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1. General introduction 

 

 

1. GENERAL INTRODUCTION 

Calf losses are still a major problem in the dairy industry, seeing that the overall preweaning 

calf mortality on U.S. dairy operations is approximately 15% [1]. Newborn calves are particu-

larly prone to sickness, with gastrointestinal imbalances, especially neonatal diarrhea, being 

responsible for more than 50% of the mortality rate in neonates [2]. The reasons for this are 

manifold, ranging from infectious to noninfectious causes. After birth, the calf loses the re-

lative protection by the uterus, which entails three fundamental consequences: first, its 

energy supply shifts from a continuous flow of mainly glucose and amino acids to a discon-

tinuous provision with fat and lactose, the latter being insufficient to meet the neonate’s glu-

cose demands [3]. Thus, endogenous glucose production needs to be established fast. 

Second, the newborn is for the first time exposed to a germ-rich environment, and the acqui-

sition of passive immunity is essential to support the calf’s naïve immune system during the 

first weeks of life [4]. Third, the process of birth itself causes the excessive production of 

reactive oxygen species, which promote the susceptibility to disease if they are not properly 

counterbalanced by antioxidative defenses [5]. With the ingestion of first colostrum, the calf is 

not only provided with macronutrients but also with bioactive factors, e.g. hormones and 

growth factors supporting the maturation of its gastrointestinal tract and the adaptation of its 

glucose metabolism [6]. Furthermore, colostrum contains antioxidants and immunoglobulins 

to support neonatal health; unfortunately, the colostrum supply is often insufficient [7, 8]. 

The prophylactic application of antibiotic performance enhancers was banned by the Euro-

pean Union in 2006; since then, research has been intensified to identify natural alternatives 

for enhancing the productivity in farm animal rearing. Special focus has been directed on 

flavonoids for their attributed health-promoting properties [9]. Flavonoids are polyphenolic 

plant metabolites with strong antioxidative potential and are involved in the actions of plant 

enzymes, growth hormones and antimicrobial defense [10]. Because of their antioxidative, 

antiinflammatory, immunomodulatory and antimicrobial activities, flavonoids have long been 

used by traditional medicine [11]. In humans, the incidence of some chronic diseases, e.g. 

obesity, mental and neurological disorders, seems to be lower with increasing dietary flavo-

noid intake [12, 13]. Furthermore, flavonoids are known to interact with glucose metabolism 

and to normalize the blood glucose level in diabetic individuals, e.g. by suppressing hepatic 

glucose release and reducing intestinal carbohydrate digestion, thus they ameliorate meta-

bolic conditions in case of diabetes type II [14]. In farm animals, the usage of flavonoid-rich 

extracts decreases the number of deaths in calves [15] and exerts immunostimulatory effects 

in sows and their offspring [16]. Other feed additives with antioxidative potential, e.g. toco-

pherol, have been shown to improve the performance of farm animals [9]. However, to date, 

there are no studies on the impact of quercetin on the glucose metabolism and immune 
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system of newborn farm animals. 

The aim of the present work was to characterize the health promoting properties of an oral 

quercetin supplementation in neonatal calves with regard to its impact on the neonate’s glu-

cose metabolism, because any disadvantageous effects of quercetin supplementation on the 

same would forbid the usage of flavonoids in the upbringing of newborn calves. Another 

aspect was to determine whether quercetin could be useful in stabilizing the calves’ health 

status by compensating for an insufficient initial colostrum supply. 

In the present thesis, chapter 2 introduces major aspects of the glucose metabolism in 

neonatal calves as well as their immune and antioxidative status, and outlines the 

importance of colostrum feeding for the maturation of aforesaid aspects. Furthermore, an 

overview is given on the current state of knowledge concerning flavonoids and their impact 

on carbohydrate metabolism as well as their health promoting properties. Chapter 3 deals 

with the effects of an oral quercetin supplementation on the glucose metabolism of neonatal 

calves according to the initial colostrum supply. Chapter 4 focuses on selected metabolic, 

antioxidative and inflammatory parameters in newborn calves and how these are affected by 

initial colostrum deprivation and a seven-day quercetin supplementation. In a final general 

discussion, the main findings of chapters 3 and 4 are critically reviewed and put into context 

to the present literature. 

1. General introduction
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2.1 GENERAL ASPECTS ON NUTRITIONAL AND IMMUNE STATUS 

IN NEONATAL CALVES 

2.1.1 Postnatal adaptation of glucose metabolism in calves 

With birth, energy supply of the calf switches from continuous transplacental provision of 

mainly carbohydrates (glucose) and amino acids to discontinuous oral intake of colostrum 

and milk [1, 2]. Colostrum is rich in fat but relatively low in carbohydrates when compared to 

the fetal diet, thus in most mammalian species, the glucose intake with food is insufficient to 

meet the glucose requirements of the newborn. Figure 2.1 illustrates the altering percentage 

composition of the bovine perinatal diet.  

 

Figure 2.1: Percentage composition of macronutrient intake in calves (minor nutrients are 

disregarded) [3-6]. Composition of colostrum and mature milk was obtained from pluriparous 

Holstein cows. *The fat fraction in the fetal diet refers to the short-chain fatty acid acetate.  

 

In neonatal ruminants, milk lactose accounts for only 25% of total glucose demand [7]. To 

ensure glucose homeostasis, it is crucial for newborn calves to produce glucose endo-

genously, that is by glycogenolysis and by gluconeogenesis. Towards term, the rise in the 

2. Literature overview
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fetal glucocorticoid concentration causes the functional and morphological maturation of 

several tissues and promotes hepatic glycogen deposition as well as the induction of gluco-

neogenic enzymes [8-10].  

Immediately after birth, glycogenolysis, i.e. the degradation of (hepatic) glycogen stores, is 

the first action to overcome postnatal starvation and to maintain euglycemia for at least one 

day of food deprivation [10, 11]. However, within the first days of life, these glycogen stores 

are depleted [12-14], thus calves have to establish gluconeogenesis (GNG), i.e. the de-novo 

synthesis of glucose from different precursors, as the main glucose-producing metabolic 

pathway to further keep glucose homeostasis in circulation [15].  

Both glucose-producing pathways are controlled by rate-limiting enzymes such as glycogen 

phosphorylase (PYG), pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase 

(PEPCK), and glucose-6-phosphatase (G6Pase), whose activities are regulated by different 

hormonal and metabolic triggers. Figure 2.2 gives an overview of the hepatic glucose pro-

duction including key enzymes and different precursors.  

In neonates, the gluconeogenic precursors are mainly lactate, amino acids (alanine, glycine, 

glutamine) and, to a small extent, glycerol [2, 7]. Lactate and glucogenic amino acids are 

converted to pyruvate, the first substrate of the gluconeogenic pathway. Inside mitochondria, 

PC catalyzes the reaction of pyruvate to oxaloacetate, which is then converted to 

phosphoenolpyruvate by PEPCK [7], both being rate-limiting steps of GNG. Depending on 

whether lactate or other substrates serve as gluconeogenic precursor, the latter conversion 

occurs either inside mitochondria or in the cytoplasm. Phosphoenolpyruvate is then trans-

formed by five different enzymes to fructose-1,6-bisphosphate. Another rate-limiting step is 

the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate by fructose-1,6-bis-

phosphatase (FBPase). The isomerization of fructose-6-phosphate results in glucose-6-

phosphate. Glucose-6-phosphate is also generated during glycogenolysis from glucose-1-

phosphate, which is sequentially removed from glycogen by PYG. Finally, G6Pase controls 

the rate of endogenous glucose production as it catalyzes the final step to free glucose, 

which can then be released into the circulation.  

According to Steinhoff-Wagner et al. [15], the fraction of gluconeogenesis on total endo-

genous glucose production increases during the first week of life, while Haga et al. [12] 

showed that the activities of PEPCK and PC are lower in weaned than in 1-week-old calves. 

Furthermore, gluconeogenesis from lactate is eightfold greater in hepatocytes from 1-week-

old than from ruminating calves [16]. In neonatal lambs, lactate accounts for 17-31% of total 

glucose synthesis [17], whereas propionate becomes the preferred gluconeogenic substrate 

with development of a functional rumen [7]. 
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Figure 2.2: Simplified scheme of the hepatic glucose metabolism. Rate-limiting enzymes of 

endogenous glucose production (gluconeogenesis, glycogenolysis) are bold black, enzymes 

of glucose consuming pathways (glycolysis, glycogen synthesis) are italic grey. Abbreviations: 

FBPase, fructose-1,6-bisphosphatase (EC 3.1.3.11); G6Pase, glucose 6-phosphatase 

(EC 3.1.3.9); GCK, glucokinase (EC 2.7.1.2); GYS, glycogen synthase (EC 2.4.1.11); PC, 

pyruvate carboxylase (EC 6.4.1.1); PEPCK, phosphoenolpyruvate carboxykinase, (c, soluble; 

m, mitochondrial; EC 4.1.1.32); PFK, phosphofructokinase (EC 2.7.1.11); PK, pyruvate kinase 

(EC 2.7.1.40); PYG, glycogen phosphorylase (EC 2.4.1.1). 

 

2.1.2 Maturation of the digestive system  

Though calves are born relatively mature, their gastrointestinal tract (GIT) is not fully 

developed at birth. Therefore, the timing and rate of gastrointestinal maturation are con-

sidered as intermediate, meaning that major developmental changes occur both pre- and 

postnatally [18, 19]. Neonatal calves are regarded as pseudomonogastrics because they are 

preruminants without considerable forestomach activity [20] making them more dependent 

on abomasal and intestinal digestive processes than adults to cover their energy needs.  

To ensure energy provision ex utero, maturation of the GIT is, next to the establishment of 

hepatic glucose metabolism, a key element of adaptation to postnatal life. Indeed, the most 

severe changes in the gastrointestinal development of ruminants happen during the first days 
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of life: Gut regulatory peptides (cholecystokinin, gastrin) rise radically in concentration and 

promote the development of digestive organs [20, 21]. Functional maturation of the digestive 

system is evident in elevated activities of brush border membrane enzymes [22] as well as 

enhanced synthesis and secretion of pancreatic juice within the first week of life [23]. In 

neonatal calves and lambs, pancreas mass and weight of abomasal mucosa increase by 20-

30% within the first week [21]. Morphologic changes of the intestine include accelerated 

growth rate as well as increase of crypt depth and villus height in calves and piglets, 

respectively, all contributing to the enlargement of absorptive surface area [22, 24, 25]. 

Vacuolated fetal-type enterocytes that are able to transport macromolecules disappear 

resulting in intestinal barrier closure [26, 27]. 

Microbial colonization of the GIT begins with birth and physiological flora needs to establish 

during the first week of life by ingestion of first food [28]. Finally, food intake triggers the 

production of endogenous substances that further enhance maturational processes inside 

and outside the GIT [18, 24, 29]. 

2.1.3 Immune system and antioxidative status 

Neonatal calves are prone to diseases because they are considered immunologically naïve 

at birth [30, 31]. On the one hand, the bovine placenta epitheliochorialis prohibits intrauterine 

transfer of immunoglobulins hence the calf is born hypogammaglobulinemic [32]. Although 

endogenous production of immunoglobulins could be demonstrated in colostrum-deprived 

calves during the first days of life, IgA and IgG do not reach appreciable levels until 16-32 

days of life [33, 34]. On the other hand, the immune system is immature at birth and 

maturation continues until the 6th month of age [31]. Complement activity within the first 

month of life reaches only 50% of the activity in adults [35] and functional capacity of 

phagocytes (neutrophils, macrophages) as well as numbers of circulating B- and T-cells are 

reduced at birth [30, 36]. Due to high concentrations of corticosteroids and cytokines (IL-4, 

IL-10), the cell-mediated immune response around birth is suppressed [37]. Although present 

in neonates, many immune components are not (fully) functional until 2-4 weeks of age [31] 

so the health status of calves mainly depends on the acquisition of passive immunity with 

colostrum.  

Irrespective of age, immune cells are particularly susceptible to oxidative damage because of 

their phospholipid-rich membrane structure [38-40]. After birth, neonates are for the first time 

exposed to an oxygen-rich environment. The initiation of aerobic metabolism and reperfusion 

after hypoxic ischemia during birth imply an increased generation of reactive oxygen species 

(ROS) [41, 42]. ROS are highly reactive molecules that originate from several physio-

logic/endogenous processes and are liberated either as mediators or as byproducts [43]. 

Those processes include immune response, inflammatory reactions, oxidative metabolism or 

detoxification as well as ischemic processes [44]. During immune response, immune cells, 
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e.g. neutrophils or macrophages, produce superoxide during respiratory burst to degrade 

internalized pathogens [45]. However, ROS can also arise from exogenous sources, e.g. 

radiation, toxins, chemicals or drugs [42, 46, 47]. In a balanced system, ROS are inactivated 

rapidly by either antioxidative enzymes or antioxidants, which, already at low concentrations, 

significantly delay or inhibit the oxidation of susceptible substrates and therefore prevent free 

radical injury. Figure 2.3 opposes the endogenous production of ROS and their inactivation 

by antioxidants. An imbalance between production of and protection against ROS results in 

oxidative stress, thus increased ROS are able to react with biomolecules including DNA, 

RNA, proteins, carbohydrates and lipids, impairing their physiological functions [43, 47].  

Figure 2.3: Endogenous formation and neutralization of ROS [44, 48, 49]. Abbreviations: Aox, 

antioxidant; CAT, catalase (EC 1.11.1.6); CYP, cytochrome P450 (EC 1.14); GPx, glutathione 

peroxidase (EC 1.11.1.9); GSH, glutathione; GSSG, glutathione disulfide; Me, transition metal 

ion (e.g. Fe2+, Cu2+, Zn2+, Co2+, Mn2+); NADP+/NADPH, nicotinamide adenine dinucleotide 

phosphate; NOX, NADPH oxidase (EC 1.6.3.1); SOD, superoxide dismutase (EC 1.15.1.1).  

 

ROS are involved in the pathogenesis of inflammatory and other diseases [46, 50, 51]. 

Furthermore, oxidative stress is also considered as a catalyzer for neonatal disease [52, 53]. 

Gastrointestinal anatomical and functional alterations, reduced intestinal absorption as well 

as failure of nutrient and immunoglobulin transfer can be consequences of ROS-induced 

damages in neonates of different species [52]. Conversely, growing calves, puppies and 

piglets with enteric disease have been shown to have significantly elevated markers for 

oxidative stress and decreased antioxidant capacity in plasma [54-56]. Supplementing calves 

and lambs with antioxidants, e.g. vitamin E, reduces morbidity and mortality after exposure to 
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stress, enhances the immune response and protects against tissue damage [57, 58]. In 

comparison to adult cattle, concentrations of free radicals in the blood of newborn calves are 

high while concentrations of antioxidative vitamins are low, leading to an impaired 

antioxidative status [41, 59-61]. At the same time, the activities of antioxidative enzymes 

increase. However, data on the antioxidative status are inconsistent and strongly dependent 

on the regarded parameter and the method of determination [62], thus, comparison of 

different studies is intricate [63].  

 

 

2.2  IMPORTANCE OF COLOSTRUM 

2.2.1 General aspects 

According to the European Commission, colostrum is defined as “the fluid secreted by the 

mammary glands of milk-producing animals up to three to five days post parturition that is 

rich in antibodies and minerals, […]” [European Commission Regulation (EC) No. 1662/2006, 

Annex II, point 3]. A compositional analysis of 55 Holstein dairy herds revealed macronutrient 

contents of 6.7 ± 4.2% fat, 14.9 ± 3.3% protein and 2.5 ± 0.7% lactose in colostrum 4 h after 

calving [64]. While the macronutrients’ major purpose is to provide the initial substrate supply 

for the neonate’s energy metabolism, colostrum also contains large amounts of non-nutrient 

bioactive factors such as immunoglobulins, hormones, enzymes, growth factors and 

antioxidants [65-67].  

The main site of action for milk-borne nonnutritive compounds is the GIT whose growth and 

development in farm animals is dramatic during the neonatal period [68, 69]. However, some 

bioactive factors also exert systemic effects: for instance, the absorption of essential fatty 

acids and vitamins (β-carotene, vitamins A and E) affects the status of plasma of respective 

compounds [24]. Although some proteins and peptides, e.g. immunoglobulins and lactoferrin, 

are also intestinally absorbed and appear in the circulation, this does not apply for insulin and 

IGF-I. However, colostral insulin and IGF-I indirectly modulate the somatotropic axis by 

enhancing the intestinal nutrient uptake and stimulating endogenous IGF-I production [24, 

70]. Thus, the indirect anabolic effect of human IGF-I added to milk replacer becomes 

apparent by an enhanced lipid status in calves with increased concentrations of essential 

fatty acids and fat-soluble vitamins in their plasma [65]. 

Delayed intake of first colostrum alters plasma concentrations of several metabolites and 

hormones, but is rapidly compensated and does not indicate permanent imprinting effects on 

hematological, metabolic or endocrine traits [71, 72]. However, absorption of IgG is reduced 

thus performance is indirectly impaired [11, 73, 74]. Up to now, there is no clear evidence 
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whether colostral bioactive factors may program the animal and its later productivity [75]. 

2.2.2 Effects on GIT and glucose metabolism 

The development and maturation of the GIT are essential for an efficient uptake of ingested 

nutrients, which in turn is necessary for proper growth and development of the young.  

On the one hand, colostrum modulates the intestinal microbial population as it contains not 

only antimicrobial substances (e.g. lactoferrin, lactoperoxidase, lysozyme, oligosaccharides) 

to prevent growth of pathogens, but also pre- and probiotics to establish the physiological 

intestinal microflora [24, 76, 77]. 

On the other hand, colostrum is proven to modulate the GIT morphology [10, 69]. Feeding 

colostrum or colostrum-extracts resulted in greater villus circumferences, areas and heights 

[29, 78, 79] and increased crypt cell proliferation rates in the small intestine [78] when 

compared to colostrum-free alimentation. According to this, the intestinal absorption of 

monosaccharides depends on initial colostrum supply and is reduced when calves are 

colostrum-deprived (Figure 2.4) [5, 29, 80, 81]. However, the gene expression and protein 

concentrations of glucose transporters GLUT2 and sodium-dependent glucose transporter-1 

(SGLT1) seem not to be affected by colostrum deprivation [25, 79]. 

Figure 2.4: Plasma xylose concentrations following intestinal absorption in 5d old calves after 

different initial colostrum supply, modified from Hammon and Blum [81]. 

 

Moreover, the digestive capacity of the GIT is also affected by colostrum intake. Plasma 

concentrations of gut regulatory peptides, e.g. gastrin, cholecystokinin, and secretin increase 

after colostrum feeding thus exert favorable effects on gastrointestinal growth and digestive 

functions by enhancing gastric and pancreatic secretions [20]. In neonatal calves and piglets, 

activities of intestinal lactase as well as other brush border membrane enzymes seem to be 

only marginally affected by the initial feeding of formula versus colostrum [25, 78, 79], but 
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they are positively correlated with the intestinal villus size [29]. However, prolonged 

colostrum-feeding enhances activities of pancreatic lipase, elastase II and trypsin [78]. 

Even under conditions of similar lactose intake, colostrum-deprived calves have lower pre- 

and postprandial plasma glucose concentrations [5, 82, 83]. In newborn piglets, capacity for 

GNG from lactate is reduced when colostrum intake was restricted [84]. In contrast to this, 

GNG and total endogenous glucose production do not differ between colostrum-fed and 

colostrum-deprived calves [5]. However, dietary effects on mRNA abundance or activities of 

rate-limiting enzymes of GNG in newborn calves are inconsistent [5, 82, 85].  

