Identifizierung von Zielgenen des chimären Transkriptionsfaktors ETV6/RUNX1

Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Katja Kaulfuß aus Berlin

2016

1. Gutachter	Prof. Dr. Dr. Karlheinz Seeger		
	Klinik für Pädiatrie mit Schwerpunkt Onkologie und Hämato-		
	logie		
	Charité Universitätsmedizin Berlin, CVK		
2. Gutachter	Prof. Dr. Burghardt Wittig		
	Institut für Molekularbiologie und Bioinformatik der FU Berlin		
Tag der Disputation:	15.06.2018		

Inhaltsverzeichnis

Inhaltsve	rzeichnis	1
Symbol- ເ	und Abkürzungsverzeichnis	4
1	Einleitung	7
1.1	Akute lymphoblastische Leukämie (ALL) im Kindesalter	8
1.1.1	Zytogenetische und molekulargenetische Veränderungen	10
1.2	Die Transkriptionsfaktoren ETV6 und RUNX1	12
1.2.1	Der Transkriptionsfaktor ETV6	12
1.2.2	Der Transkriptionsfaktor RUNX1	14
1.2.3	Die Translokation t(12;21)	17
1.3	ETV6/RUNX1 positive ALL im Kindesalter	20
1.3.1	Genomweite Genexpressionssignaturen	20
1.3.2	Bisher identifizierte ETV6/RUNX1 Zielgene	21
2	Ziel dieser Arbeit	23
3	Material und Methoden	24
3.1	Material	24
3.1.1	Medien und Zusätze	24
3.1.2	Chemikalien und Reagenzien	24
3.1.3	Antikörper	27
3.1.4	Primer und Sonden	28
3.1.5	Verbrauchsmittel	30
3.1.6	Geräte	32
3.1.7	Kits	33
3.1.8	Software	33
3.1.9	Zelllinien	34
3.1.10	Patientenproben	35
3.2	Methoden	36
3.2.1	Zellkultur Methoden	36
3.2.2	Mikrobiologische Methoden	38
3.2.3	Molekularbiologische Methoden	39
3.2.4	Proteinbiochemische Methoden	46
3.2.5	Immunzytochemie	48
3.2.6	Durchflusszytometrie	51

3.2.7	Chromatin-Immunpräzipitation und Sequenzierung	51
3.2.8	shRNA vermittelter knockdown von ETV6/RUNX1 in Zellmodell	en59
4	Ergebnisse	62
4.1	Charakterisierung der ETV6/RUNX1 positiven Zelllinien und	primären
	KM-ALL-Proben	62
4.1.1	Zytogenetische Charakterisierung der UoC-B6-Zellen	62
4.1.2	Immunphänotypisierung der UoC-B6-Zellen	63
4.1.3	Nachweis der <i>ETV6/RUNX1</i> Expression	64
4.2	Etablierung und Optimierung der ChIP	69
4.2.1	Bestimmung der optimalen Zellzahl	69
4.2.2	Optimierung der Fixierung	70
4.2.3	Zelllyse und Fragmentierung der DNA	71
4.2.4	Evaluation geeigneter IP-Antikörper	72
4.2.5	Kontrolle der ChIP-Effizienz	75
4.3	ChIP- und ChIP-Seq Analysen in Zelllinien und primären KM-Pr	oben79
4.3.1	Berechnung der ChIP-Effizienz	79
4.3.2	Kontrolle der ChIP-Effizienz	81
4.3.3	Identifizierung potenzieller ETV6/RUNX1 Zielgene	82
4.3.4	Repräsentative Signalweganalysen	88
4.3.5	Motivanalysen	96
4.4	Lentiviraler shRNA vermittelter ETV6/RUNX1 knockdown	105
4.4.1	Vorversuche	107
4.4.2	Transduktion	110
4.4.3	ETV6/RUNX1 knockdown in REH und UoC-B6-Zellen	112
4.4.4	Fehleranalyse	114
5	Diskussion	117
5.1	Zusammenfassung der Ergebnisse	118
5.2	Identifizierung potenzieller ETV6/RUNX1 Zielgene	122
5.2.1	Die ETV6/RUNX1 Zielgene des Kerngensets	122
5.2.2	Zuordnung der Gene des Kerngensets zu Signalwegen	123
5.3	Motivanalysen	130
5.3.1	Identifizierung von Transkriptionsfaktoren	130
5.4	ETV6/RUNX1 knockdown in REH und UoC-B6- Zellen	133
6	Ausblick	135

7	Zusammenfassung	136
8	Literaturverzeichnis	142
9	Anhang	152
9.1	IUPAC – DNA-Code	
9.2	Das Kerngenset	153
Selbstän	ndigkeitserklärung	190
Danksagung 19		

Symbol- und Abkürzungsverzeichnis

ALL	akute lymphoblastische Leukämie
ALL-BFM	Therapieoptimierungsstudie zur Behandlung von Kindern und Jugendli-
	chen mit ALL der Berlin-Frankfurt-Münster Studiengruppe
AML	akute myeloische Leukämie
APS	Ammoniumpersulfat
AS	Aminosäure
BCA	Bicinchoninsäure bicinchoninic acid
BSA	bovine serum albumin
BVZ	B-Vorläuferzellen
BVZ-ALL	B-Vorläuferzell-ALL
CBF	core-binding factor
CD	cluster of differentiation
cDNA	komplementäre DNA
CFU	colony forming unit
CGH	Comparative Genomic Hybridization
ChIP	Chromatin Immunpräzipitation
CLP	common lymphoid progenitor
CML	chronische myeloische Leukämie
су	zytoplasmatisch
DMSO	Dimethylsulfoxid
DNA	desoxyribonucleic acid
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
DTT	1,4-Dithio-D,L-threitol
EDTA	Ethylendiamintetraessigsäure
EFS	ereignisfreies Überleben (<i>event-free survival</i>)
EGTA	Ethylenglycol-bis(aminoethylether)-N,N,N',N'-tetraessigsäure
FACS	fluorescence activated cell sorting
fdr	false discovery rate
FISH	Fluoreszenz in situ Hybridisierung
FKS	Fötales Kälberserum
gDNA	genomische DNA
GO	Gene Ontology
HEPES	2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure

HLH	helix-loop-helix
HPC	hämatopoetische Vorläuferzelle (hematopoietic progenitor cell)
HSC	hämatopoetische Stammzelle (hematopoietic stem cell)
HSPC	hämatopoetischen Stamm- bzw. Progenitorzelle
IL-3	Interleukin 3
IMDM	Iscove's Modified Dulbecco's Medium
KM	Knochenmark
mAB	monoklonaler Antikörper
MLPA	multiplex ligation-dependent probe amplification
MOI	(multiplicity of infection) Anzahl der Viruspartikel pro Zielzelle
MRD	minimal residual disease
NP-40	Nonidet P-40
ORF	open reading frame
рАВ	polyklonaler Antikörper
PBS	phosphate buffered saline
PCR	Polymerase Chain Reaction
pEFS	probability of event-free survival
PIC	Protease Inhibitor Complete
PLL	Poly-L-Lysin
PNT	pointed-domain
RHD	runt homology domain
RNA	ribonucleic acid
rpm	revolutions per minute
RPMI	Roswell Park Memorial Institute
RT	Raumtemperatur
RT-	realtime quantitative PCR
qPCR	
SDS	Natriumdodecylsulfat (sodium dodecyl sulfate)
SILAC	Stable Isotope Labelling by Amino acids
slg	Oberflächen (<i>surface</i>)-Ig
SKY	spectral karyotyping
SNP	single nucleotide polymorphism
TEMED	Tetramethylethylendiamin
TetR	Tetrazyklin-Repressor
Tris	Tris-hydroxymethyl-aminomethan

WHO World Health Organisation

z.B. zum Beispiel

ZNS zentrales Nervensystem

In dieser Liste sind keine Gensymbole aufgeführt. Eine Beschreibung der Gene erfolgt jeweils dem Kontext entsprechend.

1 Einleitung

Die Bezeichnung Leukämie umfasst verschiedene Erkrankungen, die durch maligne Transformation und klonale Proliferation unreifer hämatopoetischer Stamm- und Progenitorzellen im Knochenmark (KM) entstehen. Leukämien sind mit etwa 600 Neuerkrankungen im Jahr und einem Anteil von etwa 34% die häufigsten Krebserkrankungen im Kindes- und Jugendalter in Deutschland. Die Unterteilung erfolgt je nach klinischem Verlauf in akute und chronische Leukämien sowie entsprechend des Zelltyps in lymphatische und myeloische Leukämien. Die Ursachen für die Entstehung von Leukämien sind zum jetzigen Zeitpunkt noch nicht hinreichend geklärt. Von Peter Nowell wurde 1976 ein Modell veröffentlicht, welches die Entstehung von malignen Erkrankungen, entsprechend der Theorien nach Darwin über die Entstehung der Arten, als Evolution erklärt. Danach beruht die Entstehung von Tumoren, ebenso wie die Entwicklung neuer Arten, auf drei Einzelschritten: zufällige Mutation, gerichtete Selektion und (vorübergehende) räumliche Isolierung¹.

Die klonale Expansion, ausgehend von einem prämalignen Klon mit einem Wachstumsvorteil gegenüber normalen Zellen, führt zur Herausbildung eines oder mehrerer Klone mir gleichem Ursprung.

Auf die Entwicklung von Tumoren angewandt, besagt diese Theorie, dass eine vorher normale Zelle durch ein initiales genetisches Ereignis (Punktmutation, Insertion, Deletion etc.) einen Wachstumsvorteil gegenüber den benachbarten Zellen erfährt, was dazu führt, dass diese Zelle zu einem Klon identischer Zellen expandiert (Abbildung 1.1). Erfährt eine Zelle dieses Klons eine weitere Mutation, kann sich der Prozess der klonalen Expansion wiederholen. Diese initialen, oft zu genetischer Instabilität und weiteren sekundären Mutationen führenden Veränderungen können u.a. durch genetische Prädispositionen oder durch Umwelteinflüsse hervorgerufen werden. Sie umfassen Mutationen, die zu Defekten der DNA-Reparatur, zu chromosomaler Instabilität oder zu Veränderung "kritischer Gene" führen können, welche z.B. die Expression von Protoonkogenen steuern^{1,3}. In der akuten Phase der Erkrankung führt dieses Krankheitsbild unbehandelt innerhalb weniger Monate zum Tod der Patienten⁴.

Die vorliegende Dissertation befasst sich mit der Analyse *ETV6/RUNX1 (E/R)* positiver akuter lymphoblastischer Leukämie- (ALL) Zelllinien und primären Leukämiezellproben von Patienten mit *ETV6/RUNX1* positiver rezidivierter B-Vorläuferzell-(BVZ) ALL. Die *ETV6/RUNX1* positive ALL ist mit ca. 25% die häufigste leukämische Erkrankung mit involvierter chromosomaler Translokation im Kindesalter. In den folgenden Abschnitten wird diese ALL-Subentität ausführlicher beschrieben.

1.1 Akute lymphoblastische Leukämie (ALL) im Kindesalter

Die häufigste Leukämieform im Kindesalter, mit einem Anteil von ca. 80%, ist die akute lymphoblastische Leukämie (ALL), gefolgt von der akuten myeloischen Leukämie (AML) mit ca. 20%. Die chronische Form beider Formen ist im Kindesalter selten (Deutsches Kinderkrebsregister Mainz: http://www.kinderkrebsregister.de/). Die ALL tritt vor allem im Alter zwischen zwei und fünf Jahren auf. Die ALL sind klinisch und biologisch sehr heterogene Erkrankungen. Man unterscheidet bei der ALL im Kindes-/Jugendalter zwischen der BVZ-ALL, von der 85% der erkrankten Kinder (pro-B- (5%), common- (65%) und prä-B-ALL (15%)) betroffen sind, und der prä-Tbzw. T-ALL (12%). Bei den restlichen 3% der Kinder hat die ALL ihren Ursprung in der reifen B-Zelle. Mehr als zwei Drittel aller BVZ-ALL weisen genetische Veränderungen auf, die sich auf die normale B-Zelldifferenzierung auswirken⁵.

Abbildung 1.2: Die normale B-Zelldifferenzierung

Die hämatopoetischen Stammzellen (HSCs) differenzieren zu lymphatischen Vorläuferzellen (*Common Lymphoid Progenitors*, CLPs), aus denen die Pro-/Prä-B-Zellen entstehen. Die B-Zelldifferenzierung verläuft über das Prä-B-Zellstadium (zytoplasmatische Expression einer schweren Kette vom µ-lsotyp und Surrogat-Leichtkette), das unreife B-Zellstadium (Expression von IgM an der Zelloberfläche) und das reife B-Zellstadium (Expression von IgM und IgD an der Zelloberfläche). Gezeigt werden die wichtigsten phänotypischen Merkmale dieser Zellen. In den Lymphorganen können die B-Zellen in Plasmazellen differenzieren und IgM produzieren, oder (in den Keimzentren) einen Klassenwechsel und eine somatische Mutation der variablen Region der V-Gene (SHM) durchlaufen, wodurch die Vielfalt hoch selektiver Antikörper möglich wird. Diese B-Zellen sowie Gedächtnis-B-Zellen produzieren Antikörper mit verschiedenen Isotypen⁶.

Die einzelnen Stadien der B-Zellentwicklung werden durch Expression unterschiedlicher differenzierungsrelevanter Antigene (CD; *cluster of differentiation*) sowie der Bildung funktionierender B-Zellrezeptoren gekennzeichnet, deren Antigenspezifität durch die VDJ-Umlagerung der Immunglobulin-Gene bestimmt wird (Abbildung 1.2). Für die Klassifikation und Diagnose der Leukämie werden immer mehrere antigenspezifische Antikörper verwendet, die in 99% der Fälle eine Diagnose durch durchflusszytometrische Analysen zulassen^{7,8}. Darüber hinaus erlaubt die Immunphänotypisierung der malignen Zellen deren Zuordnung zu bestimmten Differenzierungsstadien der B-Zellentwicklung. In Tabelle 1.1 sind die wichtigsten diagnostischen Marker, die eine Einordnung der Zellen zu den einzelnen Entwicklungsstufen der B-Zellentwicklung erlauben, aufgeführt.

	TdT	HLA-DR	CD10	CD19	cylgM	slg
pro-B-ALL	+	+	-	+	-	-
common-ALL	+	+	+	+	-	-
prä-B-ALL	+	+	+/-	+	+	-
B-ALL	+/-	+	+/-	+	+/-	+

Tabelle 1.1: Diagnostische Zellmarker⁹

TdT = Terminale-Desoxyribonucleotidyl-Transferase, CD = *Cluster of differentiation*, cy = zytoplasmatisch, slg = Oberflächen (*surface*)-lg

In den letzten vier Jahrzehnten konnten durch zunehmende Verbesserung der ALL-Therapieprotokolle und verbesserte risikoadaptierte Behandlung die Überlebenschancen der erkrankten Kinder und Jugendlichen verbessert werden. Annähernd 80% der an ALL erkrankten Kinder können mit den gegenwärtig angewandten risikoadaptierten ALL-Therapieprotokollen in den Industrieländern geheilt werden. Das bedeutet jedoch auch, dass ungefähr ein Viertel aller Patienten ein Rezidiv erleidet und/oder stirbt. Um die Wahrscheinlichkeit des ereignisfreien Überlebens (probability of event-free survival, pEFS) zu steigern, ist es deshalb wichtig, die Ursachen der leukämischen Transformation besser zu verstehen, und es ist langfristig nötig, die Therapie so zu individualisieren, dass jeder Patient eine optimierte Therapie entsprechend der genetischen Veränderung in den ALL-Zellen erhält. Die Leukämie ist eine sehr heterogene Erkrankung mit vielen unterschiedlichen Krankheitsbildern und Verläufen. Die molekulargenetische Charakterisierung der Leukämiezellen und die Zuordnung der in ihrer Funktion veränderten Gene und Proteine zu differenziell veränderten Signalwegen werden helfen, nicht nur die Ursachen der leukämischen Transformation besser zu verstehen sondern dementsprechend auch die Therapie individuell anzupassen.

1.1.1 Zytogenetische und molekulargenetische Veränderungen

Bei ungefähr 75% der ALL im Kindes-/Jugendalter werden chromosomale Aberrationen numerischer oder struktureller Art, wie Translokationen, Inversionen oder Deletionen (Abbildung 1.3) nachgewiesen¹⁰. In der aktuellen WHO (*World Health Organisation*) Klassifikation wird die B-Zellreihen ALL in sieben rekurrente genetische Subtypen unterteilt, die mit unterschiedlichen klinischen und prognostischen Eigenschaften assoziiert sind: ALL mit dem Fusionsgen *BCR/ABL1* (Translokation t(9;22)(q34;q11.2)), *MLL*/11q23.3 Translokationen, *ETV6/RUNX1* (Synonym: *TEL/AML1;* mit der kryptischen Translokation t(12;21)(p13;q22)), *TCF3/PBX1* (t(1;19)(q23;p13.3)), *IL3/ILH* (t(5;14)(q31;q32)) sowie mit hyperdiploiden und hypodiploiden Karyotypen¹¹. Wegen ihrer hohen Frequenz bei der ALL können diese spezifischen Aberrationen für eine umfassendere und genauere Diagnose genutzt werden.

Abbildung 1.3: Häufigkeit genetischer Aberrationen in der ALL im Kindes und Jugendalter¹⁰

Die häufigsten chromosomalen Aberrationen sind in Abbildung 1.3 dargestellt. Die am häufigsten vorkommende chromosomale Translokation t(12;21) (ca. 25%) resultiert in der Bildung des Fusionsgens *ETV6/RUNX1*, die häufigste numerische Veränderung ist die Hyperdiploidie (25%), mit 54 bis 55 Chromosomen im Mittel (DNA-Index > 1,16). Beide genetischen Veränderungen sind mit einer guten Prognose assoziiert. Im Gegensatz hierzu zählen eine Hypodiploidie (<44 Chromosomen), eine *BCR/ABL1* Positivität und *MLL*-Veränderungen zu den ungünstigen prognostischen Parametern^{7,12,13}.

Wegen der großen Diversität an genetischen Veränderungen bei ALL ist eine einzige Nachweismethode unzureichend, um alle genetischen Aberrationen zu erfassen und eine korrekte Zuordnung zu den Risikogruppen zu gewährleisten. Zur Zeit stehen verschiedene Techniken zur genomweiten Diagnostik wie z.B. SNP (*single nucleotide polymorphism*) - Arrays und Array – CGH (*comparative genomic hybridization*) zur Verfügung¹⁴. Sinnvolle Ergänzungen zu diesen das gesamte Genom abdeckenden Methoden können die *realtime quantitative PCR* (RT-qPCR) zur Bestimmung bekannter chromosomaler Bruchpunkte, die *multiplex ligation-dependent probe amplification* (MLPA), zur Charakterisierung bestimmter Schlüsselgene sowie die Fluoreszenz *in situ* Hybridisierung (FISH) zur Identifizierung chromosomaler Verän-

Gezeigt werden die häufigsten numerischen und strukturellen genetischen Aberrationen in BVZ- und T-ALL. Die T-Zell-spezifischen Veränderungen sind im Diagramm in Rot dargestellt

derungen, sein.

Der zurzeit jedoch wichtigste unabhängige Prognosefaktor ist die Beurteilung des Ansprechens auf die Therapie durch die sensitive und spezifische Erfassung der leukämischen Resterkrankung (*minimal residual disease*, MRD) an bestimmten Therapiezeitpunkten mit Hilfe von RT-qPCR und/oder FACS. Die Intensität der Behandlung kann basierend auf den Ergebnissen dieser Analysen entsprechend angepasst und sowohl die Heilungsraten erhöht als auch die durch die Chemotherapeutika hervorgerufene Toxizität minimiert werden^{15,16}.

1.2 Die Transkriptionsfaktoren ETV6 und RUNX1

1.2.1 Der Transkriptionsfaktor ETV6

Die ETS-Proteine (*E26 transformation-specific sequence*)^{17,18}, zu denen der Transkriptionsfaktor ETV6 (*ETS-variant 6;* Synonym: *TEL; translocation ETS leukemia*) gehört, stellen eine der größten Gruppen signalabhängiger Transkriptionsregulatoren dar, die sowohl in die normale Proliferation und Differenzierung von Zellen als auch in die Tumorgenese eingreifen. Der Transkriptionsfaktor ETV6 zeichnet sich durch zwei Besonderheiten aus: Er ist häufig an der Entstehung von Neoplasien beteiligt und besitzt meist eine transkriptionelle Repressoraktivität¹⁹. Untersuchungen am Mausmodell haben gezeigt, dass ETV6 für die Embryonalentwicklung und Hämatopoese der Maus essenziell ist. *Knockout*-Versuche zeigten, dass es zu Fehlentwicklungen in der Angiogenese des Dottersacks kommt, welche letztendlich zum embryonalen Tod führten^{20,21}.

Genstruktur

Das für ETV6 *codierende* Gen ist auf Chromosom 12 im Lokus 12p13 lokalisiert und besteht aus sechs (Isoform 1b) bzw. acht (Isoform 1a) Exons. Die Initialisierung der ETV6-Transkription kann von zwei Startcodons erfolgen, und resultiert in eine der beiden Isoformen dieses kernlokalisierten Proteins (452 AS und 409 AS). Beide Isoformen enthalten die evolutionär konservierte N-terminale SAM (*sterile alpha motif*) - Domäne (Synonyme: *helix-loop-helix*, HLH, oder *pointed*, PNT), die zentrale Repressionsdomäne sowie die C-terminale ebenfalls konservierte ETS, DNA-bindende Domäne. Der kürzeren Isoform fehlt die N-terminale MAPK-Konsensussequenz²².

Proteinstruktur und Funktion

Eine Besonderheit von ETV6 ist dessen SAM-Domäne. Die SAM-Domäne besteht aus einer hochkonservierten Aminoäureseguenz, über die Co-Repressoren wie mSin3A, SMRT und N-CoR gebunden werden. Des Weiteren erfolgt über die SAM-Domäne die Polymerisierung mit ETV6 bzw. dem ETV6/RUNX1 Fusionsprotein. Diese wiederum rekrutieren Histondeacetylasen (HDAC), was zu einer Kondensation des Chromatins führt, so dass keine Transkription stattfinden kann²³⁻²⁵. Über die sehr häufig vorkommende DNA-Sequenz C/AGGAA/T können ETS-Proteine, einschließlich ETV6, mit sehr hoher Affinität an die DNA binden und über die durch Polymerisierung des ETV6 verstärkten repressorischen Eigenschaften die Transkription in den betroffenen DNA-Regionen stark reprimieren²⁶. Die posttranslationale Aktivierung, die Interaktion mit anderen Proteinen sowie die Spezifität gegenüber den Zielgenen (z.B. Fli1²⁷ und Stromelysin-1^{27,28}) wird bei vielen ETS-Proteinen, einschließlich ETV6, über die Phosphorylierung durch MAP-Kinasen gesteuert^{22,29,30}. Durch Genexpressionsstudien von Zellen mit induzierter ETV6-Expression konnten 87 differenziell regulierte Gene identifiziert werden, u.a. das Tumorsupressorgen p53. dessen Expression durch ETV6 wahrscheinlich indirekt hochreguliert wird³¹.

Beteiligung von ETV6 bei Neoplasien

Der Genort des Transkriptionsfaktors ETV6 ist häufig an chromosomalen Translokationen in hämatologischen Neoplasien beteiligt, die zur Bildung von chimären *ETV6*-Fusionsgenen führen, wie z.B. *ETV6/PDGFRß, -/ABL, -/JAK2, -/SYK, -/NTR3*³²⁻³⁴ oder *ETV6/RUNX1*³⁵ und *MN1/ETV6*³⁶. Die durch die repressorischen Eigenschaften des ETV6 in ihrer Funktion beeinträchtigten Partnerproteine könnten einen Mechanismus darstellen, der für die Entstehung von Neoplasien verantwortlich ist.

In Leukämien mit *ETV6*-Translokation, wie z.B. in *ETV6/RUNX1* positiven ALL, ist das zweite *ETV6*-Allel, das nicht an der Translokation involviert ist, häufig deletiert^{35,37-39}. Diese Beobachtung lässt die Schlussfolgerung zu, dass der Verlust der normalen ETV6-Funktion die Pathogenese der Erkrankung fördert bzw. dass das Wildtyp-ETV6 mit den onkogenen Eigenschaften des ETV6-Fusionsproteins interferiert.

Abbildung 1.4: Bruchpunkte im ETV6-Gen und Fusionspartner von ETV6⁴⁰

1.2.2 Der Transkriptionsfaktor RUNX1

Zur RUNX-Familie gehören die drei Transkriptionsfaktoren RUNX1, RUNX2 und RUNX3, welche von unterschiedlichen Genen *codiert* werden: *RUNX1/CBF2α* ist auf Chromosom 21q22, *RUNX2/CBFα3* auf Chromosom 1p36 und *RUNX3/CBFα1* auf Chromosom 6p21 lokalisiert⁴¹. Synonyme Bezeichnungen für *RUNX1* (*Runt-related transcription factor1*) sind *AML1* (*acute myeloid leukemia1*), *CBF2α-subunit* (*corebinding factor-2α*) und *PEBP2α* (*polyoma virus enhancer-binding protein-2α subunit*). *Knockout*-Versuche in Mausmodellen haben gezeigt, dass der Transkriptionsfaktor RUNX1 essenziell für die normale fötale Hämatopoese ist und in der adulten Hämatopoese ebenfalls eine wichtige regulatorische Funktion innehat⁴²⁻⁴⁶. Weitere Experimente wiesen darauf hin, dass die Proteinisoformen RUNX1a und RUNX1c wichtig für die frühe (embryonale) und RUNX1b für die spätere (adulte) Hämatopoese sein könnten^{47,48}. RUNX1 hat offenbar vor allem eine Schlüsselfunktion in der Generierung von hämatopoetischen Stammzellen aus vaskulärendothelialen (embryonalen) Zellen⁴⁵, bei der die transkriptionelle Hochregulation von RUNX1 durch den Notch-Signalweg von Bedeutung ist⁴⁹.

Genstruktur

RUNX1 ist Teil des heterodimeren *core-binding factor* (CBF)-Komplexes, bestehend aus den Untereinheiten CBFα und CBFß. Die CBFα-Untereinheit kann durch verschiedenen Gene *codiert* werden, die alle zur RUNX- Familie gehören.

Abbildung 1.5: RUNX1: Struktur und DNA-Interaktion⁵⁰ Die RUNT Domäne bindet mit dem C-Terminus (*tail*) in die große Furche der DNA und mit dem *wing* in die kleine der DNA. Die RUNT-Domäne interagiert mit einem 134 Aminosäuren langen Bereich mit der CBFß-Untereinheit.

RUNX1 codiert für verschiedene, durch alternative Transkriptionsstartunkte und alternatives *splicing* gebildete Protein-Isoformen, von diesen sind drei in Abbildung 1.5 gezeigt. Am häufigsten wird die RUNX1-b Isoform, mit zusätzlichen fünf N-terminal lokalisierten Aminosäuren vom proximalen Promotor (P₂) ausgehend, transkribiert. Die RUNX1-c Isoform wird nur in einigen Veröffentlichungen erwähnt⁵¹⁻⁵³. Die RUNX1-c Isoform wird vom distalen Promotor (P₁) aus transkribiert, was dazu führt, dass das Transkript für zusätzlich 32 Aminosäuren codiert, die die anderen Isoformen nicht besitzen. Die Expression der RUNX1-a Isoform wird ebenso wie die der RUNX1-b Isoform über den P₂ Promotor reguliert und besitzt die RHD. Nach heutigem Wissensstand zeigen die RUNX1 Isoformen keinen deutlichen funktionellen Unterschied in den hämatopoetischen Stamm- bzw. Progenitorzellen (HSPCs).^{48,54}

Die Aktivität von *RUNX1* kann z.B. durch posttranslationale Modifizierungen, wie z.B. Methylierung⁵⁷, Phosphorylierung⁵⁸⁻⁶⁰, Acetylierung, durch Bindung von RUNX3⁶¹ oder Zyklin D3⁶² sowie durch Ubiquitinierung⁶³ reguliert werden.

Proteinstruktur und Funktion

Allen RUNX-Proteinen ist die hochkonservierte RHD gemeinsam, die ihren Namen der strukturellen Homologie zum Drosophila Segmentierungsgen *runt* verdankt^{64,65}. Die RHD ist für die DNA-Bindung sowie für die Heterodimerisierung mit der CBFβ-Untereinheit verantwortlich⁵⁵ (Abbildung 1.5). Die CBFβ-Untereinheit, die selber nicht an die DNA bindet, stabilisiert die CBFα-Untereinheit und verstärkt die DNA-Bindungsaffinität der CBFα-Untereinheit um das 10 bis 20-fache⁶⁶. Über die Konsensussequenz YGYGGT (Y= Pyrimidin-Base; T oder C) erkennt und bindet die RHD aller RUNX-Proteine an die entsprechenden Promotor- und Enhancer-Regionen und führt, je nachdem welche Co-Faktoren involviert sind, zu einer Aktivierung bzw. Repression der RUNX Zielgene⁵². Bisher bekannte RUNX1 Zielgene sind u.a. *IL-3, CDKN1A, GM-CSF, M-CSFR, FLT3, c-kit, CD36, MDR1, TCR, IGFBP-3, p21, Bcl2, STAT3, PU.1, c-myb/fos* und *MPO*⁶⁷⁻⁷⁹.

Im Folgenden wird nur der Transkriptionsfaktor RUNX1 eingehender erläutert, da sich die vorliegende Dissertation nicht mit den Transkriptionsfaktoren RUNX2 und RUNX3 beschäftigt. RUNX1 ist für die normale Hämatopoese und für die B- und T-Zell-Differenzierung von essenzieller Bedeutung⁸⁰. Mausversuche haben zeigen können, dass die Inaktivierung von RUNX1 zu einem frühen Differenzierungsstopp in der Hämatopoese und letztendlich zum embryonalen Tod durch starke Blutungen im zentralen Nervensystem (ZNS) sowie im sich entwickelnden Rückenmark führt⁸⁰. Weitere Veröffentlichungen zeigten, dass das aus fünf Aminosäuren bestehende VWRPY Motiv am C-terminus des RUNX1 durch seine Wechselwirkung mit dem Transkriptions- Co-Repressor Groucho/transducin-like enhancer of split (TLE) wahrscheinlich an der Repression von RUNX1 und beteiligt ist^{56,61}. Versuche am Mausmodell zeigten, dass transkriptionell aktives RUNX1 eine entscheidende Rolle bei der frühen Hämatopoese spielt^{81,82}. Der heterozygote *RUNX1-knockout* resultiert in einer Abnahme von **B-Vorläuferzellen** und deren verminderter Fähigkeit, zu differenzieren^{43,83}.

Beteiligung von RUNX1 an Neoplasien

RUNX1 und *CBFß* sind die am häufigsten deregulierten Gene in Leukämien. Sie sind hauptsächlich in chromosomale Translokationen involviert, welche in die Bildung von chimären Proteinen resultieren⁸⁴. Die funktionelle Bedeutung von RUNX1 als Transkriptionsfaktor wurde erstmals bei der AML durch seine Beteiligung an der Translokation t(8;12) mit dem resultierendem Fusionsgen *RUNX1/ETO* entdeckt⁸⁵. Spätere

Studien zeigten, dass *RUNX1* ebenfalls sehr häufig in chromosomale Translokationen bei BVZ-ALL involviert ist^{86,87}.

1.2.3 Die Translokation t(12;21)

Die größte durch ein Fusionsgen charakterisierte ALL-Subgruppe im Kindesalter (ca. 25%) zeigt die chromosomale Translokation t(12;21)(p13;q22) mit dem resultierenden chimären Transkriptionsfaktor ETV6/RUNX1^{36,88,89}.

Gen- und Proteinstruktur

ETV6/RUNX1 enthält in seiner häufigsten Variante die 336 Aminosäuren (AS) umfassende aminoterminale Region des ETV6 Proteins (Exone 1-5) und den AS-Bereich 20-479 von RUNX1 (Exone 2-8)⁹⁰. Das ca. 95 kDa (796 AS) große Fusionsprotein enthält die proteinbindende Region (*pointed domain*; PD) und die *central repression domain* des ETV6 sowie die RHD des RUNX1 (Abbildung 1.7a)⁹⁰. ETV6/RUNX1 besitzt somit alle Eigenschaften eines funktionsfähigen Transkriptionsfaktors⁹¹⁻⁹³, allerdings in einer besonderen, aberranten Kombination.

Abbildung 1.7: ETV6/RUNX1 und dessen Wirkungsmechanismus

- a) Schematische Darstellung von RUNX1, ETV6 und dem resultierenden Fusionsprotein E/R nach Zelent et al⁹⁰.
 b) und c)zeigen ein hypothetisches Modell f
 ür den molekularen Wirkmechanismus von E/R⁹⁰
- b) Je nachdem, welche weiteren Co-Faktoren durch RUNX1 rekrutiert werden, wird entweder eine Aktivierung oder eine Repression der Transkription initiiert.
- c) Durch die Fähigkeit von E/R, Homo-/Heterodimere zu bilden, und durch Rekrutierung von Co-Repressoren, wie N-CoR und mSin3A, bildet sich ein stabiler Repressorkomplex, der die Transkription von E/R Zielgenen hemmt.

Charakterisierung und Funktionsweise des Fusionsproteins

Wie in den vorherigen Abschnitten erläutert, sind die Transkriptionsfaktoren ETV6 und RUNX1 elementare Regulatoren der Hämatopoese^{43,73,94-96}. Deren Fusionspro-

dukt ETV6/RUNX1 interferiert entscheidend mit dieser Regulation und bewirkt eine veränderte Funktion der hämatopoetischen Transkriptionsfaktoren ETV6 und RUNX1^{19,97,98}, die in der Struktur des Fusionsproteins begründet ist. Zum jetzigen Zeitpunkt geht man davon aus, dass ETV6/RUNX1 mit dem endogenen RUNX1 um dieselben Promotorbereiche ihrer Zielgene konkurriert und dass das N-terminal im Fusionsprotein gelegene ETV6 Co-Repressoren wie z.B. N-CoR, mSin3A und Histondeacetylasen (HDAC) rekrutiert¹⁹. Dies führt zu einer Kondensation der Chromatinstruktur und somit zu einer Repression der Zielgene. Dies bedeutet, dass die Expression von ETV6/RUNX1 v.a. eine Inaktivierung von Genen bewirkt, die normalerweise durch RUNX1 aktiviert werden (Abbildung 1.7b und c)⁹⁰.

Untersuchungen an verschiedenen Tiermodellen haben in den letzten Jahren gezeigt, dass diese fehlregulatorische Eigenschaft von ETV6/RUNX1 letztlich die Entstehung multipotenter Progenitorzellen und präleukämischer Zellpopulationen mit einer Differenzierungsblockade im Übergang vom Pro-B- in das Prä-B-Stadium fördert, aus denen sich nach Erwerb zusätzlicher Mutationen B-Vorläuferzell-ALL (BVZ-ALL) entwickeln können^{71,97}. Wie das Fusionsprotein diesen präleukämischen Phänotyp induziert und welche molekularen Zielstrukturen fehlreguliert werden, ist weitgehend unbekannt. Zum jetzigen Zeitpunkt geht man davon aus, dass ETV6/RUNX1 nicht ausschließlich für die maligne Transformation verantwortlich ist. Entsprechend der "Greaves-Hypothese" stellt die Bildung des Fusionsgens *ETV6/RUNX1* den initialen Schritt in der Pathogenese *ETV6/RUNX1*-positiver ALL dar (*first hit*)⁹⁹. Das Fusionsgen entsteht während der fötalen Hämatopoese in einer BVZ, die zu einem präleukämischen Klon expandieren kann¹⁰⁰.

Zwillingsstudien und retrospektive Studien mit Nabelschnurblut von Neugeborenen zeigten zum einen, dass die *ETV6/RUNX1*-exprimierenden fötalen Zellklone expandieren und für mehr als ein Jahrzehnt in einem Ruhestadium verharren können, bevor es zum Ausbruch der Erkrankung kommt¹⁰¹. Zum anderen ergaben diese Studien, dass weitere postnatale genetische Ereignisse, sogenannte *second hits* notwendig sind, damit sich eine klinisch manifeste Leukämie ausbildet. Ein solcher *second hit* könnte die Deletion des zweiten endogenen *ETV6*-Allels sein, die besonders häufig in *ETV6/RUNX1 posi*tiven ALL gefunden wird^{39,90,102-106}. Neben dem bereits genannten *ETV6* wurden in veröffentlichten^{5,107,108} und eigenen¹⁰⁹ genomweiten hochauflösenden aCGH-Analysen von primären *ETV6/RUNX1*-positiven ALL weitere Gene mit rekurrenten, möglicherweise kooperierenden sekundären Mutationen identifiziert (z.B. *CDKN2A, RUNX1, PAX5, CD200, BTLA, TBL1XR1, TROVE2, GLRX2*,

CDC73, *B3GALT2*, *NR3C2*, *NR3C1*, *EBF1*, *CCNC*, *ARMC2*, *SESN1* und *BTG1*). Diese Gene beeinflussen unterschiedliche Signalwege, die biologische Prozesse wie z.B. Apoptose, Zellzyklus, lymphoide Entwicklung und Tumorsuppression kontrollieren. Weitere möglicherweise kooperierende *second hits* wurden mit Hilfe von Exom-Sequenzierungen¹¹⁰ und mit einem Mausmodell gefunden, das die Leukämogenese *ETV6/RUNX1*-positiver ALL weitgehend wiedergibt¹¹¹. Ein genereller Effekt leukämiespezifischer aberranter Fusionsproteine mit Beteiligung von Transkriptionsfaktoren ist die fehlregulierte Veränderung der Chromatinstruktur im Bereich ihrer Zielgene^{112,113}.

