) we draw inside of
these circles, as in Figure Finally, in Figure [5.4(c), we show all vertices €], thus
this is a graphical presentation of the vertex e € C3(2, 3).

vertices.

Similarly, maximal cells (or facets) of the CW complex C3(2,3) are products of maximal
cells of F(2,3). Therefore, every choice of permutations JZ € 63, for every 1 < j < 3 and
1 < i < 37! is the combinatorial data for a maximal cell in C3(2,3). Figure
graphically presents a maximal cell of C3(2, 3).

The boundary de of a maximal cell

e=-el x (e xed xed)x (e x--xed)

is the union of cells

T:TllX(T12><7'22><T32)><(7'13><'--><7'g),

J J J

where 77 = e; or 77 is a cell in the boundary of the cell eg € F(2,3) for every i and j. Two

codimension one cells in the boundary of the cell e are shown in Figure
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(a) Vertex ef.

(b) Vertices e}, e?, e3 and 3.

3
.,€9.

(c) Vertices e1,e?, e3,¢e3,¢3,..

Figure 5.4: A vertex in C3(2, 3).
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(a) A facet e € C3(2, 3). (b) A codimension one cell in de.  (c¢) Another codimension one cell in
Oe.

Figure 5.5: A maximal cell in C3(2,3) and some codimension one cells in its boundary.
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Proof of Theorem |5.3.10

Since the map 7’ : Cy(d,p) — Cp(d,p) is a Z;f—equivariant homotopy equivalence, we
proceed by proving the following statement.

Proposition 5.4.1. Let d and £ be positive integers and let p > 2 be a prime. Then there
18 No ng -equivariant map

Co(d,p) — S(W "7 Y).

The proof of Proposition [5.4.1] uses the equivariant obstruction theory, as described by
tom Dieck [30), Sec.I1.3]. See also Appendix [A|for details. Since

e Cy(d,p) is a CW complex of dimension M = (d — 1)(p* — 1),

e the action of Z;f on Cy(d, p) is free when p is a prime,

o S (Wei(dfl)) is an (M — 1)-dimensional space with a Z-action, and
P p

. S(W;ﬁ(d*l)) is (M — 1)-simple and (M — 2)-connected,

a ng—equivariant map Cy(d,p) — S (Wﬁ?(d_l)) exists if and only if the primary obstruction

d—1
0 = [ef) € Hy(Co(d, p)imar1 (S(W,i ™))
vanishes, where c; denotes the obstruction cocycle associated with an equivariant map
f:Ce(d,p) — Wﬁ(d_l) in a general position, see [14, Def. 1.5]. The values of the obstruc-

tion cocycle on maximal cells ¢ € Cy(d, p) are given by the degrees
% X d—1 d—1
cr(¢) = deg(ro f:0¢ — W;‘?( ) \ {0} — S(Wﬁ( ))),
where r is the radial projection.
The coefficient Z;f-module a—1(S (Wﬁ(d_l))) is, via Hurewicz isomorphism, isomorphic
with a homology group

WMfl(S(Wﬁ(dil))) = HMfl(S(Wﬁ(dil));Z) = Z.

The module Z is as an Abelian group isomorphic to Z. If we see Z;f as a subgroup of the
symmetric group &,¢, then the action of Z;f on Z is given by

T &= (sgn7)E,

for every 7 € Z;f C &, and for every € Z, where sgn denotes the sign of the permutation.
Note that this action is trivial when p is odd. It is also trivial when p =2 and £ > 1.

In order to compute the primary obstruction o, we need a Z;f—equivariant map f in
general position.
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Lemma 5.4.2. Letd > 1, > 1 and p > 2 be integers. Then there exists a fo-equivariant
map f:Cy(d,p) — Wﬁ?(dfl) in general position.

Moreover, the cells of the CW complex Cy(d,p) can be oriented in such a way that the
equivariant obstruction cocycle ¢y takes value +1 on every oriented maximal cell of Co(d, p).

(d-1)

Proof. By Lemma|5.3.6] the projection g : Wp@d — W;B is an G,-equivariant map that
homeomorphically maps every maximal cell of F(d,p) to the neighborhood sd B(d — 1, p)

of 0 in Wﬁa(d_l). Thus, the product map

pe—l pe—l

g ety ) wplan) <D,

is a Z;f—equivariant map that maps maximal cells of C;(d,p) homeomorphically onto a

‘o ‘1
neighborhood (sd B(d — 1,p))x(ppj) of 0 in (Wlsa(d_l))x(ppfl ),
‘1
WA XGT) and W%(d_l) are Z¥-isomorphic, we obtain a Z¥-equivariant map
p p P P

Since the vector spaces

f:Cold,p) — WY

that maps every maximal cell of Cy(d, p) to a neighborhood of 0 in W%(d_l). In particular,
there are only finitely many zeros of the map f and all of them lie in maximal cells of
C%(dap)'

The space sd B(d — 1,p) is the barycentric subdivision of a cellular ball of dimension
(d—1)(p—1) in W, (=1 with one maximal-dimensional cell (see [21), Sec. 3]). Therefore,
we can interpret the image of any maximal cell of Cy(d,p) under the map f as a cellular
(d —1)(p’ — 1)-dimensional ball B(d — 1,p’) in Wﬁ(d_l) with one maximal cell. Following

the proof of [2I, Lemma 4.1], fix an orientation of the maximal cell of B(d — 1,p€), and
orient all codimension one cells in its boundary in such a way that they appear in the
boundary of the maximal cell with coefficients +1. Now orient all cells of Cy(d, p) so that
the restriction of f on every cell is an orientation preserving homeomorphism. With such
an orientation, the value of the equivariant obstruction cocycle ¢y equals +1 on every cell
¢ € Cy(d,p). O

Let us fix the orientation of cells in Cy(d,p) as described in Lemma The next
lemma completes the proof of Proposition which implies Theorem [5.3.10

Lemma 5.4.3. Let d > 1 and ¢ > 1 be integers and let p > 2 be a prime. Then the
primary obstruction o = [cy] does not vanish.

Proof. The primary obstruction o = [cy] is an element of the equivariant cohomology group
H%(C@(d,p);Z), where M = (d — 1)(p* — 1) and Z = ﬂM_l(S(Wﬁ?(d_l))). It vanishes if
D

and only if the equivariant cocycle c; is an equivariant coboundary.

= (F(d, p))1+p+'"+pe71 are products

Maximal cells in Cy(d, p) = (]'—(d,p))zz’_l

elx(e%x'--XeZ)x-'-x(eﬁ><~--><e;;£,1),



70 Chapter 5 Waists of spheres

where eg is a maximal cell in F(d,p) for every 1 < j < £ and every 1 < i < p’~!. Recall
that every such cell is given by its combinatorial data

65 = E(Uz]':i)v

where 07 € &, and i = (d, ..., d).
Consider the subfamily of all maximal cells in Cy(d, p)

A:{e%x(e%xu-xeg)x-ux(eﬁx---xeﬁg,1)|
(U{)lzlfor every 1 < j</andevery 1 <i<p/ '}
pf-1

There are exactly ((p — 1)!) »=T cells in A, thus

&) = (0 - )5 (55)

by Lemma
The proof continues by contradiction. Therefore, assume that c; is an equivariant
coboundary, i.e., ¢y = dc’ for some equivariant cocycle ¢’ € H, %[%Cg(d, p); Z). Then
D

Cf(U A) = 56'(U A) = c'(@(U A)) = Z d(0¢).

ceA

Since the cells of Cy(d, p) are oriented in such a way that the boundary of every maximal
cell is a sum of codimension one cells in its boundary with coefficients +1, we obtain that

Cf(U A) = Z Z d(r). (5.6)

ceA TEOCE
dim(r)=M-1

Since ¢ is a ng—equivariant cocycle, its value is the same on every cell in one orbit of
the group Z;e. Thus we proceed by examining the orbits of codimension one cells in the
boundaries of cells in A.

