
semi-analytical semi-lagrangian
discontinuous galerkin advection

scheme for the compressible
linear advection equation

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
am Fachbereich Mathematik und Informatik

der Freien Universität Berlin
vorgelegt von

linda michalk

Berlin, 2018

Erstgutachter:
Prof. Dr. Rupert Klein
Institut für Mathematik
Fachbereich Mathematik und Informatik
Freie Universität Berlin
Arnimallee 6

14195 Berlin
Telefon: +49 30 838 75414

Fax: +49 30 838 75412

e-mail: rupert.klein@math.fu-berlin.de

Zweitgutachter:
Prof. Dr. Claus-Dieter Munz
Institut für Aerodynamik und Gasdynamik
Universität Stuttgart
Pfaffenwaldring 21

70569 Stuttgart
Telefon: +49 711 685 63401

Fax: +49 711 685 53402

e-mail: munz@iag.uni-stuttgart.de

Tag der Disputation: 10. April 2018

mailto:rupert.klein@math.fu-berlin.de
mailto:munz@iag.uni-stuttgart.de

DA N K S A G U N G

Zuallererst möchte ich mich bei meinem Betreuer Herrn Rupert Klein bedanken.
Er hat mich an dieses spannende und relevante Thema herangeführt. In vielen
intensiven Gesprächen habe ich wertvolle fachliche Anregungen erfahren.
Stefan Vater hat vorgeschlagen, die Second Order Moments Methode der Klasse
der DG Verfahren gegenüber zu stellen. Mit Carsten Schultz konnte ich technische
Details zur Trajektorienberechnung erörtern. Dank gebührt auch meinem Kollegen
Martin Papke, mit dem ich nicht nur während unserer Mensabesuche über fachliche
Dinge diskutieren konnte. Stetige Motivation habe ich von Thomas von Larcher in
und außerhalb der Kaffeepausen erhalten. Fürs gründliche Korrekturlesen möchte
ich mich bei Stephan Gerber, Thomas von Larcher, Gottfried Hastermann, Marnie
Christensen, Wilma Weps und Florian Thiel bedanken. Mit viel Geduld hat mir
Patrik Marschalik bei allen LaTex-Fragen zur Seite gestanden.
Meine Eltern haben mich in jeglicher Hinsicht während der Promotion unterstützt.
Vielen Dank dafür! Und auch meinem Niels möchte ich danken. Er hat mich in den
letzten Jahren durch alle Höhen und Tiefen begleitet und war immer für mich da.

v

C O N T E N T S

1 introduction 1

2 basic methods and background 9

2.1 Fourier analysis 9

2.1.1 Fourier Transform 9

2.1.2 Von Neumann stability analysis 11

2.2 Towards the Ultimate Conservative Difference Scheme 13

2.3 Second-Order Moments Method 17

2.3.1 The algorithm 17

2.3.2 Limiting 20

2.3.3 Variable velocity 21

2.3.4 Further remarks 22

2.4 Discontinuous Galerkin 22

2.4.1 Discontinuous Galerkin-space discretization 22

2.4.2 Runge-Kutta Discontinuous Galerkin 24

2.4.3 Discontinuous Galerkin with exact time integration 25

2.4.4 Variable velocity 27

2.4.5 Convergence analysis 28

2.5 Semi-Lagrangian methods 29

2.5.1 Approximate solution to initial value problem 30

2.5.2 Interpolation techniques 30

2.5.3 The semi-Lagrangian integrated-mass approach 31

2.6 MPDATA 33

2.6.1 The algorithm 33

2.6.2 Error Analysis 35

3 the sasldg method 43

3.1 Preview 43

3.2 Computing the trajectories 46

3.2.1 Trajectory with positive velocity 47

3.2.2 Trajectory with negative velocity 54

3.2.3 Zero velocity at grid points 59

3.2.4 Overview of different types of trajectories 64

3.3 The exact solution and its integral 64

3.4 The projection step 67

3.4.1 Trajectory remaining in one grid cell 70

3.4.2 Trajectory crossing cell boundaries 70

3.4.3 Integration with small coefficients 74

3.5 The overall algorithm 84

3.6 Limits of integration 86

3.7 Numerical results 91

4 extension of the sasldg method in 2d 101

4.1 Operator Splitting 101

4.2 The SASLDG method in 2D 102

4.2.1 Solid body rotation test 105

4.2.2 Deformational flow test 107

4.3 Hybrid operator splitting: MPDATA and the SASLDG method 109

4.3.1 Description of the procedure 110

4.3.2 One-dimensional SASLDG-3c vs. MPDATA 112

4.3.3 Solid body rotation test 113

4.3.4 Deformational flow test: static vortex 115

4.3.5 Deformational flow test: Rider Kothe 119

4.3.6 Wavelike flow test 129

vii

viii contents

5 analysis 141

5.1 Consistency 141

5.1.1 Analytical solution after one time step 142

5.1.2 Numerical solution after one time step 146

5.1.3 Order of coefficients 148

5.1.4 Order of errors 152

5.2 Stability 155

5.2.1 L1-Stability 155

5.2.2 L2-Stability 157

5.2.3 Von Neumann stability analysis 160

5.3 Convergence rates 167

6 discussion 173

Appendix 179

a appendix 181

summary 199

zusammenfassung 201

bibliography 203

erklärung 207

1 I N T R O D U C T I O N

Weather prediction, climate change, the distribution of atmospheric pollutants, and
the development of tornados or hurricanes have been the subject of research for
quite a long time and are of great interest. All of these topics can be described with
the help of fluid dynamical processes. Without the development of numerical meth-
ods to solve the arising equations it is nearly impossible to find solutions to these
problems, as the equations are generally too complicated to be solved analytically.
[16]

The Navier-Stokes equation describes the momentum balance of viscous fluids,
e.g. it is applied to atmospheric or oceanic flows. When this equation is combined
with equations for the conservation of mass and energy, it becomes possible to
model all kinds of fluid dynamical processes. The equations are simplified depend-
ing on the application. For example, the Euler equations neglect friction and can
be used to model phenomena such as sound waves, gravity waves, cyclones, or the
general circulation of the atmosphere. For weather prediction, yet another set of
equations with different assumptions is used, see e.g. [17].

While the mass of particles within a control volume is conserved in time, the
density of the control volume can change. According to the equation for conserva-
tion of mass, if the density of the control volume is taken into account, the only
change that can occur in time comes in the form of flow with a given velocity over
the boundaries of the control volume. Conservation of (total) energy consists of the
motion of particles carrying energy. In addition to transport, energy changes due to
compression or expansion as well as due to molecular processes. This means that
the power of the pressure is part of the balance of energy. Heat conduction and
the diffusion of mass contribute to the conservation of energy because of molecular
transport phenomena. To model gravitational force, the gradient of the geopotential
is added to the equation in conservative form. The change of momentum caused
by the flow of mass is part of the momentum equation. Pressure and shear forces
have to be included as well. Gravity has an influence on momentum. Thus, the
geopotential is embedded just as it is for energy. In the context of meteorological
problems, the equations are often given in a rotating reference frame wherein the
Earth is stationary. Therefore, fictitious forces such as the Coriols force must be
introduced. They appear in the momentum equation and can be written in conser-
vative form. Note that in the case of a compressible fluid, an equation of state as
the ideal gas law is needed to close the system and determine all unknowns. Also,
the conservation of energy can be expressed as an equation for the evolution of
potential temperature.

In any equation of the governing equation system, advection plays a role. The
transport of mass and the associated transport of energy and momentum attached
to the mass particles are advective processes. Therefore, advective terms are a fun-
damental part of the equations describing fluid flow. Tracers as state variables are
called active tracers, because they directly and actively affect the solution. The
phenomenon of advection can also occur in form of a passive tracer. In this case,
the tracer is advected along the velocity field without any or with only negligible
feedback to the system.

Under certain conditions, active tracers can be approximated by passive tracers,
which simplifies the calculations. For example, when considering the atmospheric
temperature field at large scales, the active tracer potential temperature can be
treated as a passive tracer. [63]

1

2 introduction

Chemical tracers as ozone can be considered passive or active tracers, see e.g.
[1] and [38]. At a time scale of several weeks or less, ozone can be treated as a
passive tracer in the context of general circulations in the lower stratosphere. In this
case, the spatial distribution due to advective transport plays a significant role, see
[1]. If ozone is considered an active tracer, then the feedback occurs in a different
form than the feedback of air density, momentum or energy. It does not feed back
directly to induce changes in temperature and wind distribution. Instead, due to
chemical reactions it can influence the ozone layer, which in turn changes radiative
forcing, which then influences temperature and wind distribution. These chemical
processes happen on a longer time scale.

In the ocean, temperature and salinity are examples of active tracers. Passive
tracers include carbon dioxide and chlorofluorocarbon [7]. Gerdes emphasizes the
importance of advection of active and passive tracers in [18]: “The evolution of
temperature, salinity and passive tracers in the ocean interior is dominated by ad-
vection, although mixing processes are crucial for various aspects of the circulation.
An essential requirement for ocean circulation models, therefore, is that the advec-
tion process be properly represented.”

Each year to celebrate Saint Patrick’s Day, a part of the Chicago river is dyed green.
A picture taken in 2009 can be seen in Figure 1.1. Though, there is no (scientific)
reason for this action other than the celebrations, it illustrates a passive tracer in a
river. Observing the green dye, one can see how it is advected downstream.

Figure 1.1: Green dye (passive tracer) in the Chicago River on St. Patrick’s Day. Credits: [65]

Processes in nature lead to models with equations of nonlinear structure includ-
ing nonlinear advection. Different options exist to treat nonlinearities numerically.
One possible approach is to linearize the system of governing equations, see [16].
Another ansatz using the EULAG model is applied in e.g. [44]. The authors de-
scribe a way to find the numerical solution to the equations of the anelastic model.
This is obtained from the compressible Euler equations under certain assumptions
about the density and the gravity term, see [27]. These equations can be expressed
as advection equations with source terms as right-hand side. The velocity and the
state variables are determined half a time step ahead by means of interpolation and
extrapolation. These values are used as input for the linear advection equation. The
source term is treated separately. In this thesis, we will address the case of lin-
ear advection with variable velocity as an important component of fluid dynamical
systems.

linear advection - constant velocity
Physically, the linear advection equation with a constant coefficient might not be of
great interest. To find an example for a phenomenon that can be modeled with this
equation, many simplifying assumptions have to be made. For example, the motion

introduction 3

of a passive tracer in a fluid in a pipe with constant background velocity, without
the effects of friction at the walls and other external forces such as gravity can be
described using the linear advection equation with a constant velocity coefficient.
Another example are packages considered as tracers on a conveyor belt operated
with constant velocity. Or cars moving on a one-lane road at the same velocity and
therefore with the same distances between them.

The linear advection equation with constant velocity u and y being the advected
quantity for y, u : R× [0, T]→ R is given by

y(x, t)t + uy(x, t)x = 0,

y(x, 0) = y0(x).
(1.1)

Periodic boundary conditions are assumed. The solution is to be computed on
the time interval [0, T]. Because the velocity does not depend on space, (1.1) can
equally be written in conservation form. In the case of constant velocity u, we know
the analytical solution, which yields

y(x, t) = y0(x− ut). (1.2)

Nevertheless, from the point of view of the numerics solving (1.1) is not as simple
as it might seem. As Leonard states in [34], “Modeling of highly advective transport
is embarrassingly difficult, even in the superficially simple case of one-dimensional
constant-velocity flow.” A practical advantage of dealing with the numerics of this
equation is knowing the analytical solution, because the numerical solution can be
verified at any point in time and space.

linear advection - variable velocity
Even the simplified case of advection with a constant coefficient reveals itself as a
numerically interesting and difficult case. However, advection processes in nature
are far more complex, as velocity fields are obviously neither constant in time nor
in space. Including a variable velocity coefficient makes it possible to capture more
of these processes.

Still, finding realistic examples that are entirely modeled by this equation is nearly
as difficult as for the equation with a constant velocity coefficient. The example of
the conveyor belt can be extended to several conveyor belts in a row, operated at
different velocities. Varying velocities cause the packages on the belts to be moved
closer together if the packages are advected from a faster moving belt to a slower
moving belt, or farther apart in the reverse case. The example of the cars can be
extended to traffic moving in zones with different speed limits. In order to obey
(1.3), cars have to reach the allowed maximum speed. Furthermore, there must be
enough space between the cars, so that when they enter a section with lower speed
limit, they do not crash. A more realistic model - which then becomes a nonlinear
model - would incorporate the fact that a high density of cars leads to slower traffic.
This is not covered by the linear advection equation. Nevertheless, a complicated
nonlinear advection process in nature can still be approximated by a linear model.

The linear advection equation with variable velocity coefficient is given by

y(x, t)t + u(x, t)y(x, t)x = 0, for R× [0, T],

y(x, 0) = y0(x) ∀ x ∈ R.
(1.3)

A problem that emerges from this form of the linear advection equation (1.3) is that
it is not written in conservation form in contrast to (1.1). Thus, the traced quantity
y is not necessarily conserved if the evolution of y is computed employing this
nonconservative form. In order for a numerical method to inherit the conservation
property for y, the equation itself must be in conservation form. To achieve this

4 introduction

goal we need to introduce the variable ρ, which can be interpreted as a density
distribution for the surrounding fluid as air or water, and is therefore given in
kilograms of fluid per cubic meter. Then, y becomes the mixing ratio of the tracer
divided by mass (kilogram of tracer per kilogram of fluid) and further ρy is the
tracer density (kilogram of tracer per cubic meter)

ρt + (uρ)x = 0, (1.4)

(ρy)t + (uρy)x = 0 (1.5)

This set of equations with according initial values implies (1.3). Within this set of
equations, two equations have to be solved, but now they are in conservation form.
The mass of the fluid and the mass of the tracer are conserved in time. From that
we can develop a numerical method with the desired property. Both equations are
treated equally, with the same numerical method. After the numerical solutions of
ρ and ρy respectively are computed, we finally obtain the information on the traced
quantity y by dividing ρy by ρ.

summary of numerical advection methods
Many different numerical methods are available for solving fluid dynamical prob-
lems. They can be roughly divided into different classes: finite difference methods,
finite volume methods, discontinuous Galerkin methods, finite element methods
and spectral methods. The latter two are not discussed in this thesis, while the other
methods are briefly introduced in the following. Beforehand, we want to mention
that the choice of the class of numerical methods depends on the specific problem
and on the focus of the solution. Properties like conservation of a quantity, high or-
der accuracy, positive definiteness, computational efficiency, the possibility of large
time steps, etc. can influence the choice of numerical scheme. All of the numerical
methods listed below have been tested with the linear advection equation as it is
of simple structure and, in the case of a constant velocity coefficient, the solution
is known, which makes it a practical test problem. While some of the methods are
only intended to solve the advection equation, others are generalized to treat other
equations as well. This summary is by no means exhaustive; only some aspects and
methods are introduced that are relevant to the method developed in this thesis.

The class of finite difference methods was applied as early as in 1922 when Lewis
Richardson used these methods to solve fluid dynamical equations in an attempt at
numerical weather prediction, described in [49]. The fundamental work of Courant,
Friedrichs and Lewy in 1928 [37] further investigates finite difference methods that
generally enable a discretization of partial differential equations (PDE). The finite
differences, that is the differences of pointwise given values, approximate the deriva-
tives in the equation. In [37], the authors make a finding of great importance: the
correlation of the grid cell sizes and the characteristics of the problem must fulfill
certain inequalities in order to obtain convergence of the finite difference approxi-
mation. Accordingly, this condition is known as the Courant-Friedrichs-Lewy (CFL)
condition. The ratio of the length of a time step in a numerical method as well as the
velocity and the size of a grid cell must be limited by the CFL number (or Courant
number). This can be a restrictive condition on the time step size to fulfill the stabil-
ity requirement. Finite difference schemes are not further addressed in this thesis:
however, the CFL condition plays a crucial role in other numerical methods as well.

One class of numerical schemes used to compute the solution to conservation
laws are finite volume methods. The PDE is written in integral form in space and
in time. Thus, cell averages, obtained by integration and cellwise averaging, are
used to describe the numerical solution instead of pointwise values. Finite volume
methods make use of the divergence theorem by converting the integral of the
divergence term in surface integrals. These surface integrals integrated in time

introduction 5

describe the fluxes that flow from one grid cell to the adjacent neighbors. The
outgoing flux from one cell is identical to the ingoing flux of the neighboring cell.
Therefore, finite volume methods are conservative, as the total integral over the
whole domain is preserved. The key challenge for finite volume methods is to find
good approximations of the fluxes. A thorough discussion of finite volume methods
can be found e.g. in [36].

Godunov’s method developed in 1959 [21] is among the finite volume methods.
In the first step of the method, piecewise constant functions are defined for each grid
cell. Then, the solution to Riemann problems is computed forward in time at the
cell boundaries. Finally, integration and averaging leads to the piecewise constant
functions after the time step. As only the cell average needs to be computed at
the end and the equation to be solved is written in integral form, the solution
to the Riemann problem is simplified. Godunov’s method is first-order accurate,
because it uses piecewise constant functions to represent the solution. To increase
the accuracy, higher order methods were designed.

A second-order accurate sequel to Godunov’s method is the Monotone Upstream
Scheme for Conservation Laws (MUSCL), introduced in [32] by van Leer in 1979.
This method follows the same structure as Godunov’s method with the difference
that instead of the constant functions in each cell, linear functions are reconstructed
after each time step. In 1984, Colella and Woodward generalized the functions
to parabolas, leading to the piecewise parabolic method (PPM) [13], which uses
the same framework and is of third-order accuracy. The higher-order extensions
to Godunov’s method have in common that spurious oscillations can arise in the
numerical solution near discontinuities, whereas in smooth regions the high-order
accurate methods approximate the analytical solution more accurately.

This problem led to another field of interest in the community: total variation
diminishing (TVD) methods and in connection to that flux and slope limiting. The
methods MUSCL and PPM can avoid oscillations in the numerical solution when
slope limiting is applied. In the reconstruction step, the linear or parabolic function
respectively has to be modified in such a way that existing extremal points are
not incremented and no additional extremal points are created. As a consequence,
the slope of the reconstructed function is set to zero at extrema. Furthermore, the
slope is limited such that all other points of the function lie within the range of
neighboring function values.

A different approach involves limiting the flux. This scheme was introduced
by Boris and Book [6] as the flux corrected transport (FCT) method and further
developed by Zalesak [66]. The idea of FCT methods is to compute both a low-
order numerical flux as in Godunov’s method and a high-order flux, and use a
combination of both fluxes: the low-order flux near discontinuities and the high-
order flux at smooth regions. The numerical solution employing the low-order flux
is first computed and then, in a second step, corrected using a weighted difference
of the low- and high-order flux, known as the anti-diffusive flux. The weight is
determined in such a way as to avoid new extrema and the amplification of existing
ones.

A different but related approach to the FCT method is the multidimensional posi-
tive definite advection transport algorithm (MPDATA) developed by Smolarkiewicz
[56] in 1983. This method is iterative and corrects the diffusive error in the numer-
ical flux repeatedly in order to increase accuracy. The FCT method computes low-
and high-order fluxes in order to determine the flux correction. In contrast, with
MPDATA it is sufficient to compute low-order fluxes with corrected antidiffusive
velocities in each iteration. A more detailed description of MPDATA is given in
Section 2.6.

Yet another family of methods for solving fluid dynamical problems are Discon-
tinuous Galerkin (DG) methods. They were originally introduced by Reed and
Hill [47] in 1973 to solve the neutron transport equation. LeSaint and Raviart [35]
conducted a first analysis and a proof of convergence in 1974. DG methods are a

6 introduction

combination of finite volume methods and finite element methods. They are writ-
ten in conservation form as finite volume methods using numerical fluxes across
cell interfaces and solved using a weak formulation as employed in finite element
methods. Much of the theory developed in each of the other classes is applied in
DG methods, such as slope limiters used for finite volume methods or theorems for
convergence established for finite element methods. Further developments and a
thorough description of DG methods can be found e.g. in [10]. An introduction to
DG methods is given in Section 2.4, because the new numerical method presented
in this thesis is related to the family of DG methods.

The concept of semi-Lagrangian methods is described in Section 2.5 and therefore
only sketched here. In an Eulerian framework, as used in all the other methods
described above, the evolution of the solution of fluid flow is studied from a fixed
point in space. In contrast, in a Lagrangian framework, the evolution is observed
by following a particle of the fluid in motion. In a fully Lagrangian method, a set of
fluid particles is traced in time, with the disadvantage that these particles will end
up irregularly spaced. The semi-Langrangian approach combines the Eulerian and
the Lagrangian frameworks. Exactly these particles that arrive at the Eulerian grid
points at the end of a time step are traced in a Lagrangian manner. In this way the
grid points remain regularly distributed and large time steps can be made, which
is the advantage of Lagrangian methods.

The ability to avoid restrictions on the time step because of the CFL condition is
of particular importance for grids with strongly varying cell sizes. Different scales
in horizontal and vertical direction often occur in atmospheric phenomena. Grid
aspect ratios of O (100) are typical when comparing horizontal and vertical scales,
see e.g. [41]. The smallest grid cell determines the time step size. In more than
one space dimension, when operator splitting [62] is used to compute the solution,
small cells in one space dimension can limit the time step sizes of the other space
dimensions. Methods that are not affected by the CFL condition for stability reasons
are favorable in such situations.

We would like to highlight one particular numerical method - the second order
moments (SOM) method, and not only because ”[. . .] the use of the SOM method
significantly improves tracer distributions and transports compared to FCT and
QUICKer [quadratic upstream interpolation for convective kinematics], thus lead-
ing to a better representation of ocean currents, notably boundary currents and
frontal systems“ [26]. The scheme was developed independently by Prather [43] in
1986 and by van Leer [31] in 1977 and can be assigned to the class of finite volume
methods and DG methods. The tracer is represented by a higher-order polynomial
for each grid cell. Polynomials are advected and after one time step projected again
onto the space of high-order polynomials in a way that is comparable to the pro-
cedure used for DG methods. Yet, the classical finite volume conservation form is
used as starting point for the computation.

In this thesis, we develop a new numerical method that is based on the SOM
method. Therefore, Section 2.3 is devoted to a detailed description of this numer-
ical scheme. The method is designed to incorporate the best assets of the above-
mentioned numerical methods. First, it uses the conservation property of FV meth-
ods. Second, the ability must be given to limit the slope of the functions represent-
ing the advected quantity for positive definiteness and avoid spurious oscillations.
Third, the high accuracy of DG methods is incorporated, and further it achieves the
accuracy of the SOM method because of its exact integration in time. And last, the
CFL stability criterion is resolved using a similar ansatz, which traces characteristics
back in time, as in semi-Lagrangian methods.

Different methods have been developed that originate from the same idea to com-
bine a semi-Lagrangian ansatz with DG methods. There is a class of methods that
pursue that goal called Lagrange-Galerkin methods, described e.g. in [19]. A nu-
merical scheme that belongs to this class as well, though named a semi-Lagrangian
discontinuous Galerkin scheme, is described in [22]. The numerical solution is de-

introduction 7

rived from the Lagrangian form of the integral over the product of the advected
quantity and test functions. This test function has to fulfill a certain property, i.e.
solve the adjoint problem of the linear advection equation conservation form. This
special form makes it possible to determine the solution: however, the integrals are
determined approximately.
Another related method, also known as a semi-Lagrangian discontinuous Galerkin
scheme, is introduced in [48]. It uses the weak discontinuous Galerkin formulation
of the advection equation as a basis. The numerical flux, the trajectories described
by an ordinary differential equation, and the integrals that arise from that equation
are solved approximately.
The numerical method constructed in this thesis stands in contrast to the other meth-
ods as it is suitable for divergent velocity fields. It explicitly treats the transport of
density and tracer density. More importantly, the ordinary differential equation
defining the trajectories and all integrals that originate from the solution ansatz are
solved analytically. This gives an insight into the possible accuracy of the numerical
solution that can be achieved. However, as a consequence of the projection of the
analytical solution onto the space of polynomials after each time step, the method
results in a semi-analytical scheme. In this thesis, we develop and examine a semi-
analytical, semi-Lagrangian discontinuous Galerkin (SASLDG) advection scheme
for the compressible linear advection equation.

outline
Chapter 2 introduces numerical methods for the linear advection equation that form
the basis for the SASLDG method, i.e. the SOM method by Prather and the equal
method by van Leer. In addition, the classes of DG methods and semi-Lagrangian
methods are described. The method MPDATA is presented, because a combination
of MPDATA and the SASLDG method via operator splitting is applied to a certain
kind of problem. Additionally, the von Neumann analysis is described as a tool
for analyzing the accuracy of linear numerical methods, which will be applied in a
modified way to the nonlinear MPDATA.

The SASLDG method is developed and described in Chapter 3. After a preview
that highlights the concept of the method, the construction of the method starts
with the trajectories that result from the semi-Lagrangian ansatz, followed by a
description of the exact solution. The projection step is elaborated in the ensuing
section. The overall algorithm is described to provide an idea of the structure of
the actual implementation. The limits of the integration, which are part of the
projection step, are described in the subsequent section. This chapter concludes
with the numerical results of the SASLDG method in one space dimension.

A possibility to extend this approach to two space dimensions is discussed in
Chapter 4. We introduce operator splitting, which enables a straightforward exten-
sion. Subsequently, we present the results of numerical tests of the SASLDG method
in two dimensions. In the following section, we explain a possible treatment for nu-
merical solutions on grids with high aspect ratio. We suggest using a combination
of MPDATA and a modified version of the SASLDG method. Extensive numerical
tests conclude this chapter.

An analysis of theoretical properties such as consistency, stability and conver-
gence is carried out in Chapter 5. In addition, to the L1- and L2-stability analysis, a
von Neumann stability analysis is applied to gain further insight into the SASLDG
method. Last, we confirm the theoretical findings with numerically determined
convergence rates.

In Chapter 6, we discuss the results of the preceding chapters, focusing in par-
ticular on the outcome of the numerical tests in one and two space dimensions.
Moreover, we give an outlook on open questions and further research on this topic.

2 B A S I C M E T H O D S A N D
B A C KG R O U N D

In this chapter we introduce the numerical methods that build the foundation for
the SASLDG method and are related to it. Further, we discuss the technique of
Fourier analysis that is useful to examine stability and convergence properties of
numerical schemes. We begin with a description of the discretization of the compu-
tational domain and introduce the notation used in this thesis.

Section 2.1 presents the Fourier analysis. In the case of a constant velocity field
the numerical methods developed by van Leer (Section 2.2) and Prather (Section
2.3) are identical to the SASLDG method. Thus, their ansatz and procedure is very
similar to the SASLDG method. Discontinuous Galerkin methods, introduced in
Section 2.4, provide a different possibility to solve the linear advection equation. It
will turn out that in a special case a Discontinuous Galerkin method can be equal
to van Leer’s and Prather’s method. Therefore, they offer a different point of view
to the SASLDG method. The semi-Lagrangian schemes introduced in Section 2.5
enable a possibility to extend the SASLDG method with respect to the size of the
time step.

In Section 2.6 we describe the numerical method MPDATA. This scheme is suited
to be coupled with the SASLDG method to deal with a special class of problems,
where the aspect ratio of a grid is high with resulting flat grid cells. This problem
is discussed in Chapter 4.

The spatial domain Ω is subdivided in N grid cells Ωi = [xi−1/2, xi+1/2] for
i = 1, . . . , N with grid cell length ∆xi = xi+1/2 − xi−1/2. The grid cells are not
necessarily of equidistant length. The cell center is denoted by xi. If not mentioned
otherwise the spatial domain equals the unit interval [0, 1]. The time interval [0, T]
is discretized by n time steps of length tk+1 − tk = ∆t, with n∆t = T.

The notion of the Courant-Friedrichs-Lewy (CFL) number or Courant number
appears at many points in this thesis. It is defined as

σ =
u∆t
∆x

(2.1)

for constant velocity u and equidistant grid cells. The given relation (2.1) of velocity,
time step and grid cell size is a value used often as an abbreviation or in connection
with time step size restrictions for stability reasons for many numerical methods.
If the velocity is variable in space, the CFL number can be defined globally by
taking the global maximum velocity or locally for each grid cell by taking the local
maximum velocity. Then, the local CFL number reads

σi = max
x∈Ωi

u(x)
∆t
∆xi

. (2.2)

2.1 fourier analysis
Fourier analysis is a tool that can be used to find analytical solutions of partial
differential equations as the linear advection equation (applied in Section 2.1.1) or
to examine properties of a numerical method in the framework of a von Neumann
stability analysis (see Section 2.1.2).

2.1.1 Fourier Transform

We begin with the definition of the Fourier transform of a L2-function.

9

10 basic methods and background

Definition 2.1.1 (Fourier Transform) Let x ∈ R and y(x) : R → R, with y ∈ L2(R).
Then

y(x) =
1√
2π

∞∫
−∞

ŷ(x)eikx dk (2.3)

where

ŷ(k) =
1√
2π

∞∫
−∞

y(x)e−ikx dx (2.4)

is the Fourier transform of y.

With the help of Definition 2.1.1 we can find the analytical solution to the linear
advection equation (1.1).

We represent the solution using the Fourier transform

y(x, t) =
1√
2π

∞∫
−∞

ŷ(k, t)eikx dk . (2.5)

Now we use the definiton of the linear advection equation (1.1) and find that the
following holds

1√
2π

∞∫
−∞

ŷt(k, t)eikx dk =
1√
2π

∞∫
−∞

−uikŷ(k, t)eikx dk (2.6)

for all x and t. For the initial state, t = 0, we can derive the equality

ŷ(k, 0) = ŷ0(k) (2.7)

of the Fourier transform. Further we obtain the ordinary differential equation (ODE)
for each k,

ŷt(k, t) = −uikŷ(k, t), (2.8)

with the initial values given in (2.7). The solution of this ODE can be computed

ŷ(k, t) = ŷ0(k)e−uikt (2.9)

for each k. The solution to the linear advection equation is then given by

y(x, t) =
1√
2π

∞∫
−∞

ŷ0(k)e−uikteikx dk (2.10)

=
1√
2π

∞∫
−∞

ŷ0(k)eik(x−ut) dk (2.11)

= y0(x− ut). (2.12)

Note that the modulus of the Fourier coefficients of the linear advection equation
does not change in time, as

|ŷ(k, t)| = |ŷ0(k)||e−uikt| (2.13)

= |ŷ0(k)|. (2.14)

The typical representation of a plane wave is of the form

y = ŷei(kx−ωt), (2.15)

2.1 fourier analysis 11

where k is the wave number and ω the frequency. Comparing this with (2.11) we
find that the frequency of the waves of the Fourier transform of the linear advection
equation is given by

ω(k) = uk. (2.16)

The dependence of ω on k is called the dispersion relation. In the case of the linear
advection equation ω and k are proportional.

The phase velocity for each wave is defined as

v =
ω

k
. (2.17)

Each wave occuring in (2.11) has the same phase velocity

v = u, (2.18)

for all k. As the phase speed in (2.18) is the same for all k, we know that the
analytical solution to the linear advection equation does not disperse. If we had
different values of v for waves of different wave number k, then the waves would
disperse.

2.1.2 Von Neumann stability analysis

As we have seen in the previous section the Fourier transform enables us to find
an analytical solution to a partial differential equation and, furthermore, reveals
information on some properties of the solution to the equation. The discrete Fourier
transform (DFT) is the discrete version of the Fourier transform. It enables us to
determine properties of a numerical method. For linear numerical methods it is
possible to conduct a von Neumann stability analysis based on the DFT. It shows
stability properties of the method and gives information on the numerical diffusion
and on the dispersion introduced artificially by the method.

Here, we follow the description by Hirsch [25] and decompose the numerical
solution un

j at time step n and grid point j in finite Fourier series in space. This
is done with a finite sum over all wave numbers that can be resolved on the grid.
Here, we make use of MATLAB’s DFT function fft.

Definition 2.1.2 (Discrete Fourier Transform) Let uj be a vector of length N, defining
values on the unit interval [0, 1] on grid points xj = (j − 1)∆x for j = 1, . . . , N with
equidistant spacing ∆x. Then, the DFT is given by

ŷk =
N

∑
j=1

yje−2πi(k−1)(j−1)/N (2.19)

=
N

∑
j=1

yje
−2πi(k−1)xj , for k = 1, . . . , N, (2.20)

and the inverse DFT is given by

yj =
1
N

N

∑
k=1

ŷke2πi(k−1)(j−1)/N (2.21)

=
1
N

N

∑
k=1

ŷke2πi(k−1)xj , for j = 1, . . . , N. (2.22)

The coefficient ŷk is the amplitude associated with the kth wave number. To
simplify notation later on, the DFT can also be expressed using the value αk defined
as

αk = 2π(k− 1)∆x, k = 1, . . . , N. (2.23)

12 basic methods and background

Then, we can write the kth Fourier coefficient as

ŷk =
N

∑
j=1

yje−iαk(j−1) for k = 1, . . . , N. (2.24)

A linear numerical method is said to be stable according to von Neumann’s method
if for any arbitrary k the amplitude ŷk does not grow indefinitely over time. This
statement leads to the definition of the amplification factor

Gnum =
ŷn+1

k
ŷn

k
, (2.25)

where the index n denotes the number of time steps. The condition has to hold for
any k. Hence the von Neumann stability condition states that the modulus of the
amplification factor has to be bounded by one

|Gnum| ≤ 1, for all k ∈ {1, . . . , N}. (2.26)

Note that an amplification factor of less than one results in a stable numerical
method. For the linear advection equation, we know that the smaller the factor
the more damping occurs in the numerical solution.

We know the exact amplification factor for the linear advection equation from
(2.9). It is given by

Gana = eiω∆t = eiuk∆t. (2.27)

Note that |Gana| = 1. We can rewrite 2.25 in polar form and obtain

Gnum(k) = |Gnum(k)|eiΦ(k), (2.28)

for some Φ(k). In that way, the diffusive and dispersive error can be examined
individually.

Then, the absolute diffusion error ediff, and the relative diffusion ẽdiff error are
given by

ediff(k) = |Gnum(k)| − 1 (2.29)

and

ẽdiff(k) =
|Gnum(k)|
|Gana|

, (2.30)

for each k. Furthermore, we obtain the absolute dispersion error

edisp(k) = Φ(k)− uk∆t, (2.31)

and the relative dispersion error

ẽdisp(k) =
Φ(k)
uk∆t

. (2.32)

In the following example we show the procedure of the von Neumann stability
analysis by means of the first order upwind (FOU) method.

Example 2.1.1 We use the FOU method to solve the linear advection equation (1.4) in
conservation form. The scheme reads

ρn+1
j = ρn

j −
(

F(ρn
j , ρj+1, un

j+1/2)− F(ρn
j−1, ρj, un

j−1/2)
)

(2.33)

where the numerical flux F is given by

F(ρj, ρj+1, u) =
∆t

2∆x
(
(u + |u|)ρj + (u− |u|)ρj+1

)
. (2.34)

2.2 towards the ultimate conservative difference scheme 13

Assuming a positive velocity u, the numerical method simplifies to

ρn+1
j = ρn

j − σ
(

ρn
j − ρn

j−1

)
, (2.35)

where σ is the CFL number. We replace each coefficient ρn
j with its Fourier transform and

indicate the time level at the Fourier coefficients and multiply by N,

N

∑
k=1

ρ̂n+1
k eijαk =

N

∑
k=1

ρ̂n
k eijαk − σ

(
N

∑
k=1

ρ̂n
k eijαk −

N

∑
k=1

ρ̂n+1
k ei(j−1)αk

)
. (2.36)

In the next step it suffices to consider only the coefficients for one arbitrary k. Division by
exp(ijαk) leads to

ρ̂n+1
k = ρ̂n

k

(
1− σ

(
1− e−iαk

))
. (2.37)

We obtain the amplification factor for the FOU method by division of (2.37) by ρ̂n
k according

to (2.25),

GFOU = 1− σ
(

1− e−iαk
)

. (2.38)

The modulus yields the amplitude

|GFOU(k)| =
(

1− 4σ(1− σ) sin2
(αk

2

)) 1
2 , (2.39)

and the argument of the complex expression is the phase of the FOU method

ΦFOU(k) = arctan
(

σ sin(αk)

1− σ + σ cos(αk)

)
. (2.40)

With the modulus of the amplification factor (2.39) we can determine the stability of the
FOU method with the von Neumann stability condition (2.26). Looking at (2.39) we notice
that the method is stable, if and only if 0 ≤ 1− 4σ(1− σ) ≤ 1, which holds if 0 ≤ σ ≤ 1.

The stability analysis introduced in this section will be used to examine a few of the
numerical methods, that are presented in the following. Though, the von Neumann
stability analysis is in general eligible for linear numerical methods only, we will
apply a modified version to the nonlinear method MPDATA, see Section 2.6. Then,
the SASLDG method is investigated using the Fourier analysis in Chapter 5.

2.2 towards the ultimate conservative difference
scheme

In sequel IV of the paper series “Towards the Ultimate Conservative Difference
Scheme. IV. a new approach to Numerical Convection”, see [31], van Leer presents
different upstream centered schemes to find the numerical solution of the linear
advection equation (1.1). The most accurate method is described in two different
versions: a second-order accurate method (labeled scheme III) and a third-order
accurate method (labeled scheme VI). The latter one will be discussed here. This
numerical method turns out to be equal to the SOM method introduced in Section
2.3.

The notion of van Leer’s method is to use the known analytical solution of the
linear advection equation (1.2) to proceed the spatial distribution in time and apply
least-squares fitting to remain in a simple, i.e. the polynomial space. Thus, any
arbitrary initial distribution, given as a function W(t0, x) at time t0, is projected in
the least-squares sense onto polynomials of order two in each grid cell as a first step.
The coefficients of the polynomials are considered as independent state quantities

14 basic methods and background

for each cell. This results in a function w(t, x) ∈ L1(Ω) defined for the whole
domain and is given for each grid cell w|Ωi ∈ P2(Ωi), i = 1, . . . , N where P2(Ωi)
denotes the space of polynomials of degree two. It is of the form

w(tn, x) = wn
0,i k(i)0 (x) + wn

x,i k(i)1 (x) +
1
2

wn
xx,i k(i)2 (x), (2.41)

for xi−1/2 ≤ x ≤ xi+1/2 at time tn with Legendre polynomials k j for j = 0, 1, 2
chosen as basis functions. These are given for the ith grid cell by

k(i)0 (x) = 1 (2.42)

k(i)1 (x) =
x− xi

∆x
(2.43)

k(i)2 (x) =
(

x− xi
∆x

)2
− 1

12
. (2.44)

To ensure the conservation of the advected quantity the coefficient w0,i, also called
weight, is taken to be the exact average of each grid cell

wn
0,i =

1
∆x

xi+1/2∫
xi−1/2

W(t0, x)dx . (2.45)

The sum of wn
0,i over all cells, that is the integral of W(t0, x) over the whole compu-

tational domain Ω, is kept constant over all time steps. The second coefficient in
(2.41) is an approximation to the first derivative

wn
x,i =

xi+1/2∫
xi−1/2

W(t0, x)
(

x−xi
∆x

)
dx

xi+1/2∫
xi−1/2

(
x−xi
∆x

)2
dx

(2.46)

and the third one is given by

wn
xx,i = 2

xi+1/2∫
xi−1/2

W(t0, x)
((

x−xi
∆x

)2
− 1

12

)
dx

xi+1/2∫
xi−1/2

((
x−xi
∆x

)2
− 1

12

)2
dx

. (2.47)

Note that wn
xx,i is an approximation to the second derivative of the given distribution

at time n.
The coefficients wn

0 , wn
x and wn

xx are independent of each other and need to be
stored for each time step. After replacing the initial distribution W(t0, x) with a
polynomial w(t0, x) we can determine the exact solution of w after the first time
step at the time t1, that is

W(t1, x) = w(t0, x− σ∆x), (2.48)

where σ is the Courant number. The new distribution W(t1, x) at time t1 is used as
a new initial distribution and we can repeat the first step of the algorithm, i.e. the
projection step that yields the polynomial w(tn, x) for n = 1.

In the following, we show the projection formulas for the time step n + 1. Again,
all coefficients have to be computed separately. For w0 we discuss all steps in detail,
for wx and wxx the final results are given. The function W(tn+1, x) is used as initial

2.2 towards the ultimate conservative difference scheme 15

distribution that is to be projected onto P2. It is replaced by the shifted polynomials
according to (2.48).

wn+1
0,i =

1
∆x

xi+1/2∫
xi−1/2

W(tn+1, x)k(i)0 (x)dx (2.49)

=
1

∆x

xi+1/2∫
xi−1/2

w(tn, x− σ∆x)k(i)0 (x)dx . (2.50)

The next step is substituting the argument of w by η = x− σ∆x. Then, we devide
the integral into two pieces, such that one integral is contained in cell i− 1 and the
other one in the ith cell.

wn+1
0,i =

1
∆x

xi+1/2−σ∆x∫
xi−1/2−σ∆x

w(tn, η)k(i)0 (η + σ∆x)dη (2.51)

=
1

∆x

(xi−1/2∫
xi−1/2−σ∆x

w(tn, η)k(i)0 (η + σ∆x)dη

+

xi+1/2−σ∆x∫
xi−1/2

w(tn, η)k(i)0 (η + σ∆x)dη

)
.

(2.52)

Last, the cellwise defined polynomials can be plugged into the equations

wn+1
0,i =

1
∆x

(xi−1/2∫
xi−1/2−σ∆x

(
wn

0,i−1 k(i−1)
0 (η) + wn

x,i−1 k(i−1)
1 (η)

+
1
2

wn
xx,i−1 k(i−1)

2 (η)

)
k(i)0 (η + σ∆x)dη

+

xi+1/2−σ∆x∫
xi−1/2

(
wn

0,ik
(i)
0 (η) + wn

x,ik
(i)
1 (η)

+
1
2

wn
xx,ik

(i)
2 (η)

)
k(i)0 (η + σ∆x)dη

)
,

(2.53)

and be easily integrated

wn+1
0,i = σ wn

0,i−1 + (1− σ)wn
0,i +

(
1
2

σ2 − 1
2

σ

)
wn

x,i

+

(
−1

2
σ2 +

1
2

σ

)
wn

x,i−1 +

(
+

1
6

σ3 − 1
4

σ2 +
1
12

σ

)
wn

xx,i−1

+

(
−1

6
σ3 +

1
4

σ2 − 1
12

σ

)
wn

xx,i.

(2.54)

16 basic methods and background

Similarly, wn+1
x,i is determined

wn+1
x,i =

12
∆x

xi+1/2∫
xi−1/2

W(t1, x)k(i)1 (x)dx (2.55)

=
(

6 σ2 − 6 σ
)

w0,i−1 +
(
−6 σ2 + 6 σ

)
w0,i

+
(
−2 σ3 + 6 σ2 − 3 σ

)
wx,i−1 +

(
2 σ3 − 3 σ + 1

)
wx,i

+

(
1
2

σ4 − 2 σ3 + 2 σ2 − 1
2

σ

)
wxx,i−1

+

(
−1

2
σ4 + σ2 − 1

2
σ

)
wxx,i,

(2.56)

as well as the coefficient wn+1
xx,i

wn+1
xx,i =

360
∆x

xi+1/2∫
xi−1/2

W(t1, x) k(i)2 (x)dx (2.57)

=
(

120σ3 − 180σ2 + 60σ
)

w0,i−1

+
(
−120σ3 + 180σ2 − 60σ

)
w0,i

+
(
−30σ4 + 120σ3 − 120σ2 + 30σ

)
wx,i−1

+
(

30σ4 − 60σ2 + 30σ
)

wx,i

+
(

6σ5 − 30σ4 + 50σ3 − 30σ2 + 5σ
)

wxx,i−1

+
(
−6σ5 + 10σ3 − 5σ + 1

)
wxx,i.

(2.58)

The property to conserve the advected quantity over all time can be checked by
looking at the integral over the whole domain at time tn+1

∫
Ω

w(tn+1, x)dx =
N

∑
i=1

wn+1
0,i =

N

∑
i=1

wn
0,i = · · · =

N

∑
i=1

w0
0,i. (2.59)

The sum of all coefficients w0,i remains the same over time. The other terms do not
influence the integral over Ω, because of the orthogonality of the basis functions.

The discussion of the accuracy of the scheme is skipped here. Van Leer only
examines the accuracy of the second-order version scheme III. The third- order
scheme VI is equal to the SASLDG method (which will be developed in Chapter 3)
if the velocity of the advection equation is constant as assumed here. Therefore, the
accuracy is thoroughly examined in Chapter 5.

To achieve monotonicity of the scheme van Leer proposes to limit the coefficient
wx,i, that approximates the slope of the numerical solution within a grid cell. He
suggests to manipulate the slope in such a way, that the function values w(tn, xi−1/2)
and w(tn, xi+1/2) at the left and right boundary of the ith cell remain between the
mean values of the neighboring cells w0,i−1 and w0,i+1,

[wx,i]
MON =

min (2|w0,i − w0,i−1|, |wx,i|, 2|w0,i+1 − w0,i|)sgn(wx,i)

if sgn(w0,i − w0,i−1) = sgn wx,i = sgn(w0,i+1 − w0,i)

0 otherwise.
(2.60)

This slope limiting also ensures positive definiteness, if the initial values are positive.
The monotonicity property is only developed for the second-order schemes. Van

2.3 second-order moments method 17

Leer does not discuss the possibility to manipulate the coefficient wxx,i and thus
influence the curvature of the numerical solution.

The extension to solve equations of compressible flow is discussed in the sequel
[32] of the paper series. The resulting method is the Monotone Upstream Scheme
for Conservation Laws (MUSCL), also described with a further development in [33].
The MUSCL scheme uses a different idea to propagate the numerical solution in
time. In the conclusion of [32] van Leer states that a worthwile improvement of
the method could be an incorporation of the least-squares fitting. Because of the
deviation from the original idea the extension to variable velocity coefficient is not
followed up here.

2.3 second-order moments method

The second-order moments (SOM) method developed by Prather in [43] is identical
to the scheme of van Leer as shown below. Thus, the idea to shift given polyno-
mial distributions according to the exact solution, and then use a projection step to
recover polynomials for each cell, is the same as van Leers. However, the way to
reach the same result differs a bit as Prather does some explicit extra calculations
that demonstrate the details of the scheme.

2.3.1 The algorithm

We assume to begin with a given piecewise polynomial distribution, with the maxi-
mum degree of two, otherwise a projection onto the polynomial space P2(Ωi) will
lead to that. The polynomial distributions are given for each grid cell

f (x) = m0 K0(x) + mx K1(x) + mxx K2(x). (2.61)

The basis for the representation of the polynomials is the following orthogonal basis
for the interval [0, ∆x]

K0(x) = 1, (2.62)

K1(x) = x− ∆x
2

, (2.63)

K2(x) = x2 − ∆xx +
1
6

∆x2. (2.64)

Now, in contrast to the method of van Leer the piecewise polynomial distribution is
not propagated directly and as a whole according to the analytical solution, but it is
decomposed into pieces as a first step. For each grid cell it is determined which part
of the distribution is advected to the neighboring grid cell and which part remains
within the cell. Note, that the method is only intended for CFL numbers less than
unity. If we assume u being positive, the right part VR = [∆x− u∆t, ∆x] is the one
that is shifted to the right adjacent cell and the left part VL = [0, ∆x− u∆t] stays in
the cell. Then, the polynomial is projected onto those two parts. We define the basis
functions for VL

KL
0 = 1, (2.65)

KL
1 = x− ∆x

2
(1− σ), (2.66)

KL
2 = x2 − ∆x(1− σ)x +

∆x2

6
(1− σ)2, (2.67)

18 basic methods and background

and the basis functions for VR given by

KR
0 = 1, (2.68)

KR
1 = x− ∆x

2
(2− σ), (2.69)

KR
2 = x2 − ∆x(2− σ)x + (1− σ)∆x2 +

∆x2

6
σ2, (2.70)

where σ is the CFL number. The decomposition is done via a L2-projection PL onto
the subintervals VL

PL f (x) :=
2

∑
i=0

∆x−u∆t∫
0

f (x)KL
i (x)dx

∆x−u∆t∫
0

KL
i (x)KL

i (x)dx
KL

i (x), (2.71)

= mL
0 KL

0 (x) + mL
1 KL

1 (x) + mL
2 KL

2 (x), (2.72)

=: f L(x), (2.73)

and with the projection operator PR repectively onto VR,

PR f (x) :=
2

∑
i=0

∆x∫
∆x−u∆t

f (x)KR
i (x)dx

∆x∫
∆x−u∆t

KR
i (x)KR

i (x)dx
KR

i (x), (2.74)

= mR
0 KR

0 (x) + mR
1 KR

1 (x) + mR
2 KR

2 (x), (2.75)

=: f R(x). (2.76)

Hence, we obtain new coefficients mL,i
j and mR,i

j for j ∈ {0, 1, 2} to represent the two

new polynomials f L,i(x) and f R,i(x) for each grid cell. For the left subinterval VL

we have

mL,i
0 = m0 −m1

1
2
(u∆t) + m2

1
6

u∆t(2u∆t− ∆x), (2.77)

mL,i
1 = m1 −m2(u∆t), (2.78)

mL,i
2 = m2, (2.79)

and further the coefficients for f R,i(x) are given by

mR,i
0 = m0 + m1

1
2
(∆x− u∆t) + m2

1
6
(∆x− u∆t)(∆x− 2u∆t), (2.80)

mR,i
1 = m1 + m2(∆x− u∆t), (2.81)

mR,i
2 = m2. (2.82)

Note, that the graph of the function f does not change during the projection step.
Only the representation has changed.

In the next step the coefficients are moved either to the neighboring cell or just
within the cell. Specifically, in this method that means that all mR,i

j of cell i become

mL,i+1
j of the adjacent cell i + 1 (mR,i

j → mL,i+1
j), and all mL,i

j become mR,i
j within the

ith cell (mL,i
j → mR,i

j). The basis function for VL and VR defined in (2.77) - (2.77) still
hold, but their length has to be adapted. This is achieved by replacing σ by 1− σ.

The step of shifting the coefficients corresponds to the propagation of the distri-
bution of the polynomials in van Leers method in (2.48). The piecewise polynomial
distributions on the subintervals are moved using the knowledge of the exact solu-
tion. Generally, the function based on the shifted coefficients in each grid cell is not

2.3 second-order moments method 19

continuous. Another projection step is needed to retain a polynomial for each cell.
The basis functions (2.62) - (2.64) are used to project the piecewise polynomials onto
the interval [0, ∆x]

P f =
2

∑
i=0

∆x∫
0

f (x)Ki(x)dx

∆x∫
0

Ki(x)Ki(x)dx
Ki(x) (2.83)

=
2

∑
i=0

u∆t∫
0

∑ mL
j Kj(x)LKi(x)dx +

∆x∫
u∆t

∑ mR
j KR

j (x)Ki(x)dx

∆x∫
0

Ki(x)Ki(x)dx
Ki(x) (2.84)

=
2

∑
k=0

miKi(x). (2.85)

Figure 2.1 illustrates the main steps and the idea of the SOM method. By means
of exemplarily three grid cells it shows one advection step with the substeps. A
Courant number of 0.25 is chosen for this example. The initial piecewise polynomial
distribution is shown in Figure 2.1(a). The function is is continuous within a grid
cell. Figure 2.1(b) illustrates the decomposition of the polynomial into two parts
f L(x) (colored in red) and f R(x) (colored in blue) corresponding to (2.73) and (2.76),
respectively. The actual advection of the distribution is pictured in Figure 2.1(c). The
polynomials f L, formerly located at the left side of each grid cell, are moved to the
right, and the polynomials f R are advected into the right adjacent grid cell. The
result of the final projection step (2.85) is shown in Figure 2.1(d). Each grid cell
consists of one continuous polynomial.

For the representation of the coefficients for the polynomials Prather chooses to
weigh the coefficients in such a way, that they have the same physical unit, that is
the mass of tracer. That leads to

f (x) = m0 + m1

(
x− ∆x

2

)
+ m2

(
x2 − ∆x x +

∆x2

6

)
(2.86)

=
S0

∆x
+ 2

Sx

∆x2

(
x− ∆x

2

)
+ 6

Sxx

∆x3

(
x2 − ∆x x +

∆x2

6

)
. (2.87)

Thus S0 stands for the zeroth moment, Sx for the first moment and Sxx for the
second moment. The resulting coefficients from the final projection step in (2.85) in
converted form are given by

S0 = σS0,i−1 + (1− σ) S0,i +
(
−σ2 + σ

)
Sx,i−1 +

(
σ2 − σ

)
Sx,i

+
(

2σ3 − 3σ2 + σ
)

Sxx,i−1 +
(
−2σ3 + 3σ2 − σ

)
Sxx,i,

(2.88)

Sx =
(

3σ2 − 3σ
)

S0,i−1 +
(
−3σ2 + 3σ

)
S0,i

+
(
−2σ3 + 6σ2 − 3σ

)
Sx,i−1 +

(
2σ3 − 3σ + 1

)
Sx,i

+
(

3σ4 − 12σ3 + 12σ2 − 3σ
)

Sxx,i−1

+
(
−3σ4 + 6σ2 − 3σ

)
Sxx,i,

(2.89)

Sxx =
(

10σ3 − 15σ2 + 5σ
)

S0,i−1 +
(
−10σ3 + 15σ2 − 5σ

)
S0,i

+
(
−5σ4 + 20σ3 − 20σ2 + 5σ

)
Sx,i−1 +

(
5σ4 − 10σ2 + 5σ

)
Sx,i

+
(

6σ5 − 30σ4 + 50σ3 − 30σ2 + 5σ
)

Sxx,i−1

+
(
−6σ5 + 10σ3 − 5σ + 1

)
Sxx,i,

(2.90)

20 basic methods and background

0 xi−1/2 xi+1/2 1
x

-1

-0.5

0

0.5

1

f

(a) quadratic polynomial for each grid cell.

0 xi−1/2 xi+1/2 1
x

-1

-0.5

0

0.5

1

f

(b) the polynomials are decomposed in a
left and a right part.

0 xi−1/2 xi+1/2 1
x

-1

-0.5

0

0.5

1

f

(c) left and right parts are advected

0 xi−1/2 xi+1/2 1
x

-1

-0.5

0

0.5

1

f

(d) assembling of the new quadratic poly-
nomial

Figure 2.1: Construction of the Second Order Moments method.

where σ is the CFL number. To show the equality of the method by van Leer to the
results of the SOM method by Prather, we compare (2.87) with (2.41), and obtain
the following relation of the coefficients

w0 =
S0

∆x
(2.91)

wx = 2
Sx

∆x
(2.92)

wxx = 12
Sxx

∆x
. (2.93)

When we plug in these transformations in (2.88), (2.89), and (2.90) the equality of
these two numerical methods can easily be seen.

2.3.2 Limiting

Prather proposes the following optional limits on the first and second moment to
maintain a positive distribution in each cell,

[Sx]
MON = min

(
3
2

S0, max
(
−3

2
S0, Sx

))

[Sxx]
MON = min

2S0 −

∣∣∣[Sx]
MON

∣∣∣
3

, max
(∣∣∣[Sx]

MON
∣∣∣− S0, Sxx

) .
(2.94)

To obtain these restrictions on the higher moments the polynomial distributions
are cellwise examined, minima are located and from these the restrictions on the

2.3 second-order moments method 21

higher order moments are determined. The limits (2.94) are computed in a such a
way, that the local minimum for each cell is kept positive and therefore a positive
tracer distribution is guaranteed within the cell.

The limiter given above is constructed in such a way to keep the numerical solu-
tion positive, i.e. above the limit zero. However, it can be useful to limit the solution
from above as well and possibly from below by a different bound than zero. In [40]
we found a simply way to first define the appropriate bounds and second limit the
first moment, i.e. the slope, such that the numerical solution is kept between these
bounds.

The bounds are defined by the values of the neighboring grid cells,

Bmax = max(mn+1
0,i−2, mn+1

0,i−1, mn+1
0,i , mn+1

0,i+1, mn+1
0,i+2)

Bmin = min(mn+1
0,i−2, mn+1

0,i−1, mn+1
0,i , mn+1

0,i+1, mn+1
0,i+2).

(2.95)

The limits are given by

minter
1,i = min(Bmax −mn+1

0,i , mn+1
0,i − Bmin)

mlimited
1,i = min(minter

1,i , max(−minter
1,i , mn+1

1,i)).
(2.96)

This limiter is more restrictive than the one suggested by Prather as discussed in
[40], but has the advantage to limit the numerical solution from above and below.

2.3.3 Variable velocity

The handling of a variable velocity coefficient in the advection equation of the SOM
method is not explicitly described in [43]. It can be deduced from a Fortran imple-
mentation written by Prather that is available online on [42]. The comments stated
below refer to that version.

First of all, there is a difference of the Fortran code to the analytical description
in [43] that holds for variable and for constant velocity coefficient. Each advection
step consists of a two step procedure in the Fortran code. First, the tracer is ad-
vected from all uneven grid cells to all even grid cells, and second, from all even
to all uneven grid cells. This code structure causes unwanted effects as a tracer is
advected not only to the next neighboring cell, but in addition to the one after that,
with a Courant number of less than unity. In particular, it is striking in the case
with the initial distribution of positive tracer in the first grid cell and in the second
and third grid cell the tracer set to zero. After one time step with a CFL number of
less than unity and positive velocity we expect the tracer to be also positive in the
second grid cell and still be equal to zero in the third cell. However, with the two
step procedure of Prather’s implementation the tracer is also advected to the third
grid cell within one advection step.

In the case of constant velocity the variable representing the density is equal to
one over all time. If the velocity u changes in space, Prather approximates the
velocity field assuming a piecewise constant velocity for each grid cell, i.e. ui for
the ith cell. In his algorithm the density variable ρ is adapted accordingly, thus
during a time step with positive velocity the fraction ui+1∆t/∆x is subtracted from
the density variable ρi and the fraction ui∆t/∆x is added to it. This approach is
problematic. First, a procedure like that does not compute the correct evolution
in time of the density, which should happen in order to solve the set of equations
of (1.4) and (1.5). Second, the density variable for a certain grid cell is increased
or decreased by the same amount for each time step. That means that in a one
dimensional setting the density grows or drops unlimited for that cell. It can reach
negative values, which is physically not possible. The same problem occurs in more
space dimensions unless the velocity field is divergence-free as then the amounts
that are added and subtracted add up to zero. In general, to solve the advection
equation for the density and the tracer density with different numerical methods,
as done in the SOM method, can lead to inconsistencies, see [30].

22 basic methods and background

For these reasons, we implement and extend the idea of the SOM method with
three main differences to Prather’s Fortran code. First, the advection step is done
within one single step as described originally in [43]. Second, the velocity is as-
sumed to be piecewise linear and not approximated by piecewise constant func-
tions. And last but not least, the density is treated and advected in the same way as
the tracer density using the same numerical method.

2.3.4 Further remarks

We shift the discussion about the accuracy of the SOM method to Chapter 5, because
it is identical with the SASLDG method derived in this thesis in the case of the linear
advection equation with constant velocity.

However, the accurate numerical results of the SOM method are the reason why
we follow this ansatz. The method is stable for CFL numbers up to one, which is to
be extended for larger time steps in the SASLDG method.

2.4 discontinuous galerkin

Discontinuous Galerkin (DG) methods were first developed to solve the linear ad-
vection equation [47] and then generalized, as e.g. described in [11], to solve hyper-
bolic problems of the type

y(x, t)t + f (y(x, t))x = 0, (2.97)

with both, according initial values and boundary conditions. Main characteristics
of DG methods are formal high order accuracy, high parallelizability, the ability
to handle complex geometries and to capture discontinuities without generating
spurious oscillations, see [11]. Another asset is the option of hp-adaptivity described
in [10]. It enables the local adjustment of the grid cell sizes and the degree of the
polynomials.

We begin the introduction with assuming constant velocity, f (y) = uy, and later
comment on general hyperbolic problems.

2.4.1 Discontinuous Galerkin-space discretization

In DG methods, the exact solution y is approximated by yh, that belongs to the
space Vh,

Vh = Vr
h ≡ {v ∈ L1(0, 1) : v|Ωi ∈ Pr(Ωi), i = 1, . . . , N}, (2.98)

where Pr(I) is the space of polynomials in I with the highest degree r.

