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1. Introduction

“Life” is defined by several traits that distinguish the animate being from the inan-

imate world. One of these traits is the ability to respond to external stimuli - but

how does a sunflower turn towards the sun, why does a human feel tired when the

alarm clock goes off in the morning and how does a yeast cell start the fermentation

process in a sugar-rich, oxygen-depraved environment? These complex responses

are possible since every organism contains an equally complex manual coded in

the DNA (deoxyribonucleic acid), the molecular blueprint for life on earth. The

DNA is a very large molecule, present in the organism’s every cell. Information is

coded in segments in the DNA, where the most prominent segments are the genes.

Most genes are silent or inactive most of the time, but a certain stimulus to the cell

from the outside might lead to a gene’s expression, and this expression will in turn

also act as a stimulus or impediment for other genes, and so on, setting the com-

plex system into motion that leads to the cell’s and subsequently the organism’s

response to the outside stimulus. This entangled system of genes reacting, activat-

ing or inhibiting other genes, within the cell or DNA, is called a gene regulatory

network. And while the particular sequence of the DNA and most genes for many

organisms are identified, the knowledge about the higher level network structure

of these genes is often incomplete. Carefully designed biological experiments can

lead to evidence for the existence or absence of single interactions between genes

in these networks, but the problem of discovering the connections between many

genes at once from large-scale experimental data is known as reverse engineering

of gene regulatory networks or gene network reconstruction. Knowledge about the

particular gene network structure for different organisms is important, since this

knowledge allows to learn about the evolution and development of life, predict re-

sponses to new stimuli or infer targets for drugs. For these reasons, gene network

reconstruction is an important part in the basic research of bioinformatics, at the
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1. Introduction

intersection of molecular genetics, statistical inference and computer science.

For the most part, existing methods for gene network reconstruction comprise

of methods that draw a network graph, where genes are represented by nodes and

edges between nodes correspond to interactions between genes. Methods for net-

work reconstruction need to validate these edges from given experimental data, in

most cases this data consists of measurements of the genes’ expressions, where the

expressions themselves as well as their measurements are inherently stochastic.

Furthermore, the number of possible connections between the considered genes

is vast, while the actual number of true interactions is by orders of magnitude

smaller, that is, gene network graphs are sparse in regard to the number of edges.

In statistics, the identification of correct sparsity patterns is also called feature se-

lection, where the genes are treated as features or variables and their connections

are associated with parameters. The two main (not mutually exclusive) paradigms

in statistics are the frequentist and the Bayesian approach, where the frequentist

approach infers point estimates of the parameters, based on samples, as approx-

imations to the universal true parameters, while the Bayesian approach treats

the parameters as stochastic entities themselves, and as such gives probabilistic

interpretations of parameters based on prior beliefs in the framework of Bayes’ the-

orem. In feature selection, the frequentist approach is mostly represented by the

lasso method, while a Bayesian approach to feature selection is the spike-and-slab

method. In the context of feature selection for network reconstruction, the lasso

has been intensively studied and applied in different forms, while the application

of the Bayesian approach has been hampered by its reliance on Gibbs sampling,

which is an algorithm to infer parameters within the Bayesian framework, but

Gibbs sampling needs to run for long times to give reliable results. As such, the

Bayesian approach was ill-suited for the task of large-scale gene network inference.

An alternative to Gibbs sampling is expectation propagation, a deterministic al-

gorithm not relying on stochastic sampling, which can potentially decrease the

run-time of a Bayesian approach at the cost of a larger mathematical overhead

and a less straight-forward implementation.

A further issue to consider is the following: The standard lasso and the stan-

dard spike-and-slab approach to feature selection treat the set of all features as a

2



1.1. Research objective

whole and enforce sparsity on the features without taking advantage of structural

associations between the features. One way to allow for a structure in the set of

features is a grouping, where features are grouped by some defined prior infor-

mation. For genes as features, this grouping could stem from co-binding affinity,

clustering by similar gene expression or known functional similarity. Including this

grouping information in the process of feature selection and subsequently network

reconstruction should be instructional.

1.1. Research objective

This thesis presents a Bayesian framework for feature selection when features are

grouped and are sparse on the between- and within-group level, along with a

deterministic algorithm to calculate the parameters. We apply this new method

to the problem of network reconstruction by neighborhood selection from gene

expression data and also extend it to time series data. Our novel contributions

are:

• a fast and deterministic algorithm for sparse-group Bayesian feature

selection in linear regression and its efficient implementation,

• application of Bayesian neighborhood selection to the problem of (gene)

network reconstruction,

• furthermore, application of neighborhood selection with grouping in-

formation for network reconstruction (Bayesian or lasso),

• analysis of the performance of Bayesian and sparse-group feature se-

lection for vector autoregressive models and network reconstruction

from temporal (oscillatory) data.

1.2. Thesis overview

This chapter gave a short introduction into the scope of this thesis. The following

Chapter 2 will give a more detailed biological background for gene regulation and

3



1. Introduction

gene regulatory networks. Chapter 3 presents several aspects of and approaches

to the problem of feature selection in the context of (gene) network reconstruc-

tion, that is the lasso methods, Bayesian frameworks and the problem of grouped

variables. Chapter 4 is at the heart of this thesis and our main contribution: We

present the theoretical background for the proposed Bayesian framework and the

corresponding efficient algorithm for feature selection in the presence of grouped

variables. Chapter 5 presents the evaluation of this new method on simulated

and experimental data with comparisons to other existing methods. The following

Chapter 6 extends this framework to time series data and the vector autoregressive

model and includes an analysis of oscillations, too. Finally we will conclude and

discuss our findings and potential open questions in Chapter 7.
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2. Biological Context

This chapter introduces shortly the biological background that is needed to un-

derstand the motivation and application of the methods presented in Chapters 3

to 6.

2.1. Genes and gene expression

The DNA (deoxyribonucleic acid, [92]) of a living organism is the long-stranded

sequence of a combination of the four nucleotides A, C, G and T (which are

named after their respective bases adenine, cytosine, guanine and thymine). A

gene is a specific region within this DNA sequence [2]. The process of transcription

transcribes the sequence on the DNA associated with a particular gene to Pre-

mRNA (Pre-messenger ribonucleic acid), which is in structure similar to the DNA

(but with an uracil nucleotide instead of thymine). After some modifications the

mature mRNA (messenger RNA) will be translated by the process of translation to

the final protein product which the gene on the DNA codes for. The protein might

be subject to additional modifications such as folding or binding to other proteins.

This very short description of the central dogma of molecular biology [17] or gene

expression as gene transcribed to RNA, RNA translated to protein is by

no means complete and its details are still subject to ongoing research.

2.2. “Gene-gene interaction” and the gene

regulatory network

A gene regulatory network [19] is a graph model of the interactions between genes,

where genes correspond to nodes (vertices) of the graph and interactions are de-
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2. Biological Context

mRNADNA protein
translationtranscription

Figure 2.1.: Central dogma of molecular biology: DNA is transcribed to RNA,

RNA is translated to protein. CC [52].

picted by edges between genes. In fact, there is no direct interaction between

genes on the DNA, but instead the product of the gene expression of one gene

(most often a protein) might regulate the transcription or translation of another

gene. Thus, a gene-gene interaction in the network graph is a simplification and

represents an elaborate interaction machinery of different molecules. As such the

gene regulatory network puts a focus on the gene level and hides all other ligands

involved. Furthermore, since most often experimental procedures are restricted to

one particular aspect of the gene expression process (e.g. measurements of mRNA

abundance), it makes sense to restrict the reconstruction of the interaction network

on the gene level. Gene regulatory networks exhibit certain characteristics that

are similar to network structures of other fields of scientific research such as soci-

etal systems and communication, semantics or finance, and as such the statistical

study of gene regulatory networks can benefit (from) other disciplines [8].

6



2.2. “Gene-gene interaction” and the gene regulatory network

Figure 2.2.: Escherichia coli gene network, with pathway annotation. Transcrip-

tion factors are depicted as diamonds, while other genes are depicted

as circles. Edges correspond to interactions. Adapted from [58].
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2. Biological Context

packaging

processing

transcription

export

degradation

degradation

modiication

translation

transport

DNA

RNA

PROTEIN

nucleus

cytoplasm

Figure 2.3.: [52] Different steps in the process of gene expression: All of the pro-

cesses depicted do not happen instantaneously, as such the whole pro-

cess of gene regulation is a time-delayed one.

2.3. Gene expression as a temporal process

The process of gene expression is time-dependent [7, 79]: The stages of transcrip-

tion, translation, modifications and degradation at different stages, formation of

compounds, transport of ligands between different parts of the cell or even between

cells do not happen instantaneously, but rather on a certain time scale which can

differ in units of seconds, minutes or even hours [e.g. 20, 29]. Some experimental

setups are able to capture these time scales. Thus one is able to see how the ex-

pression of a certain gene regulates the expression of a (different) gene at a later

time point. This gap is called a delay. Sometimes it is assumed that these delays

are gene-specific, since the machinery described above takes roughly the same time

for a specific gene [49].
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2.4. Experimental methods to assess gene expression

2.4. Experimental methods to assess gene

expression

The principal index for the expression of a gene is its RNA abundance within

a sample. A gene is called active if a detectable amount of its mRNA can be

found, and inactive if the abundance of its mRNA is low relative to the general

mRNA abundance. There are two main experimental procedures for measuring

the abundance of RNA as a proxy for gene expression, these are microarray and

RNA-Seq (see Figure 2.4).

A microarray (or here more correctly DNA microarray) experiment [75] is an

experiment to measure the expression level of thousands of genes simultaneously

(also called a high-throughput experiment). First the mRNA is extracted from

a sample (a sample being a bulk of cells), then reverse-transcribed to cDNA:

Reverse-transcription is the process of making a complementary DNA, a DNA

strand synthesized from an RNA molecule by an enzyme called the reverse tran-

scriptase, where the cDNA is like a mirror of the original mRNA. Afterwards the

cDNA is labeled by attaching special fluorescent molecules (dye) to the cDNA

molecules. These labeled cDNA molecules are hybridized on an array (chip) with

pinholes for the different genes, meaning that every cDNA molecule should bind

to the predefined hole that complements its sequence. Afterwards the array can

be scanned with a filter and laser to measure the intensity of the dye for every

gene.

RNA-Seq [59] is a more recent sequencing method. Similar to microarrays, first

the RNA is extracted from the sample and reverse-transcribed to cDNA. After an

amplification step where the number of all cDNA molecules is artificially increased,

the cDNA molecules are sequenced, that is their sequence of bases is determined

directly within a “sequencing machine” (instead of binding the molecules to pre-

defined sequences like in the microarray approach). This gives a sequence read

(a particular sequence of the four bases A, C, G and T) for every single cDNA

molecule after the amplification step. All of the reads will be mapped to a reference

genome, that is their recovered sequences are aligned with the whole consensus se-

quence of the organism’s DNA, and every match in the alignment will be counted.

9



2. Biological Context

DNA MICROARRAY RNA-SEQ

cDNA cDNA

Fluorescent tag

Gene 1

Gene 2

Gene 1Gene 2
Reference genome

A

B

C

1

2

3

Figure 2.4.: [52] Experimental techniques to measure gene expression levels. Mi-

croarray: (A) The RNA is extracted, converted to complementary

DNA (cDNA), and labeled with fluorescent tags. (B) The labeled

cDNA hybridizes with nucleic acids on the array and is sorted this

way. (C) The fluorescence levels (which correspond to the gene ex-

pression) are measured by scanning the array. RNA-Seq: (1) RNA is

fragmented and converted to cDNA. (2) The cDNA is fed into a se-

quencing machine. (3) The reads from the sequencing are mapped to a

reference genome and quantified per gene, giving the gene expression.

Since the original sample consisted of multiple copies of some mRNAs which were

furthermore amplified, many sequences will map to the same regions (genes) on

the reference genome. This gives a count of matched reads of that gene’s mRNA,

respectively the expression level of the gene.
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3. Feature Selection Methods in the

Context of Gene Network

Reconstruction

First, the problem of (gene) network reconstruction is presented as a problem of

feature selection, that is, neighborhood selection (Sections 3.1 and 3.2). We intro-

duce the grouping of features in a formal way in Section 3.3. There follows a short

review of the lasso, group lasso and sparse-group lasso as possible solutions to this

problem of network reconstruction with neighborhood selection in Section 3.4. An

alternative to the lasso methods is the spike-and-slab approach, a Bayesian frame-

work for feature selection (Section 3.5). The most common algorithm to derive

the parameters within Bayesian frameworks such as the spike-and-slab model is

the stochastic method called Gibbs sampling, which is explained shortly in Sec-

tion 3.5.1. Finally, the expectation propagation algorithm (as a deterministic and

faster alternative to Gibbs Sampling) is reviewed in a general manner (Section

3.5.2) before we refine it for the sparse-group spike-and-slab in Chapter 4.

3.1. Gene network reconstruction and the Gaussian

graphical model

In a typical gene regulatory network reconstruction procedure we consider the

network as a graphical model [21, 47, 60], where the genes correspond to nodes and

an interaction between two genes is represented by an edge between the respective

nodes. This graphical model is also called a Markov graph [36, pp. 627]: Two

nodes are not connected by an edge if they are conditionally independent given

11



3. Feature Selection Methods in the Context of Gene Network Reconstruction

all other nodes. The network graph is undirected, that is, edges do not indicate

a causal direction (which would be represented as an arrow), but rather a mutual

interdependence. For the study of directed (causal) graphs, see for example the

work of Pearl [71].

If we assume that the data (that is, the M observations of P random variables

X = (Xn)Pn=1) is generated from a multivariate normal distribution with covariance

matrix Σ, the corresponding graphical model is called a Gaussian graphical model

[11, p. 370]:

X ∼ NP (µ,Σ).

The inverse of the covariance matrix Ω = Σ−1 is called the concentration matrix or

precision matrix [16]. The entries ωij of the precision matrix Ω are closely related

to the partial correlations ρij between any two variables Xi and Xj:

ρij = − ωij√
ωii · ωjj

.

The partial correlation ρij is a measure for the (linear) dependency between the

variables Xi and Xj given all other variables Xk, k 6= i, j. The partial correlation

is zero if the two variables are conditionally independent of each other. If ρij (or

equivalently ωij) is different from zero, the variables Xi and Xj are dependent on

each other and we draw an edge between the two nodes that correspond to these

variables. Thus, if and only if ωij = 0 there is no edge between nodes i and j

within the network graph, and the precision matrix describes the network graph.

Reconstruction of gene regulatory networks with methods based on the frame-

work of Gaussian graphical networks is a well-studied aspect of bioinformatics,

see for example the reviews by Markowetz and Spang [60] and Huang et al. [45].

In the most common scenario the data consists of gene expression measurements

stemming from microarray or RNA-Seq experiments.

Thus the data structure is a (big) matrix with numerical values (non-negative

real numbers for microarray, non-negative integers for RNA-Seq), where every

column 1, . . . , P corresponds to a gene and every row 1, . . . ,M corresponds to

an observation or experiment. Oftentimes the raw data needs to be normalized,

and normalization is a difficult endeavor in itself (see for example [73]), which is

12



3.2. Estimating the precision matrix and network topology with neighborhood selection

out of the scope for this work. We assume “reasonably” normalized data for the

remainder, that is, where experimental biases are corrected and features live on

the same scale.

Therefore, if we are given some data matrix X = (xmn) with m = 1, . . . ,M

and n = 1, . . . , P we can try to reconstruct the precision matrix from the sample

covariance matrix

Σ̂ =
1

M − 1
XTX (3.1)

(assuming the columns of X have been centered around their column means first),

which is an estimate of the true covariance matrix (Σ̂ ≈ Σ).

3.2. Estimating the precision matrix and network

topology with neighborhood selection

One can always estimate the sample covariance matrix Σ̂ from the data matrix

X using the formula (3.1). But if the number of features P is large and the

number of observations M is small, inverting the sample covariance matrix Σ̂ to

recover the network structure from the sample precision matrix Ω̂ will most likely

fail since the sample covariance matrix might not be of full rank and invertible

[35, 76]. Many alternative approaches have been suggested to estimate the sample

covariance matrix and the sample precision matrix in the “small M , large P”

scenario, see the comprehensive review by Fan et al. [24].

For gene regulatory network graphs (and graph models in many other disci-

plines), it is very reasonable to assume that the precision matrix has many entries

equal to zero, since a fully populated or dense precision matrix would correspond

to a (close to) fully connected network graph. Therefore we assume a sparse esti-

mate of the precision matrix and enforce sparsity restrictions when reconstructing

the precision matrix and the network graph. There are approaches to directly find

an approximation to the precision matrix in these sparse cases, e.g. the works of

Yuan and Lin [97] and the graphical lasso from Friedman et al. [25]. Schäfer and

Strimmer [77] proposed an alternative by assuming a certain target structure of

the precision matrix.