1 2

The boundary of a cell ¢ =e7 x (ef X --- X e ¢

)x.--x(elx-.‘xef)g,l)istheunion

U U e%x(e%x--~><e]29)><--~><(ejl><--~xe§_1xae§xe§+1x---xe;j,l)x-~-><(el><-~-><ef7[,1),
j=1 i=1

and the boundary of a single cell ez in F(d,p) is understood in Example [5.3.5, Pick one
cell
_ 1 2 2 J J J J J 14 L

T=ep X (€] X xXep) XX (e X Xej_y X f; xei+1><-~><epj_1)><-~><(elx'--xepe,l)
from the boundary 9¢, where fl-j isa ((d—1)(p—1) — 1)-dimensional cell in the boundary
of e]. Then the cell f/ corresponds to the combinatorial data

(P1<ap2<d- - <ape<d—19Pe+1<d - <d¥p), for some permutation ¢ = ¢1...p, € &, and
some 1 </ <p-—1.
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Denote by B the set of all maximal cells e = ¢(o,1) € F(d,p) with o1 = 1. Since fij
lies in the boundary of the cell ¢! € B, either ¢1 = 1 or ¢y1 = 1 holds. Wlog., suppose
that ¢1 = 1. The orbit of the cell fj under the action of Z, on F(d,p) contains exactly

two cells that lie in the boundary of a maximal cell in B — the cell f] and the cell g/ given
by the combinatorial data

(p1—por1+1<qg - <qgor—pri1+1 <a-11 <4 prio—pos1+1 <qg- <4 op—prs1+1),

where the addition and subtraction are in Z,. Consequently, there are only two cells in
the orbit of 7 under the action of Z;f on C¢(d,p) that are in the boundary of a cell in A.
Denote the other cell by v. 4

The cell f} is in the boundary of exactly ([%) cells in B, and the cell g} is in the
boundary of exactly (¥, 1) cells in B. Hence, the cell 7 lies in the boundary of exactly - 1)
cells in A, and v lies in the boundary of exactly (¥, ) cells in A. Thus, the summand ¢/(7)
appears (12:%) + (pzl) = () times in the sum (5.6). Since 1 < ¢ < p — 1, the number (})
is divisible by p. This concludes the argument that the number c(J.A) is divisible by p,
which is in contradiction with the equation . ]

Proof of Theorem [5.2.5

Finally, in this section we give a proof of Theorem which completes the proof of the
main result.

Let € > 0 be fixed. First assume that n > k + 1. We apply the following lemmas from
[60]. Recall that B(z,v) denotes the closed ball in R"*! of radius v centered at z.

Lemma 5.5.1 ([60, Lemma 3.2]). For every e > 0, there exists v > 0, such that every con-
vex set C' C S™ that does not contain any ball of the form B(x,v)NS**1 is a (k, €)-pancake,
where x € S™ and S*T1 C S™ is any equatorial (k + 1)-sphere.

Lemma 5.5.2 ([60, Lemma 3.1]). For every v > 0, there exists an integer N and a
sequence Ly, ..., Ly CR™ of linear (n — k — 1)-dimensional subspaces, such that for every
x € S™ and for every equatorial (k + 1)-sphere ST C 8™ there exists 1 < j < N such
that

(B(z,v) NSy N L; # 0.

Let v > 0 be the value determined in Lemmal[5.5.1] and let L1, ..., Ly be the subspaces
from Lemma@ Moreover, fix a point zg € S™. Set i = N. Since Zj, acts isometrically
on S™, it also acts on SO(n + 1). Choose an arbitrary h € SO(n + 1). The set of points
{9-20| g € Zy,} defines a partition of S™ into Voronoi cells

= {z € S™ | dist(x, ghxo) < dist(z, g'hzo) for every ¢' € Z,},

for every g € 7Z,, where dist denotes the Euclidean distance in R™*1. This partition is
Zp-invariant, thus ¢’ - Vh Vgh 1yg for every g, g’ € Z,.

We further want to partltlon each Voronoi cell into p subsets. Let us first partition the
linear subspace hL{ = h - Li{. For linear maps a1,...,a, : hL{ — R define a partition

(Cy,...,Cp) of hLi into convex cones

= {z € hL} | ay(z) > aj(z) for every 1 < j < p}.
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Then (Cy & hLy,...,Cp® hLy) is a convex partition of R"™! and

(Cr®hLy)N VJS, . (Cp®hL)N ngé) is a convex partition of the Voronoi cell VJ(L), for a
fixed element gy € Z,. Since the linear space hLi is (k + 2)-dimensional, the set of linear
maps hLi — R is parametrized by the configuration space Conf(R¥*2 p). Partitions of
the other Voronoi cells Vgh are obtained from the partition of Vg’é by the Z,-action. Thus,
the space SO(n + 1) x Conf(R¥*2, p) parametrizes a space of certain convex partitions of
S™ into p? subsets. Note that Conf(R**2, p) is the space Ci(k + 2,p) as introduced in
Definition and that the induced partitions are (Z, X Z,)-invariant.

Similarly, the space Ca(k+2, p) = Conf(R¥2, p)*P x Conf(R*+2, p) parametrizes certain
partitions of S™ into p? subsets. Indeed, let P be a convex partition of S™ that corresponds
to a point (h, X) € SO(n + 1) x Conf(R**2 p). Assume that S, ...,S, are the sets in
P such that Si,...,S5, C V;é The same way as above, the p copies of Conf(R¥*2 p)
parametrize convex partitions of the sets S1,...,S5, defined by linear maps hLQL — R.
Indeed, for every 1 < j < p, the j-th copy of Conf(R¥+2 p) parametrizes a partition
of hLy into p convex cones, which induces a partition of S; into p convex sets. Under
the Z,-action, these partitions give partitions of all other sets in P, too. Therefore, the
Cartesian product SO(n + 1) x Ca(k + 2, p) parametrizes certain convex partitions of S™
into p? sets, that are (Z, x Z%)-invariant.

Proceed iteratively, so that in the i-th step every existing set in the partition of Vg}é
gets partitioned into p convex subsets defined by linear maps hLZ-l — R, and transfer this
partition to the remaining Voronoi cells Vgh using the Zp-action on S™. After N steps,
we obtain partitions of S™ into pV ! convex subsets that are parametrized by the space
SO(n+1) x Cn(k+2,p), and that are (Z, x Z},N)—invariant. We can assume that NV is large
enough (i.e. N = i), since otherwise we can add arbitrary linear (n — k — 1)-dimensional
subspaces L; C R™*1. By the choice of the linear subspaces L1,..., Ly, Lemma and

imply that every convex subset in the partition is a (k, €)-pancake.

Consider a map SO(n+1) x Cx (k+2,p) — R® (RF1)P" " that maps every partition
(S1,..-,s SpN+1) to

(F(e(S1)), vol(S1), vol(S1) F(e(S1)), - - -, vol(S,w ), vol(S,m ) F(e( S ),

where (51, dots, S,n) is a partition of the Voronoi cell V;]fé Composing it with the product
of the identity map R — R and the projection (Rk+1)pN — W]?N(kﬂ) to the complement of

the (k + 1)-dimensional diagonal in (RF1)P" | we obtain a test map

F:80(n+1) x Cy(k +2,p) — R& WL,
which is (Z, x Z)-equivariant.

