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1 Introduction

The atmosphere of the earth can be seen as a stratified fluid with height-dependent
variation in density, pressure and temperature. Oftentimes, this stratification is stable,
meaning that denser air masses lie below lighter ones. Such an environment permits
internal gravity waves. The atmosphere is structured in several principal layers. The
lower part consists of the troposphere ranging from the earth’s surface up to around
12km and the stratosphere on top of it to approximately 50km. In the troposphere,
the absolute temperature decreases with height. The stratosphere, in contrast, has a
constant temperature in the lower part and even an increase in temperature in the upper
part. The location where the temperature gradient switches its sign from negative to
non-negative is defined as the tropopause. It is a rather shallow area of 1-2 km depth
where tropospheric and stratospheric air masses mix.

The tropopause plays a key role in the propagation of gravity waves from the tropo-
sphere to the stratosphere. [Birner et al| (2002) and used observational
and reanalysis data to describe the temperature inversion layer in extratropical regions.
|Gettelman et al.| (2011)) conducted an extensive study the extratropical tropopause re-
gion, finding that it constitutes a transport barrier for many trace gases. A recent study
of [Gisinger et al| (2017) includes the observation of the propagation of gravity waves
through the tropopause during the DEEPWAVE-campaign in New Zealand. Once in
the stratosphere, gravity waves can have a major impact on the circulation in the lower
and middle atmosphere by depositing their momentum to the background flow due to
wave-mean flow interaction and wave breaking (Fritts and Alexander] [2003)).

An important characteristic of gravity waves is the ability to transport energy not
only horizontally but vertically. [Eliassen and Palm| (1961]) analysed waves carrying en-
ergy upward and downward in the context of orographically excited gravity waves that
reflect from vertically varying stratification and wind. They used a piecewise-constant
approximation for both stratification and wind and found local solutions which were
matched at the discontinuities of the approximation. This approximation will found the
basis for a large part of the work presented in this thesis.

A similar approach was taken by [Danielsen and Bleck] (T970]) who examined mountain
waves and approximated key atmospheric parameters by piecewise exponential functions.
This method allowed them to solve the governing equations by combinations of Bessel
functions. [Sutherland and Yewchuck| (2004)) attended to the topic again and scrutinised
the phenomenon of wave tunnelling, which describes the energy transport over a finite
layer of decreased, or even vanishing, stratification. They undertook a mathematical




1 Introduction

analysis as well as laboratory experiments to support their findings. [Brown and Suth-|
expanded the theory by allowing for shear flow over an unstratified layer.
Both scenarios were later examined numerically by [Nault and Sutherland] (2007) who
provided numerical solutions for plane wave transmission in arbitrary stratification and
wind. As a specific example, they performed simulations for an atmospheric stratification
and wind profile that was observed over Jan Mayen island.

When speaking of atmospheric gravity waves, one has to keep in mind that they
are usually spatially and temporally confined. One of the first investigations of such
wave packets goes back to [Benney and Newell| (1967), who described wave packets as
superposition of finitely many plane waves. [Grimshaw] (1977) discussed the modulation
of a wave packet when moving through non-homogeneous media. He derived evolution
equations for the wave packet envelope and found it to be moving with the group velocity
in leading order. A very common approximation that is made for gravity wave packets
is the WKB assumption, meaning that the envelope as well as the background is slowly
varying compared to a wavelength. [Achatz et al| (2010) carried out a scale analysis
for the Euler equations and derived leading and first order equations describing the
evolution of WKB gravity wave packets on long time scales that allows the packet to
travel large vertical distances. The derivations were made for small- and large-amplitude
waves. Their findings match very well with the pseudo-incompressible theory developed

by (1989) while they go beyound the regime of validity of other soundproof
models (Boussinesq and anelastic). A complete discussion on the regime of validity for

those atmospheric models can be found in [Klein et al] (2010) and [Klein| (2011)). The
theory was numerically validated by [Rieper et al| (2013a]) and is one of the most general
descriptions of atmospheric internal gravity wave packets. Very recently, [Schlutow et al|
were able to close the modulation equations found in [Achatz et al| (2010) and
derive analytic solutions describing travelling waves in the atmosphere. They are the first
and to the best of the authors’ knowledge only ones to ever find analytical descriptions
of atmospheric gravity waves beyond plane wave solutions.

A difficulty with the handling of gravity waves in numerical weather models is their
large wavelength spectrum. It ranges from a few hundred metres up to several thousands
of kilometres in the horizontal direction. The Integrated Forecast System (IFS) of the
European Centre for Medium-range Weather Forecast (ECMWF') uses a triangular mesh
with 9 km grid size, the ICON model of the German weather service (DWD) is currently
operational with a grid size of 13 km, with an extension down to 6.5 km soon to go live.
Even high resolution regional models, such as COSMO-DE, which runs with a resolution
of 2.8 km are not able to capture the whole gravity wave spectrum. Non-resolved waves
therefore have to be parametrised.

Parametrisations are build on a basic understanding of gravity waves being excited
somewhere in the troposphere, travelling upward, growing in amplitude due to the lower
density and eventually break, dissipating their momentum and energy irreversibly to the
mean flow. One of the tasks of gravity wave parametrisations is to predict when and




where the breaking process happens, but also to predict wave reflection from phenomena
such as a jet stream or a temperature inversion layer.

The aim of this work is to provide a description of gravity waves interacting with
the tropopause. In chapter [2] we will derive the linearised Boussinesq equations from
the Euler equations and give justification for the assumptions we make over the course
of the simplification. After reducing the system down to a single equation, we will
develop a method to solve this equation approximately in chapter [3|in case of a steady
atmosphere. This so-called multi-layer method builds the foundation for the upcoming
chapters. It has the advantage of separating upward and downward propagating waves
in the solution, such that we can compute transmission coefficients, that describe the
ratio of transmitted and incident wave energy, from it. Chapter [4] is concerned with
the inclusion of a non-steady background wind into the multi-layer method. It also
includes an extensive discussion on a term containing the curvature of the background
wind, as this is often neglected in the common literature. We will switch the focus to
the investigation of wave packets in chapter ol With the help of Fourier transform and
a coordinate transformation using the gravity wave dispersion relation, it is possible to
reformulate the governing equation in a way that a modified multi-layer method can be
applied. We use an inverse Fourier transform on the solution to obtain the full spatial and
temporal evolution of a gravity wave packet without any restrictions regarding scaling
or time steps. A numerical validation of the multi-layer method can be found in chapter
[6l There, we compare solutions given by the multi-layer method with solutions found
from simulations of the full Boussinesq equations. In chapter [7, we will investigate
the wave-tropopause interaction from a different angle, using the tools of multiple-scale
analysis. By dividing the waves in three regimes, dependent on the aspect ratio of
vertical wavelength and tropopause depth, we derive dimensionless equations describing
the gravity wave propagation through the tropopause for the respective aspect ratios.
For two of the three regimes, it is possible to derive a leading order solution, while the
remaining regime is hard to analyse from the perspective of multiple-scale analysis. The
thesis will be concluded in chapter [§| with a summary of the results as well as discussion
of open challenges.






2 The Boussinesq equations

This chapter will give a framework for the upcoming investigations. We start with the
dimensional Euler equations, which describe various types of inviscid atmospheric flows.
Since our interest lies in the interaction of gravity waves with the tropopause, we may
use some assumptions to find a set of equations which are easier to handle than the full
Euler equations.

2.1 Euler equations

We consider gravity waves in a two-dimensional reference frame, with one horizontal
(alongside the earth’s surface) and one vertical (perpendicular to the earth’s surface)
axis. The horizontal coordinate will be named x, but in contrast to the usual conven-
tion in three-dimensional atmospheric investigations, it does not need to point in zonal
direction. The two-dimensional setup allows us to neglect the Coriolis force, making the
equations more manageable while still giving a fundamental understanding of gravity
wave dynamics. Moreover, we do not consider external heat sources or viscous effects.
The Euler equations can then be written as (see [Achatz et al (2010))

% + CPQ%Z =0, (2.1a)

DD—Z) + cpﬁaalzj =—g, (2.1b)

%f =0, (2.1c)

%+ﬁﬂ (?;Jr?j) —0. (2.1d)

Here, u denotes the horizontal wind component, w denotes the vertical wind component,
g is the gravitational acceleration and

D 0 0 0

is the material derivative. Further, ¢, is the specific heat capacity of dry air at con-
stant pressure, R denotes the specific gas constant of dry air and their ratio is denoted
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as kK = R/c,. II = (p/po)" indicates the Exner pressure function, which is a non-
dimensional form of the pressure p normalised with a reference value py. The potential
temperature § = T'/II can be seen a rescaling of the absolute temperature T' via the
Exner pressure. Both are linked via the equation of state for an ideal gas

' = B (2.3)

Po

where p denotes the density. Equations and describe the momentum trans-
port. Equation is the first law of thermodynamics for adiabatic processes, some-
times called conservation of internal energy or entropy equation. Equation reflects
the conservation of mass, also referred to as continuity equation.

2.2 Simplifying the Euler equations

The purpose of this work is to investigate the interaction of gravity waves and the tropo-
pause. In order to accomplish this, we make several physically meaningful assumptions
that will allow us to simplify the Euler equations.

1. Since the vertical extent of the tropopause is small compared to atmospheric ref-
erence heights such as density or potential temperature scale height, we use the
Boussinesq approximation. This means we assume that the total density only
varies by a small fraction compared to a constant reference value.

2. We assume a hydrostatic atmosphere, which results in the vertical change in Exner
pressure being inversely proportional to the potential temperature.

3. We are not interested in wave breaking in the first place, but assume that the wave
amplitudes are small. This allows a linearisation of the governing equations.

The first assumption leads to the elimination of the material derivative of the pressure
in the continuity equation (2.1d]). To see this, we have a look at the equation of state
under the Boussinesq approximation:

1-k Rp09

o= PR (2.4)

So basically, the variable density p was replaced by a constant reference value pg. By
rewriting equation (2.1d)), we obtain

D% (111(171_7’””)) + (gz + (ZZ)) =0. (2:5)



2.2 Simplifying the Euler equations

Replacing the pressure according to equation ([2.4)), using the fact that all variables but
0 are constant and reversing the logarithmic derivative, we find

Rpo 1 DO ou ow\
E§D7t+ <a$+82> = 0. (2.6)

But as we know from the entropy equation , the material derivative of the potential
temperature vanishes. As we additionally assume that the potential temperature is not
zero (which is actually not an assumption but a fact for the atmosphere, see International
Standard Atmosphere , we see that the first term in the equation above

vanishes, leaving us with the incompressible continuity equation

ou ow

5t g =0 (2.7)

For the linearisation, we make the following ansatz for the dynamic variables:

w(z, z,t) = u(z) + ' (z, 2, t), (2.8a)
w(z,2,t) = w'(z, 2,t), (2.8b)
II(x,2,t) = o + I (2) + IT'(z, 2, ). (2.8¢)

Here, Iy is a constant reference state, over-lined variables correspond to background
values, which are only height-dependent and the primed variables are small perturba-
tions that describe the wave movement. From the equation of state , we obtain
a relation between density, potential temperature and Exner pressure. The Boussinesq
approximation suggests that

0(z,z,t) =0+ 0(2) + 0 (z, 2, 1), (2.9)

where the deviation 8 is small compared to the reference value 6y. The assumption of a
hydrostatic background is then reflected in the equation

di1
CPGOE = —g. (210)

We insert the ansatz (2.8)) into the Euler equations (2.1). Using the incompressible
mass conservation (2.7) and neglecting products that include at least two of the primed
variables as they are considered too small to influence the dynamic, we obtain

o’ o’ ,du 0\ oI’
— +u— — 14— = 2.11
e +ua$+wdz~l—cp00< +00> o 0, (2.11a)
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ow’ ow’ 0\ dIT 0\ oI drl
U— Op(14+ — ) — Op {14+ — | — 0 — =— 2.11b
ot T or +Cp0< +90> & +Cp“< +90> 9. ol =9 (21b)
06’ 00 ,df
— 4+ u— — = 2.11
8t+u8m+wdz 0 (2.11c)
ou  ouw
= —0. 2.11d
Ox + 0z 0 ( )
By what we said earlier, the deviations of potential temperature are small, hence we
approximate B
(1 + 0) =~ 1. (2.12)
to
Using additionally the hydrostatic balance (2.10]), we obtain the system
ou’ ou’ ,du oIr’
— +u— — Op— =0 2.13
ot +u8x+wdz+cp00x ’ (2.132)
ow’ ow’ o’ gb’
— +u—=— Op— —=—=0 2.13b
at “Vor T T e (2.18b)
06’ 00 ,df
— t+u— — = 2.1
ot +u8x+wdz 0 (2.13¢)
ou'  ouw'
—0. 2.13d
oz 0z ( )

We refer to system ([2.13]) as the linearised Boussinesq equations and they will be the
starting point for further investigations.



3 Transmission and reflection of plane
waves in an atmosphere at rest

In this chapter, we derive a one-step method to find an approximate solution for equation
system in case of non-uniform stratification and steady background wind. From
this solution, we are able to compute a transmission coefficient for plane waves propagat-
ing through a region of non-uniform stratification. The foundation for the transmission
coefficient is the conservation of energy, which will be derived directly from equation
system (3.1).

Except for sections and the work presented in this chapter is based on a
manuscript (Piitz et al] P018]), which has been submitted to a peer-reviewed journal
and we closely follow the structure therein.

3.1 The Taylor-Goldstein equation

We consider an hydrostatic atmosphere at rest, i.e. w = 0. Using this in equation system
(2.13]) and omitting the primes for the sake of clarity, we obtain the following equations:

%% %%%gzo, (3-1a)

%—1: + cpﬁo% - Zf =0, (3.1b)
% + wji =0, (3.1¢)

o b, o1

These equations can be combined to a single equation for one of the variables u, w, 6 or
II. We choose the vertical wind w as our variable of interest and will stick with this
for the remainder of the thesis. Taking the curl of the momentum equations and
, we obtain
Pu 0w g 00 B
9-0t 00t | 8o 0r

0. (3.2)
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Taking the z-derivative of this equation and using the divergence constraint (3.1d}) yields
0w OPw n g 0%0
0220t  0z20t 0y 0x2

For the final step, we take the t-derivative of this equation and plug in the entropy
equation ((3.1c). Together with the definition

=0. (3.3)

_y9df

NZ=Z
00 dz

(3.4)
for the Brunt-Vaisild frequency in the Boussinesq framework, we obtain the following
equation:
0? 0%\ 0%w 0%w
—— 4 — | =5 + N?—— =0. .
(83:2 * 822> oz T o 0 (3:5)

The Brunt-Viisild frequency N is sometimes also called buoyancy frequency. This is
the frequency an air parcel would oscillate with when displaced adiabatically in vertical
direction. In atmospheric science, it is used as a measure for strength of the stratifica-
tion. Higher values, i.e. higher frequencies, lead to faster oscillations, resulting from a
stronger restoring force. Therefore, IV is often referred to as stratification, where stronger
stratification is equivalent to higher values of V.

As we assume a horizontally homogeneous background as well as a time independence,
the equation admits solutions of the form

w(z, z,t) = w(z) exp(i(kx — wt)), (3.6)

where k is the horizontal wavenumber and w is the frequency. By convention, we only
consider w > 0 and discuss the case k > 0, as the case for k < 0 is completely symmetric.
With these assumptions, the horizontal phase velocity w/k points in positive z-direction.
Equation then reduces to an ordinary differential equation (ODE), also known as
the Taylor-Goldstein equation:

2w ., (N2 A

If N depends on z, this equation has no general solution, except for maybe some special
cases. But if V = Ny is constant, a plane wave solution

w(z) = Aexp(—imz) + Bexp(imz) (3.8)

10
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exists, where A and B are constants and

NZ

m = —k w—g -1 (3.9)
is the vertical wavenumber. We choose the complex representation of the solution over,
e.g., a cosine representation, because we can distinguish between upward- and downward
propagating wave components. It basically is a Fourier transform, followed up by a
bandpass filtering so that the real solution corresponds to the real part of the complex

representation. We will see shortly that this representation is very useful.
We can use the fact that plane wave solutions exist in the case of a uniform back-
ground to derive polarization relations for the wave fields u, 6 and IT subject to w. The

divergence equation (3.1d)) yields

u = —%w, (3.10)

which means that the wind amplitudes scale with the wavenumbers and that both are

out of phase by 180 degree (u is maximal where w is minimal and vice versa).
The entropy equation (3.1¢)), divided by 6gg~1, gives

Z - i w. (3.11)

The term % is commonly named as wave or perturbation buoyancy (Achatz et al.l7 |2010 .
It is out of phase with the vertical wind by 270 degree, meaning that one of the fields
attains the extremal values while the other is 0.

Finally, the horizontal momentum equation equation, together with the polar-
isation for u yields

m w
- —w.
k2 Cp90
Like the horizontal wind, the pressure is out of phase by 180 degree with the vertical

wind. This in turn means also that pressure and horizontal wind are in phase, obtaining
their maxima and minima at the same locations.

I = (3.12)

3.2 The multi-layer method

The main focus of this work is the interaction of gravity waves with the tropopause. The
latter is characterised by strong variations in stratification and wind, but also by a short
vertical extent. Moreover, the stratification in the troposphere and stratosphere can
safely assumed to be uniform (although not equal in terms of strength, see for example

[Birner et al] (2002), [Gettelman et al] (2011))). This means that in the troposphere and

11



3 Transmission and reflection of plane waves in an atmosphere at rest

stratosphere, equation (3.7)) can be solved explicitly with solutions of the form (3.8)). To
be precise, we are given a function

Ny, z < 2zp
N(z) = Ne(2), <2<z (3.13)
Nt, z > Z,

where 2, z; are the bottom and top of the tropopause, respectively (or any region of
interest in general), Ny, N, are constant values of N in the bottom and top layer, re-
spectively, and N, is a continuousﬂ function of z with N.(z) = Np and Ng(z;) = Ny.
The tropospheric solution is

w(z) = Apexp(impz) + Bpexp(—impz), (3.14)

with my = —k,4 /sz Jw? — 1. For the stratospheric solution, we replace the subscript b
by t. The solution in the tropopause region remains still unknown.

