
MEMORY EFFECTS IN THE

PERMEATION OF MOLECULES

THROUGH LIPID BILAYERS

am Fachbereich Physik der Freien Universität Berlin

eingereichte Dissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

Bartosz G. Kowalik

Berlin, Januar 2018





1. Gutachter / Betreuer: 2. Gutachter:

Prof. Dr. Roland R. Netz Prof. Dr. Felix Höfling
Freie Universität Berlin Freie Universität Berlin
Fachbereich Physik Fachbereich Mathematik und Informatik
Arnimallee 14 Arnimallee 6
D-14195 Berlin D-14195 Berlin

Tag der Disputation: 17.09.2018





Contents

Contents v

1 Introduction 1
1.1 Hydration Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Friction and Memory in Confinement . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Permeation of Water through a Lipid Bilayer . . . . . . . . . . . . . . . . . . 5

2 Characterization of Hydration Interactions between Lipid Membranes in Gel
and Fluid Phase 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Equilibration and Sampling . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Exponential Fits to Published Experimental Pressure Data . . . . . . 16
2.4.3 Conversion of Dr to Dw . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Data Conversion Using the Method of Lis et al. . . . . . . . . . . . . 19
2.4.5 Thermodynamic Extrapolation . . . . . . . . . . . . . . . . . . . . . . 20
2.4.6 Technical Details on the Interaction Decomposition . . . . . . . . . . 20
2.4.7 Force field Dependence of the Simulation Results . . . . . . . . . . . 21
2.4.8 Validation of the Thermodynamic Extrapolation . . . . . . . . . . . . 22
2.4.9 Entropy vs. Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Memory Effects in the Dynamics of Confined Small Molecules 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Memory Kernel Extraction . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Memory Kernels in Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Memory Kernels in Water–Glycerol Mixtures . . . . . . . . . . . . . . . . . . 36
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.1 Iterative Extraction of Memory Kernels . . . . . . . . . . . . . . . . . 42
3.7.2 Computation of Memory Kernels via Fourier transform . . . . . . . . 42
3.7.3 Parameter-based Extraction of Memory Kernels . . . . . . . . . . . . 44
3.7.4 Extraction of Memory Kernels from MSD . . . . . . . . . . . . . . . . 46

v



vi

3.8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.1 Initial Time in the GLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.2 Derivation of Eq. 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8.3 Derivation of Eq. 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8.4 Mean-Squared Displacement . . . . . . . . . . . . . . . . . . . . . . . 51
3.8.5 Computing γ from Correlation Functions . . . . . . . . . . . . . . . 52
3.8.6 Discretization of Volterra Equations . . . . . . . . . . . . . . . . . . . 53
3.8.7 Determination of Plateau Value γ. . . . . . . . . . . . . . . . . . . . . 53
3.8.8 Fitting the Long Time Decay of Memory Kernels . . . . . . . . . . . . 54
3.8.9 Radial Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . 56

4 Permeation of Water through a Lipid Membrane 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Round-Trip Time Method . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Autocorrelation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Results for the Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Results for the Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Lateral Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Transversal Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8.1 Derivation of Eq. 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8.2 Derivation of Eq. 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.8.3 Motivation of Eq. 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Summary and Outlook 77

A Constructing Membranes in Gel Phase 79

List of Publications 83

Bibliography 85

Abstract 99

Kurzfassung 101

Danksagung 103



Chapter 1

Introduction

In order to maintain their metabolism, cells require mechanisms for the transport of mo-
lecules through their outermost layers, which for the majority of cells consist of lipid bilay-
ers with embedded proteins [1]. These bilayers constitute a barrier which keeps molecules
that are crucial for the function of the cell inside and toxic molecules outside the cell, but
on the other hand, allow other molecules, which are metabolized by the cells, to pass
into the cell interior. Thus, lipid bilayers have to be selective permeable membranes [2].
Depending on their properties, molecules pass through a lipid bilayer by three different
mechanisms: Large molecules are transported into cells via endocytosis [3], where the lipid
bilayer actively engulfs the molecules such that they become incorporated into a lipid ves-
icle (phagosome), which then enters the cell interior. Ions [4] and medium-sized, polar
molecules like amino acids [5] are actively pumped through channel proteins which are
integrated in the lipid bilayer. Small, uncharged molecules like oxygen or carbon dioxide
can diffuse passively through the membrane [6]. Thus, for any living cell, the permeab-
ility of lipid membranes is a key parameter which controls the rate at which these small
molecules are exchanged with the environment outside the cell.

The permeability of lipid bilayers is determined by their structure: The vast majority of
lipid bilayers in human cells contain high fractions of phospholipids, which consist of two
hydrophobic hydrocarbon chains and a polar headgroup [7]. The interaction of the hydro-
carbon chains with water is unfavorable compared to the interaction of chains with each
other, which causes lipids to aggregate such that the chains are separated from water [8].
Depending on parameters like the lipid concentration in water or temperature, lipids as-
semble to micelles, bilayers or more complicated structures like hexagonal lattices [9, 10].
Structures which consist of water enclosed by lipid bilayers are called vesicles and are
speculated to be predecessors of the first cells [11]. In cells, the lipid bilayers incorporate
proteins, which for example function as surface receptors [12, 13] or control the adhesion
of the cell to surfaces or other cells [14]. Regarding the numerous tasks they fulfill, it be-
comes clear why the formation of lipid bilayers is widely regarded as being a key factor
for the development of life [15, 16].

Even within bilayers, lipids can adopt various phases depending on the pressure, temper-
ature and lipid composition [9]. Another important quantity that influences the lipid phase
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2 1. Introduction

of bilayers is the thickness of the water layer between them, which is called hydration
level [17]. The lipid phases are characterized by the ordering of the chains and the head-
groups and differ by their lateral lipid mobility, bilayer flexibility or area per lipid [18]. The
transitions between the phases have been measured in experiments [19, 20] and modeled
theoretically [21–23], which resulted in well-understood phase diagrams. Two phases of
major physiological relevance are the gel (Lβ) phase, which is mainly found in human
skin [24], and the fluid (Lα) phase, which is assumed by most membranes inside the hu-
man body [1]. In the gel phase, the hydrocarbon chains exhibit a distorted-hexagonal
ordering with the dihedral angles between their carbon atoms predominantly adopting a
trans configuration [25], whereas in the fluid phase, the chains are disordered with a high
density of gauche dihedrals. The increased order inside bilayers in the gel phase compared
to the fluid phase leads to a lower lateral diffusivity of the lipids and a higher permeation
resistance for molecules [26], which is essential for the barrier function of the lipid matrix
of the outermost skin layer, the stratum corneum [27]. The investigation of differences
and similarities in structure, dynamics and interactions between gel and fluid membranes
is thus of primary importance for the understanding of diffusion processes through skin,
and in particular for transdermal drug delivery [28, 29].

In order to obtain a complete picture of permeation processes through membranes, also
a theoretical framework is necessary, which yields a connection to the field of statistical
physics. The first attempts to understand permeation processes resulted in the homo-
geneous solubility–diffusion model [30, 31], where a solute first dissolves from the water
phase into the membrane, then diffuses through the membrane and finally enters the water
phase on the other side. In this model, only two parameters enter, which are the partition
coefficient of the solute between the water phase and the membrane and the diffusion
coefficient of the solute inside the membrane. The numerical values of these two quant-
ities are taken from measurements of the solubility and diffusion of the solute in liquid
alkanes, thus the membrane is assumed to be an alkane wall. Although being very simple,
already this model was able yield to quantitative agreement with experiments in some
cases [32]. A further step was made by the assumption that the diffusivity and the free
energy are not constant, but exhibit maxima and minima inside the membrane, and the
permeability of a membrane then results as an integral over the diffusivity and free energy
profiles [33]. With the emergence of powerful computers, simulations made it possible to
investigate the permeation process in molecular detail and compute these profiles for a
series of solutes [34–37]. The extraction of the profiles from the solute trajectories creates
the link between molecular biology and statistical physics.

The modeling of the time evolution of dynamic variables in a system with a large number
of degrees of freedom, which in this work is the motion of a solute through a lipid bilayer,
marks a central problem in the field of statistical physics. Starting from a many particle
system whose microscopic dynamics satisfy the principles of Hamiltonian mechanics, the
main idea of solving this task is the reduction of the number of degrees of freedom. This
leads to a description where only the dynamic variables of interest appear explicitly and
the influence of all other degrees of freedom is projected onto effective friction and noise
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terms. In the simplest case, this projection yields the one-dimensional Langevin equa-
tion [38–40]

mẍ(t) = − kBT
D

ẋ(t)−∇U(x(t)) + FR(t) . (1.1)

This equation is a stochastic differential equation for single particle trajectories x(t) includ-
ing an external potential U(x) and assuming a constant diffusivity D and temperature T.
The coupling of the dynamics of the particle to its environment is accomplished by the
random force FR(t), which is the sum of the forces on the particle from all other degrees of
freedom. The Langevin equation, as it is formulated in Eq. 1.1, is based on the assumption
that the time scale, on which the correlation function of the random force FR(t) decays, is
much smaller than the time scale of the particle dynamics. Furthermore, the amplitude of
the correlation of FR(t) is related to the diffusivity D, which is the main statement of the
fluctuation-dissipation theorem [41]:

〈FR(t)FR(t′)〉 = 2kBTγδ(t− t′) , (1.2)

where δ(t) is the Dirac delta-function and γ is the friction coefficient γ = kBT/D. In 1965,
Mori considered a system without the separation of time scales between the dynamics of
the particles and the environment [42], which led to the formulation of the generalized
Langevin equation

mẍ(t) = −
∫ t

0
dt′ Γ(t′)ẋ(t− t′)−∇U(x(t)) + FR(t) . (1.3)

In this equation, retardation effects in the interactions between the particle and its envir-
onment are taken into account by the memory kernel Γ(t). The diffusion constant D then
results from the integral kBT/D =

∫ ∞
0 dt Γ(t). As a consequence of the finite time scales

which occur in the dynamics of the environment, also the random force has a finite correl-
ation time and is related to the memory kernel via

〈FR(t)FR(t′)〉 = kBTΓ(t− t′). (1.4)

The generalized Langevin equation has been applied to various problems in physics, for
example the scattering of gas molecules at solid surfaces [43] or polymer dynamics [44].
Obviously, also a lipid bilayer constitutes a system which demands the introduction of
memory into the dynamics of the solute particle, since the dynamics within a lipid bilayer
covers a huge span of time scales from picoseconds to microseconds [45].

In this work, we will apply the Langevin formalism with memory to the trajectories of
water molecules in lipid bilayers obtained from molecular dynamics simulations in order
to compute the permeability of the membranes. As the permeability strongly depends on
the phase of the bilayer, we begin in Chapter 2 with the characterization of interactions
between hydrated membranes in the gel and fluid phase. In Chapter 3 we investigate
the influence of confining potentials on the memory kernels of solutes in liquids. The
techniques developed there are then used in Chapter 4 to compute the diffusivity of wa-
ter in Dipalmitoylphosphatidylcholine (DPPC) membranes, where we explicitly consider
memory effects.



4 1. Introduction

1.1 Hydration Repulsion

An important property of hydrated lipid bilayers is their mutual repulsion at distances
in the nanometer range. This so-called hydration repulsion, which was first discussed by
Langmuir in 1938 [46], universally acts between all kinds of lipid membranes, thus ensur-
ing a lubrication of cells at pressures up to the kilobar regime [47]. The hydration repulsion
is quantified in pressure–distance curves, where the water layer thickness between the
membranes is measured as a function of the applied pressure, which is either osmotic or
mechanical [48, 49]. In general, an exponential relation between the pressure and the mem-
brane separation is found, with decay lengths in the range from 0.1 nm to 0.4 nm [50–52].
Although a large amount of experimental data exists for various bilayer systems [48, 53],
the actual mechanism was under debate until very recently, with several theoretical con-
cepts that served as a possible explanation [54–56]. In the last years, molecular dynamics
(MD) simulations provided insight into this question and indicated that it is an interplay of
entropic and enthalpic forces that results in the hydration repulsion [57, 58], however not
all details have been settled yet. The investigation of hydration forces in systems, which
only differ by their lipid phase, paves the way for the in-depth understanding of mem-
brane interactions, since the chemical surface composition of these system is identical. This
allows for a separation of their influence on the hydration repulsion from other factors.

In Chapter 2 we review all experimental data for the hydration repulsion between DPPC
bilayers in the gel and the fluid phase, which is a common lipid in the human tissue [59].
In order to quantify the membrane separation, the repeat distance Dr, which is the sum of
the water layer thickness Dw and the lipid membrane thickness Dl, is measured by scatter-
ing experiments. Both Dw and Dl cannot be measured directly, hence a theoretical model
for the bilayer thickness Dl under applied pressure is required to determine Dw. Since
in literature these models differ from each other, no standard definition of Dw has been
established, which results in inconsistent pressure–distance curves [60]. Therefore we first
back-transform the experimental data into a representation of the pressure p as a function
of the repeat distance Dr, which is the sum of the bilayer thickness and Dw. In a next step,
we perform atomistic MD simulations of such hydrated bilayer systems in both phases and
measure the hydration pressure at constant chemical potential [57, 58]. Using an unique
transformation from Dr to Dw for all experiments, which is consistent with the definition
via the Gibbs dividing surface in our simulations, we compare our results to the experi-
ments. In order to gain insight into the underlying mechanism of the hydration repulsion,
we then decompose the hydration pressure p into a direct membrane–membrane interac-
tion pdir and an indirect water-mediated interaction pind. The results of the decomposition
are then discussed in the scope of the theoretical models found in literature.

1.2 Friction and Memory in Confinement

The Langevin equation in Eq. 1.3 is based on the assumption that the memory kernel Γ(t),
and thus the diffusivity D, is independent of the position x and the potential U(x). If
this equation is used to model the dynamics of a particle in an inhomogeneous system
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with a position-dependent diffusivity D(x), as it the case in a lipid bilayer, a confining
potential U(x) has to be applied to the particle such that the variation of D(x) within
the potential is negligible. In earlier MD simulation studies, this has been accomplished
by completely restraining the particle dynamics during the computation of the diffusivity
via Eq. 1.2 [34–36]. The investigation of the dynamics of molecules in confinement is not
restricted to simulations: For example the dynamics of interfacial water at proteins or
membranes is influenced by an interaction potential, leading to the formation of solvation
shells or layers [61, 62]. This makes the effect of confining potentials on the diffusivity
worth being analyzed in detail both from a methodological as well as physical point of
view.

In Chapter 3 we measure the friction coefficient γ for five molecules (methane, water, Na+,
Na− and glycerol) in water, which are subject to harmonic potentials of varying stiffness.
We discuss the dependence of the friction on the potential stiffness on the basis of the
memory kernels of the solutes, which are extracted from the solute trajectories via a mod-
ified iterative scheme based on the method of Berne et al. [63]. For the glycerol molecule
as solute, we increase the viscosity of the solvent by replacing water with three different
water–glycerol mixtures. This leads to a magnification of the confinement-dependence of
the friction, which we explain by comparing the time scales of the solute motion with the
time scales of the solvent relaxation.

1.3 Permeation of Water through a Lipid Bilayer

Since in general particle fluxes are too small to be measured directly in MD simulations,
it is necessary to relate the permeability to quantities which can be extracted from such
simulations. From the diffusion equation it can be deduced that the permeability P is
given by [33]

1
P
=
∫ z2

z1

dz
e∆F (z)/kBT

D(z)
, (1.5)

where ∆F (z) is the free energy profile and D(z) is the diffusivity profile of the membrane.
The upper and lower boundary of the membrane, z1 and z2, are chosen such that they
are located in the water phase outside the membrane. This equation has been applied in
various studies to determine the permeation coefficient of solutes through membranes [34–
37]. For water molecules it was shown that the permeation barrier is mainly due to the free
energy F (z), which exhibits a pronounced maximum in the membrane center, while the
diffusion profile D(z) only yields a minor contribution to this barrier.

In Chapter 4, we perform MD simulation of water molecules in DPPC bilayers and imple-
ment our technique introduced in Chapter 3 to compute the memory kernels Γ(t) of both
the transversal and lateral water dynamics. Following a quantitative analysis of the long
time behavior of the mean-squared displacements in lateral direction, we develop a model
for the long time behavior of Γ(t), which is then integrated to obtain the diffusivity D. By
comparing this result to the diffusivity profile computed from round-trip times, a method
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derived on the basis of the memoryless Fokker-Planck equation [64, 65], and to literat-
ure [34, 35], we study how the consideration of memory affects the diffusion coefficient of
water molecules inside the membrane. This is followed by an analysis of the contributions
of the free energy and the diffusivity to the permeation resistance of lipid bilayers.



Chapter 2

Characterization of Hydration
Interactions between Lipid
Membranes in Gel and Fluid Phase

Bibliographic information: Parts of this chapter have previously been published. Reprinted
with permission from Ref. i. Copyright 2017 American Chemical Society.

2.1 Introduction

Even electrically neutral polar surfaces repel in water and exhibit for small separations,
when the last water layers are removed, a repulsive force that is commonly called hy-
dration force [55]. The mechanism behind this force and even its name are intensely de-
bated [67]; what is generally acknowledged, however, is that it is ubiquitous and acts
between self-assembled membranes and surfactant layers [50], colloids [68], clays and bio-
molecules such as DNA [69] and proteins [70]. Hydration forces are thus important for
diverse processes such as membrane fusion and adhesion [71], soap bubble stability, pro-
tein adsorption [72] as well as lubrication of biological [73] and synthetic materials [74].

Different concepts were invoked to rationalize hydration forces. As early discussed by
Langmuir [46], an effective surface repulsion was suggested to arise from the removal of
strongly bound hydration layers, hence the name hydration force (to which we stick for
historic reasons without reference to the implied mechanism). The overlap of water order-
ing profiles at two opposing surface was theoretically shown to produce an exponentially
decaying repulsion [54, 75] and reasoned to explain the universality of hydration forces
observed for different surfaces [55]. On the other hand, the presence of oscillatory forces
between stiff surfaces measured with the surface-force apparatus [76], and in particular
the huge spectrum of observed hydration force amplitudes and decay lengths for different
surfaces, was used to argue that additional, direct surface interactions (encompassing en-
tropic effects due to the perturbation of conformational surface degrees of freedom) must
play an equally important role for small surface separations [56].

7



8 2. Characterization of Hydration Interactions between Lipid Membranes in Gel and Fluid Phase

Historically, experiments on lipid bilayers for several reasons played a pivotal role: For
given lipid chemistry and temperature, and in the absence of cosolutes, the self-assembled
bilayer structure uniquely depends on a single parameter, namely the mixing ratio of water
and lipids, thereby excluding ambiguities related to different preparations or compositions
as for most solid surfaces. Besides, for neutral lipids there is no need to subtract the elec-
trostatic double-layer repulsion, a procedure which adds significant arbitrariness to the
definition of the hydration force for charged surfaces [77]. In addition, osmotic stress tech-
niques allow to measure the repeat distance in a multilamellar stack as a function of the
imposed osmotic pressure with high precision and over a vast range of pressures [78]. Fi-
nally, the presence of many surfaces dilutes contaminations and increases accuracy due to
the parallel detection of multiple repeat distances in one measurement. As a matter of fact,
supported bilayers exhibit similar hydration forces as free bilayer stacks [79], demonstrat-
ing that undulation forces (which are suppressed for supported bilayers) are negligible for
small bilayer separations and only become important at large separations near the swelling
limit [80, 81].

However, one of the key experiments on phospholipid bilayers led to puzzling results,
which still severely hampers the complete understanding of hydration forces. Phosphol-
ipid membranes display a main transition from an ordered gel-like state at low temper-
ature to a disordered fluid state at high temperature, which is well studied due to its
physiological relevance [7, 82, 83]. The chemical surface composition does not change dur-
ing this transition, only the surface structure; the comparison of hydration forces in the gel
and fluid states is thus of paramount importance since it should allow to decide whether
direct surface interactions or water ordering, the latter presumably being similar in the gel
and fluid states, are the dominating contributor to hydration forces. The first experimental
study indeed yielded different hydration force curves as a function of surface separation
in the gel and fluid states, suggesting that hydration forces are not solely caused by wa-
ter effects [48]. However, later experiments with the same phospholipid gave dissonant
results [84–86]. It was early on suggested that this comes from different definitions of
the interface position between water and bilayers used in the analysis of the experimental
data [60], but this was never settled.

In this paper we first demonstrate that all five published experimental hydration pressure
curves for Dipalmitoylphosphatidylcholine (DPPC), some of which in the gel and some
in the fluid state, are consistent when plotted as a function of the bilayer repeat distance
Dr, which is the primary quantity measured in scattering experiments. For this we undo
the conversion of experimentally measured repeat distances Dr to reported surface sep-
arations, for which different definitions have been used. We then convert Dr to the wa-
ter slab thickness Dw using the thermodynamic definition of the Gibbs dividing surface.
We next show that the experimental data quantitatively agree with simulations of DPPC
bilayers performed at low temperature in the gel state and at high temperature in the fluid
state when plotted as a function of Dw. This comparison reveals that not only the pres-
sure amplitudes but also the decay lengths are vastly different in the gel and fluid states,
hinting that hydration forces are not solely caused by water ordering effects. Finally, and
most importantly, further analysis of the simulation results shows that the total interac-
tion pressure results from the near cancellation of attractive direct membrane–membrane
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interaction and repulsive indirect interaction, the latter being comprised of water–water
and water–membrane interactions. Curiously, direct and indirect interactions have almost
the same magnitude, both in the gel and the fluid states, and for separations Dw > 1 nm
exhibit similar exponential decay lengths of about λ ≈ 0.2 nm. The sum of direct and
indirect forces, which together make up what is called the hydration force, is smaller than
both direct and indirect force by a factor of roughly ten. The hydration force decay length
turns out to be λgel ≈ 0.2 nm in the gel and λfluid ≈ 0.4 nm in the fluid state. Thus, the
hydration force cannot be explained by water-ordering or direct surface–surface interac-
tions alone, simply because it is the sum of these two competing contributions of almost
equal magnitude. Due to the near-cancellation of the direct and indirect contributions, the
resulting hydration force depends on fine details of both contributions in a very subtle
manner. It comes at no surprise that the hydration force behaves very differently from
these contributions, both in terms of its amplitude but also in terms of its range (i.e., its
exponential decay length). This should be kept in mind when trying to explain hydration
forces in terms of simple theoretical concepts (which typically consider only one part of
the problem) and is vividly demonstrated by the deviating hydration forces in the gel and
fluid states.

2.2 Results

In Fig. 2.1 (a) we reproduce all available experimental data [48, 84–86] for the osmotic
pressure p of DPPC multilamellar stacks as a function of the published water slab thick-
ness Dw in a log–lin representation, two data sets correspond to the gel state (squares) and
three to the fluid state (crosses). Most strikingly, different data sets in the gel and fluid
states disagree among each other, as was noted before [87], and give rise to significantly
different decay lengths λgel = 0.11 nm, 0.18 nm and λfluid = 0.18 nm, 0.22 nm, 0.26 nm
(indicated by straight lines, see Table 2.1 in Sec. 2.4.2) as extracted from fits to a single ex-
ponential p = p0e−Dw/λ. Thus, while the decay lengths in the gel and fluid states differ, the
inconsistencies among different experiments preclude any interpretation of these results.