2.2.3 Effects on immune system and antioxidative status 

Colostrum is rich in immunoglobulins, thus it is essential for neonatal calves to acquire 

passive immunity. As IgG accounts for 85-90% of total immunoglobulins in colostrum [86], its 

concentration in newborns’ plasma is used to assess the success of passive transfer. 

According to this, a serum IgG concentration of 10 g/L (equivalent to serum protein 

concentration of 52 g/L) at the age of 24-48 h is considered as threshold for an adequate 

passive transfer [30, 87, 88]. Closure of the intestinal barrier coincides with the dis-

appearance of vacuolated enterocytes and marks the cessation of macromolecule absorption 

[89]. Although delayed colostrum feeding can slow down this process, the efficiency of 

absorption impairs with increasing age at first colostrum ingestion hence incidence for failure 

of passive transfer rises [90, 91]. Absorbed colostral antibodies activate and regulate innate 

immune responses in calves [31] therefore health status and productivity are enhanced [92-

94]. In addition to immunoglobulins, maternal leukocytes ingested with colostrum also 

enhance the neonatal immune system by increasing phagocytosis, stimulating cellular 

immune response and increasing the development of antigen-presenting cells [31, 95, 96]. 

Despite of immunity-promoting properties, colostrum is also a source of ROS. Those are 

produced by viable maternal leukocytes as well as enzymes like xanthine oxidase and 

lactoperoxidase in colostrum [67]. Opposing to this, there is also a variety of antioxidants 

present in colostrum. While catalase (CAT), superoxide dismutase (SOD) and glutathione 

peroxidase (GPx) inactivate ROS through enzymatic reactions, vitamins (A, C, E), minerals 

(Se, Cu, Zn) as well as lactoferrin, caseins and whey proteins are non-enzymatic colostral 

compounds exerting antioxidative properties [67, 97]. In porcine and bovine colostrum, 

activities of antioxidative enzymes and lactoferrin increase with time after parturition [98-100] 

and an assessment of the antioxidative status revealed that the total antioxidant capacity in 

colostrum and milk of cows rises during the first week after parturition [99, 101]. Abuelo and 

collegues [61] could show that the levels of lipoperoxides in colostrum are positively 

correlated with ROS in the serum of newborn calves fed respective colostrum, while colostral 

antioxidative capacity and serum ROS were negatively correlated. Figure 2.5 opposes the 

intensity of protein peroxidation and the total antioxidant capacity of colostrum and newborn 
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calves’ plasma of Holstein-Friesian primiparous cows. 

 

Figure 2.5: Antioxidative status of colostrum and plasma of calves fed with respective 

colostrum, modified from Albera and Kankofer [99]. Abbreviations: PPI, protein peroxidation 

intensity; TAC, total antioxidant capacity. 

 

According to Retskii et al. [102], correcting the calf’s antioxidant status before the first 

feeding improves the acquisition of passive immunity. Indeed, serum IgG concentrations 

have been shown to be positively correlated with the colostral antioxidative capacity [61]. 

Nonetheless, research on the connection of antioxidative status with IgG acquisition in calves 

is scarce as studies mostly focus on the effect of single colostral compounds rather than 

antioxidative capacity in general. Another obstacle is that middle- or long-term effects have 

been investigated in species whose offspring usually suckle the dam for a longer period of 

time, therefore the explicit influence of colostral antioxidative capacity on acquisition of 

passive immunity and health status is ambiguous and results can hardly be transferred to 

dairy calves. 

Finally, the early change from colostrum to artificial milk replacers in calf rearing might 

attribute to a prolonged imbalance in antioxidant status as milk replacers often contain high 

levels of pro-oxidative unsaturated fatty acids while their antioxidative capacity is low [103]. 
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2.3 CHARACTERISTICS OF FLAVONOIDS 

2.3.1 General aspects 

Flavonoids are secondary plant metabolites ubiquitously present in higher plants, where they 

are involved in photosynthesis, growth, development and pigmentation as well as defense 

against pathogens and other biotic and abiotic stresses [45, 104, 105]. They are polyphenols 

with a three-ring structure and are divided into subclasses according to the degree of 

saturation and oxidation as well as the position of the B-ring (Figure 2.6). Up to now, more 

than 8,000 different flavonoid compounds have been identified [105]. As animals are not able 

to synthesize flavonoids, they can only ingest them with vegetarian food components. 

However, the flavonoid content of green fodder is not fixed, but it depends on many factors, 

e.g. ripeness, harvesting time, degree of dryness, processing of foodstuff, storage etc. [104, 

106]. Flavonols are the most ubiquitous flavonoids with quercetin being the most abundant 

dietary flavonol [104, 107]. As with other flavonoids except for flavanols, quercetin naturally 

rarely occurs in its free form (aglycone) but is bound to a sugar moiety by beta-glycosidic 

linkage, which can be glucose (glucoside) or other mono-, as well as di-, tri- or 

tetrasaccharides (glycoside) [106].  

Figure 2.6: Chemical structure of the most common flavonoid subclasses and names of some 

representative compounds as well as their dietary sources [45, 104, 105].  
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Flavonoid-rich plants or plant extracts have been used for centuries in traditional medicine 

[108, 109], taking advantage of their antioxidative, anti-inflammatory, antiproliferative, and 

antimicrobial properties [110]: In humans, flavonoid-rich diets are related to reduced 

incidence of diseases associated with oxidative stress, e.g. cancer, cardiovascular, 

neurodegenerative and inflammatory diseases as well as metabolic disorders [105, 107, 109, 

111, 112]. However, the excessive intake of flavonoids may not promote health, but exert 

adverse effects [49, 113]; thus supplementing flavonoids to the natural diet should be 

diligently supervised.  

2.3.2 Absorption and metabolism of flavonols 

Although the oral bioavailability of quercetin is relatively high [107], it depends on many 

factors: 1) the nature of the compound (hydrophilic glucoside resp. glycoside versus lipophilic 

aglycone) [114-116], 2) the dietary matrix with which it is ingested [111, 117, 118], 3) 

availability and activity of intestinal enzymes [107, 119, 120], 4) the gut microflora [107, 121], 

and 5) the duration of the flavonol administration (single dose vs. long-term intake/appli-

cation) [111, 122]. For these reasons, interindividual variability of flavonol metabolites in 

plasma after intestinal absorption is high [123-125].  

While quercetin aglycones are passively absorbed from the small intestine by glucose 

transporter 2 (GLUT2), its glucosides can be taken up actively by sodium-dependent glucose 

transporter-1 (SGLT1) [126, 127]. More complex glycosides are mainly microbially degraded 

before absorbed in distal parts of the intestine [104]. If not immediately excreted back into the 

intestinal lumen by multidrug-resistance-associated proteins [110, 115], absorbed flavonols 

are metabolized by various organs, e.g. the small intestine, liver and kidneys, where they are 

mainly glucuronidated, sulphated (intestine, liver, kidney) and methylated (liver, kidney) via 

phase II metabolism [43, 107, 118]. Thus, after oral administration, there are several 

glucuronide and sulfate conjugates but almost no aglycones detectable in the circulation of 

humans [125, 128], rats and pigs [110, 122, 129, 130]. Metabolic detoxification increases the 

hydrophilicity thus facilitates biliary and urinary excretion [104]. However, the slow elimination 

from blood, their presence in the bile as well as re-entry peaks in plasma indicate an 

enterohepatic cycling of flavonols [45, 114, 115, 125].  

In adult cattle, intraruminal application of quercetin glycoside (rutin) but not its aglycone 

increases plasma flavonol concentrations, indicating that glycosylation protects from ruminal 

degradation [131]. In newborn calves, oral bioavailability changes with increasing age: on d 2 

and d 29 of life, feeding of quercetin aglycone results in higher plasma flavonol 

concentrations than rutin feeding (quercetin-3-O-rutinoside), which is comparable to data 

obtained in monogastrics or in cows after intraduodenal application [4, 114, 124]. However, 

the plasma flavonol concentration on d 29 is significantly reduced when compared to d 2 and 

the proportion of single flavonol metabolites corresponds to patterns found in adult cattle, 
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indicating maturation of detoxification and elimination processes. 

2.3.3 Interaction with glucose metabolism 

Quercetin is well-known for its antihyperglycemic properties, which is why it is used as a 

natural anti-diabetic agent. After oral administration, the first side of action for quercetin and 

other flavonols is the GIT, where they interact with digestive enzymes and nutrient trans-

porters. Quercetin and kaempferol were shown to inhibit α-glucosidase as well as α-amylase 

in vitro [132, 133] thus reducing polysaccharide digestion. Similar effects on activities of 

intestinal glucosidases maltase and sucrase were also observed in vivo in diabetic quercetin-

fed rats and mice; however, lactase activity was unaltered [134, 135]. Several flavonols are 

transported across the intestinal barrier via similar transporters as monosaccharides; hence 

intestinal transport of the latter is impaired. Quercetin glucosides competitively inhibit 

intestinal glucose uptake via SGLT1 [114, 129, 136, 137], whereas quercetin aglycone is a 

non-competitive inhibitor of GLUT2 [126, 137, 138]. GLUT2 is not only located at the 

basolateral side of enterocytes but it can also be translocated to the apical side if the luminal 

glucose concentration is high [139]. Furthermore, GLUT2 is also the major glucose trans-

porter in pancreatic β-cells and hepatocytes [137].  

Hepatic glucose metabolism is also influenced by flavonols. Kato et al. [140] demonstrated in 

isolated rat hepatocytes that quercetin inhibits PYG and therefore concluded the inhibition of 

hepatic glucose production by quercetin. In contrast to this, Gasparin et al. [141] could show 

in isolated perfused rat liver that quercetin aglycone stimulates glycogenolysis and glucose 

release in a concentration-dependent manner, which indicates that effects in situ might differ 

from effects observed in cell culture. Same authors also demonstrated that quercetin in 

doses above 50 µM inhibited glycolysis from endogenous as well as exogenous glucose 

[141, 142] by decreasing the activity of glucokinase (GCK), thus glucose could not be 

phosphorylated for subsequent reaction steps. In diabetic mice, the hepatic expression of 

GCK was unaltered by quercetin-feeding [143]. Yet another enzyme, namely G6Pase, which 

catalyzes the dephosphorylation of glucose during gluconeogenesis, has been shown to be 

inhibited by quercetin (50 µM) and its dehydroxylated metabolite kaempferol [141, 144].  

Quercetin interacts not only with hepatocytes but also with pancreatic β-cells, hence glucose 

metabolism might also be indirectly affected by alteration of its hormonal regulation. Anti-

inflammatory properties account for the protection against oxidative damage as well as 

cytokine-induced cell death in the pancreas [145, 146], and it was shown that insulin release 

increases in diabetic mice and rats treated with quercetin [143, 147]. Insulin is a key 

regulator of glucose homeostasis as it affects not only hepatic metabolism but is also crucial 

for glucose uptake in muscle and adipose tissue by GLUT4. However, direct effects of 

quercetin on insulin-dependent glucose uptake are controversial: while some authors 

identified quercetin as competitive inhibitor of GLUT4 [148], others postulate that reduction of 
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insulin-dependent glucose uptake occurs via inhibition of GLUT4 translocation [149]. In 

contrast to this, Fang et al. [150] postulated that kaempferol and quercetin improve glucose-

uptake in the presence of insulin. However, basal, insulin-independent glucose uptake in 

adipocytes seems to be unaffected by quercetin [148, 150].  

In animal models of diabetes mellitus, quercetin treatment was shown to reduce postprandial 

hyperglycemia and thus ameliorate metabolic conditions [126, 147, 151, 152]. Anyhow, to 

what extent quercetin might influence overall glucose production in vivo depends on its 

metabolism as well as on biological activity and concentration of flavonols and respective 

derivatives at the side of action after application of the compound. Until now, the biological 

relevance of quercetin in healthy, normoglycemic individuals is not clear [153]. 

2.3.4 Effects on performance and intestinal health  

Several flavonoids and flavonoid extracts that have been used by traditional medicine for 

centuries have attracted special notice during the last decades and thus became subject to 

intensive scientific research for their health promoting properties.  

Diarrhea is a major problem in calves during the first weeks of life and causes substantial 

economic losses. In 1991, Capasso et al. [154] showed that quercetin inhibited prosta-

glandin- and leukotriene-induced contractions in isolated guinea pig ileum and concluded 

that the flavonol might be useful in relieving gastrointestinal colic, diarrhea and other gastro-

intestinal disorders. The same group also demonstrated that an intraperitoneal injection of 

quercetin reduced castor oil induced diarrhea in rats and mice [155, 156]. In humans, the 

spasmolytic effect of a quercetin-rich guava extract reduced abdominal pain, however, the 

consistency or frequency of diarrhea were not affected [157]. A comparable extract was 

shown by Chinese scientists to have a good curative effect on infantile rotaviral enteritis, and 

rotavirus antigen in stool was significantly reduced after oral application of the extract [158]. 

The antiviral property of quercetin was also evaluated in vitro: although several flavonols 

showed a favorable anti-rotavirus activity, quercetin was ineffective to inhibit the virus’ 

cytopathic effect [159, 160]. However, quercetin and its 7-rhamnoside are able to reduce the 

infectivity of several strains of cornonaviruses, which are relevant enteropathogens in 

neonatal farm animals [161]. Intestinal bacteria have also been investigated for their inter-

ference with quercetin: Pakar et al. [162] demonstrated the inhibitory action on growth and 

cell-adhesion of selected enteropathogenic bacteria in vitro, while at the same time, 

probiotics were relatively unaffected, concluding that quercetin may help to stabilize the 

intestinal flora. In laying hens, dietary quercetin improved the performance by beneficially 

modulating the intestinal microflora populations [163]. In contrast to this, the intraruminal 

application of quercetin aglycone or its glycorhamnosid rutin did not alter ruminal 

fermentation processes in dairy cows, thus the ruminal microflora seemed not to be 

substantially influenced [131]. 
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2.3.5 Effects on antioxidative and anti-inflammatory status 

Quercetin possesses strong antioxidant and anti-inflammatory properties. The catechol 

structure in the B-ring accounts for the metal-chelating properties of quercetin, hence cations 

are unavailable for the generation of ROS by Fenton-type reactions [118, 164]. As quercetin 

inhibits myeloperoxidase and NADPH oxidase, the superoxide production during respiratory 

burst is reduced [45]. 

The phenolic hydroxyl groups are able to act as electron donors, thus quercetin scavenges 

ROS [118, 164]: Due to its hydroxyl groups, quercetin also exerts chain-breaking antioxidant 

action during lipid-peroxidation and is able to inhibit the autoxidation of fatty acids [165, 166].  

As mentioned earlier, biological effects always depend on the chemical structure of 

circulating metabolites: in accordance to this, quercetin was found to act more as an 

antioxidant than its monoglucosides [165]. Furthermore, Shirai and coworkers [167] could 

show that although co-incubation with H2O2 and quercetin aglycone inhibited H2O2-induced 

ROS production in mouse fibroblasts, the pre-incubation with quercetin aglycone prevented 

its antioxidative activity, while quercetin-3-glucuronide retained its effectiveness.  

Flavonols do not only exert antioxidative activity by directly scavenging ROS or inhibiting 

their production but they can also protect the antioxidant ascorbic acid from oxidative 

degradation [45], conserve tocopherols in biological membranes [168] and reduce α-

tocopherol radicals [164]. Further indirect impact on the antioxidative system occurs by the 

interaction with antioxidative enzymes, e.g. SOD, CAT and GPx [164] but data on potential 

effects are inconsistent as both stimulating and inhibiting effects have been described in vivo 

and in vitro [169-172].  

The antioxidative activity of flavonols also affects the immune system: ROS are produced by 

phagocytes during respiratory burst as part of the innate immune response to fight invading 

pathogens. Flavonoids are not only able to scavenge ROS, but they can also inhibit their 

production. In case of immune cells, e.g. macrophages and neutrophils, ROS release is 

impaired by quercetin as it inhibits relevant enzymes, namely myeloperoxidase and NADPH 

oxidase [45]. Quercetin was also shown to inhibit the gene expression and enzyme activity of 

cyclooxygenase-2 and inducible nitric oxide synthetase, which results in a reduced release of 

pro-inflammatory mediators (nitric oxide, prostaglandin E2) and thus contributes to the anti-

inflammatory properties of quercetin [173]. In isolated macrophages, incubation with 

quercetin was shown to reduce mRNA levels of proinflammatory cytokines including TNFα 

and IL-1β [174, 175]. In non-immune cells, e.g. pancreatic β-cells or adipocytes, quercetin 

treatment attenuated the TNFα-mediated inflammation by interfering with signal transduction 

[145, 175, 176]. According to these findings, quercetin has also been shown to ameliorate 

the metabolic alterations evoking from chronic inflammation in animal models of diabetes 

mellitus type 2, obesity or atherosclerosis [147, 175, 177]. 

In rat and mouse models for inflammatory bowel disease, oral treatment with quercetin 
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aglycone or its O-methylated metabolite isorhamnetin attenuated chemically-induced 

symptoms of inflammation [178, 179]. Similar intestinal anti-inflammatory effects could be 

shown in mice fed the quercetin-glucorhamnosid rutin [180]. On a whole body level, however, 

only the acute administration of quercetin aglycone was useful to prevent endotoxemia and 

death in mice intraperitoneally injected with lipopolysaccharide, while the anti-inflammatory 

effect was missing after chronic administration [181]. When administered 12 h after 

lipopolysaccharide treatment, only quercetin aglycone but not its glucuronide affected the 

cytokine secretions by peritoneal macrophages [182]. 

Although numerous experiments have been undertaken in vitro or in laboratory rodents to 

emphasize the anti-inflammatory properties of quercetin, studies in farm animals are scarce 

and mostly focus on the effects of plant extracts. For example, in piglets of Echinacea-

supplemented sows, immunostimulatory effects were evident from increased Ig concen-

trations when compared to unsupplemented controls [183]. Similar effects could be shown in 

growing pigs, whose specific immune response to vaccination was higher when animals 

received Echinacea [184]. Elevated immunoglobulin titers were also observed in buffalo 

calves fed propolis, a flavonol-rich natural compound produced by honey bees [185]. 

Furthermore, addition of propolis to an inactivated vaccine against bovine herpesvirus-5 also 

resulted in significantly higher antibody titers in vaccinated Hereford cattle when compared to 

animals receiving a propolis-free vaccine [186]. 