Let (S1,...,5,~+1) be a partition of S such that F'(S1,...,S,~+1) = 0, which exists
by Proposition that we will state and prove later. Then

fle(S1)) =0
vol(S1) = - -+ = vol(S,n)
vol(S1) f(c(S1)) = -+ = vol(Syn ) f(c(S,n)).
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Since the action of Z, is an isometry on S", it follows that

VOl(Sl) == VOl(SpN-H)
VOl(Sl)f(C(Sl)) == VO](SpN+1)f(C(SpN+1)).

Therefore, (S1,...,S,~+1) is a needed partition.

Let us finally consider the case when n = k 4+ 1. Again, for a fixed zg € S™ and
h € SO(n + 1), we first partition the sphere S™ into p Voronoi cells Vgh, for g € Z,. We
then partition the set Vg}é into p convex sets (Cy N Vg}é, 50N ngé), where (C1,...,Cp) is

a convex partition of R"*! obtained from linear maps a1, ... L ap R - R as
Co={ze€8" | as(x) > a;(x) for every 1 < j < p},

for every 1 < £ < p. The Z, action on the sphere induces partitions of the remaining
Voronoi cells Vgh, for every g € Z,. We proceed iteratively by partitioning each subset
of Vg’S in an existing partition into p convex sets that are obtained from p linear maps
R™"*L — R. After N steps, we obtain a (Z, x Z;N )-invariant partition of the sphere S™ into
pN ! subsets. The family of such partitions is parametrized by SO(n + 1) x Cx(n + 1,p).

Set i. large enough, so that vp’ > vol(S™), where v is the parameter from Lemma
and assume that i = N > i.. If all p/V ! subsets in a partition of S” have the same
volume, then by Lemma all of them are (k, £)-pancakes.

The same as in the case n > k + 1, we define a test map

F:S0(n+1)xCyx(n+1,p) —>R@W§?V”.

If F(S1,...,Spn+1) = 0 for some partition IT = (S1,...,S,~+1), then II is the required
partition. Existence of such a partition is shown in Proposition [5.5.

Proposition 5.5.3. Leti,d,n and k be integers, such thatn >k > 1, and let p be a prime.
If Z,, acts freely and isometrically on S™, and if R is a Z,-representation of dimension k
such that e(R) ¢ Indexz, (SO(n +1);Fp), then there is no (Z, x ZY)-equivariant map

SO(n+1) x Ci(d,p) — S(R& WY,

where S(R & Wﬁ?(d_l)) is the unit sphere in the linear space R ® W;‘?(d_l).

Proof. The proof uses the Fadell-Husseini ideal valued index theory [32]. By the monoton-
icity property of the Fadell-Husseini index, it suffices to show that

Indexq(S(R @ W \"V);F,) ¢ Indexa(SO(n + 1) x Ci(d, p); Fy), (5.7)

where G = Z,, x ZY.
By [32], Prop. 3.1], the index on the right-hand side in (5.7)) equals

Index(SO(n + 1) x C;(d, p); Fp) =
Indexz, (SO(n + 1);F,) ® H*(B Zg; F,)+ H*(BZ,;Fp) ® Indeng(Ci(d,p); Fp).
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It follows from the Gysin long exact sequence [62, Thm.12.2] that the Euler class
e(R) generates the index Indexz, (S(R);F,) € H*(BZy;Fp). Similarly, the Euler class

e(Wﬁ?(d*l)) of the vector bundle

d-1)

W — Cid,p) x g WY — Cild,p)

(SWEV)F,) € H*(BZ;F,). Furthermore,

generates the index Index,u
P

Indexc(S(R @ Wy, “"V);,) = (e(R) - e(Wy ™)),

by [83, Prop.2.10].
Since e(R) ¢ Indexz,(SO(n + 1); F,) by the assumption of the theorem, and

e(W'47Y) ¢ Index

. ) follows.

ZZ'L

(Ci(d, p); Fp) by Theorem [5.3.10, [18, Lemma 5.2] and [62], Prop. 9.7],

O]



Chapter 6

Oriented matroid Grassmannians

The theoretical results of this chapter are joint with Pavle V.M. Blagojevi¢ and Giinter M.
Ziegler, whereas the computer computations are done independently by the author.

Introduction

The oriented matroid Grassmannians, later also called MacPhersonians, were introduced
in 1993 by Robert MacPherson [56] as a combinatorial analogue to real Grassmannians.
The MacPhersonian MacP(r,n) is the order complex of the partially ordered set of all
rank r oriented matroids on a labeled set of n elements, ordered by weak maps. It was
a crucial ingredient for giving a combinatorial formula for Pontrjagin classes by Gel’fand
and MacPherson [38]. Moreover, MacPherson constructed a canonical map

p: Gp(R™) — MacP(r,n) [56, Prop.3.2] from the Grassmannian to the oriented matroid
Grassmannian. In 2003 Biss [9] published a proof that the map p is a homotopy equivalence,
which would completely determine the topology of the MacPhersonian. However, as Mnév
pointed out in 2007 [63], the paper [9] contains a mistake, see also [I0]. Therefore, the
following question is still open.

Conjecture 6.1.1. The map p: G.(R™) — MacP(r,n) is a homotopy equivalence.

Not much is known about the topology of MacPhersonians. Babson [7] confirmed
Conjecture for r = 2. MacPherson [506], Sec.3.3] claims that a rank MacPhersonian
and the corresponding Grassmannian are even homeomorphic, although no proof has been
provided yet, consult [67] for details. For r > 3, the questionis widely open. Anderson
and Davis [2, Thm. A] proved that the induced map in cohomology with mod 2 coefficients

w*: H*(MacP(r, 00); Zao) — H* (G, (R*); Zs)

is surjective. The same can be proved for mod 3 coefficients, but for primes p > 5 one
needs different methods, see [76, Thm. 17].

Our approach to Conjecture [6.1.1]is computational. We wrote a code in the program-
ming language C, that constructs MacPhersonians and computes their numerical invariants
for small parameters. The main results are summarized in the following two theorems.

Theorem 6.1.2. The oriented matroid Grassmannian MacP(3,6) is a simplicial complex
on 161048 wvertices, and the oriented matroid Grassmannian MacP(3,7) is a simplicial

75
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complex on 39 339 387 vertices. Their f-vectors are given in Table[6.1l In particular, the
Euler characteristic of MacP(3,6) is 0, and the Euler characteristic of MacP(3,7) equals
3, which is compatible with Conjecture that maps p : G3(R%) — MacP(3,6) and

p: G3(R7) — MacP(3,7) are homotopy equivalences.

MacP(3, 6) MacP(3,7)
0 161048 39339 387
1 67 506 968 102912 829992
2 2237230080 10573088 790 768
3 23453867520 280264 905 278 400
4 114302177280 3182159 350231 680
) 302970654 720 19343 588 635 848 960
6 465104 977920 70610301 737 848 320
7 413 868 257 280 164 524 030 562 304 000
8 198394675 200 251575463 004 364 800
9 39678935 040 252698 219 318 845 440
10 161998670 765 998 080
11 61417168177397760
12 11422811933 245 440
13 536 605407 313920

Table 6.1: f-vectors of MacP(3,6) and MacP(3,7).

Theorem 6.1.3. The Euler characteristic x

of oriented matroid Grassmannians is

x(MacP(3,6)) = 0,
x(MacP(3,7)) = 3,
x(MacP(3,8)) = 0 mod 2,
x(MacP(3,8)) = 0 mod 5,
x(MacP(3,8)) = 0 mod 7,
x(MacP(3,9)) = 1 mod 3,
x(MacP(3,11)) = 5 mod 11,
x(MacP(3,13)) = 6 mod 13,
x(MacP(4,8)) = 0 mod 2,
x(MacP(4,8)) = 0 mod 3,
x(MacP(4,9)) = 0 mod 3.

In particular, all computed values are compatible with Conjecture|6.1.1].

