3. Ergebnisse

In der vorliegenden Arbeit wurden bei 31 Gewebeproben von Kolonkarzinompatienten die Expressionsmuster der MDR-assoziierten Gene und -Proteine mittels immunhistochemischen und molekulargenetischen Methoden untersucht und auf Korrelationen statistisch geprüft.

3.1. Transkriptionsebene

Es kamen dabei auf Transkriptionsebene zwei unterschiedliche Methoden der Polymerase-Kettenreaktion zur Anwendung. Es wurde zum einen die konventionelle semiquantitativeund zum anderen die Real-Time RT-PCR mit dem Light Cycler verwendet.

3.1.1. Konventionelle PCR

Es wurden aus Gewebeproben von 31 Kolonkarzinompatienten die Multidrug Resistenzassoziierten Gene *mdr1, mrp* und *lrp*, sowie als Vergleichstandard die Expression des Haushalts-Gens ß2-Mikroglobulin (ß2M) mittels konventioneller semiquantitativer Polymerase-Kettenreaktion untersucht.

Die PCR wurde mit abnehmenden Zykluszahlen, angefangen bei 35 Zyklen bis zur unteren Nachweisgrenze von Amplifikationsprodukten, durchgeführt.

Sowohl *mdr1-*, *mrp-*, als auch *lrp-*mRNA konnte bei allen 31 Patientenproben nach mindestens 37 Zyklen nachgewiesen werden.

Die jeweils niedrigste Zyklenzahl, bei der in der Gelelektrophorese noch Amplifikate nachgewiesen werden konnten, wurde als Maß für die Expression des jeweiligen Gens herangezogen (siehe 6.2. und Abb.1).

Abb. 1: Agarosegelelektrophorese der PCR-Produkte. Bahn 1: *mdr 1*, Bahn 2: *mrp*, Bahn 3: *lrp*, MW: Längenstandard

Zum Ausgleich unterschiedlicher cDNA-Qualitäten wurde jeweils der Quotient aus der Transkriptmenge des Haushalts-Gens und der des spezifischen Multidrug Resistenzassoziierten Gens gebildet (siehe Tabelle1).

Die Größe des Quotienten korreliert direkt mit der Menge an mRNA des jeweiligen Resistenzgens der untersuchten Probe.

Mittels dieses Quotienten aus der Expression des Haushalts-Gens und des jeweiligen Multidrug Resistenz-assoziierten Gens der untersuchten Proben wurden anschließend Korrelationsanalysen durchgeführt.

Es kam dabei sowohl der Spearman'sche Rang-Korrelationskoeffizient als auch der Pearson'sche Kontingenzkoeffinzient zur Anwendung, und es wurde jeweils ein Punktdiagramm erstellt. Tab. 1:Quotienten aus den für den gelelektrophoretischen Nachweis von Marker- und
Haushalts-Gen Transkriptmengen (konventionelle PCR, Sensitivitätslimit)
nötigen Zykluszahlen.

	ß2M / <i>lrp</i>	ß2M / <i>mrp</i>	ß2M / <i>mdr1</i>
Pat. 1	0,909	0,769	0,714
Pat. 2	0,625	0,714	0,769
Pat. 3	0,923	0,923	0,923
Pat. 4	0,714	0,769	0,833
Pat. 5	0,846	0,846	0,917
Pat. 6	0,909	0,769	0,833
Pat. 7	0,432	0,571	0,615
Pat. 8	0,818	0,600	0,692
Pat. 9	0,643	0,643	0,643
Pat. 10	0,750	0,514	0,643
Pat. 11	0,833	0,769	0,714
Pat. 12	0,857	0,923	0,857
Pat. 13	0,727	0,571	0,500
Pat. 14	0,900	0,514	0,643
Pat. 15	0,909	0,769	0,769
Pat. 16	0,643	0,514	0,563
Pat. 17	0,800	0,727	0,615
Pat. 18	0,846	0,846	0,917
Pat. 19	0,900	0,643	0,486
Pat. 20	0,486	0,643	0,818
Pat. 21	0,571	0,667	0,667
Pat. 22	0,563	0,643	0,600
Pat. 23	0,643	0,643	0,643
Pat. 24	0,733	0,733	0,595
Pat. 25	0,750	0,563	0,643
Pat. 26	0,833	0,625	0,769
Pat. 27	0,800	0,727	0,727
Pat. 28	0,857	0,649	1,000
Pat. 29	0,800	0,727	0,667
Pat. 30	0,818	0,692	0,750
Pat. 31	0,571	0,727	0,615

3.1.1.1. Untersuchung der Korrelation von lrp und mrp

ß2М / <i>lrp</i> -	ß2M /	mrp
--------------------	-------	-----

	Pearson	Spearman
Korr.	0,401	0,449
Sig. (2-tailed)	0,025	0,011
Ν	31	31

Abb.2: Korrelationsanalyse der von cDNA generierten PCR-Produkte (konventionelle PCR) von *lrp* und *mrp*.

