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Summary

� The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew dis-

ease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress

plant immunity into infected host cells. Here, we investigate the relevance of the interaction

between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL

DEATH1 (RCD1).
� We use pathogen infection assays as well as molecular and biochemical analyses to test the

hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of

defense genes.
� We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced

defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of

immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins

are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phospho-

regulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4

triple mutant exhibits stronger SA-induced defense marker gene expression compared with

wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling.
� Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act

as signaling nodes that integrate information from environmental cues and pathogen sensors,

and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant

immunity.

Introduction

Plants rely on their innate immune system to distinguish benefi-
cial microbes from harmful pathogens or commensal bacteria.
While plant innate immunity fends off the majority of attempted
infections, specialized pathogens can subvert host defenses with
effector proteins that are translocated into host cells. Many
pathogen effectors interfere with cellular processes that are essen-
tial for innate immunity, such as formation of cell wall apposi-
tions, secretion of antimicrobial compounds, production of
reactive oxygen species (ROS), or transcriptional activation of
defense genes (DebRoy et al., 2004; Nomura et al., 2006;
Bozkurt et al., 2011; Anderson et al., 2012; Gangadharan et al.,
2013; Asai et al., 2014). Bacterial pathogens have evolved special-
ized secretion systems to deliver effectors into host cells (Deng
et al., 2017). Likewise, the fungal rice blast pathogen
Magnaporthe oryzae employs a specialized secretion pathway to

deliver host-cell-targeted effectors into a host-derived compart-
ment named the biotrophic interfacial complex (Khang et al.,
2010; Giraldo et al., 2013). How other filamentous plant
pathogens, such as oomycetes, translocate effectors into plant
cells remains poorly understood (Petre & Kamoun, 2014; Lo
Presti & Kahmann, 2017). Like fungal pathogens, oomycetes
elaborate haustoria, bulbous feeding structures that induce the
formation of a specialized extra-haustorial membrane, within the
plasma membrane of infected host cells (Lo Presti & Kahmann,
2017). Notably, haustoria are also sites of targeted effector secre-
tion (Whisson et al., 2007; Gilroy et al., 2011; Liu et al., 2014b;
Wang et al., 2017). Most host-cell-targeted oomycete effectors
carry a combination of a signal peptide and a conserved amino
acid motif RXLR (where X represents any amino acid). The
RXLR motif is required for effector translocation into the host
cell, and there is evidence that it functions as an internal sorting
signal (Grouffaud et al., 2008; Wawra et al., 2017). The effector
protein domains downstream of signal peptide and RXLR motif
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are diverse and constitute the part of the effector that manipulates
cellular processes in the host cell (Franceschetti et al., 2017).

Plants respond to infection by biotrophic pathogens with ele-
vated biosynthesis of the defense hormone salicylic acid (SA), and
elevated SA levels lead to thioredoxin-catalyzed reduction of
disulfide-linked oligomeric complexes of the NONEXPRESSOR
OF PATHOGENESIS-RELATED GENE 1 (NPR1) protein
(Mou et al., 2003; Tada et al., 2008). Monomeric NPR1 translo-
cates to the nucleus, where it functions as a transcriptional
co-activator and is indispensable for SA responsiveness of many
SA-induced genes (Wang et al., 2006). Some biotrophic plant
pathogen effectors actively suppress SA accumulation and/or SA
signaling. The maize smut fungus Ustilago maydis produces a
host-cell-targeted chorismate dismutase that may suppress SA-
mediated immunity by diverting the SA-precursor chorismate
into the phenylpropanoid pathway (Djamei et al., 2011). The
oomycete pathogen Phytophthora sojae and the fungal pathogen
Verticillium dahliae attenuate SA signal transduction by delivery
of isochorimatases into host cells (Liu et al., 2014b). The host-
targeted effector Pi04314 from the late blight pathogen
Phytophthora infestans targets several nuclear-localized phos-
phatases and attenuates the transcriptional response to SA and
methyl jasmonate (MeJA) (Boevink et al., 2016). The Arabidopsis
downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa)
also suppresses transcriptional upregulation of the SA marker
gene PATHOGENESIS-RELATED GENE 1 (PR1) in infected
host cells (Caillaud et al., 2013). At least two Hpa effector pro-
teins interfere with SA signaling when expressed as transgenes in
Arabidopsis. Effector HaRxL44 appears to attenuate SA signal
transduction by targeting the MEDIATOR subunit Med19 for
proteasomal degradation (Caillaud et al., 2013), while effector
HaRxL62 interferes with SA signaling by an unknown mecha-
nism (Asai et al., 2014).

Light perception and signaling also influence the transcrip-
tional response to SA (Genoud et al., 2002; de Wit et al., 2013;
Gangappa et al., 2016). Simulated shade conditions, for example,
suppress transcript changes induced by exogenous application of
SA or MeJA, thereby attenuating plant defense toward biotrophic
and necrotrophic pathogens (Izaguirre et al., 2006; Cerrudo
et al., 2012; de Wit et al., 2013). This is remarkable given that
SA- and jasmonic acid (JA)-responsive gene networks are antago-
nistically regulated in response to infection by pathogens with
either a biotrophic or necrotrophic mode of infection (Pieterse
et al., 2012; Caarls et al., 2015).

Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1)
has been proposed to act as a positive regulator of SA signaling.
Loss of RCD1 function does not alter SA levels, but transcript
levels of many NPR1 target genes are lower in rcd1 mutants com-
pared with wild-type plants (Ahlfors et al., 2004; Brosch�e et al.,
2014). RCD1 was initially identified in a screen for ozone-
sensitive Arabidopsis mutants. The rcd1-1 mutant is impaired in
restricting programmed cell death under sublethal ozone concen-
trations (Overmyer et al., 2000). In addition, rcd1 mutants show
pleiotropic phenotypes that include a smaller rosette size and
altered leaf shape, as well as partial loss of apical dominance and
an altered root system architecture (Ahlfors et al., 2004; Teotia &

Lamb, 2009). Loss of RCD1 function enhances sensitivity to
apoplastic ROS and salt stress but increases tolerance to chloro-
plastic ROS, and this correlates with altered transcription of
genes that are responsive to ROS, abscisic acid, JA, ethylene, and
SA (Ahlfors et al., 2004; Overmyer et al., 2005; Katiyar-Agarwal
et al., 2006; Brosch�e et al., 2014).

