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Summary 

The most complex and the same time the most interesting entity in the universe, 

the brain, remains largely enigmatic. The building blocks of it, neurons, are highly 

specialized processing units that together underlie more complex processes. Neurons 

communicate with each other via synapses, where they exchange information. This 

information exchange needs to be very precise and is tightly controlled in space and time. 

In order to their sophisticated jobs, neurons depend on a highly specialized morphology. 

To send information to other neurons, evolution has engineered the axon, a long 

prolongation of the cell membrane that resembles a wire. The axon is efficient at 

propagating electric signals because they do not require the transfer of mass, however 

transport of proteins and organelles to support the extended axons and distant synapses 

is a challenge. The problem is that the exact mechanisms that orchestrate and regulate 

the transport of active zone precursors are far from being fully understood. In my doctoral 

research, I analyzed the cellular machinery and processes that organize axonal transport.   

Drosophila melanogaster is a highly suitable model to understand these 

processes. Particularly, the larval stage is highly accessible to intravital and super-

resolution light microscopy techniques, while the abundance of genetic tools allows for 

dissection of the various elements in an unprecedented manner. By using fluorescent tags 

to label synaptic proteins, I was able to quantitatively characterize their transport to the 

synaptic terminal in the living intact animal. Moreover, the genetic tools that the 

Drosophila community has elaborated allowed to generate mutants of different proteins 

involved in the process to see how transport and synapse function are affected when they 

are absent or altered.  

 In the current work, I present evidence that presynaptic biogenesis is mediated by 

axonal co-transport of active zone proteins and synaptic vesicle proteins in a new 

organelle that resembles lysosomes, we named PLV (presynaptic lysosome-related 

vesicle). By intravital in vivo imaging of Drosophila larvae, we have been able to see how 

synaptic proteins and active zone components are transported together with proteins of 

the lysosomal pathway. Furthermore, we show how Arl8, a kinesin adaptor for lyososomal 

transport, is also required for proper transport of synaptic proteins. Loss of Arl8 results in 

the depletion of synaptic proteins at the presynaptic sites, which in turn leads to impaired 

neurotransmission. In the absence of Arl8, the PLVs accumulate in neuronal cell bodies 

and hardly any axonal transport can be observed. The characterization of these 

accumulations showed that these vesicles are around 70 nm in diameter, and are positive 

for synaptic markers as well as active zone proteins. Conversely, up regulation of Arl8 
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results in an increase in axonal transport of PLVs proteins and presynaptic function is 

facilitated. These data was supported by experiments in mouse models with comparable 

results.  

To conclude, this work reveals an unexpected function for a lysosome-related 

organelle as the basic building block for presynaptic biogenesis and contributes to a better 

understanding of axonal transport. 
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Zusammenfassung 
Das komplexeste und gleichzeitig interessanteste Gebilde des Universums, das 

Nervensystem, ist nach wie vor eines der am wenigsten verständlichen. Seine Bausteine, 

die Neuronen, sind hochspezialisierte Verarbeitungseinheiten die gemeinsam die 

Grundlage für noch komplexere Prozesse bilden. Kommunikation und 

Informationsaustausch zwischen den Neuronen erfolgen über die Synapsen. Dieser 

Informationsaustausch muss sehr präzise sein und wird in Raum und Zeit streng 

kontrolliert. Um diese raffinierte Aufgabe erfüllen zu können sind Neuronen in ihrem 

Aufbau hoch spezialisiert. Um Informationen an weiter entfernte Zellen zu senden hat die 

Evolution das Axon erfunden, ein langer Fortsatz der Zellmembran, der einem Draht 

ähnelt. Das Axon ist sehr effizient bei der Weiterleitung elektrischer Signale, da diesen 

kein Stofftransport zu Grunde liegt. Der Transport von Proteinen und Organellen über 

lange Distanzen stellt jedoch eine Herausforderung dar. Während meiner Doktorarbeit   

habe ich versucht die Mechanismen und Prozesse zu verstehen, die zur Überwindung 

dieses Hindernisses beitragen können. 

 

Drosophila melanogaster bildet ein großartiges Model zur Untersuchung dieses 

Prozesses. Bereits im Larvenstadium ist eine mikroskopische Untersuchung mit 

verschieden Techniken möglich. Die Vielfalt der vorhandenen genetischen Werkzeuge 

erlaubt dabei ein genaues Sezieren der verschiedenen Komponenten. Als ich meine 

Arbeit begann war wenig darüber bekannt, welche Mechanismen dem axonalen Transport 

der synaptischen Proteine zugrunde liegen. Unter Nutzung fluoreszierender Marker zur 

Kennzeichnung der synaptischen Proteine war es mir möglich ihren Transport zum 

synaptischen Endknöpfchen in vivo zu charakterisieren. Zudem erlaubten es mir die, von 

der Drosophila-Wissenschaftsgemeinschaft entwickelten, genetischen Werkzeuge, 

Mutanten verschiedener, am Prozess beteiligter Proteine, zu erzeugen. Mithilfe dieser 

Mutanten konnte beobachtet werden, wie der axonale  Transport und die synaptischen 

Funktionen beeinflusst werden, wenn die Transportproteine abwesend sind oder 

verändert werden.  

 

Mit der vorliegenden Arbeit liefere ich den Beweis, dass eine präsynaptische 

Biogenese von axonalem Cotransport von Proteinen der aktiven Zone und synaptischen 

Vesikelproteinen in einem neuen Organell vermittelt wird. Dieses ähnelt in seiner Struktur 

und Funktion einem Lysosom weshalb wir es PLV (presynaptic lysosome-related vesicle) 

genannt haben. Mithilfe der intravitalen (in vivo) Bilderfassung war es uns möglich zu 

sehen, wie synaptische Proteine und Teile der aktiven Zone gemeinsam mit Proteinen 

des lysosomalen Weges transportiert werden. Darüber hinaus zeigen wir wie Arl8, ein 
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Kinesin-Adaptor für den lysosomalen Transport, auch für den reibungslosen Transport 

synaptischer Proteine benötigt wird. Der Wegfall von Arl8 ruft einen Abbau synaptischer 

Proteine auf der präsynaptischen Seite hervor, welcher zu Beeinträchtigung der 

Neurotransmission führt. In Abwesenheit von Arl8 akkumulieren die PLVs in 

Nervenzellkörpern und es kann kaum noch axonaler Transport beobachtet werden. Die 

Charakterisierung dieser Akkumulierungen hat gezeigt, dass die Vesikel ca. 70 nm 

Durchmesser haben und sie sowohl synaptische Marker, wie auch Proteine der aktiven 

Zone beinhalten. Umgekehrt bewirkt eine Hochregulierung der Expression von Arl8 einen 

Anstieg des axonalen Transports der PLVs, wodurch die präsynaptische Funktion 

erleichtert wird.  Diese Daten wurden von Experimenten mit Maus-Modellen untermauert, 

welche vergleichbare Ergebnisse lieferten. 

 

Zusammenfassend kann gesagt werden, dass die vorliegende Arbeit eine 

unerwartete Funktion eines mit Lysosomen verwandten Organells, als Grundbaustein für 

die präsynaptische  Biogenese enthüllt, und zum besseren Verständnis des axonalen 

Transports beiträgt.  



 
 

 
 

7 

 

 

 
Introduction  



Introduction 
 

 
 

8 

Introduction 

Neuroscience 
Neuroscience or Neurobiology is the scientific discipline that studies the nervous 

system. Although the study of the brain can be traced back in time to the ancient Egypt, it 

has not been until the emergence of the scientific method that it has developed into a 

science according to the definition from a modern perspective. 

 

To introduce the work of this thesis I would like to start by presenting the 

discoveries of two neuroscientists that in my opinion are the founders of the field as we 

know it nowadays: Camillo Golgi (1843-1926) and Santiago Ramón y Cajal (1852-1934), 

both awarded the Nobel Prize in 1906 for their studies on the structure of the nervous 

system. 

 

At the time, there were two opposing theories as to how the nervous system was 

organized: the neuron doctrine and the reticular theory. The neuron doctrine was an 

extension from the cell theory, which was proposed after improvements made to 

microscopes allowed to identify single "units" as building blocks of tissue. As such, the 

neuron doctrine proposed that the brain and the nervous system were not an exception 

and that it was made up of discrete cells. On the other hand, the reticular theory proposed 

that the nervous system was a continuous network. 

 

Camillo Golgi discovered in 1873 a new staining technique, named la reazione 

nera (the black reaction). This protocol, based on silver, stained only a fraction of the cells 

of the nervous system and they appeared black under a light microscope. This technique 

was used by Santiago Ramón y Cajal and allowed him to see the "celled" organisation of 

the nervous system. With his fantastic drawings, Ramón y Cajal popularized and 

confirmed the nowadays-accepted neuron doctrine, that is, that the nervous system is 

organized by many individual cells, which build the circuits of the nervous system. 
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Fig. 1 | Structure and connections of Neurons. 

(A) Drawing of Pyramidal neurons of the central cortex and their axon pathways by 

Santiago Ramón y Cajal (Picture from the exhibition at Ciutat de les Arts i les Ciències, 

València). 

 

 

Models for Neurobiology studies 

One of the aims of biomedical research is to have a better understanding of human 

physiology to prevent and cure diseases. In the field of neuroscience, gaining a deeper 

understanding of the physiology of the nervous system will not only increase our biological 

understanding but may open routes prevent, mitigate and cure neuronal disorders. To 

understand how an organ or tissue of the human body functions one has to have access 

to it. For neuroscience one of the problems is that the skull protects the human brain, 

making it difficult to access, thus obtaining brain samples has been limited patients 

undergoing brain surgery or from organ donations from deceased people.  A very recent 

solution to this has been the use of modern techniques such as Computer Tomography 

A
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(TC) or fMRI (Functional Magnetic Resonance Imaging) which allows imaging of the brain 

in a non-invasive manner. However, these methodology can be costly and therefore,  as a 

strategy to circumvent this, neuroscientists have studied non-human brains as models for 

the human brain.  Most animals have brains and their nervous system is related to human 

because it originated from a common ancestor and therefore are evolutionary related to 

each other, that is, they are homologous (Darwin, 1859). Choosing a model organism to 

study the nervous system is complicated, and many factors are involved. Probably the 

most determinant is the trade-off between similarity and ethics. Animals that are more 

similar to us are a priori a better system to study, however, also because they are more 

similar to us they demand a better ethical treatment. On the other side we have animals 

that are less similar to us, so there are lesser ethical concerns, but at the same time, by 

studying them we can learn less about our brain.  

Historically the field of neuroscience has used animals in this spectrum for their 

studies: from chimpanzees or great apes, to monkeys, mice or rats, birds, fish, insects or 

annelids. Also historically, there has been a trend towards an increase in ethical 

requirements that has significantly decreased the number of experiments performed in our 

closest relatives. This has gone as far as to completely stop the breeding program of our 

closest relatives, the chimpanzees, by the NIH in 2007 (Cohen, 2007; Knight, 2008). 

In this context, most of the research conducted in this thesis has used an insect, 

the Drosophila melanogaster, as a model organism.  

Drosophila melanogaster 
Drosophila melanogaster, or commonly known as the fruit fly, is an insect of the 

Diptera order. Thomas Hunt Morgan pioneered the use of D. melanogaster as a model 

organism for genetics studies at the beginning of the XX century. He isolated a white eye 

mutant fly and described the transmission of the trait in accordance with mendelian ratios 

(Morgan, 1911). Since then, the field of Drosophila genetics has expanded exponentially 

and it is now one of the most used animal models for research including neuroscience.  

There are several advantages which make Drosophila a preferred choice over 

other animal models that have a closer evolutionary relationship to humans (Jennings, 

2011) First of all they are very easy to grow and maintain. Drosophila melanogaster have 

very well identified life cycle, which is also comparatively short to most vertebrates. From 

the moment the egg is laid until an adult fly emerges from the pupa there is only a 10 days 

interval in normal conditions  (Fig. 2 A-B). This cycle is temperature dependent, and it is 

faster at higher temperatures (up to 29º C) and slower at low temperatures (18 ºC). They 

can live in small vials and can feed on fruit or a variety of foods easy to prepare. Their 
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standard laboratory food preparation consists of corn and soy flour with syrup, yeast and 

propionic acid, plus agar to confer gel consistency, is also very easy to prepare 

(Lakovaara, 1982; Jennings, 2011). 

 

Drosophila genome is organized in 4 chromosomes, which makes gene mapping 

fairly easy. Moreover, in 1881 Balbani discovered that the chromosomes in the salivary 

glands of insects are extremely big, reaching up to 200 µm in length (Fig. 3 A), which 

makes them observable under the microscope (Fig. 3 A).  

 

Work from Painter during the 30s described in very much detail how these salivary 

gland chromosomes, also called polytene chromosomes, are organized. Polytene 

chromosomes are found in the giant cells of the salivary glands. DNA molecules in these 

cells undergo multiple cycles of DNA synthesis without cell division. The resulting cells 

can contain as many as several thousand times the normal DNA complement. More 

interestingly and contrary to other polyploid cells, these secretory larval cells have all the 

homologous chromosome copies held together side by side, like pick up sticks in a 

bundle, creating a single polytene chromosome. A salivary gland cell of a Drosophila larva 

can undergo 10 DNA replication cycles without cell division, creating 210 (1024) identical 

strands of chromatin perfectly aligned. Polytene chromosomes are easy to visualize with 

light microscopy and have unique band patterns that allow for topographic 

characterization. 
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Fig. 2 | The life cycle of Drosophila melanogaster. 

(A-B) After female and male adult flies mate, female flies lay fertile eggs containing 

embryos. After 24h the first larva hatch from the egg to feed and grow. The two molt 

events that separate the three larval stages. After 3 days the last, 3rd instar, larval stage is 

fully developed and crawls high to pupate. In the pupae metamorphosis happens during 

~4 days until the adult fly fully developed emerges. 

 

 

A

Time after fertilization

B

Hour  Days   Developmental event (at 25 ºC)

24  1   Hatching from egg; first larval instar begins
49  2   First molt; second instar begins
72  3   Second molt; third instar begins
120  5   Puparium formation; puparium white
122  5.1   Puparium fully colored
124  5.2   Prepupal molt
132  5.5   Pupation; cephalic complex, wings, legs everted
169  7   Eye pigmentation begins
189  7.9   Bristle pigmentation begins
216  9   Adult ready to emerge from pupa case

Adapted from (Doane 1967) and http://flymove.uni-muenster.de 
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Fig. 3 | The polytene chromosomes. 

(A) The first drawing from Painter of the polytene chromosomes found on the salivary 

glands of Drosophila melanogaster larvae (1934). In this drawing the 4 chromosomes as 

well as their respective arms can be easily seen. Each parental chromosome is tightly 

A
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paired with its homologue and there are regions where they are separated (asynapsis). 

See the upper right square for comparison with normal mitotic chromosomes.  

 

 

Drosophila was the second animal to have its genome sequenced (Adams et al., 

2000) (only after C. elegans (Consortium*, 1998)), and with the development of large 

number of genetic tools (Fraser et al., 1983; Jenett et al., 2012; Jennings, 2011) makesthe 

fruit fly an ideal candidate as an animal model.  

 

 

GAL4 UAS System 
 

One of the most useful genetic tools is the GAL4 UAS system. In 1993, Brand and 

Perrimon published a landmark article describing the GAL4 upstream activating sequence 

(UAS) system to target gene expression in Drosophila (Brand and Perrimon, 1993). This 

system has become one of the most powerful tools for studying gene function. This 

method is based on two components from the yeast Sccharomyces cerevisiae gene 

regulatory machinery. GAL4 is a transcription factor (TF) that activates transcription of its 

target genes by binding to specific cis-regulatory sites (CREs) called UAS. In Drosophila, 

the idea is to have one Drosophila line expressing the GAL4 TF in tissues or cell lines 

marked by a genomic enhancer for that tissue. The second component is in another 

Drosophila line, which carries the gene or construct of interest with UAS as a CRE. When 

the two parental lines are crossed the resulting offspring will bear the two components, 

and the GAL4 TF will be activated in the tissue of selection. Once TF binds to the UAS 

sequence the gene after it will be expressed only in the cell line specified by the GAL4 

driver. In all the other cell lines the gene will not be expressed. The advantage of this 

bipartite system is that one can generate a library of GAL4 lines with different enhancers 

and these can be combined with any existing UAS construct. Different research groups 

can generate new GAL4 driver lines or new UAS constructs allowing for and almost 

infinite number of combinations (Fig. 4 A). The potential of this tool can go as far as 

finding an enhancer for every cell type. In 2012 laboratories in the Janelia Research 

Campus generated 7000 GAL4 lines to target different neuronal cell lines (Jenett et al., 

2012). Of course, the system has some limitations (Ito et al., 2003). The most important to 

take into account is that the gene of interest will be expressed under an exogenous 

promoter and its expression will not be regulated by endogenous feedback mechanisms 

that act at the level of gene transcription. Therefore, one has to keep in mind that the 

amount of protein expressed is not the same as it would be with the endogenous 
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promoters. Because the system comes from the budding yeast, its activity is higher at 

higher temperatures, and vice versa, and can be regulated depending on the temperature 

flies are reared. The second limitation to take into account is that the size of the sequence 

that can be inserted into the genome is limited. Therefore most of the time the construct 

inserted contains only exons and when so, any regulation that could happen at the 

splicing level is lost. 

 

 
Fig. 4 | The GAL4-UAS System for targeted gene expression. 

(A) The yeast transcriptional activator GAL4 can be used to regulate gene expression in 

Drosophila by inserting the upstream activating sequence (UAS) to which it binds next to a 

gene of interest (gene X). The GAL4 gene has been inserted at random positions in the 

Drosophila genome to generate ‘enhancer-trap’ lines that express GAL4 under the control 

of nearby genomic enhancers, and there is now a large collection of lines that express 

GAL4 in a huge variety of cell-type and tissue-specific patterns. Therefore, the expression 

of gene X can be driven in any of these patterns by crossing the appropriate GAL4 

enhancer- trap line to flies that carry the UAS–gene X transgene.  

 

A

Adapted from (Johnston 2002).
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Another resource that has been of great use for this thesis and for the Drosophila 

community in general is the existence of UAS-RNAi lines for almost every gene, produced 

by the Vienna Drosophila Resource Center (Dietzl et al., 2007). In a nutshell, the RNAi 

technology allows silencing of protein expression, not by acting at the gene level, nor by 

inhibiting protein function, but by blocking the mRNA. Here, a  the genome with a small 

sequence is  transcribed into RNA. The sequence is coded to have a base pair 

complementation leading to binding to the native mRNA of the target gene (Napoli et al., 

1990). The hybridization of the two strands physically blocks mRNA from binding to 

ribosomes for protein translation resulting in degradation of the mRNA. This resource 

enables large-scale genetic screens, making it possible to carry out loss-of-function 

experiments in essentially any tissue or cell at any stage in the life of the organism. When 

crossed to a GAL4 driver line, the UAS-RNAi stocks induce expression of a specific 

hairpin structure, which silences expression of the target gene via RNAi. Collectively, the 

RNAi lines cover a total of 12,671 (91%) of the D. melanogaster protein-coding genes.  

 

As seen, the GAL4/UAS system and its extensions allow in vivo experimental 

dissection of a wide range of biological questions (Valakh et al., 2012; Busson and Pret, 

2007; Kvon et al., 2014).  

	

The Neuron 

Neurons are the smallest single units composing the nervous system responsible 

for receiving, processing and transmitting information. For example, an olfactory or visual 

stimuli and be integrated and processed to respond has a feeding behavior, for instance 

via the contraction of a muscle via the activation of a motoneuron (neurons that control 

muscular activity) There is a very wide range of neuron types depending on the function 

and the organism we are considering.  

There are also other cell types apart from neurons that also constitute the nervous 

system. These include oligodendrocytes, the astrocytes and the microglia, and their 

function is to support neurons. Although there is growing evidence that non-neuronal cells 

play more active roles within the neuronal system (Trotta et al., 2018; Ronzano, 2017; 

Stephen D. Skaper et al., 2017) since they are out of the scope of this thesis they will not 

be described any further. 

As mentioned, Neurons will have different sizes and morphology, depending on 

their specific function and their localization in the nervous system or the organism, 
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neurons have different sizes and morphology. One example of a neuron is the motor 

neuron (Fig. 5). 

 

Fig. 5 | The stereotypical neuron. 

(A) Represents a standard myelinated neuron depicting its most important parts. (1) Is the 

cell soma. (2) The dendritic tree where signals from other neurons are received. (3) The 

axon, through which the signal, as an electric action potential is transmitted until the 

synaptic terminal (4). (5) Is the nucleus of the neuron. (6) Is the myelin sheath produced 

by the Schwann cells (7), which fosters faster transmission of the electric current. 

Schwann cells are glia cells of the peripheral nervous system and are not found in all 

neurons. 

 

The main three parts of our chosen neuron are the cell body or soma, the 

dendrites, the axon and the synaptic terminal. The cell body (1) of the neuron is where the 

nucleus is, and where most of the non-specific cellular processes mainly take place: 

transcription, protein synthesis and metabolism. The dendrites (2) are branched structures 

specialized in establishing contacts with the surrounding neurons from where they receive 

inputs, these inputs are also sent by the dendrites to the soma, where they are processed 

and integrated. After the cell body has processed the information, the neuron propagates 

the signal further to its corresponding target cell via the axon (3). The target cells can be 

another neuron or a different cell type. The length of the axon is always very long if one 

compares it to the average dimensions of a cell, but it is especially long when the target 

A

1

2
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cell is not another neuron within the central nervous system or vicinity but one from a 

target organ far away. This is the case of all motoneurons, whose target cell is a myocyte 

that can be up to meters away. The information is transmitted through the axon until it 

arrives at the synaptic terminal (4), where the axon branches to innervate the target cell in 

what is called the synapse. 

The Axon 
Even animals that we consider small, like for example the fruit fly, are relatively big 

compared to the dimensions of a cell or of a neuron. This fact, explains the existence of 

the axon. Neurons perceive information from parts of the body that might be very far away 

from the brain. After this information has been received, neurons need to send commands 

or instructions to response cells that are far away from where it was processed. For the 

fruit fly, a typical 8 µm diameter motoneuron needs to send information to muscles that 

are 6 mm away, that is almost 100 times larger, so a difference of two orders of 

magnitude. This of course increases in bigger animals, for instance the distance a human 

motoneuron has to cover can be up to 1 m, a difference of 10000 times. This multiscale 

challenge was solved with the evolution of a long projection from the nerve cell that is 

specialized in transmitting information along very long distances: the axon. 

 

The axon originates adjacent to the cell body in a region known as the axon 

hillock, and from there the prolongation extends until the target cell. As we said, the 

primary function of the axon is to transmit information. The way the axon does it is via an 

electric impulse that is transmitted downstream from the cell soma to the synaptic 

terminal. In most organisms this is performed via an action potential (Lockery and 

Goodman, 2009; Lockery et al., 2009; Mellem et al., 2008). 

 

Along the axon there are sodium and potassium channels that control the electric 

potential of the neuron. At a resting state, the membrane of the neuron has an electric 

potential of -70 mV. This difference in potential the neuron has in respect to the 

extracellular fluid is achieved by a difference in Na+ and K+ ions concentration regulated 

by ion channels present all along the membrane of the axon that control ion flux (Fig 6. A). 

When the neuron is activated, then voltage gated Na+ channels open and let sodium enter 

the neuron, producing a depolarization phase, where the membrane potential arises until 

+40 mV. After that, sodium channels inactivate and potassium channels are activated, 

allowing for a K+ efflux from the neuron to the extracellular fluid that restores the 

membrane potential, and then potassium channels close too. The Na+ remain in an 

inactivated state known as the refractory period because no more action potentials can be 
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produced during this time. The temporary inactivation of the sodium channels allows for 

unidirectional transmission of the action potential: the impulse can only be transmitted 

forward because the sodium channels “behind” are inactive (Fig. 6 B) (Alberts et al., 

2002). 

 

As we see, the axon is a very efficient structure at transmitting information. It does 

so by sending the information via electric impulses that do not require transport of "mass" 

or material, every time there is an action potential. However, this very long structure 

becomes a challenge because the cell needs to transport all the cellular material to the tip 

of the axon to pass the signal further (specially important in chemical synapses). 

Moreover, it needs to transport other proteins and organelles that are not synapse specific 

but that are also required for the normal metabolism of synapse (mitochondria, 

degradation proteins, enzymes, etc.) 
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Fig. 6 | The action potential 

(A) Description of the phases of the action potential. (1) Resting state, (2) depolarizing 

phase, (3) repolarizing phase and (4) hyperpolarizing phase. (B) Scheme on how signal 

propagation works via opening, inactivation and closing the sodium channels of the axon. 

The fact that the sodium channels are inactivated after being open, allows the signal to be 

transmitted unidirectionally.  

 

 

Signal propagation

Sodium Channels:      closed            inactivated            open               closed      

Membrane:               repolarised                     depolarised                     resting

Adapted from  (Alberts et al., 2002) 
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The Synapse 

Since Santiago Ramón y Cajal proposed that the nervous system is formed by 

neurons as discrete units rather than by a continuous wiring, the concept of synapse 

(junction) gained importance. The synapse, thus, is where the discrete units of the brain 

connect with each other to exchange information. 

