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1 Introduction

The atmosphere of the earth can be seen as a stratified fluid with height-dependent
variation in density, pressure and temperature. Oftentimes, this stratification is stable,
meaning that denser air masses lie below lighter ones. Such an environment permits
internal gravity waves. The atmosphere is structured in several principal layers. The
lower part consists of the troposphere ranging from the earth’s surface up to around
12 km and the stratosphere on top of it to approximately 50 km. In the troposphere,
the absolute temperature decreases with height. The stratosphere, in contrast, has a
constant temperature in the lower part and even an increase in temperature in the upper
part. The location where the temperature gradient switches its sign from negative to
non-negative is defined as the tropopause. It is a rather shallow area of 1-2 km depth
where tropospheric and stratospheric air masses mix.

The tropopause plays a key role in the propagation of gravity waves from the tropo-
sphere to the stratosphere. Birner et al. (2002) and Birner (2006) used observational
and reanalysis data to describe the temperature inversion layer in extratropical regions.
Gettelman et al. (2011) conducted an extensive study the extratropical tropopause re-
gion, finding that it constitutes a transport barrier for many trace gases. A recent study
of Gisinger et al. (2017) includes the observation of the propagation of gravity waves
through the tropopause during the DEEPWAVE-campaign in New Zealand. Once in
the stratosphere, gravity waves can have a major impact on the circulation in the lower
and middle atmosphere by depositing their momentum to the background flow due to
wave-mean flow interaction and wave breaking (Fritts and Alexander, 2003).

An important characteristic of gravity waves is the ability to transport energy not
only horizontally but vertically. Eliassen and Palm (1961) analysed waves carrying en-
ergy upward and downward in the context of orographically excited gravity waves that
reflect from vertically varying stratification and wind. They used a piecewise-constant
approximation for both stratification and wind and found local solutions which were
matched at the discontinuities of the approximation. This approximation will found the
basis for a large part of the work presented in this thesis.

A similar approach was taken by Danielsen and Bleck (1970) who examined mountain
waves and approximated key atmospheric parameters by piecewise exponential functions.
This method allowed them to solve the governing equations by combinations of Bessel
functions. Sutherland and Yewchuck (2004) attended to the topic again and scrutinised
the phenomenon of wave tunnelling, which describes the energy transport over a finite
layer of decreased, or even vanishing, stratification. They undertook a mathematical
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analysis as well as laboratory experiments to support their findings. Brown and Suth-
erland (2007) expanded the theory by allowing for shear flow over an unstratified layer.
Both scenarios were later examined numerically by Nault and Sutherland (2007) who
provided numerical solutions for plane wave transmission in arbitrary stratification and
wind. As a specific example, they performed simulations for an atmospheric stratification
and wind profile that was observed over Jan Mayen island.

When speaking of atmospheric gravity waves, one has to keep in mind that they
are usually spatially and temporally confined. One of the first investigations of such
wave packets goes back to Benney and Newell (1967), who described wave packets as
superposition of finitely many plane waves. Grimshaw (1977) discussed the modulation
of a wave packet when moving through non-homogeneous media. He derived evolution
equations for the wave packet envelope and found it to be moving with the group velocity
in leading order. A very common approximation that is made for gravity wave packets
is the WKB assumption, meaning that the envelope as well as the background is slowly
varying compared to a wavelength. Achatz et al. (2010) carried out a scale analysis
for the Euler equations and derived leading and first order equations describing the
evolution of WKB gravity wave packets on long time scales that allows the packet to
travel large vertical distances. The derivations were made for small- and large-amplitude
waves. Their findings match very well with the pseudo-incompressible theory developed
by Durran (1989) while they go beyound the regime of validity of other soundproof
models (Boussinesq and anelastic). A complete discussion on the regime of validity for
those atmospheric models can be found in Klein et al. (2010) and Klein (2011). The
theory was numerically validated by Rieper et al. (2013a) and is one of the most general
descriptions of atmospheric internal gravity wave packets. Very recently, Schlutow et al.
(2017) were able to close the modulation equations found in Achatz et al. (2010) and
derive analytic solutions describing travelling waves in the atmosphere. They are the first
and to the best of the authors’ knowledge only ones to ever find analytical descriptions
of atmospheric gravity waves beyond plane wave solutions.

A difficulty with the handling of gravity waves in numerical weather models is their
large wavelength spectrum. It ranges from a few hundred metres up to several thousands
of kilometres in the horizontal direction. The Integrated Forecast System (IFS) of the
European Centre for Medium-range Weather Forecast (ECMWF) uses a triangular mesh
with 9 km grid size, the ICON model of the German weather service (DWD) is currently
operational with a grid size of 13 km, with an extension down to 6.5 km soon to go live.
Even high resolution regional models, such as COSMO-DE, which runs with a resolution
of 2.8 km are not able to capture the whole gravity wave spectrum. Non-resolved waves
therefore have to be parametrised.

Parametrisations are build on a basic understanding of gravity waves being excited
somewhere in the troposphere, travelling upward, growing in amplitude due to the lower
density and eventually break, dissipating their momentum and energy irreversibly to the
mean flow. One of the tasks of gravity wave parametrisations is to predict when and
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where the breaking process happens, but also to predict wave reflection from phenomena
such as a jet stream or a temperature inversion layer.

The aim of this work is to provide a description of gravity waves interacting with
the tropopause. In chapter 2, we will derive the linearised Boussinesq equations from
the Euler equations and give justification for the assumptions we make over the course
of the simplification. After reducing the system down to a single equation, we will
develop a method to solve this equation approximately in chapter 3 in case of a steady
atmosphere. This so-called multi-layer method builds the foundation for the upcoming
chapters. It has the advantage of separating upward and downward propagating waves
in the solution, such that we can compute transmission coefficients, that describe the
ratio of transmitted and incident wave energy, from it. Chapter 4 is concerned with
the inclusion of a non-steady background wind into the multi-layer method. It also
includes an extensive discussion on a term containing the curvature of the background
wind, as this is often neglected in the common literature. We will switch the focus to
the investigation of wave packets in chapter 5. With the help of Fourier transform and
a coordinate transformation using the gravity wave dispersion relation, it is possible to
reformulate the governing equation in a way that a modified multi-layer method can be
applied. We use an inverse Fourier transform on the solution to obtain the full spatial and
temporal evolution of a gravity wave packet without any restrictions regarding scaling
or time steps. A numerical validation of the multi-layer method can be found in chapter
6. There, we compare solutions given by the multi-layer method with solutions found
from simulations of the full Boussinesq equations. In chapter 7, we will investigate
the wave-tropopause interaction from a different angle, using the tools of multiple-scale
analysis. By dividing the waves in three regimes, dependent on the aspect ratio of
vertical wavelength and tropopause depth, we derive dimensionless equations describing
the gravity wave propagation through the tropopause for the respective aspect ratios.
For two of the three regimes, it is possible to derive a leading order solution, while the
remaining regime is hard to analyse from the perspective of multiple-scale analysis. The
thesis will be concluded in chapter 8 with a summary of the results as well as discussion
of open challenges.
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2 The Boussinesq equations

This chapter will give a framework for the upcoming investigations. We start with the
dimensional Euler equations, which describe various types of inviscid atmospheric flows.
Since our interest lies in the interaction of gravity waves with the tropopause, we may
use some assumptions to find a set of equations which are easier to handle than the full
Euler equations.

2.1 Euler equations

We consider gravity waves in a two-dimensional reference frame, with one horizontal
(alongside the earth’s surface) and one vertical (perpendicular to the earth’s surface)
axis. The horizontal coordinate will be named x, but in contrast to the usual conven-
tion in three-dimensional atmospheric investigations, it does not need to point in zonal
direction. The two-dimensional setup allows us to neglect the Coriolis force, making the
equations more manageable while still giving a fundamental understanding of gravity
wave dynamics. Moreover, we do not consider external heat sources or viscous effects.
The Euler equations can then be written as (see Achatz et al. (2010))

Du

Dt
+ cpθ

∂Π

∂x
= 0, (2.1a)

Dw

Dt
+ cpθ

∂Π

∂z
= −g, (2.1b)

Dθ

Dt
= 0, (2.1c)

DΠ

Dt
+

κ

1− κ
Π

(
∂u

∂x
+
∂w

∂z

)
= 0. (2.1d)

Here, u denotes the horizontal wind component, w denotes the vertical wind component,
g is the gravitational acceleration and

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
(2.2)

is the material derivative. Further, cp is the specific heat capacity of dry air at con-
stant pressure, R denotes the specific gas constant of dry air and their ratio is denoted
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as κ = R/cp. Π = (p/p0)
κ indicates the Exner pressure function, which is a non-

dimensional form of the pressure p normalised with a reference value p0. The potential
temperature θ = T/Π can be seen a rescaling of the absolute temperature T via the
Exner pressure. Both are linked via the equation of state for an ideal gas

Π
1−κ
κ =

Rρθ

p0
, (2.3)

where ρ denotes the density. Equations (2.1a) and (2.1b) describe the momentum trans-
port. Equation (2.1c) is the first law of thermodynamics for adiabatic processes, some-
times called conservation of internal energy or entropy equation. Equation (2.1d) reflects
the conservation of mass, also referred to as continuity equation.

2.2 Simplifying the Euler equations

The purpose of this work is to investigate the interaction of gravity waves and the tropo-
pause. In order to accomplish this, we make several physically meaningful assumptions
that will allow us to simplify the Euler equations.

1. Since the vertical extent of the tropopause is small compared to atmospheric ref-
erence heights such as density or potential temperature scale height, we use the
Boussinesq approximation. This means we assume that the total density only
varies by a small fraction compared to a constant reference value.

2. We assume a hydrostatic atmosphere, which results in the vertical change in Exner
pressure being inversely proportional to the potential temperature.

3. We are not interested in wave breaking in the first place, but assume that the wave
amplitudes are small. This allows a linearisation of the governing equations.

The first assumption leads to the elimination of the material derivative of the pressure
in the continuity equation (2.1d). To see this, we have a look at the equation of state
under the Boussinesq approximation:

Π
1−κ
κ =

Rρ0θ

p0
. (2.4)

So basically, the variable density ρ was replaced by a constant reference value ρ0. By
rewriting equation (2.1d), we obtain

D

Dt

(
ln(Π

1−κ
κ )
)

+

(
∂u

∂x
+
∂w

∂z

)
= 0. (2.5)

6



2.2 Simplifying the Euler equations

Replacing the pressure according to equation (2.4), using the fact that all variables but
θ are constant and reversing the logarithmic derivative, we find

Rρ0
p0

1

θ

Dθ

Dt
+

(
∂u

∂x
+
∂w

∂z

)
= 0. (2.6)

But as we know from the entropy equation (2.1c), the material derivative of the potential
temperature vanishes. As we additionally assume that the potential temperature is not
zero (which is actually not an assumption but a fact for the atmosphere, see International
Standard Atmosphere ISO 2533:1975), we see that the first term in the equation above
vanishes, leaving us with the incompressible continuity equation

∂u

∂x
+
∂w

∂z
= 0. (2.7)

For the linearisation, we make the following ansatz for the dynamic variables:

u(x, z, t) = u(z) + u′(x, z, t), (2.8a)

w(x, z, t) = w′(x, z, t), (2.8b)

Π(x, z, t) = Π0 +Π(z) +Π ′(x, z, t). (2.8c)

Here, Π0 is a constant reference state, over-lined variables correspond to background
values, which are only height-dependent and the primed variables are small perturba-
tions that describe the wave movement. From the equation of state (2.3), we obtain
a relation between density, potential temperature and Exner pressure. The Boussinesq
approximation suggests that

θ(x, z, t) = θ0 + θ(z) + θ′(x, z, t), (2.9)

where the deviation θ is small compared to the reference value θ0. The assumption of a
hydrostatic background is then reflected in the equation

cpθ0
dΠ

dz
= −g. (2.10)

We insert the ansatz (2.8) into the Euler equations (2.1). Using the incompressible
mass conservation (2.7) and neglecting products that include at least two of the primed
variables as they are considered too small to influence the dynamic, we obtain

∂u′

∂t
+ u

∂u′

∂x
+ w′

du

dz
+ cpθ0

(
1 +

θ

θ0

)
∂Π ′

∂x
= 0, (2.11a)
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2 The Boussinesq equations

∂w′

∂t
+ u

∂w′

∂x
+ cpθ0

(
1 +

θ

θ0

)
dΠ

dz
+ cpθ0

(
1 +

θ

θ0

)
∂Π ′

∂z
+ cpθ

′dΠ

dz
= −g, (2.11b)

∂θ′

∂t
+ u

∂θ

∂x
+ w′

dθ

dz
= 0 (2.11c)

∂u′

∂x
+
∂w′

∂z
= 0. (2.11d)

By what we said earlier, the deviations of potential temperature are small, hence we
approximate (

1 +
θ

θ0

)
≈ 1. (2.12)

Using additionally the hydrostatic balance (2.10), we obtain the system

∂u′

∂t
+ u

∂u′

∂x
+ w′

du

dz
+ cpθ0

∂Π ′

∂x
= 0, (2.13a)

∂w′

∂t
+ u

∂w′

∂x
+ cpθ0

∂Π ′

∂z
− gθ′

θ0
= 0, (2.13b)

∂θ′

∂t
+ u

∂θ

∂x
+ w′

dθ

dz
= 0 (2.13c)

∂u′

∂x
+
∂w′

∂z
= 0. (2.13d)

We refer to system (2.13) as the linearised Boussinesq equations and they will be the
starting point for further investigations.
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3 Transmission and reflection of plane
waves in an atmosphere at rest

In this chapter, we derive a one-step method to find an approximate solution for equation
system (2.13) in case of non-uniform stratification and steady background wind. From
this solution, we are able to compute a transmission coefficient for plane waves propagat-
ing through a region of non-uniform stratification. The foundation for the transmission
coefficient is the conservation of energy, which will be derived directly from equation
system (3.1).

Except for sections 3.1 and 3.4, the work presented in this chapter is based on a
manuscript (Pütz et al., 2018), which has been submitted to a peer-reviewed journal
and we closely follow the structure therein.

3.1 The Taylor-Goldstein equation

We consider an hydrostatic atmosphere at rest, i.e. u ≡ 0. Using this in equation system
(2.13) and omitting the primes for the sake of clarity, we obtain the following equations:

∂u

∂t
+ cpθ0

∂Π

∂x
= 0, (3.1a)

∂w

∂t
+ cpθ0

∂Π

∂z
− gθ

θ0
= 0, (3.1b)

∂θ

∂t
+ w

dθ

dz
= 0, (3.1c)

∂u

∂x
+
∂w

∂z
= 0. (3.1d)

These equations can be combined to a single equation for one of the variables u,w, θ or
Π. We choose the vertical wind w as our variable of interest and will stick with this
for the remainder of the thesis. Taking the curl of the momentum equations (3.1a) and
(3.1b), we obtain

∂2u

∂z∂t
− ∂2w

∂x∂t
+

g

θ0

∂θ

∂x
= 0. (3.2)
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Taking the x-derivative of this equation and using the divergence constraint (3.1d) yields

− ∂3w

∂z2∂t
− ∂3w

∂x2∂t
+

g

θ0

∂2θ

∂x2
= 0. (3.3)

For the final step, we take the t-derivative of this equation and plug in the entropy
equation (3.1c). Together with the definition

N2 =
g

θ0

dθ

dz
(3.4)

for the Brunt-Väisälä frequency in the Boussinesq framework, we obtain the following
equation: (

∂2

∂x2
+

∂2

∂z2

)
∂2w

∂t2
+N2∂

2w

∂x2
= 0. (3.5)

The Brunt-Väisälä frequency N is sometimes also called buoyancy frequency. This is
the frequency an air parcel would oscillate with when displaced adiabatically in vertical
direction. In atmospheric science, it is used as a measure for strength of the stratifica-
tion. Higher values, i.e. higher frequencies, lead to faster oscillations, resulting from a
stronger restoring force. Therefore, N is often referred to as stratification, where stronger
stratification is equivalent to higher values of N .

As we assume a horizontally homogeneous background as well as a time independence,
the equation admits solutions of the form

w(x, z, t) = ŵ(z) exp(i(kx− ωt)), (3.6)

where k is the horizontal wavenumber and ω is the frequency. By convention, we only
consider ω > 0 and discuss the case k > 0, as the case for k < 0 is completely symmetric.
With these assumptions, the horizontal phase velocity ω/k points in positive x-direction.
Equation (3.5) then reduces to an ordinary differential equation (ODE), also known as
the Taylor-Goldstein equation:

d2ŵ

dz2
+ k2

(
N2

ω2
− 1

)
ŵ = 0. (3.7)

If N depends on z, this equation has no general solution, except for maybe some special
cases. But if N ≡ N0 is constant, a plane wave solution

ŵ(z) = A exp(−imz) +B exp(imz) (3.8)

10



3.2 The multi-layer method

exists, where A and B are constants and

m = −k
√
N2

0

ω2
− 1 (3.9)

is the vertical wavenumber. We choose the complex representation of the solution over,
e.g., a cosine representation, because we can distinguish between upward- and downward
propagating wave components. It basically is a Fourier transform, followed up by a
bandpass filtering so that the real solution corresponds to the real part of the complex
representation. We will see shortly that this representation is very useful.

We can use the fact that plane wave solutions exist in the case of a uniform back-
ground to derive polarization relations for the wave fields u, θ and Π subject to w. The
divergence equation (3.1d) yields

u = −m
k
w, (3.10)

which means that the wind amplitudes scale with the wavenumbers and that both are
out of phase by 180 degree (u is maximal where w is minimal and vice versa).

The entropy equation (3.1c), divided by θ0g
−1, gives

gθ

θ0
= −iN

2

ω
w. (3.11)

The term gθ
θ0

is commonly named as wave or perturbation buoyancy (Achatz et al., 2010).
It is out of phase with the vertical wind by 270 degree, meaning that one of the fields
attains the extremal values while the other is 0.

Finally, the horizontal momentum equation (3.1a) equation, together with the polar-
isation for u yields

Π = −m
k2

ω

cpθ0
w. (3.12)

Like the horizontal wind, the pressure is out of phase by 180 degree with the vertical
wind. This in turn means also that pressure and horizontal wind are in phase, obtaining
their maxima and minima at the same locations.

3.2 The multi-layer method

The main focus of this work is the interaction of gravity waves with the tropopause. The
latter is characterised by strong variations in stratification and wind, but also by a short
vertical extent. Moreover, the stratification in the troposphere and stratosphere can
safely assumed to be uniform (although not equal in terms of strength, see for example
Birner et al. (2002), Gettelman et al. (2011)). This means that in the troposphere and

11



3 Transmission and reflection of plane waves in an atmosphere at rest

stratosphere, equation (3.7) can be solved explicitly with solutions of the form (3.8). To
be precise, we are given a function

N(z) =


Nb, z < zb

Nc(z), zb ≤ z ≤ zt
Nt, z > zt,

(3.13)

where zb, zt are the bottom and top of the tropopause, respectively (or any region of
interest in general), Nb, Nt are constant values of N in the bottom and top layer, re-
spectively, and Nc is a continuous1 function of z with Nc(zb) = Nb and Nc(zt) = Nt.
The tropospheric solution is

ŵ(z) = Ab exp(imbz) +Bb exp(−imbz), (3.14)

with mb = −k
√
N2
b /ω

2 − 1. For the stratospheric solution, we replace the subscript b

by t. The solution in the tropopause region remains still unknown.

We are going to make use of the fact that solutions to equation (3.7) exist for constant
stratification and approximate Nc by a piecewise-constant function. For each constant
section, we can find an explicit solution and each local solution needs to be matched
to its neighbours. This will yield an approximate solution of equation (3.7), where we
can distinguish upward and downward propagating waves. The ansatz itself goes back to
Eliassen and Palm (1961), but we are the first one to carry out extensive computations as
well as convergence studies. Moreover, we use the fact that we can distinguish the wave
propagation directions to compute a transmission coefficient, which relates the upward
vertical wave energy flux below and above the tropopause region. Although the ansatz
might seem simple, it will turn out that it will deliver accurate solutions that can be
computed very fast.

We start with a technical introduction of the setup. Let J be a positive integer
that, for now, remains fixed. This corresponds to the number of jumps we have in the
piecewise-constant approximation. We define an equidistant grid of J points from zb to
zt, including both end points:

zj = zb +
j − 1

J − 1
(zt − zb) for j = 1, . . . , J. (3.15)

This gives rise to a partition into J + 1 layers Ij with Ij = [zj−1, zj) for j = 2, . . . , J ,
I1 the troposphere region z < zb and IJ+1 the stratosphere region z ≥ zt. We set

1Continuity is not necessary, as the multi-layer method would also work with discontinuous functions,
but we will assume the continuity of N throughout this work.
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3.2 The multi-layer method

Figure 3.1: Schematic discretisation of a linearly increasing function for N

N1 = fN(z1) = Nb, NJ+1 = N(zJ) = Nt and

Nj := N

(
zj + zj−1

2

)
for j = 2, ..., J. (3.16)

This can be understood as a piecewise function

Ñ(z) = Nj , z ∈ Ij , (3.17)

In each single layer, we are able to state the Taylor-Goldstein equation, but with a
constant value for N . In particular, for the layer Ij , the equation writes down as

d2wj
dz2

+ k2

(
N2
j

ω2
− 1

)
wj = 0. (3.18)

Each layer admits explicit plane wave solutions of the form

wj(z) = Aj exp(imjz) +Bj exp(−imjz), (3.19)

13



3 Transmission and reflection of plane waves in an atmosphere at rest

where

mj = −k

√
N2
j

ω2
− 1 (3.20)

is the vertical wavenumber and Aj and Bj are the amplitudes of the upward and down-
ward propagating wave, respectively.

All variables indexed by j ∈ {1, . . . , J + 1} defined above depend implicitly on the

(fixed) number J , i.e. for J1 6= J2, we have N
(J1)
j 6= N

(J2)
j in general, where the super-

script here should reflect the dependence on the number of levels. To be precise and keep
the variables comparable, one could index them by j/J or add the number of jumps as
a superscript. But apart from being harder tor read, it does not provide further benefit,
since most of the time, we are interested in the variables indexed with 1 and J + 1.
Therefore, stick with the notation above, but keep this dependence in mind.

The solution with indices 1 and J+1 correspond to the tropospheric and stratospheric
solution respectively. We want to investigate waves that are incident on the tropopause
from below with amplitude A1. Since the stratosphere is uniformly stratified, we assume
a radiation condition, i.e. that waves, once reached the stratosphere, do not reflect any
longer but propagate upwards2. Hence, BJ+1 = 0. Then, AJ+1 corresponds to the
transmitted amplitude and B1 to the reflected amplitude.

To obtain a global solution, we have to match the local solutions at the interfaces
in a proper way. Physically meaningful conditions require that the vertical wind speed
and the pressure are continuous across the interface (see also Drazin and Reid (1981)).
By using the horizontal momentum equation (3.1a), the divergence constraint (3.1d)
and the plane wave ansatz (3.6), second condition is equivalent to the requirement that
w′j = dwj/ dz is continuous across the interfaces. This can also be derived directly from
the polarisation relation (3.12), when the factor im is replaced by the vertical derivative.
Together, we can write the matching conditions as

∆ [w] (zj) = 0, (3.21a)

∆
[
w′
]

(zj) = 0. (3.21b)

at each layer interface, where

∆[f ](z0) = lim
δ→0−

f(z0 + δ)− lim
δ→0+

f(z0 + δ) (3.22)

is called the jump of f at z0. In our setup, this writes as

wj(zj) = wj+1(zj), (3.23a)

2This is of course only partially true. There could be stratospheric jets or the stratopause which
could cause partial reflection of the upward propagating waves. But since our interest is on the
wave-tropopause interaction, the assumption is justified.
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3.2 The multi-layer method

w′j(zj) = w′j+1(zj). (3.23b)

This turns out to be also mathematically meaningful. Since we construct an approximate
solution for a second order ordinary differential equation, the solution should be at least
continuously differentiable once.

For fixed j ∈ {1, . . . , J}, a pair of the form (3.23) gives us two equations for the four
unknowns Aj , Bj , Aj+1, Bj+1. Hence, we are able to derive a recurrence relation(

Aj+1

Bj+1

)
= Mj

(
Aj
Bj

)
, (3.24)

where Mj is a 2-by-2 matrix. Its entries can be found by plugging in the local solutions
(3.19) at zj and solving the system for Aj+1 and Bj+1:

Aj exp(imjzj) +Bj exp(−imjzj)

= Aj+1 exp(imj+1zj) +Bj+1 exp(−imj+1zj), (3.25a)

imjAj exp(imjzj)− imjBj exp(−imjzj)

= imj+1Aj+1 exp(imj+1zj)− imj+1Bj+1 exp(−imj+1zj), (3.25b)

which simplifies to

Aj+1 =
mj +mj+1

2mj+1
exp(i(mj −mj+1)zj)Aj −

mj −mj+1

2mj+1
exp(−i(mj +mj+1)zj)Bj ,

(3.26a)

Bj+1 = −mj −mj+1

2mj+1
exp(i(mj +mj+1)zj)Aj +

mj +mj+1

2mj+1
exp(−i(mj −mj+1)zj)Bj .

(3.26b)

The coefficients of Aj and Bj are the matrix entries of Mj . We can see similarities in
the coefficients. In fact, the matrix has the shape

Mj =

(
cj dj
d∗j c∗j

)
. (3.27)

where the matrix entries are given by

cj =
mj +mj+1

2mj+1
exp(i(mj −mj+1)zj) (3.28a)

dj = −mj −mj+1

2mj+1
exp(−i(mj +mj+1)zj). (3.28b)
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3 Transmission and reflection of plane waves in an atmosphere at rest

The entries superscripted with a star only differ from their non-superscripted counter-
parts by the sign in the exponential term. In order to be able to refer to this later, we
define the ∗-operation which changes the sign of the argument of the exp-function, i.e.,

c∗j =
mj +mj+1

2mj+1
exp(−i(mj −mj+1)zj) (3.29a)

d∗j = −mj −mj+1

2mj+1
exp(i(mj +mj+1)zj). (3.29b)

As long as mj and mj+1 are real-valued, this corresponds to the usual complex conjug-
ation. Imaginary values for m occur only when the waves are encountering a region of
decreased stratification, where N < ω. We will see later that these cases are harder to
deal with analytically, hence they have to be treated very carefully. A necessary and suf-
ficient condition for Mj to be the zero matrix is that mj +mj+1 = 0 and mj−mj+1 = 0
hold at the same time. We will discuss this possibility towards the end of this section.

The determinant of Mj is given by

det(Mj) = cjc
∗
j − djd∗j

=
(mj +mj+1)

2

4m2
j+1

− (mj −mj+1)
2

4m2
j+1

=
4mjmj+1

4m2
j+1

=
mj

mj+1

(3.30)

Unless either of the values mj or mj+1 equals 0, the matrices are well-defined and of full
rank. By definition of mj (3.20), it can only be zero if Nj = ω. If this happens, the
matching between those two layers fail. Mathematically, the reason for this is that in the
case of mj = 0, the solutions of equation (3.18) differ qualitatively from the case mj 6= 0,
be it real or imaginary. In the former case, the corresponding first-order system has no
longer two different eigenvalues mj and −mj , but only one. Therefore the solution is of
the form

w = A+Bz, (3.31)

i.e. a linear function (the exp-expressions reduce to 1, as the corresponding eigenvalue
is 0).

If N = ω only holds at isolated points for the stratification profile, we can mitigate
the problem. If the multi-layer method should hit that point such that for some layer j,
we have Nj = ω, a simple workaround is to split the layer j into two new layers j + 1

2
and j + 3

2 with Nj+ 1
2
> ω and Nj+ 3

2
< ω and match those two layers. We will see later,

that this does not affect the convergence of the method.
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3.3 Transmission coefficient

If N = ω holds over an interval [zr, zs] with zr 6= zs, the workaround is as follows:
We split the domain in multiple parts, distinguishing between parts with N 6= ω and
N = ω. We use the multi-layer method in the parts with N 6= ω. For the parts with
N = ω, equation (3.18) has an explicit solution with boundary conditions given by their
adjacent domains. This will, at least, be an approximate solution to equation (3.7) in the
sense of section 3.4, but we lose the possibility to keep track of upward and downward
propagating wave components.