First, the linear advection equation (1.1) is rewritten in the weak formulation by
multiplication of test functions v(x), and integration by parts

∫
Ωi

∂ty(x, t)v(x)dx−
∫
Ωi

uy(x, t)∂xv(x)dx

+ uy(xi+1/2, t)v(x−i+1/2)− uy(xi−1/2, t)v(x+i−1/2) = 0,

(2.99)

∫
Ωi

y(x, 0)v(x)dx =
∫
Ωi

y0(x)v(x)dx . (2.100)

2.4 discontinuous galerkin 23

The notation of x+i−1/2 or x−i−1/2 refers to the one-sided limit approaching the point
xi−1/2 from the right or from the left side, respectively. Then, the functions y and v
are discretized by functions of Vh,∫

Ωi

∂tyh(x, t)vh(x)dx−
∫
Ωi

uyh(x, t)∂xvh(x)dx

+ h(yh)i+1/2(t)vh(x−i+1/2)− h(yh)i−1/2(t)vh(x+i−1/2) = 0,

(2.101)

∫
Ωi

yh(x, 0)vh(x)dx =
∫
Ωi

y0(x)vh(x)dx (2.102)

which must hold for all i = 1, . . . , N and for all vh ∈ Pr(Ωi). The numerical flux h
is introduced, because the function yh is discontinuous at the cell boundaries xi+1/2.
The function is determined from both neighboring values,

h(u)i+1/2(t) = h(y(x−i+1/2, t), y(x+i+1/2, t)). (2.103)

The selection of the numerical flux plays a role in the case of nonlinear problems, as
we will show later. However, in the special case of constant velocity, i.e. f (y) = uy,
it is given by

h(a, b) = u
a + b

2
− |u|

2
(b− a). (2.104)

Legendre polynomials Pj are chosen to describe the polynomials in the space Vh.
They have the property to be L2-orthogonal,

1∫
−1

Pj(s) Pj′(s) ds =
(

2
2j + 1

)
δj j′ , (2.105)

with the jth basis function given by

k j(x) = Pj

(
2(x− xi)

∆xi

)
. (2.106)

The approximated solution yh in the ith grid cell is of the form

yh(x, t) =
r

∑
j=0

yj
ik j(x). (2.107)

Taking (2.101) and (2.102) and using the orthogonality of the basis functions we
obtain the DG-space discretization for the linear advection equation for all grid
cells i = 1, . . . , N and for all degrees of freedom of the polynomial space j = 0, . . . , r(

∆xi
2j + 1

)
∂ty

j
i(t)−

∫
Ωi

uyh(x, t)∂xk j(x) dx

+
(

h(yh(xi+1/2))(t)− (−1)jh(yh(xi−1/2))(t)
)
= 0,

(2.108)

yj
i(0) =

2j + 1
∆xi

∫
Ωi

y0(x)k j(x) dx . (2.109)

Finally, (2.108) can be expressed as a system of ODEs

d
dt

yh = Lh(yh), in (0, T),

yh(t0) = yh(0),
(2.110)

where Lh(yh) is the approximation to −uyx in Vh. The ODEs can be solved using
a numerical time integrator such as Runge-Kutta methods, which is shown in the
next section 2.4.2. Alternatively, (2.110) can be solved analytically. This is done in
Section 2.4.3 to show the equivalence with the SOM method and van Leer’s method,
respectively.

24 basic methods and background

2.4.2 Runge-Kutta Discontinuous Galerkin

The field of Runge-Kutta (RK) methods - and also of Runge-Kutta Discontinuous
Galerkin (RKDG) methods - is very broad, we outline the idea of RK methods briefly,
and name only three different schemes.

In a general setting of Runge-Kutta methods the numerical solution yn+1
h at time

tn+1 is given by the following procedure. We set y(0)h = yn
h , then the time step is

computed for intermediate time steps i = 1, . . . , r + 1,

y(i)h =
i−1

∑
l=0

αily
(l)
h + βil∆tnLh

(
ul

h

)
, (2.111)

with the last step to set yn+1
h = y(r+1)

h . Possible choices for the coefficients αil and
βil are e.g. listed in [54]. A first order method is the forward Euler method. The
solution at tn+1 is obtained in one step

yn+1
h = yn

h + ∆tLh(yn
h), (2.112)

without any intermediate steps. The second-order Runge-Kutta method (also called
Heun’s method) is given by

y(1)h = yn
h + ∆tLh(yn

h)

yn+1
h =

1
2

yn
h +

1
2

y(1)h +
1
2

∆tLh(y
(1)
h).

(2.113)

We conclude the examples with a Runge-Kutta method introduced in [54], that is of
order three,

y(1)h = yn
h + ∆tLh(yn

h)

y(2)h =
3
4

yn
h +

1
4

y(1)h +
1
4

∆tLh(y
(1)
h)

yn+1
h =

1
3

yn
h +

2
3

y(2)h +
2
3

∆tLh(y
(2)
h).

(2.114)

The choice of the Runge-Kutta method is of great significance for the stability of
the DG method. Even in the case of linear velocity f (y) = uy, attention must be
paid to the time integrator that is used. In [8], Chavent and Cockburn discuss the
case r = 1, i.e. the piecewise linear approximation in the DG-space combined with
the forward Euler method. The resulting DG method is unconditionally unstable
for any fixed ratio ∆t/∆x. Cockburn and Shu proved in [12] that if a Runge-Kutta
method of second order is applied in the same case, the stability holds if

u
∆t
∆x
≤ 1

3
. (2.115)

A certain order of Runge-Kutta methods is mandatory in order to achieve stability.
Numerical experiments by Cockburn indicate that stability holds, if Runge-Kutta
methods of order r + 1 are coupled with DG-space discretizations of order r and
the following condition on the size of the time step must be met

u
∆t
∆x
≤ 1

2r + 1
. (2.116)

Hence,the more accurate the DG method ought to be, i.e. the higher the degree of
the polynomials in the DG-space, the more restrictive is the size of the time step.

Note, that all of the above mentioned Runge-Kutta methods are total variation
diminishing (TVD) methods.

2.4 discontinuous galerkin 25

2.4.3 Discontinuous Galerkin with exact time integration

The goal is to solve the ODEs in (2.110) analytically in time in order to avoid errors
of numerical schemes such as RK methods. We start with (2.108) and add the time
integral. We obtain,

tn+1∫
tn

∆xi
2j + 1

∂ty
j
i(t)dt

︸ ︷︷ ︸
(i)

−
tn+1∫
tn

∫
Ωi

uyh(x, t)∂xk j(x) dx dt

︸ ︷︷ ︸
(ii)

+

tn+1∫
tn

(
h(yh(xi+1/2))(t)− (−1)jh(yh(xi−1/2))(t)

)
dt

︸ ︷︷ ︸
(iii)

= 0,

(2.117)

and proceed to examine each term individually. The exact time integration of the
expression (i) is straight forward,

tn+1∫
tn

∆xi
2j + 1

∂ty
j
i(t)dt =

∆xi
2j + 1

(
yj

i(t
n+1)− yj

i(t
n)
)

. (2.118)

We rewrite the integral of expression (ii) with new integration limits [0, ∆t]. Then,
we split the integral in a left part such that yh ∈ [xi−3/2, xi−1/2] for the whole time
step and respectively a right part. We have,

tn+1∫
tn

xi+1/2∫
xi−1/2

uyh(x, t)∂xk j(x)dx dt

=

∆t∫
0

xi+1/2∫
xi−1/2

uyh(x, tn + τ)∂xk j(x)dx dτ

(2.119)

=

∆t∫
0

xi−1/2+uτ∫
xi−1/2

uyh(x, tn + τ)∂xk j(x)dx dτ

+

∆t∫
0

xi+1/2∫
xi−1/2+uτ

uyh(x, tn + τ)∂xk j(x)dx dτ .

(2.120)

The analytical solution of the linear advection equation (1.2) can be used to enable
evaluation of yh only at time level tn, where the solution is known. Further, the

26 basic methods and background

polynomial form of yh(x, t) (2.107) is plugged in. With that the term (ii) takes the
form

tn+1∫
tn

xi+1/2∫
xi−1/2

uyh(x, t)∂xk j(x)dx dt

=

∆t∫
0

xi−1/2+uτ∫
xi−1/2

uyh(x− uτ, tn)∂xk j(x)dx dτ

+

∆t∫
0

xi+1/2∫
xi−1/2+uτ

uyh(x− uτ, tn)∂xk j(x)dx dτ

(2.121)

=
r

∑
l=0

uyl
i−1(t

n)

∆t∫
0

xi−1/2+uτ∫
xi−1/2

kl
i−1(x− uτ)∂xk(i)j (x)dx dτ

+uyl
i(t

n)

∆t∫
0

xi+1/2∫
xi−1/2+uτ

kl
i(x− uτ, tn)∂xk(i)j (x)dx dτ .

(2.122)

Now we consider the final term of (2.117). We assume a positive velocity u, thus,
the numerical flux (2.103) equals h(yh(xi+1/2)) = uyh(x−i+1/2, t). Then, the term (iii)
yields

tn+1∫
tn

(
h(yh(xi+1/2))(t)− (−1)jh(yh(xi−1/2))(t)

)
dt

=

tn+1∫
tn

uyh(x−i+1/2, t)− (−1)juyh(x−i−1/2, t)dt

(2.123)

Further, the known analytical solution (1.2) to the linear advection equation and
integration by substitution can be used to express an integral of yh in time as a
integral in space

∆t∫
0

uy(xi+1/2, tn + τ)dτ =

∆t∫
0

uy(xi+1/2 − uτ, tn)dτ

=

xi+1/2−u∆t∫
xi+1/2

uy(x, t)
(
− 1

u

)
dx

(2.124)

=

xi+1/2∫
xi+1/2−u∆t

y(x, t)dx . (2.125)

2.4 discontinuous galerkin 27

This result can be applied to term (iii). Also, the polynomial form (2.107) is plugged
in. Then, the expression is equal to

tn+1∫
tn

uyh(xi+1/2, t)− (−1)juyh(xi−1/2, t)dt

=

xi+1/2∫
xi+1/2−u∆t

yh(x, tn)dx− (−1)j

xi−1/2∫
xi−1/2−u∆t

yh(x, tn)dx

(2.126)

=
r

∑
l=0

yl
i(t

n)

xi+1/2∫
xi+1/2−a∆t

kl
i(x)dx

−(−1)j
r

∑
l=0

yl
i−1(t

n)

xi−1/2∫
xi−1/2−u∆t

kl
i−1(x)dx

(2.127)

=
r

∑
l=0

[
yl

i(t
n)− (−1)jyl

i−1(t
n)
] xi+1/2∫

xi+1/2−u∆t

kl
i(x)dx , (2.128)

since the integrals of the basis functions ki and ki−1 coincide on the intervals
[xi+1/2 − u∆t, xi+1/2] and [xi−1/2 − u∆t, xi−1/2], respectively. Altogether, the refor-
mulated terms (i), (ii) and (iii) yield for j = 0, . . . , r and i = 1, . . . , N,

yj
i(t

n+1) = yj
i(t

n)

+
2j + 1

∆x

(
r

∑
l=0

uyl
i−1(t

n)

∆t∫
0

xi−1/2+uτ∫
xi−1/2

kl
i−1(x− uτ)∂xk(i)j (x)dx dτ

+ uyl
i(t

n)

∆t∫
0

xi+1/2∫
xi−1/2+uτ

kl
i(x− uτ, tn)∂xk(i)j (x)dx dτ

−
r

∑
l=0

[
yl

i(t
n)− (−1)jyl

i−1(t
n)
] xi+1/2∫

xi+1/2−u∆t

kl
i(x)dx

)
.

(2.129)

The LHS of (2.129) yields the coefficients of the numerical solution at time tn+1. The
RHS consists of coefficients of the time level tn only and the basis functions. The
integrals can be computed and the solution is determined. If r = 2, the numerical
solution in (2.129) equals exactly the solution of the SOM method (apart from a
change of the basis) and van Leer’s method.

2.4.4 Variable velocity

If we want to use DG methods to solve the more general hyperbolic problem (2.97),
the numerical flux (2.103) has to be defined differently.

To obtain a monotone scheme, the flux must be a Lipschitz and consistent func-
tion, i.e. h(u, u) = f (u), and it must be a monotone flux, which is fulfilled if it is
a nondeacreasing function of its first argument and a nonincresing function of its
second argument.

Two numerical fluxes are exemplarily given, that satisfy these properties, that is,

(i) the Godunov flux,

hG(a, b) =

{
mina≤y≤b f (y), if a ≤ b
maxa≥y≥b f (y), if a > b

(2.130)

28 basic methods and background

(ii) and the Lax-Friedrichs flux,

hLF(a, b) =
1
2
[f (a) + f (b)− C (b− a)], (2.131)

C = max
min(a,b)≤s≤max(a,b)

| f ′(s)|. (2.132)

Cockburn notes e.g. in [9], that the impact of the choice of the numerical flux de-
creases with increasing degree r of the polynomial space.

Slope limiting is inevitable to ensure a stable DG method for a general hyperbolic
problem. Therefore, a generalized slope limiter ΛΠh has to be applied. For piece-
wise linear approximations the previously introduced limiter, see (2.60), by van Leer
[31] can also be applied in the setting of DG methods. The linear function yh is of
the form

yh|Ij = ȳj + (x− xj)vx,j, j = 1, . . . , N. (2.133)

where ȳj is the mean value of yh in the jth cell. Then, the limiter is given by

yh|Ij = ȳj + (x− xj)m

(
vx,j,

ȳj+1 − ȳj

∆xj
,

ȳj − ȳj−1

∆xj

)
(2.134)

with the minmod function m defined as

m(a1, . . . , aν) =

{
s min1≤n≤ν |an|, if s = sign(a1) = · · · = sign(aν)

0, otherwise.
(2.135)

For higher order polynomials with degree r > 1 adequate slopes can be computed
from the mean values and the function values at the cell boundaries. Then, these
slopes can be limited.

The limiters are applied at every RK intermediate step, i.e. (2.111) becomes

y(i)h = ΛΠh

(
i−1

∑
l=0

αily
(l)
h + βil∆tnLh

(
ul

h

))
. (2.136)

If the slope limiter has the property to be TVD in the means, then

|ΛΠh(ȳh)|TV(0,1) ≤ |ȳh|TV(0,1). (2.137)

Further, if such a slope limiter is coupled with a TVD RK scheme it can be shown
that the resulting DGRK method is TVD in the means. However, it is well-known
that for TVD method the convergence rate degenerates to first order at local ex-
tremal points. Thus, less restrictive slope limiters were developed in [53] to be only
TV bounded (TVB) in the means. With the weaker property stability can still be
achieved while maintaining the higher order at extrema.

2.4.5 Convergence analysis

If the initial condition is smooth enough, DG methods can reach a high order accu-
racy. This is formally proven in [35] for the linear case.

Theorem 2.4.1 Suppose that the initial condition y0 belongs to Hk+2(0, 1). Let e be the
approximation error y− yh. Then we have,

‖e(t)‖L2(0,1) =≤ C|y0|Hk+2(0,1)(∆x)k+1, (2.138)

where C depends solely on k, |u| and T.

2.5 semi-lagrangian methods 29

It is also possible to show convergence for the nonlinear case, even though the re-
sult is not as strong. If a certain class of generalized slope limiters is applied, the
numerical solution converges to the entropy solution of the problem, for details see
e.g. [11]. Note that for convergence of nonlinear problems slope limiting is essen-
tial, whereas for the linear case it it optional to achieve properties as a TVD solution.

An advantage of RKDG methods is e.g. the hp-adaptivity. DGRK can be adapted
to problems in two different ways. First, polynomials of higher degree can be cho-
sen in a selection of cells or in the whole domain as needed. And second, the grid
can easily be refined. This enables RKDG methods to achieve high order accuracy.
Further, RKDG method are suitable for complicated geometries. Another important
property is conservation of mass, which is ensured.

An obvious downside of RKDG methods is the strong time restriction to meet
stability requirements, in particular if higher order polynomials are used in the
DG-discretization for high accuracy.

In this section we have shown that DG methods can be equivalent to van Leer’s
method and the SOM method, respectively, in case of constant velocity with analyt-
ical time integration of the ODE arising in the DG method. This knowledge enables
a different point of view for the SASLDG method developed in this thesis: It can be
interpreted as a DG method with exact time integration.

2.5 semi-lagrangian methods
The evolution of a traced quantity can be observed from two different points of
view. One possibility is to describe the quantity from a fixed point in space, as we
have done so far. The advection equation is then given in Eulerian form as in (1.3).
Another way to track the evolution of a fluid particle is to follow its motion. This is
expressed in Lagrangian form

dy
dt

= 0. (2.139)

Both descriptions are equivalent with the link of the Lagrangian derivative (also
called material derivative) defined by

dy
dt

=
∂y(x, t)

∂t
+ u(x, t)

∂y(x, t)
∂x

. (2.140)

In a classical Lagrangian numerical scheme a set of fluid parcels is traced forward
in time. A problem that arises from that is the highly nonuniform distribution of
the parcels after some time. Semi-Lagrangian schemes resolve this difficulty by
combining the idea of the purely Lagrangian schemes with Eulerian schemes. For
every time step uniformly distributed points in space are used to trace fluid parcels.

A great advantage of Semi-Lagrangian schemes is that they overcome the short-
coming of many numerical methods that are restricted to small time steps due to
the stability of the numerical schemes. Semi-Lagrangian methods enable time steps
of arbitrary size.

To find the solution to (2.139), we note that along trajectories ϕ the solution is
constant in time

y(x, t) = y0(ϕ(0; t, x)). (2.141)

These trajectories are the solution to the ODE with the respective initial data at time
s given by

∂

∂t
ϕ(t; s, x) = u(ϕ(t; s, x), t),

ϕ(s; s, x) = x.
(2.142)

30 basic methods and background

The solution to the initial value problem exists and is unique if u(x, t) is Lipschitz
continuous with respect to x, and continuous with respect to t on the time interval
of interest, see e.g. [24].

To obtain the final numerical solution y two problems have to be solved. First,
the solution to the initial value problem (2.142) must be computed. Then, we have
to approximate c0(ϕ(0; t, x)) in (2.141), if we assume that we know the numerical
solution y only at certain given points.

In the following two sections we will outline possible ways to tackle these prob-
lems respectively. Section 2.5.3 deals with the extension of the semi-Lagrangian
approach. Then, a mass conservative method.

2.5.1 Approximate solution to initial value problem

The theory of solving initial value problems is an exhaustive research topic and
discussed profoundly in literature, e.g. [23], [61], [14] to name just a few. In the
context of semi-Lagrangian schemes also a broad variety of methods is developed.
An iterative process is used in [51], where the initial guess is made from preceding
time steps. Common ODE solvers like Runge-Kutta schemes are applied for exam-
ple in [46]. Another way to find the solution is to use a Taylor series expansion for
the departure point ϕ(tn; tn+1, x) about the arrival point ϕ(tn+1; tn+1, x) along the
trajectory, e.g. [39], [20].

In the case of constant velocity u(x, t) = u the ODE (2.142) can be solved analyti-
cally and the solution is given in the form of the trajectory by

ϕ(t; s, x) = x + u(t− s). (2.143)

Thus, we have ϕ(0; t, x) = x − ut and recover the analytical solution with (2.141),
compare to (1.2).

2.5.2 Interpolation techniques

In the previous subsection we listed some possibilities on how to solve the ODE
(2.142). However, the numerical solution is known only at certain points in space,
e.g. at the grid points. The departure points of the trajectory ϕ(tn; tn+1, xi−1/2)
at time tn, that arrive at point (tni1, xi−1/2) are in general somewhere in between
these given points. To obtain the values of the numerical solution at the departure
points in (2.141) we need to interpolate the solution. To do so many options are
feasible. If we choose linear interpolation and limit the size of the time steps by the
Courant number smaller than one, we recover the upwind method, see [5]. Results
of higher order can be achieved by applying for example quadratic Lagrange [2],
cubic Lagrange [52] or cubic spline [3], [45] interpolation. A detailed discussion of
properties like accuracy, stability and complexity of the resulting methods can be
found e.g. in [60], [5] and references therein.

In general, higher order methods do not result in monotone methods. An idea
how to monotonize the schemes is given in [4].

The non-conservation of mass is a serious problem for all semi-Lagrangian schemes
using the above mentioned interpolation methods for general velocity fields (except
for linear interpolation, i.e. the upwind method). The procedure of following the
trajectories backwards in time starting at the grid points and computing the values
at the departure points pointwise using interpolation methods does not guarantee
conservation of mass. If the exact conservation of the advected quantity is desired,
a slightly different approach must be chosen.

2.5 semi-lagrangian methods 31

2.5.3 The semi-Lagrangian integrated-mass approach

If conservation of mass is an essential property of the numerical solution the above
mentioned methods with interpolation of pointwise values must be replaced with a
different approach that guarantees that feature like the semi-Lagrangian integrated-
mass (SLIM) approach. To speak of conservation of the density ρ or some other
quantity, it is reasonable to consider the advection equation in conservation form,
as for ρ in (1.4).

Instead of the purely differential formulation (2.139), we use the integral formula-
tion for the advection equation in semi-Lagrangian form, as described for example
in [29], that is

d
dt

B(t)∫
A(t)

ρ(x, t)dx = 0, (2.144)

where the limits A(t) and B(t) move in time along the fluid. These are defined by

∂

∂t
A(t) = u(A(t), t),

∂

∂t
B(t) = u(B(t), t).

(2.145)

This ansatz has the advantage that the conservation property is satisfied and can be
passed on to the discretization inherently. To show the equivalence of the integral
form of the Lagrangian derivative (2.144) and the mass continuity equation (1.4) we
make use of the Leibniz rule

d
dt

B(t)∫
A(t)

ρ(x, t)dx

=

B(t)∫
A(t)

∂

∂t
ρ(x, t)dx + ρ(B(t), t)

∂

∂t
B(t)− ρ(A(t), t)

∂

∂t
A(t).

(2.146)

With (2.145) the time derivatives of A(t) and B(t) can be replaced with the velocity
u. Then, (2.144) is equivalent to

B(t)∫
A(t)

∂

∂t
ρ(x, t)dx + ρ(B(t), t)u(B(t), t)− ρ(A(t), t)u(A(t), t) = 0, (2.147)

which is equal to

B(t)∫
A(t)

(
∂

∂t
ρ(x, t) +

∂

∂x
(u(x, t)ρ(x, t))

)
dx = 0. (2.148)

The desired conservation property is proven. The integral of quantity ρ at the time
level tn between the boundaries A(tn) and B(tn) is exactly the same as the integral
of ρ between the boundaries at the time level tn+1,

B(tn+1)∫
A(tn+1)

ρ(x, tn+1)dx =

B(tn)∫
A(tn)

ρ(x, tn)dx . (2.149)

Next, we address the question how the integral formulation of the semi-Lagrangian
method (2.144) tranfers into the discrete case resulting in a numerical method that

32 basic methods and background

conserves the quantity inherently. We assume that the average of the distribution ρ
is given for each grid cell,

Mi(t) =
1

∆xi

xi+1/2∫
xi−1/2

ρ(x, t)dx . (2.150)

Thus, the function ρ is not given pointwise, but the mean values are stored. An inte-
grable function is constructed from these given cell averages Mi with the property

xi+1/2∫
xi−1/2

ρi(x, t)dx = ∆xi Mi(t) (2.151)

for each cell. It can be used as a foundation for a numerical method that is mass-
conserving. The function is locally continuous within a grid cell, but not necessarily
globally continuous over the whole computational domain Ω. After a function ρ is
reconstructed, we can use numerical quadrature methods to evaluate the integral of
the function at any time. We have

B(t)∫
A(t)

ρ(x, t)dx =

xj+1/2∫
A(t)

ρj(x, t)dx +
k−1

∑
i=j+1

∆xi Mi(t)

+

B(t)∫
xk−1/2

ρk(x, t)dx ,

(2.152)

where A(t) is within cell j, B(t) is located in the kth cell and j + 1 < k. In this way
mass is conserved.

There is a wide scope of possibilities of how to reconstruct the function ρ from
the averages Mi. The simpliest idea is to use just piecewise constant functions, that
is

ρi(x, t) = Mi(t). (2.153)

This results in a first order method and is equivalent to the upwind method. An-
other option is to apply the idea developed for the piecewise parabolic method
[13] in a different context. To reconstruct the function ρi as a piecewise parabola
the mean values of the neighboring cells are also taken into account to define the
coefficients of the polynomial,

xi+1/2∫
xi−1/2

ρk(x, t)dx = ∆xi Mi(t) (2.154)

for i = k− 1, k, k + 1.
The procedure for the SLIM approach is to first determine the limits of the inte-

gration either upstream or downstream. For the upstream variant the limit A(tn+1)
is set equal to the cell boundary,

A(tn+1) = xi−1/2, (2.155)

and the departure point A(tn) at time tn is computed solving (2.145). The compu-
tation for B follows respectively. Then, the function ρ is reconstructed with help
of cell averages Mi(tn) at the time level tn. Further, the reconstructed function ρ
is integrated between the limits according to (2.152). Last, the new cell averages
Mi(tn+1) are stored.

The time step size of many numerical methods is limited by the CFL number
equal to one - or even more strictly as seen for the DG methods described in Section
2.4 - for the computational stability of the scheme. The great advantage of semi-
Lagrangian methods is to allow larger time steps. Some attention should be paid if
conservation of the traced quantity is needed, and if so, an approach as the SLIM is
advisable to be chosen.

2.6 mpdata 33

2.6 mpdata
MPDATA is introduced here, because we want to enable the possibility to combine
the SASLDG method and MPDATA via operator splitting to deal with a certain
class of numerical problems. That will be discussed thoroughly in Section 4.3. The
basics of MPDATA are presented in the following.

The idea of the multidimensional positive definite advection transport algorithm
(MPDATA) by Smolarkiewicz [56] is to avoid negative values for positive definite
scalars in the numerical solution with reduced numerical diffusion using an iter-
ative approach. Additionally, this numerical scheme operates with low computa-
tional cost. Because of these properties it is widely spread and used.

2.6.1 The algorithm

The first step of MPDATA is a simple FOU step, described in Example 2.1.1. The
stability condition of the CFL number to be smaller or equal to one

max
i

|ui+1/2|∆t
∆x

≤ 1 (2.156)

has to be met, see e.g. [36] for a detailed description. The requirement of the method
to be positive definite, which means

ρ0
i ≥ 0 for all i ⇒ ρN

i ≥ 0 for all i and for all N, (2.157)

is fulfilled doing the FOU step. As first order methods have large diffusion error,
the diffusion error of the FOU method is large, see again e.g. [36] for details. To
reduce the numerical diffusion a corrective step is followed up in MPDATA. This
corrective step can be iterated multiple times. The maximimum number of itera-
tions is denoted by IORD. This so-called antidiffusive step based on the truncation
error made in the first step is given by

ρ
(∗)k

i = ρ
(∗)k−1

i

−
(

F(ρ(∗)
k−1

i , ρ
(∗)k−1

i+1 , u(∼)k−1

i+1/2)− F(ρ(∗)
k−1

i−1 , ρ
(∗)k−1

i , u(∼)k−1

i−1/2)

)
,

(2.158)

where k = 1, . . . , IORD is the number of iterations. Thus, we have

ρ
(∗)0

i = ρn
i , ρ

(∗)IORD

i = ρn+1
i (2.159)

and the pseudo velocities are defined by

u(∼)k+1

i+1/2 = ũ(u(∼)k

i+1/2, ρ
(∗)k

i), u(∼)0
= u (2.160)

with

ũ(ui+1/2, ρi) =

(
|ui+1/2|∆x− ∆tu2

i+1/2

)
(ρi+1 − ρi)

(ρi+1 + ρi + ε)∆x
. (2.161)

Note, that for IORD = 1 the FOU method is recovered. The antidiffusive velocities
are derived in such a way that the diffusion is reduced and the positive definiteness
is maintained. Analysing the truncation error of (2.158) after the first iteration step

using a Taylor expansion of ρ
(∗)1

i , ρ
(∗)1

i−1 and ρ
(∗)1

i+1 about the point (x, tn), we obtain
the modified equation. By means of that equation we can explicitly specify the
term that is reponsible for the diffusion error. Considering this term as diffusion
equation, we would like to reverse the diffusive effect in time, which is not possible
in a direct way. However, it can be reformulated as an advection equation. Taking
the velocity of that equation with opposite sign, we obtain the pseudo velocity given

34 basic methods and background

in (2.161). Thus, when the next iterative step is computed using this pseudo velocity,
it simulates the effect of reversing the diffusion equation, that describes the diffusive
error made in the first iteration, in time. In [55] Smolarkiewicz describes that the
number of iterations increases the order of accuracy in space.

A further component of MPDATA is a nonoscillatory option discussed in [58]. It
enables the possibility to prevent oscillations in the numerical solution. The idea is
taken from the flux corrected transport developed by Zalesak [66]. It sets limits on
the higher order fluxes that cause the oscillations. These fluxes act as antidiffusive
fluxes that are combined with the first order fluxes.

For each grid cell i minimal and maximal values for ρ are determined that must
not be exceeded,

ρMAX
i = max

i
(ρn

i−1, ρn
i , ρn

i+1, ρ
(∗)k−1

i−1 , ρ
(∗)k−1

i , ρ
(∗)k−1

i+1), (2.162)

ρMIN
i = min

i
(ρn

i−1, ρn
i , ρn

i+1, ρ
(∗)k−1

i−1 , ρ
(∗)k−1

i , ρ
(∗)k−1

i+1). (2.163)

Further, bounds for the fluxes have to be defined which are then to be applied in
every iteration of the method

β↑i =
ρMAX

i − ρ
(∗)k−1

i
∆t
∆x

(
max(0, u(∼)k

i−1/2)ρ
(∗)k−1

i−1 −min(0, u(∼)k

i+1/2)ρ
(∗)k−1

i+1

)
+ ε

, (2.164)

β↓i =
ρ
(∗)k−1

i − ρMIN
i

∆t
∆x

(
max(0, u(∼)k

i+1/2)ρ
(∗)k−1

i −min(0, u(∼)k

i−1/2)ρ
(∗)k−1

i

)
+ ε

. (2.165)

The pseudo velocity for the flux corrected transport leading to a monotone, nonoscil-
latory solution is given by[

u(∼)k

i+1/2

]MON
= min(1, β↓i , β↑i+1)max(0, u(∼)k

i+1/2) (2.166)

+min(1, β↑i , β↓i+1)min(0, u(∼)k

i+1/2). (2.167)

To show the effect of the nonoscillatory option of MPDATA we compute the nu-
merical solution of the step function using three different scenarios. The first one
displays where oscillations can appear, the second shows the effect of the positive
definiteness of MPDATA on oscillations and third scenario shows the effect of the
nonoscillatory option. The initial data used for all examples consist of constant data
with one single discontinuity. Higher order methods typically generate undesired
wiggles next to the discontinuity using the step function as initial values. We com-
pute one cycle with periodical boundary conditions, constant velocity equal to one
and Courant number 0.5 on a grid with 100 grid cells. The results of the numerical
and analytical solution are plotted in Figure 2.2.

Figure 2.2(a) pictures the numerical solution without the nonoscillatory option.
The initial values used for the computation are chosen such that the solution is
strictly positive even without any restrictions of the algorithm. The typical wiggles
near the discontinuity are visible.

As soon as the initial values are decreased such that a part of the values is equal to
zero the property of preserving the positive definiteness of the solution of MPDATA
comes into play. This is shown in Figure 2.2(b). The wiggles at the upper part of
the solution still occur. The oscillations at the lower part are suppressed due to the
requirement of a positive definite solution.

Figure 2.2(c) reveals the full effect of the nonoscillatory option of MPDATA. No
oscillations occur neither at the lower or at the upper part. The effect to maintain a
positive definite solution of the algorithm does not play a role here, because the ini-
tial values are again chosen large enough such that the solution maintains positive
even with arising oscillations.

2.6 mpdata 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.2

1.4

1.6

1.8

2

ρ

MPDATA
analytical

(a) Without nonoscillatory option.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

ρ

MPDATA
analytical

(b) Without nonoscillatory option.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.2

1.4

1.6

1.8

2

ρ

MPDATA
analytical

(c) With nonoscillatory option.

Figure 2.2: Different scenarios showing how oscillations can occur in the solution of MP-
DATA and ways to prevent those. Numerical solutions are computed applying
two correction steps, IORD = 3 and Courant number 0.5 on a grid with 100 grid
cells. Note the different scales of ρ. Analytical solution is shown for comparison.

Concluding, we add that there are many more options developed for MPDATA
summarized in [59], as a third order accurate version, transporting tracers of vari-
able sign and solving an advection-diffusion problem.

2.6.2 Error Analysis

For stability and consistency considerations we refer to [56].

Sprectral analysis

We want to gain insights on the diffusion and dispersion error of MPDATA. There-
fore, we would like to conduct a spectral analysis of MPDATA to obtain information
on the error in the amplitude and phase. Because of the nonlinearity of MPDATA
the von Neumann analysis cannot be applied directly. The idea is to obtain the in-
formation of the diffusion and dispersion error derived from the numerical results.

We use sine functions sin(2πKx) with all wave numbers K = 1, . . . N/2− 1 as
initial values Q0(K) that are resolved on a grid with N (even) grid cells. The sine
functions are discretized on the unit interval [0, 1] using N equidistant points, with
grid length

∆x =
1
N

(2.168)

and

xj = (j− 1)∆x, for j = 1, . . . , N. (2.169)

36 basic methods and background

The vector X then contains the grid points, i.e.,

X = [x1, x2, . . . , xN]. (2.170)

We compute the numerical solution Q1(K) after one time step with MPDATA for
each K. In all computations N is chosen to be 360. Finally, we apply the DFT
algorithm of MATLAB (2.22) to the initial data at time zero and to the data after
the time step to both the numerical and the analytical reference solution, which is
sin(2Kπ(x− u∆t)).

ĉj(K) = DFT(Q0(K)), (2.171)

ĉref
j (K) = DFT(sin(2Kπ(X− u∆t))), for j = 1, . . . , N. (2.172)

From these Fourier coefficients we compute the amplitude and phase of recon-
structed sine functions for each wave number. Thus, the spectral analysis is ob-
tained and by comparing the Fourier coefficients ĉj with their reference values ĉref

j
we derive the diffusion and dispersion error of MPDATA.

In the first step we select the first order terms of the Fourier coefficients, because
they determine the error in amplitude and phase. For each wave number K different
coefficients are of first order, i.e. the K + 1th and N − K + 1th coefficient are the
relevant ones.

Q1(K) =
N

∑
j=1

ĉje
−2πi(K−1)xj (2.173)

≈ ĉK+1e−2πi K
N (K−1) + ĉN−K+1e−2πi N−K

N (K−1) (2.174)

Using the periodicity of exp(2πiN), we have

e−2πi(N−K)xK = e2πiKxK . (2.175)

Altogether, applying some algebra and trigonometric laws lead to

Q1(K) ≈ ĉK+1(cos(2πKxK)− i sin(2πKxK))

+ ĉN−K+1(cos(2πKxK) + i sin(2πKxK))
(2.176)

= (ĉK+1 + ĉN−K+1)︸ ︷︷ ︸
:=a

cos(2πKxK)

+ i(−ĉK+1 + ĉN−K+1)︸ ︷︷ ︸
:=b

sin(2πKxK)
(2.177)

= a cos(2πKxK) + b sin(2πKxK) (2.178)

=
√

a2 + b2
(

a√
a2 + b2

cos(2πKxK) +
b√

a2 + b2
sin(2πKxK)

)
. (2.179)

Because of(
a√

a2 + b2

)2
+

(
b√

a2 + b2

)2
= 1, (2.180)

we can find some φ̃ to express

a√
a2 + b2

= sin(φ̃) (2.181)

and

b√
a2 + b2

= cos(φ̃). (2.182)

2.6 mpdata 37

Hence, we have

=
√

a2 + b2 (sin(φ̃) cos(2πKxK) + cos(φ̃) sin(2πKxK)) (2.183)

=
√

a2 + b2 (sin(2πKxK + φ̃)) (2.184)

=
√

a2 + b2 (sin (2πK (xK − φ))) . (2.185)

The amplitude is therefore given by

A(K) =
√

a2 + b2 (2.186)

and the phase

φ(K) = −
arcsin

(
a√

a2+b2

)
2Kπ

. (2.187)

The amplitude and phase lead to the following reconstructed sine function for each
wave number

fK(x) := A(K) sin(2Kπ(x− φ(K))). (2.188)

This result can be compared to the sine function shifted exactly

fref(x) = sin(2Kπ(x− u∆t)). (2.189)

The amplitude of the sine maintains the initial amplitude of the value one without
any numerical diffusion. Hence the difference

ediff(K) = 1− A(K) (2.190)

yields the numerical error of the amplitude for one time step, given as a function of
the wave number K. The error of the amplitude ediff relates to the diffusion error.

We know the exact phase difference of one time step, namely u∆t. The difference
of the analytical phase difference and the numerical phase difference φ(K) leads to
the numerical error of the phase

edisp(K) = φ(K)− u∆t, (2.191)

which correlates to the absolute dispersion error. We follow [25] and show the
relative error of the amplitude ẽdiff and phase difference ẽdisp which relate to the
relative diffusion and dispersion error. We have

ẽdiff(K) = A(K) (2.192)

for the relative error of the amplitude and

ẽdisp(K) =
φ(K)
u∆t

. (2.193)

for the relative error of the phase difference, respectively.
Before we show the results of the numerically obtained Fourier analysis we want

to look at the FOU method and understand the diffusion and dispersion error made
with this numerical scheme. As MPDATA is built upon the FOU method a compar-
ison with respect to these errors is promising to reveal more information about
MPDATA.

Analysis for the FOU method

Clearly, without any correction steps MPDATA is identical to the FOU method,
so the diffusion and dispersion errors are also identical to the errors of the lat-
ter method. In the case without any corrections we can apply the von Neumann
method to the FOU method to gain information on the exact errors of MPDATA.

38 basic methods and background

We use the results of Example 2.1.1. The amplitude GFOU and the phase ΦFOU of
the amplification factor of the FOU method are given by (2.39) and (2.40), respec-
tively. The relative diffusion error ẽdiff,FOU and the relative dispersion error ẽdisp,FOU
are obtained, their Taylor expansion about small wave numbers, i.e. αk = 0, is cal-
culated and given by

|ẽdiff,FOU(k)| =
|GFOU(k)|
|Gana|

(2.194)

= 1 +
1
2
(σ− 1)σα2

k+

+
1

24

(
−3σ4 + 6σ3 − 4σ2 + σ

)
α4

k +O
(

α6
k

)
,

(2.195)

and

ẽdisp,FOU(k) =
arctan

(
σ sin(αk)

1−σ+σ cos(αk)

)
σαk

(2.196)

= 1 +
1
6

(
−2σ2 + 3σ− 1

)
α2

k+

+
1

120

(
24σ4 − 60σ3 + 50σ2 − 15σ + 1

)
α4

k +O
(

α6
k

)
.

(2.197)

The absolute errors enable conclusions about the order of the scheme.

ediff,FOU(k) =
|GFOU(k)| − 1

∆t
(2.198)

=

(
1
2
(σ− 1)σα2

k +
1
24

(
−3σ4 + 6σ3 − 4σ2 + σ

)
α4

k

+O
(

α6
k

))
/∆t

(2.199)

and with αk = O (∆x) and σ ∈ O (1) we can determine the order of the diffusion
error

ediff,FOU(k) ∼
(

1
2
(σ− 1)σ∆x2 +O

(
∆x4

))
/∆t (2.200)

∼ 1
2
(σ− 1)σ∆x +O

(
∆x3

)
(2.201)

∼ O (∆x) . (2.202)

Similarly, we determine the absolute dispersion error of the FOU scheme.

edisp,FOU(k) =
φFOU − σαk

∆t
(2.203)

=
(
− 1

6
α3

k

(
σ(2σ2 − 3σ + 1)

)
(2.204)

+
1

120
α5

kσ(24σ4 − 60σ3 + 50σ2 − 15σ + 1) (2.205)

+O
(

α7
k

))
/∆t. (2.206)

With the same assumptions as above we obtain the order of the dispersion error

edisp,FOU ∼
(
− 1

6
∆x3

(
σ(2σ2 − 3σ + 1)

)
+O

(
∆x5

))
/∆t (2.207)

∼ −1
6

∆x2
(

σ(2σ2 − 3σ + 1)
)
+O

(
∆x4

)
(2.208)

∼ O
(

∆x2
)

(2.209)

The order of convergence for the FOU method, namely order one, can be read off
the results above. The diffusion error is the dominating one, because it is of lower
order. Note that for σ = 0.5, the lowest order term of the dispersion error in (2.208)
is cancelled out and the dispersion error reaches third order. In that case the overall
order remains the same as the diffusion error is still of first order.

2.6 mpdata 39

Plots of diffusion and dispersion error

Figure 2.3 shows the relative diffusion error defined in (2.192) of MPDATA for the
CFL numbers 0.01, 0.5 and 0.9. Each of these are computed with one and with
two correction steps. The results are plotted as functions of the wave number k in
comparison with the relative diffusion errors of the FOU method.

0 20 40 60 80 100 120 140 160 180

K

0.98

0.985

0.99

0.995

1

1.005

ẽ d
iff

FOU
MPDATA

(a) σ = 0.01, MPDATA with IORD = 2

0 20 40 60 80 100 120 140 160 180

K

0.98

0.985

0.99

0.995

1

1.005

ẽ d
iff

FOU
MPDATA

(b) σ = 0.01, MPDATA with IORD = 3

0 20 40 60 80 100 120 140 160 180

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ẽ d
iff

FOU
MPDATA

(c) σ = 0.5, MPDATA with IORD = 2

0 20 40 60 80 100 120 140 160 180

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ẽ d
iff

FOU
MPDATA

(d) σ = 0.5, MPDATA with IORD = 3

0 20 40 60 80 100 120 140 160 180

K

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ẽ d
iff

FOU
MPDATA

(e) σ = 0.9, MPDATA with IORD = 2

0 20 40 60 80 100 120 140 160 180

K

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ẽ d
iff

FOU
MPDATA

(f) σ = 0.9, MPDATA with IORD = 3

Figure 2.3: Relative diffusion error ẽdiff of MPDATA and the FOU method for different CFL
numbers. Note the different scales of ẽdiff.

For Courant numbers 0.01 and 0.9 the second correction step decreases the dif-
fusion error for all wave numbers, seen in Figure 2.3(a) and Figure 2.3(b), and in
Figure 2.3(e) and Figure 2.3(f), respectively. For σ = 0.5 the highest oscillations tend
to be damped out, when k tends to 180. In the limit k = 180, the oscillations are
damped out completely. For lower wave numbers the diffusion error made with one
corrective step (Figure 2.3(c)) is larger than the error with two corrections (Figure
2.3(d)), even though the effect is almost negligible.

40 basic methods and background

From construction of MPDATA it is expected that the diffusive error is decreased
while increasing the number of iterative steps. This can be confirmed by Figure 2.3.

The relative dispersion error is plotted in Figure 2.4. Similar to Figure 2.3 the
panels show the numerical results obtained with IORD = 2 and 3 for different CFL
numbers 0.01, 0.5 and 0.9. The relative dispersion errors of the FOU method are
plotted as well.

Two main results can be derived from Figure 2.4. First, except for small numerical
anomalies the dispersion error of MPDATA and the dispersion error of the FOU
method coincide for all Courant numbers. And second, the corrective step in the
algorithm of MPDATA leaves the dispersion unchanged.

Furthermore, for σ = 0.01 the dispersion error is a lagging error, for σ = 0.9 it
is leading and for σ = 0.5 there is no dispersion error. Thus, the property of the
FOU method - to have no dispersion error for σ = 0.5 - is inherited by MPDATA,
independent from number of corrective iterations.

0 50 100 150

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ẽ d
is

p

FOU
MPDATA

(a) σ = 0.01, MPDATA with IORD = 2

0 50 100 150

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ẽ d
is

p

FOU
MPDATA

(b) σ = 0.01, MPDATA with IORD = 3

0 50 100 150

K

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

ẽ d
is

p

FOU
MPDATA

(c) σ = 0.5, MPDATA with IORD = 2

0 50 100 150

K

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

ẽ d
is

p

FOU
MPDATA

(d) σ = 0.5, MPDATA with IORD = 3

0 50 100 150

K

1

1.02

1.04

1.06

1.08

1.1

1.12

ẽ d
is

p

FOU
MPDATA

(e) σ = 0.9, MPDATA with IORD = 2

0 50 100 150

K

1

1.02

1.04

1.06

1.08

1.1

1.12

ẽ d
is

p

FOU
MPDATA

(f) σ = 0.9, MPDATA with IORD = 3

Figure 2.4: Relative dispersion error ẽdisp of MPDATA and the FOU method for different
CFL numbers. Note the different scaling of ẽdisp.

2.6 mpdata 41

The equality of the diffusion error of MPDATA without corrections and the re-
spective errors of the FOU method can be seen in Figure A.1 in the appendix.

Our results are in agreement with Smolarkiewicz and Clark [57]. There, the
amplitude and phase of the numerical and analytical solution are compared, too.
They came to the conlusion that the phase error of MPDATA is similar to the phase
error of the FOU method.

Convergence rates

The L∞, L1 and L2- error and the convergence rates are computed on different re-
finement levels of the grid. Table 2.1 shows the errors and convergence rates for the
computations with σ = 0.8. The results computed with σ = 0.5 are shown in Table
2.2. In both computations, we use MPDATA with two correction steps (IORD = 3).

N L∞-error L∞-order L1-error L1-order L2-error L2-order
10 5.369e-02 - 3.364e-02 - 3.753e-02 -
20 1.306e-02 2.0391 8.019e-03 2.0685 8.973e-03 2.0642

40 3.174e-03 2.0413 1.981e-03 2.0169 2.207e-03 2.0239

80 7.832e-04 2.0189 4.939e-04 2.0042 5.490e-04 2.0068

160 1.947e-04 2.0081 1.234e-04 2.0010 1.371e-04 2.0018

320 4.856e-05 2.0036 3.084e-05 2.0002 3.426e-05 2.0005

640 1.212e-05 2.0017 7.711e-06 2.0001 8.565e-06 2.0001

Table 2.1: Convergence rates MPDATA σ = 0.8, IORD = 3.

For σ = 0.8 we observe a convergence rate of order two shown in Table 2.1.
As the dispersion error of MPDATA is similar to the dispersion error of the FOU
method for any Courant number and the latter error is of second order, see (2.208),
the dispersion error of MPDATA is expected to be of second order, too. That is
confirmed by our numerical results.

N L∞-error L∞-order L1-error L1-order L2-error L2-order
10 7.206e-02 - 4.676e-02 - 5.082e-02 -
20 9.504e-03 2.9225 6.526e-03 2.8410 7.082e-03 2.8431

40 1.196e-03 2.9898 8.445e-04 2.9502 9.157e-04 2.9512

80 1.526e-04 2.9713 1.072e-04 2.9780 1.158e-04 2.9831

160 1.922e-05 2.9891 1.346e-05 2.9933 1.454e-05 2.9933

320 2.409e-06 2.9960 1.686e-06 2.9969 1.822e-06 2.9970

640 3.015e-07 2.9982 2.110e-07 2.9985 2.279e-07 2.9986

Table 2.2: Convergence rates MPDATA σ = 0.5, IORD = 3.

For σ = 0.5 the dispersion error of both - MPDATA and the FOU method - van-
ishes. Thus, the dominating error is the diffusion error in that case. The diffusion
error corresponds to the number of iterations. Therefore, the convergence rate of
MPDATA with two or more corrective iteration steps reaches third order as seen
in Table 2.2. If only one corrective iteration is applied, the convergence rates drop
to order two. Without any correction steps the FOU method is recovered and the
order of convergence is one.

Generally, the dispersion error limits the convergence rates in all cases σ 6= 0.5.
For σ = 0.5, the dispersion error is equal to zero, which enables a higher conver-
gence rate of order three.

In summary, MPDATA is a robust method, that operates with low numerical
cost and can be configured with additional features like the nonoscillatory option
if needed. However, the time step size for MPDATA is limited due to the CFL
condition.

3 T H E S E M I - A N A LY T I C A L
S E M I - L A G R A N G I A N
D I S C O N T I N U O U S G A L E R K I N
M E T H O D

In the previous chapter numerical methods were introduced that form the basis
for the new numerical scheme, the semi-analytical semi-Lagrangian discontinuous
Galerkin (SASLDG) method, which will be developed in the following. First of all,
the SASLDG method is intended to solve the linear advection equation with variable
velocity. Furthermore, the properties of this method are mass conservation, high
accuracy and no restrictions on the time step size. Thus, mass or more generally
the integral of an advected quantity over the spatial domain must be conserved in
time as in the SOM method, the DG methods and some of the SL schemes. The
high accuracy of DG methods and the SOM method is adopted and implemented
by using a polynomial of degree two. In addition, the property of semi-Lagrangian
schemes to use time steps of arbitrary length without violating stability properties
is incorporated.

To present the idea of how the numerical method works we begin with a short
preview in Section 3.1. This simplifies the understanding of the technical parts
of the implementation afterwards. To realize the requirements of the numerical
method described above, the following structure is pursued: In Section 3.2, we
derive the trajectory at which the quantity is advected in time in a semi-Lagrangian
manner. The exact evolution of the advected tracer is shown in Section 3.3. The
projection step to rebuild the polynomial for each grid cell is discussed in Section 3.4.
An overview of the algorithm of the method is given in Section 3.5. A description
of the limits of the integration that are needed for the projection step is provided
in Section 3.6. This chapter concludes with the results of numerical tests of the
SASLDG method in Section 3.7.

3.1 preview
We start with a reminder of the linear advection equation, rewritten as a system of
two equations in conservation form, introduced in (1.4) and (1.5),

ρt + (uρ)x = 0, (3.1)

(ρy)t + (uρy)x = 0. (3.2)

The equations for density ρ and tracer density ρy are solved in the same way. The
solution of the tracer y is obtained by division at each time the solution of y is
needed. As (3.2) is solved analogously to (3.1), we only discuss the numerical
solution to the continuity equation (3.1) for density ρ from now on.

As mentioned before, the SASLDG method is an extension to the SOM method,
whose idea is to advect the tracer, represented as polynomial distribution, analyt-
ically exact along the characteristics for one time step and project the resulting
distributions onto polynomials. For details see Section 2.3. That notion is adopted
for the SASLDG method with some adjustments due to shortcomings of the SOM
method.

A drawback of the SOM method is the treatment of variable velocity that is ap-
proximated by piecewise constant velocity. The determination of the exact charac-
teristics and thus the computation of the analytical solution to the linear advection

43

44 the sasldg method

equation is done easily in that case. However, the idea of the SASLDG method is
to compute the analytical solution even to a non-constant velocity field. Hence, the
advected quantity and the surrounding fluid are allowed to be compressible, i.e.
the density might change in space and time. Another downside is the limitation for
the time step. Step sizes are only allowed up to CFL numbers equal to one. This is
overcome in the SASLDG method by following the characteristics backward in time,
not limited by the CFL number, but arbitrarily long in a semi-Lagrangian manner.

To find the trajectories we rewrite the linear advection equation as a system of
ODEs with the help of the material derivative as described in Section 2.5. The
advection equation (3.1) is equivalent to

d
dt

ρ(x(t), t) = −ρ(x(t), t)
∂

∂x
u(x(t), t),

ρ(x(t0), t0) = ρ0

(3.3)

with

d
dt

x(t) = u(x(t), t),

x(t0) = x0.
(3.4)

The ODE (3.4) describes the trajectory depending on the velocity u and time. The
information of the corresponding density is provided by the ODE (3.3).

The SASLDG method consists of three main steps. First, the solution of (3.4)
is computed analytically. The resulting trajectory ϕ describes the path along which
the tracer is advected. Second, the evolution of the density is determined by solving
(3.3) analytically. The solutions of (3.4) and (3.3) combined yield the exact solution
to the linear advection equation (3.1). As the third and last step, we compute the
projection of the exact solution. We introduce an error at that point, but we retrieve
the polynomial structure that enables us to repeat the same steps again and again,
and thus proceed in time. In this way, essential elements of the SOM method and of
semi-Lagrangian schemes are incorporated into the SASLDG method. The tracer is
advected exactly along the trajectory and then projected onto polynomials in each
cell. In addition, time steps of any size are feasible, because we can follow the
trajectories arbitrarily long in time.

To visualize the procedure of one advection step using the SASLDG method we
give an example in Figures 3.1 and 3.2. Given a certain velocity that is piecewise
linear and depends only on space, as in Figure 3.1(a), we compute the correspond-
ing solution ϕ to (3.4) and plot the trajectories in Figure 3.1(b) for one time step ∆t.
The different coloring indicates an important difference of the trajectories. The red
colored trajectories remain within one grid cell, whereas the blue ones start at time
zero in a different grid cell from where they end at time ∆t. That means the blue
trajectories cross at least one cell boundary. This fact is reflected in different forms
of the solution trajectories.

The next steps can be observed in Figure 3.2. The initial distribution of ρ is
chosen here to be a constant function equal to one, see Figure 3.2(a), but it could
be any arbitrary quadratic polynomial. Figure 3.2(b) shows the exact solution of
the linear advection equation after one time step computed from the solutions of
(3.4) and (3.3). The colors indicate which part of the solution is advected within one
grid cell (colored red) and which part of the solution is advected to its neighboring
grid cell (colored blue). This corresponds to the same coloring of the trajectories in
Figure 3.1(b). The exact solution pictured in Figure 3.2(b) is discontinuous in the
first cell and must be piecewise defined within all grid cells. Hence, the solution is
complicated to express. To simplify the form, the exact solution is projected onto
the space of quadratic polynomials. Both functions, the exact solution and the result
of the projection, that is the polynomial, can be seen in Figure 3.2(c). In Figure 3.2(d)
the polynomial is displayed, which can now be the initial distribution for the next
time step.

3.1 preview 45

0 0.25 0.5 0.75 1

x

0

0.2

0.4

0.6

0.8

1

1.2

u

(a) Velocity field.

0 0.25 0.5 0.75 1

x

0

∆t

t

(b) Trajectories ϕ, computed from the velocity
distribution in Figure 3.1(a)

Figure 3.1: Example of a velocity field with corresponding trajectories.

0 0.25 0.5 0.75 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ

(a) Polynomial distributions are given for
each grid cell.

0 0.25 0.5 0.75 1

x

0

0.5

1

1.5

2

2.5

3

ρ

(b) Compute exact solution.

0 0.25 0.5 0.75 1

x

0

0.5

1

1.5

2

2.5

3

3.5

ρ

(c) Project the discontinuous distributions
onto continuous polynomial distribu-
tions.

0 0.25 0.5 0.75 1

x

0

0.5

1

1.5

2

2.5

3

3.5

ρ

(d) Start again with polynomial distribu-
tions given.

Figure 3.2: Construction of the SASLDG method.

In the following section we explain the derivation of the solution of (3.4), which is
needed for the plots in Figure 3.1(b). In Section 3.3 the solution to (3.3) is discussed.
The algorithm to understand the projection step shown Figure 3.2(c) is given in
Section 3.4.

46 the sasldg method

3.2 computing the trajectories
In this section we discuss the solution of the ODE in (3.4). The goal is to find an
analytical solution carrying over the notion of the numerical methods by Prather
and van Leer described in Section 2.2 and 2.3, respectively.

We first comment on a general solution for the ODE (3.4). Then, some simplifying
assumptions have to be made in order to determine the analytical solution. For
the detailed description of the trajectories, we differentiate between the trajectories
that remain within one grid cell during a time step and the trajectories that cross
at least one cell boundary. Trajectories that remain within one grid cell have the
starting point and the endpoint after time ∆t in the same grid cell. Trajectories that
have an underlying positive velocity distinguish from the trajectories with negative
velocity. The next section is devoted to the trajectories with positive velocity and
the following section to the latter case. Both sections first examine the case of a
trajectory that remains within one grid cell and then discuss the trajectories that
cross cell boundaries. For these trajectories the treatment of coefficients that are
near to or equal to zero is necessary and conducted subsequently.

The notation is introduced in the beginning of Chapter 2. In this chapter, the local
coordinates [0, ∆xi] are often used instead of the global coordinates [xi−1/2, xi+1/2]
for the ith cell, which simplifies the notation.

If the velocity field u : Ω×R→ R is locally Lipschitz continuous for each x ∈ Ω,
then the solution of the ODE (3.4) exists on Ω for all time and is unique. We define
this solution as the function ϕ:

Definition 3.2.1 Let the function ϕ : R×R×R → R be the solution to the ODE (3.4).
Then, it satisfies

dϕ

dt
= u(ϕ(x0, t0, t), t), (3.5)

and the initial condition

ϕ(x0, t0, 0) = x0. (3.6)

The solution ϕ is defined in such a way that the first two arguments describe the
starting point and time (x0, t0), using the initial condition of the ODE. The third
argument t denotes the transformation in time t. The result of the transformation
yields ϕ(x0, t0, t).

Remark 3.2.1 The function ϕ defined by 3.2.1 is the flow of the velocity field u and satisfies
the following properties for s, t ∈ R

ϕ(x0, t0, s + t) = ϕ(ϕ(x0, t0, s), t0 + s, t), (3.7)

ϕ(x0, t0, 0) = x0. (3.8)

The result of the transformation is the same: if the flow first passes to the point
ϕ(x0, t0, s) during time s starting at time t0 and then passes further for time t starting
at time t0 + s or if the flow reaches directly the point ϕ(x0, t0, s+ t) during time t+ s.

The time that passes can be reversed by the inverse of ϕ as shown in the following
remark.

Remark 3.2.2 The function ϕ is a diffeomorphism, so the inverse of ϕ exists

ϕ−1(x0, t0, t) = ϕ(x0, t0,−t), (3.9)

and is differentiable, too. Thus, we have

ϕ−1(ϕ(x0, t0, t), t0 + t, t) = ϕ(ϕ(x0, t0, t), t0 + t,−t) (3.10)

= ϕ(x0, t0, t− t) (3.11)

= x0. (3.12)

3.2 computing the trajectories 47

For a given initial starting point (x0, t0) we study the points ϕ(x0, t0, t), which are
passed during time t. The set of points that is obtained by this action for all t ∈ R

is called trajectory of the flow ϕ of the point (x0, t0). The trajectory can be thought
of the path at which particles of the tracer or the density move along.

Local Lipschitz-continuity of the velocity u is sufficient to know that a unique
solution to the initial value problem (3.4) exists. However, if the goal is to solve
the problem not only approximately but analytically, some assumptions have to
be made. We assume that the velocity field is continuous, piecewise linear and
depends only on space. Then, the velocity u takes the form

u|Ωi (x) = aix + bi (3.13)

for each cell. The coefficient ai describes the slope of the velocity of each grid cell.
Thus, if ai is equal to zero, the velocity is constant in the ith cell. The coefficients
ai and bi for i = 1, . . . , N are computed from values ui given at the cell boundaries.
Because of the continuity of u, it holds

ui := u(xi−1/2) = aixi−1/2 + bi, (3.14)

= ai−1xi−1/2 + bi−1, (3.15)

and expressed in local coordinates [0, ∆xi]

u|Ωi (0) = bi = ui (3.16)

u|Ωi (∆xi) = ai ∆xi + bi = ui+1. (3.17)

The ODE (3.4) describing the trajectory for linear velocity for the ith cell simplifies
to

dϕ

dt
= ai ϕ(x, tn, t) + bi,

ϕ(x, tn, 0) = x.
(3.18)

Since the velocity u differs in general for each grid cell, ODEs with different coeffi-
cients have to be solved and put together once the trajectories cross cell boundaries.
The solution ϕ takes a different form if it stays within one cell and does not cross
any boundary, opposed to the form of the trajectory crossing at least one boundary
within one time step. Further, trajectories resulting from positive velocity u differ
from trajectories with negative velocity. The case of the velocity having a root is
discussed in Section 3.5 and 3.6. We first consider trajectories with strictly positive
velocity.

3.2.1 Trajectory with positive velocity

In the description of Figure 3.1 we mention the role of trajectories crossing cell
boundaries or remaining within a grid cell. The trajectories that have the starting
point and the endpoint after one time step of length ∆t within one grid cell are
plotted red colored. These trajectories are expressed by a different form than the
blue colored trajectories that cross cell boundaries.

We describe the trajectory remaining within the kth grid cell, i.e. in the interval
[xk, xk+1] or locally [0, ∆xk]. The solution to the linear ODE of first order in the
inhomogeneous case (3.18) is given at time t by

ϕ(x, tn, t) = eakt
(

bk
ak

+ x
)
− bk

ak
. (3.19)

The coefficient ak is the slope of the velocity. In the special case of ak = 0, and thus
constant velocity, the ODE (3.18) reduces to

dϕ

dt
= bi,

ϕ(x, tn, 0) = x.
(3.20)

48 the sasldg method

and is solved by integration, which yields

ϕ(x, tn, t) = x + bkt (3.21)

at time t. Note that we obtain the same solution as described for semi-Lagrangian
methods in (2.143). Prather’s SOM method and van Leer’s scheme both rely on this
trajectory, as well, even though this equation is not explicitly mentioned in [43] and
[31].

We turn to the case for the trajectory crossing at least one cell boundary. An
example of a trajectory crossing n cells during a time step of length ∆t is plotted
in Figure 3.3, illustrating the construction. We describe the assembling for the red
colored trajectory with starting point x, which is located in the ith grid cell in the
interval [xi−1/2, xi+1/2]. For simplification and a better understanding, we use local
coordinates. Thus, the left and right cell boundary xi−1/2 and xi+1/2 are identified
with x0 and x1, respectively. All n boundaries that the trajectory crosses are labeled
incrementally with xk for k = 1, . . . , n. The endpoint of the trajectory labeled as
ϕ(x, tn, ∆t) lies in the (i + n)th grid cell, in the interval [x(i+n)−1/2, x(i+n)+1/2] or
[xn, xn+1] in local coordinates, respectively.

tn

t

tn+1

τ

T

∆t− T − τ

x0 x x1 . . . xn ϕ(x, tn , ∆t) xn+1
xi−1/2 xi+1/2 x(i+n)−1/2 x(i+n)+1/2

Figure 3.3: Example of trajectories computed from a positive velocity field. The red colored
trajectory is ϕ(x, tn, t), with starting point x at time tn. It crosses n grid cell
boundaries (here n = 3).