Klinische Relevanz der ETV6/RUNX1-positivität bei ALL-Rezidiven im Kindesalter

Die Wahrscheinlichkeit des EFS (pEFS, *probability of EFS*) von Kindern mit einer *ETV6/RUNX1*-positiven ALL ist signifikant besser als von Kindern mit einer *ETV6/RUNX1*-negativen ALL^{109,114,115}. Patienten mit *ETV6/RUNX1*-Translokation rezidivieren jedoch zu einem späteren Zeitpunkt als Patienten mit *ETV6/RUNX1*-negativer ALL. Folglich, obwohl die Translokation mit einer eher günstigen Prognose assoziiert ist¹¹⁶⁻¹¹⁹ (Abbildung 1.8), bildet v. a. der ähnlich hohe Anteil bei initialer Er-krankung und beim Rezidiv die Grundlage weiterer klinisch-biologischer Analysen und Diskussionen.

Abbildung 1.8: pEFS bei rezidivierter ETV6/RUNX1 positiver ALL Kaplan-Maier-Überlebenskurve von Patienten mit *E/R* positivem (n=166) vs. *E/R* negativem ALL-Erstrezidiv (n=673), die in der Studie ALL-REZ BFM 96 und 2002 eingeschlossen waren. Die pEFS unterschieden sich nach 18 Jahren signifikant (p<0,01) (unveröffentlichte Daten, PD Dr. C. Eckert, Studie ALL-REZ BFM, Charité Berlin))

Die Wirkung des Fusionsonkoproteins ETV6/RUNX1 ist letztlich wenig geklärt. Über die ETS-Domäne des ETV6-Anteils kann es Polymere mit sich selbst bzw., wenn das 2. Allel nicht deletiert ist, mit dem ETV6-Wildtyp-Protein bilden. Durch Rekrutierung von Co-Faktoren (N-CoR, mSin3A) und Co-Repressoren, wie HDAC, hemmt dieser

Komplex die Transkription bestimmter eigentlich durch RUNX1 regulierter/aktivierter Gene^{33,120}. Noch ist unklar, weshalb die Fusion von *ETV6* und *RUNX1* alleine nicht ausreicht und immer ein *second hit* notwendig ist, um eine maligne Transformation der Zellen zu bewirken. Die Bedeutung von ETV6/RUNX1 in der Leukämogenese kann sich jedoch möglicherweise durch das durch ETV6/RUNX1 verursachte veränderte Genexpressionsmuster in den hämatopoetischen Zellen erklären.

1.3 *ETV6/RUNX1* positive ALL im Kindesalter

Studien haben ergeben, dass die Bildung des Fusionsonkoproteins ETV6/RUNX1 ein wichtiges leukämieauslösendes Ereignis (*first-hit*) sein kann. Die Expression von ETV6/RUNX1 führt zu einem Arrest in der B-Zellentwicklung, einer verstärkten Regeneration der Vorläuferzellen und verändert die Regulation der Apoptose⁹⁸. Es wird daher angenommen, dass die Expression von ETV6/RUNX1 wahrscheinlich die Entstehung eines langsam wachsenden präleukämischen Klons begünstigt¹²¹. Erst nach dem Auftreten von mindestens einer weiteren Mutation (*second hit*), kommt es zur klinischen Manifestation der Leukämie^{5,122}. Während bisher erschienene Veröffentlichungen zeigten, dass Microarray-Analysen ein für die *ETV6/RUNX1* positive ALL spezifisches Genexpressionsprofil ergeben, ist über die molekularen Mechanismen der Leukämieentstehung bisher nur wenig bekannt.

1.3.1 Genomweite Genexpressionssignaturen

Genomweite Genexpressionsstudien belegen einerseits die Heterogenität leukämischer Blasten und zeigen andererseits, dass die ETV6/RUNX1 positive ALL charakteristische Expressionsprofile aufweist, die sich deutlich von den Profilen anderer Leukämiegruppen unterscheiden¹²³⁻¹²⁶. In unserer Arbeitsgruppe konnte durch prospektive Analysen der Genexpressionsprofile (Affymetrix-HG-133A Oligonukleotid-Chip) primärer ALL-Zellen von 60 Kindern zum Zeitpunkt des Rezidivs nachgewiesen werden, dass ETV6/RUNX1 positive ALL-Rezidive sich klar im Expressionsmuster von der ETV6/RUNX1 negativen Gruppe abheben¹²³. Darüber hinaus konnte gezeigt werden, dass Lymphoblasten von Patienten mit sehr frühem ALL-Erstrezidiv durch ein distinktes Genexpressionsmuster, insbesondere durch die Überexpression von Genen des späten Zellzyklus und eine erhöhte Zellproliferationsrate gekennzeichnet sind¹²³. Diese Studien erbrachten den Nachweis, dass Microarray-Genexpressionsanalysen sich durch eine hohe Genauigkeit auszeichnen und eine robuste Technologie für die Diagnose von malignen hämatologischen Erkrankungen darstellen. Sie legen außerdem nahe, dass in *ETV6/RUNX1* positiven ALL das Fusionsgen zusammen mit weiteren genetischen Veränderungen die Aktivität spezifischer Gene/Signalwege entscheidend beeinflusst. So konnten Hong et al. mit Microarray-Genexpressionsanalysen zeigen, dass *ETV6/RUNX1* positive hämatopoetische Progenitorzellen mit dem Phänotyp CD34⁺ CD38^{-/low} CD19⁺, die wahrscheinlichen präleukämischen Vorläuferzellen der *ETV6/RUNX1* positiven Leukämie, Profile einer Mischung aus Pro-B-Zell- und menschlichen Stammzell-assoziierten Genen aufweisen¹²⁷. Weiterhin haben Andersson et al. mittels *Gene Set Enrichment Analysis* gezeigt, dass sich die transkriptionellen Aktivitäten ETV6/RUNX1 positiver ALL und normaler Pro-B-Zellen ähneln¹²⁸. Vergleiche der Genexpressionsprofile *ETV6/RUNX1* positiver ALL mit normalen Pro-B-Zellen sollten dementsprechend leukämierelevante Veränderungen besonders deutlich zeigen. Auffallend ist, dass bisherigen Genexpressionsstudien von Leukämien nur selten Vergleiche mit normalen hämatopoetischen Zellen einschließen^{127,129}.

1.3.2 Bisher identifizierte ETV6/RUNX1 Zielgene

Es existieren mehrere Studien in denen mittels Microarray-Technologie differenziell regulierte Gene in primären ETV6/RUNX1 positiven ALL bzw. ALL-Zelllinien im Vergleich zu anderen Zellen identifiziert worden sind¹³⁰⁻¹³⁵. So konnte z.B. gezeigt werden, dass die Expression von Survivin, einem wichtigen Apoptose-Regulator, durch ETV6/RUNX1 beeinflusst wird¹³⁶. Mittels ChIP-chip (microRNA-chip) konnte miRNA-494 als ein Zielgen von ETV6/RUNX1 identifiziert werden. Die Expression von Survivin wird normalerweise durch miRNA-494 reprimiert. Wird die Expression von miRN-A-494 durch ETV6/RUNX1 gehemmt, kann anti-apoptotisch wirkendes Survivin exprimiert werden¹³⁶. Eine seit einiger Zeit diskutierte Rolle von ETV6/RUNX1 in der ektopischen *Erythropoetin-Rezeptor* (*EPOR*)-Expression^{13,132,137} wurde bereits funktionell belegt. Torrano et al. haben gezeigt, dass ETV6/RUNX1 offenbar den EPOR hochreguliert und so zu einem EPO-induzierten, über den JAK2-STAT5 Signalweg vermittelten Zellwachstum in prämalignen Klonen und etablierten ALL führen kann¹³⁸. Ein weiteres in seiner Expression durch ETV6/RUNX1 beeinflusstes Zielgen ist GranzymeB (GZMB)¹³⁹. Durch stabile Transfektion von ETV6/RUNX1 und einen *GZMB* exprimierenden Vektor (pGZMB-luc) konnte in HeLa-Zellen gezeigt werden, dass die Expression von GZMB in Anwesenheit von ETV6/RUNX1 herunterreguliert wird. Als Vergleich dienten stabil ETV6/RUNX1 exprimierende HeLa-Zellen ohne den pGZMB-luc-Vektor. In einer weiteren Studie wurde anhand von Knochenmarkzellen von vier Patienten mit *ETV6/RUNX1* positiver BVZ Leukämie sowie mit der murinen BA/F3^{*E/R*} Zelllinie direkte und indirekte durch ETV6/RUNX1 in ihrer Expression beeinflusste Gene bzw. Proteine mittels verschiedener Methoden identifiziert: Durch die Verwendung der Chromatin-Immunopräzipitation in Kombination mit Maus-Promotor-Array Analysen (Chip-on-Chip) wurden ETV6/RUNX1 Bindungsbereiche identifiziert. Weiterhin wurden direkte und indirekte, von der *ETV6/RUNX1*-Bindung an den Promotor unabhängige, regulatorische Effekte der *ETV6/RUNX1*-Bindung an den Promotor unabhängige, regulatorische Effekte der *ETV6/RUNX1* Expression mittels *stable isotope labelling by amino acids in cell culture* (SILAC) untersucht¹³⁵, dabei wurden 56 durch ETV6/RUNX1 in Expression beinflusste Gene identifiziert. Diese hatten u.a. negative Effekte auf die Zellproliferation und positive Auswirkungen auf die Zellmigration.

2 Ziel dieser Arbeit

Die ALL ist eine akut auftretende, klinisch und biologisch heterogene Erkrankung und die häufigste Neoplasie im Kindes-/Jugendalter. Trotz der sequenziellen Verbesserung risikoadaptierter ALL-Therapieprotokolle erleiden 20 - 25% aller Patienten ein Rezidiv und/oder sterben an ihrer Erkrankung. Um die Heilungsraten weiter zu verbessern, ist es deshalb essenziell, die Ursachen der leukämischen Transformation besser zu verstehen und neue therapeutische Angriffspunkte zu identifizieren. Aktuellen Forschungserkenntnissen zufolge kann ein präleukämischer Zellklon bereits pränatal aus einer hämatopoetischen Stamm- bzw. Vorläuferzelle durch leukämiespezifische Fusionsproteine entstehen, wie z.B. ETV6/RUNX1, die das Resultat chromosomaler Translokationen darstellen^{140,141}. Erst durch die Akquisition weiterer, sekundärer genetischer Veränderungen, wie z.B. Deletion des zweiten ETV6-Allels, erfolgt die vollständige leukämische Transformation.

Umfangreiche Forschungen in den letzten Jahren haben sich u.a. mit der Fragestellung beschäftigt, wie der chimäre Transkriptionsfaktor ETV6/RUNX1 zu der Leukämogenese beiträgt bzw. wie die komplexen Prozesse, die für die Transformation einer normalen Zellen in eine "entartete Zelle" verantwortlich sind, reguliert werden und welche Einflüsse diese Fehlregulationen auf die genotypische und phänotypische Ausprägung des Krankheitsbildes haben. Diese Fragestellung ist bisher nur in Ansätzen geklärt worden.

Ziel dieser Promotionsarbeit ist die Identifizierung von DNA-Bindungsstellen und damit von Zielgenen des leukämiespezifischen chimären Transkriptionsfaktors ETV6/RUNX1 und deren Einordnung in zelluläre Prozesse, die letztendlich zur Ausprägung der Leukämie führen. Um diese Fragestellungen zu untersuchen, wurden folgende Versuche und Analysen durchgeführt:

- ETV6/RUNX1 ChIP-Seq Analysen von den ETV6/RUNX1 positiven humanen Prä-B Leukämie-Zelllinien REH und UoC-B6 sowie von primären ALL-Blasten aus Knochenmarkproben von Kindern mit ETV6/RUNX1 positiver ALL unter Verwendung von spezifischen ETV6- und RUNX1-Antikörpern.
- 2. Identifizierung potenzieller ETV6/RUNX1 Zielgene
- 3. Zuordnung der identifizierten ETV6/RUNX1- Zielgene zu Signalwegen und biologischen Prozessen.
- 4. Etablierung eines gezielt gesteuerten, shRNA vermittelten *ETV6/RUNX1 knockdown* in REH und UoC-B6-Zellen

3 Material und Methoden

3.1 Material

3.1.1 Medien und Zusätze

Bezeichnung

Ampicillin Blasticidin S Hydrochlorid Fötales Bovines Serum (FBS) IMDM Interleukin-3, Mouse, Recombinant PBS Penicillin/Streptomycin Puromycin Dihydrochlorid RPMI SOC-Medium Tetracyclin Hydrochlorid; 500 mg Trypsin/EDTA

Firma; #ArtikeInummer

Carl Roth; #K029.1 Carl Roth; #CP14.2 Biochrom; #S0115 Life Technologies; #21980065 Merck; #407631-10UG Biochrom; #L1825 Biochrom; #A2213 Sigma-Aldrich; #P8833-10MG Biochrom; #FG1385 Life Technologies; #15544-034 Thermo Fisher Scientific; #10695272 Biochrom; #L2143

3.1.2 Chemikalien und Reagenzien

Bezeichnung

0.5 M EDTA.pH8.0 0.5 M EGTA (pH 8.0) 0.5 M Natriumfluorid (NaF) 1 kb DNA-Leiter 1 M Hepes (pH 4,5) 1 M Tris-HCI.pH8.0 1 M Tris-HCI pH8.0 (UltraPure[™]) 10 mM dNTPs 10x Tris-Glycine-SDS PAGE 2-Mercaptoethanol 2-Propanol 5 M Natriumchlorid Agarose

Firma; #ArtikeInummer

Life Technologies; #15575-038 VWR; # 437013D Merck; #1064500025 Peqlab; #25-2030 Life Technologies; #15630-080 Life Technologies; #15568025 Life Technologies; #15568-025 Life Technologies; #18427013 National Diagnostics; #902702 Sigma-Aldrich; #M-6250 Carl Roth; #618944 Sigma-Aldrich; #S6546-1L Serva; #11404

Bezeichnung Agencourt CleanSEQ-Dye Terminator Removal Ammoniumpersulfat (APS) AmpliTag Gold® DNA Polymerase Antarctic Phosphatase Betaine monohydrate BigDye® Terminator v3.1 Cycle Sequencing Kit **Biocoll-Trennlösung** Bovines Serum Albumine (BSA) Bromphenolblau Calciumchlorid cOmplete Protease Inhibitor Cocktail (PIC) cOmpleteMini Protease Inhibitor Cocktail (PIC) Dimethylsulfoxid (DMSO) Dynabeads[®] Protein G Essigsäure Ethanol (Absolut) Exonuclease I Formaldehyd (37%) Formaldehyd (w/v) Methanol-frei (16%) Fötales Kälberserum (FKS) Glycerol Glycine

Glykogen (20mg/ ml) Lithiumchlorid (LiCl) Methanol N,N,N',N'-Tetramethylethylendiamin (TEMED) Natriumacid Natrium-Deoxycholat Natrium-Orthovanadate (Na3VO4) N-Lauroylsarcosine NP-40 (IGEPAL[®] CA-630)

Firma; #ArtikeInummer

Beckman Coulter; #A29151 Carl Roth; #9592.3 Life Technologies; #4311820 New England Biolabs; #M0289S Sigma-Aldrich; #B2754-500G Life Technologies; #4337456 Biochrom; #L6113 Sigma-Aldrich: #A9418 Merck; #1.00165.0500 Sigma-Aldrich; #C5080 Roche; #1697498 Roche; #11836153001 Sigma-Aldrich; #D5879 Life Technologies; #100-03D Merck; #1.0006325.11 Sigma-Aldrich; #32205-1L New England Biolabs; #M0293S Thermo Fisher Scientific; #14-650-250 Thermo Fisher Scientific; #614128 Sigma-Aldrich; #A-7906 Sigma-Aldrich; #G5516 Serva; #23390.04 Roche; #10901393001 Sigma-Aldrich; #L7026 Merck; #1.0600925.11 Sigma-Aldrich; #T7024 Sigma-Aldrich; #S-8032 Sigma-Aldrich; #D5670 Merck; #567540-5GM AppliChem; #A1163

Sigma-Aldrich; #18896

Bezeichnung Orange G Page Blue Protein Staining Solution Paraformaldehyd PBS Lösung Pefabloc[®] peqGOLD 100 bp DNA-Leiter Phenol: Chloroform: Isoamylalkohol Phenylmethanesulfonylfluoride (PMSF) Platinum[®] Tag DNA Polymerase poly-L-lysine PonceauS Power SYBR[®] Green PCR Master Mix Proteinase K Protein-Marker VI **Random Primers** RNaseA (10 mg/ml) Roti®-Block (10x Konz.) Rotiphorese[®]Gel30 (37.5:1) Sodium Acetat Sodium Dodecylsulfat (SDS)10% Sodium Dodecylsulfat (SDS) SuperScript[®] III Reverse Transcriptase SuperSignal West DURA Extended Duration Substrate TagMan[®] Gene Expression Master Mix Thermo Scientific Shandon™ Immu-Mount™ Triton X-100 Trizma[®] base Trypanblau Trypsin/EDTA UltraPure[™] DNase/RNase-Free Distilled Water

Vectashield[®] mounting medium

Firma; #ArtikeInummer

Sigma-Aldrich; #O-1625 Thermo Fisher Scientific; #R0571 Fluka; #76240 Biochrom; #L1825 Carl Roth; #A154.1 Peqlab; #25-2010 Sigma-Aldrich; #77617 Carl Roth; #6367.2 Life Technologies; #10966-026 Sigma-Aldrich; # P-8920 Sigma-Aldrich; #P2395-25G Life Technologies; #4367659 Merck; #107393 Peglab; #27-2310 Life Technologies; #48190011 Sigma-Aldrich; #R6513 Carl Roth; #A151.1 Carl Roth; #3029.1 Sigma-Aldrich; # S-7899 Life Technologies; #15553-035 Carl Roth; #2326,2 Life Technologies; #18080044 Thermo Fisher Scientific; #1044-5345 Life Technologies; #4369016 Fisher Thermo Scientific; #9990402 Sigma-Aldrich; #T-8787 Sigma-Aldrich; #T8524 Biochrom; #L6323 Biochrom; #L2143 Life Technologies; #10977035 Vector Laboratories; #H-1200

3.1.3 Antikörper Bezeichnung Rabbit mAB to RUNX1, clone EPR3099 Mouse mAB to ETV6, clone 3B10 Sigma-Aldrich; 100UG Goat pAB to ETV6 (TELN-19) 8546 Goat pAB to RUNX1 (RUNX1(C-19)) 8564 Rabbit pAB to RUNX1 (RUNX1(H-65X)) 28679 X Rabbit pAB to ETV6 (TEL(H-214)X) 11382 X Rabbit pAb to ETV6 Rabbit pAB to Actin Rabbit mAB to ETV6, clone EPR7604 Rabbit pAb to RUNX1 Mouse mAB to GAPDH Rabbit pAB to Histon H3 rabbit pAB to Ki-67 CD3-PE Klon SK7 **CD 10-PE** Klon HI10a CD19-PE Klon J25C1 CD20-PE Klon L-27 CD22-PE Klon S-HCL-1 CD34-FITC Klon 8G12 CD45-PerCP

Rabbit pAb Anti-ETV6 IgG

Firma; #Artikelnummer Epitomics; #2593-1 #WH0002120M1-Santa Cruz Biotechnology; #sc-Santa Cruz Biotechnology; #sc-Santa Cruz Biotechnology; #sc-Santa Cruz Biotechnology; #sc-Atlas Antibodies; #HPA000264 Abcam; #ab1801 Abcam; #ab151698 [EPR7604] Calbiochem; #PC284-100µG GeneTex; #GTX627408 Cell Signaling; #3638S Life Technologies; #18-0191 Becton Dickinson GmbH; #345765; Becton Dickinson GmbH; #332776; Becton Dickinson GmbH; #345789; Becton Dickinson GmbH; #345793; Becton Dickinson GmbH; #337899; Becton Dickinson GmbH; #345801; Becton Dickinson GmbH; #345801; Klon 8G12 Atlas; #HPA000264-100U

Bezeichnung			Firma; #Artikelnummer		
Rabbit pAb A	nti-ETV6 IgG blocking pe	eptide	; #HPA00	00264-Antigen	
Rhodamine	Red™-X-conjugated*	AffiniPure	Jackson	ImmunoResearch;	#711-
Donkey Anti-I	Rabbit IgG		295-152		
Normal donkey serum			Jackson	ImmunoResearch;	#017-
			000-121		

3.1.4 Primer und Sonden

3.1.4.1 Humane genomische DNA

CD150hgen2	Forward	5'-GTTTTGGCCGAGGTGACTAC-3'
	Reverse	5'-ACCCGCTTCCTGTATCACTG-3'
	Taqman -Sonde	5'-6FAM-CATGGGAGATGAGCAATCCTBBQ-3'
IGLL1hgen1	Forward	5'-TCTGGCTAAACCCAAACCTG-3'
	Reverse	5'-TCTGTGGAGCATCTCACTGG-3'
	Taqman -Sonde	5'-6FAM-CCACACCTCCCTCTAGGACCBBQ-3'
IGLLhgen2	Forward	5'-GGAAAGGAGGGAATGAGGAG-3'
	Reverse	5'-TGAGAGATGGCAGAGGGAGT-3'
	Taqman	5'-6FAM-TAGACAGAGAGAGGCGCTCCBBQ-3'
	-Sonde	
LMBR1hgen1	Forward	5'-AGTGCGGTACTGAGTGCTGA-3'
	Reverse	5'-TCGGAGTTCCTGTTCCTCAC-3'
	Taqman -Sonde	5'-6FAM-TACTCAGTGCTTGGCACTCGBBQ-3'
LMBR1hgen2	Forward	5'-CTTCTCGCCCATTCTGTAGG-3'
	Reverse	5'-GTTGGTGATGATGCCAGTTG-3'
	Taqman -Sonde	5'-6FAM-TTGCTAGTGTCCTTTGATGCABBQ-3'
CFPhgen	Forward	5'-CTGCCACTTCCCTTTCTCAC-3'
	Reverse	5'-TTCCACCCTCCCTTAACCTC-3'
	Taqman -Sonde	5'-FAM6-ACAAGCTGACCACAGGGAACBBQ-3'
EPORhgen	Forward	5'-GCCAGGCTAGATTTTACAAGATGA-3'

	Reverse	5'-GTTCTGGCTTCAGACACACG-3'
CDC5Lhgen	Forward	5'-AAATAGGGCATTTCCCAACC-3'
	Reverse	5'-GAACATCTCTGGCTCCATCC-3'
ACTgen	Forward	5'-CGACAACGGCTCCGGCATGT-3'
	Reverse	5'-AACCGGGAGGCTTCCTGTGCA-3'
HPRTgen	Forward	5'-ACGAGCCCTCAGGCGAACCT-3'
	Reverse	5'-CAGGCCGAGCTGCTCACCAC-3'
GAPDHhgen1	Forward	5'-CCGAACCGCGTCTACGAGCC-3'
	Reverse	5'-AGGAGGCTCCGGGCAGATGG-3'
ITGA4hgen1	Forward	5'-TGGTTGCCTACACCTGAAAA-3'
	Reverse	5'-GAGCTGTGTGACCCCAAACT-3'
	Taqman -Sonde	5'-FAM6-ACGAAAGAACTGGACGGCTBBQ-3'
RASGRP2hgen1	Forward	5'-GCATCCAGGTCTCCAGTCTC-3'
	Reverse	5'-CAGTTCACACAGGAGGAACG-3'
	Taqman -Sonde	5'-FAM6-CCTTTCCATTCGACCCTGTBBQ-3'
GZMBgen1	Forward	5'-CCCTCTGGTTTTGTGGTGTC-3'
	Reverse	5'-TCTCACACAAGCACCCAGAG-3'

3.1.4.2 Murine genomische DNA

CFPmgen1	Forward	5'-AATGCCACTTCCCTTTTTCA-3'
	Reverse	5'-GCCCTTTCCTAAAAGTGAGGTT-3'
	Taqman-	
	Sonde	5-6FAM-TIGCATIGACCICACACACABBQ-3
CDC5Lmgen1	Forward	5'-TCACCCTAGTCTCGGACCTG-3'
	Reverse	5'-CCAGGCTGCAACCTTAAGAC-3'
	Taqman-	
	Sonde	5-0FAM-ACTAATCAAACCGCAGGTGCBBQ-3
CD150mgen1	Forward	5'-AAGCCAGGGTTTGACTGATG-3'
	Reverse	5'-TGAGAAGCCAAAGTCAGGTG-3'
	Taqman-	
	Sonde	5-6FAM-ATTACAGCCCCTTTCCCAACBBQ-3
DMPKmgen1	Forward	5'-AGCTACTTTGGGGGGTCTGCT-3'
	Reverse	5'-CGTGAAGGACCACACAGTGA-3'

	Taqman-	
	Sonde	5-0FAM-CTCCTGTCACCACGTAGCGGCBBQ-3
CSF1Rmgen1	Forward	5'-CCTAAGTCTCTCAAACTCCATCAT-3'
	Reverse	5'-ACACACCACACCAGAGGA-3'
	Taqman-	5'-6FAM-CCTTCAGGATCAGTTGAGCCTGGC
	Sonde	BBQ-3'
ELA2mgen1	Forward	5'-TGCCATGTGCTGTCTAGTCC-3'
	Reverse	5'-GCTGGGACTAAGGGTGTGAA-3'
	Taqman- Sonde	5'-6FAM-CCCACTGTCCTGGGAATAGABBQ-3'
EPORmgen1	Forward	5'-GATACTGGCTGGAGCGAGAG-3'
	Reverse	5'-ACAGCCACTGCCTAAACCAG-3'

3.1.4.3 Humane cDNA

ETV6/RUNX	Forward	5'-GAAGGGAAGCCCATCAACCTC-3'
1		
	Reverse	5'-TGAAGCGGCGGCTCGT-3'
	Taqman-	5'-6FAM-TCTCCCCGCCTGAAGAGCACCCAXTPH-
	Sonde	3'
ABL	Forward	5'-TGGAGATAACACTCTAAGCATAACTAAAGGT-3'
	Reverse	5'-GATGTAGTTGCTTGGGACCCA-3'
	Taqman-	5'-6FAM-CCATTTTTGGTTTGGGCTTCACACCATXT
	Sonde	PH-3'

3.1.4.4 Plasmid-DNA

shRNA_ETV6	Forward	5'-TCTGGGAAATCACCATAAACG-3'
	Reverse	5'-CCACATAGCGTAAAAGGAGCA-3'

3.1.5 Verbrauchsmittel

Bezeichnung	Firma; #Artikelnummer
Blot Paper Extra Thick	BioRad; #170-3966
Cryoröhrchen	Carl Roth; #41264
Falcon [®] 100mm TC-Treated Cell Culture Dish	Corning; #353003
Falcon [®] 12 Well Clear Flat Bottom TC-Treated Multi-	Corning; #353043

Bezeichnung	Firma; #Artikelnummer
well Cell Culture Plate	
Falcon [®] 150 mm TC-Treated Cell Culture Dish with	Corning; #353025
20mm Grid	
Falcon [®] 15mL High Clarity PP Centrifuge Tube	Corning; #352096
Falcon [®] 175cm ² Rectangular Straight Neck Cell Cul-	Corning; #353112
ture Flask	
Falcon [®] 24 Well Clear Flat Bottom TC-Treated Multi-	Corning; #353047
well Cell Culture Plate	
Falcon [®] 24 Well Polystyrene Clear Flat Bottom Not	Corning; #351147
Treated Cell Culture Plate	
Falcon [®] 25cm ² Rectangular Canted Neck Cell Culture	Corning; #353108
Flask	
Falcon [®] 50mL High Clarity PP Centrifuge Tube	Corning; #352070
Falcon [®] 75cm ² Rectangular Straight Neck Cell Culture	Corning; #353110
Flask	
Falcon [®] 96 Well Clear Flat Bottom TC-Treated Micro-	Corning; #353936
test Cell Culture Plate	
Färbeküvette 'Hellendahl', PMP	Vitlab; #500817
Haemacytometer Deckgläser, 22x22 mm, opt. planpa-	Thermo Fisher Scientific;
ral. geschl.	#EA022022A4
Heavy Paselock tube	VWR; #713-2535
Immobilon-P Membrane, PVDF, 0.45 µm, 26.5 cm	Merck Millipore;
x 3.75 m roll	#IPVH00010
Multiply PCR Platte 96well	Sarstedt; #721981202
Optical adhesive Covers	Applied Biosystems;
	#512274
Präzisions-Deckgläser (LxB; 24x50 mm Borosilikat-	Hecht; #10145024
glas)	
Safe-Seal Reagiergefäß (1,5 ml)	Sarstedt; #72.706
Safe-Seal Reagiergefäß (2,0 ml)	Sarstedt; #72.695.500
serolog. Pipetten 1 ml steril einzeln	Sarstedt; #86.1251.001
serolog. Pipetten 10 ml steril einzeln	Sarstedt; #86.1254.001
serolog. Pipetten 2 ml steril einzeln	Sarstedt; #86.1252.001
serolog. Pipetten 25 ml steril einzeln	Sarstedt; #861685001

Bezeichnung

serolog. Pipetten 5 ml steril einzeln Zählkammer nach Neubauer IMPROVED

3.1.6 Geräte

Bezeichnung ChemiDoc™ MP Imaging System Holten Laminair

Step One Plus Agilent 2100 Bioanalyzer

NanoDropTM 1000 Spectrophotometer Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell" System BD FACSCaliburTM Thermomixer comfort Biomek NXp 3730 DNA Analyzer Bandelin HD2070

BZ-9000E (BIOREVO) Agilent 2100 Bioanalyzer

Heraeus® Megafuge® 1.0R Multiskan Ascent 96/384 Plate Reader

Cytospin[™] 4 Cytocentrifuge

Hettich Mikro 220R

BBD 6220 CO2 Incubator

Wasserbad

Firma; #Artikelnummer Sarstedt; #86.1171.001 Carl Roth; #T729.1

Firma; #Artikelnummer

Bio-Rad; #170-8280 Thermo Fisher Scientific; #MS-2010 1.2 Life Technologies; #4376600 Agilent Technologies; #G2939AA Thermo Fisher Scientific; # Bio-Rad; #170-3940

Beckton Dickinson; #4CS Eppendorf; #2050-120-04 Beckman Coulter; #A31841 Life Technologies; #3730S Bandelin Electronic Berlin; #HD2070 Keyence; #BZ-9000E Agilent Technologies; #G2940CA Thermo Fisher Scientific; # Thermo Fisher Scientific; #P97263 Thermo Fisher Scientific; #A78300003 Hettich Lab Technology; #MIK-**RO 220R** Thermo Fisher Scientific; #50049176 GFL; #1003

3.1.7 Kits

Bezeichnung	Firma; #ArtikeInummer
5x HOT FIREPol® EvaGreen® qPCR Mix Plus (ROX)	SolisBioDyne; #08-24-00020
BCA Protein Assay Kit	Thermo Fisher Scientific;
	#23225
DNA-free™ Kit	Life Technologies; #AM1906
NucleoSpinTissue®	Machery & Nagel;
	#740952.50
mirVana™ miRNA Isolation Kit"	Life Technologies; #AM1560
NEBNext® ChIP-Seq Library Prep Master Mix Set for	New England Biolabs;
Illumina	#E6240L
Nuclear Extract Kit	Active Motif; #40010
PCR Mycoplasmen - Testkit	AppliChem; #A3744.0020
RNeasy Plus Mini Kit	Qiagen; #74134
SimpleChIP® Enzymatic Chromatin IP Kit	Cell Signaling; #9003
GeneJET Plasmid Miniprep Kit	Thermo Fisher Scientific;
	#K0502
NEBNext® ChIP-Seq Library Prep Master Mix Set for	New England Biolabs;
Illumina	#E6240L

3.1.8 Software

Bezeichnung	Anwendung	Firma
StepOne Software	RT-qPCR-Auswertung	Life Technolo-
v2.1		gies
ImageJ	Geleelektrophorese-Auswertung	Frei verfügbar
ImageLab	Westernblot-Analyse	BioRad
Flowing Software	FACS-Analyse	Frei verfügbar
FV10-ASW 4.1 Viewer	Auswertung der konfokal mikroskopierten	Olympus
	Präparate	
Primer3Plus	Primer- und Sondendesign	Frei verfügbar

Darüber hinaus wurden für die Berechnung und Auswertung der ChIP-Seq-Datensätze mit dem Excel basiertem Visual Basic (VBA) verschiedene Programme entwickelt und geschrieben.

3.1.9 Zelllinien

REH

<u>Allgemein</u> Die Zelllinie REH wurde aus Blasten einer *ETV6/RUNX1* positiven humanen B-Vorläuferzell-ALL (BVZ-ALL) etabliert, die von einem 15-jährigem Mädchen mit erstrezidivierter ALL stammen. Die Zelllinie trägt die Translokation t(12;21)(p13;q21) und exprimiert das Fusionstranskript *ETV6/RUNX1*. Das zweite *ETV6* Allel ist deletiert.¹⁴² <u>Immunologie</u> CD3⁻, CD10⁺, CD13⁻, CD19⁺, CD34⁻, CD37⁻, CD38⁺, cyCD79a⁺, CD80⁻, CD138⁺, HLA-DR⁺, sm/cylgG⁻, sm/cylgM⁻, sm/cykappa⁻, sm/cylambda^{-143,144} <u>Zytogenetik</u> Pseudodiploid 46(44-47)<2n>X,-X,+16,del(3)(p22), t(4;12;21;16)(q32;p13;q22;q24.3)-inv(12)(p13q22), t(5;12)(q31-q32;p12),

der(16)t(16;21)(q24.3;q22) – Klon mit inv(5)der(5)(p15q31),+18 mit t(12;21) und del(12), *ETV6-RUNX1* Fusion und Deletion des 2. *ETV6* Genlocus^{124,125}

UoC-B6

<u>Allgemein</u> Die Zelllinie wurde von Dr. Hanno Hock (*Harvard Medical School, Massachusetts General Hospital*) zur Verfügung gestellt und wurden aus Blasten eines 8-jährigen Mädchens mit rezidivierter BVZ-ALL etabliert. Sie zeigt wie REH Zellen die Translokation t(12;21)(p13;q21) mit der Genfusion *ETV6/RUNX1*¹⁴⁵. <u>Immunologie</u> HLA-DR⁺, CD34⁻, CD19⁺, CD24⁺, CD38⁺, CD20⁺, CD19^{+ 146}

HT1080

<u>Allgemein</u> Die humane Fibrosarkom-Zelllinie stammt von einem 35-jährigen kaukasischen Mann¹⁴⁷.

ImmunologieCytokeratin7⁻, Cytokeratin8⁺, Cytokeratin17⁻, Cytokeratin18⁺, Cytokeratin19⁻, Desmin⁻, Endothel⁻, EpCAM⁻, GFAP⁻, Neurofilament⁻, Vimentin⁺¹⁴⁷ZytogenetikPseudodiploid 46(44- 48), zirka 40% der Zellen zeigen Karyotypenmit Rekombinationen, einem zusätzlichen E-Gruppen Chromosom und einem dele-tierten C-Gruppen Chromosom (wahrscheinlich Chromosom 11)¹⁴⁷.

HT1080^{E/R}

<u>Allgemein</u> Die Zelllinie basiert auf dem Wildtyp der humanen Fibrosarkom-Zelllinie HT1080, die lentiviral mit dem *ETV6/RUNX1* Fusionsgen transduziert wurde. Der übertragene Vektor enthält neben der *ETV6/RUNX1* Sequenz über eine interne Ribosomen-Eintrittsstelle (IRES) gekoppeltes eGFP. Die HT1080^{*E/R*} Zellen wurden
von Dr. Stephan Lobitz (Charité- Universitätsmedizin Berlin; Klinik für Pädiatrie m. S. Onkologie und Hämatologie) zur Verfügung gestellt¹⁴⁸.