Sowohl der Spearmansche Rang-Korrelationskoeffizient, als auch der empfindlichere Pearson'sche Kontingenzkoeffinzient ergab eine schwache positive Korrelation für *lrp* und *mrp*, die auch im Punktdiagramm erkennbar ist.

	Pearson	Spearman
Korr.	0,622	0,606
Sig. (2-tailed)	0,000	0,000
Ν	31	31

Abb.3: Korrelationsanalyse der von cDNA generierten PCR-Produkte (konventionelle PCR) von *mrp* und *mdr1*.

Für *mrp* und *mdr1* zeigte sich in beiden statistischen Auswertungen eine eindeutig positive Korrelation, die durch die graphische Darstellung bestätigt wird.

3.1.1.3. Untersuchung der Korrelation von lrp und mdr1

β2M /	lrn/	_	β2M	/	mdr1
10/21/11 /	up		102111	/	III WI I

	Pearson	Spearman
Korr.	0,354	0,464
Sig. (2-tailed)	0,051	0,009
Ν	31	31

Abb.4: Korrelationsanalyse der von cDNA generierten PCR-Produkte (konventionelle PCR) von *lrp* und *mdr1*.

Für *lrp* und *mdr1* ergab sich nur bei Spearman eine eindeutig positive Korrelation, die im Pearson-Korrelationstest, der gegen Ausreißer empfindlicher ist, nicht zum Ausdruck kam. Im Punktdiagramm lässt sich ebenfalls eine Korrelation erkennen.

3.1.2. Light Cycler

Die mittels konventioneller PCR untersuchten 31 Kolonkarzinompatienten wurden auch mit dem Light Cycler auf die Expressionsstärken der Multidrug Resistenz-assoziierten Gene *mdr1, mrp* und *lrp* und des Haushalts-Gens ß2-Microglobulin (ß2M) untersucht.

Bei zwei der untersuchten Proben (Pat. 5 und 11) konnten keine *lrp* und *mdr1* Transkripte nachgewiesen werden und eine Probe (Pat. 28) war für alle drei Resistenzgene negativ.

Zur graphischen Darstellung wurden jeweils die crossing points versus Fluoreszenzintensität (SYBR Green) aufgetragen (siehe folgende Seiten Abb. 5-7).

Die crossing points entsprechen der Zykluszahl, bei der die exponentielle Phase der PCR der jeweiligen Probe beginnt, die wiederum von der Anfangskonzentration der zu amplifizierenden cDNA-Sequenz abhängig ist. Sie wurden daher zur Quantifizierung von *lrp*, *mrp* und *mdr1* Transkripten herangezogen (siehe 6.3.).

Im Anschluss an die letzte Elongationsphase der PCR wurde jeweils eine Schmelzkurvenanalyse zur Identifizierung des spezifischen Produktes durchgeführt (siehe 6.4.).

Die mit Hilfe des Light Cycler Systems ermittelten crossing points (CP) wurden anschließend zur Bildung des Quotienten aus CP Haushalts-Gen Transkript und des CPs des jeweiligen spezifischen Multidrug Resistenz-assoziierten Transkripts herangezogen (siehe Tabelle 2).

Abb.5: Kolonkarzimome, die mittels Light Cycler PCR quantitativ auf mdr1 Transkripte untersucht wurden.

Abb.6: Kolonkarzimome, die mittels Light Cycler PCR quantitativ auf mrp Transkripte untersucht wurden.

Abb.7: Kolonkarzimome, die mittels Light Cycler PCR quantitativ auf *lrp* Transkripte untersucht wurden.