We are going to make use of the fact that solutions to equation exist for constant
stratification and approximate N, by a piecewise-constant function. For each constant
section, we can find an explicit solution and each local solution needs to be matched
to its neighbours. This will yield an approximate solution of equation , where we
can distinguish upward and downward propagating waves. The ansatz itself goes back to
[Eliassen and Palm| (1961]), but we are the first one to carry out extensive computations as
well as convergence studies. Moreover, we use the fact that we can distinguish the wave
propagation directions to compute a transmission coefficient, which relates the upward
vertical wave energy flux below and above the tropopause region. Although the ansatz
might seem simple, it will turn out that it will deliver accurate solutions that can be
computed very fast.

We start with a technical introduction of the setup. Let J be a positive integer
that, for now, remains fixed. This corresponds to the number of jumps we have in the
piecewise-constant approximation. We define an equidistant grid of J points from z; to
zt, including both end points:

J—1

Zj =z + (2t —2p) for j=1,...,J. (3.15)

This gives rise to a partition into J + 1 layers I; with I; = [zj_1,2;) for j = 2,...,J,
I; the troposphere region z < 2z, and [I;;; the stratosphere region z > z;. We set

LContinuity is not necessary, as the multi-layer method would also work with discontinuous functions,
but we will assume the continuity of N throughout this work.

12
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23 Fb--------

29 —-—-----

Iy [
_________________ ,Z.]_ . _ _ _ _ _ _L_________

> N » N
L L

Figure 3.1: Schematic discretisation of a linearly increasing function for N

N1 = fN(Zl) = Nb,NJ+1 = N(ZJ) = Nt and

N; =N (zﬁ;ﬂ‘l) for j =2, ..., J. (3.16)

This can be understood as a piecewise function
N(z) = Nj,z € I, (3.17)

In each single layer, we are able to state the Taylor-Goldstein equation, but with a
constant value for N. In particular, for the layer I;, the equation writes down as

42w, N?
d;? + k2 <wg - 1) w; = 0. (3.18)

Each layer admits explicit plane wave solutions of the form

wj(z) = Ajexp(im;z) + Bjexp(—im;z), (3.19)

13



3 Transmission and reflection of plane waves in an atmosphere at rest

where
N2

mj = —k wf‘; -1 (3.20)
is the vertical wavenumber and A; and B; are the amplitudes of the upward and down-
ward propagating wave, respectively.

All variables indexed by j € {1,...,J + 1} defined above depend implicitly on the
(fixed) number J, i.e. for J; # Ja, we have N;Jl) #* N;JQ) in general, where the super-
script here should reflect the dependence on the number of levels. To be precise and keep
the variables comparable, one could index them by j/J or add the number of jumps as
a superscript. But apart from being harder tor read, it does not provide further benefit,
since most of the time, we are interested in the variables indexed with 1 and J + 1.
Therefore, stick with the notation above, but keep this dependence in mind.

The solution with indices 1 and J+1 correspond to the tropospheric and stratospheric
solution respectively. We want to investigate waves that are incident on the tropopause
from below with amplitude A;. Since the stratosphere is uniformly stratified, we assume
a radiation condition, i.e. that waves, once reached the stratosphere, do not reflect any
longer but propagate upwardsﬂ Hence, Bj4+1 = 0. Then, Aj4q corresponds to the
transmitted amplitude and B; to the reflected amplitude.

To obtain a global solution, we have to match the local solutions at the interfaces
in a proper way. Physically meaningful conditions require that the vertical wind speed
and the pressure are continuous across the interface (see also [Drazin and Reid| (1981)).
By using the horizontal momentum equation , the divergence constraint ((3.1d])
and the plane wave ansatz , second condition is equivalent to the requirement that
w; = dw,/ dz is continuous across the interfaces. This can also be derived directly from
the polarisation relation , when the factor im is replaced by the vertical derivative.
Together, we can write the matching conditions as

Alw] (z;) =0, (3.21a)
Afw'] (z) =0. (3.21b)
at each layer interface, where
Alfl(z0) = lim f(z0+ ) — lim f(zo +0) (3.22)
6—0~ 6—07t
is called the jump of f at zy. In our setup, this writes as
w;j(zj) = wjt1(z)), (3.23a)

2This is of course only partially true. There could be stratospheric jets or the stratopause which
could cause partial reflection of the upward propagating waves. But since our interest is on the
wave-tropopause interaction, the assumption is justified.

14



3.2 The multi-layer method

wi(zj) = w1 (2). (3.23b)

This turns out to be also mathematically meaningful. Since we construct an approximate
solution for a second order ordinary differential equation, the solution should be at least
continuously differentiable once.

For fixed j € {1,...,J}, a pair of the form (3.23) gives us two equations for the four
unknowns Aj;, B;, Aj11, Bj+1. Hence, we are able to derive a recurrence relation

Aj A,
— M. (D 3.24
<3j+1> ! <3j> ’ (3.24)

where Mj is a 2-by-2 matrix. Its entries can be found by plugging in the local solutions
(3.19) at z; and solving the system for A;;1 and Bji1:

Ajexp(im;zj) + Bjexp(—im;z;)

= Aj+l exp(iijZJ-) + Bj+1 exp(—imj+1zj), (325&)

imjAjexp(im;zj) — im;Bjexp(—im;z;)

= imjp1 Aj1 exp(im12j) — imj1 B exp(—imj412j),  (3.25b)

which simplifies to

m; + mjt1 . mi — Mj41 .
Ajpr = == exp(i(my — myy1)2j)Aj — —-——— exp(—i(m; + mj11)z;) B;
2mj+1 2m]+1
(3.26a)
mp—mig1 mj +mj :
Bjy1 = ——5———exp(i(m; +myjy1)2j)Aj + —-——— exp(—i(m; — mj.1)z;) Bj.
2mj+1 2mj+1

(3.26D)

The coefficients of A; and Bj; are the matrix entries of M;. We can see similarities in
the coefficients. In fact, the matrix has the shape

(9 4
M; = <d;‘ c;k) . (3.27)
where the matrix entries are given by

m; + Mmj41

Cj = T]—H eXp(i(mj — mj+1)zj) (328&)
mj —m;
2mjy1
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3 Transmission and reflection of plane waves in an atmosphere at rest

The entries superscripted with a star only differ from their non-superscripted counter-
parts by the sign in the exponential term. In order to be able to refer to this later, we
define the *-operation which changes the sign of the argument of the exp-function, i.e.,
m; + mjq1 .
¢ = ﬁ exp(—i(mj —mjy1)z;) (3.29a)
my — Myt .
d; = 7327”7'] exp(i(mj + mjt1)z;). (3.29b)
j+1
As long as m; and mjy; are real-valued, this corresponds to the usual complex conjug-
ation. Imaginary values for m occur only when the waves are encountering a region of
decreased stratification, where N < w. We will see later that these cases are harder to
deal with analytically, hence they have to be treated very carefully. A necessary and suf-
ficient condition for M to be the zero matrix is that m; +m;y1 = 0 and mj —m;11 =0
hold at the same time. We will discuss this possibility towards the end of this section.

The determinant of Mj is given by

det(Mj) = CjC}If — djd;If
_ (mi+mia)* (my —myg)?
i, Am3,,
o 4mjmj+1 (330)

Unless either of the values m; or m;11 equals 0, the matrices are well-defined and of full
rank. By definition of m; , it can only be zero if N; = w. If this happens, the
matching between those two layers fail. Mathematically, the reason for this is that in the
case of m; = 0, the solutions of equation differ qualitatively from the case m; # 0,
be it real or imaginary. In the former case, the corresponding first-order system has no
longer two different eigenvalues m; and —m,;, but only one. Therefore the solution is of
the form

w= A+ Bz, (3.31)

i.e. a linear function (the exp-expressions reduce to 1, as the corresponding eigenvalue
is 0).

If N = w only holds at isolated points for the stratification profile, we can mitigate
the problem. If the multi-layer method should hit that point such that for some layer j,
we have N; = w, a simple workaround is to split the layer j into two new layers j + %
and j + % with Nj+% > w and Nj+% < w and match those two layers. We will see later,
that this does not affect the convergence of the method.
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3.3 Transmission coefficient

If N = w holds over an interval [z, z5] with z, # z4, the workaround is as follows:
We split the domain in multiple parts, distinguishing between parts with N # w and
N = w. We use the multi-layer method in the parts with NV # w. For the parts with
N = w, equation has an explicit solution with boundary conditions given by their
adjacent domains. This will, at least, be an approximate solution to equation in the
sense of section but we lose the possibility to keep track of upward and downward
propagating wave components.

So for now, we assume that N = w only holds at isolated points. This also guarantees
that none of the matrices is the zero matrix.

3.3 Transmission coefficient

In order to compute a meaningful transmission coefficient, we need to find a quantity that
is conserved over the whole domain. Since we did not allow for dissipation or background
horizontal wind in the equations, wave energy (sometimes called perturbation energy)
is conserved. The conservation equations can be derived directly from the Boussinesq
equations (3.1). Multiplying u,w,g8/(6N 2) with the first, second and third equation
respectively, adding them and using the divergence constraint , we derive

oF oull 8wﬂ> _o, (3.32)

8t+cp9pb< Ox * 0z

2
_Po ([ 2 2 g0
E = 5 (u +w* + (90]\7) ) (3.33)

and pyp is the background density. The first two terms in the large parenthesis reflect

the kinetic energy while the last term is the potential energy. The physical dimension of
E is J/m?, i.e. energy per unit volume. Therefore, the term energy density is often used
synonymously for . Energy can be derived from this expression by integrating over
a fixed control volume, but for our purposes, it is sufficient to take the energy density.
Since there is no danger of confusion, we stick with the terminology “(wave) energy” for
E. It is also important to note that when using the complex representations for the
wave fields, we have to be careful, since the real solution consists only of the real part
of the full complex representation, so for any of the fields f € {u,w,0}, f? has to be
understood as R(f)2.

Using the polarisation relations (3.10)), (3.11) and (3.12)), equation (3.32)) can be re-

written as
oF

o TV (EE) =0, (3.34)

where

17



3 Transmission and reflection of plane waves in an atmosphere at rest

with the group velocity vector

Ow O Nm? —Nk
&= (5,22 = AL . (3.35)
ok’ Om VEE+m2 VE2+m?2
In our setup, it is convenient to a look at the horizontally averaged energy, since we have

a horizontally periodic domain. The formula for wave energy averaged over a horizontal
wavelength is given by

27 27

ko[ kpy [* 2 2 g9
Ey=— [ " BEdg =" A
(E) /0 T o2, <‘u| +lwl™+ 0N

2
) dz. (3.36)

Assuming constant stratification, we can represent each field f € {u,w,6} as a plane
wave f = Ayexp(i(kx + mz — wt)). Hence, we find that

27

/ - R(f)2dz = / " (R(Af) cos(kz) + S(Ap) sin(kz))? do
0 0
= 2 T7rc:OSQ r)de + < 2 2%51102 z)dr .
_ R(4y) ]ﬁ (k) dz + S(A}) jﬁ (k) d (3.37)

+%(Af)%(Af)/Ok cos(kx) sin(kx) dx

The antiderivatives of cos?(kx), sin?(kx) and sin(kx) cos(kx) are

/cos2(k:c) _ cos(kx) sgllikac) + kx te, (3.38)

/sinQ(ka;) _ —cos(kx) ;1;1(/4:9:) + kx e (3.39)
sin?(kx

/sin(k::c) cos(kx) = 2(:) +c, (3.40)

where c is an arbitrary real constant. Hence, the integral solves to

o T

|7 R de =g+ 30497
0

™

T o= |Af\2% (3.41)

Hence, the horizontally averaged energy can be written as

2
_ P 2 2 g 2
(E) = 1 (|Au| + Ayl +6§N2 | Ag| > (3.42)
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3.3 Transmission coefficient

The amplitudes of u and 6 can be related to w via the polarisation relations (3.10)) and
(13.11)):

2 2 2
g m N
|Aul? + |Awl® + e | Ag|? = (k2 +14 w2> Ay l?. (3.43)

Using the dispersion relation (3.9)), we find that
m2+ k2 N2

So we can finally write the horizontally averaged wave energy as

1 N?
(E) = PLP) ’Awfz- (3.45)

Horizontal averaging of equation (3.34) removes the z-derivative and yields

O(E) , 90y.(E)

= A4
ot 0z 0 (3.46)

where ¢, denotes the second component of the group velocity (3.35)), also called vertical
group velocity. The term ¢, (E) is often named vertical wave energy flux, written as
(F.). Moreover, the average energy at a fixed location does not change in time, since we
assumed the solution to be periodic in time. The remaining term, namely

(F>)
0z

=0 (3.47)

basically says that the vertical mean wave energy flux is constant. When now comparing
the tropospheric and stratospheric vertical wave energy flux, they have to be the same:

<]:z>T = <]:z>S (3.48)

In the last subsection, we assumed no wave travelling downward in the stratosphere, but
the troposphere can have downward travelling waves, namely waves that are (partially)
reflected at the non-uniform stratification. So we have two wave fluxes in the troposphere
with different directions:

<-Fz>T,up - <-Fz>T,down = <-Fz>S,up (349)

Rewriting the equation yields

‘FZ u ‘FZ own
(Fsup | (Fora

<fz>T,up <fz>T,up =L (3.50)
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3 Transmission and reflection of plane waves in an atmosphere at rest

Assuming that (F,)7p is the energy flux caused by the incident wave, the first term
on the left hand side is the ratio of transmitted upward wave energy flux and incident
upward wave energy flux. This is what we will use as transmission coefficient. Likewise,
the second term can be seen as a reflection coefficient. As we can see from the equation,
transmission and reflection coefficient add up to 1, as it should be, since we started the
derivation with a conservation law.

Using the formula for vertical group velocity (3.35) and horizontally averaged wave
energy (3.45)), we can write the vertical wave energy flux as

—N3kmpy
(Fo) = ——— |Au . (3.51)

2wV k2 + m?
By using the dispersion relation (3.9)), solved for w, we obtain that

T pPpmw 2

(F2) = —5 [Aul™ (3.52)
We made the assumption that the density does not vary too much over the tropopause,
so that we stick with the reference value py for both troposphere and stratosphere. Then,
everything except for m and A,, is constant. Therefore, we can compute the transmission
coefficient as )

TC — (Fz)sup _ My |Asi]
<~7:Z>T,up mi \Al|2

In a similar fashion we can define a reflection coefficient, which compares the upward
flux with the downward flux below the tropopause:

(3.53)

B, |?
A

RC = (3.54)
An interesting observation that we obtain from equation (3.53|) is that for a perfect
transmission, i.e. T'C' = 1, the transmitted amplitude scales with the square root of the
wavenumber ratio. In particular, we have

m1
A = Aql. 3.55
| Al \/Tnj+1! 1 (3.55)

So a stronger stratification in the stratosphere results in a larger vertical wavenumber
and therefore in a smaller wave amplitude. This observation will arise again in chapter
[7, where we investigate the governing equations for different scaling regimes.

The next task is to relate A; and Ajyy;. We can state a relation like equation (3.24)
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3.3 Transmission coefficient

for all j =1,...,J and combine them to obtain a chain of equations:
1
AJ+1> <AJ> <AJ—1> <A1>
=M =M;M;_ =...= M; 3.56
<BJ+1 T\ B, T\ By iy T\ B (3:56)
N——
=M

We have to be careful about the order of the matrix multiplication, since it is in general
not commutative. By assumption, Byy; = 0. So we have

Aji1 =M1 AL+ M 2By (3.57)
0= M2,1A1 + M2’2B1, (358)

where Mj,; are the entries of M. This gives two equations for three unknowns. Hence
we can relate any two of the unknowns. Solving the equation system for A; and Ay

shows that 1 IVIRY: det(M)
J+1 1,2M21 e
=My, — 22T o . .

A ( b Mo ) M2 (3:59)
We can compute det(M) with the help of equations (3.56|), (3.30) and the fact that the

determinant is multiplicative:

1

1 1
det(M) = det([] M) = [ det(d) = [] —2- = 1. (3.60)
i=J i=J jog ML

The final formula for the transmission coefficient then reads

2
my
= ) (3.61)
mJj+1 ’M2,2’2

det(M)
Ms 2

mj+i1
TC = —2*
mq

Mathematically, we can see the transmission coefficient as a real-valued function of w
and k, for a fixed profile N. It is composed of multiple functions that depend on w and
k, namely the wavenumbers m; in the respective layers. They are clearly continuous in
k, but the continuity in w is not clear at first sight, since we have a square root involved.
As it is well known, the complex square root function is not unconditionally continuous,
as we have two branches that overlap at one half-axis in the complex plane. We have,
however, only real radicands, restricting the function from R to C. Seeing this as a
function between metric spaces, where R and C are equipped with the usual metrics, it
is possible to show that m; is continuous as a function of w.
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3 Transmission and reflection of plane waves in an atmosphere at rest

Claim 3.3.1. Let k, N; € R be constant. Then, the function

N2
mj: (0,00) = C, w—k w—;—l

is continuous in w for any choice k, N; € R.

Proof. m; is the composition of two functions f and g with

>0
[fR=>C o f(z)= ﬁ’ v=
iv/l]zl, =<0
N2
g:(O,w)%C,w%w—;—l,

(3.62)

(3.63)

(3.64)

such that m;(w) = k- f(g(w)). So if f and g are continuous, so would be m; as a
composition of continuous functions. g is clearly continuous, as h(z) = ?12 is continuous
for the positive real numbers and multiplication and addition of constants do not affect

continuity. For the continuity of f, we use the ¢ — § definition, i.e. we show that

Vog € R:Ve > 036 > 0: Ve € R with |zg— 2| <0 = ||f(x0) — f(z)]| <€

(3.65)

Here, ||z|| = ||z + iy|| = /2% 4+ y? is the usual norm for complex numbers. Note that
|z|| = |z| for x € R. We have to distinguish four cases, since both xg and x can be

positive or negative.

1. 2 > 0,2 >0
Then f(zg), f(z) €R

1 (o) = ()]l = V@0 — vl = \/ (V&0 — V&) = |V/ao — V]

Using that |x — y| < |z + y| for z,y > 0, we obtain

(3.66)

1 (o) = f(2)|? = |vZo — Vz|* < |vE0 — Va| |ae + va| < |zo — 2| < 8. (3.67)

So we choose § = €2.