13



3. Feature Selection Methods in the Context of Gene Network Reconstruction

In this work we follow a different and complementary approach proposed as

“neighborhood selection” by Meinshausen and Bühlmann [62]. Instead of estimat-

ing the sparse precision matrix as a whole, we break down the problem into P

independent sparse problems, one for every column (feature) of X, which corre-

sponds to one particular node in the network graph. We determine this node’s

neighborhood of connected nodes, that is, find among the remaining P − 1 = N

variables the neighbors such that the current node is conditionally independent of

all other variables given its neighborhood. In the network graph there are edges

between the chosen node and all its neighborhood nodes, and no edges between

nodes that are not neighbors. This means we perform P = N + 1 instances of

the sparse feature selection method of choice, where every instance consists of re-

moving one column i of the data matrix and using it as a response (dependent)

variable y = Xi that needs to be explained by the remaining N variables (features,

X−i = (Xj)j 6=i) as a standard regression problem:

Xi ≡ y = X−iβi + εi (3.2)

or more general: y = Xβ + ε. (3.3)

X (or X−i) is an (M × N)-matrix, y (or Xi) a vector with M entries, β (or βi)

a vector of coefficients with N entries and ε (or εi) a vector of M entries that

describes the stochastic error. Note that X describes depending on context either

the full data matrix of dimensions (M×P ) or a data matrix of dimensions (M×N).

Equation (3.2) is the matrix notation of the equivalent formulation as element-wise

linear sums:

xmi ≡ ym =
∑
j 6=i

βij · xmj + εmi, m = 1, . . . ,M.

Why is it possible to run multiple linear regressions (which determine regression

coefficients) instead of calculating the entries of the precision matrix? Within

the Gaussian model, these are equivalent problems, the reasons are explained by

Cox and Wermuth [16, pp. 68] or Hastie et al. [36, pp. 630], and lead to the

simple connection between the entries of the precision matrix and the regression

coefficients:

βij = −ωij
ωii

.
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3.3. Grouping of features

The consistency of the neighborhood selection approach with the inversion of the

covariance matrix is very much dependent on the sparsity assumption, for details

and a proof of consistency see [62].

Thus, when finding solutions to equation (3.3) we need to assume that most

entries of the vectors βi are actually zero, which is called feature selection or sparse

regression. There are different approaches on how to discern the zero-coefficients

from the non-zero ones in the sparse linear regression scenario, the main ones

being the classic lasso (introduced by Tibshirani [88]), its successor elastic net

regularization (introduced by Zou and Hastie [100]) or Bayesian approaches (a

particular Bayesian framework will be described in Section 3.5).

In summary, there are two ways to reconstruct a network graph under the Gaus-

sian graphical model based on the precision matrix: Either find a sparse estimate

of the precision matrix directly or do multiple linear regressions with feature selec-

tion for every feature separately (neighborhood selection). We choose to pursue the

neighborhood selection approach since it allows us to include grouping information

in a straightforward manner (see the following section). Since we are reconstruct-

ing undirected network graphs, we need to decide what to do if either βij or βji

is zero while the other one is not (this problem does not arise if we reconstruct a

proper symmetric precision matrix directly, since ωij = ωji). In the remainder, we

will use the less conservative and more permissive OR rule [36, 62] for all methods

considered: If βij or βji is different from zero (or both are different from zero), we

draw an edge in the resulting network graph. There is no edge if βij = βji = 0.

3.3. Grouping of features

A grouping of the features or equivalent, a map G : {1, . . . , N} → {1, . . . , G}
with G the number of groups, is an additional information about the structure of

the data. The map G assigns to every feature (respectively its index n) a group

(respectively group index g): G(n) = g. If G is injective, every feature is mapped

to its own group and thus the mapping reduces to a non-informative grouping.

For a given group g we denote by G−1(g) the set of indices G−1(g) ⊆ {1, . . . , N}
which corresponds to all the features in group g. A grouping of features may stem
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3. Feature Selection Methods in the Context of Gene Network Reconstruction

from any prior information about the data, e.g. which transcription factors tend

to regulate the same genes or which genes belong to the same pathways, but also

the grouping could be derived from the data itself, e.g. genes that show similar

expression patterns and are grouped by clustering. The idea of grouped features in

a regression scheme was first formulated in the thesis of Bakin [6] and subsequently

built upon by Yuan and Lin [96] and Friedman et al. [27]. As a novel idea, we use

grouping information for the problem of (gene) network reconstruction.

Sparse regression in the presence of grouped features needs to distinguish two

different levels of group sparsity: between-group and within-group sparsity. The

first level is between-group sparsity: Given different groups of features, the (regres-

sion) algorithm needs to decide which groups to use and which groups to discard.

This means that all the coefficients of features within one group are collectively

zero or collectively different from zero. While Bakin [6] and Yuan and Lin [96] con-

sidered between-group sparsity only, Friedman et al. [27] discussed and introduced

a second level of sparsity which is within-group sparsity: Looking at the features

within a group one needs to decide which features to use (non-zero coefficients) and

which features to neglect (zero coefficients). Thus, within-group sparsity should

be implemented on top of between-group sparsity, if it is reasonable to assume

that some features within a non-zero group should still be zero.

3.4. Lasso, group lasso and sparse-group lasso

When talking about sparsity in regression schemes, in most cases the method

of choice is the “lasso” introduced by Tibshirani [88]. With the notation from

equation (3.3), the lasso corresponds to the following objective [36, p. 68]:

min
β̂
{1

2
||y −Xβ̂||22 + λ||β̂||1}. (3.4)

The first term is the squared error between the response and the approximation to

it using an estimate β̂ of the true coefficient vector β. The second term enforces

the sparsity on β̂ by putting a penalty on the sum of absolute values of β̂. Using

||·||0 instead of ||·||1 would be more desirable, since the 0-norm gives the number of

coefficients different from zero. Equation (3.4) with 0-norm instead of the 1-norm
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3.4. Lasso, group lasso and sparse-group lasso

is equivalent to best-subset selection [36, pp. 57], but solving the problem under

the 0-norm constraint has been shown to be NP-hard [68]. The lasso approach

substitutes the 0-norm with the 1-norm (sum of absolute values of coefficients)

which also enforces sparsity and approximates the optimal 0-norm solution. If

the 1-norm and 2-norm (euclidean distance) are combined we have the elastic net

regularization introduced by [100]:

min
β̂
{1

2
||y −Xβ̂||22 + λ

(
α||β̂||1 + (1− α)||β̂||22

)
}, α ∈ [0; 1],

which for α = 0.95 is the standard within most implementations of elastic net, and

with α = 1 it reduces to the lasso regularization. For α = 0 it is equivalent to “ridge

regression” [36, pp. 61], which does not enforce sparsity in the number of non-zero

coefficients directly but rather shrinks the size of the regression coefficients.

The standard lasso considers all variables equally without taking any structure

between the features into account, and thus it is not a good candidate algorithm

if variables are grouped.

The “group lasso” from Yuan and Lin [96] acknowledges grouped variables in

a between-group sparsity approach, but it can only choose whole groups without

taking advantage of within-group sparsity. Given a map G, the objective of the

group lasso is:

min
β̂
{1

2
||y −Xβ̂||22 + λ

G∑
g=1

√
pg||β̂G−1(g)||2}, where pg = |G−1(g)|, (3.5)

with β̂G−1(g) being the vector of coefficients that corresponds to the features within

the g-th group. It follows that we have a group-wise euclidean vector norm as

a penalty in equation (3.5) and as such the objective imposes sparsity on the

between-group level, but only restricts the values of the coefficients within one

group without enforcing true sparsity on the within-group level. To overcome this

drawback, Simon et al. [80] proposed the “sparse-group lasso” as a framework for

the described two-fold sparsity which tries to model the within- and between-group

sparsity. Simply put, they add a 1-norm penalty term to the objective of the group

lasso:

min
β̂
{ 1

2M
||y −Xβ̂||22 + λ

(
(1− α)

G∑
g=1

√
pg||β̂G−1(g)||2 + α||β̂||1

)
}, with α ∈ [0; 1],
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3. Feature Selection Methods in the Context of Gene Network Reconstruction

where α is the mixture between the standard lasso and the group lasso. Within

one non-zero group, the objective is equivalent to the elastic net regularization.

There are multiple methods to find the solutions to the given (sparse-group

or group) lasso objectives, the most prominent ones being least-angle regression

or LARS [22] and different gradient-based techniques [80, 88, 96]. Because of

the considerable research on lasso methods, many (efficient) implementations are

available, for example packages within the statistical programming environment R

[74].

3.5. Spike-and-slab

An alternative to these lasso methods in general is a Bayesian approach with

spike-and-slab feature selection [67]. There are Bayesian formulations of the lasso,

group lasso and sparse-group lasso respectively: Park and Casella [70] introduced

the Bayesian lasso, while Kyung et al. [51] expanded the Bayesian formulation to

the group lasso. Xu and Ghosh [94] added a Bayesian formulation for the sparse-

group lasso as well as a non-lasso Bayesian framework for the between-group and

within-group sparsity scenario (which they call bi-level selection). All of these

approaches in the work of Park and Casella [70], Kyung et al. [51] and Xu and

Ghosh [94] (along with the similar work of Zhang et al. [98]) use Gibbs sampling

(see Section 3.5.1) to derive the parameters.

The spike-and-slab is an approach to Bayesian variable selection first introduced

by Mitchell and Beauchamp [67] and subsequently Geweke [31], but in our work

we follow the definition of George and McCulloch [30] since it is more easily inter-

pretable. A similar framework is formulated in [50].

In general, the relationship between the observed y and the predictors X as well

as β and the error variance σ0 can be described by the conditional probability

P(y|β,X) = N (y|Xβ, σ2
0I). (3.6)

If we assume ε ∼ N (0, σ0I), this is a reformulation of equation (3.3) where we

dropped all indices. Furthermore, if we assume that β = (β1, . . . , βN) is sparse

and some βn are zero, we can introduce an auxiliary variable Z = (Z1, . . . , ZN) ∈
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3.5. Spike-and-slab

{0, 1}N with Zn = 0 indicating that βn = 0 and from Zn = 1 follows βn 6= 0. We

can give a prior distribution over Z:

P(Z) =
N∏
n=1

Bern(Zn|pn) =
N∏
n=1

pZn
n · (1− pn)1−Zn , (3.7)

where pn is the belief (probability) that the corresponding coefficient βn should be

different from zero. This leads to a definition of the conditional probability P(β|Z)

that is at the heart of the spike-and-slab approach:

P(β|Z) =
N∏
n=1

(
Zn · N (βn|0, σ2

slab) + (1− Zn) · δ(βn)
)
. (3.8)

If Zn = 1, the second summand disappears, and we draw βn from a normal distri-

bution centered around zero but with a large variance parameter σslab, thus βn 6= 0.

If Zn = 0, the first summand disappears, and we force βn to be equal to zero: δ(·)
is the distribution that puts probability mass 1 to zero. Instead of δ(·) one could

also use a normal distribution N (·|0, σ2
spike) with a very small σspike (e.g. in [30]).

For an illustration of the two distributions N (·|0, σ2
slab) and δ(·) see Figure 3.1.

These representations (equations (3.6), (3.7) and (3.8)) allow for the following

Bayesian framework to describe the linear regression scheme from equation (3.3):

P(β, Z|y,X) =
P(y|β,X) · P(β|Z) · P(Z)

P(y|X)
. (3.9)

Given the data (y,X), the task at hand is now to find the corresponding β and Z

(and probabilities pn, n = 1, . . . , N). One approach is to use Markov Chain Monte

Carlo simulations respectively Gibbs sampling (e.g. the solution of George and

McCulloch [30], see also the next Section 3.5.1), but in this work we consider an

alternative non-stochastic approach called “expectation propagation” (see Section

3.5.2).

Note that we do not consider a prior on σ0 in this work, which means this

parameter needs to be specified beforehand.

3.5.1. Gibbs sampling

Gibbs sampling (a Markov Chain Monte Carlo algorithm, MCMC [11, pp. 537])

is a prominent method to derive the parameters for Bayesian frameworks. Here
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Figure 3.1.: Density function curves of spike and slab distributions: Both the spike

and the slab are depicted as normal distributions N (β|0, σ), with

σslab = 10 and σspike = 0.001.

explain shortly the general idea of Gibbs sampling and discuss its shortcomings.

Gibbs sampling as a MCMC algorithm does not solve the Bayesian formula

P(θ|D) = 1/P(D) ·P(D|θ) ·P(θ) for some data D and parameter vector θ directly,

but instead generates samples from the posterior by constructing a Markov chain

that has the target posterior distribution as its equilibrium distribution. For Gibbs

sampling, this corresponds to the following procedure:

1. initialize θ with random values,

2. choose some θi and hold all other θj, j 6= i, fixed,

3. sample a new value for θi from the conditional distribution P(θi|D, θ−i),

4. go back to 2 and repeat for all θi, then start again, and keep doing this for

a total of B iterations, where B is very large (e.g. B = 10000).

It can be shown that this procedure leads to sample values of θ from the true

joint distribution P(θ|D) [11, pp. 542]. Often it is assumed that the first batch of

samples does not approximate the target distribution well and is as such discarded
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3.5. Spike-and-slab

(burn-in period). Also, subsequent samples might not be truly independent, and

as such one chooses samples of the values with a certain iteration gap between

them. On top, most Gibbs samplers run for several thousand iterations. To get

a meaningful point estimate for the parameters in question, one could choose the

median or mean of the chosen samples from the Gibbs sampling procedure.

While Gibbs sampling gives consistent results if the number of available obser-

vations is appropriately large, Gibbs sampling for feature selection suffers in the

case of few observations and many features. In addition, because of the stochastic

nature of Gibbs sampling, the runtime of a Gibbs sampling procedure is quite long,

thus a numerical algorithm should be preferred if available.

There is little work on Bayesian frameworks that neither depend on the lasso nor

on Gibbs sampling. An iterative but deterministic algorithm called expectation

propagation for Bayesian feature selection (without grouping of the features) was

introduced by Seeger [78] (and another version by Hernández-Lobato et al. [43]).

Hernández-Lobato et al. [41] proposed a grouped version of the spike-and-slab

approach for the problem of the between-group sparsity (analogous to the group

lasso by Yuan and Lin [96]) along with expectation propagation to derive the

appropriate parameters.

3.5.2. Expectation propagation

All distributions we will consider in the remainder are members of the class of

exponential family distributions. This means that their respective probability

densities can be written in the form

f(x) = h(x) · g(η) · exp(ηTT (x)),

where η is called “natural parameter” and T (x) is the “sufficient statistic” (see

for example Bishop [11, pp. 113-117]). More importantly, for all exponential

family distributions the product (and to some extent the quotient) of two densities

from an exponential family is again a density from an exponential family with

updated parameters (up to a scaling factor depending on the parameters only).

In our implementation we need these properties for the Bernoulli distribution and

(multivariate) normal distribution, see Appendix A and B.
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3. Feature Selection Methods in the Context of Gene Network Reconstruction

The expectation propagation algorithm (introduced by Minka [64]) approxi-

mates a true (complicated) posterior distribution P with a (simpler) approxi-

mating distribution Q by iteratively minimizing the Kullback-Leibler divergence

KL(P||Q). As such, the expectation propagation algorithm is an example of de-

terministic approximate inference [11, pp. 461]: the true posterior is too complex

such that expectations are not analytically tractable since the resulting integrals do

not have closed-form solutions and the dimensions of the parameter space prohibit

numerical integration.

IfQ is an exponential family distribution (and thusQ(x) = h(x)·g(η)·exp(ηTT (x))),

the following holds true (see Bishop [11, p. 505]):

KL(P||Q) =

∫
Q(x) · log

P(x)

Q(x)
dx

=

∫
P(x) ·

(
logP(x)− log h(x)− log g(η)− ηTT (x)

)
dx

= − log g(η)− ηT ·
∫
T (x) · P(x) dx+ C(x)

= − log g(η)− ηT · EP [T (x)] + C(x),

where the “constant” term C(x) does not depend on the natural parameter η. To

minimize KL(P||Q) in η we set the gradient equal to zero and get

−∇ log g(η) = EP [T (x)] . (3.10)

On the other hand, since Q(x) = h(x) · g(η) · exp(ηTT (x)) is a probability distri-

bution, we have [11, p. 116]: ∫
Q(x) dx = 1

⇔ g(η)

∫
h(x) · exp(ηTT (x)) dx = 1. (3.11)

Taking the gradient on both sides of equation (3.11):

∇g(η)

∫
h(x) · exp(ηTT (x)) dx+ g(η)

∫
h(x) · exp(ηTT (x)) · T (x) dx = 0

(3.11)⇔ ∇g(η)

g(η)
· 1 +

∫
g(η) · h(x) · exp(ηTT (x)) · T (x) dx = 0

⇔ EQ [T (x)] = −∇ log g(η).

(3.12)
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3.5. Spike-and-slab

Putting equations (3.10) and (3.12) together gives us

EP [T (x)] = EQ [T (x)] , (3.13)

that is, to minimize the divergence between P and Q we need to match the ex-

pectations under P and Q of the sufficient statistic of Q.