However, as extracts of natural compounds contain mixtures of multiple components, it is not 

possible to distinguish whether observed immune-stimulatory effects are caused by single 

substances or by their synergism.  
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4.1 ABSTRACT 

Immaturity of the neonatal immune system is causative for high morbidity in calves and 

colostrum intake is crucial for acquiring passive immunity. Pathogenesis is promoted by 

reactive oxygen species accumulating at birth if counter-regulation is inadequate. The 

flavonol quercetin exerts antioxidative and anti-inflammatory effects that may enhance 

neonatal health. The aim of this work was to study effects of quercetin feeding on metabolic, 

antioxidative and inflammatory parameters in neonatal calves to investigate whether 

quercetin could compensate for insufficient colostrum supply. Twenty-eight newborn calves 

were assigned to two dietary groups fed colostrum or milk-based formula on day 1 and 2 and 

milk replacer thereafter. From day 2 onward, 7 calves per dietary group were additionally fed 

quercetin aglycone (50 mg/(kg body weight × day)). Blood samples were taken repeatedly to 

measure plasma concentrations of flavonols, glucose, lactate, total protein, albumin, urea, 

non-esterified fatty acids, triglycerides, cholesterol, insulin, glucagon, cortisol, immuno-

globulins, fibrinogen, haptoglobin and serum amyloid A. Trolox equivalent antioxidative 

capacity, ferric reducing ability of plasma, thiobarbituric acid reactive species and F2-

isoprostanes were analyzed to evaluate plasma antioxidative status. Expression of tumor 

necrosis factor, interleukin-1α, interleukin-1β, serum amyloid A, haptoglobin, fibrinogen, C-

reactive protein, catalase, glutathione peroxidase and superoxide dismutase mRNA were 

measured in liver tissue on day 8. Plasma flavonol concentrations were detectable only after 

quercetin-feeding without differences between colostrum and formula feeding. Plasma 

glucose, lactate, total protein, immunoglobulins, triglycerides, cholesterol, trolox equivalent 

antioxidative capacity and thiobarbituric acid reactive species were higher after colostrum 

feeding. Body temperature, fecal fluidity and plasma concentrations of cortisol and 

haptoglobin were higher in formula- than in colostrum-fed groups. Hepatic mRNA expression 

of tumor necrosis factor was higher after quercetin feeding and expression of C-reactive 

protein was higher after formula feeding. Data confirm that colostrum improves neonatal 

health and indicate that quercetin feeding cannot compensate for insufficient colostrum 

supply. 
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4.2 INTRODUCTION 

Calfhood diseases play a key role in the economy of dairy farms because they increase 

operating costs and reduce long-term productivity of the animal. Incidence of disease is 

associated with increased mortality rates [1], and enteritis is the most common diagnosis in 

young calves [2], which, according to Svensson, Linder and Olsson [3], contributes to 23% of 

calf losses during the first 14 days of life. Neonatal calves are prone to sickness because 

their immune system is immature. Furthermore, the process of birth itself causes an elevated 

stress level for the newborn and exposure to an oxygen-rich environment leads to an 

increased generation of reactive oxygen species [4, 5]. Reactive oxygen species induce 

peroxidation of lipids and other macromolecules, leading to alteration of cellular components, 

interaction with signaling cascades and modification of physiological cell functions [6]. If not 

properly counterbalanced by antioxidative defenses, excessive production of reactive oxygen 

species results in oxidative stress, which is a cofactor of disease in humans and farm 

animals [5, 7, 8]. Adequate colostrum supply is vital to calves because colostrum ensures 

ingestion of nutrients and contains immunoglobulins (Ig), peptides, antioxidants and other 

bioactive factors supporting maturation, antioxidative and immune defense as well as local 

intestinal immunity [9].  

The ban on antibiotic performance promoters by the European Union in 2006 increased 

efforts to establish natural alternatives to enhance health and productivity in breeding. 

Special focus has been directed to phytochemicals because their use can be manifold 

according to the respective compound [10]. Flavonoids are secondary plant metabolites that 

are widely distributed in the plant kingdom and are able to modulate inflammation and 

immune function and exert antioxidative activity [11-13]. 

Quercetin, which belongs to the subclass of flavonols, is ubiquitous in most plants and is of 

interest for scientists for its beneficial use in humans and farm animals. Its antioxidative 

capacity can ameliorate the acquisition of passive immunity in neonates, based on the 

finding that feeding antioxidant-enriched colostrum enhanced IgG absorption and 

antioxidative status in newborn calves and piglets [14, 15]. Similarly, Retskii et al. [16] 

showed that correcting the antioxidative balance in newborn calves prior to first colostrum 

ingestion increases the acquisition of colostral immunity and reduces the incidence of enteric 

colibacillosis. Another beneficial effect of quercetin is its local action in the gastrointestinal 

tract. In vitro studies on intestinal epithelium demonstrated that quercetin down-regulates the 

expression of genes related to inflammation in inflamed epithelium [17], and Lozoya et al. 

[18] showed in a clinical study that oral quercetin administration reduced abdominal pain in 

acute diarrheic disease in humans. In guinea pigs, mice and rats, the inhibitory action of 

quercetin on prostaglandin E2-induced ileal contractions and on castor-oil-induced diarrhea 

has been demonstrated [19, 20]. Furthermore, quercetin acts as a prebiotic, thus inhibiting 
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adhesion of enteropathogens to Caco-2 cells without affecting the viability of probiotics [21], 

and improves performance in hens by modulating cecal microflora populations [22]. 

Although a multitude of research on quercetin has been performed in vitro or in animal 

models for medical conditions, studies of the effects in neonatal farm animals are scarce. 

The aim of the present work was to investigate the potential health-promoting effects of 

feeding quercetin to newborn calves during the first week of life and to evaluate whether the 

health-promoting effects of quercetin compensate for initial colostrum deprivation in calves. 

We hypothesized that quercetin improves antioxidative balance and immune function and 

that local antibacterial and anti-inflammatory effects reduce the incidence of diarrhea and 

gastrointestinal dysfunctions.  

 

4.3 MATERIALS AND METHODS 

4.3.1 Animals, Husbandry and Feeding 

Experimental procedures were conducted in compliance with the German Animal Protection 

regulations with approval of the authorities of the state Mecklenburg-Western Pomerania, 

Germany (Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-

Vorpommern; LALLF M-V/TSD/7221.3-1.1-044/12). Liver biopsies were performed under 

local lidocaine anesthesia and all calves received metamizole post-operatively for pain relief.  

Twenty-eight male Holstein Friesian calves were separated from their dams immediately 

after birth and were housed in single boxes during their first 8 days of life. Before the trial 

started, separate colostrum pools were prepared from the first and third milkings after 

parturition. According to the colostrums’ macronutrient compositions, milk-based formulas 

with comparable amounts of macronutrients [23] but without bioactive factors were provided 

(Bergin MAT-Formula; Bergophor Futtermittelfabrik, Kulmbach, Germany). Calves were 

randomly assigned to two dietary groups and were bucket-fed twice daily, receiving either 

colostrum (Col, n = 14) or corresponding formula (For, n = 14) on days 1 and 2 of life (10% 

and 12% of body weight/day, respectively). If appetite was reduced, calves were tube fed to 

ensure complete ingestion of colostrum or formula. From day 3 until day 8, all calves were 

fed commercial milk replacer (12% of body weight/day; 150 g/L; SALVAlac MIRApro 45; 

Salvana Tiernahrung, Klein-Offenseth Sparrieshoop, Germany).  

On day 2, the dietary groups were subdivided into control (ColQ- and ForQ-; n = 7 per group) 

and treatment groups (ColQ+ and ForQ+; n = 7 per group), the latter receiving quercetin 

aglycone twice daily with feeding (50 mg/(kg body weight × day); quercetin aglycone 

dihydrate ≥98%, Carl Roth, Karlsruhe, Germany). The control groups received no quercetin 

aglycone. 
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4.3.2 Treatment 

Navels were disinfected with 10% povidone iodine solution (Vet-Sept; aniMedica, Senden-

Bösensell, Germany). Neonatal calves received an oral dose of 1 g iron dextran with their 

first meal on day 1 (Ursoferran; Serumwerk Bernburg, Bernburg, Germany). To support 

immunological defense during the first 5 days of life, all calves received chicken egg-derived 

immunoglobulins with the morning feeding (0.25 g/kg body weight; Globigen Life Start 25%, 

EW Nutrition, Visbek, Germany) [24]. To prevent cryptosporidiosis, calves were treated with 

halofuginone (0.1 mg/kg body weight per os; Halocur, Intervet, Igoville, France) after the 

evening feeding from day 1 to day 7.  

Colostrum-deprived calves (ForQ+, ForQ-) additionally received B-vitamins (100 mg 

nicotinamide/calf, 40 mg thiamin chloride hydrochloride/calf, s.c.; Vitamin-B-Komplex, 

Serumwerk Bernburg, Germany) and bovine colostral immunoglobulins on days 1 (s.c.), 3 

and 5 (per os) (2 g gammaglobulins/calf with antibodies against Escherichia coli, rotavirus, 

coronavirus; Aniserin orinject; aniMedica, Seden-Börsensell, Germany). Furthermore, 

formula-fed calves were treated metaphylactically with colistin sulfate from day 2 to day 8 

(3 mg/kg body weight, i.m.; Belacol; BelaPharm, Vechta, Germany).  

All calves were weighed immediately after birth and before evening meals on days 2 and 6. 

Every morning, health status was examined and appetite, general condition, heart rate, 

respiratory rate, rectal temperature and gut motility were assessed. Fecal fluidity was scored 

according to Larson et al. [25]. Calves with reduced vitality after the first 2 days of life were 

allowed one recovery day before further sample taking. In these cases, the times referred to 

as days 3, 4, 7 and 8 in the results section are days 4, 5, 8 and 9 after birth, respectively. 

Due to gastrointestinal imbalances, two calves (one calf of group ColQ+ and one calf of 

group ForQ+) had to be excluded from the study.  

4.3.3 Blood Analyses 

4.3.3.1 Sample Taking 

Basal blood samples were taken before the morning feeding on days 1, 2, 4 and 7 from the 

jugular vein using evacuated tubes containing either potassium-EDTA (1.2-2 mg/mL EDTA) 

for analyses of plasma metabolites, insulin, glucagon, immunoglobulins and acute-phase 

proteins or Li-heparin (12-30 IU heparin) for the determination of the cortisol and flavonol 

concentrations and the antioxidative status in the plasma. For flavonol analysis, additional 

blood samples were taken before the morning feeding on days 3 and 8. After centrifugation 

(1,500 × g, 4°C, 20 min), plasma aliquots were stored at -20°C until analyses (-80°C for 

analyses of flavonol concentrations and antioxidative status, respectively). 
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4.3.3.2 Plasma Flavonols, Metabolites and Hormones  

Plasma concentrations of flavonols (quercetin, isorhamnetin, tamarixetin and kaempferol) 

were measured via HPLC as previously described [26] with a detection limit of 2 nmol/L and 

a recovery rate of 92 ± 2%. The intra- and inter-assay coefficients were 0.5 and 7.2%, 

respectively.  

Plasma metabolites were analyzed using an automatic spectrophotometer (ABX Pentra 400; 

Horiba ABX, Montpellier, France) and respective kits: glucose (#A11A01667), lactate 

(#A11A01721), albumin (#A11A01664) and triacylglycerides ( #A11A01640) from 

HORIBA ABX, Montpellier, France; total protein ( #553-412) and cholesterol (#553-127) from 

mti-diagnostics, Idstein, Germany; urea (#LT-UR 0010) from Labor+Technik, E. Lehmann, 

Berlin, Germany; and non-esterified fatty acids (#434-91795, #436-91995) from WAKO 

Chemicals, Neuss, Germany.  

Plasma concentrations of insulin (#RIA-1257) and glucagon (#RIA-1258) were determined by 

RIA using kits from DRG Instruments, Marburg, Germany, which were adapted to bovines 

[27]. Intra- and inter-assay coefficients of variation were 3.7% and 5.5% for insulin, and 3.4% 

and 22.5% for glucagon, respectively. Plasma cortisol concentrations were analyzed in 

duplicate after extraction with diethylether using a commercially available ELISA kit 

(#EIA1887; DRG Instruments GmbH, Marburg, Germany) according to the instructions of the 

manufacturer. Cross reactivities of the antibody to corticosterone and progesterone were 

45% and 9%, respectively, and <2% to any further competing plasma steroids. The assay 

was validated for use with bovine plasma. The test sensitivity was 3.4 µg/L, and intra- and 

inter-assay coefficients of variation were 5.3% and 12.1%. 

4.3.3.3 Immunoglobulins (Ig) and Acute-Phase Proteins 

The concentrations of IgG1, IgG2 and IgM, as well as acute-phase proteins (haptoglobin, 

serum amyloid A and fibrinogen), were measured in the EDTA plasma samples taken on 

days 1, 2, 4 and 7. IgG1 was analyzed by radial immunodiffusion [28] (modified by 

Gasowska and Stefaniak [29]) using bovine reference serum (RS10-103; Bethyl Laboratories 

Inc., Montgomery, USA) as standard. IgG2 (#E10-117) and IgM (#E10-101) were determined 

by ELISA using kits from Bethyl Laboratories Inc., Montgomery, USA. Intra-assay coefficients 

of variation were 10.9% and 4.0% for IgG2 and IgM, respectively. The detection limit of IgG2 

was 7.8 g/L and that of IgM was 15.6 g/L. For detection of serum amyloid A (SAA; #TP-

802), we used a multispecies ELISA kit from Tridelta Development, Maynooth, Ireland. The 

detection limit of SAA was 9.4 mg/L. The intra-assay coefficient of variation was 12.0%. The 

haptoglobin concentration was analyzed using the guaiacol method developed by Jones and 

Mould [30] with human haptoglobin Hp 2-2 (Sigma #H9762) as a standard. The detection 

limit of haptoglobin was 0.01 g/L. Plasma fibrinogen was determined by rapid heat 
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precipitation according to Millar, Simpson and Stalker [31]. 

4.3.3.4 Antioxidative Status 

Li-heparinized plasma samples taken on days 1, 4 and 7 were used to analyze the Trolox-

Equivalent Antioxidative Capacity (TEAC, as trolox equivalents (TE) in mmol/L) and Ferric 

Reducing Ability of Plasma (FRAP, as Ascorbic Acid Equivalents, (ASCE) in µmol/L) as 

parameters of antioxidative capacity as well as Thio-Barbituric Acid Reactive Species 

(TBARS, as Malondialdehyde Equivalents (MDAE) in µmol/L) and 8-iso-PGF2α (F2-

isoprostanes, in ng/L) as markers for oxidative stress.  

TEAC was analyzed as described by Miller et al. [32] and modified by Re et al. [33]. FRAP 

and TBARS were determined according to Luehring et al. [34]. For determination of F2-

isoprostanes, a commercial ELISA kit (#ADI-900-091; Enzo Life Sciences, Lause, 

Switzerland) was used. Cross-reactivities of the assay to PGF1α and PGF2α were 4.6% and 

1.85%, respectively, and <1% to any further eicosanoids.  

4.3.4 Liver Tissue Analyses 

On day 8, a liver biopsy was conducted 2 h after the morning meal using a custom-made 

biopsy trocar [23]. Biopsy tissue was immediately frozen in liquid nitrogen and stored at         

-80°C until further analysis. Hippocalcin-like 1 (HPCAL1; NM_001098964), low-density 

lipoprotein receptor-related protein 10 (LRP10; BC149232) and RNA polymerase II 

(POLR2A; NM_001206313.1) were used as reference genes (given accession numbers 

related to NIH GenBank). Primer sequences, accession numbers and PCR conditions for 

target genes related to antioxidative status (catalase (CAT); glutathione peroxidase 1 

(GPX1); superoxide dismutase (SOD)) and inflammation (tumor necrosis factor (TNF); 

interleukin-1α and -1β (IL1A, IL1B); haptoglobin (HP); fibrinogen (FGA); serum amyloid A2 

(SAA2); and C-reactive protein (CRP)) are listed in Table 4.1. As recently described [23], 

primer products were verified by sequencing using the BigDye Terminator version 1.1 Cycle 

Sequencing kit and an ABI 3130 Genetic Analyzer (Life Technologies, Carlsbad, USA). Real-

time PCR was performed using a LightCycler (Roche Molecular Biochemicals, Mannheim, 

Germany); SYBR Green I was used as the fluorescent dye. Melting curve analysis and 

agarose gel electrophoresis were used to confirm the specificity of the PCR products. 

Quantification cycle values and amplification efficiencies obtained using LinRegPCR 

version 2013.0 [35] were imported into qBASE+ version 2.6.1 (Biogazelle, Gent, Belgium) for 

all subsequent calculations and quality controls. The geometric mean of the reference gene 

abundances was used for normalization. Data are presented as the ratio of the copy 

numbers of genes of interest and the geometric mean of the reference genes’ abundances. 
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4.3.5 Statistical Analyses 

Statistical analyses were conducted using SAS software, version 9.3 for Windows, SAS 

Institute Inc., Cary, USA. Descriptive statistics and tests for normality were calculated using 

the UNIVARIATE procedure of Base SAS software. Body weight, average daily weight gain 

and data for hepatic gene expression were analyzed by ANOVA with the MIXED procedure 

of SAS/STAT taking a model with the fixed factors diet (levels: Col vs. For), quercetin (levels: 

Q+ vs. Q-) and the interaction diet×quercetin. Feed intake, body temperature, heart and 

respiratory rate and plasma concentrations of metabolites, hormones, flavonols and markers 

of antioxidative status were analyzed by repeated measurement ANOVA using the MIXED 

procedure of SAS/STAT software and a model with the fixed factors diet, quercetin and day 

of life (repeated variable) and all interactions between the fixed factors. Repeated measures 

on the same calf were taken into account using the REPEATED statement of the MIXED 

procedure and a type for the block diagonal residual covariance matrix chosen in 

dependence on the levels of day of life. For concentrations of plasma metabolites, hormones 

and data on antioxidative status in plasma, an unstructured type was used. For the plasma 

concentrations of flavonols, acute-phase proteins and Ig, a compound symmetry type was 

used. For data on heart and respiratory rate, as well as body temperature and feed intake, an 

autoregressive (1) type was applied. Least-squares means (LSM) and their standard errors 

(SE) were computed for each fixed effect in the models and all pairwise differences of LSM 

were tested by the Tukey-Kramer procedure. The SLICE statement of the MIXED procedure 

was used to conduct partitioned analyses of the LSM for interactions. Fecal score was 

analyzed by a generalized linear mixed model using the GLIMMIX procedure of SAS/STAT 

and a Poisson model with the fixed factors diet, quercetin and day of life (repeated variable) 

and all interactions between these fixed factors. Repeated measurements on the same 

animal were taken into account by the RESIDUAL option of the RANDOM statement of the 

GLIMMIX procedure using a compound symmetry structure for the block diagonal residual 

covariance matrix. Sick frequencies of calves with respect to diet and quercetin were 

analyzed with the FREQ procedure of SAS/STAT software using two-way tables of diet by 

sick and quercetin by sick and the exact Pearson chi-square test. Effects and differences 

were considered significant at P < 0.05. 