Ba/F3

<u>Allgemein</u> Bei dieser Zelllinie handelt es sich um eine IL-3 abhängige murine Prä-B ALL-Zelllinie (BVZ-ALL) mit unklarer Herkunft¹⁴⁹.

<u>Immunologie</u>	CD11b ⁺ , F4/80 ⁺
<u>Zytogenetik</u>	Weitgehend diploider Karyotyp mit 33% Polyploidie

Ba/F3^{E/R}

<u>Allgemein</u> Die Zelllinie basiert auf dem Wildtyp der Zelllinie Ba/F3. Sie wurde retroviral mit dem *ETV6/RUNX1* Fusionsgen (Sequenz nach Zelent et al.⁹⁰; Abbildung 1.7) transduziert¹⁵⁰. Die Zellen wurden von Dr. Kerstin Hasse zur Verfügung gestellt.

3.1.10 Patientenproben

ALL_#1

<u>Allgemein</u> Knochenmark (KM) eines 7-jährigen Jungens mit rezidivierter *ETV6/RUNX1* positiver ALL. Zum Zeitpunkt der ALL-Rezidivdiagnose wies der Patient einen Lymphoblastenanteil von >90% im KM auf (vor Ficoll-Separation).

Zytogenetik

Ersterkrankung: 46,XY,t(3;13)(q2?7;q2?1)[1]/47,idem.+21[3]/46,XY[21/47]

FISH: 40% der Kerne und 8/25 Metaphasen mit zwei *ETV6/RUNX1* Fusionen (t(12;21), zusätzlichem der(21)) und Deletion des wildtyp ETV6-Lokus.

<u>Rezidiv</u>: Molekular-zytogenetisch waren die aus dem Ausgangsbefund bekannte *ETV6/RUNX1*-Fusion und Deletion des zweiten *ETV6* Lokus in 91% der Kerne und in 6 von 8 Metaphasen wieder nachweisbar. Für einen Klon mit einem zweiten der(21) mit *ETV6/RUNX1*-Fusion, wie er im Ausgangsbefund nachgewiesen worden war, gab es in diesem KM keinen Anhalt.

ALL_#2

<u>Allgemein</u> Knochenmark eines 13-jährigen Mädchens mit zweitrezidivierter *ETV6/RUNX1* positiver BVZ-ALL. Zum Zeitpunkt der ALL-Rezidivdiagnose wies die Patientin einen Lymphoblastenanteil von 73% im KM auf (vor Ficoll-Separation).

Zytogenetik

Ersterkrankung: t(12;21)

<u>Rezidiv:</u> 46,XX; konventionell zytogenetisch waren keine klonalen Chromosomenaberrationen nachweisbar.

Molekular-zytogenetisch wurde in 73% der Kerne und in 17 von 23 analysierten Metaphasen eine *ETV6/RUNX1* Fusion (t(12;21)) nachgewiesen. Es wurde keine Deletion des zweiten *ETV6* Lokus nachgewiesen.

3.2 Methoden

3.2.1 Zellkultur Methoden

3.2.1.1 Kultivierung der Zellen

Die in der Tabelle 3.1 aufgeführten Zellen wurden nach dem Auftauen im entsprechenden Kulturmedium bei 37°C und 5% CO₂ mindestens einmal passagiert, bevor Versuche mit ihnen durchgeführt wurden.

Tabelle 3.1 Zellkulturbedingungen

Zelllinie	Kulturmedium
REH	RPMI; 20% FKS; 1% Penicillin/Streptomycin
UoC-B6	RPMI; 20% FKS; 1% Penicillin/Streptomycin
Ba/F3	RPMI; 10% FKS; 1% Penicillin/Streptomycin; 10ng/ml murines IL3
HT1080	IMDM; 10% FKS; 1% Penicillin/Streptomycin

Die adhärent wachsenden HT1080- und HT1080^{E/R}-Zellen wurden, je nachdem, welche nachfolgenden Versuche durchgeführt wurden entweder einmal mit PBS gewaschen, mit Trypsin/EDTA abgelöst und Zellkulturmedium aufgenommen (Einfrieren und Passagieren) oder ohne vorheriges Waschen mit einem Zellschaber geerntet und nach dem Überführen in ein 50 ml Reaktionsgefäß bei 500g für 5 Minuten einmal mit PBS gewaschen (ChIP).

Suspensionszellen wurden zentrifugiert (500g, 5 Minuten) und in Zellkulturmedium resuspendiert. Die Anzahl und Viabilität der Zellen wurde im Hämocytometer (Zählkammer nach Neubauer IMPROVED) mit Trypanblau bestimmt. Der Farbstoff dringt in geschädigte bzw. tote Zellen ein und färbt diese blau, vitale Zellen bleiben hingegen ungefärbt und erscheinen lichtmikroskopisch hellleuchtend. Die Viabilität wurde aus dem Verhältnis der intakten, ungefärbten Zellen gegenüber der Gesamtzellzahl berechnet.

3.2.1.2 Kryokonservierung von Zellen

Nach dem Zählen der Zellen und Bestimmung der Viabilität wurden diese entsprechend Tabelle 3.2 mit einer Mischung aus 90%FKS und 10% DMSO versetzt und jeweils 1 ml der Zellsuspension in die Einfrierröhrchen überführt. Der Anteil toter Zellen sollte beim Einfrieren nicht höher als 10% sein. Je höher die Verdopplungszeit der Zellen, desto höher konzentriert wurden sie eingefroren. Die Zellen wurden zunächst für mindestens 24h in ein mit Isopropanol gefüllten Kühlcontainern bei -80°C aufbewahrt, um eine schonende Abkühlung der Zellen mit einer Kühlrate von ca. 1°C pro Minute zu gewährleisten. Die längerfristige Aufbewahrung erfolgte anschließend in flüssigem Stickstoff.

Tabelle 3.2: Zellkonzentrationen bei der Kryokonservierung

Zelllinie	REH	UoC-B6	HT1080	HT1080 ^{E/R}	Ba/F3	Ba/F3 ^{E/R}
Zellzahl/ml	1 x 10 ⁷	1 x 10 ⁷	1x 10 ⁶	1x 10 ⁶	5x 10 ⁶	5x 10 ⁶

3.2.1.3 Präparation mononukleärer Zellen mittels Ficoll

Puffer und Lösungen

10x Erylysepuffer:	1,55 M NH ₄ Cl; 0,M KHCO ₃ ; 10 mM Na ₄ -EDTA
1 x Erylysepuffer:	1 ml 10x Erylysepuffer; 9 ml Wasser

Durch Ficoll-Separation wurden mononukleäre Zellen aus dem KM separiert. Um diese Zellen anzureichern und zu isolieren, wurde zunächst die Zellzahl in den KM-Proben der Patienten bestimmt und die Proben, wie in Tabelle 3.3 aufgeführt mit RPMI (37°C) verdünnt. Pro Ansatz wurden 4 ml Biocoll-Trennlösung (Biochrom, #L6113) in ein 10 ml Röhrchen gegeben und vorsichtig mit 5 ml des verdünnten Materials überschichtet. Nach dem Zentrifugieren (RT; 20 min; 500g; ohne Bremse) sammelten sich die mononukleären Zellen in der Interphase und die Erythrozyten und Granulozyten sedimentierten durch den Gradienten. Nachdem die Interphase vorsichtig abgenommen wurde, wurden die Zellen in ein neues Röhrchen überführt und mit ca. dem doppelten Volumen RPMI gewaschen (10 min; 750g), anschließend erfolgte die Erylyse.

Zellzahl	Verdünnung
bis ca. 20.000	1:3
30.000 bis 40.000	1:4
50.000	1:5
bis max. 100.000	1:10

Tabelle 3.3:	Verdünnuna	der Kl	M-Proben	vor der	Ficoll-Se	paration
	Verdunnung					purution

Bei der Erylyse wurden die Erythrozyten, die an der blutig roten Farbe der Interphase erkennbar sind, durch eine fünfminütige Inkubation mit 10 ml 1x Erylyse-Puffer lysiert. Die Reaktion wurde durch Zugabe von 2 Volumen RPMI (10% FKS) inaktiviert, anschließend wurden die Zellen für 10 min bei 750g abzentrifugiert, in 10 ml PBS resuspendiert und die Zellzahl erneut bestimmt.

Für die ChIP und ChIP-Seq Analysen wurden 2,5x 10⁸ Zellen pro Probe fixiert, in flüssigem Stickstoff schockgefroren und bis zur weiteren Anwendung bei -80°C aufbewahrt. Waren mehr als 2,5x 10⁸ Zellen vorhanden, wurden die restlichen Zellen kryokonserviert.

3.2.1.4 Mykoplasmentest

Mykoplasmen sind sehr kleine (< 0,2 µm Ø) parasitierende Bakterien der Klasse Mollicutes. Durch chronische Infektion mit Mykoplasmen können Funktionstüchtigkeit, Stoffwechsel und Wachstum sowie immunologische und biochemische Eigenschaften von Zellkulturen beeinträchtigt werden. Aus diesem Grund ist eine regelmäßige Kontrolle aller sich in Kultur befindlichen Zelllinien notwendig. Der Nachweis von Mykoplasmen erfolgte durch PCR mit dem *"PCR Mycoplasmen-Testkit"* von AppliChem (#A3744.0020) nach Herstellerangaben.

3.2.2 Mikrobiologische Methoden

3.2.2.1 Transformation in E-coli XL1-Blue

Die Klonierung bzw. Transformation der Plasmid-DNA in die chemikompetenten Ecoli XL1-Blue erfolgte nach Standardprotokoll:

Nach dem Auftauen der XL1-Blue-Zellen (100 μ l) auf Eis wurde 1 μ l der Plasmid-DNA (150 ng/ μ l) zu den Zellen gegeben und durch vorsichtiges Auf-und Abpipettieren gemischt. Der Reaktionsansatz wurde für 30 Minuten auf Eis inkubiert, anschließend erfolgte der Hitzeschock bei 42°C im Wasserbad für 45 Sekunden. Nach zwei Minuten Inkubation auf Eis wurden 300 μ l SOC-Medium (Life Technologies; #15544-034) zu dem Ansatz gegeben und bei 37°C für eine Stunde waagerecht bei 200 rpm geschüttelt. Pro Reaktionsansatz wurden 50 µl auf eine vorgewärmte LB-Ampicillin-Platte (50 µg/ml Ampicillin) ausplattiert, der Rest des Ansatzes wurde bei 2000 rpm für drei Minuten herunter zentrifugiert und das Zellpellet mit 100 µl Medium auf eine weitere LB-Ampicillin-Platte gegeben. Die Platten wurden über Nacht bei 37°C im Brutschrank inkubiert. Von jeder Platte wurden drei Klone gepickt, in ein Bakterienanzuchtröhrchen mit 3 ml LB-Medium überführt und bei 37°C über Nacht bei 200 rpm geschüttelt.

Von den gewachsenen Kulturen wurden Glycerin-Kulturen angelegt und eine Plasmid-Präparation durchgeführt.

3.2.2.2 Plasmidpräparation

Für die DNA-Plasmid-Präparation wurden 2 ml einer Übernachtkultur verwendet. Die Präparation erfolgte mit dem GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific; #K0502) nach Herstellerangaben.

3.2.2.3 Glycerin-Kulturen

Ein Teil der gewachsenen XL1-Blue wurde eingefroren. Dazu wurden pro Ansatz 250 µl Glycerin in ein 2 ml Reaktionsgefäß vorgelegt, mit 750 µl der Übernachtkultur überschichtet, anschließend kräftig gevortext und in flüssigem Stickstoff schockgefroren. Die Glycerin-Stocks wurden bei -80°C aufbewahrt. Dieser Bakterienstock kann für weitere Kultivierungen verwendet werden.

3.2.3 Molekularbiologische Methoden

3.2.3.1 DNA Isolation

Die DNA Isolation erfolgte mit dem Kit "*NucleoSpinTissue*[®]" (Machery & Nagel; #740952.50) entsprechend dem Protokoll des Herstellers.

Eine zweite verwendete Methode der DNA-Isolation, die Phenol-Chloroform-Extraktion nach Chomczynski und Sacchi¹⁵¹. Diese wurde bei der Etablierung der ChIP angewandt. Dazu wurden 200 µl gelöste DNA mit 200 µl Phenol-Chloroform-Isoamylalkohol versetzt und in ein 2 ml *"Heavy Phaselock tube"* (vwr; #713-2535) überführt. Die Phasen wurden bei 14.000g für 5 Minuten separiert. Die sich in der wässrigen Phase über dem Gel befindliche DNA wurde in ein neues 1,5 ml Reaktionsgefäß überführt. Durch Zugabe von 200 mM NaCl, 30 µg Glykogen und 800 µl 100% Ethanol wurde die DNA für mindestens 30 Minuten bei -20°C präzipitiert und durch Zentrifugation bei 14.000g für 5 Minuten und 4°C pelletiert. Anschließend wurde das Pellet einmal mit 500 ml 80% Ethanol gewaschen und erneut zentrifugiert. Vor dem Resuspendieren des Pellets mit 70 µl Wasser (oder 10 mM Tris-HCl, pH 8,0) muss das Ethanol vollständig entfernt werden.

Die Konzentrations-und Qualitätsbestimmung der DNA erfolgte mit dem NanoDrop 1000 Spectrophotometer.

3.2.3.2 RNA Isolation

Die RNA Isolation erfolgte mit zwei verschiedenen Kits nach Herstellerangaben. Zunächst wurde das *"mirVana™ miRNA Isolation Kit"* (Life Technologies; #AM1560) verwendet. Da bei dieser Methode jedoch für die RNA Extraktion Phenol-Chloroform verwendet wird, welches gesundheitsschädlich ist, wurde auf das *"RNeasy Plus Mini Kit"* (Qiagen; #74134) umgestellt. Beide Kits ermöglichten eine Isolation der RNA mit hoher Qualität (2:1-Verhältnis der 28S-und 18S-rRNA-Bande im Agarosegel). Die Bestimmung der Konzentration und der Qualität der eluierten RNA erfolgte mit dem NanoDrop 1000 Spectrophotometer und durch Agarosegelelektrophorese.

3.2.3.3 Reverse Transkription

Die Reverse Transkription (RT) beschreibt den Vorgang des Umschreibens von RNA in komplementäre DNA (cDNA). Zur Umschreibung der RNA in cDNA wurde die SuperScript[™] III Reverse Transkriptase (SuperScript[™] III RT; Life Technologies; #18080044) verwendet. Dieses Enzym zeichnet sich durch eine reduzierte RNase H-Aktivität und eine erhöhte thermische Stabilität aus.

Für einen Transkriptionsansatz wurden 1 µg RNA mit 1 µl *"Random Primers*" (Life Technologies; #48190011) und 1 µl 10mM dNTPs (Life Technologies; #18427-013) in 14 µl Reaktionsvolumen gemischt und für 5 Minuten bei 65°C erhitzt, um die Bindung der Primer zu gewährleisten. Anschließend wurden die Proben schnell auf 4°C abgekühlt. Zu diesem Ansatz wurden 4 µl "5x First-Strand Buffer" ,1 µl 0.1M DTT und 1 µl SuperScript™ III RT (200 Units/µl) gegeben. Die Probe wurde durch vorsichtiges Auf- und Abpipettieren gemischt, kurz zentrifugiert, für 5 Minuten bei 25°C und 60 Minuten bei 50°C inkubiert. Die Inaktivierung der Reaktion erfolgte für 15 Minuten bei 70°C. Bei einer vollständigen Umschreibung der RNA in cDNA liegt diese in einer Konzentration von 50 ng/µl vor. Die cDNA kann bis zur weiteren Verwendung bei - 20°C gelagert werden.

3.2.3.4 Primer-und Sondendesign

Im ersten Schritt wurde die Sequenz der zu amplifizierenden gDNA- bzw. cDNA Bereiche mit Hilfe des *UCSC Genome Browser* (http://genome.ucsc.edu/) ermittelt. Auf Grundlage dieser Sequenzen wurden mit dem Programm Primer3Plus Primer und Taqman-Sonden designt. Um einen optimierten Ablauf der *realtime quantitativen PCR* (RT-qPCR) zu gewährleisten, wurden alle Primer und Sonden für eine anneal*ing*-Temperatur von 60°C designt.

3.2.3.5 Realtime quantitative PCR

Die RT-qPCR ist eine Methode zur Vervielfältigung und Quantifizierung von RNA (cDNA) und DNA. Im Gegensatz zu der klassischen Endpunkt-PCR (PCR), bei der die Amplifikate auf ein Agarosegel aufgetragen und der Größe nach aufgeteilt werden, wird bei der RT-qPCR während der Amplifikation der PCR-Produkte, die qualitative Zunahme des PCR-Produktes gemessen, wodurch eine genaue bzw. relative Quantifizierung der DNA möglich ist. Bei der genauen Quantifizierung wird eine Standardreihe mit exakt definierter DNA-Menge unter den gleichen Bedingungen amplifiziert wie die zu quantifizierende DNA. Für die meisten Fragestellungen ist eine relative Quantifizierung, bei der neben der Zielgen-PCR für alle Proben eine RT-qPCR für ein konstitutiv exprimiertes Referenzgen (z.B. *ABL* oder *GAPDH*) durchgeführt wird, ausreichend. Die Normalisierung der Ziel-DNA findet über folgende Formel statt¹⁵²:

Relative Expression des Zielgens = $\frac{\Delta C_T^{(Zielgen)}}{\Delta C_T^{(Referenzgen)}}$

Qualitätskontrolle der Primer

Die RT-qPCR mit DNA-interkalierenden Farbstoffen (5x HOT FIREPol[®] EvaGreen[®]) wurde durchgeführt, um die Spezifität der designten Primer zu testen. Gegenüber der Quantifizierung mit TaqMan[®]-Sonden bietet diese Methode den Vorteil, dass im Anschluss an die RT-qPCR eine Schmelzkurvenanalyse durchgeführt werden kann, bei der die Schmelzpunkte, welche u.a. durch den GC-Gehalt und die Fragmentlänge der Amplifikate beeinflusst werden, der PCR Produkte bestimmt wurden. Waren bei der Schmelzkurvenanalyse zwei oder mehr Produkte erkennbar, waren die Primer nicht für die Quantifizierung geeignet, ansonsten wurden die entsprechenden TaqMan[®]-Sonden mit dem Programm Primer3Plus designt. Die Quantifizierungen

spezifischer Sequenzen von genomischer DNA (gDNA) und cDNA geschahen nur mittels TaqMan® -Sonden.

Komponente	Stammkonz.	Volumen
Wasser*		10,2 µl
Master Mix	5x	3,0 µl
Primer_F	10 µM	0,4 µl
Primer_R	10 µM	0,4 µl
DNA	10-50 ng	1,0 µl
Summe	-	15,0 µl

Tabelle 3.4: Zusammensetzung des EvaGreen[®] RT-qPCR Ansatzes

*Ultrapure DNase/RNase-Free distilled water

Tabelle 3.5: RT-qPCR Programm zur Quantifizierung mit EvaGreen[®]

	Temp.	Zeit	Zyklen
Vordenaturierung	95°C	00:15:00	1
Annealing	60°C	00:00:20	40v
Denaturierung	95°C	00:00:15	40X

DNA-Quantifizierung durch TaqMan[®]

Die Quantifizierung von cDNA und gDNA wurde mit dem TaqMan[®] Gene Expression Master Mix (Life Technologies; #4369016) nach Protokoll durchgeführt. Alle Primer und Sonden wurden so designt, dass die optimale *annealing* Temperatur bei 60°C lag.

Tabelle 3.6: Zusammensetzung des TaqMan[™] PCR Ansatzes

Komponente	Stammkonz.	Volumen
Wasser*		2,30 µl
Master Mix	2x	7,50 µl
Primer_F	10µM	0,40 µl
Primer_R	10µM	0,40 µl
Sonde_S	5µM	0,40 µl
DNA	10-50ng	4,00 µl
Summe		15,0 µl

*Ultrapure DNase/RNase-Free distilled water

Tabelle 3.7: RT-qPCR Programm für TaqMan[®]

	Temp.	Zeit	Zyklen
Aktivierung	50°C	00:02:00	1
Vordenaturieren	95°C	00:10:00	1
Denaturierung	95°C	00:00:15	45%
Annealing/Elongation	60°C	00:01:00	45X

3.2.3.6 Agarose-Gelelektrophorese

Puffer und Lösungen

DNA Ladepuffer (6x):	60 mM EDTA; 10 mM Tris-HCl (pH8,0); 0,1% (w/v) Orange G;
	60% Glycerin (v/v)
Tris-Acetat-EDTA-Puffer:	2 M Tris-Base; 0,05 M EDTA (pH8,0); 2 M Essigsäure
(TAE; 50x)	
Agarosegel (2%)	2 g Agarose/ 100 ml 1x TAE-Puffer; 2 µg/ml Ethidiumbromid

Die Agarose-Gelelektrophorese erlaubt die Auftrennung von RNA und DNA aufgrund ihrer Größe. Die Bestimmung der Fragmentgröße erfolgte anhand eines Molekülmassenstandards (peqGOLD 100 bp DNA-Leiter; Peqlab; #25-2010).

Die Gelelektrophorese wurde verwendet, um die Größenverteilung der DNA Fragmente nach dem Nukleaseverdau und vor Chromatin-Immunpräzipitation (ChIP) zu überprüfen (Abschnitt 3.2.7). Dazu wurde ein 2% (w/v) Agarosegel (2 g Agarose/100 ml 1x TAE-Puffer, 2 µg/ml Ethidiumbromid) verwendet. Die DNA Proben wurden vor dem Auftragen mit 1 /₆ Volumen 6x DNA Ladepuffer versetzt. Die elektrophoretische Auftrennung erfolgte mit 1x TAE als Laufpuffer. Durch die Interkalation des dem Agarosegels zugesetzten Ethidiumbromid mit der DNA können die DNA Fragmente unter UV-Licht sichtbar gemacht werden.

3.2.3.7 Sequenzierung von Plasmid-DNA

Die Sequenzierung erfolgte nach der Methode von Sanger¹⁵³ mit dem *BigDye[®] cycle sequencing* Kit (Life Technologies; #4337456). Für die Sequenzierung wurden Primer mit dem Programm *Primer3Plus* designt, welche die zu analysierende Sequenz mit einem Abstand von mind. 20 bp flankierten. Aufgrund des hohen GC-Gehaltes von *template* und Amplifikat wurden alternative PCRs und Sequenzier-PCRs getestet. Zwei der Methoden führten zum Erfolg:

1.1. Direkte Plasmid Sequenzierung

Bei der direkten Plasmid Sequenzierung wurde die Sequenzier-PCR direkt mit dem Plasmid, ohne vorherige Anreicherung des Amplifikats durch eine PCR, durchgeführt. Dazu wurden dem Sequenzier-PCR-Ansatz DMSO (4%) und Betain (1 M) zugesetzt. Beide Chemikalien unterbinden die Ausbildung von Sekundärstrukturen im Plasmid, senken die *annealing* Temperatur und erleichtern damit besonders die Amplifikation von GC-reichen DNA Abschnitten¹⁵⁴.

Komponenten	Enakonz.	volumina
Puffer (5x)	1x	2,2 µl
Primer	2pM	0,6 µl
BigDye [®]		2 µl
DMSO	4%	0,8 µl
Betain (5M)	1M	4 µl
Plasmid-DNA	500 ng	500 ng
Wasser*		ad 20 µl
Summe		20 µl

17

Tabelle 3.8 Reaktionsansatz für die Plasmidsequenzierung

*Ultrapure DNase/RNase-Free distilled water

Tabelle 3.9 Sequenzier-PCR Programm für Plasmid DNA

	Temp.	Zeit	Zyklen
Vordenaturierung	95°C	00:01:00	1
Annealing	50°C	00:00:15	
Elongation	60°C	00:04:00	25x
Denaturierung	95°C	00:00:30	
Pause	4°C	Pause	1

Die Sequenzier-PCR wurde am Pipettierroboter Biomek NXp (Beckman Coulter) mit dem *Agencourt CleanSEQ-Dye Terminator Removal* (Beckman Coulter, #A29151) aufgereinigt. Die einzelnen Schritte der Aufreinigung sind in Abbildung 3.1 dargestellt.

Abbildung 3.1: Aufreinigung der Sequenzier-PCR

Ablauf nach Beckman Coulter

- 1. Zugabe des Agencourt CleanSEQ Reagenz und Ethanol
- 2. Bindung der Sequenzier-Produkte an die magnetischen Beads
- 3. Trennen der Sequenzierprodukte von Kontaminationen
- 4. Waschen mit Ethanol
- 5. Elution der Sequenzier-Produkte von den magnetischen Beads
- 6. Überführen der Sequenzierprodukte in eine neue 96-well-Platte

Die Sequenzierung erfolgte nach Herstellerangaben am 3730 DNA Analyzer (Life Technologies, #3730S).

1.2. Indirekte Plasmid Sequenzierung

1.3. Amplifikation des zu sequenzierenden Bereiches

Dem Reaktionsansatz (Tabelle 3.10) wurde DMSO in einer Endkonzentration von 4% zugesetzt. Als Polymerase wurde die AmpliTaq Gold[®] DNA Polymerase (Life Technologies; #4311820) verwendet. Nach der Amplifikation (Tabelle 3.11) wurden 10 µl des PCR Produktes auf ein 2% Agarosegel aufgetragen (Abschnitt 3.2.3.6) und überprüft ob die tatsächliche Größe mit der erwarteten Größe übereinstimmt.

Komponenten	Endkonz.	Volumina
Wasser*		15,88 µl
10x Buffer (mit MgCl ₂)	1x	2,50 µl
dNTP	0,2 mM	2,50 µl
DMSO	4%	1,00 µl
Primer Forward	0,2 mM	0,50 µl
Primer Reverse	0,2 mM	0,50 µl
DNA	10 ng/µl	2,00 µl
AmpliTaq Gold [®]	-	0,125 µl
Summe		25,00 µl

Tabelle 3.10: Reaktionsansatz für eine PCR mit Plasmid-DNA

*Ultrapure DNase/RNase-Free distilled water

1.4. Aufreinigung der PCR Produkte

Die Aufreinigung der PCR Produkte erfolgte durch die Enzyme *Exonuclease I* (NEB; #M0293S) und *Antarctic Phosphatase* (NEB; #M0289S). Zu dem Reaktionsansatz (4,2 µl Wasser; 2,5 µl *Exonuclease I* Puffer; 2,7 µl *Antarctic Phosphatase* Puffer; 0,2 µl *Exonuclease I* und 0,4 µl *Antarctic Phosphatase*) wurden 10 µl PCR-Produkt gegeben und der Ansatz für 15 Minuten bei 37°C inkubiert. Die Hitzeinaktivierung der Enzyme fand für 20 Minuten bei 80°C statt.

1.5. Sequenzier PCR

Während der Amplifizierung (Tabelle 3.11) erfolgte der Einbau der im Reaktionsansatz (6 μ l Wasser; 2 μ l Puffer; 0,5 μ l Primer [10 μ M], 0,5 μ l BigDye[®] und 1 μ l aufgereinigtes PCR Produkt) enthaltenen Didesoxy-Nukleotide (dNTPs), die dNTPs sind mit verschiedenen Farben fluoreszenzmarkiert, so dass nach Anregung mit einem Laser die Nukleotidsequenz ermittelt werden konnte.

	Temp.	Zeit	Zyklen
Vordenaturierung	95°C	00:15:00	1
Annealing	60°C	00:01:00	40x
Elongation	72°C	00:01:00	
Denaturierung	95°C	00:00:30	
Pause	4°C	Pause	1

	Tabelle 3.11: PCR-ι	Ind Sequenzier-	PCR Programm	für Plasmid DNA
--	---------------------	-----------------	--------------	-----------------

Die Aufreinigung und Sequenzierung wurde wie bereits bei der Plasmid Sequenzierung beschrieben durchgeführt.

3.2.4 Proteinbiochemische Methoden

Puffer und Lösungen

SDN Lysepuffer	0,1 M Tris-HCl; 0,15 M NaCl; 0,5% (w/v) Na-		
	Deoxycholat; 0,5% (v/v) SDS; 0,5% (v/v) NP40;		
	5 mM EDTA; 10 mM NaF; 1mM Pefablock + 1%		
	(v/v) 10x Protease-Inhibitor-Cocktail; 50 μM		
	Na3VO4		
5x Lämmli Probenpuffer	60 mM Tris-HCl (pH6,8); 0,02% (v/v) SDS; 50%		
	(v/v) Glycerin; 10% (v/v) ß-Mercaptoethanol; 12,5%		
	(w/v) Bromphenolblau		
Trenngelpuffer	1,5 M Tris-HCl; 0,4% (v/v) SDS		
Sammelgelpuffer	0,5 M Tris-HCl; 0,4% (v/v) SDS		
Trenngel (12%)	7,2 ml Rotiphorese® Gel 30 (37,5:1); 4,5 ml Tren-		
	ngelpuffer; 6,2 ml Wasser; 90 µl APS (10%); 20 µl		
	TEMED		
Sammelgel (4%)	1,3 ml Rotiphorese® Gel 30 (37,5:1); 2,5 ml Sam-		
	melgelpuffer; 6,1 ml Wasser; 40 µl APS (10%); 20 µl		
	TEMED		
10x Transferpuffer (pH 8.1-8.4)	0,25 M Tris-Base; 1,92 M Glycin		
1x Transferpuffer	10% (v/v) Transferpuffer (10x); 10% (v/v) Methanol;		
	0,04% (v/v) SDS		
Ponceau S	0,1% (w/v) Ponceau S; 5% (v/v) Essigsäure		

3.2.4.1 Gewinnung von Zellkernextrakten

Die Gewinnung der Zellkern- und der zytoplasmatischen Fraktionen erfolgte mit dem "*Nuclear Extract Kit*" von Active Motif (#40010) nach Angaben des Herstellers. Die gewonnenen Fraktionen wurden bis zur weiteren Verarbeitung bei -80°C aufbewahrt.

3.2.4.2 Gewinnung von Gesamtzellextrakten

Die Gesamtzellextraktion der Proteine basiert auf der Methode von Poirel¹²⁰. Na₃VO₄

und der *Protease-Inhibitor-Cocktail* (PIC) wurden dem Puffer direkt vor dem Gebrauch zugesetzt. Für den Protease-Inhibitor-Cocktail wurde eine *cOmplete Mini-Tablette* (Roche; #11836153001) in 1 ml H₂O gelöst und 0,1 Volumen dieser Lösung für den Lysepuffer verwendet.

Für die Proteinextraktion wurden je 1x 10⁷ Zellen einmal mit PBS gewaschen und in einem 1,5 ml Reaktionsgefäß in 100 µl SDN Lysepuffer resuspendiert, kräftig gevortext und 2 min auf Eis inkubiert. Im Anschluss wurde das Lysat mit Ultraschall homogenisiert (Bandelin Electronic Berlin; Bandelin HD2070, Sonotrode MS73, Stufen/Boosterhorn SH70G), dazu wurden die folgenden Einstellungen gewählt: 5 Zyklen, mit je 90% Power für 25 Sekunden, 20 Sekunden Pause. Nach dem Ultraschall sollte das Lysat klar und nicht mehr viskös sein. War dies nicht der Fall, wurde die Ultraschallbehandlung wiederholt. Die beim Ultraschall entstandenen Zelltrümmer wurden durch Zentrifugation (14.000g; 10 min; 4°C) abgetrennt. Der Überstand enthält die Proteine und wurde bis zur weiteren Bearbeitung aliquotiert und bei -80°C aufbewahrt.

3.2.4.3 Proteinbestimmung

BCA (**B**icin**c**honinsäure **A**ssay): Diese Methode zur Bestimmung der Proteinkonzentration basiert auf der Reduktion von Cu²⁺ zu Cu¹⁺ Ionen in einem alkalischen Reaktionsmilieu. Dabei reagieren Cu²⁺ Ionen quantitativ mit Protein zu Cu¹⁺. Die Reduktion ergibt einen violetten Kupferkomplex, dessen Absorption bei einer Wellenlänge von 562 nm photometrisch ausgewertet werden kann. Die Farbentwicklung der Reaktion ist direkt proportional zu der Konzentration des anwesenden Proteins.

Für die Bestimmung der Proteinkonzentration wurde der "BCA Protein Assay Kit" von Thermo Fisher Scientific (#23225) nach Anleitung des Herstellers verwendet. Um die mit der Farbreaktion interferierenden Effekte zu minimieren, wurden die Proben vor der Messung 1:10 verdünnt. Die Proteinkonzentration der Proben wurde anhand der mitgeführten BSA-Standardreihe ermittelt.

UV Absorption bei 280nm: Die meisten Proteine haben ihr Absorptionsmaximum bei 280nm. Da jedoch auch andere Substanzen bei 280nm absorbieren, lässt diese Methode nur eine grobe Schätzung der Proteinkonzentration zu.

3.2.4.4 SDS Gelelektrophorese und Western Blot

Der Western Blot ist ein molekularbiologisches Verfahren zum Nachweis von Proteinen nach Übertragung (Blotting) auf eine Trägermembran. Dafür wurden die Proteine zunächst mit Wasser und 5x Lämmli-Probenpuffer auf eine Gesamtproteinmenge von 25 µg bis 100 µg in 20 µl eingestellt und für 3 Minuten auf 95°C erhitzt. Die so vorbereiteten Proben wurden auf ein 12% iges Acrylamid Gel aufgetragen und die Proteine für 20 Minuten bei 80V und 45 Minuten bei 180 V ihrer Größe nach aufgetrennt. Bei dem Immunoblot wurden die Proteine für 1,5 Stunden bei 12 V auf eine mit Methanol äquilibrierte PVDF Membran transferiert, anschließend wurde die Membran für 1 h mit 1x Roti-Block (Carl Roth; #A151.1) blockiert, um unspezifische Wechselwirkungen zu minimieren. Die Immundetektion der nachzuweisenden Proteine erfolgte mit dem entsprechenden in Blockierlösung nach Herstellerangaben verdünnten primären Antikörper bei 4°C über Nacht. Nach mehrmaligen Waschen mit PBS-T (PBS; 0,1% Tween) wurde die Membran mit dem entsprechenden HRP (horseradish peroxidase) gekoppelten sekundären Antikörper für 1 Stunde bei Raumtemperatur (RT) inkubiert. Die Detektion der Proteine erfolgte durch Verwendung des "SuperSignal West DURA Extended Duration Substrate" (Thermo Fisher Scientific; #1044-5345) mit dem "ChemiDoc™ MP Imaging System" (BioRad). Die quantitative Auswertung des Western Blots wurde mit ImageJ¹⁵⁵ gemacht.

3.2.5 Immunzytochemie

Puffer und Lösungen

Reinigungslösung	2,5 M NaOH; 60% Ethanol (absolut)
10x TBS	1,4 M NaCl; 30 mM KCl; 80mM Tris-HCl (pH 7,4)
0,3x PBS	0,3% PBS in Wasser
PBS-T	0,5% TritonX-100 in PBS
poly-L-lysine-Lösung	0,1% poly-L-lysine in Wasser
Fixierlösung	4% Paraformaldehyd in 0,3x PBS
Stabilisierungslösung	1% BSA, 0,05% NaN $_3$ in PBS
DAPI (1mM)	10 μM in PBS

Das Protokoll für die Immunzytochemische (IZC) Färbung von ETV6/RUNX1 bzw. ETV6 in den Zelllinien HT1080, HT1080^{*E/R*}, REH, Ba/F3 und Ba/F3^{*E/R*} basierte auf dem Protokoll von Solovei et al.¹⁵⁶.

Jede IZC erfolgte in vier Ansätzen:

Ansatz 1 mit primärem und sekundärem Antikörper

- Ansatz 2 mit blockiertem primärem Antikörper und mit dem sekundären Antikörper
- Ansatz 3 nur mit dem sekundären Antikörper
- Ansatz 3 Kontrolle ohne Antikörper

3.2.5.1 Säubern der Deckgläser (1. Tag)

Vor der Immunfärbung wurden die verwendeten Deckgläser von möglichen Verunreinigungen, wie z.B. Fettrückständen gesäubert und sterilisiert, dazu wurden 100 ml Reinigungslösung zu den in einer Färbeküvette (Hellendahl) stehenden Deckgläsern gegeben und zwei Stunden unter schütteln bei RT inkubiert. Nach dem Entfernen der Reinigungslösung wurden die Deckgläser viermal für fünf Minuten bei RT gewaschen.

3.2.5.2 Aussäen adhärent wachsender Zellen (1. Tag)

Für jeden Ansatz wurden die adhärent wachsenden HT1080 und HT1080^{E/R} im Verhältnis 1:1 (50:50) auf die gesäuberten Deckgläser ausgesät und über Nacht bei 37°C und 5% CO₂ inkubiert. Für optimale Ergebnisse sollte die Konfluenz der Zellen zwischen 80 und 90% liegen.