We follow the trajectory with starting point x at time tn to the right cell boundary
x1. This takes a certain time, defined as τ, i.e. ϕ(x, tn, τ) = x1. Next, the time is
computed that is needed to cross through the grid cell between x1 and x2, defined
as t1. In the same way we follow the trajectory ϕ from cell to cell. Generally, it takes
time tk to cross through cell k. The sum over all intermediate time intervals tk is
denoted by T,

T =
n−1

∑
k=1

tk. (3.22)

3.2 computing the trajectories 49

Once the last boundary xn is crossed, the arrival point ϕ(x, tn, ∆t) at time tn+1 is
computed. These steps assembled yield the construction of the trajectory,

ϕ(x, tn, ∆t) = ϕ(ϕ(x, tn, τ), tn + τ, ∆t− τ) (3.23)

= ϕ(x1, tn + τ, ∆t− τ) (3.24)

= ϕ(ϕ(x1, tn + τ, t1), tn + τ + t1, ∆t− τ − t1) (3.25)

= ϕ(x2, tn + τ + t1, ∆t− τ − t1) (3.26)

= . . . (3.27)

= ϕ(xn, tn + τ + T, ∆t− T − τ). (3.28)

The first step of advancing time tn by τ is described by the right-hand side of (3.23).
The trajectory proceeds to the point tn + τ in time, arriving at the intermediate
point ϕ(x, tn, τ) = x1. To advance to the next cell boundary x2 the time interval
t1 passes. It is determined by solving ϕ(x1, tn + τ, t1) = x2 for t1 in (3.25). Less
time, i.e. ∆t− τ − t1, has to pass to reach the final arrival point. In such a way, the
trajectory proceeds from one cell boundary to the next until the last cell boundary
xn is reached. The point xn is known as well as the time intervals τ and T. From
this information ϕ(x, tn, ∆t) is determined in (3.28).

For each individual grid cell the trajectory is given by (3.19) or (3.21), representing
one substep of (3.23) to (3.28). We start with the computation of the time interval
τ. It is the time interval in which the trajectory proceeds from the initial value x as
starting point at tn to the right boundary x1,

ϕ(x, tn, τ) = x1 (3.29)

⇐⇒ ea0τ

(
b0

a0
+ x
)
− b0

a0
= x1. (3.30)

We write (3.30) in local coordinates, replacing x1 with ∆x0, and obtain the solution
for τ

τ = − 1
a0

ln

(
x + b0

a0

∆x0 +
b0
a0

)
(3.31)

= − 1
a0

ln
(

a0x
u1

+
b0

u1

)
. (3.32)

Next, we compute time tk that describes the duration of the trajectory to cross the
kth cell, from boundary xk to boundary xk+1,

ϕ(xk, tn + τ + t1 + · · ·+ tk−1, tk) = xk+1 (3.33)

⇐⇒ eaktk

(
bk
ak

+ xk

)
− bk

ak
= xk+1 (3.34)

⇐⇒ eaktk =
xk+1 +

bk
ak

bk
ak
+ xk

(3.35)

⇐⇒ tk =
1
ak

ln
(

akxk+1 + bk
akxk + bk

)
. (3.36)

Solving for tk, we have

tk =
1
ak

ln
(

uk+1
uk

)
. (3.37)

50 the sasldg method

With the computations of τ and tk for i = 1, . . . , n − 1 we assemble the general
formula for the trajectories crossing n cell boundaries (n > 0), using (3.28)

ϕ(xn, tn + T + τ, ∆t− τ − T)

= exp (an(∆t− τ − T))
(

bn

an
+ xn

)
− bn

an

(3.38)

= exp (an(∆t− T))
(

a0

u1
x +

b0

u1

) an
a0 1

an
(bn + anxn)−

bn

an
. (3.39)

Again, writing this expression in local coordinates with xn = 0, we obtain

ϕ(x, tn, ∆t) =
un

an
exp (an(∆t− T))

(
a0

u1
x +

u0

u1

) an
a0 − un

an
. (3.40)

It will later turn out that a different form of ϕ is beneficial. Hence, we substitute
x ∈ [0, ∆x0] with

x = ∆x0(1− η) = ∆x0 − ∆x0η. (3.41)

It yields for η ∈ [0, 1]

ϕ̃(η, tn, ∆t) =
un

an
exp (an(∆t− T))

(
a0

u1
(∆x0 − ∆x0η) +

u0

u1

) an
a0 − un

an
(3.42)

=
un

an
exp (an(∆t− T))︸ ︷︷ ︸

c1

(
− a0

u1
∆x0︸ ︷︷ ︸

c2

η + 1
)

c3︷︸︸︷
an

a0 − un

an︸︷︷︸
c4

(3.43)

In summary, the trajectories crossing n ≥ 1 cell boundaries going forward in time
for positive velocity can be expressed as

ϕ̃(x, tn, ∆t) = c1(c2x + 1)c3 − c4, for x ∈ [0, 1]. (3.44)

Recall that the indices of the coefficients refer to local values. The global cell (i + n)
where the trajectory arrives, is labeled with index n, the departure cell is denoted
by 0, though globally it is the ith cell.

Note that ϕ is a diffeomorphism. We can follow the trajectory either forward
or backward in time. In the projection step, both directions are needed, tracing
the trajectories backward in time is needed for the computation of the limits of the
integration discussed in Section 3.6.

We have to pay attention to coefficients ai for i = 0, . . . , n as they can be close or
equal to zero. Thus, some approximations have to take place in order to avoid divi-
sion by zero. First, we consider all cases of the coefficient ak being small, beginning
with 0 < k < n, then, a0 < ε and an < ε for some small value ε. The size of the
boundary ε is discussed in Section 3.4.

Positive velocity: |ak| < ε

We consider the case that ak is small, where 0 < k < n. The coefficient ak appears
in the denominator in the computation of tk in (3.37). If ak is equal to zero, division
must be avoided. In that case, the trajectory for cell [xk, xk+1] takes the form given
by (3.21). From that and the ansatz

ϕ(xk, tn + τ + t1 + · · ·+ tk−1, tk) = xk+1, (3.45)

we obtain tk

tk =
xk+1 − xk

bk
(3.46)

=
∆xk
uk

. (3.47)

3.2 computing the trajectories 51

The division by ak being equal or nearly equal to zero can be circumvented by
applying a Taylor expansion of (3.37) about the point ak = 0. The following approx-
imation remediates the problem,

tk =
1
ak

ln
(

uk+1
uk

)
(3.48)

=
1
ak

ln
(

ak∆xk + uk
uk

)
(3.49)

=
1
ak

ln
(

1 +
ak∆xk

uk

)
(3.50)

=
∆xk
uk
− ak

2

(
∆xk
uk

)2
+

a2
k

3

(
∆xk
uk

)3
−

a3
k

4

(
∆xk
uk

)4
+O

(
a4

k

)
. (3.51)

If ak = 0 is set to zero in the approximation (3.51), it equals the case (3.47). The
approximation (3.51) converges if |ak|∆xk < |uk|.

Positive velocity: |a0| < ε

We first look at the case when the coefficient a0 is equal to zero. Hence, the velocity
is constant in the first grid cell [x0, x1] that the trajectory passes. We derive the
trajectory ϕ for that particular case. First, we compute τ with the ansatz

ϕ(x, tn, τ) = x1. (3.52)

Using (3.21) as the piecewise definition for the trajectory in cell [x0, x1], we obtain
the time interval

τ =
∆x0 − x

u0
. (3.53)

Analogously to the construction of ϕ in (3.38) - (3.40), we can build the trajectory as
follows

ϕ(x, tn, ∆t) = ϕ(xn, tn + τ + T, ∆t− T − τ) (3.54)

= exp(an(∆t− T − τ))
bn

an
− bn

an
(3.55)

= exp(an(∆t− T)) exp
(

an
x− ∆x0

u0

)
bn

an
− bn

an
(3.56)

=
un

an
exp(an(∆t− T)) exp

(
an

x− ∆x0

u1

)
− un

an
. (3.57)

Note that u0 = u1, because a0 = 0. Next we consider the case of a0 being in the
vicinity of zero. Based on the general form of a trajectory ϕ̃(x, tn, ∆t) crossing more
than one grid cell (3.43), we determine an approximation of the trajectory with a
series expansion about the point a0 = 0.

ϕ̃(x, tn, ∆t) =
un

an
exp (an(∆t− T))

(
− a0

u1
∆x0η + 1

) an
a0 − un

an
(3.58)

=
un

an
exp (an(∆t− T)) exp

(
an

a0
ln
(
− a0

u1
∆x0η + 1

))
− un

an
(3.59)

=
un

an
exp (an(∆t− T)) exp

(
− an∆x0

u1
x
)(

1 +
a0an∆x2

0
2u2

1
x2

+
a2

0an∆x3
0x3

3u3
1

+
2a3

0an∆x4
0 + a2

0a2
n∆x4

0

6u4
1

x4

+
a3

0a2
n∆x5

0

6u5
1

x5 +
a3

0a3
n∆x6

0

48u6
1

x6 +O
(

a4
0

))
− un

an

(3.60)

52 the sasldg method

We omit the higher order terms and sum up the expression using suitable abbrevi-
ations. Then, the trajectory for |a0| < ε crossing more than one grid cell is given
by

ϕ̃(x, tn, ∆t) = d1 exp(d2x)
(

1 + d3x2 + d4x3 + d5x4 + d6x5

+d7x6
)
+ d8.

(3.61)

If we set the coefficient a0 to zero in (3.60) apply the resubstitution

x =
−η + ∆x0

∆x0
(3.62)

we recover exactly the trajectory in Equation (3.57).

Positive velocity: |an| < ε

The procedure of an < ε follows analogously to the case of a0 being small. We
consider the case of constant velocity in grid cell [xn, xn+1], which is the cell with
the endpoint of the trajectory.

Thus, we set an to zero and derive the trajectory ϕ for that case. The time interval
τ for the first cell remains unchanged and is given by (3.31). We use the trajectory for
constant velocity given by (3.21) for cell [xn, xn+1] to assemble the whole trajectory

ϕ(x, tn, ∆t) = ϕ(xn, tn + τ + T, ∆t− T − τ) (3.63)

= bn(∆t− T − τ) (3.64)

= un(∆t− T) +
un

a0
ln
(

a0x + u0

u1

)
. (3.65)

For the case of an being nearly but not equal to zero, we analyze the trajectory ϕ̃
given in (3.43)

ϕ̃(x, tn, ∆t) =
un

an
exp (an(∆t− T))

(
− a0

u1
∆x0η + 1

) an
a0 − un

an
(3.66)

=
un

an
exp (an(∆t− T)) exp

(
an

a0
ln
(
− a0

u1
∆x0η + 1

))
−un

an
.

(3.67)

We apply a series expansion about the point an = 0 to approximate the trajectory,

ϕ̃(x, tn, ∆t) = un(∆t− T) +
1
2

unan(∆t− T)2 +
1
6

una2
n(∆t− T)3

+
1

24
una3

n(∆t− T)4 +
1
6

un

a0

(
(∆t− T)3a3

n + 3(∆t− T)2a2
n

+6(∆t− T)an + 6

)
ln
(
− a0

u1
∆x0x + 1

)

+
1
4

unan

a2
0

(
(∆t− T)2a2

n

+2(∆t− T)an + 2

)
ln2
(
− a0

u1
∆x0x + 1

)

+
1
6

una2
n

a3
0

((∆t− T)an + 1) ln3
(
− a0

u1
∆x0x + 1

)
+

1
24

una3
n

a4
0

ln4
(
− a0

u1
∆x0x + 1

)
+O

(
a4

n

)
.

(3.68)

3.2 computing the trajectories 53

Further, for clarity and emphasis of the form of the resulting trajectory, we abbrevi-
ate some expressions and omit higher order terms

ϕ̃(x, tn, ∆t) = d1 + d2 ln (d6x + 1) + d3 ln2(d6x + 1)

+d4 ln3(d6x + 1) + d5 ln4(d6x + 1).
(3.69)

For the validation of the expansion we examine the case where we set an to zero in
(3.68). After resubstitution of

x =
−η + ∆x0

∆x0
, (3.70)

we recover exactly the trajectory in (3.65).

Positive velocity: |a0| < ε and |an| < ε

After we examined the cases for a single cell with (nearly) constant velocity, and
thus the coefficient |ak| < ε, for either k = 0, k = n or some k in between, we now
treat the case of |a0| and |an| being smaller than ε.

We first treat the case that n = 0, which means that the trajectory remains within
one grid cell. The trajectory is given by (3.19) and approximated in the following
by a series expansions about an = 0,

ϕ(∆x0x, tn, ∆t) = eant
(

bn

an
+ ∆x0x

)
− bn

an
(3.71)

=

(
1 + an∆t +

1
2

a2
n∆t2 +

1
6

a3
n∆t3

)
∆x0x

+un∆t
(

1 +
1
2

ai∆t +
1
6

a2
n∆t2

)
+O

(
a4

n

)
.

(3.72)

We turn to the case of the trajectory crossing grid cell boundaries, i.e. n > 0. As
a start, we construct the trajectory with a0 and an set to zero. The time interval τ is
computed as in (3.53), i.e. for small a0. For the piecewise definition of trajectory for
cell [xn, xn+1], we use (3.21). Then, we can build the trajectory as follows

ϕ(x, tn, ∆t) = ϕ(xn, tn + τ + T, ∆t− T − τ) (3.73)

= bn(∆t− T − τ) (3.74)

= bn(∆t− T)− bn
∆x0 − x

u0
(3.75)

= un(∆t− T)− un
∆x0 − x

u1
. (3.76)

For the derivation of the trajectory ϕ where both a0 and an are not equal to zero but
small, we start with the trajectory given in (3.60) for small a0. In that equation the

54 the sasldg method

division by a0 is already avoided. Then, a series expansion about an = 0 is applied
and we obtain the final solution for ϕ̃

ϕ̃(x, tn, ∆t) = un(∆t− T) +
1
2

unan(∆t− T)2 +
1
6

una2
n(∆t− T)3

−1
2

un∆x0

u1

(
(∆t− T)2a2

n + 2(∆t− T)an + 2

)
x

− un

4u2
1

∆x2
0

(
(∆t− T)2a0a2

n + 2(∆t− T)a0an

−2(∆t− T)a2
n + 2a0 − 2an

)
x2

−1
6

un∆x3
0

u3
1

(
(∆t− T)2a2

0a2
n + 2(∆t− T)a2

0an

−3(∆t− T)a0a2
n + 2a2

0 − 3a0an + a2
n

)
x3

+
1

24
unana0∆x4

0

u4
1

(
11(∆t− T)a0an + 11a0 − 6an

)
x4

− 7
24

una2
na2

0∆x5
0

u5
1

x5 +O
(

a3
0

)
+O

(
a3

n

)

(3.77)

For clarity, we sum up the expression with abbreviations, omit higher order terms
and obtain

ϕ̃(x, tn, ∆t) = d1 + d2x + d3x2 + d4x3 + d5x4 + d6x5 (3.78)

=
6

∑
i=1

dixi−1. (3.79)

To show the relation of the (3.77) with small a0 and an and (3.76) with these coeffi-
cients equal to zero, we set a0 and an to zero in (3.77) and resubstitute with

x =
−η + ∆x0

∆x0
. (3.80)

We recover exactly the trajectory in (3.76).
So far, we have constructed trajectories for special cases of ak, i.e. |ak| < ε, with

either 0 < k < n, or k = 0, or k = n, or with the last case |a0| < ε and |an| < ε,
where the departure and arrival point of the trajectory lies within a cell with (nearly)
constant velocity. All trajectories above are constructed for positive velocity u. The
analog treatment of the trajectories with small ak for negative velocity is shown
subsequently.

3.2.2 Trajectory with negative velocity

The equations that describe trajectories which remain within one grid cell in (3.19)
and (3.21) hold for positive and negative velocity and can therefore be used for this
section as well.

The construction of the trajectories with negative velocity is carried out in the
same way as for positive velocity, with small differences. We start with a point x,
follow the trajectory to the cell boundary x1, that is now the left boundary instead of
to the right cell boundary as for positive velocity. We advance from cell boundary to
cell boundary, computing the intermediate time intervals tk, until the nth boundary.
From there, the arrival point of the trajectory is determined. The procedure is
illustrated in Figure 3.4.

3.2 computing the trajectories 55

tn

t

tn+1

τ

T

∆t− T − τ

xn+1 ϕ(x, tn , ∆t) xn · · · x1 x x0
xi−n−1/2 xi−n+1/2 xi−1/2 xi+1/2

Figure 3.4: Example of trajectories computed from a negative velocity field. The red colored
trajectory is ϕ(x, tn, t), with starting point x at time tn. It crosses n grid cell
boundaries (here n = 3).

The main difference of the construction of the trajectories with positive and neg-
ative velocity is the redefinition of the cell boundaries with local cell values. For
positive velocity we have xk < xk+1 for k = 0, . . . , n and thus we identify xk with
zero and xk+1 with ∆xk. For negative velocity, xk+1 < xk and therefore the redefini-
tion is vice versa, xk is set to ∆xk and xk+1 to zero.

The time interval to proceed from starting point x to the first boundary x1 is given
by τ. We use (3.19) and obtain

ϕ(x, tn, τ) = x1 (3.81)

⇐⇒ ea0τ

(
b0

a0
+ x
)
− b0

a0
= x1. (3.82)

We solve (3.82) for τ, set x1 = 0 and obtain the solution

τ = − 1
a0

ln

(
x + b0

a0
b0
a0

)
(3.83)

= − 1
a0

ln
(

a0

u0
x + 1

)
. (3.84)

Next, we compute time tk that describes the duration of the trajectory to cross the
kth cell, from boundary xk to boundary xk+1,

ϕ(xk, tn + τ + t1 + · · ·+ tk−1, tk) = xk+1 (3.85)

⇐⇒ eaktk

(
bk
ak

+ ∆xk

)
− bk

ak
= 0. (3.86)

Solving for tk, we have

tk =
1
ak

ln
(

uk
uk+1

)
. (3.87)

56 the sasldg method

With the computations of τ and tk for i = 1, . . . , n − 1 we assemble the trajectory
crossing n cell boundaries (n > 0), using (3.28)

ϕ(xn, tn + T + τ, ∆t− τ − T)

= exp (an(∆t− τ − T))
(

bn

an
+ ∆xn

)
− bn

an

=
un+1

an
exp (an(∆t− T))

(
a0

u0
x + 1

) an
a0 − un

an
.

(3.88)

Similar to the trajectory constructed from positive velocity, we use a substitution.
Hence, we substitute x ∈ [0, ∆x0] with

x = ∆x0η. (3.89)

It yields for η ∈ [0, 1]

ϕ̃(η, tn, ∆t) =
un+1

an
exp (an(∆t− T))︸ ︷︷ ︸

c1

 a0

u0
∆x0︸ ︷︷ ︸
c2

η + 1

c3︷︸︸︷
an

a0

− un

an︸︷︷︸
c4

. (3.90)

With the abbreviations defined above, the trajectory crossing n cell boundaries con-
structed from a negative velocity field is given by

ϕ̃(x, tn, ∆t) = c1(c2x + 1)c3 − c4, for x ∈ [0, 1]. (3.91)

The trajectories with positive and negative velocity are of the same form, compare
to (3.44).

Negative velocity: |ak| < ε

Analog to the case |ak| < ε for positive velocity, the case for negative velocity is
treated. First, we derive the expression for tk if ak = 0, then look at tk for nonzero
but small ak. Hence, for ak = 0, we obtain the time interval tk with the equation

ϕ(xk, tn + τ + t1 + · · ·+ tk−1, tk) = xk+1, (3.92)

and by solving it for tk

tk = −
∆xk
uk

. (3.93)

Further, for small ak we have

tk =
1
ak

ln
(

uk
uk+1

)
(3.94)

= − 1
ak

ln
(

uk+1
uk

)
(3.95)

= − 1
ak

ln
(

ak∆xk + uk
uk

)
(3.96)

= − 1
ak

ln
(

1 +
ak∆xk

uk

)
(3.97)

= −∆xk
uk

+
ak
2

(
∆xk
uk

)2
−

a2
k

3

(
∆xk
uk

)3
+

a3
k

4

(
∆xk
uk

)4
−O

(
a4

k

)
. (3.98)

Setting ak to zero in (3.98), we obtain (3.93).

3.2 computing the trajectories 57

Negative velocity: |a0| < ε

For |a0| < ε, we first consider the case of constant velocity in cell [x0, x1]. We
compute τ with the ansatz

ϕ(x, tn, τ) = x1. (3.99)

Using (3.21) as the piecewise definition for the trajectory in cell [x0, x1], we obtain
the time interval

τ = − x
u0

. (3.100)

Analogously to the construction of ϕ that crosses more than one grid cell (3.38) -
(3.40), we can build the trajectory as follows

ϕ(x, tn, ∆t) = ϕ(xn, tn, ∆t− T − τ) (3.101)

= exp(an(∆t− T − τ))

(
bn

an
+ ∆xn

)
− bn

an
(3.102)

=
un+1

an
exp(an(∆t− T)) exp

(
an

x
u0

)
− un

an
. (3.103)

Next, we address the case of nonzero, but small a0. The trajectory ϕ for negative
velocity is given by (3.90). We apply series expansion about a0 = 0 and so we use
the following trajectory for a0 < ε

ϕ̃(x, tn, ∆t)

=
un+1

an
exp (an(∆t− T)) exp

(
an∆x0

u0
x
)(

1−
∆x2

0a0an

2u2
0

x2

+
∆x3

0a2
0an

3u3
0

x3 +

(
−

∆x4
0a3

0an

4u4
0

+
∆x4

0a2
0a2

n

8u4
0

)
x4

−
∆x5

0a3
0a2

n

6u5
0

x5 −
∆x6

0a3
0a3

n

48u6
0

x6

)
− un

an
+O

(
a4

0

)
.

(3.104)

Using abbreviations and omitting higher order terms, we can rewrite the equation
as

ϕ̃(x, tn, ∆t) =d1 exp(d2 x)(1 + d3x2 + d4x3 + d5x4 + d6x5 + d7x6)

+ d8
(3.105)

If we set a0 to zero in (3.104) and resubstitute x by division of ∆x0, we obtain the
trajectory constructed above for that special case (3.103).

Negative velocity: |an| < ε

We set an to zero and derive the trajectory ϕ for that case. The time interval τ for
the first cell remains unchanged and is given by (3.83). We use the trajectory for
constant velocity given by (3.21) for cell [xn, xn+1] to assemble the whole trajectory

ϕ(x, tn, ∆t) = ϕ(xn, tn + τ + T, ∆t− T − τ) (3.106)

= ∆xn + bn(∆t− T − τ) (3.107)

= ∆xn + un(∆t− T) +
un

a0
ln
(

a0

u0
x + 1

)
. (3.108)

58 the sasldg method

The trajectory ϕ for negative velocity is given by (3.90). As an goes to zero we apply
series expansion about an = 0. We end with the form

ϕ̃(x, tn, ∆t) =
a3

nun

24a4
0

ln
(

∆x0a0

u0
x + 1

)4

+

(
a2

nun

6a3
0

+
((∆t− T)un + ∆x0)a3

n

6a3
0

)
ln
(

∆x0a0

u0
x + 1

)3

+

(
anun

2a2
0

+
((∆t− T)un + ∆x0)a2

n

2a2
0

+

(
1
2 un(∆t− T)2 + ∆x0(∆t− T)

)
a3

n

2a2
0

)
ln
(

∆x0a0

u0
x + 1

)2

+

(
un

a0
+

((∆t− T)un + ∆x0)an

a0
+

(
1
2 un(∆t− T)2 + ∆x0(∆t− T)

)
a2

n

a0

+

(
1
6 un(∆t− T)3 + (1/2)∆x0(∆t− T)2

)
a3

n

a0

)
ln
(

∆x0a0

u0
x + 1

)
+ un(∆t− T) + ∆x0 +

(
1
2

un(∆t− T)2 + ∆x0(∆t− T)
)

an

+

(
1
6

un(∆t− T)3 +
1
2

∆x0(∆t− T)2
)

a2
n

+

(
1

24
un(∆t− T)4 +

1
6

∆x0(∆t− T)3
)

a3
n +O

(
a4

n

)
.

(3.109)

The short form of (3.109) with adequate abbreviations and dk, and without higher
order terms, is given by

ϕ̃(x, tn, ∆t) = d1 + d2 ln (d6x + 1) + d3 ln2(d6x + 1)

+d4 ln3(d6x + 1) + d5 ln4(d6x + 1).
(3.110)

=
5

∑
k=1

dk ln(d6x + 1)k−1. (3.111)

If we set an to zero in (3.109) and resubstitute by division of ∆x0, we obtain the
trajectory derived for constant velocity in the nth cell in (3.108).

Negative velocity: |a0| < ε and |an| < ε

The last case to be considered is the case of a0 and an being small.
For the case n = 0, which means that the trajectory remains within one grid cell,

we recall that the equation describing the trajectory that does not cross grid cell
boundaries given in (3.19), holds for positive and negative velocity. Thus, we refer
to the approximation given in (3.72).

We assume n > 0. We start to construct the trajectory if we set a0 and an to
zero. The time interval τ is computed as in (3.53). For the piecewise definition
of trajectory for cell [xn, xn+1], we use (3.21). Then we can build the trajectory as
follows

ϕ(x, tn, ∆t) = ϕ(xn, tn + τ + T, ∆t− T − τ) (3.112)

= ∆xn + bn(∆t− T − τ) (3.113)

= ∆xn + un(∆t− T) + un
x
u0

. (3.114)

3.2 computing the trajectories 59

Assuming the coefficients a0 and an deviate from zero but are still small, we obtain
based on (3.90) after series expansions about a0 = 0 and an = 0 the following
approximation,

ϕ̃(x, tn, ∆t) =

(
7a2

0a2
n∆x5un

24u5
0

)
x5 +

a0an∆x4

24u4
0

(
11(∆t− T)a0anun

+ 11∆xa0an + 11a0un − 6anun

)
x4

+
∆x3

6u3
0

(
(∆t− T)2a2

0a2
nun + 2(∆t− T)∆xa2

0a2
n + 2(∆t− T)a2

0anun

− 3(∆t− T)a0a2
nun + 2∆xa2

0an − 3∆xa0a2
n + 2a2

0un

− 3a0anun + a2
nun

)
x3 − ∆x2

4u2
0

(
(∆t− T)2a0a2

nun

+ 2(∆t− T)∆xa0a2
n + 2(∆t− T)a0anun − 2(∆t− T)a2

nun

+ 2∆xa0an − 2∆xa2
n + 2a0un − 2anun

)
x2

+
∆x
2u0

(
(∆t− T)2a2

nun + 2(∆t− T)∆xa2
n + 2(∆t− T)anun

+ 2∆xan + 2un

)
x + (∆t− T)un + ∆x +

1
6

a2
n(∆t− T)3un

+
1
2

an(∆t− T)2un +
1
2

a2
n(∆t− T)2∆x + an(∆t− T)∆x

+O
(

a3
0

)
+O

(
a3

n

)
.

(3.115)

With abbreviations of some expressions and omitting higher order terms, we can
express the trajectory as

ϕ̃(x, tn, ∆t) =
6

∑
i=1

dixi−1. (3.116)

3.2.3 Zero velocity at grid points

In the preceding sections we examined the trajectories for small coefficients aj, that
is a small slope of the velocity distribution. However, the velocity itself can be small
or zero as well. The impact of zero velocity on the trajectories is studied in this
section.

Zero velocity at grid points influences the trajectories in different ways depending
on the respective location. We examine the problem divided into three cases: first
constant zero velocity, second we consider positive velocity except at the left or
right grid cell boundary, where we set either u(xi−1/2) or u(xi+1/2) to zero, and
third we observe u(xi−1/2) = 0 or u(xi+1/2) = 0 for otherwise negative velocity.
The influence of zero velocity is exemplarily described for grid cell i, where either
the starting or the endpoint of a trajectory lies, or both if the trajectory remains
within the ith grid cell. A last example shows that the construction of a trajectory is
possible that crosses grid cell boundaries, with a zero velocity cell boundary in the
departure and arrival grid cell.

The first case of constant zero velocity leads to trajectories that remain within one
grid cell. They are described by (3.19) for the ith grid cell and simplify to

ϕ(x, tn, ∆t) = exp(ai∆t)x (3.117)

60 the sasldg method

for ui = 0. (3.19) contains the coefficient ui only in the dividend. Thus, ui = 0 is
not critical and (3.117) is obtained directly. If ui+1 is equal to zero as well, which
means constant zero velocity in grid cell i, the coefficient ai equals zero, too. Then,
the trajectories are simply

ϕ(x, tn, ∆t) = x. (3.118)

With zero velocity the tracer remains at the same spot over time and is not advected
to a different point in space.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(a) The velocity u is contantly equal to zero.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(b) The trajectories are straight lines perpen-
dicular to the x-axis.

Figure 3.5: The velocity u equal to zero is shown with the corresponding trajectories.

Figure 3.5 shows the case of constant zero velocity, here in three neighboring grid
cells i− 1, i and i + 1. The according trajectories are straight lines perpendicular to
the x-axis. In that way, a tracer that is advected along this path stays at the same
point in space.

We turn to the second case of positive velocity except at either the left or right
grid cell boundary of grid cell i. We remind of the trajectory given by (3.43) for
positive velocity that crosses grid cell boundaries,

ϕ̃(η, tn, ∆t) =
un

an
exp (an(∆t− T))

(
− a0

u1
∆x0η + 1

) an
a0 − un

an
.

The velocity coefficient uj appears in the equation in the divisor. To avoid division
by zero close consideration of the velocity is needed. The value u1 must not be
equal to zero. To understand which local index refers to which global index, and
thus where the zero velocity plays a role, we look at Figure 3.6. The panels 3.6(a)
and 3.6(c) show the velocity fields with positive velocity with u(xi−1/2) = 0 and
u(xi+1/2) = 0, respectively. We study the corresponding trajectories.

Figure 3.6(b) displays the trajectories that are associated with the velocity distribu-
tion given in Figure 3.6(a). The red colored trajectory is located at the zero velocity
point, i.e. at xi−1/2, and is given by ϕ(xi−1/2, tn, ∆t) = xi−1/2. When we look at grid
cell i, we note that trajectories only depart from this grid cell. No trajectory crosses
the left cell boundary to arrive in this cell. Obviously, the zero velocity point cannot
be trespassed. The trajectories that remain within the ith grid cell need no further
consideration as their case is discussed above. The trajectories that cross the right
grid cell boundary are described by (3.43). Their departure cell is the ith grid cell
and they end in the neighboring grid cell i + 1. That means that the velocity at the
left boundary of cell i is expressed in local notation as u0, the right boundary as u1.
The velocity at the point xi+1/2 is also denoted as un, because it is the last boundary
that is crossed before the trajectory ends in grid cell i + 1. The right grid cell of
the arrival grid cell i + 1 is assigned to un+1. The value u1 = un cannot take the
value zero, as the trajectory crosses the boundary at xi+1/2. The velocity coefficient

3.2 computing the trajectories 61

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(a) Positive velocity, where u(xi−1/2) = 0.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(b) Corresponding trajectories to 3.6(a). The
red trajectory marks the zero velocity
point.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(c) Positive velocity, where u(xi+1/2) = 0.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(d) Corresponding trajectories to 3.6(c). The
red trajectory marks the zero velocity
point.

Figure 3.6: Different scenarios for the positive velocity u to approach the zero point.

u0 which is equal to zero, does not affect the trajectory as it is not contained in the
expression (3.43).

Studying the trajectories that cross a grid cell boundary in panel 3.6(d), we note
that trajectories only end in the ith grid cell, but do not depart from it. The red col-
ored trajectory corresponds to the zero velocity point at the right grid cell boundary
at xi+1/2. The assigment of the global to the local indices yields that the velocity at
xi−3/2, that is the left boundary of grid cell i− 1, is matched to u0, the global point
xi−1/2 denotes u1 in local indices. This point is also the last boundary to be crossed,
thus it is also marked as un. The right cell boundary of cell i is denoted as un+1,
which is equal to zero. As in the case above the values u1 = un cannot be equal to
zero. The coefficient u(xi+1/2) = un+1, which is equal to zero, does not effect the
trajectory because the coefficient does not appear in the equation of the trajectory
(3.43).

Similarly, the procedure follows for the negative velocity. The trajectories that
correspond to a negative velocity and cross through grid cells are described by
(3.90), repeated here

ϕ̃(η, tn, ∆t) =
un+1

an
exp (an(∆t− T))

(
a0

u0
∆x0η + 1

) an
a0 − un

an
.

In this equation the value u0 must not be equal to zero. We assign the global indices
to the local ones by means of Figure 3.7. Figures 3.7(a) and 3.7(c) show the negative
velocity distributions with the root at xi−1/2 and xi+1/2, respectively.

The corresponding trajectories to the velocity shown in Figure 3.7(a) are displayed
in Figure 3.7(b). The trajectory that starts at the zero velocity point is plotted in red

62 the sasldg method

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(a) Negative velocity, where u(xi−1/2) = 0.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(b) Corresponding trajectories to 3.7(a). The
red trajectory marks the zero velocity
point.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(c) Negative velocity, where u(xi+1/2) = 0.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(d) Corresponding trajectories to 3.7(c). The
red trajectory marks the zero velocity
point.

Figure 3.7: Different scenarios for the negative velocity u to approach the zero point.

for emphasis. Studying the trajectories in the ith grid cell we note that all trajectories
that start in this grid cell also end there. No trajectory with a starting point there
crosses a boundary and is thus described by (3.19). However, the trajectories with
the departure cell i + 1 and arrival cell i are given by (3.90). We examine the indices
for these trajectories. We point out that after matching the global to the local indices
the relation of neighboring velocity values (3.17) still must hold locally for that grid
cell. Therefore, the left boundary of the departure cell i + 1 holds the value u0 and
the right boundary of the departure cell the value u1. In that way, it is guaranteed
that u1 = a0∆x0 + u0. In the case of negative velocity, the first boundary that is
crossed is the one with velocity u0. Analogously, the assigment follows for the
arrival cell i. The left boundary takes the value un and the right boundary un+1. We
can state that the value u(xi+1/2) = u0 = un+1 cannot be equal to zero, since the
trajectory passes the point xi+1/2. Note that the values of the velocity u0 and un+1
are equal for the case of the trajectory crossing one grid cell boundary, i.e. n = 1.
Since these values are nonzero, the description of the trajectory (3.90) holds. The
value un is set to zero in this example, but has no effect on the trajectories with
arrival point in grid cell i.

In the second example shown in Figures 3.7(c) and 3.7(d), the velocity is set to
zero at point xi+1/2. The trajectory indicating the zero velocity starting at that point
is colored in red. We examine the trajectories with departure point in grid cell i,
passing the boundary at xi−1/2 with arrival cell i− 1. In this case, the left boundary
of the ith cell, which is the departure cell, takes the value u0 and the right one u1.
For the arrival cell i − 1, the velocity at the left boundary at xi−3/2 is equal to un

3.2 computing the trajectories 63

and at the right boundary un+1. Again, the values u0 and un+1 cannot be zero. The
trajectory (3.90) is well-defined.

Summarized, we observe that for positive velocity only the left boundary of the
departure cell and only the right boundary of the arrival cell can be zero. For
negative velocity it is vice versa, in departure cells the right boundary can be of
zero velocity and the left boundary of arrival cells. The trajectories for all scenarios
can be described by (3.43) and (3.90), respectively, without the risk of division by
zero.

This section concludes with two examples to show the possibility that trajectories
which pass through more than one grid cell can depart from a cell with a zero
velocity cell boundary and arrive at such a cell - for positive and negative velocity.

u0 u1 un un+1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(a) Positive velocity distribution with zero ve-
locity at the left and right boundary.

x0 x1 xn xn+1
tn

tn+1

t

(b) Trajectories corresponding to 3.8(a).

un un+1 u0 u1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(c) Negative velocity distribution with zero
velocity at the left and right boundary.

xn+1 xn x1 x0
tn

tn+1

t

(d) Trajectories corresponding to 3.8(c).

Figure 3.8: Examples for zero velocity at boundaries at departure and arrival grid cell.

Figure 3.8 shows the construction of these trajectories. Panel 3.8(a) shows the
distribution for positive velocity, Figure 3.8(c) the negative velocity field. Both func-
tions are equal to zero at the left boundary of the left grid cell shown on the panels
and at the right boundary at the right cell. In the Figures 3.8(b) and 3.8(b) we can
see the corresponding trajectories. At the very left and right the trajectories colored
in red highlight the zero velocity points. The trajectories colored in red and marked
with crosses, stand exemplarily for trajectories that start and end in a grid cell with
a zero velocity boundary. The labels of the x-axis for the velocity as well as for the
trajectories are written using the local indices, that are associated with these trajec-
tories. All trajectories that cross cell boundaries are computed and plotted using
(3.43) and (3.90), respectively, equations that are well-defined for all cases of zero
velocity coefficients that can occur.

64 the sasldg method

3.2.4 Overview of different types of trajectories

This section summarizes the types of trajectories that can occur. The trajectory (3.19)
that remains within one grid cell holds for positive and negative velocity

ϕ(x, tn, ∆t) = eai∆t
(

bi
ai

+ x
)
− bi

ai
. (3.119)

The trajectories crossing n ≥ 1 cell boundaries can be expressed as (3.44) for
positive velocity and for negative velocity (3.91) and are of the form

ϕ̃(x, tn, ∆t) = c1(c2x + 1)c3 − c4, (3.120)

with adequate abbreviations ck that differ for positive and negative velocity.
To avoid division by zero or small numbers, we derived approximations as a rem-

edy. Thus, for small a0 we have (3.61) for positive velocity and (3.105) for negative
velocity, which are of the same type with different suitable abbreviations dk,

ϕ̃(x, tn, ∆t) = d1 exp(d2x)
(

1 + d3x2 + d4x3 + d5x4 + d6x5

+d7x6
)
+ d8

= d1 exp(d2x)

(
1 +

5

∑
k=1

dk+2xk+1

)
+ d8.

(3.121)

If the coefficient an is small, the Taylor expansion about an = 0 leads to (3.69) for
positive and to (3.111) for negative velocity. Again, the resulting trajectory is of the
same type with respective abbreviations dk,

ϕ̃(x, tn, ∆t) =
5

∑
k=1

dk ln(dx + 1)k−1. (3.122)

If both coefficients a0 and an are nearly or equal to zero we obtain (3.79) for
positive velocity and (3.116) for negative velocity. These are of the type

ϕ̃(x, tn, ∆t) = d1 + d2x + d3x2 + d4x3 + d5x4 + d6x5

=
6

∑
i=1

dixi−1,
(3.123)

with different dk for positive and negative velocity.
In the Section 3.2 we computed the trajectories that are the solutions to the ODE

(3.18). We obtained different expressions for the trajectories: for the trajectories that
remain within one grid cell and for the trajectories that cross cell boundaries. For
the latter case, we studied the solutions for small coefficients of the slope of the
velocity to avoid division by zero. Further, we examined the trajectories for zero
velocity at grid points and found out that zero velocity causes no restrictions on the
expressions. Last of all, we summarized the different types of trajectories.

3.3 the exact solution and its integral
The previous section is devoted to compute the trajectories that are the solution to
(3.4). They are constructed from a positive and a negative velocity field. Further, the
issue of division by (nearly) zero coefficients arising in the equations is addressed
and resolved by series expansions. To find the solution to the linear advection
equation, the initial value problem (3.3) must be solved.

3.3 the exact solution and its integral 65

Proposition 3.3.1 By separation of variables we can determine the solution to the initial
value problem (3.3) at time tn+1

ρ(x,tn+1) =

ρ(ϕ(x, tn+1,−∆t), tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t), t)dt

 .
(3.124)

Details can be found in the appendix A.1.

As for all finite volume methods, we are interested in the integral value of ρ for
each grid cell,

xi+1/2∫
xi−1/2

ρ(x,tn+1) =

xi+1/2∫
xi−1/2

ρ(ϕ(x, tn+1,−∆t), tn)

· exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t), t)dt

dx .

(3.125)

It is possible to compute the integral of the argument of the exponential in (3.125)
and solve the initial value problem (3.3) that way. However, before we explicitly
compute (3.125) we bring to mind that because of the conservation property the
integral of ρ over the ith cell at time tn+1 is equal to the integral of ρ at time tn over
the interval spanned by the departure points of the trajectories starting at the cell
boundaries of grid cell i.

Figure 3.9 shows the two possibilities. The first option is to compute the integral
over the interval of the ith grid cell [xi−1/2, xi+1/2] at time tn+1. This is illustrated
in Figure 3.9(a). The red dotted area corresponds to the interval that is integrated
over. Since ρ is not known at tn+1, the solution is obtained by (3.125). The second
possibility is pictured in Figure 3.9(b). If the integral is transformed by substitution,
the integral of ρ can be directly computed at time tn. The integration interval
changes to [ϕ(xi−1/2, tn+1,−∆t), ϕ(xi+1/2, tn+1,−∆t)].

xi−3/2 xi−1/2 xi+1/2
x

tn

tn+1

t

(a) Integration of ρ at time tn+1.

ϕ(xi−1/2, tn+1,−∆t) ϕ(xi+1/2, tn+1,−∆t)
x

tn

tn+1

t

(b) Integration of ρ at time tn.

Figure 3.9: Difference of time levels for the integration of ρ. The red dots symbolize the
integration interval. The bold lines are the trajectories ϕ(xi−1/2, tn+1,−t) and
ϕ(xi+1/2, tn+1,−t), respectively.

Under the additional assumption on u to be independent of time, we transform
the integral in (3.125) by substitution with

x = ϕ(η, tn, ∆t). (3.126)

66 the sasldg method

The substitution leads to

xi+1/2∫
xi−1/2

ρ(x, tn+1)dx =

ϕ−1(xi+1/2,tn+1,∆t)∫
ϕ−1(xi−1/2,tn+1,∆t)

ρ(ϕ(ϕ(η, tn, ∆t), tn+1,−∆t), tn)

· exp

 ∆t∫
0

− ∂

∂x
u(ϕ(ϕ(η, tn, ∆t), tn+1, t− ∆t))dt

· ∂

∂η
ϕ(η, tn, ∆t)dη

(3.127)

=

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(η, tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

· ∂

∂η
ϕ(η, tn, ∆t)dη .

(3.128)

Now we use the fact that

exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

 ∂

∂η
ϕ(η, tn, ∆t) = 1, (3.129)

which is proven in the appendix in Section A.2.
Hence, with means of the substitution in (3.125) we have obtained

xi+1/2∫
xi−1/2

ρ(x, tn+1)dx =

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(η, tn)dη . (3.130)

With the trajectory ϕ we can express the integral of the exact solution to the linear
advection equation. After the transformation ρ is evaluated at tn and corresponds
to Figure 3.9(b). Further, (3.130) shows that the integral of ρ is in fact conserved
between the boundaries of two trajectories. That property is shared with mass
conservative SL schemes. It corresponds to (2.149) for SL schemes.

This approach of computing the integral at time tn with (3.130) has two advan-
tages over using (3.125). The first one is that we do not need to compute the expo-
nential factor responsible for the change of density as in (3.125). That factor drops
out because it is the inverse of the derivative of ϕ. This improves the performance
of the method, as less is to be calculated. The other asset is of importance for the
conservation of the integral of density.

We assume that the density ρ at time tn is of polynomial form, which will be
the case in the following. Then, the integral of ρ at tn+1 is obtained by integrating
over the simple form of a polynomial if (3.130) is used. Before the substitution in
(3.125), the integral of ρ at tn+1 is computed from the integral over a function that
consists of a product of ρ, which is distorted by the argument ϕ and the factor of
the exponential function. The computation of the integral over a polynomial can be
performed more accurately, which leads to more accurate conservation.

Note, that in (3.130) the trajectories in the limit of the integral go backward in
time, compare to Remark 3.2.2. The details of these trajectories building the limits
of the integral are discussed in Section 3.6.

In Section 3.2 we derived the exact solution of the trajectories ϕ for a piecewise
linear velocity field. Thus, taking the exact solution ϕ to the ODE (3.18) with linear
u and the exact solution (3.124) to the ODE (3.3) describing the evolution of the
density, we obtain the result for the linear advection equation with piecewise linear
velocity. (3.125) as well as (3.130) yield the integral of the exact solution to the linear
advection equation (3.1).

3.4 the projection step 67

3.4 the projection step

In the previous sections we derived the exact solution to the linear advection equa-
tion for one time step under the assumption of a linear velocity field. To obtain
this solution we have studied the flow ϕ that describes the trajectories at which
the tracer travels along. The trajectories are the solution to the ODE (3.18). The
evolution of the density ρ can also be determined analytically by solving the ODE
(3.3). No approximations had been made, except for the series expansion of the
trajectories to avoid division by small numbers.

We assume ρ is given at time tn as a polynomial function for each grid cell. The
exact solution at time tn+1 can be computed. However, the resulting function is
no longer of polynomial form in general. A non-constant velocity field distorts the
originally polynomial distribution. Further, due to different grid cell sizes and an
arbitrary CFL number, many trajectories with different departure cells can end up
in one grid cell leading to a function that can only be piecewise defined. If such
a function is used as initial distribution for the next time step, the computation of
the exact solution is theoretically possible, but complicated. The projection step
enables the reuse of the algorithm to determine the solution of the next time step.
It transfers complicated piecewise defined distributions back into polynomial struc-
ture. The numerical solution deviates to the true analytical solution only because
of the projection step.

The density ρ is given in grid cell i at time tn in form of a polynomial of degree
two following Prather’s and van Leer’s ansatz,

ρi(x, tn) = mn
2,iK

(i)
2 (x) + mn

1,iK
(i)
1 (x) + mn

0,iK
(i)
0 (x), (3.131)

where the Legendre polynomials are used as a basis. They are given expressed in
local coordinates for the ith grid cell [0, ∆xi] by

K(i)
0 (x) = 1, (3.132)

K(i)
1 (x) =

2x
∆xi
− 1, (3.133)

K(i)
2 (x) =

6x2

∆x2
i
− 6x

∆xi
+ 1. (3.134)

Remark 3.4.1 Note that we discuss the numerical solution of the density ρ only. The
computation of the numerical results for the tracer density ρy is carried out in the same way.
Since ρ is defined as a polynomial function of degree two, the same holds for ρy. The tracer
y, obtained by division of the tracer density by the density, is a rational function.

If different numerical algorithms are applied for the advection of the density and the tracer,
inconsistencies can arise, see e.g. [30]. These can lead to spurious changes in mass, if not
treated additionally by special “fixing” as elaborated in [67].

The Legendre polynomials have the property to be L2-orthogonal

xi+1/2∫
xi−1/2

K(i)
j (x)K(i)

j (x)dx =
∆xi

2j + 1
. (3.135)

68 the sasldg method

The projection of the advected density ρ at time tn+1 for the interval
[xi−1/2, xi+1/2] takes the form

Pρi(x, tn+1)

=
2

∑
j=0

xi+1/2∫
xi−1/2

ρ(x, tn+1)K(i)
j (x)dx

xi+1/2∫
xi−1/2

K(i)
j (x)K(i)

j (x)dx
K(i)

j (x)
(3.136)

=
2

∑
j=0

2j + 1
∆xi

xi+1/2∫
xi−1/2

ρ(x, tn+1)K(i)
j (x)dx K(i)

j (x). (3.137)

To compute the integral in the projection (3.137), the unknown density ρ(x, tn+1)
at time tn+1 can either be replaced by (3.130) or it can be transferred to time tn

by applying the substitution (3.126), as shown in the previous section. The latter
option is preferred, because the computation of the exponential factor that arises if
the first choice is made, is avoided.

The result of the substitution inserted into the projection yields

Pρ(x, tn+1)

=
2

∑
j=0

2j + 1
∆xi

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(x, tn)K(i)
j (ϕ(x, tn, ∆t))dx K(i)

j (x).
(3.138)

As discussed in the previous section, the conservation of mass is guaranteed. We
have for the zeroth coefficient

mn+1
0,i =

1
∆xi

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(x, tn)dx . (3.139)

Even if the computation of the trajectory ϕ is erroneous, the overall conservation
of ρ over the domain Ω is maintained, as the exactness of the locations of the cell
boundaries do not play a role for the integral over Ω. Only the accuracy of the
integration is of importance, which is given because integration of a polynomial
can be done with high accuracy.

In Section 3.2 we observe that the trajectories take different forms depending on
the velocity field. The same cases that are derived above are applied in this section
as well. We distinguish between the cases of trajectories that remain within a grid
cell that cross at least one cell boundary without small coefficients and with small
coefficients and according approximations for positive and negative velocity.

We again observe Figure 3.1(b). The trajectories colored in red remain within a
grid cell and correspond to the red part of the analytical solution in Figure 3.2(b).
Respectively, the blue colored trajectories correspond to the blue part of the solution.
To compute the integral over a grid cell, the interval and thus the integral of that cell
is divided into these parts. We examine trajectories with arrival points at tn+1 in grid
cell i. If we assume that these trajectories have departure points in l different grid
cells, thus the domain of dependence of cell i covers l grid cells, i.e. the integral of
the ith cell is split up into l parts. Each of these integrals over subintervals contains
one form of trajectory. The boundaries of the subintervals and hence the limits of the
integrals are obtained by following the trajectories that start at cell boundaries that
are located between ϕ(xi−1/2,tn+1,−∆t) and ϕ(xi+1/2,tn+1,−∆t). Hence, these points

3.4 the projection step 69

are given by ϕ(xi−1/2−r,tn ,∆t) for some r that depends on the number of grid cells
crossed. The overall solution is given by assembling the solutions of all subintervals.

Pρi(x, tn+1)

=
2

∑
j=0

2j + 1
∆xi

(ϕ1∫
ϕ0

W1 dx +

ϕ2∫
ϕ1

W2 dx + · · ·+
ϕl∫

ϕl−1

Wl dx

)
K(i)

j (x)
(3.140)

=
2

∑
j=0

2j + 1
∆xi

ϕ1∫
ϕ0

W1 dx K(i)
j (x) +

2

∑
j=0

2j + 1
∆xi

ϕ2∫
ϕ1

W2 dx K(i)
j (x)

+ · · ·+
2

∑
j=0

2j + 1
∆xi

ϕl∫
ϕl−1

Wl dx K(i)
j (x),

(3.141)

where the integrand is abbreviated with Wq = ρ(x, tn)K(i)
j (ϕ(x, tn, ∆t)) for q =

1, . . . , l. The limits of the integral defined as ϕ0 = ϕ(xi−1/2, tn+1,−∆t) and ϕl =
ϕ(xi+1/2, tn+1,−∆t) are the same limits as in the projection (3.138), the other limits
in between are abbreviated accordingly.

xi−5/2 xi−3/2 xi−1/2 xi+1/2

ϕ(xi−1/2, tn+1,−∆t) ϕ(xi+1/2, tn+1,−∆t)

ϕ0 ϕ1 ϕ2 ϕ3

x

tn

tn+1

t

Figure 3.10: The interval [xi−1/2, xi+1/2] is divided into subintervals. The integral over each
subinterval contains one type of trajectory. The trajectories shown in this figure
form the boundaries for the subintervals.

Figure 3.10 shows how the interval of the ith grid cell is divided into subintervals.
In this example the solution of grid cell i at tn+1 is obtained by the solution at time
tn of three different grid cells, i.e. cell i, i − 1 and i − 2. Therefore, the integral is
split up into three integrals. The limits are given by ϕq = ϕ(xi+1/2−q, tn, ∆t) for
q = 1, . . . , 3, which are computed by following the trajectories that start at the cell
boundaries xi+1/2−q at time tn.

70 the sasldg method

Each summand of (3.141) contributes a part of the solution for grid cell i. The
summands are computed separately, because each of the trajectories in Wq is of a
different type,

2

∑
j=0

2j + 1
∆xi

ϕ1∫
ϕ0

Wq dx K(i)
j (x) =

2

∑
j=0

mn+1
j,i

∣∣∣
part

K(i)
j (x). (3.142)

In the following section we consider integrals that contain trajectories for positive
and negative velocity, which remain within one grid cell. The subsequent Section
3.4.2 examines the integral for the case when trajectories cross cell boundaries for
positive and negative velocity as well. In these two sections the assumption is made
that none of the coefficients, in particular the slope of the velocity, does not tend to
zero. Those cases with small ak are studied in Section 3.4.3 for positive velocity and
negative velocity, respectively.

3.4.1 Trajectory remaining in one grid cell

We study the part of the solution that is obtained by following trajectories that
remain within one grid cell, for example the red colored part shown in Figure
3.2(b).

The trajectories for positive velocity that end in the ith grid cell in the subinterval
[ϕ(xi−1/2, tn, ∆t), xi+1/2], or for negative velocity end in the subinterval
[xi−1/2, ϕ(xi+1/2, tn, ∆t)], respectively, and remain within that grid cell are given
by (3.19). Inserted into (3.138), we obtain for cell i and the jth coefficient,

mn+1
j,i

∣∣∣
part

=
2j + 1

∆xi

∫
ρ(x, tn)K(i)

j (ϕ(x, tn, ∆t))dx

=
2j + 1

∆xi

∫ (
mn

2,iK
(i)
2 (x) + mn

1,iK
(i)
1 (x) + mn

0,iK
(i)
0 (x)

)
·K(i)

j

(
eak∆t

(
bk
ak

+ x
)
− bk

ak

)
dx .

(3.143)

The integrand is a polynomial and can thus be easily integrated. This integral holds
for positive and negative velocity.

The red part of the solution shown in Figure 3.2(b) is obtained by means of eval-
uating (3.143).

3.4.2 Trajectory crossing cell boundaries

We examine the part of the solution that is obtained by following trajectories that
cross at least one cell boundary. An example is the blue colored part shown in
Figure 3.2(b).

Trajectories that cross at least one cell boundary are described by (3.44) for posi-
tive velocity and by (3.91) for negative velocity. Both are of the form

ϕ̃(η, tn, ∆t) = c1(c2η + 1)c3 − c4, for η ∈ [0, 1]. (3.144)

To obtain that form for positive velocity a substitution with the coordinate transfor-
mation (3.41), that is

x = ∆x0 − ∆x0η, (3.145)

is necessary. As described in Section 3.2, this form enables the series expansions for
small coefficients.

The trajectory for negative velocity is rescaled by

x = ∆x0η. (3.146)

3.4 the projection step 71

Because of these coordinate transformations, the trajectories for negative and posi-
tive velocity become of equal form and can be treated similarly.

To include the substitution applied in the case of positive velocity to the projection
(3.138), we first apply the coordinate transformation to the density ρ and introduce
suitable abbreviations. We then have

ρ̃(η) ≡ ρ(∆x0 − ∆x0η, tn)

= m2K(0)
2 (∆x0 − ∆x0η) + m1K(0)

1 (∆x0 − ∆x0η)

+m0K(0)
0 (∆x0 − ∆x0η)

= 6m2︸︷︷︸
c6

η2 + (−2m1 − 6m2)︸ ︷︷ ︸
c7

η + m0 + m1 + m2︸ ︷︷ ︸
c8

= c6η2 + c7η + c8.

(3.147)

The application of the substitution to the integral expression of the projection (3.138)
reads

Pρ(x, tn+1)

= −
2

∑
j=0

(2j + 1)
∆x0

∆xi

− ϕ(xi+1/2,tn+1,−∆t)
∆x0

+1∫
− ϕ(xi−1/2,tn+1,−∆t)

∆x0
+1

ρ̃(η)K(i)
j (ϕ̃(η, tn, ∆t))dη K(i)

j (x).

(3.148)

For negative velocity, the density is transformed by the rescaled coordinate and
given by

ρ̃(η) ≡ ρ(∆x0η, tn)

= 6m2︸︷︷︸
c6

η2 + (2m1 − 6m2)︸ ︷︷ ︸
c7

η + m0 −m1 + m2︸ ︷︷ ︸
c8

= c6η2 + c7η + c8.

(3.149)

The limits of the integral change to ϕ(xi+1/2,tn+1,−∆t)/∆x0 and ϕ(xi−1/2,tn+1,−∆t)/∆x0,
respectively. The structure of the integral is the same for positive and negative veloc-
ity, when we plug in the transformed density ρ̃ and the trajectories ϕ̃. We examine
the structure of the integrals for each coefficient.

mn+1
0,i

∣∣∣
part

= −∆x0

∆xi

∫
ρ̃(η)K(i)

0 (ϕ̃(η))dη

= −∆x0

∆xi

∫
c6η2 + c7η + c8 dη

(3.150)

mn+1
1,i

∣∣∣
part

= −3∆x0

∆xi

∫
ρ̃(η)K(i)

1 (ϕ̃(η))dη

= −3∆x0

∆xi

∫ 2
∆x

c1

(
c6η2 + c7η + c8

)
(c2η + 1)c3

+

(
−2c4

∆x
− 1
)(

c6η2 + c7η + c8

)
dη

(3.151)

mn+1
2,i

∣∣∣
part

= −5∆x0

∆xi

∫
ρ̃(η)K(i)

2 (ϕ̃(η))dη

= −5∆x0

∆xi

∫ 6
∆x2 c2

1(c6η2 + c7η + c8)(c2η + 1)2c3

−
(

12
∆x2 c1c4 +

6
∆x

c1

)
(c6η2 + c7η + c8)(c2η + 1)c3

+

(
6

∆x2 c2
4 +

6
∆x

c4 + 1
)(

c6η2 + c7η + c8

)
dη

(3.152)

72 the sasldg method

As mentioned before, the zeroth coefficient m0 is obtained by integration of a poly-
nomial. For the first and second coefficient, m1 and m2, the essential problem to
solve integrals is of the type

b∫
a

ηk (1 + c2η)p dη (k ∈ {0, 1, 2}), (3.153)

for p = jc3 with j ∈ {1, 2}. Recalling that c2 = −∆x0a0/u1, we observe that
c2 ∈ O (∆x0). Therefore, for small grid cells, the parameter takes small values
which can be enhanced near extremal points of the velocity where the slope a0 is
small. However, c2 can take large values as well. The size of c2 has influence on the
algorithm for solving the integral as we will study in the following.

The solution can be assembled with help of the subsequent expressions I1, I2 and
I3. We have for k = 0,

I0 =
∫ b

a
(1 + c2η)p dη

=
1
c2

(1 + c2η)p+1

p + 1

∣∣∣∣b
a

(3.154)

for the first expression. The multiplication of the integrand with η, i.e. k = 1 yields

I1 =
∫ b

a
η(1 + c2η)p dη (3.155)

= − (1 + c2η)p+2

c2
2(p + 1)(p + 2)

+
η(1 + c2η)p+1

c2(p + 1)

∣∣∣∣∣
b

a

(3.156)

=
1
c2

2

(1 + c2η)p+2

p + 2

∣∣∣∣∣
b

a

− I0

c2
(3.157)

and the last type of integral for k = 2 that needs to be solved is given by

I2 =
∫ b

a
η2(1 + c2η)p dη (3.158)

=
2(1 + c2η)p+3

c3
2(p + 1)(p + 2)(p + 3)

− 2η(1 + c2η)p+2

c2
2(p + 1)(p + 2)

+
η2(1 + c2η)p+1

c2(p + 1)

∣∣∣∣b
a

(3.159)

=
1
c3

2

(1 + c2η)p+3

p + 3

∣∣∣∣∣
b

a

− 2
I1

c2
+

I0

c2
2

(3.160)

(3.156) and (3.159) are obtained by direct integration by parts. The subsequent for-
mulations (3.157) and (3.160), respectively, are equivalent expressions and enable a
more direct evaluation of the integral. The first term of the reformulated expres-
sions can be computed by

b∫
a

(1 + cx)p−1 dx =
(cx + 1)p

cp

∣∣∣∣b
a

, (3.161)

the following terms use the values computed beforehand. To avoid division by zero
by the coefficient p, we obtain an approximation of the integral by series expansion

b∫
a

(1+cx)p−1 dx =
ln(cx + 1)

c
+

p ln2(cx + 1)
2c

+
p2 ln3(cx + 1)

6c

+
p3 ln4(cx + 1)

24c

∣∣∣∣∣
b

a

+O
(

p5
)

,

(3.162)

3.4 the projection step 73

for small p.
We have for each coefficient

mn+1
0,i

∣∣∣
part

=
c6

3
η3 +

c7

2
η2 + c8η (3.163)

for Ik for k = 0, 1, 2, p = c3 is used

mn+1
1,i

∣∣∣
part

=
2

∆xi
c1 (c6 I2 + c7 I1 + c8 I0)

+

(
− 2c4

∆xi
− 1
)(c6

3
η3 +

c7

2
η2 +

c8

3
η
)

=
2

∆xi
c1 (c6 I2 + c7 I1 + c8 I0) +

(
− 2c4

∆xi
− 1
)

mn+1
0,i

(3.164)

for I′k for k = 0, 1, 2, p = 2c3 is used

mn+1
2,i

∣∣∣
part

=−
(6

∆x2
i

c2
1
(
c6 I′2 + c7 I′1 + c8 I′0

)
+−

(
12

∆x2
i

c1c4 +
6

∆xi
c1

)
(c6 I2 + c7 I1 + c8 I0)

)
∆x0

+

(
6

∆x2
i

c2
4 +

6
∆xi

c4 + 1

)
mn+1

0,i

(3.165)

We consider the role of c2. As long as the value is not small, because either the grid
cell ∆x0 is not small or the slope a0 of the velocity in that cell is large, the evaluation
of the terms I0, I1 and I2 can be done as described above.

However, if c2 is small, we notice significant numerical errors evaluating above
expressions. We examine the term I2. The key issue transpires when we compare
(3.158) with (3.160): According to (3.158), I2 = O (1) as c2 → 0. The equivalent
formula in (3.160) instead involves terms of order O

(
c−3

2

)
, so that cancellation of

such large terms to third order in c2 is needed to get the net result down to order
O (1). Cancellation of significant digits upon subtraction of almost identical terms
seems pre-programmed this way.

Integrating (3.153) by parts once - the other way around as done above - we obtain

b∫
a

ηk(1+ c2η)p dη =
ηk+1

k + 1
(1 + c2η)p

∣∣∣∣∣
b

a

− c2
p

k + 1

b∫
a

ηk+1(1+ c2η)p−1 dη . (3.166)

This expression is clearly of order O (1) and subtractions of almost equal terms are
not involved any longer.