In fact, different experiments used different methods to convert the experimentally meas-
ured lamellar repeat distance Dr, which is the sum of the water slab thickness Dw and
the lipid membrane thickness Dl, to the water slab thickness Dw: In one method, Dw is
derived from the known lipid–water mixing ratio and assuming water and lipids to be in-
compressible [48]. In a different treatment the lipid membrane thickness Dl is determined
from electron density profiles derived from X-ray diffraction and from that Dw = Dr − Dl

is computed. In the third treatment Dw follows from the bilayer area compressibility on
the basis of Dl at one reference pressure [85, 86] (see Sec. 2.4.3 for details on the different
conversion methods).

In Fig. 2.1 (b) we present the same experimental pressure data as a function of the lamellar
repeat distance Dr. Note that in one case the p(Dr) data was not given in the original pub-
lication [48], so we converted the data from Dw to Dr. We also include microcalorimetry
data [88] that reports the osmotic pressure p as a function of the water–lipid ratio. Excellent
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FIGURE 2.1: Experimental osmotic pressure data for DPPC multilamellar stacks. (a), Pressure
data for DPPC in the gel (squares) and fluid (crosses) states as a function of the reported water slab
thickness Dw. Black lines indicate exponential fits. (b), Pressures as a function of the reconstructed
lamellar repeat distance Dr. Black lines represent exponentials with decay lengths λfluid = 0.20 nm
and λgel = 0.10 nm.

agreement between all available experimental data is observed, which endorses that mul-
tilamellar systems constitute exceptionally robust experimental systems. We conclude that
deviations between experiments in Fig. 2.1 (a) are indeed caused by different conversion
methods used to derive Dw from the experimentally measured repeat distance Dr. Clearly,
for pressures below 500 bars Fig. 2.1 (b) suggests an exponential pressure decay versus Dr

with decay lengths that are very different in the gel and fluid states, λgel = 0.10 nm and
λfluid = 0.20 nm (indicated by black lines), whereas in the gel phase for pressures above
500 bars the experimental data deviate from single exponential, as was noted before [88].
Whenever we fit single exponentials to experimental and simulation data, we do not im-
ply that hydration pressures are in fact purely exponential, we rather intend to quantify
the decay of the hydration pressure in simple terms.

Actually, the membrane thickness Dl depends sensitively on pressure, reflected by the fact
that the relation between Dr and Dw is highly non-linear (see Sec. 2.4.3). The function
p(Dr) in Fig. 2.1 (b) includes hydration force and membrane compression effects, only
the function p(Dw) corresponds to the hydration force per se, which thus requires careful
definition of Dw.

Molecular dynamics (MD) simulations are able to accurately model hydrated bilayer sys-
tems [89] and thus became an eminent tool for connecting theory with experiment [90]. A
major difficulty for the investigation of the hydration repulsion is the fixed chemical po-
tential of water, which is solved either by explicitly simulating a large water reservoir [91]
or by grand–canonical simulations [91–93], however at the expense of large computation
resources. The recently developed thermodynamic extrapolation method [57] allows us
to efficiently perform simulations at prescribed chemical potential and thus to obtain the
interaction forces between membranes with high precision, both in the fluid and in the
gel state. Due to the finite size of our simulation box, which in lateral directions typically
measures 4 nm, our atomistic MD simulations do not account for membrane undulations
with wave lengths larger than approximately 4 nm, thus the repulsive undulation force
is reduced in our simulation setup. However, the undulation force has been shown to
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FIGURE 2.2: Simulation setup. Simulation snapshots of a DPPC lipid bilayer in the (a) gel Lβ

phase at Dr = 6.28 nm and Dw = 1.85 nm and in the (b) fluid Lα phase at Dr = 5.19 nm and
Dw = 1.48 nm. The simulation box contains one periodically replicated hydrated bilayer, which
for clarity is duplicated in the z direction. (c), Chemical structure of a DPPC lipid.

be negligible compared to the hydration repulsion for separations below 1.5 nm [80], so
our simulations allow to realistically model the bilayer forces at low hydration. Snapshots
of our simulations in fluid and gel states together with the DPPC chemical structure are
presented in Fig. 2.2.
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FIGURE 2.3: Osmotic pressure data using a consistent definition of the water slab thickness.
Comparison of bilayer pressure from simulations (triangles) and experiments (squares and crosses)
as a function of the water slab thickness Dw in the (a) gel and (b) fluid states. Exponential fits to the
experimental data give decay lengths λgel = 0.21± 0.01 nm (black broken line) for a fit range [0, 1.8
nm] and λfluid = 0.38± 0.02 nm (black solid line) for a fit range [0, 2.6 nm]. Fits to the simulation
data yield decay lengths λgel = 0.22± 0.02 nm (blue broken line) and λfluid = 0.36± 0.02 nm (red
solid line) for fit ranges [0, 1.3 nm] and [0, 1.4 nm], respectively, restricted to the distance range
where pressures are strictly positive.

In Fig. 2.3 we compare the interaction pressure from simulations in the osmotic pres-
sure ensemble at fixed hydrostatic pressure of 1 bar (triangles) with experimental data
(squares and crosses) in (a) gel and (b) fluid states as a function of the water slab thick-
ness Dw. We calculate Dw based on the Gibbs-dividing surface position, which amounts
to Dw = Nwv0

w/A, where Nw is the number of water molecules in one layer, v0
w is the
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volume per water molecule in bulk, and A is the system area. Incidentally, this is the
same conversion used in one experiment [48] and is based on the unambiguous thermody-
namic definition of the membrane–water interface position. We use the same conversion
for all experimental data sets. For both gel and fluid states, we observe excellent agree-
ment among experimental and simulated pressure curves. The experimental decay length
in the gel state is λgel = 0.21 nm, in the fluid state we obtain λfluid = 0.38 nm. Thus the
experimental decay lengths for p(Dw) differ among fluid and gel states and at the same
time deviate significantly from the decay lengths of p(Dr) in Fig. 2.1 (b). This clearly rules
out a pure water-mediated mechanism for the hydration repulsion, because in this case
not the decay length but only the hydration force amplitude should differ in the gel and
fluid states. Fits to the simulation data yield λgel = 0.22 nm and λfluid = 0.36 nm, hence in
good agreement with the experiments. This validates our further simulation analysis.

In order to gain insight into the origin of the hydration force and into its pronounced
difference in the gel and fluid states, we decompose the total pressure p into the direct
pdir and indirect parts pind using our previously introduced decomposition scheme [57],
where pdir contains all membrane–membrane interactions, and pind = p − pdir contains
the remaining water–water and water–membrane forces. For the calculation of the direct
pressure contribution we explicitly add the z-components of the forces that act between
all atoms in two bilayers across a water slab, while the indirect contribution contains all
forces between one bilayer and an adjacent water slab (see Sec. 2.4.6 for details). This
corresponds to a pressure decomposition on a dividing surface that is deformed such that
it does not cut into lipid molecules. Note that this splitting is independent of the position
and shape of the dividing surface and thus adds minimal ambiguity to the decomposition.
Since the water chemical potential can not be uniquely separated into direct and indirect
contributions, the pressure decomposition is done in the hydrostatic ensemble at fixed
water chemical potential (see Sec. 2.4.5 for details). We have previously shown that the
two ensembles at fixed pressure and at fixed water chemical potential give rise to quite
similar pressure curves [58].

In Fig. 2.4 we plot the total pressure p together with the indirect pressure pind and (since
it is attractive) the negative direct pressure −pdir in the gel and fluid states. The attractive
nature of the direct pressure has been explained by dipole–dipole interactions between
lipid headgroups on two adjacent bilayers [94], whereas the indirect pressure has been
demonstrated to arise from a combination of several force contributions that involve water
adsorption on the bilayer surface as well as bilayer-induced water ordering [57].

We observe that −pdir and pind are very similar to each other and thus nearly cancel, con-
sequently, the total pressure p = pind + pdir is much reduced and smaller by roughly an
order of magnitude. This holds for both gel and fluid data. The direct and indirect pres-
sures exhibit for separations Dw > 1 nm an exponential decay which is characterized by
surprisingly similar decay lengths, roughly given by λgel = 0.19 nm in the gel state and
λfluid = 0.22 nm in the fluid state (indicated by blue and red solid lines). The sum of these
contributions, the total pressure p, however shows different exponential decay lengths of
λgel = 0.22 nm in the gel and λfluid = 0.36 nm in the fluid states, as already shown and
discussed in Fig. 2.3. The significant difference between the gel and fluid total pressures
is thus caused by relatively tiny differences in the direct and indirect contributions, which
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FIGURE 2.4: Pressure decomposition. Decomposition of the simulated pressure (triangles) into
direct interactions between DPPC membranes −pdir (crosses) and the indirect contribution pind =
p− pdir (circles) in the gel (blue) and fluid states (red). Colored lines are simultaneous exponential
fits to the direct and indirect contributions for Dw > 1 nm with decay lengths λgel = 0.19 nm in
the gel (blue line) and λfluid = 0.22 nm in the fluid state (red line). The exponential fits to the total
pressures from Fig. 2.3 are included as black lines. In the inset −pdir and pind are shown in linear
scale.

are massively amplified since pdir and pind almost exactly cancel. To look into this, we
plot −pdir and pind in a lin–lin representation in the inset of Fig. 2.4. There it is seen that
−pdir in the fluid and gel states are rather similar to each other, while the indirect (water-
mediated) contributions pind differ substantially for small separations. We conclude that
the difference between the total pressures p in fluid and gel states is mainly caused by a
relatively small difference in the water-mediated indirect contribution pind. The different
decay lengths of the total pressure p in fluid and the gel states comes as a surprise, since
the decay lengths of the direct and indirect contributions do not differ much between the
gel and fluid states. Given the similarity of the direct and indirect contributions, it be-
comes clear why an understanding of the hydration force could not be gained from theor-
etical consideration of the water-mediated or the direct membrane–membrane interactions
alone, which has been the prevalent mode of thinking in the literature so far. It transpires
that elucidating the origin of hydration forces requires simultaneous description of dir-
ect and indirect pressure contributions. Because of the near cancellation of the opposing
pressure contributions theoretical descriptions must be very accurate in order not to make
wrong predictions for the net hydration pressure.

2.3 Methods

We use the Gromacs simulation package [95] with the Berger lipid force field [96–98] and
the SPC/E water model [99]. A comparison with simulations results that use different
force fields for lipids and water is shown in the Sec. 2.4.7, which demonstrates that our
results are robust with respect to force field variations. The assisted freezing method [100]
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is used for the construction of fully hydrated membranes in the Lβ (gel) phase (Fig. 2.2 (a))
at a temperature of T = 270 K, controlled by the v–rescale thermostat [101]. This fully
hydrated membrane consists of 2× 36 DPPC lipids hydrated by 40 water molecules per
lipid. The structure is equilibrated at T = 300 K and afterwards gradually dehydrated by
one molecule per lipid and each time equilibrated for 5 ns down to a hydration level of
3 waters per lipid molecule. All equilibrations are performed in the NpT ensemble (See
Sec. 2.4.1 for details). To improve sampling, we use four different starting configurations,
which are independently dehydrated five times with different random seeds, giving 20 dif-
ferent systems per hydration level. For production runs in the Lα fluid phase (Fig. 2.2 (b))
the temperature in the gel state is increased to 330 K, above the melting temperature of
DPPC membranes in experiments and in simulations [23, 102–104].

All simulations are performed with periodic boundary conditions and a time step of 2 fs.
An anisotropic pressure coupling is employed using the Berendsen barostat [105] with
a time constant of τP = 2 ps. The dispersion part of the van-der-Waals interactions is
modeled via Lennard-Jones potentials with a cut-off at 0.9 nm. This treatment does not
capture the long-range van-der-Waals attraction, but this effect is negligible in the separa-
tion range relevant for the present work [58]. Electrostatics are simulated by the Particle–
Mesh–Ewald (PME) method [90, 106] with a 0.9 nm real-space cutoff. Prior to the pro-
duction run, fluid and gel membranes at all hydration levels are equilibrated for at least
5ns. In the osmotic ensemble, the pressure is set to p = 1 bar and the chemical potential
µ is measured using the Test Particle Insertion method [107] for the van-der-Waals con-
tribution and thermodynamic integration with 18 values along the TI reaction coordinate
for the electrostatic contribution, which is processed by the Multistate Bennett Acceptance
Ratio (MBAR) method [108]. Each system is simulated for 5 ns, so that the total simulation
time is 100 ns per hydration level and one value of the TI reaction coordinate. As we run
simulations for 17 hydration levels in the gel phase and 16 in the fluid phase, our total sim-
ulation time exceeds 60 µs. From the 20 different systems per hydration level the statistical
error of the chemical potential and thus of the osmotic pressure is estimated.

In the MD simulations, the water slab thickness Dw is defined by Dw = Nvw/A, where N
is the number of water molecules in the system, vw is the volume of one water molecule
in bulk and A is the simulation box area. We measured ρbulk(T = 300 K) = 985 kg/m3

and ρbulk(T = 330 K) = 967 kg/m3 in water bulk simulations, which correspond to vw =

0.0304 nm3 for T = 300 K and vw = 0.0309 nm3 for T = 330 K. With this definition,
the water slab thickness equals the distance between the Gibbs dividing surfaces that are
located on both sides of the water slab.

Using the equation ∆µ = −v0
w p (see Sec. 2.4.5 for the derivation), the results for µ are

converted into equivalent osmotic pressures. The hydrostatic simulations, used to decom-
pose the pressure into direct and indirect parts, employ the predicted osmotic pressure.
We explicitly verified that the resulting chemical potential equals the bulk water chemical
potential.
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2.4 Supplementary Material

2.4.1 Equilibration and Sampling

Sampling of the phase space is a major issue in all MD simulations of hydrated mem-
branes, especially when it comes to low hydration levels. In Fig. 2.5 we demonstrate that
our system is equilibrated, since there is no drift in any of the structural quantities, rep-
resented by the mean tilt angle 〈θ〉 of the P-N-vector in the headgroup, the simulation
box area A and the lamellar repeat distance Dr. Also the system enthalpy H is constant,
which means that there are no major rearrangements of the bilayer structure occurring.
On the other hand, we see fluctuations around the mean in these structural quantities on
time scales of more than 100 ns. This is quantified in Fig. 2.6, where the autocorrelation
functions

C(t) =
1

C0 (T − t)

∫ T−t

0
dt′X(t′ + t)X(t′) with C0 =

1
T

∫ T

0
dt′X2(t′) (2.1)

are shown. Here, T denotes the simulation length and X the quantity of interest. All
autocorrelations decay on time scales of approximately 100 − 200 ns, hence a trajectory
that sufficiently samples all configurations would require to be of a length of several hun-
dred nanoseconds. For this reason we base our analysis on 20 independently constructed
structures that are each simulated for 5 ns to assure that we are sampling the entire config-
uration space in a reasonable computation time.
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FIGURE 2.5: From top to bottom: The average tilt angle 〈θ〉 of the P-N–vector, the simulation box
area A, the lamellar repeat distance Dr and the system enthalpy H as a function of time for a 1.9 ¯s
long simulation of a lipid bilayer in the gel phase with 4 water molecules per lipid.
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FIGURE 2.6: Normalized autocorrelation functions defined in Eq. 2.1 of the average tilt angle 〈θ〉 of
the P-N–vector (a), the simulation box area A (b), the lamellar repeat distance Dr (c) and the system
enthalpy H (d) as a function of time for a 1.9 ¯s long simulation of a lipid bilayer in the gel phase
with 4 water molecules per lipid.

2.4.2 Exponential Fits to Published Experimental Pressure Data

In Table 2.1 the parameters for fits of p = p0 exp (−Dw/λ) to the published experimental
pressure data in Fig. 1 are presented.

group λ [nm] ∆λ [nm] ln p0 [ln bar] ∆ ln p0 [ln bar]
Lis 25 ◦C 0.176 0.011 9.47 0.57

McIntosh 20 ◦C 0.108 0.004 10.18 0.27
Lis 50 ◦C 0.258 0.010 10.06 0.39

Gawrisch 50 ◦C 0.224 0.013 10.61 0.50
Petrache 50 ◦C 0.175 0.012 7.12 0.43

TABLE 2.1: Parameters for fits of p = p0 exp (−Dw/λ) to the published experimental data in Fig. 1
(a) (main text).
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2.4.3 Conversion of Dr to Dw

2.4.3.1 Method by Lis et al.

Lis et al. [48] use lipid–water mixtures of known lipid weight fraction ΦL and measure the
lamellar repeat distance Dr by X-ray diffraction. The water slab thickness is then given by

DLis
w =

Dr

1 + ΦLvL
(1−ΦL)vw

, (2.2)

where vw and vL denote the partial specific volumes of water and lipids, respectively. For
water, a value of vw = 1 cm3/g is used independent of Dw, whereas for the lipids in the
gel and the fluid phase the values from the work of Tardieu et al. are taken [109]. There it
is assumed that a hydrocarbon chain in the gel state takes 0.95 the volume of a chain in the
fluid state. Since the inverse density of a membrane in the fluid state is vfluid

L = 1 cm3/g,
we hence arrive at a value of vgel

L = 0.95 cm3/g for the gel phase. Furthermore, it is
assumed that the membrane is incompressible in both phases, thus these values do not
change with hydration. From our simulations we obtain values of vgel

L = 0.94− 0.95 cm3/g
and vfluid

L = 1.03− 1.04 cm3/g, which are not too different from these assumptions (see
Fig. 2.7).

Lis et al. [48] report the molecular force between two lipids instead of the pressure. From
the area per lipid as a function of the lipid weight concentration, which is also measured
in their work, we transform the reported force into a pressure.

As already mentioned in the main text, we choose the method introduced by Lis et al. to
transform all experimental data from Dr to Dw, since it allows for an unambiguous de-
termination of the water content between the membranes. In all other works the exact
water content between the membranes is not determined.
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FIGURE 2.7: Partial specific volume vL of DPPC as obtained from the simulations in the gel state
(triangles) and the fluid state (squares) under the assumption that vw is independent of Dw.
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2.4.3.2 Method by McIntosh and Simon

McIntosh et al. [84] determine the water slab thickness from X-ray diffraction experiments.
In their work, they fit continuous structure amplitude functions to the measured data.
These functions are then Fourier transformed to obtain electron density profiles for egg
phosphatidylcholine bilayers that are used to calculate the bilayer thickness Dl as well as
the bilayer repeat distance Dr. Specifically, using space-filling models, it is assumed that
the distance between the electron density peaks 1 nm equals the membrane thickness Dl.
The water slab thickness then follows as DMcInt.

w = Dr − Dl. Our simulations (Fig. 2.8)
are consistent with a constant membrane peak distance for the lipid density profiles in the
gel phase, in agreement with experiments [110]. Only pressures larger than 1000 bar lead
to a slight increase of the peak distance in z-direction, which is also in agreement with
experimental findings [84].
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FIGURE 2.8: Density profiles of DPPC lipids obtained from simulations at four hydration levels in
the gel phase.

2.4.3.3 Methods by Petrache et al. and Gawrisch et al.

Petrache et al. [86] as well as Gawrisch et al. [85] use the bilayer area compressibility K to
calculate the bilayer thicknesses [50]. They derive the relation

Dl/D?
l =

K + (p− p?)Dr

K + (p− p?)D?
l

(2.3)

with which they obtain the bilayer thickness Dl without measuring the lipid weight frac-
tion ΦL of the lipids. In order to apply this formula, they use the bilayer thickness D?

l
for one reference pressure p?. The reference values D?

l and p? are obtained either by a
measurement at one reference weight fraction (Gawrisch et al. [85]) or by X-ray diffraction
(Petrache et al. [86]).
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2.4.3.4 Back Conversion

As shown above, each experimental group uses a different method to convert Dr to Dw,
which relies on structural quantities or additional assumptions. However, a transform-
ation from p(Dr) data to p(Dw) data using one conversion method for all data sets is
not straightforward, since the needed experimental specifications are not published in all
papers. Hence, for example, the conversion method of Lis et al. [48] cannot be applied dir-
ectly to the published p(Dr) data by McIntosh and Simon [84], since the weight fractions
are not published. We thus use a quadratic function of the form Dr(Dw) = aD2

w + bDw + c
to fit the relation between Dr and Dw for each experimental data set, which allows to in-
terconvert all experimental data between different definitions of Dw. The resulting graphs
are presented in Fig. 2.9 and the fitting parameters are listed in Table 2.2.
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FIGURE 2.9: Lamellar repeat distance Dr as a function of the water slab thickness Dw for the gel
phase (a) and the fluid phase (b) obtained from different experiments. To all data sets we fit a
function of the form Dr(Dw) = aD2

w + bDw + c. Note that for the data representation in Fig. 3 in
the main text, only the fits to the data of Lis et al. are needed.

group a [1/nm] b c [nm]
Lis 25 ◦C 0.119 0.159 5.60

McIntosh 20 ◦C 0.603 −0.020 5.60
Lis 50 ◦C 0.197 −0.187 5.28

Gawrisch 50 ◦C 0.214 −0.081 4.96
Petrache 50 ◦C 0.078 0.780 4.88

TABLE 2.2: Parameters of fits according to Dr(Dw) = aD2
w + bDw + c of experimental data in

Fig. 2.9.

2.4.4 Data Conversion Using the Method of Lis et al.

Table 2.3 shows the results of the fits of the function p = p0 exp (−Dw/λ) to the pressure
distance curves after application of the conversion method used by Lis et al [48].
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Experim
ents

gel

Sim
ulation

300
K

Experim
ents

fluid

Sim
ulation

330
K

ln p0 [ln bar] 8.72 9.51 7.00 7.69
∆ ln p0 [ln bar] 0.20 0.31 0.37 0.18

λ [nm] 0.207 0.222 0.384 0.363
∆λ [nm] 0.007 0.021 0.026 0.028

TABLE 2.3: Parameters of fits according to p = p0 exp (−Dw/λ) of the experimental and simulation
data in Fig. 3 in the main text.

2.4.5 Thermodynamic Extrapolation

The Gibbs–Duhem equation for bulk water, Nwdµ = −SdT + Vdp, evaluated at constant
temperature yields (

∂µ

∂p

)
T
=

V
Nw

= vw(p)

⇒ ∆µ = µ∞ − µ =
∫ p∞

p
vw(p′)dp′ , (2.4)

with the molar volume of water vw and the interaction pressure p that acts between the
membranes. For pressures up to kilobars the water compressibility can be practically neg-
lected [57], hence Eq. 2.4 simplifies to

∆µ = vw (p∞ − p) = −v0
w p , (2.5)

where the pressure p∞ in the bulk reference system can be neglected and is set to zero.
Thus in bulk water a reduced chemical potential is equivalent to a reduced pressure. We
use the same equation to convert measured chemical potentials in the osmotic ensemble
at p = 1 bar to equivalent osmotic pressures, exactly as is done in experiments that use
osmotic pressure techniques.