There are again no two identical synapses, but synapses have been classified into 

electric or chemical synapses depending on how they transmit the information. In this 

introduction the focus will be on the chemical synapse because is the one used in this 

thesis as a model (Schuster, 2006). 

Since the communication is directional the synapse consists of two asymmetric 

parts: the presynapse and the postsynapse. The presynapse is at the very end of the 

axonal terminal and contains all the machinery to send the message. On the other hand, 

the postsynapse locates at the dendrites and has all the necessary components to receive 

the message and propagate it further. 

The principal components of the presynapse are: 

• Synaptic Vesicles 

• Active Zone Cytomatrix 

• Voltage Gated Calcium Channels 

 

 

The main components of the postsynapse are: 

 

• Neurotransmitter receptors 

The specific synapse used as a model for most of the research done for this 

thesis, the Drosophila neuromuscular junction, will be described in more detail in the next 

chapter. 

 

The larval Neuromuscular Junction of Drosophila as a model synapse 
 

Drosophila larval motoneurons are a very good neuron of choice to unveil synapse 

function. Their cell bodies are located at the CNS but their axons project further out of it to 

reach the muscle target cell. The synapse between the motoneurons and the muscle cell 



Introduction 
 

 
 

22 

is called Neuromuscular Junction (NMJ). Like in vertebrate skeletal muscles, larval muscle 

cells are huge multinucleated fibers to allow fiber contraction in a coordinated manner. 

The motoneuron has to innervate a very big cell and as a result has one of the biggest 

synapses. 

 

Work in late 1970s established the larval neuromuscular junction (NMJ) as a 

model synapse (Jan and Jan, 1976) and since then, many publications have followed 

studying its development, morphology and function (Halpbern et al 1991, Johansen et al 

1989a, Johansen et al 1989b; Schmid et al., 2008; Fouquet et al., 2009; Petzoldt et al., 

2014).  

 

Drosophila larvae, in comparison to adult flies, are more suitable because the 

nerve-muscle preparation is thin and almost transparent which makes it ideal for 

microscopy, plus the nerve terminals are readily accessible to experimental manipulation. 

The nerve endings follow the stereotypical organization of the body wall muscles (Fig. 6 

A). The larva is divided into 8 segments, each segment is innervated by motoneurons 

whose cell bodies are located in the VNC and represent a topographical map of the 

segments1. More anterior muscles are innervated by motoneurons that are more anterior 

and posterior muscles are innervated by motoneurons that are at the end of the VNC. 

Each segment is divided by an axis of symmetry, called the midline, which divides the 

larvae into two equal hemisegments (right and left). Each hemisegment consists of 30 

muscles, and it is organized in two layers, one more superficial and another just 

underneath it. Muscles can also be categorized as dorsal, lateral or ventral depending on 

their position. By convention every muscle has a number (from 1 to 30) to identify it. 

                                                
1 This organization in segments or metamers, is common to many bilateral animals and human ribs 
or vertebrae are vestiges of it. 
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Fig. 7 | The Drosophila neuromuscular junction. 

(A) Image of a 3rd instar larva viewed from the side, with its mouth hooks to the left and 

the tail to the right. In the bottom panel muscles are highlighted in green and the nervous 

system in purple. Muscles are organized in 8 similar segments (A1-A8) with a similar 
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structure and same muscle pattern. These muscles are innervated by motoneurons 

whose nuclei reside in the VNC (purple). (B) Confocal images of the NMJ synapse at its 

various scales. Left, whole NMJ of muscle 6/7. Right (1), magnification of the bouton 

structure showing the single AZ labeled with Brp (green) with the Glutamate receptor 

(purple) opposed to them. (2) Confocal image of a single AZ where a BRP AZ is 

surrounded by a Glutamate Receptor field. To resolve further the AZ organization we 

need to go to super resolution two color STED microscopy (3), where the BRP ring 

(green) is then easily identifiable, with Unc13A (purple) sitting just next to it. Scale bars: 10 

μm (NMJ), 3 μm (1), 300 nm (2) and 50 nm (3).  

 

 

The fact that the NMJs are big, accessible, stereotypical, repetitive structures and 

that they are conserved during larval development makes the larval NMJs a paradigm for 

synapse study and research. Data from different individuals but the very same synapse 

can be easily obtained, making it highly comparable. 

 

In regards to morphology, the synapses are divided into three groups depending 

on the type of innervation. All the work of this thesis dealt with type-I because they are the 

main excitatory innervations, use glutamate as neurotransmitter, and are the most well 

described. Type-I synapses are divided into Type-1b (big) and Type-1s (small), and Type-

1b are again the ones better understood. Type II synapses innervate more than one 

muscle and part of their function is to coordinate locomotion. They release octopamine 

instead of glutamate, which corresponds to adrenaline or noradrenaline in mammalians. 

Type-III are only found in some muscles and they have been also understudied in 

comparison to Type-I. (Koon et al., 2011; Ruiz-Canada et al., 2004; Koon and Budnik, 

2012). 

 

Type-Ib terminals are organized in beads on a string structure. The beads 

correspond to the boutons that are interconnected by axonal cytoplasm. The number and 

morphology of every terminal varies depending on the muscle. Muscle 4 is among the 

preferred ones for immunohistochemistry because a) it is big and easy to identify, b) it is 

in the inner layer, so after the larval preparation the objective can really be in direct 

contact to the NMJ (no tissue in between that could interfere or hinder image quality) and 

c) because it is smaller, less branched and does not go as deep inside the muscle as 

muscle 6 or 7, which makes it harder for confocal imaging. As said, every terminal is 

organized in boutons where the synapses are located. As the larva grows, so do the 

muscle and the terminal, producing more boutons by division, budding or de novo 
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(Pennetta et al., 2002; Menon et al., 2013). At larval stage 3, muscle 4 Type-Ib terminals 

can contain up to 20 boutons and its total length is between 30 and 50 μm (Fig. 7 B). 

Each bouton contains on average around 10 individual synapses, each containing the 

complete architecture and machinery to be able to transmit the signal, which is also 

referred as Active Zone (AZ) (Crossley et al., 1978; Menon et al., 2013). 

 

The Active Zone 
 

The term Active Zone was first used by Monique Pécot-Dechavassinein and René 

Couteaux after their observation that Synaptic Vesicles would only fuse at specific sites of 

the synapse (Tsuji, 2006). Indeed, the interaction surface between the presynaptic and 

the postsynaptic membrane is relatively large. However, by carefully looking at the 

ultrastructure of synapses they could observe that the profiles of fused vesicles were only 

to be found at specialized regions of the membrane that were more electron dense, and 

named them “les zones actives” (Fig. 8 A) (Tsuji, 2006). Subsequently same observations 

were made in other synapses, and since then many studies have further identified 

components of the AZ. 

 

The AZ is the release site for SVs, and its function is to facilitate tethering, docking 

and fusion of SVs with the plasma membrane (Zhai et al., 2001). The actual building 

blocks of the AZ have been under study since the discovery by Monique Pécot-

Dechavassinein and René Couteaux. The AZ components can vary between species, 

tissues and cells, but the basic design of the release sites is largely conserved (Fig. 8 B-

D). 
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Fig. 8  |  Structure of cytomatrices at Active Zones. 

(A) Electron microscopy image of the first Active Zone to be observed, from the 

experiments by Couteaux and Pécot Dechavassinein in 1970, at the frog synapse. 

Arrowheads show vesicles fusing at the most electron dense area of the synapse.  (B-D)  

Schematic representations and EM images of the Active Zones and cytomatrices of C. 

elegans, D. melanogaster and H. sapiens. (B) Active Zone of the nematode C. elegans 

synapse at the NMJ. (C) NMJ of the fruit fly showing the characteristic T-Bar. (D) Human 

active zones at the hippocampal synapse. Scale bars are 50 nm (A) and 300 nm (B-D). 
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In Drosophila, thanks to the joint effort of many research groups, the various 

components of the AZ have been identified and their function characterized to a very large 

extend (Fouquet et al., 2009; Kittel et al., 2006a; Owald et al., 2010, Owald et al., 2012; 

Peled et al., 2014; Reddy-Alla et al., 2017). But still there is a collection to disclose. 

Hereafter the current status of our knowledge about the drosophila Active zone will be 

briefly described. 

 

AZ formation at the NMJ starts just after embryogenesis stage 13/14 when growth 

cones of VNC neurons navigate to their stereotypic positions where they establish 

adhesive contacts with their appropriate target muscles. 13h after egg laying the whole 

muscular pattern is defined and AZ formation begins (Bate, 1990; Grenningloh et al., 

1991; Landgraf and Thor, 2006; Sánchez-Soriano et al., 2007). The components of the AZ 

cytomatrix arrive in at least two waves (Fig 9 A). The early components of the AZ are 

Cacophony (Calcium Channel), Syd-1, Liprin-α and Unc-13B. Syd-1 arrives at the same 

time as Liprin-α to the presynaptic membrane of the terminal and they localize at the edge 

of the AZ. Via interaction with the trans synaptic complex Neurexin-Neuroligin-1, they 

orchestrate the early assembly of the AZ opposed to the Post Synaptic Density (PSD). At 

this time the process is still reversible, and clusters of Syd-1 and Liprin-α can undergo 

rounds of assembly and disassembly before it is decided to proceed to the next step. After 

Syd-1 and Liprin-α have established the site for a new AZ, the later components arrive. 

RBP and BRP arrive together (Siebert et al., 2015) and at the same time Unc13A is 

incorporated. At this point the mature synapse is formed and BRP, RBP and Unc13A act 

as tight calcium sensors for SV vesicle release (Fig. 9 B) (Böhme et al., 2016; Reddy-Alla 

et al., 2017). 

 

 

 

 

 

 



Introduction 
 

 
 

28 

 
Fig. 9 | Illustration showing the formation of an AZ and its final form with the most 

important players depicted. 

(A) During the process of AZ assembly, clusters of Syd-1 and Liprin-α undergo rounds of 

assembly and disassembly at the presynaptic membrane. Unc13B localizes to sites of de 

novo synapse formation via the Syd-1/Liprin-α scaffold. At nascent synapses, this induces 

a loose SV-Calcium channel coupling. Later during the AZ maturation process, Unc13A 

localizes to more mature synapses via a second, central RBP/BRP scaffold that 

concentrates Unc13A at the center of the AZ. Unc13A facilitates a close localization of 

SVs to the presynaptic calcium channels and therefore maintains a tight stimulus/secretion 

coupling. (B) Final assembly of the AZ with SV fusing to the membrane. 

A

B

Adapted from (Böhme et al., 2016) 
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Axonal Transport 

For the appearance of life one of the critical steps was to have a compartment that 

would be capable of isolating and protecting chemical reactions from the entropy of the 

surrounding environment. The minimum machinery to do so is the simplest living 

organism and it is what we call the cell. A cell is separated from the entropy from the 

outside by a membrane that allows cellular processes to take place (Cooper, 2000). At the 

same time, the cell requires compartmentalization in order to not to mix the different 

biological processes that simultaneously happen inside the cell. For compartmentalization 

membranes are again a good resource, as it is the case of the nucleus, mitochondria or 

the Golgi Apparatus, but as important than that is a system that can transport cellular 

content from one part of the cell to another, and can do it in a specific manner.  

Transport of cellular content in eukaryotes is achieved by the cytoskeleton and the 

molecular motors. The cytoskeleton is comprised of actin filaments, microtubule and 

intermediate filaments. Only the microtubules will be described in this thesis because the 

other two are not that relevant for this work. Microtubule are polymers of tubulin dimers 

(alpha and beta tubulin) that form cylindrical (24 nm diameter) and long structures (up to 

50 micrometers in length) (Linck and Langevin, 1981; Stephens, 1970). They are 

important for many cellular processes like cell division, shape maintenance and cell 

locomotion, and they serve also as roads or highways for transport. Microtubules reach 

almost every point of the cell and are polarised because of the asymmetry of the tubulin 

dimers. One the plus (+) end, tubulin dimers are oriented in a way that they expose their 

GTP binding domain motif and it is easier for another tubulin dimer to get attached to it. 

The plus end is therefore the growing end. On the minus (-) end, because of its 

conformation, tubulin dimers cannot bind so easily and is actually more probable that the 

tubulin dimers depolymerise (at a standard tubulin dimer concentration of the cell, 24 µM) 

(Cooper, 2000; Mozziconacci et al., 2008). 

Axonal transport that occurs via microtubules is called fast axonal transport. There 

is also slow axonal transport which is independent of microtubules and Kinesin (Hurd and 

Saxton, 1996), but only fast axonal transport, from now on referred as axonal transport 

alone, will be discussed in this thesis. Axonal transport is of the utmost importance for the 

proper maintenance and function of neurons and its disruption has been proposed as a 

hallmark of several neurodegenerative diseases (Vicario-Orri et al., 2015; Julien and 

Millecamps, 2013). At the axon, microtubules are organized always with their plus end 

towards the synaptic terminal, and are used to transport cargoes, among other functions. 

Transport begins at the cell soma where proteins are loaded into their cargoes and bind to 



Introduction 
 

 
 

30 

the anterograde motors. How this process exactly occurs is still not fully understood. It is 

known that some cargoes are captured directly from the cytoplasm, like mitochondria and 

some proteins that do not have a transmembrane domain. Other proteins, can be loaded 

into their cargoes as vesicles just after exiting the Golgi Apparatus. Cargo loading into the 

anterograde motors requires specificity and some of it is achieved via the Golgi Apparatus 

sorting (Fig. 10 B) (Chia et al., 2013). After the cargoes have been loaded the long 

journey starts, its duration depends mostly on the length of the axon, and cargoes move at 

a typical speed of 1 µm/s. Because of the microtubule polarity two types of motors exist: 

anterograde and retrograde. Kinesins walk towards the plus end and are responsible for 

anterograde motion, Dyneins walk towards the minus end and are responsible for 

retrograde motility. Some times both motors pull the cargo at the same time, this 

phenomenon is known as Tug of War and is one of the mechanisms to regulate axonal 

transport (Müller et al., 2008; Müller et al., 2008; Müller et al., 2010). At the end of the 

journey, when the cargo has reached the appropriate destination the motor unloads the 

cargo (Fig. 10 D) (Chua et al., 2012). For proper targeting many factors regulate this 

process, some of them mentioned before (Fig. 9 A). 
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Fig. 10 | Steps of polarized motor-based transport of synaptic material. 

(A) Overview of the neuron with the most important steps highlighted. (B) Cargo loading 

from the cytoplasm or Golgi apparatus into the motor. (C) Establishment of proper micro- 

tubule polarity along the axon determines anterograde and retrograde trafficking by plus 

end– (kinesins) and minus end–directed (dynein). (D) At the appropriate destination, 

motor-cargo unloading occurs in a regulated fashion to achieve the appropriate 

distribution of synaptic boutons. 
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Motor proteins 

Motor proteins are biological molecular machines that are capable of transforming 

energy stored in chemical bonds into mechanic work. The two most relevant families for 

long-range active transport are Kinesins and Dyneins. Both Kinesins and Dyneins use the 

polarity of microtubule to orient themselves along them and use ATP as “fuel” to move. 

Dyneins 

Dyneins are a group of motor proteins that form a complex with multiple and 

different subunits, depending on their function, their location within the cell or the 

organism. This multi subunit complex as a whole is sometimes refered as Dynein (in 

singular) and it is comparatively bigger than kinesin (Fig. 11 D) (Spudich, 2011). The first 

time to be described was in 1965 as a protein isolated from the cilia of Tetrahymena 

pyriformis. It was named Dynein from the greek term dyne- (force) and –in for protein 

(Gibbons and Rowe, 1965). Dynein thus, was first characterized to be an important 

protein capable of converting ATP energy into force production important for the 

movement of cilia in this single cell eukaryotic organism. Dynein operates by changing its 

conformation upon ATP hydrolysis. Later investigations found that it is via its association 

to microtubules that it can generate a force in the axoneme (not to be confused with the 

axon) (Otokawa, 1972). Moreover, by microinjecting an specific inhibitor of Dynein called 

EHNA2 in axons that were isolated from the sea slug (Aplysia californica), it was shown 

that Dynein is required for fast axonal transport (Goldberg, 1982). Using the same assay 

but this time in axons isolated from lobsters, the group of Promersberger demonstrated 

that EHNA actually only blocks axonal transport in the retrograde direction (Forman et al., 

1983). Dyneins are thus, the motor for retrograde axonal transport. 

                                                
2 EHNA was described by (Bouchard et al., 1981) as a drug to prevent sperm motily. It was shown 
that EHNA functions by selectively inactivang dynein. 
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Fig. 11 | Molecular structure of the molecular motors 
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(A-C) Molecular structure of Dynein, Kinesin (KHC) and Unc-104. Proteins are not to 

scale. Blue represents motor domains, grey the stalk, and green for associated proteins. 

(A) Dynein with all its domains: shaded blue are the MT binding domains (bottom). The 

ring is a globular structure where ATP is hydrolyzed. The stalk connects it further Dynein 

associated proteins like the Light Intermediate Chain (LIC) and the Intermediate Chain 

(IC) (green). IC has also a stalk that binds to dynactin, and from there to the cargo. (B) 

KHC molecular structure showing the motor domain in light blue, stalk in grey and in 

green the KLC. The domain that interacts with the cargo is shown in purple. (C) Unc-104 

molecular structure showing the two known conformations: dimer (upper) activated, and 

monomer (bottom) inactivated. Blue shows the motor domain, in the middle purple shows 

the forkhead-associated (FHA) domain and upper most purple is the cargo binding 

domain PH. (D) Molecular structure of Dynein and Kinesin to scale to see how big the 

Dynein complex is in comparison to KHC. 

Kinesins 

Kinesins are a class of motor proteins that hydrolyze ATP to produce mechanical 

work. Kinesins are essential for the transport of a variety of cargos such as protein 

complexes and membranous organelles (Hirokawa and Noda, 2008). The kinesin 

superfamily includes 45 human genes and 25 genes in Drosophila melanogaster. Their 

classification and nomenclature was a headache until it got standardized in a recent 

review (Miki et al., 2005). In Drosophila, two kinesins have been characterized for axonal 

transport: KHC and imac. 

KHC 

KHC (Kinesin-1) is also known as the classical kinesin, because it was the first one 

identified and is therefore the founding member of the superfamily (Brady, 1985; Vale et 

al., 1985). KHC dimerizes and builds up what are called the two heavy chains of the 

Kinesin, at the same time, this KHC dimer binds to the Kinesin Light Chain (KLC) that is 

itself another dimer. Mammals have at least three heavy chain genes that somehow 

specify its function. The fruit fly and C. elegans, however, have only one heavy chain gene 

KHC (called unc-116 in C. elegans) (Patel et al., 1993). Mutations of KHC in Drosophila 

are lethal but not before larval stage, probably because there is enough maternal KHC 

mRNA contribution to produce enough KHC protein until larval stages (Tsien and 

Wattiaux, 1971). Most evident symptoms of KHC mutations include axonal loss, motor 

disabilities and paralysis during early developmental stages (Franker and Hoogenraad, 

2013; Saxton et al., 1991; Tanaka et al., 1998). Larvae of KHC mutants have problems 

crawling and their tail flips upwards indicating early paralysis of the distal muscles. KHC 
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mutants have an inhibition of action potentials and neurotransmitter secretion, but this is a 

secondary effect of the transport phenotype. KHC has been described to transport a wide 

range of cargoes towards the presynapse, among them SV and AZ proteins as well as 

mitochondria (Hirokawa et al., 2010). In the absence of functional KHC, Drosophila larvae 

develop dramatic focal swellings along their axon. These swellings are packed with fast 

axonal transport cargoes like synaptic proteins, mitochondria and prelysosomal organelles 

(Hurd and Saxton, 1996). 

Unc-104/imac 

Unc-104, also called imac (in Drosophila), is the second most relevant Kinesin for 

axonal transport in Drosophila. It is the homologous to the mammalian KIF1 and belongs 

to the Kinsein-3 family. Unlike KHC, imac has been described to be able to work as a 

motor also in its monomeric form in vitro. Imac null mutants are lethal at embryonic 

stages. Therefore the first characterization of the protein in Drosophila was done in 

embryos (Pack-Chung et al., 2007). Drosophila embryos lacking imac fail at forming 

synaptic boutons. The axons of motoneurons lacking imac could properly target the 

muscle cells but the terminals had very few active zones and lacked synaptic vesicle 

components and DCVs (dense core vesicles) (Pack-Chung et al., 2007). 

More recently an hypomorph allele has been described that has allowed further 

characterization of the Kinesin and also its function at the larval stage (Kern et al., 2013). 

The hypomorph of unc-104, called bristly (unc-104bris), was identified in a screen 

examining mutants for a synaptogenesis phenotype in the group of Tobias M. Rasse. The 

mutation is a single aminoacid change in the β-11 loop of the forkhead-associated (FHA) 

domain of unc-104. The Arginine that is at the position 561 is substituted by a Histidine 

(R561H). From structure based analysis of the human KIF1A it is believed that the residue 

Arginine in 583, also part of the β-11 loop, interacts with the E499 residue in β-1/2 loop. It 

is believed that this interaction stabilizes the Kinesin dimer and therefore its mutations 

hinder unc-104 performance (Huo et al., 2012). In contrast with the imac170 mutation 

described by (Pack-Chung et al., 2007), the hypomorph unc-104bris survives to larval 

stages, also in transheterozygosity with the null allele (unc-104bris/unc-104170 or also 

referred to as unc-104bris/-). Motoneuron axons of the unc-104bris/- mutants could also 

target the muscle, rejecting an axonogenesis problem. At the NMJ, the overall BRP 

intensity is severely reduced and boutons show many Post Synaptic Densities unapposed 

by BRP. 
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Fig. 12 | Illustration and comparison of the phenotypes for KHC, imac and Milton 

(A) In wild type animals the presynaptic compartment of the neuron is normally enriched 

with mitochondria (yellow) and SVs (blue) in close apposition to the AZ (red). Loss of the 

KHC, leads to accumulations of mitochondria, SPV as well as post-golgi transport vesicles 

in the axon. Imac mutants on the other hand have hardly any bouton and do not show 

axonal swellings, instead, the cargo is accumulated in the cell bodies. In milton mutants 

there is only accumulation of mitochondria, which cannot be shipped out and remain in the 

cytoplasm 

 

 

.  
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Adapted from (Goldstein et al., 2008)
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Adaptors 

As we have seen, in Drosophila, so far only two Kinesins have been identified to 

be responsible for axonal transport: KHC and imac. On the other hand, as we have 

discussed too, there is plenty of material that needs to be transported to the axonal 

terminal: AZ proteins, Synaptic Vesicle precursors, mitochondria and many other proteins. 

Some of them might be found only in neurons and many other that are not neuronal 

specific. 

If two Kinesins are responsible of transporting such wide variety of cargoes, how 

do they achieve specificity? Specificity is of course a requirement to have different 

cargoes and to be able to regulate them and send them to different locations. To solve 

this problem Kinesins associate to a broad number of adaptor proteins that can specify 

cargo and regulate their function. Next we will comment on the most relevant adaptors. 

KLC 
Kinesin light chain (KLC) was one of the first adaptor of Kinesin to be described 

(Gauger and Goldstein, 1993). KLC forms a complex with the Kinesin heavy chain (KHC) 

to form what is also known as the native Kinesin (Fig. 11 B). KLC molecular weight is 58 

kDa, around half of the molecular weight of KHC which is 115 kDa. The whole complex is 

composed of two molecules of each protein, resulting in a heterotetramer of 346 kDa. The 

klc gene, located on the third chromosome is widely expressed in all tissues. Gauger and 

Goldstein could copurify KLC and KHC even in the presence of high salt, nonionic 

detergens and reducing agents, proving a very strong interaction between the two 

proteins. Furthermore they could show that KLC interacts specifically to the tail domain of 

the KHC, and actually is this last portion of the KHC the one most conserved domain 

across species, indicating the importance of the interaction (Wong and Rice, 2010). 

Moreover, they could narrow down the interaction domain to a stretch of heptad repeats of 

the KHC tail domain that interact with the heptad repeats of KLC, being the interaction 

between two coiled-coil domains. In another study (Gindhart et al., 1998) the role of KLC 

in the axonal transport of Drosophila was better characterized by generating mutants via 

P-element-directed mutagenesis. The resulting klc1 mutant proved that KLC function is 

essential for Drosophila development and the phenotype reminds to a large extend to that 

of the KHC mutants. In fact, klc1 mutants are also lethal, with larvae dying between the 

second and third larval instars, similar to KHC mutants (Brendza et al., 1999). At the same 

time, and similar to khc mutants, klc1 mutants exhibit progressive paralysis during the 

larval stages, more prominent in the posterior muscles, reflecting a stronger phenotype for 

longer axons. Klc1 mutants also show the characteristic tail flipping phenotype common to 

different axonal transport mutants (Gindhart et al., 1998). The phenotype between khc 
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and klc mutants is so similar, and the interaction so strong that it seems unlikely that KHC 

can operate without the presence of KLC. The data so far acquired for both mutants 

suggest that the role of KLC is more to complement KHC function rather than to specificy 

it, e.g. restricting KHC binding to a certain subset of cargoes. In that sense, klc1 mutants 

could not be shown to disrupt specific pathways of axonal transport. Rather, they disrupt, 

as khc mutants do, all of the pathways for fast axonal transport so far studied. Indeed, klc1 

mutants showed severe CSP and Syt-1 accumulations in the axons of motoneurons, with 

no apparent difference to khc mutants (Gindhart et al., 1998). 