The matching under the complete distributions P andQ can be very hard, but it

gets easier if the distributions P and Q are factored, for example if P is a posterior

distribution for some data D:

P =
1

P(D)

∏
i

fi, (3.14)

Q =
1

Z
∏
i

f̃i, (3.15)

where the factors f̃i belong to the exponential family of distributions, but they do

not need to integrate to 1. That is why Z =
∫ ∏

i f̃i is the normalization constant

needed such that Q is a proper probability distribution which integrates to 1 (and

Z approximates P(D)).

Expectation propagation approximates KL(P||Q) by first initializing the pa-

rameters of the f̃i and then cycling through the paired factors fi and f̃i one at a

time (see Bishop [11, pp. 506-510]) and updating the corresponding parameters.

Suppose we want to update factor f̃i. First we remove f̃i from Q:

Q\i =
Q
f̃i
,

where Q\i is a probability distribution up to a normalization constant. Now we

want to update f̃i → f̃new
i such that f̃new

i ·Q\i is very close to fi ·Q\i, or with Qnew

the normalized version of f̃new
i · Q\i, we minimize

KL(
1

Zi
fi · Q\i||Qnew)

for some (unimportant) normalization constant Zi. Equation (3.13) tells us we

need to match the sufficient statistics of these two distributions, where calculus

and arithmetic yield the updated parameters of Qnew.
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3. Feature Selection Methods in the Context of Gene Network Reconstruction

After we have found Qnew we get the parameters of our updated f̃new
i from

f̃new
i = Zi

Qnew

Q\i
,

where the value of Zi is not needed to update the parameters.

In Hernández-Lobato et al. [43] and Hernández-Lobato et al. [41] the expectation

propagation framework is applied to the general spike-and-slab framework as well

as the spike-and-slab for grouped variables with sparsity between groups only. In

the next Chapter 4 we will expand the spike-and-slab framework with expectation

propagation to the two-level sparsity on the between- and within-group levels.

3.6. Cross-validation

Every lasso method depends on a penalty parameter λ that drives the sparsity

of the model. Smaller values of this parameter correspond to a smaller number

of features included in the final model. Most implementations of lasso methods

give a decreasing sequence of λ values along with the corresponding increasing set

of chosen features with their corresponding coefficients. Cross-validation [11, pp.

51] is a way to determine the “optimal” value of this parameter λ. For k-fold

cross-validation (most often k = 10) we divide the observations into k distinct

batches of roughly equal size and run the method of choice k times, where we

hold back one of the batches and run the method on the remaining k − 1 batches

combined. Each time this gives us a sequence of feature sets with increasing

size of the sets and we determine the prediction errors on the held-out batch of

observations for each such set. We add the prediction errors of all k runs (thus

every observation will be predicted exactly once) over the same sizes of the feature

sets and obtain the cross-validated error curve CVE(λ) along the λ sequence/size

of the feature sets. The optimal size of the feature set (or the optimal penalty

parameter λmin in the case of the lasso) is the one that minimizes this cross-

validated error CVE(λmin) = minλ CVE(λ). Alternatively, to avoid over-fitting,

one can use the 1se-rule (“within one standard error of the minimum”, Hastie

et al. [36, pp. 241]) to determine the optimal value: find the minimum CVE(λmin)

and its corresponding standard deviation sd(λmin) and choose the lesser value
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Figure 3.2.: This is an example of how to choose the proper model complexity with

cross-validation: Either one goes for the global minimum (orange)

or the smallest model complexity within one standard error of the

minimum (blue). The gray shaded area gives the standard error of

the cross-validated error.

λ1se such that CVE(λ1se) lies within one standard deviation of this minimum:

λ1se = min{λ : CVE(λ) ≤ CVE(λmin) + sd(λmin)}. Figure 3.2 illustrates the

concepts explained in this section.

Finally we run the method of choice a final (k + 1)-th time on the whole set of

observations and choose the subset of features that corresponds in size to the one

chosen from the first k runs (for lasso methods, depending on λmin or λ1se).

While cross-validation is very effective to determine the optimal model com-

plexity and runs fast for the lasso methods, it does not consider the inclusion of

features on their own, but rather only the total number of features to be included.
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3. Feature Selection Methods in the Context of Gene Network Reconstruction

In the worst case this means that a feature could be chosen to be in the final set

because it ended up as a chosen feature in the final (k + 1)-th run of the method,

while it was never chosen in the first k runs of the cross-validation.

On the other hand, cross-validation is also a good way to choose model param-

eters that do not affect the complexity of the model directly, for example the σslab

and σ0 parameters of the spike-and-slab approach, by pre-defining a grid of these

parameters and running the algorithm k times for each of the parameter sets along

the grid, choosing the combination with the lowest cross-validated error for the

final model.

In the remainder we use cross-validation with the 1se-rule for the lasso methods

if a specific subset needs to be chosen: The k-fold cross-validation (k = 10) deter-

mines the optimal cutoff value λ1se and we return the vector of coefficients βλ1se

that corresponds to this cutoff from the (k + 1)-th run. Furthermore, we use a

slightly modified cross-validation for the expectation propagation-based Bayesian

methods which takes advantage of the different output from these methods. While

lasso methods give a different vector of coefficients for every λ value considered,

the Bayesian methods give one single vector of coefficients β and an accompanying

vector of probabilities ~p = (pn)n=1,...,N in each of the k cross-validation runs. As

such we take the mean vectors over the coefficient vectors and probability vectors

from these runs instead of running the method a (k + 1)-th time, while we decide

for the optimal cutoff value p1se for the probabilities with the 1se-rule like in the

lasso methods. The final output is the mean vector of probabilities ~pCV and the

mean vector βCV of coefficients with zeros at the entries βCV,n where pCV,n < p1se.
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4. Feature Selection with

Sparse-Group Spike-and-Slab and

Expectation Propagation

We introduce a model for Bayesian feature selection that accounts for between- and

within group sparsity (Sections 4.1 and 4.2). We derive the closed-form solutions

of the corresponding expectation propagation updates of the model parameters

(Sections 4.3 and 4.4). Finally, we identify the arising numerical obstacles and

present our implementation (Sections 4.5 and 4.6).

4.1. Feature selection with grouped features

Consider the linear regression setting from equation (3.3). Without loss of gener-

ality we set i = P in the following, with y = XP and X = (X1, . . . , XN) = (xmn),

m = 1, . . . ,M , n = 1, . . . , N . As such, the linear model in this chapter will reduce

to:

ym =
N∑
n=1

βn · xmn + εm, (4.1)

where the βn are the regression coefficients and εm are independent, identically

distributed (iid) variables (errors) distributed according to N (0, σ2
0). Equation

(4.1) is equivalent to the matrix notation

y = X · β + ε, (4.2)

with vectors y, β, ε and data matrix X. If we assume that most βn are effectively

equal to zero, we have the setting of sparse regression. Furthermore, we consider
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that there is an inherent grouping or map G of the variables (X1, . . . , XN) such

that in every group g with corresponding features (Xn)n∈G−1(g), there are only

a few variables with a pronounced influence on y while the other variables from

this group can be neglected (or there is no influence from group g on y). This

corresponds to the following regression scheme:

ym =
G∑
g=1

∑
n∈G−1(g)

βn · xmn + εm, (4.3)

where for every group g some or none of the regression coefficients (βn)n∈G−1(g)

are different from zero. Of course, equation (4.3) is the same as equation (4.1)

but with a different ordering of the features, so it is up to the feature selection

algorithm to make use of the grouping information.

We do not consider the intercept in the regression explicitly. There are two

ways to deal with the intercept: Either one centers the response y around its mean

(y ← y − ȳ) in the beginning, or one adds a column X0 = (1, . . . , 1) to the data

matrix and a coefficient β0 to the vector of coefficients, this way modeling the

intercept as an additional feature (within its own group of size one).

The grouping of the variables can be understood as separating the columns of

the feature matrix X into different blocks, with a corresponding separation of the

vector of coefficients. This is illustrated in Figure 4.1 as a cartoon of the equation

y = Xβ + ε with grouping into six groups.

4.2. Spike-and-slab for between- and within-group

sparsity

We will expand the Bayesian spike-and-slab framework from the last chapter (see

equation (3.9)) to suit the regression scheme from equation (4.3). To this end,

we introduce another auxiliary variable Γ = (Γ1, . . . ,ΓG) ∈ {0, 1}G which handles

the between-group sparsity while the Z variable handles the within-group sparsity,

given the value of Γ.

Given the data (y,X) and a grouping G of the features in analogy to Sec-

tion 3.5, the following factorization of the true posterior distribution P(β, Z,Γ) =
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4.2. Spike-and-slab for between- and within-group sparsity

Figure 4.1.: Representation of y = Xβ+ε with grouping as color-coded rectangles.

P(β, Z,Γ|y,X) holds true (see also equation (3.14)):

P(β, Z,Γ|y,X) =
P(y|β,X) · P(β|Z) · P(Z|Γ) · P(Γ)

P(y|X)
=

1

P(y|X)

4∏
i=1

fi(β, Z,Γ),

(4.4)

P(y|β,X) = f1(β, Z,Γ) = N (y|Xβ, σ2
0I), (4.5)

P(β|Z) = f2(β, Z,Γ) =
N∏
n=1

(
Zn · N (βn|0, σ2

slab) + (1− Zn) · δ(βn)
)
, (4.6)

P(Z|Γ) = f3(β, Z,Γ) =
N∏
n=1

(
ΓG(n) · Bern(Zn|pn) + (1− ΓG(n)) · δ(Zn)

)
,

(4.7)

P(Γ) = f4(β, Z,Γ) =
G∏
g=1

Bern(Γg|πg). (4.8)

The two-fold group sparsity assumption is realized by a refined spike-and-slab

(equations (4.6) and (4.7)). If ΓG(n) = 1 for a certain n and Zn = 1, then the

corresponding βn is different from zero, realized by βn drawn from the distribution

N (0, σ2
slab) with a large σslab, while if ΓG(n) = 1 but Zn = 0 or ΓG(n) = 0 and

subsequently Zn = 0 we have βn = 0 with βn shrunken to zero by δ(·). This way

the variables Γ1, . . . ,ΓG code for the between-group sparsity while for a fixed g the

variables (Zn)n∈G−1(g) code for the within-group sparsity.
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4. Feature Selection with Sparse-Group Spike-and-Slab and Expectation Propagation

4.3. Expectation propagation for sparse-group

spike-and-slab

Given the data (y,X) and the grouping of features G, we want to find an estimate

of the sparse coefficient vector β (and probability vectors p and π). To this end, we

apply the algorithmic framework called expectation propagation (EP, presented in

Section 3.5.2).

In our implementation of the EP algorithm, the procedure is based on the fol-

lowing approximation between the factorized true posterior distribution P and the

likewise factorized approximate posterior distribution Q (see equations (3.14) and

(3.15)):

P(β, Z,Γ) ≈ Q(β, Z,Γ),

where P(β, Z,Γ) =
1

P(y|X)

4∏
i=1

fi(β, Z,Γ) (see Eq. (4.4)), (4.9)

and Q(β, Z,Γ) =
1

Z
·

4∏
i=1

f̃i(β, Z,Γ), (4.10)

with f̃1(β, Z,Γ) = s̃1 · N (β|m̃1, Ṽ1), (4.11)

f̃2(β, Z,Γ) = s̃2 ·
N∏
n=1

N (βn|m̃2,n, Ṽ2,n) · Bern(Zn|p̃2,n), (4.12)

f̃3(β, Z,Γ) = s̃3 ·
N∏
n=1

Bern(Zn|p̃3,n) · Bern(Γg(n)|π̃3,n), (4.13)

f̃4(β, Z,Γ) = s̃4 ·
G∏
g=1

Bern(Γg|π̃4,g), (4.14)

and thus Q(β, Z,Γ) = N (β|m̃, Ṽ ) ·
G∏
g=1

Bern(Γg|π̃g) ·
N∏
n=1

Bern(Zn|p̃n). (4.15)

The parameters s̃1 to s̃4 ensure that f̃iQ\i and fiQ\i integrate up to the same

value. The particular form of Q in equation (4.15) as a product of the terms in

equations (4.11) to (4.14) (divided by the normalization factor Z) follows from the

above mentioned properties of exponential family distributions (see Appendix A

and B).
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4.4. Expectation propagation update operations

The EP algorithm starts with an initial guess for the parameters m̃, Ṽ , p̃ and π̃ of

Q and the parameters of the functions f̃i and iteratively matches the expectations

under Q and P of the sufficient statistics of Q until convergence in the parameters

is reached:

EQ
[
(β, ββT , Z,Γ)T

] !
= EP

[
(β, ββT , Z,Γ)T

]
. (4.16)

The sufficient statistic of a normal distribution N (x|µ, σ2) is (x, x2), while the

sufficient statistic of a (N -dimensional) multivariate normal distributionN (x|µ,Σ)

is (x, xxT ) with x ∈ RN and xxT ∈ RN×N . The sufficient statistic of a Bernoulli

distribution Bern(x|p) is just x (see Appendix A and Appendix B).

Since P and Q are factored (equations (4.9) and (4.10)), we update the param-

eters in expectation propagation by taking turns updating f̃1, f̃2, f̃3 and f̃4. The

update operations are derived in the next section.

4.4. Expectation propagation update operations

We need to initialize all parameters of the respective normal and Bernoulli distribu-

tions before the start of the expectation propagation algorithm. It is an advantage

of a Bayesian framework that one can include prior information into these initial

parameters and give the algorithm a “head start”. This is especially useful for

the prior probabilities for feature inclusion (p0) and/or group inclusion π0. If ini-

tial probabilities are not provided, we set the default parameters p0,n = π0,g = 1
2
,

n = 1, . . . , N , g = 1, . . . , G. Also, the parameter σ0 for the random noise needs

to be chosen. George and McCulloch [30] include the estimation of σ0 by adding

another prior for this parameter that then needs to be updated along with the

other probabilities (they use an inverse-gamma prior distribution). In this work,

to reduce the mathematical and numerical overhead, we initialize this parameter

in the beginning and keep it untouched during the algorithm. Our simulations

do not indicate that using an inverse-gamma prior distribution is advantageous

(Section 5.1.1). Finally we need to initialize the parameter σslab, we discuss and

analyze this parameter in Section 5.1.1.

An important aspect is numerical stability. Since we multiply many (small)

probabilities, we do not use the probability parameters of the Bernoulli distribu-
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4. Feature Selection with Sparse-Group Spike-and-Slab and Expectation Propagation

tions directly, but instead their logit-transformed versions: r = logit(p) = log p
1−p

and % = logit(π), as was done by Hernández-Lobato [42]. Further numerical issues

are discussed in Section 4.5.

In the expectation propagation framework from Section 3.5.2, more precisely

the factorizations in equations (3.14) and (3.15), we do not consider the factored

distributions f̃i, i = 1, . . . , 4 directly, but rather we use the fully factorized [11, p.

516] feature specific distributions f̃i,n, i = 1, . . . , 4, n = 1, . . . , N . In the case of

f̃2,n this translates to Ṽ2 being a diagonal matrix (instead of a dense matrix) and

the feature-wise variances are updated independently of each other. We capture

the dependent effects with the initialization of the Ṽ1 matrix and those effects are

translated into the Ṽ parameter matrix in each iteration of the algorithm. Thus

we do not match the expectations under Q and P of the original sufficient statistic

(β, ββT , Z,Γ), but rather element-wise (βn, β
2
n, Zn,Γn) separately.

4.4.1. Initialization of the parameters

The values of the f̃1 parameters are easy to obtain and do not need to be re-

estimated by the algorithm since f̃1 and f1 have the same form (a multivariate

normal distribution), thus we derive the exact approximations for m̃1 and Ṽ1 di-

rectly from the ordinary least squares estimate β ≈ β̂ = (XTX)−1XTy. It is more

convenient to save Ṽ −1
1 and Ṽ −1

1 m̃1 for the remaining operations of the algorithm.

Also, Ṽ −1
1 might not be of full rank and thus Ṽ1 might not exist and in turn m̃1

would not be unique. Thus, the initial and final estimates for the parameters of

f̃1 are given by:

Ṽ −1
1 =

1

σ2
0

XTX,

Ṽ −1
1 m̃1 =

1

σ2
0

XTy.

The initial guess for the variance Ṽ2,n in f̃2,n is the prior probability of choosing

feature n multiplied by the variance of the slab. The initial estimate for m̃2,n is

the non-informative ~0 and the initial values for p̃2,n as well as p̃3,n and π̃3,n will
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4.4. Expectation propagation update operations

default to p0 and π0 (more precisely, their logit versions).

Ṽ2 = σ2
slab · p0,

Ṽ −1
2 m̃2 = ~0,

r̃2 = r0,

r̃3 = r0,

%̃3 = %0.

For the parameters of f̃4 we have the same situation like f̃1: Both f̃4 and f4 have

the same form (a product of G Bernoulli distributions) and thus we set π̃4 equal

to π0 (respectively the logit counterparts) and do not touch these parameters for

the rest of the algorithm:

%̃4 = %0.