2.4.6 Technical Details on the Interaction Decomposition

The decomposition of the hydration repulsion is done by rerunning simulation trajector-
ies where the simulation box is expanded in the z-direction such that on each side of the
water slab, which is in the center of the box, there is only one monolayer of the membrane.
This way interactions with periodic images are eliminated. In order to measure the dir-
ect contribution pdir, also the water slab is removed, thus only the opposing membrane
monolayers that interact with each other across free space are left, see Fig. 2.10 (b). The
force acting on one of the monolayers divided by the area gives the direct contribution to
the hydration pressure. In order to obtain the indirect contribution pind, one monolayer is
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removed instead of the water, and again the force acting on the remaining monolayer is
measured (Fig. 2.10 (c)). As a consistency check of our decomposition scheme, we com-
pare the total pressure p from the simulations with the sum of the pressure contributions
pdir + pind and find perfect agreement.

a b c

FIGURE 2.10: Decomposition of the original system (a) into a system without water (b), in which
the direct contribution pdir is measured, and a system with only one monolayer (c), in which the
indirect contribution pind to the hydration pressure is measured. The blue boxes indicate the size
of the simulation box.

Because a decomposition of the chemical potential into direct and indirect contributions
is not possible, the composition into direct and indirect pressure contributions is done in
the hydrostatic ensemble, where the pressure of the system is chosen such that the water
chemical potential is constant.

2.4.7 Force field Dependence of the Simulation Results

In order to investigate the dependence of our results on the employed force field, we
also performed simulations with the CHARMM36UA [111] lipid force field and using the
TIP3P water model [112], which carries additional Lennard-Jones sites on the H-atoms. In
order to determine the chemical potential of this water model, also for the van-der-Waals
interactions the TI method is used. For the CHARMM36UA force field, the input paramet-
ers from the NMRLipid project [113, 114] are converted with the PyTopol script in order
to make this force field compatible with Gromacs. In Fig. 2.11 (a) we compare the data
from Fig. 3 (b) in the main text, including experimental data for fluid membranes and our
simulation results obtained with the Berger force field, with simulation results using the
CHARMM36UA force field. Both simulation results are in very good agreement with each
other and also with the experimental data.
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FIGURE 2.11: Comparison of the Berger force field and the CHARMM36UA force field: (a), Hy-
dration pressures obtained from both force fields in the fluid phase compared to the experimental
results taken from Fig. 3 (b) in the main text. (b), Decomposition of the pressures from both force
fields into direct and indirect contributions −pdir and pind.

In Fig. 2.11 (b) we compare simulation data for the direct and indirect pressures using the
CHARMM36UA force field with the pressures from Fig. 4. Here we observe that both pres-
sure contributions−pdir and pind have a slightly larger decay length in the CHARMM36UA
force field compared to the Berger force field. But qualitatively the picture does not change:
Both pressure contributions nearly cancel each other and have a much larger amplitude
than the total pressure p in Fig. 2.11 (a). We hence conclude that our results are robust
with respect to changes in the force field.

A measurement in the osmotic ensemble with a constant pressure of 1 bar requires a cal-
culation of the chemical potential in both systems presented in Fig. 2.10 and a subsequent
thermodynamic extrapolation. The systems in Fig. 2.10 (b) and (c) are not stable and there-
fore the interaction pressures are calculated in reruns, whereas a thermodynamic integra-
tion cannot be applied to a rerun since it would not capture the changes in the dynamics
of the integrated particle.

2.4.8 Validation of the Thermodynamic Extrapolation

In order to prove that the linear thermodynamic extrapolation holds in our simulations,
we perform four simulations of membranes in the gel phase at pressures p obtained by the
extrapolation procedure, Eq. 2.5, using the chemical potential which is determined from
simulations at 1 bar. The measured chemical potential µ of the water molecules is shown in
Fig. 2.12. We observe that indeed µ is constant within the errors and equal to the chemical
potential in excess water µe, which is defined as the chemical potential in the center of the
water slab at the highest hydration level.
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FIGURE 2.12: Chemical potential for gel systems performed at extrapolated pressure p computed
via Eq. 2.5. The black solid line indicates the chemical potential µe at excess water.

2.4.9 Entropy vs. Enthalpy

Further insight into the mechanism of the hydration repulsion can be obtained from a
decomposition into its entropic and enthalpic contributions. These can be calculated as
follows: At excess hydration N = Ne the chemical potential of water confined between
two membranes equals the bulk chemical potential, µ(N = Ne) = µe. Using the definition
of the chemical potential as the derivative of the Gibbs free energy with respect to the
particle number at constant temperature T and pressure p0, we can therefore express the
excess Gibbs free energy for a bilayer system with Nw water molecules as

∆G(p = p0, Nw) =
∫ Nw

Ne

µ(N′w)dN′w −
∫ Nw

Ne

µ∞dN′w

= −
∫ Ne

Nw

(
µ(N′w)− µe

)
dN′w . (2.6)

In this equation, ∆G(p = p0, Nw) is the Gibbs free energy which is needed to transfer
water molecules from a fully hydrated membrane to a bulk reservoir such that there are
Nw water molecules left between the membranes.

Assuming that water is incompressible we can transform the Gibbs free energy at constant
pressure to a Gibbs free energy at constant chemical potential µ = µ0:

∆G(µ = µe, Nw) = −
∫ Ne

N(Dw)

(
µ(N′w)− µ∞

)
dN′w =

∫ Dw,e

Dw

vw∆p(D′w)
dNw

dD′w
dD′w

=
∫ Dw,e

Dw

∆p(D′w)A(D′w)dD′w

=
∫ Dw,e

Dw

F(D′w)dD′w , (2.7)



24 2. Characterization of Hydration Interactions between Lipid Membranes in Gel and Fluid Phase

where Dw,e is the separation of the membranes at excess hydration and F is the force acting
on the membrane surface. In simulations in the osmotic ensemble, i.e. at a constant pres-
sure of p = 1 bar, the free energy can be computed by Eq. 2.6, whereas in the hydrostatic
ensemble, i.e. at extrapolated pressure according to Eq. 2.5 and constant chemical potential
µ = µe, Eq. 2.7 should be used. The equivalency of both methods is checked numerically
in Fig. 2.13, where indeed only deviations within the error bars are visible between the two
expressions.
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FIGURE 2.13: Comparison between the Gibbs free energy ∆Gosm. from an osmotic simulation
(p = 1 bar) using Eq. 2.6 (red) and the Gibbs free energy ∆Ghyd. from a hydrostatic simulation
(p according to Eq. 2.5 and µ = µe) using Eq. 2.7 (blue).

In order to compute the entropy S, we use the thermodynamic relation G = U + pV − TS
between the Gibbs free energy G and the energy U. For ∆G we arrive at

∆G = ∆U + V∆p + p∆V − T∆S . (2.8)

Since water as well as the membrane are incompressible at the pressure scales we are
interested in [48], we can neglect the term p∆V. In the simulations at constant pressure
p = p0 (osmotic ensemble), also the term V∆p vanishes, hence we only need to evaluate
the remaining contribution ∆U. This quantity corresponds to the energetic contribution to
the free energy which is stored in the system hydrated with Nw water molecules due to
the hydration repulsion. We evaluate ∆U by the following procedure: In our simulations,
we can extract the total energy U(Nw) of our system hydrated with Nw water molecules.
A hydration of this system with additional water molecules from a bulk reservoir to a
fully hydrated state with Ne water molecules increases its energy by U(Ne)−U(Nw). On
the other hand, the bulk reservoir reduces its energy by Ub = εbulk(Ne − Nw), where
εbulk = (∂U/∂Nw)

bulk
p,T corresponds to the energy of one water molecule in the bulk at

pressure p0. The total energy change (membrane system plus reservoir) upon hydration
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thus equals

−∆U = U(N∞)−U(Nw)−Ub , (2.9)

where the minus sign comes from the fact that in this description the energy is being re-
leased from the membrane system. As all quantities on the right hand side of Eq. 2.9 can
be extracted from simulations, we can use Eq. 2.8 to determine the entropy of the system.

In Fig. 2.14 the Gibbs free energy in the osmotic ensemble is presented with its decom-
position into the entropic contribution −T∆S and the contribution ∆U from the internal
energy for the gel and the fluid membrane. Qualitatively we observe a similar behavior for
both systems: The Gibbs free energy is approximately zero for separations Dw & 1.0 nm
and increases for Dw ≈ 0.4 nm to about 400 kJ/mol in the gel phase and 300 kJ/mol in the
fluid phase. The internal energy ∆U is slightly negative in the fluid phase for separations
Dw > 0.8 nm, with a minimum at Dw ≈ 1.0 nm. In the gel phase, a similar behavior of
the internal energy is observed for Dw > 0.8 nm. For both phases, the internal energy
turns positive for Dw < 0.8 nm and and increases strongly for smaller separations. In
contrast, the contribution −T∆S shows exactly the opposite behavior, as it is positive for
Dw > 0.8 nm with a maximum at Dw ≈ 1.0 nm and becomes increasingly negative at
small separations. The fact that the entropy ∆S is positive for small separations, where
we expect the configuration space of the headgroups as well as the water molecules to
be highly restricted, might be surprising at first sight. However, one has to keep in mind
that the entropy difference ∆S corresponds to the increase of entropy when water, which
is confined between the membranes, is transferred into the bulk reservoir. Indeed, at small
separations, the water molecules which move from the membrane system to the reservoir
experience a large increase of their conformational space, resulting in a higher entropy of
the total system (membrane system plus reservoir).
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FIGURE 2.14: Decomposition of the Gibbs free energy G into the internal energy ∆U and entropy
−T∆S for the system in gel phase (a) and fluid phase (b).

Our findings lead to the following interpretation of the energetic behavior of the system
(See Fig. 2.15 for a summary): Starting at small separations, both the entropy as well as
the internal energy of the total system decrease upon hydration (increasing Dw), hence
the transfer of water from the reservoir to the membrane system is energy-driven. This
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FIGURE 2.15: Hydration of lipid membranes: The thermodynamic quantities G, U and S all refer
to a system containing lipid membranes and a bulk reservoir, whereas in our simulation we only
simulate the systems which are zoomed in. In the first step, water molecules (yellow) from the bulk
insert the water slab of a dehydrated membrane. By doing this, they reduce their configurational
space (and thus their entropy), but also reduce the energy of the system, as the hydration of the
headgroups is energetically favorable [88]. Thus, the hydration is energy-driven. In the second
step, a further hydration with water molecules (green) from the reservoir increases the energy and
entropy of the entire system. In this case, the hydration is entropy-driven. Note that the volume of
the entire system (bilayers plus bulk water) remains constant.

changes at a separation of Dw ≈ 1.0 nm, where the energy is minimal. Further hydration
of the membranes increases the energy and the entropy, hence from that point on the hy-
dration is entropy-driven. This picture is qualitatively in good agreement with calorimet-
ric experiments of phospholipid hydration [88], however with the transition from energy-
driven to entropy-driven hydration occurring at slightly smaller hydration levels.



Chapter 3

Memory Effects in the Dynamics of
Confined Small Molecules

Bibliographic information: The content of this chapter is in preparation to be submitted to a
peer-reviewed journal (Ref. ii).

3.1 Introduction

Molecular friction plays an essential role in a multitude of processes in biology, chemistry
and physics like the lubrication of solids [115] or the permeation through nanopores [116].
The simplest model for the friction coefficient γ in a solvent with viscosity η is Stokes’
law γ = 6πηR, which applies to a spherical particle of radius R with no-slip bound-
ary conditions. Stokes’ law describes particle friction down to the nanometer scale [117]
and extensions have been proposed for particles of molecular size [118, 119]. Recently,
a modification of Stokes’ law due to a confinement potential acting on the particle was
demonstrated [120]. On the basis of molecular dynamics (MD) simulations of a solvated
methane molecule it was shown that the friction coefficient increases with the strength of
the confining potential.

In the present work, we analyze how this increase of the friction is influenced by the solute
properties. We perform MD simulations of five molecules (methane, water, Na+, Na− and
glycerol), which are solvated in water and confined by a harmonic potential. The choice
of the solutes is motivated by the aim to cover variations in hydrophilicity, charge, and
size of the particles. In particular, by comparing the Na+-ion with the negatively charged
version Na−, we investigate how the sign of the charge of a particle determines this an-
omalous friction effect. The confinement-induced increment of the friction coefficient is
observed for all particles and the amplitude of this effect varies with the size, the charge,
and hydrophilicity of the solute molecule. While for methane and water a change of the
spring constant from K = 0 to K = 25000 kJ/(mol nm2) results in an increase of the friction
coefficient by about 50 %, glycerol in water experiences a change of only 5 %. Connected
with the increased friction is a slowdown of the orientational correlation time of water

27
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molecules within the first hydration shell around the investigated particles. This is in
agreement with measurements of water orientational relaxation in the hydration shells of
proteins, which were undertaken in computer simulations [121] as well as NMR experi-
ments [122].

Using water–glycerol mixtures as a solvent, we observe that the dependence of the friction
on the confinement magnifies with increasing viscosity. In a water–glycerol mixture with
50 % mass fraction of glycerol the viscosity is about 7 times higher than in pure water
and the friction of glycerol increases from 5 % for pure water to 25 %. The enhanced
friction can be explained on the basis of the underlying time scales of the solvent relaxation
as well as of the particle dynamics [120]. Generally, confinement-dependent friction is
expected in the case when the longest relaxation time of the solvent is larger than the
time scale at which the particle motion turns from inertial to diffusive. This indicates that
confinement-dependent friction is not only limited to small molecules, but also complex
macromolecules like proteins or DNA can experience this effect if solvated in a viscous
medium.

The friction coefficient of the solute is determined from memory kernels in the frame-
work of the generalized Langevin equation (GLE) [42]. The extraction of memory kernels
from particle trajectories was pioneered by Berne [63], who developed an iterative method
based on a reformulation of the GLE into a Volterra equation. Further methods include the
solution of the GLE in Fourier space [123] or the fit of parametrized memory kernels to the
observed correlation functions [120]. In the present work, we develop an integrated ver-
sion of Berne’s method and prove that this yields the best results for the memory kernels
for our data.

3.2 Theory

In order to describe systems where the microscopic time scale of the fluid molecules is
approximately of the same order of magnitude as the particle dynamics, Mori introduced
the generalized Langevin equation (GLE), which contains a time-dependent memory ker-
nel [42]. In his formalism, the friction force does not instantaneously act on the particle, but
retardation effects are taken into account. The generalized Langevin equation is expressed
by

mẍ(t) = −
∫ t

0
dt′ Γ(t′)ẋ(t− t′)− Kx(t) + FR(t) , (3.1)

where the time evolution of the process starts at t = 0. Here, we included an external
harmonic potential with spring constant K. The random force FR(t) and the memory kernel
Γ(t) in this equation are connected by the fluctuation-dissipation theorem

〈FR(t)FR(t′)〉 = kBTΓ(t− t′) . (3.2)

A different version of Eq. 3.1,

mẍ(t) = −
∫ ∞

0
dt′ Γ(t′)ẋ(t− t′)− Kx(t) + FR(t) , (3.3)
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with the upper integration limit t = ∞, has also been introduced in literature [41, 124]. This
second version corresponds to a shift in the random force by ∆FR(t) =

∫ ∞
t dt′ Γ(t′)ẋ(t− t′).

Equations 3.1 and 3.3 are difficult to handle in MD simulations, since it is not obvious
how to split the total force acting on a particle, which can be extracted from the particle
trajectory, into the random force FR(t) and the friction force, which is given by the integral
in both equations. A solution to this problem was first provided by Berne et al. [63, 125],
who multiplied Eq. 3.1 with the initial velocity ẋ(0) = v(0) of the particle and averaged
the resulting equation over the random force. Using the fact that the initial velocity and
the random force at any time are uncorrelated, 〈v(0)FR(t)〉 = 0, this leads to a Volterra
equation of first kind,

mĊvv(t) = −
∫ t

0
dt′ Γ?(t′)Cvv(t− t′) , (3.4)

which relates correlation functions of the particle motion to the memory kernel. In this
equation, we introduced the effective memory kernel Γ?(t) = Γ(t) + K and the velocity
autocorrelation function Cvv(t) = 〈v(0)v(t)〉. The Volterra equation of first kind, which
is a linear integro-differential equation, can generally be solved analytically via Laplace-
transform for the memory kernel Γ?(t). In Sec. 3.8.1 we show that Eq. 3.4 can equivalently
be derived from Eq. 3.3 via the Kramers–Kronig relations. Algorithms based on Eq. 3.4
have frequently been used to extract memory kernels of unconfined particles (K = 0) from
simulations [124, 126], however it has been argued that they lack stability [127]. Therefore,
it is advantageous to reformulate Eq. 3.4 in order to develop more stable algorithms. In
this work, we integrate Eq. 3.4 (see Sec. 3.8.3 for details), which yields

mCvv(t) = −
∫ t

0
dt′ G(t′)Cvv(t− t′) + KCxx(t) , (3.5)

where Cxx(t) = 〈x(0)x(t)〉 and G(t) is the running integral over the memory kernel
defined as

G(t) =
∫ t

0
dt′ Γ(t′) . (3.6)

In the limit of t → ∞, the integral G(t) gives the friction coefficient γ, i.e. G(t → ∞) = γ.
Equation 3.5 again is a Volterra equation of first kind, which in this case relates G(t) to
the velocity and position autocorrelation functions of the particle. A discretized version of
Eq. 3.5 is in the following used to extract memory kernels from trajectories.

3.3 Methods

3.3.1 Simulation Setup

All simulations consist of one solute molecule and the solvent molecules, which are set
into a cubic box of 4.5 nm size in each dimension and period boundary conditions. As
solute molecules methane, water, Na+, Na−, and glycerol are chosen. In the simulations
with glycerol as solute, also water–glycerol mixtures as solvent are used in order to change
the viscosity of the solvent. In these simulations, the mass fractions between glycerol and
water are 0.333, 0.434 and 0.500.
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FIGURE 3.1: (a) Snapshot of a simulation of a glycerol molecule constrained by a harmonic po-
tential (red) in a water-glycerol mixture, where the solvent water molecules are painted blue
and the solvent glycerol molecules are painted yellow. Right: Trajectories of glycerol (b) in
pure water (purple) and in a water–glycerol mixture (yellow) within a potential with K =
250 kJ/(mol nm2). In (c), we compare trajectories of a water molecule constrained by a potential
with K = 25 kJ/(mol nm2) (red) and K = 2500 kJ/(mol nm2) (green). In (d), we show the traject-
ories of Na− (brown) and methane (cyan) constrained by a potential with K = 25 kJ/(mol nm2).

All systems are simulated with the GROMACS 5.1 simulation package [95, 128]. For the
water model we use SPC/E [99], the Lennard-Jones parameters for methane are taken from
the GROMOS 53a6 force field [129], the parameters of the ions force fields are taken from
the work of Dang et al. [130] and the glycerol force field is constructed by the Automated
Topology Builder [131]. The Na− has exactly the same parameters as the Na+, only the
sign of the charge is switched, thus representing an artificial ion, which in comparison to
halogen ions has a smaller van-der-Waals radius by approximately 30 %.

All simulations are performed in an NVT ensemble with a time step of 2 fs at a temperature
of T = 300 K, which is controlled by the velocity rescaling thermostat [101] coupled with
a time constant of 0.5 ps to the solvent only. In Ref. [120] it was shown that the ensemble
and the thermostat have no influence on the results. The simulation lengths vary from 268
to 537 ns ns for the simulations with pure water as solvent and from 800 ns to 2.68 µs for
the water–glycerol mixtures, summing up to a total simulation time of 31 µs. Before the
actual production runs, all systems are equilibrated for 5 ps in an NpT simulation using
a Berendsen barostat [105] with p = 1 bar to adjust the box size. In the simulations with
confined particles, we apply a three-dimensional harmonic potential with spring constants
between K = 25 and K = 25000 kJ/(mol nm2) (up to K = 2500 kJ/(mol nm2) for water–
glycerol mixtures) on the center of mass of the solute molecule. Additionally, we run
simulations where we completely freeze the dynamics of the monoatomic molecules Na+,
Na−, and methane (which in our simulations is modelled as a Lennard-Jones sphere). For
water only the oxygen atom is frozen such that the rotational motion of the molecule is not
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disturbed. In each simulation, we write out the position, the velocity, and the acceleration
of the solute particle at every time step.

3.3.2 Memory Kernel Extraction

An iterative method for the extraction of memory kernels, which solves a discretized ver-
sion of Eq. 3.4 for Γ(t) with the correlation functions Ċvv(t) and Cvv(t) as input, was first
discussed by Berne et al. in 1970 [63] for unconfined trajectories and later generalized to
harmonically confined particles [125]. Already in Berne’s original work it was remarked
that it is advantageous in terms of stability to discretize the first derivative of Eq. 3.4, which
leads to a Volterra equation of second kind (see Appendix 3.7.1). In the present work, we
show that even better results are obtained when G(t) instead of Γ(t) is the function which
is computed by an iterative algorithm, hence we employ a discretization of Eq. 3.5. Dis-
cretizing all functions as Gi = G(i∆t), Cxx

i = Cxx(i∆t) and Cvv
i = Cvv(i∆t) with the time

step ∆t, the resulting iterative equation reads

Gi =
2

∆t Cvv
0

[
m

Cvv
0

Cxx
0

Cxx
i −mCvv

i −
i−1

∑
j=0

∆t GjCvv
i−jwi,j

]
, (3.7)

where in the case of an unconfined particle the first term in brackets is replaced by mCvv
0 .

We furthermore introduced the weighting factor wi,j, with the values wi,i = wi,0 = 1/2 and
wi,j = 1 otherwise, which comes from the trapezoidal integration rule. A derivation of the
equation is provided in Sec. 3.8.6.

For K = ∞, where the solute molecule is frozen, the memory kernel is obtained by Eq. 3.2.
As the solute molecule does not move in this case (ẋ = 0), the random force FR acting on
the molecule equals the total force F, which can easily be extracted from the simulations.

The performance of the algorithm in Eq. 3.7 is compared to Berne’s original methods and
shown to be improved (see Appendix 3.7.1). In Appendix 3.7.2 and 3.7.3, we review the
direct computation of memory kernels via Fourier transform [123] and the parametriza-
tion of the memory kernels [120], respectively, and show that for particles in a harmonic
potential the iterative method presented in this work yields the most robust results for the
memory kernel.

Another iterative scheme can be derived for unconfined particles, as then Eq. 3.5 can be
integrated twice more. The resulting equation

m∆x2(t)− kBTt2 = −
∫ t

0
dt′′ G(t′′)∆x2(t− t′′) , (3.8)

relates the memory kernel directly to the mean-squared displacement. In Appendix 3.7.4
we demonstrate that a discretized version of this equation can be used to compute memory
kernels which are in perfect agreement with the results of Eq. 3.7.
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3.4 Memory Kernels in Water

In the following, we investigate the memory kernels of methane, water, Na+, Na−, and
glycerol in water. The choice of the molecules is motivated by the aim to analyze the
effects of hydrophobicity (methane versus water), charge (Na+ versus Na−), and size
(glycerol versus water) on the memory kernel. Spring constants are varied from K =

25 kJ/(mol nm2) to K = 25000 kJ/(mol nm2). According to the equipartition theorem, the
corresponding positional fluctuations of the particle are in the range between

√
〈x2〉 =√

kBT/K = 0.3 nm for K = 25 kJ/(mol nm2), the length scale of van-der-Waals interac-
tions, and

√
〈x2〉 = 0.01 nm for K = 25000 kJ/(mol nm2), the length scale of fluctuations

in covalent bonds. Additionally, also the memory kernels of unconfined particles (K = 0)
are computed.