  

Milton 

As we have discussed in the chapter of the axon, this very elongated structure 

comes along with some challenges. One of them is the energetic requirement of the 

synapse. Mitochondria are double membrane organelles found in all eukaryotic organisms 

and provide the cell with energy in the form of adenosine triphosphate (ATP). 

Mitochondria produce ATP via the Krebs cycle, which consists in a group of chemical 

reactions that oxidize the acetyl-CoA that derives from carbohydrates, fats or proteins. As 

a result it also produces CO2. ATP is a small molecule that can diffuse through the cell, 

but not at a rate that could reach the axonal terminal in a satisfactory manner (Cooper, 

2000). For that, it is very important for synaptic function that mitochondria are also 

transported to the synaptic terminal in order to provide with a source of energy to all the 

cellular processes that take place there. 

In a genetic screen using eye aberration phenotypes for axonal and synaptic 

function genes the group of Thomas Schwarz identified a new protein and named it Milton 

(after the blind British poet). Flies homozygous for the milt92 null allele die at larval stage 2 

(Glater et al., 2006). KHC coimmunoprecipitated with Milton and one of the two isoforms 

of Milton also coimmunoprecipitated with KLC. In HEK293T cells, milton selectively 

colocalized with mitochondria. In Drosophila larvae, milton was found in axonal and 

synaptic regions and in the axons the milton antibody colabeled with the marker for 

mitochondria Hsp60. In distal axons of first instar larvae Milton colocalized also with KHC, 

although KHC had a more widespread distribution and not all KHC particles were positive 

for milton, indicating that milton is not present in every KHC complex, but only in the 

subset of them that is transporting mitochondria (Stowers et al., 2002).  In a more recent 

publication from again the group of Thomas Schwarz it was shown that milton is actually 

the recruiter of KHC to the mitochondria. This recruitment is independent of KLC and 

although a possible direct binding of the C-Term of milton to the mitochondria could not be 

ruled out, the anchorage is mediated by the protein miro, which is necessary to produce 
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proper coupling and anterograde transport of the mitochondria. Confocal stacks of the 

VNC of second instar larvae of the milt92 mutant, revealed apparently normal axons but 

completely depleted of the GFP labeled mitochondria, whereas Syt-1 was still present (Lin 

and Sheng, 2015; Pilling et al., 2006). This defect was selective for mitochondria, as KHC 

immunoreactivity was not disturbed in the mutant axons. Mitochondria were otherwise fine 

in the cell bodies of motoneurons, to a similar extent in milt92 mutants and control. 

However, milt92 also had a decrease in mitochondrial signal in the neuropile, indicating 

that milton is also required for proper dendritic transport of mitochondria (Fig. 12 A). 

Aplip-1 

In a genetic screen for KHC interacting proteins, the laboratory of William Saxton 

identified Aplip-1 (APP-like interacting protein1), a Drosophila homolog of JIP-1. JIP-1 

(JNK interacting protein 1) had been proposed to act as linker between KHC and certain 

vesicles in cultured mammalian neurons. In Drosophila one single amino acid change in 

the Aplip-1 polypeptide chain (P483L) caused larval paralysis, axonal swellings and 

reduced levels of vesicle transport, anterograde as well as retrograde (Horiuchi et al., 

2005). This mutation P483L is in a conserved region where Aplip-1 binds to the Kinesin 

Light Chain and through it to the KHC. The P483L Aplip-1 mutation is referred as Aplip-

1ek4. The Aplip-1ek4 in homozygosis has comparable severity phenotype as the Aplip-1 

null, indicating that the Aplip-1ek4 is a very strong hypomorphic allele. However, compared 

to the KHC null mutants, which are lethal, Aplip-1ek4 survive into active and fertile adults. 

This indicates that Aplip-1 has a very strong relationship with KHC but it is itself not 

essential, probably because it contributes to a subset of the KHC functions (Horiuchi et 

al., 2005). 

Experiments in the lab of Erika Holzbaur further defined the interactions of JIP-1 

and the molecular motors in mammalian neurons. JIP-1 knockdown affected axonal 

transport of APP (Amyloid Precursor Protein) not only anterograde but also retrograde. To 

investigate whether JIP-1 can bind to Dynein and thereby, in JIP-1 absence retrograde 

transport gets disrupted, they  performed coimmunoprecipitations of mouse brain 

homogenates and they could find interactions between JIP-1 and p150Glued. p150Glued is a 

subunit of the dynactin complex which is a Dynein activator. By truncating p150Glued they 

could identify that JIP-1 binds to the C-Terminal part of it. Narrowing it down with more 

truncated forms of p150Glued, they could more precisely identify the last 100 amino acids of 

the cargo-binding domain of p150Glued to be responsible for the interaction with JIP-1. 

Furthermore, they characterized the interactions between KHC and JIP-1. Compared to 

the first publication (Horiuchi et al., 2005), where they described Aplip-1 to bind to KHC 

through KLC, the most recent publication showed that JIP-1 can bind also directly to KHC 
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(Fu and Holzbaur, 2013). JIP-1 has indeed a KLC binding domain at the most C-Terminal 

part. But in addition, it has at least two domains that bind straight to the KHC. One domain 

binds to the Tail of KHC, called JIP-1 TBD and the other one to the stalk, called JIP-1 

SBD. Binding of JIP-1 to KHC via the TBD prevents the tail domain to fold and bind to the 

KHC motor domain and thereby JIP-1 blocks the autoinhibtion of KHC. Most interestingly 

however, is the fact that the JIP-1 SBD is in the same region as the domain that binds to 

p150Glued. Taking these results together, JIP-1 can only bind Kinesin or Dynein at the 

same time. This is regulated via a JNK-dependent phosphorylation in the S421 residue of 

JIP-1; phosphorylated JIP-1 binds preferentially to KHC and non phosphorylated JIP-1 to 

Dynein via p150Glued. When JIP-1 is not phosphorylated it binds to p150Glued via the PTB 

domain an activates Dynein. This, in turn, blocks the TBD of JIP-1 to bind to KHC, and the 

Tail domain of Kinesin can fold to bind to the Motor domain and KHC stays autoinhibited 

while Dynein is active. 

Experiments in our group further identified the critical role of Aplip-1 in axonal 

transport and shed light on its direct interaction with AZ protein cargoes that are 

transported anterogradelly from the cell soma to the synaptic terminal (Siebert et al., 

2015). In vivo imaging of whole Drosophila larvae showed that BRP and RBP are 

transported together in the same anterograde cargo and that this cargo is also co-

transported with Aplip-1 in motoneuronal axons. Both Aplip-1 mutants, the null (aplip-

1ex213) as well as the Aplip-1ek4, showed a pronounced decrease in BRP flux both 

anterograde and retrograde, that could be rescued with a genomic rescue construct in the 

aplip-1 null background. When the axons of the aplip-1 mutants were imaged with 

confocal microscopy, a very strong accumulation of BRP as well as RBP could be found. 

Regarding interactions, a direct binding of RBP to Aplip-1 could be established via a Yeast 

two Hybrid (Y2H) screen. Moreover, semi quantitative liquid Y2H assays revealed an 

interaction of the second and third SH3 domains of RBP with the PxxP domains of Aplip-

1, which were abolished when these domains were mutated. Interestingly, no direct 

interaction could be shown for BRP and Aplip-1. Even if RBP and BRP are transported in 

the same cargo (Results Fig. 5 A) and they are in very close proximity in the AZ as well 

(Liu et al., 2011), it seems that their co-transport is independent of their interaction when 

they traffic along the axon. Removing BRP in aplip-1 mutants had no effect on axonal 

RBP accumulations, nor was the case the other way around. Hence, even a direct 

interaction between Aplip-1 and BRP could not be shown, it is not via binding to RBP that 

BRP is coupled to the Aplip-1.  A possible explanation for that, could be that BRP is 

attached to the cargo via other AZ proteins, or other adaptors (Siebert et al., 2015). 
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ARFs and  Arls 
Arl8 is a small protein of 186 amino acids that belongs to the family of Arf-like 

proteins also called Arls. The Arf-like family is one of the three subgroups that form the Arf 

family, which consists on the Arfs, the Arls and the SARs proteins (Kahn et al., 2006). 

Since the discovery of the first members of the Arf family as ADP ribosylation factors (Arf), 

they have been found to be ubiquitious regulators of membrane traffic and phospholipid 

metabolism (Burd et al., 2004; Nie et al., 2003).  

 

Arfs are soluble proteins, typically of 21 kDa, that are found in the cytosol and 

upon GTP binding change to their activated state and translocate to the membrane (not 

necessarily the plasma membrane, but also membranes from organelles). Their function 

at the membrane varies for each Arf member but also on the effectors to whom they 

associate. These are very diverse and range from coat complexes, adaptor proteins or 

lipid modifying enzimes (Kahn et al., 2006; Tamkun et al., 1991). 

 

The initial factors for considering a protein as an Arf member were mainly 

functional. They had to fulfill three criteria: 1) they had to serve as cofactors for the 

cholera toxin, 2) rescue the lethal phenotype of arf1 and arf2 mutants in Saccharomyces 

cerevisiae and 3) directly activate Phospholipase D. Thus, when work at the group of 

James Kennson discovered a protein in Drosophila structurally related to Arf (60% 

identity) but that did not meet the before mentioned criteria, the Arf-like family was 

founded, being Arl1 its first member (Kahn et al., 2006; Tamkun et al., 1991). 

 

It is of important note that although the Arf family comprises proteins with one or 

more specific functions or activities, this is not the case for the Arl family. Arf-like family 

only indicates that the protein has a structural similarity to Arf proteins. Consequently Arl 

proteins do not have to be functionally related to another nor are they related 

phylogenetically. For that reason, only Arl8, which is most relevant for the work in this 

thesis, will be more extensively explained. 

 

Arl8 
Arl8 exists as a single gene in the Drosophila genome as well as in c. elegans, and 

as two paralog genes in mammals, named Arl8A and Arl8B. The gene sequence identity 

between the human and the Drosophila Arl8 is 88%, which indicates that there has been 

positive evolutionary selection to preserve it. 
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The human Arl8a and Arl8b were first cloned by the group of Toshiaki Katada and 

although they observed structural similarity with the Arf family they firstly categorized it as 

a different family under the names of Gie1 and Gie2 (by the time of the publication the Arl 

family was still not very well defined) (Okai et al., 2004). In this first publication, the genes 

were named Gie for "GTPase indispensable for equal segregation of chromosomes" and it 

was described to have a major role in the proper segregation of chromosomes in mitosis. 

Gie mutants showed aberrant nucleus division and formation of micronucleus (Okai et al., 

2004). Currently Arl8a and Arl8b are also sometimes referred as Gie1 and Gie2, or Gie 

alone in Drosophila, but there is consensus to group them in the Arl family, and it is more 

adequate to refer to them as Arl8.  

 

As we have described before, small GTPases of the Arf and Rab families have 

crucial and specific roles for subcellular membranous organelles. Work from the group of 

Sean Munro identified Arl8 to be the small GTPase for lysosomes (Hofmann and Munro, 

2006). Using COS cells and GFP and HA tags they could see that both Arl8A and Arl8B 

colocalized extensively with known markers of lysosomes such as CD63 and Lamp2. Both 

proteins showed a mild overlap with markers of the late endosomal compartments Rab7 

and the mannose-6-phosphate receptor (MPR) and no colocalization at all with EEA1, 

which labels early endosomes (Stenmark et al., 1996). It is believed now that the 

localization of Arl8 at the mitotic spindle during cytokinesis could had been an artifact of 

the FLAG tag interfering with the localization sequence. Nonetheless it could be that there 

is a minor subfraction of Arl8 that localizes to mitotic structures (Hofmann and Munro, 

2006). 

 

Most members of the Arl (and Arf) family bind to the membrane via N-Terminal 

myristoylation and an N-Terminal amphipathic helix that inserts into the membrane upon 

activation. However, neither Arl8a nor Arl8b have the glycine at position 2 needed for 

myristoylation. Arl8a and Arl8b instead attach to the membrane through acetylation of a 

methionine residue located at the N-Term (Hofmann and Munro, 2006). Furthermore, it 

was established that the domain that allows for membrane targeting and the domain that 

confers lysosomal specificity are not the same ones, but two different. Replacing a single 

aminoacid in Arl8b (L2A) resulted in a loss of lysosomal localization and lead to a non-

specific and diffuse distribution through the cytoplasm. However, it was further observed 

via mass spectrometry that the L2A mutant had lost the first methionine residue, a 

phenomenon previously documented in proteins with a small amino acid in their second 

position (Bradshaw et al., 1998). To see if the loss of proper localization was due to the 

L2A mutation or to the lack of methionine, a new mutation, L2F, was generated. 
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Interestingly, L2F mutants were able to protect the first methionine, which could be then 

acetylated and the location to lysosomes was restored. Thus, L2 is sufficient but not 

necessary for proper localization. 

 

The candidate domain to mediate membrane targeting was the amphipathic alpha 

helix also located at the N-Terminal. Indeed, when hydrophobic residues from the helix 

were mutated to Alanine (I5A, L8A and F12A) to break it, Arl8b did not target to 

lysosomes anymore. To test if the alpha helix was just an anchor mechanism or if it 

conferred also specificity, the Arl8 alpha helix was replaced for the equivalent part of 

Arf13. The Arf1 chimera now expressing the Arl8 alpha helix was not able to bind to 

lysosomes but it had the ability still to bind to the Golgi apparatus, demonstrating that the 

alpha helix is used to bind to membrane but it is the Methionine-Leucine that confers the 

lysosome specificity. 

 

After showing that Arl8 binds to lysosomes, the next question to answer was, what 

is its function there. Lysosomes are very dynamic intracellular organelles (Heuser, 1989; 

Luzio et al., 2007) and their location varies depending on the nutritional state of the cell. 

Namely, lysosomes stay perinuclear in situations of nutritional stress (starvation) and 

move to the periphery when nutrients are abundant, e.g. after starvation (Korolchuk et al., 

2011). Research from the laboratory of David Rubinsztein showed that Arl8B is required 

for proper localization of lysosomes in the cell. When Arl8B was depleted in HeLa cells 

using siRNA, lysosomes could not be transported to the plasma membrane and 

accumulated in a cluster in very close proximity to the nucleus (Korolchuk et al., 2011). On 

the other hand, upon overexpression of Arl8b, lysosomes moved to the periphery. The 

effect of Arl8 overexpression was severe to the extent, that cells which were starved (and 

therefore should have perinuclear lysosomes) had their lysosomes close to the plasma 

membrane. This result indicates that Arl8b dictates where lysosomes should be even in 

"contradiction" to the nutritional status, Arl8 is thus hierarchically above the nutritional 

status for what refers at least to lysosome positioning. 

 

More recently, an adaptor for Arl8 has been described that sheds light into the 

transport phenotype of Arl8. SKIP, a protein first identified in context of response to 

Salmonella infection (Zhao et al., 2015) was later shown to bind to Kinesin (Boucrot et al., 

2005). SKIP was also identified in an affinity chromatography with immobilized human 

Arl8b-GST, and their interaction was confirmed with Y2H. Moreover, it was shown that 

                                                
3 Arf1 is the Golgi GTPase and it localises at the Golgi apparatus (Hofmann and Munro, 2006). 
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SKIP binds to the KLC and the Arl8b-SKIP complex can then recruit Kinesin to the 

lysosome to promote its transport (Rosa-Ferreira and Munro, 2011). 

 

Arl8 has been also found to interact with the HOPS complex (Homotypic Fusion 

and Protein Sorting). The HOPS complex is a multi-subunit complex that is found from 

yeast to mammals and regulates lysosome fusion with late endosomes. The HOPS 

complex has 6 identified units: Vps39, Vps41, Vps11, Vps18, Vps16 and Vps33 

(Balderhaar and Ungermann, 2013; Khatter et al., 2015). The group of Prof. Mahak 

Sharma identified Arl8 to recruit the HOPS complex via the specific Vps41 subunit and 

proved that this interaction is required for the formation of the tethering complex with 

endosomes to produce endocytic degradation (Khatter et al., 2015). 

 

 

Aim of the present study 
Principal goal of this was to analyze mechanisms of axonal transport and protein 

turnover. First, degradation pathways, particularly autophagosomal machinery, was 

characterized by intravital imaging at synaptic terminals and axons. Having recognized 

that lysosomal markers did co-traffic with AZ proteins, precursor vesicles transporting AZ 

material towards synapses were characterized in detail.  
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Materials and Methods 

Experimental models  

 Drosophila melanogaster: Fly strains were reared under standard 

laboratory conditions and raised at 25°C and 70% humidity on semi-defined medium 

(Bloomington recipe). For RNAi and Arl8 overexpression experiments flies were kept at 

29°C.  For electrophysiological recordings, only male larvae were used, for all other 

experiments both male and female were used. See Key Resources Table for genotypes 

and strains used. 

 Mice: All animal experiments involving mice (C57/BL6) were reviewed 

and approved by the ethics committee of the “Landesamt für Gesundheit und Soziales” 

(LAGeSo) Berlin and were conducted accordingly to the committee’s guidelines.  

• Health/immune status: The animals have a normal health and immune status. 

The animal facility where the mice are kept is regularly checked for standard pathogens. 

The health reports can be provided upon request. 

• Mice used for all experiments were naive. No drug tests were done.  

• Sample size estimation: No estimation of simple size was done as sample sizes 

were not chosen based on pre-specified effect size. Instead, multiple independent 

experiments were carried out using several biological replicates specified in the legends 

to figures.  

• How subjects/samples were allocated to experimental groups: Hippocampal 

neurons from several newborn mice of identical genotype from the same litter were 

pooled and analyzed. For neurons from wild-type mice neuronal cultures were randomly 

allocated to different treatments (drugs, transfection with plasmids etc.). 

• Gender of subjects or animals: Mice from both genders were used. 

• Neuronal cultures were prepared by surgically removing the hippocampi from 

postnatal mice at p1-5, followed by trypsin digestion to dissociate individual neurons. 

Cultures were grown in MEM medium (Thermo Fisher) supplemented with 5% FCS and 

2% B-27. 2 µM AraC was added to the culture medium at 2 days in vitro (DIV) to limit 

glial proliferation. Cells were transfected at DIV 7-9 using a Calcium Phosphate  

transfection kit (Promega). 
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Method details 

Molecular cloning of constructs for production of transgenic flies: 

cDNA encoding full length Drosophila Arl8 (LD29185) was obtained from Drosophila 

Genomics Resource Center (DGRC). Primers used for amplification and insertion into 

the Gateway entry vector pENTR4 (Invitrogen) are listed in the Key Resources Table. 

 For production of transgenic flies, the gene cassette containing Arl8 cDNA 

was then transferred to Gateway destination vector pTW (no tag or GFP tag) following 

manufacturer’s instructions (Invitrogen). In brief, entry clone, destination vector and TE 

buffer were mixed at room temperature and incubated for 20 min. The Clonase enzyme 

mix was then added and the whole reaction was incubated for 1 hour at 25°C. The 

reaction was terminated by addition of Proteinase K for 10 minutes at 37°C. Chemically 

competent E.coli Top10 cells were then transformed and grown at 37°C. Miniprep DNA 

preparations of positive clones were sent for injection into w1118 fly embryos to 

BestGene Inc. (USA). 

Co-immunoprecipitation of proteins from Hek293T cells:  HEK293T 

cells were obtained from ATCC. Cells were cultured in DMEM with 4.5g/L glucose 

(Lonza) containing 10% heat-inactivated FBS (Gibco) and 100 U/ml penicillin, 100 µg/ml 

streptomycin (Gibco) during experimental procedures. Cells were routinely tested for 

mycoplasma contamination.  Drosophila dArl8-GFP (a kind gift from Dr. Sean Munro, 

MRC LMB Cambridge, United Kingdom) and dUnc104/imac-myc (imac/unc-104 (clone 

6-4-1, kindly provided by Dr. Thomas Schwarz Children’s Hospital Boston, USA) were 

transfected into HEK 293T cells using calcium phosphate. 48h post-transfection cells 

were washed twice with ice-cold PBS, lyzed in ice cold lysis buffer (0.1% saponin, 20 

mM HEPES pH7.4, 130 mM NaCl, 2 mM MgCl2, 10 mNaF, protease inhibitor cocktail 

from Sigma) and protein concentrations were measured by Bradford assay. As input for 

each immunoprecipitation (IP) 3 mg total protein was used. For IP of dUnc104/imac-myc 

10 µL myc-trap magnetic bead slurry (Chromo Tek, myc-TRAP®_MA) was used. Protein 

lysates and myc-trap beads were incubated on a rotating wheel for 2h at 4°C. 

Afterwards, beads were washed five times in lysis buffer, boiled for five minutes in 

Laemmli buffer and lysates were loaded on SDS-PAGE (8%) for analysis. 

Immunoblotting was done on nitrocellulose membranes. Nitrocellulose membranes were 

incubated with the primary antibodies at 4°C overnight. On the next day, primary 

antibodies were detected by goat anti-rabbit IRD800 and goat anti-mouse IRDye800 (LI-

COR Biosciences, 925-32210 and 925-32211, 1:10000). Immunoblots were scanned on 

an LI-COR Odyssey fluorescent reader. 
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Immunostaining of Drosophila larvae: Larval filets were dissected and 

stained as previously described (Owald et al., 2010). The signal of the Cy5αHRP 

antibody was used as template for a mask, restricting the quantified area to the shape of 

the NMJ. For STED, larval filets were fixed with ice-cold methanol for 5 or 10 min 

(following the protocol above). Larvae were mounted in ProLong Gold (Thermofischer) or 

MOWIOL (SigmaAldrich). 

Confocal microscopy analyses of Drosophila: Confocal microscopy was 

performed with a Leica SP8 microscope (Leica Microsystems, Germany). Images of 

fixed and live samples were acquired at room temperature. Confocal imaging of NMJs 

and VNC was done using a z-step of 0.25 µm. The following objective was used: 63×1.4 

NA oil immersion for confocal imaging, 100×1.4 NA for STED.  All images were acquired 

using the LAS X software (Leica Microsystems, Germany). Images from fixed samples 

were taken from 3rd instar larval NMJs (segments A2-A5) or VNCs. Images for figures 

were processed with ImageJ software to enhance brightness using the 

brightness/contrast function. If necessary, images were smoothened (0.5 pixel Sigma 

radius) using the Gaussian blur function. Confocal stacks were processed with Fiji 

(http://fiji.sc)(Schindelin et al., 2012). Quantifications of AZs (scored via BRP) were 

performed following an adjusted manual (Andlauer and Sigrist, 2012), briefly as follows. 

The signal of a HRP-Cy5 antibody was used as template for a mask, restricting the 

quantified area to the shape of the NMJ. The original confocal stacks were converted to 

maximal projections, and after background subtraction, a mask of the synaptic area was 

created by applying a certain threshold to remove the irrelevant lower intensity pixels. 

The segmentation of single spots was done semi-automatically via the command “Find 

Maxima” embedded in the Fiji and by hand with the pencil tool and a line thickness of 1 

pixel. To remove high frequency noise a Gaussian blur filter (0.5 pixel Sigma radius) was 

applied. The processed picture was then transformed into a binary mask using the same 

lower threshold value as in the first step. This binary mask was then projected onto the 

original unmodified image using the “min” operation from the ImageJ image calculator. 

For sum / total intensities all intensities of the corresponding channel of one NMJ were 

added up, n represents the number of NMJs, For STED, deconvolution was performed 

with Huygens Software using the deconvolution wizard setting background value and 

signal to noise ratio manually.  

In vivo live imaging and analysis of Drosophila larvae: In vivo imaging 

of intact Drosophila larvae was performed as previously described (Füger et al., 2007). 

Briefly, third instar larvae were put into a drop of Voltalef H10S oil (Arkema, Inc., France) 
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within an airtight imaging chamber. The larvae were anaesthetized before imaging with 

10 short pulses of a desflurane (Baxter, IL, UAS) air mixture until the heartbeat 

completely stopped. Axons immediately after exiting the ventral nerve cord were  imaged 

using confocal microscopy. Kymographs were plotted using a custom-written Fiji script 

(See Annexes for the code). 

Immunostaining of hippocampal neurons in culture: Cultured 

hippocampal neurons were fixed at DIV 7.5 using 4% (w/v) paraformaldehyde (PFA) and 

4% sucrose in PBS for 15 min at RT. Fixed neurons were blocked and permeabilized 

with PBS containing 10% (v/v) normal goat serum and 0.1% Triton X-100 for 30 min, 

followed by incubation with primary antibodies in 5% (v/v) normal goat serum and 0.1% 

Triton X-100 in PBS overnight at 4°C. Unbound primary antibody was removed with PBS 

while bound was detected with corresponding secondary antibodies (coupled to Alexa 

Fluor 488 and 647, Life technologies) for 45 min in 5% (v/v) normal goat serum in PBS 

plus 0.1% Triton X-100. Neuronal nuclei were visualized with DAPI (0.02 µg/mL in H2O). 

Coverslips were mounted with Immumount (Thermo-Fisher).  

Staining of HeLa cells: Anti-myc made in mouse (self-made, 1:200); 

Alexa568 goat anti mouse (Invitrogen, A11031, 1:400). 