RCD1 is the founding member of a plant-specific protein fam-
ily characterized by a central domain with sequence similarity to
the catalytic domain of Poly-(ADP-ribose)-polymerases (PARPs)
(Lamb et al., 2012). In contrast to canonical PARPs that cova-
lently modify target proteins by ADP-ribosylation, Arabidopsis
RCD1 does not show PARP activity in vitro when expressed as a
GST fusion (Jaspers et al., 2010). However, an RCD1 homo-
logue from wheat shows PARP activity when expressed in
Escherichia coli, suggesting that some RCD1-type proteins may
be enzymatically active (Liu et al., 2014a). In addition to the cen-
tral PARP domain, RCD1 and its paralogue SIMILAR TO
RCD ONE1 (SRO1) have an N-terminal WWE domain and a
C-terminal RST domain. RCD1 and sequence-related proteins
localize to the plant cell nucleus and bind several transcription
factors via their RST domains, possibly explaining why loss of
RCD1 function affects plant development and several stress sig-
naling pathways (Katiyar-Agarwal et al., 2006; Jaspers et al.,
2009; You et al., 2014). Accordingly, RCD1 might influence SA
signal transduction by interacting with transcription factors that
control expression of defense genes.

RCD1 interacts with the Hpa effector HaRxL106 in a yeast-
two-hybrid (Y2H) assay, and this effector renders Arabidopsis
more susceptible to biotrophic pathogens when expressed as a
transgene (Fabro et al., 2011; Mukhtar et al., 2011). In plant
cells, HaRxL106 is actively transported into the nucleus, indica-
tive of a nuclear virulence-promoting activity of the effector
(Wirthmueller et al., 2015). Here, we report that HaRxL106,
when expressed as a transgene, affects both SA signaling and
light-regulated developmental processes. We identify RCD1 as a
likely virulence target of HaRxL106 and report that RCD1 inter-
acts with Mut9-like kinases (MLKs) that, in addition to their pre-
viously characterized function in light signal transduction, also
influence the transcriptional response to SA.

Materials and Methods

Plants and growth conditions

For hypocotyl growth assays, Arabidopsis seeds were sown on
Murashige–Skoog medium (Duchefa #M0255) containing
0.1 g l�1 myoinositol and 8 g l�1 Bactoagar, stratified for 48 h at
4°C in the dark. Germination was induced by a 6 h white light
stimulus. The plates were placed in long-day (12 h : 12 h,
light : dark) conditions at 21°C and a fluence rate of
12 lmol m�2 s�1 white light. Hypocotyl length was determined
on day 5 using IMAGEJ software. Growth conditions for Nicotiana
benthamiana and all other Arabidopsis experiments were as in
Segonzac et al. (2011) and Fabro et al. (2011). The rcd1-1 and
rcd1-3 mutants have been described (Palma et al., 2005; Gao
et al., 2009; Jaspers et al., 2009; Yang et al., 2017). The mlk1,2,3
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and mlk1,3,4 triple mutants have been described (Huang et al.,
2016).

Generation of transgenic Arabidopsis lines

Transgenic Arabidopsis plants expressing yellow fluorescent pro-
tein (YFP)-tagged HaRxL106 have been described (Wirthmueller
et al., 2015). To generate transgenic lines expressing 3xHA-
StrepII (HS):HaRxL106, RFP:HaRxL106, RFP:NLS:
HaRxL106DC, and RFP:HaRxL106-Cterm58 (all Hpa Emoy2)
we used the following previously described pENTR plasmids:
pENTR4-HaRxL106, M followed by HaRxL106 amino acids
I25–S285 (Fabro et al., 2011), pENTR/D-TOPO-SV40NLS:
HaRxL106DC, sequence APKKKRKV followed by HaRxL106
amino acids I25–G229, and pENTR/D-TOPO-HaRxL106-
Cterm58, HaRxL106 amino acids G228–S285 (Wirthmueller
et al., 2015). Plasmids pXCSG-HS and pH7WGR2 were recom-
bined with the aforementioned pENTR plasmids using Gate-
way® LR clonase II to generate HS- and red fluorescent protein
(RFP)-tagged versions of the HaRxL106 constructs respectively.
Transgenic HS-tagged HaRxL106 lines were generated by trans-
forming Col-0 or 35SPro:NPR1:GFP plants with Agrobacterium
tumefaciens GV3101::pMP90RK carrying pXCSG-HS:
HaRxL106 constructs using floral dip (Logemann et al., 2006).
RFP-tagged HaRxL106 lines were generated by transforming
Col-0 with A. tumefaciens GV3101::pMP90 carrying the corre-
sponding pH7WGR2 plasmids. Col-0 lines expressing RCD1
amino acids 1–265 as C-terminal fusion to green fluorescent pro-
tein (GFP) were generated by recombining a corresponding
pENTR clone with pK7WGF2 (Karimi et al., 2002); the con-
struct was transformed into Col-0 plants as earlier. Site-directed
mutants of RCD1 were generated using the QuikChange
method (Agilent, Santa Clara, CA, USA). pENTR/D-TOPO
plasmids carrying the mutated RCD1 variants in fusion with
2499 bp of the RCD1 promoter sequence were recombined with
pGWB13 (Nakagawa et al., 2007) to generate a translational
fusion with a triple HA-tag at the C-terminus of the protein.
The constructs were transformed into the rcd1-1 mutant.

Hpa infection and quantification

Mutants and transgenic lines were tested for altered susceptibility
to Hpa Noco2 either in adult leaves of 6-wk-old plants (Fig. 1a)
or in cotyledons of 10-d-old seedlings grown on soil. For both
types of experiments, plants were sprayed with a suspension of
19 105 spores ml�1. The plants were placed in high (> 90%)
humidity under a plastic dome. Sporulation on seedlings was
scored at 5 d post infection, and sporulation on adult plants was
quantified 7–8 d post infection. For the adult leaf assay, 20 leaves
per genotype were stained with trypan blue. Following destaining
with chloral hydrate solution, conidiophores on 20 leaf areas of
1 cm2 were counted using a light microscope. For the seedling
assay, 35–40 seedlings per genotype were incubated in a 0.02%
(w/v) Uvitex 2B (Polysciences, Hirschberg an der Bergstrasse,
Germany) solution, then destained in water for 2 min, mounted
on a Styrofoam rack, and imaged through a Leica UV filter (Leica

#10447415) using a Leica M165 FC fluorescent stereomicro-
scope connected to an EL6000 laser source. Only conidiophores
on the upper side of the cotyledons were counted.

SA treatment

For SA treatment, 4-wk-old Arabidopsis plants were sprayed with
a solution containing 0.1 mM SA and 0.01% Silwet L-77 1 h
after dawn (09:00 h). Rosette leaves were harvested 8 h later.