3.2.5.3 Beschichten der Deckgläser 1. Tag)

Um eine Adhäsion der Suspensionszellen an das Deckglas zu ermöglichen, wurden die gesäuberten Deckgläser mit Poly-L-Lysin (PLL) beschichtet. Dazu wurden 300 μ l der 0,1 mg/ml PLL-Lösung auf die Mitte der gesäuberten Deckgläser gegeben und für eine Stunde bei RT in einer feuchten Kammer inkubiert. Anschließend wurde das PLL ablaufen gelassen, die Deckgläser einmal mit ddH₂O gewaschen und an der Luft trocknen lassen.

3.2.5.4 Ansetzen Blockierungslösung (1. Tag)

Durch die Behandlung des primären Antikörpers mit dem entsprechenden Antigen (*blocking peptide*; BP) kann die Spezifität des Antikörpers gegenüber dem entsprechenden Epitop getestet werden. Je spezifischer der Antikörper bindet desto größer ist die Hemmung durch das Antigen und desto geringer ist das detektierte Signal nach Behandlung mit dem sekundären Antikörper. Um den Antikörper zu blockieren, wurden 0,1 µg Antikörper mit 20 µg BP in 120 µl Stabilisierungslösung bei 4°C für 1h unter Rotieren inkubiert.

49

3.2.5.5 Aussäen der Suspensionszellen (2. Tag)

Für jeden Ansatz (1 bis 4) und jede Zelllinie wurden $4x \ 10^6$ Zellen zentrifugiert (700 g; 5 Minuten) und das Sediment in 1,2 ml RPMI (50% FKS) aufgenommen. Je 0,3 ml dieser Suspensionen wurden auf je ein beschichtetes Deckglas in einer feuchten Kammer geben und für eine Stunde bei 37°C und 5% CO₂ inkubiert. Während dieser Zeit setzten sich die Zellen auf der Glasoberfläche ab und hefteten sich an.

3.2.5.6 Immunfärbung

Nach dem Anheften der Zellen auf die Deckgläser wurde das Medium ablaufen gelassen und die Deckgläser für eine Minute mit 300 µl 0,3x PBS in einer feuchten Kammer inkubiert. Anschließend wurden die Zellen mit 300 µl Fixierlösung für 10 Minuten bei Raumtemperatur behandelt. Die fixierten Zellen wurden jeweils in folgender Reihenfolge dreimal für fünf Minuten mit PBS, TBS und PBS-T in Färbeküvetten (nach Hellendahl) gewaschen. Die unspezifischen Bindungen wurden durch Zugabe von *normal donkey serum* (1:20 in Stabilisierungslösung verdünnt) und Inkubation für 30 Minuten in einer feuchten Kammer blockiert. Die Behandlung der Zellen mit den Antikörpern erfolgte nach dem in Tabelle 3.12 aufgeführten Schema.

	Ansatz 1	Ansatz 2	Ansatz 3	Ansatz 4
Primärer Antikörper	Ja	-		
Primärer Antikörper+ BP		Ja		
Waschen	Ja	Ja		
2. Antikörper	Ja	Ja	Ja	
Waschen	Ja	Ja	Ja	
DAPI	Ja	Ja	Ja	Ja

Tabelle 3.12: Ablauf der Immunfärbung

Die Inkubation mit 0,1 µg primärem Antikörper in 120 µl Stabilisierungslösung sowie mit dem sekundären Antikörper (0,025 µg in 120 µl Stabilisierungslösung) erfolgte jeweils für eine Stunde bei RT in einer feuchten dunklen Kammer. Nach jeder Inkubation wurden die Deckgläser mit reichlich PBS für dreimal zwei Minuten gewaschen. Vor dem Einbetten der Zellen in *Vectashield[®] mounting medium* wurden die Zellkerne durch eine zweiminütige Behandlung mit dem DNA-interkalierenden Farbstoff DAPI (10 µM in PBS; 120 µl) angefärbt. Die gefärbten Präparate können im Dunkeln kurz-fristig bei 4°C und längerfristig bei -20° aufbewahrt werden. Die Fluoreszenzmikroskopischen Aufnahmen wurden mit dem Keyence BZ-9000E (40x Objektiv, Phasenkontrastmikroskop) und dem konfokalen Laser Scanning Mikroskop (Olympus FV1000 MPE; Dr. Korte; Group of Molecular Biophysics; HU Berlin) durchgeführt.

3.2.6 Durchflusszytometrie

Puffer und Lösungen

Stabilisierungslösung 1% BSA, 0,05% NaN₃ in PBS

3.2.6.1 Bestimmung des Zelltyps und des Differenzierungsstadiums

Da der Immunphänotyp der UoC-B6 Zellen bis zum Zeitpunkt dieser Dissertation noch weitgehend unbekannt war, wurde die Expression verschiedener lymphatischer und myeloischer Oberflächenmarker (CD; *Cluster of differentiation*) zur Bestimmung des Zelltyps und des Differenzierungsstadiums mittels Durchflusszytometrie (FACS; Fluorescence activated cell sorting) bestimmt.

Pro Ansatz wurden 0,5x 10⁶ Zellen in FACS-Röhrchen überführt, einmal mit PBS gewaschen und anschließend in der Stabilisierungslösung resuspendiert. Zu jedem Ansatz wurde jeweils die in Tabelle 3.13 aufgeführten Mengen des fluoreszenzge-koppelten CD-Antikörpers gegeben, für 30 Minuten bei 4 °C im Dunkeln inkubiert und anschließend erneut zweimal mit PBS gewaschen. Die FACS-Analyse wurde am BD FACSCalibur[™] (Becton Dickinson; #4CS) durchgeführt. Die Auswertung der Daten erfolgte direkt am Gerät bzw. mit dem Programm Flowing Software.

Antikörper	Volumen	Firma; Artikelnummer	
FITC-CD3	5 µl	ImmunoTools, #21620033S	T-Zellmarker
PE-CD10 (2)	5 µl	DAKO; #R0848,	B-Zellmarker
FITC-CD19	2 µl	ImmunoTools, #21270193S	B-Zellmarker
FITC-CD20 (2)	20 µl	Immunotech, #PN IM1455(U), Klon B9E9	B-Zellmarker
FITC-CD22 (2)	20 µl	Becton Dickinson; 347573; Klon S-HCL-1	B-Zellmarker
PE -CD34	20 µl	Becton Dickinson; 560941; Klon 581	B-Zellmarker
FITC-CD45	5 µl	ImmunoTools, #21270454S	B-Zellmarker
FITC-lgG1 Kontrolle	5 µl	ImmunoTools, #21275513S	
FITC-IgG2 Kontrolle	5 µl	ImmunoTools, #21275523S	
PE-IgG1 Kontrolle	5 µl	ImmunoTools, #21275514S	

Tabelle 3.13: Reaktionsansätze und verwendete FACS-Antikörper

(2) Als Isotypkontrolle wurde die FITC-IgG (2) Kontrolle verwendet

Um die unspezifische Bindung der zur Analyse verwendeten Antikörper bestimmen zu können, wurden Kontrollansätze mit den entsprechenden Isotypkontrollen markiert.

3.2.7 Chromatin-Immunpräzipitation und Sequenzierung

Ziel der Arbeit war, Zielgene des Fusionsonkoproteins ETV6/RUNX1 zu identifizieren. Dazu wurde die ChIP, wie im Abschnitt 4.2 beschrieben, etabliert und optimiert. Die ersten ChIP-Experimente wurden nach dem Protokoll von Lee et al.¹⁵⁷, die späteren mit dem "SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads)" von Cell Signalling Technologies (CST) durchgeführt. Die Protokolle von Lee et al. und CST unterschieden sich in einem Punkt voneinander. Im Protokoll nach Lee et al. wurden die Dynabeads[®] Protein G zunächst mit den IP-Antikörpern inkubiert und die beladenen Beads zu den Zelllysaten gegeben. Im CST-Protokoll wurden die Lysate erst mit dem IP-Antikörper inkubiert, bevor die Beads dazugegeben wurden. Es ist unklar, welche dieser beiden Varianten die besseren Ergebnisse erzielt. Abweichend von beiden Protokollen wurde ein *preclearing* zur Reduktion des unspezifischen Hintergrundes eingeführt. Bei dem *preclearing* wurden je 4x 10⁷ Zellen/1 ml Lysat mit 12 µl Beads für 1,5 Stunden bei 4°C behandelt und unspezifisch an Beads gebundenen Proteine durch magnetische Separation entfernt.

Puffer und Lösungen nach CST

4x Puffer A (4x NP-40 Lysis Puffer)	0,4 M Tris-HCl (pH 8,0); 0,6 M NaCl; 4% (v/v)
	NP40
1x Puffer A (1x NP-40 Lysis Puffer)	25% (v/v) 4x Puffer A; 0,5 M DTT; 10% 10x
	Protease-Inhibitor-Cocktail; 0,1 mM PMSF
4x Puffer B (pH 7,9)	0,05 M Tris-HCl (pH 8,0); 5 mM CaCl ₂
1x Puffer B (pH 7,9)	25% (v/v) 4x Puffer B; 0,5 mM DTT
10x ChIP Puffer	160 mM Tris-HCI (pH 8,0); 160 mM NaCl; 10%
	(v/v) Triton X-100; 1 mM EDTA; 1% (v/v) SDS
1x ChIP Puffer	10% (v/v) 10xChIP Puffer; 10% (v/v) 10x Pro-
	tease-Inhibitor-Cocktail; 1mM PMSF

Protokoll

Die ChIP mit dem "*SimpleChIP[®] Enzymatic Chromatin IP Kit (Magnetic Beads)*" erfolgte im Wesentlichen nach Herstellerangaben:

Abbildung 3.2: Ablauf eines ChIP-Experiments

Die ChIP erfolgt in 5 Schritten, an deren Ende die Hochdurchsatz DNA-Sequenzierung (ChIP-Seq) steht. Die einzelnen Schritte werden im folgenden Text näher erläutert (modifiziert nach R&D Systems).

1. Ernten und Fixieren der Zellen

Die KM-Leukämiezellen der Patienten wurden, wie in Abschnitt 3.2.1.3 beschrieben, aufgearbeitet, fixiert und bis zur weiteren Verarbeitung eingefroren. Die Zelllinien wurden nach dem Zählen mit je 1x 10⁷ Zellen in 20 ml Zellkulturmedium (10% FKS) aufgenommen und mit 1% Formaldehyd (Thermo Fisher Scientific; #614128) für 10 Minuten bei RT fixiert. Nach Beenden der Reaktion durch Zugabe von 1/10 Volumen 2,5 M Glycin wurden die Zellen zweimal mit eiskaltem PBS für 5 Minuten bei 4°C und 700 g gewaschen.

2. Zelllyse und Fragmentierung der DNA

Für die Zelllyse wurden je 1x 10⁷ Zellen bzw. die gefrorenen Pellets der Patientenproben mit 10 ml Lysepuffer A versetzt, durch Invertieren gelöst, für 10 Minuten bei 4°C unter Rotieren inkubiert und für 5 Minuten bei 4°C und 1000 g herunter zentrifugiert. Anschließend wurden die Zellen in 10 ml Puffer B resuspendiert und erneut herunter zentrifugiert.

Die Fragmentierung der DNA erfolgte mit der im Kit enthaltenen *Micrococcal Nuclease* (MN). Die MN schneidet jeweils zwischen zwei Nukleosomen. Je nach gewählter Inkubationsdauer und Konzentration der eingesetzten MN entstehen Fragmente mit einer Länge die ein Vielfaches von 150 bp betragen. Für die ChIP mussten die Fragmentlängen der DNA zwischen ca. 150 bp und 900 bp liegen, dazu wurden je 4x 10⁷ Zellen mit 1 ml Puffer B verdünnt und mit 1 µl MN bei 37°C für 30 Minuten im Thermomixer *comfort* bei 1200 *rpm* inkubiert. Die Reaktion wurde durch Zugabe von 0,1 Volumen 0,5 M EDTA gestoppt. Im Anschluss wurden die Zellen bei 14.000 g für 1 Minute und 4°C herunter zentrifugiert, der Überstand vollständig entfernt und das Pellet in 1 ml 1x ChIP Puffer resuspendiert. Um die Protein-Chromatin-Komplexe aus der Zelle freizusetzen, wurden die Lysate mit Ultraschall behandelt (Branson Sonopuls: 25 s Puls, 20 s Pause, 90% *Cycle*, 60% *Power*, 5x), die durch die Ultraschallbehandlung entstandenen Zelltrümmer wurden durch Zentrifugation (10 Minuten, 14.000 g und 4°C) abgetrennt und der Überstand, mit dem fragmentierten Chromatin in ein neues Reaktionsgefäß überführt.

Um den Grad der Fragmentierung sowie die DNA- und Proteinkonzentration zu bestimmen, wurden von jedem Ansatz 30 µl Lysat abgenommen und zunächst einer RNase Behandlung unterzogen, dazu wurden zu den 30 µl Lysat 60 µl DNase- und RNase freies Wasser, $1/_{25}$ Volumen 5M NaCl und $1/_{75}$ Volumen RNaseA gegeben. Der Ansatz wurde gut gemischt und für 20 Minuten bei 37°C im Thermomixer *comfort* bei 1200rpm inkubiert.

Für den anschließenden Proteinase K- bzw. DNase-Verdau wurde der Ansatz geteilt. Der DNase-Verdau wurde mit dem "DNA-free™ Kit" (Life Technologies; #AM1906) nach Herstellerangaben durchgeführt, anschließend wurde die Proteinkonzentration mit dem NanoDrop 1000 Spectrophotometer bestimmt. Der Proteinase K Verdau erfolgte mit dem im "*SimpleChIP*[®] *Enzymatic Chromatin IP Kit"* enthaltenen Enzym nach Herstellerangaben. Anschließend wurde die DNA-Konzentration mit dem NanoDrop 1000 Spectrophotometer bestimmt und 20 µl des Eluats mit 0,6 Volumen 6x DNA-Ladepuffer versetzt und auf ein 2% Agarosegel aufgetragen (Abschnitt 3.2.3.6).

3. Chromatin-Immunpräzipitation (ChIP)

Um unspezifische Wechselwirkungen der Antikörper mit anderen Molekülen zu reduzieren, wurde vor der ChIP ein sogenannter *preclearing* Schritt eingeführt. Bei diesem Vorgang wurden je 4x 10⁷ Zellen/ 1 ml 1x ChIP-Puffer mit 12 µl *ChIP Grade Protein G Magnetic Beads* versetzt und für 90 Minuten bei 4°C unter Rotieren inkubiert. Nach magnetischer Separation wurden alle Ansätze gepoolt und 60 µl für den ChIP-Input abgenommen. Diese Probe wurde bei -20°C bis zur weiteren Verwendung aufbewahrt. Das restliche Lysat wurde aufgeteilt, wie in Tabelle 3.14 ausgeführt, mit den entsprechenden Antikörpern versetzt und über Nacht bei 4°C unter Rotieren inkubiert. Bei der Probe ALL_#2 war nicht genügend Zellmaterial vorhanden, bei dieser Probe wurde mit entsprechend weniger Zellen gearbeitet.

Tabelle 3.14: Antikörpermengen und Zellkonzentrationen der ChIP-Ansätze

Zellzahl	Zellzahl	Antikörper-Bezeichnung	Volumen bzw.
typisch	ALL_#2		Menge
1x 10 ⁸	0,5x 10 ⁸	Rabbit mAb to RUNX1, clone EPR3099*	10 µg

Zellzahl	Zellzahl	Antikörper-Bezeichnung	Volumen bzw.
typisch	ALL_#2		Menge
1x 10 ⁸	0,5x 10 ⁸	Rabbit pAb to ETV6*	10 µg
0,25x 10 ⁷	0,2x 10 ⁸	Rabbit pAb to Histone H3**	10 µl
0,25x 10 ⁷	0,2x 10 ⁸	Normal Rabbit IgG**	2 µl
* Abschnitt 3 1 3 Antikörner: ** im SimpleChIP [®] Enzymatic Chromatin IP Kit enthaltenen			

Nach der Bindung der Antikörper an die Protein-DNA-Fragmenten, wurden zu jedem Ansatz 30 µl ChIP Grade Protein G Magnetic Beads gegeben und bei 4°C für mindestens 2h unter Rotieren inkubiert. Anschließend wurden die Beads für je 5 Minuten bei 4°C unter Rotieren dreimal mit 1 ml Waschpuffer A (300 µl 10x ChIP Buffer + 2,7 ml Wasser) und einmal mit 1 ml Waschpuffer B (100 µl 10x ChIP Buffer + 900 µl Wasser + 70 µl 5 M NaCl) gewaschen. Um die Protein-DNA-Komplexe von den Beads zu eluieren und die Quervernetzungen zwischen Proteinen und DNA aufzuheben, wurden 150 µl 1x ChIP Elution Buffer zu den Beads gegeben und für 30 Minuten bei 65°C und 1200rpm im Thermomixer comfort inkubiert, danach wurden die Beads kurz herunter zentrifugiert, der Überstand abgenommen und in ein neues Reaktionsgefäß überführt. Die Inputprobe wurde auf 150 µl mit 1x ChIP Elution Buffer aufgefüllt und zu allen Proben ¹/₂₅ Volumen 5 M NaCl und ¹/₇₅ Volumen Proteinase K (im "SimpleChIP® Enzymatic Chromatin IP Kit" enthalten) gegeben und erneut bei 65°C und 1200rpm für 2h inkubiert.

4. Aufreinigung der DNA

Zu jeder Probe wurden 5 Volumen DNA Binding Reagent A gegeben und kurz gevortext. Anschließend wurden die Probe in das entsprechende Spin Column/ Collection Tube pipettiert und zentrifugiert (30 Sekunden bei 14.000g). Der Durchlauf wurde verworfen, die gebundene DNA durch Zugabe von 700 µl DNA Wash Reagent B und Zentrifugieren bei 14.000g für 30 Sekunden gewaschen, um Ethanol Reste zu entfernen, wurde die DNA für 30 Sekunden bei 14.000g getrocknet. Anschließend wurde das Spin Column in ein neues Reaktionsgefäß überführt und die DNA durch Zugabe von 50 µl Elution Buffer eluiert (14.000g; 30 Sekunden). Die DNA Konzentration wurde mit dem NanoDrop 1000 Spectrophotometer ermittelt und die Proben bis zur weiteren Verwendung bei -80°C aufbewahrt.

Bevor die in der ChIP gewonnenen DNA Fragmente sequenziert wurden, wurde die Anreicherung von ETV6/RUNX1 zunächst mit Western Blot und RT-qPCR und später nur mittels RT-qPCR gemessen, da die Qualität des ETV6/RUNX1 Nachweises mittels Western Blot aufgrund der sehr niedrigen Expression des Fusionsproteins nicht

55

konstant war. Für die Western-Blot-Kontrolle wurde nach der IP (vor dem Proteinase K Verdau) ein Teil des Lysates abgenommen (Output), mit 5x Lämmli-Probenpuffer versetzt und auf ein 12% SDS Gel aufgetragen. Als Kontrolle dienten ein Teil des Lysates vor IP (Input) und mit dem SDN Puffer extrahiertes Protein aus derselben Zelllinie bzw. Patientenprobe mit der die ChIP durchgeführt worden ist.

Die Detektion von ETV6/RUNX1 erfolgte mit dem monoklonalen RUNX1 Antikörper (Epitomics; EPR3099; #2593-1), der auch für die ChIP verwendet wurde. Als Referenzproteine dienten sowohl ß-Aktin als auch Histon H3. Histon H3 kommt im Gegensatz zu ß-Actin, welches im Zytoplasma lokalisiert ist, vorwiegend im Zellkern vor und diente als Kontrolle, dass nur die im Zellkern lokalisierten Proteine, welche die Protein-Chromatin-Komplexe bilden können, präzipitiert worden sind. Nach IP sollte in den Proben im Idealfall nur Histon H3 und kein ß-Aktin Signal zu detektieren sein. Mit der RT-qPCR wurde die spezifische Anreicherung von bekannten Zielgenen nach ChIP nachgewiesen: Als positive Kontrollen dienten für die murine Zelllinie Ba/F3 und Ba/F3^{*E/R*} zunächst *CFP* und *EPOR* und als negative Kontrolle *CD150*. Nach Auswertung der ersten ChIP-Seq Daten von UoC-B6 zeigte sich, dass diese Kontrollen für humane Zelllinien nicht geeignet waren, deshalb wurden, basierend auf den ChIP-Seq-Daten der UoC-B6-Zellen *LMBR1*, *IGLL1* und *CD150* als Kontrollen verwendet. Die Quantifizierung der DNA wurde mit dem *TaqMan*[®] Gene Expression Master Mix nach Protokoll durchgeführt (Abschnitt 3.2.3.5).

Name	ChIP-Kontrolle	Zelllinien*
CFPhgen1	positiv	UoC-B6
EPORhgen1	positiv	UoC-B6
GZMBgen1	positiv	Ba/F3
CD150hgen2	negativ	UoC-B6, REH, ALL #1, ALL #2
IGLL1hgen1**	positiv	REH, ALL #1, ALL #2
IGLL1hgen2	negativ	REH, ALL #1, ALL #2
LMBR1hgen1**	positiv	REH, ALL #1, ALL #2
LMBR1hgen2	negativ	REH, ALL #1, ALL #2

Tabelle 3.15: Primer für die ChIP-Kontrollen

hgen: Primer für humane gDNA getestet, mgen: Primer für murine gDNA getestet; gen: Primer sowohl für humane als murine gDNA getestet; * Zelllinien in denen die entsprechenden Kontrollen verwendet wurden; ** Alle Amplifikate innerhalb eines Peaks (basierend auf den ChIP-Seq Daten von UoC-B6 Zellen) sind positive Kontrollen

3.2.7.1 Hochdurchsatz DNA-Sequenzierung

Die Hochdurchsatz DNA-Sequenzierung der aufgereinigten DNA aus Input-Chromatin der ChIP und aus den Outputs der anti-ETV6 und anti-RUNX1 Fällungen sowie die bioinformatische Auswertung der Ergebnisse wurde in der Next-Generation Sequencing Core Unit des Berlin-Brandenburger Centrums für Regenerative Therapien (BCRT) an der Charité durchgeführt.

Von den zu sequenzierenden DNA-Proben wurden zunächst Sequenzierlibraries mit Hilfe des *NEBNext*[®] *ChIP-Seq Library Prep Master Mix Set for Illumina* (New England Biolabs; #E6240L) nach Herstellerangaben hergestellt. Nach einer Qualitätskontrolle mit dem *Agilent 2100 Bioanalyzer* wurde die Konzentration der fertigen Libraries mittels RT-qPCR (Power SYBR[®] Green PCR Master Mix, #4367659) nach dem Protokoll von Quail et al¹⁵⁸. bestimmt. Die Sequenzierung der Ba/F3^{*E/R*} -und UoC-B6^{*E/R*} ChIPs erfolgte mit Hilfe des *Genome Analyzer IIx* (GAIIx) von Illumina als *sin-gle reads* mit einer Leseweite von 36 bp. Alle anderen Proben wurden mit dem HiSeq1500 von Illumina mit einer Leseweite von 50 bp ebenfalls als *single reads* sequenziert. Der Ablauf der Sequenzierung erfolgte nach Herstellerangaben. Eine ausführliche Beschreibung befindet sich im Anhang.

3.2.7.2 Auswertung der ChIP-Seq Datensätze

Alle Auswertungen der Sequenzdaten wurden mit Hilfe der Galaxy-Oberfläche (http://galaxyproject.org/) am BCRT durchgeführt, in die die unten genannten Programme und Algorithmen integriert wurden.

1. Qualitätskontrolle der Sequenzdaten

Die generierten Sequenzen wurden zunächst mit der Software FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) einer Qualitätskontrolle unterzogen. Anschließend wurden *reads* mit einer durchschnittlichen Qualitätswert von weniger als Q28 ausgefiltert und verworfen (*FastQ Quality Filter*; http://hannonlab.cshl.edu/fastx_toolkit/).

2. Read Mapping

Zum *Mapping* der Sequenzen gegen das jeweilige Referenzgenom (mm10 bzw. hg19) wurde der BWA-Algorithmus verwendet¹⁵⁹, wobei jeweils maximal zwei falsche Basenpaarungen für einen *read* zugelassen wurden. Anschließend wurden aus den *gemappten reads* die Duplikate entfernt, sodass nur noch nicht-redundante Sequenzen weiter verwendet wurden, um den Einfluss von PCR-Artefakten auf das Ergebnis zu minimieren.

3. Peak Calling

Werden DNA-Bereiche von ETV6, RUNX1 bzw. dem ETV6/RUNX1-Fusionsprotein gebunden, so sollten in den erhaltenen Sequenzen gehäuft Fragmente aus den gebundenen Regionen zu finden sein. Durch das *peak calling* werden solche Regionen

57

identifiziert, in denen mehr Sequenzen erhalten werden, als statistisch zu erwarten wäre und die daher potenziell durch ETV6, RUNX1 bzw. das Fusionsprotein gebunden werden. Für diese Analyse wurde die Software MACS2¹⁶⁰ verwendet. Es wurden dabei die Standard-Parameter verwendet und die *Effective genome size* für hg19 mit 3,0x 10⁹ bzw. 2,5x 10⁹ für mm10 sowie die *Tag size* mit 36 bzw. 50 je nach verwendet deter Leseweite angegeben.

4. De novo Motivanalyse

Für die Ermittlung überrepräsentierter DNA-Motive wurden zunächst für alle potenziellen *peaks* die Sequenzen jeweils +/- 150 bp rund um den *summit* (den Punkt mit der höchsten Sequenzanreicherung) eines peaks aus der Sequenz des Referenzgenoms extrahiert. Diese Sequenzen wurden dann als Ausgangsdaten für die Motivanalyse verwendet. Hierzu wurde das Programm DREME¹⁶¹ mit den Standardeinstellungen verwendet und die Analyse auf die jeweils 10 besten Motive beschränkt.

3.2.7.3 Identifizierung von ETV6/RUNX1 Zielgenen

Für die Identifizierung von ETV6/RUNX1 Zielgenen wurde vom *UCSC table-browser* eine Liste aller bekannten Gene (ca. 34.000, hg19; RefSeqGenes) mit den entsprechenden Daten heruntergeladen. Diese Daten beinhalten von allen bekannten Spleißvarianten u.a. die Transkriptionsstartpunkte (TSS), die Genbezeichnung, Genbeschreibung und die Lage und Anzahl der Exons. Anhand der Daten wurde für jedes Gen ein Promotorbereich von 10.000 bp *upstream* und 2.500 bp *downstream* vom TSS festgelegt, für Gene die größer als 2500 bp waren, wurden zusätzlich alle Peaks innerhalb des Gens bestimmt.

Abbildung 3.3: Promotordefinition

Die Promotordefinition basiert auf dem GeneChIP Human Promotor 1.0R Array von Affymetrix, nach der jede Promotorregion einen Bereich zwischen 10 kb upstream und 2,5 kb downstream zur TSS umfasst.

Für die Ermittlung potenzieller ETV6/RUNX1 DNA-Bindungsregionen wurden, basierend auf den ETV6- und RUNX1- Peaklisten jeder Probe, die überlappenden Peaks (*intersect*) berechnet. Diese ETV6/RUNX1 Peaks wurden den definierten Promotorbereichen von Genen zugeordnet. Analog dazu, wurden die nicht überlappenden ETV6 und RUNX1 Peaks unabhängig voneinander den Promotorbereichen zugeordnet. Dies ermöglichte die Identifizierung von RUNX1 Zielgenen. Da ETV6 im Fusionsonkogen ETV6/RUNX1 keine DNA-bindende Region besitzt, sind alle ETV6 Peaks, die nicht mit ETV6/RUNX1 Peaks überlappen, nach heutigem Kenntnisstand entweder falsch positive Peaks oder Peaks einer besonderen ETV6/RUNX1 Variante. Eine Ursache für die Entstehung dieser Peaks können eventuell blockierte Bindungsstellen im ETV6/RUNX1-Fusionsprotein sein. So dient beispielsweise das VWRPY-Motiv im RUNX1 sowohl als Bindungsstelle für einen RUNX1 Antikörper (Epitomics; #2593-1) als auch als Erkennungsmotiv für verschiedene Proteine (Abbildung 4.6; Groucho, TLE, HDAC).

3.2.7.4 Signalweganalysen

Für die Signalweganalysen wurde das Programm Genecodis^{162,163} verwendet. Als Input dienten die durch ChIP-Seq-Analysen identifizierten potenziellen RUNX1-, ETV6- und ETV6/RUNX1 Zielgene.

3.2.8 shRNA vermittelter *knockdown* von *ETV6/RUNX1* in Zellmodellen

Der induzierbare shRNA vermittelte *knockdown* von *ETV6/RUNX1* in den BVZ-Zelllinien REH und UoC-B6 sollte etabliert werden, um Unterschiede im Genexpressionsverhalten zwischen *ETV6/RUNX1* positiven und negativen Zellen zu bestimmen sowie um eine Korrelation zwischen diesen Daten und den durch die ChIP-Seq Analyse gefundenen ETV6/RUNX1 Zielgenen herzustellen. Aus diesem Grund wurden in Zusammenarbeit mit der Firma Amsbio (http://www.amsbio.com/) drei unterschiedliche gegen den *ETV6* Bereich der *ETV6/RUNX1* Fusions-mRNA gerichtete shRNAs sowie eine Kontroll-shRNA, deren Sequenz an keinen bekannten DNA Bereich bindet, konzipiert und hergestellt (Abbildung 3.4).

Da die Repression des *ETV6/RUNX1* zur Einleitung des Zelltodes führen kann¹⁶⁴, wurde ein induzierbares System gewählt, bei dem die Expression der shRNAs durch einen Tet-Repressor (TetR) und durch die Zugabe von *Tetracyclin* gesteuert wurde. Die entsprechenden Lentiviren wurden von Amsbio (#LVP459-GFP-BSD) bezogen. Der lentivirale Gentransfer erfolgte in zwei Schritten. Im ersten Schritt wurde der Tet-Repressor und im zweiten Schritt die shRNAs lentiviral in die Zellen geschleust.

59

shRNA(ETV6_#1) Lokalisation: hairpin- Sequenz:	Exon 3 der ETV6 bzw. ETV6/RUNX1- mRNA		shRNA(ETV6_#2) Lokalisation: hairpin- Sequenz:	Exon 5 der ETV6 bzw. ETV6/RUNX1-mRNA		
sense TGAAATGAATGGCAAAG	loop CTCTcgagAGAGCTTT(anti-sense GCCATTCATTTCA	sense GTCTCCCATGGAGAAT/	loop AATCAcgagTGATTA	anti-sense	
shRNA(ETV6_#2) Lokalisation: hairpin- Sequenz:	Exon 4 der ETV6 bzw.	ETV6/RUNX1-mRNA	shRNA(Ko) Lokalisation: hairpin- Sequenz:	keine		
GGAGGTCATACTGCATC	AGAAcgagTTCTGATG	anti-sense CAGTATGACCTCC	sense GTCTCCACGCGCAGTA	loop CATTIcgagAAATG	anti-sense TACTGCGCGTGGAGAC	
Abbildung 3 4 [.] F	Frkennungsm	otive der shRN	Δς			

Abbildung 3.4: Erkennungsmotive der shRNAs

Die Abbildung zeigt die Sequenzen der gegen ETV6 gerichteten shRNAs sowie deren Lokalisation in der ETV6 bzw. *E/R*-mRNA

1. Berechnung der einzusetzenden Virusmenge

Für eine MOI von 5 und bei einer IFU von 1x 10^4 Viren/µl mussten 100 µl Virus zu 2x 10^5 Zellen gegeben werden. Das bedeutet, es wurden 5x mehr Viren als Zellen zum Ansatz gegeben (Tabelle 3.16). Für jeden Ansatz wurde eine negative Kontrolle, ohne Viruszugabe mitgeführt.

	IFU/μI	Zellen	MOI	Virus
TetR	1,00E+04	2,00E+05	5	100 µl
TetR	1,00E+04	1,00E+06	1	100 µl
Ohne TetR		2,00E+05		
Ohne TetR		1,00E+06		
shRNA(ETV6_#1)	1,00E+04	1,00E+06	2	200 µl
shRNA(ETV6_#2)	1,00E+04	1,00E+06	2	200 µl
shRNA(ETV6_#3)	1,00E+04	1,00E+06	2	200 µl
shRNA(ETV6_#1-2-3)	1,00E+04	1,00E+06	2	200 µl
shRNA(_Ko)	1,00E+04	1,00E+06	2	200 µl
Leekontrolle		1,00E+06		

Tabelle 3.16: Berechnung der einzusetzenden Virusmenge

MOI (Multiplicity of infection) IFU (infectious unit)

2. Beschichten von 24-well Platten mit Retronectin

Die Effektivität der Transduktion bei Suspensionszellen wird durch das Anheften der Zellen an eine Oberfläche gesteigert. Aus diesem Grund wurden unbeschichtete 24well Platten mit 4 µg Retronectin/0,2 ml PBS pro well für 2 Stunden bei RT inkubiert und anschließend einmal mit PBS gewaschen.

3. Lentivirale Transduktion mit TetR bzw. der shRNA

Pro Well wurden 10 µl Virusüberstand und 90 µl Komplettmedium (RPMI, 20°FKS; 1% Penicillin/Streptomycin) gegeben und für 30 Minuten bei 37°C inkubiert und der Überstand vorsichtig abpipettiert. Dieser Schritt wurde zweimal wiederholt, so dass jedes Well mit 30 µl Virus vorbeladen worden ist. Anschließend wurden in jedes Well

1x 10⁶ Zellen mit 70 μl Virus in 2 ml (MOI 1) bzw. 2x 10⁵ Zellen mit 70 μl Virusüberstand in 2 ml (MOI 5). Als Kontrollen wurden Zellen ohne Zugabe von Virusüberstand ausgesät.

4. Antibiotikaselektion

Alle Ansätze wurden für 48 Stunden bei 37°C und 5% CO2 inkubiert, anschließend in eine 50 ml Zellkulturflasche mit 10 ml Komplettmedium und 20 µg/ml Blasticidin bei den mit *TetR* transduzierten Zellen (bzw. 8 µg/ml Puromycin bei den mit *shRNA* transduzierten Zellen) überführt. Die Selektion erfolgte für mind. 4 Wochen, wobei das Medium und das Antibiotikum alle 72h gewechselt wurde.

5. Kontrolle der Effizienz

Die Effizienz der lentiviralen TetR und shRNA Transduktion wurde durch den Anteil GFP-positiver Zellen mittels FACS und Fluoreszenzmikroskopie bestimmt.

4 Ergebnisse

4.1 Charakterisierung der *ETV6/RUNX1* positiven Zelllinien und primären KM-ALL-Proben

Die Zelllinie REH ist bereits weitgehend zytogenetisch charakterisiert worden¹⁶⁵. Im Gegensatz dazu wurde die ebenfalls *ETV6/RUNX1* positive BV-Zelllinie UoC-B6 in der Literatur bisher nur sehr unzureichend beschrieben. In den veröffentlichten Daten wurden die Zellen zwar der BVZ-ALL zugeordnet¹⁴⁵, jedoch wurden in keiner weiteren Publikation die erhobenen Daten validiert. Aus diesem Grund erfolgte im Rahmen der vorliegenden Arbeit zunächst die zytogenetische Charakterisierung und immunphänotypische Einordnung der UoC-B6-Zellen durch FACS-Analysen. Des Weiteren wurde für alle Proben die Expression des *ETV6/RUNX1*-Fusionsgens bzw. Proteins durch RT-qPCR und Western Blot-Analysen nachgewiesen. In den Zelllinien REH, UoC-B6 und HT1080^{*E/R*} erfolgte der Nachweis der ETV6/RUNX1-Expression zusätzlich durch die immunzytochemische (IZC) Detektion des Fusionsproteins.

4.1.1 Zytogenetische Charakterisierung der UoC-B6-Zellen

Die zytogenetische Charakterisierung und die FISH-Analysen der UoC-B6-Zellen erfolgte in Zusammenarbeit mit dem Institut für Medizinische Genetik und Humangenetik, Charité-Universitätsklinikum Berlin (Frau Dr. S. Türkmen).

<u>Zytogenetik</u> 48~49,X,-X or -Y, t(2;14)(p11;q32),del(6)(q2?1),add(7)(q36) or t(7;15)(q36;q2?1),?der(8),add(13)(q34),?der(16),+1~2x21,+22,+mar

<u>FISH</u> In 86% der Zellkerne und in 17 von 24 Metaphasen wurden je zwei *ETV6/RUNX1*-Fusionen und 2 bzw. 3 *RUNX1* Allele, in 7% der Zellkerne und in 6 von 24 Metaphasen wurde je eine *ETV6/RUNX1* Fusion und 3 *RUNX1* Allele und in 4% der Kerne und einer Metaphase wurden je zwei *ETV6/RUNX1* Fusionen und 2 bzw. 3 *RUNX1*-Gene und ein *ETV6*-Allel detektiert. In einem kleinen Anteil der Zellen war demnach das zweite, nicht in die Fusion integrierte *ETV6*-Allel vorhanden.