In Fig. 3.2 (a) the results for G(t) of methane in water are presented for all spring constants,
which we compute using Eq. 3.7. The functions are monotonically increasing and reach
a plateau for t → ∞, which corresponds to the friction coefficient γ of the molecule. For
the unconfined molecule (K = 0) the integral G(t) saturates at a plateau value of γ0 =

1038 g/(mol ps), which is obtained by fitting a stretched exponential function to G(t) in
the interval 0.5 ps < t < 40 ps (see Sec. 3.8.7). In experiments, the diffusion coefficient of
methane in water at T = 298.15 K [132] has been measured to be D = 1.7 · 10−5 cm2/s,
which corresponds to a friction coefficient of 1458 g/(mol ps), thus higher than the friction
coefficient from our simulations. This difference presumably is mainly due to the force
field, as the methane molecule in our simulations is modeled as a monoatomic Lennard-
Jones sphere. Another source for deviations is the fact that SPC/E water has a reduced
viscosity compared to experiments (ηSPC/E = 0.793 · 10−3 Pa s [133] versus ηex. = 0.86 ·
10−3 Pa s [134]) at 300 K, which according to Stokes’ law leads to a reduced friction in the
simulations.

We observe that the plateau height depends on the applied spring constant, with a ra-
tio of 1.5 between the value of the frozen molecule γ∞ and the unconfined molecule γ0.
Hence the confinement strongly modifies the friction which is acting between the meth-
ane molecule and the surrounding water. The same picture is also found for all other
molecules in Fig. 3.2 (b)–(e). For unconfined water we measure a plateau value of γ0 =

0.924 kg/(mol ps) in G(t), thus in very good agreement with the literature values of SP-
C/E water computed from mean-squared displacements at the temperature T = 298.15 K,
which are between 0.996 kg/(mol ps) [135] and 0.901 kg/(mol ps) [136]. But again, with
increasing confinement strength the plateaus of G(t) shift to higher values, resulting in
a ratio of γ∞/γ0 = 1.5. For all other investigated molecules, the confinement-induced
change of the friction is less pronounced, but still clearly detectable. Our results are sum-
marized in Table 3.1, where the friction coefficients γ0 of the unconfined molecules are
displayed, and Fig. 3.3, where we present the relative change of the friction coefficient
γ(K)/γ0 for all investigated molecules. We observe that the ratio γ(K)/γ0 decreases with
increasing γ0, i.e., molecules with large friction coefficients experience only small modific-
ations. The dependence of γ0 on molecule parameters however is complex: For example,
both ions exhibit larger friction coefficients than water and methane, which are uncharged
molecules of similar size, with the friction coefficient of Na− being even larger than the
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FIGURE 3.2: Left: G(t) obtained by Eq. 3.7 for (a) methane, (b) water, (c) an Na+-ion, (d) an Na+-
ion, and (e) glycerol for several spring constants between K = 0 and K = 25000 kJ/(mol nm2),
together with the G(t) of the frozen solutes. Dashed black lines indicate the friction coefficient γ =
kBT/

∫ ∞
0 dt Cvv(t) = 2kBT/

(
d∆x2/dt

)
computed from the mean-squared displacements ∆x2(t)

of the unconfined molecules. Right: Corresponding memory kernels Γ(t) computed by numerical
differentiation of G(t) using the midpoint formula.
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one of glycerol. On the other hand, comparing the results of water and glycerol with each
other, which both are hydrophilic and polar molecules, it transpires that also the molecular
size alters γ0, as expected from Stokes’ law, and thus also γ(K)/γ0. We therefore conclude
that the confinement-dependence of the friction coefficient is not only a size effect, but also
the charge is playing a significant role.

Molecule methane water Na+ Na− glycerol
γ0 [kg/(mol ps)] 1.038 0.924 1.851 2.888 2.433

TABLE 3.1: Friction coefficients γ0 for unconfined molecules.
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FIGURE 3.3: Rescaled friction coefficient γ(K)/γ0 as a function of the spring constant K for methane
(red), water (blue), Na+ (green), Na− (purple), and glycerol (cyan), where γ0 refers to the friction
coefficient of the unconfined particle.

In order to gain more insight into the mechanisms of the confinement-dependent friction,
we take a look at the memory kernels Γ(t) of all molecules, which we calculated from the
G(t) by numerical differentiation. Starting again with methane (Fig. 3.2 (f)), we observe
that for small spring constants the memory kernels decay on two time scales with time
constants of approximately τ1 = 0.05 ps and τ2 = 1 ps. For K > 1000 kJ/(mol nm2),
an additional shoulder in the memory kernel is developed at intermediate time scales.
The shoulder was already observed in our previous work and was explained by a dy-
namic interplay of the harmonic oscillations of the methane molecule with the solvent
relaxation [120]. This shoulder is followed by a small oscillation in the memory kernel
for K > 10000 kJ/(mol nm2), which is superposing the long time decay and is damped
with increasing time. The memory kernels of the water molecule (see Fig. 3.2 (g)) ex-
hibit a more complex time dependence than the methane molecules: All kernels exhibit a
short time decay, followed by a minimum below zero at times t ≈ 0.08 ps. Thereafter, a
series of maxima and minima is formed in each kernel, whose positions and heights de-
pend on the applied spring constant. Especially the memory kernels with spring constants
K > 10000 kJ/(mol nm2) deviate strongly from the rest of the memory kernels of water at
times around t ≈ 0.1 ps.
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Unlike water and methane, the memory kernels of Na+ (Fig. 3.2 (h)), Na− (Fig. 3.2 (i)),
and glycerol (Fig. 3.2 (j)) do not change their shape qualitatively at short time scales t <

0.3 ps when a harmonic potential is applied. Still, we observe the shift of the plateaus
in G(t), which can be understood by looking at Fig. 3.4, where exemplarily the memory
kernels of a Na+-ion are presented in a log-lin representation for the cases K = 0 and
K = 25000 kJ/(mol nm2). For small spring constants the long time decay of the memory
kernel, i.e. the decay for times longer than 1 ps, is located below the memory kernel of the
strongly constrained particle. This is in agreement with the functions G(t) of all molecules,
as they mainly start to separate at times t > 0.3 ps. In other words, the confinement-
dependence of the friction is to a large degree due to the slowest decay of the memory
kernel. Note however that for the data obtained from the simulations it was not possible
to distinguish whether it is the amplitude or the time constant of the slowest decay which
is affected by the constraining potential (See Sec. 3.8.8).
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FIGURE 3.4: Memory kernels Γ(t) of a Na+-ion in the unconfined case (K = 0) and in a harmonic
potential with K = 25000 kJ/(mol nm2) in a log-lin representation.

As amply discussed in literature, molecular friction is connected to hydration shell dy-
namics [137]. We thus analyze the orientational autocorrelation functions of the water
molecules that are found in the first hydration shell of the solute at an initial time t = 0.
We define the first hydration shell by all water molecules that are located relative to the
solute within a distance d0 given by the first minimum of the solute–water radial distri-
bution function (shown in Sec. 3.8.9), i.e. d0 = 0.49 nm for methane, d0 = 0.40 nm for
water, d0 = 0.32 nm for Na+, d0 = 0.32 nm for Na−, and d0 = 0.62 nm for glycerol. The
orientational autocorrelation functions are defined by

Crot = 〈P2(u(t)u(0)〉 , (3.9)

where P2(x) = (3x2 − 1)/2 denotes the second Legendre polynomial and u refers to each
OH vector of the hydration water molecules, and they are shown exemplarily for methane
in Fig. 3.5 (a). The rotational correlation functions exhibit a fast initial decay, followed by
an exponential long time tail with the time constant τrot. The numerical value of this time
constant is obtained by a fit of the function Crot(t) = C0 exp (−t/τrot) to the rotational
correlation function. For all molecules, the decay time τrot increases with the strength of
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found in the first hydration shell for methane for various potential strengths K. The black dashed
line indicated a fit of the function Crot(t) = C0 exp (−t/τrot) to the data for K = 0. (b) Rescaled
decay time τrot/τ0

rot of the orientational autocorrelation function for all molecules as a function of
the spring constant, where τ0

rot = τrot(K = 0).

the confining potential, as can be seen in Fig. 3.5 (b). This increase is most pronounced for
water, where it is about 15 %, while for glycerol and Na− we still measure an increase of
about 5 %. Thus, similar to the experiments, we observe a relative slowdown of the hydra-
tion shell dynamics that is correlated with the magnification of the friction in confinement.

3.5 Memory Kernels in Water–Glycerol Mixtures

In the following, we investigate the influence of the solvent viscosity on the memory ker-
nels by solvating a glycerol molecule in mixtures of water and glycerol with four different
mass ratios (See Table 3.2), hence obtaining solvents with four different viscosities. The
values for the viscosities (denoted by ηMD) are taken from the work of Schulz et al. [133],
where a Maxwell model is used to describe the full viscosity spectrum of water–glycerol
mixtures in MD simulations. These values are in good agreement with the empirical for-
mula by Cheng [138], which interpolates viscosities of water–glycerol mixtures based on
data from experiments (denoted by ηex.)

System
mass fraction

of glycerol

ηMD

[10−3 Ns/m2]

ηex.

[10−3 Ns/m2]

1 0.0 0.77± 0.08 0.86

2 0.333 2.26± 0.25 2.27

3 0.434 3.70± 0.40 3.42

4 0.500 5.40± 0.50 4.67

TABLE 3.2: Composition of systems with water–glycerol mixture as solvent and their viscosities.
The simulation values are taken from [133] and experimental values from [138].
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FIGURE 3.6: Left: G(t) obtained by Eq. 3.7 for glycerol in the water–glycerol mixture with vis-
cosities η = 0.77 · 10−3 Ns/m2 (a), η = 2.26 · 10−3 Ns/m2 (b), η = 3.7 · 10−3 Ns/m2 (c), and
η = 5.4 · 10−3 Ns/m2 (d) for 4 spring constants between K = 0 and K = 2500 kJ/(mol nm2).
Dashed black lines indicate the friction coefficient γ = kBT/

∫ ∞
0 dt Cvv(t) = 2kBT/

(
d∆x2/dt

)
computed from the mean-squared displacements ∆x2(t) of the unconfined molecules. Right: Cor-
responding memory kernels Γ(t) computed by numerical differentiation of G(t).

In Fig. 3.6 we present the memory kernels Γ(t) and their integrals G(t) of a glycerol mo-
lecule in the water–glycerol mixtures characterized in Table 3.2. Again, G(t) is computed
via Eq. 3.7 and Γ(t) by numerical differentiation of G(t). We observe that there are two
effects on the memory kernels, one related to the viscosity and one to the confinement:

The first effect corresponds to Stokes’ law, as with increasing solvent viscosity the fric-
tion coefficient, represented by the plateau of G(t), shifts to higher values. This is shown
in Fig. 3.7 (b), where the total height of the bars corresponds to the friction coefficient
γ0 of the unconfined glycerol molecule at given solvent viscosity η. In this figure, γ0 is
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computed from fits of stretched exponential functions to G(t) (see Sec. 3.8.7). The rela-
tion between friction coefficient and viscosity can within the error bars be described by
Stokes’ law γ = 6πηRsim

hyd and a least-square fit of this linear function (dashed line) to
the data yields a hydrodynamic radius of Rsim

hyd = 0.236± 0.017 nm for the glycerol mo-

lecule. The experimental value of Rexp
hyd = 0.26 nm [139], computed via the Stokes-Einstein

relation from diffusion coefficients, is slightly larger, which goes in hand with a smal-
ler friction coefficient of glycerol in simulations (γ0 = 2.433 kg/(mol ps)) compared to
experiments (γex. = 2.67 kg/(mol ps) computed from the diffusion coefficient via Stokes-
Einstein) [140]. The increase of the friction coefficient with the viscosity results from the
long time behavior of the Γ(t): As it is revealed in Fig. 3.7 (a), all memory kernels exhibit a
very similar shape apart from a small constant offset for times t . 0.5 ps. Thus, the short
time behavior of the memory kernels is nearly independent of the solvent viscosity. On
the other hand, for times t > 0.5 ps all memory kernels differ in their long time decay,
which is most strikingly visible in the log-lin representation in the inset of Fig. 3.7 (a). In
this figure, fits of triple exponential functions,

Γexp(t) =
3

∑
i=1

Ai e−t/τL
i , (3.10)

with τL
1 < τL

2 < τL
3 , to the to the long time decay of the memory kernels (see Sec. 3.8.8

for fitting details) are displayed as dashed lines. The integral over Γexp(t) yields the long
time contribution γL = γL

1 + γL
2 + γL

3 to the friction coefficient γ0, where γL
i = Aiτ

L
i with

i = 1, 2, 3. Each contribution γL
i is indicated in Fig. 3.7 (b) together with the short time con-

tribution γs = γ0− γL. There we observe that γs and γL
1 remain constant for all viscosities,

whereas γL
2 and γL

3 increase with the viscosity. A comparison of the two contributions γL
2

and γL
3 with each other reveals that the more the viscosity increases, the more important

the contribution of the longest decay becomes. The amplitudes Ai and decay times τL
i

for the two longest decays are summarized in Table 3.3, where it can be seen that all fit
parameters increase with the viscosity. For larger viscosities than simulated in this work,

System 1 2 3 4

ηMD [10−3 Ns/m2] 0.77 2.26 3.70 5.4

A2 [kJ/(mol ps2)] 0.42 1.52 1.92 1.99

τL
2 [ps] 1.71 2.11 2.47 2.80

A3 [kJ/(mol ps2)] 0.0 0.174 0.284 0.381

τL
3 [ps] - 8.75 11.56 13.03

TABLE 3.3: Amplitudes A2, A3 and decay times τL
2 , τL

3 from fits of the function Eq. 3.10 to the
memory kernels Γ(t) (see Fig. 3.7).

we assume that the value Γ(0) remains independent of the viscosity, as it is observed in
Fig. 3.6. This means that the amplitudes A2 and A3 will saturate by further increasing
the viscosity, which is already observed for A2 in our simulations. In this case, the only
possibility to increase the friction coefficient γ0 is then increasing the decay times τL

i . By
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denoting the set of decay times τL
i by an effective decay time τL, this assumption then

yields that τL ∼ γ0 ∼ η, where the last proportionality comes from Stokes’ law.
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FIGURE 3.7: (a) Comparison of the memory kernels of unconfined glycerol molecules in four
solvents composed of different mixtures of water and glycerol corresponding to four different vis-
cosities. For times t > 0.6 ps, Eq. 3.10 is fitted to the kernels (black dashed lines). Inset: The same
data in a log-lin representation. (b) Friction coefficient γ0 of an unconfined glycerol molecule and
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1 − γL

2 − γL
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as colored areas.

We now turn to the confinement-related effect; we observe that confinement-dependent
friction, which was already discussed in the previous section for particles solvated in wa-
ter, is magnified with increasing solvent viscosity. This is shown in Fig. 3.8, where we
compute the relative change of the friction coefficient γ(K)/γ0 for all water–glycerol mix-
tures. In pure water, the friction coefficient increases only up to 5 % with confinement,
whereas in system 4, where the viscosity is 7 times higher, this value changes to more than
20 %. This amplification can be understood by a scaling argument (see Fig. 3.9):

The transition between inertial and diffusive behavior of a solute particle takes place at a
time scale τm ' m/γ ∼ ρR2/η with the solute mass density ρ, where the last proportion-
ality comes from Stokes’ law γ = 6πηR. The dependence of τm on the solute radius R and
the viscosity η is indicated by a red arrow. Considering a solute particle that is confined
by a harmonic potential, the transition between an oscillatory motion with the time scale
τosc ' 2π

√
m/K and overdamped motion with the time scale τγ ' 2πγ/K happens at the

spring constant Ktrans ' γ2/m ' γ/τm, where τosc ' τγ ' τm. In other words, the time
scale τm also determines the transition from oscillatory to overdamped motion.

The other relevant time scale is the solvent relaxation time τL, which we have argued to
be proportional to the solvent viscosity τL ∼ η (yellow arrow). With the two time scales
τm and τL, there exist two possible scenarios: For τm > τL, which is the case at low vis-
cosities or for massive particles, the solvent relaxes before the transition from inertial to
overdamped diffusive motion of the solute particle, hence there is no dynamic coupling
between solute diffusion and solvent relaxation. In this limit, which corresponds to the up-
per left region of Fig. 3.9, we do not expect the friction to be affected by the confinement.
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On the other hand, for τm . τL the solute particle dynamics becomes diffusive and over-
damped before the solvent relaxes and a dynamic coupling between the solvent relaxation
and the particle motion emerges. This situation can be realized by either increasing the
solvent viscosity or decreasing the solute size (lower right region in Fig. 3.9). The effects of
changes in viscosity and solute size can be estimated by the relation τL ' τm, which leads
to R2/η ∼ η and thus R2 ∼ η2. This means that, if all other parameters are left constant,
an increase or decrease of the solute size R requires an adjustment of the viscosity η of
the same order of magnitude in order to keep the confinement-dependence of the friction
constant. This is indicated by the background color in Fig. 3.9, where for darker colors the
confinement-dependence of the friction is expected to be more pronounced.

3.6 Conclusions

In this work, a novel method for the calculation of memory kernels from trajectories has
been introduced in the framework of the generalized Langevin equation. This method is
an integrated version of the iterative scheme published in [63] and it has been shown that,
in the case of confined particles and complicated memory kernels, it yields more stable
results compared to a computation via Fourier transform [123] or parametrization [120].

This method has been applied to compute memory kernels and the friction coefficient
for five different solutes (methane, water, Na+, Na−, glycerol) in water. A confinement-
dependent increase of the friction has been discovered for all investigated solutes. For
molecules with a small friction coefficient this effect is most pronounced, still it is clearly
present also for polyatomic molecules such as glycerol. An analysis of the memory kernels
has disclosed that the increase of the friction mainly stems from their long time contribu-
tion. The confinement-dependent friction goes in hand with a slowdown of water dy-
namics in the hydration shell of the particles, which has been observed in the increase of
the decay time of the orientational correlation functions. By increasing the viscosity of the
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solvent the confinement-dependence of the friction coefficient is magnified, hence it is pos-
sible to expand this effect from the molecular to the microscale by using highly viscous flu-
ids as solvents. In particular polymer melts provide a possibility to measure confinement-
dependent friction in experiments, since the relaxation times of polymer melts, and thus
also their viscosity, scale as a power law with the polymer length [141]. Furthermore,
particles with a radius of down to 9 nm have been trapped [142] in optical tweezers, which
is only one and a half orders of magnitude larger than the glycerol molecule investigated
in our simulations. Thus, the combination of nanosized particles as solutes and polymer
melts as solvents provides an excellent experimental setup [143], since, according to our
estimation in the discussion section, an increase of the solvent viscosity by a factor of 50
compared to our simulations should be sufficient to induce confinement-dependent fric-
tion in such experiments.

Another important consequence of the confinement-dependent friction relates to the com-
putation of diffusivities in simulations: Restraining the dynamics of particles in inhomo-
geneous systems, a method applied in simulations in order to compute spatially resolved
diffusion profiles for example in lipid bilayers [34, 144], yields higher friction coefficients
and thus lower diffusivities. A variation of the confinement strength in the simulations is
advisable in order get an estimation of the confinement-dependence of the friction in such
systems.
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3.7 Appendix

3.7.1 Iterative Extraction of Memory Kernels

In order to capture the long-time behavior of the particle motion, it is important to resolve
the plateaus of G(t), which develop at times t > 2 ps. Here we show that this task is not
always accomplished by iterative methods which are based on a direct extraction of Γ(t)
from the simulations and a subsequent integration in order to obtain G(t). In literature,
Volterra equations of first kind as well as second kind have been utilized as a basis for the
iterative computation of Γ(t). The Volterra equation of second kind can be derived from
the Volterra equation of first kind in Eq. 3.4 by taking the time derivative, which leads to

CFF(t) =
∫ t

0
dt′ Γ?(t′)CvF(t− t′) + mΓ?(t)Cvv(0) , (3.11)

where the total force acting on the particle is denoted by F = mv̇. Discretizing the Eqs. 3.4
and 3.11 and solving them for Γ?

i = Γi + K we arrive at

Γ?
i = − 2

∆t Cvv
0

[
CvF

i +
i−1

∑
j=0

∆t Γ?
j Cvv

i−jwi,j

]
(3.12)

Γ?
i =

1
mCvv

0

[
CFF

i −
i−1

∑
j=0

∆t Γ?
j CvF

i−jwi,j

]
. (3.13)

A derivation of these equations is given in Sec. 3.8.6. These equations are the iterative
schemes that have been used to compute memory kernels from particle trajectories in pre-
vious works [124, 126]. In Fig. 3.10, we compare he performance of these two methods
to our iterative scheme in Eq. 3.7 on the basis of the memory kernels of methane for the
spring constants K = 0, K = 100 kJ/(mol nm2) and K = 25000 kJ/(mol nm2). In the sub-
plots (a) to (c), where the memory kernels Γ(t) are shown, it is visible that both methods
Eqs. 3.12 and 3.13 suffer from numerical instabilities: While Eq. 3.12 produces oscillations
in the memory kernel, seen most evidently for the unconfined methane molecule at times
t > 0.1 ps, the memory kernel computed by Eq. 3.13 diverges for the highest spring con-
stant. The picture is even more obvious for the integrals G(t) of the memory kernels, which
are shown in the subfigures (d) to (f). In these figures the dashed lines indicate the values
γxx = kBT/

∫ ∞
0 dt Cvv(t) without confinement and γvv = K2

∫ ∞
0 dt Cxx(t)/kBT with con-

finement (See Sec. 3.8.5 for derivation). Only Eq. 3.7, which solves the Volterra equation
for G(t), reproduces plateau values γxx and γvv, whereas the other two methods, where
first Γ(t) is computed and then integrated, exhibit massive deviations for times t > 10 ps.
We thus conclude that indeed the method based on Eq. 3.7 provides the numerically most
stable results for the memory kernel among the iterative methods.