Results

HaRxL106-expressing Arabidopsis plants exhibit attenu-
ated light and defense signaling

To characterize HaRxL106-interacting proteins from
Arabidopsis we generated transgenic lines expressing HaRxL106
with an N-terminal YFP or 3xHA-StrepII (HS) epitope tag
under control of the 35S promoter. As previously reported for
transgenic plants expressing untagged HaRxL106 (Fabro et al.,
2011), these lines are hyper-susceptible to infection by the
compatible Hpa isolate Noco2 (Fig. 1a; Supporting Informa-
tion Table S1). Notably, lines expressing HaRxL106 show a
phenotype reminiscent of plants grown under shade; specifi-
cally, longer hypocotyls and elongated petioles (Fig. 1b). Dif-
ferences in hypocotyl length between wild-type plants and
transgenic lines were more pronounced when we grew
seedlings under a lower fluence rate of white light
(12 lmol m�2 s�1) (Fig. 1c,d; Table S2). Under these condi-
tions, HaRxL106-expressing seedlings were indistinguishable
from the phyB-9 mutant that shows constitutive shade avoid-
ance (Reed et al., 1993). Lines expressing control constructs
YFP and HS did not differ from wild-type plants in hypocotyl
length (Fig. 1c,d). By contrast, differences in hypocotyl length
between HaRxL106-expressing transgenic lines and wild-type
plants were much smaller when we grew seedlings in darkness
(Fig. 1d; Table S2). This suggests that, in addition to suppres-
sion of plant immunity, HaRxL106 also affects signal trans-
duction between photoreceptors and light-regulated elongation
growth.

Effector HaRxL106 suppresses SA signal transduction but
not SA levels

As phyB mutants show an attenuated transcriptional response to
SA (Genoud et al., 2002; de Wit et al., 2013), and given that sup-
pression of SA signal transduction would be a conceivable viru-
lence mechanism for an effector from a biotrophic pathogen, we
tested SA-induced upregulation of the defense marker gene PR1
in Col-0 plants and two transgenic lines, one expressing YFP:
HaRxL106 and the other HS:HaRxL106. SA induced PR1
mRNA levels in Col-0 plants but not in the npr1-1 mutant (Cao
et al., 1994) (Fig. 2a; Table S3). By contrast, PR1 expression
levels in SA-treated HaRxL106 transgenic lines were comparable
to those in mock-treated Col-0 plants, suggesting that HaRxL106
affects either endogenous SA levels or SA signal transduction
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(Fig. 2a). Quantification of unconjugated SA levels in leaves 24 h
after infiltration of Pseudomonas syringae pv. tomato (Pst)
DC3000 revealed that SA concentrations in HaRxL106-
expressing lines were comparable to Col-0 (one-way ANOVA;
P = 0.648) (Fig. 2b; Table S4). These results suggest that
HaRxL106 does not substantially alter SA levels but nevertheless
strongly attenuates SA-induced transcriptional regulation of the
SA marker gene PR1.

Effector HaRxL106 attenuates NPR1-dependent defense
activation

HaRxL106 is actively transported into nuclei of plant cells
(Wirthmueller et al., 2015). Given that NPR1 is an important
nuclear signal integrator of the SA pathway, we tested whether
HaRxL106 affects NPR1 localization or protein levels. When
plants expressing 35SPro:NPR1:GFP in an npr1-1 mutant back-
ground (Kinkema et al., 2000) are grown under short day

conditions the plants show signs of constitutive defense activa-
tion, including severe stunting, development of micro lesions,
and elevated PR1 expression (Fig. 3a,b; Table S5; Love et al.,
2012). We transformed the 35SPro:NPR1:GFP line with the
35SPro:HS:HaRxL106 construct and found that expression of
HaRxL106 completely suppressed the stunting of the 35SPro:
NPR1:GFP line in 12 out of 14 independent transgenic lines
(Fig. 3a). HaRxL106 also reverted the constitutive PR1 expres-
sion of the 35SPro:NPR1:GFP line (Fig. 3b). This suppression
was not due to lower NPR1:GFP protein levels, as shown by the
western blot in Fig. 3c. Consistent with constitutively activated
defense, we observed nuclear localization of NPR1:GFP in guard
cells of plants grown under short day condition even without
exogenous SA application (Fig. 3d). NPR1:GFP also localized to
nuclei in double transgenic lines co-expressing HS:HaRxL106
(Fig. 3d). Taken together, these results show that HaRxL106
does not attenuate SA signal transduction by altering protein
levels or localization of NPR1. As HaRxL106 suppresses
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Fig. 1 (a) Sporulation of the virulent Hyaloperonospora arabidopsidis isolate Noco2 on 6-wk-old Arabidopsis thaliana plants of the indicated genotypes
quantified by the number of conidiophores per leaf. The results shown are representative of two independent biological experiments, n = 20, error bars
show plus/minus SEM, and asterisks indicate differences from Col-0 (one-way ANOVA; Tukey–Kramer post-hoc test, P < 0.05). See Supporting
Information Table S1 for source data and statistics. (b) Constitutive expression of HaRxL106 induces phenotypes that are reminiscent of the shade
avoidance syndrome in Arabidopsis thaliana. The top panel shows 10-d-old seedlings of Col-0 and a representative 35SPro:YFP:HaRxL106 line. Bottom
panel shows 4-wk-old plants from both genotypes grown under short day condition and a fluence rate of c. 120 lmol m�2 s�1. (c) Five-day-old seedlings
of the indicated genotypes germinated under a lower fluence rate of c. 12 lmol m�2 s�1. (d) Quantification of seedling hypocotyl length of the indicated
genotypes grown as in (c) or in darkness. The results shown are representative of three independent biological experiments, n = 30, horizontal bars denote
median, and asterisks indicate mean values different from Col-0 (one-way ANOVA; Tukey–Kramer post-hoc test, P < 0.05). See Table S2 for source data
and statistics.
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Fig. 2 (a) Hyaloperonospora arabidopsidis effector HaRxL106 suppresses salicylic acid (SA)-induced PATHOGENESIS-RELATED GENE 1 (PR1) expression
in Arabidopsis thaliana. Four-week-old plants of the indicated genotypes were sprayed with 0.1mM SA or a mock (M) solution and PR1 expression levels
were analyzed by quantitative real-time PCR 8 h later. PR1 expression levels were normalized by ELONGATION FACTOR 1 ALPHA (EF1a) expression. The
plot shows the mean of PR1/EF1a expression from three independent biological experiments. Error bars show plus/minus SEM; asterisk indicates mean
value different from Col-0 mock treatment (one-way ANOVA; Tukey–Kramer post-hoc test, P < 0.05). See Supporting Information Table S3 for source
data and statistics. (b) Quantification of free SA levels in the indicated genotypes under nontreated conditions and 24 h after infiltration with 108 CFUml�1