2. g < 0,2 <0
Then f(xo), f(z) € iR

7o) — @)l = li/Tool — iv/Talll = v/ (/Tool = VIaD)? = |v/Teal - /I

22
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3.3 Transmission coefficient

Using the same inequality as in the first case, we obtain

I ao) = @I = [Vl = el|” < [Vl = Vel [ Vil + VI

< lwol = |2l = |zo — 2] < 6.

3.69)

The last equality follows from the fact that both xg and x are negative. Again, we
can choose § = €.

.x02>0,2<0
Then

. 2 2
I#w0) = F@) = V& = iv/Jall = VV&" + VIl = Vet sl (509
= zo —x = |z — x| < V6.
The last second-to last equality follows from the definition of the absolute value,
the last equality from the fact that the radicand is positive and the last inequality

holds since the square root is strictly monotonically increasing on R>g. So we can
choose § = €2.

.29 <0,2>0
Then

. 2 2
1f (o) = F(@)| = lliv/|zol = vVl = V Vlzol + V2™ = Viwo[ +2 579
=r—x9 = \/|x—:c0| = \/|:c0—$] <.
The same reasoning as in the third case hold at the respective positions. The last

equality comes from the fact that |a — b| = |b — a|. Again, we choose § = €2. This
concludes the proof.

O

Now that we know that all functions m; are continuous in & and w, also arithmetic
operations involving them will yield in continuous functions (as long as we do not divide
by 0). Finally, we take the absolute value, but that does not affect the continuityﬂ
Therefore, if m; # 0 for all j, the transmission coefficient is a continuous function. As
we said at the end of section m; = 0 occurs, when N; = w. If this happens at an
isolated point (which would be (211 + 2;)/2 in this case), we can bypass the problem
without affecting the solution. We will discuss the case N = w closer in subsection [3.6.2

3If anything, it would have even better continuity properties than the complex square root function, as
the absolute value of the square root is continuous in C.
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3 Transmission and reflection of plane waves in an atmosphere at rest

3.4 Proof of convergence and construction of a finite element
solution

The proof of convergence for the multi-layer scheme is based on the theory developed in
(12004)). It is about the convergence of a one-step method for autonomous systems
of ordinary differential equations. By rewriting equation (3.7)) as a first-order system

@l B (—m%@) é) (Z) ’ (3.72)

the multi-layer method can be written down as a one-step method that fulfils the re-
quirements in (12004)). In particular, given a point zg, initial conditions wy, gg and
a step size h, we solve the constant-coefficient system

wMY’ 0 1 w®
() = (oo o) (). 679
due to the initial conditions w(l)(z()) = wo,q(l)(zo) = ¢o) and set w; = wM (29 + h),
q1 = ¢V (2 + h), which are the initial conditions for the next step. Since ¢ = w’ (can
be seen from the first row of the equation system ), the global solution as well as
its derivative are continuous. This corresponds to the matching conditions (3.23)). Due
to , such one-step methods for first-order systems converge to the solution of
the corresponding system. But the one-step method from equation is equivalent
to the multi-layer method, as the eigenvalues of the matrix are +im(zg + %) and the
solution is a linear combination of the exponentials of the eigenvalues, which is exactly
the same as for the multi-layer method.
To see how a solution to equation is actually constructed from this method, we
will have a look at the following case study. We show the results for equation ,
where N was taken to be a linearly increasing profile

Nb7 z < Zzp
N(z) = 4N+ 22N = Ny), 2 <2< 2 (3.74)
Ny, z < 2.

The horizontal wavelength is A\, = 0.54, with A, = z; — 2, and the frequency is w =
0.6Np, which results in a vertical wavelength in the bottom layer of A,; = 0.375A..
We obtain a reference solution by direct numerical integration of equation with the
data we just mentioned. The numerical scheme we use is the MATLAB built-in integrator
ode45, which is based on a fourth-order explicit Runge-Kutta scheme.

To construct the solution with the multi-layer approach, we take the same steps as
with computing the transmission coefficient. Let J be the number of jumps, i.e., we
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3.4 Proof of convergence and construction of a finite element solution

Comparison numeric and multi-layer method, J=8

Troposphere Tropopause Stratosphere
z

Comparison numeric and multi-layer method, J=16

Troposphere - Tr;popause Stratosphere
z

Comparison numeric and multi-layer method, J=64

Troposphere Tropopause Stratosphere
Z

Figure 3.2: Comparison between the numerical solution of equation and the solu-
tion obtained by using the multi-layer method for the linearly increasing stratification
profile . The solid red curve corresponds to the multi-layer solution, the dashed
blue curve to the numeric solution. The vertical dashed black lines indicate the begin-
ning and the end of the tropopause. The boundary conditions for the different methods
were chosen in a way that the solutions match across the uppermost (here: rightmost)
layer.

25



3 Transmission and reflection of plane waves in an atmosphere at rest

have J + 1 layers of constant stratification. For each layer, the equation to solve is
. We already know that we have plane wave solutions, given by equation .
The amplitudes A; and B; can then be computed via the matching conditions (|3.24)
and given boundary data for Ay and Bji1. We test the setup again for boundary
data with a wave incident from below, represented by A; and no downward travelling
wave in the uppermost layer, that means Byy; = 0. Instead of assuming the amplitude
of the incident wave, we can as well assume the amplitude of the transmitted wave,
which is Ayy1. Since the transmission coefficient does not depend on the amplitude, we
can choose any non-zero value for A ;1. In order to obtain comparable results, we must
translate the boundary conditions we put into the numerical solver into an expression for
the multi-layer method. Since the Taylor-Goldstein equation is a second-order equation,
it takes boundary conditions of the form w(zp) and w’(zp), where z is either the top or
the bottom of the integration domain. Here we chose the domain top since we already
know that there is only an upward travelling wave. Without loss of generality, we set

w(zp) = 1, (3.75a)
w'(z9) = 0. (3.75b)

Since the stratification in the uppermost layer is constant, we know that an analytical
solution exists and that it is a plane wave. Hence the wave amplitude of the numerical
solution equals 1 in this layer, since the point 2y is a maximum point.

With the use of Euler’s formula, we can rewrite the multi-layer solution in the upper-
most layer (which coincides with the exact solution):

wit1(z) = R(Ajp1exp(imy12)) = R(Ajp1) cos(myr12)—(Agpr) sin(myyi2). (3.76)

By using the initial conditions (3.75)), we obtain a linear equation system with two
equations for the real and imaginary part of Ajyq:

1=R(Ajy1)cos(myi120) — S(Ajy1)sin(myi120), (3.77a)
0=—myr1R(Asq1)sin(myr120) — myp1S(Agi1) cos(myy120)- (3.77b)

Solving this system gives us

R(Ajs1) = cos(myi120), (3.78a)
I(Ajs1) = —sin(myi120)- (3.78b)

These are the boundary conditions for the multi-layer method. It is easy to check that

‘AJ_H‘ = \/§R(AJ+1)2 + %(AJ_H)Q = \/COS(mJ+1ZO)2 + Sin(ﬂ’LJ+1ZO)2 = 1, (3.79)

which matches the wave amplitude of the numerical solution.
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3.5 Limit approach

The number of jumps were chosen to be J = 8,16 and 64 for the multi-layer solution.
The results can be seen in figure 3.2 Qualitatively, we can say that the multi-layer
solution converges to the one obtained by direct numerical integration. By looking at
the maximum absolute error

max |Wnum (2) — wimi(2)], (3.80)

we find values 3.29 - 1071,2.89 - 1072 and 5.81 - 10~ for J = 8, 16, 64, respectively. A
more detailed analysis for different wavelength, frequencies and number of layers yield
quadratic decrease of the error, at least for an appropriately large number of layers. This
is one order better than what the proof of convergence order in gives, but as
the author there uses the approximate values at a grid point and we use the value in the
middle between two points. It is suggested there that this should yield a convergence
order of 2.

It is important to note that there are no further restrictions on m?(z). It can very
well be negative, corresponding to real eigenvalues and hence, to exponential growth or
decay of the solution. This phenomenon can occur in the atmosphere, when the wave
frequency is higher than the background stratification, which leads to wave damping.
Such levels are called reflection levels, since waves tend to reflect from them. In fact,
ray theory predicts a total reflection of waves from such layers. This is, however, not
the total truth due to the restrictions on ray theory. A closer examination of reflection
levels follows over the course of this work.

3.5 Limit approach

As we now know that the multi-layer method converges to the real solution, the question
arises if it is actually possible to compute the limit for the number of layers tending to
infinity. If so, we would have solved equation , which was not possible with classical
methods. Unfortunately, the direct answer to that question is no. Nevertheless, we are
able to find an ODE system that develops from the limit procedure and sheds light on
the solution structure from a different angle. Moreover, with the multi-layer method
converging, there must also be a limit for the transmission coefficient. The ODE we
are going to derive can be solved numerically and allows us to compute a transmission
coefficient which we can compare to the one we obtain from the multi-layer method to
see how accurate it is and what would be a good number of layers to work with in order
to guarantee fairly accurate results and low computational cost.

First, we observe that the matrix M; in equation tends to the identity matrix,

7 C] C] 9 ( a)
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3 Transmission and reflection of plane waves in an atmosphere at rest

lim d; =0= lim d

*
J—o0 J—00 g

(3.81D)

But similar to the formula e = lim;,,_, (1 4+ 1/n)" for the Euler constant, the number of
near-identity matrices we multiply tends to infinity, hence the product does not converge
to the identity matrix. Moreover, the entries are complex, which poses an additional
challenge. Hence, there seems to be no closed formula for

1
lim [] M. (3.82)

Most methods known for real matrices blow up because of the non-vanishing imaginary
part. This would have given at least a solution to the transmission coefficient problem.

The idea is to reformulate the limit process as a differential equation for a vector
consisting of the amplitudes for the upward and downward propagating wave. We know
that the depth of each layer is h = A, /J, so the limit process J — 0o can also be seen as
A,/J — 0 or h — 0. Moreover, the j-indexed variables A;, B;, m; are approximations
of their continuous counterparts at z; + h/2. By using the recurrence relation we

can write
Ajrr (A3 _ (gD Aj
(Bj+1> <Bj> _(Mj I) B;)’ (3.:83)

where [ is the 2-by-2-identity matrix. Dividing now by h and taking the limit A — 0,
the left-hand side converges to the z-derivative of the amplitudes. Using the short-hand
notation A= A(z) = (A(z), B(z))" for the vector of amplitude we have

)
A (Mj — I)
& m oA (3:84)

This is now a differential equation for the amplitudes in A. If we want to have any
chance of solving it (either analytically or numerically), we have to execute the limit

process
J
lim 7<MJ( - I> .

h—0 h (3:85)

This is done component-wise. The upper-left entry of the matrix inside the limit in

4Here, the superscript T denotes the transpose.
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3.5 Limit approach

(3.89) is (¢;j — 1)/h. We can rewrite ¢; — 1 as

= (S ) exp () — (e + 1))~ 1

(

_ (m(zg‘) +m(z) + ' (z;) + o(h)
(
(

2(m(z;) + hm/(z;) + o(h)) ) exp(i(m(zj) — m(zj) — hm'(zj) + o(h))z;) — 1

o(h)
o(h))

2m(z;) + hm/(z;) +

) exp(—i(hm (z3) + o(h)) ;) — 1

2(m(z;) + hm/(z;) +

1 ZZ EZ - O(h;)) (1 — ihm! ()% + o(h)) — 1
h(m'(z;) — 2im(z;)m’(2;)z;) + o(h)
2(m(z;) + hm/(z;) + o(h))
h(=m'(z;) — 2im(z;)m’(2;)z;) + o(h)
2(m(z;) + hm/(z;) + o(h))

)
)
)
i)

— | — | —

2(m(z;

(

(
2m(z;

(

)+

2
m(zﬂ -1

(3.86)

Dividing equation (3.86) by h and letting h — 0, we obtain

f(z):= /?L% Cj; L —;Z;((Z)) —im/(2)z. (3.87)

With a similar computation, we rewrite d; as
dj
_ [ m(z) —m(z +h) . | |
= —< 2m(z; + h) ) exp (—i(m(z;) + m(z; + h))z;)
_ (m(zj) —m(zj) — hm'(zj) + o(h)
2(m(z;) + hm/(z;) + o(h))

_ ( —hm/(z;) 4 o(h)
2(m(z;) + hm'(zj) + o

(3.88)

) exp(—i(2m(z;) + h(m'(zj) + o(h))z;)

(h))> exp(—i(2m(z;) + h(m'(z;) + o(h))z;)

Hence, we obtain
d; !
9(z) = lim 5 = ;Z,ii)) exp(—2im(z2)z). (3.89)

The respective limits for the starred entries yield the same except for a replacement of
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3 Transmission and reflection of plane waves in an atmosphere at rest

i by —i or vice versa. Hence the differential equation for the amplitudes is

dA [ f(z) g(2)
& <g*<z> f*(2)> A4 (3.90)

=:M(z)

One has to be careful about the use of m/. Since we only requested a continuous function
for N, it is not guaranteed that it is also differentiable, especially at the interfaces to the
troposphere and stratosphere (see for example the linearly increasing profile form
th previous section). This should, however, not be a problem, if we additionally assume
piecewise differentiability, i.e. the set of values where N is not differentiable should be
finite. Then, we can solve equation piecewise, using the solutions from one patch
as boundary conditions for the next one.

Equation can only be solved analytically if M(z1) M (z2) = M(22)M(21) holds
for all z1, 29 in the integration domain. Unfortunately, this is in general not true for ar-
bitrary stratification profiles. Consider for example the upper left entry of M(z9) M(z1)
and M (z2)M(z1):

(M(z1)M(22))1,1 = f(21) f(22) + g(21)9" (22), (3.91)
(M(22)M(21))11 = f(22)f(21) + g(22)g" (21)- (3.92)

We can clearly assume commutativity for the separate products. In order for the matrix
entries to coincide, the equation ¢(z1)g*(z2) = ¢(22)g*(z1) needs to hold. Inserting
the definition of ¢g from equation , this reduces to the statement that either the
exponents of the exp-function need to be the same or m’ = 0. If m’ = 0, then, every
entry of M is zero and hence the amplitudes do not change with height. This happens
if and only if N is constant, in which case we don’t expect any change in the wave
amplitudes. If m’ # 0, basic algebra reveals that the following equation needs to hold
for any z1, z2 in the integration domain:

m(z1)z1 = m(z2)z2. (3.93)

In particular, the vertical wavenumber is inversely proportional to the height. It is easy
to see that this is in general not true.

What we can deduce, however, is that if the functions f and g are analytic over the
interval [zp, 2¢], equation has a unique analytic solution for arbitrary initial data
A(zp) = Ay, 20 € [z, 2t) (see, for example, for the theory on complex
ODEs). It is easy to check that this is the case for stratification profiles and wave para-
meters such that there is no reflection layer, i.e. a point z, where N(z,) = w. Although
securing the existence of solutions, finding analytic or even explicit expressions for them
will be a nearly hopeless undertaking. Another approach to find at least approximate
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3.5 Limit approach

solutions are power series methods. Since analytic functions on an open subset coincide
locally with a convergent power series (see , e.g., for details), we can make
a power series ansatz for the solution of equation . In order to do so, we extend
[2p, 2t] to an open subset of the complex numbers, in which M is still analytic. But
although the matrix has no singularities for real values, it has some for certain complex
numbers, which drastically restricts the radius of convergence of the power series solu-
tion to a value that is not guaranteed to be large enough to cover the whole region of
interest. However, it would be possible to partition the interval into smaller segments
and finding the power series solution in each segment, but this procedure is very tedious
and still only yields a solution up to a certain precision. We will see in the upcoming
error analyses that the multi-layer method yields very accurate results notwithstanding
that it is a much easier-to-apply technique. Hence, the evaluation of equation will
be done numerically.

The question may arise which benefit integrating equation has over integrating
, since both equations are equivalent, using appropriate boundary conditions. The
advantage is that equation separates between upward and downward propagating
waves, knowing at any point which part of the waves belong to either of those two parts,
while by straight up integrating the Taylor-Goldstein equation, we can not tell this by
just looking at the solutiorﬂ

Another challenge are reflection levels, i.e. a point z, such that N(z,) = w. Then, the
entries of the coefficient matrix M tend to infinity, because m(z,) = 0. By regarding
equation as a system of complex differential equations, the point z, is an isolated
singularity. At first sight, it might seem that the singularity is a first order pole, since
functions of the form a’/a, where a has a zero of any order at some point zy do have a
first order pole at zy. Assuming a is continuous, we can find an open set around zg in
which a does not contain any poles or other zeroes. In this open set, we can write a as

a(z) = (z — 20)*b(z), g(z0) # 0. (3.94)

Here, o denotes the order of the zero. Then, we have for the derivative of a:

d(2) = a(z — 20)*71b(2) + (2 — 20)V (2), (3.95)
and hence , b ()
—= oz —20) "t + b2) (3.96)

As b(z9) # 0 and b does not contain any poles, a/a’ has a first order pole at zp.
Unfortunately, the extra terms that are prevalent in the coefficients, i.e. im/(z)z and

Both solutions we obtain from a direct numerical simulation are steady-state solutions, i.e. the solution
does not change in time, hence we cannot see movement of the wave, but that does not mean that it
is not there
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3 Transmission and reflection of plane waves in an atmosphere at rest

exp(—2im(z)z) involve square roots of z, which results in f and g not being holomorphic
in a punctured disk around z,.. The reason for this is that the complex square root
has two branches, similar to real numbers where each positive real number x has two
possibilities for its root: /z and —+/z, with 0 having only one root. Extended to the
complex numbers, every complex number unequal to 0 has 2 possibilities for its square
root. Similar to the real square root function, a principal square root is defined. This
definition then results in a function that assigns each complex number exactly one of its
square roots. It is holomorphic everywhere except for the non-negative real numbers, on
the negative real numbers, it is even discontinuous. Via coordinate transformation, this
discontinuity can occur across any ray in the complex plane, but the square root will
always be only holomorphic in a disk with this particular ray removed. Therefore, known
theorems about existence and structure of solutions, which apply only for functions
holomorphic on a punctured disc, can not be used here. Nonetheless, the structure of
the functions in equation are very interesting and could serve as a topic for future
research.