With all these parameters of the factor distributions initialized we can finally

initialize the parameters of the product distribution Q, too. This is done by using

the properties of the product of normal and Bernoulli distributions given in the

Appendix A and B. Thus the initialization for Q is given by:

Ṽ =
(
Ṽ −1

1 + Ṽ −1
2

)−1

,

m̃ = Ṽ
(
Ṽ −1

1 m̃1 + Ṽ −1
2 m̃2

)
,

r̃ = r0,

%̃ = %0.

4.4.2. Iterative updates of the parameters

After initializing all the parameters we update iteratively the parameters of the f̃i

distributions. We present the iterative updates with the following theorem:

Theorem 1. Let P(β, Z,Γ) given by equations (4.4)-(4.8) be the true posterior

distribution and let Q(β, Z,Γ) given by equations (4.10)-(4.15) be an approximation

to P. Then we can apply the expectation propagation algorithm and the iterative
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4. Feature Selection with Sparse-Group Spike-and-Slab and Expectation Propagation

updates for the parameters of Q are given by:

Ṽ =
(
Ṽ −1

1 + Ṽ −1
2

)−1

,

m̃ = Ṽ
(
Ṽ −1

1 m̃1 + Ṽ −1
2 m̃2

)
,

r̃n = r̃2,n + r̃3,n,

%̃g = %̃4,g +
∑

l:G(l)=g

%̃3,l,

where the iterative updates for the parameters Ṽ1, m̃1, Ṽ2, m̃2, r̃2, r̃3, %̃3 and %̃4

will be given in the proof.

Proof. The expectation propagation algorithm matches expectations under P and

Q of the sufficient statistics of Q (equation (4.16)) by iteratively minimizing the

Kullback-Leibler divergence KL(P||Q). Since P and Q are factored (equations

(4.9) and (4.10)), this is done by iterating through the factors f̃i, i = 1, . . . , 4 and

updating their respective parameters and Q in turns. In fact, only i = 2, 3 are

considered, since f1 and f̃1 respectively f4 and f̃4 have the same form by choice.

As such, the values for Ṽ1 and m̃1 (respectively Ṽ −1
1 and Ṽ −1

1 m̃1) as well as %̃4

do not need to be updated, see Section 4.4.1, and thus their respective initial and

final values are given by:

Ṽ −1
1 =

1

σ2
0

XTX,

Ṽ −1
1 m̃1 =

1

σ2
0

XTy,

%̃4 = %0.

This leaves us with the updates for f̃2 and f̃3. First, we cycle through the f̃2,n

and find the parameters of the updated f̃new
2,n via finding Q\2,n as described in

Section 4.3, then updating Q with the rules for the product of exponential family

distributions given in the Appendix A and B. Second, the same is repeated for f̃3

by cycling through the factors f̃3,n and finding the parameters of the updated f̃new
3,n

via finding Q\3,n and afterwards updating Q like before.

Updates for f̃2,n: The parameters Ṽ
\2,n
n , m̃

\2,n
n and r̃

\2,n
n of Q\2,n ∝ Q/f̃2,n are
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4.4. Expectation propagation update operations

derived by using the rules for quotients of Bernoulli or normal distributions:

Ṽ \2,nn =
(
Ṽ −1
nn − Ṽ −1

2,n

)−1

,

m̃\2,nn = Ṽ \2,nn ·
(
Ṽ −1
nn · m̃n − Ṽ −1

2,n · m̃2,n

)
,

r̃\2,nn = r̃n − r̃2,n.

We find the updated f̃new
2,n by minimizing the Kullback-Leibler divergence between

f2,n · Q\2,n and f̃new
2,n · Q\2,n:

KL(f2,n · Q\2,n ·
1

N
||f̃new

2,n · Q\2,n ·
1

Ñ
),

where N and Ñ are the appropriate normalizing constants.

Since we are only updating the marginal parameters r̃new
2,n , Ṽ new

2,n and m̃new
2,n , we

factorize Q\2,n and N in respect to n and will thus minimize

KL(f2,n · Q\2,nn · 1

Nn
||f̃new

2,n · Q\2,nn · 1

Ñn
) = KL(P̂n||Qnew

n ), (4.17)

where f2,n · Q\2,nn =
(
Zn · N (βn|0, σ2

slab) + (1− Zn) · δ(βn)
)
· N (βn|m̃\2,nn , Ṽ \2,nn )

· Bern(Zn|p̃\2,nn ) · Bern(ΓG(n)|π̃G(n))

and thus Nn =

∫ +∞

−∞

∑
Zn=0,1

∑
ΓG(n)=0,1

f2,n · Q\2,nn dβ

=p̃\2,nn · N (m̃\2,nn , Ṽ \2,nn + σ2
slab) + (1− p̃\2,nn ) · N (m̃\2,nn , Ṽ \2,nn ).

Minimizing (4.17) is the same as matching the expectations of the sufficient statis-

tics Zn, βn and β2
n under the probabilities from P̂n and Qnew

n , this gives us the

updated parameters p̂new
n , m̂new

n and V̂ new
n of Qnew

n (here we dropped all subscripts

n or 2,n and superscripts \2,n for better readability):

p̂new ≡ EQnew [Z]
!

= EP̂ [Z] =
∑
Z=0,1

∫ ∞
−∞

∑
Γ=0,1

Z · P̂(β, Z,Γ)dβ

= 0 +
1

N
N (m̃, Ṽ + σ2

slab) · p̃ · π̃ +
1

N
N (m̃, Ṽ + σ2

slab) · p̃ · (1− π̃)

=
p̃

N
· N (m̃, Ṽ + σ2

slab),
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4. Feature Selection with Sparse-Group Spike-and-Slab and Expectation Propagation

m̂new ≡ EQnew [β]
!

=EP̂ [β] = m̃+ Ṽ · ∂
∂m̃

N, (4.18)

V̂ new ≡ EQnew [β2]− EQnew [β]2
!

=EP̂ [β2]− EP̂ [β]2 = Ṽ − Ṽ 2 ·
(

(
∂

∂m̃
N)2 − 2 · ∂

∂Ṽ
N

)
.

(4.19)

Equalities (4.18) and (4.19) are from Minka [65, p. 15].

Remember, these are the new parameters of Qnew
n . To find the updated param-

eters of f̃new
2,n , we need to divide Qnew

n by Q\2,nn and use the rules for the quotient

of Bernoulli or normal distributions (see Appendix A and B):

r̃new
2,n = r̂new

n − r̃\2,nn ,

Ṽ new
2,n = (1/V̂ new

n − 1/Ṽ \2,nn )−1,

m̃new
2,n = Ṽ new

2,n · (m̂new
n /V̂ new

n − m̃\2,nn /Ṽ \2,nn ).

After some calculus and arithmetic (find the derivatives of Nn with respect to

m̃
\2,n
n and Ṽ

\2,n
n , then plug-in p̂new

n , m̂new
n and V̂ new

n and rearrange) we get the final

analytical parameter updates of r̃new
2,n , Ṽ new

2,n and m̃new
2,n :

r̃new
2,n =

1

2
·

(
log

(
Ṽ
\2,n
n

Ṽ
\2,n
n + σ2

slab

)
+ (m̃\2,nn )2 ·

(
1/Ṽ \2,nn − 1/(Ṽ \2,nn + σ2

slab)
))

,

(4.20)

Ṽ new
2,n =

1

a2
n − bn

− Ṽ \2,nn , (4.21)

m̃new
2,n = m̃\2,nn − an · (Ṽ new

2,n + Ṽ \2,nn ), (4.22)

with an = paux
n · m̃

\2,n
n

Ṽ
\2,n
n + σ2

slab

+ (1− paux
n ) · m̃

\2,n
n

Ṽ
\2,n
n

,

bn = paux
n · (m̃

\2,n
n )2 − Ṽ \2,nn − σ2

slab

(Ṽ
\2,n
n + σ2

slab)2
+ (1− paux

n ) · (m̃
\2,n
n )2 − Ṽ \2,nn

(Ṽ
\2,n
n )2

and paux
n = sigmoid(r̃new

2,n + r̃\2,nn ).

These do not rely on the parameters of Qnew
n anymore, so in practice one calculates

the updates of f̃new
2,n directly from the parameters of Q\2,n.

The updates for Q after updating f̃new
2,n are derived from the rules for the product
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4.4. Expectation propagation update operations

of Bernoulli and normal distributions:

Ṽ =

(
Ṽ −1

1 +
(
Ṽ new

2

)−1
)−1

, (4.23)

m̃ = Ṽ

(
Ṽ −1

1 m̃1 +
(
Ṽ new

2

)−1

m̃new
2

)
,

r̃n = r̃new
2,n + r̃3,n,

%̃ does not change.

Updates for f̃3,n: The parameters r̃
\3,n
n and %̃

\3,n
n of Q\3,n ∝ Q/f̃3,n are derived by

using the rules for quotients of Bernoulli distributions:

%̃\3,nn = %̃G(n) − %̃3,n,

r̃\3,nn = r̃n − r̃3,n.

We find the updated f̃new
3,n by minimizing the Kullback-Leibler divergence between

f3,n · Q\3,n and f̃new
3,n · Q\3,n:

KL(f3,n · Q\3,n ·
1

N
||f̃new

3,n · Q\3,n ·
1

Ñ
),

where N and Ñ are the appropriate normalizing constants.

Since we are only updating the marginal parameters r̃new
3,n and %̃new

3,n , we factorize

Q\3,n and N with respect to n and will thus minimize

KL(f3,n · Q\3,nn · 1

Nn
||f̃new

3,n · Q\3,nn · 1

Ñn
) = KL(P̂n||Qnew

n ), (4.24)

where f3,n · Q\3,nn =
(
ΓG(n) · Bern(Zn|p0,n) + (1− ΓG(n)) · δ(Zn)

)
· N (βn|m̃\3,nn , Ṽ \3,nn )

· Bern(Zn|p̃\3,nn ) · Bern(ΓG(n)|π̃\3,nn )

and thus Nn =

∫ +∞

−∞

∑
Zn=0,1

∑
ΓG(n)=0,1

f3,n · Q\3,nn dβ

=π̃\3,nn ·
(
p̃\3,nn p0,n + (1− p̃\3,nn )(1− p0,n)

)
+ (1− π̃\3,nn ) · (1− p̃\3,nn ).

Minimizing (4.24) is the same as matching the expectations of the sufficient statis-

tics Zn, βn and β2
n under the probabilities from P̂n and Qnew

n , this gives us the

updated parameters p̂new
n and π̂new

n of Qnew
n (here we drop all subscripts n or 3,n
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and superscripts \3,n for better readability):

p̂new ≡ EQnew [Z]
!

= EP̂ [Z] =
∑
Z=0,1

∫ ∞
−∞

∑
Γ=0,1

Z · P̂(β, Z,Γ)dβ

=
p̃π̃p0

N

π̂new ≡ EQnew [Γ]
!

= EP̂ [Γ] =
∑
Z=0,1

∫ ∞
−∞

∑
Γ=0,1

Z · P̂(β, Z,Γ)dβ

=
p̃π̃p0 + (1− p̃)(1− p0)π̃

N
.

These are the new parameters of Qnew
n . To find the updated parameters of f̃new

3,n ,

we need to divide Qnew
n by Q\3,nn and use the rules for the quotient of Bernoulli

distributions (see Appendix A):

r̃new
3,n = r̂new

n − r̃\3,nn ,

%̃new
3,n = %̂new

n − %̃\3,nn .

After some arithmetic operations we get the final analytical parameter updates of

%̃new
3,n and r̃new

3,n :

%̃new
3,n = − log(1− p̃\3,nn ) + log(p̃\3,nn · p0,n + (1− p̃\3,nn ) · (1− p0,n))

= log(1 + p0,n · (exp(r̃\3,nn )− 1)), (4.25)

r̃new
3,n = logit(π̃\3,nn · p0,n)

= log p0,n − log(1− p0,n + exp(−%̃\3,nn )). (4.26)

These do not rely on the parameters of Qnew
n , so in practice one calculates the

updates of f̃new
3,n directly.

The updates for Q after updating f̃3,n are derived from the rules for the product

of Bernoulli distributions:

Ṽ does not change,

m̃ does not change,

%̃G(n) = %̃4,G(n) +
∑

l:G(l)=G(n)

%̃new
3,l ,

r̃n = r̃2,n + r̃new
3,n .
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Corollary 1. If p0,n = 0.5, the update operations for %̃new
3,n and r̃new

3,n are given by:

%̃new
3,n = log(0.5) + log(1 + exp(r̃\3,nn )),

r̃new
3,n = − log(1 + 2 exp(−%̃\3,nn )).

Thus, the (reasonable) choice of p0,n = 0.5 is numerically advantageous, too,

since it allows for the efficient use of log1p and logsumexp functions in the im-

plementation of the update operations.

4.5. Numerical issues and solutions

Note that the calculation of Ṽ in equation (4.23) is the bottleneck of the algorithm’s

complexity. In the case of N > M (more features than observations) there is a

more efficient way to invert the matrix from equation (4.23), that is the Woodbury

formula (see Hernández-Lobato et al. [41]):

Ṽ =
(
Ṽ −1

1 + Ṽ −1
2

)−1

= Ṽ2 − Ṽ2X
T
(
σ2

0I +XṼ2X
T
)−1

XṼ2

Instead of inverting an (N × N)-matrix, because of the choice of Ṽ −1
1 = 1

σ2
0
XTX

the Woodbury matrix identity allows us to invert an (M ×M)-matrix instead.

Rarely the variance Ṽ
\2,n
n might be negative before the update operation, in this

case we do not perform an update operation on f̃2,n. In addition, the variance

Ṽ new
2,n might be negative after the corresponding update operation, which is a well

known problem [65]. This arises as a compensation for errors in the first factor

f̃1, but hampers the ability of the expectation propagation algorithm to converge

[78]. To improve convergence, we follow the observations of [42] and apply the

constraint of Ṽ new
2,n > 0, such that we replace its value by a large constant (100)

whenever it turns out to be negative.

Minimizing the Kullback-Leibler divergence is an optimization problem with a

single global optimum which can be found by matching the sufficient statistics as

described above (Section 3.5.2, Bishop [11]). The expectation propagation algo-

rithm is not guaranteed to converge to this global solution, but often converges to
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a fixed point [64]. Furthermore, Minka and Lafferty [66] introduce damping of the

updated factors to secure convergence of expectation propagation:

f̃i,n =
(
f̃new
i,n

)α
·
(
f̃ old
i,n

)1−α
, where α ∈ [0, 1].

By setting α = 0.9 and decaying it by 1% in every step of the algorithm we follow

the advice of [41]. The updated parameters (Ṽ new
2,n )−1, (Ṽ new

2,n )−1m̃new
2,n , r̃new

2,n , r̃new
3,n

and %̃new
3,n before updating the parameters of Q are then given by:

(Ṽ new
2,n )−1 ← α · (Ṽ new

2,n )−1 + (1− α) · (Ṽ old
2,n )−1,

(Ṽ new
2,n )−1m̃new

2,n ← α · (Ṽ new
2,n )−1m̃new

2,n + (1− α) · (Ṽ old
2,n )−1m̃old

2,n,

r̃new
2,n ← α · r̃new

2,n + (1− α) · r̃old
2,n,

r̃new
3,n ← α · r̃new

3,n + (1− α) · r̃old
3,n,

%̃new
3,n ← α · %̃new

3,n + (1− α) · %̃old
3,n.

4.6. Implementation

In this chapter, we derived a new method for Bayesian sparse-group feature selec-

tion with expectation propagation. Our implementation of the method within the

statistical programming language and environment R [74] is available as a pack-

age (“dogss”). The computationally most demanding operations (the Woodbury

formula along with matrix inversion and matrix multiplication) were implemented

efficiently in C++ and called via the R package RcppEigen [9]. The function

call within R is dogss(X, Y, G) with input data matrix X, response Y and a

vector of group memberships G. If G=NULL, the standard spike-and-slab without

grouping is called. Further parameters that can be specified are the noise vari-

ance σ0 (sigma_0, default 1), the slab variance σslab (sigma_slab, default 2), the

damping parameter α (damping, default 0.9), whether to scale the data before-

hand (standardize, default FALSE), whether to include an intercept (intercept,

default FALSE), the machine precision to determine convergence (tol, default

10−5) and the maximum number of iterations if no convergence is reached be-

fore (iter.max, default 100). The function initializes all parameters, runs through

the iterations until convergence or the maximum number of iterations is reached
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and returns m̃ as an estimate of the vector of coefficients β (m_final) as well as

the feature- and group-wise probabilities p̃ and π̃ (p_features and p_groups).

Furthermore, the cross-validation method cv_dogss() with the same parameters

like dogss() and the additional parameter nfolds (default k = 10) runs k-fold

cross-validation and returns the cross-validated estimates of the parameters.