So for now, we assume that N = ω only holds at isolated points. This also guarantees
that none of the matrices is the zero matrix.

3.3 Transmission coefficient

In order to compute a meaningful transmission coefficient, we need to find a quantity that
is conserved over the whole domain. Since we did not allow for dissipation or background
horizontal wind in the equations, wave energy (sometimes called perturbation energy)
is conserved. The conservation equations can be derived directly from the Boussinesq
equations (3.1). Multiplying u,w, gθ/(θN2) with the first, second and third equation
respectively, adding them and using the divergence constraint (3.1d), we derive

∂E

∂t
+ cpθρb

(
∂uΠ

∂x
+
∂wΠ

∂z

)
= 0, (3.32)

where

E =
ρb
2

(
u2 + w2 +

(
gθ

θ0N

)2
)

(3.33)

and ρb is the background density. The first two terms in the large parenthesis reflect
the kinetic energy while the last term is the potential energy. The physical dimension of
E is J/m3, i.e. energy per unit volume. Therefore, the term energy density is often used
synonymously for E. Energy can be derived from this expression by integrating over
a fixed control volume, but for our purposes, it is sufficient to take the energy density.
Since there is no danger of confusion, we stick with the terminology “(wave) energy” for
E. It is also important to note that when using the complex representations for the
wave fields, we have to be careful, since the real solution consists only of the real part
of the full complex representation, so for any of the fields f ∈ {u,w, θ}, f2 has to be
understood as <(f)2.

Using the polarisation relations (3.10), (3.11) and (3.12), equation (3.32) can be re-
written as

∂E

∂t
+∇ · (~cgE) = 0, (3.34)
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3 Transmission and reflection of plane waves in an atmosphere at rest

with the group velocity vector

~cg =

(
∂ω

∂k
,
∂ω

∂m

)
=

(
Nm2

√
k2 +m23

,
−Nkm
√
k2 +m23

)
. (3.35)

In our setup, it is convenient to a look at the horizontally averaged energy, since we have
a horizontally periodic domain. The formula for wave energy averaged over a horizontal
wavelength is given by

〈E〉 =
k

2π

∫ 2π
k

0
E dx =

k

2π

ρb
2

∫ 2π
k

0

(
|u|2 + |w|2 +

∣∣∣∣ gθθ0N
∣∣∣∣2
)

dx. (3.36)

Assuming constant stratification, we can represent each field f ∈ {u,w, θ} as a plane
wave f = Af exp(i(kx+mz − ωt)). Hence, we find that∫ 2π

k

0
<(f)2 dx =

∫ 2π
k

0
(<(Af ) cos(kx) + =(Af ) sin(kx))2 dx

= <(Af )2
∫ 2π

k

0
cos2(kx) dx+ =(Af )2

∫ 2π
k

0
sin2(kx) dx

+ <(Af )=(Af )

∫ 2π
k

0
cos(kx) sin(kx) dx

(3.37)

The antiderivatives of cos2(kx), sin2(kx) and sin(kx) cos(kx) are∫
cos2(kx) =

cos(kx) sin(kx) + kx

2k
+ c, (3.38)∫

sin2(kx) =
− cos(kx) sin(kx) + kx

2k
+ c, (3.39)∫

sin(kx) cos(kx) =
sin2(kx)

2k
+ c, (3.40)

where c is an arbitrary real constant. Hence, the integral 3.37 solves to∫ 2π
k

0
<(f)2 dx = <(Af )2

π

k
+ =(Af )2

π

k
+ 0 = |Af |2

π

k
. (3.41)

Hence, the horizontally averaged energy can be written as

〈E〉 =
ρb
4

(
|Au|2 + |Aw|2 +

g2

θ20N
2
|Aθ|2

)
. (3.42)
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3.3 Transmission coefficient

The amplitudes of u and θ can be related to w via the polarisation relations (3.10) and
(3.11):

|Au|2 + |Aw|2 +
g2

θ20N
2
|Aθ|2 =

(
m2

k2
+ 1 +

N2

ω2

)
|Aw|2 . (3.43)

Using the dispersion relation (3.9), we find that

m2 + k2

k2
=
N2

ω2
. (3.44)

So we can finally write the horizontally averaged wave energy as

〈E〉 =
1

2
ρb
N2

ω2
|Aw|2 . (3.45)

Horizontal averaging of equation (3.34) removes the x-derivative and yields

∂〈E〉
∂t

+
∂cgz〈E〉
∂z

= 0, (3.46)

where cgz denotes the second component of the group velocity (3.35), also called vertical
group velocity. The term cgz〈E〉 is often named vertical wave energy flux, written as
〈Fz〉. Moreover, the average energy at a fixed location does not change in time, since we
assumed the solution to be periodic in time. The remaining term, namely

∂〈Fz〉
∂z

= 0 (3.47)

basically says that the vertical mean wave energy flux is constant. When now comparing
the tropospheric and stratospheric vertical wave energy flux, they have to be the same:

〈Fz〉T = 〈Fz〉S (3.48)

In the last subsection, we assumed no wave travelling downward in the stratosphere, but
the troposphere can have downward travelling waves, namely waves that are (partially)
reflected at the non-uniform stratification. So we have two wave fluxes in the troposphere
with different directions:

〈Fz〉T,up − 〈Fz〉T,down = 〈Fz〉S,up (3.49)

Rewriting the equation yields

〈Fz〉S,up
〈Fz〉T,up

+
〈Fz〉T,down

〈Fz〉T,up
= 1. (3.50)
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3 Transmission and reflection of plane waves in an atmosphere at rest

Assuming that 〈Fz〉T,up is the energy flux caused by the incident wave, the first term
on the left hand side is the ratio of transmitted upward wave energy flux and incident
upward wave energy flux. This is what we will use as transmission coefficient. Likewise,
the second term can be seen as a reflection coefficient. As we can see from the equation,
transmission and reflection coefficient add up to 1, as it should be, since we started the
derivation with a conservation law.

Using the formula for vertical group velocity (3.35) and horizontally averaged wave
energy (3.45), we can write the vertical wave energy flux as

〈Fz〉 =
−N3kmρb

2ω2
√
k2 +m23

|Aw|2 . (3.51)

By using the dispersion relation (3.9), solved for ω, we obtain that

〈Fz〉 =
−ρbmω

2k2
|Aw|2 . (3.52)

We made the assumption that the density does not vary too much over the tropopause,
so that we stick with the reference value ρb for both troposphere and stratosphere. Then,
everything except for m and Aw is constant. Therefore, we can compute the transmission
coefficient as

TC =
〈Fz〉S,up
〈Fz〉T,up

=
mJ+1 |AJ+1|2

m1 |A1|2
. (3.53)

In a similar fashion we can define a reflection coefficient, which compares the upward
flux with the downward flux below the tropopause:

RC =
|B1|2

|A1|2
(3.54)

An interesting observation that we obtain from equation (3.53) is that for a perfect
transmission, i.e. TC = 1, the transmitted amplitude scales with the square root of the
wavenumber ratio. In particular, we have

|AJ+1| =
√

m1

mJ+1
|A1| . (3.55)

So a stronger stratification in the stratosphere results in a larger vertical wavenumber
and therefore in a smaller wave amplitude. This observation will arise again in chapter
7, where we investigate the governing equations for different scaling regimes.

The next task is to relate A1 and AJ+1. We can state a relation like equation (3.24)
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3.3 Transmission coefficient

for all j = 1, . . . , J and combine them to obtain a chain of equations:(
AJ+1

BJ+1

)
= MJ

(
AJ
BJ

)
= MJMJ−1

(
AJ−1
BJ−1

)
= . . . =

1∏
j=J

Mj︸ ︷︷ ︸
=:M

(
A1

B1

)
(3.56)

We have to be careful about the order of the matrix multiplication, since it is in general
not commutative. By assumption, BJ+1 = 0. So we have

AJ+1 = M1,1A1 +M1,2B1 (3.57)

0 = M2,1A1 +M2,2B1, (3.58)

where Mk,l are the entries of M . This gives two equations for three unknowns. Hence
we can relate any two of the unknowns. Solving the equation system for A1 and AJ+1

shows that
AJ+1

A1
=

(
M1,1 −

M1,2M2,1

M2,2

)
=

det(M)

M2,2
. (3.59)

We can compute det(M) with the help of equations (3.56), (3.30) and the fact that the
determinant is multiplicative:

det(M) = det(

1∏
j=J

Mj) =

1∏
j=J

det(Mj) =

1∏
j=J

mj

mj+1
=

m1

mJ+1
. (3.60)

The final formula for the transmission coefficient then reads

TC =
mJ+1

m1

∣∣∣∣det(M)

M2,2

∣∣∣∣2 =
m1

mJ+1 |M2,2|2
. (3.61)

Mathematically, we can see the transmission coefficient as a real-valued function of ω
and k, for a fixed profile N . It is composed of multiple functions that depend on ω and
k, namely the wavenumbers mj in the respective layers. They are clearly continuous in
k, but the continuity in ω is not clear at first sight, since we have a square root involved.
As it is well known, the complex square root function is not unconditionally continuous,
as we have two branches that overlap at one half-axis in the complex plane. We have,
however, only real radicands, restricting the function from R to C. Seeing this as a
function between metric spaces, where R and C are equipped with the usual metrics, it
is possible to show that mj is continuous as a function of ω.
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3 Transmission and reflection of plane waves in an atmosphere at rest

Claim 3.3.1. Let k,Nj ∈ R be constant. Then, the function

mj : (0,∞)→ C, ω 7→ k

√
N2
j

ω2
− 1 (3.62)

is continuous in ω for any choice k,Nj ∈ R.

Proof. mj is the composition of two functions f and g with

f : R→ C, x 7→ f(x) =

{√
x, x ≥ 0

i
√
|x|, x < 0

(3.63)

g : (0,∞)→ C, ω 7→
N2
j

ω2
− 1, (3.64)

such that mj(ω) = k · f(g(ω)). So if f and g are continuous, so would be mj as a
composition of continuous functions. g is clearly continuous, as h(x) = 1

x2
is continuous

for the positive real numbers and multiplication and addition of constants do not affect
continuity. For the continuity of f , we use the ε− δ definition, i.e. we show that

∀x0 ∈ R : ∀ε > 0∃δ > 0 : ∀x ∈ R with |x0 − x| < δ ⇒ ‖f(x0)− f(x)‖ < ε (3.65)

Here, ‖z‖ = ‖x + iy‖ =
√
x2 + y2 is the usual norm for complex numbers. Note that

‖x‖ = |x| for x ∈ R. We have to distinguish four cases, since both x0 and x can be
positive or negative.

1. x0 ≥ 0, x ≥ 0
Then f(x0), f(x) ∈ R

‖f(x0)− f(x)‖ = ‖
√
x0 −

√
x‖ =

√
(
√
x0 −

√
x)2 =

∣∣√x0 −√x∣∣ (3.66)

Using that |x− y| ≤ |x+ y| for x, y ≥ 0, we obtain

‖f(x0)−f(x)‖2 =
∣∣√x0 −√x∣∣2 ≤ ∣∣√x0 −√x∣∣ ∣∣√x0 +

√
x
∣∣ ≤ |x0 − x| < δ. (3.67)

So we choose δ = ε2.

2. x0 < 0, x < 0
Then f(x0), f(x) ∈ iR

‖f(x0)− f(x)‖ = ‖i
√
|x0| − i

√
|x|‖ =

√
(
√
|x0| −

√
|x|)2 =

∣∣∣√|x0| −√|x|∣∣∣
(3.68)
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3.3 Transmission coefficient

Using the same inequality as in the first case, we obtain

‖f(x0)− f(x)‖2 =
∣∣∣√|x0| −√|x|∣∣∣2 ≤ ∣∣∣√|x0| −√|x|∣∣∣ ∣∣∣√|x0|+√|x|∣∣∣

≤ ||x0| − |x|| = |x0 − x| < δ.
(3.69)

The last equality follows from the fact that both x0 and x are negative. Again, we
can choose δ = ε2.

3. x0 ≥ 0, x < 0
Then

‖f(x0)− f(x)‖ = ‖
√
x0 − i

√
|x|‖ =

√
√
x0

2 +
√
|x|

2
=
√
x0 + |x|

=
√
x0 − x =

√
|x0 − x| <

√
δ.

(3.70)

The last second-to last equality follows from the definition of the absolute value,
the last equality from the fact that the radicand is positive and the last inequality
holds since the square root is strictly monotonically increasing on R≥0. So we can
choose δ = ε2.

4. x0 < 0, x ≥ 0
Then

‖f(x0)− f(x)‖ = ‖i
√
|x0| −

√
x‖ =

√√
|x0|

2
+
√
x
2

=
√
|x0|+ x

=
√
x− x0 =

√
|x− x0| =

√
|x0 − x| <

√
δ.

(3.71)

The same reasoning as in the third case hold at the respective positions. The last
equality comes from the fact that |a− b| = |b− a|. Again, we choose δ = ε2. This
concludes the proof.

�

Now that we know that all functions mj are continuous in k and ω, also arithmetic
operations involving them will yield in continuous functions (as long as we do not divide
by 0). Finally, we take the absolute value, but that does not affect the continuity3.
Therefore, if mj 6= 0 for all j, the transmission coefficient is a continuous function. As
we said at the end of section 3.2, mj = 0 occurs, when Nj = ω. If this happens at an
isolated point (which would be (zj+1 + zj)/2 in this case), we can bypass the problem
without affecting the solution. We will discuss the case N = ω closer in subsection 3.6.2.

3If anything, it would have even better continuity properties than the complex square root function, as
the absolute value of the square root is continuous in C.
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3 Transmission and reflection of plane waves in an atmosphere at rest

3.4 Proof of convergence and construction of a finite element
solution

The proof of convergence for the multi-layer scheme is based on the theory developed in
Lara (2004). It is about the convergence of a one-step method for autonomous systems
of ordinary differential equations. By rewriting equation (3.7) as a first-order system(

w
q

)′
=

(
0 1

−m2(z) 0

)(
w
q

)
, (3.72)

the multi-layer method can be written down as a one-step method that fulfils the re-
quirements in Lara (2004). In particular, given a point z0, initial conditions w0, q0 and
a step size h, we solve the constant-coefficient system(

w(1)

q(1)

)′
=

(
0 1

−m2(z0 + h
2 ) 0

)(
w(1)

q(1)

)
, (3.73)

due to the initial conditions w(1)(z0) = w0, q
(1)(z0) = q0) and set w1 = w(1)(z0 + h),

q1 = q(1)(z0 + h), which are the initial conditions for the next step. Since q = w′ (can
be seen from the first row of the equation system (3.72)), the global solution as well as
its derivative are continuous. This corresponds to the matching conditions (3.23). Due
to Lara (2004), such one-step methods for first-order systems converge to the solution of
the corresponding system. But the one-step method from equation (3.73) is equivalent
to the multi-layer method, as the eigenvalues of the matrix are ±im(z0 + h

2 ) and the
solution is a linear combination of the exponentials of the eigenvalues, which is exactly
the same as for the multi-layer method.

To see how a solution to equation (3.7) is actually constructed from this method, we
will have a look at the following case study. We show the results for equation (3.7),
where N was taken to be a linearly increasing profile

N(z) =


Nb, z < zb

Nb + z−zb
zt−zb (Nt −Nb), zb ≤ z ≤ zt

Nt, zt < z.

(3.74)

The horizontal wavelength is λx = 0.5∆z with ∆z = zt − zb and the frequency is ω =
0.6Nb, which results in a vertical wavelength in the bottom layer of λz,b = 0.375∆z.
We obtain a reference solution by direct numerical integration of equation (3.7) with the
data we just mentioned. The numerical scheme we use is the Matlab built-in integrator
ode45, which is based on a fourth-order explicit Runge-Kutta scheme.

To construct the solution with the multi-layer approach, we take the same steps as
with computing the transmission coefficient. Let J be the number of jumps, i.e., we
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3.4 Proof of convergence and construction of a finite element solution

Figure 3.2: Comparison between the numerical solution of equation (3.7) and the solu-
tion obtained by using the multi-layer method for the linearly increasing stratification
profile (3.97). The solid red curve corresponds to the multi-layer solution, the dashed
blue curve to the numeric solution. The vertical dashed black lines indicate the begin-
ning and the end of the tropopause. The boundary conditions for the different methods
were chosen in a way that the solutions match across the uppermost (here: rightmost)
layer.
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3 Transmission and reflection of plane waves in an atmosphere at rest

have J + 1 layers of constant stratification. For each layer, the equation to solve is
(3.18). We already know that we have plane wave solutions, given by equation (3.19).
The amplitudes Aj and Bj can then be computed via the matching conditions (3.24)
and given boundary data for AJ+1 and BJ+1. We test the setup again for boundary
data with a wave incident from below, represented by A1 and no downward travelling
wave in the uppermost layer, that means BJ+1 = 0. Instead of assuming the amplitude
of the incident wave, we can as well assume the amplitude of the transmitted wave,
which is AJ+1. Since the transmission coefficient does not depend on the amplitude, we
can choose any non-zero value for AJ+1. In order to obtain comparable results, we must
translate the boundary conditions we put into the numerical solver into an expression for
the multi-layer method. Since the Taylor-Goldstein equation is a second-order equation,
it takes boundary conditions of the form w(z0) and w′(z0), where z0 is either the top or
the bottom of the integration domain. Here we chose the domain top since we already
know that there is only an upward travelling wave. Without loss of generality, we set

w(z0) = 1, (3.75a)

w′(z0) = 0. (3.75b)

Since the stratification in the uppermost layer is constant, we know that an analytical
solution exists and that it is a plane wave. Hence the wave amplitude of the numerical
solution equals 1 in this layer, since the point z0 is a maximum point.

With the use of Euler’s formula, we can rewrite the multi-layer solution in the upper-
most layer (which coincides with the exact solution):

wJ+1(z) = <(AJ+1 exp(imJ+1z)) = <(AJ+1) cos(mJ+1z)−=(AJ+1) sin(mJ+1z). (3.76)

By using the initial conditions (3.75), we obtain a linear equation system with two
equations for the real and imaginary part of AJ+1:

1 = <(AJ+1) cos(mJ+1z0)−=(AJ+1) sin(mJ+1z0), (3.77a)

0 = −mJ+1<(AJ+1) sin(mJ+1z0)−mJ+1=(AJ+1) cos(mJ+1z0). (3.77b)

Solving this system gives us

<(AJ+1) = cos(mJ+1z0), (3.78a)

=(AJ+1) = − sin(mJ+1z0). (3.78b)

These are the boundary conditions for the multi-layer method. It is easy to check that

|AJ+1| =
√
<(AJ+1)2 + =(AJ+1)2 =

√
cos(mJ+1z0)2 + sin(mJ+1z0)2 = 1, (3.79)

which matches the wave amplitude of the numerical solution.
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3.5 Limit approach

The number of jumps were chosen to be J = 8, 16 and 64 for the multi-layer solution.
The results can be seen in figure 3.2. Qualitatively, we can say that the multi-layer
solution converges to the one obtained by direct numerical integration. By looking at
the maximum absolute error

max
z
|wnum(z)− wml(z)| , (3.80)

we find values 3.29 · 10−1, 2.89 · 10−2 and 5.81 · 10−4 for J = 8, 16, 64, respectively. A
more detailed analysis for different wavelength, frequencies and number of layers yield
quadratic decrease of the error, at least for an appropriately large number of layers. This
is one order better than what the proof of convergence order in Lara (2004) gives, but as
the author there uses the approximate values at a grid point and we use the value in the
middle between two points. It is suggested there that this should yield a convergence
order of 2.

It is important to note that there are no further restrictions on m2(z). It can very
well be negative, corresponding to real eigenvalues and hence, to exponential growth or
decay of the solution. This phenomenon can occur in the atmosphere, when the wave
frequency is higher than the background stratification, which leads to wave damping.
Such levels are called reflection levels, since waves tend to reflect from them. In fact,
ray theory predicts a total reflection of waves from such layers. This is, however, not
the total truth due to the restrictions on ray theory. A closer examination of reflection
levels follows over the course of this work.

3.5 Limit approach

As we now know that the multi-layer method converges to the real solution, the question
arises if it is actually possible to compute the limit for the number of layers tending to
infinity. If so, we would have solved equation (3.7), which was not possible with classical
methods. Unfortunately, the direct answer to that question is no. Nevertheless, we are
able to find an ODE system that develops from the limit procedure and sheds light on
the solution structure from a different angle. Moreover, with the multi-layer method
converging, there must also be a limit for the transmission coefficient. The ODE we
are going to derive can be solved numerically and allows us to compute a transmission
coefficient which we can compare to the one we obtain from the multi-layer method to
see how accurate it is and what would be a good number of layers to work with in order
to guarantee fairly accurate results and low computational cost.

First, we observe that the matrix Mj in equation (3.27) tends to the identity matrix,
as mj + 1 tends to mj for all j = 1, . . . , J , i.e.

lim
J→∞

cj = 1 = lim
J→∞

c∗j , (3.81a)
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3 Transmission and reflection of plane waves in an atmosphere at rest

lim
J→∞

dj = 0 = lim
J→∞

d∗j . (3.81b)

But similar to the formula e = limn→∞(1 + 1/n)n for the Euler constant, the number of
near-identity matrices we multiply tends to infinity, hence the product does not converge
to the identity matrix. Moreover, the entries are complex, which poses an additional
challenge. Hence, there seems to be no closed formula for

lim
J→∞

1∏
j=J

M
(J)
j . (3.82)

Most methods known for real matrices blow up because of the non-vanishing imaginary
part. This would have given at least a solution to the transmission coefficient problem.

The idea is to reformulate the limit process as a differential equation for a vector
consisting of the amplitudes for the upward and downward propagating wave. We know
that the depth of each layer is h = ∆z/J , so the limit process J →∞ can also be seen as
∆z/J → 0 or h → 0. Moreover, the j-indexed variables Aj , Bj ,mj are approximations
of their continuous counterparts at zj + h/2. By using the recurrence relation (3.24) we
can write (

Aj+1

Bj+1

)
−
(
Aj
Bj

)
=
(
M

(J)
j − I

)(Aj
Bj

)
, (3.83)

where I is the 2-by-2-identity matrix. Dividing now by h and taking the limit h → 0,
the left-hand side converges to the z-derivative of the amplitudes. Using the short-hand
notation A= A(z) = (A(z), B(z))T for the vector of amplitudes4, we have

dA

dz
= lim

h→0

(
M

(J)
j − I

)
h

A. (3.84)

This is now a differential equation for the amplitudes in A. If we want to have any
chance of solving it (either analytically or numerically), we have to execute the limit
process

lim
h→0

(
M

(J)
j − I

)
h

. (3.85)

This is done component-wise. The upper-left entry of the matrix inside the limit in

4Here, the superscript T denotes the transpose.
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3.5 Limit approach

(3.85) is (cj − 1)/h. We can rewrite cj − 1 as

cj − 1

=

(
m(zj) +m(zj + h)

2m(zj + h)

)
exp (i(m(zj)−m(zj + h))zj)− 1

=

(
m(zj) +m(zj) + hm′(zj) + o(h)

2(m(zj) + hm′(zj) + o(h))

)
exp(i(m(zj)−m(zj)− hm′(zj) + o(h))zj)− 1

=

(
2m(zj) + hm′(zj) + o(h)

2(m(zj) + hm′(zj) + o(h))

)
exp(−i(hm′(zj) + o(h))zj)− 1

=

(
2m(zj) + hm′(zj) + o(h)

2(m(zj) + hm′(zj) + o(h))

)(
1− ihm′(zj)zj + o(h)

)
− 1

=
2m(zj) + h(m′(zj)− 2im(zj)m

′(zj)zj) + o(h)

2(m(zj) + hm′(zj) + o(h))
− 1

=
h(−m′(zj)− 2im(zj)m

′(zj)zj) + o(h)

2(m(zj) + hm′(zj) + o(h))
(3.86)

Dividing equation (3.86) by h and letting h→ 0, we obtain

f(z) := lim
h→0

cj − 1

h
= −m

′(z)

2m(z)
− im′(z)z. (3.87)

With a similar computation, we rewrite dj as

dj

= −
(
m(zj)−m(zj + h)

2m(zj + h)

)
exp (−i(m(zj) +m(zj + h))zj)

= −
(
m(zj)−m(zj)− hm′(zj) + o(h)

2(m(zj) + hm′(zj) + o(h))

)
exp(−i(2m(zj) + h(m′(zj) + o(h))zj)

= −
(

−hm′(zj) + o(h)

2(m(zj) + hm′(zj) + o(h))

)
exp(−i(2m(zj) + h(m′(zj) + o(h))zj)

(3.88)

Hence, we obtain

g(z) := lim
h→0

dj
h

=
m′(z)

2m(z)
exp(−2im(z)z). (3.89)

The respective limits for the starred entries yield the same except for a replacement of
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3 Transmission and reflection of plane waves in an atmosphere at rest

i by −i or vice versa. Hence the differential equation for the amplitudes is

dA

dz
=

(
f(z) g(z)
g∗(z) f∗(z)

)
︸ ︷︷ ︸

=:M(z)

A. (3.90)

One has to be careful about the use of m′. Since we only requested a continuous function
for N , it is not guaranteed that it is also differentiable, especially at the interfaces to the
troposphere and stratosphere (see for example the linearly increasing profile (3.74) form
th previous section). This should, however, not be a problem, if we additionally assume
piecewise differentiability, i.e. the set of values where N is not differentiable should be
finite. Then, we can solve equation (3.90) piecewise, using the solutions from one patch
as boundary conditions for the next one.

Equation (3.90) can only be solved analytically ifM(z1)M(z2) =M(z2)M(z1) holds
for all z1, z2 in the integration domain. Unfortunately, this is in general not true for ar-
bitrary stratification profiles. Consider for example the upper left entry ofM(z2)M(z1)
and M(z2)M(z1):

(M(z1)M(z2))1,1 = f(z1)f(z2) + g(z1)g
∗(z2), (3.91)

(M(z2)M(z1))1,1 = f(z2)f(z1) + g(z2)g
∗(z1). (3.92)

We can clearly assume commutativity for the separate products. In order for the matrix
entries to coincide, the equation g(z1)g

∗(z2) = g(z2)g
∗(z1) needs to hold. Inserting

the definition of g from equation (3.89), this reduces to the statement that either the
exponents of the exp-function need to be the same or m′ = 0. If m′ = 0, then, every
entry of M is zero and hence the amplitudes do not change with height. This happens
if and only if N is constant, in which case we don’t expect any change in the wave
amplitudes. If m′ 6= 0, basic algebra reveals that the following equation needs to hold
for any z1, z2 in the integration domain:

m(z1)z1 = m(z2)z2. (3.93)

In particular, the vertical wavenumber is inversely proportional to the height. It is easy
to see that this is in general not true.

What we can deduce, however, is that if the functions f and g are analytic over the
interval [zb, zt], equation (3.90) has a unique analytic solution for arbitrary initial data
A(z0) = A0, z0 ∈ [zb, zt] (see, for example, Teschl (2012) for the theory on complex
ODEs). It is easy to check that this is the case for stratification profiles and wave para-
meters such that there is no reflection layer, i.e. a point zr where N(zr) = ω. Although
securing the existence of solutions, finding analytic or even explicit expressions for them
will be a nearly hopeless undertaking. Another approach to find at least approximate
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3.5 Limit approach

solutions are power series methods. Since analytic functions on an open subset coincide
locally with a convergent power series (see , e.g., Stalker (1998) for details), we can make
a power series ansatz for the solution of equation (3.90). In order to do so, we extend
[zb, zt] to an open subset of the complex numbers, in which M is still analytic. But
although the matrix has no singularities for real values, it has some for certain complex
numbers, which drastically restricts the radius of convergence of the power series solu-
tion to a value that is not guaranteed to be large enough to cover the whole region of
interest. However, it would be possible to partition the interval into smaller segments
and finding the power series solution in each segment, but this procedure is very tedious
and still only yields a solution up to a certain precision. We will see in the upcoming
error analyses that the multi-layer method yields very accurate results notwithstanding
that it is a much easier-to-apply technique. Hence, the evaluation of equation (3.90) will
be done numerically.