The code used for these computations and its output is available online at [66].
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Oriented matroids

In this section we introduce oriented matroids, building blocks for MacPhersonians. How-
ever, we only state the properties needed for the rest of this chapter and invite the reader
to consult [I1] for an intensive presentation of the topic.

In order to define oriented matroids, we introduce the following terminology. Let E be
a finite set and let X C E. A signed subset X of E is the set X together with a partition
(X, X7) of X into two disjoint subsets: X T, called the set of positive elements of X, and
X, called the set of negative elements of X. The set X = X+ U X~ is called the support
of X. A signed set can also be seen as a function X : E — {+, —, 0}, where X+ = X~1(4)
and X~ = X 1(-).

The composition X oY of two signed subsets X and Y of F is the signed subset of F
defined by (X oY)t = XTU(Y T\ X )and (XoY)” = X~ U (Y~ \ XT). In other words,
the composition of X and Y is the function X oY : E — {4, —, 0} given by

Xov(e) = {X(e), %fX(e) #0
Y(e), if X(e)=0.

Let X and Y be signed subsets of E. The separation set of X and Y is the set
S(X,)Y)={ee E| X(e) = —Y(e) # 0}. The opposite of the signed set X is the signed
set —X, where (—X)* = X~ and (—X)~ = X*. In the following definition, {+, —,0}¥
denotes the set of all functions £ — {+, —,0} and 0 € {+, —, 0}¥ denotes the zero-function.

Definition 6.2.1 ([11} Def. 4.1.1]). An oriented matroid M is a finite set F together with
aset £ C {+,—,0}F such that

(1) 0e L,

(2) if X € £ then —X € L,
(3) if X, Y € L then XoY € L,
(4) if X,Y € £ and e € S(X,Y) then there is Z € £ such that Z(e) = 0 and

Z(f) = (X o Y)(f) = (¥ 0 X)(f) for all f ¢ S(X,Y).

The elements of the set £ are called covectors of the oriented matroid M.

The conditions (1)—(4) in the above definition are called covector axioms.

Definition 6.2.2. Let M be an oriented matroid on the ground set F. A subset I of
F is said to be independent in M if for every e € I, there exists a covector X such that
X(e) #0and X(I\ {e}) =0. The rank of M, rank(M), is the maximal cardinality of a
set of independent elements of M. Moreover, if the cardinality of I is exactly rank(M),
then [ is called a basis of M.

There are many equivalent ways of defining an oriented matroid. Here we give another
one, which turns out to be more practical for our computations.

Definition 6.2.3 ([11, Def. 3.5.3+Lemma 3.5.4]). Let > 1 be an integer and let E be a
finite set. A chirotope of rank r on the set E is a map x : E” — {—1,0, 1} which satisfies
the following properties:

(1) x is not identically zero,
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(2) x is alternating, that is,

X(xal’x027 v 7x0r) = Sign(U)X(xLQ:Za cee 7557")7

for all x1,xs,...,x, € E and every permutation o,
(3) for all z1,z9,...,2r,y1,92,...,yr € E, such that

X(xlax27 e 7x7“) : X(y17y27 .. 7y7”) 7é 07
there exists ¢ € {1,2,...,r}, such that

X(yi7$27 cee 7'%.7‘)'X<y17 ey Yi—1,T1, Yi41y - - - 7y7‘> == X(xlw%'?a .. 7:E7‘>'X(y17y27 o 73/7‘)-

According to the results of Las Vergnas [I1, Thm. 3.5.2] and Lawrence [I1, Thm. 3.5.5],
every oriented matroid determines exactly two chirotopes x and —x, and a chirotope
completely determines an oriented matroid. Moreover, if x is a chirotope, then x and
—x determine the same oriented matroid. Thus, we can work with chirotopes, instead of
oriented matroids.

In order to construct the MacPhersonian MacP(r,n), we need to construct all oriented
matroids of rank 7 on the set of elements £ = [n]. Since chirotopes are alternating, it
suffices to store the values of x(x1,...,2,) for all 1 < z9 < -+ < x,. Thus, we can
store a chirotope as a tuple of length (7:) with entries —1,0, 1, which, in general, requires
less memory (and makes computations easier) than storing the covectors of each oriented
matroid.

The following definition introduces weak maps, relations among oriented matroids.

Definition 6.2.4. Let M and M5 be two oriented matroids on the same set of elements
E. Denote by L; the set of covectors of M1, and by Lo the set of covectors of Msy. Then
we say that there is a weak map from M; to My, and denote it by My ~» My, if

for every Y € Ly there exists X € £;, such that YT C Xt and Y~ C X ™.

Let x1,x2 : E" — {—1,0,1} be two chirotopes of the same rank and on the same
number of elements. We say that there is a weak map x1 ~> x2 from x;1 to xg if

x1(e) = xa(e)
for every e € E, such that y2(e) # 0.

The name weak map is somewhat misleading — it is a relation on the set of oriented
matroids, and it does not imply that there exists a map between two oriented matroids.
Unwinding the definitions, one can realize that for oriented matroids My and My that
define chirotopes x1 and y2 the following two statements are equivalent
(1) My~ My
(2) x1~ x2 or x1 ~ —x2,
see [11l Prop.7.7.5].
The order complex of a partially ordered set P is a simplicial complex whose vertex set
is P, and whose simplices correspond to chains in P. Now we recall the definition of the
oriented matroid Grassmannian.

Definition 6.2.5. Let n > r > 1 be integers. The oriented matroid Grassmannian, also
called MacPhersonian, is the order complex of the partially ordered set of all oriented
matroids of rank r on the set of elements [n], ordered by weak maps.
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Explicit constructions

We are interested in understanding MacP(r,n) for various parameters r and n. In partic-
ular, we want to compare certain invariants of the Grassmannian G(r,n) and the MacPh-
ersonian MacP(r,n). In his thesis Babson [7] proved that G(2,n) and MacP(2,n) are
homotopy equivalent for every integer n > 2. Hence, the natural step is to look at MacPh-
ersonians of rank 3. Another reason to focus on exactly this rank is that most of unusual
properties that an oriented matroid can have appear already in rank 3. For example, there
is a rank 3 oriented matroid whose extension space is not homeomorphic to a ball, or whose
realization space can be isomorphic to any given semialgebraic set [64]. Under duality, we
can use the known facts for MacP(n—3,n) when n < 5, in order to understand MacP (3, n).
In particular, for n <5, G(3,n) and MacP(3,n) are homotopy equivalent.

The parameter n = 7 is the smallest one, such that the Grassmannian and the MacPh-
ersonian do not have the same dimension. Additionally, in MacP(3,7) there are oriented
matroids whose extension spaces are not homeomorphic to a ball, see Figure There-
fore, we aimed to construct the MacPhersonian MacP(3, 7).

We have written a computer code that for a given rank r and a number of elements n
constructs all oriented matroids of rank r on n elements. We make use of representatives of
reorientation classes of oriented matroids found by Finschi [33]. For every uniform oriented
matroid M presented in [33], we find all oriented matroids M’ such that M ~» M’ i.e.,
such that M weakly maps to M’. This is done by checking for each subset of bases of
M, whether it satisfies the chirotope axioms [I1, Def.3.5.3 + Lemma 3.5.4]. In the end,
we construct all oriented matroids that are obtained from such oriented matroids M’ by
permuting and reorienting its elements. As a result, all oriented matroids of rank r on n
elements are obtained.

For r = 2 these computations confirm the results from [67, Sec.4.2]. We also run the
computations for r = 3 and n < 7. For larger parameters, these computations have not
been run yet.

There are exactly 161048 oriented matroids of rank 3 on 6 elements, and 39 339 387
oriented matroids of rank 3 on 7 elements. The complete list of them is given in [66]. In
Table one can find the number of oriented matroids with a given number of bases. As
expected, there are 20 = (g) rank 3 oriented matroids on 6 elements that have only one
basis, and 35 = (g) oriented matroids of rank 3 on 7 elements that have only one basis.
An interesting observation is that there are no oriented matroids of rank 3 on 6 elements
with 11 bases.