4.7. Summary

We introduced a model for Bayesian feature selection that accounts for between-

and within group sparsity. We derived the closed-form solutions of the correspond-

ing expectation propagation updates of the model parameters to obtain a fast and

deterministic algorithm for this framework. Though the procedure gives rise to

some numerical issues, we presented solutions to these problems. Thus we were

able to provide a new and fast sparse-group Bayesian feature selection method

along with an efficient implementation.
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5. Evaluation

In this chapter we compare our Bayesian model and algorithmic framework to al-

ternative methods for the task of feature selection with sparsity on the between-

and within-group level. To this end, we study signal recovery and network recon-

struction by means of neighborhood selection. We apply the methods to simulated

and experimental data.

5.1. Results on simulated data

We study two simulation settings:

1. signal recovery (Section 5.1.1): Simulations from y = Xβ + ε with known

β and noise ε, where we try to recover β from the observations y and X,

make predictions on held-out data and measure computing time,

2. network reconstruction (Section 5.1.2): Simulated Gaussian graphical

networks with random observations based on known precision matrices, where

we want to recover the correct networks and make predictions on held-out

data.

We compare six different methods:

(i) dogss: Our implementation of our new method (see Chapter 4), the sparse-

group Bayesian feature selection with expectation propagation. dogss is an

abbreviation for double group-sparse spike-and-slab.

(ii) ssep: Our implementation (as a special case of dogss without grouping of

features) of the standard spike-and-slab (see Chapter 3) with expectation

propagation.

43



5. Evaluation

(iii) sgl: The sparse-group lasso from Simon et al. [80], implemented within their

R package SGL.

(iv) gglasso: The group lasso from Yuan and Lin [96], implemented by Yang

and Zou [95] within the R package gglasso.

(v) lasso: The standard lasso from Tibshirani [88], implemented by Friedman

et al. [28] within the R package glmnet.

(vi) bsgsss: An implementation of a different sparse-group Bayesian feature se-

lection with Gibbs sampling from Xu and Ghosh [94], implemented by Liquet

et al. [55] within the R package MBSGS.

All simulations, implementations, top-level method calls and calculations for eval-

uation of the results were done in R, a statistical programming language and

environment [74].

One way to visually evaluate the performance of feature selection methods is

a needle plot. The needle plot is a bar plot where every feature corresponds to

one bar, aligned by index n along the x-axis. The height of the bar (relative to

the y-axis) corresponds to the value of the regression coefficient βn of the n-th

feature. The “original” needle plot shows the true coefficients β, while the needle

plots corresponding to the different feature selection methods show the retrieved

estimates β̂. Thus one can inspect how well a method recovers the true signal and

identify advantages/disadvantages of different methods.

The needle plot shows only one final estimate of a method. If a ranking of re-

trieved coefficients of the features is provided (which is the case for all methods

considered), one can measure the performance of a method in respect to correctly

identified non-zero coefficients (without considering the actual value of the co-

efficients) along the ranking. This is done by evaluating the receiver operating

characteristics (ROC) and precision-recall (PR) curves. These curves are based on

the measures of true-positive rate (TPR, sensitivity or recall), false-positive rate

(FPR or 1-specificity) and precision (Prec). For a given gold standard of positive

and negative labels (for signal recovery: the true non-zero and zero elements of

β, where the number of non-zero elements is k, for network reconstruction: the

number k of true edges within the network graph), we assess the performance of an
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5.1. Results on simulated data

algorithm to retrieve these labels along a tuning parameter λ by counting the num-

ber of true positives TP (the algorithm retrieves a correct non-zero element) and

false positives FP (the algorithm retrieves an element as non-zero that is actually

zero):

TPR(λ) =
TP(λ)

k
,

FPR(λ) =
FP(λ)

N∗ − k
,

Prec(λ) =
TP(λ)

TP(λ) + FP(λ)
,

where N∗ is here the number of all features for the problem of signal recovery

(N∗ = N) or the number of all possible edges N∗ = (P 2 − P )/2 in the undirected

network graph of P nodes. The ROC curve plots the false-positive rate against the

true-positive rate along the tuning parameter λ, while the precision-recall curve

plots the true-positive rate against the precision. Thus every point on the plotted

line gives the TPR and FPR (or TPR and precision) for a certain value of the

tuning parameter. The “best” value of the tuning parameter would be a point

close to the upper-left corner of the ROC curve plot and close to the upper-right

corner of the PR curve plot. If we do not wish to give a certain λ? as cutoff, but

rather judge the performance of an algorithm regardless of the choice of the cutoff,

we can assess the performance by calculating the area under the (ROC or PR)

curve, or AUROC respectively AUPR. An estimator that chooses positive and

negative labels randomly has AUROC = 0.5 and AUPR = k/N∗.

The ranking of the recovered features for the Bayesian approaches (dogss, ssep

and bsgsss) is done via the probabilities associated with every feature. The

ranking of features for the lasso methods (lasso, gglasso and sgl) is along the

parameter λ. Figure 5.1 shows example ROC curves and PR curves for different

methods applied to the signal reconstruction problem described in Section 5.1.1,

while Table 5.1 gives the corresponding AUROC and AUPR values.

We also compare running times of the algorithms for the problem of signal

recovery, and to this end we set the machine precision tolerance of all methods

to the same value (10−5 = 0.00001) and allowed a maximum of 1000 iterations

each. On top of this we provided the same λ sequence (of 100 λ values) to all lasso

45



5. Evaluation

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
TPR

P
re

ci
si

on

Precision−Recall curve

method dogss
ssep

sgl
gglasso

lasso
bsgsss

random

Figure 5.1.: Examples for ROC and Precision-Recall curves for the results of

different feature selection methods, along with a random estima-

tor. The parameters for the simulated data are (M,N,G, k, σ0) =

(30, 50, 10, 10, 1).

method dogss ssep sgl gglasso lasso bsgsss random

AUROC 0.97 0.85 0.76 0.84 0.82 0.97 0.5

AUPR 0.93 0.85 0.55 0.43 0.59 0.92 0.2

Table 5.1.: AUROC and AUPR values for the example ROC and PR curves in

Figure 5.1.
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5.1. Results on simulated data

methods, which is the one calculated by the implementation within the glmnet

package of the standard lasso.

As a complement to the ROC/PR curve analysis, we evaluate the prediction

errors of the different methods. For every scenario, we generate 100 additional

observations as a test set. We calculate relative prediction errors on the test set

using the retrieved parameters from the training data. In signal recovery, this

corresponds to the following relative residual sum of squared errors E for test data

ytest = (ym)100
m=1 and Xtest = (xmn), m = 1, . . . , 100, n = 1, . . . , N :

E =

∑100
m=1(ym −

∑N
n=1 β̂nxmn)2∑100

m=1 y
2
m

.

In network reconstruction, we have test data Xtest = (xmp), m = 1, . . . , 100, p =

1, . . . , P and retrieve a regression coefficient matrix B̂ = (β̂p1p2), p1, p2 = 1, . . . , P

with β̂pp = 0, from the neighborhood selection framework:

E =

∑100
m=1

∑P
p1=1(xmp1 −

∑P
p2=1
p2 6=p1

βp1p2xmp2)
2∑100

m=1

∑P
p=1 x

2
mp

.

In both cases, we choose the values β̂ or B̂ for prediction by cross-validation (see

Section 3.6).

5.1.1. Simulations: Signal recovery

In this section we will show the capability of our model and algorithm to ex-

tract meaningful results from data with grouped features. The usefulness of our

proposed algorithm and implementation should be measured on three aspects:

• its ability to choose the correct/important features,

• its ability to recover the correct coefficients of these features,

• computing time.

To this end, we generate M random observations of N features, each drawn from

a normal distribution with mean 0 and variance 1, this gives the data matrix X.

For now, the features are drawn independently of each other. The features are

47



5. Evaluation

divided into G groups by sampling independently for every feature a group index

from {1, . . . , G}, thus we have different numbers of features (N1, . . . , NG) in every

group. The resulting (M × N)-matrix X of observations is multiplied with a k-

sparse coefficient vector β of length N (k out of the N coefficients are different

from zero, drawn independently from a uniform distribution on [−5, 5]). The k

non-zero coefficients are are only chosen within 3 random groups, thus we have

sparsity on the group level with 3 non-zero groups and G− 3 groups with all zero

coefficients. Finally we add some noise ε ∼ N (0, σ2
0) and obtain the response

vector y = Xβ + ε.

We feed the matrix X, the response y and the group indices into the differ-

ent algorithms and compare the performance on the resulting estimates β̂ of the

vector of coefficients. See an example of the reconstructed coefficient vectors as

a needle plot in Figure 5.2 for the setting of (M,N,G, k, σ0) = (30, 50, 10, 10, 1).

In this simulation we can already see that the Bayesian approaches (dogss, ssep,

bsgsss) do a very good job of reconstructing the correct signals. The group lasso

gglasso chooses whole groups without within-group sparsity and as such has many

false positives. The standard lasso and the sparse-group lasso sgl choose mostly

correct coefficients, but underestimate their values.

Influence of M , N , G and k

First we analyze the performance on three conceptually different sets of parameters

(M,N,G, k) with fixed σ0 = 1 and columns of X drawn independently.

We evaluate the results of the methods on the simulated data on these aspects:

• boxplots of the AUROC and AUPR from 100 simulations with the same set

of parameters,

• boxplots of the relative prediction error on 100 additionally generated obser-

vations (test sample).

The choice of parameters (M,N,G, k, σ0) for the different settings of this section

and the following ones is given in Table 5.2.

The simulation setting “small” of (M,N,G, k, σ0) = (30, 30, 5, 5, 1) describes a

scenario where we actually have enough observations at hand (M = N) for pre-
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Figure 5.2.: Needle plot for signal recovery: Results from one simulation with pa-

rameters (M,N,G, k, σ0) = (30, 50, 10, 10, 1). Features are aligned by

indices along the x-axis, the height of bars corresponds to the value

of the coefficient. The “original” box shows the true signal, while

the other six boxes show the retrieved coefficients from six different

methods.
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M N G k σ0 corr. structure

small 30 30 5 5 1 independent

medium 30 100 20 10 1 independent

large 100 1000 100 10 1 independent

noise 30 100 20 10

0

independent

0.1

1

3

5

correlation 30 100 20 10 1

independent

pairwise

groupwise

Table 5.2.: Choice of parameters for the different simulation settings in signal

recovery.

dicting all of the coefficients, but we still have sparsity on the between-group and

within-group level (G = 5, k = 5). Figure 5.3 shows the results, aggregated from

100 simulations. The AUROC for all methods except the group lasso is very high

(almost 1 in many cases). The Bayesian methods perform a bit better than the

standard lasso and sparse-group lasso. In regard of the AUPR measure, this trend

is more remarkable, while the group lasso performs even worse. The group lasso

does not take within-group sparsity into account and as such chooses too many

coefficients which end up as false positives, we will see this behavior in all subse-

quent simulation scenarios. On the prediction error measure, we can see the same

trends, with the Bayesian methods showing best results, while sparse-group lasso

and lasso are close and group lasso performing worst. In this “small” simulation

setting there is almost no difference if we include the grouping information or not:

comparison of dogss versus ssep and sgl versus lasso shows basically no differ-

ence. We see important differences in the computing time: the Gibbs sampling

approach bsgsss takes roughly 1000 times as long as the expectation propagation

based calculations and the group lasso or standard lasso. The sparse-group lasso

is approximately 100 times slower than the standard lasso.
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5.1. Results on simulated data

Figure 5.3.: Boxplots of AUROC, AUPR, prediction error and computing time for

scenario 1: results for (M,N,G, k, σ0) = (30, 30, 5, 5, 1) over 100 runs.
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The cutoff values for the prediction for all methods except bsgsss are derived

by 10-fold cross validation with the 1se-rule. The predicting coefficients for the

bsgsss method are recovered as the median values of the coefficients from the

MCMC simulations.

The simulation setting “medium” of (M,N,G, k, σ0) = (30, 100, 20, 10, 1) de-

scribes a scenario where we have more features than observations. We can see some

important differences between the methods in regards of the AUROC, AUPR and

prediction error measures: The two Bayesian approaches with two levels of group

sparsity (dogss and bsgsss) perform the best and nearly identical. The lasso

methods perform worse on the AUROC and AUPR measures than the Bayesian

approaches, but the sparse-group lasso actually has a low prediction error (while

not as low as the prediction errors of dogss and bsgsss). Again, the two ex-

pectation propagation based methods (dogss and ssep) as well the group lasso

and standard lasso have very low run times, while the sparse-group lasso sgl and

the Gibbs sampling based approach bsgsss take about three orders of magnitude

longer. There is also a wide range of the prediction errors with outliers on the

prediction error boxplots for all methods.

The simulation setting “large” of (M,N,G, k, σ0) = (100, 1000, 100, 10, 1) de-

scribes a scenario where we have more features than observations and the number

of features is actually quite high, while the signal is very sparse (N = 1000,

k = 10). The trends from scenario “medium” regarding the AUROC and AUPR

are carried forward: Our approach dogss and the Gibbs sampling bsgsss perform

best, with the standard spike-and-slab ssep in second place, followed by sparse-

group lasso and standard lasso close up, whereas the group lasso performs really

bad. AUROC measures are very high for all methods, but differences are more

pronounced on the AUPR measure. The better results of our method dogss come

at the price of increased run time compared to standard lasso (approximately two

orders of magnitude), but it is still faster than the Gibbs sampling approach or the

sparse-group lasso, which are in turn about two orders of magnitude slower than

the expectation propagation based methods. The sparse-group method dogss per-

forms slightly better than ssep (which does not take grouping information into

account), but the effect is not as big as in the “medium” sized scenario.
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Figure 5.4.: Boxplots of AUROC, AUPR, prediction error and computing time for

scenario 2: results for (M,N,G, k, σ0) = (30, 100, 20, 10, 1) over 100

runs.
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Figure 5.5.: Boxplots of AUROC, AUPR, prediction error and computing time for

scenario 3: results for (M,N,G, k, σ0) = (100, 1000, 100, 10, 1) over

100 runs.
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5.1. Results on simulated data

Influence of noise

Second we evaluate the influence of σ0 on a fixed set of parameters. To this

end, we simulated 100 data sets like in the previous section with (M,N,G, k) =

(30, 100, 20, 10) (the “medium” sized scenario), added noise with σ0 ∈ {0; 0.1; 1; 3; 5}
and compared the performance of the six methods. The input parameter for σ0

for our proposed method and the standard spike-and-slab was set to 1 in all cases.

For every data set, we measured AUROC, AUPR, prediction error and run time

like before, we calculated the median values and show these in Figure 5.6.

We see that the correct specification of the noise parameter is important for our

proposed algorithm and the standard spike-and-slab, too. If the provided noise

parameter is higher than or equal to the actual one, our proposed algorithm gives

good results. If the actual noise level is too high, the expectation propagation

based methods suffer considerably (which can be seen most clearly on the AUPR

measure). The lasso methods do not depend on the specification of the noise pa-

rameter, but their performance deteriorates for increasing noise levels, too, but not

as steep as the Bayesian approaches. The grouped spike-and-slab implementation

(bsgsss) with Gibbs sampling does not depend on the specification of the noise

parameter either (since it samples this parameter from the data), but our simu-

lations give a surprising result: In regards of the AUROC/AUPR measures, the

Gibbs sampling performs equally to our proposed method, while the prediction

error is actually worse for the bsgsss method for higher noise levels. The run

time increases slightly for the expectation propagation based methods (dogss and

ssep) with increasing levels of noise.

Influence of correlated features

Third we assess the influence of the correlation structure between features within

the data matrix X. The first structure we have already seen above, with columns of

the data matrix X drawn independently. The second structure “pairwise” refers to

an overall pairwise correlation between features of 0.5. The third structure “group-

wise” is correlation on the group level: Features within a group have a pairwise

correlation of 0.5, but every two features from different groups are independent.

The parameters (M,N,G, k, σ0) = (30, 100, 20, 10, 1) are chosen like in scenario
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Figure 5.6.: AUROC, AUPR, prediction error and computing time for different

levels of σ0: median values over 100 runs for different methods with

(M,N,G, k) = (30, 100, 20, 10).
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“medium”. The results of these simulations are aggregated in Figure 5.7.

We cannot see many important differences between the performance in regard to

the correlation structure. We see a small drop in AUROC/AUPR performance for

all methods when features are pairwise correlated, while performance is roughly

the same for independent or groupwise correlated features. Run times are different

between correlation structures for the dogss, sgl and standard lasso.

Influence of slab parameter

Last, we evaluate the influence of σslab on a fixed set of (M,N,G, k). Like the

penalty parameter λ for the lasso methods, the slab parameter for the spike-and-

slab methods is a crucial value that needs to be chosen beforehand. But unlike the

λ parameter, which models the sparsity of the model directly and thus can and

should be determined by cross-validation, the slab parameter rather puts a value

to the expected size of the non-zero coefficients.