	β2M / <i>lrp</i>	ß2М / <i>mrp</i>	β2M / mdr1
Pat. 1	0,571	0,636	0,586
Pat. 2	0,573	0,678	0,679
Pat. 3	0,694	0,659	0,615
Pat. 4	0,744	0,694	0,714
Pat. 5	-	1,013	-
Pat. 6	0,665	0,644	0,690
Pat. 7	0,642	0,646	0,688
Pat. 8	0,681	0,663	0,738
Pat. 9	0,656	0,624	0,606
Pat. 10	0,622	0,611	0,609
Pat. 11	-	0,993	-
Pat. 12	0,673	0,663	0,612
Pat. 13	0,666	0,672	0,643
Pat. 14	0,716	0,693	0,713
Pat. 15	0,636	0,681	0,693
Pat. 16	0,711	0,650	0,739
Pat. 17	0,656	0,645	0,590
Pat. 18	0,717	0,766	0,737
Pat. 19	0,669	0,664	0,614
Pat. 20	0,886	0,740	0,420
Pat. 21	0,602	0,698	0,654
Pat. 22	0,662	0,621	0,612
Pat. 23	0,694	0,637	0,683
Pat. 24	0,761	0,655	0,684
Pat. 25	0,721	0,738	0,672
Pat. 26	0,732	0,676	0,700
Pat. 27	0,572	0,597	0,631
Pat. 28	-	-	-
Pat. 29	0,581	0,626	0,624
Pat. 30	0,620	0,691	0,665
Pat. 31	0,592	0,635	0,663

Tab. 2:Quotienten aus crossing points der nachgewiesenen Marker und Haushalts-Gen
(β2M) Transkripten.

Mittels dieses ermittelten Quotienten wurden anschließend Korrelationsanalysen der Expressionsstärken der spezifischen Multidrug Resistenz-asoziierten Gene mit den Tests nach Spearman und Pearson durchgeführt und es wurde jeweils ein Punktdiagramm erstellt. 3.1.2.1. Untersuchung der Korrelation von *lrp* und *mrp* (Light Cycler PCR)

	Pearson	Spearman
Korr.	0,555	0,505
Sig. (2-tailed)	0,002	0,006
Ν	28	28

 $\beta 2M / lrp - \beta 2M / mrp$

Abb. 8: Korrelationsanalyse der Expressionsstärken von *lrp* und *mrp* nach quantitativer Light Cycler PCR.

Die Expression der Multidrug Resistenz-assoziierten Gene *lrp* und *mrp* korrelierten. Sowohl nach Spearman als auch nach Pearson ergab sich eine eindeutig positive Korrelation, die auch im Punktdiagramm zu sehen ist.

3.1.2.2. Untersuchung der Korrelation von mrp und mdr1 (Light Cycler)

	Pearson	Spearman
Korr.	0,079	0,391
Sig. (2-tailed)	0,689	0,040
Ν	28	28

β2M / mrp - β2M / mdr1

Abb. 9: Korrelationsanalyse der Expressionsstärken von *mrp* und *mdr1* nach quantitativer Light Cycler PCR.

Die Multidrug Resistenz-assoziierten Gene *mrp* und *mdr1* zeigten nach Spearman eine schwach positive Korrelation, die mit dem Pearson'schen Korrelationskoeffizienten nicht nachzuweisen war. In der graphischen Darstellung lässt sich der Trend einer Korrelation erkennen.

3.1.2.3. Untersuchung der Korrelation von *lrp* und *mdr1* (Light Cycler)

62M / <i>lrp</i>	-	ß2M /	mdr1
------------------	---	-------	------

	Pearson	Spearman
Korr.	-0,160	0,367
Sig. (2-tailed)	0,415	0,055
Ν	28	28

Abb. 10: Korrelationsanalyse der Expressionsstärken von *lrp* und *mdr1* nach quantitativer Light Cycler PCR.

Es war weder mit dem Test nach Pearson noch mit dem nach Spearman eine Korrelation erkennbar. Im Punktdiagramm scheint eine negative Korrelation vorzuliegen.

3.2. Translationsebene

Präparate von 31 operierten Kolonkarzinompatienten wurden mit der Alkalischen-Phosphatase-Anti-alkalischen Phosphatase-Technik (APAAP) auf die Expression der Multidrug Resistenz-assoziierten Proteine untersucht.

Zur Beurteilung der Expressionsstärke wurden die aufgearbeiteten Präparate (siehe als Beispiele folgende Seiten Abb. 11-13) unter dem Mikroskop betrachtet und nach dem Kriterium der Anzahl positiver Tumorzellen in Zehnerschritten von 0 bis 100 % eingeteilt (siehe Tabelle 3).

Das Multidrug Resistenz-assoziierte Protein MRP konnte bei allen 31 Gewebeproben nachgewiesen werden, hingegen war LRP bei drei (Pat. 4, 14 und 24) und das P-Glykoprotein bei zwei Proben (Pat. 23 und 24) negativ.