We have also computed the f-vectors of the simplicial complexes MacP(3,6) and
MacP(3,7), which are given in Table The Euler characteristic of MacP(3,6) equals
0, and the Euler characteristic of MacP(3,7) equals 3. These values are the same as the
Euler characteristic of the corresponding Grassmannians.

The smallest parameters for which the MacPhersonian and the Grassmannian do not
have the same dimension are » = 3 and n = 7 — the dimension of MacP(3,7) is 13, and the
dimension of G3(R7) is 12. However, the following proposition implies that examining the
homology Hi3(MacP(3,7)) or the cohomology H'3(MacP(3,7)) does not give an evidence
of a counterexample to Conjecture
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Proposition 6.3.1. Simplicial complex MacP(3,7) collapses to a 12-dimensional subcom-
plex.

Proof. Every chain
c= Mz~ Mg~ -~ Mo

of length 13 in the poset MacP(3,7) contains an interval
(Mg, Mi1] = My ~ Mig ~ My

(up to reorientation and permutation of elements) as a subchain, where the realizations of
oriented matroids Mg, M1g and My, are shown in Figure The interval [Mg, M11] in
the poset MacP(3,7) contains exactly three elements, because there is no other oriented
matroid M, such that My ~» M ~» Mgy. Hence, the chain ¢ is the only chain of length
13 that contains the chain

as a subchain. Therefore, the 13-dimensional face of the simplicial complexMacP(3,7)
determined by the chain ¢ has a free face — the 12-dimensional face determined by the
chain ¢/, thus it can be collapsed.

(c) M1

Figure 6.1: A chain of length 13 in MacP(3,7).

O]

Remark 6.3.2. Since the oriented matroids of rank 3 on 8 elements do not show any
different behavior from those on 7 elements, the previous proof can be used to show that
MacP (3, 8) collapses to a 15-dimensional subcomplex.
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Further computations

In this section we would like to compute invariants of further MacPhersonians. However,
constructing all oriented matroids and computing the Euler characteristic or any other
invariant of the simplicial complex MacP(r,n) for » > 3 and n > 8 is beyond our compu-
tational limits. Therefore, we try to understand some properties of MacPhersonians based
on their subcomplexes.

For a group G and a G-space X, denote by X the set of fixed points in X under the
action of G. The following theorem is due to Floyd, and it gives a relation between the
Euler characteristic of X and the Euler characteristic of X©.

Theorem 6.4.1 ([34], see also [25, Thm.II1.4.3], [I2, p.267]). Let p be a prime, G be a
p-group and let X be a G-space. Then

X(X) = x(X9) mod p.

Thus, in order to compute the Euler characteristic of a MacPhersonian (modulo a
prime), it suffices to define a group action on the MacPhersonian and to compute the Euler
characteristic of the fixed point set, which usually requires less computational power.

The symmetric group &,, acts on the vertices of a MacPhersonian MacP(r,n) by per-
muting the elements of every oriented matroid. More precisely, for a rank r oriented
matroid M on the set of elements [n] = {1,2,...,n} with the set of covectors L, the
oriented matroid M’ = o - M is the oriented matroid of rank r on the set of elements [n]
with the set of covectors

L'={c-X|XEeL}

where
(0 X)(e) = X (o),

for every X € L, e € [n] and every 0 = 01...0, € &,,. The &,-action on the vertices of
MacP(r,n) can be linearly extended, so that we obtain a &,-action on the whole simplicial
complex MacP(r,n).

Proposition 6.4.2. Let G C G, be a subgroup of the symmetric group, and let S C MacP(r,n)
be the set of vertices of MacP(r,n) that are fized under the action of G. Then

MacP(r, n)[S] = MacP(r,n),

where MacP (r,n)[S] is the induced subcomplex, thus a simplicial complex consisting of all
simplices A € MacP(r,n), such that the vertex set of A is a subset of S.

Proof. Every point of the simplicial complex MacP(r,n) is of the form
= MM+ -+ AN My,

for some k > 1, My, ..., My vertices of MacP(r,n), and A1,..., A\ > 0, such that
A1+ -+ X = 1. Wlog., we can assume that My ~» --- ~» My. Moreover, the G-action
is given by

o-z=A(o- M)+ 4+ (o - My),
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for every o € G.

Clearly, if My,..., M € S, then z is fixed under the G-action. On the other hand,
assume that z € MacP(r,n)®. Then {Mj,..., My} = {0 - My,...,0 - My} for every
o € G. The oriented matroids M; and o - M; have the same number of bases, for every
1 <@ <k, whereas the oriented matroids M; and M, have a different number of bases,
for every 1 < i < j < k. Thus, the oriented matroids My,..., M} are fixed under G.
Consequently, x € MacP(r,n)[S]. O

Definition 6.4.3. A finite-dimensional connected topological space X is called a Poincaré
duality space over a ring R if its cohomology ring H*(X; R) is finitely generated and if
there exists an integer d and an element v € Hy(X; R) such that the cap product

Nv:H(X;R) — Hy_;(X;R)
is an isomorphism for every ¢ > 0. We say that the formal dimension of X is d.

By the Poincaré duality theorem, every compact oriented manifold is a Poincaré duality
space [29, Thm. 18.3.4]. In particular, the Grassmannian G, (R") is a Poincaré duality space
for every » > 1 and for every n > 2 even. A positive answer to Conjecture [6.1.1] would
imply that the MacPhersonian MacP(r,n) is a Poincaré duality space whenever n is even.
Thus, we can make use of the following.

Theorem 6.4.4 ([26]). Let p be a prime. If a Zy-space X is a Poincaré duality space over
F), of formal dimension d, then each connected component of the fized point set X% is a
Poincaré duality space over Fy,. If p # 2, then the formal dimension of every connected
component of X% is congruent to d mod 2.

In order to apply Theorem [6.4.1] and Theorem [6.4.4] it suffices by Proposition [6.4.2
to find fixed vertices of the MacPhersonian under the action of an appropriate group.
Following this approach, we consider various group actions on MacPhersonians in the next
section.

Since we want to compare numerical properties of MacPhersonians and Grassmannians,
it is necessary to know the homology or the cohomology of Grassmannians. The cellular
homology groups of Grassmannians G,(R™) for r = 3 and r = 4, and for n < 13 are
computed using the Schubert CW decomposition of Grassmannians and the formula for
differentials given by Jungkind [48| p.24], see Table and Table

Results

The complete list of results is available at [66].

Zs-action on MacP(3,9)

The smallest number of elements n, such that there exists a non-realizable rank 3 oriented
matroid on n elements is 9. In particular, the map

s G3(RY) — MacP(3,9)

is not surjective. Therefore, we searched for a group action on MacP(3,9) that fixes a non-
realizable oriented matroid, a vertex of MacP(3,9) that is not in the image of u. The group
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G generated by the permutation (1,4,7)(2,5,8)(3,6,9) fixes the non-realizable uniform
oriented matroid whose corresponding pseudoline arrangement is depicted in Figure [6.2]
We are grateful to Jiirgen Richter-Gebert for sharing this example with us.

Figure 6.2: A non-realizable uniform oriented matroid of rank 3 on 9 elements, fixed under
the action of G = Zg.

In order to construct fixed points under the action of G, we first construct ordinary
matroids of rank 3 on 9 elements, and then we orient them. The procedure is explained
in Example The simplicial complex MacP(3,9)¢ is 8-dimensional, and it has two
connected components — one of them consists of only one point. The f-vector is

f(MacP(3,9)%) = (77836, 3 127 752, 27 156 816, 95 617 008,
165 209 760, 146 524 608, 62 584 704, 10 091 520, 331 776).