Die konventionelle Karyotypisierung ist eine relativ ungenaue Analyse zur Bestimmung aberranter genomischer Veränderungen. Sie eignet sich daher nur als erster Anhaltspunkt zum Nachweis von chromosomalen Veränderungen in der Zelle. So können z.B. kryptische Translokationen, bei denen es nur zu einer geringfügigen bzw. keiner Änderung der Chromosomengröße und des Chromosomenbandenmusters kommt, durch diese Analyse kaum nachgewiesen werden.

Die Translokation t(2;14)(p11;q32) wurde bereits in Proben von Patienten mit CLL-¹⁶⁶ bzw. mit *Ataxia telangiectasia* (AT; Louis-Bar-Syndrom) beschrieben. Diese Translokation entsteht durch Fusion der leichten Immunglobulinkette-κ (Igκ) auf Chromosom 2p11 mit Sequenzen aus der VH-Gen-Cluster-Region auf Chromosom 14q32¹⁶⁷. Das Vorliegen dieser Translokation in den UoC-B6-Zellen könnte eventuell durch molekular zytogenetische oder PCR-Methoden gezeigt werden.

Eine genaue Charakterisierung der Translokation t(7;15)(q36;q2 ?1) ist aufgrund des nicht identifizierten, involvierten zweiten Lokus auf Chromosom 15 schwierig. Die kryptische Translokation t(12;21) mit dem resultierendem Fusionsgen *ETV6/RUNX1* wurde konventionell zytogenetisch nicht nachgewiesen. Aus diesem Grund erfolgte der Nachweis der ETV6/RUNX1 Fusion mittels FISH. Des Weiteren wurde die ETV6/RUNX1 Expression mit RT-qPCR und Western Blot nachgewiesen.

Für eine schlüssigere Karyotypisierung und Validierung der genomischen Veränderungen sind SKY- (*spectral karyotyping*) und weitere FISH Analysen notwendig.

4.1.2 Immunphänotypisierung der UoC-B6-Zellen

Für die Immunphänotypisierung der UoC-B6-Zellen wurde die Expression der typischen B-Zellmarker CD10, CD19, CD20 und CD22, des Leukozytenmarkers CD45 sowie des Stammzellmarkers CD34 und des T-Zellmarkers CD3 durch FACS gemessen. Als Vergleichszelllinien dienten die *ETV6/RUNX1* positive Zelllinie REH, die ETV6/RUNX1-negative T-Zelllinie Loucy und die ebenfalls ETV6/RUNX1 negativen Zelllinien Nalm-6 (BVZ-ALL), Raji (Burkitt Lymphom) und KG-1 (AML).

	FITC-	PE-	FITC-	FITC-	FITC-	PE-	FITC-
	CD3	CD10	CD19	CD20	CD22	CD34	CD45
REH	0,45%	97,84%	95,77%	3,51%	13,40%	0,19%	81,67%
UoC-B6	0,32%	99,97%	99,15%	87,00%	7,34%	0,28%	7,81%
Loucy	87,27%		0,21%	0,39%	0,28%	0,26%	99,96%
Nalm-6	0,11%	99,59%					0,16%
Raji		0,40%	98,88%	93,83%	38,19%		
KG-1						99,73%	

Tabelle 4.1: Ergebnisse der FACS Analyse

Die Immunphänotypisierung ergibt die Einordnung der UoC-B6-Zellen zu den B-Vorläuferzellen (pro-B-Phänotyp).

4.1.3 Nachweis der ETV6/RUNX1 Expression

Die chromosomale Translokation t(12;21)(p13;q22) mit resultierendem Fusionsgen *ETV6/RUNX1* wurde für die Zelllinie UoC-B6 in der Literatur bereits beschrieben¹⁴⁵ und im Rahmen dieser Dissertation am Institut für Medizinische Genetik und Humangenetik (Charité - Universitätsmedizin Berlin; Campus CVK) durch FISH-Analyse bestätigt. Die FISH-Analyse zeigte, dass die UoC-B6-Zellen zwei Kopien des Fusionsgens *ETV6/RUNX1* besitzen.

Die zytogenetische Charakterisierung der KM-ALL-Proben beider Patienten (ALL #1 und ALL #2) wurde ebenfalls am Institut für Medizinische Genetik und Humangenetik durchgeführt. Die Ergebnisse dieser Analysen sind im Abschnitt 3.1.10 aufgeführt. In den ALL-Proben beider Patienten konnte die Translokation t(12;21)(p13;q22) zytogenetisch nachgewiesen werden. Die Expressionsstärke des Fusionstranskripts (RT-qPCR) und des Fusionsproteins (WB) in den UoC-B6-Zellen und in den primären Blasten (KM-Proben) wurde im Vergleich zu den *ETV6/RUNX1* positiven Zellen REH-, Ba/F3^{*E/R*} und HT1080^{*E/R*} sowie den *ETV6/RUNX1* negativen Zelllinien HT1080 und Ba/F3 bestimmt.

4.1.3.1 *ETV6/RUNX1* Nachweis durch RT-qPCR

Die Etablierung der RT-qPCR zum Nachweis und Bestimmung der Expressionsstärke des *ETV6/RUNX1*-Transkripts fand im Rahmen der Berlin-Frankfurt-Münster (BFM) Studiengruppe zur routinemäßigen ALL-Diagnostik statt²³. Die fluoreszenzmarkierte Sonde bindet spezifisch an Exon 5 von *ETV6* bzw. von *ETV6/RUNX1* und liegt somit außerhalb des *ETV6/RUNX1* Fusionsbereiches. Damit wird gewährleistet, dass die häufigsten *ETV6/RUNX1* Fusionsvarianten sicher diagnostiziert werden können. Der Vorwärts-Primer bindet an Exon 5 von *ETV6* und der Rückwärts-Primer an Exon 4 von *RUNX1*.

Zum Nachweis der *ETV6/RUNX1*-Expression wurde Gesamt-RNA aus den Zellen extrahiert, in cDNA umgeschrieben und 50 ng in die RT-qPCR eingesetzt. Für die Amplifikation wurden die im Abschnitt 3.1.4 aufgeführten *ETV6/RUNX1* und *ABL* Primer und Sonden verwendet. Die Ergebnisse der Expressionsanalyse sind im Balkendiagramm (Abbildung 4.1) dargestellt und zeigen in allen untersuchten *ETV6/RUNX1* positiven Proben eine Expression des Fusionstranskripts. Auffällig ist, dass in den *ETV6/RUNX1* transduzierten Zelllinien HT1080^{*E/R*} und Ba/F3^{*E/R*} die Expression von *ETV6/RUNX1* wesentlich höher als in den Zellen mit "Wildtyp-*ETV6/RUNX1*" ist. Diese Unterschiede werden u.a. dadurch verursacht, dass in primären *ETV6/RUNX1*-positiven Zellen nur eine Kopie bzw. zwei Kopien des Fusionsgens vorkommen, während die virale Transduktion dazu führt, dass in den HT1080^{*E/R*} und Ba/F3^{*E/R*}-Zellen mehrere Kopien des Fusionsgens enthalten sind.

Abbildung 4.1: E/R Expression

Nachweis der *E/R* Expression durch RT-qPCR in den *E/R* positiven Zellen UoC-B6, BA/F3^{*E/R*}, HT1080^{*E/R*}, den BVZ-ALL Zelllinien REH- und UoC-B6, den KM-ALL-Proben von ALL_#1 und #2 sowie den negativen Kontrollen Ba/F3, HT1080, Nalm6, CCRF-SB und MHH-CALL-2. Die *E/R*-Expression wurde sowohl auf ABL als auch auf die Expression von E/R in den REH Zellen normiert. Die Messungen erfolgten in Triplikaten.

Eine weitere Ursache für die unterschiedliche *ETV6/RUNX1*-Expression liegt in der unterschiedlichen Stärke der Promotoren: In REH- und UoC-B6-Zellen sowie in den primären Patientenproben wird die Transkription durch den endogenen *ETV6*-Promotor reguliert. Im Gegensatz dazu steht die Expression von *ETV6/RUNX1* in den lentiviralen Vektoren der Zelllinien HT1080^{*E/R*} und Ba/F3^{*E/R*} unter der Kontrolle von sehr potenten Promotoren. In den HT1080^{*E/R*}-Zellen ist dies der SFFV-U3-Promotor und in den Ba/F3^{*E/R*}-Zellen ein minimaler CMV-Promotor. Die ebenfalls getesteten *ETV6/RUNX1*-negativen BVZ-ALL Zelllinien MHH-CALL-2 (DSMZ; #ACC-341), Nalm6 (DSMZ; #ACC-128) und CCRF-SB (ATCC[®]; #CCL-120TM) zeigten kein nachweisbares *ETV6/RUNX1*-Transkript (Abbildung 4.1).

4.1.3.2 ETV6/RUNX1 Nachweis durch Western Blot Analysen

Über die Korrelation zwischen *ETV6/RUNX1*-RNA-Expression und ETV6/RUNX1-Proteinspiegel ist bisher wenig bekannt, da viele posttranskriptionelle Faktoren wie z.B. RNA-Prozessierung, RNA-Stabilität, Translation und die Stabilität des Proteins unzureichend erforscht sind. Je nach Gewebe bzw. Zelltyp können Änderungen auf mRNA- und Protein-Ebene zeitlich verzögert oder aber bemerkenswert stabil korrelieren¹⁶⁸. Aus diesem Grund war es für die nachfolgenden ChIP-Versuche notwendig, die Stärke der ETV6/RUNX1-Expression unabhängig von der Expressionsstärke der mRNA in den verwendeten Zelllinien REH und UoC-B6 sowie dem KM-Material der Patienten zu bestimmen. Die dafür verwendete Methode, der Western Blot, erlaubte eine semiguantitative Auswertung der detektierten Proteine gegenüber einem Referenzprotein (Histon H3 bzw. GAPDH) und den mitgeführten Vergleichsproben. In Abbildung 4.2 sind die Ergebnisse der Western Blot Analyse zusammengefasst.

- **Abbildung 4.2: E/R Expression in Zelllinien und Patientenproben** a) WB-Analyse von HT1080, HT1080^{*E/R*}, BA/F3 und BA/F3^{*E/R*}-Zellen. Es wurden 5 μg Gesamtprotein aufgetragen. Es wurde der primäre TEL(N-19) Antikörper der Firma Santa Cruz Biotechnology (SCBT) mit einem Verdünnungsfaktor von 1:500 verwendet.
- b) WB-Analyse von REH, UoC-B6, ALL_#1, ALL_#2, BA/F3, BA/F3^{E/R} und MOLT 4 Zellen. Es wurde je 75 µg Gesamtprotein aufgetragen und der primäre gegen RUNX1 gerichtete monoklonale Antikörper von Epitomics (2593-1) mit einem Verdünnungsfaktor von 1:2500 verwendet. Die T-Zelllinie Molt 4 diente als negative Kontrolle.

Im Vergleich zu allen anderen getesteten Proben exprimieren die HT1080^{E/R}-Zellen ETV6/RUNX1 in extrem hoher Menge (Abbildung 4.2a). Bei annähernd identischer Proteinmenge und gleicher Belichtungszeit ist das ETV6/RUNX1-Signal der HT1080^{E/R} wesentlich stärker, als das der Zelllinie Ba/F3^{E/R}, das fast an der Nachweisgrenze ist. Im Vergleich zu den HT1080^{E/R}-Zellen exprimieren die anderen ETV6/RUNX1 positiven Zellen, insbesondere die REH-Zellen das ETV6/RUNX1-Fusionsprotein sehr niedrig, so dass bei den REH-Zellen für eine Quantifizierung mindestens 70 µg Gesamtprotein eingesetzt werden musste. Im Vergleich dazu reichen bei den HT1080^{E/R}-Zellen 5 µg Gesamtprotein um ein starkes Signal bei gleicher Belichtungszeit zu erhalten. Bei den beiden Patientenproben fällt im Vergleich zu den REH-und UoC-B6-Zellen auf, dass RNA- und Proteinexpression nicht korrelieren. Während die mRNA-Mengen bei diesen vier Proben annähernd gleich sind, unterscheiden sich die Proteinmengen stark: Nach Normalisierung auf die GAPDH-Expression zeigte sich für ETV6/RUNX1 in den REH- und UoC-B6-Zellen ungefähr das 2,5fache Expressionsniveau im Vergleich zu den beiden Patientenproben.

4.1.3.3 Immunzytochemischer Nachweis der ETV6/RUNX1-Expression

Der Nachweis der ETV6/RUNX1-Expression wurde in den Zelllinien REH, UoC-B6, HT1080 sowie HT1080^{E/R} nach dem im Abschnitt 3.2.5 ausführlich beschriebenen Protokoll mit dem anti-human ETV6-Antikörper von Atlas (#HPA000264-100U), der auch in den ChIP-Experimenten verwendet wurde, durchgeführt. Als sekundärer Antikörper wurde *Rhodamine Red™-X-conjugated AffiniPure Donkey Anti-Rabbit IgG* (Jackson ImmunoResearch; # 711-295-152) verwendet, die unspezifischen Bindungen wurden mit *normal donkey serum* (Jackson ImmunoResearch, # 017-000-121) blockiert (Abbildung 4.3 und Abbildung 4.4; Ansatz 1).

Abbildung 4.3: Immunfärbung von E/R in REH und UoC-B6-Zellen

Konfokal-mikroskopische Analysen der Zelllinien REH und UoC-B6 (optischer Schnitt in der Äquatorialebene der Zellen). In allen Ansätzen wurde der Zellkern durch den DNA-interkalierenden Farbstoff DAPI sichtbar gemacht (linke Spalten). Da in beiden Zelllinien das zweite, nicht in die *E/R*-Translokation involvierte *ETV6*-Allel deletiert ist, wird nur das Fusionsprotein E/R durch den anti-human ETV6-Antikörper detektiert (jeweils mittlere Spalte). Die rechten Spalten zeigen den *overlay* der Zellkern- und der E/R-Färbung.

- Ansatz 1: Primärer Antikörper, 2. Antikörper, DAPI
- Ansatz 2: mit blockiertem primärem Antikörper, 2. Antikörper, DAPI

Ansatz 3: Ansatz 4:

2. Antikörper, DAPI DAPI (nähere Erläuterung s. Text bzw. Abschnitt 3.2.5.6 Immunfärbung)

Als Kontrollen für die Spezifität der Bindung des ETV6-Antikörpers an ETV6 bzw. ETV6/RUNX1 wurde der primäre Antikörper mit dem entsprechenden Immunogen (Atlas; #HPA000264-100U) behandelt (Ansatz 2). Bei weiteren Kontrollen erfolgte keine Behandlung mit dem primären Antikörper (Ansatz 3) bzw. sowohl ohne primären und sekundären Antikörper (Ansatz 4).

In den Zelllinien REH und UoC-B6 konnte die Expression des ETV6/RUNX1 Fusionsproteins durch Immunzytochemie (IZC) spezifisch nachgewiesen werden. Die Zelllinien UoC-B6 und REH besitzen, wie alle lymphatischen Zellen, im Verhältnis zum Zellkern wenig Zytoplasma, trotzdem ist eine genaue Lokalisation von ETV6/RUNX1 mit zweidimensionalen Bildaufnahmeverfahren in diesen Zellen schwierig. Aus diesem Grund wurden zusätzlich konfokale Aufnahmen gemacht. Die Aufnahmen in Abbildung 4.3 zeigen jeweils den die äquatorialen optischen Schnitte durch die Zellen. Es ist deutlich zu erkennen, dass ETV6/RUNX1 vorwiegend im Zellkern lokalisiert ist. Des Weiteren zeigen die Kontrollen, dass die Bindung des primären und sekundären Antikörpers spezifisch war. Da das zweite, nicht in die Translokation t(12;21) involvierte *ETV6*-Allel deletiert ist, wurde nach Färbung mit dem ETV6-Antikörper nur das ETV6/RUNX1-Fusionsprotein im Zellkern spezifisch detektiert.

Abbildung 4.4: E/R Expression in HT1080-Zellen

Konfokale Aufnahmen der Zelllinien HT1080 und HT1080^{*E/R*}. Von links nach rechts: Detektion des Zellkerns durch DAPI, Detektion des mit der ETV6/RUNX1 Expression gekoppelten eGFP; Detektion von ETV6 und ETV6/RUNX1, o*verlay* aller Aufnahmen.

Die weißen Pfeile markieren Positionen der HT1080- Wildtypzellen, die weder ETV6/RUNX1 noch eGFP exprimieren. Die orangenen Pfeile kennzeichnen HT1080^{E/R}-Zellen mit eGFP- und sehr starker E/R-Expression (grün/rot; s. Ansatz 1).

Ansatz 1: Primärer Antikörper, 2. Antikörper, DAPI

Ansatz 2: mit blockiertem primärem Antikörper, 2. Antikörper, DAPI

Ansatz 3: 2. Antikörper, DAPI

Ansatz 4: DAPI

(nähere Erläuterung im Text bzw. Abschnitt 3.2.5.6 Immunfärbung)

In den HT1080^{*E/R*} Zellen ist aufgrund der gleichzeitigen Expression von Wildtyp-ETV6 und ETV6/RUNX1 kein spezifischer Nachweis von ETV6/RUNX1 durch einen ETV6-Antikörper möglich. Aus diesem Grund wurde die relative Expression von ETV6/RUNX1 der HT1080^{*E/R*}-Zellen im direkten Vergleich mit der ETV6-Expression des untransduzierten Wildtyps bestimmt. Dazu wurden beide Zelllinien, wie in Abschnitt 3.2.5 erläutert, zusammen kultiviert und anschließend die ETV6 und die ETV6/RUNX1-Expression immunzytochemisch vergleichend bestimmt. Die Ergebnisse dieser Analyse sind in Abbildung 4.4 dargestellt. Ansatz 1 zeigt die spezifische Detektion von ETV6 und ETV6/RUNX1. Es ist deutlich erkennbar, dass beim untransduzierten Wildtyp (Abschnitt 3.1.9; erkennbar am Fehlen der EGFP-Expression, weißer Pfeil) ETV6 nur im Zellkern detektiert wurde. Bei den HT1080^{*E/R*}-Zellen wurde vor allem eine zusätzlich starke ETV6/RUNX1-Expression im Zytoplasma nachgewiesen (orangener Pfeil). Diese Ergebnisse bestätigen die mit WB und der RT-qPCR gezeigten Ergebnisse (Abbildung 4.1 und Abbildung 4.2), dass in den HT1080^{*E/R*}-Zellen die Expression des Fusionsproteins sehr stark ist. Zusätzlich zeigen diese Experimente, dass ETV6/RUNX1 vorwiegend im Zytoplasma und ETV6 im Zellkern lokalisiert ist. Die Spezifität der Detektion von ETV6 und ETV6/RUNX1 durch den primären Antikörper wurde durch die Kontrollen (Ansatz 2 bis Ansatz 4) bestätigt.

4.2 Etablierung und Optimierung der ChIP

Die Chromatin-Immunpräzipitation (ChIP) ist eine sensitive und spezifische Methode zur Untersuchung der Interaktionen zwischen Proteinen und DNA. Durch die Anwendung spezifischer Antikörper und anschließender Hochdurchsatz-Sequenzierung (ChIP-Seq) können regulatorische Elemente der DNA, wie z.B. Promotoren, untersucht und Zielregionen bzw. potenzielle Zielgene von Transktiptionsfaktoren identifiziert werden.

Für die ChIP-Analyse wurden zwei Ansätze getestet, den Versuchsbedingungen angepasst und optimiert. Für die weiteren Versuche wurde das Protokoll verwendet, mit dem die besten Resultate erzielt wurden. Die ersten ChIP-Experimente wurden gemäß dem Protokoll von Lee et al.¹⁵⁷, die späteren Experimente mit dem *SimpleChIP*[®] *Enzymatic Chromatin IP Kit (Magnetic Beads)* von Cell Signalling Technologies (CST), welches die besseren Resultate ergab, durchgeführt. Beide Protokolle unterschieden sich in einigen wesentlichen Punkten, welche in den folgenden Abschnitten näher erläutert werden, voneinander.

4.2.1 Bestimmung der optimalen Zellzahl

Die Zellernte erfolgte, wie im Abschnitt 3.2.1.1 beschrieben. Für jede Immunpräzipitation wurden, wie bei Lee et al.¹⁵⁷ angegeben, 1x 10⁸ Zellen verwendet. Im Protokoll von CST wurde pro IP eine Zellzahl von 4x 10⁶ Zellen vorgegeben. Nach ersten Versuchen zeigte sich jedoch, dass die eingesetzte Zellzahl von 4x 10⁶ Zellen pro IP nicht ausreichend für eine parallele ChIP mit anti-ETV6- (ETV6-ChIP) und anti-RUNX1-Antikörpern (RUNX1-ChIP) war, da die DNA Konzentrationen im Input zu niedrig für die Kontroll-PCR und somit auch für die ChIP-Seq waren. Aus diesem Grund wurden alle nachfolgenden Versuche, mit Ausnahme der KM-ALL-Probe von Patient #2, mit 1x 10⁸ Zellen pro Immunopräzipitation (IP) durchgeführt. In der ALL #2 Probe waren nicht genügend Zellen vorhanden, so dass für jede IP ca. 5x 10⁷ Zellen eingesetzt wurden.

4.2.2 Optimierung der Fixierung

Entscheidend für die erfolgreiche Durchführung einer ChIP ist unter anderem eine gleichmäßige, in ihrer Stärke angemessene Fixierung der Zellen. Für die Fixierung wurde Formaldehyd in einer Endkonzentration von 1% verwendet. Bei der Fixierung der Zellen mit Formaldehyd werden u.a. kovalente Protein-Protein und Protein-DNA-Komplexe gebildet. Ausschlaggebend für die Stärke der Fixierung sind vor allem die Dauer der Fixierung, die Temperatur während der Fixierung sowie die verwendete Zellkonzentration, der FKS-Gehalt im Zellkulturmedium und die Art des Formaldehyds. Eine optimale Fixierung der Zellen ist für die spätere Fragmentierung der DNA ausschlaggebend. Bei zu starker Fixierung der Zellen können die Zellkerne nicht vollständig aufgeschlossen und die Protein-Chromatin-Komplexe nicht ausreichend fragmentiert werden.

Standardmäßig wird in den meisten Protokollen 37%iges Formaldehyd verwendet, welches mit ca. 10% Methanol versetzt ist. Diese Lösung neigt jedoch schon bei einer geringen Verunreinigung zur Polymerisation und ist dann nicht mehr für die Zellfixierung geeignet. Nachdem anfänglich 37%iges Formaldehyd verwendet wurde, jedoch keine konstanten reproduzierbaren Ergebnisse erzielt werden konnten, wurden alle folgenden Versuche mit dem methanolfreien 16%igen Formaldehyd (Thermo Fisher Scientific) durchgeführt. Dieses befindet sich unter Sauerstoffausschluss in Glasampullen, so dass eine Stabilisierung durch Methanol nicht erforderlich ist.

Sowohl im Protokoll nach Lee et al.¹⁵⁷ als auch von CST wurden die Zellen für zehn Minuten bei RT mit Formaldehyd fixiert. In vielen Protokollen wird für die Fixierung Kulturmedium verwendet. Die Zusammensetzung und Art des Kulturmediums kann je nach verwendeter Zelllinie variieren. Den meisten Kulturmedien wird Fötales Kälberserum (FKS) in unterschiedlicher Konzentration beigesetzt. FKS enthält eine Vielzahl von Proteinen, die durch die Formaldehydbehandlung kovalente Bindungen bilden und die Effizienz der Zellfixierung und somit die Bildung von nukleären Protein-Protein und Protein-DNA-Komplexen beeinflussen können. Aus diesem Grund und um die Reproduzierbarkeit zwischen den einzelnen Versuchen gewährleisten zu können, wurden jeweils 4x 10⁷ Zellen in 20 ml RPMI und 10% FKS für 10 Minuten bei

70
RT mit dem 1% methanolfreien Formaldehyd fixiert.

4.2.3 Zelllyse und Fragmentierung der DNA

In den Protokollen von Lee et al¹⁵⁷. und von CST werden die Zellen zunächst mit einem NP-40-Lysepuffer behandelt, wodurch die Zellmembran aufgelöst und der Zellkern porös wurde. Im Protokoll nach CST wurden die Zellen anschließend, in Vorbereitung auf den Micrococcal-Nuclease (MN) Verdau, mit einem CaCl₂-haltigen Puffer gewaschen, in dem der MN-Verdau dann durchgeführt wurde (Abschnitt 3.2.7). Nach dem Herunterzentrifugieren der Zellkerne wurden diese in den ChIP-Puffer überführt, in dem der Ultraschallaufschluss der Zellkerne erfolgte. Die Bedingungen für die DNA-Fragmentierung sind in hohem Maß von der Stärke der Fixierung abhängig. Je stärker die Fixierung, desto stringenter muss die Fragmentierung der DNA durchgeführt werden.

Abbildung 4.5: DNA-Profile nach Ultraschall-Fragmentierung

- a) Fragmentierung von 4x 10⁷ REH-Zellen nach Zugabe unterschiedlicher Volumina MN (0; 1; 1,25; 5 und 10 µL). Die Lysate wurden für 20 min bei 37°C inkubiert und die Zellkerne anschließend kurz mit Ultraschall (2 Ultraschallzyklen) aufgeschlossen (Bandelin Sonopuls Homogenisator)
 b) Ultraschallfragmentierung von 1x 10⁸ und (Spalten 1 und 2) und 3x 10⁸ REH-Zellen (Spalten 3 und 4) mit dem
- b) Ultraschallfragmentierung von 1x 10⁸ und (Spalten 1 und 2) und 3x 10⁸ REH-Zellen (Spalten 3 und 4) mit dem Bioruptor (Diagenode). Ohne vorherige Behandlung mit einer MN.
 c) Ultraschallfragmentierung von 5x 10⁷ REH-Zellen/3,5 ml mit dem Bandelin Sonopuls Homogenisator, ophne
- c) Ultraschallfragmentierung von 5x 10⁷ REH-Zellen/3,5 ml mit dem Bandelin Sonopuls Homogenisator, ophne vorherige Behandlung mit einer MN. Nach je 1, 10, 20, 30, 35, 40, 45, 50 und 55 Zyklen wurde die Fragmentierung kontrolliert.

Die optimale DNA-Fragmentlänge für ChIP-Untersuchungen liegt zwischen 100 bis 900 bp. Bei DNA-Fragmentlängen kleiner als 100 bp ist es nahezu unmöglich, die Sequenz eindeutig zu bestimmen, bei zu großen Fragmenten wird die Effizienz der ChIP gesenkt, da die DNA-Fragmente bei den einzelnen Waschschritten leichter von den Beads gelöst werden als kleinere Fragmente. Desweiteren wird durch die Bildung von Sekundärstrukturen die RT-qPCR und die Sequenzierung erschwert. Im Protokoll nach Lee et al¹⁵⁷ erfolgte nach der Zelllyse das mechanische Aufbrechen der Zellkerne und die Fragmentierung der DNA durch Ultraschall. Dazu wurden je 5x 10⁷ Zellen in 3,5 ml Lysepuffer B resuspendiert und anschließend mit Ultraschall behandelt. Für die Ultraschallbehandlung wurden mehrere verschiedene Geräte ausgetestet: Zwei Beispiele sind in Abbildung 4.5b und c aufgeführt. Um die Effizienz der Ultraschallbehandlung zu prüfen und die Bedingungen zu optimieren, wurde nach mehreren Ultraschall-Zyklen 50 µl Lysat abgenommen, die DNA durch Zugabe von Ethanol präzipitiert und die Fragmentlänge mit einem 2%igen Agarosegel bestimmt (Abbildung 4.5c).

Die DNA-Fragmentierung durch Ultraschall erwies sich in mehr als einer Hinsicht als unpraktisch. Zum einen wurde die Sonotrode direkt in die Probe gehalten, so dass trotz vorheriger intensiver Reinigung eine Verunreinigung der Lysate nicht ausgeschlossen werden konnte. Ein weiterer entscheidender Punkt gegen die Ultraschallbehandlung war zum anderen die Dauer der Behandlung: pro 5x 10⁷ Zellen/ 3,5 ml dauerte die Ultraschallbehandlung ca. eine Stunde. Da für jede ChIP 2,5x 10⁸ Zellen benötigt wurden, bedeutete dies eine Behandlung von ca. 2,5 Stunden pro Probe. Über diesen Zeitraum konnte trotz Kühlung mit Eis nicht gewährleistet werden, dass sich die Proben durch die Ultraschallbehandlung nicht erwärmten, was eine Denaturierung der Proteine zu Folge gehabt und die Effizienz der Bindung durch ChIP-Antikörper beeinträchtigt hätte. Die enzymatische DNA-Fragmentierung mit MN (Abbildung 4.5a) nach dem Protokoll von CST stellte eine gute Alternative zur Ultraschallbehandlung dar. Der Verdau mit einer Nuklease ist offenbar deutlich milder als die Fragmentierung mit Ultraschall, so dass die Chromatinstruktur und Antikörper-Epitope geschont werden und die Effizienz der ChIP erhöht wird. Ein weiterer Vorteil dieser Methode war die hohe Reproduzierbarkeit der DNA-Fragmentierung, die den Nachteil der ungleichmäßigeren DNA-Fragmentverteilung aufwog.

4.2.4 Evaluation geeigneter IP-Antikörper

Die Wahl geeigneter Antikörper war entscheidend für das Gelingen der ChIP. Diese mussten mit hoher Spezifität und Affinität an die entsprechenden Chromatinfragmente binden und so die Fusionsprotein-Chromatin-Komplexe in der ChIP anreichern. Da die meisten kommerziell erhältlichen ETV6- und RUNX1-Antikörper offenbar nicht auf ihre Eignung für die ChIP untersucht worden sind, wurden alle in Frage kommenden Antikörper dahingehend getestet. Für ChIP-Analysen geeignete Antikörper müssen spezifisch und mit hoher Affinität an das *in situ* mit Formaldehyd fixierte Fusionsprotein, das an DNA gebunden und mit multiplen Proteinbindungspartnern besetzt ist, binden und dessen Präzipitation ermöglichen.

Abbildung 4.6: E/R Domänen und Antigenbindungsbereiche einiger getesteter Antikörper

- 1 TEL(N-19) von SCBT, #sc-8546
- 2 TEL von Atlas; #HPA000264
- 3 TEL(H-214) von SCBT; #sc11382
- 4 RUNX1(D33G6) von CST; #4336
- 5 RUNX1 von Abcam; #ab23980

- 6 RUNX1 von Abcam; #ab50541
- 7 RUNX1 von Abcam; #ab54869
- 8 RUNX1 von SCT; #sc28679
- 9 RUNX1 von Epitomics; #2593-1

Die Bindung unterschiedlicher anti-ETV6 und -RUNX1 Antikörper an das Fusionsprotein wurde mittels IZC und WB getestet. Es zeigte sich deutlich, dass das Fusionsprotein in den HT1080^{*E/R*} Zellen, im Vergleich mit anderen Zelllinien, am stärksten exprimiert wird (Abbildung 3.3). Um die Eignung der Antikörper für die ChIP zu testen, wurde daher zunächst diese Zelllinie verwendet. Die Immunfärbung von ETV6 und ETV6/RUNX1 zeigte jedoch, dass in diesen Zellen, anders als in den übrigen getesteten Zellmodellen ein hoher Überschuss von ETV6/RUNX1 im Zytoplasma lokalisiert ist (Abbildung 4.4).

Abbildung 4.7: ETV6/RUNX1 Expression in Zelllinien

Die konfokalen Aufnahmen Ba/F3 und Ba/F3^{*E/R*} nach Immunfärbung mit einem ETV6-Antikörper zeigen in den Ba/F3^{*E/R*}-Zellen eine insgesamt etwas stärkere Fluoreszenz im Zellkern und im Zytoplasma als in den Ba/F3-Zellen.

Für ChIP-Versuche erwies sich dies als großer Nachteil. Da die Protein-Chromatin-Komplexe nur im Zellkern vorliegen, wurde in einem ChIP Experiment von HT1080^{*E/R*}-Zellen ein Großteil der Antikörperbindungsstellen durch ETV6/RUNX1 ohne gebundenes Chromatin besetzt. Im Gegensatz dazu zeigten die Ba/F3^{*E/R*} Zellen eine gleichmäßigere Verteilung von ETV6/RUNX1 in Zellkern und Zytoplasma (Abbildung 4.7). Aus diesem Grund wurde die Eignung verschiedener Antikörper für die ChIP mit REH-, UoC-B6 und zusätzlich mit Ba/F3^{*E/R*}-Zellen in Western Blot-Analysen getestet. In Abbildung 4.8 sind einige Western Blot Analysen exemplarisch dargestellt.

Bei der Etablierung der ChIP-Antikörper mit HT1080^{*E/R*} und Ba/F3^{*E/R*}-Zellen zur Kontrolle der ChIP-Effizienz mit Western Blot zeigte sich, dass die gegen ETV6 gerichteten polyklonalen Antikörper von Atlas (HPA000264) und *SCBT* (#sc-11382) sowie der monoklonale RUNX1-Antikörper von Epitomics (EPR3099) am geeignetsten schienen für die ChIP-Versuche mit den *ETV6/RUNX1* positiven Zelllinien REH und UoC-B6 sowie dem Patientenmaterial.

Die Eignung dieser Antikörper für die ChIP-Analyse zeigte sich zum einen in dem stärkeren ETV6/RUNX1 Signal nach ChIP im Vergleich zum Input, bei gleicher Menge an Gesamtprotein. Zum anderen konnte die Qualität der ChIP anhand der Histon H3 und ß-Aktin (ACTB) WB-Kontrollen bestimmt werden. Histon H3 ist ein Protein, welches vorwiegend im Zellkern lokalisiert ist. Aufgrund seiner Funktion als Bestandteil des Chromatins sollte Histon H3 nach erfolgreicher ChIP in allen Proben im WB detektiert werden. ACTB ist ein wesentlicher Bestandteil des im Zytoplasma der Zellen lokalisierten Zytoskeletts. Das ACTB-Signal sollte dementsprechend nach ChIP wesentlich schwächer sein als das im Input (vor der ChIP) detektierte Signal (Abbildung 4.8c).

Die Chromatin-Immunpräzipitation, der Proteinase-K Verdau und die Elution der DNA erfolgten wie im Abschnitt 3.2.7 Chromatin-Immunpräzipitation und Sequenzierung beschrieben.

4.2.5 Kontrolle der ChIP-Effizienz

Western Blot

Die Kontrolle der ChIP-Effizienz anhand der Anreicherung des ETV6/RUNX1 Fusionsproteins nach ChIP erfolgte zunächst durch Detektion der Anreicherung von ETV6/RUNX1 im WB. Für den ETV6/RUNX1 Nachweis wurde ein Teil des Inputs und ein Teil des Lysats nach der IP (vor Proteinase K-Verdau) durch SDS-Gelelektrophorese aufgetrennt und nach dem Blotten auf eine PVDF-Membran durch einen RUNX1- bzw. ETV6-Antikörper detektiert. Das Fusionsprotein sollte nach ChIP gegenüber allen anderen Proteinen (außer ETV6 nach ETV6-ChIP und RUNX1 nach RUNX1-ChIP) angereichert ein. Der Western Blot erwies sich als ChIP-Kontrolle für die REH- und Uo-B6 Zellen als ungeeignet, da beide Zelllinien im Gegensatz zu den Ba/F3^{E/R} und HT1080^{E/R}-Zellen das ETV6/RUNX1 Fusionsprotein sehr niedrig exprimieren und sowohl in der Input Probe als auch in den Proben nach IP (Output) im Western Blot nicht nachgewiesen werden konnte. Aus diesem Grund und weil für die ChIP-Seq-Analysen die Anreicherung von ETV6/RUNX1-DNAgeplanten Zielbereichen und deren Nachweis essenziell waren, wurde die Kontrolle der ChIP in allen folgenden Versuchen mit Hilfe von ETV6/RUNX1 Zielgenen mittels RT-qPCR durchgeführt.