The question may arise which benefit integrating equation (3.90) has over integrating
(3.7), since both equations are equivalent, using appropriate boundary conditions. The
advantage is that equation (3.90) separates between upward and downward propagating
waves, knowing at any point which part of the waves belong to either of those two parts,
while by straight up integrating the Taylor-Goldstein equation, we can not tell this by
just looking at the solution5.

Another challenge are reflection levels, i.e. a point zr such that N(zr) = ω. Then, the
entries of the coefficient matrix M tend to infinity, because m(zr) = 0. By regarding
equation (3.90) as a system of complex differential equations, the point zr is an isolated
singularity. At first sight, it might seem that the singularity is a first order pole, since
functions of the form a′/a, where a has a zero of any order at some point z0 do have a
first order pole at z0. Assuming a is continuous, we can find an open set around z0 in
which a does not contain any poles or other zeroes. In this open set, we can write a as

a(z) = (z − z0)αb(z), g(z0) 6= 0. (3.94)

Here, α denotes the order of the zero. Then, we have for the derivative of a:

a′(z) = α(z − z0)α−1b(z) + (z − z0)αb′(z), (3.95)

and hence
a′

a
= α(z − z0)−1 +

b′(z)

b(z)
(3.96)

As b(z0) 6= 0 and b does not contain any poles, a/a′ has a first order pole at z0.

Unfortunately, the extra terms that are prevalent in the coefficients, i.e. im′(z)z and

5Both solutions we obtain from a direct numerical simulation are steady-state solutions, i.e. the solution
does not change in time, hence we cannot see movement of the wave, but that does not mean that it
is not there
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3 Transmission and reflection of plane waves in an atmosphere at rest

exp(−2im(z)z) involve square roots of z, which results in f and g not being holomorphic
in a punctured disk around zr. The reason for this is that the complex square root
has two branches, similar to real numbers where each positive real number x has two
possibilities for its root:

√
x and −

√
x, with 0 having only one root. Extended to the

complex numbers, every complex number unequal to 0 has 2 possibilities for its square
root. Similar to the real square root function, a principal square root is defined. This
definition then results in a function that assigns each complex number exactly one of its
square roots. It is holomorphic everywhere except for the non-negative real numbers, on
the negative real numbers, it is even discontinuous. Via coordinate transformation, this
discontinuity can occur across any ray in the complex plane, but the square root will
always be only holomorphic in a disk with this particular ray removed. Therefore, known
theorems about existence and structure of solutions, which apply only for functions
holomorphic on a punctured disc, can not be used here. Nonetheless, the structure of
the functions in equation (3.90) are very interesting and could serve as a topic for future
research.

Existing research in this case, such as Sutherland and Yewchuck (2004), who investig-
ate propagation of gravity waves through a layer of sudden reduced or vanishing strat-
ification, suggest some sort of “wave tunnelling” (a term coined by the comparison to
quantum tunnelling of electrons in quantum physics) through this region, dependent on
the wavelength of the incident wave. As we will see later, the findings from our multi-
layer method confirm those results also for continuous transitions to a lower value of the
Brunt-Väisälä frequency. Apart from that, an intensive investigation of the behaviour of
gravity waves near reflection layers requires a scale analysis for different regimes of ver-
tical wavelengths. This will be discussed briefly in subsection 3.6.2 and again in chapter
7.

3.6 Results for various stratification profiles

This subsection is meant to show some exemplary results for plane wave transmission
we computed with the multi-layer method. We chose four different stratification profiles
to show here. The first one is a linear increase between two different values. This serves
as an introductory example to show how the multi-layer method is used to compute
transmission coefficients. The second profile we are going to show contains a region
of weak stratification, which in turn leads to wave tunnelling or reflection. A basic
variant of this phenomenon was also studied by Sutherland and Yewchuck (2004). With
this example, we want to show that the multi-layer method is able to support wave
tunnelling. For the third example, we construct a profile that is leaned on the findings
of Birner (2006) and should represent the stratification a realistic tropopause with a
strong temperature inversion layer. The last profile consists of two stratification peaks,
separated by a region of uniform stratification. With this, we investigate the influence of
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3.6 Results for various stratification profiles

the separation distance d between the two peaks. All profiles share a common structure,
namely that we have a region of non-constant stratification of depth ∆z that has a
region of constant stratification with value Nb below and with value Nt above it. This
is about what we can observe in the atmosphere: The stratification changes rapidly in
the tropopause and is nearly constant in the free troposphere and the stratosphere.

We will focus on a frequency range from 0 to Nb, since waves with frequencies larger
than Nb are evanescent. We opted to use a grid size of 300 horizontal wavelengths, logar-
ithmically spaced between 1000 m and 100000 m, which corresponds to values from ∆z to
100∆z, and 300 frequencies, equally spaced between 0.001N0 and 0.999N0. This results
in a total of 90000 grid points. The number of layers equals 128. The computations are
performed on the author’s office computer with a standard Intel® Core� i7-3770 CPU
and 8 GB RAM. The software we use is Matlab. The computation times lie within a
range of 70 to 80 seconds when computed on a single core. Compared to the numerical
method of Nault and Sutherland (2007), who need about 1 day to simulate 300 × 300
parameters on a “typical desktop computer” at that time, this is a decrease in compu-
tation time by a factor of about 1000. Even when considering the slightly higher clock
rate and RAM, the multi-layer method is much more efficient in computing Transmission
coefficients for large data sets.

3.6.1 Linear increase

The first case for which we will present results is the case of the linearly increasing
stratification, defined as

N(z) =


Nb, z < zb

Nb + z−zb
zt−zb (Nt −Nb), zb ≤ z ≤ zt

Nt, zt < z.

(3.97)

The results are presented in a dimensionless way in order to be as general as possible. For
reference, the computations were done with realistic atmospheric values: ∆z = 1000 m
and Nb = 0.01 s−1.

Figure 3.3 gives overview over the transmission coefficients for the linear increasing
profile (3.97). We want to point out three regimes of vertical wavelengths: shorter
than ∆z, comparable to ∆z and longer than ∆z, represented by the three curves in
figure 3.3. ∆z in turn represents the scale of variation of N . So wavelength that are
much shorter than ∆z are also small compared to the scale of variation of N . This is
the regime where the classical WKB theory is applicable. Ray theory, that is based on
WKB assumptions, predicts perfect transmission for those waves in a linearly increasing
profile and this is exactly what we are able to find. Even for moderately large horizontal
and vertical wavelengths, the transmission is high, at least up to a certain point. As we
can see, there is stronger reflection when we are moving to the right and to the bottom
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3 Transmission and reflection of plane waves in an atmosphere at rest

Figure 3.3: Transmission coefficients for a stratification profile that increases linearly
over a finite region of depth ∆z. The three curves represent constant vertical wavelength
in the bottom layer: green for λz = 0.1∆z, blue for λz = ∆z and black for λz = 10∆z.

in the panel, that means that the wave frequency gets closer to the lower value Nb and
the horizontal wavelength (and eventually the vertical wavelength) is growing. If the
vertical wavelength exceeds ∆z by about an order of magnitude (black curve), waves
start to transmit worse.

Waves that have frequencies close to the Brunt-Väisälä frequency are almost purely
horizontal and in the limit of ω → Nb for fixed λx, it seems from figure 3.3 that the
transmission eventually gets zero. This seems reasonable, since there is no vertical wave
structure and hence no vertical energy transport. The upcoming computation gives a
proof for this claim. Let us have a look at

lim
ω→Nb

mj = lim
ω→Nb

−k

√
N2
j

ω2
− 1 = −k

√
N2
j

N2
b

− 1 =: m̃j , (3.98)

If j 6= 1, then Nj 6= Nb (remember: linear increasing profile). Hence, m̃j 6= 0. Since
detMj = mj/mj+1, Mj is regular for J 6= 1. For j = 1, N1 = Nb, hence m̃1 = 0 and
therefore, by the definition of the transmission coefficient (3.61), the transmission is also
0, as M2,2 6= 0. In the limit λx → ∞ (or equivalently k → 0) for fixed ω < Nb, it is
possible to find a closed formula for the matrix product in (3.56) and hence a formula
for the amplitude ratio, which coincides with the classical result for a two-layer model
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(Eliassen and Palm, 1961). We write

mj = k

√
N2
j

ω2
− 1 = km̂j (3.99)

and consider the matrix entries (3.28) in the limit k → 0:

c̃j := lim
k→0

cj = lim
k→0

1

2

(
mj

mj+1
+ 1

)
exp (i (mj −mj+1zj))

= lim
k→0

1

2

(
km̂j

km̂j+1
+ 1

)
exp (ik (m̂j − m̂j+1zj))

=
1

2

(
m̂j

m̂j+1
+ 1

) (3.100)

In a similar fashion, we follow that

d̃j := lim
k→0

dj =
1

2

(
m̂j

m̂j+1
− 1

)
. (3.101)

Moreover, c̃∗j = c̃j and d̃∗j = d̃j , as the exponential terms vanish in the limit process. The
matrices

M̃j := lim
k→0

Mj =

(
c̃j d̃j
d̃j c̃j

)
(3.102)

are bisymmetric (symmetric to both main diagonals).

Claim 3.6.1. The set

{(
a b
b a

)
| a, b ∈ C

}
is closed under the usual matrix multiplic-

ation6.

Proof. Let M1 =

(
a b
b a

)
,M2

(
c d
d c

)
be two bisymmetric matrices with entries in C.

Then

M1M2 =

(
ac+ bd ad+ bc
bc+ ad bd+ ac

)
. (3.103)

As addition in C is commutative, M1M2 is again bisymmetric. �

6In fact, this even forms an abelian, but we only need the closedness for our purposes.
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Let us have a closer look at M̃jM̃j−1. The diagonal entries are

c̃j c̃j−1 + d̃j d̃j−1 =
1

4

(
m̂j

m̂j+1
+ 1

)(
m̂j−1
m̂j

+ 1

)
+

1

4

(
m̂j

m̂j+1
− 1

)(
m̂j−1
m̂j

− 1

)
=

1

4

(
m̂j−1
m̂j+1

+
m̂j

m̂j+1
+
m̂j−1
m̂j

+ 1 +
m̂j−1
m̂j+1

− m̂j

m̂j+1
− m̂j−1

m̂j
+ 1

)
=

1

2

(
m̂j−1
m̂j+1

+ 1

)
.

(3.104)

These are very similar to the entries of M̃j , but with m̂j replaced by m̂j−1. For the
off-diagonal entries, we have

c̃j d̃j−1 + d̃j c̃j−1 =
1

4

(
m̂j

m̂j+1
+ 1

)(
m̂j−1
m̂j

− 1

)
+

1

4

(
m̂j

m̂j+1
− 1

)(
m̂j−1
m̂j

+ 1

)
=

1

4

(
m̂j−1
m̂j+1

− m̂j

m̂j+1
+
m̂j−1
m̂j

− 1 +
m̂j−1
m̂j+1

+
m̂j

m̂j+1
− m̂j−1

m̂j
− 1

)
=

1

2

(
m̂j−1
m̂j+1

− 1

)
.

(3.105)
A simple induction argument shows that the entries of

M̃ =

(
c̃ d̃

d̃ c̃

)
:=

1∏
j=J

M̃j (3.106)

are

c̃ =
1

2

(
m̂1

m̂J+1
+ 1

)
, (3.107)

d̃ =
1

2

(
m̂1

m̂J+1
− 1

)
. (3.108)

The relation between the amplitudes is the same as in (3.59), i.e.

AJ+1

A1
=

det(M̃)

d̃
=

m1

mJ+1

(
1

2

(
m̂1 + m̂J+1

m̂J+1

))−1
=

2m̂1

m̂1 + m̂J+1
. (3.109)

This is the result for internal waves in a two-layer fluid (Eliassen and Palm, 1961). It is
interesting to see that we made no assumptions on the structure of N , hence this limit
holds for any stratification profile.
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Figure 3.4: Transmission coefficients for a profile that has a region of decreased strati-
fication. We see that waves, whose frequency is larger than 0.5Nb can transmit, if their
wavelength is long compared to the region of decreased stratification.

3.6.2 Wave tunneling

We consider now a case where the stratification linearly drops from some Nb to a value
Nd < Nb over a finite region and eventually increases again back to Nb:

N(z) =



Nb, z < zb

Nb + z−zb
zd1−zb

(Nd −Nb), zb < z ≤ zd1
Nd, zd1 ≤ z ≤ zd2
Nd +

z−zd2
zt−zd2

(Nb −Nd), zd2 < z ≤ zt
Nb, zt < z.

(3.110)

In the example we present, zd1 − zb = 0.2∆z = zt − zd2 and Nd = 0.5Nb. The results
found for this case are very different from what ray theory tells us. There, it is predicted
that waves totally reflect from a layer, where ω ≥ N . However, when there is only a
small, finite region where ω ≥ N holds, wave propagation through this region is possible
under certain conditions. Sutherland and Yewchuck (2004) described this phenomenon
for a sharp drop to a weak or even vanishing stratification, and our results show that
tunnelling also exists in the case of a continuous transition. In figure 3.4, one can see
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3 Transmission and reflection of plane waves in an atmosphere at rest

Figure 3.5: Zoom into the left panel of figure 3.4 centred around ω = 0.5Nb.

the transmission coefficient for profile (3.110). In this particular example, ray theory
predicts that every wave with frequency ω ≥ 0.5Nb would fully reflect from this layer,
but we can observe that if the wavelength is large compared to the extent of the region
with weak stratification, it is possible to obtain high wave transmission. In fact, the
longer the waves seem to be, the better they transmit. This can be easily derived from
the two-layer limit (3.109). As mb = mt in this example, the amplitude ratio in the limit
of long waves is 1.

As we said earlier, the multi-layer method would fail for this profile if we would try
to evaluate it for ω = 0.5Nb, since there is an interval, in which this equation holds.
But the panel in figure 3.4 suggests continuity in the transmission coefficient over the
whole frequency range. Figure 3.5 shows a zoom into the area around ω = 0.5Nb

and corroborates our suggestion. We see the domain from 0.4999Nb to 0.5001Nb. The
white strip at 0.5Nb occurs since the method does not find a value for the TC there,
but nonetheless, the panel suggests that the transmission coefficient is continuously
extendable over ω = 0.5Nb. This is, however, challenging to prove as a closed formula
for the transmission coefficient is hard to write down.

3.6.3 Realistic tropopause profile

Since we are ultimately interested in the behaviour of atmospheric gravity waves and their
interaction with the tropopause, we now want to consider a realistic tropopause profile.
The stratification is constant with a value Nb below the tropopause. At the temperature
inversion layer, the Brunt-Väisälä frequency has a very sharp increase to a peak value
Np, almost like a jump, followed by a relaxation to a value Nt with Nb < Nt < Np that is
the constant value of the stratification in the stratosphere (see Gisinger et al. (2017) for
more details on mid-latitude tropopause shapes). We realise this by a piecewise-defined
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3.6 Results for various stratification profiles

Figure 3.6: Transmission coefficients for a realistic tropopause profile that can be seen
in the right panel. In the limit for long waves, the transmission coefficient approaches
again the two-layer solution. For moderately long waves, we can see a combination of 2
effects: The sharp increase, which is almost like a jump and blocks a part of the waves
and the smooth relaxation afterwards that has high transmission. We also observe that
in the classical WKB regime, the transmission is still very high

continuous function:

N(z) =


Nb, z < zb

Nb + z−zb
zp−zb (Np −Nb), zb < z ≤ zp

az2 + bz + c, zp < z ≤ zt
Nt, zt < z,

(3.111)

where we set a = Np − Nt/(zp − zt)
2, b = −2zt(Np − Nt)/(zp − zt)

2 and
c = Nt + z2t (Np − Nt)/(zp − zt)

2. The values were chosen such that the profile is
continuous at zp and zt and differentiable at zt. In the example we show here, we
chose zp − zt = 0.1∆z, Np = 3Nb and Nt = 2Nb. The profile as well as results for
the transmission coefficient can be seen in figure 3.6. It is no surprise to see overall
lower values of the transmission coefficient. The linear increase now happens over a
much smaller vertical extent than in subsection 3.6.1, so that waves with wavelength
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3 Transmission and reflection of plane waves in an atmosphere at rest

Figure 3.7: Transmission coefficients for the twin peaks profile (seen in the upper left
panel) and several wavelength-frequency pairs.

comparable to ∆z are now long compared to zp − zt. They already partially reflect
before reaching the second part of the profile where the stratification slowly weakens.

For the limits ω → Nb for fixed λx and λx → ∞ for fixed ω, we have the exact same
behaviour as in the linearly increasing case, which is no surprise, since in the first limit,
we still have no vertical energy flux and in the second limit we again approach the two-
layer model. The rest of the picture however gives some interesting insights. By making
the sharp increase asymptotically thin, i.e., making it a (discontinuous) jump, we obtain,
for wavelengths comparable to ∆z, a composition of the transmission coefficient for a
two-layer model (that describes the jump) and the one for the smooth profile that follows
after the jump.

3.6.4 Twin peaks

In this subsection, we describe the effect that two areas of non-uniform stratification,
separated by an area of uniform stratification, have on plane wave propagation. To do
this, we have a look at a stratification profile that has two separated peaks and is hence
called twin peaks. One individual peak has a linear increase of the buoyancy frequency
from a base value Nb to twice its base value over a finite vertical extent L followed by
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3.6 Results for various stratification profiles

a linear decrease back to the base value over the same vertical range. Both peaks are
separated by a vertical distance d. Mathematically, this is

N(z) =



Nb, z < zb

Nb + z−zb
L Nb, zb ≤ z < zb + L

2Nb − z−zb−L
L Nb, zb + L ≤ z < zb + 2L

Nb, zb + 2L ≤ z < zb + 2L+ d

Nb + z−zb−2L−d
L Nb, zb + 2L+ d ≤ z < zb + 3L+ d

2Nb − z−zb−3L−d
L Nb, zb + 3L+ d ≤ z < zb + 4L+ d

Nb, zb + 4L+ d ≤ z

(3.112)

A plot of this profile can be seen in the upper left panel of figure 3.7. The other panels
show the transmission coefficient for several wavelength-frequency pairs, plotted over
d. In all presented cases, we set L = 500 m. In the upper middle and right panel,
we have a horizontal wave length λx = 2000 m and wave frequencies ω = 0.5Nb and
ω = 0.7Nb respectively. The corresponding vertical wavelengths are λz = 1155 m and
λz = 1960 m. We observe are sinusodial dependence of the transmission coefficient on
d and moderate variations in the values. Absolute difference between minimum and
maximum transmission is 0.203 for ω = 0.5Nb and 0.307 for ω = 0.7Nb. Moreover, the
period increases from the upper middle to the upper right panel. In the lower right
panel, we have the same horizontal wave length, but a frequency ω = 0.9Nb, resulting
in a vertical wavelength of λz = 4130 m. We observe that the fluctuations have an even
larger period and a much smaller amplitude. We conclude that the period depends on
the vertical wavelength. This seems meaningful. Waves that are (partially) reflected at
the second peak travel downwards and are incident on the first peak from above, where
again a part of the wave is reflected. If this reflected part is in phase with the wave
that is transmitted through the first peak, the amplitude is amplified, which leads to
the transmission peaks. On the other hand, when the reflected wave is out of phase by
180 degree, the wave amplitude is lowered and the total transmission is worse. This can
be seen even more extremely in the lower middle and right panel. Here, the horizontal
wavelength is λx = 5000 m and we have wave frequencies ω = 0.8Nb and ω = 0.98Nb

respectively. The amplitude of the transmission coefficient is very large, especially in the
lower right panel, where it spans from almost no to almost total transmission. For this
case, we have most of the time a total reflection except for some leaky modes, where the
transmission can get almost perfect.
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3 Transmission and reflection of plane waves in an atmosphere at rest

3.7 Convergence study

This subsection is dedicated to the numerical integration of equation (3.90) and the
comparison of the transmission coefficients derived from it compared to the transmission
coefficients derived from the multi-layer method. As we already know that the multi-
layer method converges to the real solution and that equation (3.90) is a reformulation
of equation (3.7), we expect a convergence of the values from the multi-layer method
towards the limit solution.

In order to do integrate euqation (3.90), proper boundary conditions are needed. Since
we are interested in waves that are initially travelling upwards and encountering a non-
uniform stratification over a confined region and eventually reaching a region of uniform
stratification again, we require that there is only a wave incident on the non-uniform re-
gion from below. Hence, above this region, there is no wave that is travelling downwards.
Moreover, we are only interested in ratios between the incident and the transmitted wave.
Therefore we are free to choose the value of the incident or the transmitted wave, since
the equation is linear. To be more precise, if ze is the upper boundary of the integration
domain then we take the boundary conditions

A(ze) =

(
A(ze)
B(ze)

)
=

(
1
0

)
. (3.113)

We want to analyse the error between the limit solution and the multi-layer solution.
As model setup, we again choose the linearly increasing profile (3.97). Our analysis
consists of two parts. The first one is an error computation over a large domain of
wavenumbers and frequencies while keeping the number of discretisation levels constant
at J = 512 to show that the error is small over the whole wavenumber-frequency-domain.
The second one chooses several specific points in this domain and tracks the error for an
increasing number of levels J , up to J = 105.

The results of the first part can be seen in figure 3.8. For the left panel, we derived the
transmission coefficient from the multi-layer method with J = 512 layers, the right panel
shows the transmission coefficient computed from solving equation (3.90) numerically.
It is impossible to spot any difference between the two frames. Computing the relative
error yields the estimate

max
ω,λx

|TCd(ω, λx)− TCl(ω, λx)|
|TCl(ω, λx)|

< 7 · 10−6 (3.114)

For the second analysis, we fix specific wave parameters, i.e, a pair (λx,0, ω0) of
wavelength and frequency, and analyse how the relative error develops for increasing J .
In particular, we perform the calculation for three different wavelength-frequency-pairs.
We choose ω0 = Nb√

2
for all three cases and have a look at the wavelengths ∆z, 2∆z and

10∆z. The results can be seen in figure 3.9.
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Figure 3.8: The left panel shows the multi-layer method with J = 512 steps and the
right panel shows the values of the transmission coefficient computed from the numerical
evaluation of the limit approach. At every single point in the domain, the error is smaller
than 10−5

We computed the relative error of the limit solution and the discrete solution for several
numbers of layers J , that were logarithmically spaced between 101 and 105. For any two
adjacent points, we computed the slope in the log-log diagram and for every wavelength,
the mean and the standard deviation of all computed slopes. We found the mean slopes
to be µl = −2.0050± 0.0314, µm = −2.0073± 0.0533 and µr = −2.0269± 0.1184, where
the indices correspond to the left, middle and right panel of figure 3.9. In the the last few
values are around the tolerance of the numerical scheme, hence there are somewhat larger
fluctuations. But nonetheless, we observe that in all three test cases, the error decreases
quadratically with the number of steps, until the error reaches the region where the
tolerance of the scheme and the machine precision prevent a more precise computation.
This is in line with the convergence order we found in subsection 3.4 for the solution
itself. Even for a coarse discretisation with J = 100 layers, the relative error is about
10−5. This justifies our choice of J = 128 layers in the previous sections.
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3 Transmission and reflection of plane waves in an atmosphere at rest

Figure 3.9: Relative error for profile (3.97) with Nt = 2Nb, ω0 = Nb√
2

and different

horizontal wavelengths λx: λx = ∆z in the left panel, λx = 2∆z in the middle panel
and λx = 10∆z in the right panel. The mean slope of the different plots is nearly the
same, namely µ ≈ −2. This means that the relative error decreases quadratically with
the number of steps.
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4 Wave transmission with background wind

Wind plays a major role in many atmospheric phenomenons. Gravity wave propagation
is no exception to this. Although the wind generally changes over time, we are usually
interested in short time scales only. Moreover, we focus on small amplitude waves,
effectively neglecting wave-mean flow interactions. This leads to the assumption of a
time-independent, but vertically varying background wind.

When including background wind to our method, there are two major cases: constant
and non-constant wind. The first one is a straight-forward extension to the theory
developed in last section, the second one requires more attention. Height-dependent
wind is a crucial topic in atmospheric flows, especially around the tropopause, where
strong winds can be present (Gisinger et al., 2017). A major part of the work presented
in this chapter is discussed in Pütz and Klein (2018), which has been submitted to a
peer-reviewed journal.

4.1 Constant wind

Let us assume that we have a constant background wind u ≡ u0. The linearised
Boussinesq equations then take the form

∂u

∂t
+ u0

∂u

∂x
+ cpθ0

∂Π

∂x
= 0 (4.1a)

∂w

∂t
+ u0

∂w

∂x
+ cpθ0

∂Π

∂z
+ cpθ

∂Π

∂z
= 0 (4.1b)

∂θ

∂t
+ u0

∂θ

∂x
+ w

dθ

dz
= 0 (4.1c)

∂u

∂x
+
∂w

∂z
= 0. (4.1d)

Using a plane wave ansatz in x and t, i.e.

f(x, z, t) = f̂(z) exp(i(kx− ωt)), (4.2)

for the dynamic variables f ∈ {u,w, θ,Π}, we can derive an ordinary differential equation
in z for either of them, similar to the derivation of equation (3.7) in the previous chapter.
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We stick to vertical wind as quantity of interest and obtain

d2ŵ

dz2
(z) + k2

(
N(z)2

(ω − ku0)2
− 1

)
ŵ(z) = 0, (4.3)

This is the Taylor-Goldstein equation for constant background wind. Note that it would
have also been possible to obtain a partial differential equation for w from equation
system (4.1), similar to equation (3.5), but since we are interested in plane wave trans-
mission anyway, we opted to plug in the plane wave ansatz before reducing the equation
system, which makes the calculation less cumbersome.

The term ω−ku0 is called relative frequency, here and in the majority of the literature
denoted as ω̂. This is the frequency an observer moving with the constant velocity u0
would see, in comparison to the absolute frequency ω that a fixed , usually ground-based,
observer would see. We avoid using the terms “intrinsic” and “extrinsic” frequency, as
they are not used uniformly by all researchers in the field. Additionally, the terms
“absolute” and “relative” give a better intuition, as the observer either has an absolute,
fixed position or is moving relatively to the ground with the mean flow. Along the lines
of having no background wind, waves can propagate when their relative frequency is
between zero and the ambient Brunt-Väisälä frequency. Apart from this change, the
remainder of the theory is still valid and can be applied as derived in chapter 3.

4.2 Height dependent wind

Let us assume now a horizontal background wind that changes with height, i.e. u(z).
The linearised Boussinesq equations now include also vertical derivatives of u. They are
written out as

∂u

∂t
+ u

∂u

∂x
+ w

du

dz
+ cpθ0

∂Π

∂x
= 0 (4.4a)

∂w

∂t
+ u

∂w

∂x
+ cpθ0

∂Π

∂z
− gθ

θ0
= 0 (4.4b)

∂θ

∂t
+ u

∂θ

∂x
+ w

dθ

dz
= 0 (4.4c)

∂u

∂x
+
∂w

∂z
= 0 (4.4d)

Using the plane wave ansatz (4.2), we obtain the following ODE for ŵ, explicitly
stating the z-dependence:

d2ŵ

dz2
(z) + k2

(
N(z)2

(ω − ku(z))2
+

u′′(z)

k(ω − ku(z))
− 1

)
ŵ(z) = 0, (4.5)
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If we want to apply the multi-layer method, we now not only need to approximate
N(z), but also u(z). Moreover, the second derivative of u appears in the equation and
represents another challenge that needs to be taken on. One could make the argument
that by approximating u piecewise constant, that there is no curvature in each individual
layer, hence one could just neglect the term involving u′′. But then, in the limit for the
number of layers going to infinity, this term will not reappear. Therefore, one also must
include an approximation of the background wind curvature. This can either be done
by two different approaches. The first one would be an approximation of the second
derivative by a finite difference, for example second order central differences

u′′(z0) ≈
u(z0 − h)− 2u(z0) + u(z0 + h)

h2
, (4.6)

where h denotes a small step size. It would be convenient to choose, sticking to the
notation of the previous chapter, h = ∆z/J and z0 to be the same points at which
we approximate N . The other method involves computing the second derivative of u
explicitly (if possible) and use the value of u′′ at the points where we approximate N .
As it turns out, both methods yield basically the same results. The error between both
approaches is negligibly small. We will give specific values when we present the results
for selected wind profiles in section 4.2.2. For the remainder of this work, we use the
explicit expression for the second derivative of u and evaluate it at the same point as we
do with u and N , since we also need to compute u′′ for a direct numerical simulation of
equation (4.5).