3.7.2 Computation of Memory Kernels via Fourier transform

Instead of using iterative algorithms, it is also possible to calculate the memory kernel
directly from the correlation functions using Fourier transforms [123]. In Fourier space,



3. Memory Effects in the Dynamics of Confined Small Molecules 43

-1

0

1

2

3

4

5

6

0.01 0.1 1 10

K = 0 kJ/(mol nm2)

(a)

Γ(
t)

[k
g

/(m
ol

ps
2 )]

t [ps]
0.01 0.1 1 10

K = 100 kJ/(mol nm2)

(b)

t [ps]
0.01 0.1 1 10

-1

0

1

2

3

4

5

6
K = 25000 kJ/(mol nm2)

(c)

Γ(
t)

[k
g

/(m
ol

ps
2 )]

t [ps]

Eq. 3.12
Eq. 3.13
Eq. 3.7

0.0

0.5

1.0

1.5

2.0

0.01 0.1 1 10 100

(d)

G
(t)

[k
g

/(m
ol

ps
)]

t [ps]
0.01 0.1 1 10 100

(e)

t [ps]

Eq. 3.12
Eq. 3.13
Eq. 3.7

0.01 0.1 1 10 100
0.0

0.5

1.0

1.5

2.0(f)

G
(t)

[k
g

/(m
ol

ps
)]

t [ps]

FIGURE 3.10: Memory kernels Γ(t) of methane in water obtained from Eqs. 3.12 (orange), 3.13
(blue) and 3.7 (green) for three spring constants (a) K = 0, (b) K = 100 kJ/(mol nm2) and (c) K =
25000 kJ/(mol nm2). In the subfigures (d) to (f), the corresponding integrals G(t) over the memory
kernels are presented. Equations 3.12 and 3.13 yield Γ(t), which has to be integrated numerically to
obtain G(t), whereas Eq. 3.7 yields G(t), which has to be differentiated numerically to obtain Γ(t).
In the subfigures (d) to (f), the dashed lines indicate the values γ = kBT/

∫ ∞
0 dt Cvv(t) without

confinement and γ = K2
∫ ∞

0 dt Cxx(t)/kBT with confinement.

the relation between the memory kernel and the velocity correlation function is given by

Γ̃(ω) = 2 Re

(
kBT

C̃vv
+ (ω)

)
(3.14)

with C̃vv
+ (ω) =

∫ ∞

0
dt Cvv(t) e−iωt , (3.15)

which is derived in Sec. 3.8.2. Hence, in order to obtain the memory kernel in the time
domain, a Fourier transformation of the velocity correlation function according to Eq. 3.15
and a back Fourier transformation of the real part according to Eq. 3.14 is necessary.

The results of this method are presented in Fig. 3.11 (green lines) in the frequency domain
((a)-(c)), computed via Fast-Fourier transform, and the time domain ((d)-(f)) and compared
to the iterative method based on Eq. 3.7 (blue lines) for the memory kernels of methane.
For K = 0 and K = 100 kJ/(mol nm2), the results of both methods are indistinguish-
able from each other. Differences between the methods are visible for the spring constant
K = 25000 kJ/(mol nm2). In frequency domain, we observe that at small frequencies, the
memory kernel computed from the Fourier method suffers from heavy oscillations, which
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are not seen in the other two kernels. In time domain, these oscillations correspond to
a divergence of the kernel at large times. This instability has already been observed by
Gottwald et al. [123], where a Gaussian filter was used in the Fourier transform to correct
for it. We thus conclude that for small spring constants, both methods yield equivalent
results, whereas for large spring constants, the Fourier-based method becomes unstable.
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FIGURE 3.11: Fourier transforms of the memory kernels of methane obtained by the parameter-
based method Eq. 3.20 (orange), the iterative method Eq. 3.7 (blue) and the Fourier-transform
method Eq. 3.14 (green) for the spring constants (a) K = 0, (b) K = 100 kJ/(mol nm2) and (c)
K = 25000 kJ/(mol nm2). In subfigures (d)-(f), the corresponding kernels in the time domain are
presented. In (d), we additionally show the memory kernel Γ(t) which results from the numerical
differentiation of the G(t) computed with MSD-based method in Eq. 3.22 (purple).

3.7.3 Parameter-based Extraction of Memory Kernels

A recently developed method utilizes a parameter-based ansatz function for the memory
kernels, whose parameters are fitted such to reproduce the measured correlation func-
tions [120]. Defining the force on a solute particle by

Fsol(t) = mẍ(t) + Kx(t) (3.16)

and the autocorrelation function of this force by

Csol
FF (t) = 〈Fsol(0)Fsol(t)〉 , (3.17)
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we can compute the Fourier transform C̃sol
FF (ω) =

∫ ∞
−∞ dt e−iωtCsol

FF (t) of this correlation
function by solving the GLE in Eq. 3.3 in Fourier space. The solution reads

C̃sol
FF (ω) =

kBT Γ̃(ω)∣∣1− iωΓ̃+(ω)/(mω2 − K)
∣∣2 , (3.18)

where we introduced the single-sided memory function Γ+(t) ≡ Γ(t) for t ≥ 0 and
Γ+(t) ≡ 0 for t < 0. As already pointed out in the main text, the friction coefficient γ

is determined by γ =
∫ ∞

0 dt Γ(t), which in the case of confined particles (K 6= 0) can be
used to compute the friction coefficient directly from the correlation function Csol

FF (t) via

γ ≡ Γ̃(0)
2

=
C̃sol

FF (0)
2kBT

=
1

kBT

∫ ∞

0
dt Csol

FF (t) . (3.19)

For K = 0, the solvent force equals the total force on the particle and the integral over the
autocorrelation function Csol

FF (t) becomes zero, hence this method is not applicable for un-
confined particles. Using a parametrization of Γ(t), we can compute Csol

FF (t) using Eq. 3.18
and fit the parameters such that the resulting correlation function agrees with the correla-
tion function Csol

FF (t) calculated from the simulation trajectories. This fitting procedure can
be done simultaneously to both Csol

FF (t) and its integral, hence ensuring that the integral of
the resulting memory kernel Γ(t) fulfills the relation γ =

∫ ∞
0 dt Γ(t). For the parametriza-

tion of the memory kernel of methane we choose

Γ(t) =
n

∑
i=1

Ai exp
(
−
∣∣∣∣ t
τi

∣∣∣∣αi
)

(3.20)

with n = 2 for K = 100 kJ/(mol nm2) and n = 3 for K = 25000 kJ/(mol nm2), where the
Ai, τi and αi are the fit parameters.

In Fig. 3.11, we compare the memory kernels of methane computed by this method (or-
ange lines) with the iterative method based on Eq. 3.7 (blue lines) for the spring constants
K = 100 kJ/(mol nm2) and K = 25000 kJ/(mol nm2). Similarly to the results of Ap-
pendix 3.7.2, we do not see any deviation between the parameter-based method and the
iterative method for K = 100 kJ/(mol nm2). This means that in this case indeed the para-
metrization in Eq. 3.20 is sufficient to describe the memory kernel. At high frequencies,
the Fourier-transformed memory kernels exhibit a minimum at 6 THz, followed by a max-
imum at 7 THz. This feature is identically generated by both the Fourier-based method
and the iterative method, whereas the parameter-based method exhibits deviations. In the
time domain, we observe that in contrast to the other two methods the parameter-based
method does not produce the small oscillations at times t > 0.2 ps. These deviations are
due to the limitations caused by the choice of the parametrization in Eq. 3.20, since for
an accurate modeling of all features of the memory kernel more parameters are required.
These limitations are even more obvious when one considers for example the modeling of
a kernel as seen in Fig. 3.2 (h), where a huge amount of parameters is needed to reproduce
all features of the kernel. Thus, the parameter-based method is a good choice for simple
kernels with few features, where it yields stable results, however for more complicated
kernels, the iterative method should be preferred.



46 3. Memory Effects in the Dynamics of Confined Small Molecules

3.7.4 Extraction of Memory Kernels from MSD

In the case of no confinement (K = 0), we can integrate Eq. 3.5 twice, which then results in
the equation

m∆x2(t)− kBTt2 = −
∫ t

0
dt′′ G(t′′)∆x2(t− t′′) , (3.21)

where ∆x2(t) is the mean-squared displacement (MSD) of the particle. A detailed deriva-
tion is given in Sec. 3.8.4. The discretization of this equation yields

Gi =
1

∆t ∆x2
1

[
kBT ((i + 1)∆t)2 −m∆x2

i+1 −
i−1

∑
j=0

∆t Gj∆x2
i+1−j

]
. (3.22)

With this equation, the computation of memory kernels for K = 0 is possible for systems
where velocities are not accessible (or only via numerical differentiation). As can be seen
in Fig. 3.11 (d), we obtain perfect agreement between this method (purple line) and all
other methods for the memory kernel of methane.

3.8 Supplementary Material

3.8.1 Initial Time in the GLE

In order to demonstrate that the initial time in the GLE in Eq. 3.1, i.e. the choice of either
t or ∞ as upper integration boundary, does not have any effect on Eqs. 3.4 and 3.5 in the
main text, we first have a short revision of how Mori motivated the formulation of the
GLE.

3.8.1.1 Motivation of GLE by Mori

In his original work [42], Mori considers a Brownian particle whose motion is described by
a dynamic variable, which we in our notation call ẋ(t). The dynamics of ẋ(t) is determined
by the force F(t) acting on the Brownian particle, which Mori separates into a contribution
F1(t), which depends on the history of ẋ(t) up to an initial time t0, and a contribution F2(t)
that is independent of ẋ(t) and stems from the other degrees of freedom that couple to
ẋ(t). The equation of motion thus reads

mẍ(t) = F(t) = F1(ẋ(t′), t ≥ t′ ≥ t0) + F2(t) . (3.23)

In this equation, Mori splits the force F1 into a part which is linear in ẋ(t′) and a part
containing all higher orders of ẋ(t′). Denoting the sum of this second part and F2(t) as the
random force FR(t), Mori arrives at

mẍ(t) = −
∫ t

t0

dt′ Γ(t− t′)ẋ(t′) + FR(t) . (3.24)
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In this equation, the function Γ(t), which we will in the following denote as the memory
kernel, describes the linear coupling of the history of ẋ(t) to the dynamics of ẋ(t) at present
time. By setting the initial time to t0 = 0, we obtain Eq. 3.1 in the main text. Using the
projector operator formalism Mori further showed that with this choice for the initial time
the random force FR(t) is not correlated to the initial value ẋ(0),

〈FR(t)ẋ(0)〉 = 0, (3.25)

which then leads to the relation〈
FR(t)FR(t′)

〉
= kBTΓ(t− t′) (3.26)

for the correlator of the random force, which is often referred to as the fluctuation-dissipation
theorem.

Equation 3.24 can be modified such that the history of the process reaches infinitely into
the past, which results in

mẍ(t) = −
∫ t

−∞
dt′ Γ(t− t′)ẋ(t′) + F′R(t) (3.27)

with F′R(t) =
∫ t0

−∞
dt′ Γ(t− t′)ẋ(t′) + FR(t) ,

thus the random force F′R(t) differs from the random force FR(t) by the contribution of ẋ(t)
to the integral before the time t0. Assuming that the random force F′R(t) still obeys the
fluctuation-dissipation theorem in Eq. 3.26, we in the following demonstrate that we can
derive Eq. 3.4 in the main text also from Eq. 3.27.

3.8.1.2 Derivation of Eq. 3.4 from Eq. 3.27

As we investigate particles in a harmonic potential, we add a restoring force with spring
constant K to Eq. 3.27, which then reads

mẍ(t) = −
∫ ∞

0
dt′ Γ(t′)ẋ(t− t′)− Kx(t) + F′R(t)

= −
∫ ∞

−∞
dt′ Γ+(t′)ẋ(t− t′)− Kx(t) + F′R(t) , (3.28)

with Γ+(t) = Γ(t)Θ(t). Using the rules of Fourier transformations, which say that the
time derivative in time domain corresponds to the factor iω in frequency domain and that
a convolution transforms into a product, the Fourier transform of Eq. 3.28 yields

−mω2 x̃(ω) = −iωΓ̃+(ω)x̃(ω)− Kx̃(ω) + F̃′R(ω)

⇔ x̃(ω) =
1

iωΓ̃+(ω) + K−mω2
F̃′R(ω) = χ̃(ω)F̃′R(ω) =

ṽ(ω)

iω
, (3.29)
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where we introduced the response function χ̃(ω) = 1/
(
iωΓ̃+(ω) + K−mω2). We now

make use of the assumption that Eq. 3.26 also holds for F′R(t), hence

〈F′R(t)F′R(t
′)〉 = kBT Γ(t− t′)

⇔ 〈F̃′R(ω)F̃′R(ω
′)〉 = kBT

∫ ∞

−∞
dt e−iωt

∫ ∞

−∞
dt′ e−iω′t′ Γ(t− t′)

= kBT
∫ ∞

−∞
dt′ e−i(ω′+ω)t′

∫ ∞

−∞
dt e−iω(t−t′) Γ(t− t′)

= kBT
∫ ∞

−∞
dt′ e−i(ω′+ω)t′ Γ̃(ω) = 2πkBTδ

(
ω + ω′

)
Γ̃(ω) .

For the velocity autocorrelation function Cvv(t) = 〈v(0)v(t)〉 it thus follows with Eq. 3.29

C̃vv(ω) =
∫ ∞

−∞
dt e−iωt〈v(0)v(t)〉 = 〈v(0)ṽ(ω)〉 =

∫ ∞

−∞

dω′

2π
e−iω′0〈ṽ(ω)ṽ(ω′)〉

= −
∫ ∞

−∞

dω′

2π

〈
ωχ̃(ω)F̃′R(ω)ω′χ̃(ω′)F̃′R(ω

′)
〉

= −kBT
∫ ∞

−∞
dω′ ωω′χ̃(ω)χ̃(ω′)δ

(
ω + ω′

)
Γ̃(ω)

= kBT ω2 χ̃(ω)χ̃(−ω)Γ̃(ω) (3.30)

= kBT ω2 Γ̃(ω)
χ̃(−ω)− χ̃(ω)

1/χ̃(ω)− 1/χ̃(−ω)
(3.31)

= kBTω2 Γ̃(ω)
χ̃(−ω)− χ̃(ω)

iω
(
Γ̃+(ω) + Γ̃+(−ω)

) . (3.32)

Since the response function χ(t) is a real function, its Fourier transform obeys the relation
χ̃(−ω) = χ̃?(ω), where complex conjugated quantities are denoted with a star, therefore
we get χ̃(−ω)− χ̃(ω) = −2i Im (χ̃(ω)). We furthermore note that for any function f (t)
which is symmetric in t, as for example Γ(t), we can use

f̃+(ω) + f̃+(−ω) = f̃+(ω) + f̃ ?+(ω) = 2 Re
(

f̃+(ω)
)

=
∫ ∞

−∞
dt f+(t) e−iωt +

∫ ∞

−∞
dt f+(t) eiωt

=
∫ ∞

−∞
dt f (t)Θ(t) e−iωt +

∫ ∞

−∞
dt f (t)Θ(−t) e−iωt = f̃ (ω) . (3.33)

Applying this identity to Γ̃+(ω) in Eq. 3.32 we arrive at

C̃vv(ω) = 2 Re
(
C̃vv
+ (ω)

)
= −2kBT ω Im (χ̃(ω)) , (3.34)

which is the fluctuation-dissipation theorem in the frequency domain in terms of the ve-
locity. We now introduce the function ψ̃(ω) = iωχ̃(ω) with the property Re (ψ̃(ω)) =

−ω Im (χ̃(ω)), which allows us to rewrite Eq. 3.34 as

Re
(
C̃vv
+ (ω)

)
= kBT Re (ψ̃(ω)) . (3.35)

In order to obtain a relation between the full functions C̃vv
+ (ω) and χ̃(ω), we employ the

Kramers-Kronig relations. These tell us that for a function f̃ (ω) that is analytic in the
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upper complex half plane of ω and vanishes like 1/ |ω| or faster for |ω| → ∞ the real part
and the imaginary part are connected via

Im
(

f̃ (ω)
)
= − 1

π

∫ ∞

−∞
dω′

Re
(

f̃ (ω′)
)

ω′ −ω
. (3.36)

Thus, the real part and the imaginary part of f̃ (ω) are not independent, and the full func-
tion can be reconstructed given just one of its parts. In particular, if the real parts of two
analytic functions are equal, the full functions are equal. Since both C̃vv

+ (ω) and ψ̃(ω) con-
verge to zero for |ω| → ∞ and per definition we know that Cvv

+ (t < 0) = χ(t < 0) = 0,
Titchmarsh’ theorem directly states that both functions fulfill the Kramers-Kronig rela-
tions. Therefore it follows from Eq. 3.34 that

C̃vv
+ (ω) = kBTψ̃(ω) = iωkBT χ̃(ω) (3.37)

and thus, after multiplication with −iωχ̃?(ω)Γ̃(ω),

−iωC̃vv
+ (ω)χ̃?(ω)Γ̃(ω) = ω2kBT χ̃(ω)χ̃?(ω)Γ̃(ω) = C̃vv(ω) ,

where we used Eq. 3.30. Inserting the definition of the response function from Eq. 3.29
yields

C̃vv
+ (ω)Γ̃(ω) =

C̃vv(ω)

−iωχ̃?(ω)
=
−iωΓ̃?

+(ω) + K−mω2

−iω
C̃vv(ω)

= −
(

K
iω

+ imω

)
C̃vv(ω) + Γ̃?

+(ω)C̃vv(ω) .

Using Eq. 3.33 for Γ̃?
+(ω) = Γ̃(ω)− Γ̃+(ω) and rearranging terms then gives

−
(

K
iω

+ imω

)
C̃vv(ω) = C̃vv

+ (ω)Γ̃(ω) + C̃vv(ω)Γ̃+(ω)− C̃vv(ω)Γ̃(ω) .

In this equation we now insert the Fourier transform of each term. The left hand side
can immediately be transformed by reminding ourselves that a differentiation in the time
domain corresponds to a multiplication of iω in the frequency domain, hence

−
(

K
iω

+ imω

)
C̃vv(ω) = −

∫ ∞

−∞
dt e−iωt (KCvx(t) + mĊvv(t)

)
.

Also the transformation of the right hand side is straight forward, as products in the fre-
quency domain turn into convolutions in the time domain:

C̃vv
+ (ω)Γ̃(ω) + C̃vv(ω)Γ̃+(ω)− C̃vv(ω)Γ̃(ω)

=
∫ ∞

−∞
dt e−iωt

∫ ∞

−∞
dt′

(
Cvv
+ (t− t′)Γ(t′) + Cvv(t− t′)Γ+(t′)− Cvv(t− t′)Γ(t′)

)
=
∫ ∞

−∞
dt e−iωt

(∫ t

−∞
dt′ Cvv(t− t′)Γ(t′) +

∫ ∞

0
dt′ Cvv(t− t′)Γ(t′)−

∫ ∞

−∞
dt′ Cvv(t− t′)Γ(t′)

)
=
∫ ∞

−∞
dt e−iωt

∫ t

0
dt′ Cvv(t− t′)Γ(t′) .
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Combining all transforms we finally obtain

−
∫ ∞

−∞
dt e−iωt (KCvx(t) + mĊvv(t)

)
=
∫ ∞

−∞
dt e−iωt

∫ t

0
dt′ Cvv(t− t′)Γ(t′) .

Dropping the Fourier integrals, rearranging terms and using the symmetries of the cor-
relation function yields Eq. 3.4 in the main text. In this calculation we have thus shown
that indeed from the GLE in Eq. 3.28 together with the fluctuation-dissipation theorem it
follows that Eq. 3.4 in the main text still holds.

3.8.2 Derivation of Eq. 3.14

Rewriting Eq. 3.37, it follows

C̃vv
+ (ω) = iωkBT χ̃(ω) =

iωkBT(
iωΓ̃+(ω) + K−mω2

)
⇔ Γ̃+(ω) =

kBT
C̃vv
+ (ω)

− K−mω2

iω
. (3.38)

Using Eq. 3.33 and realizing that the second term on the right hand side is purely imagin-
ary, we can immediately write

Γ̃(ω) = 2 Re

(
kBT

C̃vv
+ (ω)

)
. (3.39)

3.8.3 Derivation of Eq. 3.5

Integration of Eq. 3.4 yields

m
∫ t

0
dt′ Ċvv(t′) = −

∫ t

0
dt′

∫ t′

0
dt′′

[
Γ(t′′) + K

]
Cvv(t′ − t′′)

= −
∫ t

0
dt′

∫ t′

0
dt′′

[
Γ(t′ − t′′) + K

]
Cvv(t′′)

= −
∫ t

0
dt′

∫ t′

0
dt′′ Γ(t′ − t′′)Cvv(t′′) + K

∫ t

0
dt′ Cxv(t′)

⇔ mCvv(t)−mCvv(0) = −
∫ t

0
dt′′

∫ t

t′′
dt′ Γ(t′ − t′′)Cvv(t′′) + KCxx(t)− KCxx(0)

= −
∫ t

0
dt′′ Cvv(t′′)G(t− t′′) + KCxx(t)− KCxx(0)

= −
∫ t

0
dt′ G(t′)Cvv(t− t′) + KCxx(t)− KCxx(0) . (3.40)

In the upper calculation, we used the fact that G(t = 0) = Cxv(t = 0) = 0, since both
functions are antisymmetric in t. Again we arrive at a Volterra equation of first kind,
this time for the integral G(t) of the memory kernel. The application of the equipartition
theorem mCvv(0) = KCxx(0) = kBT then leads to Eq. 3.5 in the main text.
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3.8.4 Mean-Squared Displacement

In the model Eq. 3.27, the mean squared displacement ∆x2(t) of a particle can be computed
by

∆x2(t) =
〈
(x(t)− x(0))2

)
=

〈(∫ t

0
dt′ v(t′)

)2
〉

=
∫ t

0
dt′
∫ t

0
dt′′

〈
v(t′)v(t′′)

〉
=
∫ t

0
dt′
∫ t

0
dt′′

〈
v(0)v(t′′ − t′)

〉
=
∫ t

0
dt′
∫ t−t′

−t′
ds Cvv(s)

=
∫ t

0
dt′
∫ 0

−t′
ds Cvv(s) +

∫ t

0
dt′
∫ t−t′

0
ds Cvv(s) , (3.41)

where we used the substitution s = t′′ − t′. In order to further simplify this formula, we
make use of the mathematical identity∫ t

0
dt′ f (t′) =

∫ t−u

−u
dt′ f (t′ + u) , (3.42)

which describes how integrals change upon shifts of the integration boundaries. Applying
this identity with u = t on the first integral of the second term in Eq. 3.41 yields

∆x2(t) = −
∫ t

0
dt′
∫ −t′

0
ds Cvv(s) +

∫ 0

−t
dt′
∫ −t′

0
ds Cvv(s)

=
∫ t

0
dt′
∫ t′

0
ds Cvv(−s)−

∫ 0

t
dt′
∫ t′

0
ds Cvv(s)

= 2
∫ t

0
dt′
∫ t′

0
ds Cvv(s) . (3.43)

In this calculation, we twice changed the sign of the variable that we integrate over and
used the symmetry Cvv(−s) = Cvv(s) of the velocity autocorrelation function. Thus, in
order to introduce the mean squared displacement into Eq. 3.5 in the case of a freely dif-
fusing particle (K = 0) we only have to integrate it twice and multiply it with a factor 2.
From Eq. 3.5, we then obtain the expression

2
∫ t

0
dt′
∫ t′

0
ds (mCvv(s)−mCvv(0)) = −2

∫ t

0
dt′
∫ t′

0
ds
∫ s

0
dt′′ G(t′′)Cvv(s− t′′) . (3.44)

The left hand side of this equation consists of two double integrals, which can both be
computed easily,

2
∫ t

0
dt′
∫ t′

0
ds (mCvv(s)−mCvv(0)) = m∆x2(t)− kBTt2 , (3.45)

where we used the definition of the mean squared displacement in Eq. 3.41 and the equipar-
tition theorem mCvv(0) = kBT. The right hand side contains a nested triple integral, which
can be transformed using another mathematical identity,

∫ t

0
dt′
∫ t′

0
dt′′ f (t′, t′′) =

∫ t

0
dt′′

∫ t

t′′
dt′ f (t′, t′′) , (3.46)
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which expresses how the integration boundaries change if the order of integration for two
nested integrals is reversed. Using this identity twice we obtain

m∆x2(t)− kBTt2 = −2
∫ t

0
dt′
∫ t′

0
ds
∫ s

0
dt′′ G(t′′)Cvv(s− t′′)

= −2
∫ t

0
dt′
∫ t′

0
dt′′ G(t′′)

∫ t′

t′′
ds Cvv(s− t′′)

= −2
∫ t

0
dt′′ G(t′′)

∫ t

t′′
dt′
∫ t′

t′′
ds Cvv(s− t′′)

= −2
∫ t

0
dt′′ G(t′′)

∫ t−t′′

0
dt′
∫ t′+t′′

t′′
ds Cvv(s− t′′)

= −2
∫ t

0
dt′′ G(t′′)

∫ t−t′′

0
dt′
∫ t′

0
ds Cvv(s)

= −
∫ t

0
dt′′ G(t′′)∆x2(t− t′′) , (3.47)

where the integration boundaries are shifted twice according to Eq. 3.42. This equation,
which again is a Volterra equation of first kind, shows that also from the mean squared dis-
placement the memory kernel can in principle be extracted by solving it either analytically
or numerically.