The last integral in (3.166) is of the same type as that in (3.153), albeit with a
different range for k, and repeated integration by parts yields an N-term expression
that reveals the c2-dependence of the entire formula

b∫
a

ηk(1 + c2η)p dη

=
N−1

∑
n=0

cn
2 (−1)n 1

p− n

(
n

∏
ν=0

p− ν

k + 1 + ν

)
ηk+1+n(1 + c2η)p−n

∣∣∣∣∣
b

a

+ (−1)NcN
2

(
N−1

∏
ν=0

p− ν

k + 1 + ν

) b∫
a

ηk+N(1 + c2η)p−N dη .

(3.167)

One potential remedy to our problem may be evaluation of (3.167) for some suffi-
ciently large N and neglect of the last term. This might appear like an asymptotic

74 the sasldg method

expansion. Nevertheless, all terms still retain their c2-dependence through the pow-
ers of (1 + c2η). The expression (1 + c2η)p ∈ O (1), and a as well as b are both in
O (1), too. Thus I0, I1 and I2 are in O (1). If these computations are done without
cancellation of important digits, the remainder of the computations of the projec-
tion step is computed without difficulties. The values c6 ∈ O

(
∆x2) , c7 ∈ O (∆x)

and c8 ∈ O (1). Thus, it holds c8 I0 ∈ O (1), c7 I1 ∈ O (∆x) and c6 I2 ∈ O
(
∆x2) and

these expressions are hence in different scales. Note, that for the implementation of
(3.167), we avoid the division by p− n as it can be equal to zero. This can be easily
done as the last factor of

n

∏
ν=0

p− ν

k + 1 + ν
(3.168)

is equal to p− n. Thus, we have

1
p− n

(
n

∏
ν=0

p− ν

k + 1 + ν

)
=

1
k + 1

(
n−1

∏
ν=0

p− ν

k + 2 + ν

)
. (3.169)

We have derived the projection for all cases where the velocity u or its slope does
not tend to zero. The case of the trajectories to remain within one grid cell as well as
the case of the trajectories crossing grid cell boundaries is discussed with numerical
issues that can arise.

Analogously to the derivation of the trajectories in 3.2, we have to study the cases
for the projection where coefficients of the trajectory tend to or are equal to zero.
That is done in the following.

3.4.3 Integration with small coefficients

In Section 3.2 we have seen that the trajectory ϕ̃ derived in (3.43) for positive velocity
and in (3.90) for negative velocity is not defined for the coefficients a0 = 0 and
an = 0. Therefore, alternative trajectories are derived that approximate the original
trajectory (see Section 3.2.4 for an overview of the different types of trajectories).
The question at which point to switch between the trajectory and its approximations
is open. If |a0| and |an| are smaller than some value ε, the alternative algorithm is
chosen. In numerical tests, the value ε = 0.5 seems to be a suitable choice. It is used
for all numerical computations of the SASLDG method in this thesis.

We study the coefficients mn+1
0,i , mn+1

1,i and mn+1
2,i individually of the projection

(3.148). The first coefficient is given by

mn+1
0,i

∣∣∣
part

=
∫

ρ̃(x)dx

=
∫

c6x2 + c7x + c8 dx .
(3.170)

The coefficients mn+1
1,i and mn+1

2,i yield

mn+1
1,i

∣∣∣
part

=
∫

ρ̃(x)K1(ϕ̃(x, tn, ∆t))dx

=
∫ (

c6x2 + c7x + c8

)(2
∆xi

ϕ̃(x, tn, ∆t)− 1
)

dx ,
(3.171)

and

mn+1
2,i

∣∣∣
part

=
∫

ρ̃(x)K2(ϕ̃(x, tn, ∆t))dx

=
∫ (

c6x2 + c7x + c8

)(6
∆x2

i
ϕ̃2(x, tn, ∆t)

− 6
∆xi

ϕ̃(x, tn, ∆t) + 1
)

dx .

(3.172)

3.4 the projection step 75

The first coefficient mn+1
0,i can be determined easily, because the necessary compu-

tation is integration over a quadratic polynomial. The coefficients mn+1
1,i and mn+1

2,i
need more consideration. We note that ϕ̃ is in the argument of K2 and therefore ϕ̃2

is needed for the computations and needs to be determined as a first step for all
cases of |a0| < ε, |an| < ε and the case |a0| and |an| being small.

As mentioned above, all cases lead to different forms of trajectories. Therefore,
the integrals are computed in different ways as well. The limits of integration are
discussed in Section 3.6. In this part we use general placeholders xL and xR, which
are in [0, 1]. Note that ρ̃ is defined by (3.147) for positive velocity and by (3.149) for
negative velocity.

In the following we will recall the type of the respective trajectory for each case.
Then, we will derive an approximative form of the square of the trajectory. We
discuss how the integral is solved. In the process we consider numerical difficulties
that arise and show the resolutions how to deal with them.

Positive velocity: |a0| < ε

We derived the trajectory for positive velocity and small coefficient a0 in Section
3.2.1. We found an abbreviated form that is given by (3.61),

ϕ̃(x, tn, ∆t) = d1 exp(d2x)
(

1 + d3x2 + d4x3 + d5x4 + d6x5

+d7x6
)
+ d8.

(3.173)

To obtain the square of the trajectory either the square of the expanded form of
ϕ̃ in (3.173) is determined or the original trajectory given in (3.43) is first squared
and then approximated by a series expansion about a0 = 0. The first choice leads
to a multiplication by a polynomial factor with degree 12, the latter option yields a
polynomial of degree 6, which is the same degree as in the factor in (3.173). Hence,
the second choice is preferred. The derived expression of ϕ̃2 is found in the ap-
pendix in (A.20). We show the abbreviated form, where the abbreviations of (3.61)
are reused. We obtain

ϕ̃2(x, tn, ∆t) = g1 exp(g2x)
(

1 + g3x2 + g4x3 + g5x4 + g6x5 + g7x6
)

+2d8d1 exp(d2x)
(

1 + d3x2 + d4x3 + d5x4 + d6x5 + d7x6
)
+ g8

(3.174)

for suitable coefficients gj for j = 1, . . . , 8.

For the computation of (3.171) and (3.172) we insert the abbreviated forms of ϕ̃
and ϕ̃2. For the coefficient mn+1

1,i we obtain

mn+1
1,i

∣∣∣
part

=
∫ 2

∆xi

(
c6x2 + c7x + c8

) (
d1 exp(d2x)

(
1 + d3x2

+d4x3 + d5x4 + d6x5 + d7x6
))

+

+
(

c6x2 + c7x + c8

)(2
∆xi

d8 − 1
)

dx .

(3.175)

76 the sasldg method

The coefficient mn+1
2,i yields

mn+1
2,i

∣∣∣
part

=
∫ 6g1

∆x2
i
(c6x2 + c7x + c8) exp(g2x)

(
1 + g3x2 + g4x3

+g5x4 + g6x5 + g7x6
)
+

−
(

12
∆x2

i

un

an
+

6
∆xi

)
(c6x2 + c7x + c8)d1 exp(d2x)

·
(

1 + d3x2 + d4x3 + d5x4 + d6x5 + d7x6
)

+

(
6

∆x2
i
+ 1

)(
c6x2 + c7x + c8

)
dx .

(3.176)

In order to compute the integral of (3.175) and (3.176), the task is to compute
integrals of the following form

xR∫
xL

xk exp(d2x)dx (3.177)

for k = 0, 1, . . . , 6. When we solve the integral analytically, the solution is obtained
by integration by parts - integrating the expression exp(d2x) and differentiating the
monomial factor xk. That leads to the solution

xR∫
xL

xk exp(d2x)dx =
k+1

∑
j=1

(−1)j+1

(
k

∏
ν=k−j+2

ν

)
1

dj
2

xk−j+1 exp(d2x)

∣∣∣∣∣
xR

xL

. (3.178)

The coefficient d2 plays a role for the numerical evaluation of the integral. It can be
of arbitrary size, small or large, depending on the given velocity,

d2 = − an∆x0

u1
. (3.179)

The coefficient an is assumed to be not small in this case, otherwise both coeffi-
cients a0 and an would be small (|a0| < ε throughout this section). The problem of
both coefficients being small is handled in the following section. However, the size
of ∆x0 and u1 are arbitrary, which determines the size of d2.

If we want to find the behavior and the order of the solution of the integral for
small d2, we apply a Taylor expansion about the point d2 = 0 to the exponential
function. We have

xR∫
xL

xk exp(d2x)dx =

xR∫
xL

∞

∑
j=0

dj
2xk+j

j!
dx (3.180)

= O (1) , (3.181)

for small d2.
One problem becomes obvious when considering (3.178). The division by dk+1

2 , if
d2 is small, causes cancellation in the whole expression. We examine the solution of
the integral for the summand (k + 1) thoroughly without the prefactor. It is given
by

1
dk+1

2

exp(d2x)

∣∣∣∣∣
xR

xL

=
1

dk+1
2

exp(d2xR)−
1

dk+1
2

exp(d2xL)

=
1

dk+1
2

(exp(d2xR)− exp(d2xL)) .

(3.182)

3.4 the projection step 77

For small d2 both numbers - the minuend and subtrahend - are both very large
numbers and as the whole integral is of order one, they must be almost equally
sized. Hence, loss of significance occurs. More precisely, it can be seen at which
size of d2 the problem of cancellation arises and of which order the error is.

To see that, we apply a Taylor expansion to the exponential functions about d2 = 0
in (3.182) and obtain

exp(d2xR)− exp(d2xL) =

(
1 + d2xR +

1
2
(d2xR)

2 + . . .

−
(

1 + d2xL +
1
2
(d2xL)

2 + . . .
))

= d2 (xR − xL) + d2
2

(
1
2

x2
R −

1
2

x2
L

)
+ . . .

(3.183)

To estimate the numerical error, that is made in (3.182), we note on the number
representation in MATLAB. The IEEE-754 norm is used and the double-precision
floating points are stored in 64 bits. 52 bits for the mantissa, 11 for the exponent
and one bit for the sign. This yields N = 16 significant digits for the representation
of an arbitrary number in the decimal numeral system.

We write the factor d2 as

d2 = 0, ︸︷︷︸
a−1

0000︸ ︷︷ ︸
N−(a−1)

x1x2x3 . . . (3.184)

= x1, x2x3 . . . · 10−5 (3.185)

= D · 10−a (3.186)

with

D = x1, x2x3 . . . (3.187)

and with xk for k = 1, 2, . . . are arbitrary digits. The number of zeros is a− 1.
Studying the first summand in (3.183), we note that the first N − (a− 1) digits of

the difference d2(xR − xL) are correctly represented, but an error is introduced at
the digit N − (a− 1) + 1, because of the factor d2. This error can be estimated by

err ∼ 10−(N−(a−1)+1). (3.188)

The other summands in (3.183) are of smaller order and therefore contribute less to
the overall error. At (3.182) division by dk+1

2 enlarges the error even more to

err ∼ 10−(N−(a−1)+1)

dk+1
2

=
10−(N−(a−1)+1)

Dk+110−a(k+1)
. (3.189)

To specify a reasonable bound for the error, we set

err = TOL (3.190)

for some error tolerance given. We have

TOL =
10−(N−(aTOL−1)+1)

dk+1
2

=
10−(N−(aTOL−1)+1)

Dk+110−aTOL(k+1)
. (3.191)

and solve for a, and obtain

aTOL =

ln(TOL·Dk+1)
ln(10) + 2 + N

k + 2
. (3.192)

For all a > aTOL, the error tolerance is exceeded. Thus, the bound for d2 is given by

δ ∼ 10−aTOL . (3.193)

78 the sasldg method

The numerical error introduced in (3.178) because of cancellation is bounded by
TOL, if d2 > δ. Depending on how sharp and exact the bound should be computed,
D can either be simply set to one or it can be computed by D = d210a, where
a = −blog10(d2)c is the order of d2. We can plug in N = 16 and the maximum
number for k, which is k = 6. If we set D = 1 and TOL = 10−10, then the order of
the bound is

aTOL = 1. (3.194)

This yields a bound for d2 of

δ = 0.1. (3.195)

If d2 < δ it is not advisable to use the analytical formula given in (3.178) to
evaluate the integral as the error exceeds a given tolerance. A different algorithm
must be used.

The solution to the problem for small d2 < δ is again integration by parts. How-
ever, this time we integrate xk and differentiate exp(d2x). It is not determined how
many times the integration by parts takes place. It is applied as many times until
the cutoff error drops below ∆x2. We assume the iterative process is applied N
times,

xR∫
xL

xk exp(d2x)dx =
N

∑
j=1

(−1)j+1

(
j

∏
ν=1

1
k + ν

)
dj−1

2 xk+j exp(d2x)

∣∣∣∣∣
xR

xL

+ (−1)N

(
N

∏
ν=1

1
k + ν

)
dN

2

xR∫
xL

xk+N exp(d2x)dx .

(3.196)

The cutoff error of the last term, i.e. the integral, can be estimated by expanding the
exponential function.

xR∫
xL

(
N

∏
ν=1

1
k + ν

)
dN

2 xk+N exp(d2x)dx

=

xR∫
xL

(
N

∏
ν=1

1
k + ν

)
dN

2 xk+N

(
∞

∑
i=0

(d2x)i

i!

)
dx

=

xR∫
xL

(
N

∏
ν=1

1
k + ν

)
dN

2

(
∞

∑
i=0

di
2xk+N+i

i!

)
dx

=

(
N

∏
ν=1

1
k + ν

)
dN

2

(
∞

∑
i=0

di
2xk+N+i+1

i!(k + N + i + 1)

)∣∣∣∣∣
xR

xL

≤ |d2|N
(

∞

∑
i=0
|d2|ixk+N+i+1

)∣∣∣∣∣
xR

xL

= O
(

dN
2

)

(3.197)

Thus, N is chosen such that
∣∣dN

2

∣∣ < ∆x2 to maintain the order of accuracy of the
numerical method.

Summarized, depending on the size of |d2|, either the integrals are computed
exactly or they are solved approximately while controlling the size of the approxi-
mation error and keeping it small enough. In both ways, the computations are not
affected by cancellation of significance digits.

3.4 the projection step 79

Positive velocity: |an| < ε

The trajectory that crosses at least one grid cell boundary proceeds forward in time
and is suitable for a small coefficient an is given in (3.69). We recall

ϕ̃(x, tn, ∆t) = d1 + d2 ln (d6x + 1) + d3 ln2(d6x + 1)

+d4 ln3(d6x + 1) + d5 ln4(d6x + 1)
(3.198)

=
5

∑
i=1

di lni−1 (d6x + 1) . (3.199)

We have to determine the coefficients m0,i, m1,i and m2,i at time tn+1. For mn+1
2,i ,

we need to determine ϕ̃2 for small an. We start with the form of ϕ̃ given in (3.43),
compute the square and carry out a Taylor expansion about an = 0. The complete
formula is given in the appendix in (A.21). Using suitable abbreviation, we have

ϕ̃2(x, tn, ∆t) = e1 + e2 ln(d6x + 1) + e3 ln(d6x + 1)2

+e4 ln(d6x + 1)3 + e5 ln(d6x + 1)4

+e6 ln(d6x + 1)5

(3.200)

=
6

∑
i=1

ei lni−1 (d6x + 1) . (3.201)

We insert the approximations of ϕ̃ and ϕ̃2 into the equations to compute (3.171) and
(3.172), and obtain

mn+1
1,i

∣∣∣
part

=
∫ (

c6x2 + c7x + c8

)
·
(

2
∆xi

(
5

∑
i=1

di lni−1 (d6x + 1)

)
− 1

)
dx ,

(3.202)

and

mn+1
2,i

∣∣∣
part

=
∫ (

c6x2 + c7x + c8

)(6
∆x2

i

(
6

∑
i=1

ei lni−1 (d6x + 1)

)

− 6
∆xi

(
5

∑
i=1

di lni−1 (d6x + 1)

)
+ 1

)
dx .

(3.203)

This ends up to solve these types of integrals

xR∫
xL

xk lnl (d6x + 1)dx , where k ∈ {0, 1, 2}, l ∈ {1, 2, . . . , 5}. (3.204)

The case l = 0 is trivial and needs no further discussion. Before we compute
the integrals, the coefficient d6 needs some attention as it determines the way the
integrals are solved. Generally, d6 can take any value

d6 = − a0

u1
∆x0. (3.205)

We can assume a0 is not small. Because if otherwise, then both |a0| and |an| would
be small (|an| < ε is assumed for this section). The case of both coefficients being
small is handled in the next section. However, even with a0 assumed not to be small,
∆x0 can be small, which would result in a small |d6|. The velocity u1 at the grid cell
boundary also influences the size of d6.

If |d6| > δ for some suitable δ, the integrals can be solved in the straight forward
and stable way by integration by parts.

80 the sasldg method

However, if |d6| is small, this algorithm leads to numerical instabilities caused by
cancellation. We pick out one integral to discuss the possible cancellation exemplar-
ily,

∫
x2 ln(d6x + 1)2 dx = (3.206)(

18d3
6x3 + 18
54d3

6

)
ln(d6x + 1)2 (3.207)

−
12d3

6x3 − 18d2
6x2 + 36d6x + 66
54d3

6
ln(d6x + 1) (3.208)

+
4d3

6x3 − 15d2
6x2 + 66d6x

54d3
6

. (3.209)

A Taylor expansion of the integral in (3.206) about d6 = 0 reveals the order of the
result. We have

∫
x2 ln(d6x + 1)2d6x =

x5d2
6

5
−

x6d3
6

6
+

11x7d4
6

84
−

5x8d5
6

48
+O

(
d6

6

)
= O

(
d2

6

) (3.210)

Further expansions show the order of individual expressions. If we consider the
last term in (3.208), we find

− 66
54 d3

6
ln(d6x + 1) = −11x

9d2
6
+

11x2

18d6
− 11x3

27
+

11x4d6

36

−
11x5d2

6
45

+
11x6d3

6
54

+O
(

d4
6

)
= O

(
− 1

d2
6

)
.

(3.211)

It turns out to be the largest term for small |d6| in the integral and of order O
(
1/d2

6
)
.

To get down to the final order of the whole integral (3.206), there is another large
term of the same order, which is the last term in (3.209),

66 d6x
54 d3

6
=

11x
9d2

6
= O

(
1
d2

6

)
. (3.212)

For small d6 the first cancellation occurs exactly at the subtraction of these two
large terms. After these terms are cancelled, the second largest terms are of order
O (1/d6). The first one is revealed by a Taylor expansion of (3.207),

18 d3
6 x3 + 18
54 d3

6
ln (d6x + 1)2 =

x2

3d6
− x3

3
+

11x4d6

36
+

x5d2
6

18

−
43x6d3

6
540

+
13x7d4

6
180

+O
(

d5
6

) (3.213)

= O
(

1
d6

)
. (3.214)

3.4 the projection step 81

After a Taylor expansion of the sum of (3.208) and (3.209), the corresponding term
of the same order appears

−
12d3

6 x3 − 18 d2
6 x2 + 36 d6x + 66
54 d3

6
ln (d6x + 1)

+
4 d3

6 x3 − 15 d2
6 x2 + 66 d6x

54 d3
6

= − x2

3d6
+

x3

3
− 11x4d6

36
+

13x5d2
6

90
−

47x6d3
6

540
+O

(
d4

6

)
(3.215)

= O
(

1
d6

)
. (3.216)

The results of (3.213) and (3.215) are equal up to order O
(
d2

6
)

with opposite signs.
The sum of these terms yields the complete indefinite integral. Thus, for each
summand, cancellation takes place.

A solution to avoid these instabilities due to loss of significant digits is to use d6
as a bound. If |d6| ≤ δ, we apply the reversed integration by parts to compute the
integrals. The choice of δ = 0.005 turned out to be a practical bound.

We show the procedure for l = 1 and for l = 2, all other cases follow analogously.
We have for l = 1,

∫
xk ln (d6x + 1)dx =

1
k + 1

xk+1 ln(d6x + 1)

−
r

∑
j=1

1
(k + 1 + j)!

xk+1+j (j− 1)!dj
6

(d6x + 1)j

−
∫ 1

(k + 1 + r)!
xk+1+r r!dr+1

6
(d6x + 1)r+1 dx

(3.217)

To approximate the integral in (3.217), we build the sum over the first r summands
and cut off the remaining integral. The error estimation of omitting the integral is
given by

xR∫
xL

1
(k + 1 + r)!

xk+1+r r!dr+1
6

(d6x + 1)r+1 dx

≤
xR∫

xL

∣∣∣∣ 1
(k + 1 + r)!

xk+1+r
∣∣∣∣
∣∣∣∣∣ r!dr+1

6
(d6x + 1)r+1

∣∣∣∣∣dx

(3.218)

≤
1∫

0

∣∣∣∣∣ r!dr+1
6

(d6x + 1)r+1

∣∣∣∣∣dx (3.219)

=

∣∣∣∣ (r− 1)!dr
6

(d6 + 1)r

∣∣∣∣− |(r− 1)!dr
6| (3.220)

= O (dr
6) . (3.221)

Thus, the error that occurs is O
(
dr

6
)
. Therefore, the number of summands r is

chosen in such a way to guarantee a cut off error of dr
6 < ∆x2. Further, a general

82 the sasldg method

minimum amount of summands is used to compute the integral. We examine the
case l = 2.∫

xk ln2 (d6x + 1)dx

=
1

k + 1
xk+1 ln2(d6x + 1)

+
r

∑
j=1

(−1)j 1
(k + 1 + j)!

xk+1+j dj
6(aj ln(d6x + 1) + bj)

(d6x + 1)j

+
∫
(−1)r+1 1

(k + 1 + r)!
xk+1+r dr+1

6 (ar+1 ln(d6x + 1) + br+1)

(d6x + 1)r+1 dx ,

(3.222)

with

aj = 2(−1)j+1(j− 1)! (3.223)

bj = 2(−1)j
j−1

∑
i=1

(j− 1)!
i

. (3.224)

A similar estimation as above leads to the following error estimate,

xR∫
xL

1
(k + 1 + r)!

xk+1+r dr+1
6 (ar+1 ln(d6x + 1) + br+1)

(d6x + 1)r+1 dx

≤
xR∫

xL

∣∣∣∣ 1
(k + 1 + r)!

xk+1+r
∣∣∣∣
∣∣∣∣∣dr+1

6 (ar+1 ln(d6x + 1) + br+1)

(d6x + 1)r+1

∣∣∣∣∣dx

(3.225)

≤
1∫

0

∣∣∣∣∣dr+1
6 (ar+1 ln(d6x + 1) + br+1)

(d6x + 1)r+1

∣∣∣∣∣dx (3.226)

=

∣∣∣∣−dr
6(ar+1 ln(d6x + 1) + rbr+1 + ar+1)

r2(d6x + 1)r

∣∣∣∣ (3.227)

= O (dr
6) . (3.228)

The computation for all other integrals for the cases for k ∈ {0, 1, 2} and l ∈
{1, 2, . . . , 5} follow analogously.

Positive velocity: |a0| < ε and |an| < ε

The trajectory derived for positive velocity, and small coefficients |a0| and |an| in the
departure and arrival cell, is given by (3.79) and repeated

ϕ̃(x, tn, ∆t) =
6

∑
i=1

dixi−1. (3.229)

Similarly, the trajectory ϕ̃2 is determined and approximated by a series expansions
about a0 = 0 and an = 0. The complete form is given in the appendix in (A.23) and
abbreviated by

ϕ̃2(x, ∆t) =
7

∑
i=1

eixi−1. (3.230)

Thus, the computation needed for the coefficient mn+1
1,i leads to the integral

mn+1
1,i

∣∣∣
part

=
∫ (

c6x2 + c7x + c8

)(2
∆xi

(
6

∑
i=1

dixi−1

)
− 1

)
dx . (3.231)

3.4 the projection step 83

For the coefficient mn+1
2,i , we have to solve

mn+1
2,i

∣∣∣
part

=
∫ (

c6x2 + c7x + c8

)(6
∆x2

i

(
7

∑
i=1

eixi−1

)

− 6
∆xi

(
6

∑
i=1

dixi−1

)
+ 1

)
dx .

(3.232)

The computation of the integrals in (3.231) and (3.232) is integration over a polyno-
mial of degree nine.

Negative velocity: |a0| < ε

The case of negative velocity and a small coefficient |a0| in the starting cell of a
trajectory ϕ̃ is treated analogously to the case of small |a0| and positive velocity.

The trajectories take the same form with different coefficients. The trajectory for
negative velocity is described in (3.105) and given by

ϕ̃(x, tn, ∆t) = d1 exp(d2 x)(1 + d3x2 + d4x3 + d5x4 + d6x5

+d7x6) + d8.
(3.233)

The approximation to the square of the trajectory is listed in the appendix in (A.26).
The abbreviation with the respective coefficients dk and gk reads

ϕ̃2(x, tn, ∆t) = g1 exp(g2x)(1 + g3x2 + g4x3 + g5x4 + g6x5

+g7x6) + 2d8d1 exp(d2x)(1 + d3x2 + d4x3

+d5x4 + d6x5 + d7x6) + g8.

(3.234)

The coefficients d2 and g2 that determine the way of the evaluation of the integral
are given by

d2 =
an∆x0

u0
(3.235)

and

g2 = 2
an∆x0

u0
. (3.236)

Thus, depending on their size, the coefficients mn+1
0,i , mn+1

1,i and mn+1
2,i are solved

using direct integration by parts as in (3.178) or repeated reversed integration by
parts described in (3.196), where the last integral term is omitted, when the cutoff
error is small enough.

Negative velocity: |an| < ε

The trajectory for negative velocity and a small coefficient |an| in the arrival grid
cell is given by (3.111). The abbreviation of the trajectory reads

ϕ̃(x, tn, ∆t) =
5

∑
k=1

dk ln(d6x + 1)k−1. (3.237)

with according coefficients dk. The square of the trajectory is approximated by a
series expansion as well as written in the appendix in (A.28). The short form is
given by

ϕ̃2(x, tn, ∆t) = e1 + e2 ln(d6x + 1) + e3 ln(d6x + 1)2 + e4 ln(d6x + 1)3

+ e5 ln(d6x + 1)4 + e6 ln(d6x + 1)5.
(3.238)

84 the sasldg method

To determine the solution of the coefficients mn+1
0,i , mn+1

1,i and mn+1
2,i for the solution

of the SASLDG time step the integrals in (3.170), (3.171) and (3.172) have to be
computed. To do so, depending on the size of the coefficient d6, given by

d6 =
∆x0a0

u0
, (3.239)

the integrals are solved by integration by parts either directly, leading to the analyt-
ically correct solution or in reversed direction as shown in (3.217), which approx-
imates the solution. The numerical problem, which arises because of cancellation,
the exact procedure of the computation and the discussion of the remedy are eluci-
dated in the previous section for positive velocity and small coefficient an.

Negative velocity: |a0| < ε and |an| < ε

The trajectory derived for negative velocity, and small coefficients |a0| and |an| in
the starting and arrival cell, is given by (3.116) and repeated

ϕ̃(x, tn, ∆t) =
6

∑
i=1

dixi−1. (3.240)

Similarly, the trajectory ϕ̃2 determined and approximated by a series expansions
about a0 = 0 and an = 0. The complete form is given in the appendix in (A.30) and
abbreviated by

ϕ̃2(x, tn, ∆t) =
7

∑
i=1

eixi−1 (3.241)

Thus, the computation needed for the coefficient mn+1
1,i leads to the integral

mn+1
1,i

∣∣∣
part

=
∫ (

c6x2 + c7x + c8

)(2
∆xi

(
6

∑
i=1

dixi−1

)
− 1

)
dx . (3.242)

For the coefficient mn+1
2,i , we have to solve

mn+1
2,i

∣∣∣
part

=
∫ (

c6x2 + c7x + c8

)(6
∆x2

i

(
7

∑
i=1

eixi−1

)

− 6
∆xi

(
6

∑
i=1

dixi−1

)
+ 1

)
dx .

(3.243)

The computation of the integrals in (3.242) and (3.243) is integration over a polyno-
mial of degree nine.

3.5 the overall algorithm
As mentioned in the preview in Section 3.1, the SASLDG method consists of the
main steps computation of the trajectories, determination of the analytical solution,
and the projection step. The assembling of the trajectories is discussed in Section
3.2, the analytical solution is found in 3.3, and the projection step is elucidated in
Section 3.4. In this Section we explain the procedure of the algorithm. The limits of
integration are provided in Section 3.6.

Before the solution to the advection equation can be computed, the trajectories
need to be assembled and the domain of dependence must be known. In order
to determine these, the type of the trajectories must be known for the current grid
cell. The trajectories take different forms depending on the velocity distribution,

3.5 the overall algorithm 85

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(a) Positive velocity distribution.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(b) Domain of dependence consists of the i−
1th and the ith grid cell.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(c) Negative velocity distribution.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(d) Domain of dependence consists of the ith
and the i + 1th grid cell.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(e) Velocity distribution changing from posi-
tive to negative.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(f) Domain of dependence consists of the
i − 1th, the ith and the i + 1th grid cell.
The red trajectory marks the zero velocity
point.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

(g) Velocity distribution changing from nega-
tive to positive.

xi−3/2 xi−1/2 xi+1/2 xi+3/2
x

tn

tn+1

t

(h) Domain of dependence consists of the ith
grid cell only. The red trajectory marks
the zero velocity point.

Figure 3.11: Different scenarios of the velocity distributions with according trajectories, re-
sulting in different domains of dependence between the bold blue printed tra-
jectories.

86 the sasldg method

i.e. positive or negative velocity, and on the number of involved grid cells. To
find the correct type of trajectory, the algorithm of the SASLDG method checks
the velocity of each grid cell as a first step: the velocity can be positive, negative,
positive changing to negative and negative changing to positive. These possibilities
along with the according trajectories are depicted in Figure 3.11. If the velocity
is strictly positive in grid cell i as plotted in Figure 3.11(a), then the according
trajectories in Figure 3.11(b) go to the left when followed backward in time. In
this example the domain of dependence consists of the grid cells i and i − 1. For
strictly negative velocity, as shown in Figure 3.11(c), the trajectories go to the right,
if followed backward in time. This implies a domain of dependence of grid cells i
and i + 1 in this example. The velocity in grid cell [xi−1/2, xi+1/2] can change from
positive to negative values, see Figure 3.11(e). The trajectories with endpoint in
such a grid cell depart from the left and right neighboring grid cells. In the example
illustrated in Figure 3.11(f) the domain of dependence consists of three grid cells,
i.e. grid cell i− 1, i and i + 1. The scenario shown in Figure 3.11(g) gives an example
for a velocity distribution changing from negative to positive velocity. All according
trajectories remain within the ith grid cell as depicted in Figure 3.11(h). Thus, the
domain of dependence lies within this grid cell.

After the determination of the domain of dependence and the corresponding
trajectories the projection step takes place. The thorough discussion of the determi-
nation of the limits of integration needed in the projection step is conducted in the
next section.

The algorithm for each time step of the SASLDG method can be summarized as
follows.

(i) Determine the type of trajectory. Check, if

(i) the velocity is strictly positive.

(ii) the velocity is strictly negative.

(iii) the velocity has positive slope and a root.

(iv) the velocity has negative slope and a root.

(ii) Find domain of dependence of the ith grid cell.

(iii) Compute the departure points

x0,left = ϕ(xi−1/2, tn+1,−∆t), (3.244)

and

x0,right = ϕ(xi+1/2, tn+1,−∆t). (3.245)

(iv) Loop over all grid cells between the points x0,left and x0,right:

(i) Construct trajectory with departure point in current grid cell.

(ii) Evolve density of the current grid cell along the trajectory to end point
at time ∆t.

(iii) Determine limits of integration of the current grid cell for the projection
step.

(iv) Project density distribution onto a polynomial of degree two.

3.6 limits of integration
The limits of integration that are part of the projection step which is described in
Section 3.4, depend on the velocity field u and on the time step size. As illustrated

3.6 limits of integration 87

in Figure 3.10, to compute the result of the projection step for the ith grid cell, the in-
terval [xi−1/2, xi+1/2] is divided into subintervals. The projection is computed from
values of the density or the tracer at time tn. Therefore, the trajectories are followed
backward in time and the complete interval that is integrated over, which possibly
contains multiple grid cells, is given by [ϕ(xi−1/2, tn+1,−∆t), ϕ(xi+1/2, tn+1,−∆t)].
The form of the trajectory depends on the number of grid cells that are passed and
whether coefficients ak are close or equal to zero. In this section, we describe all
possible scenarios and list the according limits of integration.

Positive velocity

We begin with the two principal types of trajectories that can occur, i.e. the trajectory
that remains within a grid cell and the trajectory that crosses at least one grid cell
boundary. So far, these were derived for following a tracer forward in time. The
inverse case, which means going backward in time, is given here. A trajectory that
remains within the ith grid cell which is the inverse to (3.19), takes the form

ϕ(x, tn+1,−∆t) = e−ai∆t
(

bi
ai

+ x
)
− bi

ai
. (3.246)

The equation describing the trajectory going backward in time is the same as going
forward in time apart, from the change of the sign. The existence is provided by
Remark 3.2.2.

The trajectory that passes through at least two grid cells and proceeds in back-
ward direction is given by

ϕ(x, tn+1,−∆t) =
u1

a0
exp (a0(T − ∆t))

(
an

un
x + 1

) a0
an
− u0

a0
, (3.247)

for x ∈ [0, ∆xn]. The trajectory ϕ in (3.247) forms the inverse to ϕ in (3.40). It
can be computed directly by inversion of (3.40), or similarly to the derivation in
Section 3.2.1 with a different ansatz proceeding in the reversed direction. Note
that the labeling of the local indices does not change its order when the inverse
is computed. That means that the trajectory going backward in time starts at the
departure cell labeled with index n and ends in the arrival cell with index zero.

The algorithm of the SASLDG method detects if a limit of the integration lies
within the arrival cell. If that is the case, the limits are given by

ϕL = 0

ϕR =
1

∆x0

(
un+1

an
exp(−an∆t)− un

an

)
.

(3.248)

If an is small or equal to zero, a series expansion about the point an = 0 is carried
out, exactly as for the computation of the trajectories in general. Then, the resulting
limits yield

ϕL = 0

ϕR =
1

∆x0

(
∆x0 + (an∆x0 + un)

(
− ∆t +

1
2

an∆t2

−1
6

a2
n∆t3 +

1
24

a3
n∆t4

))
,

(3.249)

where the higher order terms are omitted. In the limiting case of an → 0, the upper
limit ϕR equals

ϕR = ∆x0 − un∆t. (3.250)

This case of constant velocity in grid cell i equals the assumptions of the SOM
method. The interval [0, ∆x0 − un∆t] is the same as the interval denoted by VL of
the SOM method, which represents the part that remains within the ith grid cell.

88 the sasldg method

xi−5/2 xi−3/2 xi−1/2 xi+1/2

x

tn

tn+1

t

(a) The limits of integration of the red and blue marked intervals are computed from (3.247), the
green one from (3.246). The three intervals build the domain of dependence for the ith grid
cell.

xi−5/2 xi−3/2 xi−1/2 xi+1/2
x

tn

tn+1

t

(b) The limits of integration are computed
from (3.247). The domain of dependence
is included in one cell.

xi−5/2 xi−3/2 xi−1/2 xi+1/2
x

tn

tn+1

t

(c) The limits of integration are computed
from (3.247). The marked interval is the
last part of the domain of dependence.

Figure 3.12: Limits of integration.

An example for a limit of integration that lies in grid cell i is shown in Figure 3.12.
The interval marked with green circles in Figure 3.12(a) is described by the limits in
(3.248).

All other limits of integration are defined by trajectories that cross at least one
grid cell boundary given by (3.247). These are determined by the following case
environment. Let l be the total number of grid cells that are included in the domain
of dependence for the ith grid cell. The variable k = 1, . . . , l denotes the counter
that indicates the cell of which the integral is computed. All limits of integration
are listed in transformed form because of the substitution applied in (3.41).

3.6 limits of integration 89

They yield

• if l = 1, i.e. the domain of dependence is included within one grid cell, illus-
trated in Figure 3.12(b)

ϕL = − 1
∆x0

(
u1

a0
exp(a0 (TL − ∆t))− u0

a0

)
+ 1

ϕR = − 1
∆x0

(
u1

a0
exp(a0 (TR − ∆t))− u0

a0

)
+ 1,

(3.251)

• if k = 1, i.e. the first part of the integral is computed, an example is the interval
marked by red circles in Figure 3.12(a)

ϕL = − 1
∆x0

(
u1

a0
exp(a0 (TL − ∆t))− u0

a0

)
+ 1

ϕR = 0,
(3.252)

• if k = l, i.e. the last part of the integral is computed, an example is illustrated
in Figure 3.12(c)

ϕL = 1

ϕR = − 1
∆x0

(
u1

a0
exp(a0 (TR − ∆t))− u0

a0

)
+ 1,

(3.253)

• else, i.e. a middle part of the integral is computed, an example is the interval
marked by blue circles in Figure 3.12(a)

ϕL = 1

ϕR = 0,
(3.254)

where TL and TR are the sums of the intermediate time intervals determined from
(3.22) from the starting point (xi−1/2, tn+1) or (xi+1/2, tn+1), respectively.

The equations (3.251), (3.252) and (3.253) are not defined for a0 = 0. Therefore, the
trajectories are approximated for small a0 by means of a series expansion about a0 =
0, the expressions for ϕL and ϕR without higher order terms change respectively to

ϕL =− 1
∆x0

(∆x0 + (a0∆x0 + u0)((TL − ∆t) +
1
2

a0(TL − ∆t)2

+
1
6

a2
0(TL − ∆t)3 +

1
24

a3
0(TL − ∆t)4)) + 1

(3.255)

ϕR =− 1
∆x0

(∆x0 + (a0∆x0 + u0)((TR − ∆t) +
1
2

a0(TR − ∆t)2

+
1
6

a2
0(TR − ∆t)3 +

1
24

a3
0(TR − ∆t)4)) + 1.

(3.256)

Figure 3.12 shows the different scenarios for the limits of integration. Panel 3.12(a)
illustrates three possibilities. The domain of dependence of grid cell i contains three
grid cells, the cell i itself and the two neighboring cells to the left. The relevant part
[ϕ(xi−1/2, tn+1, ∆t), ∆xi−2] of grid cell i− 2, is marked with red circles. It gives an
example for the lower limit of integration that is computed from a trajectory that
crosses more than one grid cell and determined by (3.252). The complete interval
of the i− 1th grid cell [0, ∆xi−1] contributes to the integral marked with blue circles,
described in the transformed version by (3.254). The last part of the domain of
dependence for this example is part of the ith grid cell and marked with green
circles. This part represents a limit of integration that is computed from a trajectory
which remains within one grid cell, given by (3.248). Figure 3.12(b) shows the case
of a domain of dependence that is included in one grid cell but outside of the arrival
cell i. It is described by (3.251). The last case that can occur is pictured in Figure
3.12(c). This example represents a last interval in the domain of dependence, which
does not lie in the arrival cell, i.e. it differs from (3.248). The limit of integration is
derived from the trajectory in (3.247) and given by (3.253).

90 the sasldg method

Negative velocity

The results for negative velocity can be determined analogously and are listed in
the appendix in Section A.4.

Changing velocity from negative to positive

In the case all trajectories remain within one cell, the ith cell. That makes it very
simple as it is given by (3.19). No determination is needed of how many grid cells
are involved - it is just one.

Also, the polynomial character is preserved after the projection step, which makes
the integration easy and exact without any approximations.

The left and right limit of the integration are given by

ϕL =
1

∆xi

(
exp(−ai∆t)

bi
ai
− bi

ai

)
, (3.257)

ϕR =
1

∆xi

(
exp(−ai∆t)

(
bi
ai

+ ∆x
)
− bi

ai

)
. (3.258)

It is not possible that the coefficient ai is small enough to create numerical problems
during division. If ai < ε, it means that the velocity would be nearly constant in the
whole cell. Further, ui is negative and ui+1 positive, so the velocity would be nearly
constant zero. That case is handled before.

Changing velocity from positive to negative

This case is separated into two parts: first the subinterval of positive velocity is
treated exactly like the case for strictly positive velocity and second the subinterval
of negative velocity is treated exactly as the case for purely negative velocity. How-
ever, there is one difference, the limits of integration must be adjusted with respect
to the boundary of the two subintervals, which is the root of the velocity given by
R := −bi/ai.

First, the subinterval of positive velocity is treated: The domain of dependence
of the positive subinterval is bounded by x0,left = ϕ(0, tn+1,−∆t) and x0,right =

ϕ(R, tn+1,−∆t). Note, that x0,right = R, because u(R) = 0. Let l be the number of
grid cells in the domain of dependence . If l = 1, the velocity would be (almost)
equal to zero. That problem is captured and treated before, thus this case can be
skipped. The algorithm loops over all grid cells in the domain of dependence. Let k
be the counter. The case k = 1 is the same case as for strictly positive velocity. The
limits of integration are given by

ϕL = − 1
∆x0

(
u1

a0
exp(a0(TL − ∆t))− u0

a0

)
+ 1, (3.259)

ϕR = 0. (3.260)

All cases for 0 < k < l are treated in the same way as for strictly positive velocity

ϕL = 1, (3.261)

ϕR = 0. (3.262)

If k = l, the trajectories remain within grid cell i as x0,right = R ∈ [0, ∆xi]. The
integration interval is bounded by zero and the root R of the velocity distribution
of that cell. The transformed limits of integration for the trajectories that remain
within the ith grid cell are given by

ϕL = 0, (3.263)

ϕR =
R

∆xi
. (3.264)

3.7 numerical results 91

Analogously, the subinterval of negative velocity follows: The domain of depen-
dence for this subinterval is bounded by x0,left = ϕ(R, tn+1,−∆t) and x0,right =

ϕ(∆xi, tn+1,−∆t). In this case we have x0,left = R. Let l be the total number of grid
cells contained in the domain of dependence. Note, that number of grid cells in
the domains of dependence of the subintervals can differ. The case l = 1 can be
skipped for the same reason as above. The counter k loops over the grid cells in the
domain of dependence.

The case k = 1 leads to the following limits of integration

ϕL = 0, (3.265)

ϕR =
1

∆x0

(
u0

a0
exp(a0(TR − ∆t))− u0

a0

)
. (3.266)

For the cases 0 < k < l, it holds

ϕL = 0, (3.267)

ϕR = 1. (3.268)

For k = l, we have

ϕL =
R

∆xi
, (3.269)

ϕR = 1. (3.270)

Attention must be paid to small coefficients a0 or an. While running through the
grid cells, the algorithm checks each time if small coefficients are present in the cur-
rent cell. If so, it switches to the respective treatment. When the algorithm detects
a small coefficient a0, it works in the same way as for strictly positive or negative
velocity. It changes the computation of the trajectories and the associated limits of
integration accordingly. In grid cell i, where the root is present, the coefficients can-
not be small or would mean a nearly constant velocity close to zero in this grid cell,
which is handled before. For the same reason, the case of both coefficients being
small cannot exist.

3.7 numerical results
In this section we show the numerical results of selected test cases computed by
the SASLDG method. All tests are limited to one space dimension, results in two
dimensions are described in Chapter 4.

The test cases are constructed in such a way to show the properties of the SASLDG
method, in particular the extensions to the SOM method introduced in Section
2.3. These properties are the ability to handle velocity distributions with constant
velocity as well as variable velocity in space, the capability to deal with Courant
numbers of arbitrary size and an irregular grid. The option to apply a slope limiter
should be given. Further, the numerical test results reveal the long time behavior of
the shape conservation of initial data.

The test interval is the unity interval. We use periodic boundary conditions for
all tests.

Two different velocity fields shown in Figure 3.13 are used for the numerical test
cases. To simulate constant velocity we use the function

u(x) = 1 (3.271)

displayed in Figure 3.13(a). For variable velocity we use the function

u(x) =
(

1
2

sin(πx)
)2

+ 1 (3.272)

92 the sasldg method

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

(a) Constant velocity defined in (3.271).

0 0.2 0.4 0.6 0.8 1

x

1

1.05

1.1

1.15

1.2

1.25

u

(b) Variable velocity defined in (3.272).

Figure 3.13: The velocity fields used for all test cases.

shown in Figure 3.13(b).
The initial values in form of the coefficients m0

0,i, m0
1,i and m0

2,i are obtained from
the projection of two functions onto the polynomial space P2(Ωi): First, we use a
smooth sine function shown in Figure 3.14(a)

f (x) = sin(2πx), (3.273)

and second, a step function, illustrated in Figure 3.14(b), given by

f (x) =

{
0, if x ≤ 0.5
1, if x > 0.5

(3.274)

is employed. Both functions reveal the performance of the SASLDG method on
a different setting. For the smooth sine function it is important that the extrema
are conserved and not damped because of the numerical diffusion. The numerical
dispersion can cause wiggles and small oscillations in the vicinity of sharp disconti-
nuities, which are to be avoided or to be kept small, simulated by the step function.

0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ρ

(a) Sine function defined in (3.273).

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

(b) Step function defined in (3.274).

Figure 3.14: Functions that are used for initial values.

We start to show the result of test cases solving the linear advection equation of
the form (1.4) for the density ρ,

ρt + (uρ)x = 0. (3.275)

Since the solution to ρy described in (1.5) is determined in the same way, we can
restrict the numerical tests to solving the equation for the density. Concluding this

3.7 numerical results 93

section, we discuss one test case, in which all variables the density ρ, tracer density
ρy and tracer y are illustrated.

For each test case, we compute the maximum error l∞ and the l1-error from the
mean values, i.e. we have

l∞ = max
i

∣∣∣mN
0,i −m0

0,i

∣∣∣, (3.276)

and

l1 = ∑
i

∆xi

∣∣∣mN
0,i −m0

0,i

∣∣∣, (3.277)

where N is the total number of time steps taken to obtain Tmax = N∆t.
The first test case shows the results of the SASLDG method computed on a grid

that consists of only ten grid cells. We apply the initial data obtained from (3.273).
The Courant number is chosen to be 0.45. Figure 3.15 displays the results. Panel
3.15(a) shows the results computed with the constant velocity from (3.271), Panel
3.15(b) shows the respective results for variable velocity from (3.272).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

-0.5

0

0.5

1

ρ

(a) Results with constant velocity u.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

-0.5

0

0.5

1

ρ

(b) Results with variable velocity u.

Figure 3.15: Numerical solution computed on ten grid cells, shown after 100 circulations.

The grid displayed in the figures equals the actual grid used for the computations.
Both results are shown after 100 circulations, i.e. for the constant velocity case we
have the maximum time Tmax = 100 to complete 100 circulations, for the variable
velocity case it is Tmax ≈ 89.4. The results are barely distinguishable from the
initial values at time zero. The extremal points drop from 0.99997 of the initial
distribution by 0.15 percent to the value 0.9984 for constant velocity, and by 0.07
percent to 0.9993 for variable velocity. The largest error occurs at the extremal
points for constant velocity and is given by l∞ = 1.508× 10−3. The l1-error takes
the value 9.759× 10−4. Applying the variable velocity leads to larger errors of
l∞ = 1.634× 10−2 and l1 = 8.088× 10−3. The maximum error is not located at the
extrema of the numerical solution, but in the neighboring grid cells due to slight
deformation of the solution.

The second test case, displayed in Figure 3.16, reveals the performance of the
SASLDG method with respect to discontinuities in the initial values. Therefore,
the function defined in (3.274) is used to determine the initial values. We compute
the solution on a grid of 100 grid cells, because in that way the SASLDG method
can be compared to the results of MPDATA shown in 2.6, where the same number
of cells is used. For the same reason, the Courant number is chosen to be 0.5.
Again, constant and variable velocity fields are applied to obtain the results. One
circulation is computed, i.e. Tmax = 1 and Tmax ≈ 0.89, respectively.

The result for constant velocity is shown in Figure 3.16(a). Both numerical solu-
tions contain oscillations in the vicinity of the discontinuity. The amplitude of the

94 the sasldg method

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ

(a) Results with constant velocity u.

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ

(b) Results with variable velocity u.

Figure 3.16: Advection of initial values with a sharp discontinuity for one circulation.

oscillations is measured as the maximum and minimum value of the whole polyno-
mial distribution of the numerical solution. It is given for the constant velocity case
by 1.0729 and −0.0729, respectively. The value of the amplitudes are of smaller mag-
nitude if we measure maximum and minimum mean value (1.0390 and −0.0390). In
comparison with the results of MPDATA shown in Figure 2.2(a) we observe that the
maximum and minimum of the solution of MPDATA, given by 2.0493 and 0.9522,
respectively, are smaller when compared to the whole polynomial distribution of
SASLDG. However, if we consider mean values for the minimum and maximum
point of the SASLDG solution, the oscillations of MPDATA are larger. The max-
imum error of MPDATA is given by 4.0647× 10−1, the l1-error by 3.4876× 10−2.
These errors are larger than the errors of the SASLDG method, which take the
values l∞ = 1.555× 10−1 and l1 = 8.387× 10−3. Additionally, the oscillations of
MPDATA affect more grid cells, i.e. they are stretched over a larger region, whereas
the oscillations in the result of the SASLDG method are limited to few grid cells of
a more narrow region.
The numerical solution computed with variable velocity is shown in Figure 3.16(b).
The maximum takes the value 1.0819 and the minimum is given by −0.0945. Both
values are larger as in the constant velocity case. The same holds for the errors,
which are given by l∞ = 1.985× 10−1 and l1 = 9.131× 10−3.

The third test case shows that the SASLDG method is constructed in such a way
that it is suitable for any one dimensional regular or irregular grid. The numerical
results along with the analytical solution are shown in Figure 3.17 computed with
CFL number 0.45, after 100 circulations and variable velocity, i.e. Tmax ≈ 89.4. Note,
that the time step size ∆t is determined such that the local Courant number, defined
by

σi =

max ui(x)
0≤x≤∆x

∆t

∆xi
, (3.278)

is at most 0.45 for any grid cell. The irregular grid used in the computations is plot-
ted in the respective figure. The first Panel 3.17(a) displays the numerical solution
on an irregular grid of only ten grid cells with the sine function as initial values.
The result is comparable with the test case computed on a regular grid shown in
Figure 3.17(a). The maximum value is 0.9381, the minimum is reached at −0.9453.
The shape of the numerical solution is more distorted than the corresponding solu-
tion on regular grid. Thus, the maximum error given by 1.520× 10−1 is located at
the largest distortion. The l1-error takes the value 6.612× 10−2.

The numerical solution computed on an irregular grid of 100 cells using the
step function as initial values shown in Figure 3.17(b) corresponds to the solu-

3.7 numerical results 95

0 1

x

-1

-0.5

0

0.5

1

ρ

(a) Computations on ten grid cells.

0 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ

(b) Computations on 100 grid cells.

Figure 3.17: Numerical and analytical solution after 100 circulations computed on an irregu-
lar grid, using CFL number 0.45 and variable velocity.

tion in Figure 3.16(b) with the difference of computing 100 circulations and the
Courant number 0.45. Note, the oscillations strech over a larger area. The max-
imum and minimum peak of the oscillations takes the value 1.0794 and −0.0779,
respectively. The l∞-error is given by 3.919× 10−1 and the l1-error by 3.542× 10−2.
The same test with 100 circulations computed on regular grid yields smaller errors
l∞ = 3.549× 10−1 and a l1-error given by 2.197× 10−2.

In the last test case we have shown the numerical solution computed on an irreg-
ular grid. However, the time step size ∆t was chosen in such a way that the local
CFL number of 0.45 was the maximum CFL number for all cells. This means that
the trajectories departing in cell i would reach at most to the neighboring grid cell
i + 1 (for positive velocity). In the following and fourth test case, we choose a large
CFL number of value 10. In this way, most trajectories will go further than to the di-
rect neighboring cell depending on the velocity and grid cell size. We compute the
numerical solution with the same setting used for Figure 3.17, with the difference
of the CFL number changed to 10.

0 1

x

-1

-0.5

0

0.5

1

ρ

(a) Computations on ten grid cells.

0 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ

(b) Computations on 100 grid cells.

Figure 3.18: Numerical and analytical solution after 100 circulations computed on an irregu-
lar grid, using CFL number 10 and variable velocity.

The results correspond to the results with a smaller CFL number of 0.45 as shown
in Figure 3.17. The distortion of the shape of the numerical solution seen in Figure
3.17(a) is larger than that of the result in Figure 3.18(a). It maintains better the form
of the initial distribution. Because of the larger Courant number, the errors drop to
l∞ = 2.558× 10−2 and l1 = 1.573× 10−2. The same test on a regular grid leads to
decreased errors l∞ = 4.348× 10−4 and l1 = 1.795× 10−4.

96 the sasldg method

A similar result can be observed in Figure 3.18(b). The maximum and minimum
value of the oscillations given by 1.0714 and −0.0725, respectively. Thus, the oscil-
lations are of smaller amplitude than in the case of CFL number 0.45. Furthermore,
the oscillations remain in a smaller area of approximately half as many grid cells,
which leads to a better shape preservation. Also, the maximum error given by
3.472× 10−1 and the l1-error of 2.127× 10−2 are smaller than in the corresponding
case with smaller CFL number. In fact, these errors are smaller than the errors on
regular grid with CFL number 0.45. The case of applying CFL number 10 on regular
grid leads to a smaller error of l∞ = 2.433× 10−1 and l1 = 1.192× 10−2.

The next test case is listed to illustrate the applicability of limiters to the SASLDG
method shown in Figure 3.19. A possibility is given by the limiters introduced for
the SOM method in Chapter 2.3. In this test case we use the step function given
in (3.274) as initial values to demonstrate the ability to avoid oscillations. Further,
we use the smooth sine function of (3.273) to show that the extremal points are
not clipped. The numerical solution is computed on a grid of 100 cells and with a
Courant number of 0.5 for both cases.

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ

(a) Solution computed with variable velocity,
shown after one circulation.

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

ρ

(b) Solution computed with constant velocity,
shown after 100 circulations.

Figure 3.19: Numerical and analytical solution with the application of a limiter, computed
on 100 grid cells and Courant number 0.5.

In this test case we use the limiter described in (2.96) in combination with the
bounds defined in (2.95). Because of the variable velocity used in Figure 3.19(a),
the density ρ does not remain between the bounds zero and one. It reaches the
maximum value of 1.24 during the whole test, as shown in the subsequent test
without the usage of a limiter. Therefore, it is reasonable to define the bounds as in
(2.95), which takes the minimum and maximum of ρ of the neighboring grid cells,
respectively. Figure 3.19(a) shows the results of the numerical solution after one
circulation. As required, the oscillations are not existent. The numerical solution
preserves positivity since the minimum value equals zero. The maximum takes
the value 1.0022. The maximum error is given by 2.919× 10−1 and the l1-error by
1.253× 10−2. These errors are larger than in the corresponding test case shown in
Figure 3.16(b). Because of the slope limiting, the oscillations are avoided, however,
the sharpness of the discontinuity is not preserved as well.
In Figure 3.19(b) we can see the effect of the limiter on extrema after 100 circulations.
We can observe that the extremal points are flattened, but their amplitude does
not decrease significantly. The maximum of the solution is given by 0.9816. The
maximum- and l1-error is given by 1.775× 10−2 and 3.409× 10−3, respectively.

Test case number six reveals an interesting property of the algorithm. If we use
smooth initial data and perturb the slope or the curvature of a single coefficient,
this pertubation is damped out after a few time steps. In this example, we use the
total number of 10 grid cells and the Courant number 0.45. We perturb the third

3.7 numerical results 97

coefficient in the 4th grid cell, i.e. m2,4, and enlarge the curvature by a factor of ten.
The results of the development of the pertubation are shown in Figure 3.20.

We plot the initial data with the pertubation in Figure 3.20(a). Figures 3.20(b)
and 3.20(c) show the evolution of the pertubation after one and three time steps,
respectively. After one time step, the advected pertubation is visible in the forth
and fifth grid cell, after two more time steps it is present in grid cells five and six
accordingly to the time step size. It is remarkable that the pertubation seems to
vanish in time. In particular, after one circulation at time Tmax = 1, displayed in
Figure 3.20(d), the numerical result barely shows any sign of the initial pertubation.
The main difference is the difference of the maximum values. The maximum of the
numerical solution without the pertubation would take the value 0.99993, whereas
with the initial pertubation it reaches the value 0.98879.

As mentioned above, the concluding test case of the numerical results illustrates
the correlation of the density ρ, tracer density ρy and the tracer y. This is done
by means of figures showing the evolution in time for one circulation. The initial
density ρ is chosen to be a function constant to one and the tracer density ρy is the
step function defined in (3.274). The tracer y is obtained by the quotient of density
and tracer density. The velocity field is variable in space and given by (3.272). We
compute the numerical solution on a grid of 100 grid cells and choose the Courant
number to be 0.45. The results are shown at time Tmax ≈ 0.89, which means after
one circulation, in Figure 3.21.

The panels on the left side, i.e. Figures 3.21(a), 3.21(d), 3.21(g), 3.21(j) and 3.21(m)
display the evolution of one circulation for the density ρ. The panels in the middle
as there are Figures 3.21(b), 3.21(e), 3.21(h), 3.21(k) and 3.21(n) show the numerical
results for the tracer density ρy. The panels on the right side (see Figures 3.21(c),
3.21(f)) 3.21(i), 3.21(l) and 3.21(o), display the quotient of tracer density and density,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8

1

ρ

(a) Initial pertubation at time t = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8

1

ρ

(b) Numerical solution after one time step.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8

1

ρ

(c) Numerical solution after three time steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8

1

ρ

(d) Numerical solution after one circulation.

Figure 3.20: Evolution in time of a single initial pertubation of the coefficient m2,4. The
solution is computed on a grid of 10 cells with CFL number 0.45.

98 the sasldg method

0 0.2 0.4 0.6 0.8 1x
0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

ρ

(a) Density ρ, t = 0.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

ρ
y

(b) Tracer density ρy, t = 0.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

y

(c) Tracer y, t = 0.

0 0.2 0.4 0.6 0.8 1x
0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

ρ

(d) Density ρ, t = 0.22.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2
1.4

ρ
y

(e) Tracer density ρy, t = 0.22.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

y

(f) Tracer y, t = 0.22.

0 0.2 0.4 0.6 0.8 1x
0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

ρ

(g) Density ρ, t = 0.45.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2
1.4

ρ
y

(h) Tracer density ρy, t = 0.45.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

y

(i) Tracer y, t = 0.45.

0 0.2 0.4 0.6 0.8 1x
0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

ρ

(j) Density ρ, t = 0.67.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2
1.4

ρ
y

(k) Tracer density ρy, t = 0.67.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

y

(l) Tracer y, t = 0.67.

0 0.2 0.4 0.6 0.8 1x
0

0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

ρ

(m) Density ρ, t = 0.89.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

ρ
y

(n) Tracer density ρy, t = 0.89.

0 0.2 0.4 0.6 0.8 1x
-0.2

0

0.2
0.4
0.6
0.8

1

1.2

y

(o) Tracer y, t = 0.89.

Figure 3.21: Evolution in time of the numerical solution of the density, the tracer density and
the tracer. The solution is computed on a grid of 100 cells, with variable velocity
and CFL number 0.45 for one circulation.

3.7 numerical results 99

which yields the tracer. The respective results are plotted at time zero, after a
quarter circulation at t ≈ 0.22, after half a circulation at t ≈ 0.45, after three quarters
at t ≈ 0.67 and a full circulation at t ≈ 0.89. The numerical solution of ρy is similar
to the result shown in Figure 3.16(b) but with a change of the CFL number from
0.5 to 0.45. Note the different scales in the panels. The distribution of the tracer
remains in the interval [0, 1] apart from the oscillations. The scales of the density
and tracer density vary.

We conclude the section of the numerical tests with test series that show the
influence of the CFL number on the maximum error l∞ as well as the l1-error and
on the computational time. The CFL numbers smaller than one 0.2, 0.4, 0.5, 0.6, 0.8
show the results for advection to the direct neighboring grid cell within one time
step. The larger CFL numbers 1.6, 3.2 and 6.4 reveal the results when more grid cells
are affected. The last CFL number is chosen such that final time Tmax is obtained
with one single time step, i.e. ∆t = Tmax. All performance measurements are taken
on a machine with the MATLAB bench characteristics listed in the appendix in
Section A.7.

CFL l∞-error l1-error time (s)
0.2 4.047e-03 2.620e-03 9.31

0.4 1.799e-03 1.164e-03 4.83

0.5 1.322e-03 8.554e-04 4.09

0.6 1.220e-03 7.895e-04 3.15

0.8 1.109e-03 7.180e-04 2.58

1.6 4.302e-04 2.784e-04 1.49

3.2 2.774e-04 1.796e-04 0.90

6.4 1.566e-04 1.014e-04 0.38

1000.0 (∆t = Tmax) 8.279e-12 5.358e-12 0.14

Table 3.1: Errors and computational time of the solution after 100 circulations computed
with constant velocity on 10 cells of a regular grid and the sine function as IV.

Table 3.1 shows the errors and the respective computational time for the compu-
tation of the numerical solution after 100 circulations, constant velocity on a regular
grid of ten cells. The sine function is used as initial distribution.

CFL l∞-error l1-error time (s)
0.2 3.267e-02 1.745e-02 7.29

0.4 1.898e-02 9.581e-03 3.55

0.5 1.404e-02 6.854e-03 2.96

0.6 1.113e-02 5.557e-03 2.56

0.8 1.089e-02 5.176e-03 1.85

1.6 6.016e-03 2.615e-03 1.30

3.2 2.346e-03 9.585e-04 0.79

6.4 1.089e-03 4.944e-04 0.48

1117.59 (∆t = Tmax) 1.324e-06 8.128e-07 0.10

Table 3.2: Errors and computational time of the solution after 100 circulations computed
with variable velocity on 10 cells of a regular grid and the sine function as IV.

Table 3.2 shows the corresponding results to Table 3.1, but with variable instead
of constant velocity. Thus, the last CFL number of the series is changed to 1117.59.