Existing research in this case, such as[Sutherland and Yewchuck| (2004)), who investig-
ate propagation of gravity waves through a layer of sudden reduced or vanishing strat-
ification, suggest some sort of “wave tunnelling” (a term coined by the comparison to
quantum tunnelling of electrons in quantum physics) through this region, dependent on
the wavelength of the incident wave. As we will see later, the findings from our multi-
layer method confirm those results also for continuous transitions to a lower value of the
Brunt-Viisilé frequency. Apart from that, an intensive investigation of the behaviour of
gravity waves near reflection layers requires a scale analysis for different regimes of ver-
tical wavelengths. This will be discussed briefly in subsection and again in chapter

@

3.6 Results for various stratification profiles

This subsection is meant to show some exemplary results for plane wave transmission
we computed with the multi-layer method. We chose four different stratification profiles
to show here. The first one is a linear increase between two different values. This serves
as an introductory example to show how the multi-layer method is used to compute
transmission coefficients. The second profile we are going to show contains a region
of weak stratification, which in turn leads to wave tunnelling or reflection. A basic
variant of this phenomenon was also studied by [Sutherland and Yewchuck] (2004]). With
this example, we want to show that the multi-layer method is able to support wave
tunnelling. For the third example, we construct a profile that is leaned on the findings
of and should represent the stratification a realistic tropopause with a
strong temperature inversion layer. The last profile consists of two stratification peaks,
separated by a region of uniform stratification. With this, we investigate the influence of
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3.6 Results for various stratification profiles

the separation distance d between the two peaks. All profiles share a common structure,
namely that we have a region of non-constant stratification of depth A, that has a
region of constant stratification with value N, below and with value N; above it. This
is about what we can observe in the atmosphere: The stratification changes rapidly in
the tropopause and is nearly constant in the free troposphere and the stratosphere.

We will focus on a frequency range from 0 to NNy, since waves with frequencies larger
than Nj are evanescent. We opted to use a grid size of 300 horizontal wavelengths, logar-
ithmically spaced between 1000 m and 100000 m, which corresponds to values from A, to
1004, and 300 frequencies, equally spaced between 0.001 Ny and 0.999/Ny. This results
in a total of 90000 grid points. The number of layers equals 128. The computations are
performed on the author’s office computer with a standard Intel® Core™ i7-3770 CPU
and 8 GB RAM. The software we use is MATLAB. The computation times lie within a
range of 70 to 80 seconds when computed on a single core. Compared to the numerical
method of [Nault and Sutherland| (2007)), who need about 1 day to simulate 300 x 300
parameters on a “typical desktop computer” at that time, this is a decrease in compu-
tation time by a factor of about 1000. Even when considering the slightly higher clock
rate and RAM, the multi-layer method is much more efficient in computing Transmission
coefficients for large data sets.

3.6.1 Linear increase

The first case for which we will present results is the case of the linearly increasing
stratification, defined as

Nba z < Zzp
N(z) = Np+ 22 (Ne = Ny), 2 <2<z (3.97)
Ny, Z < Z.

The results are presented in a dimensionless way in order to be as general as possible. For
reference, the computations were done with realistic atmospheric values: A, = 1000 m
and N, = 0.01s71.

Figure [3.3] gives overview over the transmission coefficients for the linear increasing
profile . We want to point out three regimes of vertical wavelengths: shorter
than A,, comparable to A, and longer than A,, represented by the three curves in
figure 3.3 A, in turn represents the scale of variation of N. So wavelength that are
much shorter than A, are also small compared to the scale of variation of N. This is
the regime where the classical WKB theory is applicable. Ray theory, that is based on
WKB assumptions, predicts perfect transmission for those waves in a linearly increasing
profile and this is exactly what we are able to find. Even for moderately large horizontal
and vertical wavelengths, the transmission is high, at least up to a certain point. As we
can see, there is stronger reflection when we are moving to the right and to the bottom
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3 Transmission and reflection of plane waves in an atmosphere at rest
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Figure 3.3: Transmission coefficients for a stratification profile that increases linearly
over a finite region of depth A,. The three curves represent constant vertical wavelength
in the bottom layer: green for A, = 0.14,, blue for A\, = A, and black for A\, = 10A4,.

in the panel, that means that the wave frequency gets closer to the lower value N, and
the horizontal wavelength (and eventually the vertical wavelength) is growing. If the
vertical wavelength exceeds A, by about an order of magnitude (black curve), waves
start to transmit worse.

Waves that have frequencies close to the Brunt-Viisild frequency are almost purely
horizontal and in the limit of w — N for fixed ), it seems from figure [3.3] that the
transmission eventually gets zero. This seems reasonable, since there is no vertical wave
structure and hence no vertical energy transport. The upcoming computation gives a
proof for this claim. Let us have a look at

wllgbbm] _wll)nj%[b_kwﬁ_l —lem—].— m], (398)

If j # 1, then N; # N; (remember: linear increasing profile). Hence, m; # 0. Since
det M; = m]/mJH, M is regular for J # 1. For j = 1, Ny = Ny, hence m; = 0 and
therefore, by the deﬁnition of the transmission coefficient , the transmission is also
0, as Mao # 0. In the limit A, — oo (or equivalently & — 0) for fixed w < N, it is
possible to find a closed formula for the matrix product in and hence a formula
for the amplitude ratio, which coincides with the classical result for a two-layer model
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3.6 Results for various stratification profiles

(Eliassen and Palm| [1961]). We write

N2
mj =k 7; —1= kmj (399)

and consider the matrix entries (3.28) in the limit £ — 0:

. . 1 my ,
o= s = (1) e 6 = )
.1 kmy A .
= ]15% 5 <k‘mjj_1 + 1> exp (Z/{ (mj — mj+1Zj)) (3100)

In a similar fashion, we follow that

- 1 (
d; ::ig]%dj:2< J —1). (3.101)

Moreover, 6}5 = ¢j and de = Jj, as the exponential terms vanish in the limit process. The

matrices

M := lim M, = (CJ flj> (3.102)
k—0 i Cj

are bisymmetric (symmetric to both main diagonals).

a

Claim 3.6.1. The set {(b

atiorﬂ

Z) | a,b € C} is closed under the usual matriz multiplic-

Proof. Let My = <Z 2) , Mo (2 g) be two bisymmetric matrices with entries in C.
Then

_ f(ac+bd ad+ be
MMy = <bc+ad bd+ac>' (3-103)
As addition in C is commutative, M M> is again bisymmetric. O

5Tn fact, this even forms an abelian, but we only need the closedness for our purposes.
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3 Transmission and reflection of plane waves in an atmosphere at rest

Let us have a closer look at M jM i—1. The diagonal entries are

. 5 = 1/ m, mj— 1/ my mj—
CjCj_l—i-djdj_l:* AJ +1 Ajl—i-l + - A] -1 Ajl—l
4\ m; 4 \mjm m;
1 3 . 7 . M . 3 . 7 . 5 .
=<”:L“+Am3 S S R i —mfl+1)
4 \mj1 My m; mjy1 Myt m;
1
2

(3.104)

These are very similar to the entries of Mj, but with 7m; replaced by 7m;_1. For the
off-diagonal entries, we have

L TP 1 m; nj—1 1 m; mj_1
%1t =y <mg‘+1 i 1) < o 1) I <mj+1 - 1> < iy

1 /M m; mi_q M1 m; mi_q
=== = 1
4 \Mjyr My My M1 Myt My

1 <mj_1 1)
2 \mjt .
A simple induction argument shows that the entries of

M = <ccl i) = H M; (3.106)

(3.105)

are

1
G= - ( oy 1> , (3.107)

2 \mj41
-1 5
d=- ( o 1> . (3.108)
2 \my
The relation between the amplitudes is the same as in (3.59)), i.e.
App _ det(M) _ my <1 <m1+mJ+1>)—1 2 (3.100)
Ay d myy1 \ 2 M1 my+1mypr '

This is the result for internal waves in a two-layer fluid (Eliassen and Palm] [1961)). It is
interesting to see that we made no assumptions on the structure of NV, hence this limit
holds for any stratification profile.
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Figure 3.4: Transmission coefficients for a profile that has a region of decreased strati-
fication. We see that waves, whose frequency is larger than 0.5N;, can transmit, if their
wavelength is long compared to the region of decreased stratification.

3.6.2 Wave tunneling

We consider now a case where the stratification linearly drops from some NV to a value
N4 < Ny over a finite region and eventually increases again back to Np:

(

No, z < zp
Ny + z;—fgb (Nd —Ny), % <z< Zd,
Nd+;t_—zz'd¢122(Nb_Nd)7 Zdy <2< 2t
No, 2t < Z.

In the example we present, zq, — 2z, = 0.24, = 2z — z4, and Ng = 0.5N;. The results
found for this case are very different from what ray theory tells us. There, it is predicted
that waves totally reflect from a layer, where w > N. However, when there is only a
small, finite region where w > N holds, wave propagation through this region is possible
under certain conditions. [Sutherland and Yewchuck| (2004) described this phenomenon
for a sharp drop to a weak or even vanishing stratification, and our results show that
tunnelling also exists in the case of a continuous transition. In figure |3.4] one can see
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Figure 3.5: Zoom into the left panel of figure centred around w = 0.5Vy.

the transmission coefficient for profile (3.110). In this particular example, ray theory
predicts that every wave with frequency w > 0.5N; would fully reflect from this layer,
but we can observe that if the wavelength is large compared to the extent of the region
with weak stratification, it is possible to obtain high wave transmission. In fact, the
longer the waves seem to be, the better they transmit. This can be easily derived from
the two-layer limit . As myp = my in this example, the amplitude ratio in the limit
of long waves is 1.

As we said earlier, the multi-layer method would fail for this profile if we would try
to evaluate it for w = 0.5V, since there is an interval, in which this equation holds.
But the panel in figure [3.4] suggests continuity in the transmission coefficient over the
whole frequency range. Figure shows a zoom into the area around w = 0.5,
and corroborates our suggestion. We see the domain from 0.4999N, to 0.5001N,. The
white strip at 0.5/Vp occurs since the method does not find a value for the TC there,
but nonetheless, the panel suggests that the transmission coefficient is continuously
extendable over w = 0.5N,. This is, however, challenging to prove as a closed formula
for the transmission coefficient is hard to write down.

3.6.3 Realistic tropopause profile

Since we are ultimately interested in the behaviour of atmospheric gravity waves and their
interaction with the tropopause, we now want to consider a realistic tropopause profile.
The stratification is constant with a value NN, below the tropopause. At the temperature
inversion layer, the Brunt-Vaisald frequency has a very sharp increase to a peak value
N, almost like a jump, followed by a relaxation to a value N; with N, < IN; < N, that is
the constant value of the stratification in the stratosphere (see [Gisinger et al] (2017) for
more details on mid-latitude tropopause shapes). We realise this by a piecewise-defined
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Figure 3.6: Transmission coefficients for a realistic tropopause profile that can be seen
in the right panel. In the limit for long waves, the transmission coefficient approaches
again the two-layer solution. For moderately long waves, we can see a combination of 2
effects: The sharp increase, which is almost like a jump and blocks a part of the waves
and the smooth relaxation afterwards that has high transmission. We also observe that
in the classical WKB regime, the transmission is still very high

continuous function:

Ny, z < 2z
Ny + Z=22(N, — Ny), <z<
Ny = N M) < e s s (3.111)
az’ + bz +c, 2p <z < 2
Ny, zt < 2,
where we set a = N, — Ni/(zp, — 2)%,b = —22(N, — Ny)/(2p — 2)* and

¢ = Ny + 22(Ny — Ni)/(2p — z)?. The values were chosen such that the profile is
continuous at z, and z; and differentiable at z;. In the example we show here, we
chose z, — z = 0.14,, N, = 3N, and N; = 2N,. The profile as well as results for
the transmission coefficient can be seen in figure It is no surprise to see overall
lower values of the transmission coefficient. The linear increase now happens over a
much smaller vertical extent than in subsection |3.6.1] so that waves with wavelength
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Figure 3.7: Transmission coefficients for the twin peaks profile (seen in the upper left
panel) and several wavelength-frequency pairs.

comparable to A, are now long compared to z, — z;. They already partially reflect
before reaching the second part of the profile where the stratification slowly weakens.

For the limits w — N, for fixed A\, and A\, — oo for fixed w, we have the exact same
behaviour as in the linearly increasing case, which is no surprise, since in the first limit,
we still have no vertical energy flux and in the second limit we again approach the two-
layer model. The rest of the picture however gives some interesting insights. By making
the sharp increase asymptotically thin, i.e., making it a (discontinuous) jump, we obtain,
for wavelengths comparable to A,, a composition of the transmission coefficient for a
two-layer model (that describes the jump) and the one for the smooth profile that follows
after the jump.

3.6.4 Twin peaks

In this subsection, we describe the effect that two areas of non-uniform stratification,
separated by an area of uniform stratification, have on plane wave propagation. To do
this, we have a look at a stratification profile that has two separated peaks and is hence
called twin peaks. One individual peak has a linear increase of the buoyancy frequency
from a base value N, to twice its base value over a finite vertical extent L followed by
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3.6 Results for various stratification profiles

a linear decrease back to the base value over the same vertical range. Both peaks are
separated by a vertical distance d. Mathematically, this is

Ny, 2 < 2z
Ny + 272Ny, <z<z+L
2N, — =2=L N, 2+ L <2<z,+2L
N(z) = ¢ N, 2 +2L <2<z +2L+d (3.112)

Ny + z=22Lmd N oy 4 2L 4 d <2< 2+ 3L +d
ONy — ZB AN - 4 3L+ d <2<z +4L+d
Ny, 2 +4L+d < 2

A plot of this profile can be seen in the upper left panel of figure The other panels
show the transmission coefficient for several wavelength-frequency pairs, plotted over
d. In all presented cases, we set L = 500m. In the upper middle and right panel,
we have a horizontal wave length A\, = 2000m and wave frequencies w = 0.5, and
w = 0.7N, respectively. The corresponding vertical wavelengths are A\, = 1155m and
A, = 1960 m. We observe are sinusodial dependence of the transmission coefficient on
d and moderate variations in the values. Absolute difference between minimum and
maximum transmission is 0.203 for w = 0.5N, and 0.307 for w = 0.7N,. Moreover, the
period increases from the upper middle to the upper right panel. In the lower right
panel, we have the same horizontal wave length, but a frequency w = 0.9}, resulting
in a vertical wavelength of A\, = 4130 m. We observe that the fluctuations have an even
larger period and a much smaller amplitude. We conclude that the period depends on
the vertical wavelength. This seems meaningful. Waves that are (partially) reflected at
the second peak travel downwards and are incident on the first peak from above, where
again a part of the wave is reflected. If this reflected part is in phase with the wave
that is transmitted through the first peak, the amplitude is amplified, which leads to
the transmission peaks. On the other hand, when the reflected wave is out of phase by
180 degree, the wave amplitude is lowered and the total transmission is worse. This can
be seen even more extremely in the lower middle and right panel. Here, the horizontal
wavelength is A\, = 5000 m and we have wave frequencies w = 0.8V, and w = 0.98N,
respectively. The amplitude of the transmission coefficient is very large, especially in the
lower right panel, where it spans from almost no to almost total transmission. For this
case, we have most of the time a total reflection except for some leaky modes, where the
transmission can get almost perfect.
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3 Transmission and reflection of plane waves in an atmosphere at rest

3.7 Convergence study

This subsection is dedicated to the numerical integration of equation (3.90) and the
comparison of the transmission coefficients derived from it compared to the transmission
coefficients derived from the multi-layer method. As we already know that the multi-
layer method converges to the real solution and that equation is a reformulation
of equation , we expect a convergence of the values from the multi-layer method
towards the limit solution.

In order to do integrate euqation , proper boundary conditions are needed. Since
we are interested in waves that are initially travelling upwards and encountering a non-
uniform stratification over a confined region and eventually reaching a region of uniform
stratification again, we require that there is only a wave incident on the non-uniform re-
gion from below. Hence, above this region, there is no wave that is travelling downwards.
Moreover, we are only interested in ratios between the incident and the transmitted wave.
Therefore we are free to choose the value of the incident or the transmitted wave, since
the equation is linear. To be more precise, if z. is the upper boundary of the integration
domain then we take the boundary conditions

A(z) = (ggg) = (é) . (3.113)

We want to analyse the error between the limit solution and the multi-layer solution.
As model setup, we again choose the linearly increasing profile . Our analysis
consists of two parts. The first one is an error computation over a large domain of
wavenumbers and frequencies while keeping the number of discretisation levels constant
at J = 512 to show that the error is small over the whole wavenumber-frequency-domain.
The second one chooses several specific points in this domain and tracks the error for an
increasing number of levels J, up to J = 10°.

The results of the first part can be seen in figure[3.8] For the left panel, we derived the
transmission coefficient from the multi-layer method with J = 512 layers, the right panel
shows the transmission coefficient computed from solving equation numerically.
It is impossible to spot any difference between the two frames. Computing the relative
error yields the estimate

|TCq(w, A\z) — TCl(w, \y)|

7-1076 3.114
max TCi(@ A = .

For the second analysis, we fix specific wave parameters, i.e, a pair (Azo,wp) of
wavelength and frequency, and analyse how the relative error develops for increasing J.
In particular, we perform the calculation for three different wavelength-frequency-pairs.
We choose wg = % for all three cases and have a look at the wavelengths A,, 24, and
10A,. The results can be seen in figure [3.9
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Figure 3.8: The left panel shows the multi-layer method with J = 512 steps and the
right panel shows the values of the transmission coefficient computed from the numerical

evaluation of the limit approach. At every single point in the domain, the error is smaller
than 107°

We computed the relative error of the limit solution and the discrete solution for several
numbers of layers .J, that were logarithmically spaced between 10! and 105. For any two
adjacent points, we computed the slope in the log-log diagram and for every wavelength,
the mean and the standard deviation of all computed slopes. We found the mean slopes
to be p; = —2.0050 + 0.0314, p, = —2.0073 + 0.0533 and p,, = —2.0269 + 0.1184, where
the indices correspond to the left, middle and right panel of figure[3.9] In the the last few
values are around the tolerance of the numerical scheme, hence there are somewhat larger
fluctuations. But nonetheless, we observe that in all three test cases, the error decreases
quadratically with the number of steps, until the error reaches the region where the
tolerance of the scheme and the machine precision prevent a more precise computation.
This is in line with the convergence order we found in subsection [3.4 for the solution
itself. Even for a coarse discretisation with J = 100 layers, the relative error is about
10~°. This justifies our choice of J = 128 layers in the previous sections.
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3 Transmission and reflection of plane waves in an atmosphere at rest
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Figure 3.9: Relative error for profile (3.97) with Ny = 2Ny, wo % and different
horizontal wavelengths A\,: A, = A, in the left panel, A\, = 2A, in the middle panel
and A\, = 104, in the right panel. The mean slope of the different plots is nearly the

same, namely u /=~ —2. This means that the relative error decreases quadratically with
the number of steps.