4.2.1 An analysis of the different matching conditions

When applying the multilayer method, we have to match the local solutions at the
interfaces. The proof of convergence for the multi-layer method in an atmosphere at rest
(see section 3.4) also applies in the case with background wind, as there where no further
requirements on m, as long as we evaluate N , u and u′′ at the same point (which we do
by construction of the method). This again transfers to matching conditions that require
the solution and its derivative to be continuous at the interfaces. We will relate to them
as the mathematical matching conditions. Despite already knowing how to match the
solutions at the layer interfaces, there is a reason to spend a section on discussing this
topic.

When browsing through the literature on the topic of layering the atmosphere in
multiple layers, one finds that most of the research uses the classical matching ansatz
derived by Drazin and Reid (1981). They analysed the stability of inviscid parallel shear
flow of an unstratified fluid, hence the matching conditions are derived for Rayleigh’s
stability equation, which is just equation (4.5) with N ≡ 0, and also for piecewise
linear background flow profiles. As this is certainly valid for their setup, the conditions
themselves cannot be transferred one-to-one to our method, because we consider not only
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4 Wave transmission with background wind

discontinuities in N , but also in u. This in turn leads to discontinuities in the relative
frequency which is a point that was not considered in the original derivation of Drazin and
Reid (1981). Using the physical interpretation of those conditions, i.e. that vertical wind
and pressure are continuous at the layer interfaces, we arrive at matching conditions that
differ from both the classical conditions of (Drazin and Reid, 1981) and the mathematical
conditions we derived earlier. And although the matching conditions converge towards
each other in the limit of infinite layers, it is not clear that the solutions they produce will
show the same behaviour. And since we know that the solution using the mathematical
conditions converges to the real solution, the solution using the classical conditions would
not, if it differs from the solution with the mathematical matching conditions. As we
will see, this is going to be the case.

So let us derive mathematical expressions for the classical matching ansatz. The first
one of the new matching conditions is acquired fairly easily, since equation (4.5) is stated
for the vertical wind w. The second condition can be found when using the horizontal
momentum equation (4.4a) and the divergence constraint (4.4d) to eliminate u from the
former. Mathematically, this can be written as

∆ [w] = 0 (4.7a)

∆
[
ω̂w′ − iku′w

]
= 0 (4.7b)

at each layer interface, where again ∆[f ](z0) is the jump operator defined in equation
(3.22). It is interesting to note that this approach coincides with the mathematical
conditions in the case of constant background wind since ω̂ is constant and u′ = 0.

As done in section 3.2, we derive a relation at each layer interface zj :

wj(zj) = wj+1(zj+1), (4.8a)

ω̂jwj(zj)− iku′jwj(zj) = ω̂j+1wj+1(zj)− iku′j+1wj+1(zj). (4.8b)

Here, the subscripts j and j+1 for ω̂ and u indicate their approximations in the respective
layers. Using the local solution (3.19) in each layer, together with the adapted vertical
wavenumber

mj = −k

√
N2
j

(ω − kuj)2
+

u′′j
k(ω − kuj)

− 1, (4.9)

we find a relation (
Aj+1

Bj+1

)
= M

(c)
j

(
Aj
Bj

)
. (4.10)

Again, M
(c)
j is a 2-by-2 matrix with the superscript indicating that it corresponds to

the classical conditions. The matrix entries can be derived in a similar way as displayed
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in section 3.2 for the mathematical conditions. We obtain

M
(c)
1,1 =

mjωj +mj+1ωj+1 − k(u′j − u′j+1)

2mj+1ωj+1
exp(i(mj −mj+1)zj), (4.11a)

M
(c)
1,2 = −

mjωj −mj+1ωj+1 + k(u′j − u′j+1)

2mj+1ωj+1
exp(−i(mj +mj+1)zj), (4.11b)

M
(c)
2,1 = −

mjωj −mj+1ωj+1 − k(u′j − u′j+1)

2mj+1ωj+1
exp(i(mj +mj+1)zj), (4.11c)

M
(c)
2,2 =

mjωj +mj+1ωj+1 − k(u′j + u′j+1)

2mj+1ωj+1
exp(−i(mj −mj+1)zj). (4.11d)

Constructing a solution from the mathematical conditions in the case of non-constant
background wind leads to the same relations as in section 3.2, except for the difference
in the computation of the vertical wavenumber, which is now given my equation (4.9).

We depict an example for chosen background and wave parameters. This should
make the right choice of matching conditions clear at first sight. In the presented case,
the stratification is uniform (N ≡ N0) over the whole domain and the wind profile is
bell-shaped, i.e.

U(z) = U0 exp

(
−(z − z0)2

σ2

)
. (4.12)

Far away from z0, the value for the background wind is very close to zero, so that
we only need to consider a confined area around z0 as region of non-uniform back-
ground and choose U ≡ 0 outside of it. The interval we choose for the computation is
Ic = [z0 − 5σ, z0 + 5σ]. The value at the interval boundaries is 1.39 · 10−11U0, and be-
cause of the shape of the function, this is also the supreme value outside of Ic. Moreover,
we chose U0 = 0.5 ms−1, σ = 100 m and λx = λz = 2000 m.

Figure 4.1 shows plots of the maximal normalised error between the numerical and
multilayer solution. Normalised error means that we are looking at the absolute er-
ror, but normalised by the maximal value of the numerical solution. We chose this error
computation over a classical relative error computation because we have oscillating func-
tions and as soon as the zeros of the functions do not match, the relative error gets large
and does not give qualitative information about how well one method approximates the
other. Mathematically, for a fixed number of layers J , we compute

eJ =
maxz∈D

∣∣∣w(J)
ml (z)− wnum(z)

∣∣∣
maxz∈D |wnum(z)|

, (4.13)

where w
(J)
ml is the multi-layer solution for J layers, wnum is the solution obtained by direct

numerical solution of equation (4.5) and D is the domain of interest, which should at
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Figure 4.1: Here, we see the normalised absolute error of the multi-layer solution com-
pared with a DNS of equation (4.5), plotted over the number of layers. The left panel
uses the mathematical matching conditions, the right panel uses the classical ones.

least cover the region of non-uniform wind and stratification. In the left panel , we see
the results for the mathematical matching conditions. There is a decrease of the error,
up to a point where the error reaches the precision of the numerical scheme (which is the
Matlab built-in ode45 scheme). This happens at about 5000 layers. Between 100 and
4000 layers, the slope of the graph is µ = −1.9388± 0.1105. Since both axes are spaced
logarithmically, this indicates a convergence of order 2. In the right panel, we show the
result for the classical matching conditions. Although the method seems converge to a
limit, this limit does not coincide with the numerical solution.

Figure 4.2 shows the numerical solutions and the multi-layer solutions with either
matching conditions, created via the finite-element ansatz discussed in section 3.4. While
the numerical solution and the one with the mathematical matching conditions are ba-
sically indistinguishable, we can clearly see that the solution with the classical matching
conditions differs from both others. Note that the solutions were initialised so that they
all agree right of the non-uniform layer, which is located between the two vertical lines.
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4.2 Height dependent wind

Figure 4.2: Comparison of different methods to solve equation (4.5). The dashed blue
curve is a direct numerical simulation (DNS) of equation (4.5), the solid red curve is
obtained with the multi-layer method and the mathematical matching conditions and
the solid green curve uses the classical matching conditions.

4.2.2 Results for a cosine-shaped wind profile

This section is about the results for various background wind profiles. We start with
some a priori thoughts. We recall the dispersion relation (4.9)

m = −k

√
N2

(ω − ku)2
+

u′′

k(ω − ku)
− 1. (4.14)

We see that there can be 2 crucial cases. First, the radiant can become zero, similar as
in the reflection layer case we know from section 3, but with the possibility that it not
only may occur via weakening stratification, but also via a change in the background
wind. The difference between the case discussed here and the case without background
wind is that the Doppler shift appears in the horizontal group velocity

∂ω

∂k
=

Nm2

√
k2 +m23

+ U. (4.15)

In terms of ray tracing, the ray path would be a loop at the reflection level which is
tangential to the horizontal at the reflection level instead of approaching it with a cusp
(see Sutherland (2010), Chapter 6.5.3, for a more detailed discussion). But since we are
not solving the ray equations, it does not matter how the reflection level is generated.
Therefore its treatment works in a similar way as without wind.
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4 Wave transmission with background wind

The other crucial case that could in fact not appear with constant background wind
is that the denominator of the first (and hence also the second) term in the radiant goes
to zero, causing the whole radiant to approach infinity. This is in the common literature
denoted as critical level. At such a level, the vertical wavenumber theoretically is infinity.
Ray theory predicts that waves approach this level asymptotically, but never reach it.
However, ray theory is no longer valid around a critical layer. Most likely, due to the
rapid oscillations, the wave becomes unstable and breaks, dissipating its energy during
that process. Since this is a very non-linear behaviour and our theory is built on linear
approximations, the multi-layer method does not provide any further insights to the
evolution of waves around critical levels. But since this critical level occurs usually at
a certain altitude, the multi-layer method is suitable to describe the wave amplitude
evolution up to a certain point below and above the critical level and one could try to
find an approximate solution of the describing equation around the critical level, for
example via rescaling and using a perturbation ansatz or a Frobenius method approach,
similar to what was done in Nault and Sutherland (2007). Then, matching this to the
multi-layer solution could yield a solution, but this is not part of the research presented
here.

Next, we want to define a meaningful transmission coefficient for the case of non-
constant background wind, because wave energy is not conserved when the wind changes
with height. To see this, we go the same way as we did with deriving the energy
conservation law (3.34) for a steady atmosphere. The equation that results from this
procedure is

∂E

∂t
+∇ · (~cgE) = −uwdu

dz
, (4.16)

so the time-dependent change of wave energy is not only due to the energy flux di-
vergence, but is also influenced by the vertical shear. It is however possible to find a
conserved quantity, namely the ratio of wave energy and relative frequency. This is called
wave action in the common literature and denoted via

A =
E

ω̂
(4.17)

To see that this is conserved, we have a look at

∂A
∂t

+∇ · (~cgA), (4.18)

which can be rewritten as

1

ω̂

(
∂E

∂t
+∇ · (~cgE)

)
+ cgzE

dω̂−1

dz
. (4.19)

The x- and t-derviatives of ω̂ have vanished as it depends only on z. Executing the last
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derivative yields the equation

1

ω̂

(
∂E

∂t
+∇ · (~cgE)

)
+
cgzEk

ω̂

du

dz
. (4.20)

Using the polarization relations (3.10), (3.11) and (3.12) (note that absolute frequency
must be replaced by relative frequency here), the previous expression can be transformed
into

1

ω̂

(
∂E

∂t
+∇ · (~cgE) + uw

du

dz

)
. (4.21)

Togehter with equation (4.16), we deduce that expression (4.21) equates to 0. This gives
the wave action conservation law

∂A
∂t

+∇ · (~cgA) = 0 (4.22)

In a similar fashion to section 3.3, we take the horizontal average, find temporal inde-
pendence of the wave action and find that the vertical flux of horizontally averaged wave
action cgz〈A〉 is conserved. In terms of vertical velocity wave amplitude, this is

cgz〈A〉 =
ρbm

2k2
|Aw|2 . (4.23)

Defining the transmission coefficient again as the ratio of incident and transmitted up-
ward wave action fluxes, we find the very same formula as we have for the case of a
steady atmosphere:

TC =
mJ+1

m1

∣∣∣∣AJ+1

A1

∣∣∣∣2 (4.24)

Figure 4.3 shows the transmission coefficients for a uniformly stratified atmosphere
and a cosine-shaped wind profile. The left panel shows a negative jet, i.e. the wind and
the relative horizontal phase speed point in different directions. In this case, the jet
can form a reflection layer, as we can see in the upper right part of the panel, where
the transmission is very low. Note that without the background wind, the transmission
coefficient would be equal to 1 everywhere.

The middle panel shows the results for a positive jet. In this case, we can have critical
levels, as we can see in the upper left part of the panel. In this case, the multi-layer
method does not converge, because the vertical wavenumber goes to infinity. The values
we get in this area are useless, since no matter how large the number of layers is, the
resolution at some point will still not be fine enough. Nonetheless, we get a good glimpse
which choice of wave parameters leads to the wave encountering a critical layer.
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4 Wave transmission with background wind

Figure 4.3: Transmission coefficient for a cosine-shaped wind profile as displayed in the
right panel. In the left panel, U0 = −2 ms−1, in the middle panel, U0 = 2 ms−1.

4.3 Limit solution in the case of non-zero background wind

Since we know from the last section that we have the same matching conditions as in
the case without background wind, the limit of the number of layers tending to infinity
will yield the same equation that was derived in section 3.5, i.e. equation (3.90). The
major difference is that the vertical wavenumber is now given by

m(z) = −k

√
N(z)2

(ω − ku(z))2
+

u′′(z)

k(ω − ku(z))
− 1. (4.25)

Hence, the derivative of m, which appears in the matrix entries of equation (3.90), now
not only involves the derivative of N , but also the first three derivatives of u. The exact
equation is

m′(z) =
−k
(
2N(z)N ′(z)
(ω−ku(z))2 + 2kN(z)u′(z)

(ω−ku(z))3 + u′′′

k(ω−ku(z)) + u′′u′

(ω−ku(z))2

)
2
√

N(z)2

(ω−ku(z))2 + u′′(z)
k(ω−ku(z)) − 1

. (4.26)

Fortunately, the numerical evaluation for this is still manageable as long as there are no
reflection or critical levels and we obtain convergence of the multi-layer method towards
the solution of equation (3.90). One more thing to note is that in the case of no reflection
or critical level, the matrix M is analytic in an open subset of C containing the region
of non-uniform background, and by the same arguments that were given in section 3.5,
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4.4 Scale analysis for curvature term

a unique analytic solution exists. We do not want too go to much into detail, as we do
not gain much new insight from this limit. Although it is important that there exists an
analytical solution, due to the good convergence behaviour of the multi-layer method, it
is much more efficient to use it over a DNS of equation (3.90).

4.4 Scale analysis for curvature term

When studying literature on linear Boussinesq gravity waves, one discoveres that of-
tentimes, the equation which is used to describe the waves neglects the curvature term
u′′/(kω̂). The question that comes up is how important that term actually is. In WKB
theory (see for example Muraschko et al. (2015)), the dispersion relation derived from
linear steady Boussinesq theory, in which the curvature term is excluded, is used, since
the curvature term is of higher order. Hence we execute a scale analysis of all the terms
occurring in the dispersion relation (4.14) and detect regimes, where the curvature term
has a significant impact on the wavenumber. Moreover, we will compare transmission
coefficient computations with and without it.

We assign some characteristic values to the terms and derive two dimensionless num-
bers in which the corresponding terms are expressed and which will yield as a basis for
the scale analysis. Let U0 be a (positive) characteristic value of u, and let u change
on a length scale HU . Let Lx be a characteristic length scale for the horizontal wave
length, i.e. k ∼ 1/Lx and let T0 be a characteristic time scale, i.e. N ∼ 1/T0. We also
choose ω ∼ 1/T0, which corresponds to non-hydrostatic gravity waves, i.e. waves with
frequencies close to the Brunt-Väisäla frequency. Then, the right hand side of equation
(4.14) can be estimated as

1

L2
x

 1
T 2
0(

1
T0
− U0

Lx

)2 +

U0

H2
U

1
Lx

(
1
T0
− U0

Lx

) − 1


⇔ 1

L2
x

((
1− T0U0

Lx

)−2
+
L2
x

H2
U

(
1 +

Lx
T0U0

)−1
− 1

)
.

(4.27)

We define

α :=
Lx
HU

, (4.28)

β :=
Lx
T0U0

. (4.29)

α gives the relation between horizontal wavelength and the scale of variation of the
background wind. As we are assuming non-hydrostatic waves, the vertical wavelength
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4 Wave transmission with background wind

can roughly be taken to be of the same order of magnitude as the horizontal wavelength.
Hence, α can also be seen as a quantity that tells us if the waves have a short, comparable
or long wave length compared to the length scale of the background wind. β can be seen
as the ratio between phase speed of the wave and background wind speed, basically
telling us which of the two is larger or if they are comparable in size. Then, the above
equation writes as

1

L2
x

((
1− β−1

)−2
+ α2 (β − 1)−1 − 1

)
(4.30)

In the way we chose our reference quantities, the term representing the curvature, U0/H
2
U ,

is always positive, but in reality, it can be negative. We are, however, only interested
in the magnitude of the second term, so this does not affect the case analysis. We first
carry out a scaling analysis where α and β can vary independently. This will be followed
by a discussion where we link both values via a distinguished limit.

1. β � 1. Then
(
1− β−1

)−2 � 1 and |β − 1|−1 ∼ 1.

a) α� 1. Then α2 |β − 1|−1 � 1, hence the third term is dominant.

b) α ∼ 1. Then α2 |β − 1|−1 ∼ 1, hence the second and third term are dominant.

c) α� 1. Then α2 |β − 1|−1 � 1, hence the second and third term are dominant.

2. β ∼ 1. Then
(
1− β−1

)−2 � 1 and |β − 1|−1 ∼ 1.

a) α� 1. Then α2 |β − 1|−1 � 1, hence the first term is dominant.

b) α ∼ 1. Then α2 |β − 1|−1 ∼ 1, hence the first term is dominant.

c) α � 1. Then α2 |β − 1|−1 � 1. Here a distinguished limit for α and β is
needed to determine which of the first two terms is dominant.

3. β � 1. Then
(
1− β−1

)−2 ∼ 1 and |β − 1|−1 � 1. This case has to be treated
with special care, since the sign of the first term is always positive while that of the
third is always negative. Hence it may very well be possible that their difference
is very small, resulting in the second term being dominant.

a) α� 1. Then α2 |β − 1|−1 � 1.

b) α ∼ 1. Then α2 |β − 1|−1 � 1.

c) α� 1. Then α2 |β − 1|−1 either is ∼ 1 or� 1. We need a distinguished limit
for α and β, but in either case, the second term is among the dominant ones.

So the cases where the second term may play an important role are 1b, 1c, 2c and 3. We
can reduce the amount of analysis to be made by choosing typical atmospheric reference
values and rule out some of the regimes that are unrealistic.
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4.4 Scale analysis for curvature term

For further analysis, we can relate α and β by a distinguished limit, i.e.

β = αc. (4.31)

As we already figured out by the first part of the scaling analysis, the cases where a
distinguished limit is needed to determine the dominant term are 2c and 3c, i.e. α � 1
and β ∼ 1 or β � 1, so we assume now that α� 1.

The cases c = 0 results in β = 1, which means that background wind speed and wave
phase velocity are the same. This corresponds to a critical level and requires special
attention. This is, however, not the purpose of this work and is left for future research.

For the case c < 0, we obtain β � 1, which is not a case of interest here. The
remaining values for c can basically be classified in two categories: 0 < c� 1, for which
β ∼ 1 and all remaining positive values for c, which yield β � 1.

With the help of equation (4.31), we can write the term (4.30) as

1(
1− 1

αc

)2 +
α2

αc − 1
− 1 (4.32)

We equate the first and the second term and obtain the equation

α2c−2 = αc − 1. (4.33)

If we can solve this for c, we would have found the values where both terms coincide.
With the help of a computer algebra system, we find the solutions to be

c+,− = ln(α)−1 ln

(
α2

2
± α

√
α

4
− 1

)
(4.34)

For large α, one of the values is close to 2, while the other is close to 0. So when we
have c− < c < c+, the second term in expression (4.32) is the dominant one, meaning
overall that the curvature term has a non-negligible effect in these cases.

A typical atmospheric buoyancy period is T0 = 100 s, which corresponds to a strati-
fication strength of N0 = 0.01 s−1, a value often used in the troposphere. Waves usually
oscillate faster in the stratosphere due to stronger stability there. As a reference hori-

zontal scale, we choose L
(1)
x = 50000 m corresponding to long waves, L

(2)
x = 5000 m for

waves of intermediate length and L
(2)
x = 500 m for short waves. Now let us look at

β � 1⇔ Lx
T0U0

� 1⇔ U0 �
Lx
T0

(4.35)

For long waves, the term on the right-hand side of the last equation is 500 ms−1 and
for medium waves 50 ms−1, hence, the requirement of U0 being much larger than this
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4 Wave transmission with background wind

is very unrealistic in upper troposphere and lower stratosphere regimes. For shorter
waves, the term is 5 ms−1. U0 must still be pretty large, but the tropopause jet can
reach velocities of like 30 to 50m

s (see for example Gisinger et al. (2017)). The relevant

cases then are α ∼ 1 ⇔ L
(3)
x ∼ HU and α � 1 ⇔ L

(3)
x � HU . The second case is

completely unrealistic, since it requires the background wind to vertically increase very
strongly over just a few tens of meters. The second case is still very unlikely, but one
could argue that it corresponds to a very strong jet stream.

For

β ∼ 1⇔ Lx
T0U0

∼ 1⇔ U0 ∼
Lx
T0
, (4.36)

the long-wave regime is completely unrealistic with U0 ∼ 500ms−1, while the medium-
wave regime is on the edge of reality with U0 ∼ 50ms−1. When looking at the relevant α-

regime, i.e. α� 1⇔ L
(2)
x � HU , this can be a realistic scaling for a strong tropospheric

jet, where the wind strongly increases over a few hundred meters. For short waves, the
reference velocity is about 5ms , and the rate of increase in the case of α� 1 is the same
as in the strong jet stream case in the aforementioned paragraph and is also realistic.

The relation

β � 1⇔ Lx
T0U0

� 1⇔ U0 �
Lx
T0
, (4.37)

is in general true. Let us now assume
(
1− β−1

)−2 − 1 ∼ 1. Then, the relevant regime
is α � 1 ⇔ Lx � HU . Although the scale of variation of U is small, the amount it
changes is also small, e.g. for medium waves, the wind increases by about 5ms−1 over a
few hundred meters, which is very realistic. With a distinguished limit

α ∼ β ⇔ HU ∼ U0T0 (4.38)

for example, we get that the second term is dominant. The distinguished limit can be
understood that the horizontal advection over one buoyancy period has the same length
as the scale of variation of the background wind.

The scale analysis revealed only the effect the curvature term has on the vertical
wavenumber. But this may also affect wave transmission and reflection, for example, if
the curvature term causes the radiant to become negative, effectively causing the wave to
encounter a reflection level, which it may otherwise not have. The scale analysis shows
that the curvature term plays a minor role in most of the realistic cases, most notably
in the classical WKB regime, where this term is usually neglected.

Figure 4.4 shows a parameter range for which transmission coefficients are computed.
We use a constant stratification N0 = 0.01 s−1 and a bell-shaped wind profile

u = u0 exp

(
−(z − zu)2

σ2

)
, (4.39)
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4.4 Scale analysis for curvature term

Figure 4.4: The left panel shows the transmission coefficient computed with the
curvature term, the middle panel shows the computation without the curvature term.
In the right panel, we see the absolute value of their difference.

with σ = 100m and u0 = −5ms−1. The discretisation was made in the interval
[zu − 5σ, zu + 5σ], its length is ∆z = 10σ = 1000 m and zu can be chosen arbitrar-
ily. We use 300 frequencies, equally spaced between 0.01N0 and 0.99N0 as well as 300
logarithmically spaced horizontal wavelengths between 100 m and 100000 m. The number
of layers is 200.

The left panel shows the computation that includes the curvature term, the middle
one does not include the curvature term. Their absolute difference can be seen in the
right panel. We can clearly see the influence the curvature term has, causing waves to
either transmit better or worse. We detect two separated areas where the transmission
behaviour differs significantly. Both occur for moderately large horizontal wavelengths.
We see that hydrostatic waves, i.e. waves with small vertical wavelength compared to
the horizontal wavelength, transmit much better than without the curvature term and
non-hydrostatic waves are hindered in their transmission. To put this into the context
of the scale analysis, we have a reference wavelength Lx = 3000 m, a wind scale HU =
3σ = 300 m, a reference wind U0 = 5ms−1 and a timescale T0 =

√
2/N0 ≈ 141 s. This

results in α = 10 � and β ≈ 4.25 ∼ 1. When we have a look at the scale analysis,
this was exactly one of the regimes that we detected above in which the curvature term
significantly impacts the vertical wavenumber.

In a similar fashion, it would be possible to derive a scale analysis for a hydrostatic
wave scaling. This will not be taken on now but left for future research.
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5 Wave packets

In chapters 3 and 4, the subject of study was a plane wave field, which technically
extends infinitely in positive and negative vertical direction. Moreover, we focused on
temporally periodic solutions (which are basically steady-state solutions in a coordinate
frame moving with the constant horizontal phase velocity ω/k). In comparison to this,
wave packets are confined in space and time. In the present chapter, we will extend the
theory we developed in the preceding chapters so that it can be applied to wave packets.
We will stay close to Pütz and Klein (2018), as a major part of this extension is also
discussed there.

5.1 Basic thoughts on wave packets

For the interaction of small-amplitude gravity wave packets with the tropopause, we use
again the linearised Boussinesq equations (2.13), but we will not be using a plane wave
ansatz in x and t. Due to the explicit dependence of the solution on all 3 unknown
variables, it is a priori not clear if the multi-layer method is applicable for wave packets,
as we cannot derive a single ordinary differential equation that describes the evolution.

Luckily, it turns out that we can modify the multi-layer method and adapt it to the
case of wave packets. To keep things simple, we first restrict ourselves to the case of
quasi-1D wave packets, that are only confined in the vertical direction, but are still
periodic in horizontal direction. A brief discussion on 2D wave packets can be found at
the end of this chapter.

Starting points for the investigation are the linearised Boussinesq equations in a sta-
tionary atmosphere, i.e. equations (3.1). We can reduce them to a single equation for
the vertical wind speed, as we already saw in equation (3.5), here again written for
convenience (

∂2

∂x2
+

∂2

∂z2

)
∂2w

∂t2
+N2∂

2w

∂x2
= 0. (5.1)

As in the previous chapters, N shall not depend on x. As we mentioned, we focus on
horizontally periodic solutions. Hence, we set

w(x, z, t) = w̃(z, t) exp(ikx), (5.2)

where k denotes the horizontal wavenumber. This ansatz permits solutions that can
be localised in z-direction and have explicit time dependence. This allows for an easier



5 Wave packets

computation by not giving up the key aspects we are interested in, namely the evolution
of the wave packet through a vertically non-uniform background. The resulting equation
then reads (

k2 +
∂2

∂z2

)
∂2w̃

∂t2
+N2k2w̃ = 0. (5.3)

We will omit the tilde-superscript in the later equations.

For a constant stratification N ≡ N0, plane waves are still solutions to equation (5.3).
In particular, any function of the form

w(z, t) = A exp(i(mz − ωt)) +B exp(−i(mz + ωt)). (5.4)

solves the equation as long as the vertical wavenumber m and the frequency ω are linked
via the dispersion relation

ω2 =
N2

0k
2

k2 +m2
. (5.5)

It is important to note that, although equation (5.3) is a fourth order equation, we
assume the solution to depend only on the two unknown amplitudes A and B, as we
assume ω > 0, just like in the plane wave case. Although technically, there are two
choices for either m and ω, they are linked via the dispersion relation (5.5). The two
choices for m, which are m+ and m− with m− = −m+ can lead both to the same
frequency branch. But the same is true for the frequency, so that we can a priori rule
out two combinations by symmetry reasons.

Since equation (5.3) is linear, we can superimpose solutions to get new ones. A su-
perposition of finitely many solutions is, in general, not periodic (an exception to this is
when all wavenumbers are rational), but almost-periodic, i.e. for every ε > 0, there is a
number Lε > 0 such that in every interval [z, z + Lε], there is a number µ with

|f(z + µ)− f(z)| < ε. (5.6)

So the solutions, although not periodic, show recurring patterns up to a certain precision.