Confocal imaging of hippocampal neurons: Imaging was performed with 

a Zeiss Axiovert 200M equipped with the Perkin-Elmer Ultra View ERS system and a 

Hamamatsu C9100 EM-CCD camera under the control of Volocity software (Perkin-

Elmer). Fluorescent intensities were quantified using ImageJ by the use of custom-

written macros. Proximal axons were identified by ankyrin G staining.  

Transfection of hippocampal neurons in culture: Neuronal cultures were 

prepared by surgically removing the hippocampi from postnatal mice at postnatal day 1-

2, followed by trypsin digestion to dissociate individual neurons. Cultures were grown in 

MEM medium (Thermo Fisher) supplemented with 5% FCS and 2% B-27 and L-

Glutamine. 2µM AraC was added to the culture medium at 2 days in vitro (DIV) to limit 

glial proliferation. Cells were transfected at DIV 3 using a Calcium Phosphate 

transfection kit (Promega), for knockdown of Arl8A and overexpression of Arl8B-HA. For 

transfection 1µg plasmid DNA, 250 mM CaCl2 and water (for each well of a 12-well 

plate) were mixed with equal volume of 2x HEPES buffered saline (50 µL per) and 

incubated for 20 min allowing for precipitate formation, while neurons were starved in 

NBA medium for the same time at 37°C, 5% CO2. For knock down experiments 500nM 

siRNA (Arl8A smart pools from Dharmacon) was additionally included and precipitated 
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together with the plasmid DNA. Precipitates were added to neurons and incubated at 

37°C, 5% CO2 for 30 min. Finally, neurons were washed twice with HBSS medium and 

transferred back into their conditioned medium.  

Live imaging of hippocampal neurons in culture: Cultured hippocampal 

neurons were transfected with GFP-Bsn(95-3938) and Lamp1-mCherry or Arl8B-

mCherry at DIV6 and used for live cell imaging at DIV9. For axonal co-trafficking, 

neurons were imaged in basic buffer (170mM NaCl, 3.5mM KCl, 0.4mM KH2PO4, 20mM 

N-Tris[hydroxyl-methyl]-methyl-2-aminoethane-sulphonic acid (TES), 5mM NaHCO3, 

5mM glucose, 1.2mM Na2SO4, 1.2mM MgCl2, 1.3mM CaCl2) using a Nikon Eclipse Ti 

microscope, equipped with an incubation chamber (37 °C), a 60x TIRF objective (oil-

immersion, Nikon), a sCMOS camera (Neo, Andor), a 200 W mercury lamp (Lumen 200, 

Prior), and a dual-colour TIRF setup in epifluorescent mode (laser lines: 488 nm, 568 

nm; exposure times: 200 ms each), all operated by open-source ImageJ-based 

micromanager software. Images were acquired with a frame rate of 2 seconds for a total 

time of 60 seconds. For fluorescence recovery after photobleaching (FRAP), axon 

terminals were imaged at DIV6 in the same basic buffer as above at a resolution of 512 

× 512, with 16-bit sampling using a Zeiss LSM 710 confocal laser scanning microscope 

equipped with an incubation chamber (37 °C). For FRAP, the 488 nm line of the argon 

laser and the and 561 nm line of the DSSP laser was used in combination with a Plan-

Apochromat × 63/1.40 oil DIC objective, After 10 seconds of baseline recording, both 

channels were bleached and a total time of 300 frames was acquired with 1 s interval. 

3D-time-gated STED imaging: STED imaging with time-gated detection was 

performed on a Leica SP8 TCS STED microscope (Leica Microsystems) equipped with a 

pulsed white light excitation laser (WLL; 80 ps pulse width, 80 MHz repetition rate; NKT 

Photonics) and two STED lasers for depletion at 592 nm and 775 nm. The pulsed 775 

nm STED laser was triggered by the WLL. Two-channel STED imaging was performed 

by sequentially exciting Alexa 488, Cy3 and ATTO647N at 488 nm, 568 nm, and 646 

nm, respectively. Emission from Alexa 488 was depleted with 592 nm, whereas the 775 

nm STED laser was used to deplete both Cy3 and ATTO647N. Time-gated detection 

was set from 0.3–6 ns for all dyes. Fluorescence signals were detected sequentially by 

hybrid detectors at appropriate spectral regions separated from the STED laser. Single 

optical slices were acquired with an HC PL APO CS2 100×/1.40-N.A. oil objective (Leica 

Microsystems), a scanning format of 1,024 × 1,024 pixel, 8 bit sampling, and 6 fold 

zoom, yielding a voxel dimension of 18.9x18.9 nm. To minimize thermal drift, the 

microscope was housed in a heatable incubation chamber (LIS Life Imaging Services). 
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BRP rings were measured from planar oriented Active Zones using a custom written Fiji 

script.  

FM1-43 dye uptake in Drosophila larvae: The FM dye uptake experiment 

was performed following the protocol published previously (Verstreken et al., 2008). In 

short, 3rd instar larvae were dissected as described above and NMJs on muscle 4, 

segments A2 and A3 were analyzed. The larval filets were first stimulated with high K+ 

saline containing 4µM FM1-43 dye for 1 min and washed (3x, 5min) with Ca2+-free saline.  

Ca2+ was added to extracellular haemolymph-like saline (HL-3) to a final concentration of 

1.5mM (Stewart et al., 1994). For image acquisition, a 40x water immersion lens on an 

upright epifluorescence Olympus BX51WI microscope (equipped with a Hamamtsu Orca 

ER cooled CCD digital camera and a Visitron lambda DG-4 ilumination system) was used. 

Single optical slices of boutons were acquired and their fluorescence intensity was 

measured by drawing a region of interest (ROI) around boutons and subtracting the 

background intensity. For each NMJ a mean value was established and subsequently 

normalized to wild type levels. ImageJ was used for image processing and GraphPad 

Prism5 for statistical analysis.  

 

Electron microscopy: Drosophila larval brains were dissected, fixed with 

glutaradehyde, postfixed with osmium tetroxide, dehydrated in methanol and embedded 

into Epoxy resin. Following polymerization, ~60 nm sections were collected and 

contrasted for transmission electron microscopy analysis. For tomography 3D 

reconstruction, ≈200 nm sections were collected on coated slotted grids, and imaged at 

Tecnai F20 TEM. 10 nm gold particles were used as fiducials. Tomograms were built 

with a help of IMOD and ETomo software. 3D reconstruction was rendered with a help of 

Microscopy image browser and Imaris. 

For Correlative Light and Electron Microsocopy (CLEM) and immunoelectron 

microscopy brains were fixed in 4% formaldehyde for 20 min, stained by methylene blue 

cryoprotected in 2.3M sucrose and plunge-frozen on pins for Tokuyasu sectioning 

(Tokuyasu, 1973). For CLEM, semithin, 1µm sections were transferred to acid cleaned 

and silanized coverslips, stained with BRP last 200 antibodies, 488 secondary antibodies 

and Hoechst, mounted as a wet chamber onto slides and imaged by epifluorescence 

microscopy. Subsequently coverslips were retrieved and capsules with LR White resin 

were positioned onto brain sections. After resin polymerization, coverslips were removed 

and semithin sections on the surface of resulting resin block were stained by methylene 

blue for visibility, trimmed into a pyramid and ultrathin sectioned and contrasted. Areas of 
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the brain were imaged with a TEM and superimposed with fluorescent image using 

nuclear staining for the alignment. 

 For immunogold labeling, ultrathin sections were collected on coated 

grids, blocked and stained by BRP last 200 primary and 10 nm gold coupled secondary 

antibodies. After washing, sections were contrasted and covered by polyvinyl alcohol 

and tungstosilicic acid hydrate. Immunolabelling for gSTED imaging was performed on 

150nm cryosections that were collected on acid cleaned and silanized high precision 

coverslips. Coverslips were blocked in PBS containing 1% BSA and 0.1M Glycine. 

Staining was performed with anti-BRP (last 200, 1:500) and Rabbit αSynaptotagmin-1 

(1:500) followed by secondary antibodies αGuinea pig Alexa488 (Life Technologies), 

αRabbit Atto647N (Active Motif), Cy3αHRP antibody (Jackson ImmunoResearch 1:250) 

and Hoechst 33258 (Life Technologies, 5ug/ML). Samples were mounted in Prolong 

Gold and cured for 24h at room temperature.  

Electrophysiological analysis of Drosophila larvae: Two-electrode 

voltage clamp (TEVC) recordings were performed essentially as previously described 

(Qin et al., 2005). All experiments were performed on male, third-instar larval NMJs 

(muscle 6 of abdominal segments A2/A3), raised on semi-defined medium (Bloomington 

recipe) at 25°C.  Recordings were made from cells with an initial Vm between -50 and -

70mV and input resistances of ≥4 MΩ, using intracellular electrodes with resistances of 

10-25 MΩ, filled with 3M KCl. eEJCs were recorded at a voltage clamp of -60 mV and 

mEJCs were recorded at a voltage clamp of -80 mV. The eEJCs were low-pass filtered 

at 5kHz and sampled at 10kHz.  Larvae were dissected in Ca2+-free haemolymph-like 

solution (HL3) (Stewart et al., 1994); Composition (in mM): NaCl 70, KCl 5, MgCl2 20, 

NaHCO3 10, trehalose 5, sucrose 115, HEPES 5, pH adjusted to 7.2). The bath solution 

was HL3 containing 1.5 mM CaCl2. The exemplary traces are averaged traces unless 

otherwise noted. The stimulation artifact of eEJCs was removed for clarity.  Data were 

analyzed using Clampfit version 10.7.0.3. (Molecular Devices, LLC, Sunnyvale, CA, 

USA, 2016).  Data are presented as mean ± SEM, n indicates the number of cells 

examined. 

Experimental Design: A strategy for randomization, stratification or blind 

selection of samples has not been carried out. Sample sizes were not chosen based on 

pre-specified effect size. Instead, multiple independent experiments were carried out 

using several sample replicates as detailed in the figure legends. 



Materials and Methods 
 

 
 

53 

Quantification and statistical analysis  

Quantified data were analyzed using the GraphPad Prism6 software: Mann-

Whitney test was used for experiments with two genotypes and one-way analysis of 

variance (ANOVA) for experiments with more than two. Data are reported as mean±SEM 

unless stated otherwise and n represents the number of samples analyzed. Significance 

is denoted using asterisks *P<0.05, ** P<0.01, *** < 0.001 and p>0.05 is not significant 

(ns).  

 

Materials 

Drosophila antibodies Source Identifier 

Bruchpilot (Nc82), mouse, used 1:250  Developmental 

Studies Hybridoma 

Bank 

 

Cysteine String Protein (6D6), mouse, used 1:100  Developmental 

Studies Hybridoma 

Bank 

 

Syntaxin (8C3), mouse, used 1:100  Developmental 

Studies Hybridoma 

Bank 

 

Synapsin (3C11), mouse, used 1:100  Developmental 

Studies Hybridoma 

Bank 

 

Stoned B, rabbit, used 1:500  V. Haucke lab  

Dap160, rabbit, used 1:500  O. Shupliakov lab  

Glutamate Receptor IID, rabbit, used 1:500  S. J. Sigrist lab  

Vglut, rabbit, 1:500 H. Aberle lab  

Synaptotagmin, rabbit, 1:1000 BD Bioscience  
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Mouse antibodies Source Identifier 

GFP (chicken, polyclonal, used at 1:2000 in 

IF)  

Abcam ab13970 

Ankyrin G made in mouse (used at 1:200 in 

IF) 

Thermo 

Scientific 

33-8800 

Alexa488 goat anti chicken (used at 1:800 in IF) 

 

Abcam ab15016

9 

Alexa 647 goat anti mouse (used at 1:800 in IF) 

 

Invitrogen/ life 

technologies 

A21235 

Rabbit anti-myc (used at 1:1000 in WB)  Abcam ab9106 

mouse anti-GFP (used at 1:2500 in WB)  Clontech 632381 

goat anti-rabbit IRD800 (used at 1:10000 in 

WB). 

LI-COR 

Biosciences 

925-

32210 

goat anti-mouse IRDye800 (used at 1:10000 

in WB). 

LI-COR 

Biosciences 

925-

32211 

Anti-myc made in mouse ( used at 1:200 in IF) self-made N/A 

Alexa568 goat anti mouse (used at 1:400 in IF) Invitrogen/ life 

technologies 

A11031 

Alexa 488 (anti-mouse/anti-rabbit), 1:500 Invitrogen  

Alexa 568 (anti-mouse/anti-rabbit), 1:500 Invitrogen  

HRP-Cy5 (conjugated antibody), 1:250 Jackson 

ImmunoResearch) 

 

Atto647 (anti-mouse) 1:500 used for STED Atto-Tec  

 

Chemicals, Peptides, and Recombinant Proteins 
siRNA smart pool mouse arl8a Dharmacon 68724 
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Experimental Models: Cell Lines 
HEK 293T cells ATCC  

Hela cells ATCC  

 

Experimental Models: Fly strains 
w1118 as wild type Bloomington  

OK6-GAL4, UAS-BRP-D3-Straw (UAS-BRP is a 

truncated BRP from aa 473-1227)  

Sigrist lab, see 

(Fouquet et al., 2009)  

 

UAS-Lamp1-GFP  Krämer lab (UT 

Southwestern, Dallas, 

TX, USA) 

 

UAS-BRP-D3-GFP/OK6-GAL4; Ok6-Gal4: 

Bloomington # 64199 

 

UAS-Spinster-RFP/+; Sweeney lab (Univ. of 

York, UK) 

 

OK6-GAL4,UAS-BRP-D3-Straw/UAS-Arl8-GFP UAS-Arl8-GFP: 

Sigrist lab 

 

OK6-GAL4/UAS-Lamp1-GFP as above  

Pbac(RB)Giee00336/ Pbac(RB)Giee00336  Bloomington # 17846  

OK6-GAL4/UAS-D3-Straw, Pbac(RB)Giee00336 as above  

OK6-GAL4/UAS-Arl8; Pbac(RB)Giee00336/ 

Pbac(RB)Giee00336 

as above  

OK6-GAL4/UAS-Arl8 as above  

UAS-BRP-D3-Straw/OK6-GAL4,UAS-Rab7-GFP  UAS-Rab7: 

Bloomington # 42705 

 

UAS-BRP-D3-Straw/OK6-GAL4,UAS-Rab7-GFP  as above  

OK6-GAL4/UAS-Arl8-GFP as above  

UAS Spinster/+, OK6-GAL4-UASDicer2/+ UAS-Dicer2: VDRC  

UAS Spinster/+, OK6-GAL4-Dicer2/+ as above  
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OK6-GAL4-Dicer2/UAS-Arl8-RNAi  UAS-Arl8-RNAi: 

VDRC # 26085 

 

OK6-GAL4-UAS-Dicer2/UAS-VPS39-RNAi  UAS-VPS39 RNAi: 

VDRC # 40427) 

 

OK6-GAL4/+; Pbac(RB)Giee00336/ Pbac(RB)Giee0033 as above  

Aplip-1ex213 (Siebert et al., 2015)  

UAS-Neurexin-GFP (Owald et al., 2012)  

UAS-Neurexin-GFP; OK6-GAL4 as above  

UAS-Neurexin-GFP; OK6-GAL4; 

Aplip-1ex213/Aplip-1ex213 

(Owald et al., 2012; 

Siebert et al., 2015) 

 

OK6 GAL4; UAS-ATG8-GFP Sigrist lab  

OK6 GAL4; UAS-ATG8-mCherry as above  

OK6 GAL4; UAS-ATG8-GFP-mCherry as above  

OK6 GAL4; UAS-ATG8-GFP/UAS-Spinster-RFP Sweeney lab (Univ. of 

York, UK) 

 

 

Oligonucleotides 
Fwd (KpnI): 5’-

GACTGGTACCGAATGTTGGCCCTCATCAACAG

GATCCTC-3’ 

MWG  

Rev (NotI): 5’-

AGTGCGGCCGCCAACGACTTTGGCTTTTCGAA

TGTTGAATTAAC-3’ 

MWG  

 

Recombinant DNA 
Gateway entry vector pENTR4 (Invitrogen)   

pUASt-destination vector   
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GFP-Basson 95-3938 Eckardt D. 

Gundelfinger (LIN, 

Magdeburg) 

(Dresbach et 

al., 2006) 

Arl8b-HA pcDNA3 This study N/A 

 

Software and Algorithms 
ImageJ and Fiji (Schindelin et al., 

2012) 

 

Other 

Built in scripts for Fiji See Appendix  
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Results 

Establishing kymograph analysis as a tool to quantify axonal 
transport from intravital imaging series 

Kymographs (from greek wave writing) are a tool to represent the spatial 

coordinate over time in a 2D spatial graph, changing the time dimension to one spatial 

axis. Kymographs are very useful to visualize and quantify changes in position of a 

moving object and are therefore highly suitable for demonstrating and analyzing axonal 

transport. 

 

Neurexin is a good candidate to study axonal transport because is presynaptic 

transmembrane protein that promotes synaptogenesis via its interaction with its 

postsynaptic partner Neuroligin (Muhammad et al., 2015; Owald et al., 2012). For the 

purpose of analyzing Neurexin axonal transport (labeled with Neurexin-GFP), two 

ImageJ/Fiji macros were written, the first one to convert a video recording into a 

kymograph, and the second one to analyze the kinetic properties of the trajectories 

obtained from the kymographs. Hereafter, both macros will be described. The full code 

together with the protocol on how to use is detailed in the appendix section.  

 

The first macro, called “Kymograph”, converts a video recording consisting of 

multistacks (3 coordinates, x,y,z) into a single image, the kymograph, with two dimensions 

(x,y). As we are only interested in the movement of our vesicles along the “x” axis, we can 

discard the displacement on the “y” axis and use it to represent time. To do so, a single 

line is traced along the axonal path. This line is called the kymoline, and only the signal 

below it will be taken into account (Fig. 1 A). The next step then is to plot an intensity 

profile of that line over different time points (Fig. 1 B). It is important to note that the width 

of kymoline can be adjusted, the thicker the line is the more signal (and background) will 

be plotted. Ideally the line should be around the diameter of the tracking object to neither 

loose signal nor include too much background. Afterwards, the intensity profile is 

converted into an image of 1 single pixel in height and as long in pixels as the length of 

the kymoline.  

 

When this process is repeated at different time points and the 1 pixel high images 

are stacked one under each the kymograph is formed. The dimensions of the kymograph 

are then as follows: height corresponds to the number of time points (stacks) the original 

recording had, and the length corresponds to the length of the kymoline. If the original 

data have a frequency acquisition comparable to the velocity of the tracking object, then 
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the kymograph will appear as a a continuous line (compare Fig. 1 B with Fig. 2 A). What 

the kymograph macro does in summary is, from a given image and a given kymoline: 1) 

plot the intensity profiles of every frame, 2) convert each of them into a single dimensional 

image, and 3) stack them together into one single image so trajectories become 

discernible. 

Fig. 1 | 2D representation of transport events using kymographs. 

(A) Example recording of a Neurexin vesicle. First frame with the kymoline traced in 

yellow. Scale bar 400 nm. (B) Representation of the intensity profiles at different time 

points to show how the profiles can track the movement of the cargo (right), and how 

different pictures put together can give an idea of movement (left). 

 

The second macro, called “Velocities”, extracts all the kinetic parameters from a 

kymograph. The “Velocities” macro does not have the metadata for the kymograph image, 
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so it has to be introduced manually. By inserting the pixel size the macro will know the 

actual distance in micrometers from side to side of the kymograph. By adding the period 

of image acquisition, the macro will know what is the time difference between each 

horizontal line of the kymograph. 

   

Fig. 2 | Measurement of velocities from a kymograph using the “Velocities” macro. 

(A) Kymograph of Neurexin transport . (B) Kymograph with segmented trajectories to 

measure the different speeds. (C) Different fragments of the trajectory colored for 

clarification. (D) Measurements of a Neurexin vesicle moving. The x axis corresponds to 

distance and the y axis to time. (E) Results of the velocity analysis for the depicted 

trajectory (A). Every row corresponds to one of the segments defined in (A). Velocity can 

be measured as velocity=distance/time. In yellow the segment highlighted (D), where the 

velocity was 1.370 micrometers/s. Note that the following segment (white), where the line 

was almost vertical, the velocity is close to 0 micrometers/s. 
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Moreover the macro cannot distinguish from anterograde or retrograde trajectories, 

so they have to be traced and saved separately and the direction has to be indicated.  

 

To manually trace the trajectories the segmented line tool was used to mark every 

point where the trajectory changes velocity, and saved as a ROI. The code is written in 

such a manner that it will save all the trajectories from one kymograph image together as 

an output file. Consequently, all the trajectories in one direction can be saved in a single 

ROI file. After that, running the “Velocities” macro will give two outputs. The first one is a 

list of parameters (for details see Appendix), the most important are: 

• dx now (microm): Distance in micrometers between two points of the same 
trajectory 

• dt now (s): Time diference in seconds between the two points of one trajectory 
• actual speed (microm/s): Given velocity at the interval of time between two points 

These three parameters are given for every segment of one trajectory (Fig. 2 E). 

 

The second output file contains the ROI ID, the total time the trajectory has been 

traced within the kymograph and the average speed. In addition, it contains the total 

number of trajectories per kymograph, and their relative frequency, that is, how many 

vesicles have been traced during the total time frame of the kymograph (Appendix). 

 

Neurexin axonal transport is slowed down in aplip-1 mutants 
 

After the publication from our lab describing the role of the transport adaptor Aplip-

1 in axonal transport (Siebert et al., 2015), we wanted to investigate whether Neurexin 

transport was disrupted in aplip-1 mutants. After in vivo imaging Neurexin transport in 

aplip-1 null mutants we could see that its transport was indeed severely affected, showing 

many partially stationary vesicles. We then performed analysis of the trajectories to 

compare velocity distributions in control and mutant animals. By just visual inspection, it 

seemed that in general Neurexin trajectories were “slower” in absence of Aplip-1. By 

analyzing many trajectories using the code described previously (See Appendix), we were 

able to obtain enough quantitative data to make a comparative analysis (Fig. 3 A-B). 

 

The first observation of this analysis was that although the mean velocity for 

anterograde and retrograde Neurexin was 1 µm/s, the distribution was quite wide and 
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ranged from 0.2 to 3 µm/s 4. As explained in the introduction, Aplip-1 can bind Dynein as 

well as Kinesin, but not simultaneously. By completely removing Aplip-1 one could expect 

to see anterograde and retrograde transport being affected to the same extend. It could 

also be possible, that Aplip-1 function was more important for one of the motors (Kinesin 

or Dynein) and in the mutant situation the equilibrium would be disrupted in favor of the 

other motor. 

 

Our results revealed two things. First, aplip-1 mutants showed an important 

reduction of Neurexin velocities for both anterograde and retrograde cargoes. The 

frequency distribution was in both cases shifted to velocities closer to 0 (Compare Fig. 3 A 

and B, and C with D). Second, there was an increase of non-moving trajectories. In 

control axons, Neurexin trafficking remained static around 20% of the time in both 

anterograde and retrograde, and only rarely showed (<5%) changes in direction (Fig. 3 E-

F). However, in the absence of Aplip-1 this was severely affected. To start with, it was no 

longer always possible to categorize cargoes as anterograde or retrograde, because there 

were many stationary vesicles. Therefore, we defined a criterion to be able to compare 

them: trajectories that had an overall anterograde displacement greater than 10 µm were 

classified as anterograde cargoes, and vesicles which moved longer distances than 10 

µm in retrograde mode were categorized as retrograde (trajectories that had a lower 

displacement than 10 µm were not analyzed). After doing so, we quantified for how long 

each group was not moving. We found that anterograde trajectories were stationary for 

almost 50% of the time (Fig. 3 E) and more than 50% for the ones classified as retrograde 

(Fig. 3 F). The absence of the Aplip-1 appeared to have a mild effect also on the 

probability of changing direction. This was more clearly seen in anterograde transport 

where the aplip-1 mutants showed retrograde motion (-) around 7% of time, even if this 

hardly occurred in control situations. 

 

Taken together, these results demonstrated a role of Aplip-1 in the regulation of 

both anterograde and retrograde transport. Moreover, our data indicated that Aplip-1 

regulates the transitions between anterograde and retrograde trafficking, which is in 

accordance with previous results obtained for the mammalian orthologue JIP-1 (Fu and 

Holzbaur, 2013). Further experiments could investigate how exactly the transitions 

between anterograde and stationary movement are affected. Do interruptions of 

anterograde motion occur more often or they occur at the same frequency but vesicles 

remain for longer times static?  A combination of both mechanisms could explain our 

                                                
4 Trajectories between +0.2 and -0.2 µm/s were considered stationary and therefore out of 

analysis. 
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reliminary results, but additional and more detailed examination is required. Quantifying 

the run length of the trajectories as well as the duration of the breaks and comparing them 

between control and aplip-1 null will enable a deeper understanding of this process. 
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Fig. 3 | Neurexin in vivo transport is severely slowed down in absence of the Aplip1 

transport adaptor. 