4 Wave transmission with background wind

Wind plays a major role in many atmospheric phenomenons. Gravity wave propagation
is no exception to this. Although the wind generally changes over time, we are usually
interested in short time scales only. Moreover, we focus on small amplitude waves,
effectively neglecting wave-mean flow interactions. This leads to the assumption of a
time-independent, but vertically varying background wind.

When including background wind to our method, there are two major cases: constant
and non-constant wind. The first one is a straight-forward extension to the theory
developed in last section, the second one requires more attention. Height-dependent
wind is a crucial topic in atmospheric flows, especially around the tropopause, where
strong winds can be present (Gisinger et al.] [2017]). A major part of the work presented
in this chapter is discussed in [Piitz and Klein| (]-Aml) which has been submitted to a
peer-reviewed journal.

4.1 Constant wind

Let us assume that we have a constant background wind uw = wug. The linearised
Boussinesq equations then take the form

ou ou ol

5 +u08 + cpbo—— o 0 (4.1a)
% + ug gw + ¢pbo %U + cpt 66127 =0 (4.1b)
%+u0§+w%:0 (4.1c)
% + % =0. (4.1d)
Using a plane wave ansatz in x and ¢, i.e.
f(x,2,1) = f(2) exp(i(kx — wt)), (4.2)

for the dynamic variables f € {u,w, 0, II}, we can derive an ordinary differential equation
in z for either of them, similar to the derivation of equation ({3.7)) in the previous chapter.



4 Wave transmission with background wind

We stick to vertical wind as quantity of interest and obtain

d2% N(z)? .
@(2) + k2 ((w—(kzm)Q - 1) w(z) =0, (4.3)

This is the Taylor-Goldstein equation for constant background wind. Note that it would
have also been possible to obtain a partial differential equation for w from equation
system , similar to equation , but since we are interested in plane wave trans-
mission anyway, we opted to plug in the plane wave ansatz before reducing the equation
system, which makes the calculation less cumbersome.

The term w — kug is called relative frequency, here and in the majority of the literature
denoted as w. This is the frequency an observer moving with the constant velocity ug
would see, in comparison to the absolute frequency w that a fixed , usually ground-based,
observer would see. We avoid using the terms “intrinsic” and “extrinsic” frequency, as
they are not used uniformly by all researchers in the field. Additionally, the terms
“absolute” and “relative” give a better intuition, as the observer either has an absolute,
fixed position or is moving relatively to the ground with the mean flow. Along the lines
of having no background wind, waves can propagate when their relative frequency is
between zero and the ambient Brunt-Viiséld frequency. Apart from this change, the
remainder of the theory is still valid and can be applied as derived in chapter

4.2 Height dependent wind

Let us assume now a horizontal background wind that changes with height, i.e. u(z).
The linearised Boussinesq equations now include also vertical derivatives of uw. They are
written out as

%1: —l—ﬂ% + w% + cpeo%—g =0 (4.4a)
%—Z) +H%} + cpe(]%—]z - Z? =0 (4.4b)
% + H% + w((iz =0 (4.4c)

% + % =0 (4.4d)

Using the plane wave ansatz (4.2)), we obtain the following ODE for w, explicitly
stating the z-dependence:

R o NGP TGN
a2 GV TR <(w—ku(z))2 T hw — ka(2) 1) () =0, (4.5)
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4.2 Height dependent wind

If we want to apply the multi-layer method, we now not only need to approximate
N(z), but also u(z). Moreover, the second derivative of @ appears in the equation and
represents another challenge that needs to be taken on. One could make the argument
that by approximating u piecewise constant, that there is no curvature in each individual
layer, hence one could just neglect the term involving @”. But then, in the limit for the
number of layers going to infinity, this term will not reappear. Therefore, one also must
include an approximation of the background wind curvature. This can either be done
by two different approaches. The first one would be an approximation of the second
derivative by a finite difference, for example second order central differences

ﬂ//(ZO) ~ E(Z() - h) — QU}E;“()) + E(Z() + h)7 (4.6)

where h denotes a small step size. It would be convenient to choose, sticking to the
notation of the previous chapter, h = A,/J and 2y to be the same points at which
we approximate N. The other method involves computing the second derivative of @
explicitly (if possible) and use the value of u” at the points where we approximate N.
As it turns out, both methods yield basically the same results. The error between both
approaches is negligibly small. We will give specific values when we present the results
for selected wind profiles in section [£.2.2] For the remainder of this work, we use the
explicit expression for the second derivative of @ and evaluate it at the same point as we
do with w and N, since we also need to compute @” for a direct numerical simulation of
equation (4.5]).

4.2.1 An analysis of the different matching conditions

When applying the multilayer method, we have to match the local solutions at the
interfaces. The proof of convergence for the multi-layer method in an atmosphere at rest
(see section also applies in the case with background wind, as there where no further
requirements on m, as long as we evaluate N, u and ©” at the same point (which we do
by construction of the method). This again transfers to matching conditions that require
the solution and its derivative to be continuous at the interfaces. We will relate to them
as the mathematical matching conditions. Despite already knowing how to match the
solutions at the layer interfaces, there is a reason to spend a section on discussing this
topic.

When browsing through the literature on the topic of layering the atmosphere in
multiple layers, one finds that most of the research uses the classical matching ansatz
derived by [Drazin and Reid| (1981). They analysed the stability of inviscid parallel shear
flow of an unstratified fluid, hence the matching conditions are derived for Rayleigh’s
stability equation, which is just equation with N = 0, and also for piecewise
linear background flow profiles. As this is certainly valid for their setup, the conditions
themselves cannot be transferred one-to-one to our method, because we consider not only
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4 Wave transmission with background wind

discontinuities in N, but also in w. This in turn leads to discontinuities in the relative
frequency which is a point that was not considered in the original derivation of[Drazin and]
. Using the physical interpretation of those conditions, i.e. that vertical wind
and pressure are continuous at the layer interfaces, we arrive at matching conditions that
differ from both the classical conditions of (Drazin and Reid|[1981]) and the mathematical
conditions we derived earlier. And although the matching conditions converge towards
each other in the limit of infinite layers, it is not clear that the solutions they produce will
show the same behaviour. And since we know that the solution using the mathematical
conditions converges to the real solution, the solution using the classical conditions would
not, if it differs from the solution with the mathematical matching conditions. As we
will see, this is going to be the case.

So let us derive mathematical expressions for the classical matching ansatz. The first
one of the new matching conditions is acquired fairly easily, since equation (4.5) is stated
for the vertical wind w. The second condition can be found when using the horizontal

momentum equation (4.4al) and the divergence constraint (4.4d)) to eliminate u from the
former. Mathematically, this can be written as

Aw] =0
A [ow" — ikw'w] =0 (4.7b)
at each layer interface, where again A[f](z9) is the jump operator defined in equation

(13.22)). It is interesting to note that this approach coincides with the mathematical
conditions in the case of constant background wind since @ is constant and u’ = 0.

As done in section we derive a relation at each layer interface z;:
U)j(Zj) = ’wj+1(2j+1), 48&)
wjwj(zj) — ikWjw;(zj) = @j1wji(2) — kW w41 (%)) (4.8b)
Here, the subscripts j and j+1 for @ and @ indicate their approximations in the respective

layers. Using the local solution ([3.19) in each layer, together with the adapted vertical
wavenumber

N]2 H;{ 1 4.9
(Al Ve v PR pry v B (4.9)

4%H> @<A)

= M) A 4.10
(Bjﬂ 7 \Bj .
Again, M ](C) is a 2-by-2 matrix with the superscript indicating that it corresponds to
the classical conditions. The matrix entries can be derived in a similar way as displayed

we find a relation
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4.2 Height dependent wind

in section 3.2 for the mathematical conditions. We obtain

—/ —/
(© _ Mywj +myiwien — k(@ — W)

My = 2o exp(i(m; — mji1)2), (4.11a)
J J
My = - = el + mjs)z),  (411D)
J J
(@ mywj —mypwip — kU —u,)
Myx =~ 2mj 1wt exp(i(m; +mj41)z;), (4.11c)
J J
mMiw; + Mjiy1Wit] — k(ﬁ’. + 1) '
MQ(,C2) = ]2m-J+1w4+1 ; - eXp(—z(mj a mj"‘l)zj)‘ (4.11d)
J J

Constructing a solution from the mathematical conditions in the case of non-constant
background wind leads to the same relations as in section except for the difference
in the computation of the vertical wavenumber, which is now given my equation (4.9)).

We depict an example for chosen background and wave parameters. This should
make the right choice of matching conditions clear at first sight. In the presented case,
the stratification is uniform (N = Nj) over the whole domain and the wind profile is

bell-shaped, i.e.
(z — 20)2>

2 (4.12)

U(z) = Uyexp (—
Far away from zp, the value for the background wind is very close to zero, so that
we only need to consider a confined area around zp as region of non-uniform back-
ground and choose U = 0 outside of it. The interval we choose for the computation is
I. = [20 — 50, 20 + 5o]. The value at the interval boundaries is 1.39 - 10711Up, and be-
cause of the shape of the function, this is also the supreme value outside of I.. Moreover,
we chose Uy = 0.5ms™ !, 0 = 100m and \; = A\, = 2000 m.

Figure shows plots of the maximal normalised error between the numerical and
multilayer solution. Normalised error means that we are looking at the absolute er-
ror, but normalised by the maximal value of the numerical solution. We chose this error
computation over a classical relative error computation because we have oscillating func-
tions and as soon as the zeros of the functions do not match, the relative error gets large
and does not give qualitative information about how well one method approximates the
other. Mathematically, for a fixed number of layers J, we compute

max,ep ‘wr(;l]]) (Z) - wnum(z)

ey = : (4.13)

max,ecp |wnum(2)|
where wr(:l) is the multi-layer solution for J layers, wyum is the solution obtained by direct
numerical solution of equation (4.5) and D is the domain of interest, which should at
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4 Wave transmission with background wind
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Figure 4.1: Here, we see the normalised absolute error of the multi-layer solution com-
pared with a DNS of equation (4.5)), plotted over the number of layers. The left panel
uses the mathematical matching conditions, the right panel uses the classical ones.

least cover the region of non-uniform wind and stratification. In the left panel , we see
the results for the mathematical matching conditions. There is a decrease of the error,
up to a point where the error reaches the precision of the numerical scheme (which is the
MATLAB built-in ode45 scheme). This happens at about 5000 layers. Between 100 and
4000 layers, the slope of the graph is y = —1.9388 + 0.1105. Since both axes are spaced
logarithmically, this indicates a convergence of order 2. In the right panel, we show the
result for the classical matching conditions. Although the method seems converge to a
limit, this limit does not coincide with the numerical solution.

Figure shows the numerical solutions and the multi-layer solutions with either
matching conditions, created via the finite-element ansatz discussed in section While
the numerical solution and the one with the mathematical matching conditions are ba-
sically indistinguishable, we can clearly see that the solution with the classical matching
conditions differs from both others. Note that the solutions were initialised so that they
all agree right of the non-uniform layer, which is located between the two vertical lines.
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4.2 Height dependent wind

Comparison of multi-layer MCs and DNS
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Figure 4.2: Comparison of different methods to solve equation (4.5)). The dashed blue
curve is a direct numerical simulation (DNS) of equation (4.5)), the solid red curve is
obtained with the multi-layer method and the mathematical matching conditions and
the solid green curve uses the classical matching conditions.

4.2.2 Results for a cosine-shaped wind profile

This section is about the results for various background wind profiles. We start with
some a priori thoughts. We recall the dispersion relation (4.9))

NZ [
m=— \/(wku)2+k(wku) —1. (4.14)

We see that there can be 2 crucial cases. First, the radiant can become zero, similar as
in the reflection layer case we know from section (3], but with the possibility that it not
only may occur via weakening stratification, but also via a change in the background
wind. The difference between the case discussed here and the case without background
wind is that the Doppler shift appears in the horizontal group velocity

0 Nm?
S (4.15)

Ok Rt m?
In terms of ray tracing, the ray path would be a loop at the reflection level which is
tangential to the horizontal at the reflection level instead of approaching it with a cusp
(see [Sutherland] (2010)), Chapter 6.5.3, for a more detailed discussion). But since we are
not solving the ray equations, it does not matter how the reflection level is generated.
Therefore its treatment works in a similar way as without wind.
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4 Wave transmission with background wind

The other crucial case that could in fact not appear with constant background wind
is that the denominator of the first (and hence also the second) term in the radiant goes
to zero, causing the whole radiant to approach infinity. This is in the common literature
denoted as critical level. At such a level, the vertical wavenumber theoretically is infinity.
Ray theory predicts that waves approach this level asymptotically, but never reach it.
However, ray theory is no longer valid around a critical layer. Most likely, due to the
rapid oscillations, the wave becomes unstable and breaks, dissipating its energy during
that process. Since this is a very non-linear behaviour and our theory is built on linear
approximations, the multi-layer method does not provide any further insights to the
evolution of waves around critical levels. But since this critical level occurs usually at
a certain altitude, the multi-layer method is suitable to describe the wave amplitude
evolution up to a certain point below and above the critical level and one could try to
find an approximate solution of the describing equation around the critical level, for
example via rescaling and using a perturbation ansatz or a Frobenius method approach,
similar to what was done in [Nault and Sutherland| (2007). Then, matching this to the
multi-layer solution could yield a solution, but this is not part of the research presented
here.

Next, we want to define a meaningful transmission coefficient for the case of non-
constant background wind, because wave energy is not conserved when the wind changes
with height. To see this, we go the same way as we did with deriving the energy
conservation law for a steady atmosphere. The equation that results from this

procedure is
ok . du
E + V . (CQE) = —uwg,

so the time-dependent change of wave energy is not only due to the energy flux di-
vergence, but is also influenced by the vertical shear. It is however possible to find a
conserved quantity, namely the ratio of wave energy and relative frequency. This is called
wave action in the common literature and denoted via
E
A== (4.17)

w

(4.16)

To see that this is conserved, we have a look at

dA .
o TV (EA), (4.18)

which can be rewritten as

1 /OF . do!
5 (Ot + V . (CgE)) + CgZE?. (4.19)

The z- and t-derviatives of @ have vanished as it depends only on z. Executing the last
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4.2 Height dependent wind

derivative yields the equation

1 (OF . cq. Bk du

Using the polarization relations (3.10)), (3.11)) and (3.12) (note that absolute frequency
must be replaced by relative frequency here), the previous expression can be transformed
into

1 /0F du

— | = (¢, FE — . 4.21
w<8t+v (G )+uwdz) (4.21)
Togehter with equation (4.16[), we deduce that expression (4.21]) equates to 0. This gives

the wave action conservation law

0A -
4V (GA) =0 (4.22)
ot

In a similar fashion to section [3.3] we take the horizontal average, find temporal inde-
pendence of the wave action and find that the vertical flux of horizontally averaged wave

action ¢4, (A) is conserved. In terms of vertical velocity wave amplitude, this is

Ppm
cg. (A) = 5 [Aul*. (4.23)
2k

Defining the transmission coefficient again as the ratio of incident and transmitted up-

ward wave action fluxes, we find the very same formula as we have for the case of a

steady atmosphere:

A 2
J+1
Ay

TC — mj+1

o (4.24)

Figure shows the transmission coefficients for a uniformly stratified atmosphere
and a cosine-shaped wind profile. The left panel shows a negative jet, i.e. the wind and
the relative horizontal phase speed point in different directions. In this case, the jet
can form a reflection layer, as we can see in the upper right part of the panel, where
the transmission is very low. Note that without the background wind, the transmission
coefficient would be equal to 1 everywhere.

The middle panel shows the results for a positive jet. In this case, we can have critical
levels, as we can see in the upper left part of the panel. In this case, the multi-layer
method does not converge, because the vertical wavenumber goes to infinity. The values
we get in this area are useless, since no matter how large the number of layers is, the
resolution at some point will still not be fine enough. Nonetheless, we get a good glimpse
which choice of wave parameters leads to the wave encountering a critical layer.
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Figure 4.3: Transmission coefficient for a cosine-shaped wind profile as displayed in the
right panel. In the left panel, Uy = —2ms~!, in the middle panel, Uy = 2ms~!

4.3 Limit solution in the case of non-zero background wind

Since we know from the last section that we have the same matching conditions as in
the case without background wind, the limit of the number of layers tending to infinity
will yield the same equation that was derived in section i.e. equation . The
major difference is that the vertical wavenumber is now given by

N(z)2 u’(z
m(z) = _k\/(w — l(m)(z))Q + i —(/mz(z)) — 1. (4.25)

Hence, the derivative of m, which appears in the matrix entries of equation (3.90)), now
not only involves the derivative of NV, but also the first three derivatives of w. The exact
equation is

_ 2N( ) ( ) 2k‘N( ) ( ) '’ o'
() = g <(w Fa)? (o ku(z)) + k(w ) T e k:u(z))Q)
2\/(w ku(z E(w—Fku(z)) 1

Fortunately, the numerical evaluation for this is still manageable as long as there are no
reflection or critical levels and we obtain convergence of the multi-layer method towards
the solution of equation . One more thing to note is that in the case of no reflection
or critical level, the matrix M is analytic in an open subset of C containing the region
of non-uniform background, and by the same arguments that were given in section
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4.4 Scale analysis for curvature term

a unique analytic solution exists. We do not want too go to much into detail, as we do
not gain much new insight from this limit. Although it is important that there exists an
analytical solution, due to the good convergence behaviour of the multi-layer method, it
is much more efficient to use it over a DNS of equation .

4.4 Scale analysis for curvature term

When studying literature on linear Boussinesq gravity waves, one discoveres that of-
tentimes, the equation which is used to describe the waves neglects the curvature term
u” /(k@). The question that comes up is how important that term actually is. In WKB
theory (see for example [Muraschko et al] (2015])), the dispersion relation derived from
linear steady Boussinesq theory, in which the curvature term is excluded, is used, since
the curvature term is of higher order. Hence we execute a scale analysis of all the terms
occurring in the dispersion relation and detect regimes, where the curvature term
has a significant impact on the wavenumber. Moreover, we will compare transmission
coefficient computations with and without it.