Wave packets can technically be seen as the superposition of infinitely many plane
waves, all with different amplitudes and wavenumbers and frequencies, but each of those
waves still has to fulfil the dispersion relation (5.5). Note that we fixed k, i.e. all solutions
have the same horizontal wavenumber, which results in the wave packet being horizont-
ally periodic. A way of constructing wave packets is to modulate a plane wave with
an envelope function that has compact support or is at least rapidly decreasing. The
question which arises is how the amplitude has to be distributed among the frequencies
and wavenumbers in order to obtain a vertically confined wave packet. For a uniform
stratification and wind, the answer can be obtained by a Fourier transform. However,
in a background with non-uniform stratification and height-dependent wind, the wave
parameters change during the propagation. Most notably, the vertical wave number dis-
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5.2 Uniform stratification

tribution changes and the wave packet energy, which is proportional to the square of the
amplitude, is shifted in wave number space. It is a priori not clear what the wave packet
will look like after this change. The method that will be developed in this chapter finds
a solution to this problem.

5.2 Uniform stratification

For uniform stratification N ≡ N0, there is already well-established theory. Basically, the
wave packet envelope moves with the vertical group velocity ∂ω

∂m while it slowly disperses.
For quasi-monochromatic wave packets, i.e. wave packets with an envelope much larger
than the wavelength, the leading order influence on dispersion can be described by a
linear Schrödinger equation. Details on this can for example be found in Sutherland
(2010). Our interest, however, are wave packets in non-uniform media. Nonetheless, we
are going to start the investigation with a view on uniform stratification. The results
we obtain will be in line with the common literature, so that we can use the results as a
cornerstone for the extension of the multi-layer method to wave packets in non-uniform
media.

We start by modulating a plane wave with vertical wavenumber m0 in physical space
with a Gaussian function:

w(z, 0) = <
(

exp(−im0z) exp

(
− z

2

σ2z

))
. (5.7)

Without loss of generality, we choose the wave packet to be centred around z = 0. A
common assumption is that the width σz of the wave packet is much larger than the
vertical wavelength, i.e.

2π

m0
� σz. (5.8)

These so-called quasi-monochromatic wave packets are the classical objects of study
in WKB theory, since they allow for the definition of a local wave number and frequency
whose scale of variation is much larger than the main wave length 2π

m0
. We will also

assume that equation (5.8) holds, but in fact, it is only necessary that 2π/m0 ≤ σz. The
wave packet then contains only a few vertical oscillations. Further, when we move to
non-uniform background profiles, we are not restricted to a slowly varying stratification
and wind when compared to the dominant wave length.

As the wave packet propagates, waves with larger wavelength will travel faster than
shorter waves, as a result of the non-linear dispersion relation (5.5). Hence the wave
packet will lose its initial shape. Moreover, non-uniform background will alter the shape
as well.

Note that initial data of the shape (5.7) are only a special case. In general, atmospheric
flow solvers can use a wide variety of wave packet initial data, but Gaussian wave packets
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5 Wave packets

are very convenient for use in idealized studies as they are smooth and analytically
tractable in many ways. The method developed here is is applicable to initial conditions
other than Gaussian, but we will showcase the method by the means of initial data of
the form (5.7).

To link the amplitude modulation to wavenumbers and frequencies, we make use of
the Fourier transform. We will not go into detail on this technique, but the interested
reader might consult, e.g. Stein and Shakarchi (2003). The important part is that the
Fourier transform exists for square-integrable functions, i.e. functions f(z) with∫

R
|f(z)|2 dz <∞. (5.9)

The space of all square-integrable functions is called L2-space. The Fourier transform is
the representation of such a function in the so-called phase space. It is defined as

F (f) = f̂(m) =

∫
R
f(z) exp(−imz) dz (5.10)

There is also the inverse transformation

F ∗(f̂) = f(z) =
1

2π

∫
R
f̂(m) exp(imz) dm (5.11)

with
F ∗(F (f)) = f and F (F ∗(f̂)) = f̂ . (5.12)

A feature of the Fourier transform is that a differentiation in physical space transfers to
a multiplication in phase space, i.e.

d̂f

dz
(z) = mf̂(m). (5.13)

Moreover, constants do not affect the transformation, i.e.

ĉf(z) = cf̂(m). (5.14)

Assuming a constant stratification N ≡ N0 in equation (5.3) yields(
k2 +

∂2

∂z2

)
∂2w

∂t2
+N2

0k
2w = 0. (5.15)

Since none of the coefficients depends on z, we can Fourier transform this equation in z.
Multiplying by exp(−imz) and integrating over z, using the above mentioned methods,
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yields
∂2ŵ

∂t2
(m, t) +

N2
0k

2

k2 +m2
ŵ(m, t) = 0, (5.16)

where

ŵ(m, t) =

∫
R
w(z, t) exp(−imz) dz. (5.17)

This equation has the plane wave solution

ŵ(m, t) = < (C(m) exp (−iω(m)t) +D(m) exp(iω(m)t)) , (5.18)

where

ω(m) =
N0k√
k2 +m2

, (5.19)

C(m) corresponds to the upward propagating wave component and D(m) corresponds
to the downward propagating wave component. Here, we only want an upward travelling
wave packet, so D(m) = 0. In order to obtain C(m) from the initial condition (5.7), we
combine two different equations for ŵ(m, 0). By evaluating equation (5.18) at t = 0, we
find that

ŵ(m, 0) = C(m) exp(−iω(m) · 0) = C(m). (5.20)

Moreover, evaluating equation (5.17) at t = 0 yields

ŵ(m, 0) =

∫
R
w(z, 0) exp(−imz) dz, (5.21)

where the right-hand side can be seen as the Fourier transform of the initial condition
(5.7). It basically corresponds to the wavenumber distribution of the Gaussian wave
packet. So if we are able to compute the integral on the right-hand side of the above
equation, we have the initial condition for equation (5.16). For a Gaussian wave packet,
this can be done explicitly. First, we combine the exponentials:

ŵ(m, 0) =

∫
R
w(z, 0) exp(−imz) dz

=

∫
R

exp(−im0z) exp

(
− z

2

σ2z

)
exp(−imz) dz

=

∫
R

exp

(
− z

2

σ2z
− i(m−m0)z

)
dz.

(5.22)
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The argument of the exp-function can be understood as an incomplete square:

(5.22) =

∫
R

exp

(
− z

2

σ2z
− i(m−m0)z − i2σ2z

(m−m0)
2

4

)
exp

(
i2σ2z

(m−m0)
2

4

)
dz

= exp

(
−1

4
σ2z(m−m0)

2

)∫
R

exp

(
−
(
z

σz
+ iσz

m−m0

2

)2
)

dz

= exp

(
−1

4
σ2z(m−m0)

2

)√
πσ2z .

(5.23)
For the last equality, we used the well-known value of the integral of the Gaussian
function (Forster, 2012) ∫

R
exp

(
−(x− x0)2

c2

)
dx =

√
πc2, (5.24)

assuming c ∈ R and x0 ∈ C. We see that the Fourier transform of the Gaussian
wave packet is a Gaussian function. Observe that it is centred around m0, the main
wavenumber of the wave packet, and that the width is 2/σz, which is, in case of a quasi-
monochromatic wave packet, much smaller than m0 (this fact is derived from equation
(5.8)). So the wave packet contains only wavenumbers that lie in a small area around
m0.

1

If we allow for σz only slightly larger than λz, the Gaussian shape of ŵ(m, 0) would
be very broad, so that more waves actually contribute to the shape of the wave packet.
Our approach is applicable to this situation without restriction but, as we are going
to approximate wave packets by a finite superposition of plane waves, our method is
particularly efficient for the approximation of quasi-monochromatic wave packets.

The solution to equation (5.16) with initial condition obtained by Fourier transforming
equation (5.7) is

ŵ(m, t) =
√
πσ2 exp

(
−1

4
σ2(m−m0)

2

)
exp (−iω(m)t) . (5.25)

In order to obtain the solution in physical space, we have to apply the inverse Fourier

1Technically, the wave packet contains all wavenumbers since ŵ(m, 0) is always non-zero, but the
contributions of waves with wavenumbers that are outside a small neighbourhood of m0 are negligible,
since their amplitude is very small.
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transform to equation (5.25):

w(z, t) =
1

2π

∫
R
ŵ(m, t) exp (imz) dm

=
1

2π

∫
R
C(m) exp (−iω(m)t) exp (imz) dm

=
1

2π

∫
R

√
πσ2 exp

(
−1

4
σ2(m−m0)

2

)
exp (−iω(m)t) exp (imz) dm

(5.26)

Unfortunately, this can not be evaluated explicitly, but numerically, as the actual integra-
tion domain is a small interval Im0 = [m0−∆m,m0+∆m], with ∆m chosen appropriately
such that m0 +∆m < 0 and wavenumbers outside Im0 have a negligible amplitude. By
performing this integration for several values of z and t, we obtain a wave packet that
has downward travelling phases with an upward moving envelope that slowly disperses
in time, just as we expected. The results are displayed in figure 5.1,

We initialised a wave packet with horizontal wavelength λx = 30 km, main vertical
wave length λz,0 = 3 km and an envelope width σz = 7 km for the upper row and
σz = 3 km for the lower row. We observe that the dispersion for the second case, where
σz = λz,0, the initial wave packet contains only a few oscillations, is much smaller, but
it disperses much stronger. This is because the wave number distribution is broader
and hence, much longer waves contribute to the wave packet which have in turn a much
higher vertical group velocity, given by ∂ω/∂m.

It is interesting to note that a numeric evaluation of the integral in equation (5.26),
for example via composite Newten-Côtes formulae, corresponds to an approximation of
the wave packet by a superposition of finitely many plane waves. To see this, we look at
a quadrature formula for a fixed location z0 and time t0

w(z0, t0) =

∫
Im0

ŵ(m, t0) exp (imz0) dm ≈ |Im0 |
n∑
l=1

ψlŵ(ml, t0) exp (imz0) (5.27)

with weights ψl at wavenumbers ml . As we said in the beginning of this section, for
a fixed wavenumber, in this case ml, the solution ŵ(ml, t) has a plane wave structure.
Therefore, the quadrature formula can be seen as a weighted superposition of finitely
many plane waves that approximate the wave packet. This will be of great avail later.

If we have a look at equation (5.15) again, we see that the coefficients also do not
depend on t, so the Fourier transform should also work with t instead of z, i.e.

w̃(z, ω) =

∫
R
w(z, t) exp(−iωt) dt. (5.28)
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Figure 5.1: Snapshots an upward travelling Gaussian wave packet in uniform back-
ground N ≡ N0 at different time points, computed with the multi-layer method. The
left panel displays the initialised packet, the middle panel shows it after tN0 = 450 and
the right panels after tN0 = 900. The blue curve is the wave packet itself, the green line
is the envelope, plotted here to see the effect of the dispersion better. The wave packet
broadens, with longer waves travelling faster than shorter ones. The wave amplitude
is 1% of the static instability threshold ω2

0/m0, which was estimated by Achatz et al.
(2010).
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5.2 Uniform stratification

The resulting equation is

∂2w̃

∂z2
(z, ω) + k2

(
N2

0

ω2
− 1

)
︸ ︷︷ ︸

=:m(ω)2

w̃(z, ω) = 0. (5.29)

In case of uniform stratification, we also have plane wave solutions

w̃(z, ω) = <(A(ω) exp(im(ω)z) +B(ω) exp(−im(ω)z)). (5.30)

Again, if we want to initialise an upward propagating wave packet, we have to choose
B(ω) = 0. By using the inverse Fourier transform, we obtain the full solution in physical
space and time:

w(z, t) =
1

2π

∫
R
ŵ(z, ω) exp(iωt) dω =

1

2π

∫
R
A(ω) exp(−im(ω)z) exp(iωt) dω. (5.31)

It is important to say that the integration domain is not R, but the interval (0, Nb) for
two reasons. The first reason is that we assumed ω > 0, as negative frequencies are ruled
out by symmetry. The second is that waves with frequencies ω ≥ Nb are evanescent in the
troposphere and are assumed not to reach the tropopause2. Unfortunately, there is no
direct way of using the initial condition w(z, 0) to determine A(ω), since we transformed
the time dependency into a frequency dependency. We would need a boundary condition
w(z0, t), i.e. what an observer would see over all times at a fixed point z0 in space. But
since the phase velocity is negative while the group velocity is positive, it is a priori not
clear if an initial Gaussian-shaped wave packet in space also produces a Gaussian-shaped
packet in time. There is, however, a link between wavenumber and frequency, namely
the dispersion relation (3.9). We can use it to apply a coordinate transformation in
equation (5.26) from m to ω, where

m = m(ω) = −k
√
N2

ω2
− 1. (5.32)

Then, the integrand of equation (5.26) takes the shape of the integrand of equation
(5.31). Hence, it will be possible to find A(ω), which then corresponds to the correct
starting conditions for a Gaussian gravity wave packet in frequency space. To perform

2They might actually reach the tropopause, if their vertical wavelength is very large, similar to the
tunnelling effect we saw in subsection 3.6.2, but we will focus on wave packets that propagate properly
through the troposphere.
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the transformation, we use

dm =
dm

dω
dω =

N2k

ω3
√

N2

ω2 − 1
dω. (5.33)

We also have to make sure that the integration boundaries are correct. We know that
the integration bounds for the inverse Fourier Transform in ω need to be 0 and Nb,
hence the bounds before the coordinate transformation are m(0) = −∞ and m(Nb) = 0.
As we mentioned earlier in this section, only wavenumbers in Im0 , i.e. close to m0,
actually contribute to the wave packet. Moreover, Im0 was constructed to be contained
in the negative real numbers. Hence the integration bounds are fine for the coordinate
transformation. We obtain

w(z, t) =
1

2π

∫ 0

−∞
C(m) exp (−iω(m)t) exp (imz) dm

=
1

2π

∫ Nb

0
C(m(ω)) exp (−iωt) exp (im(ω)z)

dm

dω
dω

=
1

2π

∫ Nb

0
A(ω) exp (−im(ω)z) exp (−iωt) dω

(5.34)

with

A(ω) =
√
πσ2 exp

−1

4
σ2

(
−k
√
N2

ω2
− 1−m0

)2
 N2k

ω3
√

N2

ω2 − 1
(5.35)

This is the correct starting condition for a gravity wave packet in frequency space which
is initialised with a Gaussian shape in real space.

With this representation of Gaussian wave packets in frequency space, we will be able
to extend the multi-layer method from chapter 3 to describe the evolution of a wave
packet, while still being able to set up numerical simulations that take Gaussian wave
packets as initial conditions. As long as we are able to explicitly compute the spatial
Fourier transform of the initial wave packet, we are able to create a starting condition
in frequency space. Hence it is also possible to show the evolution of, e.g., cosine-
shaped wave packets, which were studied by Bölöni et al. (2016) in different atmospheric
circumstances. They will be in fact the object of study in section 6.3, where we validate
the theory numerically.

5.3 Non-uniform stratification

One could ask why it is important to translate wave packet-like initial conditions to
frequency space when a transformation to wavenumber space also works and seems

70



5.3 Non-uniform stratification

much more natural. The reason for this is that in case of non-uniform stratification, i.e.
N = N(z), we are not able to perform a Fourier transform in z of equation (5.3), since
now the equation explicitly depends on z. But a Fourier transform in t is still possible,
which yields equation (5.29) with the difference that N now depends on z. Similar to
equation (3.7) for plane waves, it can, in general, not be solved explicitly for arbitrary
stratification profiles. What we can do now is to use the method we developed for plane
waves in chapter 3, i.e. approximating N(z) by a piecewise constant function. We obtain
local solutions that are valid in the layers where N is constant. Following the notations
in chapter 3, we have equations

∂2w̃j
∂z2

(z, ω) + k2

(
N2
j

ω2
− 1

)
w̃j(z, ω) = 0, (5.36)

for j = 1, . . . , J + 1. Similar to equation (5.18), we have plane wave solutions

w̃j(z, ω) = Aj(ω) exp(−imj(ω)z) +Bj(ω) exp(imj(ω)z), (5.37)

where again Aj corresponds to the upward propagating part and Bj to the downward
propagating one, j indicates the corresponding layer and

mj(ω) = −k

√
N2
j

ω2
− 1. (5.38)

Together with the matching conditions (3.21), we can derive relations(
Aj
Bj

)
=

(
q
(j)
11 q

(j)
12

q
(j)
21 q

(j)
22

)(
Aj+1

Bj+1

)
. (5.39)

similar to equation (3.24). Note that the matrix here is the inverse of (3.27). The matrix
entries can however easily be derived with the matrix entries of the original matrix (3.28)
and (3.29), the determinant (3.30) and the matrix inversion formula for 2-by-2 matrices(

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
. (5.40)

Note that mj and mj+1 are now functions of ω, as displayed in equation (5.38). The
reason why we decide to use this direction for the matching is rather simple, as it is
easier to handle during the upcoming transformations and optimises computation time.

But still, the multi-layer method is not yet applicable, since there is a major difference
to the case with plane waves. When looking at a single plane wave with fixed wavenumber
and frequency, then requiring that we have only upward propagating waves above a
region of non-uniform stratification is the same as saying we initially have only upward
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propagating waves below the non-uniform stratification that are incident on this region,
since we eventually get a steady state. But now we have an explicit temporal dependence
of the solution and when initialising a single Gaussian wave packet below a region of
non-uniform stratification is not guaranteed to yield a single wave packet above the
region, let alone Gaussian-shaped. It could and will be that some partial reflected part
of the wave packet is again reflected inside this region, causing the double reflected part
to travel upwards again so that the wave packet has some sort of a “tail” or that we have
multiple distinguishable wave packets.

Therefore, we are not able to provide the amplitude information for upward and down-
ward propagating waves in the uppermost layer, which would let us solve equation (5.39)
recursively for all j. So the correct approach is to require no downward travelling wave
packets in the upper layer and only a single upward travelling wave packet in the lowest
layer. Hence, we choose A1(ω) in a way that it corresponds to a wave packet, for example
via equation (5.35) and we require BJ+1(ω) = 0.

We can gather the conditions at all interfaces in a large equation system:

1 0 −q(1)11 −q(1)12 0 0 . . . 0 0 0 0

0 1 −q(1)21 −q(1)22 0 0 . . . 0 0 0 0

0 0 1 0 −q(2)11 −q(2)12 . . . 0 0 0 0

0 0 0 1 −q(2)21 −q(2)22 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 0 −q(J)11 −q(J)12

0 0 0 0 0 0 . . . 0 1 −q(J)21 −q(J)22





A1

B1

A2

B2
...

AJ+1

BJ+1


= 0 (5.41)

The matrix has a size of 2J × (2J + 2), so we have 2J equations for the 2J + 2
amplitudes. But we already know two of them, namely A1 and BJ+1, so we actually
have only 2J unknown amplitudes. So the equation system that we need to solve is

0 −q(1)11 −q(1)12 0 0 . . . 0 0 0

1 −q(1)21 −q(1)22 0 0 . . . 0 0 0

0 1 0 −q(2)11 −q(2)12 . . . 0 0 0

0 0 1 −q(2)21 −q(2)22 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1 0 −q(J)11

0 0 0 0 0 . . . 0 1 −q(J)21





B1

A2

B2

A3
...

Bn−1
An


=



−A1

0
0
0
...
0
0


(5.42)

In general, the matrix in equation (5.42) has maximal rank, unless the first row or last
column is zero, but this can happen only if the matrices in equation (5.39) for j = 1 or
j = J are defect. As we can derive from equation (3.30), this only happens if m2 = 0
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5.3 Non-uniform stratification

or mJ+1 = 0. The second case can be ruled out as it would correspond to a neutrally
stratified stratosphere, not allowing for wave propagation. Although that case is allowed
theoretically, it is not of particular interest, as all the transmission coefficients would
be 0, resulting in a total reflection. The first case however might appear. But as we
discussed already in section 3.2, we avoid evaluating at points that cause the vertical
wavenumber to vanish, supposed it occurs at an isolated point in space. Therefore, the
linear equation system (5.42) can be assumed to have full rank and by solving it, we find
a unique solution.

Theoretically, it is possible to use the matrix structure to write down the solution in
a closed formula, but the computation of this approach is very costly, since the matrix
entries are in fact functions depending on ω and the equation system needs to be solved
symbolically. Due to this fact, it was not manageable to compute the closed formula,
even for a small number of layers.

Therefore, we had to develop another way of finding the solution. Even if we would
find the analytic solution, we expect that we can evaluate the integral that appears in the
inverse Fourier transform only numerically. This would correspond to an approximation
of the wave packet by a superposition of finitely many plane waves, as we already pointed
out in section 5.2. Hence, it seems convenient to take certain values for ω at which the
corresponding functions are evaluated and the resulting linear equation system is solved
numerically. These values will then serve as grid points for the numeric approximation
of the inverse Fourier transform.

In order to get accurate results, we describe the wave packet as a superposition of
several thousands of plane waves. By what we said at the beginning of this chapter,
such a superposition is almost-periodic in space and time, but the almost-periods for
reasonably small ε are much larger than the temporal and spatial envelope, so that the
wave packets do not influence each other in the region of interest.

The transmission coefficient is computed as a weighted sum, where each plane wave
contributes as much as its fraction of the initial wave energy. To be precise, this writes
down as

TCtotal =
∑
ω

A1(ω)2∑
ω′ A1(ω′)2

TC(ω), (5.43)

where the sum runs over all frequencies at which we evaluate and with the usual formula
for the transmission coefficient

TC(ω) =
mJ+1(ω)

m1(ω)

∣∣∣∣AJ+1(ω)

A1(ω)

∣∣∣∣2 (5.44)

that we already know from section 3.3.

Table 5.1 shows the comparison of some calculations for several wave packets in dif-
ferent stratification profiles and their plane wave counterparts, i.e., plane waves with the
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λz/dTP 0.4 1 2 5 case

realistic TP
0.9673 0.8092 0.6616 0.4184 Wave packet
0.9668 0.8095 0.6620 0.4189 Plane wave

Reflection
0.9764 0.2904 0.0916 0.0298 Wave packet
0.9791 0.2873 0.0916 0.0299 Plane wave

Table 5.1: As stratification, we use the realistic tropopause and the reflection layer
profiles from Pütz et al. (2018). The tropopause depth is dTP = 1000 m, λx = 2000 m
and σz = 5λz in all cases. We find that the energy transmission of Gaussian wave packets
can very well be approximated by plane waves with vertical wave number equal to the
main wave number of the packet.

same horizontal wave number and the main frequency ω0:

ω0 =
N0k√
k2 +m2

0

. (5.45)

We fixed the horizontal wave length to be λx = 2000 m and the tropopause depth was
set to be dTP = 1000 m. We chose to display the main vertical wavelength instead of the
frequency, because it gives a better intuition about how large the wave packet is compared
to the region of non-uniform stratification. We make an interesting observation. The
transmission of the wave packets can be described very well by just using the transmission
coefficient for the corresponding plane wave. This permits a very fast and efficient
estimate of partial reflection and transmission of gravity wave packets incident on a
region of non-uniform stratification.

5.4 Evolution of wave packets

The transmission coefficient gives a measure for how much wave energy propagated
through the tropopause. What we do not know is how the transmitted and reflected
wave packet look like. Fortunately, this approach gives the possibility to compute the
full spatial and temporal evolution of the initialised gravity wave packet. In order to do
this, we need to calculate the inverse Fourier transform of the solution we obtain from
the multi-layer method. We recall that

w(z, t) =
1

2π

∫ Nb

0
w̃(z, ω) exp (−iωt) dω, (5.46)

where w̃ is the piecewise defined function

w̃(z, ω) = Aj(ω) exp (−im(ω)z) +Bj(ω) exp (im(ω)z) , z ∈ Ij (5.47)
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for j = 1, . . . , J + 1. As we already mentioned in sections 5.2 and 5.3, the integral will
be approximated by a quadrature formula∫ Nb

0
w̃(z, ω) exp (−iωt) dω = Nb

n∑
l=1

ψlw̃(z, ωl) (5.48)

with weights ψl. Let Ω = {ω | |ω − ω0| ≤ ∆ω} where ω0 is the main frequency of
the wave packet and ∆ω be chosen appropriately such that A1(ω) is small compared to
maxω′∈(0,Nb) |A1(ω

′)| for all ω with |ω − ω0| > ∆ω, i.e. waves with frequencies outside
of Ω contribute negligibly to the wave packet. Let nω be a positive integer. Define
ωl = ωh + l

nω
∆ω for l = −nω, . . . nω and set Ω] = {ωl | l = −nω . . . nω}. Assume that

we have solved equation system (5.42) for every ωl ∈ Ω], i.e we have the amplitudes
Aj(ωl), Bj(ωl), where j indicates the layer. Given that we already have an equidistant
grid on Ω], the most natural choice is a composite Newton-Côtes formula.

As we have 2nω + 1 grid points, it is possible to use the composite Simpson rule
(which is for example also used in the Matlab built-in integrator quad). We split up
the integral in a sum of smaller integrals, which then are individually solved by the
Simpson rule. To be precise, the integral in equation (5.46) written as∫

Ω
w̃(z, ω) exp (−iωt) dω =

nω∑
l=1

∫ ω2l−nω

ω2(l−1)−nω

w̃(z, ω) exp (−iωt) dω. (5.49)

Each integral is then approximated by∫ ω2l−nω

ω2(l−1)−nω

w̃(z, ω) exp (−iωt) dω

≈ 2∆ω

6nω

(
I(ω2(l−1)−nω) + 4I(ω2(l−1)−nω+1) + I(ω2l−nω)

)
, (5.50)

where

I(ωl) = (Aj(ωl) exp (−imj(ωl)z) +Bj(ωl) exp (imj(ωl)z)) exp (−iωlt) . (5.51)

The index j depends on the evaluated point z. To be precise, we choose the unique j such
that z ∈ Ij , where we use the definition of Ij from subsection 3.2. Defining hω = ∆ω/nω,
the full solution is then approximated by

w(z, t) ≈ 1

2π

hω
3

nω∑
l=1

I(ω2(l−1)−nω) + 4I(ω2(l−1)−nω+1) + I(ω2(l−1)−nω+2), (5.52)

Performing this calculation for a fixed discrete vertical domain D and several discrete

75



5 Wave packets

time steps {ts}nts=1, we obtain a temporal evolution of the gravity wave packet in the
domain D.

One major advantage over the use of numerical flow solvers is that we can construct
an approximate solution for the whole space and all times. We can just pick any time
t0 and display the solution in an area we are interested in rather than initialising a
wave packet and simulating up to t0. Of course the method describes just the linear
behaviour of the wave packet in a Boussinesq setup, but it is nonetheless an interesting
result that gives a good qualitative hint of how gravity wave packets behave in certain
stratification profiles. As we will see in section 6.3, the results derived here match up
very well against simulations of small-amplitude wave packets with the full non-linear
Boussinesq equations.

We shall discuss another method to approximate the integral in equation (5.46). One
could make the argument that, given the solutions w̃(z, ωl), one could simply superim-
pose I(ωl) to obtain a solution depending on z and t. While this is a feasible approach,
the solutions have to be scaled by a factor that accounts for the number of waves we
superimpose in order to obtain the correct physical solution. Sticking to the notation
from above, it turns out that this factor is hω/(2π), so that we can approximate the
solution as

w(z, t) ≈ hω
2π

nω∑
l=−nω

I(ωl). (5.53)

A closer inspection of this approximation reveals that it is actually a Riemann sum for
solving the integral in equation (5.46). Hence, the simple superposition of plane waves
also corresponds to an approximation of the inverse Fourier transform.

We tested both methods for several test cases and it turned out that both are equally
fine. The theory predicts both methods to converge to the real value of the integral
with the composite Simpson rule doing so faster. The difference can be seen when using
only a few plane waves, but for the computations we did, the number of plane waves
was at least 1000. The error between both methods then was on the order of machine
precision, so none of them could be declared superior over the other in terms of accuracy.
Nonetheless, the Riemann approach has the advantage of being easier to implement and
is therefore computationally cheaper. The saving in computational time is on the order
of a few percent. While this does not seem much (in fact, the method is still very efficient
when running with the composite Simpson rule), it will allow us to extend the method to
wave packets that are horizontally and vertically localised. This will be briefly discussed
in section 5.6. All computations presented in here were carried out with the composite
Simpson rule.