Analysis of Neurexin-GFP transport in axons of third instar larvae. Comparison of the 

kinetic parameters between control (OK6; UAS-Neurexin-GFP) and aplip-1 null 

(aplip1ex213/aplip1ex213) (A) Frequency distribution of anterograde velocities in control flies 

(n=6). (B) Frequency distribution of anterograde velocities in aplip-1 mutants (n=6). A shift 

towards slower velocities can be clearly observed. (C-D) Frequency distribution of 

anterograde velocities in control flies and aplip-1 mutants revealing a shift towards slower 

velocities (control n=6, aplip-1 n=6). (E-F) Categorization of the trajectories in different 

modes revealed very similar distribution between anterograde and retrograde but 

disruption in aplip-1 mutants. Velocities were considered positive (+) if they moved 

forward at a speed above 0.2 µm/s, negative (-) below -0.2 µm/s, and static between 0.2 

and -0.2 µm/s. (E) Comparative categorization between control and aplip-1 mutants 

shows how stationary and negative trajectories are increased in aplip-1 background, 

whereas positive are severely reduced (n=6). (F) Retrograde trajectories of Neurexin-GFP 

are predominantly forward in control situation, but predominantly stationary in the absence 

of Aplip-1 (n=6). 

 

 

Axonal transport of synaptic proteins and degradative compartments: 
an intravital analysis 

An increase in autophagy protects from age-induced memory impairment. In order 

to get a better understanding of how AZ proteins could be degraded we used the in vivo 

imaging setup described in the materials and methods to characterize the axonal transport 

of several proteins of degradative compartments (Füger et al., 2007). These included:  

- Lamp1 and Spinster, two marker proteins of lysosomes (Rohrer et al., 1996; 

Sweeney and Davis, 2002) 

- Rab7, a marker of late endosomes (Bucci et al., 2000; Zhang et al., 2009) 

- ATG8, marker for autophagosome (Geng and Klionsky, 2008; Mochizuki et al., 

2011; Toda et al., 2008).  

Some of the questions we wanted to answer were: To what extent are these proteins 

found in neurons? Are they only in the cell bodies of motoneurons or do they also reach 

the synaptic terminal? If so, how are they transported? Are they transported 

anterogradely, retrogradely or both? Can this transport be analyzed? How do these 
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different degradation proteins interact with each other? And most importantly, how do they 

interact with the AZ proteins? 

After imaging the before mentioned proteins, we saw that all of them showed 

bidirectional transport in the axons of motoneurons (Fig. 4 A-D). Most interestingly, the 

transport of proteins from the recycling pathway did not differ much from the transport of 

synaptic proteins like Neurexin, Bruchpilot or Synaptotagmin-1 (Fig. 4 F-H). With the 

exception of ATG8-GFP, all these proteins showed bidirectional transport. More 

frequently, Rab7, Spinster and ATG8 would also have non-moving cargoes (visualized in 

the kymographs as vertical lines)5 but this was also observed for the Nrx, BRP and Syt-1, 

albeit less frequently. Of special interest is the fact that ATG8 could only be seen 

transported in the axon when labeled with the red fluorophore mCherry (Fig. 4 D). ATG8-

GFP could not be observed moving in the axon (Fig. 4 E). This construct is designed in 

such a manner that the GFP is located in the luminal compartment of the autophagosome 

so that it can report acidification (Fig. 7 B). Thus, we concluded that autophagosomes that 

are transported along the axon are acidified. The same was expected for the Lamp1-GFP 

construct, which has been designed and used in the past to monitor non functioning and 

therefore non acidic lysosomes (Pulipparacharuvil et al., 2005; Rohrer et al., 1996). 

However, we observed abundant bidirectional transport of GFP-positive Lamp1-cargoes, 

indicating that at least a fraction of Lamp1 is transported in non-acidified compartments 

(Fig 1. A). 

                                                
5 For references on how kymographs were produced or quantified see the Appendix. 
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Fig. 4 | Intravital imaging of Axonal transport of degradation markers and synaptic 

proteins. 

Live confocal imaging of motoneuron axons of intact Drosophila 3rd instar larvae 

expressing markers of the recycling pathways as well as synaptic proteins. (A) 

Kymograph of Lamp1-GFP (marker of lysosomes) positive cargoes moving along the 

axon of motoneurons. (B) Rab7-GFP (marker of late endosomes) cargoes moving along 

the axon in both directions and with some stationary vesicles not moving. (C) Kymograph 

of Spinster-RFP labeled lysosomes being transported along the axon in both directions 

and with stationary lysosomes. (D-E) Kymographs of ATG8 (marker of autophagosomes) 

with mCherry (D) or GFP (E). Note that in D there is transport of autophagosomes in both 

directions whereas with ATG8-GFP no trajectories could be observed because acidified 

autophagosomes bleach the GFP. (F) Kymograph showing the trajectories of the 

transmembrane protein Neurexin-GFP, (G) the AZ scaffold protein BRP tagged with GFP 

and (H) the SV protein Syt-1. Scale bars: 2 µm and 2 s. 
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In vivo analysis of AZ protein axonal co-transport 
The AZ cytomatrix is composed of several proteins that are assembled together in 

order to allow synaptic transmission (Wilhelm et al., 2014). Before AZ scaffold 

components arrive at synapses these proteins need to be transported along the axon 

(local translation at the presynapse could also be important (Akins et al., 2009; Kim and 

Jung, 2015; Liu-Yesucevitz et al., 2011). In order to understand whether AZ proteins were 

transported in a pre-assembled state, we investigated whether AZ components would be 

co-transported within axons towards synaptic terminals. To do that we tested Unc13A, 

Unc13B and RBP co-transport with BRP. Positively, we were able to identify 2 principal 

components of the AZ to co-transport with BRP.  

 

RBP and Unc13A have been reported to be in close proximity to BRP in the AZ, 

however, it was unclear whether they are co-transported together or whether they instead 

arrive separately at synaptic terminals with their already assembled AZ. Our kymographs 

showed clear evidence that RBP and BRP are anterogradelly co-transported, obviously 

forming a common cargo (Fig. 5 A). No co-transport events could be observed for Unc13B 

(not shown), which could be because they are transported separately or becausewe were 

not able to see it. Instead, when combination of Unc13A and BRP was tested,  cotransport 

was observed (Fig. 5 B). This indicated that Unc13A, RBP and BRP are transported in 

preassembled functional units.  

 

In C. elegans, SV and AZ scaffold proteins have been shown to undergo extensive 

co-transport (Wu et al., 2013). In mice, AZ and SV proteins previously have been 

postulated to be axonally transported either as pre-assembled clusters (Bury and Sabo, 

2011; Tao-Cheng, 2007) or in distinct vesicular structures with (Shapira et al., 2003) and 

without an electron-dense core of unknown cell biological identity (Maeder et al., 2014; 

Yonekawa et al., 1998). To resolve this important issue in our preparation, we first tested 

whether or not AZ and SV proteins were co-transported. We monitored the axonal 

transport of the presynaptic AZ scaffold Bruchpilot (BRP, a large multidomain protein that 

couples release-ready SVs to presynaptic calcium channels (Hallermann et al., 2010; 

Kittel et al., 2006a; Kittel et al., 2006b) and of the essential SV calcium sensor 

Synaptotagmin 1 (Jahn and Fasshauer, 2012; Südhof, 2013; Zhou et al., 2017), in live 

Drosophila larvae. We generated transgenic flies co-expressing red fluorescent protein-

tagged truncated BRP, this labels the endogenously transported BRP (Petzoldt et al., 

2014) together with Synaptotagmin 1-GFP (Zhang et al., 2002). Anterogradely moving 

BRP punctae in most cases contained Synaptotagmin-1 (Fig. 5 C). AZ and at least some 

SV proteins are, thus, co-transported in axons of Drosophila.  
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Fig. 5 | Co-transport of AZ component with SV proteins 

(A) Stills (left) and kymographs (right) showing co-transport of RBP and BRP. (B) Stills 

(left) and kymographs (right) showing a co-transport event between BRP and Unc13A. (C) 

BRP and Syt-1 (marker of SV) co-transport together in anterograde cargoes (stills left, 

kymographs right). Scale bar single frames 2 µm, kymographs 2 µm and 2 s. 

 

Autophagosomes form, fuse with lysosomes and acidify at the 
synaptic terminal 

Our hypothesis was that the late endosomal-lysosomal pathway might play a role 

in recycling AZ material. To address whether this would be case, we co-expressed 

markers of the recycling pathway together with AZ proteins. To do so we concentrated on 

retrograde cargo, understanding that at least some of it corresponds to proteins that are 

being recycled. To test the late endosomal branch we used Rab7, which is an established 

marker of late endosomes (Bucci et al., 2000; Harrison et al., 2003; Zhang et al., 2009). 

We could identify retrograde BRP being transported in Rab7 positive cargoes (Fig. 6 A). 

Most interestingly we were able to observe some lysosomal markers transporting with 

anterograde BRP (Fig. 8) (This unexpected result is discussed more in detail in the 

following chapter.) 
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To continue understanding the relationship between the degradation pathway and 

AZ protein recycling, we analyzed the autophagosome reporter ATG8-GFP at NMJ 

terminals by intravital imaging. As mentioned before, no axonal transport of discrete 

ATG8-GFP positive cargo could be observed, consistent with the idea that axonal 

transport of ATG8 might happen at acidic compartments (Fig. 4 D-E). The ATG8-GFP 

signal at the NMJ was equally diffused GFP at the terminal (Fig. 6 A, min 0). 

 

However, upon recordings of 10min, among the disperse GFP signal some 

punctuated structures could be observed at the terminal (Fig. 6 B, 9min). This newly 

formed autophagosomes were mostly immobile and therefore appear as vertical lines in 

kymographs (Fig. 7 A). Longer recordings gave more information about their dynamics. 

After formation, autophagosomes typically remain quiet for periods of times between 5 to 

30 minutes. Some of these autophagosomes disappeared during the recordings (Fig. 6 B, 

min 20, min 22), and we hypothesized that this could be due to the acidification of the 

autophagosome, resulting in GFP quenching. 

 

To test that, we co-expressed ATG8-GFP with Spinster-RFP as a marker of 

lysosomes (Sweeney and Davis, 2002). By time lapse imaging of NMJ terminals for time 

lapses of 30 minutes, some Spinster-RFP positive vesicles could be observed entering 

the terminal. After entering the terminal, the lysosome moved anterogradelly until 

eventually fusing with one autophagosome, labeled with ATG8-GFP. Multiple events of 

fusion could be observed with the same autophagosome (Fig. 7 A). These fusions 

occurred not only with the most proximal autophagosome (and therefore the first one to be 

encountered) but instead lysosomes could bypass (or miss) several autophagosomes 

before fusing with one (Fig. 7 A). Upon fusion with Spinster, the autophagosomes GFP 

signal decreased (Fig. 7 B), indicating that at least some Spinster-RFP is labeling acidified 

lysosomes. After fusion and acidification, autophagosomes entered retrograde motion at 

slow speeds and with low processivity (not shown), an observation that to some extend 

fits the reports of the group of Prof. Erika Holzbaur (Fu and Holzbaur, 2013). 

 

We next co-expressed BRP together with AT8-GFP to see if similar events of 

colocalization (as in Rab7, Fig. 6 A) could be observed. The lack of visible ATG8-GFP 

axonal transport made it impossible to visualize retrograde axonal co-transport, and 

although BRP and ATG8-GFP were imaged at the NMJ for periods of time of 30 minutes, 

red signal inside the autophagosomes could not be observed (not shown). Further 

experiments are needed to better understand how degradation of AZ proteins occurs and 

their relationship with the autophagosomal-lysosomal pathway. 
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Finally, we analyzed the acidification behavior of autophagosomes in more detail. 

Here, we used the ATG8 co-labeled with GFP and mCherry. By measuring the ratio of 

GFP to mCherry signal we could determine how acidification occurs (Fig. 7 B-C). Our 

results showed a slow acidification of autophagosomes that lasted between 20 to 45 

minutes before GFP signal was not visible anymore (Fig. 7 B). This process, we 

speculate, correlates with the fusion of acidic lysosomes that could be observed 

previously (Fig. 7 A). It is worth mentioning that in some occasion autophagosomes 

“dissolved” without apparent fusion of lysosomes (Fig. 7 A, middle vertical line), 

suggesting that the formation of an autophagosome can be reverted at some point. These 

data in part are still preliminary but show the potential of in vivo imaging for monitoring 

degradation at the NMJ, and future experiments will hopefully help understand these very 

relevant mechanisms in more detail. 
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Fig. 6 | BRP co-transports with Rab7 and autophagosome forms at NMJ terminal 

(A) Kymograph of Rab7-GFP (marker of late endosomes) positive cargoes moving 

retrogradelly along the axon of motoneurons together with BRP. Scale bar single frames 2 

µm, kymographs 2 µm, 3 s.  (B) Autophagosome formation at the synaptic terminal. 16 
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images showing the process of autophagosome formation by imaging ATG8-GFP. After 

around 10 minutes of in vivo recording muscle 26 of 3rd instar larvae expressing ATG8-

GDP under motoneuronal driver, formation of autophagosome coul be observed (min 9, 

asterisk). The autophagosome was visible during 10 minutes after which the signal 

decreased because of acidification (min 20, cross). During the time other 

autophagosomes formed in the same terminal (min 16, asterisks), and collapsed (min 22, 

cross) or stayed visible for longer times. Scale bar 3 µm. 

 
Fig. 7 | Lysosome fuses with autophagosomes and autophagosomes acidify at 

synaptic terminals. 

(A) Kymographs of the synaptic terminal showing lysosome fusion with autophagosomes 

by coexpressing two probes: ATG8-GFP to label autophagosomes and Spinster-RFP to 
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label lysosomes. Almost horizontal lines of Spinster can be seen entering the NMJ 

(moving left to right) and fusing with autophagosomes. Scale bars 10 µm, 20 s. (B) 

Cartoon illustrating the ATG-GFP-mCherry construct used for monitorizing acidification; at 

non acidic pH the markers emits light in green and red, at lower pH, GFP is quenched and 

the signal becomes predominantly red. (C) Quantification of GFP-mCherry ratio of a 

recently formed autophagosome (n=1). As it can be seen the ratio decreases as the 

autophagosome acidifies, until being almost completely red after 45 min.  

 

Markers of the degradation pathway co-transport with AZ proteins 

As mentioned, to our surprise we had found that BRP anterograde cargoes were 

co-transported with lysosomal markers.  

This was quite an unexpected result because the anterograde BRP cargoes that 

go from the cell soma to the synaptic terminal should not be in degradative compartments. 

Since very little is known about the nature of the cargoes that transport AZ precursor 

material to the synapse, we started to speculate that biogenetic cargo destined for forming 

AZs might be associated with lysosomal markers. To test that, we analyzed the BRP 

axonal transport together with other markers of the lysosomal pathway. We found that not 

only Lamp1, but also Spinster, another lysosomal marker, co-transported with BRP (Fig. 8 

A-B). 

To test if this was specific for BRP or could be the case for other synaptic proteins 

we performed the same experiment but this time using the synaptic vesicle marker: Syt-1 

(instead of BRP). We also observed co-transport events of Syt-1 with the lysosomal 

marker Spinster (Fig. 8 C). 

Microtubule-based anterograde transport of lysosomes in neurons (Farias et al., 

2017) is mediated by Arl8, a small Ras-related GTPase, which connects lysosomes to 

kinesin motors (Farías et al., 2017; Rosa-Ferreira and Munro, 2011) such as Unc-104 

(Kinesin-3), a protein required for axonal transport of presynaptic vesicle proteins to 

synapses (Klassen et al., 2010).  Strikingly, BRP in most cases co-localized and was co-

transported with Arl8-GFP in axons (Fig. 8 D). BRP and Rab7 co-transported together 

while moving retrogradelly (Fig. 6 A), however we could not find that they do co-transport 

anterogradelly (Fig. 9 A). We confirmed that in Drosophila Arl8-GFP is co-transported 

anterogradelly with the lysosomal marker Spinster-RFP in axons (Fig. 9 B). These 
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observations suggest that AZ and SV proteins undergo axonal co-transport in lysosome-

related organelles. 

 
Fig. 8 | Axonal co-transport of AZ and SV proteins in presynaptic lysosome-related 

vesicles (PLVs). 

(A-D) Anterograde co-transport of Bruchpilot (BRP) and Synaptotagmin-1 (Syt-1) with 

lysosomal markers and synaptic vesicle markers in Drosophila motoneuron axons in vivo. 

Single frames and kymographs of (A) co-transport of BRP-GFP (red) and Spinster-RFP 

(green), (B) BRP-RFP (red) and Lamp1-GFP (green) (C) Spinster-RFP (red) and Syt-1-

GFP (green) and (D) BRP-RFP (red) and Arl8-GFP (green). Scale bar single frames 2 µm, 

kymographs 2 µm and 2 s.  
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Fig. 9 | Presynaptic lysosome-related vesicles (PLVs) are distinct from Rab7-

positive endosomes. 

(A) Anterograde transport of BRP and the late endosomal marker Rab7. Live confocal 

imaging of intact 3rd instar larvae co-expressing fluorescent tagged BRP-short and Rab7. 

Single frames (left panel) and kymograph (right panel). Anterograde transport of BRP-

RFP (red) cargoes appears not coupled to Rab7-GFP antergrade transport  (green). (B) 

Anterograde transport of the lysosomal marker Spinster and the lysosomal adaptor Arl8. 

Live confocal imaging of intact 3rd instar larvae co-expressing fluorescent tagged Spinster 

and Arl8. Single frames (left panel) and kymograph (right panel) showing co-transport of 

Spinster-RFP (red) and Arl8-GFP (green). Scale bars: 2 µm and 2 s.  

 

Axonal co-transport of AZ and SV proteins depends on the lysosomal 
kinesin adaptor Arl8 

To further explore the mechanisms of axonal co-transport of AZ and SV proteins 

via lysosome-related vesicles we analyzed the localization and function of the lysosomal 

kinesin adaptor Arl8. At larval neuromuscular junction synapses Arl8-GFP and 

endogenous BRP labeled with specific antibodies displayed a partially overlapping 

punctate distribution (Fig. 10 A, confocal). Super-resolution imaging by two color 

stimulated emission depletion microscopy (gSTED) revealed a population of rather 

uniformly sized Arl8-positive vesicles located in close apposition to the BRP-positive AZ 

scaffold (Fig. 10 B, STED), consistent with a role for Arl8-mediated transport of lysosome-

related vesicles in presynaptic assembly.  
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Fig. 10 | Arl8-mediates presynaptic delivery of PLVs. 

(A-B) Arl8 localizes to vesicles surrounding the presynaptic AZ scaffold. (A) Confocal 

images showing the localization of Arl8-GFP containing PLVs at and around BRP-

containing synapses at NMJs. (B) gSTED images (planar and lateral) of larval Drosophila 

NMJs from Arl8-GFP transgenic animals stained for GFP and endogenous BRP. Scale 

bars: 2 µm (confocal) and 200 nm (STED). STED images were taken by Dr. Astrid 

Petzoldt. (C) Presynaptic delivery of Lamp1-GFP vesicles to presynaptic terminals. Shown 

are still images at different time points and representative kymograph from live imaging of 

Lamp1-GFP containing PLVs in Drosophila motoneurons. Lamp1-GFP vesicles (PLVs) 

are seen to enter the NMJ from the axon (t=0, t=36 s) and move into the distal presynaptic 
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terminal (t=22, t= 56 s). (D) Presynaptic delivery of BRP-RFP (red) to the synaptic 

terminal. To the right still images at different time points and corresponding kymograph to 

the left showing anterograde cargo entering the terminal and after reaching it, staying 

quiet. Scale bars: 2 µm and 4 s. (E, F) Loss of Arl8 in arl8 null mutant flies abolishes 

anterograde transport of PLVs containing Lamp1- GFP (E) and BRP-RFP (F). 

Kymographs with control larvae (left) and arl8 null mutant (right). Scale bars: 2 µm and 4 

s.  

 

If these Arl8 positive cargoes are transporting BRP and Syt-1 to the synapse, we 

would expect to see these cargoes not only at the axon but also arriving at the NMJ 

synaptic terminal for delivery. In order to be able to see arriving cargoes at the NMJ we 

followed the SPAIM (simultaneous photobleaching and imaging) protocol described by 

(Wong et al., 2012).  Briefly, the method consists of bleaching the synaptic terminal 

completely to delete any fluorescent signal that is already present at the NMJ. After 

observing some cargo entering the NMJ the proximal part of the synaptic terminal is 

bleached by increasing the laser intensity again in order to bleach new cargoes arriving 

and facilitating therefore the tracking of the smaller number of cargoes that already 

entered. The simultaneous bleaching is most important when dealing with cargoes that 

are very abundant, like Lamp1, and less with cargoes that have a lower turnover. 

When we did the experiment using Lamp1-GFP we could indeed track presynaptic 

delivery of Lamp1-GFP vesicles to nerve terminals (Fig. 10 C). We were also able to  

observe some BRP moving vesicles entering the NMJ at a much lower rate (Fig. 10 D). As 

one can see in the still images, but more clearly in the kymograph, Lamp1 vesicles 

entered the synaptic terminal and continued moving anterogradelly until reaching the last 

or second last bouton, where the vesicles stopped and remained quiet. This process was 

relatively easy to observe with the Lamp1 marker, not so much when labeling BRP. After 

hours of recording now and then one BRP positive cargo could be tracked. This is in 

accordance with BRP having a slow turnover at the AZ. Nevertheless, the cargoes that 

could be tracked behaved in a similar manner as those of Lamp1, they entered the NMJ 

terminal and upon finding a specific spot (more often at the terminal bouton) they stopped 

anterograde motion and remained still. We conclude that by stationing at these specific 

boutons they can provide new material to the AZ. However, it is not possible to determine 

whether this takes place via fusion of the plasma membrane.  
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These results suggest that Lamp1/BRP-containing vesicles correspond to 

lysosome-related organelles (Marks et al., 2013)  that are transported to the presynapse 

via Arl8-linked kinesin motors. 

To put this model to the test we analyzed whether the observed co-transport of 

lysosomal markers and motile BRP punctae was dependent on Arl8 function. Indeed, we 

found that genetic loss of arl8 greatly reduced the anterograde motility of Lamp1-GFP 

and, importantly, also of BRP-RFP cargo (Fig. 10 E-F). Kymographs clearly showed how 

in wild-type (WT) larvae there was abundant transport in both directions of Lamp1-GFP 

puncta. However, in the larvae lacking Arl8 this transport was almost completely abolished 

and there were only stationary cargoes to be seen. Similar is the case of BRP, whereas in 

WT animals there were few anterograde (Fig. 10 F) and retrograde (not shown) cargoes, 

in the absence of Arl8 these cargoes failed to move and could be seen as stationary in the 

axonal segments close to the motoneuron cell bodies. Our data identified anterogradelly 

targeted presynaptic AZ precursor vesicles as Arl8-positive lysosomal vesicles, akin to 

secretory lysosomes found in other cell types, most prominently in melanocytes and 

cytotoxic T cells (Marks et al., 2013).  These organelles hereafter referred to as 

presynaptic lysosome-related vesicles (PLVs) depend on Arl8 for anterograde axonal 

transport and may be required for presynaptic biogenesis. 

 

Arl8-mediated delivery of PLVs is required for presynaptic biogenesis 
and synaptic function  

If PLVs indeed represented precursor organelles for the presynaptic co-assembly 

of AZ and SV components, stalling their axonal transport and delivery as seen before (Fig. 

10 E-F) should greatly impact presynaptic biogenesis. To probe this we analyzed NMJs 

from wild-type and arl8 mutant 3rd instar larvae. In comparison to WT, NMJs from arl8 

mutant larvae were visibly smaller as can be seen with the presynaptic marker HRP (Fig. 

11 A). The arl8 mutant NMJs were not only severely reduced in size but had also 

anomalously small, almost non existing, presynaptic boutons (Fig.  10 A). We quantified 

the total NMJ area in control larvae versus arl8 and observed a reduction to almost half of 

its area (Fig. 11 B). 
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Fig. 11 | Arl8-mediated delivery of PLVs is required for presynaptic biogenesis and 

synaptic function.  

(A-H) Defective presynaptic biogenesis in absence of Arl8-mediated PLV delivery. (A) 

Reduced AZ count and BRP levels at arl8 mutant NMJs. Confocal images of wild-type 

(WT) and arl8 mutant NMJ synapses of Drosophila 3rd instar larvae stained for BRP 

(green) and HRP as axonal membrane marker (magenta). Top panel, overview. Bottom 

panel and insets on the right represent zooms. arl8 mutant NMJs display small boutons 

with drastically reduced numbers of active zones (AZs). (B-D) Quantification of 

representative data shown in (A). (B) In arl8 mutants the NMJ area is reduced to 57% of 

that in WT [µm2] (HRP area of the maximum projection). (C) Absolute numbers of 

presynaptic AZs/ NMJ (WT 147.38 ± 12.6, arl8 mutant 48.13 ± 7.4) and (D) total BRP sum 

intensity/ NMJ (WT 100 ± 12.8, arl8 mutant 27.6 ± 3.5) are severely reduced. n=16 (WT) 

and 15 (arl8 mutant) NMJs. (E-H) Reduced levels of SV proteins synaptotagmin 1 (Syt-1) 

(WT 100 ± 16.8, arl8 mutant 37.05 ± 8.1; n=4 NMJs) (E, G) and the vesicular glutamate 

transporter (VGlut) (WT 100 ± 18.8, arl8 mutant 34.6 ± 5.4; n=10 (WT) and 6 (arl8)) (F,H) 

at arl8 mutant NMJs. Scale bars, 5 µm (upper), 4 µm (lower) and 1 µm (zoom). Data in 

(G) and (F) are quantifications of representative examples displayed in (E) and (F). 