Abb.11: Immunhistochemische Färbung des P - Glykoproteins

Abb. 12: Immunhistochemische Färbung des Multidrug Resistenz – assoziierten Proteins

Abb.13: Immunhistochemische Färbung des Lungen Resistenz – assoziierten Proteins

Tab. 3:Quantitative Auswertung auf Translationsebene.Einteilung bezieht sich auf % positiver Zellen/Schnitt.

	Lrp (%)	Pgp (%)	Mrp1 (%)
Pat. 1	100	100	90
Pat. 2	90	100	90
Pat. 3	80	90	90
Pat. 4	0	10	70
Pat. 5	100	80	90
Pat. 6	90	90	90
Pat. 7	60	90	80
Pat. 8	70	70	90
Pat. 9	80	100	100
Pat. 10	100	100	80
Pat. 11	50	100	90
Pat. 12	90	90	100
Pat. 13	90	100	90
Pat. 14	0	50	80
Pat. 15	60	100	70
Pat. 16	40	90	70
Pat. 17	70	60	60
Pat. 18	50	90	80
Pat. 19	100	100	100
Pat. 20	100	80	90
Pat. 21	90	100	90
Pat. 22	100	100	100
Pat. 23	10	0	80
Pat. 24	0	0	80
Pat. 25	80	100	90
Pat. 26	10	90	90
Pat. 27	90	90	90
Pat. 28	100	90	80
Pat. 29	60	90	70
Pat. 30	100	90	100
Pat. 31	70	90	70

Mit den Werten aus Tabelle 3 wurden anschließend zur statistischen Auswertung Korrelationsanalysen nach Spearman und Pearson durchgeführt und es wurde jeweils ein Punktdiagramm erstellt.

3.2.1. Untersuchung der Korrelation von LRP und MRP

LRP - MRP

	Pearson	Spearman
Korr.	0,479	0,576
Sig. (2-tailed)	0,006	0,001
Ν	31	31

Abb. 14: Korrelationsanalyse auf Translationsebene zwischen LRP und MRP.

Für die Expression der Multidrug Resistenz-assoziierten Proteine LRP und MRP ergab sich sowohl nach Spearman als auch nach Pearson eine eindeutig positive Korrelation. In der graphischen Darstellung ist diese nur schwach zu erkennen.

	Pearson	Spearman
Korr.	0,378	0,414
Sig. (2-tailed)	0,036	0,021
N	31	31

Abb. 15: Korrelationsanalyse auf Translationsebene zwischen MRP und Pgp.

Es zeigt sich eine schwache positive Korrelation für MRP und Pgp mit beiden statistischen Tests, die im Punktdiagramm sehr stark positiv zu sein scheint.

LRP-Pgp

	Pearson	Spearman
Korr.	0,724	0,453
Sig. (2-tailed)	0,001	0,010
Ν	31	31

Abb. 16: Korrelationsanalyse auf Translationsebene zwischen LRP und Pgp.

Für die Multidrug Resistenz-assoziierten Proteine LRP und Pgp ergab sich eine eindeutig positive Korrelation, die sich mit beiden statistischen Tests nachweisen ließ. Dies wird durch die graphische Darstellung bestätigt.

3.3. Vergleich Transkriptions-Translationsebene

Es wurden im folgenden die Ergebnisse der Expressionsanalysen der Multidrug Resistenzassoziierten Gene und Proteine auf ihre Korrelation untersucht.

3.3.1. Light Cycler PCR versus Immunhistochemie (IHC)

3.3.1.1. LRP

LRP - **B2M** / *lrp*

	Pearson	Spearman
Korr.	-0,397	-0,456
Sig. (2-tailed)	0,036	0,015
Ν	28	28

Abb. 17: Korrelation der mit dem Light Cycler bzw. mittels IHC ermittelten quantitativen Daten für *lrp* Transkripte bzw. LRP.

Es zeigte sich eine schwach negative Korrelation nach Spearman und Pearson für die Genund Proteinexpression von LRP, die auch im Punktdiagramm sichtbar wird.

MRP - B2M / mrp

	Pearson	Spearman
Korr.	0,125	0,079
Sig. (2-tailed)	0,511	0,678
Ν	30	30

Abb. 18: Korrelation der mit dem Light Cycler bzw. mittels IHC ermittelten quantitativen Daten für *mrp* Transkripte bzw. MRP.