The same setting except for the regularity of the grid is used for the next test series
shown in Table 3.3. The grid consists of 10 cells, which are randomly distributed. It
was used before in the test shown in Figures 3.17(a) and 3.18(a).

Table 3.4 shows the l∞-error, the l1-error and the computational time of the re-
spective numerical solution after one circulation computed with the step function

100 the sasldg method

CFL l∞-error l1-error time (s)
0.2 1.396e-01 6.505e-02 33.95

0.4 1.562e-01 6.887e-02 17.15

0.5 1.351e-01 6.308e-02 13.67

0.6 1.602e-01 6.992e-02 11.46

0.8 1.643e-01 7.107e-02 8.66

1.6 1.190e-01 5.810e-02 4.64

3.2 9.322e-02 4.781e-02 2.46

6.4 4.945e-02 2.450e-02 1.42

6240.18 (∆t = Tmax) 1.561e-06 8.112e-07 0.10

Table 3.3: Errors and computational time of the solution after 100 circulations computed
with variable velocity on 10 cells of an irregular grid and the sine function as IV.

CFL l∞-error l1-error time (s)
0.2 2.081e-01 1.102e-02 9.14

0.4 1.756e-01 9.631e-03 4.54

0.5 1.555e-01 8.387e-03 3.69

0.6 1.601e-01 8.724e-03 3.07

0.8 1.517e-01 7.977e-03 2.38

1.6 1.207e-01 5.705e-03 1.24

3.2 9.859e-02 4.147e-03 0.69

6.4 8.411e-02 3.470e-03 0.53

100.0 (∆t = Tmax) 4.441e-14 8.882e-16 0.17

Table 3.4: Errors and computational time of the solution after one circulation computed with
constant velocity on 100 cells of a regular grid and the step function as IV.

as initial values. The grid used for this test consists of 100 cells. Constant velocity
is applied.
Table 3.5 shows the corresponding minimum and maximum values of the numer-

CFL min (mean) max (mean) min min
0.2 1.0695 -0.0695 1.0854 -0.0854

0.4 1.0575 -0.0575 1.0828 -0.0828

0.5 1.0390 -0.0390 1.0729 -0.0729

0.6 1.0474 -0.0474 1.0916 -0.0916

0.8 1.0416 -0.0416 1.1047 -0.1047

1.6 1.0177 -0.0177 1.1004 -0.1004

3.2 1.0068 -0.0068 1.0991 -0.0991

6.4 1.0026 -0.0026 1.0899 -0.0899

100.0 (∆t = Tmax) 1.0000 0.0000 1.0000 -4.025e-14

Table 3.5: Minimum and maximum of means of the solution and of whole distribution after
one circulation computed with constant velocity on 100 cells of a regular grid and
the step function as IV.

ical solution in two different versions. First, the minimum and maximum is given
computed from the mean values of each grid cell, i.e. only from the coefficients m0,i
(marked by mean). Since the numerical solution is described by piecewise polyno-
mial functions, these can be used as well for the determination of the minimum
and maximum. The whole distribution is therefore used for the determination of
the second information given in the table.

4 E X T E N S I O N O F T H E S A S L D G
M E T H O D I N 2 D

In two space dimensions, the linear advection with variable velocity coefficient is
given by

∂y
∂t

+ u · ∇y = 0, (4.1)

extending the one-dimensional equation described in (1.3). Analogously to the pro-
cedure in Chapter 1, the equation in non-conservative form is transferred into a
system of two equations that are in conservation form. This is also done by intro-
ducing the variable ρ, which represents the density,

∂ρ

∂t
+∇ · (ρu) = 0 (4.2)

∂ρy
∂t

+∇ · (ρyu) = 0 (4.3)

These equations correspond to the one-dimensional equations (1.4) and (1.5).
To extend a numerical method that is constructed to solve a one-dimensional

problem to more space dimensions, a dimensional splitting approach can be applied.
The more dimensional advection equation is solved along each coordinate direction
alternately as a one-dimensional problem. This technique is described by Strang in
[62].

The rest of this chapter is organized as follows. After a brief description of the
Strang splitting in the next section (4.1), the necessary changes of the 2D extension
of the SASLDG method are discussed in Section 4.2. Numerical tests of the SASLDG
method in two space dimensions are carried out. A hybrid version of the operator
splitting, which combines the two schemes MPDATA and a special form of the
SASLDG method, is described in the concluding section (4.3) of this chapter. The
performance of this hybrid method is examined and compared with solutions of
MPDATA and the SASLDG method. All performance measurements are taken on a
machine with the MATLAB bench characteristics listed in the appendix in Section
A.7.

4.1 operator splitting
Strang splitting [62] relies on the idea to divide a certain problem into subproblems,
solve these easier subproblems and assemble the solutions of the subproblems to the
solution of the original problem. This applies to the reduction of space dimensions
as well as to other problems as e.g. the advection equation with source terms shown
for example in [36].

We define the solution operator S∆t of the two-dimensional problem (4.2),

ρn+1 = S∆tρ
n. (4.4)

Then, Lx
∆t is the fractional solution operator in x-direction, i.e. in one dimension,

solving (1.4),

ρn+1 = Lx
∆tρ

n. (4.5)

The fractional solution operator Ly
∆t is defined analogously. A straight forward way

to combine the solution operator for both space dimensions would be of the form

S∆t = Lx
∆tL

y
∆t. (4.6)

101

102 extension of the sasldg method in 2d

However, this approach can only be first-order accurate. It can be shown that if we
use Strang splitting of the form

S∆t = Lx
∆t/2Ly

∆tL
x
∆t/2, (4.7)

second-order accuracy can be attained, if both fractional operators are at least of
order two. Thus, to compute a full 2D time step with a numerical method, first,
half a time step is made into x-direction, then a full time step into y-direction and
concludingly, again half a time step into x-direction. Certainly, the directions can
be switched, that is first a half a time step in y-direction and so on. Thus, the space
dimension with more varying velocity can be chosen to be one with half time steps
and thus gain more accuracy.

4.2 the sasldg method in 2d
The representation of the density ρi for the ith grid cell in polynomial form of degree
two in two space dimensions takes the form

ρi(x, y, tn) = mn
0,iK

(i)
0 (x, y) + mn

x,iK
(i)
x (x, y) + mn

xx,iK
(i)
xx (x, y)

+mn
y,iK

(i)
y (x, y) + mn

yy,iK
(i)
yy (x, y) + mn

xy,iK
(i)
xy (x, y),

(4.8)

with coefficients describing the distribution in x and in y-direction. Additionally,
there is one cross term to fully define the polynomial in two dimensions. Accord-
ingly, the Legendre basis functions are extended to

K(i)
0 (x, y) = 1 (4.9)

K(i)
x (x, y) =

2x− ∆x
∆x

(4.10)

K(i)
xx (x, y) =

1
2

(
3
(

2x− ∆x
∆x

)2
− 1

)
(4.11)

K(i)
y (x, y) =

2y− ∆y
∆y

(4.12)

K(i)
yy (x, y) =

1
2

(
3
(

2y− ∆y
∆y

)2
− 1

)
(4.13)

K(i)
xy (x, y) =

2x− ∆x
∆x

2y− ∆y
∆y

. (4.14)

According to the Strang splitting defined in (4.7), we solve the advection equation
in both space dimensions in turn. The idea and the main parts of the algorithm for
the 2D version of the SASLDG method remain unchanged in comparison with the
version in one space dimension. However, the projection step is adapted, since a
polynomial of form (4.8) must be obtained. Note that we assume a grid of equidis-
tantly distributed grid cells in each space dimension because it simplifies the pro-
jection step. The usage of an irregular grid - as long as it is rectilinear - is possible,
however, the costs of the computations of the integrals increase.

The projections for the time step in x-direction yield the new coefficients mn∗
0,i ,

mn∗
x,i , mn∗

xx,i, mn∗
y,i , mn∗

yy,i and mn∗
xy,i at the intermediate time level n∗ after the fractional

step operator Lx
∆t/2 is applied to the numerical solution at the old time level n.

Analogously to (3.138) in one space dimension, we obtain the projection formula,

Pρ(x, y, tn∗)

=
6

∑
j=1

∆y∫
0

xR∫
xL

ρ(x, y, tn)K(i)
j (ϕ(x, tn, ∆t/2), y)dx dy

∆y∫
0

∆x∫
0

K(i)
j (x)K(i)

j (x)dx dy

K(i)
j (x, y),

(4.15)

4.2 the sasldg method in 2d 103

where we use xL =: ϕ(xi−1/2, tn∗,−∆t/2) and xR =: ϕ(xi+1/2, tn∗,−∆t/2) to ab-
breviate the expression. Note that we make only half a time step in x-direction.
In constrast to the one dimensional projection in (3.138), the numerical solution in
(4.15) describes an intermediate solution at an intermediate time level, denoted by
tn∗. The integrals consist of subintervals that lie in different grid cells. We refer to
Section 3.4 for details. Thus, we compute the subintervals separately. The limits of
the integration that can occur for each subinterval is discussed in Section 3.5.

A part of the solution is computed for grid cell i, with the departure cell d, where
the trajectory ϕ(x, tn∗,−∆t/2) ends at time tn. We have,

mn∗
0,i
∣∣
part =

1
∆x∆y

∫ ∆y

0

∫ x2

x1

ρd(x, y, tn)K(i)
0 (ϕ(x, tn, ∆t/2), y)dx dy

=
1

∆x

∫ x2

x1

(
mn

0,dK(d)
0 + mn

x,dK(d)
x + mn

xx,dK(d)
xx

)
dx ,

(4.16)

mn∗
x,i
∣∣
part =

3
∆x∆y

∫ ∆y

0

∫ x2

x1

ρd(x, y, tn)K(i)
x (ϕ(x, tn, ∆t/2), y)dx dy

=
3

∆x

∫ x2

x1

K(i)
x (ϕ(x, tn, ∆t/2), y)

(
mn

0,dK(d)
0 +

+mn
x,dK(d)

x + mn
xx,dK(d)

xx

)
dx ,

(4.17)

mn∗
xx,i
∣∣
part =

5
∆x∆y

∫ ∆y

0

∫ x2

x1

ρd(x, y, tn)K(i)
xx (ϕ(x, tn, ∆t/2), y)dx dy

=
5

∆x

∫ x2

x1

K(i)
xx (ϕ(x, tn, ∆t/2), y)

(
mn

0,dK(d)
0 +

+mn
x,dK(d)

x + mn
xx,dK(d)

xx

)
dx ,

(4.18)

mn∗
y,i

∣∣∣
part

=
3

∆x∆y

∫ ∆y

0

∫ x2

x1

ρd(x, y, tn)K(i)
y (ϕ(x, tn, ∆t/2), y)dx dy

=
3

∆x∆y

∫ x2

x1

∫ ∆y

0
mn

y,dK(d)
y (x, y)K(i)

y (ϕ(x, tn, ∆t/2), y)

+mn
xy,dK(d)

xy (x, y)K(i)
y (ϕ(x, tn, ∆t/2), y)dy dx

=
3

∆x∆y

∫ x2

x1

my
∆y
3

+ mxy
∆y
3

K(d)
x (x, y)dx

=
1

∆x

∫ x2

x1

my + mxyK(d)
x (x, y)dx ,

(4.19)

mn∗
yy,i

∣∣∣
part

=
5

∆x∆y

∫ ∆y

0

∫ x2

x1

ρd(x, y, tn)K(i)
yy (ϕ(x, tn, ∆t/2), y)dx dy

=
5

∆x∆y

∫ x2

x1

∫ ∆y

0
mn

yy,dK(d)
yy (x, y)K(i)

yy (ϕ(x, tn, ∆t/2), y)dy dx

=
1

∆x

∫ x2

x1

mn
yy,d dx ,

(4.20)

104 extension of the sasldg method in 2d

and

mn∗
xy,i

∣∣∣
part

=
9

∆x∆y

∫ ∆y

0

∫ x2

x1

ρd(x, y, tn)K(i)
xy (ϕ(x, tn, ∆t/2), y)dx dy

=
9

∆x∆y

∫ x2

x1

∫ ∆y

0
mn

y,dK(d)
y (x, y)K(i)

xy (ϕ(x, tn, ∆t/2), y)

+mn
xy,dK(d)

xy (x, y)K(i)
xy (ϕ(x, tn, ∆t/2), y)dy dx

=
9

∆x∆y

∫ x2

x1

mn
y,d

∆y
3

K(i)
x (ϕ(x, tn, ∆t/2), y)

+mn
xy,d

∆y
3

K(d)
x (x, y)K(i)

x (ϕ(x, tn, ∆t/2), y)dx

=
3

∆x

∫ x2

x1

mn
y,dK(i)

x (ϕ(x, tn, ∆t/2), y)

+mn
xy,dK(d)

x (x, y)K(i)
x (ϕ(x, tn, ∆t/2), y)dx .

(4.21)

Similarly, the projections of the fractional step Ly
∆t are determined. We abbreviate

yL = ϕ(yi−1/2, tn∗∗,−∆t) and xR = ϕ(yi+1/2, tn∗∗,−∆t). For the full time step ∆t in
y-direction, we have

Pρ(x, y, tn∗∗)

=
6

∑
j=0

yR∫
yL

∆x∫
0

ρd(x, y, tn∗)K(i)
j (x, ϕ(y, tn∗, ∆t))dx dy

∆y∫
0

∆x∫
0

K(i)
j (x)K(i)

j (x)dx dy

K(i)
j (x, y).

(4.22)

Then, the respective parts of the coefficients mn∗∗
0,i , mn∗∗

x,i , mn∗∗
xx,i , mn∗∗

y,i , mn∗∗
y,i and

mn∗∗
xy,i at the intermediate time level tn∗∗ are given by,

mn∗∗
0,i
∣∣
part =

1
∆x∆y

∫ y2

y1

∫ ∆x

0
ρd(x, y, tn∗)K(i)

0 (x, ϕ(y, tn∗, ∆t))dx dy

=
1

∆y

∫ y2

y1

mn∗
0,dK(d)

0 + mn∗
y,dK(d)

y + mn∗
yy,dK(d)

yy dy ,
(4.23)

mn∗∗
x,i
∣∣
part =

3
∆x∆y

∫ y2

y1

∫ ∆x

0
ρd(x, y, tn∗)K(i)

x (x, ϕ(y, tn∗, ∆t))dx dy

=
1

∆y

∫ y2

y1

(
mn∗

x,d + mn∗
xy,dK(d)

y

)
dy ,

(4.24)

mn∗∗
xx,i
∣∣
part =

5
∆x∆y

∫ y2

y1

∫ ∆x

0
ρd(x, y, tn∗)K(i)

xx (x, ϕ(y, tn∗, ∆t))dx dy

=
1

∆y

∫ y2

y1

mn∗
xx,d dy ,

(4.25)

mn∗∗
y,i

∣∣∣
part

=
3

∆x∆y

∫ y2

y1

∫ ∆x

0
ρd(x, y, tn∗)K(i)

y (x, ϕ(y, tn∗, ∆t))dx dy

=
3

∆y

∫ y2

y1

(
mn∗

0,dK(d)
0 + mn∗

y,dK(d)
y +

+mn∗
yy,dK(d)

yy

)
K(i)

y (x, ϕ(y, tn∗, ∆t))dy ,

(4.26)

mn∗∗
yy,i

∣∣∣
part

=
5

∆x∆y

∫ y2

y1

∫ ∆x

0
ρd(x, y, tn∗)K(i)

yy (x, ϕ(y, tn∗, ∆t))dx dy

=
5

∆y

∫ y2

y1

(
mn∗

0,dK(d)
0 + mn∗

y,dK(d)
y +

+mn∗
yy,dK(d)

yy

)
K(i)

yy,d(x, ϕ(y, tn∗, ∆t))dy ,

(4.27)

4.2 the sasldg method in 2d 105

and

mn∗∗
xy,i

∣∣∣
part

=
9

∆x∆y

∫ y2

y1

∫ ∆x

0
ρd(x, y, tn∗)K(i)

xy (x, ϕ(y, tn∗, ∆t))dx dy

=
9

∆x∆y

∫ y2

y1

mn∗
x,d

∆x
3

K(i)
y (x, ϕ(y, tn∗, ∆t))

+mn∗
xy,d

∆x
3

K(d)
y (x, y)K(i)

y (x, ϕ(y, tn∗, ∆t))dy

=
3

∆y

∫ y2

y1

mn∗
x,dK(i)

y (x, ϕ(y, tn∗, ∆t))

+mn∗
xy,dK(d)

y (x, y)K(i)
y (x, ϕ(y, tn∗, ∆t))dy .

(4.28)

To complete a full time step of the 2D SASLDG method, a last projection of the
fractional operator Lx

∆t/2 in x-direction is made,

Pρ(x, y, tn+1)

=
6

∑
j=1

∆y∫
0

xR∫
xL

ρ(x, y, tn∗∗)K(i)
j (ϕ(x, tn∗∗, ∆t/2), y)dx dy

∆y∫
0

∆x∫
0

K(i)
j (x)K(i)

j (x)dx dy

K(i)
j (x, y).

(4.29)

The integrals of the parts of the coefficients are equal to (4.16)-(4.21) apart from
the change of the density at the new time level ρd(x, y, tn∗∗) and the trajectories
ϕ(x, tn∗∗, ∆t/2). Thus, the formulas for the new coefficients mn+1

0,i , mn+1
x,i , mn+1

xx,i ,
mn+1

y,i , mn+1
y,i and mn+1

xy,i follow analogously to (4.16)-(4.21) and are not listed here.
The projection step of the SASLDG method in 2D discussed above is the only

difference to the one-dimensional scheme. The computation of the trajectories and
the overall procedure are the same. Because of the differences in the computations
of the projections, the computer code developed for the one-dimensional problem
cannot be reused. For testing purposes the integrals of the 2D method are solved
with the quadrature function of MATLAB.

Below, we conduct two standard test cases for the linear advection in two space
dimensions. We carry out the solid body rotation test and a deformational flow test.

4.2.1 Solid body rotation test

The solid body rotation test case is a translational examination of a sine hill. The
analytical solution is know at every point in time. We compute the solution for a
full rotation. In that way we can compare the numerical solution after the rotation
with the initial data. The velocity field of this translational test is given by

u(x, y) = y

v(x, y) = −x.
(4.30)

Figure 4.1 shows the velocity field corresponding to (4.30). For clarity, the velocity
field is plotted on a grid of only 20× 20 grid cells.

The initial data consists of a sine hill located in the upper right half of a plane,
pictured in Figure 4.2(a). The resolution is chosen to be 51× 51.

In this test, it suffices to solve (4.3) only. The density is set equal to one at the
beginning and remains constant to one throughout the whole test. The velocity is
constant along each one-dimensional problem that is solved. The constant initial
distribution equal to one in combination with the constant velocity results in a
numerical solution equal to one computed by the SASLDG method. Therefore, the
computation of the density is dispensable.

The numerical solution after one rotation is shown in Figure 4.2(b). The computa-
tions are carried out with the CFL number 0.5. The absolute value of the difference

106 extension of the sasldg method in 2d

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

Figure 4.1: The velocity field used for the solid body rotation test.

of the initial values and the numerical solution after one rotation is the error plotted
in Figure 4.3.

The cross section of the peak of the sine hill reveals more of the error in detail.
Figure 4.4(a) shows the cross section of the initial data (printed in black) and of the
numerical solution after one rotation (printed in red). The peak of the initial data
is equal to one. Its value decreases to the value 0.992 after one rotation. The steep
sides of the hill broaden and some oscillations are visible. The numerical solution
takes negative values in the absence of a limiter.

The areas of the largest error are at the edge of the sine hill as depicted in Figure
4.4(b), which shows the absolute value of the difference of the cross sections. Thus,
the maximum error of 0.014 is reached not at the peak of the sine hill, but at its
edges.

The next test case uses a velocity field that consists of varying velocity in each
direction in contrast to the field used in the solid body rotation test case.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

(a) Sine hill used as initial values.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

(b) Numerical solution after one revolution.

Figure 4.2: The solid body rotation test for the SASLDG method.

4.2 the sasldg method in 2d 107

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

2

4

6

8

10

12

×10
-3

Figure 4.3: The absolute error of the numerical solution after one rotation.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

0

0.2

0.4

0.6

0.8

1

(a) Cross section of the numerical solution:
The black line is the IV, the red one shows
the solution after one rotation.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(b) Cross sections of the absolute error.

Figure 4.4: Cross sections of the peak of the sine hill.

4.2.2 Deformational flow test

We examine the numerical results of a deformational flow test similarly to the ide-
alized vortex problem described in [15]. The velocity field is given by

u(x, y) = −y
r

sech2(r) tanh(r)

v(x, y) =
x
r

sech2(r) tanh(r),
(4.31)

where r is the radius

r =
√

x2 + y2. (4.32)

Figure 4.5 shows the velocity field on a grid of 20× 20 cells defined by (4.31). The
velocity field is non-divergent. Hence, as in the solid body rotation test, it should be
unnecessary to compute the density. A constant density distribution equal to one
should be preserved in time. However, the density does non remain constant as we
will show below.

Using a velocity field as defined in (4.31) a non-constant initial distribution curls
to a vortex and long filaments are built. This can be best seen if we use initial data
of the form of a staircase function as pictured in Figure 4.6(a). The lowest step takes
the value 0.1, each step increases by 0.1. Thus, the highest step of a total of five steps
is equal to 0.5. The initial distribution of the density ρ is chosen to be constantly
equal to one.

We compute the numerical solution of ρ and ρy for 346 time steps on a grid
of 100× 100 cells. We use a CFL number equal to 0.5. The time step size is de-

108 extension of the sasldg method in 2d

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

Figure 4.5: The velocity field used for the static vortex test.

termined from the maximum velocity value of all grid cells, i.e. we have ∆t =
CFL ∆x/ max(u).

The numerical solution of the tracer y after 347 time steps is shown in Figure
4.6(b). The vortex is visible. The filaments in the middle of the vortex are as thin as
one to two grid cell length.

After that, we determine the inverse velocity field and apply it to the vortex
shown in Figure 4.6(b) as initial data. Again, we compute the numerical solution
for 346 time steps. If the numerical scheme was exact, we would obtain the original
staircase function as shown in Figure 4.6(a). The result of the numerical solution of
this turned back vortex is pictured in Figure 4.6(c).

The absolute value of the difference of the numerical solution and the initial
staircase function is plotted in Figure 4.6(d). The largest error of approximately
0.079 occurs at the boundaries of the step in the middle of the staircase at x = −0.1
and x = 0.1. This is the area where the largest deformation took place during the
test. Smaller errors arise at each boundary of a step.

As mentioned above, a constant density distribution should be preserved in time,
Figure 4.7 shows that this is not the case in this test. Figure 4.7(a) displays the
density distribution after 346 time steps. The maximum deviation from the initial
distribution is about 0.0023.

After reversing the velocity, we could expect that the deformed density is ad-
vected back to the constant function to one. However, Figure 4.7(b) pictures the
density after 346 time steps with the inverse velocity and shows that the error in-
creases. The maximum deviation takes the value 0.0045.
Thus, for constant velocity as in the solid body rotation test case, the constant den-
sity is preserved in contrast to the deformational test case, where errors are intro-
duced.

4.3 hybrid operator splitting: mpdata and the sasldg method 109

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Staircase function used as IV.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Numerical solution after 347 time steps.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) Numerical solution at time Tmax.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) Absolute error of solution at time Tmax.

Figure 4.6: The static vortex test for the SASLDG method.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.998

0.9985

0.999

0.9995

1

1.0005

(a) The density after 347 time steps.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.996

0.997

0.998

0.999

1

1.001

(b) The density at time Tmax.

Figure 4.7: Density ρ of the static vortex test.

4.3 hybrid operator splitting: mpdata and the
sasldg method

Geophysical processes, in particular meteorological phenomena, occur at different
scales in horizontal and vertical direction. For example, the horizontal scale of plan-
etary waves of O(1000)−O(10000) km is much larger compared to the thickness
of the troposhere of O(10) km. Processes on the synoptic scale are of the order
O(100) km to O(1000) km, which is again larger than the depth of the troposhere.
Thus, when simulating these processes, the vertical direction must be resolved with
a fine grid to grasp the phenomena on this scale. To use the same resolution for the
horizontal grid would result in too much computational cost. Therefore, a coarser

110 extension of the sasldg method in 2d

grid is used for horizontal and a finer grid for the vertical scale. This causes a large
grid aspect ratio of O(1) : O(100). For more details, see [41].

If we choose to solve the linear advection equation in two space dimensions via
operator splitting, the time step size is the same for horizontal and vertical direction.
If the Courant number of the numerical method is limited for stability reasons, e.g.
by one as for MPDATA, the size of the time step is determined by the smallest grid
cell of both directions (for relatively uniform velocity in both directions).

We assume the following setting: Horizontally, i.e. in x-direction the grid cell
sizes are large. Oppositely, in the vertical y-direction the length of the grid cells are
small as shown in Figure 4.8.

x

y

Figure 4.8: Example of a 2D grid with flat grid cells in vertical direction.

In this example, the size of a grid cell in y-direction determines the size of the
time step. This means that the time step restriction is adequate for stepping in the
y-direction, however for the x-direction ∆t could be chosen larger without violating
stability properties.

In the following we suggest a possible remedy for that problem. Further, we test
the resulting method in particular with respect to different CFL numbers and grid
aspect ratios.

4.3.1 Description of the procedure

An idea to circumvent the strict time step restriction for operator splitting in one
space dimension for grids with high aspect ratio is to use different numerical meth-
ods for stepping into the two directions, which we call “hybrid operator splitting”
or hybrid method. For solving the advection equation in the direction with a large
scale, a numerical method with low computational cost, but with time step restric-
tion, can be used. A more expensive and accurate method without time step restric-
tion can be applied for the direction of smaller scale. We use the robust, second-
order accurate method MPDATA (introduced in 2.6) for stepping in the x-direction
of large grid cells. The part of the method with higher accuracy and without any
limitations in regard to the time step is taken by a modified version of the SASLDG
method.

For the realization we have to consider that the SASLDG method and MPDATA
need different input data. MPDATA operates using cell averages whereas the
SASLDG method besides the cell averages also uses information on higher coef-
ficients as slope and curvature to express the polynomials. To get this information
for the SASLDG method in an efficient manner, we give up a part of the resolution
in y-direction to gain the information for the polynomials. To do so, we combine
three grid cells into one and compute the missing information for the resulting poly-
nomial in that combined grid cell from the cell averages. The modified version of
the SASLDG method is called SASLDG-3c (three cells are combined to one).

The advection step of SASLDG-3c in vertical direction takes the following form.

(i) In each vertical column, three grid cells are combined into one new grid cell.
From the three cell averages a quadratic polynomial is reconstructed. These
reconstructions serve as initial values for the time step of the SASLDG method.

4.3 hybrid operator splitting: mpdata and the sasldg method 111

(ii) The SASLDG method computes the solution of the advection step on a three
times coarser grid.

(iii) We determine the cell averages of the three original grid cells exactly and pass
on the data for the horizontal advection step.

Step (i) and (iii) must be described. The SASLDG method used in step (ii) is dis-
cussed in Chapter 3. Thus, specifying the first step we must consider the following
substeps. First, the coarse grid is defined, then the coefficients for the polynomials
are computed from the cell averages and the given velocity must be adapted to the
coarse grid. Last, the cell averages are computed as part of the third step.

The definition of the coarse grid is straight forward. Three grid cells, e.g. the
cells i − 1, i and i + 1, are merged into one cell. The length of the new grid cell
∆x is the sum of the three old cells, i.e. ∆x = ∆xi−1 + ∆xi + ∆xi+1. Note that this
algorithm works only for grids with the total number of grid cells divisible by three
in vertical direction.

The polynomial f (x) = m2k2(x)+m1k1(x)+m0k0(x) is expressed with the Legen-
dre polynomials k j(x) as basis functions given in (3.132) to (3.134). The coefficients
m0, m1 and m2 are computed fulfilling the property

xk+1/2∫
xk−1/2

f (x)dx = ∆xkQk, (4.33)

for k = i− 1, i, i + 1, where Qk is the cell average for the kth grid cell. That results
in the coefficients given by

m0 =
Qi−1∆xi−1 + Qi+1∆xi+1 + Qi∆xi

∆xi−1 + ∆xi+1 + ∆xi
, (4.34)

m1 =
(

Qi−1∆x2
i+1 −Qi+1∆x2

i−1 −Qi−1∆x2
i + Qi+1∆x2

i

+ ∆x2
i−1Qi − ∆x2

i+1Qi + 3∆xi−1Qi∆xi

− 3∆xi+1Qi∆xi − 3Qi−1∆xi−1∆xi

+ 3Qi+1∆xi+1∆xi − 3Qi−1∆xi−1∆xi+1

+ 3Qi+1∆xi−1∆xi+1

)
/
(

2(∆xi−1 + ∆xi)(∆xi+1 + ∆xi)
)

,

(4.35)

m2 =((∆xi−1 + ∆xi+1 + ∆xi)(Qi−1∆xi + Qi+1∆xi

− ∆xi−1Qi − ∆xi+1Qi + Qi−1∆xi+1 + Qi+1∆xi−1

− 2Qi∆xi))/(2(∆xi−1 + ∆xi)(∆xi+1 + ∆xi)).

(4.36)

Before we can compute the advective step in vertical direction in step (ii), we have
to consider the velocity field and adapt it to the coarser grid. The velocity is given
at any grid point of the fine grid. To adjust it to the coarse grid, every third point
is taken. These points coincide with the cell boundaries of the newly created coarse
grid.

Then, the advective step can be computed with SASLDG, where the polynomials
are used as initial distribution and the coarse velocity field is given. After that, step
(iii) concludes the advection in vertical direction. We determine the cell averages
for the fine grid from the polynomials of the coarse grid. The formula computing
the averages Qk reverses (4.33) and yields

Qk =
1

∆xk

xk+1/2∫
xk−1/2

f (x)dx , (4.37)

112 extension of the sasldg method in 2d

for k = i − 1, i, i + 1. The function f is the new polynomial distribution after the
advective step in vertical direction. The cell averages of the three cells computed
from the quadratic polynomial on one coarse grid cell are given by

Qi−1 =m0 −m1 + m2 +
2m2∆x2

i−1
∆x2 +

m1∆xi−1

∆x

− 3m2∆xi−1

∆x
,

(4.38)

Qi =m0 −m1 + m2 +
6m2∆x2

i−1
∆x2 +

m1∆xi
∆x

− 3m2∆xi
∆x

+
2m1∆xi−1

∆x
− 6m2∆xi−1

∆x
+

2m2∆x2
i

∆x2 +
6m2∆xi−1∆xi

∆x2 ,

(4.39)

Qi+1 =m0 −m1 + m2 +
6m2∆x2

i−1
∆x2 +

2m2∆x2
i+1

∆x2 +
2m1∆xi

∆x

− 6m2∆xi
∆x

+
2m1∆xi−1

∆x
+

m1∆xi+1

∆x
− 6m2∆xi−1

∆x

− 3m2∆xi+1

∆x
+

6m2∆x2
i

∆x2 +
12m2∆xi−1∆xi

∆x2

+
6m2∆xi+1∆xi

∆x2 +
6m2∆xi−1∆xi+1

∆x2 .

(4.40)

The old fine grid is stored. The cell averages for all grid cells of the fine grid are
available after the vertical advection step. The horizontal advection step follows
next.

4.3.2 One-dimensional SASLDG-3c vs. MPDATA

The first numerical test is limited to one space dimension. In this way the perfor-
mance of SASLDG-3c can be studied without the effect of the operator splitting,
which influences the results of all two dimensional tests. We compare the results of
SASLDG-3c and MPDATA because these two methods will be used for the hybrid
operator splitting.

We conduct two of the test cases, that we have shown in Section 3.7. Both use
constant velocity field defined in (3.271) with the Courant number 0.45 and 0.5, re-
spectively. The first test case uses the smooth initial distribution of the sine function,
given in (3.273), added by two in order to obtain positive initial values needed by
MPDATA. We compute ten revolutions of the solution on a grid of 21 grid cells.
The second test examines the numerical methods with respect to a discontinuity
in the initial data, defined in (3.274), once again added by one for positivity. The
numerical solution is determined after one revolution on 99 grid cells. The results
are shown in Figure 4.9.

Note that the CFL numbers 0.45 and 0.5 for the SASLDG-c3 method refers to the
fine grid. The actual advection step is conducted on a three times coarser grid of
7 grid cells for the first test and on a grid of 33 grid cells for the latter test. Thus,
the CFL numbers 0.15 and 0.167, respectively, are the actual numbers used for the
computations of SASLDG-3c.

The numerical solution of MPDATA, printed in red, and of SASLDG-3c, printed
in blue, of the first test case is shown in Figure 4.9(a) along with the analytical
solution. The maximum of the analytical solution takes the value 2.9935, the max-
imum of SASLDG-3c drops to 2.9904 and of MPDATA to 2.8954. The solution of
SASLDG-3c barely alters the sinusoidal form, compared to MPDATA, which dis-
torts the solution after some time. The deformation is particularly noticeable at the
point x = 0.5, where the analytical function takes the value two. The maximum
error and the l1-error of MPDATA are given by 0.1160 and 0.0723, respectively. The
corresponding errors of the SASLDG-3c method are 0.0037 and 0.0020, respectively.
We recall of the performance of the SASLDG method in Section 3.7. We tested on a

4.3 hybrid operator splitting: mpdata and the sasldg method 113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

ρ

(a) Solution with smooth IV after ten revolu-
tions on 21 cells with CFL number 0.45.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.8

1

1.2

1.4

1.6

1.8

2

2.2

ρ

(b) Solution with discontinuous IV after one
revolution on 150 cells with CFL num-
ber 0.5.

Figure 4.9: Results of MPDATA (red) and SASLDG-3c (blue) are shown computed with con-
stant velocity. The analytical solution (black) is plotted for comparison.

grid of ten cells and examined the solution after 100 revolutions, see Figure 3.15(b).
The comparable errors made in the computation on 21 cells and after only 10 cycles
are 6.48 · 10−6 (the maximum error) and 4.13 · 10−6 (the l1-error). These values are
obtained by initial values that are projected onto polynomial functions. If the test is
conducted with piecewise constant initial values, as for MPDATA and the SASLDG-
3c method, the maximum error increases to 0.0074 and the l1-error to 0.0047. All
errors are determined from the absolute difference of the numerical solution and
the respective initial values.

The results of the second test case with discontinuous initial values are shown in
Figure 4.9(b). The most distinctive errors of this test are the over- and undershoots
in the numerical solutions of both methods, since the option of limiting is disabled.
The value of the largest undershoot in the solution of MPDATA is 0.9524, the over-
shoot takes the value 2.0492. The largest under- and overshoot of the SASLDG-3c
method is of 0.9114 and 2.0889, respectively, and thus both of larger amplitude.
However, the maximal absolute error of MPDATA of value 0.4062 is larger than
the largest absolute deviation of SASLDG-3c from the analytical solution, which is
0.3868. The SASLDG-3c method succeds in maintaining a steeper jump discontinu-
ity, which cause the maximal absolute error. For the same reason, the l1- error of
SASLDG-3c of value 0.0288 is smaller than the l1-error of MPDATA, that is 0.0351.
The corresponding test case on 100 grid cells of the SASLDG method in Section
3.7 is shown in Figure 3.16(a). The maximum error computed for comparison on
a grid of 99 grid cells and with the upwards shifted initial distribution is about
0.1552. The l1-error takes the value 0.0084. Both errors are remarkably smaller than
than the errors of MPDATA and the SASLDG-3c method. Additionally, note that
the area of the oscillations in Figure 3.16(a) by SASLDG is limited to a much more
narrow region than the affected area of the oscillations in the solution by MPDATA
and SASLDG-3c. The maximal under- and overshoot also are of smaller amplitude
and are given by the values 0.9612 and 2.0388, respectively.

In summary, the smallest errors are caused by the SASLDG method, followed
by its modified version, i.e. SASLDG-3c. The largest errors (absolute and l1-error)
arise using MPDATA in both test cases, although the over- and undershoot of the
solution of MPDATA are of smaller amplitude than of the SASLDG-3c method.

4.3.3 Solid body rotation test

The solid body rotation test is conducted for the two dimensional SASLDG method
in Section 4.2.1. We repeat the same 2D test case using operator splitting for MP-

114 extension of the sasldg method in 2d

DATA , SASLDG-3c and the hybrid method. Thus we can examine the solution of
each individual method and compare the result with the hybrid version. The same
velocity field is employed, defined in (4.30) and shown in Figure 4.1. We compute
the solution for one rotation. The CFL number of 0.5 used for this test case holds
for both space dimensions, since the grid cells are of the same size and number in
horizontal and vertical direction.

MPDATA

We compute the numerical solution with MPDATA via operator splitting in both
space directions. The result of the computation is shown in Figure 4.10(a) after one
rotation. The peak of the sine hill increases compared to the initial hill and takes
the value 5.028. Because of oscillations, the minimum value drops to 3.907.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5

(a) Numerical solution after one rotation.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) Absolute error of numerical solution.

Figure 4.10: The solid body rotation test for MPDATA.

Figure 4.10(b) shows the absolute values of the difference of the numerical solu-
tion after one rotation and the initial values. The maximum error is approximately
0.163. The error is not symmetrical, which indicates that the position after one
rotation of the sine hill deviates from the initial position.

SASLDG-3c

Figure 4.11(a) shows the numerical solution using SASLDG-3c in both space direc-
tions. It pictures the solution after one rotation. The maximum of the numerical
solution, located in the sine hill, reaches the value 4.995. The minimum of the
numerical solution of the whole computational domain is 3.978.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

(a) Numerical solution after one rotation.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0.005

0.01

0.015

0.02

0.025

0.03

(b) Absolute error of numerical solution.

Figure 4.11: The solid body rotation test for the SASLDG-3c method.

4.3 hybrid operator splitting: mpdata and the sasldg method 115

The absolute value of the difference of the solution after one rotation and the
initial distribution is plotted in Figure 4.11(b). The maximum error takes the value
0.034. Note the maximum error of SASLDG (without the combination of three grid
cells to one) is approximately 0.014. The error is quite symmetrical, which means
that the location after the rotation matches the position of the initial values. The
flattening of the sides of the sine hill is the main source of the error.

Hybrid method

The last test case of the solid body rotation test combines MPDATA and SASLDG-
3c in the hybrid version of the operator splitting. The horizontal advection is com-
puted by MPDATA, the vertical advection by SASLDG-3c. The numerical solution
is shown after one rotation in Figure 4.12(a). The maximum increases to the value
5.015, the minimum is reached at the value 3.926.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5

(a) Numerical solution after one rotation.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
0.11

(b) Absolute error of numerical solution.

Figure 4.12: The solid body rotation test for the hybrid method.

The absolute error of the hybrid method is shown in Figure 4.12(b). Its maximum
reaches the value of 0.115, which is between the error of using MPDATA only and
SASLDG-3c only. Also, the structure of the error is visibly a combination of both
schemes applied purely.

A summary of characteristic values of the numerical solutions is given in Table
4.1. It lists the respective minimum and maximum of the solution after one rotation.
The l∞-error and the l1-error are displayed. Furthermore, the computational time is
also given in the table.

min max l∞-error l1-error time (s)
SASLDG 3.995 4.992 0.014 0.0008 8344.76

MPDATA 3.907 5.028 0.163 0.0103 45.3
SASLDG-3c 3.978 4.995 0.034 0.0021 147.2
hybrid 3.926 5.015 0.115 0.0067 81.25

Table 4.1: Characteristic values for the cone revolution test computed on a 51× 51 grid with
CFL number 0.5.

4.3.4 Deformational flow test: static vortex

We continue the deformational flow test, where we have shown the results for the
SASLDG method in Section 4.2.2. We proceed with testing MPDATA, SASLDG-3c
and the hybrid method. The velocity field for the first half of the test is defined
as above, see (4.31), and plotted in Figure 4.5. For the second half of the test, the
velocity case is inverted. We decrease the number of grid cells from 100 by one

116 extension of the sasldg method in 2d

to guarantee a number divisible by three. The Courant number 0.5 holds for both
directions, since the size of the grid cells are equal as well as the maximum velocity
in both dimensions. The initial staircase function, displayed in Figure 4.6(a), is used
as initial distribution with one difference. The function is increased by the value five
everywhere. Developing oscillations in the hybrid method caused by the SASLDG-
3c scheme could reach negative numbers, which is allowed for this method but not
tolerated by MPDATA.

MPDATA

The numerical solution of the 2D advection equation is computed for 346 time steps
using MPDATA in both space dimensions. The vortex, that has built up after that
time, is shown in Figure 4.13(a). The filaments that were generated are roughly two
to three grid cells thick. The inner filament of the vortex is barely distinguishable
from the surrounding step. When zooming in on the filaments, we note that at the
location, where the filaments start to curl from the step, oscillations arise towards
the edge of the filament. Using that vortex as initial values, we again compute the
solution for 346 time steps with the reversed velocity field. The result is pictured in
Figure 4.13(b). A vortex is still visible, though less curled up than in the first half.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(a) Numerical solution after 347 time steps.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(b) Numerical solution at time Tmax.

Figure 4.13: Numerical solution of MPDATA for the static vortex test.

The analytical solution of this back and forth test case is the initial staircase func-
tion shown in Figure 4.6(a). Therefore, the error is the difference of the numerical
solution pictured in Figure 4.13(b) and the staircase function. The absolute value of
the difference is shown in Figure 4.14.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0

0.02

0.04

0.06

0.08

0.1

Figure 4.14: Absolute error of the solution of MPDATA for the static vortex test.

The maximal error is approximately 0.117 and occurs at the intersection of the
edges of the steps and the vortex. The error shown in the figure is limited to the
region, where the vortex originated.

4.3 hybrid operator splitting: mpdata and the sasldg method 117

SASLDG-3c

Figure 4.15(a) shows the numerical solution after the first half, that is 346 time
steps, computed with SASLDG-3c via operator splitting. Equally to the results
computed with MPDATA, the thickness of the filaments is two to three grid cells.
Reversing the velocity and continuation of the computations for 346 time steps leads
to the numerical solution plotted in Figure 4.15(b). The oscillations that occur near
the edge of the filaments in the results from MPDATA above, do not arise using
SASLDG-3c.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(a) Numerical solution after 347 time steps.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(b) Numerical solution at time Tmax.

Figure 4.15: Numerical solution of the SASLDG-3c method for the static vortex test.

The error, i.e. the absolute difference of the solution shown in Figure 4.15(b) and
the staircase function, is shown in Figure 4.16.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 4.16: Absolute error of the solution of the SASLDG-3c method for the static vortex
test.

The maximum of the error takes the value 0.108 at a similar location as the error of
the MPDATA computation. Additionally, errors of a smaller order arise at all edges
of the steps in the whole computational domain. This can be explained by the
combination of three grid cells to one in the algorithm of the SASLDG-3c method.

Hybrid method

After we examined the results for the 2D linear advection equation with pure MP-
DATA operator splitting and SASLDG-3c only, we study the results of the hybrid
version. Again, the horizontal dimension is solved using MPDATA, and the vertical
dimension with SASLDG-3c. The numerical solution of the static vortex test after
346 time steps is shown in Figure 4.17(a). In fact, the result of the hybrid method is
a mixture of the results from pure MPDATA and pure SASLDG-3c. The oscillations

118 extension of the sasldg method in 2d

mentioned above do occur in the hybrid version, but of less amplitude than for us-
ing MPDATA only. The numerical solution of the turned back vortex after 346 time
steps with the reversed velocity field is pictured in Figure 4.17(b).

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(a) Numerical solution after 347 time steps.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5.1

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(b) Numerical solution at time Tmax.

Figure 4.17: Numerical solution of the hybrid method for the static vortex test.

The error of the hybrid method is plotted in Figure 4.18. The error shows evidence
for using the hybrid method, i.e. shows similarities to the error of MPDATA and
SASLDG-3c.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 4.18: Absolute error of the solution of the hybrid method for the static vortex test.

The maximum of the absolute error reaches the value 0.109, which is between the
error of using both methods purely. Since MPDATA is applied for the horizontal
advection, the error that arises at the edges of the steps from using the SASLDG-3c
method visible in Figure 4.16, is not noticeable in Figure 4.18.

Table 4.2 gives an overview of the maximal error, that occurs in the different
numerical methods. Additionally, the l1-error is given.

l∞-error l1-error
SASLDG 0.079 0.0029

MPDATA 0.117 0.0040

SASLDG-3c 0.108 0.0056

hybrid 0.109 0.0038

Table 4.2: Characteristic values for the static vortex test computed on a 99 × 99 grid (for
SASLDG 100× 100) with CFL number 0.5.

4.3 hybrid operator splitting: mpdata and the sasldg method 119

4.3.5 Deformational flow test: Rider Kothe

In this test, case we use a deformational flow velocity field proposed by Rider and
Kothe in [50]. It is given by

u(x, y) = sin(2π(x + d)) sin(2π(y/2 + d))
v(x, y) = cos(2π(x + d)) cos(2π(y/2 + d)),

(4.41)

with d = −0.5. The velocity field is shown in Figure 4.19.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

Figure 4.19: The velocity field used for the deformational flow test Rider Kothe.

The velocity field is determined such that it creates two symmetrical vortices that
point in opposite directions. We choose smooth initial data, i.e. a gaussian hill, as
shown in Figure 4.20.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Figure 4.20: The initial values used for the deformational flow test Rider Kothe.

It is defined by

f (x, y) = exp

(
−1

2

((
x− µx

σ

)2
+

(
y− µy

σ

)2
))

, (4.42)

120 extension of the sasldg method in 2d

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(a) 1/4 cycle forward: t ≈ 0.23

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) 1/2 cycle forward: t ≈ 0.45

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(c) 3/4 cycle forward: t ≈ 0.68

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(d) one cycle forward: t = 0.9

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(e) 1/4 cycle backward: t ≈ 1.13

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(f) 1/2 cycle backward: t ≈ 1.35

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(g) 3/4 cycle backward: t ≈ 1.58

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(h) one cycle backward: t = 1.8

Figure 4.21: Evolution of the deformational test using the Rider-Kothe velocity field. The
numerical solution is obtained by SASLDG-3c on a 120 × 120 grid with the
Courant number 0.5.

4.3 hybrid operator splitting: mpdata and the sasldg method 121

where µx = 0, µy = −0.2 and σ = 0.1.
Using the velocity field defined in (4.41) up to time t = 0.9, the gaussian hill gets

deformed and advected upwards. It then gets drawn apart and takes the form of an
arch. If we continued with this velocity field, thin filaments would start to form and
curl to vortices. Instead, we reverse the velocity field and start with the numerical
data at time t = 0.9 and perform the computations for the same time, i.e. we have
Tmax = 1.8. Ideally, the initial data would be attained after that time.

The whole evolution of the test case is illustrated in Figure 4.21 by snapshots at
different points in time. The data is obtained from using SASLDG-3c on a grid of
120× 120 cells with Courant number 0.5. The panels show the numerical solution
after a quarter, a half and three quarters towards to largest deformation, which is
pictured as well. Then, with reversed velocity, the solution is plotted after a quarter,
a half and three quarters back towards the initial distribution. The last figure shows
the numerical solution at time Tmax = 1.8.

With this test we want to examine how the different numerical methods perform
using smooth initial values in a deformational flow test. Furthermore, we conduct
the test on two different sets of grids. First, we use a grid of 120× 120 cells, i.e. a
grid with aspect ratio 1:1. Second, a grid of 120× 360 cells and thus with aspect ratio
1:3 is applied. Two different Courant numbers are tested for the hybrid method on
the latter grid. Additionally, we measure the elapsed time for the computation of
each individual numerical test. This enables us to compare the computational cost
for the different methods with varying settings.

For all tests, we plot the numerical solution at the largest deformation and at
the end, where the form of the initial values should be attained. The respective
subsequent figure shows the absolute error, i.e. the absolute difference of the initial
data and the numerical solution.

MPDATA - grid ratio 1:1

The numerical solution is computed with MPDATA on a grid of 120 × 120 grid
cells. The Courant number applied for this test is 0.5 with respect to the vertical
grid, written shortened by 0.5 (y). The magnitude of the maximal velocity is similar
in horizontal and vertical direction. Since the grid cells are equally sized in both
directions, the Courant number holds for the x-direction as well as the y-direction.
The numerical solution of the largest deformation at time t = 0.9 is shown in Figure
4.22(a). The maximum of 5.993 is reached at the point [0.09, 0.42], slightly shifted
to the right from x = 0. The minimum drops to 4.990 at the point [−0.01,−0.01],
caused by small oscillations. Figure 4.22(b) pictures the numerical solution at the

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.22: The numerical solution of the Rider Kothe test computed with MPDATA on a
120× 120 grid with CFL number 0.5 (y) w.r.t. the vertical direction.

end of the test at time Tmax = 1.8. The maximum of the gaussian hill is advected

122 extension of the sasldg method in 2d

exactly to its initial point, i.e. [0.0,−0.20]. It takes the value 5.988. The minimum
4.998 of the numerical solution is obtained at [0.0, 0.15].

The difference of the numerical solution at time Tmax = 1.8 and the initial values
at time t = 0 describes the error made in this test. The absolute difference is shown
in Figure 4.23.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y
0.005

0.01

0.015

0.02

0.025

0.03

Figure 4.23: Absolute error of the solution of MPDATA shown in Figure 4.22(b).

The maximum of the error is approximately 0.0324. The area of the largest error is
a narrow stripe that stretches from where the peak of the gaussian hill is located up
to point [0.0, 0.0]. The maximum is located at the point [0.0,−0.14]. Errors of smaller
magnitude of approximately 0.011 are present at the region of the lower half of the
gaussian hill. Another error peak of approximately 0.013 is located at [0.0,−0.48],
near the boundary of the computational domain. Small oscillations occur in this
area around that peak up to the left and right side of the computational domain.
The l1-error is given by 0.0014.

The elapsed time for the computation of the test case with MPDATA on a grid of
120× 120 grid cells and CFL number 0.5 (y) is 314.9s.

SASLDG-3c - grid ratio 1:1

We compute the numerical solution on a grid of 120 × 120 grid cells using the
SASLDG-3c method with the Courant number 0.5 (y) with respect to the fine grid.
The actual CFL number corresponding to the coarse grid of 40 gird cells is 0.167.
The numerical solution at time t = 0.9 at the largest deformation is shown in Figure
4.24(a). The maximum of the solution is kept at the middle of the x-axis, i.e. at
[0.0, 0.43]. It takes the value 5.993. A minimum of 4.994 is located at [0.02, 0.11].

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.24: The numerical solution of the Rider Kothe test computed with SASLDG-3c on a
120× 120 grid with CFL number 0.5 (y) w.r.t. the fine vertical grid.

4.3 hybrid operator splitting: mpdata and the sasldg method 123

The numerical solution at time Tmax is displayed in Figure 4.24(b). The peak of
the gaussian hill is advected to its initial location at [0.0,−0.2] and takes the value
5.999. The minimum of 4.989 is located at [0.46,−0.34]. It is part of oscillations of
the numerical solution that become visible in the error plot.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 4.25: Absolute error of the solution of SASLDG-3c shown in Figure 4.24(b).

The largest error occurs near the lower boundary of the computational domain.
Its peak of 0.0147 is located at the point [0.0,−0.47]. At the same spot, an error
of smaller magnitude is present for MPDATA. Further errors arise because of the
oscillations in the numerical solution. Thus, an error of 0.01 is located at the location
of the minimum of the solution. Small errors of 0.006 are present in the area where
the largest error of MPDATA occurs. The l1-error is given by 0.0008.

The elapsed time for the computation of the test case with SASLDG-3c on a grid
of 120× 120 grid cells and CFL number 0.5 (y) with respect to the fine grid is 556.0s.

Hybrid method - grid ratio 1:1

The next test examines the numerical solution of the hybrid method on a grid of
120× 120 grid cells. The size of the time step is determined by the Courant number
0.5 with respect to the fine grid in both space dimensions. Since the advection step
of the SASLDG-3c method is done on a grid of 40 grid cells, the actual CFL number
decreases to 0.167. The result of the computation after time t = 0.9 and after time
t = 1.8 can be seen in Figure 4.26(a) and Figure 4.26(b), respectively. The minimum
of the solution at the end of the forward cycle of value 4.990 is at the same point
as the minimum of the solution of MPDATA, i.e. [−0.01,−0.01]. The maximum of
5.993 is at the same location as the maximum of the SASLDG-3c method at [0.0, 0.43].
The minimum of 4.999 of the numerical solution at time Tmax shows resemblance
with the minimum of MPDATA. It is located at the point [−0.01, 0.26], which is
shifted towards the upper boundary of the domain in comparison to the minimum
of MPDATA. As for the methods above, the maximum of value 5.998 is located at
the point of the initial peak of the gaussian hill.

The absolute error of the numerical solution at time t = 1.8 is shown in the error
plot in Figure 4.27. The overall structure of the error of the hybrid method bears
resemblance with the error of SASLDG-3c. The largest error of 0.0131 is located at
[0.0,−0.48], which is the same point as for SASLDG-3c. Furthermore, smaller error
peaks are situated at x = 0, between approximately y = 0 and the upper bound-
aries of the domain with diminishing magnitude towards y = 0.5. The oscillations
that are present for the SASLDG-3c method are still visible for the hybrid method.
However, their maximal amplitude of approximately 0.004 is significantly smaller.
The maximum error and the l1-error of 0.0007 of the solution of the hybrid method
are smaller than the respective errors of the individual methods.
Thus, the combination of MPDATA and SASLDG-3c in this particular way improves
the overall result. Note that if we assemble the hybrid method the other way around,
i.e. if we use MPDATA for the vertical and SASLDG-3c for the horizontal advection,

124 extension of the sasldg method in 2d

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.26: The numerical solution of the Rider Kothe test computed with the hybrid
method on a 120× 120 grid with CFL number 0.5 (y) w.r.t. the vertical direc-
tion.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.002

0.004

0.006

0.008

0.010

0.012

Figure 4.27: Absolute error of the solution of the hybrid method shown in Figure 4.26(b).

the errors of the numerical solution increase. In that case, the l∞- and the l1-error
are given by 0.0335 and 0.0015, respectively.

The time for the computation of the test with the hybrid method on a grid of
120× 120 grid cells and CFL number 0.5 (y) with respect to the fine grid is 406.5s.

Table 4.3 gives an overview of the minimum and maximum values of the re-
spective numerical solutions at time Tmax, as well as the l∞-error and the l1-error.
Additionally, the computational time is listed. The CFL number used in all tests
refers to the grid in vertical direction, which is denoted by (y) in the table.

CFL min max l∞-error l1-error time (s)
MPDATA 0.5 (y) 4.998 5.988 0.0324 0.0014 314.9
SASLDG-3c 0.5 (y) 4.989 5.999 0.0147 0.0008 556.0
hybrid 0.5 (y) 4.999 5.998 0.0131 0.0007 406.5

Table 4.3: Characteristic values for the Rider Kothe test computed on a 120× 120 grid.

MPDATA - grid ratio 1:3

We change the grid aspect ratio to 1:3 for this and the succeeding tests. Thus, we
increase the vertical resolution to 360 grid cells. The horizontal resolution is kept
at 120 cells to obtain the desired aspect ratio. We establish the test environment
of flat grid cells, as described in the introduction of this section. It is exemplarily
illustrated in Figure 4.8.

4.3 hybrid operator splitting: mpdata and the sasldg method 125

We use MPDATA to solve the advection equation in both space dimensions and
choose to limit the time step such that the CFL number of 0.5 (y) is met in verti-
cal direction. Consequently, the CFL number for the x-direction is approximately
0.167 (x). Considering the horizontal dimension only, we could enlarge the time
step by a factor of about six and still meet the stability requirements of MPDATA.
In vertical direction, the CFL number could be increased by a factor of two at most.

The numerical solution computed with MPDATA after half the test at the largest
deformation at time t = 0.9 is plotted in Figure 4.28(a). The minimum and the
maximum of the solution are located at approximately the same points as on the
120× 120 cells grid. The value 4.990 of the minimum is the same as before. The
maximum value of the solution at time t = 0 increases to 6.001. The final solution at

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.28: The numerical solution of the Rider Kothe test computed with MPDATA on a
120× 360 grid with CFL number 0.5 (y) w.r.t. the vertical direction.

time t = 1.8 is given in Figure 4.28(b). The maximum is reached at the analytically
correct point of [0.0,−0.2] and takes the value 5.999. The minimum of 5.0 is the
same as the minimum of the initial distribution.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.002

0.004

0.006

0.008

0.010

0.012

Figure 4.29: Absolute error of the solution of MPDATA shown in Figure 4.28(b).

The error plot is given in Figure 4.29. The structure of the error plot resembles
the error of MPDATA on the 120× 120 grid with one exception. The maximal error,
which takes the value 0.0124, is located near the lower boundary of the computa-
tional domain at [−0.01,−0.48]. A smaller error peak is visible at the same spot
for the solution of MPDATA on the 120× 120 grid as well. Using the resolution
120× 360 leads to an increase of that error. The largest error peak on the previous
grid is also present on this grid approximately at point [0.0,−0.1]. It takes the value
0.012. The l1-error is given by 0.0006.

The time for the computation of the test with MPDATA on a grid of 120× 360
grid cells and CFL number 0.5 (y) with respect to the vertical direction is 2820.3s.

126 extension of the sasldg method in 2d

SASLDG-3c - grid ratio 1:3

In this test we compute the numerical solution with the SASLDG-3c method in both
space directions. As for the test case with MPDATA above, the grid has the aspect
ratio of 1:3. The CFL number is chosen with respect to the fine grid, i.e. the time
step is restricted to meet the CFL number 0.5 (y) in vertical direction. This yields
the CFL number of 0.167 (x) for the horizontal direction. Because of combining
three grid cells to one in both space directions, the actual CFL numbers related to
the coarse grid of 40× 120 cells are 0.167 (y) and 0.056 (x), respectively.

Figure 4.30(a) shows the solution at time t = 0.9. Figure 4.30(b) plots the results
at the end of the backward cycle at time t = 1.8. The locations of the minimum and
the maximum are at the same points as for the SASLDG-3c method on the previous
grid of ratio 1:1. The minimum takes the same value of 4.994. The maximum is
given by 6.0. Similarly, the minimum and the maximum of the numerical solution

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.30: The numerical solution of the Rider Kothe test computed with SASLDG-3c on a
120× 360 grid with CFL number 0.5 (y) w.r.t. the vertical direction.

at time Tmax are located at the same spots and in fact take the same values as on the
grid of 120× 120 grid cells. Thus, the minimum of 4.989 is situated at [0.46,−0.34].
As before, it is part of oscillations that arise in the solution. The maximum at the
point [0,−0.2] takes the value 5.999.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 4.31: Absolute error of the solution of SASLDG-3c shown in Figure 4.30(b).

The error of this test is shown in Figure 4.31. Its structure is comparable with
the error structure of the test of the SASLDG-3c method on the 120× 120 grid. The
maximal error is located at the same location, i.e. [0.0,−0.47], and takes the value
0.0149. The l1-error is given by 0.0008.

The time for the computation of the test with the SASLDG-3c method on a grid of
120× 360 grid cells and CFL number 0.5 (y) with respect to the fine grid in vertical
direction is 5058.7s.

4.3 hybrid operator splitting: mpdata and the sasldg method 127

Hybrid method - ratio grid 1:3

We examine the numerical result of the hybrid method on the grid with 120× 360
cells, which yields a grid aspect ratio of 1:3. Using this grid we will study the
influence of two different CFL numbers on the numerical solution.

The first choice of the Courant number is the same as in the previous test, that is
the Courant number equals to 0.5 (y) in vertical direction with respect to the fine
grid and to approximately 0.167 (x) in horizontal direction. The actual CFL number
for the vertical direction decreases by the factor of three to 0.167 (y), when it refers
to the coarser grid of 120 cells used for the SASLDG-3c method.

The results of the hybrid scheme at time t = 0.9 and at time t = 1.8 are shown
in Figure 4.32(a) and Figure 4.32(b), respectively. The minimum and maximum
of the solution at time t = 0.9 are located at the same points, i.e. at [0.01,−0.01]
and [0.0, 0.43], respectively, as in the results of the hybrid method on the 120× 120
cells grid. The minimum takes the values 4.990, the maximum is given by 6.001.
The solution after the backward cycle at time Tmax has a minimum of 5.0 and a

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5
y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.32: The numerical solution of the Rider Kothe test computed with the hybrid
method on a 120× 360 grid with CFL number 0.5 (y) w.r.t. the vertical direc-
tion.

maximum of 5.999, located at the analytically correct position at the peak of the
gaussian hill.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.002

0.004

0.006

0.008

0.010

0.012

Figure 4.33: Absolute error of the solution of the hybrid method shown in Figure 4.32(b).

The error of the hybrid method is displayed in Figure 4.33. The error is a hybrid
version of the errors of the individual methods. The maximum of 0.0124, located
near the bottom of the domain at [0.01,−0.48], takes the same value as the maximal
error of MPDATA. The error structure of MPDATA is given again in the area above
y = −0.4, where larger error peaks of the SASLDG-3c method are located. In
contrast, the region with errors of smaller magnitude of the SASLDG-3c method is

128 extension of the sasldg method in 2d

taken at the position of the second largest error peak for MPDATA (at [0.0,−0.14]).
Summarized, the solution of the hybrid method takes the respective smaller error
of the methods MPDATA and SASLDG-3c. Apart from the maximal error peak, the
other errors remain below the value 0.002. Hence, the l1-error of the hybrid method,
given by 0.0004, is smaller than for the individual methods.

The time for the computation of the test with the hybrid method on a grid of
120× 360 grid cells and CFL number 0.5 (y) with respect to the fine grid in vertical
direction is 3698.8s.