Experiments were performed together with Dr. Astrid Petzoldt and Dr. Anela Vukoja. 

 

 

Furthermore, the number of AZs and the total intensity of BRP were dramatically 

reduced in arl8 mutant NMJs (Fig. 11 C-D) Thus, inhibition of anterograde axonal 

transport of PLVs in absence of Arl8 results in severe defects in presynaptic biogenesis, 

most notably a near complete loss of AZ proteins such as BRP from presynaptic boutons, 

eventually resulting in the death of arl8 mutant larvae at the late larval stage (Vukoja, 

B

   

A
wild type arl8

BRP HRP

BRP 

BRP HRP

VGlut     

wild
 ty

pe
arl

8
0

50

100

150 ***

16 15B
R

P
 to

ta
l i

nt
en

si
ty

wild
 ty

pe
arl

8
0

50

100

150 **

10 6V
G

lu
t t

ot
al

 in
te

ns
ity

*
*

co
ntro

l
arl

8
0

50

100

150
**

16 15

N
M

J 
A

re
a

co
ntro

l
arl

8
0

50

100

150

200
***

1516

A
Z 

co
un

t

E

F

G H

Syt-1

wild
 ty

pe
arl

8 
0

50

100

150

4 4

*

S
yt

-1
 to

ta
l i

nt
en

si
ty

C D



Results 
 

 
 

81 

2014). Given that SVs undergo exo-endocytic cycling at the AZ and that the AZ protein 

BRP and the SV protein Synaptotagmin 1 are co-transported in PLVs along the axon to 

the presynapse (Fig. 8) we probed whether loss of arl8 might affect the delivery of other 

presynaptic components, most notably SV proteins. We found arl8 mutant NMJs to 

contain strongly reduced amounts of SV proteins such as Synaptotagmin-1 (Fig. 11 E, G), 

the Vesicular Glutamate-transporter (vGlut) (Fig.  5 F, H). Cysteine-String Protein (CSP), 

and Synapsin (Fig. 12 D, E). The levels of endocytic proteins that orchestrate SV recycling 

and reformation (Haucke et al., 2011; Kononenko and Haucke, 2015; Murthy and Camilli, 

2003; Podufall et al., 2014) including Dynamin, Dap160/ intersectin, and Stoned B (StnB) 

were also reduced (Fig. 12 A-C, F-H).  

 

 
Fig. 12 | Arl8-mediated PLV delivery is required for presynaptic biogenesis and 

synaptic function.  

(A-F) Defective presynaptic biogenesis in absence of Arl8-mediated PLV delivery. (A-C) 

Drastically reduced levels of endocytic proteins at the arl8 mutant NMJs. Confocal images 

of wild-type (WT) and arl8 mutant NMJ synapses of Drosophila 3rd instar larvae stained 

for dynamin (green) (A), dap160/ intersectin (green) (B), stoned B (green) (C). (D-E) 

Reduced levels of SV proteins at the arl8 mutant NMJs. Confocal images of wild-type 

(WT) and arl8 mutant NMJ synapses stained for cysteine-string protein (green) (D), 
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synapsin (green) (E), Scale bars are 4 µm for the overview and 1 µm for the zoom. (F, G, 

H) Quantification of representative data shown in (A-C). In arl8 mutants the total dynamin 

total intensity/NMJ (WT 100.0 ± 9.728; arl8 mutant 29.8 ± 1,44 (n=3)), Dap160 total 

intensity/NMJ (WT 100 ± 21,80 (n=10), arl8 mutant 25,26 ± 3,88 (n=9) and stoned B total 

intensity/NMJ (WT 100 ± 3,97 (n=11), arl8 mutant 53 ± 1,89 (n=14)) are severely reduced. 

Experiments were performed together with Dr. Anela Vukoja. 

 

 

At this point, the question rose if Arl8 could be required for proper microtubule 

formation or patterning. If so, then the observed arl8 phenotype would not be due to a 

defect in PLV transport but it would be rather a general transport phenotype. To test that, 

we stained WT and arl8 mutant NMJs with Futsch, a microtubule associated protein and 

Ankyrin2, which also binds to microtubule and contributes to NMJ developing. Our 

stainings  (Fig. 13A-B) revealed that the cytoskeleton of arl8 larvae was not affected. This 

experiment discarded that the reduced amount of AZ and SV proteins at the synaptic 

terminal were secondary to some cytoskeletal defect. 

 
Fig. 13 | The cytoskeleton of arl8 mutant motoneurons remained widely intact. 

(A-B) NMJs at muscle 4 of arl8 mutant and wild type larvae immunostained against (A) 

Futsch, HRP, StonedB (StnB) and (B) disc large (Dlg), Ankyrin2-XL (Ank2-XL) and HRP 

are shown. Futsch, Ankyrin2-XL and disc large are all largely unaffected in mutant larvae 

(compare upper and lower panels). In stark contrast, StonedB was almost completely 

absent from the mutant NMJ. Scale bar: 10µm. Experiments were performed by Dr. Anela 

Vukoja. 
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A presynaptic role of Arl8 for proper formation of NMJ terminals  
 

The Arl8 mutant was generated by the insertion of a PiggyBac element (Fraser et 

al., 1983; Kudo et al., 2017). To verify that this insertion was abolishing specifically Arl8 

expression, we tested for Arl8 mRNA levels via RT-PCR in control and PBac(RB)Giee00336 

homozygous flies. We found that in fact the insertion produced a null mutant since no 

traces of Arl8 could be detected, in comparison the wild type flies gave a band 

corresponding to the expected weight of Arl8 (Fig. 14 A). Control primers where used for 

AP-2 and gave a positive band in both Arl8 null and control animals (Fig. 14 A). 

  

Furthermore, Arl8 is expressed in all cell types, therefore its complete depletion is 

probable to cause effects not only in motoneurons. To check for specificity we generated 

transgenic Drosophila containing a UAS Arl8 construct (described in the Introduction). We 

designed an experiment to detect whether expressing Arl8 alone in motoneurons was 

sufficient to rescue the phenotype. For that, the UAS Arl8 construct was expressed under 

the OK6-GAL4 line, which is known to drive expression specifically in motoneurons. The 

genotype of the stock further referred as "rescue" was then the following: OK6-

GAL4/UAS-Arl8; PBac(RB)Giee00336/ PBac(RB)Giee0033. Importantly, we found that 

overexpression of Arl8 alone in motoneurons could rescue the Arl8 phenotype. The loss of 

AZ and SV proteins had wild type levels after presynaptic re-expression of native Arl8 

(Fig. 14 B-D), indicating that it was a cell-autonomous and neuron-specific phenotype. 
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Fig. 14 | Arl8 presynaptic expression rescues Arl8 phenotype. 

(A) Whole wild type and homozygous PBac(RB)Giee0033 larvae were used to isolate total 

mRNA which was then transcribed into cDNA in a RT-PCR reaction. Thus prepared cDNA 

was subsequently used as a template for a PCR reaction to probe for presence of arl8 

cDNA or AP-2 sigma cDNA (control). Whereas AP-2 sigma cDNA is detectable in probes 

of animals of both genotypes, arl8 cDNA is present only in wild type animals and is 

undetectable in homozygous PBac(RB)Giee0033. (B) Loss of presynaptic components can 

be rescued by presynaptic re-expression of Arl8-GFP implying a cell-autonomous and 

specific arl8 mutant phenotype. Confocal images of wild-type (WT), arl8 mutant, 

presynaptic rescue and rescue-control (driver only) NMJ synapses of Drosophila 3rd 

instar larvae stained for BRP (green, upper panel) and VGLUT (green, lower panel) 

showing a rescue of both synaptic components to WT levels compared to the arl8 mutant 

and the rescue-control. Scale bar: 4 µm. (C-D) Re-expression of Arl8 in motoneurons 

rescues defective presynaptic biogenesis in arl8 mutants. Quantification of representative 

data shown in  (B). The BRP total intensity is reduced in the arl8 mutants compared to WT 

(WT 100 ± 18.63 (n=25), arl8 mutant 38.85 ± 6.21 (n=16), while the presynaptic rescue 
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show WT levels (99.17 ± 21.81 (n=19)) and is increased compared to the rescue-control 

(31.09 ± 7.11 (n=20)). Similar results were quantified for VGLUT (WT 100 ± 42.92 (n=8) 

arl8 mutant 63,67 ± 10,09 (n=9), rescue 124,51± 34,68 (n=8), rescue-control 54,71 ± 

16,127 (n=13). Statistics: All graphs show mean ± SEM. Mann-Whitney test for two 

groups, One-way ANOVA for more than two. * P<0.05, ** P<0.01, *** P<0.001, n.s. for not 

significant. Experiments were performed together with Dr. Anela Vukoja and Dr. Astrid 

Petzoldt. 

 

Arl8 and the HOPS complex cooperate in presynaptic biogenesis 
 

To further verify that the observed Arl8 phenotype was a presynaptic effect, we 

overexpressed and RNAi lines from the Vienna stock collection that specifically target Arl8 

mRNA and thereby block its translation into protein (Dietzl et al., 2007). Using this 

method, we were able to deplete Arl8 levels only in motoneurons, while the rest of tissues 

and cell types kept expressing Arl8 at their usual levels. Consistently, when Arl8 

expression was downregulated specifically in motoneurons, defective presynaptic 

biogenesis including depletion of BRP was also observed (Fig. 15 A-C). 6 

 

We then used another RNAi line against the HOPS complex to see if we could 

phenocopy the Arl8 depletion effects. HOPS stands for homotypic fusion and protein 

sorting tethering complex. The HOPS complex is a multi-subunit complex conserved from 

yeast to mammals that regulates late endosome and lysosome fusion (Khatter et al., 

2015). It is formed by 6 Vacuolar sorting proteins (VPS): VPS11, VPS16, VPS18, VPS33, 

VPS39 and VPS41. We did a small RNAi screen against these proteins to see if they 

could be related to the Arl8 pathway. Unfortunately, there were no RNAi lines available for 

all the subunits, so we could only test the depletions of VPS16, VPS18, VPS33 and 

VPS39. VPS16, VPS18 and VPS33 RNAi lines showed no phenotype (not shown), 

indicating either that a) the RNAi lines did not work or were not strong enough to show a 

phenotype or b) that their suppression could be compensated. Most interestingly, the 

depletion of the VPS39 subunit showed a phenotype that resembled to that of the arl8 

mutants. As it can be seen (Fig.  14 A), NMJs of larvae expressing the VPS39-RNAi line 

in motoneurons showed very thin synaptic terminals, resembling to the arl8 mutant (Fig. 

                                                
6 Note that the control group, is a control for the driver line, to discard that is not the OK6-GAL4 

construct that is rescuing the Arl8 deficit (its exact genotype is OK6-GAL4/+; PBac(RB)Giee00336/ 

PBac(RB)Giee0033). 
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11 A for comparison) and very similar to the Arl8 RNAi line (Fig. 15 A). Quantification 

showed that BRP mean intensity was reduced to the half, and the number of AZ was also 

reduced, having the AZ density (AZ/NMJ area) of 67 compared to Control, 100. The 

reduction of BRP intensity as well as AZ density was similar to the Arl8-RNAi line. 

 
 

Fig. 15 | Defective HOPS complex phenocopies Arl8 knockdown and ultrastructural 

characterization of the arl8 mutant. 

(A) Confocal images of control (driver-line only, left panel), 

Arl8-RNAi (middle panel) and VPS39-RNAi (right panel) NMJ synapses of Drosophila 3rd 

instar larvae stained for BRP (green, top panel and HRP (magenta, central panel). Scale 

bar: 10 µm. Both Arl8 and VPS39 knockdown display thinner NMJs with small boutons 

and reduced numbers of AZ (see b). (B-C) Quantification of representative data shown in 

(A). Total BRP intensity/ NMJ (100 ± 22.91 (n=10), Arl8-RNAi 29.95 ± 6.51 (n=9), VPS 39-

RNAi 41.43 ± 6.606 (n=9)) and absolute numbers of presynaptic AZs normalized to the 

NMJ area (control 100.0 ± 6.16 (n=10), Arl8-RNAi 71.86 ± 7.61 (n=9), VPS39-RNAi 67.57 

± 3.47 (n=9)) are severely reduced, with an equal reduction level for VPS39 knock-down 

compared to the Arl8-RNAi. Experiments performed together with Dr. Astrid Petzoldt. 
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Arl8 mutants: extremely thin terminals with severe 
electrophysiological defects but with the AZ structure conserved 

 

Taking into account the remarked morphological modifications found on the arl8 

mutants presynaptic terminals as well as the drastic reduction of BRP and SV markers 

(Syt-1, VGlut and CSP) found using confocal microscopy, we performed electron 

microscopy (EM) on NMJ of both arl8 mutant larvae and control. EM images confirmed 

the substantial reduction of bouton size in arl8 mutants (Fig. 16 A). The terminals were 

much thinner and the quantification also revealed a decreased number of total synaptic 

vesicles. Interestingly, however, normalized to the bouton area the number of synaptic 

vesicles was not changed in arl8 mutants. 

 

To further address how synapses get compromised by the absence of Arl8, we 

wanted to see if the few AZs that can still form in the arl8 mutants would be rather normal 

or would be also affected in ultrastructural or functional terms. Obviously, a drastic 

reduction of BRP transport might per se result in a reduced size of AZ scaffolds. If Arl8 

main role is to deliver BRP to the terminal, less BRP would mean less but otherwise 

normal AZs, i.e., the machinery for AZ assembly should remain intact and thereby the 

system will just produce normal active zones with normal architecture but just fewer. On 

the other hand, if Arl8 plays a role in one of the assembly steps the architecture would be 

affected. Such is the case of proteins previously reported in the Sigrist lab like Neurexin or 

Spinophilin (Muhammad et al., 2015). Then, not only will the NMJ have less AZs as 

already shown, but also these will be defective.  

 

Looking at our images obtained with confocal microscope we could not resolve 

differences in AZ size. Did that mean the AZs in arl8 mutant are same or are there 

differences but they are below confocal resolution? To test that, we used super resolution 

STED microscopy. BRP puncta that are visualized in confocal imaging are actually rings 

whose diameter can be measured in STED microscopy. As it can be seen (Fig. 16 E) also 

in STED arl8 mutants did not show the typical boutons and had fewer AZ. However, the 

average ring size did not differ between control and arl8 mutant (Fig. 16 F). Control rings 

were 159 nm, same as in arl8 null background. From these results we could conclude that 

Arl8 is important for BRP transport indeed, but does not play a role in the assembly of the 

BRP scaffold assembly.  
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Fig. 16 | Shrunk boutons with severe electrophysiological defects but with the AZ 

structure conserved. 

(A) Electron micrographs of wild-type (WT) and arl8 mutant boutons of Drosophila 3rd 

instar larval NMJs depicting an entire bouton (left panels) and a zoom (right panels). 

Presynaptic ultrastructure and SV accumulation are not affected in the arl8 mutant. Scale 

bar 70 nm in overview and 20 nm in zoom. (B-D) Quantification of representative data 

shown in (A). Bouton area is severely reduced in the arl8 mutant (WT 100 ± 31.46 with 

n=8, arl8 mutant 38.24 ± 7.47 µm2, n=12) with a proportional reduction in SV numbers 

(WT 99.50 ± 27.62 µm2, arl8 mutant 44.50 ± 12.20 µm2), although the SV density was not 

affected (WT 100 ± 28.56 µm2, arl8 mutant 103.2 ± 20.88).  (E) Images and (F), 

quantification of the BRP ring diameter at Drosophila neuromuscular junctions with 

superresolution light microscopy (STED) for wild type (159±22 nm (n=12)) and arl8 mutant 

(158±26 nm, (n=12). Scale bar: 100 nm. (G-I) Defective presynaptic biogenesis in 

absence of Arl8 impairs evoked neurotransmission. (G-H) Two electrode voltage clamp 

electrophysiological recordings show reduced evoked excitatory junctional current (eEJC) 

amplitudes at arl8 mutant synapses (WT -101.09 ± 9.4 nA, n=12 and arl8 mutant -58.79 ± 

3.1 nA n=11 NMJs), (I) while only minor changes in the paired pulse ratio (30 ms ISI) were 
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observed (WT 1.02 ± 0.02 s n=12, arl8 mutant 0.95 ± 0.02 s, n=10 NMJs). (J-K) Mini 

amplitude remained unchanged (WT -0.76 ± 0.02 nA, n=10, arl8 mutant -0.74 ± 0.02 nA, 

n=10 NMJs) and mini frequency was not significantly different (WT 1.87 ± 0.18 Hz n=10, 

arl8 mutant 2.01 ± 0.25 Hz, n=10 NMJs).  EM data were acquired together with Dr. Anela 

Vukoja and Christine Quentin. Eric Reynolds performed the electrophysiological analysis. 

 

 

Next, we wanted to test for electrophysiological defects in arl8 mutant. Defects in 

SV and AZ protein transport and presynaptic biogenesis might per se impair 

neurotransmission (Kittel et al., 2006a; Wagh et al., 2006). To test that we performed two 

electrode voltage clamp electrophysiological recordings in arl8 mutants. Indeed, evoked 

excitatory junctional currents (eEJCs) were reduced in arl8 mutants compared to controls 

(Fig. 16 G-H). Mutant arl8 larvae also showed a small but significant reduction in the 

paired pulse ratio (Fig. 16 I), a parameter for short-term plasticity (Hallermann et al., 

2010). Mini amplitude was not affected nor was mini frequency that had similar values to 

control (Fig. 16 J-K). 

 

The reduction of eEJC can be well explained by the reduced number of synaptic 

release sites per NMJ. Mini amplitude is not altered consistent with the Glutamate 

receptor fields having wild type levels (not shown). This indicates that the residual set of 

AZs that form at the terminal function properly, which is also corroborated by the normal 

ultrastructure (Fig 15 E-F) and the unchanged SV vesicle density (Fig. 16 D) of the arl8 

mutants. Mini frequency typically scales with the number of AZs per terminal, in this case 

it remains unanswered why is not affected in arl8 mutants. 

	

Arl8 overexpression in motoneurons promotes biogenesis 

We demonstrated so far that Arl8 co-transports with BRP and is needed for proper 

AZ protein delivery at the synapse. Next, we wanted to challenge our results by an 

independent approach. If PLV transport by Arl8 indeed mediates presynaptic biogenesis, 

gain of Arl8 function, e.g. by overexpression, might result in increased delivery of 

presynaptic components and, thereby, a facilitation of evoked neurotransmission. To test 

this hypothesis we used the same UAS Arl8 line and same driver (OK6 GAL4) used for 

the rescue experiments, but this time we overexpressed it in a wild type background and 

kept the flies at 29 ºC to boost more the transcription. This genotype (OK6-GAL4/UAS-

Arl8) from hereon is referred to as Arl8 OE.  Note that Arl8 OE still contains two copies of 
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the arl8 locus in every tissue, but on top of that has an extra Arl8 sequence that will be 

overexpressed in motoneurons only. 

As predicted, an increase in Arl8 copy number facilitated delivery of BRP to 

presynaptic boutons (Fig. 17 A-B). We observed slightly bigger junctions and the 

quantification of total BRP intensity was increased as well (Fig. 17 B). Under Arl8 OE the 

NMJs had also more AZ but only slightly and was not significant (Fig. 17 C). 

We again prepared samples for superresolution in order to check whether BRP 

ring diameter was affected or not. The results showed a slightly increase in diameter (Fig 

12. D) but was not significant (Control 159 nm, Arl8 OE 170 nm) (Fig 12. E), further 

indicating that Arl8 does not play a role in the assembly process of BRP. 
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Fig. 17 | Elevated Arl8-mediated anterograde transport of PLVs facilitates 

presynaptic biogenesis and neurotransmission. 

(A, B) Elevated PLV delivery in Arl8-overexpressing NMJs facilitates presynaptic 

biogenesis. (A) Confocal images of NMJs from control and transgenic Drosophila larvae 

overexpressing Arl8 (Arl8 OE) reveal increased BRP levels. Scale bars: 4 and 1 µm 

(zoom). (B-C) Quantification of representative data shown in (A). BRP total intensity: WT 

100 ± 7.5 n=22, Arl8-OE 177 ± 24.18 n=24. (D) Images and (E), quantification of the BRP 

ring diameter at Drosophila neuromuscular junctions with superresolution light microscopy 

(STED) for control (159±22 nm (n=12)) and Arl8 overexpression (170±25 nm, (n=12)), 

showed non-significant effects on ring diameter. Scale bar: 100 nm. (F-H) Increased PLV 
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delivery facilitates neurotransmission. (F) Two electrode voltage clamp 

electrophysiological recordings show (G) increased eEJC amplitudes at Arl8 

overexpressing synapses (control: -78.24 ± 4.61 nA n=10, Arl8-OE -101.0 ± 8.85 nA n=9). 

(H) unaltered paired pulse ratio in synapses from transgenic flies (control 1.231 ± 0.03 s 

n=10, Arl8 OE 1.110 ± 0.05 s n=9). (J-K) Mini amplitude remained unchanged (WT -0.86 

± 0.05 nA, n=10, Arl8 OE -0.84 ± 0.01 nA, n=10 NMJs) and mini frequency was not 

significantly different (WT 1.84 ± 0.3 Hz n=9, Arl8 OE 2.15 ± 0.23 Hz, n=10 NMJs). 

Statistics: All graphs show Mean ± SEM. Mann-Whitney test. *P<0.05, ** P<0.01, *** < 

0.001, n.s. for not significant. Arl8 OE confocal data were acquired and analyzed together 

with Dr. Astrid Petzoldt. Eric Reynolds performed the electrophysiological recordings.  

 

 

Electrophysiological recordings of Arl8 OE larvae, most interestingly, showed 

elevated evoked neurotransmission (Fig. 17 F-G), whereas the paired pulse ratio, mini 

amplitude and frequency remained unchanged (Fig. 17 H-J). 

All together, we have been able to show that Arl8 gain-of-function is capable of 

increasing the amount of BRP that is transported to the synapse and this facilitates 

synaptic activity without modifying the AZ scaffold architecture. Therefore Arl8 is sufficient 

to boost neurotransmission by facilitating transport of PLVs and presynaptic biogenesis. 

 

Axonal co-transport of AZ and SV proteins in PLVs hippocampal 
neurons 

The machinery for presynaptic neurotransmitter release is evolutionary highly 

conserved from invertebrates to mammals (Haucke et al., 2011; Schoch and 

Gundelfinger, 2006; Südhof, 2012). We therefore asked whether the role of Arl8 in 

presynaptic biogenesis in Drosophila is conserved in the mammalian nervous system, 

using cultured hippocampal neurons as a model (see Methods). We monitored the axonal 

transport of presynaptic AZ proteins in developing mouse hippocampal neurons co-

expressing GFP- or mCherry-tagged variants of the AZ scaffold Bassoon (Bsn) (Dresbach 

et al., 2006; Maas et al., 2012) together with the lysosomal markers Lamp1 or Arl8. 

Analysis by live imaging revealed a striking co-localization and co-transport of GFP-Bsn 

with Lamp1 or Arl8 (Fig. 18 A-B), suggesting that presynaptic biogenesis in hippocampal 

neurons occurs by axonal transport of PLVs, similar to what we had observed in 

Drosophila (compare with Fig. 8).  
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Consistent with this hypothesis, fluorescence recovery after photobleaching 

(FRAP) experiments revealed the delivery of Lamp1- and Bsn-containing PLVs to 

presynaptic boutons (Fig. 18 C), similar to what was seen at Drosophila NMJs (compare 

Fig. 10 C-F). Moreover, overexpression of Arl8 facilitated axonal transport of GFP-Bsn, as 

evidenced by its depletion from the neuronal soma and axon initial segment (AIS) when 

compared to control neurons (Fig. 18 D). Conversely, when the expression level of Arl8A, 

one of the two mammalian isoforms of Arl8 expressed in the brain (Rosa-Ferreira and 

Munro, 2011) was reduced, we observed a partial accumulation of GFP-Bsn in the 

neuronal soma and the AIS (Fig. 18 E). These results indicate that the role of Arl8-

mediated anterograde transport of PLVs in presynaptic biogenesis is similar in 

invertebrates and mammals. That means not only that PLVs and the machinery here 

described appeared in evolution at least as long ago as the common ancestor from 

invertebrates and mammals but also that there has been evolutionary pressure to 

conserve it. 
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Fig. 18 | Axonal co-transport of AZ and SV proteins in PLVs in mouse hippocampal 

neurons. 

(A,B) Anterograde transport of the AZ scaffold Bassoon (Bsn) with lysosomal markers 

Lamp1, and Arl8 in axons of hippocampal neurons. Live confocal imaging of living mouse 

hippocampal neurons (DIV9) co-expressing GFP-Bsn (95-3938) with lysosomal markers 

Arl8B-mCherry or Lamp1-mCherry. (A) Single frames and (B) kymographs illustrating co-

transport of GFP-Bsn (95-3938) (green) and Arl8B-mCherry or Lamp1-mCherry (red) 
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along the axon. (A) Images on the left marks the position of the trafficking organelle at 

time point 0, images on the right mark the position of the trafficking organelle after 48 s or 

54 s. Scale bar, 2 µm. (B) Kymographs depict the trajectories of GFP-Bsn (95-3938) co-

transported with Arl8B- mCherry (upper panels) and Lamp1-mCherry (lower panels). 