 

4.4 RESULTS 

4.4.1 Feeding, Growth Performance and Health Status 

Mean body weight at birth was 45.5 ± 1.9 kg and increased with age (P < 0.01) by 

368 ± 140 g/d, without group differences, respectively. All calves received their first meal 

2.2 ± 0.1 h after birth. Milk intake related to body weight did not differ among groups on 
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days 1 and 2 but was lower on days 3 and 4 in the colostrum-deprived calves (P < 0.01; 

Figure 4.1 A). On day 2, appetite was reduced in the formula-fed calves and the amount of 

tube-fed milk was higher than in colostrum-fed calves (P < 0.01; Figure 4.1 B). Heart rate 

decreased with age (P < 0.01) and respiratory rate tended to decrease (P = 0.08; 

Figures 4.1 C and D). Rectal temperature was highest on days 3 and 4 and subsequently 

decreased (P < 0.01). Rectal temperature and fecal score were higher in formula-fed than in 

colostrum-fed calves (P < 0.01; Figures 4.1 E and F). The number of calves with an allowed 

recovery day was similar among groups. With the exception of ColQ+, we treated one calf 

per group medically for navel infection. Four calves in group ForQ+ needed 

antispasmodic/analgesic treatment during a recovery day because of abdominal pain. Thus, 

Col-fed calves tended to be less susceptible to illness (P = 0.08), whereas quercetin 

treatment did not affect well-being (P = 0.38). Due to severe disease, we had to remove two 

calves from the study on day 4 (ForQ+) and day 7 (ColQ+). 
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Figure 4.1: Feed Intake and Health Parameters. Neonatal calves were fed either colostrum 

(black circles) or formula (gray triangles) on days 1 and 2 and were supplemented with (filled 

symbols, solid lines) or without (open symbols, dashed lines) quercetin aglycone from day 2 to 

day 8 (50 mg/(kg body weight × day)). (A) Milk intake, (B) percent milk intake by tube feeding, 

(C) heart rate, (D) respiratory rate, (E) body temperature and (F) fecal score (according to 

Larson et al. [25]; 1 = normal, 2 = soft, 3 = runny, 4 = watery) were observed daily. Data are 

presented as the least squares means ± standard errors. Least squares means with different 

lowercase letters (a, b) differ among groups within the same day (P < 0.05). 
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4.4.2 Flavonoid Content 

Preprandial concentrations of total flavonols in plasma on days 1 and 2 (before first quercetin 

supplementation) did not reveal significant differences among groups, but very low 

concentrations were detectable in five colostrum-fed calves. In the control groups ForQ- and 

ColQ-, the plasma concentrations did not change with age. In ColQ+ and ForQ+, the plasma 

flavonol concentrations changed with age (P < 0.01); they reached the maximum on day 3 

and decreased subsequently but tended to differ among groups only on day 4 (P = 0.08; 

Figure 4.2 A). Comparing the flavonol fractions in the plasma, the quercetin fraction (60% of 

total flavonoids) was highest in both dietary groups. The concentrations of isorhamnetin and 

tamarixetin on day 3 were higher in ColQ+ than in ForQ+ (Figure 4.2 B). 

 

Figure 4.2: Flavonol Concentrations in Plasma. Stacked concentrations (A) and percentage 

composition (B) of flavonols in basal plasma samples of calves fed either colostrum (dark 

grey) or formula (light grey) on days 1 and 2 and supplemented with quercetin aglycone from 

day 2 to day 8 (50 mg/(kg body weight × day)). Flavonol metabolites: quercetin (without fill 

pattern), isorhamnetin (horizontal lines), tamarixetin (crossline pattern) and kaempferol 

(horizontal bold lines). Data are presented as the least squares means. Different uppercase 

letters (A, B, C) symbolize differences in the total flavonol concentration within the same group 

on different days (P < 0.05). † tend to differ among groups on the same day (P < 0.10) 
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4.4.3 Plasma Metabolites and Hormones 

Plasma glucose concentrations were lowest on day 1, increased on day 2 in ColQ-, ForQ+ 

and ForQ- (P < 0.05) and decreased on day 4 only in ForQ+ and ForQ- (P < 0.05). The mean 

plasma concentration of glucose was higher in the colostrum-fed than in the formula-fed 

calves (P < 0.03; Table 4.2). The plasma lactate and non-esterified fatty acid concentrations 

were highest on day 1 and decreased with age (P < 0.01) without any group differences 

(Table 4.2). The concentrations of total protein in the plasma increased only in the colostrum-

fed calves (P < 0.01) and were higher in the colostrum-fed than in the formula-fed calves on 

day 2, day 4 and day 7 (P < 0.01; Figure 4.3 A). Plasma albumin decreased with age 

(P < 0.01) in all groups (Figure 4.3 B). For both total protein and albumin, the diet×age 

interaction was significant (P < 0.01). The plasma urea concentrations increased on day 2 in 

the formula-fed and on day 7 in the colostrum-fed calves (P < 0.01; Table 4.2). The plasma 

triglyceride concentrations increased until day 4 only in the colostrum-fed calves (P < 0.05) 

and continuously decreased from day 2 to day 7 in the formula-fed calves (P < 0.01). The 

plasma cholesterol concentration increased with age (P < 0.01). The plasma triglyceride 

(day 7) and cholesterol concentrations (day 4 and day 7) were higher in the colostrum-fed 

than in the formula-fed calves (P < 0.01; Table 4.2).  

The plasma insulin concentrations decreased with age (P < 0.01; Table 4.2). Glucagon 

increased to a maximum plasma concentration on day 2 and subsequently decreased in all 

calves (P < 0.01). The glucagon concentration on day 4 and day 7 was higher in the 

colostrum-fed than in the formula-fed calves (P < 0.01; Table 4.2). The cortisol concen-

trations decreased with age in all groups (P < 0.01) but decreased earlier in the colostrum-

fed calves. The mean cortisol concentrations in plasma during the first week of life were 

lower in the colostrum-fed than in the formula-fed calves (P = 0.02; Table 4.2). Quercetin 

treatment did not affect the concentrations of metabolites nor hormones in the plasma. 
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Figure 4.3: Total Protein, Albumin and Immune and Inflammatory Status in Blood Plasma. Basal concentrations of total protein (A) and albumin (B), 

immunoglobulins G1, G2 and M (C, D, E) and acute-phase proteins haptoglobin, serum amyloid A and fibrinogen (F, G, H) in the plasma of calves 

fed either colostrum (black circles) or formula (gray triangles) on days 1 and 2 and supplemented with (filled symbols, solid lines) or without (open 

symbols, dashed lines) quercetin aglycone from day 2 to day 8 (50 mg/(kg body weight × day)). Data are presented as the least squares 

means ± standard errors. Least squares means with different lowercase letters (a, b, c) differ among groups within the same day (P < 0.05). 
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4.4.4 Immunoglobulins and Acute-Phase Proteins  

The plasma concentrations of IgG1 and IgG2 increased on day 2 only in colostrum-fed calves 

(P < 0.01; Figures 4.3 C and D). The plasma concentrations of IgM increased sharply until 

day 2 in colostrum-fed calves and then slowly decreased (P < 0.01). In the formula-fed 

groups, the IgM concentration increased until day 7 (P < 0.01) but was still lower than in the 

colostrum-fed groups (P < 0.01) at the end of the trial (Figure 4.3 E). The concentrations of 

haptoglobin in blood plasma were below the detection limit on day 1 in all calves and 

increased only in the formula-fed calves (P = 0.01) and were highest in ForQ- on day 7 

(Figure 4.3 F). The mean haptoglobin concentration was higher in formula-fed than in the 

colostrum-fed calves (P = 0.03). The concentrations of SAA increased until day 2 and slowly 

decreased afterwards in all calves (P < 0.01; Figure 4.3 G). The concentrations of fibrinogen 

increased until day 4 and then decreased (P < 0.01) without differences among groups 

(Figure 4.3 H). However, the mean fibrinogen concentration tended to be higher after 

formula feeding (P = 0.10).  

4.4.5 Antioxidative Status 

Plasma TEAC increased in all groups until day 4 of life (P < 0.01) but was higher in the 

colostrum-fed than in the formula-fed calves (P < 0.01; Figure 4.4 A). FRAP decreased from 

day 1 to day 7 only in the formula-fed groups (P ≤ 0.01) and was higher (P < 0.05) on day 7 

in the colostrum-fed groups (Figure 4.4 B). Although not statistically significant, the FRAP 

decrease was delayed in the quercetin-fed calves compared with the control groups. The 

mean concentrations of TBARS in plasma were higher in the colostrum-fed than in the 

formula-fed calves (P = 0.01) and revealed a diet×age interaction (P = 0.01) with higher 

concentrations in the colostrum-fed than in the formula-fed calves on day 4 (Figure 4.4 C). 

The mean concentrations of F2-isoprostanes decreased from day 1 to day 4 (P < 0.01) in all 

calves and tended to increase on day 7 only in ForQ- (P = 0.08; Figure 4.4 D).  
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Figure 4.4: Antioxidative Status in Plasma. Plasma parameters for antioxidative capacity (A, B) 

and oxidative stress (C, D) in calves fed either colostrum (dark grey) or formula (light grey) on 

days 1 and 2 and supplemented with (crossline pattern) or without (without fill pattern) 

quercetin on days 2-8 (50 mg/(kg body weight × day)). Data are presented as the least squares 

means ± standard errors. Bars with different lowercase letters (a, b) differ among groups within 

the same day (P < 0.05). TEAC, trolox equivalent antioxidative capacity (in trolox equivalents, 

TE); FRAP, ferric reducing ability of plasma (in ascorbic acid equivalents, ASCE); TBARS, 

thiobarbituric acid reactive species (in malondialdehyde equivalents, MDAE) 
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4.4.6 Hepatic Gene Expression 

Regarding inflammation markers, the relative mRNA abundance of TNF was higher after 

quercetin feeding (P = 0.04; Table 4.3). The relative mRNA abundance of CRP was higher 

(P = 0.03) and that of SAA2 tended to be higher (P = 0.09) in the formula-fed than in the 

colostrum-fed groups (Table 4.3). For the antioxidative enzymes, the mRNA abundances of 

GPX1 and SOD were not different among groups, whereas the relative mRNA abundance of 

CAT tended to be higher in ColQ- than in ColQ+ (P = 0.06) but did not differ between ForQ- 

and ForQ+, revealing a diet×quercetin interaction (P = 0.04; Table 4.3). 

 

Table 4.3: Hepatic mRNA Expression of Inflammatory and Antioxidative Traits in 

Newborn Calves. 

  Group (Diet, Quercetin)  ANOVA P-values 

  Colostrum Formula     

  Q- Q+ Q- Q+ SE Diet Quercetin Interaction 

Proinflammatory Cytokines 

 TNF 0.98 1.15 0.89 1.48 0.10 0.41 0.04 0.39 

 IL1A 1.17 0.90 1.05 1.18 0.08 0.62 0.66 0.22 

 IL1B 3.00 3.68 3.11 2.69 0.30 0.49 0.83 0.38 

Acute-Phase Proteins 

 HP 14.74 29.14 39.78 23.09 4.61 0.30 0.90 0.10 

 FGA 2.73 3.28 3.73 2.18 0.35 0.95 0.48 0.15 

 SAA2 0.91 0.88 1.20 1.12 0.07 0.09 0.72 0.87 

 CRP 0.90 0.96 1.11 1.06 0.04 0.03 0.99 0.42 

Antioxidative Enzymes 

 CAT 1.22 0.77 1.01 1.08 0.06 0.68 0.11 0.04 

 GPX1 1.08 0.95 0.98 1.05 0.03 0.99 0.65 0.13 

 SOD 1.03 1.08 1.09 0.90 0.04 0.42 0.36 0.11 

Relative mRNA expression of genes related to inflammation and antioxidative status in the liver of 8-d-

old calves; data are given in arbitrary units and are presented as the means ± standard errors (SE). 

Q+, quercetin-supplemented; Q-, control (no quercetin); n = 6 per group. 

CAT, catalase; GPX1, glutathione peroxidase; SOD, superoxide dismutase; TNF, tumor necrosis 

factor; IL1A, interleukin-1α; IL1B, interleukin-1β; HP, haptoglobin; FGA, fibrinogen; SAA2, serum 

amyloid A2; CRP, C-reactive protein. 
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4.5 DISCUSSION 

In this study, we were able to confirm the oral bioavailability of quercetin in colostrum-fed 

calves and further showed that after colostrum deprivation, quercetin is absorbed in equal 

amounts. As indicated earlier, oral bioavailability decreases with age due to intestinal 

maturation and therefore reduced permeability or more effective elimination processes [24]. 

The pattern of flavonol fractions in the plasma in this study was different from the patterns in 

29-day-old calves or adult cattle but comparable to observations in 2-day-old calves [24, 36]. 

This result can be explained by the maturation of intestinal metabolism because it has been 

shown for rats and pigs [37, 38] that orally administered flavonols undergo complete 

metabolism inside the intestinal mucosa, where glucuronidation is of major importance [39]. 

Although flavonols were present in the plasma of quercetin-fed calves, we failed to detect 

any effect on the metabolic parameters or hormone concentrations, which was also the case 

in previous studies in cattle [24, 36, 40]. However, we could confirm a variety of effects 

caused by colostrum-deprivation during the first 2 days of life. Cortisol is crucial for initiation 

of parturition and catabolic activity, especially during hypoxia at birth. However, a decrease 

of the plasma cortisol concentration is delayed in formula-fed calves, as seen in previous 

studies [41, 42]. We assume that the delay was possibly caused by either abdominal pain or 

by reduced utilization of nutrients, which is proven to increase stress parameters in sheep 

[43, 44]. 

Higher plasma glucose in colostrum-fed groups was most likely caused by enhanced 

intestinal maturation and therefore enlarged absorptive surface [45, 46]. Additionally, 

colostrum feeding seems to accelerate maturation of the pancreas [47] because glucagon 

concentrations were also higher in colostrum-fed calves from day 4 onwards. Although the 

basal insulin concentrations were similar among dietary groups, we showed in a companion 

paper that the postprandial insulin response is more pronounced in colostrum-fed groups 

[23].  

Higher triglyceride and cholesterol concentrations in colostrum-fed calves are in accordance 

with observations in other studies [41, 42] and are due to the enhanced stimulation of 

intestinal differentiation by colostral growth factors and hormones. However, it must be 

considered that diarrhea in formula-fed calves accelerated intestinal transit and therefore 

reduced absorption time, which might also account for differences in the plasma triglyceride 

and cholesterol concentrations between dietary groups. Similar concentrations of non-

esterified fatty acids indicate that the energy balance in the dietary groups is equal and that 

lipid mobilization seems to be of minor importance to maintain energy balance; previous 

studies also failed to demonstrate consistent effects in neonatal calves [41, 42, 48].  

As we expected, the concentration of total protein in the plasma increased only in the 

colostrum-fed groups, although the protein content of the formula and colostrum was similar. 
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The decrease of the albumin concentration from day 1 to day 2 was probably caused by 

hemodilution after first feed intake and coincides with previous findings [49, 50]. Because 

only Ig, but not the albumin concentrations in plasma were affected by colostrum feeding, 

differences in total protein are most likely caused by absorption of colostral immunoglobulins 

after colostrum intake [42]. Colostrum intake is important not only for maturational processes 

but also to acquire passive immunity because the bovine placenta is impermeable to 

antibodies. As reviewed by Weaver et al. [51], calves with serum IgG concentrations below 

10 g/L (total protein < 52 g/L) 24 h after birth suffer from failure of passive transfer, which is 

associated with increased morbidity and mortality as well as reduced performance. In our 

study, colostrum-fed calves exceeded this threshold; however, failure of passive transfer was 

a relevant problem in formula-fed calves, although they were parenterally supplemented with 

bovine immunoglobulins on day 1. Only formula-fed calves showed slight hyperthermia on 

the first days of life and a higher incidence of diarrhea, probably caused by gastrointestinal 

inflammation due to missing local immunity [52], accompanied by abdominal pain and 

diminished appetite. Obviously, parenteral and oral treatments with immunoglobulins could 

not prevent local or systemic infections in formula-fed calves, probably because of missing 

herd-specific immunoglobulins in the formula and the administered drugs. However, we did 

not perform microbiological analyses in the feces of the calves to determine pathogens that 

might have caused loose feces. The time course of plasma IgM concentration in formula-fed 

calves indicates that the indigenous production of IgM is evident as early as day 4 of life, but 

the concentrations are too low to effectively protect against infections [9]. 

We assume that inflammatory processes also activated the synthesis of acute phase 

proteins. Although the increase of the plasma acute phase proteins in all calves emphasized 

the immunological burden of the new environment, higher haptoglobin concentrations in 

formula-fed calves suggest more severe inflammatory processes than in colostrum-fed 

calves [53, 54], which was underlined by the greater incidence of gastrointestinal infections. 

Because serum amyloid A is more susceptible to stress [53, 55], including physical stress, 

we suppose that the plasma concentrations were equally high in all groups due to the 

experimental procedures (e.g., continued venipuncture, restricted feeding, single penning, 

temporal fixation and dietary changes). 

On the mRNA level, we did not find differences in the acute phase proteins between dietary 

groups because hepatic transcription precedes translation and protein release into 

circulation. Thus, we obviously missed the time point of elevated mRNA abundances of HP. 

However, mRNA abundance of CRP, a moderate acute phase protein, was elevated in the 

formula-fed groups on day 8, which could indicate the importance of C-reactive protein as a 

major component of the bovine innate immune system [56]. Hence, increased C-reactive 

protein production is compensative for the absence of immunoglobulins in colostrum-

deprived calves. 

4. Quercetin on metabolism and health in newborn calves 

80



4. Quercetin on metabolism and health in newborn calves 

 

 

Regarding pro-inflammatory cytokines, we found elevated hepatic mRNA abundance of TNF 

in quercetin-supplemented calves but no differences between dietary groups. Under 

immunocompetent conditions, the impact of various noxae leads to local production of pro-

inflammatory cytokines, e.g., TNF or interleukin-1, which in turn induce the systemic acute 

phase response, including synthesis of acute phase proteins [57]. Within signal transduction, 

reactive oxygen species act as second messengers, thus enhancing TNF-induced gene 

expression, and oxidative conditions potentiate the activation of respective pathways [57, 

58]. Although high doses of quercetin were repeatedly shown to reduce mRNA expression of 

TNF in vitro [59, 60] application of prophylactic doses increased the ratio of pro- to anti-

inflammatory cytokines in murine macrophages [60]. We assume that the hepatic quercetin 

concentration in our experiment did not exceed the prophylactic dose; thus, quercetin might 

have increased the expression of TNF. Unfortunately, we did not measure TNF protein 

concentration, but we suppose that posttranscriptional processes anticipated TNF signal 

transduction [17, 61], because quercetin scavenged reactive oxygen species necessary for 

signal transduction. Therefore, the observed quercetin effects on TNF gene expression could 

not have been forwarded on the expression of target genes, e.g., IL1B or acute phase 

proteins, as would have been expected otherwise. 

Concerning the antioxidative status in the plasma, previous findings in neonatal calves are 

inconsistent. Inanami et al. [62] and Stohrer, Lutz and Stangassinger [63] concluded from 

comparisons between calves and dams that the former are highly susceptible to oxidative 

stress due to immature defense systems, whereas Gaál et al. [64] deduced from high FRAP 

values, despite the high reactive oxygen species, that calves are well-prepared to address 

oxidative stress. Although the increase of TEAC in this and a previous study of our group [65] 

indicates rising antioxidative capacity during the first week of life, this result was not 

supported by determination of FRAP, another marker of antioxidative capacity. Furthermore, 

the values of TBARS, which serve as a proxy to measure the products of lipid peroxidation, 

were unaffected by age in this study, which contradicts earlier studies [62, 64, 66]. However, 

the reliability of TBARS is criticized for low sensitivity and specificity, and the use of F2-

isoprostanes is recommended as the most reliable approach to assess oxidative stress in 

vivo [67, 68]. The time courses of F2-isoprostanes were significantly decreased in all calves; 

thus, we support the theory that exposure to an oxygen-rich environment following hypoxia 

during birth results in severe oxidative stress in the newborn [5]. Although quercetin is known 

to exert antioxidative effects, we did not find improved antioxidative status in the plasma of 

calves nor increased hepatic expression of antioxidative enzymes, which is in line with 

previous findings of our group in research conducted on neonatal calves and lactating dairy 

cows [65, 69]. Orally administered quercetin is completely metabolized inside the intestinal 

mucosa; thus, the gastrointestinal tract is the first site of action for quercetin [39], as it is for 

pathogens and gastrointestinal disorders commonly occurring during the first weeks of life. 
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Because we did not examine the intestinal tissue, we cannot exclude local effects of 

quercetin on antioxidative status. Except for F2-isoprostanes, the parameters of the 

antioxidative system in the plasma were higher after colostrum feeding. Colostrum is a 

source of reactive oxygen species, but it also contains a variety of antioxidative factors [66, 

70], the latter increasing with time after parturition [71]. The absorption of pro- and 

antioxidants present in colostrum [72] might have contributed to the rise of the respective 

parameters in the plasma of colostrum-fed calves and triggered immunological processes, 

which in turn caused elevated plasma levels. However, the hepatic mRNA abundances of 

antioxidative enzymes seemed not to be affected by diet, but all groups were fed milk 

replacer from day 3 onwards and potential dietary effects on hepatic antioxidative status 

might not be long-lasting.  