In figure 5.2 we show vertical cuts through a wave packet that propagates through the
realistic tropopause profile (3.111) with the same specifications as in section 3.6. We used
∆z = 1000 m and wavelengths λx = λz = 2000 m at time points t = 0 h, 2.5 h, . . . , 12.5 h.
We can observe a partial reflection at the region of non-uniform stratification. In the
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upper right panel, the partial reflection is about to take place, which is indicated by the
strong oscillations of the envelope. In the lower panels, we can detect two separated wave
packets, travelling in different directions. In this particular case, the wave packet more
or less keeps its shape: both the reflected and transmitted packet do look Gaussian-like.
It is not possible to give an explicit formula for the envelope, though. The transmission
coefficient is 0.6616. Although the amplitude in the stratosphere seems to be slightly
smaller, the stratospheric wave packet contains more energy as we assumed a stronger
stratification there than in the troposphere. Hence, the vertical wavenumber is larger
and the amplitude smaller for wave packets with the same energy (it scales with the
square of vertical wavenumber ratio).

Figure 5.3 shows the propagation of the same gravity wave packet through the twin
peaks profile (3.112) with d = 10L. What happens here is that a part of the wave
is transmitted through the first peak as well as thorough the second peak. The part
that is reflected at the second peak is then incident again on the first peak, but from
above, causing again a partial reflection and transmission of the wave packet so that
there is again an upward travelling wave packet, which has smaller amplitude than the
first transmitted packet and which is located at a different point in space. In the upper
right panel, the partial reflection at the first peak is finished and the wave packet is at
the second peak. In the lower left panel, one can see the second downward travelling
packet as well as the transmitted packet. In the lower middle and right panel, one can
see a second upward travelling packet, which corresponds to a reflection of the second
downward packet at the first peak. This is a case where the method really shines. Not
only yields the computation of the transmission coefficients for the initial wave packet
and the corresponding plane wave slightly different values (0.8246 for the wave packet
versus 0.7394 for the corresponding plane wave), it is the visualisation of the evolution
of the wave packet that tells us that the transmitted as well as the reflected wave energy
is split between multiple distinguishable wave packets.

5.5 Wave packets with wind

We are now able to describe the propagation of gravity waves through a non-uniform,
but steady background. This is already quite an achievement as such an approximate
solution, to the best of the authors’ knowledge, was never derived before. But for real
atmospheric applications, height-dependent background wind is an important factor and
this is why we are going to extend the theory even further to account for a non-steady
background. In order to do this, we combine the discoveries from chapter 4 and the
current chapter.

As it turns out, both extensions are straight-forward to combine, as the plane-wave
solution with and without wind works almost identical, with the difference of absolute
frequency replaced by relative frequency and the additional curvature term in the equa-
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tion. Basically the same is true for wave packets. The equation we want to solve is

∂2ŵ

∂z2
(z, ω) + k2

(
N(z)2

(ω − ku(z))2
+

u′′(z)

k(ω − ku(z))
− 1

)
ŵ(z, ω) = 0, (5.54)

which will be done in a similar way as we did for no background wind. We approximate
N , u and u′′ in the same way as in chapter 4 and the ω-dependency will be dealt with
as we did in section 5.3 by evaluating the equation for fixed values of ω and solving
the corresponding linear equation system numerically. The last missing ingredient is the
transformation of the initial wave packet to a starting condition in Fourier space.

Recall that the dispersion relation for the vertical wavenumber with background wind
is

m = −k

√
N2

(ω − ku)2
+

u′′

k(ω − ku)
− 1. (5.55)

Hence, its derivative after the absolute frequency yields

dm

dω
=

k

2
√

N2

(ω−ku)2 − 1

(
2N2

(ω − ku)3
+

u′′

k(ω − ku)2

)
. (5.56)

Therefore, we obtain for the starting condition the expression

√
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√
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ω̂2
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)2
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(
2N2

ω̂3 + u′′

ω̂2

)
2
√

N2

ω̂2 − 1
, (5.57)

where ω̂ = ω − ku. So basically, the absolute frequency was replaced by the relative
frequency and the additional term coming from the curvature occurs. Apart from these
small changes, we can apply the method as derived in section 5.3 and also compute the
full spatio-temporal evolution, analogous to section 6.3.

With this point reached, we developed a very strong and versatile method that de-
scribes the evolution of small-amplitude gravity wave packets under arbitrary background
conditions. Moreover, it provides the solution for any given point in time when given an
initial condition. This is a huge advantage over numerical simulations, which have to in-
tegrate the governing equations step by step to eventually reach a time point of interest.
To be a serious contender for WKB ray tracer, an extension to higher dimensions (at
least two-dimensional) must be done. This is discussed briefly in the forthcoming section.
Moreover, we do not know by now how well the solutions obtained from the multi-layer
method match against numerical simulations of the full non-linear Boussinesq equations.
This is a task that will be taken on in chapter 6.
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5.6 Two-dimensional wave packets

We will close this chapter with a few comments on two-dimensional wave packets, as the
methods we developed throughout this chapter will also work for them. Assume we have
an initial condition

w(x, z, 0) = f(x)g(z) (5.58)

for equation (3.5), then a Fourier transform in x would give equation (5.3), but with k as
an independent variable. The initial condition can than be transferred to this equation
and reads

w̃(k, z, 0) = f̃(k)g(z), (5.59)

where f̃ corresponds to the Fourier transform of f . From this point on, we can go
the same route as for 1D wave packets, but we are not only superimposing waves with
different frequencies but also with different horizontal wavenumbers. Nevertheless, it
is possible to compute the full spatio-temporal evolution of a 2D wave packet with
this method. The inverse Fourier transform however now also needs to be done for
a horizontal domain Dx, effectively increasing the number of computation steps by a
factor of |Dx|. Moreover, since the inverse Fourier transform is now a double integral,
the number of waves we use in the horizontal direction is also a factor that increases
the computation steps, since for every wavenumber kj , we have to compute a Fourier
integral in the sense of section 5.4 before eventually computing the second integral, also
with a quadrature rule. If we use the composed Simpson rule for both integrals, we
obtain a massive increase in computation time, effectively losing the advantage of a fast
computation that we have in the 1D-case.

However, if we use the Riemann sum approach for both integrals like in equation
(5.53), it is possible to increase the efficiency of the computation such that we can find
results reasonably fast. For reference, a test case with 100 values for both k and ω took
with the Simpson rule approximately one hour to compute a time point in a domain
with 301 horizontal and 501 vertical grid points. In the same setup, the Riemann sum
approach only needed 30 seconds to give a result. The reason for the faster computation
is that in the Riemann sum, every grid point has the same weight (unlike the Simpson
rule, where the middle point has a weight of 2/3 compared to 1/6 at the end points).
This allows us to solve both integrals by only one summation. Moreover, we can perform
the summation for all x-values at the same time.

Another solution could be to implement a splitting ansatz, where we use the multi-
layer approach in the vertical and a numerical method in the horizontal, but this is an
open problem.
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5 Wave packets

Figure 5.2: Reflection of a wave packet at tropopause profile of the shape that can be
seen in figure 3.6. Snapshots are taken at at tNb = 0, 90, . . . , 450. Blue lines represent
the vertical wind field, green lines indicate the envelope.
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5.6 Two-dimensional wave packets

Figure 5.3: Propagation of a wave packet through twin peaks. The upper left
panel shows the profile, the others show the wave packet. Snapshots taken at tNb =
0, 216, . . . , 1080. Blue lines represent the vertical wind field, green lines indicate the
envelope, red horizontal lines show the locations of the peaks, which have a width of
λz/2.
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6 Numerical validation of the theoretical
models

This section is devoted to the numerical validation of the multi-layer method. We con-
duct simulations of the full Boussinesq equations with an atmospheric flow solver and
compare the findings to the solutions provided by the multi-layer method. We separate
the cases for plane waves and wave packets. The focus for plane waves lies in the compu-
tation of transmission coefficients. For wave packets, we will investigate the propagation
of the wave packets under different atmospheric conditions. The basic results of this
chapter will also be found in the manuscripts Pütz et al. (2018) and Pütz and Klein
(2018), but the exact values might differ from the ones found in there, as we made
additional simulations for the thesis.

6.1 Model description

As reference model, we will use PincFloit (Pseudo-Incompressible Flow Solver with Im-
plicit Turbulence), presented by Rieper et al. (2013b). The model conserves mass, energy
and momentum. Moreover, it is a sound-proof model, which has two major advantages
which make it a good choice for our needs. The first one is that all waves that occur are
gravity waves. The second advantage is a direct consequence from the first one as the
supressing of sound waves allows for larger time steps due the CFL criterion not having
to consider the speed of sound. The model was tested favourably against standard cases.
Rieper et al. (2013a) used PincFloit to check the range of validity of the extended WKB
theory that was derived in Achatz et al. (2010). Very recently, Schlutow et al. (2017)
used the model to validate their theoretical findings of travelling wave solutions to their
modulation equations.

PincFloit has several built-in variants for the time scheme, flux, flux limiter and spatial
reconstruction. We made several test runs, varying those parameters as well as others,
for example the spatial resolution, CFL threshold, but also wave amplitude, in order to
find a convenient setup that delivers accurate results as well as acceptable run times.

As time scheme, we used the low-storage third order Runge-Kutta scheme, which
were extensively studied by Williamson (1980). The exact method can be found in
Durran (1999). For spatial reconstruction, we pair the Runge-Kutta scheme with either
a Godunov schmeme and central flux evaluations or a MUSCL scheme and upwind flux
computations. For all computations, we have a monotonized central flux limiter and the
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CFL threshold was chosen to be 0.9. The exact specifications for each simulation are
available upon request.

PincFloit has a built-in switch for a Boussinesq atmosphere, i.e. constant background
density, but due to extensions implemented by Dr. Gergely Bölöni, it is possible to have a
non-constant profile for the Brunt-Väisälä frequency. Hence it was possible to implement
the test cases of we needed into the solver. We use the same PincFloit version that
was used by Bölöni et al. (2016) as a reference LES model. The only changes are the
implementation of our atmospheric setups and the addition of a sponge layer at the
bottom of the domain, which was written by Dr. Mark Schlutow for the purpose of
generating plane waves in an atmosphere at rest.

6.2 Transmission coefficients for plane waves

This section focuses on numerical simulations with a plane wave forcing. We wish to
compute transmission coefficients form the runs in order to compare them to the theor-
etically predicted values.

The model runs on a two-dimensional x-z-domain and covers 10000 m in z-direction
and one horizontal wavelength in x-direction, which lies between 1000 m and 3000 m
in the selected cases. This is necessary, since we have horizontally periodic boundary
conditions. The vertical resolution is 10 m, which corresponds to 1000 grid cells in the
vertical, the horizontal resolution is 25 m, if not stated otherwise.

We implement two sponge layers, one at the bottom of the domain and one at the top
of the domain, but they serve inherently different purposes. While the top sponge layer
absorbs and damps the wave, the bottom sponge layer is responsible for the excitation
of the wave. Its relaxed state is a plane wave, so after a few time steps, the bottom
sponge initialised a plane wave with given parameters that propagates freely above it
in positive z-direction. The bottom sponge covers the lower 40% of the domain, which
contains either two or four complete vertical wavelengths for the cases we are going to
present. The top sponge occupies the upper 20% of the domain and is chosen such that
the wave is completely damped away before reaching the top of the domain. This is
important, since technically, we also have periodic boundary conditions in the vertical
direction, so we do not want waves that reach the stratosphere to run into the domain
again at the bottom. Moreover, we move the coordinate system with the horizontal
phase velocity ω/k, which removes the temporal dependence of the wave field so that
the waves eventually reach a steady state.

In all simulated runs, we can observe such a steady state after several hours of simu-
lated time. It is very stable and lasts until the end time of the simulations, which was 10
hours in all cases. This has the effect that the steady state is present for a few hours of
simulated time. This permits a very good computation of the transmission coefficient.
As initial amplitude, we take the mean amplitude of the excited wave in the middle of
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6.2 Transmission coefficients for plane waves

the bottom sponge layer at a fixed time step after the wave has fully developed, as trans-
mitted amplitude we take the mean amplitude of the wave in the stratospheric region.
Moreover, the transmitted amplitude is computed every ten minutes of simulated time
and the transmission coefficient is taken as mean over all computed values after reaching
the steady state, which was in general assumed to be after 3 hours of simulated time.

Since our theory is developed for the linearised equations, but PincFloit uses the full
Boussinesq equations we have to make sure that we set up the wave amplitudes small
enough to ensure non-linear wave interactions are not affecting our results. Therefore, a
variable that controls the amplitude of the initialised wave is introduced. This variable
was chosen in a way that in all computations, the waves had an excitement amplitude of
around 0.0743 ms−1, which in none of the cases was more than 7% of the static instability
threshold, which is given by (see, for example, Achatz et al. (2010))

wstat =
km

N3
√
k2 +m2

. (6.1)

Besides eliminating non-linear wave-mean flow interaction, it has the additional advant-
age that the waves do not break during the simulations.

6.2.1 Linear increase

λz λx 1000 1500 2000 2500 3000 method

1000
0.9950 0.9964 0.9979 0.9985 0.9988 multi-layer
0.9780 0.9713 0.9806 0.9911 0.9972 PincFloit

2000
0.9560 0.9799 0.9884 0.9892 0.9894 multi-layer
0.9477 0.9826 0.9948 0.9957 0.9777 PincFloit

Table 6.1: Transmission coefficients for profile from figure 3.3 with a dimensional tro-
popause depth of 1000 m for different horizontal and vertical wavelength (also in m),
computed theoretically with the multi-layer method and from PincFloit simulations.

In table 6.1, we find the comparison of the transmission coefficients obtained from
the multi-layer method and from the numerical simulations of PincFloit. We see an
impressive agreement of the values, deviations are in the order of 2%. If one wants to nit-
pick on this, a possible reason for the deviations could be the method we compute incident
and reflected amplitude. Due to the nature of the sponge, there are some fluctuations
in the initialised wave amplitude and hence also in the transmitted amplitude. We take
care of this by averaging over a larger area, but this produces minor errors in the value
for the transmission coefficient. Also a shifting of the averaging area produces slightly
different values, but all in a very small range around the value we put in table 6.1. We
should mention at this point that for each calculation, we used the same areas over which
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Figure 6.1: Vertical wind field of a PincFloit simulation for the linear case with a
horizontal wavelength of 2500 m and an incident vertical wavelength of 1000 m. zsl
indicates where the lower sponge ends, the tropopause is between zb and zt and the top
spnge extends from zsu to the domain top.

initial and transmitted amplitudes are averaged, as well as the same time point for the
computation of the initial amplitude. This holds also true for the other cases.

The steady state for λx = 2500 m and λz = 1000 m can be seen in figure 6.1. We
can see a refraction of the wave due to the change in vertical wavelength as well as no
superposition of waves in the troposphere, which implies that the wave transmits almost
completely. The smaller wave amplitude in the stratosphere (i. e. between 7000 m and
8000 m) is a result of the stronger stratification in this altitude.

6.2.2 Wave tunnelling

The simulation setup in this case uses fixed values for horizontal and vertical wavelength,
but changes the depth of the tropopause, as this is numerically more convenient. Tech-
nically, we have the same wave frequency, but change the ratio between horizontal/ver-
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∆z
λz

0.1 0.2 0.5 1 method

TC
0.8648 0.5846 0.0916 0.0028 multi-layer
0.8259 0.5580 0.0971 0.0030 PincFloit

Table 6.2: Transmission coefficients for profile from figure 3.4 with fixed vertical and
horizontal wavelengths λz = λx and varying tropopause depth ∆z. This corresponds to
a vertical cut along ω ≈ 0.7 in the left panel of figure 3.4.

tical wavelength and tropopause depth, so this corresponds to a vertical slice in the left
panel of figure 3.4. By choosing λx = λz, as we did here, this results in a frequency
ω = 1√

2
Nb ≈ 0.707Nb. For tropopause depths that are comparable to λx, we expect

strong reflection, while for a very short tropopause, we should obtain a wave tunnelling
effect. The results can be seen in table 6.2. We used λx = λz = 1000 m.

PincFloit shows the behaviour that was anticipated by the theory. This is as much a
quality check for the numerical model as it is supporting our theoretical findings. A ray
tracer based on WKB theory would have found total reflection in all of the cases. This
is because the WKB assumption is not valid any longer when the stratification changes
significantly over a vertical extend much smaller than a wavelength.

Snapshots of the steady state for a high transmission and low transmission case can
be seen in figure 6.2. It gives a very good comparison between the two cases as we can
clearly see the differently pronounced alternating patterns, which are produced by the
superposition of incident and reflected wave, as well as the disparity in the stratospheric
amplitudes.

6.2.3 Realistic tropopause profile

λz λx 1000 1500 2000 2500 3000 method

1000
0.7858 0.8010 0.8095 0.8151 0.8185 multi-layer
0.7757 0.8293 0.8428 0.8825 0.9046 PincFloit

2000
0.5635 0.6237 0.6620 0.6913 0.7113 multi-layer
0.5347 0.6468 0.6358 0.7000 0.6991 PincFloit

Table 6.3: Transmission coefficients for profile from figure 3.6 with a dimensional tro-
popause depth of 1000 m for different horizontal and vertical wavelength (also in m).

Table 6.3 shows a comparison of values for the transmission coefficient obtained from
the multi-layer method and values computed from PincFloit simulations.

For λz = 2000 m, we find that the values from the simulation coincide very nicely with
the theoretically predicted ones. For λz = 1000 m however, we see that the simulation
produces a higher transmission than expected from the multi-layer method. To get to the
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Figure 6.2: Snapshots of the wave field after 8 hours of simulated time from PincFloit
simulations for the profile from figure 3.4. In both cases, we have horizontal and vertical
wavelengths of 1000 m. In the left panel, the tropopause depth is 100 m. There is
only a slight chequerboard pattern and comparable amplitudes above and below the
tropopause. This suggests a high transmission. In the right panel, the tropopause depth
is 500 m. Note the different color codes.

bottom of this, we pick the case λx = 2000 m, λz = 1000 m and simulate with different
setups. The results can be found in table 6.4.

The reference case was the resolution as described at the beginning of this section. We
also distinguish between simulations done with a MUSCL scheme and with a Godunov
scheme. We observe from the reference simulation that the Godunov scheme has an even
higher transmission. For the different computation (DiffComp) of the initial amplitude,
we did not compute it once at took this value for all transmitted amplitudes, but took
a new initial amplitude for each time step. We estimated how long the wave needs
to propagate from the sponge layer into the stratosphere and took the corresponding

Case Reference DiffComp CFL05 dx = 50 m dx = 10 m

TC, MUSCL 0.8428 0.8392 0.8429 0.7858 0.8624
TC, Godunov 0.8520 0.8482 no data 0.8277 no data

Table 6.4: Transmission coefficients for the realistic tropopause with λx = 2000 m, λz =
1000 m and different numerical setups.
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Figure 6.3: Vertical wind field of a PincFloit simulation for the case of the realistic
tropopause profile with a horizontal wavelength of 2000 m and a vertical wavelength of
2000 m and with a tropopause depth of 1000 m. zsl indicates where the lower sponge
ends, the tropopause is between zb and zt and the top sponge extends from zsu to the
domain top.

average in the sponge layer at that time point. This should eliminate potential biases
through fluctuations from the initialised wave. As we can see, this has a rather minor
effect. The next setup set the CFL-condition to 0.5, resulting in shorter time steps.
This had no influence on the wave transmission at all, and hence we passed on simu-
lating this case also with the Godunov scheme. As we already knew from Pütz et al.
(2018), where we simulated the case with a coarser horizontal resolution, we should find
transmission coefficients closer to the theoretically predicted one when decreasing the
resolution. Therefore, we run simulations with a horizontal resolution of 50 m and could
confirm this assumption. A test run with a 10 m horizontal resolution had the effect of
further increasing the transmission.

As the decrease in horizontal resolution seems to have an impact on the wave propaga-
tion, we did test runs for different wave parameters and stratification profiles. We could

89



6 Numerical validation of the theoretical models

Figure 6.4: Transmission coefficient over time for λx = 1000 m, λz = 1000 m, retrieved
from a PincFloit simulation with a Godunov scheme.

partially observe the same effect, although it is not certain if the low resolution under-
estimates or the high resolution overestimates the transmission.

Another effect that could sometimes be observed for the realistic tropopause case
was an increase in the transmission coefficient over time, most prominent in the case
with λx = 1000 m, λz = 1000 m, simulated with a Godunov scheme. This can be seen in
figure 6.4. We observe that over the course of the simulation, the stratospheric amplitude
grows, leading to larger values for the transmission coefficient. Increasing the simulation
time from 10 to 80 hours revealed that the simulation eventually gets unstable at some
point, producing highly oscillating noise.

Our guess is that because of the sharp increase in stratification, which is resolved rather
coarse by the model, PincFloit has some issues with the conservation of energy, causing
wave amplitudes that are higher than they should be. We are, however, no experts on
numerical simulations in general and on PincFloit in particular, but this seems to be an
interesting point to hook in some more research.

To conclude this section, we can say that in general, the numerical simulations match
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very well with the theoretical predictions. Hence, the multi-layer method is a potent
tool to predict gravity wave transmission and reflection in non-uniform background.
Because the computation of the transmission coefficient is very fast and cheap, there is
the incentive to use it as a black box in numerical weather prediction.

6.3 Evolution of wave packets in non-uniform background

In this section, we will compare the evolution of gravity wave packets that is obtained
with the method presented in section 5.4 and the evolution that is computed with Pinc-
Floit.

We emphasise again that our approach addresses the linearised equations, so that there
is no interaction of the wave packet with the background flow. This will be realised by
choosing the initial wave amplitude small compared to the static instability threshold,
an estimate of which is discussed by Achatz et al. (2010). For the vertical wind, it is
given by

wsi =

∣∣∣∣ ω̂m
∣∣∣∣ . (6.2)

Case Wave packet specs background wind specs

REFR
z0 = 10 km, ∆wp = 10 km, zU = 30 km, ∆U = 20 km,
λx = 10 km, λz = 1 km U0 = −5 ms−1

REFL
z0 = 10 km, ∆wp = 10 km, zU = 30 km, ∆U = 20 km,
λx = 10 km, λz = 1 km U0 = −40 ms−1

PREFL
z0 = 20 km, ∆wp = 10 km, zU = 45 km, ∆U = 20 km,
λx = 6 km, λz = 3 km U0 = −9.75 ms−1

Table 6.5: Wave packet setups

As reference cases, we have a look at atmospheric setups with a refraction (REFR), a
total reflection (REFL) and a partial reflection (PREFL) of a wave packet by a wind jet,
as already studied by Bölöni et al. (2016). In all three cases, the initial wave packet is
a cosine-shaped wave packet with a total width of ∆wp = 2σwp = 10 km. The complete
formula for the initial vertical wind is

w(x, z, 0) =

{
<
(
a0wsi

1
2

(
1 + cos

(
π(z−z0)
σwp

))
exp(i(kx+m0z))

)
, if |z − z0| ≤ σwp

0, otherwise.

(6.3)
Here, a0 is a parameter that controls the wave amplitude, z0 is the center of the wave
packet and σ = ∆wp/2 is the half-width of the packet. As we are interested in the linear
behaviour, we set a0 = 0.01. It can be shown that the Fourier transform of the initial
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condition is

ŵ(x,m, 0) = exp(ikx)

(
π2 sin(σwp(m0 −m))

(π −mσwp +m0σwp)(π +mσwp −m0σwp)(m0 −m)

+
π2 sin(σwp(m0 +m))

(π +mσwp +m0σwp)(π −mσwp −m0σwp)(m0 +m)

)
(6.4)

hence we can apply the multi-layer method. Although it might seem at first glance that
ŵ(x,m, 0) has a singularity at m = m0, it can be shown that the limit m → m0 of the
first term in parenthesis exists, as both numerator and denominator tend to 0, so we can
use the L’Hôpital’s rule, which then reveals that the limit tends to a finite value.

For the background wind, we assume a cosine-shaped jet with width ∆U = 2σU =
20 km and peak velocity U0 at location zU . Expressed in formulas, this is

U(z) =

{
U0
2

(
1 + cos

(
π(z−zU )
σU

))
, if |z − zU | ≤ σU

0, otherwise.
(6.5)

Here, σU = ∆U
2 is the half-width of the jet profile. The exact wave packet and background

specifications for the cases REFR, REFL and PREFL can be found in table 6.5. Wen ran
the methods on a domain of 80 km in the vertical for the cases REFR and PREFL and
on a domain of 40 km for the case REFL. The number of grid points was 1200 for REFR
and PREFL, and 600 for REFR, resulting in a vertical resolution of 66.67 m in each of
the cases. The time span was 33.33 h for REFR, with an output created every 1200 s,
resulting in 101 outputs, when counting the initial output at time 0. The time span for
REFR was 24 h, with an output created every 1200 s, resulting in 73 outputs. The time
domain for PREFL was 6h, with an output every 180 s, resulting in 121 outputs.

In figure 6.5, we see a Hovmöller plot of the horizontally averaged wave action, norm-
alised by the background density, given by

2ρ−10 〈A〉 = 2ρ−10

〈E〉
ω̂

=
N2

0

ω̂2
0

(maxxw(x, zs, ts))
2

(ω − ku(zs))
(6.6)

for the case REFR. Here, zs and tS represent space and time points of interest. The
left panel displays the solution computed with the multi-layer method, the middle panel
was created from a PincFloit simulation of the full Boussinesq equations with the same
setup. We can see a very good agreement of both approaches, not only qualitatively but
also quantitatively. This can be seen in the right panel, where the absolute error between
both methods is shown. For reference, we chose the same color code in all three plots.
The amplitudes of the initialised wave packets in our model setup differ by approximately
4%, but this value further decreases when we increase the vertical resolution. Moreover,
both methods behave almost identically in terms of quality. We can see what appears
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6.3 Evolution of wave packets in non-uniform background

Figure 6.5: Hovmöller plot of wave action for the case REFR. The left panel displays
the solution computed with the multi-layer method, the middle panel shows the solution
from a PincFloit simulation, the right panel shows their difference.

to be a refraction of the propagation direction in the area where u is different from zero
(steeper angle). In fact, we have an increase in vertical group velocity due to a decrease
in vertical wavenumber. This looks like a refraction in the Hovmöller plot. The increase
in vertical group velocity is also responsible for the broadening of the wave packet in the
jet area, additionally to the broadening that occurs due to dispersion.

In figure 6.6, we see a Hovmöller plot of the horizontally averaged wave action for
the case REFL. Again, the left panel shows the multi-layer solution, the middle panel
shows the PincFloit simulation. In the right panel, we can see their difference. As
in the REFR case, the solutions match very well. There is however some wiggling in
the PincFloit solution near the bottom. This occurs because the solver is set up with
periodic boundary conditions and a sponge layer at the top of the domain which relaxes
to a steady background. This causes the solution, that runs out of the bottom and right
into the sponge to partially reflect from there, causing the wiggles. This issue could be
fixed by enlarging the sponge locally, but also increasing the relaxation time. This has
however the disadvantage of enlarging the whole simulation domain, making the whole
simulation more costly and not giving appropriately better results. Near the reflection
level, we see the superposition of the wave packet with itself: the front part is already
reflected while the back part is still travelling upward. The reflection level is too strong
for partial reflection to occur, the whole packet is eventually reflected. The multi-layer
method captures time and location of the reflection from the simulation very well.

In figure 6.7, we see a Hovmöller plot of the horizontally averaged wave action for the
case PREFL. Again, the left panel shows the multi-layer solution, the middle panel shows
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Figure 6.6: Hovmöller plot of wave action for the case REFL. The left panel displays
the solution computed with the multi-layer method, the middle panel shows the solution
from a PincFloit simulation, the righ panel shows their difference.

Figure 6.7: Hovmöller plot of wave action for the case PREFL. The left panel displays
the solution computed with the multi-layer method, the middle panel shows the solution
from a PincFloit simulation, the righ panel shows their difference.
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the PincFloit simulation and the right panel displays their difference. The wiggling near
the bottom is even stronger here, but apart from that, the solutions match pretty well.
The reflection level in this case is moderately strong and we have only a partial reflection
of wave action from the jet. This is a feature that can not be represented by classical ray
tracers. Wave packet with this setup would totally reflect from such a level, while other
methods do allow for partial reflection (see Bölöni et al. (2016)). As in the REFL case,
time and location of the partial reflection coincide very well between both methods.

It is impressive how well the multi-layer method approximates the numerical solution
in all three test cases. The qualitative as well as the quantitative behaviour of the wave
packet is completely captured by the multi-layer approach. There is no downside in using
it over a simulation of the full Boussinesq equations, as long as the wave amplitudes are
reasonably small.