We simulated 100 data sets like in the previous sections with (M,N,G, k, σ0) =

(30, 100, 20, 10, 1), that is the “medium” scenario, and compared the performance

of our proposed approach and the standard spike-and-slab procedure. The in-

put parameter for σslab for our proposed method and the standard spike-and-slab

was chosen from {0.1; 1; 2; 5; 10; 100}. For every data set, we measured AUROC,

AUPR, prediction error and run time like before, we calculated the median values

and show these in Figure 5.8.

The results for the AUROC and AUPR values are quite stable for our proposed

method, with better results for higher values of the slab parameter. The prediction

error is lowest for the values 2, 5 and 10. The run time increases a great deal for

the value of 100. These results indicate that the slab parameter should be chosen

reasonably in the range of the absolute size of the anticipated coefficients (β, here:

the coefficients were drawn uniform-randomly from [−5; 5]). We note that in this

simulation scenario the standard spike-and-slab benefits from a rather high slab

parameter (at the cost of increased run time).
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Figure 5.7.: Boxplots of AUROC, AUPR, prediction error and computing time

for different correlation structures (uncorrelated, pairwise correlated

or groupwise correlated features): Results from 100 runs for different

methods with (M,N,G, k, σ0) = (30, 100, 20, 10, 1).
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Figure 5.8.: Line plots of average AUROC, AUPR, prediction error and com-

puting time for different σslab parameters: Results aggregated (me-

dian) over 100 runs for different methods with (M,N,G, k, σ0) =

(30, 100, 20, 10, 1).

59



5. Evaluation

5.1.2. Simulations: Network reconstruction

To study the ability of our algorithm to reconstruct gene regulatory networks, we

generate random network graphs with a known structure as Gaussian graphical

models (see Section 3.2), which we compare as a gold standard to the results of

our algorithms. A network graph where edges are just drawn discreetly-uniform

and independent from the set of all possible edges is not a good representation of

a biological network (given the number of nodes and the number of edges, this is

the Erdős–Rényi model [23]). A better model for a gene regulatory network is a

scale-free network, where some genes (transcription factors or hubs) are connected

to many other genes, while most genes are connected to only very few other genes.

That is, the out-degree of a node in this network follows a power law P(k) = k−γ,

where k is the number of edges going out of a node and γ is some positive constant.

In our simulations we also allow for a hub to consist of multiple genes, which is

a good representation of the behavior of biologically similar transcription factors.

Gene regulatory networks (and many other networks arising in different contexts)

show evidence for this scale-free topology structure (see for example [15] and [4]).

We simulate our own (approximately scale-free) network graphs based on four

parameters (the number of nodes P , the number of groups G, the number of hub

nodes H and a random (Erdős–Rényi-like) edge probability q) from the following

procedure:

1. we draw G values (pgs1 , . . . , p
gs
G ) from U(0, 1), these will represent the different

group sizes (normalized such that 1 =
∑

g p
gs
g ),

2. we assign H hub nodes discreetly-uniform to all groups {1, . . . , G},

3. for every node n:

a) If it is not a hub node itself: sample a hub node from a group drawn

from a categorical distribution Cat(pgs1 , . . . , p
gs
G ) on {1, . . . , G} and draw

an edge between node n and the hub node.

b) If there are other hub nodes in this group, we draw additional edges to

these hub nodes with probability 0.5 each.
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Figure 5.9.: An exemplary network generated from parameters (P,G,H, q) =

(100, 3, 10, 0.01). Squares correspond to hub nodes/transcription

factors.

c) Finally we add random edges to any other hub node in the whole graph

with (low) probability q.

The larger q, the more similar to a random Erdős–Rényi model the network gets,

while with q = 0 groups of nodes around their respective hubs are perfectly sepa-

rated from each other.

An example network graph for a randomly generated network with parameters

(P,G,H, q) = (100, 3, 10, 0.01) can be seen in Figure 5.9.

We ran simulations on two different network scenarios which differ in size, the

parameters can be seen in table 5.3. For each scenario, we generated 100 random

network graphs according to the procedure above. For each graph, we generated

100 random observations as a training set and an additional 100 observations as a

test set with the qpgraph package from Castelo and Roverato [14] in R, which also

provides a precision matrix corresponding to the graph and observations. For each

graph, we applied four different setups for the network reconstruction regarding
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5. Evaluation

P G H q

small 100 3 10 0.01

large 1000 20 100 0.001

Table 5.3.: Choice of parameters for the different simulation settings in network

reconstruction.

the size of X and the mapping G:

1. only hub nodes (transcription factors) are considered as features, with orig-

inal grouping provided as in the graph generation,

2. all nodes (genes) are considered as features, with original grouping of the

transcription factors as in the graph generation and additional groups for

the non-hub nodes,

3. all nodes considered as features with a completely random grouping of the

features.

We compare the same methods like in the preceding Section 5.1.1 with the excep-

tion of bsgsss: The Gibbs sampling approach takes too much computing time to

be implemented in a feasible way for network reconstruction. We could include

the sgl method by allowing its implementation to use its default values (threshold

for convergence of 10−3, maximum number of iterations 1000 and a λ sequence

of just 20 values). The gglasso and lasso method use the same threshold and

maximum number of iterations, but with the default length 100 of the λ sequence.

Our implementations dogss and ssep use the same threshold for convergence of

10−3, too, and a maximum of 100 iterations.

Figure 5.10 shows the aggregated results for the small networks. Regarding the

AUROC and AUPR measures, we see that the group lasso is clearly outperformed

by all other methods. Furthermore, the differences between the methods without

grouping information (ssep and lasso) are marginal, but also the sgl method

which explicitly models sparsity on the between- and within- group level does not

show any advantage over the ssep and the regular lasso. Our new method dogss
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Figure 5.10.: Boxplots of AUROC/AUPR/prediction error for different meth-

ods running on 100 simulated small networks, only hub features

considered.

performs best by a narrow margin. The same holds true for the prediction error

measure on the held-out data.

The results for the large networks are more diverse, see Figure 5.11. Again, the

gglasso method suffers greatly on the AUROC and AUPR measures compared to

all other methods, but it does not fare too bad on the prediction error measure.

The comparison of the methods without grouping information ends in a tie: While

ssep does better on the AUROC measure, lasso performs better with prediction

error (and both have approximately equal AUPR). The sparse-group lasso sgl

does a bit better than the standard lasso, but is clearly outperformed by our

method dogss on all measures.

In the next step we compare the performance of the methods when we include

all features for the neighborhood selection approach, and as such increase the

sparsity. Additionally we compare the performance when features are grouped

randomly opposed to the original grouping.

Let us first consider the small network reconstruction problem, see Figure 5.12.

With the original grouping, our method dogss outperforms all other methods on

all three measures of AUROC, AUPR and prediction error. The sparse-group lasso
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Figure 5.11.: Boxplots of AUROC/AUPR/prediction error for different meth-

ods running on 100 simulated large networks, only hub features

considered.

sgl outperforms the standard lasso, but the Bayesian method without grouping

information ssep appears as a reasonable choice, too. Results for our method

dogss deteriorate greatly for the random grouping, while the ssep method becomes

the better choice with performance still better than sgl, which is in turn on par

with the standard lasso.

We see the same results from the small networks for the results on the large

networks (Figure 5.13), but more pronounced. Our methods dogss performs best,

but only if the grouping information is actually helpful. Otherwise, the Bayesian

approach without grouping information ssep should be preferred.

5.2. Results on biological data

Here we assess the algorithm’s capability to reconstruct gene regulatory networks

from real experimental data using prior information about the grouping of the

variables. The DREAM5 gene network inference challenge [58] provides extensive

data along with a gold standard for the underlying networks. In the Escherichia

coli challenge, 805 microarray experiments were given with measurements of gene
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Figure 5.12.: Boxplots of AUROC/AUPR/prediction error for different methods

running on 100 simulated networks (small), all features considered,

with original grouping or random grouping.
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Figure 5.13.: Boxplots of AUROC/AUPR/prediction error for different methods

running on 100 simulated networks (large), all features considered,

with original grouping or random grouping.
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expression for 4511 genes, of these 334 are transcription factors and as such can-

didate regulators for the genes. The gold standard network which was revealed

after the challenge comprises of 2055 interactions within the network. To test the

ability of our new algorithm (and the competing lasso approaches), we first de-

rived a meaningful grouping of the transcription factors - this was not given to the

participants of the challenge and as such our results are not directly comparable

to the official results of the challenge.

We grouped the transcription factors by clustering them such that transcription

factors belong to the same group if they predominantly bind to the same genes

(thus, we identified the hubs), we will refer to this grouping as “co-binding”. For

comparison we also tested two additional groupings which do not contain any prior

information and are as such purely data driven: Grouping of features by simple

kmeans clustering of gene expression and a random grouping of features. Finally

we included a grouping derived from the supplementary files of Marbach et al.

[58], where a GO term analysis [86] gave groups of functional modules to all genes

which we filtered for the transcriptions factors.

The total number of observations (805) is very large and thus we decided to run

the different methods on a (training) subset of randomly chosen 300 observations.

This also leaves 505 observations as a test set for evaluation of the prediction

error. We repeated the sampling of the training/test set 10 times and averaged

the results.

On each training set, we employed the neighborhood selection approach de-

scribed in Section 3.2, that is, we ran every method for a total of 4511 times

(each gene once as a dependent response). We assess the quality of the network

reconstruction based on the gold standard by deriving the true positive rate, false

positive rate and precision along the ranked list of edges. The resulting lists were

averaged over the ten runs and we plot the resulting average receiver operating

characteristic (ROC) curve as well as the average precision-recall curve for the

different algorithms (Figure 5.14). We also calculate the respective (average) area

under the curve scores (Table 5.4).

The increase in the AUROC measure for our approach is immense, compared to

alternative methods. That is, the prior information about the grouping of features
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5.2. Results on biological data

Figure 5.14.: ROC and Prec-Recall curves, prediction error on E. coli DREAM5

data. The prediction error is given along the 20 000 top ranked edges

for every method.
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method dogss ssep sgl gglasso lasso random

AUROC 0.84 0.67 0.59 0.58 0.6 0.5

AUPR 0.02 0.01 0.016 0.003 0.009 0.0014

Table 5.4.: AUROC and AUPR values for ROC and PR curves of the DREAM5

E. coli network reconstruction, see Figure 5.14.

is very useful to identify more true positive edges without choosing too many false

positive interactions. The second best method is the standard spike-and-slab,

which does not use any grouping information. The results from the standard lasso

and sparse-group lasso are barely distinguishable, indicating that the sparse-group

lasso cannot take full advantage of the available grouping information. The group

lasso is not a good candidate algorithm for this network reconstruction problem,

its performance on the AUPR measure is quite poor.

The AUPR measure for all methods is far from close to the theoretical optimal

value of 1 (which is a common observation for “real” biological network reconstruc-

tion problems, see [58]). All methods yield very low AUPR values, indicating that

the number of correctly identified interactions is in a bad proportion to the total

number of called interactions. Our approach and the sparse-group lasso yield the

highest AUPR values, and the standard spike-and-slab performs a little bit better

than the standard lasso.

Furthermore we tested all algorithms on their predictive performance on this

data set. We retrieved the regression coefficients from the neighborhood selection,

chosen by cross-validation. For every method, we have a ranking of all possible

edges along with a regression coefficient with every edge. This way we derive a

prediction error curve along the ranked list: For rank r, we predict the expression

of all 4177 genes that are not transcription factors by using the expression levels

of the transcription factors in the held-out data. We sorted along the top r edges

respectively regression coefficients and set all other coefficients to 0. We measured

the predictive performance via the relative sum of squared errors along the ranks
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5.2. Results on biological data

group 1 2 3 4 5 6 7 8 9

#TFs 193 39 7 6 11 4 7 10 22

group 10 11 12 13 14 15 16 17 18

#TFs 4 4 4 4 5 5 3 3 3

Table 5.5.: Original grouping (co-binding) of DREAM5 E. coli transcription

factors.

r, that is

E(r) =

∑505
m=1

∑4177
n=1 (ymn − xm · βn(r))2∑505
m=1

∑4177
n=1 y

2
mn

.

Figure 5.14 shows the results for the different algorithms for the top 20 000 edges,

averaged over the ten runs: We see that the standard spike-and-slab method makes

the best prediction on the test data in th relevant realm of the top ranked edges

(the number of true interactions is 2055). Our sparse-group Bayesian approach

and the standard lasso perform roughly the same prediction-wise, while the sparse-

group lasso eventually does better predictions than our approach, but only after

approximately 20 000 included edges. The group lasso is not useful for prediction

in this setting.

Furthermore we compared our approach with the co-binding-based grouping of

the transcription factors to a random grouping, a k-means based grouping, and

a functional grouping [58]. The grouping dubbed as co-binding was derived by

grouping transcription factors that bind most often to the same genes, this led to

18 groups with very different numbers of transcription factors (see Table 5.5 for the

co-binding grouping). Now we assigned a random grouping to the transcription

factors where group sizes are the same like in the co-binding grouping, that is we

permuted the group memberships. Finally we grouped transcription factors by

their gene expression similarity via k-means with k = 18. We ran our algorithm

again with these three new groupings and compare the results to the original

grouping via the ROC and Precision-Recall curves, see Figure 5.15.

We observe that the co-binding grouping performs best in terms of ROC and

Precision-Recall measure. Our sparse-group Bayesian method, the sparse-group
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Figure 5.15.: ROC and Prec-Recall curves on E. coli DREAM5 data for different

groupings: co-binding, clustering by kmeans, random, function.
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lasso and the group lasso all perform worse than the standard spike-and-slab (with

no grouping information) in regard of ROC curves for the kmeans, random and

functional grouping. For the kmeans and functional grouping, our sparse-group

Bayesian method performs best on the AUPR measure, while the sparse-group

lasso performs worse than the standard spike-and-slab and approximately the same

like the standard lasso. For the random grouping, sparse-group lasso, standard

spike-and-slab and our method perform about the same.

5.3. Summary

We compared our new method to alternative methods on simulated and experi-

mental data. For the task of signal recovery, the Bayesian methods perform better

than lasso methods and the sparse-group Bayesian approach performs best in the

presence of grouping information. The speed-up in computing time of the expec-

tation propagation-based methods compared to the alternative Gibbs sampling is

enormous, while the standard lasso remains the fastest method available. For the

task of network reconstruction, we first presented a simulation procedure to gen-

erate scale-free networks that are structurally similar to gene regulatory networks.

Our new sparse-group Bayesian feature selection method performs best unless for

the randomized grouping information. On experimental data with grouping in-

formation from transcription factor co-binding, our new method leads to a huge

increase in the AUROC measure and the highest AUPR value, too. The standard

spike-and-slab has the lowest prediction error and performs reasonably well.
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6. Bayesian (Sparse-Group) Feature

Selection for Time Series Data

This chapter applies the Bayesian framework with and without grouping to a time

series setting, where the grouping of the variables stems from a Granger model.

We apply the method for the reconstruction of gene regulatory networks from gene

expression time series data.

6.1. The Granger model and the VAR(p) process

The Granger approach to model a linear regression scheme for time series is based

on the notion of Granger causality [33]: Causality between two variables X and

Y can be tested by measuring the prediction ability of X for future values of Y

using past values of X. E.g., if a spike in X at time t precedes a spike in Y at time

t+ p, we say that X Granger-causes Y (with delay p). Of course, it is not true in

general that two events are causally linked just because they happen one after the

other. But Granger causality or “predictive causality” is still a good measure of a

possible causal association.

The original definition of Granger causality for two time series of variables X

and Y tests whether the future values of Y can be predicted significantly better

with the inclusion of knowledge about past values of X or if the prediction is about

the same if X is not included. Put into mathematical terms for some maximum

delay p:

yt = a0 + a1yt−1 + . . .+ apyt−p + b1xt−1 + . . .+ bpxt−p + εt

vs. yt = a′0 + a′1yt−1 + . . .+ a′pyt−p + ε′t
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The test of significance is an F-test on the respective residuals εt and ε′t over the

observations for every t.

Here we use a similar approach without hypothesis testing, that is, inference

with the VAR(p) model (vector autoregressive model of order p, see [57, p. 13]

and Appendix C). Suppose we have random variables Y = (Y1, , . . . , YG) and time

series observations of these variables yt = (y1,t, y2,t, . . . , yG,t) for t = 1, . . . , T , which

are generated by the following scheme:

yt = ν + A1yt−1 + A2yt−2 + . . .+ Apyt−p + εt (6.1)

for some maximum delay p ∈ N\{0}, ν the intercept vector and εt a zero-mean er-

ror term with finite variance where the sequence of εt are independently identically

distributed random G-vectors. Not every choice of matrices Ai, i = 1, . . . , p, leads

to a stable multivariate time series (that is, the values of some of the variables

might be diverging with time, see also the Appendix C).