Scale bar, 1 µm, 12 s. (C) Presynaptic delivery of GFP-Bsn (95-3938) / Lamp1-mCherry 

vesicles to presynaptic terminals visualized by fluorescence recovery after photobleaching 

(FRAP) experiments. Single frames from live-imaging of mouse hippocampal neurons 

(DIV6) co-expressing Lamp1-mCherry and GFP-Bsn (95-3938). Left panels: Axon 

terminal highly co-positive for PLVs (Lamp1) carrying AZ cargo GFP-Bsn (95-3938). 

Middle panels: Fluorescence within the axon terminal was bleached in the red and the 

green channels (ROI marked in blue). Right panels: Illustrate de novo delivery of Bsn/ 

Lamp1-containing PLVs. Scale bar, 5 µm. (D) Arl8 overexpression in hippocampal 

neurons facilitates PLV-mediated transport of GFP-Bsn (95- 3938) from soma and 

proximal axons. Quantification of representative data shown in Fig. 18 C. Levels of Bsn in 

soma of control neurons are normalised to 100. GFP-Bsn (95-3938) levels were 

decreased in the soma (control 100 ± 8, Arl8 OE 25 ± 4 each N=60 neurons from n=3 

independent experiments) and proximal axon (control 100 ± 10, Arl8 OE 46 ± 8 each 

N=60 neurons from n=3 independent experiments) of Arl8 overexpressing neurons 

compared to control transfected neurons. Mann-Whitney test was used for statistical 

analysis, **** p < 0.0001. (E) Reduced PLV transport in hippocampal neurons partially 

depleted of Arl8A results in accumulation of GFP-Bsn (95-3938) in neuronal somata and 

the proximal axon. Quantification of representative data shown in Fig. 18 D. Depletion of 

Arl8A led to increased GFP-Bsn (95-3938) levels in the soma (siScr 100 ± 12 N=75 

neurons from n=4 independent experiments, siArl8A 147 ± 14 N=79 neurons from n=4 

independent experiments) and proximal axon (siScr 100 ± 10 N=75 neurons from n=4 

independent experiments, siArl8A 181 ± 17 N=79 neurons from n=4 independent 

experiments) compared to scrambled siRNA-treated control neurons set to 100). Mann-

Whitney test was used for statistical analysis, **** p < 0.0001, ** p = 0.0021. 

Quantifications presented as mean ± SEM. Data are shown for illustration and were 

provided by Dr. Christoph Ott and Dennis Vollweiter, within the framework of our 

collaboration. 
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AZ and SV protein-containing PLVs accumulate in neuronal somata of 
arl8 mutants  

 So far we had evidence from Drosophila larvae that Arl8 is important to 

deliver cargo to the synaptic terminal and when larvae lacked Arl8 there was an important 

deficit of AZ and SV proteins at the presynapse. We had seen also how axonal transport 

of BRP as well as Lamp1 was severely affected in Arl8 mutants, with the almost total 

absence of anterograde cargo moving (Fig. 10 E-F). At the same time, we observed 

paired phenotypes in cultured hippocampal neurons from mice. There, accumulation of AZ 

proteins in the neuronal soma and AIS of neurons depleted of Arl8A was observed (Fig. 

18) together with a corresponding reduction of Bassoon intensity from the soma and AIS 

when Arl8 was overexpressed in hippocampal neurons (Fig. 18). 

 

These results together suggested us that in the absence of Arl8 function, PLVs 

and therefore also the AZ proteins contained in them may accumulate in the cell bodies of 

motoneurons from arl8 mutant animals. To test that, we decided to look at the Ventral 

Nerve Cord (VNC) of wild-type larvae and compare them with arl8 mutants. 

 

Analysis of larval brains from WT showed that BRP was not equally distributed 

along the VNC. The BRP signal was very high in the area that corresponds to the 

Neuropile, and almost nothing in the area where the cell bodies of motoneurons are 

located. A more detailed and closer look at it, however, unveiled small dot like structures 

that are indeed present in the motoneuron cell bodies of wild type animals. When the VNC 

of arl8 mutants was scanned, it was very clear that there was a very important 

accumulation of BRP in this same region. As it can be seen in (Fig. 19 A) and was 

quantified in (Fig. 19 B) there is a two fold increase in BRP signal in arl8 mutants (227.3 ± 

35.14)  compared to wild type (100 ± 18.48). That was a clear indication that in the 

absence of Arl8, PLVs and their protein cargo cannot be shipped out from the cell body 

and consequently accumulate in the cytoplasm. 



Results 
 

 
 

97 

 
Fig. 19 | BRP accumulates in neuronal somata of arl8 mutants.  

(A,B) Accumulation of BRP in motoneuron somata of arl8 mutant Drosophila larvae. (A) 

Confocal images of ventral nerve cords (VNCs) from wild-type (WT) and arl8 mutant 

Drosophila larvae immunostained for BRP. Note the dramatic accumulation of BRP at the 

VNC cortex (delineated by dotted lines). Scale bar 100 µm. (B) Quantification of 

representative data shown in (A). WT (mean normalized to 100): 100 ± 18.48, arl8 mutant: 

227.3 ± 35.14. Data are mean ± SEM. Mann-Whitney test, ** P<0.01. (C) Quantification of 

the area of the cargoes accumulating in (A) compared to BRP AZ size distribution of WT 

NMJ terminals plotted as a Histogram (n=3 arl8 VNC and n=3 WT NMJs). (D) Similar to 

(C) but showing frequency distribution of mean intensity of each cargo (n=3 arl8 VNC and 

n=3 WT NMJs). 

 

 

One hypothesis that seemed plausible would be that these accumulations could 

correspond to AZ packages. On one hand it could be that AZs form ectopically, this has 

been reported to be the case of srpk79D mutant axons (Siebert et al., 2015), but in the 

Arl8 it would happen one step earlier, that is in the cytoplasm. That seems unlikely 
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because i) even that in less amount, they are also found in wild type and ii) because they 

are way too abundant. On the other hand, it could be that these accumulations coincide 

with AZ packages that are just the building blocks of the future AZ. That would imply that 

the AZ are to some extend already preassembled in cargoes at the cytoplasm and when 

they arrive at the synaptic terminal they can be easily incorporated to an existing AZ or 

form a new one from scratch. This second option was also favored by the fact that some 

of the AZ components have been reported to be co-transported, like it is the case of BRP 

and RBP (Fig. 5 A)(Siebert et al., 2015), and also Unc13A and Syt-1 together with BRP in 

this thesis (Fig. 5 B-C). 

 

To test whether this was the case, we measured the area of BRP accumulations 

found at the VNC and compared them to the ones of single AZs found at the NMJs. If they 

correspond to AZ packages they should have the same size. What we found was that AZs 

had a relatively narrow size distribution peaking at 0.45 µm2 whereas the accumulations 

seen at the VNC were much bigger, with 80% of the cargoes at the VNC were bigger than 

0.6 µm2 (Fig. 19 C). When we measured the intensity of BRP dots at the VNC we obtained 

similar results (Fig. 19 D). The relative intensity in the VNC cargoes was on average two 

fold higher than the ones of a single AZ at the NMJ (Fig. 19 D). These results taken 

together seem to indicate that these accumulations do not correspond to preassembled 

AZ packages, but rather they contain the amount of protein for more than one AZ. 

However, to really be able to say that, we would need a better understanding on what the 

PLVs do when they arrive at the synaptic terminal, and how exactly is the process and the 

stoichiometry of the construction of new AZ (or remodeling of old ones) performed. 

 

Next, we wanted to see whether the accumulation of BRP in the VNC was also 

followed by the proteins found in lower amounts at the NMJ. For that we tested Dap160, 

VGlut and also the AZ scaffold associated release factor Unc13A. And indeed, a similar 

accumulation was observed for these proteins (Fig. 20 A-F). Interesting to notice was how 

VGlut accumulation was found not all over the area corresponding to motoneuron cell 

bodies, but only in a delimited area: this area corresponds to the cell bodies of 

glutamatergic motoneurons, the only ones that use Glutamate as neurotransmissor and 

thus express VGlut. The rest of motoneurons surrounding do not express VGlut and 

therefore did not show immunoreactivity (Compare Fig. 20 E left and right panels). 

 

To additionally check for specificity of the Arl8 phenotype, we used again the Arl8 

RNAi line and this time we imaged the VNC. Not surprisingly we saw that there was an 

increase in BRP signal in the area where the motoneuron cell bodies are located. Note 
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that in this case the accumulation is restrained to some neurons again. The OK6-GAL4 

driver line is not a pan-neural driver line and therefore Arl8 RNAi is only expressed in 

motoneurons. The surrounding cells do not accumulate BRP because their Arl8 is not 

suppressed. 
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Fig. 20 | Accumulation of presynaptic protein containing PLVs in the neuronal soma 

of arl8 mutants. 

(A,C,E) Accumulation of several major presynaptic components in motoneuronal somata 

of 3rd instar Drosophila arl8 mutant larvae. Confocal images of VNC (white dashed line 

indicates the border between neuropil and motoneuronal soma) from wild-type (WT) and 

arl8 mutants with a strong accumulation of (A) UNC13A (green), (C) Dap 160 (green), (E) 

VGlut (green) in absence of Arl8. Scale bar, 100µm. (B,D,F) Quantification of 

representative data shown in (A,C, E). A strong increase can be observed for (B) UNC13 

mean intensity (WT=100 ± 12.46, arl8 mutant 165.2 ± 5.87 (n=4)), (D) Dap160 total 

intensity (WT=100 ± 19.35 (n=5), arl8 mutant 339.6 ± 94.26 (n=7)) and (F) VGlut mean 

intensity (WT=100 ± 26.33 (n=4), arl8 mutant 255.3 ± 43.27 (n=4)). (G) Spatially restricted 

downregulation of Arl8 by RNAi caused a strong accumulation of BRP in stripes 

representing motoneuronal somata. Confocal images of the wild-type (WT) and arl8 

mutant motoneuronal somata stained for BRP (green). Top panel for overview (scale bar, 

150 µm) and bottom panel for zoom (scale bar, 30 µm), WT left panel, Arl8-RNAi right 

panel. Dr. Astrid Petzoldt characterized the Arl8 RNAi line. 
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Accumulation of large vesicles distinct from SV within motoneuron 
cell bodies 

To better define the nature of the cargoes that transport BRP, Syt-1 and contain 

Lamp1 and Spinster we performed Electron Microscopy (EM) on VNC samples of wild 

type and arl8 mutants. So far we had seen: 

 

1. Arl8 is needed for delivery of BRP and other AZ proteins to the synaptic terminal 

2. Arl8 mutants show immobile Lamp1 and BRP cargoes within motoneuron axons 

3. BRP and other AZ proteins accumulate at the cell bodies of motoneurons 

 

By doing EM we wanted to address the following questions. If BRP and Syt-1 are 

transported in PLVs, is it possible to identify them morphologically at the VNC? In arl8 

mutants, are PLVs formed and not shipped out, or maybe PLVs cannot form and the BRP 

accumulation is because they cannot find their cargo. Would it be possible to see an 

accumulation of morphologically distinct vesicles that would correspond PLVs at the VNC 

of arl8 mutants? 

 

Electron microscopy allows to image samples much below the resolution of light 

microscopy due to the shorter wavelength of electrons (See Materials and Methods for 

further details). In collaboration with the group of Thorsten Mielke from the Max Planck for 

Molecular Genetics and their EM facility we scanned VNC samples of wild type larvae and 

compared them to arl8 mutants. 

 

We found that the overall morphology of the motoneurons was not very much 

affected. In wild type animals, motoneurons are round with a round nucleus, in arl8 

however both look a bit wrinkled and wizened but they are similar in size and otherwise 

look normal (not shown). 

 

A closer look at the cytoplasm revealed a massive accumulation of vesicles in the 

cytoplasm of arl8 mutant motoneurons. These vesicles, we categorized as our PLVs could 

be also found in wild type animals but to a much lower degree. In both cases, but easier to 

see in arl8 mutant images because of the high abundance of vesicles, the PLVs ranged 

from quite clear filling to more of a dense core. We speculate that this might be related to 

the maturation process of the PLVs. 

 

To better categorize these vesicles as PLVs we measured their diameter. SV have 

a characteristic and well defined diameter of 40 nm (Zhang et al., 1998). One possibility 
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we wanted to exclude or verify is that the accumulation of vesicles at the VNC are in fact 

Synaptic Vesicles that either cannot be transported out of the cell body or that in an 

aberrant manner form there because of the abundance of material that is not shipped out. 

For that we measured the cargoes accumulating at the cell bodies of motoneurons at the 

VNC and compared them with identifiable SV that are to be found at the synapses of the 

neuropile. The results confirmed that our cargoes were not SV. Indeed the PLVs had an 

average diameter of 70 nm (Fig. 21 C), compared to the below 40 nm average diameter of 

the SV found at the neuropile. 
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Fig. 21 | PLVs accumulate in the neuronal somata of arl8 mutants.  

(C) Electron micrographs of neuronal somata from wild-type (WT) and arl8 mutant larval 

brains. Blue, nucleus; brown, mitochondria; yellow, endoplasmic reticulum. Note the 

massive accumulation of PLVs with or without electron-dense cores in neuronal somata of 

arl8 mutants (right). In somata from WT animals (left) PLVs were very rarely detected. 

Scale bar, 100 nm (top), 20 nm (bottom). (D) 3D electron tomography analysis of PLV 

accumulations in neuronal somata. 3D tomogram segmentation from arl8 mutant neuronal 

soma reveals a striking accumulation of spherical organelles (PLVs). PLVs show a 

specific morphology and are clearly distinct from other organelles. Blue: nuclear envelope, 

brown: mitochondrion, yellow: ER, green: PLVs. Scale bar, 300 nm. (E) Mean diameter of 

PLVs and synaptic vesicles (SVs) from the same preparation. PLV, 66.19 nm ± 0.59 (n = 

497 vesicles); SV, 30.74 nm ± 0.41 (n = 497 vesicles). PLVs are, thus, distinct from SVs. 

EM embedding and image acquisition was performed in collaboration with Dr. Dmytro 

Puchov and Svea Hohensee. 

 

 

We have so far shown that BRP accumulations in the soma of motoneurons 

correlated with a striking accumulation of homogeneously sized 70 nm in diameter 

vesicular structures of varying electron density, consistent with prior reports of both clear 

(Yonekawa et al., 1998) and electron-dense vesicles (Shapira et al., 2003; Zhai et al., 

2001) as presynaptic transport packets. To reveal the relationship of these vesicles to 

other organelles we used electron tomography to reconstruct neuronal somata (Fig. 21 B). 

This analysis demonstrated that PLVs form a closely packed perinuclear array (Fig. 21 B), 

consistent with recent light microscopy data (Dresbach et al., 2006; Maas et al., 2012), 

that was distinct from other organelles such as SVs (Fig. 21 A-C), the endoplasmic 
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reticulum or mitochondria and bore no resemblance to the Golgi complex or to Golgi-

derived dense core vesicles. 

  

PLV accumulation at the VNC correlates with BRP and VGlut 
immunoreactivity 

On one hand immunofluorescence light microscopy had revealed that presynaptic 

proteins like VGlut, BRP and Syt-1 accumulated at VNC in absence of Arl8. On the other 

hand EM revealed that there were vesicles of a defined size accumulating in the same 

region. What we wanted to know next is, are BRP and Syt-1 sitting on these vesicles and 

therefore we have identified the cargo that transports them? Or on the contrary, BRP 

accumulates at the VNC but not really on the vesicles we observe with EM, but 

elsewhere? The second hypothesis would mean Arl8 is transporting the vesicles and also 

BRP, but not together. The first hypothesis would mean that BRP is transported in a 

membranous cargo, that is 70 nm on average in diameter and it would imply PLVs are the 

long sought-after axonal transport packets for assembly of the presynapse. 
 

To test that, we turned to correlative light and electron microscopy (CLEM) to 

characterize the organelles at the molecular and ultrastructural level at the same time. 

CLEM combines the advantages of light microscopy (LM) with the advantages of electron 

microscopy. It allows seeing biological processes that are easier to identify with LM 

without losing resolution that can be obtained with the higher resolution EM provides. In 

other words, it combines the two strengths of each technique. 

 

We therefore did CLEM in VNC samples of arl8 mutant larvae and checked 

whether our synaptic proteins VGlut and BRP were accumulating together with PLVs. As 

expected we found that BRP and VGlut immunoreactivity was enriched in the areas of the 

motoneuron cell body where there was an accumulation of vesicles, as it can be seen in 

(Fig. 22 A-B). 
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Fig. 22 | Correlative Light Electron Microscopy of arl8 mutant VNC. 

(A) Light microscopy image of semithin frozen section through the arl8 mutant brain 

stained for BRP ("last- 200 antibody", 488) and Hoechst, and corresponding electron 

micrograph of ultrathin section. (B) Inserts i, ii, iii show blow-ups of the aligned light and 

electron microscopy images. Note that intense green BRP signal is associated with PLVs 

found in somata of neurons. Scale bars for light and EM: 50 µm, for second row scale bar 

merge

A

3.

BRP VGlut   
2.

1.

B



Results 
 

 
 

106 

is 5 µm and for the third is 0.5 µm. EM embedding and image acquisition was performed 

in collaboration with Dr. Dmytro Puchov and Svea Hohensee. 

 

 

To further test our hypothesis we performed immunogold labeling in EM samples. 

Briefly, 10 nm diameter gold particles were coupled to a secondary antibody that 

recognized the epitope, and they could be visualized as very dense punctae in the 

ultrathin Tokuyasu sections (Tokuyasu, 1973). Again we stained both the VNC of control 

and arl8 mutant larvae. In both genotypes we could see specific presence of gold particles 

in the same area where vesicles were found. This was best seen in the arl8 mutant VNC 

because of the prominent accumulation of vesicles and because there were more BRP 

accumulating too (Fig. 23 A). As it can be seen in (Fig. 23 A) gold particles labeling BRP 

and Syt-1 located preferentially to the area where also vesicles accumulated. As we were 

expecting, the BRP accumulations in neuronal cell bodies correlated with the 

accumulation of morphologically identifiable organelles in arl8 mutant neurons at the 

ultrastructural level. 

 

 

 
Fig. 23 | Immunogold on Tokuyasu samples reveals BRP and Syt-1 in PLVs. 

(A-B) PLVs contain SV markers and are associated with AZ proteins. (A) Frozen ultrathin 

sections according to Tokuyasu from neuronal somata of WT and arl8 mutant larval brains 

stained for BRP or synaptotagmin 1 (Syt-1) and decorated with 10 nm immunogold 

particles. Scale bar, 100 nm (top), 20 nm (bottom). (B) Multicolor gSTED microscopy of 

immunolabelled ultrathin sections (150 nm) from neuronal somata of WT and arl8 mutant 
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larval brains stained for HRP (blue as a membrane marker), BRP (green), and 

synaptotagmin 1 (Syt-1, magenta). DAPI stained nuclei are shown in white. BRP is 

directly apposed to Syt-1- containing PLVs. Scale bar 100 nm. Tokuyasu samples were 

done in collaboration with Dr. Dmytro Puchov and Dr. Martin Lehamn acquired the STED 

images on the ultrathin sections. 

 

 

Moreover, we also performed dual-color super-resolution imaging with gSTED 

microscopy in the ultrathin preparations and we could see how Synaptotagmin-1 

containing vesicles are clustered around BRP punctae (Fig. 23 B). 

 

All these data taken together further corroborate the first hypothesis of BRP and 

Syt-1 being transported together in the 70 nm diameter cargo vesicles that could be seen 

using EM resolution. These cargoes are transported by Arl8 and share resemblances with 

lysosomes and hence we named them Presynaptic Lysosome-derived Vesicles. 
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Discussion 
 

In the first part of this thesis we presented the tools we established to represent 

and analyze axonal transport using kymographs. These tools have been useful to 

quantitatively characterize Neurexin axonal transport in wild type and aplip-1 mutant 

background. At the same time, they helped us to visualize processes related to the 

recycling pathways in neurons, and through them, we discovered a new and unexpected 

role of lysosomes for synaptic biogenesis. 

 

The collective data presented in the second part of my thesis based on live 

imaging of Drosophila larvae, genetic analysis, electrophysiology as well as super-

resolution light and electron microscopy revealed an unexpected role for a new lysosomal 

related organelle. We have identified and characterized a new type of vesicle that 

transports precursors of SV and AZ proteins and that is needed for synaptic biogenesis. 

This new cargo named Presynaptic Lysosome-derived Vesicle (PLV) has been identified 

both in Drosophila larvae and in developing hippocampal neurons of mice, indicating that 

this is an ancestral trait of neuronal axonal transport and that the mechanism has been 

evolutionary conserved across the animal kingdom. All our data presented here suggest 

that PLVs represent the long sought-after precursor organelles for presynaptic biogenesis 

(Ahmari et al., 2000).  

 

Analysis of Neurexin axonal transport with Kymographs 
 

The long-range transport of Neurexin from the cell soma is required for proper 

active zone formation and maturation (Owald et al., 2010, 2012; Muhammad et al., 2015). 

In the present work we have established the tools to quantify axonal transport and we 

have compared axonal transport of Neurexin in wild type versus the aplip-1 mutant, known 

for displaying axonal aggregates of synaptic proteins (Siebert et al., 2015). Our results 

indicate that Aplip-1 is needed for proper processivity of both anterograde and retrograde 

transport of Neurexin, and we have found that aplip-1 mutants display more stationary 

cargoes. These findings are in accordance with previous published works for the Aplip-1 

orthologue in mammals, JIP-1, which has been found to interact with both Kinesin and 

Dynein (Fu and Holzbaur, 2013). Future experiments could use the tools here presented 

to analyze other axonal transport mutants and/or try to understand better the connection 

between regulation of Kinesin and Dynein and defects in synapse assembly or synaptic 

function. 
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Autophagosome formation and acidification at the synaptic terminals 
 

Recent publications have highlighted the link between autophagy and synaptic 

maintenance and homeostasis (Gupta et al., 2013; Liang and Sigrist, 2018). In this regard, 

we tried to gain understanding on the process of autophagy at the synaptic terminal of 

Drosophila motoneurons by in vivo characterizing proteins of the lysosomal-

autophagosomal pathway. 

 

Image acquisition over long periods of time was able to report for de novo 

formation of autophagosomes at synapses. Interestingly, autophagosomes not only form 

at NMJ but they also undergo maturation. Indeed we were able to see how acidic 

lysosomes arrive to the synaptic terminal too. Co-expression of lysosomal markers with 

autophagosomal proteins could reveal fusion events between them. Indeed we were able 

to show how lysosomes enter the synaptic terminal and move anterogradelly until fusing 

with an autophagosome.  Furthermore, using a double-labeled probe for the 

autophagosomal protein ATG8 we were able to evaluate the acidification of these 

autophagosomes. Acidification is one of the key steps for autophagosome maturation and 

protein degradation, and depends on lysosomal fusion (Maday et al., 2012; Moreau et al., 

2011). How degradation is regulated in neurons is under discussion  (Jin et al., 2007). 

With the double tagged ATG8 we were able to show that after lysosome fusion 

autophagosomes acidify in a time window of 30-40 minutes (reported by a decrease in 

GFP/RFP ratio). 

 

These important findings motivate for future experiments. It would be interesting to 

see how autophagosome de novo formation as well as maturation are affected in 

previously described mutants of the degradation pathway like Spinster, Lamp1 or 

Sytanxin-17 (the SNARE protein for lysosome autophagosome fusion). This could as well 

extend to Aplip-1, or it could be compared in different dietary conditions, as well as used 

as an assay for drug regulation of the process. 

 

Definition of a new cargo 
 

Presynaptic assembly requires anterograde axonal transport of synaptic proteins 

from the cell soma of neurons to the synaptic terminals (Klassen et al., 2010). This 

transport is a challenge for neurons because the distance until the synaptic terminal is up 

to two or three dimensions greater than usual cellular transport. Moreover, the synapse is 

a highly specialized structure that requires specific synaptic proteins like BRP or Syt-1 as 
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well as ubiquitious organelles like mitochondria. How this processed is organized and 

regulated is still fairly poorly understood.  

 

While actually trying to comprehend better how AZ proteins are recycled via 

degradation pathways, to our surprise we found anterograde BRP co-transported with 

markers of the lysosomal pathway. Lamp1 and Spinster proved to be on the same 

organelle as BRP is. Investigating further into organelle identity we found that Syt-1, the 

SV marker, was transported together with BRP and it could be observed also with the 

lysosomal markers, demonstrating that AZ, SV and lysosomal proteins are to be found in 

a previously not described cargo we named PLV. 

 

Many of the most important players of the presynapse scaffold have been 

identified in the last years. All these proteins accomplish fine tune synapse transmission 

by interacting with each other, and the stoichiometry of these proteins is fundamental for 

proper function. How exactly this stoichiometry is achieved, remains unclear. Recent 

studies have shed light on it at the synapse level. For example, Syd-1 has been shown to 

stabilize Neurexin at the presynaptic NMJ to control synapse formation. Syd-1 mutants 

have smaller terminals with fewer but bigger AZs. On the other hand, negative regulators 

of AZ assembly have been as well described. Spinophilin can bind to Neurexin C-Terminal 

part and promote its disassembly, in an antagonistic manner to Syd-1. As expected, 

Spinophilin mutants have more but smaller AZs. In this thesis, we show that this process 

can be regulated upstream of it, already before the cargoes can leave the cell soma 

(Muhammad et al., 2015; Owald et al., 2010, 2012). 