6.4 Non-linear effects

By increasing a0 in equation (6.3), we increase the wave amplitude, essentially increasing
the importance of non-linear wave-wave and wave-mean flow interactions. Since the
multi-layer method is fully based on linear theory, we used a small value for a0, effectively
reducing PincFloit to a linear solver. On the one hand, this section serves the purpose
of showing that PincFloit accounts for non-linear effects as well as wave breaking and
on the other hand gives a hint until when the linear theory yields sufficient results.

In figure 6.8, we see Hovmöller plots of the wave action for wave packets with a0 = 0.1
(upper row), a0 = 0.3 (middle row) and a0 = 0.7 (lower row), computed with the
multi-layer method (left column) and PincFloit (middle column). In the right column,
we can see the difference between the two methods. For comparison, the middle panel
in figure 6.7 was computed with a0 = 0.01. The three images in the left column are
practically identical, except for the scale. The reason for this is that the multi-layer
method is a linear method, hence increasing the amplitude does not change the dynamics.
The upper middle panel is very similar to the left and middle panel of figure 6.7. Even
though we increased the amplitude by a factor of 10, the linear approximation does a
fairly good job, as can be seen in the difference of the two methods. In the middle panel,
the overall behaviour is still captured quite nicely, although there is much more wave
energy reflected, probably due to the acceleration of the jet by the wave packet itself. In
the middle lower panel, the initialised wave packet is close to static instability. We can
still see that the first part of the wave packet is partially reflected (indicated by the wave
action that reaches the bottom of the domain at around 2.5 h), but due to non-linear
interactions, it causes the remainder of the wave packet to break and dissipate.

In table 6.6, we can see the maximum vertical wind speed for the initial wave packet
for the different cases. When we compare these values with findings for gravity waves
in the upper troposphere by Thomas et al. (1999), who find gravity waves with vertical
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Figure 6.8: Hovmöller plot of wave action for the case PREFL, computed with the
Multi-layer method (first column), PincFloit (second column) and their difference (third
column). The rows represent different values for a0: a0 = 0.1 in the upper row, a0 = 0.3
in the middle row and a0 = 0.7 in the lower row.
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a0 = 0.1 a0 = 0.3 a0 = 0.7

multi-layer 0.3639 1.0917 2.5474
PincFloit 0.3829 1.1461 2.6741

Table 6.6: Maximal vertical wind speed in ms−1 for the initialised wave packet for the
different setups

wind amplitudes around 0.3 ms−1, we observe that the case a0 = 0.1 seems realistic,
while the other cases represent very strong gravity waves. Hence, we can conclude that
the multi-layer method can also serve as a valid approximation for gravity waves in the
tropopause region.
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7 Scale analysis of the governing equations

This chapter presents a different approach to the gravity wave-tropopause interaction.
We will have a look at the governing equations in a non-dimensional setup, where we use
different reference values for different scaling regimes. As we already noticed in section
3.6, waves show different behaviour for different ratios of wavelength to tropopause depth.
We will put emphasis on three different regimes of wavelengths: short, comparable and
long compared to the tropopause depth. For each of these regimes, we will find an
appropriate scaling and derive the governing equations that describe the interaction of
gravity waves with the tropopause. The idea behind that procedure is the hope that we
can find solutions for the simplified leading- and maybe first-order equations.

For the remainder of the chapter, we will assume an atmosphere at rest.

7.1 Short waves

This section covers the theory of gravity waves that encounter the tropopause and have
a wavelength Λ much shorter than the tropopause depth LTP. This is reflected with a
small separation parameter δ in the relation

Λref = δLTP. (7.1)

Moreover, the depth of the tropopause is small when compared to the potential temper-
ature scale height Hθ. We indicate this by a small separation parameter ε, i.e.

LTP = εHθ. (7.2)

As both ε and δ shall reflect a similar ratio, we choose the distinguished limit δ =
ε. Moreover, we use the isothermal approximation Hθ = cpTref/g for the potential
temperature scale height, where Tref is a reference value for the absolute temperature.
We obtain the relation,

Λref = ε2Hθ = ε2
cpTref
g
⇔ ε2 =

Λrefg

cpTref
, (7.3)

We want to focus on non-hydrostatic waves with Λx ∼ Λz ∼ Λ. As wavelengths and
frequency Ωref should be related by the dispersion relation (5.5), we obtain a scaling for
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the frequency via

Ωref = Nref =
g√
cpTref

. (7.4)

where Nrf is the isothermal approximation of the Brunt-Väisälä frequency, as it is a
good indicator for the values that are present especially above the tropopause. This
results in a time scaling

tref = Ω−1ref . (7.5)

For the velocity scaling, we use the advective scaling

Uref = ΛrefΩref = ΛrefNref, (7.6)

as this is the usual regime for the Boussinesq equations (Klein, 2010). Moreover, we
choose values for the background potential temperature and Exner pressure to be

Θb = Tref, (7.7)

Πb = 1, (7.8)

(see also Achatz et al. (2010)). With the help of the polarisation relations (3.11)
and(3.12), we find a scaling for the wave fluctuations in potential temperature and
pressure:

θref =
N2

ref

Ωref

Tref
g
ΛrefΩref =

Λrefg

cpTref
Tref (7.9)

and

Πref =
Λ−1ref

Λ−2ref

Ωrf

cpTref
ΛrfΩrf =

Λ2
refg

2

c2pT
2
ref

(7.10)

Using equation (7.3), we obtain
θref
Θb

= ε2 (7.11)

and
Πref

Πb
= ε4. (7.12)

Hence, we expect wave fluctuations for potential temperature in second order and for
pressure in fourth order. Using the notation

f∗ =
f

fref
(7.13)

for the dimensionless representation of all dependent and independent variables, we
obtain the following scaling (this notation should not be confused with the ∗-operator
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7.1 Short waves

we used earlier). We start with the Euler equations (2.1), but we already replace the
conservation of mass (2.1d) with its incompressible counterpart (2.7), as we assume a
constant background in leading order due to the Boussinesq approximation.

7.1.1 Non-dimensional equations

For the horizontal momentum equation, we find

ΛrefNref

N−1ref

∂u∗

∂t∗
+
Λ2
refN

2
ref

Λref

(
u∗
∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
+
cpTref
Λref

θ∗
∂π∗

∂x∗
= 0

⇔
Λ2
refN

2
ref

cpTref

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= 0

⇔
Λ2
refg

2

c2pT
2
ref

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= 0

⇔ ε4
(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= 0

(7.14)

In a similar fashion, the vertical momentum equation reads

ΛrefNref

N−1ref

∂w∗

∂t∗
+
Λ2
refN

2
ref

Λref

(
u∗
∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
+
cpTref
Λref

θ∗
∂Π∗

∂z∗
= −g

⇔
Λ2
refN

2
ref

cpTref

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
+ θ∗

∂Π∗

∂z∗
= − Λrefg

cpTref

⇔
Λ2
refg

2

c2pT
2
ref

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
+ θ∗

∂Π∗

∂z∗
= − Λrefg

cpTref

⇔ ε4
(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
+ θ∗

∂Π∗

∂z∗
= −ε2

(7.15)

For the entropy equation as well as the divergence constraint, we will see that all terms
have the same factor, thus, it can be removed:

Tref

N−1ref

∂θ∗

∂t∗
+
ΛrefNrefTref

Λref

(
u∗
∂θ∗

∂x∗
+ w∗

∂θ∗

∂z∗

)
= 0

⇔ ∂θ∗

∂t∗
+

(
u∗
∂θ∗

∂x∗
+ w∗

∂θ∗

∂z∗

)
= 0

(7.16)
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and
ΛrefNref

Λref

(
∂w∗

∂x∗
+
∂w∗

∂z∗

)
= 0

⇔ ∂w∗

∂x∗
+
∂w∗

∂z∗
= 0

(7.17)

Summarised, the non-dimensional Boussinesq equations for a short wave scaling are

ε4
(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= 0 (7.18a)

ε4
(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= −ε2 (7.18b)

∂θ∗

∂t∗
+

(
u∗
∂θ∗

∂x∗
+ w∗

∂θ∗

∂z∗

)
= 0 (7.18c)

∂w∗

∂x∗
+
∂w∗

∂z∗
= 0 (7.18d)

7.1.2 Multi-scale ansatz

We make a general multi-scale ansatz

f∗(x, z, ζ, t) =
∞∑
j=0

εjf (j)(x, z, ζ, t), (7.19)

with two vertical scales z∗ and ζ∗, where z∗ represents the wavelength scale and ζ∗ = εz∗

represents the tropopause scale. Remember that we are in the Boussinesq approximation,
saying that the density does not vary significantly over the tropopause. The same is true
for the potential temperature and hence the pressure.Therefore, we anticipate that the
leading order values θ(0) and Π(0) are constant. It is, however, only necessary to require
this for the potential temperature, the statement for the leading order pressure is then
derived from the leading- and first order momentum balances. Hence, we only assume
that the leading order potential temperature is constant and not zero, i.e.

θ(0) ≡ θ0 > 0 (7.20)

and that the background variables are time-independent.

Horizontal momentum equation

The leading order analysis gives
∂Π(0)

∂x∗
= 0 (7.21)
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Similar to this, we obtain in the next three orders that

∂Π(j)

∂x∗
= 0 (7.22)

for j ∈ {1, 2, 3}. The fourth-order equation then yields

∂u(0)

∂t∗
+ u(0)

∂u(0)

∂x∗
+ w(0)∂u

(0)

∂z∗
+ θ0

∂Π(4)

∂x∗
= 0 (7.23)

Vertical momentum equation

The analysis of the vertical momentum equation holds two new challenges com-
pared to the horizontal momentum equation. On the one hand, we have two scales in
this direction, so that derivatives for the long vertical coordinate also appear one order
higher than the corresponding derivatives for the short vertical coordinate. On the
other hand, we have the non-dimensional buoyancy term −ε2 on the right-hand side of
the equation. The leading order is rather simple and yields

∂Π(0)

∂z∗
= 0. (7.24)

In the first order equation, the ζ-derivative of the leading order pressure occurs:

θ0
∂Π(0)

∂ζ∗
+ θ0

∂Π(1)

∂z∗
+ θ(1)

∂Π(0)

∂z∗
= 0. (7.25)

The last term is zero due to the leading order equation (7.24). It remains a balance
between the large-scale change in the leading order pressure and the small-scale change
in the first order-pressure:

∂Π(0)

∂ζ∗
+
∂Π(1)

∂z∗
= 0. (7.26)

We can integrate equation (7.26) in z∗. Using equation (7.24), this procedure gives us

∂Π(0)

∂ζ∗
= −

[Π(1)]
z∗2
z∗1

z∗2 − z∗1
. (7.27)

We assume sublinear growth of Π(1) in z∗ (compare Achatz et al. (2010), where this
condition is also used in the scale analysis). Then, by taking the limit of |z∗2 − z∗1 | → ∞,
the right-hand side of equation (7.27) tends to zero, leaving us with

∂Π(0)

∂ζ∗
= 0. (7.28)
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This shows that the leading order pressure is constant. Using this in equation (7.26), we
find that

∂Π(1)

∂z∗
= 0. (7.29)

The second-order equation, again with the sub-linear growth condition for Π(2) yields

∂Π(1)

∂ζ∗
=
−1

θ0
, (7.30)

which is the hydrostatic equilibrium for the background atmosphere. With this, we also
obtain

∂Π(2)

∂z∗
= 0. (7.31)

The next order yields

θ0
∂Π(2)

∂ζ∗
+ θ(1)

∂Π(1)

∂ζ∗
= 0, (7.32)

which we can rewrite as
∂Π(2)

∂ζ∗
=
θ(1)

θ20
, (7.33)

which symbolises higher-order hydrostatics. We observe that, as neither θ0 nor Π(2)

depends on x∗ and z∗, also θ(1) does not depend on x∗ and z∗. This is an indication
that θ(1) belongs to the background atmosphere and that wave contributions to the total
potential temperature appear in second order at earliest. Using the equation above, we
also obtain

∂Π(3)

∂z∗
= 0. (7.34)

The full fourth-order equation is then

∂w(0)

∂t∗
+ u(0)

∂w(0)

∂x∗
+ w(0)∂w

(0)

∂z∗
+ θ0

(
∂Π(4)

∂z∗
+
∂Π(3)

∂ζ∗

)
= −θ

(1)2

θ20
+
θ(2)

θ0
(7.35)

Entropy equation

With the assumption that θ0 is constant, the leading order equation is trivial. The first
order equation reads

∂θ(1)

∂t∗
+ u(0)

∂θ(1)

∂x∗
+ w(0)∂θ

(1)

∂z∗
+ w(0) ∂θ0

∂ζ∗
(7.36)
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Apart from the first term, we already know that the others equate to zero. Hence,

∂θ(1)

∂t∗
= 0, (7.37)

which concludes that θ(1) only has large-scale dependence. The second-order equation
is

∂θ(2)

∂t∗
+ u(0)

∂θ(2)

∂x∗
+ w(0)∂θ

(2)

∂z∗
+ w(0)∂θ

(1)

∂ζ∗
= 0. (7.38)

Divergence constraint

As we assume the leading order velocity to already contain wave fluctuations, we
obtain the divergence constraint

∂u(0)

∂x∗
+
∂w(0)

∂z∗
= 0. (7.39)

7.1.3 Special ansatz

From the previous subsection, we assume that leading order potential temperature and
pressure are constant and anticipate that wave contributions in the potential temperature
occur not earlier than in the second-order term and in the pressure in the fourth-order
term. Moreover, we assume small amplitudes, meaning the wave terms are multiplied
by an additional factor ε. We make the following ansatz, where the subscripts b and w
are for background and wave parts respectively:

u = εuw (7.40a)

w = εww (7.40b)

θ = θ0 + εθb + ε3θw (7.40c)

Π = Π0 + εΠb + ε5Πw. (7.40d)

(7.40e)

The background variables only have a large scale dependence. Observe that we omitted
the second- and third order background pressure variables. They are not important for
resulting equations, as they would all balance each other in the respective orders via
hydrostatic equilibrium, just as we found in equations (7.30) and (7.33). So we exclude
them a priori from the ansatz. Then, the term θb∂Πb/∂ζ

∗ appears as the only term in
the order ε3, which would lead to θb ≡ 0. We assume, however, that this term is already
balanced by the hydrostatics, thus, we ignore it. The equation for the leading order
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hydrostatic equilibrium then reads

∂Πb

∂ζ∗
=
−1

θ0
(7.41)

When plugged in into equation system (7.18a) and eliminating the lowest power of ε
respectively, we obtain the following system:

∂uw
∂t∗

+ ε

(
uw

∂uw
∂x∗

+ ww
∂uw
∂z∗

)
+ θ0

∂Πw

∂x∗
+ εθb

∂Πw

∂x∗
+ ε3θw

∂Πw

∂x∗
= 0

(7.42a)

∂ww
∂t∗

+ ε

(
uw

∂ww
∂x∗

+ ww
∂ww
∂z∗

)
+ θ0

∂Πw

∂z∗
+ εθb

∂Πw

∂z∗
+ ε3θw

∂Πw

∂z∗
+ θw

∂Πb

∂ζ∗
= 0

(7.42b)

∂θw
∂t∗

+ ε

(
uw

∂θw
∂x∗

+ ww
∂θw
∂z∗

)
+ ww

∂θb
∂ζ∗

= 0

(7.42c)

∂uw
∂x∗

+
∂ww
∂z∗

= 0

(7.42d)

We extract the leading-order system:

∂uw
∂t∗

+ θ0
∂Πw

∂x∗
= 0 (7.43a)

∂ww
∂t∗

+ θ0
∂Πw

∂z∗
+ θw

∂Πb

∂ζ∗
= 0 (7.43b)

∂θw
∂t∗

+ ww
∂θb
∂ζ∗

= 0 (7.43c)

∂uw
∂x∗

+
∂ww
∂z∗

= 0 (7.43d)

We recognize a similarity between the present equation system and system (3.1). Using
the definition

N∗2 =
1

θ0

∂θb
∂ζ∗

(7.44)

for the non-dimensional Brunt-Väisälä frequency, we can transform the system into a
single equation for ww, in a similar fashion as we derived equation (3.5) from system
(3.1). We find the following equation:(

∂2

∂x∗2
+

∂2

∂z∗2

)
∂2ww
∂t∗2

+N∗2
∂2ww
∂x∗2

= 0. (7.45)
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We start with a plane-wave ansatz in x∗ and t∗ in order to investigate the impact of the
stratification on the vertical structure of the wave:

ww = ŵ(z) exp(i(kx− ωt)). (7.46)

The resulting equation is

∂2ŵ

∂z∗2
+ k2

(
N∗2

ω2
− 1

)
ŵ = 0. (7.47)

We name the coefficient in front of the second term as

m2 = k2
(
N∗2

ω2
− 1

)
. (7.48)

Note that this expression does not depend on z∗ , as N∗ depends only on ζ∗. This means,
that locally, i.e. on a scale of a vertical wavelength, the solution looks like a plane wave:

ŵ(z∗) = ŵ0 exp(im(ζ∗)z∗). (7.49)

If we want to analyse the large scale behaviour of ŵ, we have to rescale the equation on
the scale of the tropopause, which is resolved by ζ∗. We recall that ζ∗ = εz∗, therefore,
we write

∂ŵ

∂z∗
= ε

∂ŵ

∂εz∗
= ε

∂ŵ

∂ζ∗
. (7.50)

Using this, we obtain the re-scaled Taylor-Goldstein equation

ε2
∂2ŵ

∂ζ∗2
+m(ζ∗)2ŵ = 0. (7.51)

This is the classical WKB equation (see Bender and Orszag (1978), chapter 10), so it
seems appropriate to use a WKB ansatz for ŵ:

ŵ =
(
ŵ(0)(ζ∗) + εŵ(1)(ζ∗)

)
exp

(
i
φ(ζ∗)

ε

)
. (7.52)

Here, ŵ(j) is the j-th order amplitude, which has a long-scale dependence and φ is
the possibly non-linear phase function that contains information about the short-scale
wavenumber. Remember that equation (7.51) is derived from the leading-order system
(7.43), therefore it is not necessary to develop the WKB ansatz past leading order. We,
however, include the first order for a specific reason. When inserting the approach into
equation (7.51), the leading order equation is an equation for the phase while the first
order equation describes the evolution of the leading order amplitude. To see that this
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is not affected by the first-order amplitude, we include it in the ansatz and show that
its contributions do not appear in the first order equation.

For the first derivative of ŵ, we obtain

dŵ

dζ∗
=

d

dζ∗

((
ŵ(0)(ζ∗) + εŵ(1)(ζ∗)

)
exp

(
i
φ(ζ∗)

ε

))
=

(
dŵ(0)

dζ∗
+ ε

dŵ(1)

dζ∗

)
exp(i

φ

ε
) +

(
ŵ(0) + εŵ(1)

) d

dζ∗

(
exp

(
i
φ(ζ∗)

ε

))

=

(
dŵ(0)

dζ∗
+ ε

dŵ(1)

dζ∗

)
exp(i

φ

ε
) + ε−1i

(
ŵ(0) + εŵ(1)

) dφ

dζ∗
exp(i

φ

ε
)

(7.53)

In a similar fashion, we can derive the second derivative of ŵ:

d2ŵ

dζ∗2
=

(
d2ŵ(0)

dζ∗2
+ ε

d2ŵ(1)

dζ∗2

)
exp(i

φ

ε
)

+ ε−1i

(
2

(
dŵ(0)

dζ∗
+ ε

dŵ(1)

dζ∗

)
dφ

dζ∗
+
(
ŵ(0) + εŵ(1)

) d2φ

dζ∗2

)
exp(i

φ

ε
)

− ε−2
(
ŵ(0) + εŵ(1)

)( dφ

dζ∗

)2

exp(i
φ

ε
).

This is basically the standard WKB theory for the Boussinesq equations, which should
not be surprising, as we are considering waves that have wavelengths short compared to
the langht scales of the background parameters.

We insert (7.54) into equation (7.51) and collect in different powers of ε. The leading
order equation is

−
(

dφ

dζ∗

)2

ŵ(0) +m(ζ∗)2w(0) = 0, (7.54)

which can be solved for φ:

φ(ζ∗) =

∫ ζ∗

ζ∗0

m(s) ds (7.55)

Note that if m is constant, we get the usual linear phase function φ = mζ∗. The first-
order equation describes the vertical change of the leading-order amplitude:

2m
dw(0)

dζ∗
+

dm

dζ∗
w(0) = 0. (7.56)
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Rearranging yields

d(ln(w(0)))

dζ∗
=

d(ln(m−
1
2 ))

dζ∗
. (7.57)

This can be integrated and we obtain the leading-order solution

w(0)(ζ∗) =
w0
√
m0√

m(ζ∗)
, (7.58)

where w0 is a constant determined by some boundary condition and m0 is the initial
vertical ave number. We find a scaling of the solution by the square root of the wavenum-
ber ratio, similar to what we said in chapter 3 for perfectly transmitting plane waves.
This is consistent, as we assumed no classical reflection layer and therefore, WKB theory
predicts propagating waves without any reflection.

7.1.4 Discussion of higher-order terms

One might have noticed that we analysed the first-order equation (7.56) while the equa-
tion (7.51) was derived from the leading order system (7.43). One might ask whether
the first-order terms from system (7.42) would appear as higher-order terms in equation
(7.51) and influence the leading order solution. But since the wind field we consider is
divergence-free, advection terms appear not earlier than second order (see also (Achatz
et al., 2010)), therefore, we do not need to take them into account. There are, however,
first-order terms in the momentum equations of system (7.42) that are not advection
terms and therefore could impact the leading order solution. But as we will see, they
also cancel when we combine the system to a single equation.

We are able to derive an equation similar to equation (7.47) from system (7.42), but
including all first-order terms. The third-order terms from the momentum equations
are left out as they are too high in order to influence the leading order solution. The
resulting equation then is

∂2ŵ

∂z∗2
+m2ŵ + ε2

1

k2

((
∂ŵ

∂z

)2 ∂2ŵ

∂z∗2
− ŵ ∂ŵ

∂z∗
∂3ŵ

∂z∗3
+

(
∂2ŵ

∂z∗2

)2

− ŵ ∂
4ŵ

∂z∗4

)
= 0, (7.59)

or when transformed for the larger scale,

ε2
∂2ŵ

∂ζ∗2
+m2ŵ+ ε6

1

k2

((
∂ŵ

∂ζ

)2 ∂2ŵ

∂ζ∗2
− ŵ ∂ŵ

∂ζ∗
∂3ŵ

∂ζ∗3
+

(
∂2ŵ

∂ζ∗2

)2

− ŵ ∂
4ŵ

∂ζ∗4

)
= 0. (7.60)

When inserting the WKB ansatz (7.52) into the above equation, we see that the lowest
order for the non-linear terms is ε2, thus they do not affect the leading order solution
(7.58) as found from the first-order equation (7.56) in the previous subsubsection.
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7.1.5 Non-stationary case

In subsection 7.1.3, we used a plane wave ansatz for x∗ and t∗ in equation (7.45), allowing
us to find a stationary leading-order WKB solution. We want to drop now the plane
wave ansatz in t∗ and investigate the resulting equation(

−k2 +
∂2

∂z∗2

)
∂2ŵ

∂t∗2
−N∗2k2w=̂0 (7.61)

with a WKB ansatz of the form

ŵ =
(
ŵ(0)(ζ∗, τ∗) + εŵ(1)(ζ∗, τ∗)

)
exp

(
i
φ(ζ∗, τ∗)

ε

)
. (7.62)

Here τ∗ = εt∗ is a stretched time coordinate that resolves the scale of a wave packet
travelling vertical distances on a scale ζ∗. Inserting the ansatz and collecting in different
powers of ε yields the following. The leading-order equation is(

∂φ

∂ζ∗

)2( ∂φ

∂τ∗

)2

+ k2
(
∂φ

∂τ∗

)2

− k2N∗2 = 0. (7.63)

To solve this equation, we separate the unknowns by a sum with the ansatz

φ(ζ∗, τ∗) = φz(ζ
∗) + φt(τ

∗) (7.64)

and receive the equation(
dφz
dζ∗

)2(dφt
dτ∗

)2

+ k2
(

dφt
dτ∗

)2

− k2N∗2 = 0. (7.65)

Except φt, none of the other variables depend on τ∗, hence

φt = ctτ
∗, (7.66)

where ct is some constant. With this knowledge, we can solve equation (7.65) for φz:

φz(ζ
∗) = −k

∫ ζ∗

ζ∗0

√
N∗(s)2

c2t
− 1 ds. (7.67)

With the usual notation ct = −ω and m = −k
√

N∗2

ω2 − 1, we obtain the phase function

φ(ζ∗) = −ωτ∗ +

∫ ζ∗

ζ∗0

m(s) ds. (7.68)
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We observe that the function is still linear in time and has the same shape for the vertical
coordinate. This seems meaningful, as the waves still locally obey the dispersion relation.
Moreover, we are in a setup with a time-independent background.

The main difference is that the leading-order amplitude also has a time dependence,
which is reflected in the first-order equation

2
∂w(0)

∂τ∗
(m2 + k2)ω + 2

∂w(0)

∂ζ∗
mω2 + w(0) dm

dζ∗
ω2 = 0. (7.69)

This is a first-order semi-linear partial differential equation. A common method to
find solutions for this is the method of characteristics (see Evans (2010) for a detailed
discussion on this method). In order to apply it, we rewrite equation (7.69) as

ω
∂w(0)

∂ζ∗
+ 2

∂w(0)

∂τ∗
m2 + k2

mω
= −w(0) m

′

2m
. (7.70)

Here, m′ = dm/dζ∗. Moreover, we use a characteristic initial condition
w(0)(ζ∗, 0) = f(ζ∗). We introduce two parameters r and s, where r paramet-
rises the initial curve C0 = {ζ∗, 0, f(ζ∗)}, i.e. C0 = {r, 0, f(r)}, and s parametrises
C = {ζ∗(s; r), τ∗(s; r), y(s; r)}, which is, for each r, the characteristic curve. When
identifying w(0)(ζ∗, τ∗) with y(s; r) = y(s(ζ∗, τ∗); r(ζ∗, τ∗)), we have

dw(0)

ds
=

dy

ds
=

dζ∗

ds

∂w(0)

∂ζ∗
+

dτ∗

ds

∂w(0)

∂τ∗
(7.71)

Together with the characteristic equations

dζ∗

ds
= 1 (7.72)

dτ∗

ds
=
m(ζ∗(s; r)2 + k2

m(ζ∗(s; r))ω
, (7.73)

we obtain via equation (7.70) that

dy

ds
= −m

′

2m
. (7.74)

Using the initial condition y(0; r) = f(r), we can solve (7.74) to be

y(s; r) = f(r) exp

(∫ s

0
−m(ζ∗(s; r))′

2m(ζ∗(s; r))
dq

)
. (7.75)

The other two characteristic equations (7.72) and (7.73) give the relationship between the
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coordinates ζ∗ and τ∗ and the parameters r and s. Together with the initial conditions

ζ∗(0; r) = r (7.76)

τ∗(0; r) = 0, (7.77)

we obtain

ζ∗(s; r) = s+ r (7.78)

τ∗(s; r) =

∫ s

0

m(ζ∗(q; r)2 + k2

m(ζ∗(q; r))ω
dq =

∫ s

0

m(s+ r)2 + k2

m(s+ r)ω
dq. (7.79)

With the first of these two equations, we can further simplify the solution for y:

y(s; r) = f(r) exp

(∫ s

0
−m(q + r)′

2m(q + r)
dq

)
= f(r) exp

(
−1

2
(ln(m(r + s)− ln(m(r))

)
= f(r) exp

(
ln

((
m(s+ r)

m(r)

)− 1
2

))

=
f(r)

√
m(r)√

m(s+ r)
.

(7.80)

This looks very similar to the solution in the stationary case (equation (7.58)), with
the difference that we have an implicit time dependence through the variable r. What
remains is to solve equations (7.78) and (7.79) for the parameters r and s. Unfortunately,
this is not possible for arbitrary stratification profiles, as the integral in equation (7.79)
is hard to solve explicitly. But if we consider (ζ∗(s, r), τ∗(s, r)) as a function from
R2 → R2, the inverse function theorem (see Forster (2013), Chapter 8) guarantees a
local representation of s and r in terms of ζ∗ and τ∗, as long as

m(s+ r)2 + k2

m(s+ r)ω
−
∫ s

0

∂m(q+r)2+k2

m(q+r)ω

∂r
dq 6= 0 (7.81)

holds.