In particular, the Euler characteristic of MacP(3,9)¢ equals 4 — it is the same as the
Euler characteristic of the Grassmannian G3(R?).

Example 6.4.5. Here we construct an oriented matroid M of rank 3 on 9 elements that
is fixed under the G-action.

First we make step-by-step an ordinary matroid M that is fixed under the G-action.
For each triple (a, b, ¢) of elements of M, we decide whether it is a basis. Set, for example,
(1,2,3) to be a basis in M. Since the matroid M is supposed to be G-invariant, then
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(4,5,6) and (7,8,9) are also bases. Furthermore, since (1,2,3) and (4, 5,6) are bases, by
the bases exchange property of matroids, at least one of the triples (2,3,4), (2,3,5) and
(2,3,6) has to be a basis in M. In particular, if for all these triples we have already decided
not to be bases, we can discard M, since it cannot be extended to a matroid. Similarly, at
least one of the triples (1, 3,4), (1,3,5) and (1, 3,6), and at least one of the triples (1,2,4),
(1,2,5) and (1,2,6) has to be a basis in M. We apply the same procedure to all other
pairs of triples (a,b,c), (d, e, f) that have already been determined to be bases.

Finally, we check for every possible reorientation of elements of M, whether it is an
oriented matroid. In particular, since we store oriented matroids as chirotopes, we check
chirotope axioms [I1, Lemma 3.5.4].

The subcomplex of MacP(3,9) fixed under the action of G = Zs is rather large, and
further computations are not trivial. Therefore, we proceed by constructing fixed points
in MacP(3,9) under a larger group.

(Z3 x Zs)-action on MacP(3,9) and MacP(4,9)

In this section we consider the transitive action of the group G = Zs x Zs3 generated by
the permutations (1,2, 3)(4,5,6)(7,8,9) and (1,4,7)(2,5,8)(3,6,9). It fixes only 4 vertices
of MacP(3,9). Each of them corresponds to an oriented matroid with 27 bases and the
underlying simple oriented matroids have only 3 elements. Their realizations on a
2-dimensional sphere are shown in Figure [6.3]

Figure 6.3: Vertices of MacP(3,9) fixed under the action of G = Z3 x Zs.

If we use the lexicographical order of bases for an oriented matroid, i.e., the order
(1,2,3) < (1,2,4) < --- < (1,2,9) < (1,3,4)--- < (7,8,9),
the chirotopes that correspond to these four fixed points are listed here.
000000000000000+++0++++-++00000000000+~+~+0++-++-++000

00+++0+++++-+00000000000000000000000

+00+00+0-00-000000+00+0—-000++-00+000—00—-0000+4-000—-0
+00+-00—-00000+-004-00+0—000++-000—0-+00+
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++000+000—-000—-0000000+0-+000+000++000+00—000000+
00000++-0000—0—-0++0000—0—-00+0-+0000++

+0-+0+4-00—0000—+-04-00000—0000—000+-0+000000+4-04-0—00+00
0—0-0000000+-00++0-+0-00+4-0000+00+0—0+

We again obtain that the Euler characteristic of MacP(3,9) is the same as the Euler
characteristic of the Grassmannian G3(R?).

The same group acts on MacP(4,9), as well. It fixes 6 vertices of MacP(4,9), that
again form a 0-dimensional simplicial complex, whose Euler characteristic is the same as
the Euler characteristic of the corresponding Grassmannian. The chirotopes of these fixed
points are the following, where the order ob bases is again lexicographical.

000000+—0—+++0——+0+—+—+0+———0++—0—+—00—+0+
—0000—+—+—+—+0+—0—+++0——+0+—+0+0——0++—++0—
000—+—00—+0-+—0—+——+0+—-+0000000-+—-+—-+—0+—+00

000000+ —+0—+—+00— 44—+ —+—0-+—+—00+——+—0—+0-+—
0+ —+—+0000—+—0+—+0—+—+00—++—+00—+0+——+-0—+
+=-+00000+0——0+000+0——+—+—+0000+—+—+—0+—+00

000000+ ——+0+0—++0—+—+—++—0—0+——0+—+—0+0——0
+—4—+0—+—4+0000+——~+0-+0—4-+0—+—+0—40+—0000—+0
—4—+—+000—~+0+——+—40—+000—-+—00004—+—+—04—400

++4———0—++0—++000—0+++0—0——0+0—0——0-++——0+0
= —+00+000—0—++-0000++0++——0+——00—0+000——
++400+—+00++0-+0—00——00+——+—+++0——+0—+++0++

+ 44— ———00+++—-0004+——0——00+0——0——00——+0+00+
400+ ——04004++—0—+04—+0+0—0-+0—+—0—0++——+00+
0—000+—+—0——000—0——0+——~+00—+++—0+——0+0——++

o+ ———++0—00+0-++0++0—040——+0——+00++040——00
—004—0———+0—0——0++0+00—++00++++00++0+00—0—
0—0+———+0——++0-+-+-+0-+000++00—+-++++00+++—0+++

Zp-action on MacP(3,p)

For a prime p > 2, one can define the action on MacP(3,p) by the group Z, C &, that
cyclically permutes the elements of oriented matroids. In other words, let G C &, be



86 Chapter 6 Oriented matroid Grassmannians

the cyclic group generated by the permutation (1,2,3,...,p). Using the same methods as
above, we have computed vertices of MacP(3,p) that are fixed under the G-action.

For p = 5, there are 2 fixed points under the action of Z, in MacP(3,5). Those are the
following uniform oriented matroids.

ottt
F—t——+——+

In particular, they form a zero-dimensional simplicial complex, whose Euler character-
istic equals 2, the same as x(G3(R?)).

There are 3 fixed points in MacP (3, 7) under the action of Z7, and all of them are again
uniform oriented matroids.

e a2 S s O
Ft—ttt——F———tF ot ———— =+
bttt ——— e ——+——+

Therefore, the simplicial complex MacP(3,7)%7 is zero-dimensional, and its Euler charac-
teristic is 3, the same as x(Gg(RT")).

Also for p = 11, we obtain the expected 5 oriented matroids of rank 3 on 11 elements
that are fixed under the action of Zi1, and all of them are uniform. We omit listing them
here. Finally, the largest prime for which we computed fixed points is p = 13. There are
6 uniform oriented matroids of rank 3 on 13 elements, that are fixed under the action of
Z13.

(Za x Za x Zz)-action on MacP(3,8) and MacP(4,8)

Consider the group G C &g generated by the permutations (1,2)(3,4)(5,6)(7,8),
(1,3)(2,4)(5,7)(6,8) and (1,5)(2,6)(3,7)(4,8). It is isomorphic to Zg X Zg X Za.

There are 56 vertices of MacP(3, 8) that are fixed under the action of G, and they form
a O-dimensional simplicial complex. Each of the fixed points is an oriented matroid with 32
bases. Thus every connected component of the simplicial complex MacP (3, 8)% is a point.
In particular, the Euler characteristic of MacP(3,8)¢ is even, as well as x(G3(R?)).

Similarly, there are 70 vertices of MacP(4,8) that are fixed under the action of G, and
they also form a O-dimensional simplicial complex.

Zp-action on MacP(3,n)

For n being even and p being a prime, we can try to make use of Theorem [6.4.4]

We defined actions on MacP(3,6) by four different groups generated by the permuta-
tions

(1) (1,2,3),
(2) (1,2,3,4,5),
(3) (1, 2 ,3) and (4,5,6), and
(4) (1,2,3)(4,5,6),
and act1ons by groups generated by the permutations
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(1) (1,2,3,4,5),
(2) (1,2,3,4,5,6,7)

on MacP(3,38).