The matrix/vector notation of equation (6.1) already shows a certain grouping

of the variables by the delays 1 to p. Re-writing the equation for a single entry

yh,t of yt and rearranging the summands according to variables rather than delays

gives us the following equation:

yh,t = ν +
G∑
g=1

(a1,ghyg,t−1 + a2,ghyg,t−2 + . . .+ ap,ghyg,t−p) + εh,t, (6.2)

where the coefficients ai,gh are the entries of the matrices Ai = (ai,gh)
G
g,h=1 from

equation (6.1). Equations (6.1) and (6.2) are equivalent, but equation (6.2) sorts

the variables first by gene g and then by delay.

The VAR(p) model implies certain assumptions and requirements. E.g., the

observations need to be available with constant spacing in time (this can be side-

stepped by interpolating between unequally spaced observations). Furthermore,

there should be no trend [57, part II] other than the influence from the included

variables. Sometimes it is possible to clean the data of some trends before the

analysis. The most restrictive assumption of the VAR(p) model is the linear as-

sumption. This means that all effects within the data are linear, which might not

be true for many biological time series (e.g., see [32]).
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6.1.1. The Granger approach as a problem of sparse-group

feature selection

There is an inherent grouping to the coefficients in equation (6.2): For G vari-

ables and a maximum delay of p, we have G groups each of size p, where each

group consists of the coefficients corresponding to the different delays for a fixed

variable. In many cases, the number of coefficients in equation (6.2) exceeds the

number of available observations, since it grows quickly as the product of the num-

ber of variables times the maximum delay allowed in the equation. Furthermore,

it is a reasonable assumption that some variables do not have influence on the

response, thus setting the coefficients of this group of coefficients corresponding

to this variable to zero (between-group sparsity). We can also assume that there

are variable-specific delays to the effects, so eliminating for a given variable most

of the delay-specific coefficients corresponds to within-group sparsity. Therefore,

equation (6.2) is another example for a sparse feature selection problem with spar-

sity on two levels (between- and within-group), and we can apply the sparse-group

feature selection model that was presented in Chapter 4.

6.2. Simulations: Time series data

We test the capability of our proposed algorithm to reconstruct networks from time

series data, generated according to the VAR(p) model. To this end, we vary the

following parameters: G (the number of variables/nodes/genes), p (the maximum

delay), T (the length of the time series), k (the sparsity within the model/network)

and σ0 (the variance of the error). The simulation setting is as follows:

1. generate random values for ν iid from U(0, 5) and set start values y−p+1, . . . , y−1, y0

each equal to ν plus some error ε−p+1, . . . , ε−1, ε0 ∼ N (0, σ0),

2. generate random matrices A1, . . . , Ap with all zero entries except for a total

of randomly chosen k entries across these matrices, which are drawn from

U(−2, 2),

3. to secure a stable VAR(p) process, we normalize the matrices A1 to Ap

according to Proposition 1 in Appendix C,
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Figure 6.1.: Example of network and simulated time course data from the vector

autoregressive model for parameters (G, p, T, k, σ0) = (5, 3, 20, 10, 1).

4. we generate values yt sequentially for t = 1 to T with random error εt ∼
N (0, σ0) from equation (6.1) for training and additionally values yt for t =

T + 1 to T + 10 for testing the prediction.

For illustrative purposes, see an example network graph and the corresponding

time series plot generated from this scheme with parameters (G, p, T, k, σ0) =

(5, 3, 20, 7, 0.5) in Figure 6.1.

We test the capabilities of our and competing algorithms on 3 different network

scenarios, which differ in the size and structure of the network. To this end, we

simulate 100 random networks for each scenario, and compare the AUROC/AUPR

measures based on the true (gold-standard) known network structure.

The results are shown in Figures 6.2, 6.3 and 6.4. In any scenario, the sparse-

group lasso performs slightly worse than the standard lasso, and the group lasso

even worse than the sparse-group lasso. The sparse-group Bayesian method and

the standard spike-and-slab perform almost the same, the latter having a slight

advantage over the former. Both Bayesian methods are superior to the lasso meth-

ods. We conclude that for the reconstruction of networks from time series data

within the Granger model, one should choose a Bayesian approach, while it is not

helpful to include the grouping-by-delay information from the Granger model.
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Figure 6.2.: Boxplots of AUROC and AUPR for network scenario 1 with parame-

ters (G, p, T, k, σ0) = (10, 3, 50, 15, 1).
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Figure 6.3.: Boxplots of AUROC and AUPR for network scenario 2 with parame-

ters (G, p, T, k, σ0) = (30, 3, 20, 50, 1).
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Figure 6.4.: Boxplots of AUROC and AUPR for network scenario 3 with parame-

ters (G, p, T, k, σ0) = (100, 3, 50, 300, 1).

6.3. Experimental data

We assess the capability of the VAR(p) model and our proposed algorithm to

reconstruct networks from experimental time series data. To this end we study

two known networks from the literature: The synthetic network IRMA [13] and a

classic data set from the yeast cell cycle [81]. We give a short introduction to the

data sets, show the “gold standard” networks and present the resulting ROC and

Precision-Recall curves for different methods. The lasso, group lasso and sparse-

group lasso were used with standard parameter settings, but the intercept and

standardize flags were set to false, since data was scaled beforehand. Our approach

used the standard parameter settings, too (especially σ0 = 1 and σslab = 2). All

algorithms used a maximum delay of 3, thus we estimated a VAR(3) model.

6.3.1. IRMA network

The IRMA network is a synthetic network built into the yeast Saccharomyces

cerevisiae, specifically designed to test and benchmark reverse-engineering and

modeling approaches [13]. The five genes within the network regulate each other

and are affected only negligibly by native yeast genes. We study the “switch on”
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Figure 6.5.: True IRMA network and switch-on time series data.

method dogss ssep sgl gglasso lasso random

AUROC 0.54 0.54 0.43 0.46 0.36 0.5

AUPR 0.41 0.41 0.27 0.28 0.25 0.32

Table 6.1.: AUROC and AUPR values for the reconstruction of the IRMA network.

dataset which comprises of gene expression measurements over T = 15 equally

spaced time points (measurements were taken in intervals of 20 minutes) after the

cell culture was shifted from a glucose- to a galactose-containing medium. The

gene expression levels were averaged over three experiments. Figure 6.5 shows

the network of the five genes and the average expression levels from the switch-on

experiment.

Figure 6.6 and Table 6.1 present the results of applying the different methods

for feature selection. While the Bayesian methods perform better both in terms

of ROC- and Precision-recall analysis than the lasso methods, there is still much

to be desired. All methods are not significantly better than the random estimator

regarding the ROC curve, and only the Bayesian methods are slightly better than

a random estimator regarding the AUPR measure.
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Figure 6.6.: ROC and PR curves for the reconstruction of the IRMA network, see

table 6.1 for AUROC and AUPR values.

6.3.2. Yeast cell cycle

We analyze the yeast cell cycle pathway as given by the KEGG database [46]. We

analyze the expression data of 11 genes which are part of the G1 step of the yeast

cell cycle from a classic microarray dataset [81]. The chosen dataset comprises of

T = 17 time points of measurements that were taken in intervals of 10 minutes.

Figure 6.7 shows the KEGG (gold standard) network of the eleven genes.

Figure 6.8 and Table 6.2 present the results of our analysis, which are more con-

vincing than the results of the IRMA data. The Bayesian methods perform better

than the lasso methods, which are closer to the random estimator. The sparse-

group Bayesian feature selection gives slightly better results than the Bayesian

feature selection without grouping.
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Figure 6.7.: Part of the yeast cell cycle network from KEGG [46].

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

ROC curve

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
TPR

P
re

ci
si

on

Precision−Recall curve

method dogss
ssep

sgl
gglasso

lasso
random

Figure 6.8.: ROC and PR curves for the reconstruction of the yeast cell cycle

network, see table 6.2 for AUROC and AUPR values.
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method dogss ssep sgl gglasso lasso random

AUROC 0.64 0.61 0.59 0.53 0.52 0.5

AUPR 0.39 0.36 0.27 0.26 0.25 0.231

Table 6.2.: AUROC and AUPR values for the reconstruction of the yeast cell cycle

network.

6.4. Oscillations

The VAR(p) model is able to generate oscillating time series, and as such we

discuss some general aspects of oscillating VAR(p) models and test if our feature

selection approach can reconstruct network models that show oscillating behavior.

In Appendix C we discuss the link between the eigenproblem of A and the

stability of the VAR(p) process defined by A. Furthermore, the eigenvalues and

eigenvectors of A give us information on the periodicity of the multivariate time

series [69, 90], this is called principal oscillation pattern analysis [90]. Suppose we

have a VAR(p) model of G variables, then the companion (Gp × Gp)-matrix A

has Gp eigenvalues and matching eigenvectors. Each eigenvalue-eigenvector pair

(λi, v
i), i = 1, . . . , Gp, is associated with a certain period Πi and damping time Θi

(both measured in time units according to the spacing between measurements).

The period describes the duration of time of one complete cycle in the oscillation,

while the damping time is a measure for the decay of the (damped) oscillation.

The period and damping time can be calculated as follows:

Πi =
2π

|Arg(λi)|
,

Θi = − 1

log(|λi|)
,

where Arg(z) for z ∈ C is the argument of z, −π ≤ z ≤ π (simply put the angle be-

tween the vector z and the positive real axis in the complex plane). If Arg(λi) = 0,

that is, λi ∈ R+, the corresponding period Πi = ∞ and the corresponding eigen-

vector vi is called a relaxator. Otherwise, if Arg(λi) 6= 0 and as such λi ∈ R−

or Im(λi) 6= 0, the corresponding eigenvector vi is called an oscillator. Relaxators

and oscillators can be interpreted as components of the system that impede (relax-
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ator) or support (oscillator) the overall oscillations. The eigenvectors (relaxators

or oscillators) do not correspond directly to the features of the VAR(p) model.

Neumaier and Schneider [69] show that the original state vectors yt and noise

vectors εt can be represented as linear combinations of the last G entries of the

length-Gp eigenvectors vi:

yt =

Gp∑
i=1

βyi,t · (vij)j=G(p−1)+1,...,Gp,

εt =

Gp∑
i=1

βεi,t · (vij)j=G(p−1)+1,...,Gp.

According to von Storch et al. [90], the eigenvectors corresponding to the eigen-

values with the largest absolute value have the most influence on the actual time

series variables. While Neumaier and Schneider [69] argue that this is not true in

general, our simulations did not provide any indication against this rule of thumb.

Put together, we can observe oscillations in a VAR(p)-generated time series if the

VAR(p) process is stable or equivalently ρ(A) < 1 (at least approximately) and

the largest eigenvalues are in absolute value close to 1 with a relevant imaginary

part.

6.4.1. Simulated networks with oscillations

We employ the same simulation scheme like in Section 6.2 with (p, k, T,N, σ0) =

(6, 30, 100, 5, 0.5), but between step 3 and 4 we check the oscillation properties of

the matrix A derived from A1 to Ap: We calculate the eigenvalues, their absolute

values and the corresponding damping times and periods. Looking at the top two

eigenvalues (in terms of their respective absolute values), if their damping times

are larger than T and periods larger than 5, we keep A and continue by simulating

the data Y . Otherwise we discard the matrix and start anew at step 1. This way

we proceed until we have 100 data sets to test the reconstruction power of the

algorithms.

The results can be seen in Figure 6.9 and are very similar to the results in

Section 6.2. We conclude that for the network reconstruction it does not matter
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Figure 6.9.: Boxplots of AUROC/AUPR for small and large oscillating networks.
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if the data is oscillating or not, as long as the assumption of the VAR(p) model is

true.

6.4.2. Oscillations of circadian genes

We analyzed a dataset of multiple oscillating time series data that represent the

oscillations of five genes in different mammalian tissues from Zhang et al. [99].

More specifically, the data comprises of gene expression levels (measured with

RNA-Seq) of the genes BMAL1, DBP, Cry1, Rev-Erb-α and Per2, considered to

be the “core clock” genes in mammals [49, 72]. Of the original 12 tissues we

included nine in our analysis and excluded three because of missing values. The

original time series consist of 24 measurements with an equidistant spacing of 2

hours, we linearly interpolated values such that the final data comprises of 47 time

points respectively, spanning two cycles of day and night and a reasonable spacing

for the VAR(p) model.

We ran our proposed method on every dataset separately multiple times over

a grid-based parameter space: p ∈ {1, . . . 8}, σ0 ∈ {0.1, 0.2, 0.5, 1, 2} and σslab ∈
{1, 2, 3, 5, 10, 100}. For every instance of the algorithm, the cut-off probability for

the non-zero coefficients was chosen to be 0.6. For every dataset we choose as a final

model the parameters that minimized the prediction error on the second half of the

dataset, that is time points 25 to 47. Figures 6.10 and 6.11 show the normalized

original data, the recovered network graphs and the reconstructed time series.

Overall, the reconstructed time series are a very close fit to the original data, with

accurate capture of the 24 hour period and a correct succession of the peaking gene

expression. Only for the skeletal muscle dataset the reconstruction failed with too

much damping and a constant expression of gene BMAL1/ARNTL. Put together

we can conclude that the VAR(p) model is able to find network structures and

coefficients that fit the observed patterns well. But, the reconstructed networks

look very different for every tissue, even though the original data differs only

slightly between tissues. No common patterns can be observed in the reconstructed

networks. This leads to the conclusion that the VAR(p) model is not sufficient

to reconstruct the circadian core clock gene network. Reasons for this will be

discussed in Chapter 7.
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Figure 6.10.: Network reconstruction and oscillation fit on Zhang data for tissues

lung, kidney, aorta, adrenal gland and skeletal muscle. Continued in

Figure 6.11.86



6.4. Oscillations

Figure 6.11.: Network reconstruction and oscillation fit on Zhang data for tissues

heart, white adipose, brown adipose and mogene liver. Recovered

networks on the left (blue arrows indicate activation, whereas red

arrows indicate inhibition), original expression data in the middle

and recovered expression patterns on the right.
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6.5. Summary

We applied the (sparse-group) Bayesian feature selection method to the vector

autoregressive model of order p, both on simulated and experimental data, to

reconstruct gene networks from time series data. The simulations revealed that

we do not gain power from including the grouping information. The Bayesian

feature selection proves to be much more powerful than the lasso methods. Results

on experimental data were mixed, with acceptable results on the yeast cell cycle

data. We showed with simulations that the Bayesian feature selection methods are

able to reconstruct networks from oscillating data, but application to an extensive

experimental data set revealed a profound problem: Different network topologies

are able to give rise to the same oscillation patterns.
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7. Discussion

In this thesis we discussed the problem of (large-scale) gene network reconstruc-

tion from gene expression data, where we applied feature selection methods with

grouping information.

To this end, we derived and applied a Bayesian framework that enforces spar-

sity on the between- and within-level for groups of features in tandem with a

deterministic algorithm (expectation propagation) to derive the parameters of the

framework. The Bayesian approach proved to be more reliable for feature selection

with two-fold group sparsity than the lasso methods. The expectation propaga-

tion algorithm as an alternative to the conventional Gibbs sampling is much faster

but as accurate as Gibbs sampling, and as such feasible to apply to large network

inference problems. To the best of our knowledge, this is the first application of

(Bayesian) neighborhood selection with grouping information to the problem of

network reconstruction.

The Bayesian approach performed best on large networks regarding three mea-

sures: Correct features retrieved, prediction of expression on new data and most

value for computing time spent.

The Bayesian framework is applicable to time series data with the VAR(p)

model, too, and performed well on simulated time series. The results were mixed

on data from temporal experiments. Incorporating the sparse-group approach did

not yield advantages over the standard methods, but the Bayesian methods were

much better suited for temporal data.

We compared the Bayesian approach with and without grouping information

to different lasso methods. The standard Bayesian approach without grouping

information is a reliable choice under any circumstances. In the presence of helpful

grouping information, our new approach of sparse-group Bayesian feature selection

with expectation propagation outperforms all other methods. The standard lasso
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is the fastest method, but is outperformed by the Bayesian approaches and the

sparse-group lasso. The group lasso suffers greatly in the presence of within-group

sparsity. While the sparse-group lasso shows a slight advantage over the standard

lasso in our analysis, this is by a very narrow margin and not comparable to the

gain of performance that our sparse-group Bayesian approach shows. Huang [44]

suggested some amendments to the sparse-group lasso, but their results are not

available in the public domain.

Feature selection with grouping information is well studied (e.g. [26, 37, 56,

80, 89, 93, 94, 96, 98]), but it is rarely applied to the problem of (gene) network

reconstruction. In the original sparse-group lasso paper [80] the only experimental

dataset it was applied to was for classification (with logistic regression), also in

[89]. Xu and Ghosh [94] only applied their methods to simulated datasets and

Huang [44] used an economics dataset only. Our work highlights the advantages

of employing the sparse-group Bayesian framework on genetic data and network

reconstruction. This was made possible only by inclusion of the expectation prop-

agation algorithm, yielding faster run time compared to the much slower Gibbs

sampling. While the expectation propagation algorithm was already applied to

a standard (no grouping, [43]) and between-group sparse model [41], it has not

been extended to the two-level sparse group model yet. Our simulations and ap-

plications clearly show the superiority of this approach to detect correct sparsity

patterns on a between- and within-group level.