For the concluding test case we retain the grid resolution and the method but
change the CFL number. The size of the time step is determined from the CFL
number of 1.0 (x) in horizontal direction. For the fine grid of 360 grid cells, the
CFL number yields the value 2.99 (y) for the vertical direction. If we refer the CFL
number to the coarser vertical grid used for the advection step in the SASLDG-3c
scheme, the Courant number is approximately 1.0 (x).

The results from this test can be found in Figure 4.34(a) for the largest deforma-
tion at time t = 0.9. The minimum and maximum of the numerical solution for CFL
1.0 (x) shows the same values at the same position as the solution for CFL 0.5 (y)
above. Figure 4.34(b) displays the numerical solution after the backward cycle at

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

(a) The numerical solution at time t = 0.9.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

(b) The numerical solution at time t = 1.8.

Figure 4.34: The numerical solution of the Rider Kothe test computed with the hybrid
method on a 120× 360 grid with CFL number 1.0 (x) w.r.t. the horizontal direc-
tion.

time Tmax. Again, the values of minimum and maximum bear a resemblance with
the solution computed with CFL 0.5 (y). The maximum at the point [0.0,−0, .2]
takes the value 5.999. The minimum of 4.999 at the point [−0.03, 0.18] is located
similarly to the minimum of the solution of MPDATA on the 120× 120 grid.

-0.5 -0.3 -0.1 0.1 0.3 0.5
x

-0.5

-0.3

-0.1

0.1

0.3

0.5

y

0.002

0.004

0.006

0.008

0.010

0.012

Figure 4.35: Absolute error of the solution of the hybrid method shown in Figure 4.34(b).

The error of the numerical solution is shown in Figure 4.35. The maximal error of
0.135 is located at the same position as for the tests above. Though, the magnitude

4.3 hybrid operator splitting: mpdata and the sasldg method 129

of the maximal error is enlarged by a small amount, the errors at the other erroneous
areas increase by a large factor and reach values above 0.01. Therefore, the l1-error
takes the value 0.0011, which is the largest of all tests conducted on this grid.

The time for the computation of the test with the hybrid method on a grid of
120× 360 grid cells and CFL number 1.0 (x) with respect to the grid in horizontal
direction is 617.1s.

CFL min max l∞-error l1-error time (s)
MPDATA 0.5 (y) 5.000 5.999 0.0124 0.0006 2820.3
SASLDG-3c 0.5 (y) 4.989 5.999 0.0149 0.0008 5058.7
hybrid 0.5 (y) 5.000 5.999 0.0124 0.0004 3698.8
hybrid 1.0 (x) 4.999 5.999 0.0135 0.0011 617.1

Table 4.4: Characteristic values for the Rider Kothe test computed on a 120× 360 grid.

Table 4.4 gives an overview of the CFL numbers used in the tests, the correspond-
ing minimum and maximum values of the respective numerical solutions at time
Tmax, as well as the l∞-error and the l1-error. Additionally, the computational time
is listed. The (x) and the (y) written in the column of the CFL number give the
space dimension the CFL number refers to.

4.3.6 Wavelike flow test

In the test we examine the numerical results computed from discontinuous non-
smooth initial data and a time dependend velocity field that is wavelike and not
as much deforming as in the deformational flow tests above. The velocity field is
given by

u(x, y, t) = − 1
2Hk

cos
(

π(
y
H
)
)

sin(2πk(x− ct))

v(x, y, t) = sin
(

π
y
H

)
cos(2πk(x− ct)),

(4.43)

where H is the height, k the frequency and c a coefficient which determines the
degree of deformation. We set H = 1, k = 1 and c = 4 in the tests. The velocity
field forces upwards and downwards advection as well as advection to the left and
right in turn in a wavelike form. Note that the maximum magnitude of the vertical
velocity component v is twice as large as of the horizontal velocity component u. A
plot of the velocity field at time t = 0 is shown in Figure 4.36. The largest magnitude
of the horizontal velocity is located at the top and at the bottom of the computational
domain at the initial time. The largest component of the vertical velocity acts in the
middle region and at the left and right boundary of the computational domain. The
velocity field is shifted to the right in time. A full cycle of the vertical movement
is reached at time t = 1/c. However, the overall advection deforms the solution
such that the initial distribution is not recovered at that time. To simulate a longer
period of time, the solution is computed for five cycles applying the given velocity
field (4.43) up to the point in time t = 5/c. In order to obtain a state of the solution
for which the analytical solution is known, the velocity field is reversed. Using
the reversed velocity field, the numerical solution is again computed for five cycles.
Therefore, the chosen maximum time for this test is Tmax = 10/c.

The initial values are shown in Figure 4.37. The distribution contains a sharp
jump discontinuity. It can represent a sharp boundary layer in either space direction
of any tracer in the atmosphere or the ocean. For example, one region can represent
the structure of a cloud with water droplets as tracer, the other region stands for an
area of less humidity. Another example is the salinity in the ocean. There are layers
that consist of a high salt concentration. The correct advection of these tracers is of

130 extension of the sasldg method in 2d

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

Figure 4.36: The velocity field used for the wavelike flow test at time t = 0.

importance, see e.g. [26]. Thus, this test studies the performance of the numerical
schemes with focus on the maintenance of the sharp boundary.

We conduct numerical tests on two different grids. The first grid has an aspect
ratio of 1:1 with 150 grid cells in both space directions. The second grid is of
90× 540 grid cells and hence a grid with aspect ratio of 1:6. On each of these grids,
we compute the numerical solution with operator splitting with MPDATA in both
dimensions, with the SASLDG-3c method in both dimensions and with the hybrid
method, where MPDATA is used for the horizontal advection and SASLDG-3c for
the vertical one. Furthermore, the Courant number is increased in the latter test
case of the hybrid method to show its influence on the numerical solution. Also,
the computational time is measured to compare the cost of the different algorithms
and settings.

The evolution of this test is shown in Figure 4.38 to see the maximal deformation
of one vertical cycle. It pictures snapshots at different points in time of the first

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

(a) The initial values for the 150× 150 grid.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

(b) The initial values for the 90× 540 grid.

Figure 4.37: The initial values used for the wavelike flow test.

4.3 hybrid operator splitting: mpdata and the sasldg method 131

cycle. The data is obtained from the SASLDG-3c method on a grid of 150× 150
cells. The CFL number used for the computation is 0.5 with respect to the grid in
vertical direction, which we abbreviate by 0.5 (y).

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(a) 1/6 cycle: time step 12

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(b) 1/3 cycle: time step 24

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(c) 1/2 cycle: time step 37

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(d) 2/3 cycle: time step 50

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(e) 5/6 cycle: time step 62

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(f) one cycle: time step 75

Figure 4.38: Evolution of one cycle of the wavelike test. The plotted numerical solution is
obtained by SASLDG-3c on a 150× 150 grid with the Courant number 0.5 (y).

We use the initial distribution shown in Figure 4.37(a). The snapshots are taken
at every sixth of the cycle. The main impact of the velocity is visible at the cut-out
corner. In particular, it reflects the vertical advection. The effect of the horizontal
velocity components is primarily noticeable at the top and at the bottom of the ver-
tical edges. The largest vertical velocity in downwards direction starts to act on the
cells at x = 0.5 at time t = 0.
After 12 time steps, the point of the largest negative velocity is shifted by approxi-
mately 0.16 to the right. Thus, it is is located approximately at x = 0.66. The impact
can be seen in Figure 4.38(a), which displays the numerical solution after 12 time
steps. The solution shows a deformation of the horizontal edges of the cut-out cor-

132 extension of the sasldg method in 2d

ner.
The solution after 24 time steps is plotted in Figure 4.38(b). The effect of the hori-
zontal velocity starts to be visible, too. The upper part of the left edge is advected
to the left, whereas the lower parts tends to the right. The vertical upwards velocity
acts on the left part of the cut-out corner.
After 37 time steps, half of the cycle is processed, which can be seen in Figure 4.38(c).
The largest deformation of the left edge being rotated counterclockwise is reached.
The left part of the cut-out corner has reached the highest point.
Figure 4.38(d) shows the numerical solution after 50 time steps. The point of the
largest upwards velocity has moved to approximately x = 0.65 and thus acts on the
middle part of the cut-out corner.
The solution after 62 time steps is pictured in Figure 4.38(e). The left edge starts to
visibly move back clockwise. The largest upwards advection is located at x ≈ 0.83,
whereas the largest downwards advection takes place at x ≈ 0.33. As a consequence,
the left part of the cut-out corner starts moving downwards, whereas the right part
of the corner still is advected upwards.
The numerical solution after 75 time steps, which is a vertical cycle, is shown in Fig-
ure 4.38(f). The overall deformation, which increases in time, is barely visible after
one cycle. The vertical discontinuities begin to form a curve. The solution after five
cycles is shown for each respective test case. The deformation becomes obvious on
these plots.

MPDATA - grid ratio 1:1

We begin with the numerical solution computed with MPDATA on the grid of
150 × 150 cells shown in Figure 4.39. The CFL number is chosen to be 0.5 with
respect to the vertical grid, i.e. 0.5 (y). The corresponding CFL number for hori-
zontal advection is approximately 0.25 (x). The numerical solution after five cycles
is pictured in Figure 4.39(a). It reveals over- and undershoots, as it takes values
between 3.688 and 5.289. The over- and undershoots decrease in the numerical so-
lution after five more cycles in backward direction (plotted in Figure 4.39(b)) since
the minimum and maximum take the value 3.905 and 5.104, respectively.

The error is plotted in Figure 4.39(c), which consists of the absolute difference of
the numerical solution and the initial values. The main error occurs along the dis-
continuity. The maximal error of 0.673 is a narrow peak located at the left corner in
the top of the cut-out corner. The error of the horizontal edges as well as the error
of the whole diagonal part of the the cut-out corner is of roughly 0.5 and larger
than the error of the vertical discontinuities, which is approximately 0.4.
When measuring the width of the error along the discontinuity, we count the grid
cells where the error is above the value 0.1. With this definition, the width of the
error of the left vertical edge is between two and four grid cells. The width of four
grid cells occurs at the top and at the bottom of the left edge, where the largest
horizontal velocities are applied. These cause oscillations which enlarge the region
of the error. Smaller oscillations appear also in the region in the middle of the
left vertical edge. These are of smaller amplitude because the horizontal velocity is
smaller within this area. The large vertical velocity that acts on this region does not
cause horizontal oscillations. The error in the cut-out corner stretches over two to
four grid cells at the vertical edge and seven and five grid cells along the horizontal
bottom and top edge, respectively.
In general, when we study the left vertical edge, it is significant that the error is
larger in middle and at the very top and bottom. In between it is of smaller magni-
tude. This can be explained by the velocity field. The maximal vertical velocity is
reached in the middle region, the maximal horizontal velocity at the top and bottom.
Thus, the advection is larger in these regions which leads to the enhanced error.
The l1-error computed from the sum of the cell averages is approximately 0.026.

4.3 hybrid operator splitting: mpdata and the sasldg method 133

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Absolute error of numerical solution.

Figure 4.39: The wavelike test computed with MPDATA on a 150× 150 grid with CFL num-
ber 0.5 (y).

The time for the computation of this test case with MPDATA on a grid with
150× 150 grid cells and CFL number 0.5 (y) is 874.6s.

SASLDG-3c - grid ratio 1:1

The result from the computation of the wavelike flow advection test of ten cycles
with the SASLDG-3c method on a grid of 150× 150 grid cells is shown in Figure
4.40. The CFL number applied for this test is 0.5 (y) with respect to the fine grid
in vertical direction. The corresponding Courant number in horizontal direction is
0.25 (x). The CFL numbers with respect to the coarse grid, which is used for the
advection steps, are given by 0.16 (y) and 0.08 (x), respectively.
A plot of the solution after five cycles is shown in Figure 4.40(a). The over- and
undershoot are of less amplitude than in the case of MPDATA. The minimum and
maximum of the numerical solution at that time take the value 3.844 and 5.146, re-
spectively. The solution after five more cycles with the reversed velocity is pictured
in Figure 4.40(b). The minimum takes the value 3.852, which is smaller than the
corresponding value of the MPDATA solution. The maximum of the SASLDG-3c
solution given by 5.156 is larger than the maximum of the corresponding MPDATA
solution.

The absolute error is shown in Figure 4.40(c). Even though, the over- and un-
dershoots are of larger magnitude than the ones in the MPDATA test above, the
maximal error is smaller in the SASLDG-3c test. It takes the value 0.5903. The
smaller error indicates a sharper representation of the discontinuities. The largest
errors occur at the corners at the cut-out corner. The errors along the discontinuities
apart from the corners do not exceed the value 0.4..
The width of the error along the discontinuity is measured, where the error is larger

134 extension of the sasldg method in 2d

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1
y

0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

(c) Absolute error of numerical solution.

Figure 4.40: The wavelike test computed with SASLDG-3c on a 150 × 150 grid with CFL
number 0.5 (y) w.r.t. the fine grid.

than the value 0.1. The error of the left vertical edge spans over two to four grid
cells, just as the result for MPDATA. The error along the edges of the cut-out cor-
ner has a width of four grid cells along the horizontal parts and a width of two
to three grid cells along the vertical parts of the edges. Thus, the error region of
the horizontal discontinuities of the cut-out corner, where the largest velocities are
applied, is kept to a more narrow area than for MPDATA. The l1-error is 0.024 and
thus smaller than the l1-error of MPDATA.

The time for the computation of this test case with SASLDG-3c on a grid with
150× 150 grid cells and CFL number 0.5(y) with respect to the vertical fine grid is
1653.8s.

Hybrid method - grid ratio 1:1

The last scheme that we examine on the grid with 150× 150 cells and hence a aspect
ratio of 1:1, is the hybrid method. It consists of using MPDATA in horizontal and
SASLDG-3c in vertical direction. The Courant number is chosen to be 0.5(y) with
respect to the vertical fine grid, as done in the preceding tests. Thus, the actual
CFL number on the coarse grid in the advection step of the SASLDG-3c method is
approximately 0.16 (y).

Figure 4.41 shows the numerical results. The solution of the hybrid method after
five cycles is plotted in Figure 4.41(a). The over- and undershoots are very similar
to the MPDATA version. The maximum and the minimum of the numerical solu-
tion take the value 5.288 and 3.692, respectively. The solution after five more cycles
is shown in Figure 4.41(b). The amplitude of the maximal over- and undershoots
reduces. The maximum and the minimum are given by 5.122 and 3.882, respec-

4.3 hybrid operator splitting: mpdata and the sasldg method 135

tively. These values are in between the results of using MPDATA and SASLDG-3c
individually.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Absolute error of numerical solution.

Figure 4.41: The wavelike test computed with the hybrid method on a 150× 150 grid with
CFL number 0.5 (y) w.r.t. the fine grid.

The absolute error is displayed in Figure 4.41(c). The error plot reveals the re-
semblance to both methods MPDATA and SASLDG-3c. The horizontal velocities
that force the horizontal advection solved with MPDATA act mainly on the vertical
edges. The vertical edges in the error plot of the hybrid method is of the same struc-
ture and magnitude of approximately 0.4 as the error of MPDATA. Respectively, the
error of the horizontal edges of the hybrid method is similar to the error of approx-
imately 0.4 of the SASLDG-3c scheme.
The width of the error along the discontinuity for this test case also reflects the
combination of the two methods. The error covers a region of the width of two to
four grid cells at the left vertical edge. At the cut-out corner, the error width is four
grid cells along the horizontal edge and two to four along the vertical edge.
The maximal absolute error takes the value 0.603. The l1-error is 0.024. Thus, the
errors of hybrid method is in between the errors of MPDATA and the SASLDG-3c
method.

The time for the computation of this test case with the hybrid method on a grid
with 150× 150 grid cells and CFL number 0.5(y) with respect to the vertical fine
grid is 1125.8s.

Table 4.5 summarizes characteristic values of the previous tests. It lists the CFL
numbers used in the tests, the corresponding minimum and maximum values of
the respective numerical solutions at time Tmax, and the l∞-error and the l1-error.
Additionally, the computational time is given.

136 extension of the sasldg method in 2d

CFL min max l∞-error l1-error time (s)
MPDATA 0.5 (y) 3.905 5.104 0.673 0.026 874.6
SASLDG-3c 0.5 (y) 3.852 5.156 0.590 0.024 1653.8
hybrid 0.5 (y) 3.882 5.122 0.603 0.024 1125.8

Table 4.5: Characteristic values for the wavelike test computed on a 150× 150 grid.

MPDATA - grid ratio 1:6

For the next series of tests we change the grid to 90× 540 cells. This corresponds
to a grid aspect ratio of 1:6. As for the previous test, we compute the numerical so-
lution with MPDATA, the SASLDG-3c method and the hybrid method. The hybrid
method is examined with regard to two different Courant numbers.

Figure 4.42 shows the results of the computation using the Courant number
0.5 (y). The corresponding CFL number for the horizontal direction is given by
0.04 (x). The numerical solution after five cycles computed by MPDATA on the
grid of 90× 540 cells is displayed in Figure 4.42(a). The maximum and the min-
imum of the numerical solution at time t = 5/c take the value 5.306 and 3.655,
respectively. The solution at time t = Tmax is show in Figure 4.42(b). The maximal
overshoot takes the value 5.091, the maximal undershoot is given by 3.908.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Absolute error of numerical solution.

Figure 4.42: The wavelike test computed with MPDATA on a 90× 540 grid with CFL number
0.5 (y).

The absolute error is plotted in Figure 4.42(c). The maximal error is a single peak,
which takes the value 0.646. It is located at the upper left corner of the cut-out
corner. The area of the largest error apart from the peak consists of the horizontal
edges of the cut-out corner. This erroneous area is approximately of value 0.5. The
error at the vertical edges is of less amplitude and takes approximately the value

4.3 hybrid operator splitting: mpdata and the sasldg method 137

0.3.
We define the width of the error as for the tests before. The number of grid cells
that have an error of more than 0.1 contribute to the width of the respective error
location. So, the error width of the left vertical edge is two grid cells. The error
at the cut-out corner stretches over eight and seven grid cells along the lower and
upper horizontal edge, respectively, and over two grid cells along the vertical edge.
The l1-error takes the value 0.017.

The time for the computation of this test case with MPDATA on a grid with
90× 540 grid cells and CFL number 0.5 (y) is 6826.4s.

SASLDG-3c - grid ratio 1:6

The results computed with SASLDG-3c on the grid of 90× 540 grid cells is displayed
in Figure 4.43. The CFL number 0.5 (y) is used for the computation and thus
0.04 (x) is the CFL number for the horizontal advection. The numbers change to
0.16 (y) and 0.014 (x), respectively, with respect to the coarse grid. Figure 4.43(a)
shows the numerical solution after five cycles. The maximum and minimum of the
solution take the value 5.130 and 3.846, respectively. After another five cycles with
the reversed velocity, the maximum and minimum are given by 5.142 and 3.860,
respectively. The solution at time Tmax is displayed in Figure 4.43(b).

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

0.1

0.2

0.3

0.4

0.5

0.6

(c) Absolute error of numerical solution.

Figure 4.43: The wavelike test computed with SASLDG-3c on a 90× 540 grid with CFL num-
ber 0.5 (y) w.r.t. the vertical fine grid.

The absolute error of SASLDG-3c is pictured in Figure 4.43(c). The maximal error
of 0.646 is located at the upper left corner of the cut-out corner, which forms a
narrow peak. The error along all edges of the discontinuity is of the same order
and takes approximately the value 0.4.
The maximum width of error along the edges is the same for all edges. The errors
located along the left vertical edge, as well as along the edges in the cut-out-corner

138 extension of the sasldg method in 2d

have the width of four grid cells.
The l1-error takes the value 0.029.

The time for the computation of this test case with SASLDG-3c on a grid with
90× 540 grid cells and CFL number 0.5 (y) with respect to the fine vertical grid is
13256.7s.

Hybrid method - grid ratio 1:6

The concluding test case is the computation of the numerical solution with the
hybrid method on the grid of 90× 540 grid cells, and thus the aspect ratio of 1:6.
We conduct tests with two different Courant numbers. The numerical solution is
determined with the CFL number 0.5 with respect to the vertical and the horizontal
grid, i.e. CFL 0.5 (y) and 0.5 (x), respectively.

The solution of the first test is displayed in Figure 4.44. We compute the numerical
solution with the hybrid method on the grid of 90× 540 cells. We apply the CFL
number 0.5 (y) with respect to the vertical fine grid, which corresponds to the
number 0.16 (y) w.r.t. the coarse grid of the advection step used for the SASLDG-3c
method. The solution at time t = 5/c is pictured in Figure 4.44(a). The minimum
of the solution of 3.648 and the maximum of 5.306 resemble the values of MPDATA.
Also, the minimum and maximum of the solution after five more cycles, which
take the value 3.892 and 5.103, respectively, are similar to the respective values of
MPDATA. The solution at time Tmax is shown in Figure 4.44(b).

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

0

0.1

0.2

0.3

0.4

0.5

(c) Absolute error of numerical solution.

Figure 4.44: The wavelike test computed with the hybrid method on a 90× 540 grid with
CFL number 0.5 (y) w.r.t. the fine vertical grid.

The error of this test is shown in Figure 4.44(c). The overall error of the hybrid
method is composed of errors of the two methods MPDATA and SASLDG-3c. The
vertical edges are driven mainly by the horizontal velocity and thus advected with
MPDATA. The error of the magnitude of approximately 0.3 developed at these

4.3 hybrid operator splitting: mpdata and the sasldg method 139

edges bears a resemblance with the error of MPDATA. Correspondingly, the error
of approximately 0.4 of the horizontal edges is similar to the error of SASLDG-3c.
The same composition holds for the width of the error. The width of the error along
all vertical edges is two grid cells, just as for MPDATA. The error of the horizontal
discontinuities stretches over five and four grid cells of the lower and the upper
edge of the cut-out corner, respectively.
The combination of the respective small errors for the horizontal edges advected
with SASLDG-3c and the vertical edges computed by MPDATA lead to a smaller
maximal error of 0.592 and to a smaller l1-error of 0.016 than for the individual
methods.

The time for the computation of this test case with the hybrid method on a grid
with 90× 540 grid cells and CFL number 0.5 (y) is 8949.4s.

The next test case shows the results of the hybrid method computed with the
CFL number 0.5 (x) with respect to the horizontal grid. This corresponds to the
approximate CFL number 6.0 (y) in vertical direction w.r.t. the fine grid. Thus, the
Courant number applied in the vertical advection step on the coarse grid of 180
grid cells for the SASLDG-3c method is 2.0 (y). The time step used in this setting is
approximately 12 times larger than for the tests conducted above.
The results for this computation are shown in Figure 4.45. The numerical solution
after five cycles is displayed in Figure 4.45(a). The minimum and the maximum of
the numerical solution at time t = 5/c take the value 3.694 and 5.261, respectively.
These values are comparable to the previous test with CFL number 0.5 (y). The
solution after the next five cycles is shown in Figure 4.45(b). The maximal over- and
undershoot are given by 5.123 and 3.870 and are similar to the results above.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

3.8

4

4.2

4.4

4.6

4.8

5

5.2

(a) The numerical solution after five cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

4

4.2

4.4

4.6

4.8

5

(b) The numerical solution after ten cycles.

0 0.2 0.4 0.6 0.8 1

x
0

0.2

0.4

0.6

0.8

1

y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Absolute error of numerical solution.

Figure 4.45: The wavelike test computed with the hybrid method on a 90× 540 grid with
CFL number 0.5 (x) w.r.t. the horizontal direction.

The error plot is given in Figure 4.45(c). Even though the maximum and min-
imum of the numerical solution is comparable to the tests described before, the

140 extension of the sasldg method in 2d

maximum absolute error of 0.921 is larger. The main error is located at the horizon-
tal edges of the cut-out corner. In the respective middle at approximately x = 0.5
the error takes the value 0.4 and increases towards the left and right. The error at
the lower edge is larger than at the upper edge and reaches the maximal error at
the right corner of the lower edge. The errors at the vertical edges are smaller and
take approximately the value 0.4, which is larger than in the previous tests. Since
the maximal over-and undershoot 5.123 and 3.870 at time Tmax deviates only by
0.123 and 0.130, respectively, from the analytical solution, the large maximal error
of 0.921 origins from a displacement of the discontinuity. The lower edge of the
cut-out corner is not advected to the correct position parallel to the x-axis.
The width of the error is barely enlarged. Hence, the error of horizontal edges in
the cut-out corner stretches over four to five grid cells. The error of the vertical
edges stretches over two to four grid cells.
The l1-error takes the value 0.030.

The time for the computation of this test case with the hybrid method on a grid
with 90× 540 grid cells and CFL number 0.5 (x) with respect to the horizontal fine
grid is 791.4s.

CFL min max l∞-error l1-error time (s)
MPDATA 0.5 (y) 3.908 5.091 0.646 0.017 6826.4
SASLDG-3c 0.5 (y) 3.860 5.142 0.646 0.029 13256.7
hybrid 0.5 (y) 3.892 5.103 0.592 0.016 8949.4
hybrid 0.5 (x) 3.870 5.123 0.921 0.030 791.4

Table 4.6: Characteristic values for the wavelike test computed on a 90× 540 grid.

Table 4.6 shows characteristic values of the tests computed on a grid of 90× 540
cells. It lists the CFL numbers used in the tests, the corresponding minimum and
maximum values of the respective numerical solutions at time Tmax, and the l∞-
error and the l1-error. Additionally, the computational time is displayed. The (x)
and the (y) written in the column of the CFL number gives the space dimension the
CFL number refers to.

5 A N A LY S I S

In this chapter we want to examine the theoretical properties of the numerical
method introduced in Chapter 3. We start with showing the consistency of the
numerical method. We explicitly determine the error between the analytical and
numerical solution that results after one time step. With the information of the er-
ror we can show the theoretical order of convergence. The next property that we
examine is the stability. We find estimates for the L1- and L2-norm of the numerical
solution and use the result for showing the conservation of mass. A von Neumann
stability analysis is conducted additionally as it gives further insight into the proper-
ties of the numerical method. The convergence rates that are obtained by numerical
tests are analyzed in the last section of this chapter.

5.1 consistency

To show the consistency of the SASLDG method we analyze the error after one
time step between the analytical solution and the numerical solution for ∆x and ∆t
tending to zero. The order of the error reveals additionally the order of accuracy of
the method.

The goal of this section is to explicitly compute the error, i.e. the difference be-
tween the numerical and analytical solution, that is done in one time step. To obtain
the information on the error we first compute the exact solution to the linear advec-
tion equation after one single time step. To make the solution comparable to the
numerical solution we use a Taylor expansion for the grid cell sizes going to zero
to obtain a polynomial form of the exact solution. The second step consists of the
computation of the numerical solution. This is carried out under the assumption
of a Courant number of less than one and equidistantly distributed grid points. A
general CFL number complicates the explicit specification of the coefficients of the
numerical solution, because the trajectories could cross several grid cells. In the
case of a CFL number of less than one and a strictly positive velocity, the solution
for a grid i after one time step consists always of the information of the solution
in grid cell i − 1 and i before the time step. The procedure for negative velocity
would be carried out analogously, hence we restrict the analysis to positive velocity.
From the expanded analytical and numerical solution the error is obtained and the
consistency verified.

For the determination of the order of accuracy one last step is needed. We find
out that the error after one time step at time tn+1 in the ith grid cell depends on
the coefficients of ρi given in (3.131), that is mn

j,i and mn
j,i−1 for j = 0, 1, 2 of the

former time step at time tn and differences between them. To determine the order
of accuracy we need to determine the order of all mn

j,i as ∆x goes to zero, which is
conducted by induction. The information on the coefficients and the error yield the
order of accuracy.

Before we start to examine the analytical solution, we define the local Courant
number σi, which is needed throughout this section,

σi =

max ui(x)
0≤x≤∆x

∆t

∆x
. (5.1)

141

142 analysis

We remind of the definition of u given in (3.13). Because of the piecewise linearity
of u we assume w.l.o.g.

σi =
bi∆t
∆x

. (5.2)

This gives us the opportunity to rewrite the coefficient bi, and thus introduce ∆t
and ∆x in certain expressions, which can be used for series expansions.

To relate neigboring local CFL numbers we make use of (3.17), which states

ai−1∆x + bi−1 = bi. (5.3)

Thus, we can rewrite σi−1 as

σi−1 = σi − ai−1∆t. (5.4)

which simplifies the computations in the following.
Courant numbers of less than one imply ∆t ∈ O (∆x) and vice versa ∆x ∈ O (∆t),

which makes them interchangeable with respect to the limiting case of small ∆x or
∆t. Note that the quotient ∆t/∆x could converge to a constant for ∆t → 0 and
∆x → 0. However, either ∆t and ∆x occur separately or the term consists of the
quotient multiplied with x, i.e. ∆t/∆x · x. Since x ∈ [0, ∆x] the expression tends to
zero in the limit. Furthermore, it holds x/∆x ∈ O (1) for the same reason.

5.1.1 Analytical solution after one time step

The analytical solution at time tn+1 is given by Proposition 3.3.1

ρ(x, tn+1) =

ρ(ϕ(x, tn+1,−∆t), tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t))dt

 (5.5)

We determine the analytical solution using (5.5) for the ith grid cell with the given
velocity distribution of this and the neigboring cells. We approximate the solution
with a polynomial of degree two with the help of Taylor expansions. Each of the
expressions appearing in the above equation are expanded about the point ∆x = 0
or ∆t = 0 as this is of interest for the consistency and convergence analysis.

Remembering the distinct types of trajectories summarized in Section 3.2.4 we
have to differentiate between the case of the trajectory ϕ remaining in cell i and the
case of ϕ crossing the boundary of cell i− 1 and the ith cell.

The first case yields the analytical solution for the right interval of the ith grid cell
[ϕ(xi−1/2, tn, ∆t), xi+1/2]. The trajectory, that remains within the ith grid cell going
backwards in time is given by

ϕ(x, tn+1,−∆t) = e−ai∆t
(

bi
ai

+ x
)
− bi

ai
. (5.6)

We reformulate the expression for the trajectory using (5.2) as follows

ϕ(x, tn+1,−∆t) = e−ai∆t
(

σi∆x
ai∆t

+ x
)
− σi∆x

ai∆t
. (5.7)

This can be approximated by using a Taylor expansion about ∆t = 0. The result
yields

ϕ(x, tn+1,−∆t) =

(
1− ai∆t +

ai
2∆t2

2

)
x + σi∆x

(
−1 +

ai∆t
2

)
+O

(
∆t3
)

.

(5.8)

5.1 consistency 143

The next term that we approximate is the expansion factor. In the case of the tra-
jectory remaining within the ith cell it is of easy structure. The factor simplifies
to

exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t))dt

 = exp(−ai∆t) (5.9)

and its approximation is given by

exp(−ai∆t) = 1− ai∆t +
ai

2∆t2

2
+O

(
∆t3
)

. (5.10)

The approximations of the terms can be inserted in (5.5) and then displayed in
polynomial form with the Legendre basis functions k j(x), j ∈ {0, 1, 2}

ρ(x, tn+1) =

((
(6m2,i)

∆x2

)
ϕ(x, tn+1,−∆t)2+

+

(
2m1,i

∆x
− 6m2,i

∆x

)
ϕ(x, tn+1,−∆t) + m0,i

−m1,i + m2,i

)(
1− ai∆t +

ai
2∆t2

2

)
+O

(
∆t3
)

(5.11)

= mn+1
2,i,ana,Rk2(x) + mn+1

1,i,ana,Rk1(x) + mn+1
0,i,ana,Rk0(x) (5.12)

with the coefficients mn+1
j,i,ana,R, j = {0, 1, 2} given by

mn+1
0,i,ana,R =

(
ai

2m0,i

2
+

3ai
2m1,i

2
+

7ai
2m2,i

2
− 7σai

2m1,i

3

−12σai
2m2,i +

25σ2ai
2m2,i

2

)
∆t2

+

(
3σaim1,i − aim1,i − aim2,i − aim0,i

+6σaim2,i − 12σ2aim2,i

)
∆t

+6m2,iσ
2 − 2m1,iσ + m0,i +O

(
∆t3
)

,

(5.13)

mn+1
1,i,ana,R = (15σaim2,i − 3aim2,i − 2aim1,i)∆t + m1,i − 6σm2,i

+O
(

∆t3
)

,
(5.14)

mn+1
2,i,ana,R = m2,i +O

(
∆t3
)

. (5.15)

The index ana indicates that the coefficients belong to the analytical solution, the
index R points out that the coefficients build the polynomial for the right interval
[ϕ(xi−1/2, tn, ∆t), ∆x] of the ith grid cell.

Now, we turn to the left part of the grid cell [0, ϕ(xi−1/2, tn, ∆t)]. In this case
all trajectories cross the grid cell boundary xi−1/2. Equation (3.247) describes these
trajectories. With the help of (5.2) and (5.4) it can be transformed to

ϕ(x, tn+1,−∆t)

=
ui

ai−1
exp (−ai−1∆t)

(
ai
ui

x + 1
) ai−1

ai − ui−1

ai−1

(5.16)

=
σi∆x

ai−1∆t

(
exp (−ai−1∆t) exp

(
ai−1

ai
ln
(

ai∆t
σi∆x

x + 1
))
− 1
)
+ ∆x. (5.17)

144 analysis

The Taylor expansion about ∆t = 0 yields an approximation to ϕ,

ϕ(x,tn+1,−∆t)

=

((
ai−1 ai
2 σi ∆x

− ai−1
2

2 σi ∆x

)
∆t2 +

(
ai−1

2 σi ∆x
− ai

2 σi ∆x

)
∆t
)

x2

+

(
∆t2 ai−1

2

2
− ∆t ai−1 + 1

)
x

+∆x− σi ∆x +
σi ∆t ∆x ai−1

2
+O

(
∆t3
)

.

(5.18)

Approximating the expansion factor we have to consider the piecewise definition
of the velocity u(x), which might differ from cell i− 1 to cell i. Therefore, the time
interval [0, ∆t] is split up into two pieces,

exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t))dt

 = exp

 τ∫
0

−ai−1dt +
∆t∫

τ

−aidt

 . (5.19)

The value τ defined in (3.31) refers to the time interval that passes while the
flow starting in point x in the ith cell reaches the grid cell boundary xi−1/2, i.e.
ϕ(x, tn+1,−τ) = xi−1/2. It is given by,

τ =
1
ai

ln
(

aix
bi

+ 1
)

(5.20)

=
1
ai

ln
(

ai∆tx
σi∆x

+ 1
)

, (5.21)

where (5.2) is used to replace bi. Hence, the Taylor expansion about ∆t = 0 of the
expansion factor is given by

exp

 τ∫
0

−ai−1dt +
∆t∫

τ

−aidt

= 1−

(
ai−1 +

xai
σi∆x

− xai−1

σi∆x

)
∆t

+

(
a2

i−1
2

+
xaiai−1

σi∆x
−

xa2
i−1

σi∆x
+

x2a2
i

σ2
i ∆x2

−3x2aiai−1

2σ2
i ∆x2

+
x2a2

i−1

2σ2
i ∆x2

)
∆t2 +O

(
∆t3
)

.

(5.22)

Finally, we can determine the approximation of the analytical solution for the left
part of the ith cell

ρ(x, tn+1) =mn+1
2,i,ana,LK2(x) + mn+1

1,i,ana,LK1(x) + mn+1
0,i,ana,LK0(x). (5.23)

5.1 consistency 145

The coefficients mn+1
j,i,ana,L, j = {0, 1, 2} are given below. The first coefficient mn+1

0,i,ana,L

at time tn+1 reads

mn+1
0,i,ana,L =

((
2a2

i −
aiai−1

2σ2
i

+
19aiai−1

2σi
+ 6σiaiai−1 + 36a2

i−1

+
25σ2

i a2
i−1

2
− 32σia2

i−1 −
2a2

i
σi
−

15a2
i−1

2σi
+

a2
i

3σ2
i
+

a2
i−1

6σ2
i

−45aiai−1

2

)
m2,i−1 +

(7aiai−1

2σi
− aiai−1

2σ2
i

+ 4a2
i−1 −

σia2
i−1
3
− 3aiai−1

2

−
17a2

i−1
6σi

−
2a2

i
3σi

+
a2

i−1

6σ2
i
+

a2
i

3σ2
i

)
m1,i−1 +

(a2
i−1
2

+
aiai−1

2σi
− aiai−1

2σ2
i

+
a2

i−1

6σ2
i
−

a2
i−1
2σi

+
a2

i
3σ2

i

)
m0,i−1

)
∆t2

+

((
− 12σ2

i ai−1 − 3σiai + 27σiai−1 + 9ai − 22ai−1 −
7ai
2σi

+
7ai−1

2σi

)
m2,i−1 +

(
3σiai−1 + ai − 4ai−1 −

3ai
2σi

+
3ai−1

2σi

)
m1,i−1

+
(
− ai

2σi
+

ai−1

2σi
− ai−1

)
m0,i−1

)
∆t

+6(σi − 1)2m2,i−1 − 2(σi − 1)m1,i−1 + m0,i−1,

(5.24)

the second coefficient mn+1
1,i,ana,L is given by

mn+1
1,i,ana,L =

((
−

3a2
i

σi
+

a2
i

2σ2
i
+

a2
i−1

4σ2
i
− 63aiai−1

2
−

11a2
i−1

σi
− 25σia2

i−1

+48a2
i−1 + 3a2

i +
14aiai−1

σi
− 3aiai−1

4σ2
i

+ 6σiaiai−1

)
m2,i−1 +

(a2
i

2σ2
i

+
a2

i−1

4σ2
i
−

a2
i

σi
−

4a2
i−1
σi
− 3aiai−1

2
+

7a2
i−1
2

+
5aiai−1

σi
− 3aiai−1

4σ2
i

)
m1,i−1

+
(a2

i
2σ2

i
+

a2
i−1

4σ2
i
−

a2
i−1
2σi
− 3aiai−1

4σ2
i

+
aiai−1

2σi

)
m0,i−1

)
∆t2

+

((
− 5ai

σi
+

5ai−1

σi
− 3σiai + 18σiai−1 + 12ai − 27ai−1

)
m2,i−1

+
(
− 2ai

σi
+

2ai−1

σi
− 3ai−1 + ai

)
m1,i−1 +

(
− ai

2σi
+

ai−1

2σi

)
m0,i−1

)
∆t

−6(σi − 1)m2,i−1 + m1,i−1,

(5.25)

and the third coefficient mn+1
2,i,ana,L for the left interval of the ith cell is

mn+1
2,i,ana,L =

((
−

a2
i

σi
+

a2
i

6σ2
i
+

a2
i−1

12σ2
i
− 9aiai−1 −

7a2
i−1

2σi
+ a2

i +
25a2

i−1
2

− aiai−1

4σ2
i

+
9aiai−1

2σi

)
m2,i−1 +

(a2
i

6σ2
i
+

a2
i−1

12σ2
i
−

a2
i

3σi
−

7a2
i−1

6σi
− aiai−1

4σ2
i

+
3aiai−1

2σi

)
m1,i−1 +

(a2
i

6σ2
i
+

a2
i−1

12σ2
i
− aiai−1

4σ2
i

)
m0,i−1

)
∆t2

+

((
− 3ai

2σi
+

3ai−1

2σi
+ 3ai − 6ai−1

)
m2,i−1

+
(
− ai

2σi
+

ai−1

2σi

)
m1,i−1

)
∆t + m2,i−1.

(5.26)

146 analysis

The index ana indicates the reference to the analytical solution. The index L refers
to the left interval of the cell [0, ϕ(xi−1/2, tn, ∆t)].

We have explicitly derived the solution and approximated it by Taylor expansions
for small ∆x or small ∆t. The resulting coefficients of the polynomial are given for
the left and right part of the ith grid cell.

5.1.2 Numerical solution after one time step

As described in Chapter 3 the numerical method uses the analytical solution of
the linear advection equation and computes the projection of it. Therefore, the
numerical solution consists of the coefficients mn+1

j,i for the ith grid cell and for

j = 0, 1, 2. These coefficients mn+1
j,i have to be calculated at time tn+1 and are given

after the projection step by (3.138), i.e.

Pρ(x, tn+1)

=
2

∑
j=0

2j + 1
∆xi

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(x, tn)Kj(ϕ(x, tn, ∆t))dx Kj(x).
(5.27)

The jth coefficient for the interval [xi−1/2, xi+1/2] at the time step tn+1 is given by

mn+1
j,i =

2j + 1
∆xi

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(x, tn)Kj(ϕ(x, tn, ∆t))dx . (5.28)

The trajectories that define the limits of the integral as well as the trajectory in
the integrand, that need to be specified in the following, contain expressions as the
exponential or logarithmic function. A series expansion of these terms make the
numerical solution comparable to the analytical solution.

The trajectory ϕ for the compution of the limits of the integral is rewritten using
(5.2) similarly as in the previous section,

ϕ(xi+1/2, tn+1,−∆t) = exp(−ai∆t)
(

bi
ai

+ ∆x
)
− bi

ai
(5.29)

=
σi∆xi
ai∆t

(exp(−ai∆t)− 1) + exp(−ai∆t)∆x. (5.30)

This form of the trajectory is expanded about the point ∆t = 0 and yields the result
for the upper limit of the integral,

ϕ(xi+1/2, tn+1,−∆t) =
(

∆x ai
2

2
− σi ∆x ai

2

6

)
∆t2

+

(
σi ∆x ai

2
− ∆x ai

)
∆t + ∆x− σi ∆x +O

(
∆t3
)

.
(5.31)

The same is done for the lower limit of the integral with according changes. The
coefficients bi−1 are replaced using the relation (5.2) and (5.4). We have,

ϕ(xi−1/2, tn+1,−∆t) = exp(−ai−1∆t)
(

bi−1

ai−1
+ ∆x

)
− bi−1

ai−1
(5.32)

=
σi∆x

ai−1∆t
(exp(−ai−1∆t)− 1) + ∆x. (5.33)

We obtain the result for the lower limit of the integral by the Taylor expansion about
∆t = 0,

ϕ(xi−1/2, tn+1,−∆t) =
σi ∆x ∆t3 ai−1

3

24
− σi ∆x ∆t2 ai−1

2

6

+
σi ∆x ∆t ai−1

2
+ ∆x− σi ∆x.

(5.34)

5.1 consistency 147

The trajectory ϕ, which remains within the ith grid cell, goes forward in time, and
starts at an arbitrary point x, takes the form

ϕ(x, tn+1, ∆t) = exp(ai∆t)
(

bi
ai

+ x
)
− bi

ai
(5.35)

=
σi∆x
ai∆t

(exp(ai∆t)− 1) + exp(ai∆t)x. (5.36)

Series expansion about ∆t = 0 leads to

ϕ(x, tn+1, ∆t) =
(

x ai
2

2
+

σi ∆x ai
2

6

)
∆t2 +

(
x ai +

σi ∆x ai
2

)
∆t

+ x + σi ∆x +O
(

∆t3
)

.
(5.37)

The trajectory departing in cell i− 1 and ending in the ith cell is described by

ϕ(x, tn, ∆t) =
bi
ai

(
exp(ai∆t)

(
ai−1

bi
x +

bi−1

bi

) ai
ai−1 − 1

)
. (5.38)

To estimate the behavior for small ∆x we start analyzsing and rewriting the term
with (5.2) and (5.4),(

ai−1

bi
x +

bi−1

bi

) ai
ai−1

= exp
(

ai
ai−1

ln
(

ai−1∆t
σi∆x

x +
σi−1

σi

))
(5.39)

= exp
(

ai
ai−1

ln
(

ai−1∆t
σi∆x

x− ai−1∆t
σi

+ 1
))

(5.40)

= exp
(

ai
ai−1

ln
(

∆t
(

ai−1

σi∆x
x− ai−1

σi
+ 1
)))

. (5.41)

A series expansion of this reformulated expression ends in polynomial structure.
Thus, the Taylor expansion of (5.38) using the formulation of (5.41) leads to

ϕ(x, tn+1, ∆t) =

(
− x2ai−1

2

σ2
i ∆x

+
x2a2

i
2σi∆x

−
x2a2

i
2σ2

i ∆x
− x2ai−1ai

2σi∆x
+

3x2ai−1ai

2σ2
i ∆x

+
xai−1ai

σi
− 3xai−1ai

2σ2
i

+
xa2

i
2
−

xa2
i

σi
+

xa2
i

2σ2
i
+

xai−1
2

σ2
i

)
∆t2

+

(
x2ai

2σi∆x
− x2ai−1

2σi∆x
+ xai −

xai
σi

+
xai−1

σi
− ∆xai +

∆xai
2σi

−∆xai−1

2σi
+

σi∆xai
2

)
∆t + x− ∆x + σi∆x +O

(
∆t3
)

.

(5.42)

Inserting all approximations for the limits of the integral and the trajectories go-
ing forward in time into (5.28) yield the approximated numerical solution for the
coefficients mn+1

0,i , mn+1
1,i and mn+1

2,i .
When the superindex n in mn

j,i is omitted, the coefficients refers to the old time

level n. The first coefficient mn+1
0,i is given by

mn+1
0,i =

((
σi ai−1

2

6

)
∆t2 +

(
−σi ai−1

2

)
∆t + σi

)
m0,i−1

+

((
ai

2

2
− σi ai

2

6

)
∆t2 +

(σi ai
2
− ai

)
∆t + 1− σi

)
m0,i

+
((

σi
2 ai−1 −

σi ai−1

2

)
∆t + σi − σi

2
)

m1,i−1

+

((
−ai σi

2 +
5 ai σi

2
− ai

)
∆t + σi

2 − σi

)
m1,i

+
(

2 σi
3 − 3 σi

2 + σi

)
m2,i−1

+
(
−2 σi

3 + 3 σi
2 − σi

)
m2,i +O

(
∆x3

)
.

(5.43)

148 analysis

The second coefficient mn+1
1,i reads

mn+1
1,i =

((
σi

2 ai−1
2

4
− σi

2 ai−1 ai
4

+
σi

2 ai
2

4
− σi ai−1

2

2

)
∆t2

+

(
3 σi ai−1

2
− σi

2 ai−1 + σi
2 ai

)
∆t + 3 σi

2 − 3 σi

)
m0,i−1

+

((
σi ai

2

2
− σi

2 ai
2

4

)
∆t2 +

(
−3 σi ai

2

)
∆t + 3 σi − 3 σi

2
)

m0,i

+

((
3 σi

3 ai−1

2
− 4 σi

2 ai−1 +
3 σi ai−1

2
+ σi

2 ai −
σi

3 ai
2

)
∆t

−2 σi
3 + 6 σi

2 − 3 σi

)
m1,i−1

+

((
−ai σi

3 + 3 ai σi
2 +

3 ai σi
2
− 2 ai

)
∆t + 2 σi

3 − 3 σi + 1
)

m1,i

+
(

3 σi
4 − 12 σi

3 + 12 σi
2 − 3 σi

)
m2,i−1

+
(
−3 σi

4 + 6 σi
2 − 3 σi

)
m2,i +O

(
∆x3

)
.

(5.44)

The third coefficient mn+1
2,i yields

mn+1
2,i =

((σi
3ai−1

2

2
− 3σi

3ai−1ai
2

+
7σi

3ai
2

2
− 5σi

2ai−1
2

4

+
5σi

2ai−1ai
4

− 5σi
2ai

2

4
+

5σiai−1
2

6

)
∆t2 +

(
5σi

2ai−1 −
5σi

3ai−1

2

−5σiai−1

2
− 5σi

2ai +
15σi

3ai
2

)
∆t + 10σi

3 − 15σi
2 + 5σi

)
m0,i−1

+

((
− 5σi

3ai
2

2
+

5σi
2ai

2

4
− 5σiai

2

6

)
∆t2 +

(
5σiai

2
− 5σi

3ai

)
∆t

−10σi
3 + 15σi

2 − 5σi

)
m0,i

+

((
10σi

2ai−1 − 10σi
3ai−1 + 3σi

4ai−1 −
5σiai−1

2
− 5σi

2ai

+10σi
3ai − 3σi

4ai

)
∆t− 5σi

4 + 20σi
3 − 20σi

2 + 5σi

)
m1,i−1

+

((
10aiσi

3 − 5aiσi
2 − 5aiσi

2

)
∆t + 5σi

4 − 10σi
2 + 5σi

)
m1,i

+

(
6σi

5 − 30σi
4 + 50σi

3 − 30σi
2 + 5σi

)
m2,i−1

+

(
− 6σi

5 + 10σi
3 − 5σi + 1

)
m2,i +O

(
∆x3

)
.

(5.45)

Above, we have approximated the numerical solution, which is determined by
the approximative coefficients mn+1

0,i , mn+1
1,i and mn+1

2,i given by (5.43) to (5.45).

5.1.3 Order of coefficients

Studying the coefficients mn+1
j,i for j = 0, 1, 2 of the analytical and the numerical

solution we notice that the order of the coefficients and their differences for small
∆x and ∆t are of importance to find the order of accuracy. Therefore, in this section
we determine the order of the coefficients mn+1

j,i . This is carried out by induction.
For the induction basis we show the order for small ∆x for the initial values, i.e. at

5.1 consistency 149

time tn with n = 0. The inductive step reveals, that assuming a certain order of the
coefficients after n time steps at time tn, the same order holds after one more time
step at time tn+1 as well.

Induction basis n=0

We assume a smooth function f ∈ Hs, s ≥ 3, Hs being a Sobolev space, that is
approximated by a polynomial for the initial values. We use a Taylor expansion
to approximate f in two neighboring cells, i.e. the (i − 1)th and ith cell, at their
common grid cell boundary xi−1/2. We obtain the approximation fi to f for the ith
grid by an expansion about x = xi−1/2, which is the left boundary and thus x = 0
in local coordinates,

fi(x) =
3

∑
j=0

f (j)(0)
j!

xj +O
(

∆x4
i

)
(5.46)

= fi(0) + f (1)i (0)x +
1
2

f (2)i (0)x2 +
1
6

f (3)i (0)x3 +O
(

∆x4
)

. (5.47)

Analogously, we have a representation of fi−1 that approximates f in grid cell i− 1.
It is determined by an expansion about its right boundary x = xi−1/2 or x = ∆x
expressed in local coordinates,

fi−1(x) =
3

∑
j=0

f (j)(∆x)
j!

(x− ∆x)j +O
(

∆x4
i−1

)
(5.48)

=
1
6

f (3)i−1(∆x)x3 +

(
1
2

f (2)i−1(∆x)− 1
2

f (3)i−1(∆x)∆x
)

x2

+

(
1
2

f (3)i−1(∆x)∆x2 − f (2)i−1(∆x)∆x + f (1)i−1(∆x)
)

x

−1
6

f (3)i−1(∆x)∆x3 +
1
2

f (2)i−1(∆x)∆x2 − f (1)i−1(∆x)∆x

+ fi−1(∆x) +O
(

∆x4
)

.

(5.49)

Figure 5.1 displays the function f , which is exemplarily chosen to be a polyno-
mial of degree five, and two approximating polynomials fi−1 and fi of degree two,
obtained by Taylor expansion about the point xi−1/2.

The very first step of the numerical method is the projection step. It is carried
out before any time stepping is done and enables an arbitrary function to be trans-
formed into polynomial structure as initial values. The projection of a polynomial
function as fi and fi−1 equals a change of basis - changing from the monomial basis
to the Legendre basis.

The polynomial with the Legendre basis as defined in (3.131) takes the form

ρ(x, tn) = mn
2,iK2(x) + mn

1,iK1(x) + mn
0,iK0(x). (5.50)

The transformed coefficients of fi for cell i are given by

m0
0,i =

f (2)i (0)∆x2

6
+

f (1)i (0)∆x
2

+ fi(0), (5.51)

m0
1,i =

f (2)i (0)∆x2

4
+

f (1)i (0)∆x
2

, (5.52)

m0
2,i =

f (2)i (0)∆x2

12
, (5.53)

150 analysis

xi−3/2 xi−1/2 xi+1/2
x

-1

0

1

2

3

4

5

6

7

f (x)
fi−1(x)
fi(x)

Figure 5.1: The functions fi and fi−1 approximate f by Taylor expansions about the point
xi−1/2.

and of fi−1 for cell i− 1,

m0
0,i−1 =−

f (3)i−1(∆x)∆x3

12
+

f (2)i−1(∆x)∆x2

6
−

f (1)i−1(∆x)∆x
2

+ fi−1(∆x), (5.54)

m0
1,i−1 =

f (1)i−1(∆x)∆x
2

−
f (2)i−1(∆x)∆x2

4
, (5.55)

m0
2,i−1 =

f (2)i−1(∆x)∆x2

12
−

f (3)i−1(∆x)∆x3

12
, (5.56)

respectively. The order of the coefficients m0
j,k for small ∆x can be read off the above

expressions (5.51) - (5.56). Thus, the coefficients m0
j,k for j = 0, 1, 2 and k ∈ {i, i− 1}

have the following order

m0
0,k = O (1) , (5.57)

m0
1,k = O (∆x) , (5.58)

m0
2,k = O

(
∆x2

)
. (5.59)

As f ∈ Hs, the approximations fi(0) and fi−1(∆x) are equal and their derivatives
evaluated at xi−1/2 as well,

f (j)
i−1/2 := f (j)(xi−1/2) = f (j)

i (0) = f (j)
i−1(∆x), (5.60)

5.1 consistency 151

for j = 1, 2. That enables us to analyze the order of differences of the coefficients.
We obtain,

m0
0,i −m0

0,i−1 = f (1)i−1/2∆x +
1
12

f (3)i−1/2∆x3 = O (∆x) , (5.61)

m0
1,i −m0

1,i−1 =
1
2

f (2)i−1/2∆x2 = O
(

∆x2
)

, (5.62)

m0
2,i −m0

2,i−1 =
1
12

f (3)i−1/2∆x3 = O
(

∆x3
)

, (5.63)

m0
0,i −m0

0,i−1 − 2m0
1,i = −

1
2

f (2)i−1/2∆x2 +
1
12

f (3)i−1/2∆x3 = O
(

∆x2
)

, (5.64)

m0
0,i −m0

0,i−1 − 2m0
1,i + 6m0

2,i =
1
12

f (3)i−1/2∆x3 = O
(

∆x3
)

, (5.65)

m0
0,i −m0

0,i−1 − 2m0
1,i−1 − 6m0

2,i−1 =
7
12

f (3)i−1/2∆x3 = O
(

∆x3
)

, (5.66)

m0
1,i −m0

1,i−1 − 6m0
2,i = O

(
∆x3

)
. (5.67)

As the basis of the induction at time t = 0, at time step n = 0, we found the order
of the coefficients m0

j,k and of the correlation between the coefficients.

Induction hypothesis

The induction hypothesis assumes that the behavior of the coefficients for small ∆x
and their correlations are still true after n time steps are made. We have,

mn
0,i = O (1) , (5.68)

mn
1,i = O (∆x) , (5.69)

mn
2,i = O

(
∆x2

)
, (5.70)

mn
0,i −mn

0,i−1 = O (∆x) , (5.71)

mn
1,i −mn

1,i−1 = O
(

∆x2
)

, (5.72)

mn
2,i −mn

2,i−1 = O
(

∆x3
)

, (5.73)

mn
0,i −mn

0,i−1 − 2mn
1,i = O

(
∆x2

)
, (5.74)

mn
0,i −mn

0,i−1 − 2mn
1,i + 6mn

2,i = O
(

∆x3
)

, (5.75)

mn
0,i −mn

0,i−1 − 2mn
1,i−1 − 6mn

2,i−1 = O
(

∆x3
)

, (5.76)

mn
1,i −mn

1,i−1 − 6mn
2,i = O

(
∆x3

)
. (5.77)

152 analysis

Inductive step

With the assumptions made in the induction hypothesis, we show in the inductive
step, that the assumptions hold after one more time step is carried out with the
numerical method, i.e.

mn+1
0,i = O (1) , (5.78)

mn+1
1,i = O (∆x) , (5.79)

mn+1
2,i = O

(
∆x2

)
, (5.80)

mn+1
0,i −mn+1

0,i−1 = O (∆x) , (5.81)

mn+1
1,i −mn+1

1,i−1 = O
(

∆x2
)

, (5.82)

mn+1
2,i −mn+1

2,i−1 = O
(

∆x3
)

, (5.83)

mn+1
0,i −mn+1

0,i−1 − 2mn+1
1,i = O

(
∆x2

)
, (5.84)

mn+1
0,i −mn+1

0,i−1 − 2mn+1
1,i + 6mn+1

2,i = O
(

∆x3
)

, (5.85)

mn+1
0,i −mn+1

0,i−1 − 2mn+1
1,i−1 − 6mn+1

2,i−1 = O
(

∆x3
)

, (5.86)

mn+1
1,i −mn+1

1,i−1 − 6mn+1
2,i = O

(
∆x3

)
. (5.87)

The numerical solution is determined for the coefficients mn+1
j,i in section 5.1.2 and

given by (5.43) for the first coefficient mn+1
0,i , by (5.44) for the second coefficient mn+1

1,i
and the solution for the third mn+1

2,i coefficient is written in (5.45). The coefficients
for the neigboring grid cell i − 1 are equal apart from the shift of all indices that
refer to the grid cell.

Some algebra and the exploitation of the induction hypothesis lead to and con-
firm the order of the coefficients and the order of the correlations of the coefficients.

5.1.4 Order of errors

To determine the error and the order of the error for small ∆x and ∆t we com-
pute the difference of the approximated analytical solution and the approximated
numerical solution.

Then, the error is explicitly given for the left part of the cell [0, ϕ(0, tn, ∆t)] by

|mn+1
j,i,ana,L −mn+1

0,i | (5.88)

and for the right part of the cell [ϕ(0, tn, ∆t), ∆x]

|mn+1
j,i,ana,R −mn+1

0,i |. (5.89)

These differences are computed and examined. The next section studies the error for
constant velocity. The subsequent section generalizes the result to a non-constant,
however smooth velocity field.

Constant velocity

The coefficients of the analytical and the numerical solution simplify in the case of
constant velocity. The variables ai and ai−1, which indicate the slope of the velocity,
are set to zero.

5.1 consistency 153

To obtain the analytical solution for the left interval [0, ϕ(0, tn, ∆t)] of the ith grid
cell for constant velocity, we set ai and ai−1 to zero in (5.24) to (5.26). We have,

mn+1
0,i,ana,L = 6σ2m2,i−1 + m0,i−1 + 2m1,i−1 + 6m2,i−1 − 2σm1,i−1

−12σm2,i−1,
(5.90)

mn+1
1,i,ana,L = m1,i−1 + 6m2,i−1 − 6σm2,i−1, (5.91)

mn+1
2,i,ana,L = m2,i−1. (5.92)

Analogously, the coefficients mn+1
j,i,ana,R for j = 0, 1, 2 given by (5.13) to (5.15) take the

form

mn+1
0,i,ana,R = 6m2,iσ

2 − 2m1,iσ + m0,i, (5.93)

mn+1
1,i,ana,R = m1,i − 6σm2,i, (5.94)

mn+1
2,i,ana,R = m2,i (5.95)

for constant velocity.

The numerical solution simplifies as well for constant velocity. We list the co-
efficients mn+1

j,i below, first with the variables ai and ai−1 set to zero and then in
a second version, with rearranged terms that indicate the benefit of the induction
hypothesis, i.e. the correlation between the coefficients. The first coefficient mn+1

0,i is
given by

mn+1
0,i = σm0,i−1 + (1− σ)m0,i

+
(

σ− σ2
)

m1,i−1 +
(

σ2 − σ
)

m1,i

+
(

2 σ3 − 3 σ2 + σ
)

m2,i−1

+
(
−2 σ3 + 3 σ2 − σ

)
m2,i +O

(
∆x3

)
(5.96)

= −σ(m0,i −m0,i−1 − 2m1,i + 6m2,i)

+
(
−σ2 + σ

)
(m1,i −m1,i−1 − 6m2,i)

+
(
−2 σ3 + 3 σ2 − σ

)
(m2,i −m2,i−1)

+ m0,i − 2σm1,i + 6σ2m2,i +O
(

∆x3
)

.

(5.97)

The second coefficient mn+1
1,i of the numerical solution reads

mn+1
1,i =

(
3 σ2 − 3 σ

)
m0,i−1 +

(
3 σ− 3 σ2

)
m0,i

+
(
−2 σ3 + 6 σ2 − 3 σ

)
m1,i−1 +

(
2 σ3 − 3 σ + 1

)
m1,i

+
(

3 σ4 − 12 σ3 + 12 σ2 − 3 σ
)

m2,i−1

+
(
−3 σ4 + 6 σ2 − 3 σ

)
m2,i +O

(
∆x3

)
(5.98)

=
(

3 σ− 3 σ2
)
(m0,i −m0,i−1 − 2m1,i + 6m2,i)

+
(

2 σ3 − 6 σ2 + 3 σ
)
(m1,i −m1,i−1 − 6m2,i)

+
(
−3 σ4 + 12 σ3 − 12 σ2 + 3 σ

)
(m2,i −m2,i−1)

+ m1,i − 6σm2,i +O
(

∆x3
)

,

(5.99)

154 analysis

and the third one mn+1
2,i yields

mn+1
2,i =

(
10 σ3 − 15 σ2 + 5 σ

)
m0,i−1

+
(
−10 σ3 + 15 σ2 − 5 σ

)
m0,i

+
(
−5 σ4 + 20 σ3 − 20 σ2 + 5 σ

)
m1,i−1

+
(

5 σ4 − 10 σ2 + 5 σ
)

m1,i

+
(

6 σ5 − 30 σ4 + 50 σ3 − 30 σ2 + 5 σ
)

m2,i−1

+
(
−6 σ5 + 10 σ3 − 5 σ + 1

)
m2,i +O

(
∆x3

)
(5.100)

=
(
−10 σ3 + 15 σ2 − 5 σ

)
(m0,i −m0,i−1 − 2m1,i + 6m2,i)

+
(

5 σ4 − 10 σ2 + 5 σ
)
(m1,i −m1,i−1 − 6m2,i)

+
(
−6 σ5 + 30 σ4 − 50 σ3 + 30 σ2 − 5 σ

)
(m2,i −m1,i−1)

+ m2,i +O
(

∆x3
)

.