We assign some characteristic values to the terms and derive two dimensionless num-
bers in which the corresponding terms are expressed and which will yield as a basis for
the scale analysis. Let Uy be a (positive) characteristic value of w, and let w change
on a length scale Hy. Let L, be a characteristic length scale for the horizontal wave
length, i.e. k ~ 1/L, and let Ty be a characteristic time scale, i.e. N ~ 1/Ty. We also
choose w ~ 1/Ty, which corresponds to non-hydrostatic gravity waves, i.e. waves with
frequencies close to the Brunt-Viiséla frequency. Then, the right hand side of equation
(4.14) can be estimated as

L2 ) U02+1(1_U0>_1
(£-%) =% (4.27)

We define

o= — (4.28)

= : 4.29
T, (4.29)

« gives the relation between horizontal wavelength and the scale of variation of the
background wind. As we are assuming non-hydrostatic waves, the vertical wavelength
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4 Wave transmission with background wind

can roughly be taken to be of the same order of magnitude as the horizontal wavelength.
Hence, a can also be seen as a quantity that tells us if the waves have a short, comparable
or long wave length compared to the length scale of the background wind. 5 can be seen
as the ratio between phase speed of the wave and background wind speed, basically
telling us which of the two is larger or if they are comparable in size. Then, the above

equation writes as
1 1y -2 _
o (1= +a2@B-17"-1) (4.30)

In the way we chose our reference quantities, the term representing the curvature, Uy /H7,
is always positive, but in reality, it can be negative. We are, however, only interested
in the magnitude of the second term, so this does not affect the case analysis. We first
carry out a scaling analysis where o and 8 can vary independently. This will be followed
by a discussion where we link both values via a distinguished limit.

1. < 1. Then (1- 1) ?<land |51 ~ 1.
a) a < 1. Then o?|3 — 1]_1 < 1, hence the third term is dominant.
b) a ~ 1. Then o2 |8 — 1|7 ~ 1, hence the second and third term are dominant.

¢) a> 1. Thena?|8 — 1|7 > 1, hence the second and third term are dominant.

2. f~1. Then (1—8) ?>1and |8-1"" ~1.
a) o< 1. Then o2 | — 1|7 < 1, hence the first term is dominant.
b) o~ 1. Then o2 | —1|~' ~ 1, hence the first term is dominant.
¢) @ > 1. Then o2 |8 —1|"" > 1. Here a distinguished limit for o and 3 is

needed to determine which of the first two terms is dominant.

3. > 1. Then (1 —B_l)_2 ~ 1 and |f—1]7' < 1. This case has to be treated
with special care, since the sign of the first term is always positive while that of the
third is always negative. Hence it may very well be possible that their difference
is very small, resulting in the second term being dominant.

a) a < 1. Then o? |5 — 17" < 1.
b) o~ 1. Then o2 |f —1]7' <« 1.

¢) a> 1. Then 2|8 — 1|7! either is ~ 1 or > 1. We need a distinguished limit
for v and 3, but in either case, the second term is among the dominant ones.

So the cases where the second term may play an important role are 1b, 1c, 2c and 3. We
can reduce the amount of analysis to be made by choosing typical atmospheric reference
values and rule out some of the regimes that are unrealistic.
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4.4 Scale analysis for curvature term

For further analysis, we can relate a and 8 by a distinguished limit, i.e.
B =a‘. (4.31)

As we already figured out by the first part of the scaling analysis, the cases where a
distinguished limit is needed to determine the dominant term are 2c and 3c, i.e. @ > 1
and 8~ 1 or 8> 1, so we assume now that a > 1.

The cases ¢ = 0 results in § = 1, which means that background wind speed and wave
phase velocity are the same. This corresponds to a critical level and requires special
attention. This is, however, not the purpose of this work and is left for future research.

For the case ¢ < 0, we obtain § < 1, which is not a case of interest here. The
remaining values for ¢ can basically be classified in two categories: 0 < ¢ < 1, for which
B ~ 1 and all remaining positive values for ¢, which yield 8 > 1.

With the help of equation (4.31]), we can write the term (4.30) as

1 n a?
(1= &) o

~1 (4.32)

We equate the first and the second term and obtain the equation
¥ =af—1. (4.33)

If we can solve this for ¢, we would have found the values where both terms coincide.
With the help of a computer algebra system, we find the solutions to be

2

cy_ =In(a) 'In 2 tay/2-1 (4.34)
’ 2 4

For large «, one of the values is close to 2, while the other is close to 0. So when we

have ¢ < ¢ < ¢4, the second term in expression (4.32)) is the dominant one, meaning

overall that the curvature term has a non-negligible effect in these cases.

A typical atmospheric buoyancy period is Ty = 100s, which corresponds to a strati-
fication strength of Ny = 0.01s™!, a value often used in the troposphere. Waves usually
oscillate faster in the stratosphere due to stronger stability there. As a reference hori-

zontal scale, we choose Lg(gl) = 50000 m corresponding to long waves, L;(L«Q) = 5000 m for
waves of intermediate length and Lg) = 500 m for short waves. Now let us look at
fle —— <1 >>& (4.35)
ToUo 7T '

1

For long waves, the term on the right-hand side of the last equation is 500 ms™" and

for medium waves 50 ms~!, hence, the requirement of Uy being much larger than this
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4 Wave transmission with background wind

is very unrealistic in upper troposphere and lower stratosphere regimes. For shorter
waves, the term is 5ms™!. Uy must still be pretty large, but the tropopause jet can

reach velocities of like 30 to 507 (see for example |Gisinger et a1.| 1|201 7|)). The relevant
cases then are a ~ 1 < L;(ES) ~ Hy and o > 1 & Lg(gg) > Hy. The second case is
completely unrealistic, since it requires the background wind to vertically increase very
strongly over just a few tens of meters. The second case is still very unlikely, but one
could argue that it corresponds to a very strong jet stream.

For

Ly Ly
BN“:)TOUONI@UON?O’ (4.36)
the long-wave regime is completely unrealistic with Uy ~ 500ms~!, while the medium-
wave regime is on the edge of reality with Uy ~ 50ms~!. When looking at the relevant a-
regime, i.e. a > 1 & LS;Q) > Hy, this can be a realistic scaling for a strong tropospheric
jet, where the wind strongly increases over a few hundred meters. For short waves, the
reference velocity is about 57, and the rate of increase in the case of a > 1 is the same
as in the strong jet stream case in the aforementioned paragraph and is also realistic.

The relation

X LJ?
>1e U< =2, (4.37)

l&
p> ToUo To

is in general true. Let us now assume (1 — ﬁ_l)_2 — 1 ~ 1. Then, the relevant regime
isa> 1< L, > Hy. Although the scale of variation of U is small, the amount it
changes is also small, e.g. for medium waves, the wind increases by about 5ms~! over a
few hundred meters, which is very realistic. With a distinguished limit

a~ < Hy ~ Uyl (4.38)

for example, we get that the second term is dominant. The distinguished limit can be
understood that the horizontal advection over one buoyancy period has the same length
as the scale of variation of the background wind.

The scale analysis revealed only the effect the curvature term has on the vertical
wavenumber. But this may also affect wave transmission and reflection, for example, if
the curvature term causes the radiant to become negative, effectively causing the wave to
encounter a reflection level, which it may otherwise not have. The scale analysis shows
that the curvature term plays a minor role in most of the realistic cases, most notably
in the classical WKB regime, where this term is usually neglected.

Figure shows a parameter range for which transmission coefficients are computed.
We use a constant stratification Ny = 0.01s~! and a bell-shaped wind profile

U = ug exp (—(Z_f“)2> , (4.39)

g
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4.4 Scale analysis for curvature term
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Figure 4.4: The left panel shows the transmission coefficient computed with the
curvature term, the middle panel shows the computation without the curvature term.
In the right panel, we see the absolute value of their difference.

with ¢ = 100m and ug = —b5ms~!. The discretisation was made in the interval

[zy — 50, 2y + bo], its length is A, = 100 = 1000m and 2, can be chosen arbitrar-
ily. We use 300 frequencies, equally spaced between 0.01 Ny and 0.99Ny as well as 300
logarithmically spaced horizontal wavelengths between 100 m and 100000 m. The number
of layers is 200.

The left panel shows the computation that includes the curvature term, the middle
one does not include the curvature term. Their absolute difference can be seen in the
right panel. We can clearly see the influence the curvature term has, causing waves to
either transmit better or worse. We detect two separated areas where the transmission
behaviour differs significantly. Both occur for moderately large horizontal wavelengths.
We see that hydrostatic waves, i.e. waves with small vertical wavelength compared to
the horizontal wavelength, transmit much better than without the curvature term and
non-hydrostatic waves are hindered in their transmission. To put this into the context
of the scale analysis, we have a reference wavelength L, = 3000m, a wind scale Hy =
30 = 300m, a reference wind Uy = 5ms~! and a timescale Ty = ﬂ/NO ~ 141s. This
results in & = 10 > and S &~ 4.25 ~ 1. When we have a look at the scale analysis,
this was exactly one of the regimes that we detected above in which the curvature term
significantly impacts the vertical wavenumber.

In a similar fashion, it would be possible to derive a scale analysis for a hydrostatic
wave scaling. This will not be taken on now but left for future research.
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5 Wave packets

In chapters [3| and 4] the subject of study was a plane wave field, which technically
extends infinitely in positive and negative vertical direction. Moreover, we focused on
temporally periodic solutions (which are basically steady-state solutions in a coordinate
frame moving with the constant horizontal phase velocity w/k). In comparison to this,
wave packets are confined in space and time. In the present chapter, we will extend the
theory we developed in the preceding chapters so that it can be applied to wave packets.
We will stay close to [Piitz and Klein] (2018), as a major part of this extension is also
discussed there.

5.1 Basic thoughts on wave packets

For the interaction of small-amplitude gravity wave packets with the tropopause, we use
again the linearised Boussinesq equations , but we will not be using a plane wave
ansatz in x and ¢t. Due to the explicit dependence of the solution on all 3 unknown
variables, it is a priori not clear if the multi-layer method is applicable for wave packets,
as we cannot derive a single ordinary differential equation that describes the evolution.

Luckily, it turns out that we can modify the multi-layer method and adapt it to the
case of wave packets. To keep things simple, we first restrict ourselves to the case of
quasi-1D wave packets, that are only confined in the vertical direction, but are still
periodic in horizontal direction. A brief discussion on 2D wave packets can be found at
the end of this chapter.

Starting points for the investigation are the linearised Boussinesq equations in a sta-
tionary atmosphere, i.e. equations . We can reduce them to a single equation for
the vertical wind speed, as we already saw in equation , here again written for

convenience o2 N o2
w 207w
(83;2 822> ot? N 2 0 (5-1)

As in the previous chapters, N shall not depend on z. As we mentioned, we focus on
horizontally periodic solutions. Hence, we set

w(z, z,t) = w(z,t) exp(ikx), (5.2)

where k denotes the horizontal wavenumber. This ansatz permits solutions that can
be localised in z-direction and have explicit time dependence. This allows for an easier



5 Wave packets

computation by not giving up the key aspects we are interested in, namely the evolution
of the wave packet through a vertically non-uniform background. The resulting equation
then reads 2N\ o2
w
B+ = ) =5 + N*E*w = 0. 5.3
< + 622) o * (5:3)
We will omit the tilde-superscript in the later equations.

For a constant stratification N = Ny, plane waves are still solutions to equation ([5.3)).
In particular, any function of the form

w(z,t) = Aexp(i(mz — wt)) + Bexp(—i(mz + wt)). (5.4)

solves the equation as long as the vertical wavenumber m and the frequency w are linked

via the dispersion relation
NZE?
2= 0" (5.5)
k2 +m?

It is important to note that, although equation (5.3 is a fourth order equation, we
assume the solution to depend only on the two unknown amplitudes A and B, as we
assume w > 0, just like in the plane wave case. Although technically, there are two
choices for either m and w, they are linked via the dispersion relation (5.5). The two
choices for m, which are m; and m_ with m_ = —m, can lead both to the same
frequency branch. But the same is true for the frequency, so that we can a priori rule

out two combinations by symmetry reasons.

Since equation is linear, we can superimpose solutions to get new ones. A su-
perposition of finitely many solutions is, in general, not periodic (an exception to this is
when all wavenumbers are rational), but almost-periodic, i.e. for every ¢ > 0, there is a
number L. > 0 such that in every interval [z, z + L.|, there is a number p with

[f(z+p) - f(2)] <e. (5.6)

So the solutions, although not periodic, show recurring patterns up to a certain precision.

Wave packets can technically be seen as the superposition of infinitely many plane
waves, all with different amplitudes and wavenumbers and frequencies, but each of those
waves still has to fulfil the dispersion relation . Note that we fixed k, i.e. all solutions
have the same horizontal wavenumber, which results in the wave packet being horizont-
ally periodic. A way of constructing wave packets is to modulate a plane wave with
an envelope function that has compact support or is at least rapidly decreasing. The
question which arises is how the amplitude has to be distributed among the frequencies
and wavenumbers in order to obtain a vertically confined wave packet. For a uniform
stratification and wind, the answer can be obtained by a Fourier transform. However,
in a background with non-uniform stratification and height-dependent wind, the wave
parameters change during the propagation. Most notably, the vertical wave number dis-
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5.2 Uniform stratification

tribution changes and the wave packet energy, which is proportional to the square of the
amplitude, is shifted in wave number space. It is a priori not clear what the wave packet
will look like after this change. The method that will be developed in this chapter finds
a solution to this problem.

5.2 Uniform stratification

For uniform stratification N = Ny, there is already well-established theory. Basically, the
wave packet envelope moves with the vertical group velocity g—;ﬂb while it slowly disperses.
For quasi-monochromatic wave packets, i.e. wave packets with an envelope much larger
than the wavelength, the leading order influence on dispersion can be described by a
linear Schrodinger equation. Details on this can for example be found in
. Our interest, however, are wave packets in non-uniform media. Nonetheless, we
are going to start the investigation with a view on uniform stratification. The results
we obtain will be in line with the common literature, so that we can use the results as a
cornerstone for the extension of the multi-layer method to wave packets in non-uniform
media.

We start by modulating a plane wave with vertical wavenumber mg in physical space
with a Gaussian function:

2
z
w(z,0) =R (exp(—imoz) exp (—2>> . (5.7)
O-Z
Without loss of generality, we choose the wave packet to be centred around z = 0. A
common assumption is that the width o, of the wave packet is much larger than the
vertical wavelength, i.e.

2
<o (5.8)
mo

These so-called quasi-monochromatic wave packets are the classical objects of study
in WKB theory, since they allow for the definition of a local wave number and frequency
whose scale of variation is much larger than the main wave length % We will also
assume that equation holds, but in fact, it is only necessary that 27 /mgy < o,. The
wave packet then contains only a few vertical oscillations. Further, when we move to
non-uniform background profiles, we are not restricted to a slowly varying stratification
and wind when compared to the dominant wave length.

As the wave packet propagates, waves with larger wavelength will travel faster than
shorter waves, as a result of the non-linear dispersion relation . Hence the wave
packet will lose its initial shape. Moreover, non-uniform background will alter the shape
as well.

Note that initial data of the shape are only a special case. In general, atmospheric
flow solvers can use a wide variety of wave packet initial data, but Gaussian wave packets
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5 Wave packets

are very convenient for use in idealized studies as they are smooth and analytically
tractable in many ways. The method developed here is is applicable to initial conditions
other than Gaussian, but we will showcase the method by the means of initial data of

the form (5.7)).

To link the amplitude modulation to wavenumbers and frequencies, we make use of
the Fourier transform. We will not go into detail on this technique, but the interested
reader might consult, e.g. [Stein and Shakarchi] (2003]). The important part is that the
Fourier transform exists for square-integrable functions, i.e. functions f(z) with

JALCIRS (5.9)
R

The space of all square-integrable functions is called L?-space. The Fourier transform is
the representation of such a function in the so-called phase space. It is defined as

FUf) = Flm) / F(2) exp(—imz) dz (5.10)
There is also the inverse transformation

F(f)= f(2) = 5 / £(m) explimz) dm (5.11)
with X R

FY(F(f)) = f and F(F*(f)) = f. (5.12)

A feature of the Fourier transform is that a differentiation in physical space transfers to
a multiplication in phase space, i.e.

( ) = mf(m). (5.13)

cf(2) = cf(m). (5.14)

Assuming a constant stratification N = Ny in equation (5.3)) yields

2, 07\ Pw 2

Since none of the coefficients depends on z, we can Fourier transform this equation in z.
Multiplying by exp(—imz) and integrating over z, using the above mentioned methods,
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5.2 Uniform stratification

yields
0w NZk?
where
w(m,t) = / w(z,t) exp(—imz)dz. (5.17)
R

This equation has the plane wave solution

w(m,t) = R (C(m) exp (—iw(m)t) + D(m) exp(iw(m)t)) , (5.18)
where Nok
_ 0
wlm) = s (5.19)

C(m) corresponds to the upward propagating wave component and D(m) corresponds
to the downward propagating wave component. Here, we only want an upward travelling
wave packet, so D(m) = 0. In order to obtain C(m) from the initial condition (5.7), we
combine two different equations for w(m,0). By evaluating equation at t =0, we
find that

w(m,0) = C(m) exp(—iw(m) - 0) = C(m). (5.20)

Moreover, evaluating equation (5.17)) at ¢t = 0 yields
w(m,0) = / w(z,0) exp(—imz) dz, (5.21)
R
where the right-hand side can be seen as the Fourier transform of the initial condition
(5.7). It basically corresponds to the wavenumber distribution of the Gaussian wave
packet. So if we are able to compute the integral on the right-hand side of the above

equation, we have the initial condition for equation (5.16]). For a Gaussian wave packet,
this can be done explicitly. First, we combine the exponentials:

w(m, 0) :/Rw(z,O)eXp(—émz) dz

2
= / exp(—impz) exp <—22> exp(—imz) dz (5.22)
R 0%

52
= / exp (—2 —i(m — mo)z> dz.
R 0%
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5 Wave packets

The argument of the exp-function can be understood as an incomplete square:

2 _ 2 _ 2
(5.22) = / exp (—52 —i(m —mp)z — izag(m4m0)> exp <i2ag(m4mo)> dz
R z

1 B 2
= exp (4J§(m - m0)2> / exp ( (Z + Z,Uzm2m0> > dz
R 0z

1
= exp <—4J§(m - m0)2> o2

(5.23)
For the last equality, we used the well-known value of the integral of the Gaussian

function (Forster] [2012)
(x — w0)”
exp | ———— | dz = V72, (5.24)
R

c2

assuming ¢ € R and zg € C. We see that the Fourier transform of the Gaussian
wave packet is a Gaussian function. Observe that it is centred around mg, the main
wavenumber of the wave packet, and that the width is 2/0,, which is, in case of a quasi-
monochromatic wave packet, much smaller than mg (this fact is derived from equation
(5.8])). So the wave packet contains only wavenumbers that lie in a small area around
mo L

If we allow for o, only slightly larger than A., the Gaussian shape of w(m,0) would
be very broad, so that more waves actually contribute to the shape of the wave packet.
Our approach is applicable to this situation without restriction but, as we are going
to approximate wave packets by a finite superposition of plane waves, our method is
particularly efficient for the approximation of quasi-monochromatic wave packets.