Evaluierung der Primer und Kontrollen

Wie bereits in Abschnitt 1.3.2 ausführlich erläutert sind bisher nur sehr wenige Daten über die durch ETV6/RUNX1 in ihrer transkriptionellen Regulation beeinträchtigten Gene veröffentlicht worden. Für alle getesteten und aus der Literatur bekannten DNA-Regionen, einschließlich der Promotorregionen von ATM, ATR, ß-Globin, CD150, GAPDH, miRNA-494 und MPO (Tabelle 4.2) konnte keine Anreicherung nach ChIP gezeigt werden. Erst die Promotorregion von *complement factor properdin*

75

(*CFP*) zeigte mit RT-qPCR in den Ba/F3^{*E*/*R*}-Zellen im Vergleich zu den Ba/F3 erste signifikante Anreicherungen mit optimiertem ChIP-Protokoll. Dieses Gen wurde in der in unserer Arbeitsgruppe angefertigten Doktorarbeit von K. Hasse als durch ETV6/RUNX1 signifikant herunter reguliert gezeigt¹⁵⁰. Nach ChIP-Seq-Analyse konnte in den Ba/F3^{*E*/*R*}-Zellen im Promotorbereich von *CFP* eine klare Bindung von ETV6/RUNX1 bestätigt (Abbildung 4.9) und das ETV6/RUNX1-Bindungsmotiv nachgewiesen werden. Anhand dieser Ergebnisse wurde die Optimierung des ChIP-Protokolls abgeschlossen und die erste erfolgreiche ChIP-Seq-Analyse mit den UoC-B6-Zellen durchgeführt. Alle weiteren ChIP-Experimente wurden anhand dieses Standardprotokolls durchgeführt.

Gen	Desian	Bemerkung	Gen	Desian	Bemerkung
ACT1	human	PCR-Kontrolle	GZMB	human/murin	Literatur ¹³⁹
ATM	human	Literatur ¹⁶⁹	HPRT1	human	PCR-Kontrolle
ATR	human	Literatur ¹⁶⁹	IGLL1	human	UoC-B6**
ß-Globin	human	PCR-Kontrolle	IL3	human/murin	K.H.*
CD150	human/murin	Literatur ¹⁷⁰	ITGA4	human	UoC-B6
CDC5L	human/murin	K.H.*	LMBR1	human	UoC-B6**
CFP	human/murin	K.H.*	MGAT1	human	UoC-B6**
CR1	human/murin	K.H.	MiRNA-494	human	Literatur ¹³⁶
CSF1R	human/murin	K.H.*	MPO	human	Literatur ¹⁷¹
DMPK	human/murin	K.H.*	PR5803	human/murin	K.H.*
ELA2	human/murin	K.H.*	RASGRP2	human	UoC-B6**
EPOR	human/murin	Literatur ^{13,111,172}	RPL13A	human	K.H.*
GAPDH	human/murin	PCR Kontrolle			

Tabelle 4.2 Für ChIP-Kontrollen getestete Promotorbereiche

* aus der Dissertation von K. Hasse¹⁵⁰

** Gene, deren Promotorbereiche nach ChIP-Seq von UoC-B6 Zellen angereichert wurden

Die Analyse und Auswertung der RUNX1-ChIP-Seq Daten der Ba/F3^{*E/R*}-Zellen und der UoC-B6-Zellen zeigte nur in den Ba/F3^{*E/R*}-Zellen eine Bindung von ETV6/RUNX1 an *GZMB*. Bei *EPOR* wurde im Bereich von Exon 2 nach RUNX1- und ETV6-ChIP in beiden Zelllinien ein signifikantes Signal (p-value: 2.74x 10⁻⁶) detektiert. Eine Bindung von ETV6/RUNX1 an *CFP* konnte im Gegensatz zu den Ba/F3^{*E/R*}-Zellen in den UoC-B6-Zellen nicht nachgewiesen werden (Abbildung 4.9), das bedeutete, dass eventuell nur der Exon 2-Bereich von *EPOR* in den UoC-B6-Zellen und somit wahrscheinlich auch in anderen *ETV6/RUNX1*-positiven Zellen als positive ChIP-Kontrolle geeignet ist. In Tabelle 4.2 sind alle für ihre Eignung getesteten Gene aufgeführt. Die grün unterlegten Gene erwiesen sich als positive (und negative) ChIP-Kontrollen für die nachfolgenden ChIP-Seq-Analysen in den REH-Zellen und den beiden Patientenproben als besonders geeignet.

Abbildung 4.9: Position der gDNA Bereiche anfangs gewählter ChIP-Kontrollen Die Ergebnisse der ETV6- und RUNX1-ChIP in a) UoC-B6 und b) Ba/F3^{*E/R*}-Zellen sind exemplarisch anhand der Gene *EPOR*, *GZMB* und *CFP* dargestellt. Die Gene *EPOR* und *GZMB* wurden anhand von Literaturdaten als Kontrollregionen gewählt, *CFP* wurde in der Doktorarbeit von K. Hasse als E/R-reguliertes Gen (mit E/R-Bindungsmotiv) identifiziert. Epor wurde in den Ba/F3^{*E/R*}-Zellen nicht angereichert, im Gegensatz zu den UoC-B6-Zellen, bei denen ein gDNA Bereich im Exon 2 von *EPOR* angereichert wurde. In den Ba/F3^{*E/R*}-Zellen zeigt *Gzmb* im Promotorbereich eine E/R-Bindungsstelle, in den UoC-B6-Zellen konnte keine Anreicherung von *GZMB*-Regionen nachgewiesen werden. Die Anreicherung der *CFP*-Promotorregion in den Ba/F3^{*E/R*}-Zellen ist deutlich erkennbar, in den UoC-B6-Zellen wurde im Gen und im Promotorbereich keine E/R-Bindungsstelle identifiziert. Die roten Pfeile symbolisieren die Lage der Primer.

Basierend auf den ChIP-Seq Daten der UoC-B6-Zellen wurden einige potenzielle ETV6/RUNX1 Zielgene als positive Kontrollen für die ChIP gewählt. Diese zeigten im Promotorbereich (bis zu 10000 bp *upstream* vom Transkriptionsstartpunkt) eine signifikante Bindung von ETV6/RUNX1 (*p-value* <1x 10⁻²⁵), das ETV6/RUNX1-Bindungsmotiv und keine Mutationen in der Sequenz. Die Bindung der Primer und die Qualität des Amplifikats wurden mit gDNA von UoC-B6 und REH-Zellen getestet. Die RT-qPCR Bedingungen sind im Abschnitt 3.2.3.5 aufgeführt. Als positive Kontrollen wurden die Peakbereiche in den Promotorregionen der Gene *mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), RAS guanyl releasing protein 2 (RASGRP2), immunoglobulin lambda-like polypeptide 1 (IGLL1), Integrin alpha4 (ITGA4) und limb development membrane protein 1 (LMBR1) gewählt und entsprechende Primer getestet. Als negative RT-qPCR-Kontrolle wurden <i>CFP* und *signaling lymphocytic activation molecule family member 1 (CD150, SLAMF1*) getestet. *CD150* wurde bereits in anderen Veröffentlichungen als negative ChIP-Kontrolle verwendet¹⁷⁰.

Abbildung 4.10: Schmelzkurvenanalyse weiterer ChIP-Kontrollbereiche für RT-qPCR Analysen

Schmelzkurvenanalyse von Promotorbereichen, die basierend auf der ChIP-Seq-Analyse der UoC-B6-Zellen ausgewählt wurden. Die Analyse der Promotorbereiche von *ITGA4* und *MGAT1* zeigte multiple T_m Peaks, was auf mind. zwei Amplifikate nach RT-qPCR hinweist. Die Primer beider Bereiche waren somit ebenso wie RASGRP2 als PCR-Kontrollen ungeeignet.

Die Schmelzkurvenanalysen in Abbildung 4.11 zeigen, dass die Primer für *MGAT1* und *ITGA4* aufgrund multipler Schmelzkurvenpeaks nicht für die RT-qPCR und somit als ChIP-Kontrollen ungeeignet waren. Die Primer für *RASGRP2* waren ebenfalls nicht geeignet, da das Amplifikat erst nach RT-qPCR-Zyklus 30 detektiert wurde und aufgrund der geringen DNA-Ausgangskonzentration keine Reproduzierbarkeit der RT-qPCR gewährleistet werden konnte. Somit waren nur die Promotorbereiche der Gene *LMBR1* und *IGLL1* als positive ChIP-Kontrolle geeignet.

Abbildung 4.11 Position der letztlich gewählten RT-qPCR-Primer

- a) zeigt die Lage der Primer im Promotorbereich der Gene LMBR1 und IGLL1, sowie die Anreicherung der DNA in UoC-B6 Zellen nach ETV6-ChIP-Seq (ETV6 *coverage*), nach RUNX1-ChIP-Seq (RUNX1 *coverage*) und vor IP (Input *coverage*)
- b) zeigt die Lage der Primer für die negativen ChIP-Kontrollen LMBR1 und IGLL1 im ersten Intron (LMBR1) bzw. im zweiten Intron (IGLL1) der Gene sowie die Anreicherung der DNA nach ETV6-ChIP-Seq (ETV6 *coverage*), nach RUNX1-ChIP-Seq (RUNX1 *coverage*) und vor IP (Input *coverage*)

Die roten Pfeile markieren die Lage der Primer.

Die Lage der ChIP-Kontrollregionen ist in Abbildung 4.11 sowohl für *LMBR1* als auch für *IGLL1* dargestellt. Die roten Pfeile stellen die Lage der Primer im Promotorbereich der Gene dar. Die DNA-Bereiche für die negativen ChIP-Kontrollen wurden so gewählt, dass sie innerhalb der Gene *LMBR1* (Intron 1) und *IGLL1* (Intron 2), jedoch außerhalb der ETV6/RUNX1 Bindungsregionen (Peaks) lagen und kein ETV6/RUNX1 Bindungsmotiv aufwiesen. Nachdem die Primer für die negativen und

positiven Kontrollen erfolgreich getestet worden sind, wurden die entsprechenden Sonden für LMBR1+/- und IGLL1+/- designt.

4.3 ChIP- und ChIP-Seq Analysen in Zelllinien und primären KM-Proben

4.3.1 Berechnung der ChIP-Effizienz

Wie bereits im vorherigen Abschnitt beschrieben, wurde die ChIP-Effizienz mit RTqPCR Analysen bestimmter Regionen von *IGLL1* und *LMBR1* sowie der negativen Kontrolle $CD150^{170}$, die auf Basis der ChIP-Seq Analyse der UoC-B6-Zellen gewählt wurden, bestimmt. In Abbildung 4.12 ist die ChIP-Effizienz nach IP mit den verschiedenen Antikörpern als Signal relativ zum Input dargestellt. Das "Signal relativ zum Input" ist ein Maß für die ChIP-Anreicherung und zeigt im Vergleich zwischen positiven (*IGLL1*(+), *LMBR1*(+)) und negativen (*LMBR*(-), *IGLL*(-), *CD150*) Kontrollen die Effizienz der ChIP. Es berechnet sich aus dem Verhältnis der im Output und Input gemessenen C_T-Werte für ein spezifisches Amplifikat, multipliziert mit dem "%Input-Wert"¹⁷³:

 $\Delta CT = C_T(Input) - C_T(Output)$

%Input= $\frac{Inputkontrolle[\mu l]}{Gesamtinput[\mu l]} \times 100$

Signal relativ zum Input = $2^{\Delta CT \times \% Input}$

Die RT-qPCR wurde in Triplikaten durchgeführt, daraus ergibt sich ein aus neun *ratios* berechneter Δ CT-Mittelwert.

Tabelle 4.3: Kontrolle der C	ChIP-Effizienz in	UOC-B6-Zellen
------------------------------	-------------------	---------------

	ETV6 (Atlas)	lgG	Histon H3
CD150(-)	0,01%	0,01%	1,15%
IGLL1(-)	0,01%	0,01%	1,67%
IGLL1(+)	1,05%	0,07%	0,76%
LMBR1(+)	0,37%	n.a.	0,64%
LMBR1(-)	0,01%	n.a.	1,39%

n.a. Der C_T lag außerhalb des messbaren Bereiches (>40 PCR-Zyklen), eine Berechnung war daher nicht möglich.

Die Anreicherungen der Promotoregionen nach ETV6-CHIP und RUNX1-ChIP von

IGLL1(+) und *LMBR1(+)* gegenüber den negativen Kontrollen *IGLL1(-)* und *LMBR1(-)* waren signifikant (Tabelle 4.3).

Abbildung 4.12: Kontrolle der ChIP-Effizienz in UoC-B6 Zellen

- a) RT-qPCR Amplification Plot nach ETV6-ChIP (Atlas; #HPA000264) von IGLL1(+).
- b) Für die PCR-Produkte von CD150, CFP, IGLL1+/- und LMBR1+/- ist jeweils das "Signal relativ zum Input" nach ChIP im Balkendiagramm angegeben. Es wird deutlich, dass die Signale der positive Kontrollen IGLL1+ und LMBR1+ wesentlich stärker sind, als die Signale der negativen ChIP-Kontrollen. Dieser Test zeigt deutlich, dass *IGLL1*+ und *LMBR1*+ für die humanen Zelllinien als positive ChIP-Kontrollen geeignet sind.

Im Folgenden wird die Berechnung der ChIP-Effizienz am Beispiel der *IGLL1(+)* Analyse nach ETV6-ChIP-Seq mit dem ETV6-Antikörper von Atlas in UoC-B6-Zellen näher erläutert:

Das Ausgangsvolumen für die Inputkontrolle und das DNA-Elutionsvolumen nach ETV6-ChIP betrugen je 60 μ l. In die ETV6-ChIP wurden 2200 μ l Lysat (kovalent vernetzte Protein/DNA-Komplexe) eingesetzt (Input), nach IP wurde die DNA in einem Volumen von 50 μ l eluiert (Output). Für den Input wurden C_T-Werte von 27,65, 27,54 und 27,56 gemessen, für den *IGLL1(+)* Output nach ETV6-ChIP betrugen die C_T-Werte 28,96; 28,97 und 28,93. Daraus ergeben sich folgende Formeln:

 $\Delta CT = C_T (Input) - C_T (Output) = (-1,37)$ $\% Input = \frac{60[\mu l]}{2200[\mu l]} \times 100 = \frac{60}{22} = 2,73$ Signal relativ zum Input = $2^{\Delta CT} \times \%$ Input Signal relativ zum Input = 1,055%

Das bedeutet für diesen *IGLL1(+)*-Promotorbereich, dass 1,055 % der Kopien des Inputs im Eluat des ChIP-Outputs enthalten waren, das sind mehr Kopien als bei der

zweiten positiven Kontrolle LMBR1 (0,137%) und signifikant mehr Kopien als bei den negativen Kontrollen: LMBR1(-) mit 0,0095% und IGLL1(-) mit 0,0088%.

Dieses Ergebnis bestätigt die Daten der ETV6-ChIP und RUNX1-ChIP-Seq der UoC-B6-Zellen (Abbildung 4.11): Nach Bindung von ETV6/RUNX1 an die Promotorregion der Gene *IGLL1* und *LMBR1* erfolgt eine Anreicherung dieser Bindungsstelle (Peak). Bindet ETV6/RUNX1 nicht an die DNA (kein Peak) erfolgt keine Anreicherung dieser Region nach ChIP. Basierend auf diesen Ergebnissen wurde diese Probe zusammen mit dem Output nach RUNX1-ChIP und dem Input zur Hochdurchsatz DNA-Sequenzierung und anschließenden ersten Auswertung der ChIP-Seq Datensätze an das BCRT (Sequenzierungs-Core Unit; Dr. J. Hecht) gegeben.

4.3.2 Kontrolle der ChIP-Effizienz

Die Auswahl der Zielregionen für die Kontrolle der ChIP-Effizienz in den REH-Zellen sowie den primären KM-Proben der beiden Patienten basierte wie bereits im Abschnitt 4.2.5 ausführlich beschrieben auf den Daten der ChIP-Seq-Analyse der UoC-B6-Zellen. Für die Bestimmung der ChIP-Effizienz mittels RT-qPCR wurden zwischen 10 ng und 12 ng der Input-DNA eingesetzt. Dazu wurde die DNA-Konzentration des Inputs bestimmt und die gewünschte Konzentration eingestellt. Die DNA des Outputs wurde in gleicher Weise wie die Input-DNA verdünnt und in die RT-qPCR zur Bestimmung der ChIP-Effizienz eingesetzt.

In Abbildung 4.13a sind die Ergebnisse der RUNX1-ChIP und in Abbildung 4.13b die der ETV6-ChIP dargestellt. Die Daten der positiven Kontrollen (*LMBR1(+*) und *IGLL1(+*)) wurden auf die der jeweiligen negativen Kontrollen (*LMBR1(-*) und *IGLL1(-*)) normiert. Sowohl nach ETV6-ChIP als auch nach RUNX1-ChIP ist die Effizienz in den REH-Zellen wesentlich höher als in beiden KM-Proben der Patienten. Ein Indiz für die gute ChIP-Effizienz ist die im Verhältnis zu den positiven Kontrollen sehr niedrige Anreicherung der negativen Kontrollen: In der RUNX1-ChIP liegen die *ratios* zwischen 7,03 und 180,64, in der ETV6-ChIP zwischen 5,53 und 80,46. Sowohl die REH-Zellen als auch die KM-Proben beider Patienten exprimieren neben dem ETV6/RUNX1 Fusionsprotein RUNX1 jedoch kein ETV6, wodurch eventuell die im Durchschnitt bessere Effizienz der RUNX1-ChIP gegenüber der ETV6-ChIP erklärbar ist. Eine weitere Möglichkeit könnten die unterschiedlichen Affinitäten des RUNX1 und des ETV6-Antikörpers gegenüber den Proteinbindungsstellen sein.

Abbildung 4.13 Kontrolle der ChIP-Effizienz in REH-Zellen sowie den beiden Patientenproben

a) Effizienz nach RUNX1-ChIP, normiert auf die negativen Kontrollen b) Effizienz nach ETV6-ChIP, normiert auf die negativen Kontrollen

Histon H3 ist Bestandteil des Histon-Protein-Komplexes und ist somit in wichtige zelluläre Prozesse, wie der Transkription und des Chromosomenrearrangements während Mitose und Meiose beteiligt¹⁷⁴. Aufgrund dieser wichtigen Funktionen ist Histon H3 in besonderer Weise als ChIP-Kontrolle prädestiniert. Nach der Histon H3-ChIP muss in allen DNA-Bereichen eine starke Anreicherung gemessen werden (Abbildung 4.12b), ist dies nicht der Fall hat die ChIP grundsätzlich nicht funktioniert.

4.3.3 Identifizierung potenzieller ETV6/RUNX1 Zielgene

Die mit dem *peak calling* erstellten Peaklisten enthielten jeweils den Sequenzbereich der einzelnen Peaks und die *summits*. Der *Peaksummit* umfasst eine 1 Basenpaar-Position innerhalb des Peaks mit der höchsten Peak-Anreicherung. In der Nähe dieser Position liegt mit hoher Wahrscheinlichkeit die Bindungsstelle eines Transkriptionsfaktors. Für die Identifizierung potenzieller ETV6/RUNX1 Zielgene wurden die Peaklisten mit der Liste aller bekannten Transkriptionsstartpunkte (TSS; Assembly: Refgene hg19) abgeglichen. Diese Liste wurde vom UCSC Table Browser heruntergeladen und enthielt ca. 34000 TSS für alle bekannten Gene, inklusive hypothetischer Gene und Gene mit unklarer Funktion.

UoC-B6-Zellen

Basierend auf den Datensets der ChIP-Seq-Analyse wurden für die ETV6-ChIP 8758 Peaks (ETV6 Peaks) und für die RUNX1-ChIP 10115 Peaks (RUNX1 Peaks) identifiziert. Die Dichte der Peaks war in einigen Genombereichen relativ hoch, so dass bei der Berechnung der gemeinsamen ETV6/RUNX1 Peaks in diesen Bereichen, mehrere ETV6 und RUNX1 Peaks zu einem gemeinsamen ETV6/RUNX1 Peak zusammengefasst wurden (Abbildung 4.14).

Abbildung 4.14: Berechnung gemeinsamer E/R Peaks (schematisch) Überlappende ETV6 und RUNX1 Peaks wurden zu gemeinsamen E/R Peaks zusammengefasst.

Die Berechnung der gemeinsamen Peakregionen des ETV6 und RUNX1 Datensatzes ergab 5594 ETV6/RUNX1 Peaks (Abbildung 4.15). Diese Peaks sowie die ETV6 Peaks ohne Überlappung mit RUNX1 Peaks (ETV6-*unique*: 2834) und die RUNX1 Peaks ohne Überlappung mit ETV6 Peaks (RUNX1-*unique*: 4449) wurden den Promotorbereichen aller bekannter Gene (inklusive der Spleißvarianten, hypothetischen Gene und Gene mit unbekannter Funktion) zugeordnet: Nach der ETV6 Chip-Seq Analyse wurden 801 Gene identifiziert, die keine Übereinstimmung mit Genen nach RUNX1 ChIP haben. Es wurden 1872 potenzielle RUNX1 Zielgene und 1695 potenzielle ETV6/RUNX1 Zielgene identifiziert (Abbildung 4.15d).

Der Median ist im Gegensatz zu dem Mittelwert (Mean) unempfindlicher gegenüber Extremwerten. Der Median bedeutet in diesem Fall aus, dass die Hälfte der ETV6/RUNX1 Peakregionen 208 Basenpaare vor dem nächstgelegenen Transkriptionsstartpunkt (TSS) lag, wobei die maximale Entfernung 1,44x 10⁶ vor TSS und 1,4x 10⁶ Basenpaare nach TSS lag (Abbildung 4.15a). In Abbildung 4.15b ist die Verteilung von 5594 (das entspricht der Zahl der ETV6/RUNX1 Peaks) zufällig generierten Peaks um den TSS dargestellt. Im Vergleich zu den "echten" ETV6/RUNX1 Peaks sind hier sowohl der Mittelwert (-78463 bp) als auch der Median (3793 bp) wesentlich weiter vom TSS entfernt. Dieses Ergebnis zeigt, dass eine spezifische Anreicherung von DNA-Bereichen stattgefunden hat und dass diese Anreicherung im direkten Zusammenhang mit der Interaktion von ETV6/RUNX1 und RUNX1 bzw. deren Co-Faktoren mit diesen DNA-Bereichen steht.

Die in Abbildung 4.15c gezeigte Verteilung der ETV6/RUNX1 Peaks im Genom zeigt, dass die meisten ETV6/RUNX1 Peaks innerhalb eines Genes (davon 392 Peaks im Bereich zwischen TSS und 2500 Basenpaare), 1014 Peaks im Promotorbereich (-10 kb bis TSS) und 1738 Peaks außerhalb von Genen liegen.

83

Abbildung 4.15: Identifizierung potenzieller E/R Zielgene in UoC-B6

- a) Genomische Verteilung der E/R1 Peakregionen bezogen auf den nächstgelegenen TSS
- b) Genomische Verteilung zufällig generierter Peakregionen bezogen auf den nächstgelegenen TSS
- c) Zuordnung der ChIP-Seq Peaks zu unterschiedlichen Genombereichen nach Sanda et al¹⁷⁵. Als Promotor wurde der Bereich zwischen -10 kb und 2,5 kb um die jeweiligen TSS festgelegt.
- d) Die Venn-Diagramme zeigen die Anzahl der identifizierten Peaks (bzw. Gene) nach ETV6-ChIP und RUNX-ChIP. Die E/R Peaks wurden anhand des in Abbildung 4.14 gezeigten Schemas ermittelt. Aus diesem Grund entsprechen die Summen der ETV6/RUNX1 Peaks und der ETV6 inique bzw. RUNX1 *unique* Peaks nicht mit der entsprechenden Gesamtsumme überein. Gleiches gilt für die .Ermittlung der jeweiligen Zielgene.

REH-Zellen

Für die REH-Zellen wurden nach ChIP-Seq-Analyse 22554 ETV6 Peaks und 31312 RUNX1 Peaks identifiziert. Die Berechnung der gemeinsamen Peakregionen beider Datensätze ergab einen überlappenden Bereich von 18548 gemeinsamen ETV6 und RUNX1 Peaks (ETV6/RUNX1 Peaks). Die gemeinsamen ETV6 und RUNX1 Peaks sowie die ETV6 Peaks ohne Überlappung mit RUNX1 Peaks (ETV6-*unique*: 5074) und die RUNX1 Peaks ohne Überlappung mit ETV6 Peaks (RUNX1-*unique*: 13821) wurden den Promotorbereichen aller bekannter Gene zugeordnet: Es wurden 6836 potenzielle RUNX1 Zielgene, 4127 potenzielle ETV6 Zielgene und 3627 potenzielle ETV6/RUNX1 Zielgene identifiziert.

Im Median lagen die ETV6/RUNX1 Peakregionen 252 Basenpaare vor dem nächstgelegenen TSS, wobei die maximale Entfernung 1,44x 10⁶ vor TSS und 1,4x 10⁶ Basenpaare nach TSS lag (Abbildung 4.16a). Die meisten ETV6/RUNX1 Peaks lagen im Bereich um einen TSS (685 Peaks). Im Gegensatz hierzu wiesen die zufällig generierten Peaks einen wesentlich größeren Abstand des Medians zu den TSS auf (Median: 3345; Abbildung 4.16b). Die prozentuale Verteilung der ETV6/RUNX1 Peaks zeigt, dass 6581 Peaks keinem Gen zugeordnet werden konnten, 9218 Peaks in einem Gen lagen, wovon 1073 Peaks im Bereich zwischen TSS und 2500 Basenpaare lagen, 2749 Peaks waren im Promotorbereich vor TSS (-10 kb bis TSS) lokalisiert (Abbildung 4.16c).

Abbildung 4.16:Identifizierung potenzieller ETV6/RUNX1 Zielgene in REH-Zellen

- a) Genomische Verteilung der ETV6/RUNX1 Peakregionen bezogen auf die TSS.
- b) Genomische Verteilung zufällig regenerierter Peakregionen bezogen auf die TSS.
- c) Zuordnung der ChIP-Seq Peaks zu unterschiedlichen Genombereichen nach Sanda et al¹⁷⁵. Als Promotor wurde der Bereich zwischen -10 kb und 2,5 kb um die jeweiligen TSS festgelegt.
- d) Die Venn-Diagramme zeigen die Anzahl der identifizierten Peaks (bzw. Gene) nach ETV6-ChIP und RUNX-ChIP. Die ETV6/RUNX1 Peaks wurden anhand des in Abbildung 4.14 gezeigten Schemas ermittelt. Aus diesem Grund entsprechen die Summen der ETV6/RUNX1 Peaks und der ETV6 inique bzw. RUNX1 *unique* Peaks nicht mit der entsprechenden Gesamtsumme überein. Gleiches gilt für die .Ermittlung der jeweiligen Zielgene.

ALL_#1

Für die KM-Zellen von Patient 1 ergab die durchgeführte ChIP-Seq-Analyse nach ETV6-ChIP 36577 Peaks und nach RUNX1-ChIP 69420 Peaks. Die Berechnung der gemeinsamen Peakregionen nach ETV6- und RUNX1-ChIP ergab einen überlappenden Bereich von 34084 gemeinsamen Peaks (ETV6/RUNX1 Peaks). Die Zuordnung der 36577 (69420) ETV6 (RUNX1) Peaks zu den Promotorbereichen aller bekannter Genen ergab 10881 (13548) potenzielle ETV6 (RUNX1) Zielgene. Die Zuordnung der ETV6-*unique* Peaks (2332 Peaks) ergab 452 potenzielle ETV6 Zielgene, für die RUNX1-*unique* Peaks 3381 potenzielle RUNX1 Zielgene und 10434 potenzielle ETV6/RUNX1 Zielgene für die ETV6/RUNX1 Peaks. Die Zahl der potenzielle ETV6/RUNX1 Zielgene erscheint mit 10434 Genen sehr hoch, demnach müssten

ca. ¹/₃ aller Gene potenzielle ETV6/RUNX1 Zielgene sein. Wahrscheinlicher ist es, dass ein Fehler bei der ChIP-Seq Analyse am BCRT aufgetreten ist. Da das primäre KM Material für die Analyse verbraucht worden ist, ist eine Verifizierung des Versuches mit der Gleichen Probe nicht möglich.

Abbildung 4.17: Identifizierung potenzieller Zielgene in ALL_#1

- a) Genomische Verteilung der ETV6/RUNX1 -Peakregionen bezogen auf die TSS.
- b) Genomische Verteilung zufällig regenerierter Peakregionen bezogen auf die TSS.
- c) Zuordnung der ChIP-Seq Peaks zu unterschiedlichen Genombereichen nach Sanda et al¹⁷⁵. Als Promotor wurde der Bereich zwischen -10 kb und 2,5 kb um die jeweiligen TSS festgelegt.
- d) Die Venn-Diagramme zeigen die Anzahl der identifizierten Peaks (bzw. Gene) nach ETV6-ChIP und RUNX-ChIP. Die ETV6/RUNX1 Peaks wurden anhand des in Abbildung 4.14 gezeigten Schemas ermittelt. Aus diesem Grund entsprechen die Summen der ETV6/RUNX1 Peaks und der ETV6 inique bzw. RUNX1 *unique* Peaks nicht mit der entsprechenden Gesamtsumme überein. Gleiches gilt für die .Ermittlung der jeweiligen Zielgene.

Die Berechnung der Verteilung der ETV6/RUNX1 Peaks um die TSS zeigte im Median, dass die ETV6/RUNX1 Peaks 160 bp nach dem nächstgelegenen TSS lagen, wobei die maximale Entfernung 1,57x 10⁶ vor TSS und 1,57x 10⁶ Basenpaare nach TSS betrug (Abbildung 4.17a). Im Vergleich dazu lag der Median der 34084 zufällig generierten Peaks bei 2920 bp nach dem nächstgelegenen TSS.

Die prozentuale Verteilung der ETV6/RUNX1 Peaks zeigte, dass 8010 Peaks dem distalen Promotor (-10 kb bis TSS) und 3624 Peaks dem proximalen Promotor (TSS bis 2,5 kb) zugeordnet werden konnten. 9264 Peaks lagen außerhalb von Genen und Promotorbereichen.

ALL_#2

Die ChIP-Seq-Analyse der KM-Zellen des zweiten Patienten zeigte für die ETV6-ChIP 17801 Peaks und für die RUNX1-ChIP 33012 Peaks. Die Berechnung der gemeinsamen ETV6 und RUNX1-Peakbereiche ergab 14460 ETV6/RUNX1 Peaks. Die Zuordnung dieser Peaks zu den TSS aller bekannten Gene erbrachte 4991 potenzielle ETV6-, 9372 potenzielle RUNX1- und 3951 ETV6/RUNX1-DNA-Bindungsbereiche von diesen codierten 3117 Gene für Proteine.

Abbildung 4.18: Identifizierung potenzieller Zielgene in ALL_#2

- a) Genomische Verteilung der ETV6/RUNX1 -Peakregionen bezogen auf die TSS.
- b) Genomische Verteilung zufällig regenerierter Peakregionen bezogen auf die TSS.
- c) Zuordnung der ChIP-Seq Peaks zu unterschiedlichen Genombereichen nach Sanda et al¹⁷⁵. Als Promotor wurde der Bereich zwischen -10 kb und 2,5 kb um die jeweiligen TSS festgelegt.
- d) Die Venn-Diagramme zeigen die Anzahl der identifizierten Peaks (bzw. Gene) nach ETV6-ChIP und RUNX-ChIP. Die ETV6/RUNX1 Peaks wurden anhand des in Abbildung 4.14 gezeigten Schemas ermittelt. Aus diesem Grund entsprechen die Summen der ETV6/RUNX1 Peaks und der ETV6 inique bzw. RUNX1 *unique* Peaks nicht mit der entsprechenden Gesamtsumme überein. Gleiches gilt für die .Ermittlung der jeweiligen Zielgene.

Die ETV6/RUNX1 Peaks waren im Median 479 bp nach dem nächstgelegenen TSS lokalisiert. Im Vergleich dazu lag der Median der zufällig generierten 14460 Peaks bei 2647 bp nach TSS. Die prozentuale Verteilung der ETV6/RUNX1 Peaks im Genom zeigt, dass im Promotorbereich 3772 Peaks (distal: 2713; proximal: 1059) lokalisiert sind. 4632 Peaks liegen außerhalb eines Gens.

Zusammenfassung: Identifizierung potenzieller ETV6/RUNX1 Zielgene (Kerngenset)

Als Kerngenset wurden die übereinstimmenden ETV6/RUNX1 Zielgene der vier analysierten Proben (UoC-B6-Zellen, REH-Zellen, ALL_#1 und ALL_#2) definiert. Für die Ermittlung dieses Kerngensets wurden die Gene verwendet, die in ihrem Promotorbereich (-10 kb bis 2,5 kb) ETV6/RUNX1 mindestens einen Peaks besitzen. Das Kerngenset umfasst 1221 codierende DNA-Bereiche (Abbildung 4.19a). Von diesen codieren 935 für annotierte proteincodierende Gene. Der Rest (286 Gene) umfasst Gene mit unklarer Funktion bzw. hypothetische Gene.

Abbildung 4.19: Kerngenset

- a) Venn-Diagramm mit der Anzahl der gemeinsamen Gene der vier untersuchten Proben. Das Kerngenset umfasst 1221 codierende Bereiche.
- b) Die Anzahl der Gemeinsamen Gene von UoC-B6-Zellen und REH-Zellen
- c) Die Anzahl der gemeinsamen Gene von ALL_#1 und ALL_#2

Bei den beiden Patientenproben wurden 3836, bei den Zelllinien UoC-B6 und REH wurden 1407 gemeinsame Gene identifiziert. (Abbildung 4.19b und c).

4.3.4 Repräsentative Signalweganalysen

Für die Signalweganalysen wurden sowohl die potenziellen ETV6/RUNX1 Zielgene als auch die nur durch ETV6 (ETV6-*unique*) bzw. nur durch RUNX1 (RUNX1-*unique*) möglicherweise regulierten potenziellen Zielgene verschiedenen Signalwegen zugeordnet. Der *cutoff* lag bei einem *p*-*value* \leq 0,05. Für die Analysen wurde das von der Universität Madrid zur Verfügung gestellte Programm GeneCodis^{162,163,176} verwendet. Dargestellt sind jeweils die 10 am signifikantesten überrepräsentierten Signalwege. Der *p*-*value* basiert auf der Summe der für die Analyse verwendeten Gene, der in den entsprechenden Signalwegen lokalisierten Gene und der Gesamtzahl bekannter Gene (ca. 34000 Gene).

UoC-B6-Zellen

In die Signalweganalysen wurden 1695 potenzielle ETV6/RUNX1 Zielgene, 801 ETV6-*unique* Zielgene und 1872 RUNX1-*unique* Zielgene eingesetzt. Von 1695 potenziellen ETV6/RUNX1 Zielgenen waren 1301 annotierte proteincodierende Gene. In Abbildung 4.20 sind jeweils die zehn Signalwege aufgelistet, welche für die einzelnen Gengruppen überrepräsentiert waren.

Abbildung 4.20: Signifikant überrepräsentierte Signalwege in UoC-B6-Zellen Dargestellt sind jeweils die durch E/R Zielgene (a) ETV6-unique Zielgene (b) und RUNX1-uique Zielgene

Dargestellt sind jeweils die durch E/R Zielgene (a), ETV6-*unique* Zielgene (b) und RUNX1-uique Zielgene (c) am signifikantesten überrepräsentierte Signalwege. Die Zahlen im Kreisdiagramm bzw. den Balkendiagrammen geben die Zahl der entsprechenden Zielgene in diesen Signalwegen an.

254 potenziell durch ETV6/RUNX1 in ihrer Expression beeinflusste Proteine sind in insgesamt 30 Signalwegen involviert. Am signifikantesten überrepräsentiert ist der Signalweg *Transendotheliale Migration der Leukozyten* (*p-value:* 1,18 x 10⁻⁴). In diesem Signalweg sind insgesamt 113 Proteine involviert, davon sind 34 potenzielle ETV6/RUNX1 Zielgene.

Tabelle 4.4: Der Signalweg *Transendotheliale Migration der Leukozyten* in UoC-B6-Zellen

Signalweg	Transendotheliale Migration der Leukozyten
Gene_Gruppe	34
Gene_Referenz	113
Gene_Gesamt	34208
p-value	1,18E-04
Gene	MMP9, VAV1, ACTN1, CLDN9, ITGB2, ITGA4, ACTG1, PLCG2, ROCK2,
	RAC2, RHOH, ESAM, MYL12B, RHOA, SIPA1, CLDN5, ICAM1, ITGAL,
	GNAI2, VASP, NCF4, PTK2, MYL12A, CDH5
Gene_Gruppe: umfa	asst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expres-
sion	beeinflussten Proteine
Gene_Referenz: umfa	asst die Anzahl der in diesen Signalweg involvierten Proteine
Gene Gesamt: umfa	asst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Insgesamt sind 198 unterschiedliche potenziell durch ETV6/RUNX1 regulierte Prote-

ine in den zehn am signifikantesten überrepräsentiertesten Signalwege involviert, von diesen kommen 56 Gene in mind. zwei Signalwegen vor. Eine Liste der in den Signalweg *Transendotheliale Migration der Leukozyten* genannten Gene ist in Tabelle 4.4 aufgeführt. Die ETV6/RUNX1 Zielgene sind an 154 unterschiedliche biologische Prozesse mit einem *p-value* < 0,05 beteiligt. Zu diesen gehören u.a. die *DNA-abhängige Regulation der Transkription* (126/1609 Gene; *p-value*: 1,49 x 10⁻¹¹), die *Signaltransduktion* (102/1176 Gene; *p-value*: 2,24 x 10⁻¹¹) und die *Blutgerinnung* (54/457 Gene; *p-value* 1,67 x 10⁻¹⁰).