Für die Expression von MRP war keine Korrelation erkennbar. Die graphische Darstellung zeigt eine schwach positive Korrelation.

3.3.1.3. Pgp/mdr1

Pgp - **ß2M** / *mdr1*

	Pearson	Spearman
Korr.	-0,229	-0,357
Sig. (2-tailed)	0,241	0,062
Ν	28	28

Abb. 19: Korrelation der mit dem Light Cycler bzw. mittels IHC ermittelten quantitativen Daten für *mdr1* Transkripte bzw. Pgp.

Es konnte keine Korrelation für die Gen- und Proteinexpression des P-Glykoproteins nachgewiesen werden. Das Punktdiagramm impliziert eine schwach negative Korrelation.

3.3.2. Konventionelle PCR versus Immunhistochemie

3.3.2.1. LRP

Lrp - **B2M** /*lrp*

	Pearson	Spearman
Korr.	-0,001	0,069
Sig. (2-tailed)	0,996	0,712
Ν	31	31

Abb. 20: Korrelation der mit der konventioneller PCR bzw. mittels IHC ermittelten quantitativen Daten für *lrp* Transkripte bzw. LRP.

Es war weder mit Pearson noch mit Spearman eine Korrelation für LRP erkennbar, was durch die graphische Darstellung bestätigt wird.

MRP - B2M /mrp

	Pearson	Spearman
Korr.	0,072	0,010
Sig. (2-tailed)	0,702	0,958
Ν	31	31

Abb. 21: Korrelation der mit der konventioneller PCR bzw. mittels IHC ermittelten quantitativen Daten für *mrp* Transkripte bzw. MRP.

Bei den Analysen der Gen- und Proteinexpression für MRP ließ sich keine Korrelation nachweisen. Auch im Punktdiagramm lässt sich nur der Trend einer Korrelation erkennen.

3.3.2.3. Pgp/mdr1

Pgp - **B2M** /mdr1

	Pearson	Spearman
Korr.	0,035	-0,158
Sig. (2-tailed)	0,853	0,395
Ν	31	31

Abb. 22: Korrelation der mit der konventioneller PCR bzw. mittels IHC ermittelten quantitativen Daten für *mdr1* Transkripte bzw. Pgp.

Für das P-Glykoprotein ergab sich weder mit dem Test nach Pearson, noch nach Spearman eine Korrelation der Gen- und Proteinexpression, wie durch das Diagramm illustriert wird.

3.4. Vergleich Light Cycler-konventionelle PCR

In der vorliegenden Arbeit kamen zwei verschiedene Methoden der Polymerase-Kettenreaktion zur Anwendung, zum einen die konventionelle semiquantitative- und zum anderen die quantitative Real-Time RT-PCR (Light Cycler). Im Anschluss wurden die jeweiligen PCR-Ergebnisse der Genexpressionen auf Korrelation untersucht.

3.4.1 lrp

β2M / *lrp* (Light Cycler) - β2M / *lrp* (konv. PCR)

	Pearson	Spearman
Korr.	-0,123	0,028
Sig. (2-tailed)	0,533	0,888
Ν	28	28

Abb. 23: Nachweis von *lrp* Transkript: quantitative Light Cycler PCR versus semiquantitative konventionelle PCR.

Für die verschiedenen Methoden des Expressionsnachweises von *lrp* konnte mit beiden statistischen Tests keine Korrelation gefunden werden. Die graphische Darstellung impliziert eine negative Korrelation.

3.4.2. mrp

	Pearson	Spearman
Korr.	0,284	0,149
Sig. (2-tailed)	0,128	0,431
Ν	30	30

Abb. 24: Nachweis von *mrp* Transkript: quantitative Light Cycler PCR versus semiquantitative konventionelle PCR.

Es ergab sich für die Expression von *mrp* keine Korrelation zwischen den Ergebnissen der beiden PCR-Methoden. Das Punktdiagramm lässt jedoch eine Korrelation erkennen.

3.4.3. mdr1

	Pearson	Spearman
Korr.	-0,020	0,111
Sig. (2-tailed)	0,918	0,575
Ν	28	28

Abb. 25: Nachweis von *mdr1* Transkript: quantitative Light Cycler PCR versus semiquantitative konventionelle PCR.

Mit den Tests nach Pearson und Spearman konnte für die mittels unterschiedlicher PCR-Methoden ermittelten Genexpression von *mdr1* keine Korrelation festgestellt werden, was die graphische Darstellung bestätigt.