of Pseudomonas syringae pv. tomato DC3000 or a 10mMmagnesium chloride mock solution. Red, green, and blue represent data from three
independent biological experiments. Dots of the same color represent technical replicates. See Table S4 for source data and statistics.
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Fig. 3 Hyaloperonospora arabidopsidis effector HaRxL106 suppresses constitutive defense signaling induced by NPR1:GFP overexpression in Arabidopsis

thaliana under short day conditions. (a) Morphology of 5-wk-old Col-0 and 35SPro:NPR1:GFP plants (top row) and two independent double transgenic 35SPro:
NPR1:GFP lines co-expressing 35SPro:HS:HaRxL106 (bottom row). The inset shows spontaneous lesions forming in 35SPro:NPR1:GFP plants. (b) Basal
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experiments. Error bars show � SEM, asterisk indicates mean value different from Col-0 (one-way ANOVA; Tukey-Kramer post-hoc test, P < 0.05). See
Table S5 for source data and statistics. (c) Western blot showing accumulation of NPR1:GFP protein in the lines shown in (a). The Western blot is representative
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constitutive PR1 gene expression induced by the 35SPro:NPR1:
GFP transgene, the effector must either act downstream of
nuclear NPR1 signaling or disrupt the nuclear transactivator
function of NPR1 itself.

HaRxL106-overexpressing lines show a partial transcription
profile overlap with the radical-induced cell death1-1
mutant

Similar to HaRxL106-expressing lines, rcd1 mutants show lower
expression levels of PR1, as well as other SA marker genes
(Brosch�e et al., 2014). As the two proteins interact in Y2H,
RCD1 could be a virulence target of HaRxL106. We performed
a transcriptome profiling experiment to characterize defense gene
expression of a representative HS:HaRxL106-expressing line and
the rcd1-1 mutant in more detail (Methods S1). We profiled
complementary DNA from nontreated plants as well as comple-
mentary DNA prepared from leaves that were infiltrated with Pst
DC3000 or a magnesium chloride mock control 24 h earlier. As
shown in Fig. S1, the rcd1-1 mutant showed a partial transcrip-
tional overlap with the HaRxL106-expressing line, particularly
for repressed genes under nontreated conditions. A functional
classification of this gene set using Gene Ontology terms revealed
an overrepresentation of SA-responsive defense genes (Table S6).
Fig. 4 shows the expression levels of 22 SA/NPR1-regulated
genes (Wang et al., 2006) and the JA marker genes PDF1.2 and
VSP2 in the HaRxL106-expressing line and rcd1-1. In nontreated
and mock-treated plants, SA marker genes were repressed com-
pared to Col-0. Expression levels of the two JA marker genes were
either repressed or not different from wild-type, and this pattern
is reminiscent of shade-grown plants (de Wit et al., 2013). At
24 h after infection with Pst DC3000, expression levels of SA
marker genes in rcd1-1 were similar to Col-0, while 16 out of 22
SA marker genes remained repressed in the HaRxL106-
expressing line (Fig. 4; Table S6). Therefore, the enhanced sus-
ceptibility mediated by ectopic expression of HaRxL106 is likely
due to its repressive effect on transcription of SA-responsive
defense genes. Loss of RCD1 function results in a comparably
low expression level of SA marker genes before pathogen chal-
lenge. However, defense genes in rcd1-1 are still transcriptionally
induced upon bacterial infection, resulting in a defense transcrip-
tome that is more similar to wild-type plants 24 h after infection
(Fig. 4; Table S6). These results suggest that, if RCD1 is a viru-
lence target of HaRxL106, the manipulative effect of HaRxL106
is not mimicked by a complete loss of RCD1 function.

HaRxL106 interacts with RCD1 and SRO1 proteins and
RCD1 quantitatively contributes to SA signal transduction

To test for interaction between HaRxL106 and RCD1 in
Arabidopsis, we transformed a transgenic line in which the rcd1-3
mutation is complemented by expression of an RCD1Pro:RCD1:
HA construct (Jaspers et al., 2009), with YFP:HaRxL106 and
selected double transgenic lines. When we immunoprecipitated
YFP:HaRxL106 from these plants, RCD1:HA co-purified with
HaRxL106, whilst a cross-reacting band detected by the a-HA

antibody did not (Fig. 5a). Therefore, YFP:HaRxL106 interacts
with functional epitope-tagged RCD1:HA protein in
Arabidopsis.

RCD1 and its paralogue SRO1 show unequal genetic redun-
dancy with respect to plant development and responses to abiotic
stress with RCD1 making a stronger contribution (Jaspers et al.,
2009; Teotia & Lamb, 2009). Transiently expressed, GFP-tagged
versions of RCD1 and SRO1 co-immunoprecipitated HS:
HaRxL106, whereas a YFP control did not (Fig. 5b). This sug-
gests that HaRxL106 interacts with both RCD1 and SRO1 in
plant cells. The partial redundancy between RCD1 and SRO1
prompted us to test whether SRO1 also contributes to transcrip-
tional regulation of NPR1 target genes. Overall, the rcd1-1 and
sro1-1 mutations had a weaker effect on SA-induced PR1 expres-
sion than the YFP:HaRxL106 transgene (Fig. 5c). PR1 levels in
rcd1-1 but not in sro1-1 showed a significant reduction compared
with those in Col-0 (one-way ANOVA, Tukey–Kramer post
hoc test; P < 0.05) (Fig. 5c; Table S7). Therefore, RCD1
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Fig. 4 Expression levels of salicylic acid (SA)-responsive defense genes and
the jasmonic acid (JA) marker genes PDF1.2 and VSP2 in Arabidopsis

thaliana HS:HaRxL106 line #2 and the rcd1-1mutant. NT, nontreated
plants; mock, 24 h after infiltration of 10mMmagnesium chloride; Pst,
24 h after infiltration with 59 105 CFUml�1 Pseudomonas syringae pv.
tomato DC3000. Blue and yellow colors denote the level of down- and
upregulation respectively in comparison with expression levels in Col-0.
See Supporting Information Table S6 for source data and false discovery
rates.
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quantitatively contributes to SA-induced PR1 expression. Owing
to the requirement of either RCD1 or SRO1 for normal embryo-
genesis (Teotia & Lamb, 2009), we were not able to test an rcd1
sro1 double mutant for SA-induced PR1 expression.