In conclusion, oral administration of quercetin aglycone at a daily dose of 50 mg/kg body 

weight to newborn calves during the first week of life is unable to compensate for inadequate 

colostrum supply. Quercetin did not show any positive effects on neonatal antioxidative or 

anti-inflammatory status, whereas colostrum feeding improves neonatal health status by 

supporting passive immunity and by promoting antioxidative/oxidative status.  
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4.9 SUPPORTING INFORMATION 

Supplemental Table 4.1: Complete data set of parameters regarding daily milk intake 

and health status as shown in Figure 4.1.  
Calf Group Feeding Quercetin Age, BW, Milk intake, Force-fed milk, Fecal  Rectal  Heart rate, Resp. rate, 

    d kg kg/kg BW % of intake/day score temp, °C per min per min 

1 ColQ- COL Q- 1 38.5 0.0961 27.027 . . . . 
4 ColQ- COL Q- 1 46 0.09565 0 . . . . 
5 ColQ- COL Q- 1 54.5 0.09725 28.302 . . . . 
10 ColQ- COL Q- 1 46 0.1 0 . . . . 
12 ColQ- COL Q- 1 44 0.1 0 . . . . 
23 ColQ- COL Q- 1 48.5 0.10103 0 . . . . 
28 ColQ- COL Q- 1 39.5 0.10127 0 . . . . 
2 ColQ+ COL Q+ 1 44 0.1 0 . . . . 
3 ColQ+ COL Q+ 1 52.5 0.09333 0 . . . . 
7 ColQ+ COL Q+ 1 42.5 0.09647 0 . . . . 
8 ColQ+ COL Q+ 1 50 0.1 0 . . . . 

11 ColQ+ COL Q+ 1 43 0.10465 0 . . . . 
19 ColQ+ COL Q+ 1 51 0.10588 0 . . . . 

26 ColQ+ COL Q+ 1 46 0.1 0 . . . . 
9 ForQ- FOR Q- 1 51 0.09804 48 . . . . 
15 ForQ- FOR Q- 1 43 0.1 0 . . . . 
18 ForQ- FOR Q- 1 44.5 0.09888 13.636 . . . . 
21 ForQ- FOR Q- 1 45 0.1 37.778 . . . . 
22 ForQ- FOR Q- 1 37 0.1 18.919 . . . . 
24 ForQ- FOR Q- 1 48 0.1 0 . . . . 
29 ForQ- FOR Q- 1 47.5 0.09895 0 . . . . 
13 ForQ+ FOR Q+ 1 44.5 0.09888 31.818 . . . . 
14 ForQ+ FOR Q+ 1 52 0.1 0 . . . . 
17 ForQ+ FOR Q+ 1 43 0.09302 0 . . . . 

20 ForQ+ FOR Q+ 1 33 0.1 0 . . . . 
25 ForQ+ FOR Q+ 1 46.5 0.10108 0 . . . . 
27 ForQ+ FOR Q+ 1 46.5 0.10108 17.021 . . . . 
30 ForQ+ FOR Q+ 1 47 0.1 0 . . . . 
1 ColQ- COL Q- 2 38.5 0.1039 82.5 . 38.7 120 78 
4 ColQ- COL Q- 2 46 0.12174 0 2 38.4 150 66 
5 ColQ- COL Q- 2 54.5 0.1156 0 2 38.2 138 56 
10 ColQ- COL Q- 2 46 0.12174 0 3 38.9 138 66 
12 ColQ- COL Q- 2 44 0.12045 0 2 38.4 126 48 
23 ColQ- COL Q- 2 48.5 0.11959 36.207 2 38.9 132 60 
28 ColQ- COL Q- 2 39.5 0.11899 0 1 38.7 138 48 
2 ColQ+ COL Q+ 2 44 0.12273 0 . 38.3 126 48 
3 ColQ+ COL Q+ 2 52.5 0.1181 85.484 1 38.5 138 96 
7 ColQ+ COL Q+ 2 42.5 0.11765 0 2 38.3 180 48 
8 ColQ+ COL Q+ 2 50 0.12 0 2 38.2 150 54 
11 ColQ+ COL Q+ 2 43 0.11395 16.327 . 38.6 132 54 
19 ColQ+ COL Q+ 2 51 0.11176 0 2 38.5 126 60 
26 ColQ+ COL Q+ 2 46 0.12174 0 . 38.5 108 54 
9 ForQ- FOR Q- 2 51 0.11765 95 . 38.9 162 48 
15 ForQ- FOR Q- 2 43 0.11628 42 . 38.2 168 60 
18 ForQ- FOR Q- 2 44.5 0.11685 80.769 3 38.6 144 60 
21 ForQ- FOR Q- 2 45 0.11778 100 2 38.9 132 66 
22 ForQ- FOR Q- 2 37 0.12162 100 2.75 38.6 144 54 
24 ForQ- FOR Q- 2 48 0.12083 29.31 3 38.9 138 48 
29 ForQ- FOR Q- 2 47.5 0.11579 18.182 3 38.3 120 36 
13 ForQ+ FOR Q+ 2 44.5 0.11011 0 . 39.5 166 48 
14 ForQ+ FOR Q+ 2 52 0.10962 26.316 2 39.4 126 66 
17 ForQ+ FOR Q+ 2 43 0.11395 0 2.5 38.9 138 48 
20 ForQ+ FOR Q+ 2 33 0.12424 95.122 2 38.1 156 72 
25 ForQ+ FOR Q+ 2 46.5 0.11613 88.889 2.5 38.7 132 72 
27 ForQ+ FOR Q+ 2 46.5 0.12043 100 3 38.9 168 60 
30 ForQ+ FOR Q+ 2 47 0.11915 103.571 2 38.4 114 60 
1 ColQ- COL Q- 3 40 0.115 0 2 38.8 108 66 
4 ColQ- COL Q- 3 46 0.12174 0 2 38.7 132 60 
5 ColQ- COL Q- 3 56 0.11786 0 1 38.8 126 54 
10 ColQ- COL Q- 3 48.5 0.11753 0 3 39.4 150 90 
12 ColQ- COL Q- 3 46 0.12391 0 2 39.1 126 66 
23 ColQ- COL Q- 3 50.5 0.10693 20.37 2 39 108 48 
28 ColQ- COL Q- 3 39.5 0.12405 0 2 39.1 180 48 
2 ColQ+ COL Q+ 3 46.5 0.11613 0 2 38.8 72 . 
3 ColQ+ COL Q+ 3 55 0.09273 19.608 1 38.6 126 90 
7 ColQ+ COL Q+ 3 44 0.11818 0 . . . . 
8 ColQ+ COL Q+ 3 52 0.11923 0 . 38.7 132 54 
11 ColQ+ COL Q+ 3 45 0.10889 38.776 3 39.2 120 42 
19 ColQ+ COL Q+ 3 52.5 0.08 23.81 2 38.6 138 42 
26 ColQ+ COL Q+ 3 47 0.11915 0 . 39.6 132 66 
9 ForQ- FOR Q- 3 51 0.11765 91.667 3 39.4 144 48 
15 ForQ- FOR Q- 3 45.5 0.11868 0 2 38.8 132 36 
18 ForQ- FOR Q- 3 45.5 0.1011 0 3 38.7 174 72 
21 ForQ- FOR Q- 3 48 0.12083 0 2 39.5 120 54 
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Supplemental Table 4.1 Continuation. 
Calf Group Feeding Quercetin Age, BW, Milk intake, Force-fed milk, Fecal  Rectal  Heart rate, Resp. rate, 

    d kg kg/kg BW % of intake/day score temp, °C per min per min 

22 ForQ- FOR Q- 3 38 0.12105 0 2.75 38.8 114 66 
24 ForQ- FOR Q- 3 48 0.06042 86.207 2.5 39.4 138 . 
29 ForQ- FOR Q- 3 50.5 0.06535 0 3 39.2 96 39 
13 ForQ+ FOR Q+ 3 47.5 0.08421 17.5 2 39.3 168 48 
14 ForQ+ FOR Q+ 3 53 0.11698 0 2 39.2 126 54 
17 ForQ+ FOR Q+ 3 44.5 0.11685 0 2 39.7 138 42 
20 ForQ+ FOR Q+ 3 34.5 0.08986 16.129 2 38.6 162 90 
25 ForQ+ FOR Q+ 3 48 0.12083 0 2.5 39.4 126 72 
27 ForQ+ FOR Q+ 3 44 0.01364 0 4 38.6 144 48 
30 ForQ+ FOR Q+ 3 45.5 0.06593 0 3 39.1 114 66 
1 ColQ- COL Q- 4 39.25 0.11849 0 2 39.2 120 102 
4 ColQ- COL Q- 4 46 0.12174 0 . 38.4 138 54 
5 ColQ- COL Q- 4 56 0.11786 0 2 39.2 . . 
10 ColQ- COL Q- 4 48.5 0.11959 0 2 39.4 168 102 
12 ColQ- COL Q- 4 46 0.11957 0 2 39.4 162 72 
23 ColQ- COL Q- 4 49.5 0.08233 0 2 38.5 132 48 
28 ColQ- COL Q- 4 39.5 0.12405 0 2 39.1 180 33 
2 ColQ+ COL Q+ 4 46.5 0.12043 0 2 39.3 102 66 
3 ColQ+ COL Q+ 4 53.75 0.11996 37.903 1 39 156 84 
7 ColQ+ COL Q+ 4 44 0.11818 0 1 38.7 162 78 
8 ColQ+ COL Q+ 4 51 0.12162 0 . . . . 
11 ColQ+ COL Q+ 4 45 0.12 0 2 38.9 114 42 
19 ColQ+ COL Q+ 4 52.5 0.1181 0 2 38.5 108 30 
26 ColQ+ COL Q+ 4 46.5 0.11936 0 1 39.2 126 66 
9 ForQ- FOR Q- 4 51 0.04706 0 3 39.4 120 48 
15 ForQ- FOR Q- 4 44.25 0.06837 0 . 38.9 150 42 
18 ForQ- FOR Q- 4 45 0.04948 0 2 38.9 . . 
21 ForQ- FOR Q- 4 46.5 0.08153 0 2 39 114 60 
22 ForQ- FOR Q- 4 37.5 0.07945 0 2 39.5 108 60 
24 ForQ- FOR Q- 4 48 0.12083 0 . 39.2 114 54 
29 ForQ- FOR Q- 4 50.5 0.08515 0 . 38.6 108 48 
13 ForQ+ FOR Q+ 4 47.5 0.12 0 2 39.4 126 30 
14 ForQ+ FOR Q+ 4 52.5 0.09022 0 . 39.1 138 66 
17 ForQ+ FOR Q+ 4 44.5 0.11685 0 2 39.4 150 54 
20 ForQ+ FOR Q+ 4 34.5 0.13333 0 2 39.4 168 84 
25 ForQ+ FOR Q+ 4 47.25 0.02718 0 2 39 132 78 
27 ForQ+ FOR Q+ 4 44 0.02045 0 3 38.7 . . 
30 ForQ+ FOR Q+ 4 46.25 0.06218 0 2 39.2 114 66 
1 ColQ- COL Q- 5 40 0.12 0 . 38.9 116 72 
4 ColQ- COL Q- 5 46 0.12174 0 . 37.6 138 42 
5 ColQ- COL Q- 5 56 0.11786 0 2 39.1 132 42 

10 ColQ- COL Q- 5 48.5 0.11959 0 2 39.1 156 54 
12 ColQ- COL Q- 5 46 0.12174 0 . 38.2 . . 
23 ColQ- COL Q- 5 50.5 0.11881 0 2 38.9 120 60 
28 ColQ- COL Q- 5 39.5 0.12658 0 2 38.9 156 . 
2 ColQ+ COL Q+ 5 46.5 0.12043 0 2 39.1 102 54 
3 ColQ+ COL Q+ 5 55 0.12 0 2 38.9 138 84 
7 ColQ+ COL Q+ 5 44 0.12045 0 2 38.8 162 . 
8 ColQ+ COL Q+ 5 52 0.11923 0 2 37.7 120 42 
11 ColQ+ COL Q+ 5 45 0.12 0 . 39 138 54 
19 ColQ+ COL Q+ 5 52.5 0.1181 0 2 38.8 132 30 
26 ColQ+ COL Q+ 5 47 0.11915 0 1 39 138 66 
9 ForQ- FOR Q- 5 51 0.04706 0 4 39 114 42 
15 ForQ- FOR Q- 5 45.5 0.12088 0 2 39.1 162 42 
18 ForQ- FOR Q- 5 45.5 0.07253 0 . . . . 
21 ForQ- FOR Q- 5 48 0.12083 0 2 39.4 120 48 
22 ForQ- FOR Q- 5 38 0.12105 0 2 38.8 132 60 
24 ForQ- FOR Q- 5 48 0.12083 0 . 39.3 108 60 
29 ForQ- FOR Q- 5 50.5 0.11485 0 . 38.7 102 36 
13 ForQ+ FOR Q+ 5 47.5 0.12 0 . 38.8 126 30 
14 ForQ+ FOR Q+ 5 53 0.12075 0 2 39.7 132 54 
17 ForQ+ FOR Q+ 5 44.5 0.12135 0 2 38.7 144 . 
20 ForQ+ FOR Q+ 5 34.5 0.14493 0 2 38.6 148 76 
25 ForQ+ FOR Q+ 5 48 0.12083 0 2 38.8 138 60 
27 ForQ+ FOR Q+ 5 44 0.14091 0 3 38.4 114 30 
30 ForQ+ FOR Q+ 5 45.5 0.06154 0 . . . . 
1 ColQ- COL Q- 6 40 0.12 0 . 38.1 126 84 
4 ColQ- COL Q- 6 46 0.12174 0 . 38.1 . . 
5 ColQ- COL Q- 6 56 0.11964 0 . 38.3 168 54 
10 ColQ- COL Q- 6 48.5 0.12371 0 2 . . . 
12 ColQ- COL Q- 6 46 0.12174 0 2 39.1 126 126 
23 ColQ- COL Q- 6 50.5 0.11881 0 . 38.7 108 60 
28 ColQ- COL Q- 6 39.5 0.12658 0 2 38.7 186 . 
2 ColQ+ COL Q+ 6 46.5 0.12043 0 . 38.9 126 . 
3 ColQ+ COL Q+ 6 55 0.12364 0 2 38.5 126 78 
7 ColQ+ COL Q+ 6 44 0.12045 0 . 38.3 180 36 
8 ColQ+ COL Q+ 6 52 0.12115 0 . 38.3 150 42 
11 ColQ+ COL Q+ 6 45 0.12222 0 2 38.1 144 48 
19 ColQ+ COL Q+ 6 52.5 0.12 0 . 38.9 120 48 
26 ColQ+ COL Q+ 6 47 0.11915 0 2 39.4 132 72 
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Supplemental Table 4.1 Continuation. 
Calf Group Feeding Quercetin Age, BW, Milk intake, Force-fed milk, Fecal  Rectal  Heart rate, Resp. rate, 

    d kg kg/kg BW % of daily intake score temp, °C per min per min 

9 ForQ- FOR Q- 6 51 0.06078 0 4 38.7 90 30 
15 ForQ- FOR Q- 6 45.5 0.11868 0 . 38.8 . . 
18 ForQ- FOR Q- 6 45.5 0.1033 0 3 39.2 108 . 
21 ForQ- FOR Q- 6 48 0.12083 0 2 38.9 132 54 
22 ForQ- FOR Q- 6 38 0.1 0 2 39.1 126 48 
24 ForQ- FOR Q- 6 48 0.12083 0 . 39.1 126 54 
29 ForQ- FOR Q- 6 50.5 0.11881 0 3 39.6 96 42 
13 ForQ+ FOR Q+ 6 47.5 0.12 0 3 38.9 108 . 
14 ForQ+ FOR Q+ 6 53 0.12075 0 . 39.2 132 60 
17 ForQ+ FOR Q+ 6 44.5 0.12135 0 2 38.7 132 36 
20 ForQ+ FOR Q+ 6 34.5 0.12464 0 2 39.1 126 84 
25 ForQ+ FOR Q+ 6 48 0.12083 0 2 38.5 156 72 
27 ForQ+ FOR Q+ 6 45 0.12 0 . 38.7 102 30 
30 ForQ+ FOR Q+ 6 45.5 0.12088 0 2 39.4 132 . 
1 ColQ- COL Q- 7 40 0.1125 0 2 38.9 116 78 
4 ColQ- COL Q- 7 46.5 0.11613 0 2 38.7 116 . 
5 ColQ- COL Q- 7 57.5 0.10087 0 2 37.6 114 . 
10 ColQ- COL Q- 7 51 0.10784 0 . 38.6 126 42 
12 ColQ- COL Q- 7 48 0.11042 0 . 38.3 138 138 
23 ColQ- COL Q- 7 52 0.10962 0 . 39.2 114 84 
28 ColQ- COL Q- 7 41 0.10976 0 2 . 204 . 
2 ColQ+ COL Q+ 7 47.5 0.12 0 . 38.3 96 54 
3 ColQ+ COL Q+ 7 56.5 0.12035 0 . 38.9 126 66 
7 ColQ+ COL Q+ 7 45.5 0.10989 0 . . . . 
8 ColQ+ COL Q+ 7 52.5 . . . . . . 
11 ColQ+ COL Q+ 7 46.5 0.11183 0 . 38.7 126 36 
19 ColQ+ COL Q+ 7 53.5 0.10654 0 2 39.1 . . 
26 ColQ+ COL Q+ 7 49 0.1102 0 . 39.2 120 60 
9 ForQ- FOR Q- 7 50 0.1 0 4 39.1 96 36 
15 ForQ- FOR Q- 7 46.5 0.10968 0 . 38.5 162 . 
18 ForQ- FOR Q- 7 43.5 0.11264 0 3 39.2 108 . 
21 ForQ- FOR Q- 7 51 0.10588 0 2 38.6 138 54 
22 ForQ- FOR Q- 7 38 0.11316 0 2.5 38.9 126 42 
24 ForQ- FOR Q- 7 48 0.11042 0 2 39.3 120 48 
29 ForQ- FOR Q- 7 52 0.06538 0 2 40 96 42 
13 ForQ+ FOR Q+ 7 51 0.10784 0 . 39.1 . . 
14 ForQ+ FOR Q+ 7 55 0.10545 0 3 39.5 132 60 
17 ForQ+ FOR Q+ 7 47 0.10851 0 3 38.6 . . 
20 ForQ+ FOR Q+ 7 36 0.10833 0 3 38.9 114 60 
25 ForQ+ FOR Q+ 7 47.5 0.10947 0 . . . . 
27 ForQ+ FOR Q+ 7 45 0.11111 0 . 38.6 108 36 