3.8.5 Computing γ from Correlation Functions

The friction coefficient γ is defined as the integral over the memory kernel:

γ =
∫ ∞

0
dt Γ(t) =

1
2

∫ ∞

−∞
dt e−i0·t Γ(t) =

Γ̃(0)
2

.

For unconfined particles, we can use Eq. 3.39 to compute γ:

γ = Re

(
kBT

C̃vv
+ (0)

)
= Re

(
kBT

/∫ ∞

0
dt e−i0·tCvv(t)

)
= kBT

/∫ ∞

0
dt Cvv(t) . (3.48)

For confined particles, the integral in Eq. 3.48 diverges, since the limit ω → 0 in Eq. 3.38 is
not defined for a finite K. We thus employ Eq. 3.30, which we rewrite as

C̃vv(ω)

ω2 = − C̃vx(ω)

iω
=

C̃xv(ω)

iω
= C̃xx(ω) = kBTχ̃(ω)χ̃(−ω)Γ̃(ω) ,

where we used that division by iω in frequency domain corresponds to integration in time
domain. Setting ω = 0 and using the fact that χ̃(0) = 1/K we arrive at

γ =
Γ̃(0)

2
=

K2C̃xx(0)
2kBT

=
K2

2kBT

∫ ∞

−∞
dt e−i0·t Cxx(t) =

K2

kBT

∫ ∞

0
dt Cxx(t) . (3.49)
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3.8.6 Discretization of Volterra Equations

The discretization of Eqs. 3.4, 3.11, 3.5 and 3.8 is straight forward. We arrive at

CvF
i = −

i

∑
j=0

∆t Γ′jC
vv
i−jwi,j ,

CFF
i =

i

∑
j=0

∆t Γ′jC
vF
i−jwi,j + mΓ′iC

vv
0 ,

mCvv
i = −

i

∑
j=0

∆t GjCvv
i−jwi,j + KCxx

i ,

m∆x2
i − kBT (i∆t)2 = −

i

∑
j=0

∆t Gj∆x2
i−jwi,j = −

i−1

∑
j=0

∆t Gj∆x2
i−jwi,j ,

with Γ′i = Γi + K. In each of these equations, we introduced the weighting factor wi,j with
the values for wi,i = wi,0 = 1/2 and wi,j = 1 otherwise, which comes from the trapezoidal
integration rule. Pulling out the i-th contribution from the sum in the first three equations
and the i − 1-th contribution in the last equation, respectively, and solving for Γ′i, Gi and
Gi−1, respectively, yields

Γ′i = −
2

∆t Cvv
0

[
CvF

i +
i−1

∑
j=0

∆t Γ′jC
vv
i−jwi,j

]
(3.50)

Γ′i =
1

mCvv
0

[
CFF

i −
i−1

∑
j=0

∆t Γ′jC
vF
i−jwi,j

]
(3.51)

Gi =
2

∆t Cvv
0

[
KCxx

i −mCvv
i −

i−1

∑
j=0

∆t GjCvv
i−jwi,j

]
(3.52)

Gi−1 =
1

∆t ∆x2
1

[
kBT (i∆t)2 −m∆x2

i −
i−2

∑
j=0

∆t Gj∆x2
i−jwi,j

]
, (3.53)

where we again used the symmetries of the correlation functions in the derivation. The
first two equations already equal Eq. 3.12 and Eq. 3.13 in the Appendix 3.7.1. In order to
derive Eq. 3.7 in the main text from Eq. 3.52 with K 6= 0, we employ the equipartition
theorem KCxx

0 = mCvv
0 = kBT to replace the spring constant by K = mCvv

0 /Cxx
0 . For K = 0

we have to discretize Eq. 3.40 instead of Eq. 3.5, which results in a replacement of the term
KCxx

i by mCvv
0 . In Eq. 3.53, we shift the index i− 1 to i and drop the weighting factor wi,j,

since it equals 1 in every case, which then results in Eq. 3.22.

3.8.7 Determination of Plateau Value γ.

The plateau values γ are extracted via a fit of the empiric function

Gfit(t) = γ
[
1− exp

(
− |t/τ|b

)]
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to the integrals G(t) in the range 0.5 ps < t < 50 ps. In this fit function, the prefactor γ

corresponds to the friction coefficient. The lower boundary of the fitting interval is chosen
such that at this time G(t) is dominated by relaxation with the longest decay time, whereas
the upper boundary is determined by the noise in the plateau values. As seen in Fig. 3.12,
where we present the functions G(t) for methane (purple), Na+ (yellow) and glycerol
(blue) with K = 2500 kJ/mol nm2, the functions G(t) are perfectly described by the fits
for times t > 0.5 ps.
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FIGURE 3.12: Fits of the function Gfit(t) (black dashed lines) to G(t) in the range 0.5 ps < t <
50 ps for methane (purple), Na+ (yellow) and glycerol (blue), which all are confined with a spring
constant of K = 2500 kJ/mol nm2.

3.8.8 Fitting the Long Time Decay of Memory Kernels

In order to obtain the longest decay time of the memory kernels, we fit a sum of exponen-
tials

Γexp
N (t) =

N

∑
i=1

Ai e−t/τi

to the memory kernels. The number N of terms in the sum is increased until the longest
decay time τN does not change any more. The method is illustrated in Fig. 3.13, where
we fit the functions Γexp

N (t) with N = 1, . . . , 5 (red to green) in the range 0.6 ps < t <

20 ps to the memory kernel of glycerol in a water–glycerol mixture with the viscosity
η = 2.26 · 10−3 Ns/m2 (purple). We observe in (a) that for N ≥ 3 the fit functions are
indistinguishable from each other. Consequently, the longest decay time remains constant
with increasing N, as shown in (b). For the glycerol molecule in water–glycerol mixture
we observe a monotonic dependence of the longest decay time τN on the solvent viscosity
(see Fig. 3.7 (b) in the main text). The dependence of the parameters of the long time decay
on the spring constant K however is not clear. This is illustrated in Fig. 3.14, where we
see that although the long time decay is very well modeled by a sum of two exponential
functions (a), neither the amplitude of the longest decay A2 (b) nor the time constant τ2 (c)
exhibit a monotonic dependence on the spring constant. On the other hand the quantity
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FIGURE 3.13: (a) Fits of the functions Γexp
N (t) with N = 1, . . . , 5 (red to green) in the range 0.6 ps <

t < 20 ps to the memory kernel of glycerol in a water–glycerol mixture with the viscosity η =
2.26 · 10−3 Ns/m2 (purple). (b) Longest decay time τN obtained from the fits in (a).

A1τ1 + A2τ2, which equals the integral over the long time decay and thus its contribution
to the friction coefficient γ, increases similarly with K as the friction coefficient γ in Fig. 3.3
in the main text. Consequently, we conclude that although the parametrization Eq. 3.8.7
well describes the simulation data, it does not offer any insight into the dependence of the
parameters Ai and τi on K.
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FIGURE 3.14: (a) Memory kernels Γ of methane in water in a log-lin representation for five spring
constants between K = 0 and K = 25000 kJ/(mol nm2). Black dashed lines indicate fits of a sum
of two exponential functions to the long time tail with t > 0.5 ps. In the subfigures on the right
hand side, we show the amplitude A2 (b) and the time constant τ2 (c) of the exponential with the
slowest decay. In (d) the quantity A1τ1 + A2τ2, which equals the integral over the long time decay,
is presented.



56 3. Memory Effects in the Dynamics of Confined Small Molecules

3.8.9 Radial Distribution Functions

In Fig. 3.15 we present the normalized radial distribution function

ρ(r)/ρ0 =
1

4πρ0r2
dN(r)

dr
(3.54)

of water in the hydration shell around the solutes. In this equation ρ0 is the bulk number
density of water and N(r) is the number of water molecules within the distance r around
the test molecule.
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FIGURE 3.15: Radial distribution function ρ(r) (Eq. 3.54) of water in the hydration shell around
water (a), N+ (b), N− (c) and glycerol (d) for all investigated confinement strengths.



Chapter 4

Permeation of Water through a Lipid
Membrane

Bibliographic information: The content of this chapter is in preparation to be submitted to a
peer-reviewed journal (Ref. iii).

4.1 Introduction

Self-assembled phospholipid bilayers with embedded proteins form the outermost layer
of the majority of cells [1] and serve as a barrier which keeps molecules that are crucial
for the function of the cell inside the cell and toxic molecules outside. On the other hand,
in order to maintain their metabolism, cells require mechanisms for the transport of mo-
lecules through the lipid bilayer, which thus has to be a selective permeable membrane.
Water constitutes a special case in terms of its transport through the bilayer: Cell mem-
branes contain aquaporin proteins, which serve as a channel for water diffusion [145]. The
importance of this pathway however depends on the aquaporin concentration within the
membranes, and a passive background permeation of water directly through the mem-
brane can also contribute significantly [146]. This passive permeation of water was meas-
ured in experimental studies [6, 147–149] as well as in simulations [34, 36]. Whereas ex-
periments can only determine the absolute value of the permeation, simulations enable us
to go into more detail and examine the local resistance acting on a water molecule which
diffuses through a membrane. This way, it is possible to distinguish between contributions
from the free energy and the diffusivity to the permeation process, and in the simulation
studies mentioned above it was found that the key factor which determines the permeation
rate is the free energy barrier. The detailed understanding of the molecular mechanisms
acting during the permeation is essential to link membrane and solute properties with dif-
fusivities and free energies observed from permeation experiments on larger scales [150].

In this work, we focus on the diffusivity of the water molecule in a membrane and in-
clude memory effects in our calculations. These effects were first considered by Mori in
his derivation of the generalized Langevin equation (GLE) [42], which applies to systems

57
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where the solvent relaxation proceeds on the same time scales as the solute motion. The
importance of memory effects has been proven in several fields of physics [151, 152], and
they have also been considered explicitly in a study of ion diffusion through protein chan-
nels in membranes [153]. However, a detailed analysis of the memory kernels of small
molecules during the permeation through bilayers has not been conducted yet. By com-
paring the diffusivity profiles for a water molecule in a lipid bilayer obtained from the
memory kernels and the memoryless round-trip times, we show that the consideration
of memory effects results in a decrease of the diffusivity by a factor of up to 20. This
moves the importance of the diffusivity for the permeation process to the same level as the
importance of the free energy. Fundamental consequences for drug design are expected,
since memory effects are not limited to the system investigated here, but have also been
observed for larger molecules [154].

4.2 Theory

We assume our system to be homogeneous perpendicular to the membrane normal, thus
we can describe the permeation of molecules through the membrane as an one-dimensional
problem. Let us denote the lower boundary of the membrane by the position z1 and the
upper boundary by z2, which we place outside the membrane into the water phase. With
this notation, the time-independent permeation coefficient P(z1, z2) of molecules from z1

to z2 is defined by the equation

P(z1, z2) =
J

ρ(z1)− ρ(z2)
. (4.1)

Here, ρ(zi) is the density of the particles at zi, which is assumed to be constant in time, and
J is the flux of the particles through the membrane. The stationary particle flux through
the membrane is thus proportional to the difference in the particle density ρ(z) across the
membrane and the permeation coefficient is the proportionality constant between these
two quantities. Since in MD simulations fluxes are generally too small to be measured
directly, we transform Eq. 4.1 such that we introduce quantities that are accessible in MD
simulations, which is accomplished using the Fokker–Planck equation (FPE)

∂

∂t
ρ(z, t) =

∂

∂z

[
D(z) e−βF (z) ∂

∂z

(
eβF (z)ρ(z, t)

)]
, (4.2)

with β = kBT. This equation describes the time evolution of a particle density ρ(z, t) in the
presence of a free energy landscape F (z) and a diffusivity profile D(z). In Appendix 4.8.1
we show that Eq. 4.1 can then be rewritten as [33, 34]

1
P
=
∫ z2

z1

dz R(z) =
∫ z2

z1

dz
eβ(F (z)−F0)

D(z)
, (4.3)

with the local permeation resistance R(z) = exp (βF (z)− βF0) /D(z). In order to determ-
ine the permeation coefficient P of the membrane, it is thus necessary to compute both the
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free energy profile F (z) as well as the diffusivity profile D(z). In the following section, we
introduce two methods that allow for the computation of the local diffusivity.

4.2.1 Round-Trip Time Method

Based on a description of the particle dynamics by FPE in Eq. 4.2, the round-trip time
(RTT) method has been used to calculate diffusivity profiles of reaction coordinates of
proteins [64] and water molecules at water–membrane interfaces [65]. From the one-
dimensional FPE it can be deduced that the mean first passage time, which is defined
as the mean time a particle needs to reach the position z f for the first time while starting
from position z < z f , is given by

τFP(z, z f ) =
∫ z f

z
dz′

eβF (z′)

D(z′)

∫ z′

zmin

dz′′ e−βF (z′′) . (4.4)

In this equation, we assume a reflective boundary condition at zmin < z, realized by
F (zmin) � F (z), and an absorbing boundary condition at z f . Similarly, for a reflective
boundary condition at zmax with zmax > z > z f the mean first passage time reads

τFP(z, z f ) =
∫ z

z f

dz′
eβF (z′)

D(z′)

∫ zmax

z′
dz′′ e−βF (z′′) . (4.5)

Combining both equations, the round-trip time

τRT(z, z f ) = sgn(z− z f )
(
τFP(z, z f ) + τFP(z f , z)

)
= Z

∫ z

z f

dz′
eβF (z′)

D(z′)
, (4.6)

with Z =
∫ zmax

zmin
dz′ e−βF (z′), is the time a particle needs to start at z, reach z f for the first

time and then return to z. From this quantity, the position-dependent diffusivity can be
calculated via

D(z) =
Z eβF (z)

∂τRT(z, z f )/∂z
. (4.7)

The FPE is based on the premise that the underlying process is markovian, which implies
that the derivative of the round-trip time ∂τRT(z, z f )/∂z and therefore also the diffusivity
D(z) should be independent of z f . This requires that two conditions must be satisfied:
First, τRT(z, z f ) has to be larger than the time scale τm ' mD/kBT at which the transition
between inertial and diffusive motion of the particle with mass m occurs. Second, τRT(z, z f )

also has to be larger than the longest time scale τL of the memory of the particle, which we
define in the next section. Both conditions are examined in Sec. 4.5.2.
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4.2.2 Autocorrelation Method

In contrast to the FPE in Eq. 4.2, which describes the time evolution of concentrations,
the Langevin equation models the trajectory of a single particle in terms of a stochastic
differential equation. In its generalized form, which was introduced by Mori [42], it reads

mz̈(t) = −
∫ t

0
dt′ Γ(t′)ż(t− t′)−∇U(z(t)) + FR(t) . (4.8)

In this equation, the term U(z(t)) corresponds to a position-dependent potential, Γ(t) is a
memory kernel accounting for retardation effects and FR(t) is the random force. The integ-
ral over the time dependent memory kernel

∫ ∞
0 dt Γ(t) = γ yields the friction coefficient

γ, which in turn is connected to the diffusivity via the Einstein relation D = kBT/γ. The
memory kernel, and thus also the friction coefficient, are in this model assumed to be in-
dependent of the position. Furthermore, the memory kernel and the random force satisfy
the fluctuation–dissipation (FT) theorem〈

FR(t)FR(t′)
〉
= kBTΓ(t− t′) . (4.9)

In the limit of an infinitely stiff spring constant, K → ∞, the position of the particle is
restrained to the center x = 0 of the harmonic potential and its velocity ẋ(t) = 0 is zero.
In this case the random force equals the total force F(t) = FR(t), which allows for the
calculation of the memory kernel from simulations via the FT theorem, since the total force
is directly accessible in a simulation. The diffusivity is then given by

D(z) =
kBT

γ
=

(kBT)2∫ ∞
0 dt 〈∆F(z, 0)∆F(z, t)〉

, (4.10)

with ∆F(z, t) = mz̈(t) −∇F (z) in the presence of a free energy profile F (z). Equation
4.10 has widely been applied to compute diffusivity profiles of various molecules in mem-
branes, for example water and other small molecules [34–36] or even fullerene [155]. With
this ansatz, two difficulties emerge: First, significant long time effects can make the eval-
uation of the integral difficult, as then a cut-off time tc < ∞ for the upper integration
boundary would neglect important contributions. In this case, a theoretical model for the
long time decay of the memory kernel is necessary that can be integrated analytically in or-
der to account for the memory effects on all time scales. Second, as it was shown recently,
restraining the motion of a solute particle slows down the dynamics of its hydration shell,
which in turn modifies the memory kernel of the solute and increases the friction coeffi-
cient by up to 50 % in water [120], while in a more viscous environment like lipid bilayers
this increase is expected to be even higher (see Chapter 3). Therefore, in this work we
only apply a soft harmonic constraint with spring constants K = 30− 3000 kJ/(mol nm2)

on the particle (see Sec. 4.3). The method which is used for the calculation of memory
kernels in such a system was introduced by Berne at al. [63] and modified for the applica-
tion to particles trapped in harmonic potentials [125]. For a particle in a harmonic potential
centered at position zm with the spring constant K, the memory kernel satisfies the Volterra
equation

mĊvv(t) = −
∫ t

0
dt′ Γ(zm, t′)Cvv(t− t′) + KCzz(t) , (4.11)
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where Cvv(t) = 〈v(t)v(0)〉 and Czz(t) = 〈(z(t)− zm) (z(0)− zm)〉 are the velocity and
position autocorrelation functions, respectively. This equation can be derived by multi-
plication of the GLE in Eq. 4.8 by the initial velocity v(0) = ż(0) and averaging over the
random force. In literature, Eq. 4.11 [126], its first derivative [124] or its time integral (see
Chapter 3) have been discretized and solved iteratively for the memory kernel, and the
integrated version is used also in this work.

4.3 Simulation Setup

In this work, we perform MD simulations of fully hydrated DPPC membranes, which are
simulated with the GROMACS 2016 simulation package [156]. For the DPPC membrane
we use the CHARMM36UAS9 lipid force field [111, 157], where the input parameters from
the NMR Lipid project [114] are converted by PyTopol in order to make this force field
compatible with GROMACS. For the water model we use TIP4P 2005 [158]. All simula-
tions are run in an NVT ensemble with a time step of 2 fs at a temperature of 323 K, which
is controlled by the velocity rescaling thermostat [101] coupled with a time constant of
0.5 ps. The temperature is chosen such that it is above the melting temperature T = 315 K
of DPPC membranes from the gel to the fluid phase [23, 103]. A snapshot of the simulation
is shown in Fig. 4.1.
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FIGURE 4.1: Simulation snapshot of the hydrated lipid bilayer.

In each simulations, one water molecule, which we do not couple to the thermostat, is
confined in z-direction by a harmonic potential. The positions and the spring constants of
the harmonic potential together with the simulation lengths are summarized in Table 4.1.
For the RTT method, mainly the simulations with K = 30 kJ/(mol nm2) are used, whereas
the memory kernels are computed from the simulations with the stiffer spring constants.
This means that 85 % of the simulation time is spend on the calculation of memory kernels.
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We write out the position, velocity and acceleration of the constrained water molecule at
every time step, however only use every 20th data point for the determination of the round
trip times.

Position z [nm] 0.0 0.5 1.0 1.5 2.0 2.5 3.0

K [kJ/(mol nm2)] simulation run time [ns]

30 135 135 135 135 135 135 135

300 805 135 805 - 805 - 805

3000 805 - 805 - 805 - 805

TABLE 4.1: Simulation lengths in ns for each harmonic potential centered at position z with spring
constant K.

4.4 Results for the Free Energy

The free energy landscape of small molecules within a lipid bilayer is well-studied in lit-
erature and numerous methods exist for its calculation [159]. Here, the free energy land-
scape of the lipid bilayer is determined using the Weighted Histogram Analysis Method
(WHAM) [160] algorithm, which computes the free energy from the biased simulations
with the parameters presented in Table 4.1. The histograms of the particle position within
each biased simulation are presented in Fig. 4.2 (a), and the free energy profile calculated
from the histograms is shown in Fig. 4.2 (b) in red together with the density profiles of
water (blue) and the DPPC membrane (green). We observe that the lipid bilayer forms a
large free energy barrier, with a small contribution of 7 kJ/mol from the headgroup region,
which is indicated by an orange background, and a large contribution of 25 kJ/mol from
the lipid tail region. The total height is approximately ∆F = 32 kJ/mol and thus a bit
higher than the barrier heights ∆F = 23− 25 kJ/mol measured in earlier simulation stud-
ies [34, 36], which can be explained by the use of a different force field. The free energy
profile computed from the water density via F (z) = −kBT ln (ρ(z)/ρ(zw)) (black dashed
line), with zw = 3.3 nm in the water phase, conforms with the WHAM profile in the water
and the headgroup region, but exhibits a higher maximum in the center. This deviation can
be explained by the very low statistics in the water density inside the membrane. Experi-
mentally, the free energy of water inside a membrane cannot be measured, instead the free
energy of water in hexadecane is chosen in literature for a comparison [34, 36], which has a
value of 24− 25 kJ/mol determined from the water solubility at 40 ◦C [161, 162]. However,
this comparison neglects possible long-range contributions from the polar headgroups of
the bilayers, hence it has to be taken with care.

This barrier, which is due to the strong hydrophobicity of the hydrocarbon chains in the
membrane center, causes a strong repulsion of water away from the membrane center,
which can also be observed in the histograms: The maximum of the histogram, which is
obtained from the simulation with the umbrella potential centered at z = 0.5 nm and K =

30 kJ/mol nm2, is shifted to the position z = 1.2 nm. In order to have a sufficient sampling
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FIGURE 4.2: (a) Histograms of the particle positions in each biased simulation. The positions of
the minimum of each umbrella potential are given in the key of the figure. (b) Density profiles ρ(z)
of water (blue) and DPPC (green) and free energy profile (red) of a water molecule in the DPPC
membrane. The free energy profile is calculated by the WHAM algorithm using the data in (a)
as input. A free energy profile computed via F (z) = −kBT ln (ρ(z)/ρ(zw)), with zw = 3.3 nm
in the water phase, is included as a black dashed line, however is based on poor statistics in the
membrane center. The headgroup region is indicated by an orange background. Note that in both
figures only data for the positive z-axis is simulated, which is mirrored at the symmetry point z = 0
to obtain the data for the negative z-axis.

in the membrane center, it is therefore important to constrain the water molecule there
with a stiffer potential. We therefore also used the simulations with K = 300 kJ/mol nm2

at the positions z = 0 and z = 0.5 nm for the calculation of the round-trip times.