The C-terminal 58 amino acids of HaRxL106 are required
for RCD1 binding and attenuation of light and defense
signaling

To test whether HaRxL106 binding to RCD1 correlates with its
defense-suppressing activities, we generated a mutant variant of
HaRxL106 that does not bind to RCD1. We used the Y2H sys-
tem to compare RCD1 binding to full-length HaRxL106, an
HaRxL106 variant lacking the 56 C-terminal amino acids
(HaRxL106DC), with RCD1 binding to the C-terminal 58
amino acids alone (HaRxL106-Cterm58). In contrast to
Mukhtar et al. (2011), we did not detect interaction between the
two full-length proteins by Y2H under our conditions. However,
we found that the HaRxL106 C-terminus interacts with RCD1
(Fig. 6a). Next, we tested which domains of RCD1 are required
for this interaction. As shown in Fig. 6(a), the HaRxL106
C-terminus interacted with a fragment spanning the WWE and
PARP domains but did not bind to the isolated WWE, PARP, or
RST domains. Notably, the RCD1 WWE–PARP construct also
showed interaction with full-length HaRxL106 protein (Fig. 6a).
This suggests that HaRxL106 specifically binds to the RCD1
WWE–PARP domains via its C-terminal region.

We next tested whether the HaRxL106 C-terminal 58 amino
acids are necessary for altered light and SA signaling in
Arabidopsis. We transformed an RFP:NLS:HaRxL106DC con-
struct lacking the C-terminus of the effector into Col-0. Because
the HaRxL106DC construct also lacks the effector’s NLS, this
fusion protein carries an SV40 NLS to ensure efficient nuclear
import (Wirthmueller et al., 2015). As controls, we generated
transgenic RFP:HaRxL106 lines and lines expressing RFP fused
to the 58 C-terminal amino acids of HaRxL106 (RFP:
HaRxL106-Cterm58). All constructs were under control of the
35S promoter, and we confirmed expression of the RFP fusion
proteins by western blot (Fig. 6b). In comparison with Col-0,
transgenic lines expressing RFP-tagged HaRxL106 developed
longer petioles and a reduced leaf area (Fig. 6c). By contrast,
RFP:NLS:HaRxL106DC lines were indistinguishable from wild-
type plants. RFP-HaRxL106-Cterm58 lines resembled transgen-
ics expressing full-length HaRxL106, suggesting that the
C-terminus of the effector is required and sufficient for attenua-
tion of light signaling (Fig. 6c). We then tested resistance to Hpa
Noco2 in these lines. In contrast to RFP:HaRxL106, the trun-
cated RFP:NLS:HaRxL106DC protein failed to suppress defense
(Fig. 6d; Table S8). Transgenic lines expressing RFP:HaRxL106-
Cterm58 were more susceptible to Hpa Noco2 than Col-0 were,
but less so than lines expressing the full-length effector. There-
fore, the C-terminal 58 amino acids of HaRxL106 are required
to attenuate defense signaling, and the same part of the effector
protein alters plant growth responses to light. Similar to RFP:
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Fig. 5 Hyaloperonospora arabidopsidis effector HaRxL106 interacts with Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) and SIMILAR
TO RCD ONE1 (SRO1) in plant cells and RCD1 contributes to salicylic acid (SA)-induced PATHOGENESIS-RELATED GENE 1 (PR1) expression. (a)
Functional RCD1:HA protein co-immunoprecipitates with YFP:HaRxL106 in Arabidopsis. YFP:HaRxL106 was immunoprecipitated from double transgenic
lines expressing RCD1:HA, proteins were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred onto
polyvinylidene fluoride (PVDF) membrane and probed with the indicated antibodies. ns, nonspecific band detected by the a-HA antibody. CBB, Coomassie
brilliant blue stain. This result is representative of three independent biological experiments. (b) HS:HaRxL106 co-immunoprecipitates with GFP-tagged
variants of RCD1 and SRO1 following transient expression in Nicotiana benthamiana. GFP-tagged proteins, or YFP as a control, were immunoprecipitated,
proteins were resolved by SDS-PAGE, transferred onto PVDF membrane, and probed with the indicated antibodies. Co-immunoprecipitation of HaRxL106
with RCD1 and SRO1 is based on three and two independent biological experiments respectively. (c) SA-induced PR1 gene expression in Col-0, YFP:
HaRxL106 line #12, rcd1-1, sro1-1, and npr1-1mutants. Four-week-old plants were sprayed with 0.1 mM SA or a mock (M) solution and PR1 expression
levels were analyzed by quantitative real-time PCR 8 h later. PR1 expression levels were normalized by ELONGATION FACTOR 1 ALPHA (EF1a)
expression. The plot shows the mean of PR1/EF1a expression from five independent biological experiments. Error bars show plus/minus SEM; letters
indicate differences between genotypes/treatments (one-way ANOVA; Tukey–Kramer post-hoc test, P < 0.05). See Supporting Information Table S7 for
source data and statistics.
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HaRxL106 lines, transgenics expressing the HaRxL106 C-
terminus responded with lower PR1 transcript levels than wild-
type plants to SA spraying, whereas RFP:NLS:HaRxL106DC
lines responded like wild-type (Fig. 6e; Table S9).

RCD1 is dispensable for resistance to Hpa but required for
HaRxL106-mediated suppression of defense

To test whether RCD1 contributes to resistance to Hpa, we
infected the rcd1-1 mutant with Hpa Noco2. The rcd1-1 mutant

showed enhanced resistance compared with Col-0 (Fig. 7a;
Table S10), which is consistent with a previous large-scale Hpa
phenotyping report (Weßling et al., 2014). This suggests that the
lower level of defense gene expression before pathogen challenge
in rcd1-1 does not compromise resistance against Hpa. Therefore,
if RCD1 is a virulence target of HaRxL106, inhibition of
RCD1’s function(s) or signaling is unlikely to be responsible for
the enhanced susceptibility induced by HaRxL106. We consid-
ered that HaRxL106 may manipulate RCD1 in a way that is not
mimicked by complete loss of RCD1 function; for example, by
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Salicylic acid (SA)-induced PATHOGENESIS-RELATED GENE 1 (PR1) gene expression in Col-0, and transgenics expressing RFP-tagged HaRxL106, NLS:
HaRxL106DC or HaRxL106-Cterm58. Four-wk-old plants were sprayed with 0.1 mM SA or a mock (M) solution and PR1 expression levels were analyzed
by qRT-PCR 8 h later. PR1 expression levels were normalized by ELONGATION FACTOR 1 ALPHA (EF1a) expression. The plot shows the mean of
PR1/EF1a expression from three independent biological experiments. Error bars show plus/minus SEM; asterisks indicate mean values different from Col-0
mock treatment (one-way ANOVA; Tukey–Kramer post-hoc test, P < 0.05). See Supporting Information Table S9 for source data and statistics.
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converting RCD1 into a transcriptional co-repressor. We com-
pared susceptibility to Hpa Noco2 in the YFP:HaRxL106 line
and a transgenic line expressing the same construct in an rcd1-1
mutant background. Although the YFP:HaRxL106 fusion pro-
tein accumulated to similar levels in both transgenic lines
(Fig. 7b), the rcd1-1 mutation completely suppressed the
enhanced susceptibility induced by YFP:HaRxL106. Reintroduc-
tion of functional RCD1 by crossing restored HaRxL106 func-
tion (Fig. 7a; Table S10). Therefore, functional RCD1 protein is
essential for suppression of defense by HaRxL106. Loss of RCD1
function also attenuated the extent of petiole elongation in the
YFP:HaRxL106 background (Fig. 7c).