(5.101)

Exemplarily, the computation of the error is shown for the coefficient mn+1
0,i in the

left interval.

|mn+1
0,i,ana,L −mn+1

0,i | = 6σ2m2,i−1 + m0,i−1 + 2m1,i−1 + 6m2,i−1 (5.102)

−2σm1,i−1 − 12σm2,i−1 (5.103)

−
(

m0,i − 2σm1,i + 6σ2m2,i

)
+O

(
∆x3

)
(5.104)

= − (m0,i −m0,i−1 − 2m1,i−1 − 6m2,i−1) (5.105)

+2σ (m1,i −m1,i−1 − 6m2,i−1) +O
(

∆x3
)

(5.106)

= O
(

∆x3
)

, (5.107)

where expressions that are of order ∆x3 and higher are omitted making use of the
induction hypothesis.

Similarly, the errors for the other coefficients of the numerical solution for the
left and right interval can be determined and their order derived. Thus, for the left
interval [0, ϕ(0, tn, ∆t)] we have,

|mn+1
0,i,ana,L −mn+1

0,i | = O
(

∆x3
)

, (5.108)

|mn+1
1,i,ana,L −mn+1

1,i | = O
(

∆x3
)

, (5.109)

|mn+1
2,i,ana,L −mn+1

2,i | = O
(

∆x3
)

, (5.110)

and for the right part of the cell [ϕ(0, tn, ∆t), ∆x] the errors yield

|mn+1
0,i,ana,R −mn+1

0,i | = O
(

∆x3
)

, (5.111)

|mn+1
1,i,ana,R −mn+1

1,i | = O
(

∆x3
)

, (5.112)

|mn+1
2,i,ana,R −mn+1

2,i | = O
(

∆x3
)

. (5.113)

We can conclude that the error of the coefficients mn+1
j,i for the left and right inter-

val is of order ∆x3, and therefore the overall error for the polynomial built from
these coefficients, representing the numerical solution, is of third order accuracy for
constant velocity.

5.2 stability 155

Variable velocity

The procedure for variable velocity is carried out similarly as for the case with
constant velocity.

We assume ai = ai−1 +O (∆x) to represent a varying velocity, but with only small
changes in the slope. Since ai =

∂
∂x u|Ωi (x), the condition on ai requires the existence

of a second derivative of u, i.e. u ∈ C2(Ω). We conduct the respective computations
as for the constant velocity case shown above allowing a variable velocity u. We
find that the numerical solution is second order accurate, i.e. one order of accuracy
is lost, when we allow variable velocity.

If we assume the equality ai = ai−1, that are not necessarily equal to zero, we
maintain the third order accuracy.

In this section we studied the consistency and the order of accuracy of the nu-
merical method. We examined the explicit error between the analytical and the
numerical solution. To make these solutions comparable both were approximated
by means of Taylor expansions about ∆t and ∆x tending to zero. The error was
reduced to certain correlations of the coefficients mn

j,i−1 and mn
2,i for j = 0, 1, 2. The

relations between the coefficients and their order were found with the help of an
induction. From the order of the coefficients and their correlations the error and its
order could be implied. The error goes to zero for small time steps and small grid
cells. Therefore, the numerical method is consistent. The order of accuracy is three
for constant velocity and two for smooth variable velocity.

5.2 stability

We first show the L1- and the L2-stability by finding suitable estimates for the
growth of the numerical solution. Further, we apply the von Neumann stability
analysis, because it firstly examines the diffusion and dispersion error separately
and secondly it gives further insight into the theoretical order of convergence.

5.2.1 L1-Stability

To show the L1-stability of the SASLDG method we have to find a bound for the
integral of the absolute value of the advected quantity. We separate the problem in
two parts. First, we examine how the L1-norm changes when the given distribution
is moved along the trajectories. Then, the effect of the L2-projection on the L1-norm
is studied.

Part 1: Effect of the exact solution on the L1-norm

We write the L2-norm of the exact solution ρ(x, tn+1) using (3.124) for the ith cell
[xi−1/2, xi+1/2] and show that we can find an estimate for the bound. We have,

∥∥∥ρ(x, tn+1)
∥∥∥

L1(Ωi)
=

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣dx (5.114)

=

xi+1/2∫
xi−1/2

∣∣∣ρ(ϕ(x, tn+1,−∆t), tn)

· exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t))dt

∣∣∣∣∣∣dx .

(5.115)

156 analysis

Then, we use the same substitution as in (3.126), i.e. x = ϕ(η, tn, ∆t) and the prop-
erty (3.129). This leads to∥∥∥ρ(x, tn+1)

∥∥∥
L1(Ωi)

=

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

∣∣∣∣∣∣ρ(η, tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

 ∂

∂η
ϕ(η, tn, ∆t)

∣∣∣∣∣∣dη

(5.116)

=

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

|ρ(η, tn)|dη . (5.117)

Hence, the L1-norm of the exact solution within one grid cell remains the same dur-
ing one time step. Therefore, the same holds for the whole computational domain.
We have,

∥∥∥ρ(x, tn+1)
∥∥∥

L1(Ω)
=

N

∑
i=1

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣dx (5.118)

=
N

∑
i=1

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

|ρ(η, tn)|dη (5.119)

= ‖ρ(η, tn)‖L1(Ω). (5.120)

The effect of the projection on the L1-norm is studied in the following.

Part 2: Effect of the projection of the exact solution on the L1-norm

The numerical solution is given by (3.138). We differentiate between two cases. First,
we study positive numerical solutions. We can show that the L1-norm remains the
same after applying the L2-projection. Second, we allow solutions with changing
sign. In that case, the L1-norm of the solution is bounded. We start with the first
case,

xi+1/2∫
xi−1/2

∣∣∣Pρ(x, tn+1)
∣∣∣dx =

xi+1/2∫
xi−1/2

Pρ(x, tn+1)dx

=

xi+1/2∫
xi−1/2

2

∑
j=0

2j + 1
∆xi

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(x, tn)Kj(ϕ(x, tn, ∆t))dx Kj(x)dx

(5.121)

=

xi+1/2∫
xi−1/2

1
∆xi

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ(x, tn)K0(ϕ(x, tn, ∆t))dx K0(x)dx (5.122)

=

xi+1/2∫
xi−1/2

1
∆xi

xi+1/2∫
xi−1/2

ρ(x, tn+1)dx dx (5.123)

=

xi+1/2∫
xi−1/2

ρ(x, tn+1)dx . (5.124)

For the second case, we primarily use the fact that the basis function Kj(x) are
bounded, such that∣∣Kj(x)

∣∣ ≤ 1 (5.125)

5.2 stability 157

for j = 0, 1, 2 and x ∈ [0, ∆xj]. For simplicity, we assume grid cells of equal size, i.e.
∆i = ∆j. We use the projection in the form (3.137) for the estimation,

∥∥∥Pρi(x, tn+1)
∥∥∥

L1(Ωi)

=

xi+1/2∫
xi−1/2

∣∣∣∣∣∣
2

∑
j=0

2j + 1
∆xi

xi+1/2∫
xi−1/2

ρ(x, tn+1)K(i)
j (x)dx K(i)

j (x)

∣∣∣∣∣∣dx
(5.126)

≤
xi+1/2∫

xi−1/2

2

∑
j=0

2j + 1
∆xi

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣∣∣∣K(i)

j (x)
∣∣∣dx

∣∣∣K(i)
j (x)

∣∣∣dx (5.127)

≤
xi+1/2∫

xi−1/2

2

∑
j=0

2j + 1
∆xi

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣dx dx (5.128)

=

xi+1/2∫
xi−1/2

1 + 3 + 5
∆xi

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣dx dx (5.129)

= 9

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣dx (5.130)

= 9
∥∥∥ρi(x, tn+1)

∥∥∥
L1(Ωi)

(5.131)

Building the sum over all grid cells shows that the L1-norm is bounded in the case
of solutions with negative sign as well. In summary, we could show that the L1-
norm remains unchanged if the solution is positive and is bounded in the case of a
negative solution. Thus, the method is L1-stable.

5.2.2 L2-Stability

As for the L1-norm we separate the problem in two parts. First, we examine how the
L2-norm of the exact solution changes in time. Then, the effect of the L2-projection
on the L2-norm is studied.

Part 1: Effect of the exact solution on the L2-norm

We write the L2-norm of the exact solution ρ(x, tn+1) using (3.124) for the ith cell
[xi−1/2, xi+1/2] and show that we can find an estimate for the bound. We have,

∥∥∥ρ(x, tn+1)
∥∥∥2

L2(Ωi)
=

xi+1/2∫
xi−1/2

∣∣∣ρ(x, tn+1)
∣∣∣2 dx (5.132)

=

xi+1/2∫
xi−1/2

ρ2(ϕ(x, tn+1,−∆t), tn)

· exp

2
∆t∫

0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t))dt

dx .

(5.133)

158 analysis

Then, we use the same substitution as in (3.126), i.e. x = ϕ(η, tn, ∆t) and the prop-
erty (3.129). This leads to

∥∥∥ρ(x, tn+1)
∥∥∥2

L2[xi−1/2,xi+1/2]

=

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ2(η, tn) exp

2
∆t∫

0

− ∂

∂x
u(ϕ(η, tn, t))dt

 ∂

∂η
ϕ(η, tn, ∆t)dη

(5.134)

=

ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ2(η, tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

dη (5.135)

≤ exp

 ∆t∫
0

max
0≤x≤∆x

∣∣∣∣ ∂

∂x
u(ϕ(η, tn, t))

∣∣∣∣dt

 ϕ(xi+1/2,tn+1,−∆t)∫
ϕ(xi−1/2,tn+1,−∆t)

ρ2(η, tn)dη (5.136)

≤ exp
(

∆t
∥∥∥∥ ∂

∂x
u
∥∥∥∥

∞

)
‖ρ(x, tn)‖2

L2[ϕ(xi−1/2,tn+1,−∆t),ϕ(xi+1/2,tn+1,−∆t)]. (5.137)

Let Tmax = K∆t, where K is the number of the time steps, then we have

∥∥∥ρ(x, tK)
∥∥∥

L2
≤ exp

(
1
2

K∆t
∥∥∥∥ ∂

∂x
u
∥∥∥∥

∞

)∥∥∥ρ(x, t0)
∥∥∥

L2
(5.138)

≤ C(Tmax)
∥∥∥ρ(x, t0)

∥∥∥
L2

. (5.139)

Thus, for any Tmax the local L2-norm is bounded. As this holds for any grid cell,
the global L2-norm is bounded as well.

There is one special case, where C(Tmax) = 1. The condition is that the velocity is
strictly positive or negative and to have periodic boundary conditions. In that case,
there exists a time interval Trev with

ϕ(x, tn, Trev) = x. (5.140)

Then, Trev = Tmax > 0 equals the time interval that a tracer needs for one revolution.
Note, the time interval Trev is the same for all points in the domain. The time
interval of crossing one single cell k is given by

tk =
1
ak

ln
(

bk+1
bk

)
, (5.141)

where bk+N = b1. The sum over all tk equals Trev. The exponential expression in
(5.135), that in the general case was estimated to be bounded, can now be simplified,

exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

 = exp

 N

∑
k=1

tk∫
0

−akdt

 (5.142)

= exp

(
−

N

∑
k=1

ln
(

bk+1
bk

))
(5.143)

= exp

(
− ln

(
N

∏
k=1

bk+1
bk

))
(5.144)

=1. (5.145)

5.2 stability 159

It follows that the L2-norm is bounded with C(Trev) = 1,∥∥∥ρ(x, tn+1)
∥∥∥2

L2[xi−1/2,xi+1/2]

=

xi+1/2∫
xi−1/2

ρ2(η, tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

dη
(5.146)

= ‖ρ(x, tn)‖2
L2[xi−1/2,xi+1/2]

. (5.147)

This implies that for arbitrary Tmax the L2-norm may grow up to some bound de-
pending on Tmax, but if Tmax ≈ Trev, then we know

∥∥ρ(x, tK)
∥∥

L2 ≈
∥∥ρ(x, t0)

∥∥
L2 .

Hence, the L2-norm is periodically bounded by the norm of the initial values.

Part 2: Effect of the projection of the exact solution on the L2-norm

For the second part we need two theorems to obtain the answer. The first one is the
Weierstrass approximation theorem, the proof can be found in e.g. [64].

Theorem 5.2.1 (Weierstrass approximation theorem) The subspace P[a, b] of polyno-
mials on [a, b] ⊂ R, is dense in (C[a, b], ‖ · ‖∞).

Furthermore, we recall the following theorem (see e.g. [64]).

Theorem 5.2.2 C[a, b] is dense in Lp[a, b] for 1 ≤ p < ∞.

With the above theorems we can conclude that for any function f ∈ Lp there exists
a sequence of polynomials pn with ‖ f − pn‖p → 0, n→ ∞. Actually, we can write

f =
∞

∑
i=0

ci pi(x), (5.148)

where ci are coefficients computed by

ci =

b∫
a

f (x)pi(x)dx (5.149)

and pi are orthonormal basis functions of P[a, b]. Then, (5.150) is the L2-projection
onto PN [a, b]. To obtain the projection P onto P2[a, b], only the first three summands
are taken,

P f = P
N

∑
i=0

ci pi(x) (5.150)

=
2

∑
i=0

ci pi(x). (5.151)

Now, we can compute the L2-norm of f and P f .

‖ f ‖2 =

 b∫
a

(
∞

∑
i=0

ci pi(x)

)2

dx

1/2

=

(
∞

∑
i=0

c2
i

)1/2

(5.152)

and

‖P f ‖2 =

 b∫
a

(
2

∑
i=0

ci pi(x)

)2

dx

1/2

=

(
2

∑
i=0

c2
i

)1/2

. (5.153)

From (5.152) and (5.153) it follows that

‖P f ‖2 ≤ ‖ f ‖2, (5.154)

hence the L2-norm is bounded when the projection step is applied.
This result and the finding that the L2-norm of the analytical solution of the linear

advection equation for a specific velocity field is bounded, yield the L2-stability of
the numerical method.

160 analysis

5.2.3 Von Neumann stability analysis

In the sections 5.2.1 and 5.2.2 we have shown that the numerical method is stable.
Yet, we further investigate the stability property of the scheme by means of the von
Neumann stability analysis. It gives a deeper understanding of the errors that occur
as it examines the diffusion and dispersion error separately. The von Neumann
stability analysis offers additionally the possibility to derive the order of accuracy
from a certain point of view.

The procedure of a von Neumann stability analysis applied to numerical methods
is introduced in Section 2.1.2. Exemplarily, the analysis is carried out for the FOU
method in Example 2.1.1.

The application of the von Neumann stability analysis to the SASLDG method
must be altered, because it was intented for the analysis of finite difference meth-
ods or finite volume methods, which have the property that for each grid cell or
grid node one value is computed. For each grid cell of the SASLDG method the in-
formation of a polynomial is stored, i.e. the coefficients mn

0,i, mn
1,i and mn

2,i for the ith
grid cell. To simplify the computations in the following we examine the numerical
method for the constant velocity case only. Additionally, equidistantly distributed
grid points are assumed. The method can be represented by

vn+1 = Avn, (5.155)

where A is a suitable matrix and the vector vn contains the coefficients mn
0,j, mn

1,j
and mn

2,j

vn =

mn
0,j

mn
1,j

mn
2,j

 , (5.156)

and vn+1 at time step n + 1, respectively.
We follow closely the analysis conducted by van Leer in [31], where he has shown

the stability properties for the second-order scheme described in Section 2.2. The
coefficients given at time n in his scheme can be updated in time for the new time
level n + 1 using a 2× 2- matrix. That approach is extended to a 3× 3- matrix. We
use the coefficients derived in Chapter 3, but in the simplified version for constant
velocity. These are written in the previous section in (5.96), (5.98) and (5.100).

Each row of (5.155) yields the respective update for the coefficients in time and
is represented as finite Fourier series using the notation introduced in Section 2.1.2.
We display the result for wave number k. The equations are shown in the form of

vn+1 = Mvn, (5.157)

where vn is defined in (5.156). The eigenvalues of the matrix M determine the
stability properties of the numerical method and can be interpreted as amplification
factors. The matrix M is given by

M =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (5.158)

with the first row

a11 =σe−iαk + 1− σ, (5.159)

a12 =
(

σ− σ2
)

e−iαk + σ2 − σ, (5.160)

a13 =
(

2 σ3 − 3 σ2 + σ
)

e−iαk − 2 σ3 + 3 σ2 − σ, (5.161)

5.2 stability 161

the second row

a21 =
(

3 σ2 − 3 σ
)

e−iαk + 3 σ− 3 σ2, (5.162)

a22 =
(
−2 σ3 + 6 σ2 − 3 σ

)
e−iαk + 2 σ3 − 3 σ + 1, (5.163)

a23 =
(

3 σ4 − 12 σ3 + 12 σ2 − 3 σ
)

e−iαk − 3 σ4 + 6 σ2 − 3 σ, (5.164)

and the third row

a31 =
(

10 σ3 − 15 σ2 + 5 σ
)

e−iαk − 10 σ3 + 15 σ2 − 5 σ, (5.165)

a32 =
(
−5 σ4 + 20 σ3 − 20 σ2 + 5 σ

)
e−iαk

+ 5 σ4 − 10 σ2 + 5 σ,
(5.166)

a33 =
(

6 σ5 − 30 σ4 + 50 σ3 − 30 σ2 + 5 σ
)

e−iαk

− 6 σ5 + 10 σ3 − 5 σ + 1.
(5.167)

From this matrix we can study the stability properties as well as the diffusion and
dispersion error of the numerical method. The eigenvalues of M, needed for the
analysis, are e1, e2 and e3 displayed in the appendix (A.39) to (A.49) in Section A.5.1.

Stability

Similar to the von Neumann stability condition in (2.26) the method is stable, if
the absolute value of the eigenvalues is less than one. The absolute value of all
eigenvalues depends on the Courant number. It is not obvious to see, at which
number the absolute value takes the maximum.

Van Leer showed in [31] that for the second-order case the diffusion error, which
is computed from the absolute value of the eigenvalues, has a maximum at σ = 1/2.
Therefore, when he calculates the diffusion error he uses that value of σ. In our case
the Courant number, where the maximum error is reached, cannot be computed
directly and is only approximated. We plot a series expansion of e1(σ) for fixed
value αk = π/4 about the point σ = 1/2 up to order eight as seen in Figure 5.2.
From the figure we can see that the approximate minimum absolute value of the e1,
i.e. the maximum diffusion error, is reached in the vicinity of σ = 0.25 and σ = 0.75.

0.2 0.4

σ

0.6 0.8 1.0

0.999997

0.999999

1.000000

|e 1
|

Figure 5.2: Series expansion of |e1(σ)| about σ = 1
2 , αk = π

4 ,

Another observation that we make when looking at Figure 5.2 is that the absolute
value of the first eigenvalue is symmetrical at point 1/2. This can be formally
proven, again in the same way as van Leer did it. It can be shown that e1(1− σ) =

e−iαk e1(σ) holds, where e1 denotes the complex conjugate of e1. From this equation
the requested symmetry relation follows directly

|e1(1− σ)| = |e1(σ)|. (5.168)

162 analysis

To study the properties of e1, we evaluate the absolute value nevertheless for
σ = 1/2 even though the maximum error is reached at a different value for σ as
seen in Figure 5.2, because the computations are simplified algebraically for that
value.

Hence, the absolute value of the first eigenvalue at the point σ = 1/2 is given by∣∣∣∣e1

(
1
2

)∣∣∣∣ =
∣∣∣∣∣−1

8
cos

(αk
2

)
+

7 · 32/3

2 · 22/3 3
√

p
+

1
16

3

√
3
2

3
√

p

∣∣∣∣∣ , (5.169)

where

p = 426 cos
(αk

2

)
+ 6 cos

(
3αk
2

)
+
√

3
√

31098 cos(αk) + 852 cos(2αk) + 6 cos(3αk)− 57556.
(5.170)

To examine the behavior for small αk, we expand the absolute eigenvalues about
αk = 0 and obtain the following series expansion for e1 for σ = 1/2∣∣∣∣e1

(
1
2

)∣∣∣∣ =
∣∣∣∣∣1− α6

k
92160

+O
(

α8
k

)∣∣∣∣∣ . (5.171)

Similarly, Taylor expansions about the point σ = 1/2 are obtained for the second
and third eigenvalue e2 and e3, and further the expressions are expanded about
αk = 0. The results yield∣∣∣∣e2

(
1
2

)∣∣∣∣ = ∣∣∣∣−1
2
+

3
32

α2
k +O

(
α4

k

)∣∣∣∣ (5.172)

and ∣∣∣∣e3

(
1
2

)∣∣∣∣ = ∣∣∣∣−7
8
− 3

64
α2

k +O
(

α4
k

)∣∣∣∣ . (5.173)

The absolute values of all eigenvalues are less than or equal to one, which shows
the stability of the method as expected from the results of the stability analysis of
the previous sections.

Diffusion error

As described in Section 2.1.2 the absolute and relative diffusion error is given by
(2.29) and (2.30). To understand the impact of the eigenvalues that contribute to
the diffusion error, we examine the leading order of the respective eigenvalues. The
leading order of eigenvalue e1 is one, of e2 it is 1/2 and of e3 it is 7/8. The leading
order of e2 and e3 is less than one, thus their contribution to the total solution is
damped out after a few time steps. Therefore, the long time behavior is only driven
by the first eigenvalue e1.

For this reason the absolute diffusion error made per time step is approximately

ediff = 1− |e1(σ)| (5.174)

and the relative diffusion error

ẽdiff = |e1(σ)|. (5.175)

To determine the diffusion error and its order we use (5.171). The chosen Courant
number of 1/2 does not play a role for the determination of the order of consistency
of the diffusion error.

That means that the diffusive error of the SASLDG method for constant velocity
is of fifth order with respect to its eigenfunctions that correspond to (5.157). The
actual order of convergence is of order three as shown in Section 5.1.4.

5.2 stability 163

0 20 40 60 80 100 120 140 160 180

k

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

ẽ d
iff

σ = 0.5
σ = 0.4
σ = 0.2
σ = 0.1
σ = 0.005

σ = 0.001

Figure 5.3: Relative diffusion error for different values of σ.

The diffusion error depends on the value of the Courant number σ. How much
and in what way the error is influenced by σ is illustrated in Figure 5.3. It shows
the diffusion error for different CFL numbers. The functions shown here are series
expansions of e1(σ) at σ = 0.5, σ = 0.4, σ = 0.2, σ = 0.1, σ = 0.005 and σ = 0.001
for small value αk. Because of the symmetry relation (5.168), we only plot CFL-
numbers smaller than 0.5 since larger Courant numbers lead to equal results. As
expected from Figure 5.2 the largest diffusion error occurs for σ = 0.2 among the
plotted graphs. The closer the CFL number is to zero or to one, the smaller is the
diffusive error.

Note, that these are theoretical results that are only based on computations based
on the first eigenvalue e1. The other eigenvalues influence the numerical solution
as well.

To study the impact of all eigenvalues we can examine the numerically derived
diffusion error. In the same way as we conducted the Fourier analysis for MPDATA,
we carry out the procedure for the SASLDG method. For details of the numerical
Fourier analysis see Section 2.6.2. The deviation from only considering e1, which
is theoretically derived to the impact of all eigenvalues as seen in the numerical
Fourier analysis can be seen in the Figure 5.4.

While Figure 5.4(a) shows that the diffusive error of the numerical analysis for
CFL =0.5 is only larger than the theoretical diffusive error computed from e1, Figure
5.4(b) seems to reveal an catastrophic result of the numerically determined diffusion
error for CFL = 0.8: it displays an amplification factor larger than one, in particular
for large wave numbers. Numerical methods with such an amplification factor are
expected to be unstable and let the numerical solution grow indefinitely in time.
For the SASLDG method this is not the case - it is stable.

Therefore, we examine the numercially derived diffusive error more closely in
particular for σ = 0.8.

We look at the evolution in time of the diffusive error for fixed wave number
K = 50. This is depicted in Figure 5.5(a). We can see for the first time step that
the diffusive error in this particular case is larger than one, seconded by the results
in Figure 5.4(b). For the next few time steps the amplification factor drops below

164 analysis

0 20 40 60 80 100 120 140 160 180

k

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

ẽ d
iff

theoretical
numerical

(a) σ = 0.5

0 20 40 60 80 100 120 140 160 180

k

0.985

0.99

0.995

1ẽ d
iff

1.005

1.01

1.015

theoretical
numerical

(b) σ = 0.8

Figure 5.4: Comparison of relative theoretical versus relative numerical diffusion error for
different values of σ.

0 10 20 30 40 50 60 70 80 90 100

time steps

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

ẽ d
iff

(a) Numerically determined relative diffu-
sion error in time.

0 10 20 30 40 50 60 70 80 90 100

time steps

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

ẽ d
iff

theoretical
numerical

(b) Comparison of slopes of numercially de-
termined diffusion without oscillation
and theoretically derived diffusion.

Figure 5.5: Diffusion development for 100 time steps in time, for fixed wave number k = 50

and Courant number σ = 0.8.

one and starts oscillating in time. After approximately 20 to 30 time steps the
oscillations are damped and the plotted function is roughly of linear form. This
can be explained by the impact of the second and third eigenvalue. They cause
the oscillations until the components are damped out. After that only the first
eigenvalue e1 governs the numerical solution and thus the diffusive behavior.

To show the result without the oscillations we compute the average slope between
the 50th and 200th time step. This is plotted in Figure 5.5(b). The slope determined
from the theoretical amplification factor for CFL = 0.8 computed from only e1 is
given as Taylor expansion about αk = 0 by

f (αk, n) =
(

1− 2687
196875000

α6
k +O

(
α7

k

))n
. (5.176)

The graph of f (50, n) is shown in comparison to the numerical values. The numer-
ical and theoretical slope coincide approximately aside from a shift, which is also
due to the influence of e2 an e3.

A similar in depth analysis is done in Figure 5.6 for CFL = 0.5 and again k = 50
to see the influence of two different Courant numbers on the numerical solutions
and their respective diffusive behavior.

Figures 5.6(a) and 5.6(b) correspond to Figures 5.5(a) and 5.5(b) and show the
respective results for Courant number 0.5. Again, the form of the graph in Figure
5.6(a) showing the diffusion in time can be described as a linear function with

5.2 stability 165

0 10 20 30 40 50 60 70 80 90 100

time steps

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

ẽ d
iff

(a) Numerically determined diffusion rela-
tive error in time.

0 10 20 30 40 50 60 70 80 90 100

time steps

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

ẽ d
iff

theoretical
numerical

(b) Comparison of slopes of numercially de-
termined diffusion without oscillation
and theoretically derived diffusion.

0 5 10 15 20 25 30 35 40 45 50

time step n

-5

0

5

10
×10

-5

oscillation component
(7/8)n

(1/2)n

(c) Oscillation with mean slope substracted.

Figure 5.6: Diffusion development for 100 time steps in time, for fixed wave number k = 50
and Courant number σ = 0.5.

negative slope and visible oscillations occuring in the first twenty to thirty time
steps. In this case the numerically determined amplification factor remains below
one for all time steps. When we compare the functions without the oscillations we
note that the diffusion after one time step for CFL = 0.5 takes approximately the
value 0.9998, whereas for CFL = 0.8 it is ca 0.99995 (see Figures 5.6(b) and 5.5(b)).
However, as the slope for CFL = 0.8 is steeper, after some time steps the diffusive
error for CFL = 0.8 is larger than the error for CFL = 0.5. This can also be seen for
the theoretically derived diffusion in Figure 5.3. The graph plotted for CFL number
0.2, which equals the one for CFL = 0.8, takes smaller values than the function for
CFL = 0.5 for all wave numbers.

Figure 5.6(c) describes the decay of the oscillations. The component of the linear
function is substracted from the amplification factor and only the pure oscillations
are shown. The functions f (n) = (7/8)n and f (n) = (1/2)n are also depicted in
this figure, which describe roughly the decay of the impact of the eigenvalues e2
and e3 (compare (5.172) and (5.173)). The absolute value of the extracted numerical
oscillations lie between these two functions.

Dispersion

The absolute and relative dispersion error of a numerical method derived by means
of the von Neumann analysis is given by (2.31) and (2.32), respectively. For the

166 analysis

SASLDG method the first eigenvalue is interpreted as amplification factor. Its argu-
ment yields the dispersion error. Then, the relative dispersion error is given by

ẽdisp =
tan−1

(
− Im e1

Re e1

)
σαk

. (5.177)

To determine the order of the dispersion error we compute the error in the limit of
small ∆x, when ∆t is fixed. Thus, we let σ go to zero,

lim
σ→0

ẽdisp = lim
σ→0

arctan
(
− Im e1

Re e1

)
σαk

. (5.178)

The expression (5.178) is difficult to solve. No symbolic mathematical computation
program seems to be able so solve that equation directly. Hence, we need to simplify
the expression. This is shown in the appendix in Section A.5.2.

The result is given as a series expansion about wave number αk = 0,

lim
σ→0

ẽdisp = 1 +
α6

k
42000

+O
(

α7
k

)
. (5.179)

Therefore, the theoretically determined order of the dispersion error for the SASLDG
method for constant velocity is order five with respect to the eigenfunctions of 5.157.
As noted for the diffusion error: this finding holds only for the eigenfunctions and
the order of convergence is of order three.

0 20 40 60 80 100 120 140 160 180

k

0.95

1

1.05

1.1

1.15

1.2

1.25

theoretical σ→ 0
σ = 0.5
σ = 0.8
σ = 0.2
σ = 0.001

ẽ d
is

p

Figure 5.7: Relative dispersion error.

The relative dispersion error is theoretically derived for Courant number σ = 0
only. However, the error for other CFL numbers can be determined in the same way
as we did for the diffusion error. In Figure 5.7 the relative dispersion error is plotted
for different CFL numbers as well as the theoretical result for σ → 0. Depending
on the Courant number the error is larger or smaller than one. That means that the
numerical solution propagates either faster or slower than the analytical solution.
For CFL numbers lager than 0.5 the error is a lagging error, for numbers smaller
than 0.5 the error is leading. For CFL = 0.5 the error is aside from small numerical

5.3 convergence rates 167

errors equal to zero. Note, that the dispersion error is not symmetric with respect
to the CFL number unlike the diffusion error.

The theoretical dispersion error determined for the limiting case of σ going to
zero is also shown in Figure 5.8. The numerically calculated dispersion errors seem
to converge to a different limiting function for a small Courant number. The numer-
ical dispersion error is larger than the theoretically derived one. The plot suggests
that it is limited as σ goes to zero. The dispersion error made using σ = 0.001,
barely differs from the error with Courant number equal to 10−7. For example, the
difference for wave number 180 for the latter named CFL numbers is in the order
of 10−3. The difference for CFL 10−7 and 10−6 again for wave number 180 is in the
order of 10−8.

0 20 40 60 80 100 120 140 160 180

k

0.95

1

1.05

1.1

1.15

1.2

1.25

theoretical σ→ 0
σ = 0.1
σ = 0.01
σ = 0.001
σ = 1e-07

ẽ d
is

p

Figure 5.8: Dispersion to zero

The deviation of the theoretically and numercially determined dispersion for
small Courant numbers can be explained by the interaction of all three eigenvalues
in the numercially derived dispersion error from the numerical solution, whereas
for the theoretical determined dispersion error (5.179) the first eigenvalue only plays
a role.

In summary we can say that the long time behavior is governed only by the first
eigenvector and thus it is suitable to use e1 for the analysis. The theoretically derived
amplification factors suggest a smaller diffusive error than the effective numerical
amplification factors, but are still beneficial approximations.

5.3 convergence rates
In this section we determine numerically the convergence rate of the SASLDG
method. To obtain the initial data the sine function is projected cellwise onto a
polynomial of degree two. The sine function used as initial data for x ∈ [0, 1] is
given by

f IV(x) = sin(2πx), (5.180)

168 analysis

which takes positive and negative values. Additionally, it is used in a modified
version, such that the convergence rates can be computed from purely positive
initial data as well

f IV(x) = sin(2πx) + 1.5. (5.181)

Further, two different velocity fields are used for the computations. The first one is
constant, i. e.

u(x) = 1. (5.182)

The second one is of variable velocity and given by

u(x) =
(

1
2
(sin(πx))

)2
+ 1. (5.183)

The velocity fields are chosen to be strictly positive, such that after some finite
time the initial distribution is advected to the initial position. We compute the
numerical solution after one revolution. The error is computed cellwise between the
reconstructed polynomial function of the numerical solution and the sine function,
which is the analytical solution. The difference of the numerical and analytical
solution is used to assemble an error function for each refinement level r and for
each grid cell j

f r
err,j(x) =

∣∣∣ f r
num,j(x)− f r

ana,j(x)
∣∣∣. (5.184)

From the function f r
err,j(x) we compute the Lr

max, Lr
1 and Lr

2 error

Lr
max = max

j

(
max

x
f r
err,j(x)

)
, (5.185)

Lr
1 = ∑

j

∫
f r
err,j(x)dx (5.186)

and

Lr
2 =

√
∑

j

∫
f r
err,j

2(x)dx. (5.187)

The convergence rate can be computed from the errors of the different refinement
levels, here shown for the Lmax error,

cr
max =

ln
(

Lr+1
max
)
− ln(Lr

max)

ln(gr+1)− ln(gr)
, for r ∈ {1, . . . , 9} (5.188)

where gr = 2r+2 is the number of grid cells used for refinement level r. The conver-
gence rates for the L1 and L2 errors are determined analogously.

We compute the convergence rates for different scenarios. In the case of constant
velocity we apply two different Courant numbers to see the influence of the CFL
number 1/2. In the case of variable velocity we vary first the initial data, second the
CFL number and third the switch of the numerical method for small coefficients ak
of the slope of the velocity field.

Tables 5.1 and 5.2 show the convergence rates for the constant velocity case (5.182).
For both computations the initial function (5.181) is used. Table 5.1 displays the
results for CFL = 0.45, Table 5.2 for CFL = 0.5, respectively. Both tables confirm the
convergence rate of order three for the constant velocity case as shown theoretically
in 5.1.4.

Though both tables indicate the third order accuracy, Table 5.2 shows a rate closer
to order three. This can be explained by the dispersion error, which is equal to zero
for the Courant number 0.5. Only the diffusion error causes numericals errors.

5.3 convergence rates 169

N Lmax-error Lmax-order L1-error L1-order L2-error L2-order
8 1.47e-03 - 3.22e-04 - 4.28e-04 -

16 7.37e-04 2.8330 1.03e-04 3.0027 1.49e-04 2.9568

32 1.05e-04 2.8102 1.44e-05 2.8360 2.05e-05 2.8583

64 1.30e-05 3.0104 1.73e-06 3.0607 2.49e-06 3.0383

128 1.53e-06 3.0936 2.04e-07 3.0862 2.97e-07 3.0719

256 1.64e-07 3.2163 2.46e-08 3.0522 3.54e-08 3.0679

512 2.11e-08 2.9603 3.08e-09 2.9962 4.45e-09 2.9911

1024 2.86e-09 2.8855 3.91e-10 2.9767 5.69e-10 2.9672

2048 4.03e-10 2.8265 5.51e-11 2.8284 7.83e-11 2.8616

Table 5.1: Convergence rates for constant velocity defined in (5.182) and the CFL number
0.45. The strictly positive initial values are given by (5.181).

N Lmax-error Lmax-order L1-error L1-order L2-error L2-order
8 1.08e-03 - 3.16e-04 - 4.16e-04 -

16 6.25e-04 2.9578 1.01e-04 3.0263 1.44e-04 2.9943

32 7.87e-05 2.9895 1.26e-05 3.0065 1.80e-05 2.9986

64 9.85e-06 2.9974 1.57e-06 3.0017 2.26e-06 2.9997

128 1.23e-06 2.9993 1.96e-07 3.0004 2.82e-07 2.9999

256 1.54e-07 2.9998 2.45e-08 3.0001 3.52e-08 3.0000

512 1.93e-08 3.0000 3.06e-09 3.0000 4.41e-09 3.0000

1024 2.41e-09 3.0000 3.83e-10 3.0000 5.51e-10 3.0000

2048 3.01e-10 2.9999 4.79e-11 3.0003 6.88e-11 3.0000

Table 5.2: Convergence rates for constant velocity defined in (5.182) and the CFL number 0.5.
The strictly positive initial values are given by (5.181).

We expect a convergence rate of order two from the theoretical results derived in
Section 5.1.4, when a variable velocity field as given in (5.183) is used. Some factors
affect the convergence rates for the new method. The positivity of the initial values,
the CFL number, and the switch for the algorithm for a small slope of the velocity
coefficients causes slight changes in the rates.

N Lmax-error Lmax-order L1-error L1-order L2-error L2-order
8 4.29e-03 - 7.61e-04 - 1.07e-03 -

16 1.27e-03 2.4983 2.06e-04 2.4471 2.72e-04 2.4730

32 2.48e-04 2.3633 4.62e-05 2.1567 5.99e-05 2.1828

64 5.49e-05 2.1747 1.12e-05 2.0387 1.45e-05 2.0516

128 1.29e-05 2.0851 2.76e-06 2.0229 3.57e-06 2.0161

256 3.13e-06 2.0454 6.89e-07 2.0047 8.91e-07 2.0041

512 7.71e-07 2.0238 1.72e-07 2.0019 2.23e-07 2.0011

1024 2.06e-07 1.9024 4.30e-08 1.9985 5.58e-08 1.9973

2048 1.42e-07 0.5404 1.21e-08 1.8291 1.63e-08 1.7775

Table 5.3: Convergence rates for variable velocity defined in (5.183) and the CFL number
0.45. The initial values are given by (5.180).

The influence of the positivity of the initial values is studied in the Tables 5.3
and 5.4. The initial values, that are used for the computation are given by (5.180),
which takes positive and negative values, and (5.181), which is strictly positive,
respectively. Both tables show the rate of order two up to the refined grid with
1024 grid cells. The convergence rates drop for the next refinement level due to
cancellation of significant digits in the computations. The Lmax-order shows the
significant drop of the rate at the refinement level of 2048 grid cells ,the L1-order

170 analysis

N Lmax-error Lmax-order L1-error L1-order L2-error L2-order
8 9.85e-03 - 2.13e-03 - 2.80e-03 -

16 3.01e-03 2.1765 5.23e-04 2.0815 7.13e-04 2.0700

32 7.18e-04 2.0704 1.29e-04 2.0249 1.76e-04 2.0196

64 1.74e-04 2.0407 3.20e-05 2.0044 4.39e-05 2.0018

128 4.34e-05 2.0055 8.15e-06 1.9745 1.11e-05 1.9787

256 1.08e-05 2.0026 2.05e-06 1.9923 2.81e-06 1.9898

512 2.71e-06 2.0015 5.15e-07 1.9938 7.04e-07 1.9945

1024 6.78e-07 1.9972 1.29e-07 1.9953 1.77e-07 1.9958

2048 4.47e-07 0.6004 3.44e-08 1.9061 4.74e-08 1.8980

Table 5.4: Convergence rates for variable velocity defined in (5.183) and the CFL number
0.45. The strictly positive initial values are given by (5.181).

and the L2-order display that issue at the next refinement level, which is not shown
here. However, the rates in Table 5.4 computed from strictly positive initial values
reveal a slighly better result and seem to be more robust than the rates in Table 5.3
with initial data of changing sign.

N Lmax-error Lmax-order L1-error L1-order L2-error L2-order
8 1.07e-02 - 2.19e-03 - 2.86e-03 -

16 3.05e-03 2.2435 5.34e-04 2.0826 7.27e-04 2.0698

32 7.23e-04 2.0746 1.30e-04 2.0342 1.78e-04 2.0278

64 1.75e-04 2.0478 3.22e-05 2.0207 4.41e-05 2.0161

128 4.36e-05 2.0057 8.18e-06 1.9745 1.12e-05 1.9784

256 1.09e-05 2.0027 2.06e-06 1.9903 2.82e-06 1.9890

512 2.71e-06 2.0023 5.17e-07 1.9949 7.06e-07 1.9954

1024 6.79e-07 1.9986 1.29e-07 2.0000 1.77e-07 2.0003

2048 4.36e-07 0.6399 3.38e-08 1.9329 4.62e-08 1.9331

Table 5.5: Convergence rates for variable velocity defined in (5.183) and the CFL number 0.5.
The strictly positive initial values are given by (5.181).

In Table 5.5 we see the convergence rates for the SASLDG method computed with
the same settings as in Table 5.4 apart from a change of the Courant number from
0.45 to 0.5. The results are similar with slightly smaller errors in Table 5.5. Just as
for constant velocity, the CFL number 0.5 reduces the errors by a small amount.

The convergence rates shown in all tables above are computed with the possibility
enabled to switch between the algorithms for small or large coefficients ak that occur
in the slope of the velocity. The bound is chosen to be 0.5. The slope of the velocity
is equal to zero in the case for constant velocity. Hence, the relevant coefficient is
below the bound everywhere and the according branch of the algorithm is applied.
The convergence rates for the constant velocity case yields results without numerical
cancellation. Thus, the branch of the algorithm is well suited for a fine grid and
small time steps. The other branch of the algorithm for coefficients larger than the
bound reveals problems because of the cancellation. If we examine the method
closely, we note that wherever coefficients ak appears in the equations there is the
always the product of ak and ∆t given. The branch of the algorithm was intented
for small ak and according series expansion are applied about the point ak = 0.
However, for small ∆t the same expansions hold. In the study of the convergence
rates small ∆x and small ∆t are assumed. Thus, the requirements for choosing the
branch for small ak is also fulfilled for small ∆t.

Table 5.6 shows the results if we increase the bound of the switch such that that
algorithm for small ak is applied for all ak. The convergence rates show the order
two for all refinement levels. Cancellation of significant digits does not occur.

5.3 convergence rates 171

N Lmax-error Lmax-order L1-error L1-order L2-error L2-order
8 4.29e-03 - 7.61e-04 - 1.07e-03 -

16 1.27e-03 2.4984 2.06e-04 2.4471 2.72e-04 2.4731

32 2.48e-04 2.3633 4.62e-05 2.1569 5.99e-05 2.1831

64 5.50e-05 2.1725 1.12e-05 2.0379 1.45e-05 2.0503

128 1.29e-05 2.0879 2.77e-06 2.0220 3.57e-06 2.0172

256 3.13e-06 2.0450 6.89e-07 2.0064 8.91e-07 2.0044

512 7.70e-07 2.0238 1.72e-07 2.0018 2.23e-07 2.0011

1024 1.91e-07 2.0121 4.30e-08 2.0005 5.56e-08 2.0003

2048 4.75e-08 2.0062 1.07e-08 2.0001 1.39e-08 2.0001

Table 5.6: Convergence rates for variable velocity defined in (5.183) and the CFL number
0.45. The initial values are given by (5.180). The branch of the algorithm for small
a0 and an is applied only.

Figure 5.9 and 5.10 picture the influence of the choice of the bound to switch
the algorithms on the error in the solution. Figure 5.9(a) displays the velocity dis-
tribution defined in (5.183), Figure 5.9(b) shows the slope of the velocity, i.e. the
coefficient ak. These figures become of interest, when studied in combination with
Figure 5.10, which shows the error of the numerical solution computed with vari-
able velocity.

0 0.2 0.4 0.6 0.8 1

x

1

1.05

1.1

1.15

1.2

1.25

u

(a) The velocity u.

0 0.2 0.4 0.6 0.8 1

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a

(b) Slope of u.

Figure 5.9: The velocity u described in (5.183) and its slope a.

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

x

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(a) Computed on 8 grid cells.

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
×10

-7

(b) Computed on 2048 grid cells.

Figure 5.10: Error plot of numerical solution computed with variable velocity and CFL num-
ber 0.45.

Figure 5.10(a) demonstrates the error plot for a coarse grid of eight grid cells. For
each grid cell j the error function f r

err,j(x) is plotted, with r = 1 as the refinement

172 analysis

level. Figure 5.10(b) shows the error for a grid of 2048 cells, i.e. the refinement level
r = 9. Note the different scaling.

Because of the amount of grid cells, it is not possible to see the distribution of a
error function for a particular grid cell. However, the plot reveals the areas with the
largest error. These areas correspond exactly with the interval where the absolute
value of the slope ak is above the bound of 0.5. This means wherever the branch of
the algorithm is used for large ak, the numerical solution becomes inaccurate. The
other branch for small ak has the property to damp the errors, which is illustrated
by the smooth areas wherever |ak| ≤ 0.5. This damping effect is also discussed in
one test case in Section 3.7.

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

3

3.5
×10

-10

Figure 5.11: Error plot of numerical solution computed with constant velocity and CFL num-
ber 0.5.

Figure 5.11 shows the error plot for the same refinement level as used in Figure
5.10(b), that is 2048 grid cells. The numerical solution is computed with constant
velocity. Hence, the algorithm for small ak is applied everywhere. The error plot is
correspondingly smooth.

In summary, the numerically computed convergence rates confirm the theoretical
results. The SASLDG method is third order accurate, when applied to a constant
velocity field and of second order accuracy for variable velocity.

6 D I S C U S S I O N

We discuss the findings of the previous chapters, the construction and development
of the SASLDG method, the extension of the method to two space dimensions and
the analysis. In particular, the numerical results of the SASLDG method are con-
sidered thoroughly in this discussion. Furthermore, we highlight possibilities to
extend and enhance the SASLDG method in future work.

The SASLDG method strives for the goal of solving the compressible linear advec-
tion equation with as many steps computed analytically as possible while retaining
a suitable form of the solution, i.e. polynomial form. The derivation of the SASLDG
method reveals the difficulties of that objective. The advected quantity is followed
analytically along trajectories and projected onto polynomial distributions for each
time step. The velocity field given by piecewise linear functions sets constraints on
the form of the trajectory: We must differentiate between strictly positive velocity,
strictly negative velocity, and a velocity distribution with a root for each grid cell.
Time step size, the length of a grid cell and the velocity influence the number of
grid cells that a trajectory crosses. The form of the trajectory alters if it remains
within one grid cell or if it crosses grid cell boundaries. Furthermore, if the slope
of the velocity equals zero in any of the grid cells that a trajectory crosses, the
trajectory takes a different form. This can occur at three occasions, namely in the
departure cell, in the arrival cell of the trajectory or in both cells. The algorithm of
the SASLDG method takes account of all these possible forms of trajectories. In the
subsequent projection step, the analytically correct solution is cast into polynomial
form. The integrals that are solved analytically for the projection differ depending
on the form of the trajectories. Additionally, in the computation of the integrals,
cancellation of significant digits can occur and must be handled. Thus, on the one
hand the algorithm is complicated and branched due to many if statements, on the
other hand it yields a semi-analytical solution to the linear advection equation.

The numerical tests conducted in Chapter 3 show the results of the SASLDG
method for test cases in one space dimension. We tested two different initial val-
ues. First, a smooth initial distribution, i.e. the sine function. Second, we chose the
step function as initial data with a jump discontinuity. We examined the numerical
solution with these initial values with a constant and a variable velocity field, on a
regular grid and on an irregular grid with grid cells of random size. Furthermore,
tests with a series of CFL numbers smaller than one as well as larger than one were
conducted. Additionally, the application of a slope limiter is tested.
In general, the SASLDG method is very accurate with a small maximum- and l1-
error in all test cases. In particular, smooth initial values, which can be well ap-
proximated by the polynomials, are advected without introducing large numerical
errors. In contrast, if the step function is chosen as initial distribution, the jump
discontinuity within a grid cell cannot be fitted to quadratic polynomial functions
as well.
An irregular grid with varying grid cell sizes can be handled without any issues.
However, the maximum- and the l1-error are larger than on a regular grid. The tests
with CFL number 10 show a reduction of the error compared to the tests with CFL
number 0.45.
This is also confirmed by the test series with different increasing CFL numbers.
When we consider the results with a smooth initial distribution and double the CFL
number, the errors roughly decrease by the factor of two. Additionally, the compu-
tational time is approximately reduced by half as well. This is an obvious fact for
CFL numbers of less than one, since the amount of time steps is reduced by the fac-

173

174 discussion

tor two as well. However, for CFL numbers larger than one, the trajectories become
more complicated as they cross potentially several grid cells. Thus, the tracking of
the trajectories for a longer time step is less expensive than the computation of the
projection. We carry the increase of the CFL number to extremes and choose it in
such a way that the time step size equals the time Tmax and the numerical solution
after one circulation is computed with one single time step. For variable velocity,
the errors are further decreased and of the same order on the regular and irregular
grid. The l∞- and l1-error of the solution on a regular grid reach almost machine
accuracy for constant velocity.
Analysing the test series with discontinuous initial values and constant velocity, we
observe a general decline (or small momentarily increase) of the l∞- and l1-error if
the CFL number is increased. The same holds for the over- and undershoots that
arise in the numerical solution for that test series. The dispersion error influences
the numerical results for this test series, in particular noticeable at the over- and
undershoots. If the CFL number is larger than 0.5, the error is lagging. If the CFL
number is smaller than 0.5, the error is leading, which means an increase of the os-
cillations in the vicinity of the discontinuity either ahead or behind the jump. The
dispersion error vanishes for the CFL number equal to 0.5. Therefore, the results
show smaller errors for 0.5 than for slightly larger CFL numbers as 0.6, even though
less time steps are made and consequently less projections have to be computed. If
the time step size is chosen such that the numerical solution at time Tmax is obtained
with one single time step, the l∞- and l1-error are in the order of machine accuracy.

Some phenomena, e.g. in the dynamics of the atmosphere or the ocean, occur
at different scales in vertical and horizontal direction. If we assume a problem of
large horizontal but small vertical scale and have to choose a high resolution for
the vertical direction, the same resolution often cannot be applied to the horizontal
direction because of the computational cost. A grid with high aspect ratio is the
consequence.
Furthermore, the structure of the grid, in particular its increment, also depends on
on the initial values and the velocity field. The regularity of the initial data enables
a higher or lower resolution. Smooth initial values can be resolved on a coarser
grid, whereas for the representation of sharp discontinuities a relatively fine grid
is needed. Since the regularity and the variation of the initial values might vary in
the space dimensions, different grid aspect ratios might be suitable. In addition, the
velocity field must be considered for the choice of the aspect ratio, i.e. the different
resolution in both space dimensions. A strongly varying velocity field must be
resolved on an adequate fine grid.
Independent of the origin for the grid with high aspect ratio, methods that can only
apply CFL numbers up to number one, are subject to a strict time step restriction.

The SASLDG method is extended to solve the two-dimensional linear advection
equation via operator splitting. The general procedure of the 2D-version is equal to
the method in one space dimension. However, six coefficients describe the polyno-
mial that represents the numerical solution. Although the 2D algorithm works in
the same way as in 1D, the integrals of the projection step have to be determined
differently because of different representation of the solution. The implementation
of the analytical computation is restricted to the 1D case. However, for testing pur-
poses the integrals are solved using the quadrature of MATLAB. Because of the
complexity of the algorithm, the computational cost to determine the numerical so-
lution is high.
For that reason another method is developed and introduced to make use of the
SASLDG algorithm and solve the advection equation in 2D. The so-called hybrid
method combines the complex, but high-accurate SASLDG method and the robust
MPDATA, with low computational cost. To adjust the SASLDG method to an op-
eration with cell mean values only, a modified version is developed. This so-called
SASLDG-3c method combines three grid cells to one. It uses the information of
the three mean values to build the coefficients that describe the polynomial for the

discussion 175

larger cell. Via operator splitting it is constructed to use MPDATA in horizontal
and the SASLDG-3c method in vertical direction. A feature of the hybrid method
is that there is no time step restriction in vertical direction. As a consequence, the
hybrid method can handle problems with high aspect ratio with a reasonable time
step size.

Four test cases are studied in two space dimensions. First, the solid body rota-
tion test and second, a deformational test, i.e. the static vortex test case are carried
out. The 2D SASLDG method, MPDATA, the SASLDG-3c method and the hybrid
method are tested with these test cases. Furthermore, two additional test cases, an-
other deformational test using the Rider Kothe velocity field and a wavelike flow
test, offer more insights into the performance of the MPDATA, SASLDG-3c and the
hybrid method.
The tests have several objectives. The test cases solid body rotation and the Rider
Kothe test in which a sine hill is rotated and a gaussian hill is deformed, respec-
tively, examine the methods with respect to smooth initial data. Initial distributions
that contain discontinuities are used and tested in the other two test cases: a stair-
case function for the static vortex test and a distribution that only consists of sharp
edges for the wavelike flow test. The solid body rotation test is driven from a ve-
locity field of constant velocity for each one-dimensional splitting operator. The
velocity fields of the other test cases are all of variable velocity. Thus, constant and
variable velocity is applied in the 2D tests. The capability of the methods to handle
grids with high aspect ratio is of interest as well. Furthermore, the computational
cost is measured for the solid body rotation, the Rider Kothe and the wavelike flow
test.

Considering the solid body rotation, the result of the SASLDG method stands out
with respect to two aspects. First, the l∞- and the l1-error are small compared to the
errors of the other methods. However, the second feature is the large computational
time. Comparing the extremes MPDATA and SASLDG, we find that the computa-
tional time of SASLDG is approximately 184 times larger than of MPDATA. The
error of the solution of SASLDG is 12 times smaller than of MPDATA. The higher
accuracy of the SASLDG method does not justify the high cost. The performance
of the modified version of the SASLDG method is remarkable. The computation of
the numerical solution of the SASLDG-3c method takes roughly three times longer
than of MPDATA. Yet, the errors are approximately five times smaller. The good
result of SASLDG-3c with respect to smooth initial data, i.e. the sine function, is
also shown in the 1D test case. The errors of SASLDG and its modified version are
comparable.

The superiority of the SASLDG method with respect to the quality of the solution
with smooth initial values does not apply to the solution computed from initial data
with discontinuities. We examine the outcome of the static vortex test case. The
l∞- and l1-error of the solution of SASLDG are smaller than of the other methods,
but not to that extent. The errors of the SASLDG method are approximately by
a factor of 0.7 smaller than the errors of MPDATA. The hybrid method yields an
astonishing error behavior in this test case. The l∞-error is very close to the error
of SASLDG-3c, which is smaller than the error of MPDATA, and the l1-error of the
SASLDG-3c method is even smaller than of both individual methods. Thus, the
combination of both methods resulting in the hybrid method yields the best result.
When studying the one-dimensional comparison of MPDATA and the SASLDG-
3c method for the test with the step function as initial data, we find that the l∞-
as well as the l1-error of the SASLDG-3c method is smaller, but the oscillations
reach a larger amplitude. Since MPDATA is applied in horizontal advection, it is
responsible for advection across the steps of the staircase function. The SASLDG-3c
method advects the smooth solution in vertical direction and thus not across the
step but within, without any discontinuities. In that way the result of the hybrid
method can lead to better results than the individual methods.

176 discussion

The deformational test case using the Rider Kothe velocity field starts with smooth
initial values, i.e. a gaussian hill. Though, the initial data is comparable to the data
of the solid body rotation test, the test is of more complicated structure. The ve-
locity applied to the data is variable in space. The initial gaussian hill is deformed
into an arch during the test. The upwards and downwards advection of the hill
deforms the hill relatively little compared to the horizontal advection, where the
most deformation takes place.
On the grid of 120× 120 grid cells the SASLDG-3c method yields better results than
MPDATA in terms of l∞- and l1-error. Similar to the static vortex test case, the
result with the smallest errors - smaller than for the individual methods - is given
by the hybrid method. Again, the vertical advection computed by the SASLDG-3c
method leads to smaller errors than computed by MPDATA. If MPDATA is used for
horizontal advection instead of the SASLDG-3c method, the errors remain smaller.
Thus, the hybrid method has the smallest errors. If we changed the roles of MP-
DATA and SASLDG-3c for the hybrid method and used MPDATA for the vertical
and SASLDG-3c for the horizontal advection, the l∞- and the l1-error would take
larger values. A reason for the better performance of MPDATA with respect to the
horizontal advection could be the higher resolution of the grid. This could be help-
ful to capture the horizontally more complicated velocity field. The velocity field
describes two vortices in horizontal direction, in contrast to the vertical vortex that
stretches over the whole computational domain.
Considering the results of the Rider Kothe test computed on the 120× 360 grid, the
conclusion for the hybrid method, which yields the smallest errors of all methods,
holds as well. It is interesting to note that the error by MPDATA decreases switch-
ing to this grid, whereas the error of the SASLDG-3c method remains about the
same. This can be explained by the fact that the horizontal resolution of 40 grid
cells used by SASLDG-3c limits a further reduction of an error for that particular
problem. As soon as the horizontal resolution is chosen higher, the error of the
SASLDG-3c method diminishes. (We conducted this test, however the result is not
shown in this thesis.)
The hybrid method yields a suitable result if a larger CFL number of 0.5 with respect
to the horizontal grid is applied. The time step chosen for this test is approximately
six times larger than for the other tests. This corresponds to the CFL number 2.99 in
vertical direction, which is only possible for the SASLDG-3c method. The l∞- and
l1-error increase by a factor of approximately 1.1 and 1.8, respectively, compared to
the values of MPDATA. In return, the speed up for the computation with a larger
time step is about a factor of 4.6.

The goal of the wavelike test is to study the long time behavior of a tracer with ini-
tial values consisting of sharp discontinuities that is advected in a wavelike manner.
The transport takes place in upwards and downwards as well as in left and right
direction, in which the vertical movement is predominant. The numerical methods
are tested with respect to the qualitative conservation of the discontinuities. Since
the initial values are constant apart from the discontinuities, the errors occur only
in their neighborhood. The tests on both grids, the 150× 150 and 90× 540, confirm
once more similarly to the results to the previous test cases: The numerical solu-
tion computed by the hybrid method is a hybrid combination of MPDATA and the
SASLDG-3c method. We consider the width of the error (the area, where the error
is larger than the value 0.1), the absolute error at vertical and horizontal edges, and
the l1-error. The l∞-error is not as meaningful for the conservation of the disconti-
nuities because it consists of single peaks at the corners of the cut-out corner. The
solution of the hybrid method inherits the features of the individually computed
solutions.
The wavelike test shows the capability to handle large CFL numbers in vertical di-
rection without restriction on the time step size. In the example on the 90× 540
grid, i.e. a grid of aspect ratio 1:6, the time step is chosen 12 times larger than in the
tests prior to that. Even though the errors grow about a factor 1.2 to 1.7, the run-

discussion 177

time decreases about a factor 8.6. Depending on the application, this trade-off can
serve a purpose. Summarized, the wavelike test confirms that the hybrid method
can be used on a grid with high aspect ratio and relatively large CFL numbers
and still obtain reasonable results. However, the large oscillations that arise at the
discontinuities must be captured in order to reduce this error source. Thus, the
development of a limiter for the SASLDG-3c method might be worthwile for future
work.

The benefit of the SASLDG method to handle arbitrary CFL numbers and allow
large time steps applies in the one-dimensional test cases with smooth initial val-
ues. If we solve the linear advection equation in two space dimensions via operator
splitting, this advantage does not apply directly since large time steps are not appli-
cable for operator splitting. However, with regard to grids with high aspect ratio,
the possibility to make large time steps is reasonable. The time step restriction for
some numerical methods up to CFL number one can limit these methods to very
small time steps in one space dimension if the grid aspect ratio is high.
The test cases that are conducted for the hybrid method with two CFL numbers of
different sizes indicate that an increase of the CFL number results in a growth of the
l1- and the l∞-error. A possible way to make use of the nonexistent time step restric-
tion for the SASLDG method in 2D is the development of a full multi-dimensional
Lagrangian or semi-Lagrangian method that are not based on operator splitting.

The accuracy of the SASLDG method is second order for variable velocity, i.e. for
a continuous, piecewise linear velocity field. If the advection velocity is constant,
the SASLDG method is third order accurate as shown analytically. These results are
confirmed by numerical convergence tests. A problem that arises within these tests
is cancellation of significant digit. If the grid is refined to 2048 grid cells, the conver-
gence rates drop. A possible remedy is to use the algorithm for small coefficients
|a0| and |an| which is an adequate approximation. The Taylor expansion used to
obtain this approximation about a0 = 0 and an = 0 holds for ∆t = 0 as well.
In order to increase the accuracy, the representation of the velocity field and of the
numerical solution must be adapted. If the velocity field is given as a continuous,
piecewise polynomial of degree two (instead of one), the computation of the trajec-
tories must be altered. The analytical solution of the resulting ODE exists and can
be determined. However, its computation requires even more distinction of cases
and is of more complicated form. Thus, the remaining algorithm becomes more
complex, too.
The increase of the degree of the polynomials for the representation of the numer-
ical solution leaves the determination of the trajectories unaffected. Instead, the
projection step must be adapted. The solution of all integrals is explicitly imple-
mented in the algorithm that is needed for the projection of the analytical solution.
The polynomials are part of the integrand. Thus, when the order of the polynomi-
als change, the solution of the altered integrals must be implemented. The solution
with a higher order accuracy can be determined in the same semi-analytical way,
but with higher computational cost.

An asset of DG methods is the hp-refinement. It enables the local adjustment
of the grid cell sizes and the degree of the polynomials. In that way, complex
geometries can be adequately represented. This feature can be implemented for
the SASLDG method, too. A local change of the the grid cell sizes can be realized
by a projection. The split of one grid cell into two cells, leaves the polynomial
distribution unchanged. Two sets of new coefficients are determined that describe
the polynomial for each grid cell. To combine two or more grid cells into one cell,
a projection is applied. The possibility to adjust the degree of the polynomials
is mentioned above. It can be implemented, but with higher computational cost.
However, in opposite to DG methods, the size of time step is not affected by the
degree of the polynomials and can be arbitrarly large for the SASLDG method.