4.5 Results for the Diffusivity

4.5.1 Lateral Diffusivity

In lateral direction (which in the following is denoted by the variable x) along the mem-
brane, the free energy FL and diffusivity DL are spatially constant, hence the FPE in Eq. 4.2
simplifies to ∂

∂t ρ(x, t) = DL
∂2

∂x2 ρ(x, t), which is for the initial condition ρ(x, 0) = δ(x− x0)

solved by the Gaussian distribution

ρ(x, t) =
1√

2πDLt
exp

(
(x− x0)

2 /2DLt
)

.
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The width of the concentration distribution is therefore determined by the mean–squared
displacement (MSD)

〈
(x(t)− x0)

2
〉

=
〈
∆x2(t)

〉
= 2DLt. For processes that are non-

markovian and thus not satisfy the FPE, this relation is generalized to
〈
∆x2(t)

〉
∼ tα,

which includes the markovian case for α = 1. The lateral MSD of the water molecule is
presented in Fig. 4.3 (a) for four different positions z in the membrane, with the corres-
ponding exponent α(t) = d ln

〈
∆x2(t)

〉
/d ln t as a function of t in Fig. 4.3 (b). Inertial

motion of the particle, which is characterized by an exponent α = 2, is observed at all pos-
itions for times t < 0.03 ps, in the membrane center even for t < 0.1 ps. The reason for the
prolonged inertial dynamics in the membrane center is the low density of lipid chains at
this location, which is connected to a high concentration of free volume, which is defined
as the volume outside the van-der-Waals radius of any particle [34]. For times larger than
0.1 ps (headgroup region) to 0.6 ps (membrane center) the dynamics of the water molecule
becomes subdiffusive, i.e. the exponent α(t) is smaller than unity. Within this intermediate
regime, all functions α(t) exhibit one minimum between 0.5 ps and 3 ps and in the follow-
ing increase asymptotically towards unity, which is the diffusive limit. This convergence
is illustrated in the inset of Fig. 4.3 (b), where we display the quantity 1− α(t) in a log-log
representation: In the water phase (z = 3 nm) this quantity is practically zero within the
noise for times t > 50 ps, whereas at the inside of the headgroups (z = 1 nm) it only de-
cays to 0.2 for t = 300 ps. Nevertheless, we observe that the functions 1− α(t) exhibit a
power law behavior for all positions, which then for the MSD in the long time limit yields
the functional form 〈

∆x2(t)
〉
= 2DLt exp

[
1
b

(τ

t

)b
]

, (4.12)

where τ is a time constant and b is the exponent defined by 1− α(t) ∼ (t/τ)−b (see Ap-
pendix 4.8.2 for derivation). This function we fit with the quantities DL, τ and b as para-
meters to the MSD in Fig. 4.3 (a). The resulting fits are indicated in Fig. 4.3 (a) as dashed
lines and show perfect agreement with the data for t > 1 ps. The resulting parameters DL,
τ and b are presented in Table 4.2.

In a next step, we compute the memory kernels ΓL(t) and their integrals GL(t) =
∫ t

0 dt′ ΓL(t′)
by applying equation Eq. 4.11 to the trajectories of the water molecule. As in lateral dir-
ection no confining potential is used, we use K = 0 in Eq. 4.11. The results are presented
in Fig. 4.4 and it can be seen that the short time behavior of the memory kernels is very
similar for all positions except for z = 0, where the memory kernel exhibits a much smaller
amplitude due to the low lipid density and thus reduced interactions in this region. Differ-
ences can be however seen in the long time behavior of the memory kernels, which can in
more detail be studied in the log-log representation in the inset of Fig. 4.4 (a). The memory
kernel at z = 3.0 nm decays the fastest and is not distinguishable from zero for times
t > 10 ps. This is the time scale where the dynamics can be assumed to be markovian,
which is in very good agreement with literature [163] and the finding that the exponent α

of the MSD is close to unity at this time. For the memory kernel at z = 1.0 nm we obtain
the slowest long time decay, also in agreement with the smallest α(t) for this position.

The integrals ΓL(t) over the memory kernels are presented in Fig. 4.4 (b). As discussed
in Sec. 4.2.2, in the limit t → ∞ this integral yields the friction coefficient γL. In order to
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FIGURE 4.3: (a) Mean-squared displacement of water within a DPPC membrane in lateral direction
at four different z-positions. The dashed lines indicate fits of the functions Eq. 4.12 to the data,
whereas the black solid line represents a purely diffusive behaviour

〈
∆x2〉 ∼ t and serves as guide

to the eye. (b) Exponent α(t) = d ln
〈
∆x2〉 /d ln t of the MSD as a function of time. The exponent

α = 2 of inertial dynamics α = 2 is included as a dashed line. Inset: 1− α(t) as a function of time t
in a log-log representation. Dashed lines indicate the expressions (t/τ)−b, where the parameters τ
and b are obtained from the fits in (a).

estimate the value of the diffusion coefficient DL = kBT/γL, we fit the function

Gfit(t) =
kBT
DL

exp
[
−1

b

(τ

t

)b
]

(4.13)

to the ΓL(t) for times t > 2 ps. The choice of this fit function is based on the argument
that the time derivative of the MSD and 1/ΓL(t) have the same long time behavior (See
Appendix 4.8.3 for more details). The resulting fits, which are in good agreement with
the functions GL(t) for t > 2 ps, are indicated by dashed lines in Fig. 4.4 (b). Also the
derivatives of the functions in Eq. 4.13 match the long time tails of the memory kernels, as
seen in the inset of Fig. 4.4 (a), hence we conclude that this fit function is suitable to extract
the diffusion coefficient from the memory kernels.

The values of the parameters DL, τ and b obtained from the fits of Gfit(t) to GL(t), which
are presented in Table 4.2, are all larger than the corresponding values from the MSD. For
the diffusion coefficient, the deviations are about 2–10%, which is within the errors of the
values. In the membrane center the lateral diffusivity of the water molecule is highest and
approximately two times higher than in the water phase. Again, this can be explained by
the low mass density in the membrane center. At the interface between the headgroups
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lines. The results for the diffusion coefficient are summarized in Table 4.2.

and the water phase the lateral diffusivity is approximately ten times lower than in the
water phase, which is also the result of earlier studies [164]. A more detailed discussion
of the diffusivity is found in Sec. 4.6. For τ and b, the deviations are partly larger than the
errors, however the values of these parameters always exhibit the same dependence on the
position z for both fits, as for example both fits yield the smallest exponent b at the position
z = 1 nm and the largest at z = 3 nm. An explanation for the deviations between the MSD
and GL(t) in their values of τ and b is that these two parameters are presumably fitted
such that they describe not only the long time behavior, but also parts of the intermediate
time dependence of the MSD and GL(t), respectively, which for both functions is different.

4.5.2 Transversal Diffusivity

In contrast to the lateral motion, it is not possible to directly compute the diffusivity from
the MSD in the transversal direction because of the existence of a position-dependent free
energy F (z) which has to be considered. This can be done by either using the full FPE
in Eq. 4.2 or the GLE in Eq. 4.8 to describe the particle dynamics. In case that also the
diffusivity DT(z) is position dependent, the description by the GLE also requires that the
particle motion is constrained to a region of constant diffusivity, which is most conveni-
ently realized by a harmonic potential. In this section, we apply both descriptions, as we
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Position [nm] 0.0 1.0 2.0 3.0

DL [nm2/ns]

from MSD
5.70

± 0.16

0.0522

± 0.0042

0.527

± 0.029

3.121

± 0.043

from GL(t)
5.91

± 0.14

0.0589

± 0.0058

0.551

± 0.027

3.177

± 0.031

τ [ps]

from MSD
0.123

± 0.020

0.102

± 0.014

0.090

± 0.025

0.111

± 0.051

from GL(t)
0.235

± 0.027

0.184

± 0.031

0.126

± 0.053

0.159

± 0.021

exponent b

from MSD
0.399

± 0.020

0.180

± 0.005

0.322

± 0.021

0.650

± 0.080

from GL(t)
0.528

± 0.027

0.209

± 0.010

0.392

± 0.036

0.964

± 0.072

TABLE 4.2: Parameters DL, τ and b obtained from fits of Eq. 4.12 to the MSD (first line) and from
fits of Eq. 4.13 to GL(t) (second line).
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FIGURE 4.5: Return times τRT for a water molecule to go from position z to z f and return to z
(subfigures (a) and (c)) and corresponding diffusivities DT (subfigures (b) and (d)). In (a) and (b) the
the umbrella potential is centered at the position z = 0.5 nm, whereas in (c) and (d) the minimum
is at z = 3.0 nm. In all figures, the quantities are shown for three starting positions z as a function
of the return point z f . The spring constant of both umbrella potentials is K = 30 kJ/(mol nm2). In
(d), we included the results from [164] for the the three positions as dashed lines.
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compute a transversal diffusivity profile DT(z) via the RTT method, which is based on the
FPE, and additionally compute diffusivities from memory kernels based on the GLE.

In Fig. 4.5 (a) and (c) we present the round-trip times τRT(z, z f ) in two umbrella windows
centered at the positions z = 0.5 nm, which is in lipid the tail region of the membrane, and
z = 3.0 nm, which is in the water phase. For each umbrella window the round-trip times
for three positions z are displayed as a function of the return point z f . The corresponding
diffusivities DT(z, z f ) are shown in Fig. 4.5 (b) and (d), again as a function of z f . In the
water phase (Fig. 4.5 (d)) we observe that for each position z the DT(z, z f ) is independent
of z f , apart from statistical noise, if the separation ∆z =

∣∣z− z f
∣∣ between the position z

and the return point z f is in the range 0.1 nm < ∆z < 0.4 nm. There, the dynamics of
the water molecule is satisfactorily described by the memoryless FPE, and the diffusion
coefficient DT(z) is obtained by taking the mean

〈
DT(z, z f )

〉
z f

over z f in this range. The

results are in very good agreement with earlier studies, where DT(z) = 3.4 nm2/ns was
measured at a distance of z = 3.0 nm from the membrane center. For smaller separations
∆z the diffusivity is slightly larger, which can be explained by inertial effects which occur
at small time and length scales, whereas for separations ∆z > 0.4 nm the statistical noise
becomes dominant.

The picture changes in the interior of the lipid membrane (Fig. 4.5 (b)), where the diffusiv-
ity D(z, z f ) decreases steadily as a function of z f up to separations ∆z > 0.4 nm. Here, non-
markovian memory effects play a significant role for a much longer time than in the water
phase. In order to quantify these memory effects, we compute the memory kernels ΓT(t)
of the water molecule in the water phase as well as in the membrane interior via Eq. 4.11
from the correlation functions Cvv(t) = 〈v(t)v(0)〉 and Czz(t) = 〈(z(t)− zm) (z(0)− zm)〉
(see Fig. 4.6 for results). In order to keep the water dynamic within a region of constant
diffusivity, we constrain the water molecules in a harmonic potential with the spring con-
stants K = 300 kJ/(mol nm2) and K = 3000 kJ/(mol nm2)). The reason for this choice of
the spring constants is that for a modeling of the water dynamics with Eq. 4.8, the sum
of the applied harmonic potential and free energy profile shown in Fig. 4.2 must in good
approximation be quadratic. For positions outside the membrane center the free energy
profile is very smooth and only lead to a shift of the harmonic potential in z-direction,
which creates a constant offset in the correlation functions of Czz(t) seen in Fig. 4.6 (b).
Here, a simple subtraction of this plateau value from the correlation function is sufficient
to correct for the influence of the free energy on the applied potential. Contrary to that,
in the central region of the membrane, the free energy profile forms two small maxima at
z = ±0.5 nm. In order to keep the quadratic approximation valid, the potential has to be
chosen such that the dynamics of the water molecule is not influenced by these maxima.
Using spring constants smaller than K = 300 kJ/(mol nm2) in the membrane center, the
water molecules would enter or even cross the barrier, which would lead to pronounced
long time tails in the position autocorrelation function and thus also in the memory kernel.

At first sight, the resulting memory kernels ΓT(t) and the integrals GT(t) of the transversal
dynamics, which are displayed in Fig. 4.7, very much resemble their counterparts ΓL(t)
and the integrals GL(t) of the lateral dynamics (Fig. 4.4). For times t < 300 ps only the
memory kernel of the water molecule in the water bulk at z = 3 nm exhibits a plateau in
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FIGURE 4.6: Autocorrelation functions Cvv(t) (a) and Czz(t) (b) of the transversal particle dynamics
as a function of time t for a water molecule constrained by a potential with spring constant K =
300 kJ/(mol nm2).

GT(t), whereas for all other positions the memory kernels have not decayed to zero. This
signalizes that inside the membrane memory is important for the particle dynamics up
to the nanosecond scale, thus, as already seen in Fig. 4.5, the Fokker–Planck formalism is
not suitable for modeling the particle trajectories there. Another important consequence is
that the extraction of diffusion coefficients from MD simulations requires trajectories with
a minimal length of several nanoseconds in order to resolve the long time behaviour of the
particle dynamics.

The determination of the DT from the memory kernels is again accomplished by a fit of the
functions in Eq. 4.13 to the long time decay, with the results summarized in Table 4.3. We
repeat this analysis for simulations with a spring constant K = 3000 kJ/(mol nm2) in order
to obtain an estimate for the confinement-dependent effect which decreases the diffusivity
of particles [120]. We observe that indeed this effect can be measured for the positions
z = 2.0 nm and z = 3.0 nm, but it has the same order of magnitude as the error on DT.
For z = 1.0 nm, the effect is even reversed, i.e. we obtain a larger diffusivity for the stiffer
spring constant, however in this case the error on DT exceeds it. We thus conclude that the
confinement-dependence of the diffusivity will not significantly change our results.
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FIGURE 4.7: (a) Memory kernels ΓT(t) computed from the autocorrelation functions Cvv(t) and
Czz(t) of the transversal particle dynamics using Eq. 4.11 in a lin-log representation. Inset: The
same data in a log-log representation. (b) Running integrals GL(t) over the memory kernels.
Dashed lines indicate fits of the function in Eq. 4.13 to GL(t) for t > 2 ps, and the derivatives
of the resulting fit functions are also shown in the inset of (a) as dashed lines. The results for the
diffusion coefficient are summarized in Table 4.3.

4.6 Discussion

All data for the diffusivity is summarized in the profile in Fig. 4.8 (a). The profile from the
RTT method is determined by taking the mean DT(z) =

〈
DT(z, z f )

〉
z f

with respect to z f

in the range 0.1 nm < ∆z < 0.4 nm. This profile exhibits a value of DRTT
T ≈ 3 nm2/ps

in the pure water phase, which decreases towards the headgroup region. At the interface
between the water phase and the headgroups, a value of DRTT

T ≈ 0.75 nm2/ps is obtained.
From this point up to a distance of 0.5 nm from the center, the diffusivity remains small
with values between 0.3 and 0.8 nm2/ps. At z = ±0.5 nm a sharp increase of the diffus-
ivity towards the center is observed, where the diffusivity profile forms a maximum with
DRTT

T ≈ 3 nm2/ps, which is similar to the value in the water phase. This profile is qualitat-
ively in between the results of [34], where the diffusivity in the membrane center is much
larger than in bulk water, and [36], where only a small maximum in the membrane center
is observed. Best agreement between the present work and the literature is obtained in the
central headgroup region, where all studies yield DT ≈ 0.5− 1 nm2/ps. A possible source
for the observed deviations is, besides the higher temperature of K = 350 K in [34] and
in general differences in the force fields, the method used for the calculation of the diffus-
ivity: Both in [34] and [36] the diffusivity was computed via Eq. 4.10, but while in [34] it
is not specified how the integral was evaluated, in [36] a double exponential function was
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Position [nm] 0.0 1.0 2.0 3.0

K [kJ/(mol nm2)] DT [nm2/ns]

300
1.88

± 0.38

0.0227

± 0.0075

0.223

± 0.029

2.789

± 0.059

3000
1.77

± 0.21

0.0266

± 0.0022

0.171

± 0.016

2.671

± 0.025

τ [ps]

300
0.043

± 0.042

0.198

± 0.091

0.192

± 0.076

0.203

± 0.022

exponent b

300
0.246

± 0.041

0.168

± 0.018

0.278

± 0.028

0.972

± 0.079

TABLE 4.3: Transversal diffusivity DT obtained from fits of Eq. 4.13 to GT(t) for two spring con-
stants K = 300 kJ/(mol nm2) and K = 3000 kJ/(mol nm2). For the first spring constant, we also
present the parameters τ and b.

fitted to the force-autocorrelation function and then integrated analytically, however the
fitting range is not published.

The consideration of memory effects by extrapolating the fit function in Eq. 4.13 to t → ∞
results in the data denoted by green squares for the lateral motion and purple triangles
for the transversal motion. We observe that in the water phase the value of DL in lateral
direction is consistent with the profile DRTT

T , whereas the DT of the transversal dynamics
yields values which are 7 % smaller. This we assign to the confinement-dependent friction
effect instead of an anisotropy of the water dynamics, since the former has been shown to
be exactly of this magnitude for spring constants of K = 300 kJ/(mol nm2) (see Chapter 3).
The lateral diffusivity at z = 2 nm, which is the position of the interface between the water
phase and the headgroups, is DL = 0.53 nm2/ps, hence not far from the value of DRTT

T ,
whereas in contrast to this, the value Dmem

T from the memory kernels suggests that the
transversal diffusivity rather is 0.2 nm2/ps at this position. Since we have seen that the
RTT method neglects important memory effects, we conclude that indeed DT is smaller
than DL by a factor of more than two, which means that the water dynamics is highly
anisotropic in the headgroup region. Going further inwards, the discrepancy between
Dmem

T and DRTT
T even increases to a factor of twenty, as we measure DL ≈ 0.055 nm2/ps

and Dmem
T ≈ 0.025 nm2/ps, with their ratio remaining at a value of 2.5. The discrepancy

between the diffusion coefficients DRTT
T and Dmem

T can be seen best in the log-lin represent-
ation in Fig. 4.8 (b). At the inside of the head groups, memory effects are most pronounced,
therefore the discrepancy does not come as a surprise. The jump of the diffusivity at the
membrane center is reproduced by all three methods. The lateral diffusivity is highest
with a value of DL ≈ 6 nm2/ps, which is twice as high as in the water phase, and for the
transversal direction it is Dmem

T ≈ 1.88 nm2/ps, thus only off by a factor of 1.6 from DRTT
T .
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The similarity of the transversal diffusivities computed by the two methods indicates that
memory effects are less important here than in the headgroup region, which has already
been deduced from the memory kernels in Figs. 4.4 and 4.7. Still, our results imply that
also in the membrane center the diffusion is anisotropic.

The anisotropy of the water dynamics inside the membrane can be caused by either a struc-
tural or dynamical anisotropy of the lipid chains. As discussed in [34], free volume pockets
exist in the lipid bilayer, in which the small solutes can move in a more inertial fashion.
The effect of the free volume has already been seen in the prolonged inertial dynamics
in the lateral direction at z = 0 nm (see Sec. 4.5.1), which translates into a low memory
kernel Γ(t) at short times and manifests in the high diffusivity in this region. If such pock-
ets aligned preferably in lateral direction, corresponding to a structural anisotropy of the
membrane, this would result in an increased lateral mobility of solutes. However, no
striking difference in the short time behavior is observed between memory kernels ΓL(t)
in lateral direction (Fig. 4.4) and ΓT(t) in transversal direction (Fig. 4.7). For z = 1 nm, the
memory kernel ΓT(t) at times t < 0.01 ps is even smaller than ΓL(t), suggesting that such
pockets rather align in transversal direction. Indeed, such a preferred alignment along the
membrane normal was found in earlier studies of the membrane structure [165]. We thus
address the anisotropic diffusion to an anisotropic dynamical viscosity of the membrane,
originating in longer relaxation times of the lipid tails in transversal direction compared
to the lateral direction, which are also reflected in the longer decay times τ and smaller
exponents b of the memory kernels in transversal direction.

Using the profile DRTT
T (z) for the diffusivity and the free energy profile from Fig. 4.8 (b),

we compute the local resistance R(z) = exp (β (F (z)−F0)) /D(z). We observe that the
resistance is maximal at a distance of 0.5 nm from the membrane center, which approx-
imately is at the same position as the maximum of the free energy. This finding, which
confirms the results of earlier studies of this system [34, 36], indicates that the permeation
process across the membrane is mainly determined by the barrier in the free energy profile
F (z). This is illustrated by the black dashed line, which corresponds to a hypothetical res-
istance Rhyp(z) assuming a flat diffusivity of D = 2.8 nm2/ns. We observe that R(z) to a
large degree follows the shape of Rhyp(z), which can be explained by the fact that DRTT

T (z)
exhibits a variation of less than one order of magnitude throughout the entire membrane,
whereas the factor exp (βF (z)) increases by 6 orders from outside to inside. The picture
changes when we look at the resistance computed from the Dmem

T ; This quantity varies
about two orders of magnitude within a distance of 1 nm from the membrane center, in
which the factor exp (βF (z)) exhibits changes of similar size. Although we have not cal-
culated the memory kernels at the maximum at z = 0.5 nm due to the uneven free energy
profile (this would require a very stiff potential to keep the sum of both terms harmonic,
which would then again induce strong confinement-dependent effects), we are confident
that the contribution of the diffusivity to the resistance is significant also at this position.

The permeation coefficient calculated via Eq. 4.3 from DRTT
T (z) (thus not accounting for

memory) is P = 9.84 ± 0.59 µm/s, while experimental values between 20 − 150 µm/s
have been measured at slightly lower temperatures [6, 147–149]. The low value from our
simulation can be explained by the difference in the free energy. As the main contribution
to the permeation coefficient stems from the center of the membrane, the difference of
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FIGURE 4.8: (a) Diffusivity profile D(z) of a water molecule within the DPPC membrane computed
from the round trip times using Eq. 4.7 (red). For three positions, the lateral diffusivity is included
(green squares), and in the water phase also the transversal diffusivity computed from the trans-
versal memory kernels (purple triangles). The blue lines indicate the water and the lipid density,
and the orange background highlights the headgroup region. (b) The same data in a log-lin rep-
resentation. (c) Local resistance R(z) computed from the free energy profile F (z) in Fig. 4.2 and
the diffusivity profile in DRTT

T (z) (red line) and from Dmem
T (z) (purple triangles). The dashed black

line indicates a hypothetical resistance Rhyp(z) assuming a flat diffusivity of D = 2.8 nm2/ns and
serves as an illustration of the influence of F (z) and DT(z) on R(z).