Li and Zhang [53], Lin et al. [54] and Atchadé [3] used Bayesian approaches for

neighborhood selection, but all three works suffer from the use of Markov Chain

Monte Carlo/Gibbs sampling algorithms, while not including grouping information

either.

Often the grouping of features arises naturally from the observed data, and here

we discuss different kinds of groupings: By correlation or clustering, by network-

hub membership or co-binding affinities, by biological modules, just random group-

ing or in a different model (vector autoregression) by time-delay information. We

observe an increase of recovered interactions in network reconstruction when using

available grouping information.

Of course, there is a distinction between a recovered edge in a network and a true
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causal relationship (for a deeper reading into this topic consider the works of Pearl

[71] and Spirtes et al. [82]). While true causal relationships cannot be recovered in

most cases, recovered edges are at least a strong indication for possible causalities.

The same holds true for the temporal model of vector autoregression (VAR(p))

and the underlying model of Granger causality: Granger causality does not imply

“true” causality, but it is an indicator for a causal relationship. Granger himself

mentioned this problem in his Nobel prize acceptance speech [34].

The standard lasso is a fast algorithm and does not depend on the specification

of a noise parameter like our Bayesian approach. The problem of specifying the

noise parameter in the Bayesian framework can be alleviated by cross-validation

methods or plug-in estimators for the noise, although our simulations indicated

that the specification of the noise gets problematic only in the realm of highly

noisy data and the lasso methods suffer as much as the Bayesian methods in the

presence of high noise.

Another advantage of the Bayesian approach over the lasso methods is that prob-

abilities are provided along with the features, which makes it more easily applicable

to network reconstruction (since the probabilities give a natural and comparable

ranking over different instances of the algorithm). Meinshausen and Bühlmann

[63] and subsequently Haury et al. [38] presented ways to assign probabilities to

features within the lasso framework which rely on repeating the algorithm multiple

times which increases the computational burden. We note that our algorithm can

be used as a plug-in for the lasso methods within the same frameworks, too, and

further research should study if this is useful and how different feature selection

methods perform with stability selection.

While the Bayesian approach in general delivers good results on simulated time

series data, the results on experimental time series were less conclusive, espe-

cially for the oscillation data. We argue that this is due to the violation of two

assumptions of the VAR(p) model: linear dependence on previous values and fur-

thermore the propagation of the noise throughout the time series. The latter fact

is violated since the experimental procedure (different individuals and even bulk

data for different time points) does not allow to capture the propagation of the

noise. There exist alternatives to the (linear) autoregressive model, for example
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delay-differential equations. There have been successful applications of a delay-

differential equation system to oscillatory data, see for example Korenčič et al.

[49].

The lasso approach (and as such the sparse-group lasso, too) are applicable in a

straight-forward manner to logistic regression and thus for the task of classification

[80, 89]. This is not true for the Bayesian model and the expectation propagation

algorithm, since the form of the probability distribution functions changes and the

direct application of the results for the linear case is not possible. Damien et al.

[18, chapter 23] applied a Bayesian framework with Laplace priors to the problem

of logistic regression (with Gibbs sampling).

When considering the hub model of gene regulatory networks, we need to assume

some knowledge about the network structure beforehand. First, the scale-free

property is implied, which is still up to debate for biological data [1, 48]. Second,

if the hubs are unknown, they need to be identified beforehand. E.g., this can

be done by identifying transcription factors and their binding sites/motifs [5, 87],

using additional data such as DNA sequence or ChIP-seq profiles on top of the

expression data. An alternative is an expression data-driven approach to identify

hubs [83]. Tan et al. [84] and McGillivray [61] combined the hub identification

with the graphical lasso. Hub identification could prove to be even more useful

for the analysis of protein-protein interaction networks [39]. Another possibility

to identify grouped features/genes within the gene regulatory network inference

framework is by pathways or biological function [10, 86].

These groupings and their impact on the performance of grouped feature se-

lection methods should be studied further. Also it would be useful to include a

prior distribution for the noise level and adapt the expectation propagation algo-

rithm to deal with this prior, too. Another open question is how to determine the

slab parameter beforehand and while this can be considered with cross-validation,

(testable) slab parameter estimators need to be studied. Furthermore, “fuzzy”

group memberships of features or features belonging to different groups at the

same time are a natural property arising in biological data and it would be inter-

esting to include this into the grouped feature model.

We pursued the approach of neighborhood selection for the reconstruction of net-
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works (based on the Gaussian graphical model and the precision matrix). Another

complementary sparsity enforcing approach is the graphical lasso by Friedman

et al. [25], which estimates the precision matrix directly. A Bayesian framework

was applied to the graphical lasso by Wang [91], but it suffers from the use of

Gibbs sampling and it does not include grouping information. Friedman et al. [26]

used the graphical lasso in conjunction with ideas from the group lasso, but only

to enforce symmetry on the precision matrix. Tao et al. [85] considered groups

of features while estimating the precision matrix, but with a different scheme of

overlapping submatrices. As such it would be fruitful to study a proper sparse-

group graphical lasso or a deterministic (maybe expectation propagation-based)

algorithm for the Bayesian graphical lasso.

We note that our proposed method is not restricted to gene regulatory network

inference or even on biological data for that matter. The framework is very general

and can be applied to any scenario where grouping information is available. Two

examples are economics (stock markets) and neuroscience (fMRI studies).

Put together, we advise to use our method on any problem of feature selection

where features are grouped with sparsity on a between- and within-group level.

Our method is superior to the two conceptually similar alternatives currently avail-

able: the sparse-group lasso (which is slower and less reliable, and even if grouping

information is more noisy, the standard spike-and-slab is a better option) and the

similar Bayesian framework with Gibbs sampling (which is too slow to apply it

to large-scale problems). Furthermore, Bayesian feature selection performs better

than lasso methods for the task of gene regulatory network reconstruction with

neighborhood selection.
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[42] José Miguel Hernández-Lobato. Balancing flexibility and robustness in

machine learning: Semi-parametric methods and sparse linear models.

PhD thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2010.

https://repositorio.uam.es/handle/10486/6080.
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A. The Bernoulli Distribution

The Bernoulli distribution is one of the most simple and important distributions

in probability theory. It is a discreet distribution that describes a random variable

X with only two outcomes: Either X = 1 (“success”) or X = 0 (“failure”), where

the probability for a success is equal to p.

The Bernoulli distribution is an exponential family distribution, its probabil-

ity density Bern(x|p), sufficient statistic T (x) and natural parameter η are given

below:

Bern(x|p) = px · (1− p)1−x

T (x) = x

η = log
p

1− p

g(η) =
1

1 + exp η
= 1− p

h(x) = 1.

A.1. Product and quotient of Bernoulli distributions

Since the Bernoulli distribution belongs to the exponential family of distributions,

the product of two Bernoulli distributions is again a Bernoulli distribution up to a

normalization constant, and the parameter of the new Bernoulli distribution can

be calculated as follows (see also Hernández-Lobato [40, Appendix A.1]):

Bern(x|p1) · Bern(x|p2) ∝ Bern(x|p)

⇒ p =
p1p2

p1p2 + (1− p1)(1− p2)
.

But with r = log p
1−p = logit(p) we have:

r = r1 + r2,

which is very helpful from a numerical point of view.
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A. The Bernoulli Distribution

Similar results hold true for the quotient of Bernoulli distributions:

Bern(x|p1)/Bern(x|p2) ∝ Bern(x|p)

⇒ p =
p1/p2

p1/p2 + (1− p1)/(1− p2)

⇒ r = r1 − r2.
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B. The (Multivariate) Normal

Distribution

The normal distribution (also “Gaussian” distribution) is probably the most well-

known and important continuous probability distribution. It arises in many differ-

ent scenarios, e.g. the central limit theorem and the modeling of error terms. The

normal distribution describes a random variable X on a continuous (real) scale,

whose values are centered around some mean µ in a bell-shaped manner with a

variance σ2. It belongs to the exponential family of distributions, and its distri-

bution function N (x|µ, σ2), sufficient statistic T (x) and natural parameter η are

given below for the univariate case:

N (x|µ, σ2) =
1√

2πσ2
exp

(
−1

2

(
x− µ
σ

)2
)

T (x) = (x, x2)

η = (
µ

σ2
,− 1

2σ2
)

g(η) = exp
η2

1

4η2

·
√
−2η2 =

1

σ
exp

µ2

−2σ2

h(x) =
1√
2π
.

The normal distribution can be defined for a multivariate random variable X ∈
Rd, too:

N (x|µ,Σ) =
1√

(2π)d det Σ
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
T (x) = (x, xxT )

η = (Σ−1µ,−1

2
Σ−1)

g(η) = exp

(
1

4
ηT1 η

−1
2 η1 +

1

2
log det(−2η2)

)
=

√
det(Σ−1)

expµTΣ−1µ

h(x) = (2π)−
k
2 .
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B. The (Multivariate) Normal Distribution

B.1. Product and quotient of normal distributions

The product or quotient of two normal distribution functions is again a normal

distribution function, up to a normalization constant. The parameters µ and

Σ can be calculated from the parameters of the factor/denominator/numerator

distributions as follows:

N (x|µ1,Σ1) · N (x|µ2,Σ2) ∝ N (x|µ,Σ)

⇒ Σ = (Σ−1
1 + Σ−1

2 )−1,

µ = Σ(Σ−1
1 µ1 + Σ−1

2 µ2).

N (x|µ1,Σ1)/N (x|µ2,Σ2) ∝ N (x|µ,Σ)

⇒ Σ = (Σ−1
1 − Σ−1

2 )−1,

µ = Σ(Σ−1
1 µ1 − Σ−1

2 µ2).

The results for a univariate normal distribution are just the same with Σ = σ2.

B.2. Integral of product of two normal distributions

We have a useful identity for the integral over the product of two normal distri-

butions [12], which we need for the calculation of the updated parameters in the

expectation propagation algorithm:∫
N (β|m1, V1) · N (β|m2, V2)dβ

=N (m2|m1, V1 + V2)

=N (m1|m2, V1 + V2).
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C. Stability of the VAR(p) Process

We will take a closer look at equation (6.1) and study the properties of the matrices

Ai and their influence on the stability of the time series model.

First we will consider the case p = 1 or the VAR(1) process where the maximum

delay in the model is just one step in the past and equation (6.1) reduces to

yt = ν + Ayt−1 + εt

with A1 = A. Let ρ(A) be the maximum absolute value of the eigenvalues of A

(that is, ρ(A) is the spectral radius of A). If ρ(A) < 1 the VAR(1) process is

stable [57, chapter 2]. In a simulation setting, if we want to simulate a stable

multivariate time series with a randomly chosen coefficient matrix, we need to

make sure its spectral radius is smaller than 1. We can achieve this by taking any

random matrix A′ and multiply it by the reciprocal of its spectral radius plus a

very small constant δ: A = 1
ρ(A′)+δ

A′, this way A defines a stable VAR(1) process

with ρ(A) < 1.

Moving on to the general VAR(p) process we note that every VAR(p) process

(with notation from equation (6.1)) can be written as a VAR(1) process, too [57]:

yt = ν + Ayt−1 + εt

with

yt = (yt, yt−1, . . . , yt−p+1)T ,

ν = (ν, 0, . . . , 0)T ,

εt = (εt, 0, . . . , 0)T ,

A =



A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


. (C.1)
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C. Stability of the VAR(p) Process

Again, the VAR(p) process is stable if ρ(A) < 1. But this time, if we want to

simulate a stable multivariate time series from random matrices A′1, . . . , A
′
p, we

cannot use the “divide by ρ(A′)” trick like in the VAR(1) case, since we need to

leave the identity matrices in the lower part of A′ untouched. This leads to the

following proposition:

Proposition 1. Let A′ be a VAR(p) process-defining matrix like in equation (C.1)

from random matrices A′1, . . . , A
′
p, and δ a small positive constant. Define ρ =

ρ(A′) + δ and Ai = 1
ρi
A′i, and A the matrix defined by the matrices A1, . . . , Ap

according to equation (C.1). Then the VAR(p) process defined by A defines a

stable multivariate time series.

Proof. The eigenvalues of the matrix A′ can be derived by finding the roots of the

characteristic equation:

0
!

= det(A′ − λ′I)

⇔ 0 = det(

p∑
i=1

λ′p−iA′i − λ′pI).

Likewise, the eigenvalues of the matrix A can be derived by finding the roots of

another characteristic equation:

0
!

= det(A− λI)

⇔ 0 = det(

p∑
i=1

λp−iρ−iAi − λpI)

= det(

p∑
i=1

λp−i
ρp−i

ρp
Ai − λpI)

=

(
1

ρp

)n
det(

p∑
i=1

(λρ)p−iAi − (λρ)pI)

⇒ λ′ = λρ and |λ| = |λ
′

ρ
| < 1.

Thus the VAR(p) process defined by A defines a stable multivariate time series.
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D. Abstract

All the genes of an organism’s genome build up an intricate network of connections

between them. Many of these connections are unknown, but knowing about the

structure of the network is important for e.g. medical applications. This leads to

the problem of reverse engineering the (large-scale) gene regulatory network from

gene expression data. Gene network reconstruction can be formulated as a problem

of feature selection in a linear regression framework, and we include additional

information (like co-binding of transcription factors) about the network with a

grouping of features. Available methods for feature selection in the presence of

grouping information have different short-comings: Lasso methods underestimate

the regression coefficients and do not make good use of the grouping information,

and Bayesian approaches often rely on the stochastic and slow Gibbs sampling

procedure to recover the parameters, which makes them infeasible for gene network

reconstruction.

Here we present a Bayesian method for feature selection with grouping informa-

tion (with sparsity on the between- and within group level), where the parameters

are recovered by a deterministic algorithm (expectation propagation). This sparse-

group framework is applied to (large-scale) gene network reconstruction from gene

expression data and extended to the vector autoregressive model for time series

data.

We prove (on simulated and experimental data) that the Bayesian approach is

the best choice for network reconstruction for three reasons: Highest number of

correctly selected features, best prediction on new data and reasonable computing

time.

We show that a Bayesian approach to feature selection is superior to lasso meth-

ods on time series data. Results on experimental temporal data are inconclusive

for the linear model.

Finally we note that the presented method is very fundamental and not restricted

to the reconstruction of gene regulatory networks, but can be applied to any feature

selection problem with grouped features.
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E. Zusammenfassung

Die Gesamtheit der Gene eines Organismus ist verwoben in einem ausgeklügelten

Netzwerk von Interaktionen. Viele dieser Interaktionen sind unbekannt, aber das

Wissen um die genaue Gennetzwerkstruktur ist unter anderem wichtig für medi-

zinische Anwendungen. Das unterstreicht die Dringlichkeit, aus experimentellen

Genexpressionsdaten das zugrundeliegende Gennetzwerk zu rekonstruieren, auch

für sehr große Netzwerke mit vielen Genen. Gennetzwerkrekonstruktion kann als

ein Problem von Variablenselektion in linearer Regression aufgefasst werden. Wir

nehmen als zusätzliche Information über das Netzwerk (wie z.B. das gemeinsa-

me Binden von Transkriptionsfaktoren) eine Gruppierung der Variablen hinzu.

Die bisher verfügbaren Methoden für Variablenselektion mit Gruppierung haben

verschiedene Nachteile:
”
Lasso“ und seine Abwandlungen setzen die Regressions-

koeffizienten zu gering an und nutzen die Gruppierungsinformation nicht voll aus,

Bayes’sche Ansätze benutzen meist das langsame Gibbs-Sampling, um Parameter

zu bestimmen, dies verhindert ihren Einsatz für die Gennetzwerkrekonstruktion.

Wir präsentieren hier eine Bayes’sche Methode für Variablenselektion mit Grup-

pierungsinformation, die Spärlichkeit in den Koeffizienten zwischen und innerhalb

von Gruppen durchsetzt, und außerdem die Parameter mit einem deterministischen

und schnellen Algorithmus bestimmt (
”
Expectation Propagation“). Wir wenden

unsere neue Methode für die Gennetzwerkrekonstruktion an und erweitern sie auch

auf das vektorautoregressive Modell für Zeitreihendaten.

Wir zeigen auf simulierten und experimentellen Daten, dass aus drei Gründen

der Bayes’sche Ansatz die beste Wahl für Netzwerkrekonstruktion ist: die höchste

Zahl an korrekt identifizierten Variablen, beste Voraussagekraft auf neuen Daten

und eine angemessene Rechendauer.

Weiterhin zeigen wir, dass auch auf Zeitreihendaten der Bayes’sche Ansatz den

Lasso-Methoden überlegen ist, wobei die Resultate mit einem linearen Modell auf

experimentellen Zeitreihendaten generell weniger belastbar sind.

Darüber hinaus ist unsere neue Methode nicht nur auf die Rekonstruktion von

Gennetzwerken beschränkt, sondern kann auf jedes Variablenselektionsproblem an-

gewendet werden, bei dem eine Gruppierung der Variablen vorliegt.
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