REH-Zellen

Von den in den REH-Zellen ermittelten 3627 potenziellen ETV6/RUNX1 Zielgenen (davon codieren 2794 Gene für Proteine) konnten 635 Proteine zu 100 Signalwegen (*p-value* \leq 0,05) zugeordnet werden, von diesen waren 310 in mind. zwei Signalwegen involviert. Die zehn Signalwege mit der signifikantesten Anzahl an, durch ETV6/RUNX1 regulierten Proteinen sind in Abbildung 4.21a dargestellt. Für die RUNX1-*unique* bzw. ETV6-*unique* Proteine entsprechend in Abbildung 4.21b und c.

Abbildung 4.21: Signifikant überrepräsentierte Signalwege in REH-Zellen Dargestellt sind jeweils die durch E/R Zielgene (a), ETV6-*unique* Zielgene (b) und RUNX1-uique Zielgene (c) am signifikantesten überrepräsentierte Signalwege. Die Zahlen im Kreisdiagramm bzw. den Balkendiagrammen ge-

ben die Zahl der entsprechenden Zielgene in diesen Signalwegen an.

Bei REH-Zellen ist genau wie bei UoC-B6-Zellen der Signalweg *Transendotheliale Migration der Leukozyten (p-value*: 6,54 x10⁻¹⁴) der am signifikantesten überrepräsentierte Signalweg (Tabelle 4.5).

Signalweg	Transendotheliale Migration der Leukozyten
Gene_Gruppe	46
Gene_Referenz	z 113
Gene_Gesamt	34208
p-value	6,54E-14
Gene	MMP9, CXCR4, VAV1, ACTN1, PIK3R5, CLDN9, ITGB2, ITGA4, PRKCB, PIK3CA, ACTG1, MLLT4, PLCG2, PRKCG, ITGAM, RAC2, RHOH, PIK3R2, ESAM, MYL12B, RHOA, PXN, RASSF5, SIPA1, GNAI3, ACTB, VCL, RAPGEF3, CYBB, CYBA, CLDN5, PLCG1, ICAM1, ITGAL, GNAI2, VASP, NCF4, PTK2, ROCK1, CLDN6, PIK3CG, MYL12A, MYL5, CLDN14, CDH5, CLDN4
Gene_Gruppe: ι	Imfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expres-

Tabelle 4.5: Der Signalweg *Transendotheliale Migration der Leukozyten* in REH-Zellen

sion beeinflussten Proteine

Gene_Referenz: umfasst die Anzahl der in diesen Signalweg involvierten Proteine Gene_Gesamt: umfasst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Gene_Gesamt. umlassi die Gesamizani aller bekannten Gene (Feb. 2009 (GRCh57/hg19)

In die zehn am signifikantesten ünerrepräsentierten Signalwege, mit exprimierten ETV6/RUNX1 Zielgenen sind 252 verschiedene Proteine involviert, von diesen sind 84 Proteine in mind. zwei Signalwegen lokalisiert.

Von den 2794 potenziellen ETV6/RUNX1 proteincodierende Zielgenen konnten 819 Proteine zu 154 unterschiedlichen biologische Prozessen (*p-value*<0,05) zugeordnet werden. Zu diesen gehören u.a. die *DNA-abhängige Regulation der Transkription* (126/1609 Gene; *p-value*: 1,49 x10⁻¹¹), die *Signaltransduktion* (102/1176 Gene; *p-value*: 2,24 x 10⁻¹¹), und die *Blutgerinnung* (54/457 Gene; *p-value*: 1,67 x10⁻¹⁰)

ALL_#1

In der primären KM-Probe ALL_#1 konnten durch die ChIP-Seq-Analyse 10434 potenzielle ETV6/RUNX1 Bindungsstellen identifiziert werden, von diesen befinden sich 8432 Bindungsstellen im Promotorbereich proteincodierender Gene. Die zehn Signalwege, in welche die signifikanteste Anzahl von durch ETV6/RUNX1 bzw. ETV6*unique* und RUNX1-*unique* Proteinen involviert ist, sind in Abbildung 4.22a aufgeführt. In diese zehn Signalwege sind 873 unterschiedliche durch ETV6/RUNX1 in ihrer Expression beeinflusste Proteine involviert, davon sind 157 Proteine in mind. zwei Signalwegen involviert.

Der am signifikantesten überrepräsentierte Signalweg ist der Spliceosomen-Signalweg.

Abbildung 4.22: Signifikant überrepräsentierte Signalwege in ALL_#1

Dargestellt sind jeweils die durch E/R Zielgene (a), ETV6-*unique* Zielgene (b) und RUNX1-*unique* Zielgene (c) am signifikantesten überrepräsentierte Signalwege. Die Zahlen im Kreisdiagramm bzw. den Balkendiagrammen geben die Zahl der entsprechenden Zielgene in diesen Signalwegen an.

In die Regulation der Spliceosomen sind 118 Proteine involviert, von diesen sind 106 durch potenzielle ETV6/RUNX1 Zielgene in ihrer Expression möglicherweise regulierte Proteine. Diese Gene sind in Tabelle 4.6 aufgeführt.

Signalweg	Spliceosomen
Gene Gruppe	106
Gene Referenz	118
Gene Gesamt	34208
p-value	1,45E-48
Gene	SNRPC, SRSF9, SNRPA, DDX42, SF3A1, SF3A3, LSM7, SRSF2, TCERG1, SRSF6, PRPF19, SNRPA1, XAB2, SRSF1, LSM4, DHX15, SNRNP27, PPIH, PRPF38A, SF3B5, SF3B1, HNRNPA1, WBP11, PRPF6, SRSF7, SF3A2, SNRNP200, PRPF18, RBM17, HNRNPK, PRPF8, PUF60, SF3B3, DHX38, DDX46, HNRNPA3, SLU7, AQR, RBMX, SNRNP70, U2AF1, PLRG1, NCBP1, ISY1, HSPA6, SMNDC1, MAGOHB, CHERP, SNRPB, PCBP1, MAGOH, DDX23, THOC2, CDC40, CTNNBL1, NAA38, PRPF38B, RBM22, LSM5, EIF4A3, PRPF3, RBM25, PRPF31, BUD31, ZMAT2, SNRPF, SNRPG, THOC1, PRPF4, SART1, HSPA2, SYF2, RBM8A, HNRNPC, EFTUD2, BCAS2, HNRNPU, NHP2L1, SRSF3, CDC5L, CCDC12, SNW1, U2SURP, TRA2A, PRPF40A, CRNKL1, PRPF40B, SNRPE, NCBP2, PHF5A, ACIN1, SF3B4, U2AF2, USP39, RBMXL1, TRA2B, LSM3, SNRNP40, SRSF5, SNRPB2, HSPA8, HNRNPA1L2, SNRPD1, DHX8, SNRPD2, SF3B2
Gene Gruppe: u	mfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expres-

Tabelle 4.6: Der Signalweg Spliceosomen in ALL_#1

Gene_Gruppe: umfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine

Gene_Referenz: umfasst die Anzahl der in diesen Signalweg involvierten Proteine

Gene_Gesamt: umfasst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Die 8432 potenziellen proteincodierenden ETV6/RUNX1 Zielgene konnten 735 unterschiedlichen biologischen Prozessen (*p*-value \leq 0,05) zugeordnet werden. Zu diesen zählen u.a. die DNA-abhängige Regulation der Transkription (879/1609 Genen, *p*-value: 2,54E-141), die Genexpression (320/408 Genen, *p*-value: 9,97E-113) und die virale Reproduktion (251/329 Genen, *p*-value: 5,94E-83)

ALL_#2

Von den 3951 identifizierten potenziellen ETV6/RUNX1 Zielgenen codierten 3117 Gene für Proteine, diese Gene wurden mit diversen Signalwegen abgeglichen Insgesamt 825 ETV6/RUNX1 Zielgene konnten 109 Signalwegen zugeordnet werden, wobei 372 Gene in mindestens zwei Signalwegen involviert sind. In Abbildung 4.23a sind die zehn Signalwege (*p-value* < 2E-13) aufgeführt, in die die signifikanteste Anzahl potenzieller ETV6/RUNX1 Zielgene involviert ist. In diese zehn Signalwege sind insgesamt 255 unterschiedliche Gene involviert und von diesen sind 90 Gene an mind. zwei Signalwegen beteiligt. In Abbildung 4.23b und c sind die durch ETV6*unique* und RUNX1-*unique* am stärksten beeinflussten Signalwege dargestellt.

Abbildung 4.23: Signifikant überrepräsentierte Signalwege in ALL_#2

Dargestellt sind jeweils die durch E/R Zielgene (a), ETV6-*unique* Zielgene (b) und RUNX1-*unique* Zielgene (c) am signifikantesten überrepräsentierte Signalwege. Die Zahlen im Kreisdiagramm bzw. den Balkendiagrammen geben die Zahl der entsprechenden Zielgene in diesen Signalwegen an.

In den ALL_#2 Zellen ist der Signalweg *Transendotheliale Migration der Leukozyten*, ebenso wie in den UoC-B6- und REH-Zellen, der Signalweg, der möglicherweise am meisten durch die Proteinprodukte potenzieller ETV6/RUNX1 Zielgene beeinflusst wird.

Signalweg	Transendotheliale Migration der Leukozyten
Gene_Gruppe	45
Gene_Referenz	113
Gene_Gesamt	34208
p-value	3,66E-16
Gene	MMP9, CXCR4, VAV1, ACTN1, PIK3R5, CLDN9, ITGB2, ITGA4, NCF1, PRKCB, PIK3CA, ACTG1, PLCG2, PRKCG, MYLPF, ITGAM, RAC2, RHOH, PIK3R2, MSN, MYL12B, RHOA, PXN, RASSF5, SIPA1, GNAI3, PRKCA, VCL, RAPGEF3, CYBB, CYBA, PLCG1, ICAM1, ITGAL, GNAI2, PIK3CD, NCF4, NCF2, PTK2, ROCK1, PIK3CG, MYL12A, CLDN14, CDH5, CLDN4
Gene_Gruppe: un	nfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expres-

Tabelle 4.7: Signalweg Transendotheliale Migration der Leukozyten in ALL_#2

Gene_Referenz: umfasst die Anzahl der in diesen Signalweg involvierten Proteine

sion beeinflussten Proteine

Gene_Gesamt: umfasst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Alle identifizierten proteincodierenden potenziellen ETV6/RUNX1 Zielgene konnten 295 biologischen Prozessen (*p*-value \leq 0,05) zugeordnet werden. Zu diesen zählen u.a. die Signaltransduktion (241/1176 Gene, *p*-value: 2,01E-30), die DNA-abhängige Regulation der Transkription (277/1609 Gene, *p*-value: 1,20E-22) und die Genex-pression (107/408 Gene, *p*-value: 4,56E-21).

Zusammenfassung: Signalweganalysen (Kerngenset)

Das 1221 ETV6/RUNX1 Zielgene umfassende Kerngenset beinhaltet 935 annotierte proteincodierende Gene, von diesen konnten 161 Proteine insgesamt 23 Signalwegen (*p*-value \leq 0,05) zugeordnet werden. Diese durch die proteincodierenden Gene des Kerngensets beeinflussten Signalwege sind entsprechend ihrer Signifikanz in Tabelle 4.8 aufgelistet.

	Signalweg	Gene_ Gruppe	Gene_ Referenz	p-value
1.	Transendotheliale Migration der Leuko- zyten	20	113	6,15E-09
2.	Regulierung des Aktin-Zytoskelets	24	209	3,57E-07
3.	Chemokin Signalweg	21	186	2,99E-06
4.	Hämatopoetische Zelllinie	13	83	1,90E-05
5.	B-Zellrezeptor Signalweg	12	75	3,34E-05
6.	Lysosomen	13	121	9,06E-04
7.	NK-Zell vermittelte Zytotoxität	13	125	1,10E-03
8.	Neurale Entwicklung	13	128	1,23E-03
9.	Endozytose	16	193	1,89E-03
10.	MAPK Signalweg	19	262	1,96E-03
11.	Fokale Adhäsion	16	197	1,97E-03
12.	Adhärenzverbindung	9	71	1,98E-03
13.	Zellzyklus	12	123	1,99E-03
14.	Zytoxin-Zytokin Rezeptor Interaktion	19	259	2,02E-03

Tabelle 4.8: Signifikant überrepräsentierte Signalwege des Kerngensets

	Signalweg	Gene_ Gruppe	Gene_ Referenz	p-value
15.	Pathways in cancer	21	324	3,37E-03
16.	Virale Herzmuskelentzündung	8	63	3,72E-03
17.	Zelladhäsionsmoleküle (CAMs)	11	125	7,42E-03
18.	Staphylococcus-aureus-Infektion	6	46	1,53E-02
19.	Dickdarmkrebs	7	62	1,58E-02
20.	Primäre Immunschwäche	5	33	1,82E-02
21.	Neutrophin Signalweg	10	124	2,01E-02
22.	p53 Signalweg	7	67	2,04E-02
23.	Differenzierung der Osteoklasten	10	126	2,06E-02

Gene_Gruppe: umfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine

Gene_Referenz: umfasst die Anzahl der in diesen Signalweg involvierten Proteine

Gene_Gesamt: umfasst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Die proteincodierenden Gene, die zu den in Tabelle 4.8 aufgeführten Signalwegen zugeordnet werden konnten, sind im folgenden Abschnitt aufgeführt. Die grün unterlegten Gene sind in mind. zwei Signalwegen involviert:

ABCA2, ABLIM1, ACAP1, ACAP2, ACTG1, ACTN1, ADCY7, AP1M2, AP1S2, AP2B1, AP4B1, ARHGEF1, ARHGEF7, ARSG, ASAP1, ATP6V0A1, BIRC2, BUB1, BUB3, C5AR1, CACNA2D4, CCL1, CCL3, CCND3, CCR2, CD19, CD1A, CD1C, CD28, CD38, CD55, CD72, CD79A, CDC27, CDH5, CDKN1B, CLDN9, CLN3, CREB1, CRK, CSK, CTSW, CX3CR1, CXCR3, CYFIP2, DCLRE1C, DNTT, DUSP1, DUSP5, DUSP6, E2F2, EFNA4, EHD4, EIF4G3, ENTPD4, EPHA2, EPOR, FGFR1, FGR, FLT3, FLT3LG, FOS, FZR1, GAB2, GGA1, GNAI2, GNB1, GNG12, GNG2, GNG7, GP1BA, GSK3A, GSK3B, GTSE1, HSPA8, ICAM1, ICAM2, ICOSLG, IGLL1, IL21R, IL2RA, IL6R, IQGAP2, ITGA4, ITGAL, ITGB2, JUND, KLRK1, LAPTM5, LEF1, LILRA1, LILRA2, LILRB2, MALT1, MAPK7, MDM2, MDM4, MEF2C, MMP9, MYL12A, MYL12B, NAPSA, NCF4, NCKAP1, NFATC3, NGFR, OSM, PARVB, PFN3, PIK3AP1, PIKFYVE, PIP4K2A, PLCG2, PLXNC1, PPP1CA, PPP5C, PSD4, PTAFR, PTK2, PTPN6, PTPN7, PTTG1, RAB22A, RAC2, RALGDS, RASA1, RA-SA2. RASGRP2. RHOA. RHOH, RPS6KA1, RRM2B, RUNX1, RXRA, SELPLG, SE-MA3G, SEMA5B, SERPINE1, SGSH, SH2B3, SH3BP2, SHISA5, SIPA1, SMAD2, SMAD7, SMAP2, SPN, SPP1, TNFRSF10A, TNFRSF13B, TNFRSF14, TNFRSF18, TNFRSF4, TNFSF14, TRAF4, TSG101, TYROBP, VAV1, YES1, YWHAZ, ZFYVE20

Der Signalweg *Transendotheliale Migration der Leukozyten* ist mit einem *p-value* von 6,15 x 10⁻⁹ der Signalweg, in dem im Verhältnis zu den in den Signalweg involvierten 113 Genen die meisten potenziellen ETV6/RUNX1 Zielgene (20 Gene) beteiligt sind.

Von den 935 annotierten proteincodierenden potenziellen ETV6/RUNX1 Zielgenen konnten 529 Gene 115 biologischen Prozessen (*p-value* \leq 0,05) zugeordnet werden. Von diesen Genen waren 305 Gene an mindestens zwei biologischen Prozessen beteiligt. Die möglicherweise am stärksten beeinflussten biologischen Prozesse sind: Die *Signaltransduktion* (85/1176 Genen; *p-value*: 9,16 x 10⁻¹³), die *GTPase vermittelte Regulation der Signal Transduktion* (25/172 Genen; *p-value*: 1,06 x 10⁻⁸) und die *DNA-abhängige Regulation der Transkription* (89/303 Genen; *p-value*: 1,75 x 10⁻⁷).

Gemeinsame potenzielle ETV6/RUNX1 Zielgene der KM-Proben ALL_#1 und ALL_#2

Von den 3836 gemeinsamen ETV6/RUNX1 Zielgenen der beiden Patientenproben ALL_#1 und ALL_#2 codierten 3028 Gene für annotierte proteincodierende Gene. Von diesen proteincodierenden Genen konnten 801 Gene insgesamt 107 Signalwegen zugeordnet werden. Die Zuordnung der gemeinsamen ETV6/RUNX1 Gene beider Patientenproben zu biologischen Prozessen, zeigte eine starke Signifikanz für die Signaltransduktion (236/1176 Genen; *p-value*: 3,31 x 10⁻³⁰), für die DNA-abhängige Regulation der Transkription (270/1609 Genen; *p-value*: 3,42 x 10⁻²²) und für die Genexpression (106/408 Genen; *p-value*: 1,69 x 10⁻²¹). Insgesamt konnten 2050 der 3028 proteincodierenden Gene 306 biologischen Prozessen (*p-value* \leq 0,05) zugeordnet werden.

Gemeinsame ETV6/RUNX1 Zielgene der Zelllinien UoC-B6 und REH

Die beiden Zelllinien REH und UoC-B6 hatten 1407 gemeinsame potenzielle ETV6/RUNX1 Zielgene, von diesen Genen codierten 1073 für Proteine. 193 der proteincodierenden Gene waren signifikant in 28 Signalwegen vertreten. 632 potenzielle ETV6/RUNX1 Zielgene konnten152 biologischen Prozessen (*p-value* \leq 0,05) zugeordnet werden. Die am stärksten repräsentierten Signalwege waren: Die Signal Transduktion (92/1176 Genen; *p-value*: 2,23 x 10⁻¹²), die DNA-abhängige Regulation der Transkription (111/1609 Genen; *p-value*: 6,29 x 10⁻¹²) und die Blutgerinnung (45/457 Genen; *p-value*: 1,25 x 10⁻⁸).

4.3.5 Motivanalysen

Biologische Prozesse in der Zelle, wie z.B. die transkriptionelle Regulation, das *Splicing* oder die DNA-Reparatur, werden oft über die Bindung bestimmter Strukturelemente (z.B. *helix loop helix; Zinc finger* etc.) von Proteinen an spezifische DNA-Sequenzmotive reguliert. Über die Zuordnung der in dieser Arbeit in den ChIP-Seq Peaks gefundenen Sequenzen zu Transkriptionsfaktoren (Bindungsstellen) kann die Spezifität der ChIP-Seq geprüft und andere in den identifizierten Peakbereichen evtl. ebenfalls bindende Transkriptionsfaktoren (Co-Faktoren) identifiziert werden. Bei einer direkten Bindung von ETV6/RUNX1 an die DNA wird bei der Motivanalyse das RUNX1-Motiv, bei einer durch einen ETV6/RUNX1-Bindungspartner vermittelten indirekten Bindung wird nur das DNA-Bindungsmotiv dieses Transkriptionsfaktors/Co-Faktors in einem Peak identifiziert. Für die Motivanalysen wurden die 150 bp langen

Sequenzen um den Peak-*summit* verwendet (75 bp *upstream* und 75 bp *downstream*). Der *summit* ist die Position im Peak mit der höchsten Anreicherung und somit die wahrscheinlichste Position der Protein-DNA-Interaktion. Für die Identifizierung von möglichen DNA-Bindungs-Motiven in den Peak *summits* wurde das Programm DREME verwendet¹⁶¹. Für die Analyse wurde ein E-wert (*e-value*) von <0,05 festgelegt. Die Zuordnung der identifizierten Motive zu möglichen Transkriptionsfaktoren geschah durch das *MEME Tool* TOMTOM (*Motif comparison Tool*)¹⁷⁷. TOMTOM ermittelt Ähnlichkeiten zu bekannten Motiven, die in verschiedenen Datenbanken (*z*.B. *JASPAR CORE (2014)_vertebrates*) zur Verfügung stehen¹⁷⁸.

UoC-B6-Zellen

Nach Auswertung der Daten konnten nach ETV6-ChIP in 4540 von den 8758 identifizierten ETV6 Peaks durch die DREME-Analyse 17 unterschiedliche Bindungsmotive identifiziert und in sieben IUPAC-Motive (eine Auflistung der IUPAC Motive findet sich im Anhang) zusammengefasst werden. Viele der 4540 ETV6 Peaks besaßen mehrere unterschiedliche Bindungsmotive. In 2689 ETV6 Peaks wurde mindestens eines der bekannten RUNX1-Motive identifiziert. Von diesen wurde in 2096 ETV6 Peaks ausschließlich ein RUNX1 Motiv identifiziert. In 1851 ETV6 Peaks wurden andere Bindungsmotive und kein RUNX1-DNA-Bindungsmotiv identifiziert.

Nach RUNX1-ChIP wurden in 6158 der 10115 RUNX1 Peaks insgesamt 25 unterschiedliche Bindungsmotive (entspricht 6 IUPAC Motiven) identifiziert. Von den 3011 Peaks mit RUNX1-Bindungsmotiv, konnte nur in 1153 RUNX1 Peaks keine DNA-Bindungsmotive für weitere Transkriptionsfaktoren gefunden werden, d.h. in diesen Peaks könnte die DNA-Bindung von RUNX1 direkt über die RUNX1-Bindungsstelle erfolgen. In den übrigen 3147 RUNX1 Peaks wurden demzufolge kein RUNX1 DNA-Bindungsmotiv identifiziert.

Tabelle 4.9	Überrepräsentierte	Motive	in	UoC-B6-Zellen	nach	ChIP-Seq-
	Analyse und Zuordn	ung mög	glich	er Transkription	sfaktor	en

	ETV6-CHIP		RUNX1-ChIP			TF	
IUPAC	Logo	e-Value	IUPAC	Logo	e-Value	TF_1	TF_2
RACCRCA		2,5x10 ⁻⁵³²	DACCRCA		3,7x10 ⁻⁶³⁴	RUNX1	RUNX2
AGGAARY		3,6x10 ⁻⁴⁰⁹	AGGAARY	ACGAAse	2,6x10 ⁻⁴²⁹	FEV	ERG
			ASMCACA		5,7x10 ⁻¹¹⁵	FOXH1	RUNX1
CAGMTGB		2,5x10 ⁻¹¹¹		-		ATOH1	TAL1: :TCF3
			CAKCTGY	CA <u></u>	1,4x10 ⁻¹²²	MYOG	TCF12

E	TV6-CHIP		RI	JNX1-ChIP		Т	F
CYCCDCCC		3,3x10 ⁻⁰⁶⁵	CYCCDCCC		1,2x10 ⁻⁰⁸⁵	KLF5	SP1
GYGGTTW	<u>GIGGIL</u>	1,3x10 ⁻⁴⁰⁰				RUNX1	RUNX2
CTGCGGB	CTCCCC	6,7x10 ⁻⁰⁸⁶				MYOG	RUNX1
			CCACNTCC	CCAC_TCC	1,5x10 ⁻¹⁸⁸	ETS1	FLI1
AGRGAAR	Jagg GAAg	2,4x10 ⁻⁰⁵⁰		84.7		GATA3	E2F6

Die RUNX1-Bindungsmotive codieren für sechs verschiedene RUNX1-Konsensussequenzen (AAACCAC, AAC-CACA, AGCCACA, GTGGTTT, TGTGGCT, TGTGGTT) bzw. fünf IUPAC-Motive (ASMCACA, DACCRCA, GYGGTTW, RACCRCA, TGTGGB).

In Tabelle 4.9 sind für alle identifizierten IUPAC-Motive die Ergebnisse der Motivanalyse nach ETV6-ChIP-Seq und RUNX1-ChIP-Seq der UoC-B6-Zellen zusammengefasst, da die Zellen kein ETV6 exprimieren und die Bindung von ETV6/RUNX1 an die DNA über die *RHD* des RUNX1 vermittelt wird, zeigten beide Analysen, wie erwartet, eine hohe Übereinstimmung.

Abbildung 4.24: Mögliche Protein-Protein Interaktionen in UoC-B6 Zellen Gezeigt werden mögliche Protein-Protein-Interaktionen zwischen den Transkriptionsfaktoren, deren Bindungsmotiv in einem ETV6 bzw. RUNX1 Peak nachgewiesen werden konnte. Erstellt mit der Software String 10¹⁷⁹

String 10¹⁷⁹ ist eine der *Softwares* mit der mögliche Protein-Protein Interaktionen ermittelt werden können. Für die Analyse wurden alle Transkriptionsfaktoren verwendet, die durch die Motivanalyse als mögliche Bindungspartner von ETV6/RUNX1 bzw. RUNX1 identifiziert wurden. Das Resultat dieser Analyse ist in Abbildung 4.24 gezeigt: So können z.B. die über die Motivanalyse identifizierten Transkriptionsfaktoren *specificity protein 1* (SP1), *v-ets avian erythroblastosis virus E26 oncogene homolog 1* (ETS1) und *hepatocyte nuclear factor 1-beta* (HNF-1B; Synonym: *variant hepatic nuclear factor* (vHNF); TCF2) mit RUNX1 und somit mit auch mit ETV6/RUNX1 interagieren. Der Transkriptionsfaktor ETS1 kann darüber hinaus die Expression von GATA3, welcher über SP1 ebenfalls mit RUNX1 interagieren kann, beeinflussen.

REH-Zellen

Nach ETV6-ChIP-Seq Analyse konnten 13578 von 22554 ETV6-Peaks insgesamt 23 unterschiedliche bekannte DNA-Bindungsmotive für Transkriptionsfaktoren zugeordnet werden (das entspricht sieben IUPAC Motiven). In ungefähr der Hälfte der ETV6 Peaks (7489), wurde neben Bindungsmotiven für andere Transkriptionsfaktoren mind. eines der RUNX1-Bindungsmotive identifiziert. Nur 1761 aller Peaks besaßen das RUNX1 Motiv ohne weitere Motive für andere Transkriptionsfaktoren. In den restlichen ETV6 Peaks (7503 Peaks) wurden keine RUNX1-Bindungsmotive gefunden. Nach RUNX1-ChIP-Seg Analyse wurden in 18901 der insgesamt 31312 RUNX1 Peaks 29 unterschiedliche DNA-Bindungsmotive (acht IUPAC Motive) gefunden. Die meisten der RUNX1 Peaks enthielten neben dem RUNX1 Bindungsmotiv noch weitere Bindungsmotive für andere Transkriptionsfaktoren (9285 Peaks), nur 2460 dieser Peaks konnte nur eines der bekannten RUNX1 DNA-Bindungsmotive gefunden werden. In 4416 Peaks wurde kein RUNX1 Bindungsmotiv gefunden, die Bindung von ETV6/RUNX1 bzw. RUNX1 an die DNA findet hier wahrscheinlich über Co-Faktoren statt. Die Ergebnisse der Motivanalyse in den REH-Zellen sind in Tabelle 4.10 zusammengefasst.

ETV6-ChIP			R	TF			
IUPAC-Code	Logo	e-value	IUPAC-Code	Logo	e-value	TF_1	TF_2
AGGAARY		3,1x10 ⁻⁹⁵⁰	AGGAARY	# AGGAAse	3,3x10 ⁻¹²⁵⁷	FEV	ERG
DACCRCA		1,7x10-796	DACCRCA	ACCACA	1,7x10 ⁻¹⁰⁴⁴	RUNX1	RUNX2
CAKCTGY		1,5x10 ⁻²⁵⁴	CAKCTGY		1,4x10 ⁻³⁸⁴	MYOG	TCF12
ASMCACA	Asscaca	1,0x10 ⁻²⁵⁰	ASMCACA	Asscaca	1,1x10 ⁻²³²	FOXH1	RUNX1
CTTCCKS	CTTCCIE	5,0x10 ⁻²³³				EHF	ELF1
			СТТССКВ	ŢŢŢŢŢ	1,0x10 ⁻³⁶²	ELF1	FLI1
CCACNKCC		2,0x10 ⁻¹⁴¹	CCACNKCC		1,0x10- ¹⁴¹	FLI1	ETS1
CYCCDCCC		7,0x10 ⁻¹²⁰	CYCCDCCC		9,1x10 ⁻²⁰⁵	KLF5	SP1
			AAANRAAA		1,2x10 ⁻¹⁵²	STAT2:: STAT1	FOXP1

130010 / 10 1100rro	nrgenntinrtn IVI <i>r</i>	NTINA IN DEU 7AI	
		JUVE III NLII=ZEI	
			_ /
	4		

In insgesamt 12379 von 18548 ETV6/RUNX1 Peaks konnten 29 unterschiedliche DNA-Bindungsmotive (entspricht 9 IUPAC Motiven) identifiziert werden. Ungefähr in der Hälfte der Peaks (6740) konnte kein RUNX1 Bindungsmotiv nachgewiesen werden. In 1428 ETV6/RUNX1 Peaks wurde nur das RUNX1-Motiv nachgewiesen, in den übrigen 4211 Peaks wurden neben den RUNX1 Bindungsmotiv, weitere Bindungsstellen für andere Transkriptionsfaktoren identifiziert werden.

Für die Bestimmung der Protein-Protein Interaktionen mit dem Programm String 10¹⁷⁹ wurden alle Transkriptionsfaktoren, die durch die Motivanalyse als mögliche Bindungspartner von ETV6/RUNX1 bzw. RUNX1 identifiziert wurden (Tabelle 4.10) verwendet. Das Resultat der Analyse ist in Abbildung 4.25 dargestellt.

Abbildung 4.25: Mögliche Protein-Protein Interaktionen in REH Zellen Gezeigt werden mögliche Protein-Protein-Interaktionen zwischen den Transkriptionsfaktoren, deren Bindungsmotiv in einem ETV6 bzw. RUNX1 Peak nachgewiesen werden konnte.

Zu diesen potenziellen Bindungspartnern von ETV6/RUNX1 bzw. RUNX1 gehören z.B. SP1, ETS1, friend leukemia integration 1 transcription factor (FLI1; Synonym: transcription factor (ERGB)) und transcription factor 12 (TCF12). Da RUNX1 und RUNX2 das identische DNA-Bindungsmotiv haben, ist über das Bindungsmotiv eine Unterscheidung, welches der beiden Proteine an die DNA bindet nicht möglich. Wie in Abbildung 4.25 erkennbar, kann RUNX2 über ETS1 eine Bindung mit RUNX1 eingehen. Die mit dem Programm String 10 gezeigte Interaktion zwischen den Transkriptionsfaktoren zeigt darüber hinaus, dass eine direkte Regulation zwischen den Transkriptionsfaktoren s*ignal transducer and activator of transcription 2* und 1 (STAT1 und STAT2) durch eine posttranslationale Modifikation von STAT1 durch STAT2 und somit eine indirekte Regulation von RUNX1 erfolgen kann.

All_ #1

Nach RUNX1-ChIP-Seq Analyse konnten 35737 der 69420 RUNX1 Peaks 30 unterschiedlichen DNA-Bindungsmotiven von Transkriptionsfaktoren zugeordnet werden (entspricht sechs IUPAC-Motiven), keines dieser Motive war ein RUNX1-DNA Bindungsmotiv. Nach ETV6-ChIP-seq-Analyse konnten 33 unterschiedliche Bindungsmotive (entspricht acht IUPAC Motiven) in 20779 (von 36577) ETV6 Peaks identifiziert werden. Eines dieser Bindungsmotive war ein RUNX1 Bindungsmotiv (AVMCACA).

ETV6-ChIP			RU		TF		
IUPAC-Code	Logo	e-value	IUPAC-Code	Logo	e-value	TF_1	TF_2
AGGAARY	I AGGAAse	7,9x10 ⁻¹³⁸⁸	AGGAARY	# AGGAAse	1,4x10 ⁻²¹⁰⁷	FEV	ERG
CTTCCBB		1,9x10 ⁻⁵⁵²				EHF	SPI1
AVMCACA	A SCACA	2,1x10 ⁻⁵²⁵				RUNX1	RUNX2
	_		CTTCCBS	[₽] ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	1,6x10 ⁻⁷¹⁷	EHF	ELF1
CYCCDCCC		3,9x10 ⁻³⁵²	CYCCDCCC		1,9x10 ⁻⁵⁶⁵	KLF5	SP1
CABCTGY	[#] CA CTGC	5,4x10 ⁻²⁶⁰	CABCTGY	CA_CTG	6,8x10 ⁻⁴⁸²	MYOG	MYOD1
ACGTSAY		8,9x10 ⁻¹⁵⁹		_		USF1	CREB1
CCDCCKCC		1,1x10 ⁻¹⁴¹	CCDCCKCC		3,9x10 ⁻²⁵⁵	ZNF263	SP1
			RDAAACA		3,3x10 ⁻²⁶⁹	FOXO1	FOXO3

Tabelle 4.11 Überrepräsentierte Motive bei All #1 nach DREME Analyse

Die RUNX1-Bindungsmotive codieren für sechs verschiedene RUNX1-Konsensussequenzen (AAACCAC, AAC-CACA, AGCCACA, GTGGTTT, TGTGGCT, TGTGGTT) bzw. fünf IUPAC-Motive (ASMCACA, DACCRCA, GYGGTTW, RACCRCA, TGTGGB).

Von den insgesamt 34077 ETV6/RUNX1 Peaks enthielten 22087 mindestens ein DNA-Bindungsmotiv. Insgesamt wurden 29 unterschiedliche DNA-Bindungsmotive (entspricht vier IUPAC Motiven) identifiziert. Keines dieser Motive war einem der bekannten RUNX1 DNA-Bindungsmotive zuzuordnen. Die Ergebnisse der Motivanalyse sind in Tabelle 4.11 zusammengefasst. Insgesamt konnten 16 Transkriptionsfaktoren identifiziert werden, die ein mindestens ein DNA-Bindungsmotiv in ETV6 und RUNX1 Peaks aufweisen. Erstaunlicherweise konnte nach RUNX1-ChIP-Seq Analyse keines der bekannten RUNX1 Motive festgestellt werden. Das spricht, ebenso wie die große Zahl der gefundenen potenziellen ETV6/RUNX1 Zielgene (Abschnitt 4.3.4; ALL_#1) dafür, dass eventuell ein Fehler bei der computergestützten Analyse der ChIP-Seq

Analyse aufgetreten ist.

Abbildung 4.26: Protein-Protein Interaktionen in ALL_#1 Gezeigt sind die Interaktionen zwischen den Transkriptionsfaktoren, die ein DNA-Bindungsmotiv in RUNX1 und ETV6 Peaks besitzen.

In Abbildung 4.26 sind die Protein-Protein Interaktionen zwischen diesen 16 Transkriptionsfaktoren gezeigt. So können z.B. MYOD1 und SP1 als direkte Bindungspartner von RUNX1 interagieren. RUNX1 wiederum kann die Expression von SPI1 beeinflussen. Für die Transkriptionsfaktoren KLF5, ZNF263, USF1, EHF, ELF1, FEV und ERG wurden keine Interaktionen gefunden.