8 kJ/mol between the free energy barrier in our simulations and the experimental value
of 24 kJ/mol from water solubility in hexadecane (see Sec. 4.4) corresponds to a factor
of approximately 20 in the permeability. This puts our result into the range of earlier
simulation studies, which yielded 700± 300 µm/s at 350 K [34] with a free energy barrier
of 25 kJ/mol and 133 ± 28 µm/s at 323 K [36] with a free energy barrier of 23 kJ/mol.
In general, the simulation results are at the upper boundary of the experimental values
for the permeability or even above. It thus emerges that in order to compute the correct
diffusivity profile DT(z) it is important to take into account the memory effects discussed
in this work, since they can reduce the permeability up to one order of magnitude, which
then places the simulation results in the middle of the experimental range.



74 4. Permeation of Water through a Lipid Membrane

4.7 Summary

In this work we have shown that it is possible to model the permeation of water through
lipid membranes by atomistic molecular dynamics simulations. We have first computed a
diffusivity profile of the water molecules within the membrane by the round-trip time
(RTT) method, which assumes memoryless water dynamics. From the results of this
method, which is computationally least expensive, a permeation resistance profile R(z)
has been determined. In agreement with literature [34, 36], the RTT method has yielded
the result that the permeation process is mainly determined by the free energy profile,
which exhibits a maximum in the membrane center, as the diffusivity only changes by one
order of magnitude. The permeation coefficient from the RTT method is by a factor of 20
smaller than in literature, which can be explained by difference of 7 kJ/mol in the free
energy maximum. In a next step, we have computed the memory kernels of the water
dynamics at 4 positions within the system and have found an approximate functional ex-
pression for the long time behaviour of the memory kernels. These expressions have been
integrated in order to compute a diffusivity which takes into account long time memory
effects. We have seen that the diffusion of water inside the membrane is highly anisotropic,
as the lateral diffusivity is a factor of 2− 2.5 higher than the transversal diffusivity. This
anisotropy has been related to a slower relaxation of the lipid chain dynamics in trans-
versal direction compared to the lateral direction. Moreover, the transversal diffusivity
obtained by this method is, depending on the position, a factor of up to 20 lower than the
diffusivity in the memoryless model, and exhibits a variation of more than two orders of
magnitude along the membrane normal. Thus, the influence of the diffusivity on the per-
meation coefficient is heavily underestimated in memoryless models. Nevertheless, the
memoryless RTT method provides useful information about the permeation process, as it
correctly produces all maxima and minima of the diffusivity and yields a complete profile
at computational costs which are only about 10 % of the calculation of memory kernels.
In contrast to this, the determination of the memory kernels is only possible at particular
positions where the free energy profile is smooth. We thus conclude that the application
of both methods in parallel is the best strategy to tackle the determination of permeation
coefficients.

4.8 Appendix

4.8.1 Derivation of Eq. 4.3

Assuming a stationary process ∂
∂t ρ(z, t) = 0, we see from the FPE in Eq. 4.2 that the flux

J = −D(z) e−βF (z) ∂

∂z

(
eβF (z)ρ(z, t)

)
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is constant. A rearrangement of terms and integration over the entire membrane from z1

to z2 results in

J
∫ z2

z1

dz
eβF (z)

D(z)
= − eβF (z2)ρ(z2) + eβF (z1)ρ(z1) .

We now use the fact that outside the membrane the free energy is constant F (z1) =

F (z2) = F0, hence

J
∫ z2

z1

dz
eβ(F (z)−F0)

D(z)
= ρ(z1)− ρ(z2) .

With the definition of the permeation coefficient in Eq. 4.1, we finally arrive at

1
P
=
∫ z2

z1

dz
eβ(F (z)−F0)

D(z)
, (4.14)

which is identical to Eq. 4.3.

4.8.2 Derivation of Eq. 4.12

From the inset of Fig. 4.3 we observe that the exponent α(t) of the MSD has for large times t
the functional form 1− α(t) = (t/τ)−b. Integrating the definition α(t) = d ln

〈
∆x2(t)

〉
/d ln t

it thus follows

ln t∫
ln t0

d ln t
d ln

〈
∆x2(t)

〉
d ln t

=

ln t∫
ln t0

d ln t
[
1− e−b ln(t/τ)

]

= ln t− ln t0 +
t−b − t−b

0
bτ−b

= ln
〈
∆x2(t)

〉
− ln

〈
∆x2(t0)

〉
,

where t0 is an arbitrary integration boundary. Solving this for
〈
∆x2(t)

〉
we obtain

〈
∆x2(t)

〉
=
〈
∆x2(t0)

〉 t
t0

exp

(
t−b − t−b

0
bτ−b

)
. (4.15)

The time derivative of the MSD is then given by

d
〈
∆x2(t)

〉
dt

=

〈
∆x2(t0)

〉
t0

exp

(
t−b − t−b

0
bτ−b

)(
1− τb

tb

)
.

In the limit t → ∞ this expression is proportional to the diffusion coefficient DL, since for
a markovian system the diffusion coefficient is defined as 2DLt =

〈
∆x2(t)

〉
. Hence, for

the diffusion coefficient we obtain

DL =

〈
∆x2(t0)

〉
2t0

exp

[
−1

b

(
τ

t0

)b
]

.
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Inserting this into Eq. 4.15 immediately yields Eq. 4.12.

4.8.3 Motivation of Eq. 4.13

In the previous section we have shown that the time derivative of the MSD follows the
functional form

d
〈
∆x2(t)

〉
dt

= 2DL exp
[

1
b

(τ

t

)b
] (

1− τb

tb

)
,

which in the limit t → ∞ yields the lateral diffusion coefficient. The Einstein relation tells
that the diffusion coefficient D and the friction coefficient γ are related via D = kBT/γ.
We now assume that this relation, at least approximately, also holds for the long time

behavior of both quantities, i.e. D(t)
t large
≈ kBT/γ(t), where the time-dependent diffusion

coefficient is given by D(t) = d
〈
∆x2(t)

〉
/2dt and the time-dependent friction coefficient

is connected with the memory kernel by Γ(t) = dγ(t)/dt. For memory kernels with a
power law behavior this relation has been proven explicitly [166], and it also follows for
the long time behavior of kernels with exponential decay [167]. Using this assumption, the
time-dependent friction coefficient reads

γ(t) =
kBT
D

exp
[
−1

b

(τ

t

)b
](

(t/τ)b

(t/τ)b − 1

)
t�τ≈ kBT

D
exp

[
−1

b

(τ

t

)b
]

.

Taking the time derivative of this expression we arrive at an equation for the long time
behaviour of the memory kernel, which reads

Γ(t) =
kBT
Dτ

(τ

t

)b+1
exp

[
−1

b

(τ

t

)b
]

.



Chapter 5

Summary and Outlook

In this thesis, we have addressed the question of permeation processes through lipid bilay-
ers with molecular dynamics (MD) simulations. An emphasis has been put on the inclu-
sion of memory effects in the motion of the solute particle, which has been described by
the generalized Langevin equation. In the scope of this work we have investigated the
interactions between bilayers and the permeation of water through the bilayer, and dis-
cussed our results by comparing them to other simulations or, if available, experiments
found in literature. A second focus of this thesis has been the development of a method to
extract memory kernels from particle trajectories generated by MD simulations, thus this
work has both a physical as well as methodological aspect.

Since the lipid phase determines the permeation properties of lipid membranes, we have
studied the hydration pressure between lipid bilayers in the gel and fluid phase in Chapter 2.
We have shown that the disagreement between the experimental works on the hydration
pressures between membranes disappears when all data is expressed as a function of the
repeat distance. In order to compare the experiments with our simulations, we have then
consistently transformed the experimentally measured pressure from a function of the re-
peat distance to a function of the membrane separation. In this representation our data
simulation data reproduces the experimental results and reveals a factor of roughly two
between the decay lengths in the gel and the fluid phase. We have then decomposed the
hydration pressure p into a direct membrane–membrane interaction pdir and an indirect
water-mediated interaction pind. For both phases the attractive pressure pdir and the re-
pulsive pressure pind are approximately one order of magnitude larger than p and nearly
cancel each other. Thus, we have concluded that the hydration repulsion is the result of a
subtle interplay of highly attractive membrane–membrane interactions and highly repuls-
ive water-mediated interactions, with the repulsion slightly overcompensating the attrac-
tion. The result of the near-cancellation of the two contributions is the hydration pressure
measured in the experiments.

The influence of confinements on the friction coefficient of molecules solvated in water
has been investigated in Chapter 3. We have constrained the motion of several molecules
by harmonic potentials and have computed their position and velocity autocorrelation
functions. From these quantities, we have determined the memory kernels of the solutes
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and their integrals by the application of a modified iterative method based on the work
of Berne at al. [63]. As solutes we have chosen methane, water, Na+-ions, Na−-ions and
glycerol, which provide a variation in hydrophilicity, charge and size. By extrapolating
the integrals of the memory kernels to t → ∞, it has been observed that for all molecules
the friction coefficient increases with the stiffness of confining potential. This effect is most
pronounced for water and methane, where an increase of up to 50 % has been obtained, in
comparison to 5 % for glycerol. The increase of the friction, which mainly stems from the
long time behavior of the memory kernels, is accompanied by a simultaneous slowdown
of the solvent dynamics around the solutes. By replacing the water by water-glycerol mix-
tures, we have changed the viscosity of the solvent and observed that the longest relaxation
time τL of the memory kernel of the solute increases with the solvent viscosity. We have
thus concluded that τL corresponds to the time scale of the solvent relaxation. A second
important observation has been that the friction increase in confinement is enhanced in
viscous fluids. This result has been explained by a scaling argument: If the relaxation time
of the solvent, which increases with the viscosity, is larger than the time scale of the trans-
ition from inertial to diffusive dynamics, confinement-dependent friction emerges. The
picture goes beyond Stokes’ law, where it is assumed that the solvent friction on a particle
is a function of the hydrodynamic particle radius and the solvent viscosity only.

Using the method of kernel extraction developed in Chapter 3, it has been shown in
Chapter 4 that the consideration of memory effects significantly decreases the calculated
diffusion coefficient. In the interior of the membrane, a reduction of the diffusion coeffi-
cient by a factor of up to 20 has been observed compared to a memoryless model for the
description of the molecule motion. Whereas earlier studies [34, 36] suggested that the
permeation barrier of a lipid bilayer for water is mainly determined by the free energy, the
results of this thesis indicate that the permeation process is more complicated. Indeed, in a
region of 2 nm around the central plane of the membrane, contributions from the free en-
ergy and from the diffusivity to the permeation resistance both vary by approximately two
orders of magnitude along the membrane normal. In addition, a strong anisotropy in the
water diffusion has been observed inside the membrane, which is linked to an extended
long time decay of the memory kernel in transversal direction. Following our argument-
ation in Chapter 3, we have concluded that this indicates that the relaxation of the lipid
chains in the bilayer interior is slower in transversal direction than in lateral direction.

In conclusion we have demonstrated that MD simulations are able to give insight into
the molecular mechanisms of permeation processes of molecules through a lipid bilayer.
We have also proven that memory effects are important during the permeation and their
explicit consideration leads to a decrease of the diffusivity by more than one order of
magnitude. This result is of particular importance for transdermal drug delivery, since
it serves as a connection between molecular properties of molecules and macroscopic free
energies and diffusivities extracted from concentration profiles which are measured in ex-
periments [150]. Consequently, since the outermost layers of skin, the stratum corneum,
includes domains which are in the gel phase, a simulation study of the permeation of
molecules through gel membranes is the next step towards a complete picture of drug
transport through skin.



Appendix A

Constructing Membranes in Gel
Phase

Schubert et al. [100] have demonstrated that, within a reasonable simulation time, a simple
freezing of a membrane in fluid phase provides a membrane that exhibits large differences
in its structural parameters when compared to experimental values of membranes in the
gel phase. It is therefore necessary to construct membranes in the gel phase manually while
ensuring that the resulting structure is as little biased as possible. The method presented
here generates membranes whose structural as well as thermodynamic properties are close
to the values measured in experiments of membranes in the gel phase.

As a starting structure, we use two DPPC molecules that are orientated such that their
hydrocarbon chains are pointing towards each other (Fig. A.1 (a)). In both molecules we
restrain all dihedrals of the hydrocarbon chains to the trans position. In a first step, each of
the lipid molecules is copied eight times and arranged on a hexagonal lattice, thus form-
ing a small bilayer. Subsequently, each of the 18 molecules is rotated by a random angle
around its principle axis (Fig. A.1 (b)). The solvation of this structure is technically real-
ized as follows: We first increase the van-der-Waals-radii of the carbon atoms, such that it
becomes energetically highly unfavourable to place water molecules into the chain region.
Into the free space of the simulation box we then insert water molecules, which are con-
sequently only placed outside the membrane structure. At this point, we perform a first
energy minimization of the system in order to remove overlaps between the molecules.
Next we restrain the x- and y-coordinates of all atoms of the lipid molecules, introduce a
weak harmonic potential on their z-coordinates and let the water propagate freely through
the system. This way we allow for small configurational changes in the bilayer while the
water diffuses in between the headgroups. This equilibration run is very short (∼ 50 ps,
T = 270 K) and is only necessary to put the bilayer and the water molecules into contact
with each other.

After removing all restraints on lipid molecules except for the dihedrals, we equilibrate
the system for 500 ps in order to allow the hydrocarbon chains to tilt their vertical ori-
entation. This tilt is a result of tendency of the chains to minimize the free volume in the
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(a) (b) (c) (d)

FIGURE A.1: Construction of a gel membrane. (a) The starting structure, which consists of two
DPPC molecules pointing towards each other. Copying these two molecules eight times, arranging
all of the molecules on two opposing hexagonal lattices and rotating each molecule by a random
angle around its principle axis yields structure (b). In (c), the structure is hydrated and equilibrated
with fixed dihedral angles. In the next step, one of the resulting leaflets is then removed, while the
other is copied, flipped and rotated by 180◦ (d). This structure is then heated from T = 270 K up to
T = 300 K with loose dihedrals, which produces the final bilayer system in Fig. 2.2 (a).

membrane interior. Additionally, we impose a pressure coupling of 1 bar in lateral direc-
tion to make the bilayer adopt its intrinsic area per lipid and close small pores that might
have arisen during the construction, thus preventing water molecules from diffusing into
the hydrophobic chain region. The tilting of the chains creates an empty space between
both leaflets of the bilayer (Fig. A.1 (c)). Consequently the leaflets of the bilayer decouple
and each leaflet independently adopts a configuration that is energetically most favorable,
which for DPPC corresponds to the arrangement of the chains on a hexagonal lattice. Due
to the decoupling of both leaflets, the orientation of the chains in lateral (xy-) direction will
differ between both leaflets. The application of a pressure coupling to the z-dimension of
simulation box, which removes the free volume between the membranes by scaling down
the simulation box, prevents the two leaflets from decoupling. However this often (but
not always) leads to structures that are in a metastable states: One of the leaflets attains
its preferred lattice structure first and, due to interactions of the chains of both leaflets,
imposes its lattice structure on the chains of the other leaflet. Since this second leaflet thus
becomes frustrated, it is therefore not advisable to choose this procedure.

For the system with decoupled leaflets, there are two options to put the leaflets into con-
tact: The first way is to rotate one layer, remove the free space and execute an equilibration
run of sufficient length such the lattices arrange themselves in a configuration of minimal
energy. Since the cubic simulation box is incompatible with the hexagonal lattice, rotations
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of the box by multiples of 90◦ create mismatches in the lattice structure, which then again
may create strong frustrations in one of the layers. We therefore choose a different way,
which is simply replacing one layer by a flipped and rotated copy of the other. Thus, it is
ensured that both leaflets preserve their configuration of minimal energy even after get-
ting into contact with each other. We then remove the empty space between the leaflets
and perform another energy minimization, since there might exist overlaps of the chains
of the leaflets. This is then followed by another equilibration run of 500 ps. The result-
ing bilayer (Fig. A.1 (d)) should now have reached the correct configuration of minimal
energy.

In the last step, we copy the simulation box once in x- and y-directions, hence obtain-
ing four times the amount of lipids in the system. In a following simulation we heat
the system slowly (∼ 20 ns) from a temperature of 270 K up to 300 K, now with unres-
trained dihedrals. This last equilibration run should be performed carefully enough not
to destroy the ordering of the lipid chains. In order to check the properties of the final
structure, it is possible to heat it to higher temperatures (T ≈ 330 K) and measure the
transition enthalpy from the gel to the fluid state, which in experiments is measured to be
35− 40 kJ/mol [17, 19, 168–170]. Additionally, global system parameters like the mean tilt
angle, the area per lipid or the number of gauche bonds per lipid chain can be determined
and compared to experiments [171, 172].
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Abstract

Permeation processes of molecules through lipid bilayers have a high physiological relevance,
and a theoretical description of such processes is essential for the understanding of transport
mechanisms of drugs in human tissue. In experiments, only integrated permeation coeffi-
cients of membranes are accessible, hence computer simulations are necessary to obtain a
position–resolved picture of molecular permeation. Since the bilayer interior is a highly vis-
cous medium, the time scales of both the lipid relaxation and the molecule motion overlap,
which induces memory effects to the molecule dynamics. The aim of this thesis is the ana-
lysis of the modifications of current models for the passive permeation if memory effects are
considered.

Since the lipid phase significantly determines the permeability of lipid membranes, we be-
gin with a comparison of the hydration repulsion between membranes in the gel and fluid
phase. We show that inconsistencies between experimental data from literature disappear if
the interaction pressures are plotted as a function of the repeat distance instead of the water
layer thickness. Subsequently, we compare our simulations to the converted experimental
data and obtain quantitative agreement. We observe that the decay length of the hydration
pressure in the gel phase is by a factor of two smaller than in the fluid phase. A decompos-
ition of the hydration pressures into membrane–membrane interactions and water-mediated
interactions reveals that these two contributions have opposite signs and are one order of
magnitude larger than their sum. We conclude that in both phases the hydration repulsion
is a result of a subtle interplay between the direct attraction of membranes and a slightly
stronger water-mediated repulsion.

In the second part we perform simulations of five different molecules in water, which we
confine by harmonic potentials. We modified an existing iterative method from literature
for the extraction of memory kernels from trajectories and applied it to compute the friction
coefficients of the molecules. We observe that for all molecules the friction increases with the
confinement strength due to changes in the long time tail of the memory kernel. The increase
of the friction is amplified in water–glycerol mixtures as solvent, which are more viscous than
pure water. This result is explained by a dynamic coupling between the solvent relaxation
and the molecule diffusion, which emerges when both processes proceed on the same time
scale.

In the last part we compute the permeation coefficient of water through a lipid membrane. We
first determine the free energy and diffusivity profiles of water inside the membrane using a
description of the water dynamics based on the memoryless Fokker-Planck equation. We then
apply our method developed in part two to calculate the memory kernels of water inside the
membrane. The resulting diffusion coefficients are compared to the memoryless model and
to literature values from simulations, yielding a reduction of the diffusivity by a factor of up
to 20 in the membrane interior when memory effects are considered. This indicates that both
the free energy as well as the diffusivity are equally important for the permeation process.
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Kurzfassung

Permeationsprozesse von Molekülen durch Lipiddoppelschichten sind von hoher physiolo-
gischer Relevanz, und eine theoretische Beschreibung solcher Prozesse ist essentiell für das
Verständnis von Transportmechanismen von Medikamenten in menschlichem Gewebe. Für
ein ortsaufgelöstes Bild molekularer Permeation sind Computersimulationen notwendig, da
experimentell nur integrierte Permeationskoeffizienten messbar sind. Aufgrund der hohen
Viskosität im Inneren der Doppelschichten besteht ein Überlapp zwischen den Zeitskalen der
Lipidrelaxation und der Molekülbewegung, was Memory-Effekte in der Moleküldynamik er-
zeugt. Das Ziel dieser Dissertation ist eine Analyse der Konsequenzen für die derzeitigen
Modelle der passiven Permeation bei der Berücksichtigung der Memory-Effekte.

Die Permeabilität von Lipidmembranen ist in erheblichem Maße durch die Lipidphase be-
stimmt, daher beginnen wir mit einem Vergleich der Hydrationsrepulsion zwischen Membra-
nen in der Gel- und der Flüssigphase. Wir zeigen, dass Inkonsistenzen zwischen experimen-
tellen Daten aus der Literatur verschwinden, wenn der Wechselwirkungsdruck als Funktion
des Wiederholungsabstandes anstatt der Wasserschichtdicke dargestellt wird. Ein Vergleich
unserer Simulationen mit den konvertierten experimentellen Daten ergibt quantitative Über-
einstimmung. Wir beobachten, dass die Zerfallslänge des Hydrationsdrucks in der Gelphase
um den Faktor zwei kleiner ist als in der Flüssigphase. Eine Aufspaltung des Hydrations-
drucks in eine Membran–Membran Wechselwirkung und eine vom Wasser vermittelte Wech-
selwirkung offenbart, dass beide Beiträge ein entgegengesetztes Vorzeichen besitzen und um
eine Größenordnung größer sind als ihre Summe. Daraus folgern wir, dass die Hydrationsre-
pulsion in beiden Phasen ein Ergebnis eines subtilen Wechselspiels zwischen einer direkten
Attraktion der Membranen und einer leicht stärkeren, vom Wasser vermittelten Repulsion ist.

Im zweiten Teil führen wir Simulationen von fünf verschiedenen Molekülen, die in harmo-
nische Potentiale einsperrt sind, in Wasser durch. Wir modifizieren eine iterative Methode
aus der Literatur zur Extraktion der Memory-Kernel aus Trajektorien und wenden diese zur
Berechnung der Reibungskonstanten an. Wir beobachten, dass die Reibung für alle Moleküle
mit der Potentialstärke zunimmt, verursacht durch Veränderungen im Langzeitverhalten der
Memory-Kernel. Die Zunahme der Reibung verstärkt sich in Wasser–Glyzerin-Mischungen
als Lösungsmittel, welche eine höhere Viskosität als reines Wasser aufweisen. Dieses Ergebnis
wird durch eine dynamische Kopplung der Lösungsmittelrelaxation und der Moleküldiffusi-
on erklärt, die hervortritt, wenn beide Prozesse auf der gleichen Zeitskala ablaufen.

Im letzten Teil berechnen wir den Permeationskoeffizienten von Wasser durch eine Lipid-
membran. Mit Hilfe einer Beschreibung der Wasserdynamik basierend auf der memorylo-
sen Fokker-Planck-Gleichung bestimmen wir das Profil der Freien Energie und der Diffusivi-
tät von Wasser innerhalb der Lipidmembran. Im Anschluß verwenden wir unsere Methode
aus dem zweiten Teil zur Berechnung der Memory-Kernel des Wassers innerhalb der Mem-
bran. Die resultierenden Diffusionskoeffizienten vergleichen wir mit dem memorylosen Mo-
dell und mit Literaturwerten aus Simulationen, was eine Abnahme der Diffusivität um einen
Faktor von bis zu 20 im Inneren der Membran aufzeigt, wenn Memory-Effekte berücksichtigt
werden. Dies deutet darauf hin, dass die Freie Energie und die Diffusivität einen gleichwerti-
gen Einfluss auf Permeationsprozesse haben.
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