30 ForQ+ FOR Q+ 7 42.5 . . 2 39.3 102 . 
1 ColQ- COL Q- 8 . . . . 38.6 104 60 
4 ColQ- COL Q- 8 . . . . 38.9 120 36 
5 ColQ- COL Q- 8 . . . 3 38.8 . . 
10 ColQ- COL Q- 8 . . . 2 38.9 . . 
12 ColQ- COL Q- 8 . . . 2 39 126 126 
23 ColQ- COL Q- 8 . . . 2 38.8 126 42 
28 ColQ- COL Q- 8 . . . . 38.8 162 . 
2 ColQ+ COL Q+ 8 . . . 2 38.7 . . 
3 ColQ+ COL Q+ 8 . . . 2 38.8 114 . 
7 ColQ+ COL Q+ 8 . . . 2 38.5 96 24 
8 ColQ+ COL Q+ 8 . . . . 38.9 . . 
11 ColQ+ COL Q+ 8 . . . . 38.6 120 30 
19 ColQ+ COL Q+ 8 . . . 2 39.1 120 . 
26 ColQ+ COL Q+ 8 . . . 2 38.7 150 42 
9 ForQ- FOR Q- 8 . . . 3 . . . 
15 ForQ- FOR Q- 8 . . . . . . . 
18 ForQ- FOR Q- 8 . . . 3 39 102 . 
21 ForQ- FOR Q- 8 . . . 2 38.7 102 51 
22 ForQ- FOR Q- 8 . . . 3 38.3 108 48 
24 ForQ- FOR Q- 8 . . . . . . . 
29 ForQ- FOR Q- 8 . . . . . . . 
13 ForQ+ FOR Q+ 8 . . . 3 39.1 . . 
14 ForQ+ FOR Q+ 8 . . . 2 39.2 132 54 
17 ForQ+ FOR Q+ 8 . . . . 38.8 132 . 
20 ForQ+ FOR Q+ 8 . . . 3 38.9 . . 
25 ForQ+ FOR Q+ 8 . . . 2 38.9 114 48 
27 ForQ+ FOR Q+ 8 . . . 2 39.1 132 42 
30 ForQ+ FOR Q+ 8 . . . 3.5 39.6 . . 

doi:10.1371/journal.pone.0146932.s001 
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Supplemental Table 4.4: Complete data set of immune and inflammatory status in 

blood plasma as shown in Figure 4.3. 
Calf Group Feeding Quercetin Age, IgG1, IgG2, IgM, Fibrinogen, Haptoglobin, Serum amyloid A, 

    d g/L g/L g/L g/L g/L mg/L 

1 ColQ- COL Q- 1 0 0 37.29 3.81 0 14.888 
4 ColQ- COL Q- 1 0 0 30.82 0 0 13.438 
5 ColQ- COL Q- 1 0 8.65 27.15 0 0 1.208 

10 ColQ- COL Q- 1 0 11.15 25.41 2.17 0 26.579 
12 ColQ- COL Q- 1 0 3.04 20.08 3.5 0 33.281 
23 ColQ- COL Q- 1 0 9.81 48.12 2.86 0 14.13 
28 ColQ- COL Q- 1 0 6.53 52.32 2.22 0 20.482 
2 ColQ+ COL Q+ 1 0 4.53 13.46 2.71 0 1.499 
3 ColQ+ COL Q+ 1 0 . . 0.81 0 16.725 
7 ColQ+ COL Q+ 1 0 8.1 72.09 0 0 0 
8 ColQ+ COL Q+ 1 0 23.71 57.07 4.52 0 29.727 

11 ColQ+ COL Q+ 1 0 0 20.25 3.75 0 9.764 
19 ColQ+ COL Q+ 1 0 19.59 342.08 2.22 0 27.851 
26 ColQ+ COL Q+ 1 0 5.35 20.82 1.67 0 13.159 
9 ForQ- FOR Q- 1 . . 129.64 5.24 0 107.84 

15 ForQ- FOR Q- 1 . . 27.75 3.49 0 18.943 
18 ForQ- FOR Q- 1 0 5.32 10.54 1.95 0 36.547 
21 ForQ- FOR Q- 1 0 4.19 44.36 4.35 0 22.804 
22 ForQ- FOR Q- 1 0 5.01 18.69 1.46 0 17.747 
24 ForQ- FOR Q- 1 0 5.41 39.22 2.86 0 14.659 
29 ForQ- FOR Q- 1 0 5.07 42.59 2.6 0 23.306 
13 ForQ+ FOR Q+ 1 0 4.37 16.99 2.86 0 26.197 
14 ForQ+ FOR Q+ 1 0 2.97 26.66 3.25 0 40.492 
17 ForQ+ FOR Q+ 1 0 91.95 48.33 2.1 0 32.56 
20 ForQ+ FOR Q+ 1 0 5.32 22.17 1.96 0 23.143 
25 ForQ+ FOR Q+ 1 0 3.2 15.97 2.04 0 17.394 
27 ForQ+ FOR Q+ 1 0 7 15.31 2.34 0 21.011 
30 ForQ+ FOR Q+ 1 0.01 7.81 105.56 1.84 0 18.453 
1 ColQ- COL Q- 2 10.46 986.05 1386.49 4.6 0.07 139.162 
4 ColQ- COL Q- 2 7.58 1021.1 726.9 3.42 0 126.353 
5 ColQ- COL Q- 2 10.7 605.89 1151.22 2.86 0.05 200.51 

10 ColQ- COL Q- 2 10.17 762.41 1234.9 4.88 0 168.81 
12 ColQ- COL Q- 2 8.9 652.35 852.23 3.9 0 94.11 
23 ColQ- COL Q- 2 10.46 573.12 1246.63 4.17 0 121.418 
28 ColQ- COL Q- 2 9.6 665.97 752.27 3.04 0 90.493 
2 ColQ+ COL Q+ 2 12.54 1381.67 1512.83 4.21 0 116.879 
3 ColQ+ COL Q+ 2 13.43 1270.24 1661.41 2.86 0 119.036 
7 ColQ+ COL Q+ 2 10.13 1316.29 1065.97 2.63 0 95.949 
8 ColQ+ COL Q+ 2 9.47 1368.68 773.73 5.53 0.03 130.268 

11 ColQ+ COL Q+ 2 10.13 906.28 1087.25 4.69 0 183.342 
19 ColQ+ COL Q+ 2 6.4 589.25 865.14 3.02 0 128.851 
26 ColQ+ COL Q+ 2 7.28 533.12 893.9 2.88 0 131.3 
9 ForQ- FOR Q- 2 . . 110.07 7.67 0 239.091 

15 ForQ- FOR Q- 2 . . 39.03 4.65 0 136.486 
18 ForQ- FOR Q- 2 0 7.59 27.21 5.12 0 146.964 
21 ForQ- FOR Q- 2 0 8.36 59.27 6.52 0 170.803 
22 ForQ- FOR Q- 2 0 9.52 31.99 3.04 0 93.978 
24 ForQ- FOR Q- 2 0 8.97 49.69 4.22 0 99.581 
29 ForQ- FOR Q- 2 0 11.88 53.25 4.22 0.09 113.654 
13 ForQ+ FOR Q+ 2 0 3.9 12.46 5.53 0.01 203.424 
14 ForQ+ FOR Q+ 2 0 3.41 25.95 5.5 0.03 113.708 
17 ForQ+ FOR Q+ 2 0 103.22 53.13 4.05 0.02 158.502 
20 ForQ+ FOR Q+ 2 0 8.95 31.21 2.32 0 152.436 
25 ForQ+ FOR Q+ 2 0 5.96 26.23 4.08 0 132.006 
27 ForQ+ FOR Q+ 2 0 19.38 27 5.32 0 124.418 
30 ForQ+ FOR Q+ 2 0.01 9.05 89.02 3.41 0 173.474 
1 ColQ- COL Q- 4 8.51 638.67 922.58 5 0 91.405 
4 ColQ- COL Q- 4 6.98 532.44 432.24 5.13 0 56.168 
5 ColQ- COL Q- 4 11.86 620.97 881.6 7.32 0 222.568 

10 ColQ- COL Q- 4 9.25 540.47 789.27 5.13 0 153.284 
12 ColQ- COL Q- 4 8.6 424.71 549.25 5.23 0 98.394 
23 ColQ- COL Q- 4 10.8 554.4 801.91 5.12 0 44.04 
28 ColQ- COL Q- 4 9.25 674.06 440.74 3.69 0 83.346 
2 ColQ+ COL Q+ 4 9.47 758.35 1108.26 7.43 0 125.193 
3 ColQ+ COL Q+ 4 11.14 673 1032.83 4.42 0 51.286 
7 ColQ+ COL Q+ 4 9.47 659.7 805.85 6.67 0 113.302 
8 ColQ+ COL Q+ 4 9.8 916.82 478.51 5.58 0 61.533 

11 ColQ+ COL Q+ 4 9.47 664.11 645.61 7.07 0 192.768 
19 ColQ+ COL Q+ 4 6.98 511.52 765.53 4.65 0 112.308 
26 ColQ+ COL Q+ 4 6.98 497.49 476.63 3.78 0 138.403 
9 ForQ- FOR Q- 4 . . 90.94 7.5 0.12 251.532 

15 ForQ- FOR Q- 4 . . 103.3 7.14 0 153.666 
18 ForQ- FOR Q- 4 0 6.66 72.26 6.82 0.04 102.339 
21 ForQ- FOR Q- 4 0 7.45 166.01 6.52 0 96.74 
22 ForQ- FOR Q- 4 0 7.93 169.98 0.53 0 65.347 
24 ForQ- FOR Q- 4 0 7.7 85.58 7.02 0 102.713 
29 ForQ- FOR Q- 4 0.01 11.22 102.12 6.87 0.29 123.58 
13 ForQ+ FOR Q+ 4 0 3.31 57.21 7.27 0.08 249.745 
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Supplemental Table 4.4 Continuation. 
Calf Group Feeding Quercetin Age, IgG1, IgG2, IgM, Fibrinogen, Haptoglobin, Serum amyloid A, 

    d g/L g/L g/L g/L g/L mg/L 

14 ForQ+ FOR Q+ 4 0 2.19 112.34 6.67 0.07 64.798 
17 ForQ+ FOR Q+ 4 0 128.55 64.52 6.34 0.03 162.574 
20 ForQ+ FOR Q+ 4 0 9.02 72.88 4.54 0 68.362 
25 ForQ+ FOR Q+ 4 0 5.87 96.97 5.1 0 111.713 
27 ForQ+ FOR Q+ 4 0 8.09 85.65 3.12 0 134.697 
30 ForQ+ FOR Q+ 4 0.01 7.87 263.18 7.08 0.14 160.24 
1 ColQ- COL Q- 7 7.89 630.33 555.9 3.9 0 106.728 
4 ColQ- COL Q- 7 7.28 550.14 297.2 3.95 0 56.409 
5 ColQ- COL Q- 7 9.8 841.64 426.18 0 0 104.311 

10 ColQ- COL Q- 7 12.93 503.05 475.9 4.28 0 85.881 
12 ColQ- COL Q- 7 8.8 534.17 424.38 3.02 0 105.054 
23 ColQ- COL Q- 7 9.47 516.66 532.58 3.96 0 82.552 
28 ColQ- COL Q- 7 7.84 491.83 388.82 3.57 0 69.185 
2 ColQ+ COL Q+ 7 9.47 894.82 759.6 4.62 0 130.413 
3 ColQ+ COL Q+ 7 13.98 694.06 955.99 3.25 0 17.208 
7 ColQ+ COL Q+ 7 9.15 726.69 586.46 4.05 0 40.651 
8 ColQ+ COL Q+ 7 9.47 849.34 335.79 4.5 0 166.134 

11 ColQ+ COL Q+ 7 6.69 615.4 419.04 7.5 0 98.994 
19 ColQ+ COL Q+ 7 6.4 501.25 518.34 2.13 0 115.404 
26 ColQ+ COL Q+ 7 6.98 524.29 395.64 3.62 0 135.623 
9 ForQ- FOR Q- 7 . . 595.76 7.32 0.51 234.857 

15 ForQ- FOR Q- 7 . . 129.49 4.77 0 95.298 
18 ForQ- FOR Q- 7 0 6.7 150.86 4.39 0.15 74.682 
21 ForQ- FOR Q- 7 0 9.24 208.17 4.13 0 84.651 
22 ForQ- FOR Q- 7 0 7.31 137.5 3.62 0 38.79 
24 ForQ- FOR Q- 7 0 7.38 171.53 4.03 0 40.025 
29 ForQ- FOR Q- 7 0.01 11.33 340.5 4.31 0.01 84.758 
13 ForQ+ FOR Q+ 7 0 3.07 333.9 5.36 0.05 198.715 
14 ForQ+ FOR Q+ 7 0 5.13 314.56 4.39 0 89.401 
17 ForQ+ FOR Q+ 7 0 219.75 150.65 4.88 0 102.721 
20 ForQ+ FOR Q+ 7 0 8.63 170.05 2.55 0 115.235 
25 ForQ+ FOR Q+ 7 0 7.73 186.71 3.67 0 56.304 
27 ForQ+ FOR Q+ 7 0 10.59 165.77 4.89 0 33.937 
30 ForQ+ FOR Q+ 7 0.01 6.89 774.94 5.53 0.16 147.578 

doi:10.1371/journal.pone.0146932.s004 

 

 

 

Supplemental Table 4.5: Complete data set of antioxidative status in blood plasma as 

shown in Figure 4.4.  
Calf Group Feeding Quercetin Age, FRAP, TEAC, TBARS, Isoprostanes, 

    d ASCE (µmol/L) TE (mmol/L) MDAE (µmol/L) ng/L 

1 ColQ- COL Q- 1 134.6153846 1.681916039 0.233250176 872.8109473 
4 ColQ- COL Q- 1 165.3846154 1.766782194 0.421821589 3323.513168 
5 ColQ- COL Q- 1 113.0769231 1.761031366 0.202773465 1845.892853 
10 ColQ- COL Q- 1 191.547619 1.995746654 1.693583504 3432.077597 
12 ColQ- COL Q- 1 155.952381 2.003353121 1.096887807 1497.934204 
23 ColQ- COL Q- 1 153.7777778 1.567096855 0.314685315 1316.667206 
28 ColQ- COL Q- 1 164.6666667 1.482471879 0.498251748 2079.781082 
2 ColQ+ COL Q+ 1 106.9230769 1.870161257 0.299751167 2065.667459 
3 ColQ+ COL Q+ 1 133.8461538 1.787868564 0.393335698 2070.592066 
7 ColQ+ COL Q+ 1 151.1904762 1.658526638 0.165721649 1115.406874 
8 ColQ+ COL Q+ 1 221.9047619 1.855027023 0.453178694 1855.912236 
11 ColQ+ COL Q+ 1 126.4285714 2.074663744 0.890731728 3667.339625 
19 ColQ+ COL Q+ 1 144.4444444 1.508613992 0.613879004 769.8431956 
26 ColQ+ COL Q+ 1 148.6666667 1.547190497 0.262237762 818.9533998 
9 ForQ- FOR Q- 1 267.1428571 2.102237185 0.07109375 2352.334682 
15 ForQ- FOR Q- 1 143.3333333 1.55579468 0.613879004 1097.712239 
18 ForQ- FOR Q- 1 102.6666667 1.469952654 0.720640569 917.4523105 
21 ForQ- FOR Q- 1 149.5555556 1.498516495 0.5625 2462.551238 
22 ForQ- FOR Q- 1 136.8888889 1.387163857 0.104895105 391.0270488 
24 ForQ- FOR Q- 1 121.7777778 1.499549741 0.078671329 704.2283563 
29 ForQ- FOR Q- 1 132.8888889 1.586838851 0.104895105 5267.394514 
13 ForQ+ FOR Q+ 1 166.4444444 1.549688221 0.640569395 573.8641745 
14 ForQ+ FOR Q+ 1 136.4444444 1.465232911 0.427046263 812.8168926 
17 ForQ+ FOR Q+ 1 181.7777778 1.572874309 0.266903915 1320.77096 
20 ForQ+ FOR Q+ 1 168.5 1.465563684 0.427046263 1118.56926 
25 ForQ+ FOR Q+ 1 127.1111111 1.424822272 0.236013986 1937.449516 
27 ForQ+ FOR Q+ 1 125.1111111 1.468917919 0.20979021 3083.518788 
30 ForQ+ FOR Q+ 1 86.22222222 1.529527086 0.078671329 2385.765122 
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Supplemental Table 4.5 Continuation. 
Calf Group Feeding Quercetin Age, FRAP, TEAC, TBARS, Isoprostanes, 

    d ASCE (µmol/L) TE (mmol/L) MDAE (µmol/L) ng/L 

1 ColQ- COL Q- 4 154.6153846 1.992423615 0.420020275 681.7809869 
4 ColQ- COL Q- 4 108.7179487 2.165506277 0.391534384 1110.758263 
5 ColQ- COL Q- 4 102.0512821 2.196177361 0.426345819 866.6391585 
10 ColQ- COL Q- 4 101.9047619 2.248661666 1.384797643 2145.207851 
12 ColQ- COL Q- 4 132.6190476 2.217601928 0.756937329 1343.370792 
23 ColQ- COL Q- 4 118.2222222 1.89554019 0.576923077 637.0641473 
28 ColQ- COL Q- 4 126.2222222 1.790207411 0.498251748 1350.548847 
2 ColQ+ COL Q+ 4 137.3076923 2.324278587 0.61104331 1351.585625 
3 ColQ+ COL Q+ 4 278.4615385 2.198094303 0.493036317 808.6143913 
7 ColQ+ COL Q+ 4 102.1428571 2.043920942 0.595317869 607.5221159 
8 ColQ+ COL Q+ 4 133.8095238 2.094630719 0.306271478 1079.303575 
11 ColQ+ COL Q+ 4 89.28571429 2.273382682 1.36020748 1860.142827 
19 ColQ+ COL Q+ 4 135.5555556 1.851817733 0.774021352 1287.525435 
26 ColQ+ COL Q+ 4 126.2222222 1.815953359 0.288461538 1532.568858 
9 ForQ- FOR Q- 4 107.6190476 2.203022867 0.354947917 1702.926659 
15 ForQ- FOR Q- 4 96 1.862789135 0.507117438 706.0255733 
18 ForQ- FOR Q- 4 124.2222222 1.681541604 0.346975089 717.9125686 
21 ForQ- FOR Q- 4 114 1.67239252 0.348214286 533.4365606 
22 ForQ- FOR Q- 4 115.3333333 1.685813929 0.183566434 529.8769064 
24 ForQ- FOR Q- 4 106 1.626439486 0.20979021 482.1558393 
29 ForQ- FOR Q- 4 . 1.702090346 0.314685315 2301.740353 
13 ForQ+ FOR Q+ 4 144.4444444 1.605298125 0.226868327 1248.038414 
14 ForQ+ FOR Q+ 4 140.8888889 1.64281134 0.18683274 1011.200921 
17 ForQ+ FOR Q+ 4 127.5555556 1.710609697 0.18683274 730.7388027 
20 ForQ+ FOR Q+ 4 204 1.614742913 0.320284698 942.8627723 
25 ForQ+ FOR Q+ 4 97.33333333 1.723530667 0.20979021 321.7424991 
27 ForQ+ FOR Q+ 4 . . . . 
30 ForQ+ FOR Q+ 4 133.5555556 1.684214853 0.157342657 1802.367305 
1 ColQ- COL Q- 7 131.5384615 1.998245632 0.621432282 742.713916 
4 ColQ- COL Q- 7 136.9230769 2.144419908 0.597931422 1135.866266 
5 ColQ- COL Q- 7 98.46153846 2.144419908 0.462749112 703.2490998 
10 ColQ- COL Q- 7 123.8095238 2.221088225 0.854614925 1904.189486 
12 ColQ- COL Q- 7 124.5238095 2.173230873 0.815552425 2309.539948 
23 ColQ- COL Q- 7 102.8888889 1.838914714 0.340909091 598.8128756 
28 ColQ- COL Q- 7 131.7777778 1.814688312 0.576923077 1463.093822 
2 ColQ+ COL Q+ 7 103.4615385 2.242770349 0.406468531 1155.626195 
3 ColQ+ COL Q+ 7 130 2.14633685 0.616258741 703.7163919 
7 ColQ+ COL Q+ 7 162.8571429 2.090827486 0.311039519 985.0262514 
8 ColQ+ COL Q+ 7     
11 ColQ+ COL Q+ 7 102.6190476 2.167842959 0.811197917 1920.390602 
19 ColQ+ COL Q+ 7 119.7777778 1.800379136 0.346975089 565.4206329 