We are going to present a simple example, which shows that the solution we obtain
is in line with existing theory. We assume a constant stratification N0, which leads to a
constant vertical wavenumber, i.e. m′ = 0. Therefore, the solution for y(s; r) is

y(s; r) = f(r) (7.82)
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The solutions to the characteristic equations then are

ζ∗ = s+ r (7.83)

τ∗ =
m2 + k2

mω
s, (7.84)

which yields the equations

s =
mω

m2 + k2
τ∗ (7.85)

r = ζ∗ − mω

m2 + k2
τ∗, (7.86)

so that the solution is

w(0)(ζ∗, τ∗) = y (s(ζ∗, τ∗); r(ζ∗, τ∗)) = f (r(ζ∗, τ∗)) = f

(
ζ∗ − mω

m2 + k2
τ∗
)
. (7.87)

Hence, the initial condition for the wave envelope gets translated with a fixed velocity
c = mω

m2+k2
. By using the dispersion relation (5.19), we see that this velocity can be

written as

c =
N0km

(m2 + k2)
3
2

, (7.88)

which is exactly the group velocity ∂ω
∂m , which is in classical theory the speed at which

the wave envelope travels. This is what one would expect from a wave packet in uniform
stratification. We see however no dispersion in the leading-order solution. This is an
effect that will occur in higher order.

The second-order equation is

2
∂w(1)

∂τ∗
(m2 + k2)ω + 2

∂w(1)

∂ζ∗
mω2 + w(1) dm

dζ∗
ω2 = if(ζ∗, τ∗), (7.89)

where f is a real function containing derivatives of w(0) and also a term that is non-
linear in w(0). The solution for w(1) is then the sum of the solution for the homogeneous
equation (i.e. the same solution that we found for w(0)) and a special solution for the
inhomogeneous equation.

7.1.6 Reflection layer analysis

A reflection layer occurs, when the wave frequency matches the Brunt-Väisälä frequency,
resulting in a vanishing vertical wavenumber. This is a classical turning point for the
WKB equation (7.51) (see (Bender and Orszag, 1978) for more details). Ray tracing
predicts total reflection from such a level (see Sutherland (2010)), but as we have seen
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in subsection 3.6.2, there might still be wave transmission depending on how large the
waves are compared to the region where propagation is suppressed. Moreover, as the
vertical wavenumber approaches zero, the vertical wavelength is locally very large such
that the scaling assumptions we did beforehand might be violated and a rescaling is
necessary.

Let us write the scaled Taylor-Goldstein equation (7.51) as

ε2
∂2ŵ

∂ζ∗2
+ q(ζ∗)ŵ = 0. (7.90)

At a reflection level ζ∗r , we have q(ζ∗r ) = 0. We introduce a rescaled variable around the
reflection level

ψ =
ζ∗ − ζ∗r
εα

⇔ ζ∗ = ζ∗r + εαψ. (7.91)

In the area around the reflection layer, we can approximate q(ζ∗) via

q(ζ∗) = q(ζ∗r + εαψ) ≈ q(ζ∗r ) + εαψq′(ζ∗r ), (7.92)

where q′ is the derivative of q. We note that the first term equals zero. Using the
rescaling, the equation around the reflection layer can be written as

ε2−2α
∂2ŵ

∂ψ2
+ εαψq′(ζ∗r )ŵ = 0. (7.93)

For the terms to balance, we find that 2− 3α = 0, or α = 2
3 . This yields

ψ =
ζ∗ − ζ∗r
ε

2
3

∼ ε
1
3 z∗. (7.94)

Hence, ψ is a variable with a scale between the original vertical wavelength and the
tropopause and resolves the reflection process. By stretching the coordinate with a
constant factor q′(ζ∗r )

1
3 , i.e.

ψ∗ = ψq′(ζ∗r )
1
3 , (7.95)

the equation reduces to
∂2ŵ

∂ψ∗2
+ ψ∗ŵ = 0. (7.96)

This is Airy’s equation, which is solved by Airy fucntions Ai(ψ∗) and Bi(ψ∗). Both
functions have an oscillatory part for negative ψ∗, while for positive ψ∗, Ai decays expo-
nentially and approaches 0 and Bi grows exponentially and is unbounded. A plot of both
functions around ψ∗ = 0 can be found in figure 7.1, for more coverage, see Abramowitz
and Stegun (1964). Together with the conservation of energy, we rule out Bi as a physical
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Figure 7.1: Airy functions Ai(ψ∗) in blue and Bi(ψ∗) in red.

solution. Therefore, the shape of the waves is described by Ai around a reflection layer.
We conclude that the waves decay exponentially after reaching the level, but we also
see that, if the layer where the waves cannot propagate is small, and eventually reach
a second turning point at which waves can propagate again, wave tunnelling solutions
might be supported. A detailed mathematical discussion on such a two-turning point
problem points to an interesting topic for future research. An approach for this could be
to solve each turning point problem individually and match the solutions via a technique
called matched asymptotics (see Bender and Orszag (1978) for further reference).

7.2 Waves with wavelengths comparable to the tropopause

We anticipate this regime to be the hardest to make theoretical progress, as we do not
have a scale separation between the tropopause and the wavelengths. By what we saw
from the previous section, we anticipate that the leading order system can be reduced
to a single equation, but this time, without a separation in the scales for the vertical
derivative and the Brunt-Väisälä frequency. This turns out to be the case. As the
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equation we obtain is the Taylor-Goldstein equation, finding an explicit equation is in
general not possible.

To derive this properly, we have a look at the full non-dimensional Boussinesq
equations. Using the same notion for the reference parameters, but with aspect ratio
LTP ∼ Λ, this leads to

Λref

Hθ
=
Λrefg

cpTref
= ε. (7.97)

So although the wavelengths are comparable in size to the tropopause, they are still
much smaller than the potential temperature scale height. Using this new ratio, we
obtain the non-dimensional equation system

ε2
(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= 0 (7.98a)

ε2
(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
+ θ∗

∂Π∗

∂x∗
= −ε (7.98b)

∂θ∗

∂t∗
+

(
u∗
∂θ∗

∂x∗
+ w∗

∂θ∗

∂z∗

)
= 0 (7.98c)

∂w∗

∂x∗
+
∂w∗

∂z∗
= 0 (7.98d)

On first glance, one might think that this system corresponds to the scaling (Achatz
et al., 2010) found, but there are two main differences. Here, we used the Boussinesq
assumption, leading to constant leading-order pressure and ultimately to a divergence-
free wave field. Although this also holds for their leading order solutions, the higher order
equations would look much different. The most crucial difference, however, is the fact
that the wavelengths in this case change on the same scale as the potential temperature
(even though they are small and occur in first order), so that we effectively do not have
a multiple-scale problem. We use a general perturbation ansatz

f∗(x∗, z∗, t∗) =
∞∑
j=0

εjf (j)(x∗, z∗, t∗) (7.99)

and assume that leading order pressure and and potential temperature are constant and
not zero. Moreover, we expect to find the same background dependencies, as we did
not change the scaling for the tropopause, but only for the wave. From equations (7.9),
(7.10) and(7.97), we anticipate to find wave fluctuations for potential temperature in
first order and for pressure in second order. Using the perturbation ansatz, we make the
following observations.
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Horizontal momentum equation

The leading- and first-order analysis gives

∂Π(j)

∂x∗
= 0 (7.100)

for j ∈ {0, 1}. The second-order equation reads

∂u(0)

∂t∗
+ u(0)

∂u(0)

∂x∗
+ w(0)∂u

(0)

∂z∗
+ θ0

∂Π(2)

∂x∗
= 0 (7.101)

Vertical momentum equation

In the investigation of the vertical momentum equation, we again hope to find hy-
drostatic equilibrium. The leading order equation holds nothing new:

∂Π(0)

∂z∗
= 0, (7.102)

which is what we already assumed. In the first order equation, we find hydrostatic
equilibrium of the first-order pressure perturbation

θ0
∂Π(1)

∂z∗
= −1. (7.103)

The second-order equation reads

∂w(0)

∂t∗
+ u(0)

∂w(0)

∂x∗
+ w(0)∂w

(0)

∂z∗
+ θ0

∂Π(2)

∂z∗
+ = −θ

(1)

θ0
(7.104)

Entropy equation

With the assumption that θ0 ≡ const., the leading order equation is trivial. The
first order equation reads

∂θ(1)

∂t∗
+ u(0)

∂θ(1)

∂x∗
+ w(0)∂θ

(1)

∂z∗
= 0 (7.105)

This leads to the assumption, that the first-order potential temperature does not only
contain changes in the background, but has also contributions from wave activity.

Divergence constraint
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As we assume the leading order velocity to already contain wave structures, the
divergence constraint applies to them as usual:

∂u(0)

∂x∗
+
∂w(0)

∂z∗
= 0. (7.106)

7.2.1 Special ansatz

From equation (7.105) and also from the scaling, we anticipate that the first order
potential temperature perturbation already contributes to the waves, but it also contains
the change of the background potential temperature. Hence we make the assumption
that

θ = θ0 + ε(θb + θw). (7.107)

We are, however, only interested in small-amplitude waves, which will push the wave
contributions effectively to the second order. This leads us to the special ansatz

u = εuw (7.108a)

w = εww (7.108b)

θ = θ0 + εθb + ε2θw (7.108c)

Π = Π0 + εΠb + ε3Πw. (7.108d)

(7.108e)

Again, the hydrostatic equilibrium reads

∂Πb

∂z∗
=
−1

θ0
. (7.109)

Then, we obtain the following equation system

∂uw
∂t∗

+ ε

(
uw

∂uw
∂x∗

+ ww
∂uw
∂z∗

)
+ θ0

∂Πw

∂x∗
+ εθb

∂Πw

∂x∗
+ ε2θw

∂Πw

∂x∗
= 0

(7.110a)

∂ww
∂t∗

+ ε

(
uw

∂ww
∂x∗

+ ww
∂ww
∂z∗

)
+ θ0

∂Πw

∂z∗
+ εθb

∂Πw

∂z∗
+ ε2θw

∂Πw

∂z∗
+ θw

∂Πb

∂z∗
= 0

(7.110b)

∂θw
∂t∗

+ ε

(
uw

∂θw
∂x∗

+ ww
∂θw
∂z∗

)
+ ww

∂θb
∂z∗

= 0

(7.110c)

∂uw
∂x∗

+
∂ww
∂z∗

= 0

(7.110d)
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Isolating the leading order system yields

∂uw
∂t∗

+ θ0
∂Πw

∂x∗
= 0 (7.111a)

∂ww
∂t∗

+ θ0
∂Πw

∂z∗
+ θw

∂Πb

∂z∗
= 0 (7.111b)

∂θw
∂t∗

+ ww
∂θb
∂z∗

= 0 (7.111c)

∂uw
∂x∗

+
∂ww
∂z∗

= 0 (7.111d)

This is the same as equation system (7.43), but the background and wave variables now
depend on the same vertical coordinate z∗. With the definition

N∗2 =
1

θ0

∂θb
∂z∗

(7.112)

for the non-dimensional Brunt-Väisälä frequency, we can find a single equation for ww:(
∂2

∂x∗2
+

∂2

∂z∗2

)
∂2ww
∂t∗2

+N∗2
∂2ww
∂x∗2

= 0 (7.113)

Using a plane-wave ansatz

ww = ŵ(z) exp(i(kx− ωt)). (7.114)

in x∗ and t∗ the resulting equation is again the well-known Taylor-Goldstein equation

∂2ŵ

∂z∗2
+ k2

(
N∗(z∗)2

ω2
− 1

)
ŵ = 0. (7.115)

As the coefficient in front of the second term depends on the same coordinate as the
function ŵ itself, we will not be able to gain new insights with a perturbation or WKB
ansatz. Moreover, we have seen that the Taylor-Goldstein equation has no explicit
solution except for some special cases. Hence, we do not gain new insights from this
approach and can tackle this problem only numerically.

7.3 Long waves

As we have seen multiple times now, the Taylor-Goldstein equation appears in various
forms when we are discussing small-amplitude linear plane wave propagation. Hence, for
the regime of long wavelengths, we assume that the Taylor-Goldstein equation describes

119



7 Scale analysis of the governing equations

their interaction with the tropopause as well1.

d2ww
dz∗2

+ k2
(
N(ζ∗)2

ω2
− 1

)
ww = 0. (7.116)

Here z∗ is the scale resolving a wavelength and ζ∗ is the scale resolving the tropopause.
The wavelength Λref is now much longer than the tropopause depth LTP, resulting in an
aspect ratio

Λref

LTP
=

1

ε
. (7.117)

This gives the relation ζ∗ = z∗/ε. When rescaling the equation for the tropopause scale,
we obtain

1

ε2
d2ww

dζ∗2
+ k2

(
N∗(ζ∗)2

ω2
− 1

)
ww = 0, (7.118)

or, when multiplied by ε2,

d2ww

dζ∗2
+ ε2k2

(
N(ζ∗)2

ω2
− 1

)
ww = 0. (7.119)

We can see this as a regular perturbation problem, which can easily be solved with a
perturbation ansatz (Bender and Orszag, 1978)

ww =
∞∑
j=0

εjw(j). (7.120)

The first-equation is then the solution to the unperturbed problem:

d2w(0)

dζ∗2
= 0, (7.121)

with the solution
w(0)(ζ∗) = a0ζ

∗ + b0. (7.122)

The constants of integration a0 and b0 are determined via boundary conditions. This
means that, in leading order, the wave does not get influenced by the stratification but
looks like a linear function. The first-order equation is basically the same equation for
the first-order wave contribution, as the perturbed part appears earliest in second order:

1This is a valid assumption, as the tropopause is still small compared to the density scale height and
therefore, density variations only play a minor role. For the full description of such long-scale waves,
the Boussinesq assumption would, however, not be valid any more.
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d2w(1)

dζ∗2
= 0. (7.123)

Usually, the whole information from the boundary data only influences the leading-order
solution. This has two reasons. The first one is that the leading order solution coincides
with the real solution at the boundary and one can see error development much better.
The second one is that the solution stays valid for arbitrary aspect ratios, hence the
computation does not need to be done again for different values of ε. Therefore, the
boundary conditions for the first-order equation sets the value of the first-order solution
and its derivative to 0, resulting in

w(1) ≡ 0. (7.124)

The second-order equation yields a correction to the first order solution:

d2w(2)

dζ∗2
= −k2

(
N∗2

ω2
− 1

)
w(0), (7.125)

This is an inhomogeneous version of equation (7.121), which is solved by double integ-
ration.

w(2)(ζ∗) =

∫ ∫
−k2

(
N∗(ζ∗)2

ω2
− 1

)
w(0)(ζ∗) dζ∗dζ∗ (7.126)

This obviously depends on the stratification profile N∗, hence we can not give a general
closed form of the solution here, but an explicit expression might be found for particular
N∗-profiles. We might, for example, look at a linearly increasing profile for N∗ in the
tropopause:

N∗(ζ∗) = 1 + ζ∗, ζ∗ ∈ [0, 1]. (7.127)

Remember that ζ∗ resolves the tropopause and N∗ is non-dimensionalised by a reference
value Nref. Then, we find that

w(2)(ζ∗) =
1

20
a0ζ
∗5 +

1

4

(
2

3
a0 +

1

3
b0

)
ζ∗4

+
1

3

(
1

2
(1− ω2)a0 + b0

)
ζ∗3 +

1

2

(
1− ω2

)
b0ζ
∗2 + c0ζ

∗1 + d0, (7.128)

where a0, b0 are given by the solution (7.122) and c0, d0 are determined by boundary
conditions. To be consistent with the first order equation, w(2)(0) = 0 = w(2)′(0),
therefore c0 = 0 = d0.
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8 Conclusion and outlook

The main purpose of this work was to study the interaction between gravity waves and
the tropopause. We took on this task with different methods to shed light on many
aspects of this interaction.

As the tropopause covers a rather shallow area compared to typical atmospheric scale
heights, we decided to use the Boussinesq equations. Since we were also not interested
in wave breaking, we assumed small amplitudes which allowed a linearisation of the
Boussinesq equations.

The first part of the work focused on the interaction of plane waves with the tropo-
pause. Starting with an atmosphere at rest, we inserted a plane wave ansatz into the
governing equations and found out that the vertical dependency of the solution is de-
scribed by the Taylor-Goldstein equation. Following an ansatz by (Eliassen and Palm,
1961), we divided the tropopause, which has a non-constant stratification in general, into
layers with constant stratification. Each layer allowed for a local solution, which were
then matched at the layer interfaces in a meaningful way to yield a global solution. A
proof for the convergence of this method was given. A major advantage over a direct nu-
merical simulation of the Taylor-Goldstein equation was the fact that we could separate
upward and downward propagating wave components, which allowed for a computation
of a transmission coefficient, which was derived from energy conservation.

We investigated the limit of the number of layers tending to infinity. Although it
was not possible to find a closed formula for the occurring matrix product, we found a
reformulation of the Taylor-Goldstein equation in a set of variables that allowed for the
computation of transmission and reflection coefficients directly form the solution of a
numerical simulation.

A study was carried out to investigate the convergence behaviour. Not only did we
find that the transmission coefficients from the multi-layer method converged to the ones
from the reformulated Taylor-Goldstein equation with convergence order two, but also
that the errors are small already for a low number of layers which makes the multi-layer
method a very efficient way to predict wave transmission. The computational cost was
lower by a factor 1000 than comparable methods (e.g. Nault and Sutherland (2007)).

The next task was the inclusion of a non-steady background wind. The Taylor-
Goldstein equation then included the relative wave frequency as well as an additional
term involving the curvature of the wind. We extended the multi-layer method in the
way that we now also used constant approximations for the background wind and its
curvature in each layer. We discussed the correct matching conditions and showed that,
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with the matching conditions we used, the method was still convergent. To conclude
that chapter, we made a scale analysis of the curvature term and showed that there
could be realistic atmospheric conditions under which the term is not negligible.

We continued our studies with the development of a method to describe the interac-
tion of wave packets and the tropopause. Via Fourier transform, we were able to derive
a partial differential equation together with initial data corresponding to wave packets.
When modelling wave packets as an approximation of finitely many plane waves, it was
possible to apply the multi-layer method for each of those waves and we obtained a
result for wave packets. Although we could also compute the transmission of a given
wave packet through the tropopause, a much more powerful application was found in
computing the spatio-temporal evolution of a given wave packet. In the way we formu-
lated the method, we could apply inverse Fourier transform on the solution to find the
wave packet evolution in real space. This corresponds to a weighted superposition of
the plane wave solutions we found from the multi-layer method. The biggest advantage
over the use of numerical flow solvers was that we neither had time stepping restrictions
nor any scaling assumptions like a WKB-like scale separation. We briefly discussed the
extension of this approach to two-dimensional wave packets.

A numerical study was carried out to corroborate our findings. We used PincFloit (see
Rieper et al. (2013b)) to set up simulations of the full non-linear Boussinesq equations
for several test cases, starting with a plane wave set-up. The transmission coefficients
we computed did coincide very well with their theoretical counterparts. We found,
however, that the transmission was a little bit to high for some simulations with a
realistic tropopause profile. This seemed to be related to the resolution of the model.
For the wave-packet setup, we decided to compare the evolution of the same wave packet
but computed with different methods. Again, the numerical simulations confirmed the
theoretical findings.

The last part of the work dealt with a different approach for finding gravity wave-
tropopause interaction. As we saw from the previous work that waves exhibited different
behaviour for different wavelength regimes, we decided to have a closer look at this and
divided the waves into classes characterised by the aspect ratio of their wavelength and
the tropopause depth. For waves with short wavelength compared to the tropopause,
we could find a scaling that allowed a WKB ansatz. We showed via the method of
characteristics that leading order solutions exist, but can not be written down explicitly
in most cases. Waves with wavelength similar to the tropopause depth did not permit
a scale separation, hence no further theoretical insights could be gained. Long waves
were found to ignore the stratification changes in the tropopause in their leading order
solution, only the first order corrections were found to incorporate the stratification.

Over the course of our research, a few challenges arose, which shall be included here
as a concluding discussion. Although the multi-layer method agrees very well with
numerical simulations, it is still based on the linearised Boussinesq equations. It would
be worth investigating if the method can still be applied for more general circumstances,
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such as (weak) non-linearity. Also using a different sound-proof system such as the
anelastic equations or the pseudo-incompressible equations give a task that is worthwhile
persuading. At least in the case of the anelastic equations, one can find a single equation
for the vertical wind (Sutherland, 2010). (Klein et al., 2010) find a Sturm-Liouville-
type second order differential equation for the vertical structure of w for the anelastic,
pseudo-incompressible and compressible models. The same methodology as developed
in the present work could be applied to either of those equations. Another challenge is
the adaptation of the multi-layer method to two dimensional wave packets. Although
there was some work done in this direction and there is an existing code that seems to
compute the evolution of a 2D-wave packet correctly, there is still some theoretical work
behind the scenes that needs to be done in order to ensure the correctness of the method.
Alternatively, one could try to use the efficiency we found for the vertical dimension and
combine it with a grid-based approach for the horizontal dimension. If this succeeds,
the multi-layer method could represent an alternative to ray tracers in weather and
climate models. On the mathematical side, the reflection layer analysis for short waves
showed that it seems possible to support wave tunnelling, but a rigorous derivation for
a two-turning point problem remains to be done. Finally, the small discrepancies in
the transmission coefficients between numerical and multi-layer solution for the realistic
tropopause profile could be investigated further.
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Zusammenfassung

In der Arbeit wird ein Modell, welches in der Lage ist, die Evolution von Schwerewellen
mit kleiner Amplitude in einer höhenveränderlchen Atmosphäre vorherzusagen, herge-
leitet. Im ersten Teil wird die Mehrschichten-Methode, welche auf einer Unterteilung
einer ruhigen Atmosphäre in mehrere Schichten mit konstanter Stratifizierung beruht,
beschrieben. Für diesen einfachen Fall können explizite Lösungen für die Boussinesq-
Gleichungen gefunden werden. Diese Lösungen sind ebene Wellen und werden an den
Schnittstellen der jeweiligen Schichten zusammengefügt. Die Konvergenz des Vorgehens
wird bewiesen und die Konvergenzordnung diskutiert. Die Mehrschichten-Methode wird
benutzt um Transmissionskoeffizienten zu finden. Diese beschreiben, wie viel Wellenener-
gie über einen Bereich mit ungleichmäßiger Stratifizierung transportiert wird.

Wenn man einen höhenveränderlichen Wind berücksichtigt verändern sich die beschrei-
benden Gleichungen. Die Frequenz wird Doppler-verschoben und man erhält einen zu-
sätzlichen Term, der die zweite Ableitung des Windes enthält. Dieser sogenannte Krüm-
mungsterm wird mit Hilfe einer Skalenanalyse untersucht. Es wird gezeigt, dass es rea-
listische atmosphärische Konfigurationen geben kann, bei denen Schwerewellen signifi-
kant beeinflusst werden. Die Mehrschichtenmethode wird angepasst um Veränderungen
im Hintergrundwind zu berücksichtigen. Die Konvergenz wird dadurch nicht beeinflusst
und Transmissionskoeffizienten können berechnet werden.

Der nächste Teil behandelt die Evolution von Wellenpaketen. Eine besondere Schwie-
rigkeit ergibt sich daraus, dass ihre Entwicklung nicht länger durch eine gewöhnliche Dif-
ferentialgleichung, sondern eine partielle Differentialgleichung beschrieben wird. Durch
eine Fouriertransformation der Gleichung sowie eine Koordinatentransformation, um die
Anfangsdaten in den Fourierraum zu transferieren, wird die Gleichung in eine Form
gebracht, die es möglich macht, eine Variante der Mehrschichtenmethode anzuwenden.
Um die Wellenpaketevolution im physikalischen Raum zu erhalten muss diese Lösung
mit der inversen Fouriertransformation behandelt werden. Ein großer Vorteil ist, dass
man keine Restriktionen für Zeitschritte hat. Damit ist es möglich, das Wellenpaket zu
jedem beliebigen Zeitpunkt zu berechnen, vorausgesetzt man hat die Anfangsdaten.

Die Ergebnisse werden in einer umfassenden numerischen Studie validiert.
Zum Schluss wird der Fokus auf eine Skalenanalyse von Wellen, die durch die Tropo-

pause propagieren, gelegt. Es werden drei Bereiche unterschieden: kurze, ähnliche und
lange Wellenlängen im Vergleich zur Tropopausendicke. Für kurze Wellen wird eine Ska-
lierung gefunden, die einen WKB-Ansatz zulässt. In führender Ordnung existiert eine
Lösung, aber sie kann im Allgemeinen nicht explizit dargestellt werden. Für lange Wellen
wird gezeigt, dass die Stratifizierung der Tropopause in führender Ordnung irrelevant ist.
Der Fall für ähnliche Wellenlängen ist der härteste für eine analytische Untersuchung,
da hier keine Skalentrennung vorliegt. Es wird dargelegt, dass die Lösungen unter ei-
ner angemessenen Skalierung durch die Taylor-Goldstein Gleichung beschrieben werden,
welche nur für einige Spezialfälle explizit gelöst werden kann.





Abstract

A model is derived that is able to predict the evolution of small-amplitude gravity waves
in an atmosphere that changes with height.

In the first part, the multi-layer method is described, which bases on layering a steady
atmosphere in several layers where the stratification is assumed to be constant. For this
easier case, the Boussinesq equations can be solved explicitly via plane waves and the
solutions are matched at the interfaces of the respective layers. We give a proof of the
convergence of this procedure and discuss the order of convergence. The multi-layer
method is used to find transmission coefficients, which describe the amount of wave
energy that is transmitted through a layer of non-uniform stratification.

When including a height-dependent and non-constant background wind, the governing
equations change. Most notably, the wave frequency is Doppler-shifted and an additional
term occurs in the Taylor-Goldstein equation containing the second derivative of the
background wind. This so-called curvature term is the subject of a scale analysis with
the result that there can be realistic atmospheric configurations that influences gravity
waves non-negligibly. The multi-layer method is adapted to account for changes in the
background wind. The convergence is not affected and it still supplies transmission
coefficients very fast and efficiently.

The next part deals with the evolution of wave packets. This is particularly challenging
as their evolution is no longer described by an ordinary differential equation but a partial
differential equation. A Fourier transform is used on the equation as well as a coordinate
transformation to translate wave packet initial data to Fourier space. This brings the
equation into a shape that permits a variant of the multi-layer method to be used to
solve the equation. To obtain the wave packet evolution in physical space, inverse Fourier
transform is performed on the solution. A big advantage is that this method has no time
step restrictions. Therefore, a fast and efficient computation of the wave packet at any
given point in time is possible, given the initial shape.

For both plane waves and wave packets, extensive numerical studies are carried out
which emphasise the theoretical findings.

The last part of the work focuses on a scale analysis of waves propagating through
the tropopause. The waves are divided into three regimes: short, similar and long
wavelength compared to the tropopause depth. For short waves, a scaling is found that
allows for a WKB approach. Leading-order solutions exist in this case, but in general,
they are not explicitly representable. For the case of long waves, it is shown that the
exact stratification profile in the tropopause region is not relevant for the leading order
solution but only plays a role in first order corrections. The case of similar wave length
is the hardest to deal with analytically, since there is no scale separation in this case. It
is shown that, under an appropriate scaling, the solutions are described by the Taylor-
Goldstein equation, which can only be solved explicitly in some special cases.
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Nomenclature

A Wave action density

~cg Group velocity

cp Specific heat capacity of dry air at constant pressure 1.0035 Jkg−1K−1

E (Wave) Energy

g Gravitational acceleration 9.81 ms−2

Hθ Potential temperature scale height

k Horizontal wavenumber

m Vertical wavenumber

N Brunt-Väisälä frequency

ω̂ Relative wave frequency

ω (Absolute) wave frequency

Π Exner pressure

p Pressure

ρ Density

R Specific gas constant of dry air

θ Potential temperature

T Temperature

u Horizontal wind

w Vertical wind
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