An open problem of the current implementation of the SASLDG method is the
existence of cancellation of significant digits if the grid cells are small. The con-

178 discussion

vergence test, conducted for variable velocity, reveals the problem. However, the
cancellation of significant digits does not occur for the convergence analysis if the
algorithm branch for small |a0| and |an| is used. This ansatz of using the alternative
algorithm or a similar approximation might solve the problem of cancellation.

The high computational cost of the algorithm is another problem to be resolved
in future work. The exact determination of the trajectories with the associated
distinction of cases for the different scenarios of the velocity (strictly positive/neg-
ative/roots etc.) leads to as many cases for the computation of the integrals. In
addition, the cases of small coefficients in the respective departure and arrival cell
must be considered. The possible cancellation of significant digits and its treat-
ment complicate the algorithm. In principle, the trajectories are smooth functions
as they are diffeomorphisms. Yet, the computation of the integral, which consists
of the product of a polynomial and the Legendre polynomials with the trajecto-
ries as argument, is costly. Adequate approximations at deliberate parts of the
algorithm can be a remedy for the high computational cost. Possible approaches
could be the usage of numerical quadrature methods and approximations of the
trajectories. An application of quadrature schemes has the additional benefit to be
independent of the degree of the polynomial, which simplifies the implementation
of hp-refinement. A suggestion for the approximation to the trajectory is provided
by the existent branch for small |a0| and |an|. This approximation is also valid for a
small grid cell and time step size.

The SASLDG method yields promising results in 1D as well as in 2D of high
accuracy. A remedy for the downside of high computational cost and the cancel-
lation of significant digits at certain points of the algorithm can be the usage of
approximations.

The version of SASLDG elaborated in this thesis can serve as a reference for
further developments. An enhancement of this method can lead to (nearly) as
accurate numerical results of the compressible linear advection equation, but more
robust and with lower computational cost.

A P P E N D I X

179

A A P P E N D I X

a.1 details of proposition 3.3.1
We are interested in the solution of the ODE 3.3, that reads

d
dt

ρ(x(t), t) = −ρ(x(t), t)
∂

∂x
u(x(t), t),

ρ(x(t0), t0) = ρ0.
(A.1)

We want to determine the solution for ρ(x, tn+1) at the time level tn+1. However,
the function ρ is only known at time tn. It turns out to be convenient to choose the
trajectory x(t) to be of the form ϕ(x, tn+1, t− ∆t). By doing so, we obtain for t = tn

some point ϕ(x, tn+1,−∆t), that is followed backward from (x, tn+1) to end at time
level tn. For t = tn+1, we recover the value ϕ(x, tn+1, 0) = x at time level tn+1. The
ODE is then given by

d
dt

ρ(ϕ(x, tn+1, t− ∆t), t)

= −ρ(ϕ(x, tn+1, t− ∆t), t)
∂

∂x
u(ϕ(x, tn+1, t− ∆t), t).

(A.2)

The separation of variables and integration over time yields

∆t∫
0

1
ρ(ϕ(x, tn+1, t− ∆t), t)

dρ

=

∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t)), t)dt.

(A.3)

The integral on the lefthandside can be computed

ln
(

ρ(ϕ(x, tn+1, 0), ∆t)
)
− ln

(
ρ(ϕ(x, tn+1,−∆t), 0)

)
=

∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t)), t)dt,

(A.4)

which equals

ρ(x, tn+1) =

ρ(ϕ(x, tn+1,−∆t), tn) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(x, tn+1, t− ∆t), t)dt

 .
(A.5)

a.2 additional computations for 3.3
We want to show that the following property holds

exp

 tn+1∫
tn

− ∂

∂x
u(ϕ(η, tn, t))dt

 ∂

∂η
ϕ(η, tn, ∆t) = 1. (A.6)

181

182 appendix

The product arises in (3.128) because the determinant of the Jacobian matrix is
introduced from the substitution.

Because of Definition 3.2.1, we have

τ∫
0

u(ϕ(η, tn, t))dt =
τ∫

0

dϕ

dt
dt (A.7)

= ϕ(η, tn, τ)− ϕ(η, tn, 0) (A.8)

= ϕ(η, tn, τ)− η. (A.9)

We take the derivative of (A.9) with respect to η and obtain

τ∫
0

∂

∂x
u(ϕ(η, tn, t))

∂

∂η
ϕ(η, tn, t)dt =

∂

∂η
ϕ(η, tn, τ)− 1. (A.10)

Taking another derivate, now with respect to τ, yields

∂

∂x
u(ϕ(η, tn, τ))

∂

∂η
ϕ(η, tn, τ) =

∂

∂τ

∂

∂η
ϕ(η, tn, τ). (A.11)

This implies the following

∂
∂τ

∂
∂η ϕ(η, tn, τ)

∂
∂η ϕ(η, tn, τ)

=
∂

∂x
u(ϕ(η, tn, τ)). (A.12)

Because of the form of the derivative of the logarithmic function, we have

∂

∂τ
ln
(

∂

∂η
ϕ(η, tn, τ)

)
=

∂

∂x
u(ϕ(η, tn, τ)). (A.13)

Integration of (A.13) with respect to τ in the limits from 0 to ∆t yields

ln

(∂
∂η ϕ(η, tn, ∆t)

∂
∂η ϕ(η, tn, 0)

)
=

∆t∫
0

∂

∂x
u(ϕ(η, tn, t))dt. (A.14)

Exponentation of (A.14) together with the definition of ϕ in (3.6) yields the final
result of

∂

∂η
ϕ(η, tn, ∆t) =

∂

∂η
ϕ(η, tn, 0) exp

 ∆t∫
0

∂

∂x
u(ϕ(η, tn, t))dt

 (A.15)

= exp

 ∆t∫
0

∂

∂x
u(ϕ(η, tn, t))dt

 . (A.16)

Thus, we have

∂

∂η
ϕ(η, tn, ∆t) exp

 ∆t∫
0

− ∂

∂x
u(ϕ(η, tn, t))dt

 = 1. (A.17)

a.3 trajectories 183

a.3 trajectories

a.3.1 Positive velocity: |a0| < ε

We compute the square of the trajectory given in (3.43). Then we determine an
approximation by a series expansion about a0 = 0. We obtain

ϕ̃2(x, tn, ∆t)

=
u2

n
a2

n
exp (2an(∆t− T)) exp

(
2

an

a0
ln
(
− a0

u1
∆x0η + 1

))
−2

un

an
ϕ̃(x, ∆t) +

u2
n

a2
n

(A.18)

=
u2

n
a2

n
(exp(an(∆t− T)))2 exp

(
−2

an∆x0

u1
x
)(
−

a3
0a3

n∆x6
0

6u6
1

x6

+
2a3

0a2
n∆x5

0

3u5
1

x5 − 1
6u6

1

(
3a3

0anu2
1∆x4

0 − 3a2
0a2

nu2
1∆x4

0

)
x4

−
2a2

0an∆x3
0

3u3
1

x3 −
a0an∆x2

0x2

u2
1

+ 1

)

−2 exp
(
−an∆x0

u1
x
)

u2
n

a2
n

exp (an(∆t− T))

(
−

a3
0a3

n∆x6
0

48u6
1

x6

+
a3

0a2
n∆x5

0

6u5
1

x5 −
a3

0an∆x4
0

4u4
1

x4 +
a2

0a2
n∆x4

0

8u4
1

x4 −
a2

0an∆x3
0

3u3
1

x3

−
a0an∆x2

0
2u2

1
x2 + 1

)
+

u2
n

a2
n
+O

(
a4

0

)

(A.19)

= g1 exp(g2x)(1 + g3x2 + g4x3 + g5x4 + g6x5 + g7x6)

+2d8d1 exp(d2x)(1 + d3x2 + d4x3 + d5x4 + d6x5 + d7x6)

+g8 +O
(

a4
0

)
.

(A.20)

184 appendix

a.3.2 Positive velocity: |an| < ε

We find an approximation of the square of ϕ̃ given in (3.43). We first compute the
square and then carry out a Taylor expansion about an = 0,

ϕ̃2(x, tn, ∆t) =
u2

na3
n

4a5
0

ln
(
− a0∆x0

u1
x + 1

)5

+
u2

na2
n

12a4
0

(
15(∆t− T)an + 7

)
ln
(
− a0∆x0

u1
x + 1

)4

+
u2

nan

6a3
0

(
15(∆t− T)2a2

n

+14(∆t− T)an + 6

)
ln
(
− a0∆x0

u1
x + 1

)3

+
u2

n

2a2
0

(
5(∆t− T)3a3

n + 7(∆t− T)2a2
n

+6(∆t− T)an + 2

)
ln
(
− a0∆x0

u1
x + 1

)2

+
u2

n
12a0

(
∆t− T)(15(∆t− T)3a3

n + 28(∆t− T)2a2
n

+36(∆t− T)an + 24)

)
ln
(
− a0∆x0

u1
x + 1

)
+

1
4

u2
na3

n(∆t− T)5 +
7
12

u2
na2

n(∆t− T)4 + u2
nan(∆t− T)3

+ u2
n(∆t− T)2 +O

(
a4

n

)

(A.21)

= e1 + e2 ln(d6x + 1) + e3 ln(d6x + 1)2 + e4 ln(d6x + 1)3

+ e5 ln(d6x + 1)4 + e6 ln(d6x + 1)5 +O
(

a4
n

)
.

(A.22)

a.3 trajectories 185

a.3.3 positive velocity: |a0| < ε and |an| < ε

The approximation to the square of the trajectory derived for positive velocity,
and small coefficients |a0| and |an| in the departure and arrival cell is determined
by first computing the square of ϕ̃ given in (3.43). Then the approximation is deter-
mined by a series expansions about a0 = 0 and an = 0,

ϕ̃2(x, tn, ∆t) =
119
72

u2
n

u6
1

a2
n∆x6

0a2
0x6

− 7
12

u2
n

u5
1

an∆x5
0a0

(
7(∆t− T)a0an + 3a0 − 2an

)
x5

+
1

24
u2

n

u4
1

∆x4
0

(
77(∆t− T)2a2

0a2
n + 66(∆t− T)a2

0an

− 84(∆t− T)a0a2
n + 22a2

0 − 36a0an + 14a2
n

)
x4

− 1
18

u2
n

u3
1

∆x3
0

(
14(∆t− T)3a2

0a2
n + 18(∆t− T)2a2

0an

− 63(∆t− T)2a0a2
n + 12(∆t− T)a2

0 − 54(∆t− T)a0an

+ 42(∆t− T)a2
n − 18a0 + 18an

)
x3

− 1
6

u2
n

u2
1

∆x2
0

(
7(∆t− T)3a0a2

n + 9(∆t− T)2a0an

− 21(∆t− T)2a2
n + 6(∆t− T)a0 − 18(∆t− T)an − 6

)
x2

− 1
3

u2
n

u1
(∆t− T)∆x0

(
7(∆t− T)2a2

n + 9(∆t− T)an + 6

)
x

+ (an(∆t− T)3 + (∆t− T)2 + (7/12)a2
n(∆t− T)4)u2

n +O
(

a3
0

)
+O

(
a3

n

)
(A.23)

=
7

∑
i=1

eixi−1 +O
(

a3
0

)
+O

(
a3

n

)
(A.24)

186 appendix

a.3.4 Negative velocity: |a0| < ε

We compute the square of the trajectory given in (3.90). Then we determine an
approximation by a series expansion about a0 = 0. We obtain

ϕ̃2(x, tn, ∆t) =
u2

n+1
a2

n
exp (2an(∆t− T))

(
1−

∆x2
0

u2
0

x2a0an

+
2
3

∆x3
0

u3
0

x3a2
0an +

1
2

∆x4
0

u4
0

(
−a3

0an + a2
0a2

n

)
x4

− 2
3

∆x5
0

u5
0

a3
0a2

nx5 − 1
6

∆x6
0

u6
0

a3
0a3

nx6

)
exp

(
2an

∆x0

u0
x
)

+ 2
(
−un

an

)
un+1

an
exp (an(∆t− T))

(
1− 1

2
∆x2

0
u2

0
x2a0an

+
1
3

∆x3
0

u3
0

x3a2
0an +

1
8

∆x4
0

u4
0

(
−2a3

0an + a2
0a2

n

)
x4

− 1
6

∆x5
0

u5
0

x5a3
0a2

n −
1

48
∆x6

0

u6
0

x6a3
0a3

n

)
exp

(
an

∆x0

u0
x
)

+
u2

n
a2

n
+O

(
a4

0

)

(A.25)

= g1 exp(g2x)(1 + g3x2 + g4x3 + g5x4 + g6x5 + g7x6)

+ 2d8d1 exp(d2x)(1 + d3x2 + d4x3 + d5x4 + d6x5 + d7x6)

+ g8 +O
(

a4
0

) (A.26)

a.3 trajectories 187

a.3.5 Negative velocity: |an| < ε

We find an approximation of the square of ϕ̃ given in (3.90). First, we compute
the square and then carry out a Taylor expansion about an = 0,

ϕ̃2(x, tn, ∆t) =
1
4

a3
n

u2
n

a5
0

ln
(

∆x0a0

u0
x + 1

)5

+

(
7

12
a2

n
u2

n

a4
0
+

5
4

a3
n(∆t− T)

u2
n

a4
0
+

5
4

a3
n∆x0

un

a4
0

)
ln
(

∆x0a0

u0
x + 1

)4

+

(
an

u2
n

a3
0
+

4
3

a3
n

∆x2
0

a3
0

+
7
3

a2
n

u2
n

a3
0
(∆t− T) +

7
3

a2
nun

∆x0

a3
0

+
5
2

a3
n(∆t− T)2 u2

n

a3
0
+ 5a3

n(∆t− T)∆x0
un

a3
0

)
ln
(

∆x0a0

u0
x + 1

)3

+

(
u2

n

a2
0
+ 2a2

n
∆x2

0
a2

0
+ 3an

u2
n

a2
0
(∆t− T) + 3anun

∆x0

a2
0

+
7
2

a2
n

u2
n

a2
0
(∆t− T)2 +

5
2

a3
n(∆t− T)3 u2

n

a2
0
+ 4a3

n(∆t− T)
∆x2

0
a2

0

+ 7a2
nun

∆x0

a2
0
(∆t− T) +

15
2

a3
n(∆t− T)2 ∆x0un

a2
0

)
ln
(

∆x0a0

u0
x + 1

)2

+

(
2

u2
n

a0
(∆t− T) + 2un

∆x0

a0
+ 2an

∆x2
0

a0
+ 3an

u2
n

a0
(∆t− T)2

+
7
3

a2
n

u2
n

a0
(∆t− T)3 + 4a2

n
∆x2

0
a0

(∆t− T) +
5
4

a3
n(∆t− T)4 u2

n
a0

+ 4a3
n(∆t− T)2 ∆x2

0
a0

+ 6anun
∆x0

a0
(∆t− T) + 7a2

n
un

a0
∆x0(∆t− T)2

+ 5a3
n(∆t− T)3∆x0

un

a0

)
ln
(

∆x0a0

u0
x + 1

)
+ u2

n(∆t− T)2 + anu2
n(∆t− T)3 + 2an∆x2

0(∆t− T)

+
7
12

a2
nu2

n(∆t− T)4 + 2a2
n∆x2

0(∆t− T)2 +
7
3

a2
nun(∆t− T)3∆x0

+ ∆x2
0 +

1
4

a3
n(∆t− T)5u2

n +
4
3

a3
n(∆t− T)3∆x2

0 + 2un(∆t− T)∆x0

+ 3anun(∆t− T)2∆x0 +
5
4

a3
n(∆t− T)4∆x0un +O

(
a4

n

)

(A.27)

= e1 + e2 ln(d6x + 1) + e3 ln(d6x + 1)2 + e4 ln(d6x + 1)3

+ e5 ln(d6x + 1)4 + e6 ln(d6x + 1)5 +O
(

a4
n

) (A.28)

188 appendix

a.3.6 Negative velocity: |a0| < ε and |an| < ε

The approximation to the square of the trajectory derived for negative velocity,
and small coefficients |a0| and |an| in the departure and arrival cell is determined
by first computing the square of ϕ̃ given in (3.90). Then, the approximation is
determined by a series expansions about a0 = 0 and an = 0,

ϕ̃2(x, tn, ∆t) =

(
119
72

a2
0a2

n
∆x6

u6
0

u2
n

)
x6

+
7

12
a0an

∆x5

u5
0

un

(
7(∆t− T)a0anun + 7∆xa0an + 3a0un − 2anun

)
x5

+
1

24
∆x4

u4
0

(
77(∆t− T)2a2

0a2
nu2

n + 154(∆t− T)∆xa2
0a2

nun

+ 66(∆t− T)a2
0anu2

n − 84(∆t− T)a0a2
nu2

n + 44∆x2a2
0a2

n

+ 66∆xa2
0anun − 84∆xa0a2

nun + 22a2
0u2

n − 36a0anu2
n + 14a2

nu2
n

)
x4

+
1

18
∆x3

u3
0

(
14(∆t− T)3a2

0a2
nu2

n + 42(∆t− T)2∆xa2
0a2

nun

+ 18(∆t− T)2a2
0anu2

n − 63(∆t− T)2a0a2
nu2

n + 24(∆t− T)∆x2a2
0a2

n

+ 36(∆t− T)∆xa2
0anun − 126(∆t− T)∆xa0a2

nun

+ 12(∆t− T)a2
0u2

n − 54(∆t− T)a0anu2
n + 42(∆t− T)a2

nu2
n

+ 12∆x2a2
0an − 36∆x2a0a2

n + 12∆xa2
0un − 54∆xa0anun

+ 42∆xa2
nun − 18a0u2

n + 18anu2
n

)
x3

− 1
6

∆x2

u2
0

(
7(∆t− T)3a0a2

nu2
n + 21(∆t− T)2∆xa0a2

nun

+ 9(∆t− T)2a0anu2
n − 21(∆t− T)2a2

nu2
n + 12(∆t− T)∆x2a0a2

n

+ 18(∆t− T)∆xa0anun − 42(∆t− T)∆xa2
nun + 6(∆t− T)a0u2

n

− 18(∆t− T)anu2
n + 6∆x2a0an − 12∆x2a2

n + 6∆xa0un

− 18∆xanun − 6u2
n

)
x2

+
1
3

∆x
u0

(
7(∆t− T)3a2

nu2
n + 21(∆t− T)2∆xa2

nun

+ 9(∆t− T)2anu2
n + 12(∆t− T)∆x2a2

n + 18(∆t− T)∆xanun

+ 6(∆t− T)u2
n + 6∆x2an + 6∆xun

)
x

+
7
3

a2
n(∆t− T)3∆xun +

7
12

a2
n(∆t− T)4u2

n + 2a2
n(∆t− T)2∆x2

+ ∆x2 + (∆t− T)2u2
n + 3an(∆t− T)2∆xun + 2(∆t− T)∆xun

+ an(∆t− T)3u2
n + 2an(∆t− T)∆x2 +O

(
a3

0

)
+O

(
a3

n

)
(A.29)

=
7

∑
i=1

eixi−1 +O
(

a3
0

)
+O

(
a3

n

)
(A.30)

a.4 limits of integration for negative velocity 189

a.4 limits of integration for negative velocity
The limits of integration in the case of the trajectories that remain within one cell

for negative velocity are given by

ϕL =
1

∆x0

(
un

an
exp(−an∆t)− un

an

)
ϕR = 1.

(A.31)

If the coefficient an is nearly or equal to zero cell, the limits are approximated by

ϕL =
un

∆x0

(
−∆t +

1
2

an∆t2 − 1
6

a2
n∆t3 +

1
24

a3
n∆t4

)
ϕR = 1.

(A.32)

A similar case environment as for positive velocity (3.251) - (3.254) leads to the
limits of integration for negative velocity if trajectories cross more than one grid cell
boundary
• if number of cells = 1

ϕL =
1

∆x0

(
u0

a0
exp(a0 (TL − ∆t))− u0

a0

)
ϕR =

1
∆x0

(
u0

a0
exp(a0 (TR − ∆t))− u0

a0

)
,

(A.33)

• if k = 1

ϕL = 0

ϕR =
1

∆x0

(
u0

a0
exp(a0 (TR − ∆t))− u0

a0

)
,

(A.34)

• if k = no cells

ϕL =
1

∆x0

(
u0

a0
exp(a0 (TL − ∆t))− u0

a0

)
ϕR = 1,

(A.35)

• else

ϕL = 0

ϕR = 1.
(A.36)

If a0 is small, these cases are also approximated by series expansion

ϕL =
u0

∆x0
((TL − ∆t) +

1
2

a0(TL − ∆t)2 +
1
6

a2
0(TL − ∆t)3

+
1
24

a3
0(TL − ∆t)4),

(A.37)

ϕR =
u0

∆x0
((TR − ∆t) +

1
2

a0(TR − ∆t)2 +
1
6

a2
0(TR − ∆t)3

+
1
24

a3
0(TR − ∆t)4).

(A.38)

190 appendix

a.5 details of the stability analysis of the sasldg
method for constant velocity

a.5.1 Eigenvalues

We list the eigenvalues e1, e2 and e3 for matrix M given in (5.158):

The first eigenvalue e1 is given by

e1 = A1 +
B1

C1/3
1

+ e−ikσD1/3
1 , (A.39)

where the abbreviations are listed in the following,

A1 := 1− 3σ + 4σ3 − 2σ5 + e−ikσ(1− 8σ + 16σ2 − 10σ3 + 2σ4) (A.40)

B1 :=e−ik(−1 + σ)2σ
(

1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5 + 4σ6

− 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6)
)

,

(A.41)

C1 :=
(
(−1 + σ)6

(
− (1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5 + 4σ6

− 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6))3

+ (1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5 + 1250σ6 − 477σ7

+ 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3 + 18σ4

− 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)− 3e2ik(−25 + 45σ + 67σ2

− 96σ3 − 146σ4 + 145σ5 + 68σ6 − 43σ7 − 16σ8 + 8σ9)

+ e3ik(−3 + 27σ− 60σ2 + 3σ3 + 90σ4 − 12σ5 − 73σ6 − 3σ7

+ 24σ8 + 8σ9))2
))1/2

− (−1 + σ)3
(

1− 21σ + 171σ2

− 694σ3 + 1518σ4 − 1839σ5 + 1250σ6 − 477σ7 + 96σ8 − 8σ9

+ 3eik(−7 + 83σ− 310σ2 + 401σ3 + 18σ4 − 238σ5 + 9σ6

+ 117σ7 − 56σ8 + 8σ9)− 3e2ik(−25 + 45σ + 67σ2 − 96σ3

− 146σ4 + 145σ5 + 68σ6 − 43σ7 − 16σ8 + 8σ9)

+ e3ik(−3 + 27σ− 60σ2 + 3σ3 + 90σ4 − 12σ5 − 73σ6 − 3σ7

+ 24σ8 + 8σ9)
)

,

(A.42)

a.5 details of the stability analysis 191

D1 :=
(
(−1 + σ)6

(
− (1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5 + 4σ6

− 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6))3

+ (1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5 + 1250σ6

− 477σ7 + 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3

+ 18σ4 − 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)

− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4 + 145σ5 + 68σ6

− 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2 + 3σ3

+ 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9))2
))1/2

− (−1 + σ)3
(

1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5

+ 1250σ6 − 477σ7 + 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2

+ 401σ3 + 18σ4 − 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)

− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4 + 145σ5 + 68σ6

− 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2 + 3σ3

+ 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9)
)

.

(A.43)

The second eigenvalue e2 yields

e2 = A2 + 2−2/3 B2

C1/3
2

− e−ik 1− i
√

3
6 · 21/3 D1/3

2 , (A.44)

with the abbreviations

A2 :=1− 3σ + 4σ3 − 2σ5 + e−ikσ(1− 8σ + 16σ2 − 10σ3 + 2σ4) (A.45)

B2 :=− 3(1 + i
√

3)(−1 + σ)2σ2
(

1− 14σ + 65σ2 − 122σ3

+ 95σ4 − 32σ5 + 4σ6 − 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5

+ 4σ6) + e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6)
)

,

(A.46)

192 appendix

C2 :=
(

2916(−1 + σ)6σ6
(
− (1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5 + 4σ6

− 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6))3

+ (1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5 + 1250σ6 − 477σ7

+ 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3 + 18σ4 − 238σ5

+ 9σ6 + 117σ7 − 56σ8 + 8σ9)− 3e2ik(−25 + 45σ + 67σ2 − 96σ3

− 146σ4 + 145σ5 + 68σ6 − 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ

− 60σ2 + 3σ3 + 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9))2
))1/2

− 54(−1 + σ)3σ3
(

1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5

+ 1250σ6 − 477σ7 + 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3

+ 18σ4 − 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)− 3e2ik(−25 + 45σ

+ 67σ2 − 96σ3 − 146σ4 + 145σ5 + 68σ6 − 43σ7 − 16σ8 + 8σ9)

+ e3ik(−3 + 27σ− 60σ2 + 3σ3 + 90σ4 − 12σ5 − 73σ6 − 3σ7

+ 24σ8 + 8σ9)
)

,

(A.47)

D2 :=
(

2916(−1 + σ)6σ6
(
− (1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5

+ 4σ6 − 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6)
)3

+ (1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5 + 1250σ6

− 477σ7 + 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3

+ 18σ4 − 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)

− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4 + 145σ5 + 68σ6

− 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2 + 3σ3 + 90σ4

− 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9))2)
)1/2

− 54(−1 + σ)3σ3
(

1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5

+ 1250σ6 − 477σ7 + 96σ8 − 8σ9

+ 3eik(−7 + 83σ− 310σ2 + 401σ3 + 18σ4 − 238σ5 + 9σ6 + 117σ7

− 56σ8 + 8σ9)− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4

+ 145σ5 + 68σ6 − 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2

+ 3σ3 + 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9)
)

.

(A.48)

The third eigenvalue e3 is given by

e3 = A3 + 2−2/3 B3

C1/3
3

− (1 + i
√

3)e−ik

6 · 21/3 D1/3
3 , (A.49)

where we have used the abbreviations

A3 :=1 + σ− 8σ2 + 16σ3 − 10σ4 + 2σ5 + eik(−3σ + 4σ3 − 2σ5) (A.50)

a.5 details of the stability analysis 193

B3 :=− 3(1− i
√

3)e−ik(−1 + σ)2σ2
(

1− 14σ + 65σ2 − 122σ3 + 95σ4

− 32σ5 + 4σ6 − 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6)
)

,

(A.51)

C3 :=
(

2916(−1 + σ)6σ6
(
− (1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5

+ 4σ6 − 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6))3

+ (1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5 + 1250σ6

− 477σ7 + 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3

+ 18σ4 − 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)

− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4 + 145σ5 + 68σ6

− 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2 + 3σ3 + 90σ4

− 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9))2
))1/2

− 54(−1 + σ)3σ3
(

1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5

+ 1250σ6 − 477σ7 + 96σ8 − 8σ9

+ 3eik(−7 + 83σ− 310σ2 + 401σ3 + 18σ4 − 238σ5 + 9σ6 + 117σ7

− 56σ8 + 8σ9)− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4 + 145σ5

+ 68σ6 − 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2 + 3σ3

+ 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9)
)

,

(A.52)

D3 :=
(

2916(−1 + σ)6σ6
(
− (1− 14σ + 65σ2 − 122σ3 + 95σ4 − 32σ5

+ 4σ6 − 2eik(7− 34σ + 17σ2 + 30σ3 − 5σ4 − 12σ5 + 4σ6)

+ e2ik(−3 + 6σ + 9σ2 − 18σ3 − 5σ4 + 8σ5 + 4σ6))3

+ (1− 21σ + 171σ2 − 694σ3 + 1518σ4 − 1839σ5 + 1250σ6

− 477σ7 + 96σ8 − 8σ9 + 3eik(−7 + 83σ− 310σ2 + 401σ3

+ 18σ4 − 238σ5 + 9σ6 + 117σ7 − 56σ8 + 8σ9)

− 3e2ik(−25 + 45σ + 67σ2 − 96σ3 − 146σ4 + 145σ5 + 68σ6

− 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ− 60σ2 + 3σ3

+ 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9))2
))1/2

− 54(−1 + σ)3σ3
(

1− 21σ + 171σ2 − 694σ3 + 1518σ4

− 1839σ5 + 1250σ6 − 477σ7 + 96σ8 − 8σ9

+ 3eik(−7 + 83σ− 310σ2 + 401σ3 + 18σ4 − 238σ5 + 9σ6

+ 117σ7 − 56σ8 + 8σ9)− 3e2ik(−25 + 45σ + 67σ2 − 96σ3

− 146σ4 + 145σ5 + 68σ6 − 43σ7 − 16σ8 + 8σ9) + e3ik(−3 + 27σ

− 60σ2 + 3σ3 + 90σ4 − 12σ5 − 73σ6 − 3σ7 + 24σ8 + 8σ9)
)

.

(A.53)

194 appendix

a.5.2 Reformulation of the dispersion error

When we compute the limit in 5.178, which is

lim
σ→0

ẽdisp = lim
σ→0

arctan
(
− Im e1

Re e1

)
σαk

. (A.54)

we find that both numerator and denominator both tend to zero. Hence, we can
apply L’Hôpital’s rule. We have

lim
σ→0

ẽdisp = lim
σ→0

∂
∂σ arctan

(
− Im e1

Re e1

)
∂

∂σ σαk
(A.55)

= lim
σ→0

∂
∂σ arctan

(
− Im e1

Re e1

)
αk

. (A.56)

Further, for the arctan it holds

∂

∂σ
arctan

(
− Im e1

Re e1

)
=

∂
∂σ

(
− Im e1

Re e1

)
1 + Im e2

1
Re e2

1

. (A.57)

The quotient rule yields

∂

∂σ

(
− Im e1

Re e1

)
= −

Re e1

(
∂

∂σ Im e1

)
− Im e1

(
∂

∂σ Re e1

)
Re e2

1
(A.58)

=
Im e1

(
∂

∂σ Re e1

)
− Re e1

(
∂

∂σ Im e1

)
Re e2

1
. (A.59)

Taking all parts together, we obtain

∂

∂σ
arctan

(
− Im e1

Re e1

)
=

Im e1(∂
∂σ Re e1)−Re e1(∂

∂σ Im e1)
Re e2

1

1 + Im e2
1

Re e2
1

(A.60)

=
Im e1

(
∂

∂σ Re e1

)
− Re e1

(
∂

∂σ Im e1

)
Re e2

1 + Im e2
1

. (A.61)

With the help of a symbolic mathematical computation program we find that

lim
σ→0

Re e2
1 + Im e2

1 = 1, (A.62)

lim
σ→0

Im e1 = 0, (A.63)

lim
σ→0

Re e1 = 1. (A.64)

So, after plugging in these results the computation of the dispersion error boils
down to

lim
σ→0

ẽdisp = −
lim
σ→0

∂
∂σ Im e1

αk
. (A.65)

Unfortunately, the expression is still to complicated to be solved in this form. A
remedy is found in Theorem 7 in [28] by Lancaster. It opens a way to change the
order of the computations, namely to first differentiate matrix M with respect to σ,
then find the limit as σ → 0 and afterwards determine the eigenvalue. Theorem 7

states that if µ(σ) depends on parameter σ and it is an eigenvalue of matrix A(σ),

a.5 details of the stability analysis 195

then under certain assumptions the derivative of eigenvalue µ(σ) with respect to σ
is an eigenvalue of the derivative A(σ).

The requirements are described in Theorem A.5.1 and Theorem A.5.2, the main
statement in given in Theorem A.5.3.
Theorem A.5.1 (Lancaster, Theorem 4) Let µ1 be an eigenvalue of A(λ0) and X1 be
the subspace of right eigenvectors of µ1 while µ(λ) is an eigenvalue of A(λ) for which
µ(λ) → µ1 as λ → λ0. If the elements of A(λ) are regular in some neighborhood of λ0
while A(λ0) is similar to a diagonal matrix then, given ε > 0, there exists a δ such that for

any right eigenvector x of µ(λ), x = ϑ1 + ϑ2 where ϑ1 ∈ X1 and
(

ϑ2
′ϑ2

) 1
2
< ε provided

|λ− λ0| < δ.

Theorem A.5.2 (Lancaster, Theorem 6) If, in the hypothesis of theorem 4, A(q)(λ0) is
the first non-vanishing derivative of A(λ) at λ = λ0, then the n eigenvalues µ(λ) of A(λ)
are differentiable at least q times at λ0 and their first q− 1 derivatives all vanish at λ0.

Theorem A.5.3 (Lancaster, Theorem 7) With the assumption of theorem 6, let µ(λ0)
be an eigenvalue of A(λ0) with multiplicity α and let the columns of the n × α matrices
Xα, Yα span X1, Y1 respectively. If these matrices are chosen so that Y′αXα = Iα, then the α
derivatives µ(q)(λ0) (of the α eigenvalues which coincide at λ0) are the eigenvalues of the
matrix Y′α A(q)Xα.

According to Theorem A.5.3 we now can to tackle the computation of

lim
σ→0

∂

∂σ
Im e1 (A.66)

differently. As stated above we first differentiate matrix M with respect to σ, then
let σ go to zero and eventually compute the eigenvalues of

MD := lim
σ→0

∂

∂σ
M (A.67)

=

 −1 + e−iαk −1 + e−iαk −1 + e−iαk

3− 3e−iαk −3− 3e−iαk −3− 3e−iαk

−5 + 5e−iαk 5 + 5e−iαk −5 + 5e−iαk

 (A.68)

The imaginary part can be determined at the very end, because this operator is
linear. The first eigenvalue of MD is given by

eD = e−iαk

(
3
√

p− 126eiαk + 27e2iαk − 9
9 3
√

p
− 3eiαk + 1

)
, (A.69)

where

p = 2
√

3e2iαk − 166e3iαk + 1872e4iαk − 18e5iαk + 9e6iαk

−21eiαk + 75e2iαk − 3e3iαk + 1.
(A.70)

For this expression a symbolic mathematical computation program can finally apply
a Taylor expansion about αk = 0. We obtain

eD = −iαk −
α6

k
7200

−
iα7

k
42000

+O
(

α8
k

)
. (A.71)

This result can be plugged in (A.65). The dispersion error computed from the first
eigenvalue yields the result

lim
σ→0

ẽdisp = − Im

− iα7
k

42000 −
α6

k
7200 − iαk

αk

 (A.72)

= 1 +
α6

k
42000

+O
(

α7
k

)
. (A.73)

196 appendix

a.6 mpdata spectral analysis
The equality of the diffusion error of MPDATA without corrections and the re-

spective errors of the FOU method can be seen in Figure A.1.

0 20 40 60 80 100 120 140 160 180

K

0.98

0.985

0.99

0.995

1

1.005

FOU
MPDATA

ẽ d
iff

(a) CFL = 0.01, MPDATA with IORD = 1

0 20 40 60 80 100 120 140 160 180

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FOU
MPDATA

ẽ d
iff

(b) CFL = 0.5, MPDATA with IORD = 1

0 20 40 60 80 100 120 140 160 180

K

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FOU
MPDATA

ẽ d
iff

(c) CFL = 0.9, MPDATA with IORD = 1

Figure A.1: Relative diffusion error ẽdiff of MPDATA without corrections and the FOU
method for different CFL numbers. Note the different scales of ẽdiff.

a.7 matlab benchmark test result 197

a.7 matlab benchmark test result

test LU FFT ODE Sparse 2-D 3-D
0.2078 0.1251 0.0596 0.0961 0.1678 0.1397

0.2083 0.1250 0.0608 0.0959 0.1674 0.1397

0.2097 0.1262 0.0609 0.0956 0.1675 0.1387

0.2062 0.1250 0.0604 0.0955 0.1677 0.1394

0.2065 0.1234 0.0597 0.0958 0.1680 0.1435

0.2073 0.1259 0.0605 0.0963 0.1673 0.1385

0.2087 0.1255 0.0603 0.0959 0.1668 0.1383

0.2081 0.1250 0.0598 0.0958 0.1672 0.1409

0.2081 0.1246 0.0608 0.0960 0.1679 0.1379

0.2077 0.1251 0.0604 0.0959 0.1672 0.1401

Table A.1: The measurements of the execution speed of six different tasks for 10 runs of the
MATLAB benchmark test.

S U M M A R Y

The main objective of this thesis is to develop a numerical method, known as the
SASLDG method, that solves the compressible linear advection equation in a semi-
analytical way using a semi-Lagrangian approach and applying ideas from the dis-
continuous Galerkin (DG) methods. In order to achieve physically meaningful solu-
tions, mass conservation is required. For the same reason, the option of slope lim-
iting and thus positivity preservation are also necessary. Furthermore, high-order
accuracy and no time step restriction are required.

First, the basic methods underpinning the SASLDG method are introduced. We
describe a method developed independently by Prather and van Leer. This so-
called second-order moments method is a preliminary stage of the SASLDG method.
Both methods are equivalent for CFL numbers less than or equal to one and with
constant velocity. We then introduce DG methods to generalize the concept of high-
order accuracy of numerical solutions using a polynomial representation for each
grid cell. One drawback of this class of methods is the strict time step restriction.
In contrast, semi-Lagrangian methods allow time steps of arbitrary size without
violating stability properties. We also introduce and analyze the numerical scheme
multidimensional positive definite advection transport algorithm (MPDATA).

Following the semi-Lagrangian notion, the advected quantity is tracked analyti-
cally along the trajectories. It is represented as piecewise polynomials of degree two.
A condition for this approach is the restriction of the given velocity field to a piece-
wise linear distribution. This enables the derivation of the exact solution, which is
in general not in polynomial form. Therefore, much like with DG methods, a pro-
jection onto the polynomial space is carried out. A deviation from the solution only
occurs in the projection step. The SASLDG method involves rigorously computing
every step of the solution to the linear advection equation analytically. However,
this concept places many conditions on the algorithm, which require the applica-
tion of different branches of the SASLDG method. To prevent the cancellation of
significant digits, further exceptions have to be made and resolved by alternative
computations.

A thorough analysis of the SASLDG method proves its consistency and stability.
Third-order accuracy for advection with constant velocity and second-order accu-
racy for variable velocity is demonstrated analytically and confirmed by numerical
convergence tests.

Test cases in one- and two- space dimensions are conducted to show the per-
formance of the SASLDG method. High accuracy is shown in tests using smooth
and discontinuous initial values. The method’s ability to handle an irregular grid
and arbitrary CFL numbers is assessed. Tests in 1D show that an increase of the
CFL number results in smaller maximum- and l1-errors. This feature cannot be
transferred to the 2D case since the extension is done via operator splitting, where
accuracy increases with decreasing time step sizes. Numerous physical phenomena,
e.g. in the dynamics of the atmosphere or the ocean, can occur on different scales
of the space dimensions. This can lead to computational grids with higher resolu-
tion and grid cells sizes in the vertical direction than in the horizontal direction. To
address this scenario, we develop a hybrid method which employs MPDATA and
a modified version of the SASLDG method. This scheme can compute the solution
to the advection equation on grids with high aspect ratio without strict time step
restrictions in the vertical direction. Overall, the SASLDG method shows promising
results and is worthy of further development.

199

Z U S A M M E N FA S S U N G

Das Ziel dieser Arbeit ist die Entwicklung einer numerischen Methode, die die kom-
pressible lineare Advektionsgleichung auf eine semi-analytische Weise mit einem
semi-Lagrangian Ansatz unter Verwendung von Ideen der Discontinuous Galerkin
(DG) Methoden löst, hier als SASLDG Methode bezeichnet. Eine Vorgabe für das
Verfahren ist die Massenerhaltung, um eine physikalisch sinnvolle Lösung zu garan-
tieren. Aus diesem Grund soll auch “slope limiting” möglich sein und die Positivität
der Lösung erhalten bleiben. Hohe Genauigkeit und unbeschränkte Zeitschrittgröße
sind weitere Bedingungen.

Zunächst werden die Methoden erläutert, die der SASLDG Methode zugrunde
liegen. Eine von Prather und van Leer unabhängig voneinander entwickelte Me-
thode wird beschrieben. Diese sogennante Second-Order Moments Methode ist ei-
ne Vorstufe zur SASLDG Methode. Für CFL Zahlen, die kleiner gleich eins sind,
und für eine konstante Advektionsgeschwindigkeit sind die Verfahren identisch.
DG Methoden verallgemeinern das Konzept der hohen Genauigkeit durch Verwen-
dung von Polynomen höherer Ordnung. Diese haben jedoch den Nachteil strikter
Zeitschrittbeschränkung. Semi-Lagrangian Verfahren lassen Zeitschritte beliebiger
Größe zu, ohne Stabilitätsbedingungen zu verletzen. Schließlich wird die Metho-
de Multidimensional Positive Definite Advection Transport Algorithm (MPDATA)
vorgestellt und analysiert.

Im Sinne des semi-Lagrangian Ansatzes wird die advektierte Größe analytisch
exakt entlang von Trajektorien transportiert. Sie wird durch ein Polynom zwei-
ten Grades dargestellt. Eine Bedingung für dieses Vorgehen ist die Beschränkung
des Geschwindigkeitsfeldes auf stückweise lineare Funktionen. So wird die Herlei-
tung der analytischen Lösung ermöglicht, die im Allgemeinen nicht polynomiell
ist. Durch einen Projektionsschritt, ähnlich dem Vorgehen bei DG Verfahren, wird
die Lösung auf ein Polynom projiziert. Nur dadurch entstehen Abweichungen zur
analytischen Lösung. Die Idee der SASLDG Methode besteht darin, alle Schritte ri-
goros analytisch durchzuführen. Diese Methodik stellt allerdings komplexe Bedin-
gungen an den Algorithmus und führt stellenweise zum Problem der Auslöschung.
Dadurch sind Verzweigungen notwendig sowie alternative Berechnungswege.

Konsistenz und Stabilität wird durch eine Analyse des SASLDG Verfahrens ge-
zeigt. Das Verfahren konvergiert mit zweiter Ordnung für variable Geschwindigkeit
und mit dritter Ordnung für konstante Geschwindigkeit. Dies wird analytisch her-
geleitet und mithilfe numerischer Konvergenztests bestätigt.

Die hohe Genauigkeit des SASLDG Verfahrens wird durch numerische Tests in
1D und 2D gezeigt. Dabei werden glatte Anfangswerte sowie Daten mit Diskonti-
nuitäten verwendet. Tests in 1D liefern Ergebnisse auf regel- und unregelmäßigem
Gitter sowie mit verschiedenen CFL Zahlen. Daraus resultiert, dass mit größerer
CFL Zahl l∞- und l1-Fehler sinken. Dieses Ergebnis gilt jedoch nicht für 2D-Testfälle
aufgrund der Verwendung von “operator splitting”, für das die Genauigkeit bei
kleineren Schrittweiten steigt. Zahlreiche physikalische Phänomene, beispielsweise
im Bereich der Dynamik der Atmosphäre und des Ozeans, erstrecken sich über
unterschiedliche Raumskalen. Das kann zu Rechengittern führen, die in vertikaler
Richtung eine viel höhere Auflösung mit kleinerer Gitterweite als in horizontaler
Richtung erfordern. Eine dafür entwickelte hybride Methode, eine Kombination
aus MPDATA und einer angepassten Variante des SASLDG Verfahrens, kann auf
diesen Gittern ohne strikte Zeitschrittbeschränkung in vertikaler Richtung Lösun-
gen berechnen. Insgesamt zeigt die in dieser Arbeit hergeleitete SASLDG Methode
vielversprechende Resultate, die eine Weiterentwicklung des Verfahrens erstrebens-
wert machen.

201

B I B L I O G R A P H Y

[1] D. G. Andrews, J. R. Holton, and C. B. Leovy. Middle Atmosphere Dynamics.
International geophysics series. Academic Press, 1987 (cit. on p. 2).

[2] J. R. Bates and A. McDonald. “Multiply-Upstream, semi-Lagrangian Advec-
tive Schemes: Analysis and Application to a Multi-Level Primitive Equation
Model”. In: Mon. Wea. Rev. 110.12 (1982), pp. 1831–1842 (cit. on p. 30).

[3] R. Bermejo. “On the Equivalence of semi-Lagrangian Schemes and Particle-
in-Cell Finite Element Methods”. In: Mon. Wea. Rev. 118.4 (1990), pp. 979–987

(cit. on p. 30).

[4] R. Bermejo and A. Staniforth. “The Conversion of semi-Lagrangian Advec-
tion Schemes to Quasi-Monotone Schemes”. In: Monthly Weather Review 120.11

(1992), pp. 2622–2632 (cit. on p. 30).

[5] L. Bonaventura. “An introduction to semi-Lagrangian methods for geophys-
ical scale flows”. In: Lecture Notes, ERCOFTAC Leonhard Euler Lectures, SAM-
ETH Zurich (2004) (cit. on p. 30).

[6] J. Boris and D. Book. “Flux-corrected transport. I. SHASTA, a fluid transport
algorithm that works”. In: Journal of Computational Physics 11.1 (1973), pp. 38–
69 (cit. on p. 5).

[7] V. M. Canuto, Y. Cheng, and A. M. Howard. “Vertical diffusivities of active
and passive tracers”. In: Ocean Modelling 36.3 (2011), pp. 198–207 (cit. on p. 2).

[8] G. Chavent and B. Cockburn. “The local projection P0 − P1-discontinuous-
Galerkin finite element method for scalar conservation laws”. eng. In: ESAIM:
Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et
Analyse Numérique 23.4 (1989), pp. 565–592 (cit. on p. 24).

[9] B. Cockburn. “An introduction to the Discontinuous Galerkin method for
convection-dominated problems”. In: Advanced Numerical Approximation of Non-
linear Hyperbolic Equations: Lectures given at the 2nd Session of the Centro Inter-
nazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, June 23–28, 1997.
Ed. by A. Quarteroni. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 150–268 (cit. on p. 28).

[10] B. Cockburn, G. Karniadakis, and C.-W. Shu. Discontinuous Galerkin Methods:
Theory, Computation and Applications. Springer Publishing Company, Incorpo-
rated, 2000 (cit. on pp. 6, 22).

[11] B. Cockburn and C.-W. Shu. “Runge-Kutta Discontinuous Galerkin Methods
for Convection-Dominated Problems”. In: Journal of Scientific Computing 16.3
(2001), pp. 173–261 (cit. on pp. 22, 29).

[12] B. Cockburn and C.-W. Shu. “The Runge-Kutta local projection P1-discontin-
uous-Galerkin finite element method for scalar conservation laws”. eng. In:
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathéma-
tique et Analyse Numérique 25.3 (1991), pp. 337–361 (cit. on p. 24).

[13] P. Colella and P. Woodward. “The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations”. In: Journal of computational Physics 54.1 (1984),
pp. 174–201 (cit. on pp. 5, 32).

[14] P. Deuflhard and F. Bornemann. Numerische Mathematik II. de-Gruyter, 2002

(cit. on p. 30).

[15] C. Doswell III. “A Kinematic Analysis of Frontogenesis Associated with a
Nondivergent Vortex”. In: Journal of the Atmospheric Sciences 41.7 (1984), pp. 1242–
1248 (cit. on p. 107).

203

204 bibliography

[16] D. R. Durran. Numerical Methods for Fluid Dynamics: With Applications to Geo-
physics. Texts in Applied Mathematics. Springer New York, 2012 (cit. on pp. 1,
2).

[17] D. Etling. Theoretische Meteorologie: Eine Einführung. Vieweg+Teubner Verlag,
2013 (cit. on p. 1).

[18] R. Gerdes, C. Köberle, and J. Willebrand. “The influence of numerical advec-
tion schemes on the results of ocean general circulation models”. In: Climate
Dynamics 5.4 (1991), pp. 211–226 (cit. on p. 2).

[19] F. Giraldo. “Lagrange-Galerkin Methods on Spherical Geodesic Grids”. In:
Journal of Computational Physics 136.1 (1997), pp. 197–213 (cit. on p. 6).

[20] F. Giraldo. “Trajectory calculations for spherical geodesic grids in Cartesian
space”. In: Monthly Weather Review (1999) (cit. on p. 30).

[21] S. K. Godunov. “A difference method for numerical calculation of discontinu-
ous solutions of the equations of hydrodynamics”. In: Matematicheskii Sbornik
89.3 (1959), pp. 271–306 (cit. on p. 5).

[22] W. Guo, R. Nair, and J.-M. Qiu. “A Conservative semi-Lagrangian Discontinu-
ous Galerkin Scheme on the Cubed Sphere”. In: Monthly Weather Review 142.1
(2014), pp. 457–475 (cit. on p. 6).

[23] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations
I (2Nd Revised. Ed.): Nonstiff Problems. New York, NY, USA: Springer-Verlag
New York, Inc, 1993 (cit. on p. 30).

[24] P. Hartman. Ordinary Differential Equations. Baltimore, Md., 1973 (cit. on p. 30).

[25] C. Hirsch. Numerical computation of internal and external flows. 2. ed. Amster-
dam and Heidelberg [u.a.]: Elsevier Butterworth-Heinemann, 2007 (cit. on
pp. 11, 37).

[26] M. Hofmann and M. A. Morales Maqueda. “Performance of a second-order
moments advection scheme in an Ocean General Circulation Model”. In: Jour-
nal of Geophysical Research: Oceans 111.C5 (2006) (cit. on pp. 6, 130).

[27] R. Klein. “Asymptotics, structure, and integration of sound-proof atmospheric
flow equations”. In: Theoretical and Computational Fluid Dynamics 23.3 (May
2009), pp. 161–195 (cit. on p. 2).

[28] P. Lancaster. “On Eigenvalues of Matrices Dependent on a Parameter.” In:
Numerische Mathematik 6 (1964), pp. 377–387 (cit. on p. 194).

[29] R. Laprise and A. Plante. “A Class of semi-Lagrangian Integrated-Mass (SLIM)
Numerical Transport Algorithms”. In: Mon. Wea. Rev. 123.2 (1995), pp. 553–565

(cit. on p. 31).

[30] P. Lauritzen, P. Ullrich, and R. Nair. “Atmospheric Transport Schemes: De-
sirable Properties and a semi-Lagrangian View on Finite-Volume Discretiza-
tions”. In: Numerical Techniques for Global Atmospheric Models. Ed. by P. Lau-
ritzen et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 185–250

(cit. on pp. 21, 67).

[31] B. van Leer. “Towards the ultimate conservative difference scheme. IV. A new
approach to numerical convection”. In: Journal of Computational Physics 23.3
(Mar. 1977), pp. 276–299 (cit. on pp. 6, 13, 28, 48, 160, 161).

[32] B. van Leer. “Towards the ultimate conservative difference scheme. V. A sec-
ond-order sequel to Godunov’s method”. In: Journal of Computational Physics
32.1 (1979), pp. 101–136 (cit. on pp. 5, 17).

[33] B. van Leer. “Upwind and High-Resolution Methods for Compressible Flow:
From Donor Cell to Residual-Distribution Schemes”. In: Communications in
Computational Physics 1.2 (Apr. 2006), pp. 192–206 (cit. on p. 17).

bibliography 205

[34] B. P. Leonard. “The Ultimate Conservative Difference Scheme Applied to Un-
steady One-dimensional Advection”. In: Comput. Methods Appl. Mech. Eng.
88.1 (June 1991), pp. 17–74 (cit. on p. 3).

[35] P. Lesaint and P. A. Raviart. “On a Finite Element Method for Solving the Neu-
tron Transport Equation”. eng. In: Publications mathématiques et informatique de
Rennes S4 (1974), pp. 1–40 (cit. on pp. 5, 28).

[36] R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-
sity Press, 2002 (cit. on pp. 5, 33, 101).

[37] H. Lewy, K. Friedrichs, and R. Courant. “Über die partiellen Differenzen-
gleichungen der mathematischen Physik”. In: Mathematische Annalen 100 (1928),
pp. 32–74 (cit. on p. 4).

[38] G. L. Manney et al. “Lagrangian Transport Calculations Using UARS Data.
Part II: Ozone”. In: Journal of the Atmospheric Sciences 52.17 (1995), pp. 3069–
3081 (cit. on p. 2).

[39] J. L. McGregor. “Economical determination of departure points for semi-La-
grangian models”. In: Monthly Weather Review 121:1 (1993) (cit. on p. 30).

[40] L. Michalk. “Numerical methods for the linear advection equation: plateaus
vs. extrema”. Diplomarbeit. Freie Universität Berlin, 2011 (cit. on p. 21).

[41] S. Nishizawa et al. “Influence of grid aspect ratio on planetary boundary layer
turbulence in large-eddy simulations”. In: Geoscientific Model Development 8.10

(2015), pp. 3393–3419 (cit. on pp. 6, 110).

[42] M. Prather. Implementation of the SOM method. 2007. url: http://ess.uci.
edu/researchgrp/prather/files/SOM_2007.zip (cit. on p. 21).

[43] M. Prather. “Numerical Advection by Conservation of Second-Order Mo-
ments”. In: Journal of Geophysical Research 91.D6 (May 1986), pp. 6671–6681

(cit. on pp. 6, 17, 21, 22, 48).

[44] J. Prusa, P. Smolarkiewicz, and A. Wyszogrodzki. “EULAG, a computational
model for multiscale flows”. In: Computers & Fluids 37.9 (2008), pp. 1193–1207

(cit. on p. 2).

[45] D. K. Purnell. “Solution of the Advective Equation by Upstream Interpolation
with a Cubic Spline”. In: Mon. Wea. Rev. 104.1 (1976), pp. 42–48 (cit. on p. 30).

[46] A. Quarteroni and A. Valli. Numerical approximation of partial differential equa-
tions. Vol. 23. Springer series in computational mathematics. Berlin and Hei-
delberg: Springer, 2008 (cit. on p. 30).

[47] W. H. Reed and T. R. Hill. “Triangular mesh methods for the neutron transport
equation”. In: Oct. 1973 (cit. on pp. 5, 22).

[48] M. Restelli, L. Bonaventura, and R. Sacco. “A semi-Lagrangian Discontinu-
ous Galerkin Method for Scalar Advection by Incompressible Flows”. In: J.
Comput. Phys. 216.1 (July 2006), pp. 195–215 (cit. on p. 7).

[49] L. F. Richardson. Weather prediction by numerical process. University Press, 1922

(cit. on p. 4).

[50] W. Rider and D. Kothe. “Reconstructing Volume Tracking”. In: Journal of Com-
putational Physics 141.2 (1998), pp. 112–152 (cit. on p. 119).

[51] A. Robert. “A stable numerical integration scheme for the primitive meteoro-
logical equations”. In: Atmosphere-Ocean 19.1 (1981), pp. 35–46 (cit. on p. 30).

[52] J. S. Sawyer. “A semi-Lagrangian method of solving the vorticity advection
equation”. In: Tellus 15.4 (1963), pp. 336–342 (cit. on p. 30).

[53] C.-W. Shu. “TVB uniformly high-order schemes for conservation laws”. In:
Mathematics of Computation 49.179 (1987), pp. 105–121 (cit. on p. 28).

http://ess.uci.edu/researchgrp/prather/files/SOM_2007.zip
http://ess.uci.edu/researchgrp/prather/files/SOM_2007.zip

206 bibliography

[54] C.-W. Shu and S. Osher. “Efficient Implementation of Essentially Non-oscilla-
tory Shock-capturing Schemes”. In: J. Comput. Phys. 77.2 (Aug. 1988), pp. 439–
471 (cit. on p. 24).

[55] P. Smolarkiewicz. “A fully multidimensional positive definite advection trans-
port algorithm with small implicit diffusion”. In: Journal of Computational Phys-
ics 54.2 (1984), pp. 325–362 (cit. on p. 34).

[56] P. Smolarkiewicz. “A Simple Positive Definite Advection Scheme with Small
Implicit Diffusion”. In: Monthly Weather Review 111.3 (1983), pp. 479–486 (cit.
on pp. 5, 33, 35).

[57] P. Smolarkiewicz and T. Clark. “The multidimensional positive definite advec-
tion transport algorithm: Further development and applications”. In: Journal
of Computational Physics 67.2 (1986), pp. 396–438 (cit. on p. 41).

[58] P. Smolarkiewicz and W. Grabowski. “The multidimensional positive definite
advection transport algorithm: Nonoscillatory option”. In: Journal of Computa-
tional Physics 86.2 (1990), pp. 355–375 (cit. on p. 34).

[59] P. Smolarkiewicz and L. Margolin. “MPDATA: A Finite-Difference Solver for
Geophysical Flows”. In: Journal of Computational Physics 140.2 (1998), pp. 459–
480 (cit. on p. 35).

[60] A. Staniforth and J. Côté. “Semi-Lagrangian Integration Schemes for Atmo-
spheric Models—A Review: Monthly Weather Review”. In: Mon. Wea. Rev
119.9 (1991), pp. 2206–2223 (cit. on p. 30).

[61] J. Stoer et al. Introduction to numerical analysis. Texts in applied mathematics.
New York: Springer, 2002 (cit. on p. 30).

[62] G. Strang. “On the Construction and Comparison of Difference Schemes”. In:
SIAM Journal on Numerical Analysis 5.3 (1968), pp. 506–517 (cit. on pp. 6, 101).

[63] G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-
scale Circulation. Cambridge University Press, 2006 (cit. on p. 1).

[64] D. Werner. Funktionalanalysis. Springer, Berlin, 2004, 540 p. (Cit. on p. 159).

[65] Wikimedia Commons. File:Green Chicago River on Saint Patricks Day 2009.jpg
— Wikimedia Commons, the free media repository. 2016. url: https://commons.
wikimedia.org/w/index.php?title=File:Green_Chicago_River_on_Saint_

Patricks_Day_2009.jpg&oldid=197238274 (cit. on p. 2).

[66] S. Zalesak. “Fully multidimensional flux-corrected transport algorithms for
fluids”. In: Journal of Computational Physics 31.3 (1979), pp. 335–362 (cit. on
pp. 5, 34).

[67] K. Zhang et al. “Consistency problem with tracer advection in the Atmo-
spheric Model GAMIL”. In: Advances in Atmospheric Sciences 25.2 (Mar. 2008),
pp. 306–318 (cit. on p. 67).

https://commons.wikimedia.org/w/index.php?title=File:Green_Chicago_River_on_Saint_Patricks_Day_2009.jpg&oldid=197238274
https://commons.wikimedia.org/w/index.php?title=File:Green_Chicago_River_on_Saint_Patricks_Day_2009.jpg&oldid=197238274
https://commons.wikimedia.org/w/index.php?title=File:Green_Chicago_River_on_Saint_Patricks_Day_2009.jpg&oldid=197238274

E R K L Ä R U N G

Hiermit erkläre ich, dass ich alle Hilfsmittel und Hilfen angeben habe und versiche-
re, auf dieser Grundlage die Arbeit selbständig verfasst zu haben. Die Arbeit wurde
nicht schon einmal in einem früheren Promotionsverfahren eingereicht.

Berlin, den 1. Februar 2018

Linda Michalk

	Titlepage
	Danksagung
	Contents
	1 Introduction
	2 Basic methods and background
	2.1 Fourier analysis
	2.1.1 Fourier Transform
	2.1.2 Von Neumann stability analysis

	2.2 Towards the Ultimate Conservative Difference Scheme
	2.3 Second-Order Moments Method
	2.3.1 The algorithm
	2.3.2 Limiting
	2.3.3 Variable velocity
	2.3.4 Further remarks

	2.4 Discontinuous Galerkin
	2.4.1 Discontinuous Galerkin-space discretization
	2.4.2 Runge-Kutta Discontinuous Galerkin
	2.4.3 Discontinuous Galerkin with exact time integration
	2.4.4 Variable velocity
	2.4.5 Convergence analysis

	2.5 Semi-Lagrangian methods
	2.5.1 Approximate solution to initial value problem
	2.5.2 Interpolation techniques
	2.5.3 The semi-Lagrangian integrated-mass approach

	2.6 MPDATA
	2.6.1 The algorithm
	2.6.2 Error Analysis

	3 The SASLDG method
	3.1 Preview
	3.2 Computing the trajectories
	3.2.1 Trajectory with positive velocity
	3.2.2 Trajectory with negative velocity
	3.2.3 Zero velocity at grid points
	3.2.4 Overview of different types of trajectories

	3.3 The exact solution and its integral
	3.4 The projection step
	3.4.1 Trajectory remaining in one grid cell
	3.4.2 Trajectory crossing cell boundaries
	3.4.3 Integration with small coefficients

	3.5 The overall algorithm
	3.6 Limits of integration
	3.7 Numerical results

	4 Extension of the SASLDG method in 2D
	4.1 Operator Splitting
	4.2 The SASLDG method in 2D
	4.2.1 Solid body rotation test
	4.2.2 Deformational flow test

	4.3 Hybrid operator splitting: MPDATA and the SASLDG method
	4.3.1 Description of the procedure
	4.3.2 One-dimensional SASLDG-3c vs. MPDATA
	4.3.3 Solid body rotation test
	4.3.4 Deformational flow test: static vortex
	4.3.5 Deformational flow test: Rider Kothe
	4.3.6 Wavelike flow test

	5 Analysis
	5.1 Consistency
	5.1.1 Analytical solution after one time step
	5.1.2 Numerical solution after one time step
	5.1.3 Order of coefficients
	5.1.4 Order of errors

	5.2 Stability
	5.2.1 L1-Stability
	5.2.2 L2-Stability
	5.2.3 Von Neumann stability analysis

	5.3 Convergence rates

	6 Discussion
	Appendix
	A Appendix
	Summary
	Zusammenfassung
	Bibliography
	Erklärung