26 ColQ+ COL Q+ 7 141.5555556 1.73951696 0.236013986 1562.882356 
9 ForQ- FOR Q- 7 76.66666667 2.176400234 0.662239583 2730.653029 
15 ForQ- FOR Q- 7 99.11111111 1.790522278 0.453736655 872.2010944 
18 ForQ- FOR Q- 7 94.22222222 1.55631307 0.346975089 4620.767468 
21 ForQ- FOR Q- 7 93.55555556 1.580970984 0.348214286 556.8655332 
22 ForQ- FOR Q- 7 99.77777778 1.571634283 0.262237762 607.706398 
24 ForQ- FOR Q- 7 102.8888889 1.720128713 0.20979021 508.053522 
29 ForQ- FOR Q- 7 112.6666667 1.642747715 0.340909091 2413.288349 
13 ForQ+ FOR Q+ 7 . . 0.18683274 420.791816 
14 ForQ+ FOR Q+ 7 91.55555556 1.740558764 0.160142349 527.6681207 
17 ForQ+ FOR Q+ 7 98.88888889 1.707662508 0.320284698 713.2756069 
20 ForQ+ FOR Q+ 7 . 1.539562447 0.37366548 900.2003889 
25 ForQ+ FOR Q+ 7 94.44444444 1.604049263 0.839160839 1540.91929 
27 ForQ+ FOR Q+ 7 80.88888889 1.612179518 0.314685315 2460.959659 
30 ForQ+ FOR Q+ 7 . . . . 

doi:10.1371/journal.pone.0146932.s005 
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5. GENERAL DISCUSSION 

For newborn farm animals, the energy supply during the first stage of life significantly 

determines developmental and maturational processes and thus, affects health and 

productivity of the animal. In dairy calves, the external energy supply with colostrum and milk 

needs to be complemented by endogenous glucose production to fully meet the demands of 

the organism [1], and colostrum feeding is essential to promote gastrointestinal development 

and advance nutrient uptake [2]. By adding flavonoids to the neonate’s diet, productivity may 

be improved as flavonoids possess antioxidative, anti-inflammatory, and antimicrobial 

properties that may promote health [3, 4]. However, as flavonoids also interact with glucose 

metabolism [5], it is of major importance to exclude potential inhibitory effects on the 

development of the neonate’s glucose metabolism before considering the use of flavonoids 

as health-promoting feed additives in calf rearing. 

During the last decade, various studies have been conducted to evaluate the health-

promoting properties of quercetin, one of the main flavonoids [6]. Most of these studies 

focused on quercetin effects either in vitro or in experiments with laboratory rodents, where 

the great antioxidative potential of the compound was highlighted [7, 8]. This antioxidative 

capacity indeed was identified to be causative for the health-promoting properties in model 

animals of metabolic disorders, e.g. diabetic mice or obese rats, where quercetin treatment 

lowers elevated plasma glucose concentrations to normal levels, thus enhancing the 

metabolic status of the animal [9, 10]. While this effect is intended to ameliorate chronic or 

degenerative disorders, it would be highly undesirable in newborn calves: here, a quercetin-

induced decrease of carbohydrate digestion and inhibition of hepatic glucose production 

would cause a detrimental energy deficiency, as glucose is a main energy source during the 

first days of life. As a consequence, not only growth in general, but also immune function and 

overall health would be diminished [11]. 

For the above-mentioned reasons, the main objective of this thesis was to investigate the 

effects of an oral quercetin supplementation on the glucose metabolism in newborn calves 

during the first week of life, according to the initial colostrum supply (Chapter 3). Calves 

were fed quercetin aglycone from d 2 until d 8 of life, the daily dose of 50 mg/kg BW resulting 

from data obtained in companion studies in calves [12, 13]. After an initial phase of colostrum 

or non-colostrum feeding, intestinal monosaccharide absorption and splanchnic glucose 

extraction, as well as the hepatic expression of genes related with glucose metabolism were 

investigated. As, based on the data obtained in this study, quercetin-feeding does not affect 

the neonates’ glucose metabolism, the health-promoting potential of quercetin in newborn 

calves was further explored. For this purpose, blood plasma and liver biopsy samples 

obtained during the trial were analyzed for parameters of oxidative stress and immune 
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function, and performance and health parameters of the calves were evaluated in the second 

study of this thesis (Chapter 4).  

In both studies, although the impact of an initial colostrum deprivation was significant and 

persistent during the first week of life, the little effects caused by quercetin treatment on 

some of the parameters regarding glucose metabolism and calf health seemed to be random 

and inconsistent. As the quercetin supplementation was increased five-fold compared to 

previous studies [12, 13] and quercetin-supplemented calves showed increased plasma 

flavonol concentrations, the absence of quercetin effects was unlikely to be caused by 

inaccurate application or insufficient absorption of the compound. In humans, about 99% of 

plasma quercetin is bound to proteins, mainly albumin [14], and in vitro experiments revealed 

that the covalent attachment of quercetin to bovine serum albumin reduces its total 

antioxidant activity [15]. Even after proteolysis of the quercetin-albumin complex, the free 

flavonol does not fully regain its antioxidative activity [15, 16]. If excessive binding between 

quercetin and albumin also occurred in the plasma of the calves in the present study, 

quercetin might have lost its biological activity, which would explain the lack of effects on 

plasma antioxidative status.  

As mentioned in Chapter 2, flavonols rarely occur as aglycones, but mainly in conjugated 

form in plasma of pigs and humans [17, 18]. In the present studies, plasma flavonol 

concentrations were determined after enzymatic treatment of the plasma [19] hence the 

fraction of glucuronidated and sulfated conjugates to total flavonols in plasma is unknown. 

This is an important aspect, given that the biological effects of quercetin vary with its 

derivatives [20, 21]. In vitro experiments reveal that the antioxidative and anti-inflammatory 

properties of conjugated quercetin are reduced compared to the non-conjugated parent 

compound [18, 22]. In adult cattle, approximately 15% of total flavonols in plasma are 

unconjugated, whereas the predominant fraction appears as glucuronidated or sulfated 

derivatives [19]. If quercetin metabolism in the newborn calf is comparable to that in cows, 

this might be an explanation for the lack of quercetin effects on plasma metabolites and 

hormones analyzed herein.  

Referring to the main objective of the present work, it was shown here that quercetin does 

not impair glucose metabolism when fed to newborn calves during the first week of life in a 

daily dosage of 50 mg/kg BW (Chapter 3). Contrariwise, data indicate that quercetin feeding 

might accelerate intestinal glucose absorption on d 7 of life, which contradicts previous 

studies where quercetin was shown to inhibit carbohydrate digestion and intestinal glucose 

transport [23, 24]. In milk-fed calves, the most important intestinal disaccharidase is lactase, 

whose activity seems to be unaffected by quercetin [25]. Additionally, the extensive flavonol 

metabolism inside the enterocytes and the subsequent luminal excretion of flavonol 

derivatives [26] is not considered in studies on quercetin’s inhibitory potential on specific 

glucose transporters; thus, it is possible that intestinal glucose transport inhibition is of minor 
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importance after quercetin feeding in vivo. The results of the present study could be insofar 

beneficial to newborn calves as the improved intestinal monosaccharide absorption might 

enhance the overall energy supply. Thus, the glucose excess could be used as a fuel to 

cover the elevated energy demand in terms of infection and accruing immune defense [27]. 

Unfortunately, it could not be shown in the second study (Chapter 4) that quercetin 

supplementation alone is effectual to improve the newborn’s health status. Although a 

specific immune challenge was not conducted, it is assumed from general health and 

performance parameters that quercetin feeding did not favor supplemented calves to better 

resist or more effectively fight infections. This conclusion is further supported by plasma 

concentrations of immunoglobulins and acute phase proteins, which were similar between 

quercetin-treated and untreated animals. Rather, it was shown that an adequate colostrum 

provision is essential for the newborn to stand against the new environment and support the 

immune system. Data obtained here indicate that negligence concerning the initial colostrum 

supply cannot be compensated by adding plant bioactives such as quercetin to the ensuing 

diet. 

In growing pigs, it has been shown that after feeding a single quercetin dose, the flavonol 

concentration in the liver exceeds the plasma flavonol concentration, although this difference 

diminishes when quercetin is fed for a long-term period [28]. Further, it has been pointed out 

that in contrast to flavonols in plasma, quercetin and its metabolites isorhamnetin and 

tamarixetin appear to approximately 90% as unconjugated aglycones in the liver. If this is 

transferable to newborn calves, it would be expected that, first, effects in the liver might 

emerge earlier than in plasma, and second, that findings gained in cell culture experiments 

with aglycones could be confirmed in liver tissue of calves fed quercetin. To follow up this 

theory, PCR analyses were performed to assess the expression of different genes involved 

in glucose metabolism, immune function or antioxidative defense in the course of the studies 

that underlie the present thesis. In Chapter 3, the focus was put on key enzymes of glucose 

metabolism. As it has been shown in rat liver, it was anticipated that quercetin may stimulate 

glycogenolysis on the one hand [29], but on the other hand, inhibition of GNG was 

apprehended [30]. Thus it was tested to what extent key enzymes of both pathways are 

influenced by quercetin treatment. Interpreting the mRNA abundances of PYGL, coding for a 

key enzyme of glycogen breakdown, combined with hepatic glycogen concentrations that 

were also measured in the first study of this work, quercetin feeding seems to not affect 

hepatic glycogen metabolism in newborn calves. It is assumed that, because the neonate’s 

energy supply is already delicate, glycogenolysis is physiologically exceedingly active. 

Therefore, glycogen stores are depleted shortly after birth [1, 31] which was confirmed by 

very low hepatic glycogen concentrations in all calves involved in this study. At the same 

time, GNG is upregulated, which is crucial to cover the energy demand during the first stage 

of life [32]. Because of the high priority of endogenous glucose production, it would be 
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reasonable if hepatic glucose metabolism in the newborn is autonomous and insensible to 

foreign impacts such as quercetin feeding. This conclusion is supported by another study in 

newborn calves which shows that endogenous glucose production is even independent of 

colostrum feeding [33], which is yet crucial for other maturational processes.  

As mentioned above, quercetin not only interacts with glucose metabolism but also 

possesses antiinflammatory and antioxidative properties. For that reason, gene expression of 

proinflammatory cytokines, acute phase proteins and antioxidative enzymes were analyzed 

in the second study (Chapter 4) but again, effects evoking from quercetin treatment were 

scarce. Solely the mRNA abundance of TNF was increased in quercetin-fed calves, which 

contradicts studies in vitro and in vivo demonstrating that quercetin downregulates this 

cytokine. However, those experiments were conducted after inducing a high TNF expression, 

and quercetin treatment approximated TNFα levels back to the range of unstimulated, non-

inflamed cells [34-36]. Therefore, it is assumed that the calves investigated in this study did 

not fight a general infection, thus hepatic TNF was not elevated and quercetin was needless 

to antagonize inflammatory gene expression.  

A general influence of quercetin on the hepatic targets investigated in both studies, however, 

cannot be excluded because due to the limited amount of liver tissue, translation products 

and enzyme activities were disregarded. Furthermore, the flavonol concentration and the 

pattern of conjugates and derivatives in the liver was not analyzed, thus it could not be 

proven whether flavonol distribution patterns and subsequent effects obtained in growing 

pigs are actually deducible to newborn calves.  

Effects resulting from treatment with flavonoids are generally difficult to summarize, as they 

are very variable, depending on the bioavailability of the compound. In this context, different 

doses of the same substance can cause adverse effects, and flavonoids known for their 

antioxidative properties can also act as prooxidants when supplemented in doses that 

exceed the physiologically achievable range [37]. The duration of flavonoid treatment 

influences its biological properties, too: Reviewing results from different studies, it can be 

concluded that acute and chronic treatment with polyphenols do not produce parallel results 

and that different compounds belonging to the same subclass can have opposite effects [38]. 

Finally, the physiological condition of the biological system seems to play an important role, 

because the actions of polyphenols on intestinal epithelium largely differ between inflamed 

and non-inflamed cells [39]. Concerning the glucose metabolism, Shao and colleagues have 

shown that the oral treatment with quercetin impairs glucose tolerance and attenuates 

insulin-stimulated glucose uptake in healthy mice. In mice with inflammation-induced insulin 

resistance, however, quercetin reversed glucose intolerance and improved insulin sensitivity, 

hence beneficially modulated glucose homeostasis [40]. There are several studies 

demonstrating that although quercetin has ameliorative effects on metabolic conditions in 

animal models of chronic inflammation, e.g. diabetes type II, it is of little value in healthy 
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animals or humans [41-43]. A possible explanation for this is that the generation of the 

biologically active aglycone from its inactive glucuronidated/sulfated derivatives exceedingly 

happens at sites of inflammation [44]. Hence, it is assumed that the metabolic stress in 

newborn calves that occurs with the adaptation to extrauterine life is a necessary and 

physiological process incomparable to deranged metabolic conditions evoking from chronic 

inflammation; therefore, data obtained in both studies underlying this thesis indicate that the 

metabolism of newborn calves cannot be altered substantially by quercetin feeding.  

In contrast to quercetin treatment, the systemic effects of colostrum deprivation were distinct 

and consistent throughout the first week of life and agree with the results described in the 

literature [31]. Whether quercetin might improve the local defense against pathogens in the 

gastrointestinal tract cannot be concluded from the data gained herein. Although quercetin 

did not affect the fecal score or general health status of the animals, it must be kept in mind 

that the calves were probably stressed because of intensive sample taking. Stress is known 

to accelerate gastrointestinal motility [45] and reduce immune function, which could mask 

local effects of quercetin. To make a reliable statement on quercetin effects inside the 

gastrointestinal tract, the characterization of its microbiota under field conditions could 

expose whether quercetin is able to stabilize the calf’s microflora, which has already been 

demonstrated for flavonoids of other subclasses in calves [46] and for quercetin in laying 

hens [47]. Furthermore, it would be of value to analyze tissue samples with particular focus 

on the gut associated lymphoid tissue, and to conduct special tests to evaluate its immune 

function.  

In conclusion, the studies underlying this thesis demonstrated that quercetin feeding does 

not impair the glucose metabolism of newborn calves, but that it enhances the 

gastrointestinal absorption of labelled glucose. However, this effect alone seems to be 

insufficient to improve the overall immune function. Whether adding quercetin to the diet 

would be more advantageous in weakish calves if at the same time the glucose (as lactose) 

content of the meal is increased, needs to be probed in further studies. 
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SUMMARY 

Effects of the Flavonol Quercetin on Glucose Metabolism and Health Status in 

Neonatal Calves 

With birth, calves are confronted with a new, extrauterine environment and have to meet their 

energy demand autonomously. For this reason, it is essential that not only overall energy 

intake, but also endogenous glucose production work effectively, because glucose is one of 

the main energy sources during the first stage of life. With the intake of first colostrum calves 

ingest not only nutrients, but also a plethora of bioactive factors which support the maturation 

and development of metabolic processes. Colostrum is further essential to support the naïve 

immune system of newborn calves during the first weeks of life and to mediate passive 

immunity. Unfortunately, colostrum supply is often inadequate. To support the health status, 

flavonoids could play an important role in the upbringing of newborn calves. These are 

secondary plant metabolites with numerous attributed health-promoting properties. One of 

the most important flavonoids is quercetin, which is proven to possess antioxidative, anti-

inflammatory and antimicrobial capacity and to modulate the intestinal microflora. However, 

quercetin also interacts with glucose metabolism by inhibiting intestinal carbohydrate 

absorption and reducing plasma glucose concentrations. For newborn calves, such an effect 

would be crucial. Therefore, it was the main objective of the present work to investigate the 

effects of an oral quercetin supplementation on the glucose metabolism of newborn calves, 

because this knowledge would be the prerequisite to consider the usage of quercetin as a 

health promoting feed additive in calf rearing. 

In the first part of the study, 28 newborn male Holstein Friesian calves were assigned to two 

dietary groups and fed colostrum or a milk-based formula with same macronutrient 

composition, but without bioactive factors, during the first two days of life. On d 2 of life, 

groups were subdivided into control and treatment groups, the latter receiving quercetin 

aglycone with meals during the first week of life. On d 3, intestinal xylose absorption was 

probed, on d 7, a tracer study was conducted to investigate the first pass uptake of glucose, 

and on d 8, a liver biopsy sample was taken and analyzed via PCR. The postabsorptive 

recovery rate of orally administered xylose and 13C6-labelled glucose in plasma was higher in 

calves that initially received colostrum, indicating a better intestinal absorption capacity and a 

lower splanchnic glucose extraction when compared to colostrum-deprived calves. 

Irrespective of quercetin supplementation, the mRNA abundance of hepatic mitochondrial 

phosphoenolpyruvate carboxykinase and several plasma metabolites were also reduced in 

formula-fed calves, pointing to a delayed maturation of metabolic pathways after colostrum 

deprivation. Although quercetin-fed calves initially showed higher peak concentrations of 

13C6-glucose in plasma on d 7, this effect did not last for the following hours.  

Based on the finding that an oral quercetin supplementation does not seem to disadvantage 
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the glucose metabolism in newborn calves, the health parameters recorded during the trial 

were evaluated in the second part of this work. Additionally, plasma samples of the calves 

were analyzed for concentrations of immunoglobulins, acute-phase proteins, as well as 

parameters of the antioxidative system. Furthermore, the expression of genes for some 

proinflammatory cytokines, antioxidative enzymes and acute-phase proteins was analyzed in 

cDNA samples generated from the liver biopsy tissue. Data indicate that an adequate initial 

colostrum supply supports neonatal health and prepares the calves very well to cope with the 

new environment. Colostrum-fed calves showed reduced signs of inflammation and were 

more vital than calves initially fed formula, further, the metabolic status was improved. In 

contrast to this, the quercetin supplementation did not induce any detectable health-

promoting effects, a finding that underlines that results proven in vitro are not always 

transferable to the organism as a whole.  