The dimension, Euler characteristic, f-vectors, integer homology and integer cohomo-
logy of the fixed point sets are given in Table These computations were obtained using
the software SageMath [80]. In particular, we can see that none of the computed values
contradicts Theorem nor Theorem

Action of the Sylow p-subgroups

The Sylow 2-subgroup of &g is the wreath product Zs ! Zo ! Zo, and the Sylow 3-subgroup
of &g is the wreath product Z3Zs.

The action of the wreath product Zg ! Zg ! Zz on MacP(3,8) and on MacP(4,8) is
fixed-point free.

The action of the group Zs!Zs has exactly one fixed point in MacP(3,9), whereas there
is no fixed oriented matroid of rank 4 on 9 elements under the action of the group ZsZs.
Hence, the action of Zs ! Zs on MacP(4,9) is fixed-point free. The chirotope of the rank 3
oriented matroid that is fixed under the action of this group is

000000000000000+++04+++-+-++00000000000++-+0-++
++++00000+++0+++-+++00000000000000000000000.

Groups that fix particular oriented matroids

So far, we have defined group actions on MacPhersonians, and searched for fixed points
under these group actions. Since the fixed point subsets of a MacPhersonian give some
information about the whole MacPhersonian, we consider in this section groups that fix
oriented matroids whose inverse images under the map u : G,(R") — MacP(r,n) are not
contractible, for example, non-realizable ones or those with disconnected realization spaces.
The first example of a non-realizable oriented matroid one usually meets is the non-
Pappus oriented matroid of rank 3 on 9 elements, see Figure Its pseudoline arrange-
ment is obtained from the Pappus configuration of 9 lines in the plane, with one line
replaced by a (non-straight) pseudoline. The non-Pappus oriented matroid is fixed only
under the subgroup of Gg of order 2, thus the subcomplex of MacP(3,9) of fixed points
under that group is too large. Therefore, we have not computed it. Another example of a
non-realizable oriented matroid of rank 3 on 9 elements is given in Section [6.4.1]

In MacP(4,8) we have considered two non-realizable oriented matroids. First, the
oriented matroid RS(8), see [11], Sect. 1.5], is fixed under the action of the group G generated
by the permutations (1,4)(2,3)(5,8)(6,7) and (1,7)(2,8)(3,5)(4, 6), which is isomorphic to
Zo X Zso. There are 26 998 fixed points that form 19 connected components - 6 of them are
points, 12 of them are Klein bottles on 24 vertices each, and the last one is 7-dimensional
on the remaining 26 704 vertices. The f-vector of the simplicial complex of fixed points is

f=1(26998,494160,2 800992, 7552384, 11 153 664, 9 289 728, 4 091 904, 737 280),

and the Euler characteristic is 6, the same as the Euler characteristic of the Grassmannian
G4(R®). Note that the Klein bottle is not a Poincaré duality space, but we cannot apply
Theorem [6.4.4] because the group that acts is Zg x Zs.
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Figure 6.4: A non-Pappus oriented matroid.

The rank 4 oriented matroid on 8 elements EFM(8) (see [11, Exam. 10.4.1]) is fixed un-
der the action of the dihedral group D3 generated by the permutations (1,2,3)(4,5,6) and
(1,6)(2,5)(3,4)(7,8). There are 30462 fixed points under the action of Zs as a subgroup
of D3 forming three connected components, two of which are points. The f-vector of the
simplicial complex of fixed points in MacP (4, 8) under the action of Zs C Djs is

f=1(30462,2137512,24865392,112512 576,255 113 088,
317613312,218631 168,76 796 928, 10420 224),

and the Euler characteristic is also 6. Only 1298 of these points are fixed under the action
of the whole dihedral group D3. They form a 5-dimensional simplicial complex with the
f-vector

f=1(1298,14 544, 41 856, 46 464, 19008, 1152),

whose Euler characteristic is 2. There are five connected components - two of the connected
components are points, two are circles with 6 vertices each, and the last component is
5-dimensional with 1284 vertices.

The oriented matroid EFM(8) is also fixed under a very specific action of the group Zs:
compose transpositions (2,3) and (4, 5) with the reorientation —4568 and oriented matroid
duality. The order in the composition does not matter, because all these actions commute.
There are 639 584 fixed rank 4 oriented matroids on 8 elements under that group action.
It, however, still remains to understand the simplicial complex.

There are a few more interesting oriented matroids that we considered, but which are
not suited for our computations. The oriented matroid J(9) [II, Exam. 10.4.4], arises from
EFM(8) by a single element extension. It is a uniform oriented matroid of rank 4 on 9 ele-
ments. However, it is fixed only under the action of the trivial subgroup of &g. Tsukamoto
[81] published an example of a rank 3 uniform oriented matroid M on 13 elements, whose
realization space is disconnected. This means that the fiber u~!({M}) is disconnected,
which raises suspicion that the map p is not a homotopy equivalence. Unfortunately,
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this oriented matroid is also fixed only under the trivial subgroup of &;3. Furthermore,
the oriented matroid of Suvorov [79], a rank 3 oriented matroid on 14 elements, whose
realization space is disconnected, is also fixed only under the trivial subgroup of &14. Fi-
nally, the example of an oriented matroid with a disconnected realization space given by
Richter-Gebert [71] is fixed only under a subgroup of &4 of cardinality 2. Constructing
the whole subcomplex of MacP(3,14) that is fixed under this group action is beyond our
computational limits.



20 Chapter 6 Oriented matroid Grassmannians

Number r=3 r=3
of bases n==~6 n="7
1 20 35
2 180 420
3 480 1400
4 600 2380
5 1440 5376
6 1680 7560
7 1920 10080
8 3000 17640
9 6080 36960
10 4384 26 656
11 0 13440
12 3600 44 800
13 5760 72 800
14 8640 107520
15 11520 100800
16 12480 104160
17 11520 94080
18 37440 312480
19 38 400 349440
20 11904 118272
21 168 000
22 147 840
23 282 240
24 221760
25 403200
26 564 480
27 1128960
28 1209 600
29 1787520
30 2435328
31 2849 280
32 7042 560
33 10725120
34 7203840
35 1743 360
total 161048 39339 387

Table 6.2: The number of oriented matroids of rank 3 on 6 or 7 elements, sorted by the
number of bases.
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| MacP(3,6) | Zs | Zs | Zs x Z3 | Z3 diag. || MacP(3,8) | Zs | Z7 |
dimension 3 1 1 3 dimension 3 1
Euler ch. 0 0 0 0 Euler ch. 0
fo 80 | 8 8 104 fo 120 [ 12
fi 464 | 8 8 584 fi 696 | 12
fo 768 960 fo 1152
f3 384 460 f3 576
Hy YA Z Hy z3 |73
H, 73 | 77| 77 Z H, 73 | 7?
H, 0 Z H, 0
Hs VA Z H; 73
HO 72 | 72 VR Z HO 73 173
HT 0 |72 VA 7 HT 0 |z3
H? 7.3 Z H? 73
H3 VA 7 2B 73