A crystal structure of RCD1’s PARP domain suggests that
RCD1-type proteins do not function as canonical ADP-
ribosyl transferases

Our finding that suppression of defense by HaRxL106 is largely
dependent on RCD1 and that the effector binds to RCD1’s
WWE–PARP domains prompted us to further investigate the
molecular function(s) of RCD1. We reasoned that if RCD1 had
PARP or a related transferase activity, HaRxL106 might manipu-
late this enzymatic function. We solved a crystal structure of the
RCD1 PARP domain by X-ray crystallography (PDB ID 5NGO;
Table S11; Methods S1). The RCD1 PARP domain adopts a
fold that is overall similar to mammalian PARP domains
(Fig. 8a). However, the RCD1 PARP domain structure

confirmed that the amino acid triad H-Y-E, constituting the
active site of mammalian and plant PARPs, is not conserved in
RCD1 (Kleine et al., 2008; Jaspers et al., 2010) (Fig. 8b). Non-
conservation of the His and Tyr residues critical for NAD+ bind-
ing in canonical ADP-ribosyl-transferases suggests that the
RCD1 PARP domain does not bind NAD+ and therefore is likely
to lack canonical PARP activity. Consistent with this inference,
the RCD1 PARP domain is not stabilized by 6(5H)-
phenanthridinone, an inhibitor of mammalian PARPs (Wahlberg
et al., 2012), at elevated temperatures (Fig. 8c; Table S12). Con-
ceivably, the cleft of RCD1 that corresponds to the catalytic cen-
ter of active PARPs has evolved to bind other small compounds.
To test whether this region of the protein is required for the bio-
logical function of RCD1, we designed three RCD1 mutant vari-
ants with single amino acid exchanges in the cleft region. When
expressed under transcriptional control of 2.5 kb of the native
RCD1 promoter, all constructs complemented the developmental
phenotype (Fig. 8d) and the enhanced paraquat tolerance of the
rcd1-1 mutant (Fig. 8e; Table S13; Ahlfors et al., 2004). One
transgenic line expressing RCD1 D421A did not complement
the oxidative stress phenotype of rcd1-1 (Fig. 8e) and only par-
tially complemented the developmental phenotype of rcd1-1
(compare lines B and B* in Fig. 8d). However, an independent
transgenic line (A) expressing the same construct fully comple-
mented both rcd1-1 phenotypes, suggesting that differences in
expression levels might account for partial complementation in
line B. Overall, our results suggest that the integrity of the
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Fig. 7 Hyaloperonospora arabidopsidis (Hpa) HaRxL106-mediated suppression of immunity in Arabidopsis thaliana is abolished in RADICAL-INDUCED
CELL DEATH1 (RCD1) loss-of-function mutants. (a) Resistance to the virulent Hpa isolate Noco2 in 10-d-old seedlings of Col-0, rcd1-1, the YFP:
HaRxL106 line #12, a transgenic lines expressing YFP:HaRxL106 to comparable levels in the rcd1-1 background (#5), and two descendant lines of #5 in
which RCD1 has been reintroduced by backcrossing to Col-0 (#55 and #56). The plots show the number of conidiophores per cotyledon pair. Data from
five independent biological experiments were pooled, horizontal bars show median, vertical box height represents interquartile range (IQR), and whisker
range is 1.59 IQR. Circles represent data points beyond 1.59 IQR. Letters indicate differences between mean values (one-way ANOVA; Tukey–Kramer
post-hoc test, P < 0.05). See Supporting Information Table S10 for source data and statistics. (b) Western blot showing protein levels of YFP:HaRxL106 in
line #12 (Col-0) and line #5 (rcd1-1). CBB, Coomassie brilliant blue stain. (c) Visual phenotype of 4-wk-old plants of Col-0, sro1-1, rcd1-1, and lines
expressing YFP:HaRxL106 in either Col-0 or rcd1-1 backgrounds. The YFP:HaRxL106 fusion protein was not detectable by western blot in line YFP:
HaRxL106 rcd1-1 #3.
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presumed NAD+ binding cleft is not essential for RCD1’s func-
tions in plant development and signal transduction under oxida-
tive stress conditions.

HaRxL106 binds to the N-terminal domains of RCD1 and
SRO1 that mediate homo- and heterodimerization

Using the Y2H system, we further narrowed down the
HaRxL106 binding site of RCD1 to an N-terminal fragment
encompassing the WWE domain and the linker region up to the
beginning of the PARP domain (Fig. 9a). Deletion of the linker
region resulted in loss of interaction with HaRxL106, suggesting
that the WWE domain on its own is not sufficient for effector
binding. The isolated PARP domain did not interact with
HaRxL106, irrespective of whether or not we included the linker
region (Fig. 9a). This suggests that the WWE-linker region is
required and sufficient for binding to HaRxL106. We found that
the RCD1 WWE-linker region interacts with itself and the corre-
sponding region of SRO1 in Y2H assays, indicative of the forma-
tion of homo- and hetero-oligomers (Fig. 9b). We obtained
comparable results for the corresponding part of the SRO1 pro-
tein (Fig. 9c). These data suggest that the RCD1 and SRO1
WWE-linker regions could mediate formation of RCD1/SRO1
oligomers.