In summary, it can be concluded from the present work that an oral quercetin supplemen-

tation does not impair the glucose metabolism of newborn dairy calves. However, health-

promoting properties cannot be reproduced in vivo, hence quercetin feeding cannot 

compensate for an inadequate initial colostrum supply. 
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ZUSAMMENFASSUNG 

Einfluss des Flavonols Quercetin auf Glucosestoffwechsel und Gesundheits-

status beim neugeborenen Kalb 

Mit der Geburt werden Kälber mit einer neuen, extrauterinen Umgebung konfrontiert und 

müssen ihren Energiebedarf selbstständig decken. Dafür ist es essentiell, dass nicht nur 

ausreichend Nährstoffe aufgenommen werden, sondern auch die endogene Glucosepro-

duktion effizient funktioniert, da Glucose in der ersten Lebensphase als eine Hauptenergie-

quelle dient. Mit der Aufnahme von Kolostrum werden neben Nährstoffen auch zahlreiche 

bioaktive Substanzen zugeführt, die die Reifung und Entwicklung von Stoffwechselprozessen 

fördern. Kolostrum ist außerdem essentiell, um das naive Immunsystem des Kalbes während 

der ersten Lebenswochen zu unterstützen und passive Immunität zu vermitteln. Leider ist die 

Kolostrumversorgung oft suboptimal. Um die Gesundheit zu fördern, könnte dem Einsatz von 

Flavonoiden hier eine wichtige Rolle zukommen. Es handelt sich dabei um sekundäre 

Pflanzenstoffe, denen zahlreiche gesundheitsfördernde Eigenschaften zugeschrieben 

werden. Einer der Hauptvertreter ist Quercetin, welches nachweislich antioxidativ, anti-

inflammatorisch und antimikrobiell wirken und die Darmflora modulieren kann. Allerdings 

interagiert es auch mit dem Glucosestoffwechsel, wodurch die intestinale Aufnahme sowie 

der Blutglucosespiegel gesenkt werden. Für das Kalb wäre dies fatal. Somit war es das 

Hauptziel dieser Arbeit, die Wirkung einer oralen Quercetinsupplementierung auf den 

Glucosestoffwechsel neugeborener Kälber zu untersuchen, da die Kenntnis darüber die 

Voraussetzung ist, um den Einsatz von Quercetin als gesundheitsfördernden Futter-

zusatzstoff in der Kälberaufzucht überhaupt in Betracht ziehen zu können.  

Zu diesem Zweck wurden 28 neugeborene männliche Kälber der Rasse Deutsche Holstein 

in zwei Fütterungsgruppen unterteilt und während der ersten beiden Lebenstage entweder 

mit Kolostrum oder einer Formula mit gleicher Makronährstoffzusammensetzung, jedoch 

ohne bioaktive Substanzen, gefüttert. Am 2. Lebenstag erfolgte eine Unterteilung in Kontroll- 

und Behandlungsgruppen, wobei letztere während der ersten Lebenswoche Quercetin mit 

der Fütterung erhielten. Am 3. Lebenstag wurde eine Xyloseabsorptionsstudie durchgeführt, 

am 7. Lebenstag erfolgte eine Tracerstudie zum first pass uptake von Glucose, und am 

8. Tag wurde Lebergewebe mittels Biopsie entnommen und mit Hilfe von PCR analysiert. Die 

postabsorptive Wiederfindung von oral verabreichter Xylose und 13C6-markierter Glucose im 

Plasma war höher in initial Kolostrum-gefütterten Kälbern, was im Vergleich zu Formula-

gefütterten Tieren auf eine bessere Absorptionskapazität sowie eine geringere 

Glucoseextraktion im Splanchnikusgewebe schließen lässt. Ferner waren die mRNA 

Abundanz der hepatischen mitochondrialen Phosphoenolpyruvatcarboxykinase sowie 

verschiedene Plasmametaboliten in den Formulagruppen unabhängig von der Quercetin-
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supplementierung reduziert, was auf eine verzögerte Reifung des Stoffwechsels nach 

Kolostrumentzug hindeutet. Obwohl die Quercetinsupplementierung am 7. Lebenstag den 

intestinalen Glucoseabsorptionspeak steigern konnte, verlor sich dieser Effekt im Verlauf der 

darauffolgenden Stunden.  

Basierend darauf, dass eine orale Quercetinsupplementierung den Glucosestoffwechsel bei 

neugeborenen Kälbern nicht nachteilig beeinflusst, wurden im zweiten Teil der Arbeit die 

während der Studie aufgenommenen Gesundheitsparameter genauer ausgewertet. 

Weiterhin wurden Plasmaproben der Tiere auf Konzentrationen von Immunglobulinen, 

Akute-Phase-Proteinen sowie auf Parameter des antioxidativen Systems untersucht und die 

Genexpression verschiedener proinflammatorischer Zytokine, antioxidativer Enzyme und 

akuter-Phase-Proteine in den zuvor angelegten cDNA Umschreibungen analysiert. Die 

Ergebnisse zeigten, dass die adäquate Versorgung mit Kolostrum während der ersten 

Lebenstage die Kälber gut für die erste Lebensphase ausstattet und die Kälbergesundheit 

fördert. Die Tiere zeigten verminderte Anzeichen von Inflammation und waren in den ersten 

Lebenstagen vitaler als Kälber der Formulagruppe, ferner war der metabolische Status 

verbessert. Die Quercetinsupplementierung hingegen brachte keine gesundheitsfördernden 

Effekte, was beweist, dass in vitro nachgewiesene Effekte nicht auf den Gesamtorganismus 

übertragbar sind.  

Zusammenfassend lässt sich aus dieser Arbeit ableiten, dass die Fütterung von Quercetin 

Aglykon beim neugeborenen Kalb zwar keine nachteiligen Effekte auf den Glucose-

stoffwechsel hat. Dennoch sind die gesundheitsfördernden Eigenschaften nicht in vivo 

reproduzierbar, sodass der Einsatz von Quercetin als Futterzusatz keinesfalls eine 

unzureichende Kolostrumversorgung kompensieren kann. 
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APPENDIX 

Table A1: Correlation (Pearson coefficients) between flavonol concentration and 

selected parameters in plasma of calves fed quercetin twice daily from d 2-8 of life. 

  Colostrum (CQ+)  Formula (FQ+)  All calves (Q+) 

Parameter Day Pearson r P-value  Pearson r P-value  Pearson r P-value 

Metabolites 

Glucose 4 0.11 0.83  0.12 0.87  0.44 0.16 

 7 0.34 0.54  0.14 0.81  0.25 0.44 

 ∑ (4,7) 0.33 0.28  0.16 0.64  0.39 0.06 

Lactate 4 0.10 0.84  -0.48 0.45  -0.25 0.54 

 7 0.06 0.92  -0.36 0.51  0.04 0.90 

 ∑ (4,7) 0.16 0.62  -0.36 0.29  0.07 0.76 

Albumin 4 -0.08 0.87  -0.88 0.05  -0.14 0.68 

 7 0.39 0.48  -0.58 0.25  0.17 0.60 

 ∑ (4,7) 0.26 0.39  -0.64 0.03  0.23 0.29 

Total protein 4 0.69 0.09  -0.63 0.29  0.64 0.02 

 7 -0.33 0.56  -0.18 0.75  -0.01 0.99 

 ∑ (4,7) 0.47 0.11  -0.37 0.27  0.45 0.02 

NEFA 4 -0.30 0.53  -0.49 0.45  -0.22 0.51 

 7 -0.46 0.39  -0.24 0.68  -0.29 0.36 

 ∑ (4,7) -0.01 0.97  -0.35 0.30  -0.11 0.61 

Urea 4 -0.02 0.97  0.98 <0.01  0.06 0.85 

 7 -0.41 0.45  0.25 0.66  -0.13 0.70 

 ∑ (4,7) -0.30 0.32  0.51 0.11  -0.05 0.81 

TAG 4 0.36 0.45  -0.61 0.32  0.52 0.08 

 7 0.21 0.71  0.38 0.49  0.23 0.48 

 ∑ (4,7) 0.47 0.11  -0.23 0.50  0.50 0.01 

Cholesterol 4 0.35 0.46  -0.10 0.89  0.60 0.04 

 7 0.05 0.93  -0.68 0.16  -0.01 0.98 

 ∑ (4,7) 0.04 0.91  -0.43 0.19  0.28 0.18 

Hormones 

Cortisol 4 -0.59 0.17  0.01 0.99  -0.42 0.18 

 7 0.17 0.76  0.23 0.69  0.12 0.72 

 ∑ (4,7) -0.26 0.41  0.01 0.98  -0.22 0.30 

Insulin 4 0.35 0.46  0.48 0.46  0.37 0.35 

 7 0.72 0.12  0.33 0.55  0.56 0.06 

 ∑ (4,7) 0.34 0.27  0.33 0.34  0.41 0.05 

Glucagon 4 -0.08 0.88  -0.65 0.28  0.04 0.90 

 7 0.23 0.69  -0.32 0.57  0.06 0.85 

 ∑ (4,7) 0.16 0.60  -0.45 0.17  0.15 0.48 
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Table A1 Continuation. 

  Colostrum (CQ+)  Formula (FQ+)  All calves (Q+) 

Parameter Day Pearson r P-value  Pearson r P-value  Pearson r P-value 

Antioxidative status 

FRAP 4 -0.28 0.57  -0.45 0.50  -0.23 0.49 

 7 -0.06 0.92  -0.50 0.58  0.14 0.71 

 ∑ (4,7) -0.13 0.68  -0.20 0.63  -0.04 0.88 

TEAC 4 0.62 0.15  0.14 0.85  0.74 <0.01 

 7 -0.15 0.80  -0.40 0.55  0.06 0.86 

 ∑ (4,7) 0.33 0.27  -0.22 0.56  0.49 0.02 

TBARS 4 0.09 0.85  -0.70 0.22  0.39 0.21 

 7 0.02 0.97  -0.32 0.57  -0.10 0.76 

 ∑ (4,7) 0.19 0.55  -0.22 0.52  0.25 0.23 

Isoprostanes 4 -0.06 0.89  0.55 0.38  0.21 0.52 

 7 -0.40 0.46  -0.33 0.56  -0.33 0.30 

 ∑ (4,7) -0.15 0.62  -0.06 0.87  -0.04 0.85 

Immunoglobulins 

IgG1 4 0.31 0.53  0.66 0.26  0.61 0.04 

 7 -0.41 0.46  . .  -0.05 0.89 

 ∑ (4,7) -0.04 0.90  0.25 0.47  0.34 0.10 

IgG2 4 0.63 0.13  -0.55 0.38  0.68 0.01 

 7 -0.31 0.58  -0.77 0.08  -0.06 0.85 

 ∑ (4,7) 0.25 0.41  -0.68 0.02  0.38 0.07 

IgM 4 0.44 0.34  0.81 0.11  0.68 0.01 

 7 -0.24 0.67  0.74 0.10  0.05 0.89 

 ∑ (4,7) 0.31 0.31  0.73 0.01  0.50 0.01 

Acute phase proteins 

SAA 4 0.02 0.98  0.12 0.87  0.03 0.94 

 7 -0.04 0.95  0.63 0.20  0.24 0.47 

 ∑ (4,7) 0.10 0.75  0.42 0.21  0.16 0.47 

Haptoglobin 4 . .  0.79 0.13  -0.17 0.61 

 7 . .  0.70 0.14  0.35 0.47 

 ∑ (4,7) . .  0.43 0.19  -0.01 0.97 

Fibrinogen 4 0.81 0.02  0.67 0.25  0.56 0.06 

 7 -0.17 0.77  -0.05 0.93  -0.14 0.68 

 ∑ (4,7) 0.48 0.10  0.02 0.95  0.33 0.12 

 

XII

Appendix



 

 

Table A2: Correlation (Pearson coefficients) between flavonol concentration and 

selected metabolites and hormones on d 7 in plasma in calves fed quercetin twice 

daily from d 2-8 of life. 

  Colostrum (CQ+)  Formula (FQ+)  All calves (Q+) 

Parameter Time Pearson r P-value  Pearson r P-value  Pearson r P-value 

Metabolites 

Glucose 0 h 0.34 0.54  0.14 0.81  0.25 0.44 

 1 h -0.37 0.50  0.72 0.11  0.06 0.85 

 2 h -0.68 0.24  -0.80 0.06  -0.42 0.21 

 3 h -0.15 0.79  -0.25 0.66  -0.11 0.74 

 4 h -0.94 0.01  -0.39 0.47  -0.71 0.01 

 5 h -0.31 0.65  -0.09 0.88  -0.53 0.09 

 6 h 0.73 0.19  0.53 0.30  -0.14 0.68 

 8 h -0.01 0.98  0.35 0.53  -0.09 0.79 

 10 h 0.90 0.04  0.56 0.27  -0.02 0.95 

 All -0.04 0.78  0.08 0.58  -0.07 0.46 

Lactate 0 h 0.06 0.92  -0.36 0.51  0.04 0.90 

 1 h 0.25 0.66  0.69 0.14  0.46 0.13 

 2 h -0.63 0.30  -0.68 0.16  -0.41 0.21 

 3 h 0.33 0.55  -0.9 0.01  0.23 0.49 

 4 h 0.30 0.66  -0.66 0.17  -0.15 0.67 

 5 h 0.57 0.52  -0.34 0.54  -0.11 0.78 

 6 h -0.62 0.47  -0.37 0.50  -0.30 0.42 

 8 h -0.08 0.89  -0.33 0.56  -0.10 0.76 

 10 h 0.94 0.01  -0.43 0.43  -0.01 0.98 

 All 0.07 0.63  -0.13 0.34  -0.04 0.67 

Urea 0 h -0.41 0.45  0.25 0.66  -0.13 0.70 

 1 h -0.66 0.17  -0.14 0.81  -0.19 0.56 

 2 h -0.78 0.13  0.34 0.54  -0.07 0.85 

 3 h -0.69 0.14  0.84 0.04  -0.11 0.75 

 4 h -0.59 0.33  0.33 0.55  -0.43 0.19 

 5 h -0.59 0.34  0.15 0.79  -0.49 0.13 

 6 h 0.51 0.43  0.35 0.52  -0.28 0.41 

 8 h -0.39 0.47  -0.44 0.41  -0.42 0.19 

 10 h 0.50 0.43  0.19 0.74  -0.31 0.37 

 All -0.39 0.01  0.29 0.03  -0.20 0.04 
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Table A2 Continuation. 

  Colostrum (CQ+)  Formula (FQ+)  All calves (Q+) 

Parameter Time Pearson r P-value  Pearson r P-value  Pearson r P-value 

NEFA 0 h -0.46 0.39  -0.24 0.68  -0.29 0.36 

 1 h -0.39 0.48  -0.73 0.11  -0.53 0.08 

 2 h 0.21 0.77  0.71 0.13  0.47 0.15 

 3 h 0.64 0.19  0.16 0.78  0.43 0.17 

 4 h 0.30 0.66  0.14 0.81  0.17 0.63 

 5 h 0.80 0.12  0.40 0.46  0.47 0.15 

 6 h 0.45 0.49  0.14 0.81  0.11 0.76 

 8 h 0.38 0.49  0.35 0.52  0.29 0.38 

 10 h -0.21 0.76  -0.68 0.15  -0.55 0.08 

 All -0.07 0.63  -0.28 0.04  -0.17 0.08 

Hormones 

Insulin 0 h 0.72 0.12  0.33 0.55  0.56 0.06 

 1 h -0.29 0.61  0.77 0.08  0.03 0.92 

 2 h -0.18 0.79  0.34 0.54  0.04 0.92 

 3 h 0.46 0.39  0.76 0.08  0.53 0.08 

 4 h <0.01 1.00  0.05 0.93  0.15 0.67 

 5 h -0.43 0.51  -0.45 0.41  -0.56 0.08 

 6 h 0.11 0.88  0.74 0.10  -0.13 0.72 

 8 h -0.18 0.75  -0.21 0.72  -0.25 0.44 

 10 h 0.84 0.09  0.18 0.76  0.18 0.60 

 All 0.10 0.50  0.13 0.34  0.07 0.51 

Glucagon 0 h 0.23 0.69  -0.32 0.57  0.06 0.85 

 1 h 0.29 0.61  0.25 0.66  0.38 0.23 

 2 h -0.92 0.02  -0.15 0.79  -0.17 0.63 

 3 h 0.89 0.02  -0.27 0.63  0.31 0.33 

 4 h -0.44 0.51  -0.16 0.78  -0.57 0.07 

 5 h -0.32 0.64  0.26 0.64  -0.40 0.23 

 6 h 0.68 0.24  0.05 0.93  -0.41 0.21 

 8 h -0.64 0.18  0.59 0.25  -0.23 0.49 

 10 h 0.11 0.88  0.84 0.04  -0.37 0.28 

 All 0.05 0.71  0.07 0.63  -0.10 0.32 
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Table A2 Continuation. 

  Colostrum (CQ+)  Formula (FQ+)  All calves (Q+) 

Parameter Time Pearson r P-value  Pearson r P-value  Pearson r P-value 

Noradrenaline 0 h -0.01 0.99  -0.12 0.83  <0.01 0.99 

 1 h -0.10 0.87  -0.63 0.19  0.08 0.81 

 2 h -0.21 0.77  -0.77 0.08  -0.20 0.57 

 3 h -0.17 0.76  -0.02 0.97  <0.01 0.99 

 4 h 0.88 0.05  -0.12 0.84  0.13 0.71 

 5 h 0.28 0.68  -0.32 0.56  -0.27 0.43 

 6 h 0.44 0.51  -0.23 0.68  -0.10 0.78 

 8 h -0.12 0.83  -0.77 0.08  -0.25 0.44 

 10 h 0.85 0.08  -0.39 0.47  0.04 0.91 

 All -0.11 0.47  -0.23 0.09  -0.19 0.05 

Adrenaline 0 h -0.64 0.19  -0.23 0.69  -0.30 0.35 

 1 h -0.25 0.65  -0.58 0.25  -0.15 0.65 

 2 h -0.03 0.97  -0.56 0.28  -0.26 0.45 

 3 h -0.63 0.20  -0.09 0.88  -0.31 0.33 

 4 h 0.56 0.37  -0.26 0.65  -0.17 0.62 

 5 h 0.66 0.26  -0.86 0.02  -0.50 0.12 

 6 h 0.50 0.44  -0.47 0.37  -0.14 0.69 

 8 h -0.34 0.55  -0.68 0.15  -0.34 0.30 

 10 h 0.42 0.53  -0.57 0.26  -0.29 0.40 

 All -0.28 0.05  -0.21 0.13  -0.26 0.01 
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Table A3: Correlations (Pearson correlation coefficients) between plasma flavonol 

concentrations (2 h after feeding on d 7) and mRNA abundances of hepatic genes 

involved in antioxidative status and inflammation (2 h after feeding on d 8) in calves 

orally supplemented with quercetin aglycone (50 mg/(kg BW × d)) for 7 days. 

  Colostrum (CQ+)  Formula (FQ+)  All calves (Q+) 

Gene  Pearson r P-value  Pearson r P-value  Pearson r P-value 

Cytokines 

TNF  -0.50 0.44  -0.15 0.80  -0.22 0.52 

IL1A  -0.35 0.60  -0.13 0.82  -0.18 0.60 

IL1B  0.94 0.02  0.82 0.05  0.82 <0.01 

Antioxidative status 

CAT  0.28 0.68  -0.59 0.24  -0.20 0.58 

GPX  0.63 0.30  0.29 0.61  0.36 0.29 

SOD  0.41 0.53  -0.14 0.81  0.03 0.93 

Acute phase proteins 

SAA2  0.35 0.61  0.85 0.03  0.67 0.03 

HP  0.16 0.82  0.86 0.03  0.68 0.02 

CRP  0.87 0.06  -0.46 0.39  -0.04 0.91 

FGA  0.39 0.57  0.56 0.28  0.45 0.18 

CAT, catalase; GPX1, glutathione peroxidase; SOD, superoxide dismutase; TNF, tumor necrosis 

factor; IL1A, interleukin-1α; IL1B, interleukin-1β; HP, haptoglobin; FGA, fibrinogen; SAA2, serum 

amyloid A2; CRP, C-reactive protein. 
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