The solution to equation ([5.16]) with initial condition obtained by Fourier transforming

equation is
w(m,t) = Vro?exp (—laQ(m — mo)Q) exp (—iw(m)t) . (5.25)

In order to obtain the solution in physical space, we have to apply the inverse Fourier

!Technically, the wave packet contains all wavenumbers since @(m,0) is always non-zero, but the
contributions of waves with wavenumbers that are outside a small neighbourhood of mg are negligible,
since their amplitude is very small.
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5.2 Uniform stratification

transform to equation ([5.25)):

w(z,t) = ;/@(m,t) exp (imz)dm

T JR
% /R C(m) exp (—iw(m)t) exp (im2) dm (5.26)

_ % /R Vol exp <—i02(m - m0)2) exp (—ico(m)t) exp (imz) dm

Unfortunately, this can not be evaluated explicitly, but numerically, as the actual integra-
tion domain is a small interval I,,,, = [mo— A, mo+ Ay,], with A, chosen appropriately
such that mg + 4,, < 0 and wavenumbers outside I,,,, have a negligible amplitude. By
performing this integration for several values of z and ¢, we obtain a wave packet that
has downward travelling phases with an upward moving envelope that slowly disperses
in time, just as we expected. The results are displayed in figure [5.1

We initialised a wave packet with horizontal wavelength \, = 30km, main vertical
wave length A\,o = 3km and an envelope width o0, = 7km for the upper row and
0, = 3km for the lower row. We observe that the dispersion for the second case, where
0. = M., the initial wave packet contains only a few oscillations, is much smaller, but
it disperses much stronger. This is because the wave number distribution is broader
and hence, much longer waves contribute to the wave packet which have in turn a much
higher vertical group velocity, given by dw/dm.

It is interesting to note that a numeric evaluation of the integral in equation ,
for example via composite Newten-Cotes formulae, corresponds to an approximation of
the wave packet by a superposition of finitely many plane waves. To see this, we look at
a quadrature formula for a fixed location zg and time tg

n

w(zo,to) = / w(m, to) exp (imzg) dm & |y, | Z i (my, to) exp (imzg) (5.27)
I

mo =1

with weights 1; at wavenumbers m; . As we said in the beginning of this section, for
a fixed wavenumber, in this case my, the solution w(my,t) has a plane wave structure.
Therefore, the quadrature formula can be seen as a weighted superposition of finitely
many plane waves that approximate the wave packet. This will be of great avail later.

If we have a look at equation ([5.15)) again, we see that the coefficients also do not
depend on t, so the Fourier transform should also work with ¢ instead of z, i.e.

w(z,w) :/Rw(z,t) exp(—iwt) dt. (5.28)
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Figure 5.1: Snapshots an upward travelling Gaussian wave packet in uniform back-
ground N = Ny at different time points, computed with the multi-layer method. The
left panel displays the initialised packet, the middle panel shows it after t/Ng = 450 and
the right panels after tNg = 900. The blue curve is the wave packet itself, the green line
is the envelope, plotted here to see the effect of the dispersion better. The wave packet
broadens, with longer waves travelling faster than shorter ones. The wave amplitude

is 1% of the static instability threshold w% /mo, which was estimated by |Achatz et al.

).
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5.2 Uniform stratification

The resulting equation is

0*w N? N
Far(ne) £ <w3 - >“’<Z’°’>:0' (5.29)
(w)?

In case of uniform stratification, we also have plane wave solutions

w(z,w) = R(A(w) exp(im(w)z) + B(w) exp(—im(w)z)). (5.30)

Again, if we want to initialise an upward propagating wave packet, we have to choose
B(w) = 0. By using the inverse Fourier transform, we obtain the full solution in physical
space and time:

w(z, t) = S / w(z,w) exp(iwt) dw = L A(w) exp(—im(w)z) exp(iwt) dw. (5.31)
27 R 27 R

It is important to say that the integration domain is not R, but the interval (0, N}) for
two reasons. The first reason is that we assumed w > 0, as negative frequencies are ruled
out by symmetry. The second is that waves with frequencies w > N, are evanescent in the
troposphere and are assumed not to reach the tropopauseﬂ Unfortunately, there is no
direct way of using the initial condition w(z,0) to determine A(w), since we transformed
the time dependency into a frequency dependency. We would need a boundary condition
w(2p,t), i.e. what an observer would see over all times at a fixed point zp in space. But
since the phase velocity is negative while the group velocity is positive, it is a priori not
clear if an initial Gaussian-shaped wave packet in space also produces a Gaussian-shaped
packet in time. There is, however, a link between wavenumber and frequency, namely
the dispersion relation . We can use it to apply a coordinate transformation in
equation from m to w, where

m=m(w) = —ky/ ]522 -1 (5.32)

Then, the integrand of equation (5.26]) takes the shape of the integrand of equation
(5.31). Hence, it will be possible to find A(w), which then corresponds to the correct
starting conditions for a Gaussian gravity wave packet in frequency space. To perform

2They might actually reach the tropopause, if their vertical wavelength is very large, similar to the
tunnelling effect we saw in subsection|3.6.2] but we will focus on wave packets that propagate properly
through the troposphere.
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5 Wave packets

the transformation, we use

d N2k
dm="Tdw=—""""_ du. (5.33)
dw 3 N2

We also have to make sure that the integration boundaries are correct. We know that
the integration bounds for the inverse Fourier Transform in w need to be 0 and N,
hence the bounds before the coordinate transformation are m(0) = —oo and m(Np) = 0.
As we mentioned earlier in this section, only wavenumbers in I,,,, i.e. close to my,
actually contribute to the wave packet. Moreover, I,,, was constructed to be contained
in the negative real numbers. Hence the integration bounds are fine for the coordinate
transformation. We obtain

0
w(z,t) = ;ﬂ/_ C'(m) exp (—iw(m)t) exp (imz) dm

= L™ ) exp ity exp (im()z) T (534)

=/, m(w)) exp (—iwt) exp (im(w)z) -~ dw :
IR

= — A(w) exp (—im(w)z) exp (—iwt) dw
2 0

with )
1 N2 N2
A(w) = Vro?exp —102 (—k: — —1- m0> _ Nk (5.35)
“ w%/ﬁ—j -1

This is the correct starting condition for a gravity wave packet in frequency space which
is initialised with a Gaussian shape in real space.

With this representation of Gaussian wave packets in frequency space, we will be able
to extend the multi-layer method from chapter [3| to describe the evolution of a wave
packet, while still being able to set up numerical simulations that take Gaussian wave
packets as initial conditions. As long as we are able to explicitly compute the spatial
Fourier transform of the initial wave packet, we are able to create a starting condition
in frequency space. Hence it is also possible to show the evolution of, e.g., cosine-
shaped wave packets, which were studied by [B6loni et al.| (2016) in different atmospheric
circumstances. They will be in fact the object of study in section where we validate
the theory numerically.

5.3 Non-uniform stratification

One could ask why it is important to translate wave packet-like initial conditions to
frequency space when a transformation to wavenumber space also works and seems
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5.3 Non-uniform stratification

much more natural. The reason for this is that in case of non-uniform stratification, i.e.
N = N(z), we are not able to perform a Fourier transform in z of equation (5.3), since
now the equation explicitly depends on z. But a Fourier transform in ¢ is still possible,
which yields equation with the difference that N now depends on z. Similar to
equation for plane waves, it can, in general, not be solved explicitly for arbitrary
stratification profiles. What we can do now is to use the method we developed for plane
waves in chapter [3] i.e. approximating N(z) by a piecewise constant function. We obtain
local solutions that are valid in the layers where N is constant. Following the notations
in chapter [3] we have equations

2,7 2

0°w N; .
(%2] (z,w) + k2 (w; - ) wj(z,w) =0, (5.36)

for j =1,...,J + 1. Similar to equation (5.18]), we have plane wave solutions
wj(z,w) = Aj(w) exp(—im;(w)z) + Bj(w) exp(im;(w)z), (5.37)
where again A; corresponds to the upward propagating part and B; to the downward

propagating one, j indicates the corresponding layer and

mj(w) = —k\/ —2 — 1. (5.38)

Together with the matching conditions (3.21]), we can derive relations

<Aﬂ'> _ (4 @ (Aj+1> . (5.39)
B o) o)) \Bin
similar to equation (3.24)). Note that the matrix here is the inverse of (3.27). The matrix

entries can however easily be derived with the matrix entries of the original matrix (3.28])
and (3.29)), the determinant (3.30) and the matrix inversion formula for 2-by-2 matrices

(Ccl Z)_l - adibc <_dc _ab) : (5.40)

Note that m; and mj;1 are now functions of w, as displayed in equation (5.38). The
reason why we decide to use this direction for the matching is rather simple, as it is
easier to handle during the upcoming transformations and optimises computation time.

But still, the multi-layer method is not yet applicable, since there is a major difference
to the case with plane waves. When looking at a single plane wave with fixed wavenumber
and frequency, then requiring that we have only upward propagating waves above a
region of non-uniform stratification is the same as saying we initially have only upward
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propagating waves below the non-uniform stratification that are incident on this region,
since we eventually get a steady state. But now we have an explicit temporal dependence
of the solution and when initialising a single Gaussian wave packet below a region of
non-uniform stratification is not guaranteed to yield a single wave packet above the
region, let alone Gaussian-shaped. It could and will be that some partial reflected part
of the wave packet is again reflected inside this region, causing the double reflected part
to travel upwards again so that the wave packet has some sort of a “tail” or that we have
multiple distinguishable wave packets.

Therefore, we are not able to provide the amplitude information for upward and down-
ward propagating waves in the uppermost layer, which would let us solve equation (5.39))
recursively for all j. So the correct approach is to require no downward travelling wave
packets in the upper layer and only a single upward travelling wave packet in the lowest
layer. Hence, we choose A1 (w) in a way that it corresponds to a wave packet, for example
via equation and we require Byy1(w) = 0.

We can gather the conditions at all interfaces in a large equation system:

o _W 5

1 0 —q;7 —qp9 00 0 0 A
01 —¢V - o 0 00 0 0 B
00 1 0 -2 —¢? 00 0 0 Ay
00 0 (| C—_ 00 0 0 By | =0 (541)
00 0 0 0 0 10 —qfy) =gy | |Arn
00 0 0 0 0 01 ) —qiy) P

The matrix has a size of 2J x (2J + 2), so we have 2J equations for the 2J + 2
amplitudes. But we already know two of them, namely A; and Bjyi, so we actually
have only 2J unknown amplitudes. So the equation system that we need to solve is

o .0 5

T oo oo (Y (o
—Qs1  —qso 0 0 0 0 0 A, 0
0 1 0 —q¢? —¢? 00 0 By 0
0 0 =g ) 00 0 A3 | = O (5.42)
0 0 0 0 0 ... 10 —¢7 Bt 0
0 0 0 0 0 ...01 —¢ An !

In general, the matrix in equation (5.42)) has maximal rank, unless the first row or last
column is zero, but this can happen only if the matrices in equation (5.39) for j =1 or
j = J are defect. As we can derive from equation (3.30)), this only happens if my = 0
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or mj4+1 = 0. The second case can be ruled out as it would correspond to a neutrally
stratified stratosphere, not allowing for wave propagation. Although that case is allowed
theoretically, it is not of particular interest, as all the transmission coefficients would
be 0, resulting in a total reflection. The first case however might appear. But as we
discussed already in section we avoid evaluating at points that cause the vertical
wavenumber to vanish, supposed it occurs at an isolated point in space. Therefore, the
linear equation system can be assumed to have full rank and by solving it, we find
a unique solution.

Theoretically, it is possible to use the matrix structure to write down the solution in
a closed formula, but the computation of this approach is very costly, since the matrix
entries are in fact functions depending on w and the equation system needs to be solved
symbolically. Due to this fact, it was not manageable to compute the closed formula,
even for a small number of layers.

Therefore, we had to develop another way of finding the solution. Even if we would
find the analytic solution, we expect that we can evaluate the integral that appears in the
inverse Fourier transform only numerically. This would correspond to an approximation
of the wave packet by a superposition of finitely many plane waves, as we already pointed
out in section [5.2] Hence, it seems convenient to take certain values for w at which the
corresponding functions are evaluated and the resulting linear equation system is solved
numerically. These values will then serve as grid points for the numeric approximation
of the inverse Fourier transform.

In order to get accurate results, we describe the wave packet as a superposition of
several thousands of plane waves. By what we said at the beginning of this chapter,
such a superposition is almost-periodic in space and time, but the almost-periods for
reasonably small £ are much larger than the temporal and spatial envelope, so that the
wave packets do not influence each other in the region of interest.

The transmission coefficient is computed as a weighted sum, where each plane wave
contributes as much as its fraction of the initial wave energy. To be precise, this writes
down as Ay (w)?

w
TCtotal = 17TC(OJ), (543)
Zw: 2w Ar(w)?
where the sum runs over all frequencies at which we evaluate and with the usual formula
for the transmission coefficient

_ myn () A W) ]?
o) ="t S ‘ ) ’ (5.44)

that we already know from section

Table shows the comparison of some calculations for several wave packets in dif-
ferent stratification profiles and their plane wave counterparts, i.e., plane waves with the
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A, /drp 0.4 1 2 5 case

0.9673 | 0.8092 | 0.6616 | 0.4184 || Wave packet
0.9668 | 0.8095 | 0.6620 | 0.4189 || Plane wave
0.9764 | 0.2904 | 0.0916 | 0.0298 || Wave packet
0.9791 | 0.2873 | 0.0916 | 0.0299 Plane wave

realistic TP

Reflection

Table 5.1: As stratification, we use the realistic tropopause and the reflection layer
profiles from [Piitz et al| (2018). The tropopause depth is drp = 1000m, A\, = 2000 m
and o, = 5, in all cases. We find that the energy transmission of Gaussian wave packets
can very well be approximated by plane waves with vertical wave number equal to the
main wave number of the packet.

same horizontal wave number and the main frequency wy:
Nok
Vk? +md '

We fixed the horizontal wave length to be A, = 2000m and the tropopause depth was
set to be drp = 1000 m. We chose to display the main vertical wavelength instead of the
frequency, because it gives a better intuition about how large the wave packet is compared
to the region of non-uniform stratification. We make an interesting observation. The
transmission of the wave packets can be described very well by just using the transmission
coefficient for the corresponding plane wave. This permits a very fast and efficient
estimate of partial reflection and transmission of gravity wave packets incident on a
region of non-uniform stratification.

(5.45)

wo =

5.4 Evolution of wave packets

The transmission coefficient gives a measure for how much wave energy propagated
through the tropopause. What we do not know is how the transmitted and reflected
wave packet look like. Fortunately, this approach gives the possibility to compute the
full spatial and temporal evolution of the initialised gravity wave packet. In order to do
this, we need to calculate the inverse Fourier transform of the solution we obtain from
the multi-layer method. We recall that

Ny
w(z,t) = 217r/0 w(z,w)exp (—iwt) dw, (5.46)

where w is the piecewise defined function

w(z,w) = Aj(w) exp (—im(w)z) + Bj(w) exp (im(w)z), =z € I, (5.47)
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for j =1,...,J 4+ 1. As we already mentioned in sections [5.2] and [5.3] the integral will
be approxunated by a quadrature formula

Ny n
/0 w(z,w) exp (—iwt) dw = NbZ@bllE(z,wl) (5.48)

=1

with weights 1. Let 2 = {w | |w —wo| < Ay} where wp is the main frequency of
the wave packet and A,, be chosen appropriately such that A;(w) is small compared to
max,e(o,n,) [A1(w’)| for all w with [w —wo| > A, ie. waves with frequencies outside
of {2 contribute negligibly to the wave packet. Let n, be a positive integer. Define
w; = wy, + %Aw for | = —ng,...n, and set 2¢ = {w; || = —n,,...n,}. Assume that
we have solved equation system for every w; € 2% i.e we have the amplitudes
Aj(wy), Bj(wy), where j indicates the layer. Given that we already have an equidistant
grid on 2%, the most natural choice is a composite Newton-Cétes formula.

As we have 2n, + 1 grid points, it is possible to use the composite Simpson rule
(which is for example also used in the MATLAB built-in integrator quad). We split up
the integral in a sum of smaller integrals, which then are individually solved by the
Simpson rule. To be precise, the integral in equation written as

W2l —ny,
/ w(z,w)exp (—iwt) dw = Z/ w(z,w)exp (—iwt) dw. (5.49)
2 Wa(l—1)—ne
Each integral is then approximated by

W2l —ny,
/ w(z,w) exp (—iwt) dw

Wa(l—1)—ng

~ 26?2) (I (wa-1)-n,) + 4 (Wo-1)-ny+1) + I(war-n,)) , (5.50)
where
I(w) = (Aj(wy) exp (—im;(wy)z) + Bj(w;) exp (imj(w;)z)) exp (—iw;t) . (5.51)

The index j depends on the evaluated point z. To be precise, we choose the unique j such
that z € I, where we use the definition of I; from subsection Defining h,, = A, /ny,
the full solution is then approximated by

Nw

Z H(wa(i—1)=n,,) + 4 (Wa(1—1)—ne,+1) + L (W2(1-1)—ny,+2); (5.52)
=1

1y

w(z,t) ~ 53

Performing this calculation for a fixed discrete vertical domain D and several discrete
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time steps {ts},~,, we obtain a temporal evolution of the gravity wave packet in the
domain D.