RCD1’s WWE domain forms protein complexes with MLKs

Given that RCD1 does not have PARP activity, we further char-
acterized RCD1 protein function(s) by screening for in planta
interactors of RCD1. Attempts to immuno-purify epitope-tagged
RCD1 protein in amounts sufficient for LC–MS/MS analysis of
co-purifying proteins from transient expression assays in
N. benthamiana or stable Arabidopsis transgenics were not suc-
cessful. We therefore resorted to screening for interactors of
RCD1’s WWE-linker region following transient expression in
N. benthamiana, as this part of the protein binds to HaRxL106
and is more stable (Fig. 9d). The predominant interactors were
several importin-a isoforms, full-length RCD1-type proteins and
protein kinases with sequence homology to casein I kinases
(Fig. 9e; Table S14). Identification of peptides from the PARP
and RST domains in pulldown experiments of the WWE-linker
domain suggest that this domain forms homo- and hetero-
oligomers with endogenous RCD1-type proteins in
N. benthamiana (Fig. 9; Fig S2). This is consistent with oligomer
formation of the WWE-linker regions in Y2H. A BLASTP search
of the co-purifying casein-I-related kinases against the Arabidopsis
protein database (TAIR11) identified MLKs as likely orthologues
(Fig. 9e). MLKs, also described as PHOTOREGULATORY
PROTEIN KINASES, are nuclear-localized Ser/Thr kinases that
phosphorylate the photoreceptor cryptochrome 2 (CRY2) and
PHYTOCHROME INTERACTING FACTOR 3 (PIF3) (Liu
et al., 2017; Ni et al., 2017). In Arabidopsis and Chlamydomonas,
phosphorylation of histone H3 Thr3 (H3T3ph) is another well-
characterized MLK phosphorylation site (Casas-Mollano et al.,
2008; Wang et al., 2015). We identified several phosphopeptides
from the RCD1 WWE-linker region (Fig. S3; Table S15). While

most of these phosphorylated peptides were located in the GFP:
WWE-linker bait protein from Arabidopsis, we also detected two
phosphopeptides from the WWE–PARP linker region of a co-
purifying N. benthamiana RCD1 orthologue (Figs S3, S4;
Table S15), indicating that RCD1-type proteins are phosphopro-
teins. We confirmed interactors identified in N. benthamiana and
phosphorylation of the RCD1 WWE-linker region in a single
experiment using a stable transgenic Arabidopsis line expressing
35SPro:GFP:WWE-linker protein (Table S16; Figs S2, S3). Over-
all, our results show that MLKs interact with the RCD1N-
terminal domain in plant cells, suggesting a possible role of
RCD1 and sequence-related proteins in influencing covalent
modifications of light-regulatory components and/or histone
tails.

MLKs have been previously reported to affect H3T3ph levels
in response to osmotic and salt stress, and, like rcd1 mutants, the
mlk1,2 double mutant is hypersensitive to sublethal concentra-
tions of sodium chloride (Katiyar-Agarwal et al., 2006; Wang
et al., 2015). As MLKs and RCD1 form protein complexes in
plant cells, and given that SA marker genes are expressed at lower
levels in rcd1 mutants, we asked whether MLKs also affect the
transcriptional response to SA. We sprayed mlk1,2,3 and
mlk1,3,4 triple mutants with SA and determined PR1 transcript
levels 8 h later (Fig. 9f; Table S17). While PR1 levels in the
mlk1,2,3 triple mutant did not differ from wild-type, the
mlk1,3,4 triple mutant consistently showed elevated PR1 tran-
script levels in response to SA. However, under our growth con-
ditions, the mlk1,3,4 triple mutant did not show enhanced
disease resistance upon infection with the adapted Pst DC3000
strain (Fig. S5; Table S18).

Discussion

Several biotrophic pathogens evolved virulence mechanisms to
counteract activation of SA-dependent defense genes (Asai et al.,
2014; Lewis et al., 2015). Apart from enzymatic conversion of SA
precursors (Djamei et al., 2011; Liu et al., 2014b), effector-
mediated activation of JA signaling appears to be the main strat-
egy of biotrophic pathogens to attenuate SA-dependent defense
(Zheng et al., 2012; Caillaud et al., 2013; Yang et al., 2017).
Here, we show that ectopic expression of Hpa effector HaRxL106
suppresses both the expression of SA marker genes and the JA/
ethylene marker gene PDF1.2 in noninfected plants (Fig. 4;
Table S6). This suggests that HaRxL106 manipulates SA signal-
ing via a mechanism that does not rely on activation of JA signal-
ing. The growth phenotype of HaRxL106-expressing transgenic
plants is consistent with constitutive shade avoidance, and con-
ceivably HaRxL106 could suppress plant immunity by manipu-
lating light signal transduction. However, we note that an effect
on temperature sensing, brassinosteroids (BRs), or auxin levels
could also underlie this phenotype. Several genes that are overex-
pressed in the HaRxL106 transgenic line are also altered in
expression in constitutive BR signaling mutants (Table S6).
However, unlike constitutive BR-signaling mutants or plants
with elevated BR levels that develop longer hypocotyls than wild-
type plants do in darkness (Choe et al., 2001; Jaillais et al., 2011;
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Gou et al., 2012), HaRxL106-expressing lines do not show this
phenotype (Fig. 1d; Table S2). Elevated temperatures promote
auxin-mediated hypocotyl elongation in the light (Gray et al.,
1998). By contrast, etiolated seedlings of auxin-overproducing
lines develop shorter hypocotyls than wild-type seedlings do
(Zhao et al., 2001; Nishimura et al., 2014). Despite a trend for
shorter hypocotyls in etiolated seedlings of HaRxL106-expressing
lines, the effect was small and not statistically significant in most
experiments (Fig. 1d; Table S2). Notably, PIF transcription fac-
tors play a dual role in light and elevated-temperature signaling
(Koini et al., 2009; Leivar & Monte, 2014), and recent results
suggest that phytochromes may act as light and temperature sen-
sors (Jung et al., 2016; Legris et al., 2016). Given this apparent
early conversion of signaling pathways for light and elevated tem-
perature, dissecting how HaRxL106 promotes plant elongation
growth in response to environmental signals requires a more
detailed analysis.