 

Previous studies by the group of Prof. Dr. Craig Garner (Maas et al., 2012; Shapira 

et al., 2003; Zhai et al., 2001) suggested that in vertebrates, AZ proteins are transported 

on Dense core vesicles of around 80 nm. These vesicles, named PTV for Piccolo-

Bassoon Transport vesicles, were described to transport Piccolo, Bassoon, ELKS2, 

Syntaxin, Unc13, RIM and N-Cadherin to nascent synapses. Interestingly, PTVs were not 

found to transport SV markers such as Synaptobrevin II, Synaptophysin and 

Synaptotagmin. Furthermore, they could establish that on average, the protein content of 

two or three vesicles would be sufficient to form a new AZ. In this thesis we have shown 

that PLVs share similarities with PTVs, but also found some differences. Similarities are 

that our PLVs are also responsible for transporting Bassoon, as experiments from mice 

hippocampal neurons showed, and transport BRP (ELKS homolog in D. melanogaster). 

PLVs when analyzed from 3D reconstruction from EM, had a 70 nm diameter and we 

observe some of them to have a dense core, some of them not. Our hypothesis is that this 
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difference in density could be related to different stages of maturation, being the denser 

ones the most mature. Differences in electron density may be accounted for by species-

specific differences in protein content between Drosophila and mammalian neurons too. 

Another non-exclusive possibility is that neurons may be able to regulate PLV cargo 

content depending on the developmental stage, the type of synapse, or their physiological 

status (Sigrist and Schmitz, 2011), resulting in pleiomorphic vesicles of similar size, but 

variable AZ and SV cargo protein content. This would allow neurons to adapt presynaptic 

biogenesis to their needs for delivery of AZ, SV, or endocytic protein components. 

However, at this stage, it cannot be completely ruled out that there are other vesicles 

different than PTVs accumulate too. The main difference between PTVs and PLVs is that 

we have described PLVs as organelles related to lysosomes. Our results, although taken 

with caution at the beginning because they were unexpected, could be confirmed with live 

imaging, confocal fixed samples and EM. One could argue that since the insect homolog 

of Bassoon or Piccolo has not been found, talking of PTVs in D. melanogaster is too far 

reaching. However, we have demonstrated by using two distant animal models that the 

core mechanism of PLVs is conserved from insects to mammals. We could show how 

BRP in the fly and Bassoon in mice, are transported together with Lamp1, marker of 

lysosomes. We report too that Arl8, the motor adaptor for lysosomes, co-transports with 

AZ markers in both organisms and it is required for proper AZ protein delivery to the 

synapse. How exactly PLVs relate to PTVs remains to be determined. 

 

Interestingly, other lysosome-related organelles have lately been shown to play a 

role in other biological process a part from degradation. In a recent study, a secretory 

lysosome-related organelle-based mechanism could be identified to mediate lumen 

formation during epithelial tube anastomosis in Drosophila (Caviglia et al., 2016). This 

process shares many similarities with PLVs transport: it depends on MT cytoskeleton and 

motor proteins, it transports membrane and proteins into the plasma membrane, the 

vesicles are related to the recycling pathway and curiously enough there is and Arl 

protein, Arl3, involved. All this suggests that the function of secretory lysosomes in the 

biogenesis of specialized membrane compartments may not be restricted to the nervous 

system but is a wide used mechanism.  

 

PLVs deliver synaptic proteins to the synapse 
 

Our data support the view that the presynapse is made, at least in part, as a pre-

assembled functional unit with its main components, i.e. AZ and SV proteins and possibly 

others (e.g. endocytic proteins), being transported on a common organelle that delivers its 
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content to the presynapse (Ahmari et al., 2000) and, therefore, attest to the notion that 

vesicular transport of presynaptic AZ and SV proteins is mediated by a single type of 

transport organelle, the PLVs. Additionally, using in vivo imaging, we have been able to 

show how PLVs arrive to the synapse both in mice and flies. Interestingly, PLVs are 

delivered in a similar manner than DCV had previously been described (Wong et al., 

2012), indeed PLVs arrive to the synaptic terminal and probably, after finding an 

appropriate site for unloading cargo or fusing, they remain static for some time. How this 

site is determined is still not known. (Wong et al., 2012) proposed a system of sporadic 

capture of cargoes during transport, a mechanism that is completely compatible with our 

findings, but sill poorly understood. Since PLVs (and DVC) have to deactivate the Kinesin 

motors to remain static, the process is likely to be orchestrated via motor adaptors or via a 

mechanism similar to the tug of war, where Kinesin and Dyein would reach an equilibrium 

that allows the motor to stop its motion and remain quiet (Müller et al., 2008). 

 

It is noteworthy that a fraction of presynaptic proteins still arrives at the arl8 mutant 

terminal, despite the extraordinary reduction of axonal transport. One likely explanation 

lies in the complexity and redundancy of axonal transport mechanisms in neurons (Füger 

et al., 2012). Using super resolution STED microscopy we could resolve the AZ 

ultrastructure and we observe that these remaining AZs in arl8 mutants look wild type. 

This is the case when Arl8 is overexpressed as well. Taken together, these results 

indicate that Arl8 plays a role in the transport of AZ material but not at the level of 

cytomatrix assembly. This result is not definitive, as so far we have only looked at BRP 

ring diameter as a measure of AZ integrity. It could well be that other factors like RBP or 

Unc13-A are affected. A more detailed analysis using two color STED to visualize on the 

same sample different AZ markers will hopefully elucidate these unanswered questions. 

 

 The relative scarcity of arriving PLVs at the terminal makes it hard to study cargo 

delivery at comparable level to the studies that have used ANF as a marker for DCV. 

However, it will be really interesting to see to what extend PLVs delivery behaves similar 

to DCV, and even more interesting would be to see how the remaining AZ components 

arrive to the synapse in absence of Arl8. Do they follow same rules, or since they are 

transported differently they also behave differently? It could well be that Arl8, as a motor 

adaptor, plays a role in delivery too, or maybe it does not. Further experiments are 

required to resolve this question. Spinning disk confocal microscopy, compared to the 

standard confocal microscopy used in this work, could help getting closer to these 

questions. Spinning disk microscopy allows for higher temporal resolution and higher 

sensitivity and is therefore very suitable for in vivo imaging (Su et al., 2015).   
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Arl8 and HOPS, and other regulators 
 

We have shown that anterograde axonal transport of PLVs requires the Ras-

related GTPase Arl8, which may couple PLVs to kinesin motor proteins. Consistent with 

this model we find have investigated the relationship between Arl8 and the HOPS 

complex. The HOPS complex has been reported to mediate lysosome fusion (Balderhaar 

and Ungermann, 2013; Jiang et al., 2014; Takáts et al., 2014) and it is known that this 

Arl8 controls the assembly of HOPS into lysosomes (Khatter et al., 2015). The HOPS 

complex is a heterohexamer, however which role of every subunit plays is only partially 

understood. To compare the effects of the HOPS complex with these from the arl8 

phenotype we attempted to deplete HOPS from motoneurons. Unfortunately we could 

only find a functional RNAi line against one of the subunits, VPS39, and not for the rest. 

Using specific depletion the VPS39 subunit of the HOPS complex, we obtained a 

comparable result than when depleting Arl8 with the same technique. Not surprisingly, 

specific presynaptic down-regulation of Arl8 by RNAi also causes defective synaptic 

biogenesis and downregulation of VPS39 leads to a similar phenotype. This further 

confirmed the tight relationship between lysosomes and PTVs. Coming experiments could 

investigate the effects of depletion of the other subunits, via generation of functional RNAi 

lines or a mutant line. Most important would be to characterize the phenotype of the 

VPS41 subunit, first because it is solely found in the HOPS complex (other subunits might 

be found on other complexes) and secondly because it is the subunit that directly binds to 

Arl8 (Khatter et al., 2015). 

 

PLVs axonal transport, a mechanism that can be tuned by adjusting 
Arl8 levels 

 

We have seen that axonal transport is a key process for neuronal survival as well 

as proper function. It is remarkable the wide spectra of phenotypes one encounters when 

analyzing related mutants. On one side we have the tremendous effects of khc or imac 

mutants, which result in embryonic lethality. Following, we have the arl8 phenotype, in 

which lethality is delayed until third instar larvae. arl8 mutants have severely reduced 

synaptic terminals; very thin and without the typical boutons. Only few active zone are left, 

and although the individual remaining AZs seem to be healthy for the indicators analyzed 

(BRP ring diameter and SV/bouton) the overall synaptic transmission is seriously 

declined. After seeing that when depleting Arl8 levels by RNAi we obtained a milder 

phenotype, we decided to challenge the system by boosting Arl8 levels. Certainly, RNAi is 
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not as effective as a null mutant, and whereas the arl8 allele produces no Arl8 protein at 

all, the Arl8 RNAi flies can still translate some leaking mRNA into protein, which explains 

the milder phenotype. Failure of axonal transport is a key factor in the development and 

progression of neurodegenerative disorders such as Alzheimer’s disease (Julien and 

Millecamps, 2013; Vicario-Orri et al., 2015), therefore our findings that Arl8 

overexpression can upregulate axonal transport are of great significance. Our results 

show how gain of Arl8 function is sufficient to increase the delivery of presynaptic 

components and facilitate evoked neurotransmission. As we have shown, this result was 

achieved without modifying the ultrastructure of single AZ. For future experiments it will be 

interesting to investigate in more detail if Arl8 overexpression can rescue synaptic defects 

caused by other mutations. First candidates could be genes that have been identified to 

have axonal transport defects like aplip1 or srpk79D (Siebert et al., 2015), and see the 

resulting phenotype of combining these mutants with Arl8 overexpression. 

 

Unpublished data of ongoing experiments in the lab, suggest that proteins like 

Aplip1 have a phenotype beyond regulators of transport and play a role in synaptic 

plasticity and learning. Therefore future experiments could assay for plasticity phenotypes 

of Arl8 overexpression in combination with aplip1 or other proteins that can tune 

neurotransmitter release like Unc13A and Unc13-B. 

 

Accumulation of cargoes at the VNC 
 

One of the most satisfactory results of this work was to be able to find in the cell 

bodies the PLVs components that were missing at the synapse (BRP and Bassoon and 

SV markers). It was not obvious that this would be the case. Supporting evidence was the 

fact that we could observe hardly any cargo moving in arl8 mutant background. It seemed 

plausible that the terminals did not obtain normal levels of presynaptic components 

because they failed to leave the VNC in the first place and were stalled there, but 

alternative hypothesis were as valid. One option could be that PLVs are not produced at 

all, or it could be that after not being shipped out they are recycled and degraded. With 

EM analysis of motoneuron cell bodies we could confirm that not only the proteins were 

stalled but the whole organelle, PLVs, were retained in the cell soma in big numbers. To 

confirm that the vesicles found with EM and the protein accumulation detected with 

immunohistochemistry were the same entity we performed two independent approaches.  

 

First CLEM confirmed that the regions were the PLVs were accumulating were 

positive for SV and AZ markers. Second, frozen ultrathin sections were decorated with 
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gold particles identifying BRP and Syt-1 on PLVs, following the Tokuyasu protocol 

(Tokuyasu, 1973). Previous attempts at identifying AZ material together with cargoes 

using these techniques were not very successful in our hands because of the low 

abundance of PLVs in the cell somas of WT flies. Opportunely, the arl8 phenotype with 

the huge accumulation of PLVs at the soma was the ideal situation to proof the power of 

the CLEM and Tokuyasu approaches. We hope that our results, and the capacity to use 

arl8 mutants as controls will bring insightful answers to other subjects where the 

techniques could be useful. 

 

Another most remarkable result of the VNC phenotype is the wide range of 

proteins that we could see to accumulate. From active zone marker Bruchpilot, periactive 

zone scaffolding protein Dap160 or the SV constituent CSP. One objection that can be 

expected is to say that our Arl8 phenotype is not a result of PLVs being stalled but is more 

of a general axonal transport deficit. Indeed Arl8 has been reported to activate unc-104 

(Klassen et al., 2010), and is also needed for the transport of degradative lysosomes. 

Importantly, we argue that the phenotype here reported is due to PLVs and not a 

secondary effect of unc-104 malfunction or lower lysosomal function. Evidence for that is 

the fact that we could not observe any accumulation of mitochondria at the VNC in our EM 

samples, suggesting that a gross morphological defect was not the probable cause of the 

observed phenomenon. Ongoing experiments are trying to confirm that mitochondria 

transport is unaffected by in vivo analyzing transport of mitochondria in arl8 mutant axons 

and comparing it to wild type. 

 

To conclude, we propose that PLVs represent a specialized form of neuronal 

secretory lysosomal vesicles (Luzio et al., 2014; Marks et al., 2013) similar to those found 

in other cell types such as hematopoietic cells and melanocytes, where they mediate the 

secretion of chemical signals or enzymes or promote lipid turnover and facilitate 

membrane growth and repair (Blott and Griffiths, 2002; Luzio et al., 2007; Reddy et al., 

2001; Setty et al., 2008). How the PLV-based presynaptic biogenesis pathway is 

segregated from 1) the conventional lysosomal pathway for protein and lipid degradation 

and 2) other pathways for axonal transport, is an open question. Future studies will be 

needed to address these open questions. 
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Appendix 

Protocol for the Fiji macros “Kymograph” and “Velocities” 
This protocol explains step by step the process of obtaining a kymograph and 

acqurining kinetic parameters of the trajectories plotted. For an introduction on 

kymographs, for what are they useful, and the concept behind using htem, see the 

chapter “Results - Kymographs as a tool to quantify axonal transport”. 

 

Part 1: The code 

 
//MyKymo v1.7 was written by Ulises Rey (AG Sigrist) as a tool for his PhD thesis. 
//Based on a plugin by J. Rietdorf (http://imagej.net/Multi_Kymograph) 
 
 
//define variables period and pixelsize. below are the ones by defect 
var pixelsize=0.1 
var period=0.340 
var Direction="Anterograde" 
 
------------------------------------------------------------------------------------------------- 
function kymograph() { 
 
 instack=getTitle(); 
 run("Set Slice...", "slice="+1); 
 plotdata=getProfile(); 
 width=lengthOf(plotdata); 
 height=nSlices; 
 newimg="name=Kymograph width="+width+" height="+height+" slices=1"; 
 run("New...", newimg);kymo=getTitle(); 
 selectImage(instack); 
 
 setBatchMode(true); 
 for(j=1; j<nSlices+1; j++) { 
  run("Restore Selection"); 
  plotdata=getProfile(); 
  selectImage(kymo); 
  for(i=0; i<width; i++) {    
   setPixel(i,j-1,round(plotdata[i])); 
  } 
  selectImage(instack); 
  run("Next Slice [>]"); 
 } 
 selectImage(kymo); 
 setBatchMode(false); 
} 
------------------------------------------------------------------------------------------------- 
macro 'Kymograph Action Tool - C000T1d13KT9d13y' { 
 
 kymograph();  
} 
------------------------------------------------------------------------------------------------- 
macro 'Kymograph - [c]' { 
 
 kymograph();  
} 
------------------------------------------------------------------------------------------------- 
function velocities(mode) { 
 
print ("Vesicle ID"+"\t"+"Total time (s)"+"\t"+"average speed"); 
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roiManager("Deselect"); 
// for every ROI 
for (n=0; n<roiManager("count"); n++){ 
 
 
 //print(roiManager("count")); 
 sum_dx=0; 
 sum_dt=0;  
 
//print("ROI n is "+n); 
selectWindow("ROI Manager"); 
roiManager("select", n); 
getSelectionCoordinates(x, y); 
 //Array.print(x); 
 //Array.print(y); 
roiManager("Rename", "ROI "+n); 
 
//print("   roi is "+Roi.getName); 
 
 //for every point in a single ROI 
 for (i=0; i<x.length-1; i++){ 
 //print("point number"+i); 
 
  //sets distance 
  //print("Direction is "+Direction); 
  if(Direction=="Retrograde"){ 
   dx_now=(x[i]-x[i+1]); 
  } 
 
  if(Direction=="Anterograde"){ 
   dx_now=(x[i+1]-x[i]); 
  } 
 
  sum_dx=sum_dx+dx_now; 
 
  //sets time 
  dt_now=abs(y[i+1]-y[i]); 
   if (dt_now==0)dt_now=1; 
  sum_dt=sum_dt+dt_now; 
 
   
  //if (mode=='Kymograph' ){ 
 
   //print ("nresults"+nResults); 
    
   nrow=nResults; 
   setResult("vesicle ID", nrow, Roi.getName); 
   setResult("dx now", nrow, dx_now); 
   setResult("dt now", nrow, dt_now); 
   setResult("actual speed", nrow, (dx_now/dt_now)); 
   setResult("dx sum", nrow, sum_dx); 
   setResult("dt sum", nrow, sum_dt); 
   setResult("average speed", nrow, (sum_dx/sum_dt)); 
   //convertion 
   setResult("period (s)", nrow, period); 
   setResult("frequency (fps)", nrow, (1/period)); 
   setResult("pixel size (microm)", nrow, pixelsize); 
   //real units 
   setResult("dx now (microm)", nrow, dx_now*pixelsize); 
   setResult("dt now (s)", nrow, dt_now*period); 
   setResult("actual speed (microm/s)", nrow, 

((dx_now*pixelsize)/(dt_now*period))); 
   setResult("dx sum (microm)", nrow, sum_dx*pixelsize); 
   setResult("dt sum (s)", nrow, sum_dt*period); 
   setResult("average speed (microm/s)", nrow, 

((sum_dx*pixelsize)/(sum_dt*period))); 
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  //} 
 } 
 print (Roi.getName+"\t"+sum_dt*period+"\t"+((sum_dx*pixelsize)/(sum_dt*period))); 
 updateResults(); 
} 
print ("\t"); 
print ("ROIs:\t"+"\tTime:\t"+"\tFrequency:\t"); 
print (roiManager("count")+"\t"+(getWidth()*period)+"\t"+roiManager("count")/(getWidth()*period)); 
} 
 
------------------------------------------------------------------------------------------------- 
macro 'Velocities Action Tool - Cd00T1d13VT9d13' { 
//requires a line selection. 
//reads the selection coordinates. 
//outputs to result table: y total, x total, x actual, speed actual, speed average. 
 
 velocities('Kymograph'); 
//add saveAs("Results", "/Directory/Results.csv"); 
} 
 
------------------------------------------------------------------------------------------------- 
macro 'Velocities  - [v]' { 
//requires a line selection. 
//reads the selection coordinates. 
//outputs to result table: y total, x total, x actual, speed actual, speed average. 
 
 velocities('Kymograph'); 
//add saveAs("Results", "/Directory/Results.csv"); 
 
} 
 
------------------------------------------------------------------------------------------------- 
macro 'Velocities Action Tool Options' { 
  showOptionsDialog() 
} 
 
function showOptionsDialog() { 
  Dialog.create("Kymograph Options"); 
  Dialog.addMessage("Add the values of your recordings:"); 
  Dialog.addNumber("Pixel Size (microm)", pixelsize); 
  Dialog.addNumber("Period (s)", period); 
  Dialog.addChoice("Direction", newArray("Anterograde", "Retrograde"), Direction); 
  Dialog.show(); 
  pixelsize = Dialog.getNumber(); 
  period = Dialog.getNumber(); 
  Direction = Dialog.getChoice(); 
} 
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Part 2: Installing the macros 

 

1. Copy the whole code and save it under a Mykymo v1.7.txt file, under the toolsets 

directory in Fiji (e.g. /Applications/Fiji.app/macros/toolsets) 

2. Open Fiji and load the MyKymo v1.7 macro by clicking on the two red arrows (More 

Tools) and then on MyKymo v1.7 

 
3. Now the Fiji panel looks like this: 

 
4. The first macro (Ky) produces the kymographs and the second (Ve) extracts kinetic 

parameters from trajectories traced on kymographs. 
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Part 3: Plotting a Kymograph 

 

1. Load the data you want to analyze. It should be a multistack recording, the different 

stacks are images of the same region at different time points. The Bio-Formats plug 

in might be helpful for it (https://www.openmicroscopy.org/bio-formats/). 

2. Trace a kymoline on your image, from left to right, by using “straight line” or 

“Segmented line”. 

 
3. If you trace your line from right to left instead, the kymograph will be inverted. Right 

to left is recommended when anterograde particles from your recording are going 

from left to right too. It can be done either way, but take it into account. 

4. The line can be a bit bended if the trajectories are not completely straight. 

5. By double clicking the line tool, you can adjust the width of it. If it is wider it will 

include more data to plot the profile (this is not necessarily good). Best is to adjust it 

to a similar width to your organelle. 

 
6. By plotting the profile (Analyze>Plot profile) of your line you can see your vesicles 

(in this case two). Play with the line width to see how the profiles change 

accordingly. On the left panel the line width was 2, on the right was 20. Notice that 

the Signal to noise (SNR) is higher one the left ~ (150:50) than on the right ~(65:40). 
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After choosing the best width, save your line as a ROI to the ROI manager (press “T”), 

rename it, and save the ROI in your data folder. 

 
7. Now print the Kymograph from the Kymoline by pressing the macro “Ky”. Make sure 

that the active window is your Stack and that the kymoline is there. 

8. A new window will appear with your kymograph 
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9. (Vertical lines are stationary particles) 

10. Save it in your data folder. 

 

 

 

Part 4: Velocities Analysis 

 

1. Open your Kymograph image with Fiji 

2. Right click on the macro “Velocities”. The following panel will open: 

 
3. Introduce the corresponding values. You can find them in your original file. Choose 

which direction you want to analyze trajectories: Anterograde or Retrograde. 

4. Press OK. 
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5. Use the segmented line to trace your trajectories. 

 

 

6. Save every trajectory one by one in your ROI Manager 

7. Save all your ROIs as a single .zip file in your data directory. 

8. Now you can run the “Velocities” macro. Click on it. 

As outputs you get two files. 

The first one is the “Log”: 
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Here colored for clarity. The first column contains the ROIs ID (red), the second one 

contains the total time the trajectory was traced (green) and the third one the average 

speed of that vesicle (blue). 

At the end of the Log file there is the total number of ROIs analyzed in the Kymograph 

(yellow), the total time window of the Kymograph (white) and the Frequency (number of 

ROIs/time)(purple). Save the file. It can be opened in a spreadsheet for further 

analysis. 

 

The second output window contains the results. These consist on the kinetic data for 

every trajectory detailed (See next page). Rows correspond to every segmentation of 

the indicated trajectory. Columns indicate the following: 

• vesicle ID: The ID of the vesicle 

• dx now: Distance in pixels for the specified segment (row) 

• dt now: Time in pixels for the specified segment 

• actual speed: Velocity in pixels for the specified segment 

• dx sum: Accumulated distance for the given vesicle 

• dt sum: Accumulated time for the given vesicle 

• average speed: average speed of the vesicle until that given segment 

• period (s): Period at which the recording was acquired 

• frequency (fps) : Frequency at which the recording was acquired (1/Period) 

• pixel size (microm): Pixel size of the original image in µm 

• dx now (microm): Distance in micrometers for the specified segment (row) 

• dt now (s): Time in seconds for the specified segment 

• actual speed (microm/s): Speed during the specified segment 
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• dx sum (microm): Accumulated distance in micrometers 

• dt sum (s): Accumulted time in seconds until the specified segment 

• average speed (microm/s): Accumulated verage speed until that row. 

 

Notice that changes in direction within a trajectory appear as negative distance and 

therefore negative velocities (for an example see ROI 3, line 17). 

 

9. Save the file in your data folder for further analysis. 

 

10. If you want to analyze the trajectories that moved in the other direction (in this 

example would be retrograde), start again from step 4. 

  



  

 
 

130 

   

 

  
 

 



 
 

 
 

131 

List of abreviations 
a.u. arbitrary units 

ANF Atrial Neuropeptidergic Factor 

Arf ADP ribosylation factors  

Arl Arf-like protein 

ATP Adenosine triphosphate 

AZ Active Zone 

BP Binding Protein 

bp base pairs 

BRP Bruchpilot 

COS cells CV-1 (simian) in Origin and carrying the SV40 genetic material cells 

CREs Cis-regulatory elements 

DCV Dense Core Vesicle 

DHC Dynein Heavy Chain 

DNA Deoxyribonucleic acid 

GA Golgi Apparatus 

GFP Green Fluorescent Protein 

Gie GTPase indispensable for equal segregation of chromosomes 

GST Glutathione S-transferases 

GTP Guanosine triphosphate 

HA Human influenza hemagglutinin 

HOPS Homotypic Fusion and Protein Sorting 

KHC Kinesin Heavy Chain 

KLC Kinesin Light Chain 

NIH National Institute of Health (USA) 

NMJ Neuromuscular Junction 

OE overexpression 

PSD Post Synaptic Density 

RBP Rim Binding Protein 

RFP Red Fluorescent Protein 

RNA Ribonucleic acid 

RNAi RNA interference 

siRNA Small interfering RNA 

SKIP SifA and kinesin-interacting protein 

Syt-1 Synaptotagmin 1 

ToW Tug of War 

Y2H Yeast two hybrid 
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