Table 6.3: The f-vectors, homology and cohomology groups of order complexes of fixed
point sets in MacP(3,6) and MacP(3,8) under group actions.
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G3(R®) | G3(RT) | G3(R®) [ G3(R?) | G3(R™®) | G3(R™) | G3(R™?) | G3(R?)
Hy Z Z Z Z Z Z Z Z
Hy Zs Zo Zs Zs Zs Zo Zo Zs
H2 ZQ ZQ ZQ ZQ ZQ ZQ ZQ ZQ
Hj 73 73 73 73 73 73 73 73
H4 Z ZXZQ ZXZQ ZXZQ ZXZQ ZXZQ ZXZQ ZXZ2
Hs | Zx173 z3 Z3 73 73 73 73 Z3
Hg Zs 73 73 z3 z3 z3 z3 z3
Hy Zs 73 Zx73 Zs 73 73 Z3 73
Hg 0 ZxZo | ZXT3 | ZXTLS | ZxZ3 | ZxZy | ZxZ4 | ZxZj
Hy V/ 73 74 73 7 x 78 A 78 78
Hyo 0 Zs Z3 z4 Z3 73 VA
Hyy 7o 7 x 7.3 75 78 75 7 x 78 73
Hio 0 Zs ZXZ3 | ZXZ | ZxZ3 | ZxZ§ | Zx7Z§
His Zs z3 7 x 73 A z3 730
Hyy 0 Zs 73 Z3 z8 78
His Z 73 z4 VA 7 x 78 730
Hig 0 Zs ZxTZ3 | ZxZ5 | Zx1Zk
Hiz Zs 7 x 73 73 Z8 zP°
His 0 Zs 73 Z3 A
H19 ZQ Z% 7, X Zg Zg
Hoyg 0 Zs 73 7 x 73
Hoy Z 73 73 A
Hoyo 0 Zs Z3
H23 ZQ 7. X Z% Zg
Hay 0 Zs 73
Hos Zs 73
Hog 0 L
Hy; Z 73
Hog 0
Hayg L
Hso 0

Table 6.4: Integer homology of Grassmannians.
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G4(R®) | G4(RY) | G4(RY) | G4(R') | G4(R'?) | G4(RY)
Hy Z Z Z Z Z Z
H, Zs Zs Zs Zs Zs Zs
Hy Zs Zs Zs Zs Zs Zs
Hs 73 73 73 73 73 73
Hy | ZxZ3 | ZxZ3 | ZxZ3 | ZxZ3 | ZxZ3 | Zx73
Hs z3 z3 Z5 Z4 z3 Z5
Hg 73 73 73 73 73 73
Hy z3 Z3 Z3 78 VA z8
Hg |72 <73 |72 <75 | Z2 xZ§ | Z> xZ§ | Z°> x 7% | Z® x 7}
Hy z4 A z8 z0 z0 zi
Hig z3 73 78 73 zit 73t
Hy 73 78 78 7t 752 7
Hy | Zx7Z3 | Zx75 | Z2x 78 | 72 x 780 | 72 x 783 | 72 x 734
His Zs 73 78 5 Ax 758
Hyy 7o 73 78 Zat 7.6 78
His 0 73 z8 752 75 7.3°
Hig y/ TxTy | Z2xZ5 | Z2x 79 | Z3 x 78 | 73 x 748
Hyz 73 73 zZt 756 73
Hig 0 Z5 Z8 75 z%°
Hyg Zs 73 78 753 73t
Hog 0 ZxZ3 | ZxZ5 | 7> x 75 | 722 x 748
Hoy Zs VA zit 73°
Hap Zs 73 Z0 758
Hos 0 73 A 756
Hay Z ZxZy | Z2xZ§ | 7% x 752
Hos 73 73 733
Hag 0 Z3 73
Hoyz Zs 73 z3
Hog 0 Zx73 | ZxZ3
Hag Zs z8
Hsp Zs z3
Hs 0 73
H32 7 7, X ZQ
Hss 73
Hsy 0
Hiss Lo
H. 36 0

Table 6.5: Integer homology of Grassmannians.






Appendix A

Equivariant obstruction theory

This is an exposition on the equivariant obstruction theory, as introduced by tom Dieck
[30, Sec.I1.3], which also follows [14], Sec. 1]. In this thesis we use the equivariant obstruc-
tion theory to give a criterion of existence of equivariant maps. More precisely, if G is a
finite group, (X, A) is a relative G-CW complex, such that the action of G on X \ A is
free, and Y is a G space, the equivariant obstruction theory answers the question, whether
a G-equivariant map f : A — Y can be extended to a G-equivariant map F : X — Y.

Definition A.1. Let X be a CW complex and let G be a finite group. We say that X is
a G-CW complex or G-invariant CW complez if there is an action of G on X such that

(i) For every open cell e € X and for every g € G, the left translation g - e is also an
open cell in X, and

(ii) If g - e = e, then the map x +— g - x is the identity on e.

A relative CW complex (X, A) is said to be a relative G-CW complex if both X and A are
G-CW complexes, where the action of G on A is the restriction of the G-action on X.

Let G be a finite group and let (X, A) be a relative G-CW complex, such that the
action of G on X \ A is free. Since the action of G is free on every skeleton of X \ A, it
induces a free G-action on the cellular chain complex C, (X, A), which turns it into a chain
complex of free Z[G]-modules.

Let M be a Z[G]-module. The homology of the cochain complex
C&(X, A; M) = homg g (Ci(X, A), M) is the equivariant cohomology H(X, A; M) of (X, A)
with coefficients in M.

Let Y be a path connected G-space. Moreover, suppose that Y is n-simple for a fixed
integer n, i.e., suppose that the fundamental group 71 (Y, y9) acts trivially on m, (Y, yo) for
every 9o € Y. The G-action on Y induces a GG action on the set of free homotopy classes
[S™, Y], and since m1(Y) acts trivially on m,(Y), it induces a G-action on the homotopy
group m,(Y), as well. This turns 7, (Y") into a Z[G]-module. Therefore, we can talk about
equivariant cohomology Hf (X, A; m,(Y)) for every relative G-CW complex (X, A) with a
free G action on X \ A, and for every n-simple path connected G-space Y.

Let X} denote the k-th skeleton of X, and let [X},Y]s denote the set of homotopy
classes of G-equivariant maps X — Y.

95
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Proposition A.2 ([30, Thm.I1.3.10]). Let n > 1 be an integer. Then there exists an exact
obstruction sequence

n+1

0
[(Xnt1,Y]g —— im([Xn, Vg — [Xn-1,Y]q) —— HE (X, A;m0(Y)),

which is natural in (X, A) and Y.

If f: X1 — Y is a G-equivariant map that can be continuously and equivariantly
extended to a map X,, — Y, then its homotopy class [f] € im([X,,,Y]q — [Xn-1,Y]c)
defines an element o ! ([f]) € HATH(X, A; 7, (Y)), called an obstruction element. By the
exactness of the above sequence, the obstruction element ofs" ([f]) vanishes if and only if
there is a map in the homotopy class of f that continuously and G-equivariantly extends

to Xn+1-

The obstruction element can also be introduced on the cochain level. Let h: X,, = Y
be a G-equivariant map, let e € C,,1(X, A) be a generator, and denote by
@ : (D" S™) — (X,11, X,,) the attaching map for the cell e. Then the composition

h

S”MXn%Y

defines the obstruction cochain ogﬂ(h) € CgH(X,A; m™(Y)) given by
ot (h)(e) = [hoy] € [S", Y],

If m,(Y) 2 Z, then o5 (h)(e) = deg(h o ¢).
Consult [30} p. 115ff.] for the proof that the cohomology class of the obstruction cochain
is the obstruction element defined above.

The primary obstruction

Recall that (X, A) is a relative G-CW complex, such that the action of G on X \ A is free,
and that Y is a path connected, n-simple G-space, for some integer n > 1. Let us now
assume in addition that the space Y is (n — 1)-connected, thus that Y is nonempty, path
connected and that m;(Y) = 0 for every 1 <i <mn — 1.

Proposition A.3 ([30, Prop.I1.3.15]).
(i) For every G-map f: A —Y, there is a G-map h : X,, — Y, such that h|s = f.
(ii) Any two G-extensions of f are G-homotopic rel A on X,,_1.

(iii) Let H: Ax I —Y be a G-homotopy between G-maps f,g: A —Y, and let
k,h: X, =Y be G-extensi