We mapped the defense-manipulating activity of HaRxL106
to a short C-terminal part of the effector, which is essential for
binding to RCD1 (Figs 6, 7). Notably, the effect of HaRxL106

on plant growth responses to light is mediated by the same region
of the effector (Fig. 6). In RCD1 loss of function mutants,
HaRxL106-mediated suppression of defense is abolished and
HaRxL106-induced petiole elongation is diminished (Fig. 7).
These results suggest that RCD1 integrates both environmental
signals and information from immune receptors, and that Hpa
exploits this function of RCD1 to attenuate plant immunity.
Notably, the growth and defense phenotypes of rcd1 null
mutants are opposite to those induced by ectopic expression of
HaRxL106 (Fig. 7). This indicates that the effector manipulates
RCD1 in a way that is not mimicked by RCD1 loss of function
alleles. RCD1 is essential for maintaining the basal expression
levels of SA-inducible defense genes in noninfected plants, but it
is dispensable for transcriptional activation of these defense genes
upon pathogen infection (Fig. 4; Table S6). One conceivable
mode of HaRxL106 function is that effector binding to RCD1
converts the latter into a transcriptional co-repressor of defense
genes (Fig. S6). However, this hypothesis cannot easily be tested
without a better understanding of the molecular function of both
proteins.
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HaRxL106 is predicted to have an a-helical WY structure, a
fold that likely evolved as a versatile building module of
oomycete effectors and can mediate different molecular functions
in fusion with small peptides or other domains (Boutemy et al.,
2011; Maqbool et al., 2016). The WY domain in HaRxL106
might function as a scaffold that stabilizes and/or presents the
C-terminal peptide that is essential for suppression of plant
immunity. In accordance with this model, expressing a fusion of
the C-terminal 58 amino acids of HaRxL106 to RFP is sufficient
to alter plant growth responses to light and attenuate defense
(Fig. 6). Notably, manipulation of selective autophagy by the
host-targeted P. infestans effector PexRD54 is also based on a dis-
ordered C-terminal peptide that is stabilized by five tandem WY
domains (Dagdas et al., 2016; Maqbool et al., 2016).

RCD1, and sequence-related proteins from Arabidopsis and
rice (Oryza sativa), bind transcription factors via their C-terminal
RST domains. By contrast, the functions of RCD1’s N-terminal
WWE and central PARP domains have not been characterized.
Although an RCD orthologue from wheat shows PARP activity
(Liu et al., 2014a), our structural analysis suggests that
Arabidopsis RCD1 is unlikely to be enzymatically active. This is
consistent with the previously reported finding that recombi-
nantly expressed GST:RCD1 does not ADP-ribosylate histones
or itself (Jaspers et al., 2010). Our crystal structure of the RCD1
PARP domain provides first insights into plant PARP domains,
and we identified several molecular differences between RCD1’s
PARP domain and the catalytic domain of mammalian PARPs.
Nonconservation of the H-Y-E triad (Fig. 8b) and our finding
that RCD1 retains its biological function when amino acids
within the presumed active site are mutated (Fig. 8d,e) suggest
that the protein does not have PARP activity. Given that the N-
and C-terminal domains of RCD1 mediate protein–protein
interactions, the PARP domain of RCD1 might act as a scaffold
bridging and/or coordinating the action of the terminal protein
interaction domains.

RCD1’s WWE domain and the linker region up to the PARP
domain are essential for binding to HaRxL106 (Fig. 9a). The
WWE domains of RCD1 and its paralogue SRO1 can also form
homo- and hetero-oligomers in Y2H (Fig. 9b,c). The WWE
domain is a conserved iso-ADP-ribose binding domain, but it is
not known whether plant WWE domains bind poly(ADP-ribose)
chains (He et al., 2012; Wang et al., 2012). Conceivably,
HaRxL106 binding to RCD1’s WWE domain could interfere
with ADP-ribose binding if this biological function is conserved
in plants. An alternative, but not mutually exclusive, scenario is
that RCD1’s WWE domain is an interaction module for other
proteins. Here, we identified kinases from the MLK group as
novel interactors of RCD1’s WWE-linker domain. Consistent
with complex formation between the N-terminal domain of
RCD1 and MLKs, we identified several phosphorylation sites in
RCD1’s linker region (Fig. S3; Table S15). The interaction
between MLKs and the RCD1 N-terminus implies that phos-
phorylation of the linker region might be mediated by MLKs,
but our data do not rule out alternative kinases. The ~ 90 amino
acid linker region between the RCD1 WWE and PARP domains
is predicted to be disordered (Ishida & Kinoshita, 2007;

Kragelund et al., 2012), but it is conceivable that phosphoryla-
tion or binding of interacting proteins induces a specific fold in
this region (Wright & Dyson, 2009; Bah et al., 2015). If the
RCD1 PARP domain acts as a scaffold, reversible phosphoryla-
tion of residues in the linker region between WWE and PARP
domains could regulate the cooperation of these two domains.
Although the molecular functions of RCD1 remain poorly char-
acterized, its localization to the nucleus and interaction with tran-
scription factors point to a role as a transcriptional co-regulator.
Consistent with such a role of RCD1 is our finding that
HaRxL106 interferes with SA signaling at the level of transcrip-
tion (Fig. 3).

MLKs are recruited to the evening complex in a phyB-
dependent manner and have previously reported functions in
light signaling, circadian rhythm, and abiotic stress responses
(Casas-Mollano et al., 2008; Wang et al., 2015; Huang et al.,
2016). Notably, bluelight-dependent phosphorylation and subse-
quent proteasomal degradation of the photoreceptor CRY2
requires MLKs (Liu et al., 2017). MLKs also mediate red-light-
induced phosphorylation of PIF3, form a red-light-induced
ternary complex with phyB and PIF3, and phyB protein levels
are elevated in mlk multiple mutants (Ni et al., 2017). Therefore,
MLKs appear to constitute a phosphoregulatory signaling node
at the level of photoreceptors and associating transcription fac-
tors. RCD1 also interacts with PIF transcription factors, and rcd1
mutants show reduced hypocotyl elongation under red and blue
light (Jaspers et al., 2009; Salazar & Neuhaus, 2010). Based on
these results, we speculate that HaRxL106 targets RCD1 or
RCD1-containing protein complexes to manipulate light and sal-
icylate signaling. An mlk1,3,4 triple mutant shows elevated PR1
transcript levels following SA application when compared with
wild-type plants (Fig. 9f). This suggests that MLKs influence
transcriptional mechanisms required for fine-tuning the ampli-
tude of SA-induced PR1 expression. H3T3 is a well-characterized
phosphorylation site of MLKs in Chlamydomonas and
Arabidopsis. In mammalian cells, repressive H3T3ph and activat-
ing tri-methylation of the adjacent K4 form a molecular switch
that directly affects transcription factor II D binding, thereby reg-
ulating gene expression throughout the cell cycle (Varier et al.,
2010).

In summary, our analysis of RCD1 as a target of the
Arabidopsis downy mildew effector HaRxL106 suggests that
RCD1 and MLKs form a nuclear hub that integrates and relays
information from signaling pathways sensing environmental cues
and pathogen infection. We further show that the Arabidopsis
downy mildew pathogen Hpa manipulates this signaling node to
prevent activation of SA signaling.
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