One major advantage over the use of numerical flow solvers is that we can construct
an approximate solution for the whole space and all times. We can just pick any time
to and display the solution in an area we are interested in rather than initialising a
wave packet and simulating up to tg. Of course the method describes just the linear
behaviour of the wave packet in a Boussinesq setup, but it is nonetheless an interesting
result that gives a good qualitative hint of how gravity wave packets behave in certain
stratification profiles. As we will see in section [6.3] the results derived here match up
very well against simulations of small-amplitude wave packets with the full non-linear
Boussinesq equations.

We shall discuss another method to approximate the integral in equation . One
could make the argument that, given the solutions w(z,w;), one could simply superim-
pose I(w;) to obtain a solution depending on z and ¢. While this is a feasible approach,
the solutions have to be scaled by a factor that accounts for the number of waves we
superimpose in order to obtain the correct physical solution. Sticking to the notation
from above, it turns out that this factor is h,/(27), so that we can approximate the
solution as

w(z,t) =~ — I(w). (5.53)

A closer inspection of this approximation reveals that it is actually a Riemann sum for
solving the integral in equation (5.46]). Hence, the simple superposition of plane waves
also corresponds to an approximation of the inverse Fourier transform.

We tested both methods for several test cases and it turned out that both are equally
fine. The theory predicts both methods to converge to the real value of the integral
with the composite Simpson rule doing so faster. The difference can be seen when using
only a few plane waves, but for the computations we did, the number of plane waves
was at least 1000. The error between both methods then was on the order of machine
precision, so none of them could be declared superior over the other in terms of accuracy.
Nonetheless, the Riemann approach has the advantage of being easier to implement and
is therefore computationally cheaper. The saving in computational time is on the order
of a few percent. While this does not seem much (in fact, the method is still very efficient
when running with the composite Simpson rule), it will allow us to extend the method to
wave packets that are horizontally and vertically localised. This will be briefly discussed
in section All computations presented in here were carried out with the composite
Simpson rule.

In figure we show vertical cuts through a wave packet that propagates through the
realistic tropopause profile (3.111)) with the same specifications as in section We used
A, = 1000m and wavelengths A, = A, = 2000 m at time points £ = 0h,2.5h,...,12.5h.
We can observe a partial reflection at the region of non-uniform stratification. In the
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5.5 Wave packets with wind

upper right panel, the partial reflection is about to take place, which is indicated by the
strong oscillations of the envelope. In the lower panels, we can detect two separated wave
packets, travelling in different directions. In this particular case, the wave packet more
or less keeps its shape: both the reflected and transmitted packet do look Gaussian-like.
It is not possible to give an explicit formula for the envelope, though. The transmission
coefficient is 0.6616. Although the amplitude in the stratosphere seems to be slightly
smaller, the stratospheric wave packet contains more energy as we assumed a stronger
stratification there than in the troposphere. Hence, the vertical wavenumber is larger
and the amplitude smaller for wave packets with the same energy (it scales with the
square of vertical wavenumber ratio).

Figure [5.3| shows the propagation of the same gravity wave packet through the twin
peaks profile with d = 10L. What happens here is that a part of the wave
is transmitted through the first peak as well as thorough the second peak. The part
that is reflected at the second peak is then incident again on the first peak, but from
above, causing again a partial reflection and transmission of the wave packet so that
there is again an upward travelling wave packet, which has smaller amplitude than the
first transmitted packet and which is located at a different point in space. In the upper
right panel, the partial reflection at the first peak is finished and the wave packet is at
the second peak. In the lower left panel, one can see the second downward travelling
packet as well as the transmitted packet. In the lower middle and right panel, one can
see a second upward travelling packet, which corresponds to a reflection of the second
downward packet at the first peak. This is a case where the method really shines. Not
only yields the computation of the transmission coefficients for the initial wave packet
and the corresponding plane wave slightly different values (0.8246 for the wave packet
versus 0.7394 for the corresponding plane wave), it is the visualisation of the evolution
of the wave packet that tells us that the transmitted as well as the reflected wave energy
is split between multiple distinguishable wave packets.

5.5 Wave packets with wind

We are now able to describe the propagation of gravity waves through a non-uniform,
but steady background. This is already quite an achievement as such an approximate
solution, to the best of the authors’ knowledge, was never derived before. But for real
atmospheric applications, height-dependent background wind is an important factor and
this is why we are going to extend the theory even further to account for a non-steady
background. In order to do this, we combine the discoveries from chapter [ and the
current chapter.

As it turns out, both extensions are straight-forward to combine, as the plane-wave
solution with and without wind works almost identical, with the difference of absolute
frequency replaced by relative frequency and the additional curvature term in the equa-
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tion. Basically the same is true for wave packets. The equation we want to solve is

Fi (NP TG N
LA <(w—ku(z))2+k:(w—k:u(z)) 1) (z,w) =0, (5:54)

which will be done in a similar way as we did for no background wind. We approximate
N, @ and ¢’ in the same way as in chapter 4| and the w-dependency will be dealt with
as we did in section by evaluating the equation for fixed values of w and solving
the corresponding linear equation system numerically. The last missing ingredient is the
transformation of the initial wave packet to a starting condition in Fourier space.

Recall that the dispersion relation for the vertical wavenumber with background wind
is

N2 u”
=—k — 1. 5.55
m \/(w —r)? ke — k) (5:55)
Hence, its derivative after the absolute frequency yields
dm k 2N? u”’
— = ) 5.56
dw o ((w )P e ku)2> (5.56)

(w—Fku)2 —

Therefore, we obtain for the starting condition the expression

'’
2

2 2N?
1 N2 —n k‘( 5 + )
Vo2 exp —102 <—/<; TS mg> B AV A

/\2 /\2 9
w ko 9 /%22_1

where @ = w — ku. So basically, the absolute frequency was replaced by the relative
frequency and the additional term coming from the curvature occurs. Apart from these
small changes, we can apply the method as derived in section [5.3] and also compute the
full spatio-temporal evolution, analogous to section [6.3

(5.57)

With this point reached, we developed a very strong and versatile method that de-
scribes the evolution of small-amplitude gravity wave packets under arbitrary background
conditions. Moreover, it provides the solution for any given point in time when given an
initial condition. This is a huge advantage over numerical simulations, which have to in-
tegrate the governing equations step by step to eventually reach a time point of interest.
To be a serious contender for WKB ray tracer, an extension to higher dimensions (at
least two-dimensional) must be done. This is discussed briefly in the forthcoming section.
Moreover, we do not know by now how well the solutions obtained from the multi-layer
method match against numerical simulations of the full non-linear Boussinesq equations.
This is a task that will be taken on in chapter [6]
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5.6 Two-dimensional wave packets

We will close this chapter with a few comments on two-dimensional wave packets, as the
methods we developed throughout this chapter will also work for them. Assume we have
an initial condition

w(z, z,0) = f(x)g(z) (5.58)

for equation ({3.5)), then a Fourier transform in 2 would give equation ([5.3)), but with & as
an independent variable. The initial condition can than be transferred to this equation
and reads

@k, 2,0) = F(k)g(2), (5.59)
where f corresponds to the Fourier transform of f. From this point on, we can go
the same route as for 1D wave packets, but we are not only superimposing waves with
different frequencies but also with different horizontal wavenumbers. Nevertheless, it
is possible to compute the full spatio-temporal evolution of a 2D wave packet with
this method. The inverse Fourier transform however now also needs to be done for
a horizontal domain D,, effectively increasing the number of computation steps by a
factor of |D,|. Moreover, since the inverse Fourier transform is now a double integral,
the number of waves we use in the horizontal direction is also a factor that increases
the computation steps, since for every wavenumber k;, we have to compute a Fourier
integral in the sense of section before eventually computing the second integral, also
with a quadrature rule. If we use the composed Simpson rule for both integrals, we
obtain a massive increase in computation time, effectively losing the advantage of a fast
computation that we have in the 1D-case.

However, if we use the Riemann sum approach for both integrals like in equation
, it is possible to increase the efficiency of the computation such that we can find
results reasonably fast. For reference, a test case with 100 values for both k& and w took
with the Simpson rule approximately one hour to compute a time point in a domain
with 301 horizontal and 501 vertical grid points. In the same setup, the Riemann sum
approach only needed 30 seconds to give a result. The reason for the faster computation
is that in the Riemann sum, every grid point has the same weight (unlike the Simpson
rule, where the middle point has a weight of 2/3 compared to 1/6 at the end points).
This allows us to solve both integrals by only one summation. Moreover, we can perform
the summation for all z-values at the same time.

Another solution could be to implement a splitting ansatz, where we use the multi-
layer approach in the vertical and a numerical method in the horizontal, but this is an
open problem.
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Figure 5.2: Reflection of a wave packet at tropopause profile of the shape that can be
seen in figure [3.6] Snapshots are taken at at tyb = 0,90, ...,450. Blue lines represent
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Figure 5.3: Propagation of a wave packet through twin peaks.

The upper left

panel shows the profile, the others show the wave packet. Snapshots taken at tN, =
0,216,...,1080. Blue lines represent the vertical wind field, green lines indicate the

envelope, red horizontal lines show the locations of the peaks, which have a width of
Az/2.
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6 Numerical validation of the theoretical
models

This section is devoted to the numerical validation of the multi-layer method. We con-
duct simulations of the full Boussinesq equations with an atmospheric flow solver and
compare the findings to the solutions provided by the multi-layer method. We separate
the cases for plane waves and wave packets. The focus for plane waves lies in the compu-
tation of transmission coefficients. For wave packets, we will investigate the propagation
of the wave packets under different atmospheric conditions. The basic results of this
chapter will also be found in the manuscripts [Piitz et al] (2018)) and [Piitz and Klein|
, but the exact values might differ from the ones found in there, as we made
additional simulations for the thesis.

6.1 Model description

As reference model, we will use PincFloit (Pseudo-Incompressible Flow Solver with Im-
plicit Turbulence), presented by [Rieper et al.|(2013b]). The model conserves mass, energy
and momentum. Moreover, it is a sound-proof model, which has two major advantages
which make it a good choice for our needs. The first one is that all waves that occur are
gravity waves. The second advantage is a direct consequence from the first one as the
supressing of sound waves allows for larger time steps due the CFL criterion not having
to consider the speed of sound. The model was tested favourably against standard cases.
[Rieper et al.|(2013a) used PincFloit to check the range of validity of the extended WKB
theory that was derived in [Achatz et al| (2010]). Very recently, [Schlutow et al] (2017)
used the model to validate their theoretical findings of travelling wave solutions to their
modulation equations.

PincFloit has several built-in variants for the time scheme, flux, flux limiter and spatial
reconstruction. We made several test runs, varying those parameters as well as others,
for example the spatial resolution, CFL threshold, but also wave amplitude, in order to
find a convenient setup that delivers accurate results as well as acceptable run times.

As time scheme, we used the low-storage third order Runge-Kutta scheme, which
were extensively studied by [Williamson| (1980). The exact method can be found in
. For spatial reconstruction, we pair the Runge-Kutta scheme with either
a Godunov schmeme and central flux evaluations or a MUSCL scheme and upwind flux
computations. For all computations, we have a monotonized central flux limiter and the
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CFL threshold was chosen to be 0.9. The exact specifications for each simulation are
available upon request.

PincFloit has a built-in switch for a Boussinesq atmosphere, i.e. constant background
density, but due to extensions implemented by Dr. Gergely Boloni, it is possible to have a
non-constant profile for the Brunt-Vaiisélé frequency. Hence it was possible to implement
the test cases of we needed into the solver. We use the same PincFloit version that
was used by [Boloni et al (2016) as a reference LES model. The only changes are the
implementation of our atmospheric setups and the addition of a sponge layer at the
bottom of the domain, which was written by Dr. Mark Schlutow for the purpose of
generating plane waves in an atmosphere at rest.

6.2 Transmission coefficients for plane waves

This section focuses on numerical simulations with a plane wave forcing. We wish to
compute transmission coefficients form the runs in order to compare them to the theor-
etically predicted values.

The model runs on a two-dimensional z-z-domain and covers 10000 m in z-direction
and one horizontal wavelength in x-direction, which lies between 1000 m and 3000 m
in the selected cases. This is necessary, since we have horizontally periodic boundary
conditions. The vertical resolution is 10 m, which corresponds to 1000 grid cells in the
vertical, the horizontal resolution is 25 m, if not stated otherwise.

We implement two sponge layers, one at the bottom of the domain and one at the top
of the domain, but they serve inherently different purposes. While the top sponge layer
absorbs and damps the wave, the bottom sponge layer is responsible for the excitation
of the wave. Its relaxed state is a plane wave, so after a few time steps, the bottom
sponge initialised a plane wave with given parameters that propagates freely above it
in positive z-direction. The bottom sponge covers the lower 40% of the domain, which
contains either two or four complete vertical wavelengths for the cases we are going to
present. The top sponge occupies the upper 20% of the domain and is chosen such that
the wave is completely damped away before reaching the top of the domain. This is
important, since technically, we also have periodic boundary conditions in the vertical
direction, so we do not want waves that reach the stratosphere to run into the domain
again at the bottom. Moreover, we move the coordinate system with the horizontal
phase velocity w/k, which removes the temporal dependence of the wave field so that
the waves eventually reach a steady state.

In all simulated runs, we can observe such a steady state after several hours of simu-
lated time. It is very stable and lasts until the end time of the simulations, which was 10
hours in all cases. This has the effect that the steady state is present for a few hours of
simulated time. This permits a very good computation of the transmission coefficient.
As initial amplitude, we take the mean amplitude of the excited wave in the middle of
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the bottom sponge layer at a fixed time step after the wave has fully developed, as trans-
mitted amplitude we take the mean amplitude of the wave in the stratospheric region.
Moreover, the transmitted amplitude is computed every ten minutes of simulated time
and the transmission coefficient is taken as mean over all computed values after reaching
the steady state, which was in general assumed to be after 3 hours of simulated time.
Since our theory is developed for the linearised equations, but PincFloit uses the full
Boussinesq equations we have to make sure that we set up the wave amplitudes small
enough to ensure non-linear wave interactions are not affecting our results. Therefore, a
variable that controls the amplitude of the initialised wave is introduced. This variable
was chosen in a way that in all computations, the waves had an excitement amplitude of
around 0.0743 ms ™!, which in none of the cases was more than 7% of the static instability

threshold, which is given by (see, for example, [Achatz et al] (2010)))

km
Hetat = NS Rt m2

Besides eliminating non-linear wave-mean flow interaction, it has the additional advant-
age that the waves do not break during the simulations.

(6.1)

6.2.1 Linear increase

A~z | 1000 1500 2000 2500 3000 method

0.9950 | 0.9964 | 0.9979 | 0.9985 | 0.9988 || multi-layer
0.9780 | 0.9713 | 0.9806 | 0.9911 | 0.9972 || PincFloit
0.9560 | 0.9799 | 0.9884 | 0.9892 | 0.9894 || multi-layer
0.9477 | 0.9826 | 0.9948 | 0.9957 | 0.9777 || PincFloit

1000

2000

Table 6.1: Transmission coefficients for profile from figure with a dimensional tro-
popause depth of 1000 m for different horizontal and vertical wavelength (also in m),
computed theoretically with the multi-layer method and from PincFloit simulations.

In table we find the comparison of the transmission coefficients obtained from
the multi-layer method and from the numerical simulations of PincFloit. We see an
impressive agreement of the values, deviations are in the order of 2%. If one wants to nit-
pick on this, a possible reason for the deviations could be the method we compute incident
and reflected amplitude. Due to the nature of the sponge, there are some fluctuations
in the initialised wave amplitude and hence also in the transmitted amplitude. We take
care of this by averaging over a larger area, but this produces minor errors in the value
for the transmission coefficient. Also a shifting of the averaging area produces slightly
different values, but all in a very small range around the value we put in table We
should mention at this point that for each calculation, we used the same areas over which
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Figure 6.1: Vertical wind field of a PincFloit simulation for the linear case with a
horizontal wavelength of 2500 m and an incident vertical wavelength of 1000 m. zg
indicates where the lower sponge ends, the tropopause is between z; and z; and the top
spnge extends from zg, to the domain top.

initial and transmitted amplitudes are averaged, as well as the same time point for the
computation of the initial amplitude. This holds also true for the other cases.

The steady state for A\, = 2500m and A\, = 1000m can be seen in figure We
can see a refraction of the wave due to the change in vertical wavelength as well as no
superposition of waves in the troposphere, which implies that the wave transmits almost
completely. The smaller wave amplitude in the stratosphere (i.e. between 7000 m and
8000 m) is a result of the stronger stratification in this altitude.

6.2.2 Wave tunnelling

The simulation setup in this case uses fixed values for horizontal and vertical wavelength,
but changes the depth of the tropopause, as this is numerically more convenient. Tech-
nically, we have the same wave frequency, but change the ratio between horizontal/ver-

86



6.2 Transmission coefficients for plane waves

$=] 01 | 02 | 05 | 1 | method
1 | 08648 [0.5846 | 0.0916 | 0.0028 || multi-layer
0.8259 | 0.5580 | 0.0971 | 0.0030 || PincFloit

Table 6.2: Transmission coefficients for profile from figure with fixed vertical and
horizontal wavelengths A\, = A\, and varying tropopause depth A,. This corresponds to
a vertical cut along w =~ 0.7 in the left panel of figure

tical wavelength and tropopause depth, so this corresponds to a vertical slice in the left
panel of figure By choosing A\, = A, as we did here, this results in a frequency
w = %Nb ~ (0.707Np. For tropopause depths that are comparable to A;, we expect
strong reflection, while for a very short tropopause, we should obtain a wave tunnelling
effect. The results can be seen in table We used A\, = A, = 1000 m.

PincFloit shows the behaviour that was anticipated by the theory. This is as much a
quality check for the numerical model as it is supporting our theoretical findings. A ray
tracer based on WKB theory would have found total reflection in all of the cases. This
is because the WKB assumption is not valid any longer when the stratification changes
significantly over a vertical extend much smaller than a wavelength.

Snapshots of the steady state for a high transmission and low transmission case can
be seen in figure It gives a very good comparison between the two cases as we<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>