ALL_#2

Die Ergebnisse der Motivanalyse sind in Tabelle 4.12 dargestellt. Von den 17801 nach ChIP-Seq Analyse identifizierten ETV6 Peaks, wurden in 10103 ETV6 Peaks, DNA-Bindungsmotive für 25 unterschiedliche Transkriptionsfaktoren (entspricht sieben IUPAC Motiven) gefunden. Eines der Motive entspricht dem DNA-Bindungsmotiv für RUNX1 (ARCCRCA: AACCACA bzw. das *reverse complement*: TGTGGTT). Nach RUNX1-ChIP-Seq-Analyse konnten 33007 RUNX1-Peaks identifiziert werden. Von diesen besaßen 17441 Peaks mindestens ein DNA-Bindungsmotiv. In 861 Peaks konnte nur das RUNX1 Bindungsmotiv nachgewiesen werden. Dieses war in allen Peaks identisch: TGTGGCT (*reverse complement*: AGCCACA; IUPAC-Motiv:

ASMCACA)

Tabelle 4.12 Überrepräsentierte Motive bei ALL_#2 nach DREME Analyse

ETV6-ChIP			RUNX1-ChIP			TF	
IUPAC-Code	Logo	e-value	IUPAC-Code	Logo	e-value	TF_1	TF_2
AGGAARY		1,1x10 ⁻⁷⁴⁶	AGGAARY		5,3x10 ⁻¹¹⁴³	FEV	ERG

ETV6-ChIP			R	TF			
IUPAC-Code	Logo	e-value	IUPAC-Code	Logo	e-value	TF_1	TF_2
ARCCRCA		6,9x10 ⁻⁴⁰⁹				RUNX1	RUNX2
CTTCCKB	CTTCC1	1,1x10 ⁻²⁶⁹				ELF1	FLI1
			CTTCCBB	Ĩ <mark>ĊŢŢĊĊ</mark> s ę	1,2x10 ⁻⁴²⁰	EHF	SPI1
CAKCTGY	[#] CA <u>ç</u> ÇŢÇç	3,1x10 ⁻¹⁵⁷	CAKCTGY		3,8x10 ⁻²⁴⁷	MYOG	TCF12
			CYCCDCCC		7,1x10 ⁻²⁵⁰	KLF5	SP1
CCDCHTCC		2,9x10 ⁻¹²¹				ETS1	ELK4
			ASMCACA		4,5x10 ⁻²²¹	FOXH1	RUNX1
GGGYGGGR	GGGzGGG Ş	1,6x10 ⁻⁰⁹⁶		-		KLF5	EGR1
			CCDCMTCC		1,3x10 ⁻¹³²	ZNF263	SP1
RDAAACA		3,3x10 ⁻⁰⁷⁹				FOXO1	FOXO3

Die RUNX1-Bindungsmotive *codieren* für sechs verschiedene RUNX1-Konsensussequenzen (AAACCAC, AAC-CACA, AGCCACA, GTGGTTT, TGTGGCT, TGTGGTT) bzw. fünf IUPAC-Motive (ASMCACA, DACCRCA, GYGGTTW, RACCRCA, TGTGGB).

Von den gemeinsamen ETV6 und RUNX1 Peaks enthielten 10427 ein DNA-Bindungsmotiv. Von diesen war keines ein RUNX1 DNA-Bindungsmotiv, das ist ein Indiz dafür, dass die Bindung von ETV6/RUNX1 an die Promotorbereiche in den ALL_#2 Zellen ausschließlich über Co-Faktoren geschehen könnte. Einige der möglichen RUNX1-Co-Faktoren sind in Tabelle 4.12 und in Abbildung 4.27 aufgeführt.

Abbildung 4.27: Mögliche Protein-Protein Interaktion in ALL_#2

Gezeigt sind die Interaktionen zwischen den Transkriptionsfaktoren, die ein DNA-Bindungsmotiv in RUNX1 und ETV6 Peaks besitzen

In Abbildung 4.27 sind mögliche Interaktionen zwischen den einzelnen, mittels *des MEME Tool* TOMTOM^{163,164} identifizierten Transkriptionsfaktoren mit DNA-

Bindungsmotiv in den RUNX1 und ETV6 Peaks dargestellt. So können z.B. TCF12, SP1, ETS1 und FLI1 direkte Bindungspartner von RUNX1 sein. Wogegen die Bindung von z.B. FOXH1 an RUNX1 über TCF12 geschehen muss.

Zusammenfassung: Motivanalyse

Nach heutigem Kenntnisstand erfolgt die Interaktion des ETV6/RUNX1 Fusionsproteins mit der DNA über die RHD (*runt homology domain*) des RUNX1 und die Interaktion mit anderen Proteinen v.a über die PD (*pointed domain*) und die *central repression domain* des ETV6 (Abbildung 1.7a)⁹⁰. Bei der Motivanalyse wurden zum einem mit *DREME*¹⁶¹ alle möglichen (bekannten) DNA-Bindungsmotive identifiziert und zum anderen wurden mit dem *MEME Tool TOMTOM*^{177,178} diese Motive den entsprechenden Transkriptionsfaktoren zugeordnet. Alle Transkriptionsfaktoren besitzen DNA-Erkennungsmotive, über die sie mit der DNA interagieren. Bei RUNX1 sind diese Bindungsmotive: *AAACCAC*, *AACCACA*, *AGCCACA*, *GTGGTTT*, *TGTGGCT*, *TGTGGTT* und *TGTGGTT* bzw. fünf IUPAC-Motive *ASMCACA*, *DAC-CRCA*, *GYGGTTW*, *RACCRCA* und *TGTGGB*.

In ca. 50% bis 60% aller ETV6 bzw. RUNX1 Peaks konnten in allen untersuchten und analysierten Proben DNA-Bindungsmotive für Transkriptionsfaktoren identifiziert werden (Tabelle 4.13).

	ChIP-Seq	Peaks Gesamt	alle P mit N	eaks Iotiv	RUNX1-Motiv	RUNX1 Motiv- <i>uniqu</i> e	ohne RUNX1-Motiv
UoC-B6	RUNX1	10115	6158	(61%)	49%	33%	51%
	ETV6	8758	4540	(52%)	59%	46%	41%
REH	RUNX1	31312	18901	(60%)	42%	29%	58%
	ETV6	22554	13578	(60%)	45%	30%	55%
ALL_#1	RUNX1	69420	35737	(51%)	0%	0%	100%
	ETV6	36577	20776	(57%)	20%	9%	80%
ALL_#2	RUNX1	33012	17441	(53%)	16%	5%	84%
	ETV6	17801	10103	(57%)	25%	8%	75%

Mit Ausnahme der Probe ALL_#1 wurden in den ETV6 Peaks und RUNX1 Peaks jeweils ungefähr der gleiche prozentuale Anteil an Bindungsstellen identifiziert. Bei den primären KM-Zellen der Probe ALL_#1 konnte nach RUNX1-Chip keines der bekannten RUNX1 DNA-Bindungsmotive identifiziert werden. Auffällig ist, dass der prozentuale Anteil der Peaks mit einem RUNX1 Bindungsmotiv in den BVZ REH und UoC-B6 ähnlich hoch ist und darüber hinaus mehr als doppelt so hoch wie in den beiden Patientenproben ALL_#1 und ALL_#2. Eine mögliche Ursache hierfür ist,

dass in beiden Patientenproben ETV6 exprimiert wird, wohingegen in den REH Zellen das zweite ETV6 Allel vollständig in den UoC-B6 Zellen in fast allen Zellen deletiert ist. Bei dem Patienten ALL_#1 ist in ca. 9% der Blasten der zweite ETV6 Lokus nicht deletiert, bei der Patientin ALL_#2 wurde keine Deletion des zweiten ETV6 Lokus nachgewiesen. Neben RUNX1 als Bindungspartner für ETV6/RUNX1 Zielgene konnten DNA-Bindungsmotive für weitere Transkriptionsfaktoren identifiziert werden.

Zelllinien bzw.	Transkriptionsfaktoren
KM-Proben	
UoC-B6	ATOH1, E2F6, ERG, ETS1, FEV, FLI1, FOXH1, GATA3, KLF5, MY-
	OG, RUNX1, RUNX2, SP1, TAL1::TCF3, TCF12
REH	EHF, ELF1, ERG, ETS1, FEV, FLI1, FOXH1, FOXP1, KLF5, MYOG,
	RUNX1, RUNX2, SP1, STAT1, STAT2::, TCF12
ALL_#1	CREB1, EHF, ELF1, ERG, FEV, FOXO1, FOXO3, KLF5, MYOD1,
	MYOG, RUNX1, RUNX2, SP1, SPI1, USF1, ZNF263
ALL_#2	EGR1, EHF, ELF1, ELK4, ERG, ETS1, FEV, FLI1, FOXH1, FOXO1,
	FOXO3, KLF5, MYOG, RUNX1, RUNX2, SP1, SPI1, TCF12, ZNF263
Gemeinsame TF	ERG, FEV, KLF5, MYOG, RUNX1, RUNX2, SP1

Tabelle 4.14: Potenzielle Interaktionspartner von ETV6/RUNX1 Zielgenen

In Tabelle 4.14 sind alle Transkriptionsfaktoren aufgelistet, die ein DNA-Bindungsmotiv in den ETV6 und RUNX1 Peaks besitzen und somit direkt oder indirekt mit RUNX1 bzw. ETV6/RUNX1 interagieren können. Die Transkriptionsfaktoren ERG, FEV, KLF5, MYOG, RUNX1, RUNX2 und SP1 wurden in allen Zelllinien bzw. KM-Proben als mögliche Bindungspartner von RUNX1 bzw. ETV6 Peaks gefunden und sind somit die aussichtsreichsten Kandidaten für weitere Untersuchungen.

4.4 Lentiviraler shRNA vermittelter ETV6/RUNX1 knockdown

Da bisher nur wenig über die Rolle von ETV6/RUNX1 in der Leukämogenese bekannt ist, sollte zunächst der gezielte *ETV6/RUNX1 knockdown* in REH-und UoC-B6-Zellen etabliert werden. Da sowohl in den REH- als auch in den UoC-B6-Zellen das zweite, nicht in die Translokation involvierte *ETV6*-Allel deletiert ist, wurden die shR-NAs so konzipiert, dass sie komplementär zu den in die ETV6/RUNX1 Translokation involvierten *ETV6* Exons 1 bis 5 sind, um einen spezifischen *knockdown* von *ETV6/RUNX1* zu erreichen. Über die direkten Auswirkungen eines stabilen ETV6/RUNX1 *knockdowns* in leukämischen Zellen ist wenig bekannt, daher wurde für den shRNA vermittelten ETV6/RUNX1 *knockdown* ein durch Tetrazyklin induzierbares System gewählt (Tet-on). Basierend auf diesen Vorgaben wurden von der Firma Amsbio drei induzierbare gegen den *ETV6*-Teil des Fusionsgens gerichtete shR-NAs entworfen und hergestellt. Die Lentiviren mit dem TetR-Vektor wurden ebenfalls von Amsbio bezogen.

Die induzierbaren Promotoren besitzen 2 Kopien der *Tetracyclin* (*Tet*) Operator-Sequenz. Das hat keine Auswirkung auf die Effektivität der Promotoren. Ohne Hemmung dieser Operator-Sequenzen wird die shRNA(ETV6) dauerhaft hoch exprimiert.

Nach Expression des transduzierten *TetR* (Repressor) wird die Transkription der shRNA durch Bindung von TetR an die Tet-Operator-Sequenzen des *shRNA* Promotors reprimiert.

Wenn eine Expression der shRNA gewünscht wird, kann Tetracyclin in das Medium der transduzierten Zellen hinzugefügt werden. Tetracyclin hemmt die Expression von *TetR* und führt zur Expression der *shRNA*.

Abbildung 4.28: Wirkungsweise des Tet-on Systems (nach Amsbio)

Das in Abbildung 4.28 dargestellte System der durch Tetrazyklin kontrollierten transkriptionellen Aktivierung (*Tet-on*) erlaubt eine wirksame, präzise und reversible Kontrolle sowohl über den Zeitpunkt als auch über den Grad der Genexpression¹⁸⁰. Lentiviral transduzierte Tet-Repressoren binden an die Tet-Operatorsequenzen im Promotorbereich der ebenfalls lentiviral transduzierten shRNas und inhibieren so deren Transkription. Durch Zugabe von Tetrazyklin wird der TetR gehemmt, er kann nicht an die Tet-Operatorsequenzen binden und die Transkription der shRNAs wird aktiviert. Nach Absetzen von Tetrazyklin und somit Aktivierung der Tet-Repressoren, kann die Transkription erneut gehemmt werden.

Schematische Darstellung der lentiviralen shRNA- Vektoren

Abbildung 4.29: Schematische Darstellung der lentiviralen Vektoren und Position der shRNAs

Um eine effiziente Selektion zu gewährleisten, besitzen die Vektoren für den TetR und für die shRNAs jeweils zwei Selektionsmarker. In Abbildung 4.29 ist der Aufbau dieser lentiviralen Vektoren schematisch dargestellt. Die Expression des *Tet*-Repressorgens wurde durch einen *EF1a* (*elongation factor 1 alpha*) Promoter gesteuert. Die gekoppelte Expression des Fluoreszenzmarkers *GFP* (green fluorescent protein) und des Selektionsmarkers *Blasticidin* wurde durch einen *RSV* (*Rous Sarcoma Virus*) Promoter reguliert. Die Expression der *shRNAs* stand unter der Kontrolle eines induzierbaren humanen *H1* Promoters (Abbildung 4.29), die dazugehörigen Selektionsmarker *RFP* (*red fluorescent protein*) und *Puromycin* wurden ebenfalls durch einen *RSV*-Promotor kontrolliert. Das verwendete Selektionssystem, bestehend aus zwei Markern (Fluoreszenz und Antibiotikaresistenz) erlaubte eine zeitlich abhängige positive Selektion der transduzierten Zellen. Mit Fluoreszenzmikroskopie und FACS-Analysen wurde die Effizienz der lentiviralen *shRNA*-Transduktion ermittelt. Durch den durch die Antibiotika ausgelösten Selektionsdruck sollte in nicht transduzierten Zellen der Zelltod ausgelöst werden.

4.4.1 Vorversuche

Um einen erfolgreichen lentiviralen shRNA-Transfer gewährleisten zu können, wurden in Vorversuchen geeignete Transduktionsbedingungen und Antibiotikakonzentrationen für die Selektion der transduzierten Zellen ausgetestet. Die Bedingungen für eine optimale Transduktion sind stark vom Zelltyp und verwendetem Virus abhängig. Aufgrund der niedrigen Verdopplungszeit der REH und UoC-B6-Zelllinien (50 bis 70 Stunden) erschien die Nutzung von Lentiviren am geeignetsten für die stabile Integration der gegen den *ETV6*-Teil (Exon 1 bis 5) der *ETV6/RUNX1*-mRNA gerichteten *shRNAs*. Lentiviren können im Gegensatz zu anderen Viren nicht-teilende Zellen infizieren und ihr Genom stabil in das Genom der Wirtszelle integrieren, was ein Vorteil für die Transduktion von sich langsam teilenden Zelllinien wie REH- und UoC-B6-

Zellen ist.

Transduktionsbedingungen

Die Transduktionseffizienz von Suspensionszellen, zu denen REH und UoC-B6-Zellen gehören, kann unter anderem durch Zugabe von *Polybrene* und durch Anheften der Zellen an die Oberfläche der Zellkulturschale erhöht werden¹⁸¹. Die Firma Amsbio empfahl, die Zellen nach der Infektion mit dem Virus bei 37°C und 5% CO₂ zu schwenken, damit die Zellen gleichmäßig dem Virus ausgesetzt sind. Vorversuche mit den untransduzierten UoC-B6-Wildtyp-Zellen zeigten, dass die Zellen unter Schwenken ihre Wachstumsrate um ca. 50% reduzierten. Des Weiteren zeigten die Versuche, dass die Zellen auf die Behandlung mit *Polybrene* mit einer reduzierten Vitalität reagierten. Basierend auf diesen Ergebnissen wurden sowohl die REH- als auch die UoC-B6-Zellen ohne die Behandlung von *Polybrene* anhand des im Abschnitt 3.2.8 ausführlich erläuterten Protokolls mit den von der Firma Amsbio hergestellten Lentiviren transduziert.

Antibiotikatitration

Die Titration der Antibiotika Blasticidin und Puromycin war notwendig, um die Resistenz der Zelllinien gegenüber diesen Antibiotika zu testen bzw. Arbeitskonzentrationen für die Selektion zu ermitteln. Beide Antibiotika wurden für die Selektion nach lentiviraler Transduktion mit dem TetR-System (enthält das Blasticidin S-Resistenzgen) und mit verschiedenen gegen ETV6 bzw. ETV6/RUNX1 shRNAs (die Vektoren enthalten das Puromycin-Resistenzgen) benötigt. Der Translationsinhibitor Blasticidin S hemmt die Proteinsynthese in Prokaryoten und Eukaryoten. Die Arbeitskonzentration hängt von den gewählten Organismen bzw. Zelllinien ab, für Säugerzellen werden 3 bis 10 µg/ml, in einigen Fällen auch bis 30 µg/ml eingesetzt. Puromycin hemmt ebenfalls die Proteinsynthese durch Abbruch des Peptidyltransfers an den Ribosomen in Prokaryoten und Eukaryoten. Die Arbeitskonzentration liegt bei Säugerzellen je nach Zelllinie zwischen 1 und 50 µg/ml. Die Resistenzeigenschaften und Vitalität der untransduzierten UoC-B6-Zellen wurden durch Bestimmung der Zellzahl nach Trypanblaufärbung zu unterschiedlichen Zeitpunkten nach Zugabe von 0 bis 40 µg/ml Antibiotika bestimmt.

Abbildung 4.30 zeigt die Ergebnisse der Antibiotikatitration in den UoC-B6-Zellen zu verschiedenen Zeitpunkten nach Behandlung mit Blasticidin bzw. Puromycin. Die Trypanblaufärbung zeigte, dass Puromycin wesentlich effektiver wirkt als Blasticidin,

nach 48 Stunden Behandlung mit 2 µg/ml *Puromycin* waren bereits mehr als 90% der Zellen tot. Die Behandlung mit Blasticidin zeigte erst nach 72 Stunden, mit einer wesentlich höheren Antibiotikakonzentration (14 µg/ml) einen ähnlichen Effekt. Basierend auf diesen Daten wurden Antibiotikakonzentrationen von 10 µg/ml (Puromycin) bzw. 20 µg/ml Blasticidin gewählt.

Abbildung 4.30: Titration von Blasticidin und Puromycin

Die UoC-B6-Zellen wurden über einen Zeitraum von 72h mit verschiedenen Konzentrationen Blasticidin bzw. Puromycin behandelt. Zum Zeitpunkt 0h wurden die 1,5 x 10^6 Zellen in 0,5 ml Kulturmedium ausgesät und die jeweiligen Antibiotikakonzentrationen (zwischen 0µg/µL und 40µg/µL) zugegeben. Jeweils nach 24h wurde die Zellzahl und Viabilität der Zellen nach Trypanblau-Färbung bestimmt.

Die Gesamtzellzahl ist über die y-Achse aufgetragen und entspricht der Gesamtlänge der jeweiligen Säule. Die Zahl der toten Zellen sind jeweils rot, die der vitalen Zellen blau dargestellt.

Um toxische Effekte in den Zellen durch eine zu hohe Konzentration von Tetrazyklin ausschließen zu können, wurden die UoC-B6-Zellen über einem Zeitraum von 72 Stunden einem Selektionsdruck zwischen 0 μ g/ μ l und 40 μ g/ml Tetrazyklin ausgesetzt. Dazu wurden pro Ansatz 5x 10⁶ Zellen in 12-well-Platten ausgesät und analog zur Blasticidintitration nach je 24 Stunden der Anteil lebender und toter Zellen bestimmt. Die in Abbildung 4.31 dargestellten Resultate zeigen deutlich, dass die Zellen nach 72 Stunden eine gute Verträglichkeit von Tetrazyklin bis Konzentrationen von 10 μ g/ml aufweisen.

Abbildung 4.31: Titration von Tetrazyklin

Dargestellt sind die Ergebnisse der Tetrazyklintitration in den UoC-B6-Zellen über einen Zeitraum von 72 Stunden. Die Zellzahl und der Anteil an toten Zellen nach Färbung mit Trypanblau bestimmt. Die Gesamtzellzahl ist über die y-Achse aufgetragen und entspricht der Gesamtlänge der jeweiligen Säule. Die Zahl der toten Zellen sind jeweils rot, die der vitalen Zellen blau dargestellt.

Die Zellen hielten über 72 Stunden dem Selektionsdruck mit 10 µg/ml gut stand.

4.4.2 Transduktion

Die Transduktion der REH- und UoC-B6-Zellen erfolgte in zwei Schritten: Im ersten Schritt wurde der *TetR*-Vektor (Abbildung 4.29) in die Zellen integriert und die TetR-positiven Zellen durch Antibiotikaselektion mit. Durch diesen initialen Schritt sollte eine sofortige Expression der shRNAs nach deren Transduktion und somit *ETV6/RUNX1 knockdown*, der zur Apoptose der Zellen führen könnte, verhindert werden.

Abbildung 4.32: FACS-Analyse nach TetR-Transduktion in REH- und UoC-B6-Zellen
a) REH-Zellen: Die GFP-Fluoreszenz ist deutlich höher als die Eigenfluoreszenz des untransduzierten Wildtyps und in nahezu 100% der Zellen war die stabile Transduktion in die Zellen erfolgreich.
b) UoC-B6-Zellen: Nur ca. 50% der Zellen weisen gegenüber dem untransduzierten Wildtyp eine GFP-Fluoreszenz auf

Die erfolgreiche Transduktion wurde über die GFP-Fluoreszenz des Vektors mittels FACS-Analyse (Abbildung 4.32) und fluoreszenzmikroskopisch kontrolliert (Abbildung 4.33 und Abbildung 4.34). Für die fluoreszenzmikroskopischen Analysen wurde jeweils dieselbe Belichtungszeit gewählt.

Abbildung 4.33: REH-Zellen nach Transduktion mit den TetR und shRNA-Vektoren Gezeigt sind fluoreszenzmikroskopischen Aufnahmen der Transduktions- und Selektionseffizienzen nach Transfer des *TetR* und der gegen den *ETV6*-Part des Fusionsgens gerichteten *shRNA*-Vektoren bzw. des *shRNA*-Kontrollvektors (shRNA_Ko) in REH-Zellen. Die Vektoren shRNA_#1 bis shRNA_#3 enthalten in ihrer Sequenz unterschiedliche gegen ETV6 gerichtete shRNAs, die Bezeichnung shRNA_#123 kennzeichnet ein Gemisch der drei Vektoren. Die Bilder zeigen a) Phasenkontrast; b)GFP- und c) RFP- Analysen der Zellen.

Die Effizienz der TetR-Transduktion lag nach 72 Stunden (ohne Antibiotikaselektion) in beiden Zelllinien bei ca. 10% (Daten nicht gezeigt). Obwohl die Vorversuche zeigten, dass bei den UoC-B6-Zellen ein Selektionsdruck über 72 Stunden mit 20 µg/ml Blasticidin ausreichte damit nahezu 100% der Zellen ohne TetR und somit ohne Blasticidinresistenz starben, zeigten auch nach einer vierwöchigen Blasticidinselektion nur max. 50% der Zellen die GFP-Fluoreszenz, die mit der Expression des TetR gekoppelt war. Dieses Resultat konnte auch nach längerer und stärkerer (40 µg/ml Blasticidin) Selektion sowie erneuter TetR-Transduktion nicht verbessert werden. Eine mögliche Ursache hierfür könnte eine hohe Mutagenität der Zelllinie sein, die es ihr erlaubt sich schnell an die veränderten Bedingungen (Selektionsdruck) anzupassen. Im Gegensatz dazu wurde bei den REH-Zellen bereits nach einer Woche Blasticidinbehandlung (20 µg/ml) eine Steigerung des Anteils GFP-positiver Zellen auf über 90% erreicht. Um Resistenzen zu vermeiden, wurde der Selektionsdruck jedoch weitere vier Wochen aufrechterhalten. In Abbildung 4.34 ist außerdem deutlich zu erkennen, dass die UoC-B6-Zellen GFP-TetR wesentlich schwächer exprimieren als REH-Zellen. Die Ursache hierfür ist unklar, könnte aber auf genetischen Unterschieden zwischen beiden Zelllinien, die zu einer differenziellen Genexpression führt, beruhen.

Abbildung 4.34 UoC-B6-Zellen nach Transduktion mit den TetR und shRNA Vektoren Gezeigt sind die Transduktions- und Selektionseffizienzen UoC-B6-Zellen. Nur ca. 50% der Zellen weisen gegenüber dem untransduzierten Wildtyp eine erhöhte GFP-Fluoreszenz auf und 50 bis 60% der Zellen eine erhöhte RFP-Fluoreszenz. Die Analysen zeigen, dass max. 60% der Zellen sowohl den TetR als auch eines der shRNA-Konstrukte exprimieren. Die Bilder zeigen a) Phasenkontrast; b)GFP- und c) RFP- Analysen der Zellen.

Trotz der nur 40% bis 50% igen Transduktions- und Selektionseffizienz der UoC-B6-Zellen mit dem TetR, wurden nach Ablauf der vier Wochen beide Zelllinien mit den drei shRNA-Konstrukten (einzeln und kombiniert) sowie dem Kontrollvektor transduziert. Alle Zellen wurden mit 10 µg/ml Puromycin über einen Zeitraum von vier Wochen behandelt und die Effizienz der Transduktion mittels FACS und fluoreszenzmikroskopisch durch die Detektion von *RFP* kontrolliert. Die Resultate sind in Abbildung 4.33 und Abbildung 4.34 dargestellt. Nach einer anfänglichen Transduktionseffizienz von 10% (72 Stunden nach Transduktion, ohne Antibiotikum), nahm die Fraktion der RFP-positiven Zellen nach vier Wochen Selektionsdruck bei den REH-Zellen auf über 90% und bei den UoC-B6-Zellen, trotz erfolgreicher Vorversuche auf nur auf ca. 60% bis 70%. Aufgrund der etwas höheren Effizienz der shRNA-Transduktion gegenüber der TetR-Effizienz in den UoC-B6-Zellen, exprimieren einige Zellen die shRNAs ohne Inhibierung durch den TetR, das sollte in diesen Zellen zu einem knockdown von ETV6/RUNX1 führen. Das ist entweder ein Indiz dafür, dass die Zellen nach ETV6/RUNX1 knockdown überlebensfähig sind oder dass der knockdown nicht funktionierte.

4.4.3 ETV6/RUNX1 knockdown in REH und UoC-B6-Zellen

Wie in Abbildung 4.28 bereits gezeigt, basiert das hier verwendete Tet-on-System auf der Zugabe einer bestimmten Konzentration von Tetrazyklin zu den Zellen, was zu einer Aktivierung der Expression der gegen ETV6 bzw. ETV6/RUNX1 gerichteten shRNAs und somit zum knockdown von ETV6/RUNX1 führen soll. Die Titration von Tetrazyklin in den Vorversuchen zeigte, dass die Zellen Konzentrationen von bis zu 10 µg/ml Tetrazyklin über einen Zeitraum von 72 Stunden gut vertragen. Basierend auf den Empfehlungen der Firma Amsbio, von der die shRNA und TetR-Konstrukte bezogen wurden, wurden die REH und UoC-B6-Zellen zunächst über einen Zeitraum Tagen mit 0,1 µg/ml Tetrazyklin behandelt. sieben Die Effizienz des von ETV6/RUNX1 knockdowns wurde durch RT-qPCR und WB durch Bestimmung der ETV6/RUNX1-Expression nachgewiesen. Weder in der Expression der ETV6/RUNX1-mRNA noch des Fusionsproteins konnte eine Abnahme beobachtet werden (Daten nicht gezeigt).

Abbildung 4.35 REH: Expressionsstärken nach Induktion des Knockdowns (mRNA und Protein)

Die Expression des Fusionstranskripts wurde durch RT-qPCR (oben) und Western Blot (unten) zu verschiedenen Zeitpunkten nach Zugabe von Tetrazyklin (10 µg/ml) gemessen. Die Werte der reaktiven ETV6/RUNX1 Expression (normiert auf *ABL*) wurden auf die unbehandelten Zellen (0d) bezogen. Da beim Western Blot nicht alle Proben zusammen analysiert werden konnten, wurde er zweimal durchgeführt, jeweils mit dem untransduzierten Wildttyp als Kontrolle.

In der Folge wurden weitere Inkubationsbedingungen mit einer erhöhten Tetrazyklinkonzentration (10 µg/ml), sowie einer längeren Behandlung über einem Zeitraum von 15 Tagen ausgetestet. Die Ergebnisse sind in Abbildung 4.35 exemplarisch für die REH-Zellen dargestellt. Die oberen Balkendiagramme zeigen die Ergebnisse der RTqPCR relativ zu dem Referenzgen *ABL* und normiert auf den untransduzierten Wildtyp. Im unteren Teil der Abbildungen sind die Ergebnisse des WB dargestellt. Die Ergebnisse beider Analysen zeigen deutlich, dass sowohl auf mRNA-Ebene als auch Proteinebene kein spezifischer *knockdown* des ETV6/RUNX1 erfolgte. In den REH- Zellen ist nach 15 Tagen Behandlung mit 10 µg/ml Tetrazyklin im Western Blot eine sehr starke Abnahme der ETV6-RUNX1-Expression sowohl in den transduzierten Zellen als auch im untransduzierten Wildtyp zu beobachten. Die Ursache hierfür ist nicht bekannt, könnte aber mit der Höhe der verwendeten Tetrazyklinkonzentration zusammenhängen, die über diesen Zeitraum eventuell toxische Veränderungen mit gestörten Genexpressionsmustern zeigt. Die mit den verschiedenen shRNA-Konstrukten transduzierten UoC-B6-Zellen zeigten nach Tetrazyklin-Behandlung über einen Zeitraum von 15 Tagen in der RT-qPCR Analyse eine Abnahme der ETV6/RUNX1-Expression von mindestens 50%. Diese Abnahme war allerdings auch in den Kontrollen (shRNA Ko, shRNA TetR) zuerkennen. Bei Vergleich der ETV6/RUNX1-Expression mit dem untransduzierten Wildtyp zeigte sich, dass die ETV6/RUNX1-Expression in den transduzierten Zellen nie niedriger als im untransduzierten Wildtyp war. Die Ergebnisse der RT-gPCR konnten durch die WB-Analysen nicht reproduziert werden. Die Detektion des Fusionsproteins zeigte über einen Zeitraum von 15 Tagen sowohl im untransduzierten Wildtyp als auch in den transduzierten UoC-B6-Zellen eine gleichbleibende ETV6/RUNX1-Expression (bezogen auf das Referenzprotein GAPDH).

Fazit: Trotz der hohen Transduktionseffizienz von über 90% in den REH-Zellen und der ca. 50% igen Transduktionseffizienz in den UoC-B6-Zellen war der induzierte ETV6/RUNX1 *knockdown* in beiden Zelllinien nicht erfolgreich.

4.4.4 Fehleranalyse

4.4.4.1 Sequenzierung

Um Mutationen in den shRNA-Sequenzen ausschließen zu können, wurden sowohl die von der Firma Amsbio gelieferten Plasmid-DNAs als auch die stabil in die beiden Zelllinien REH und UoC-B6 transduzierten shRNAs sequenziert. Dazu wurden Primer designt, welche die 46 bp lange shRNA-Sequenz so flankierten, dass ein 234 bp großes PCR Fragment entstand. Der Abgleich der Sequenzen erfolgte mit dem Programm Blast[®] (*Basic Local Alignment Search Tool*) von NCBI (*National Center for Biotechnology Information*).

Sequenzierung der Plasmid-DNA

Aufgrund der im Aufbau der shRNA begründeten Sekundärstruktur, die zur Bildung der sogenannten Haarnadelstruktur führt, und dem hohen GC-Gehalt der *shRNA*-

Plasmide war die Sequenzierung der Plasmid-DNA relativ schwierig. Eine ausführliche Beschreibung der verwendeten Methoden, die die Sequenzierung der Plasmide ermöglichten befindet sich im Abschnitt 3.2.3.7. Die Ergebnisse der Plasmid-DNA-Sequenzierung zeigten für alle shRNA-Konstrukte keine Auffälligkeiten (Daten nicht gezeigt). Im nächsten Schritt wurde ermittelt, ob die lentiviral transduzierten Zelllinien REH und UoC-B6 die erwarteten Sequenzen zeigten.

Sequenzierung der stabil in das Genom integrierten shRNAs

Für die Sequenzanalyse der stabil in das Genom integrierten shRNAs wurde zunächst DNA aus den Zellen isoliert (Abschnitt 3.2.3.1). Die anschließende Sequenzierung der DNA erfolgte nach den gleichen Protokollen wie für die Plasmidsequenzierung. Die Ergebnisse der Sequenzanalyse der stabil integrierten shRNAs sind in Abbildung 4.36 exemplarisch für die REH-Zellen dargestellt. Die Sequenzdaten für die UoC-B6-Zellen zeigten ähnliche Mutationen in den Selben Sequenzbereichen.

Abbildung 4.36: Sequenzanalyse der shRNA in REH-Zellen

a)

Gezeigt sind die Sequenzen der drei gegen ETV6 bzw. ETV6/RUNX1 gerichteten shRNA-Sequenzen. Die rot unterlegten Positionen markieren die Unterschiede zur Originalsequenz

shRNA_#1: Die Mutation befindet sich an Position 36 der Sequenz.

b) shRNA_#2: weist mehrere genetische Veränderungen sowohl im für die shRNA codierenden als auch im nichtcodierenden Bereich nagegenüber der Origiginalsequenz auf.

Ein wichtiger Schritt während der Prozessierung der doppelsträngigen shRNA zu einem einzelsträngigen Molekül findet am RISC (RNA *induced silencing complex*) statt. Hier wird einer der beiden komplementären Stränge der shRNA abgebaut (passenger), der andere Strang (*leader* oder *guide*) bindet komplementär an die Ziel-mRNA und schneidet diese (perfekte Bindung) bzw. verhindert die Translation der mRNA (unvollständige Komplementarität). In beiden Fällen wird die Expression des Zielproteins verhindert^{182,183}. Zum jetzigen Zeitpunkt ist noch nicht vollständig geklärt, welcher der beiden komplementären Stränge als *leader* und welcher als *passenger* fun-

c und d) sRNA_3 und shRNA_Ko: keine genetischen Veränderungen sichtbar Die Sequenzprofile wurden mit FINCHTV dargestellt.

giert. Aufgrund der Mutationen der shRNA_#1 und shRNA_#2 kann sich die Effektivität des ETV6/RUNX1 *silencing* verringern und die Wahrscheinlichkeit, unter den drei shRNA-Vektoren einen guten *silencer* zu finden, deutlich abnehmen.

5 Diskussion

Die vorliegende Arbeit befasst sich mit der Identifizierung von ETV6/RUNX1 Zielgenen mittels ChIP-Seq und deren Zuordnung zu Signalwegen, um Dysregulationen aufzudecken und somit potenziell pathogenetische Mechanismen, die zur klinischen Manifestation der ALL beitragen können, zu identifizieren.

Zu Beginn der Dissertation gab es nur wenige Veröffentlichungen über ChIP-Seq Analysen im Allgemeinen und keine über ChIP-Seq-Daten von ETV6/RUNX1 positiven Zellen. Die wenigen bisher bekannten ETV6/RUNX1 Zielgene sind vorwiegend durch ChIP-on-Chip (Alternativ: ChIP-Chip; Chromatin-Immunoprecipitation Chip) identifiziert worden¹³⁵. Im Gegensatz dazu ist die ChIP-Seq-Analyse zur Identifizierung von DNA-Bindungsregionen des immunpräzipitierten Proteins wesentlich sensitiver und spezifischer. Ein weiterer Vorteil dieser Methode ist die Unabhängigkeit von für die einzelnen Spezies (Organismen) spezifischen Microarrays. Die in dieser Dissertation durchgeführten ChIP's und anschließenden ChIP-Seq Analysen mit den ETV6/RUNX1 positiven Zelllinien REH und UoC-B6 sowie den primären KM-Leukämiezellproben von Patienten (ALL #1 und ALL #2) erfolgte durch parallele IP mit einem im Bereich der SAM-Domäne bindenden ETV6-Antikörper sowie einem C-Terminal bindenden RUNX1-Antikörper. Die anschließende Identifizierung von ETV6/RUNX1 Zielgenen durch DNA-Hochdurchsatzsequenzierung sowie die ersten bioinformatische Auswertungen wurden am BCRT durchgeführt. Mit der ChIP-Seq-Analyse kann keine direkte Aussage über die Art der Genregulation getroffen werden, daher ist ein Vergleich mit genomweiten Genexpressionsdaten erforderlich, um umfassende Informationen über den Einfluss von ETV6/RUNX1 auf die Genexpression und die Auswirkungen dieser Fehlregulation erfassen zu können. Im Gegensatz zu den UoC-B6-Zellen existieren für die REH-Zellen bereits zahlreiche Genexpressions-Datensätze. Um die Auswirkungen der ETV6/RUNX1-Fusion auf die Genexpression in REH- und UoC-B6-Zellen bestimmen zu können, sind genomweite Genexpressionsanalysen mit herunter reguliertem ETV6/RUNX1 nötig. Aus diesem Grund sollte im Rahmen dieser Arbeit ein lentiviral transduziertes, induzierbares shRNA vermitteltes System etabliert werden, um die Expression von ETV6/RUNX1 zeitgesteuert herunterregulieren zu können.

Durch Motivanalysen in den immunpräzipitierten und sequenzierten DNA-Bereichen war es möglich, potenzielle Bindungspartner (Transkriptionsfaktoren) von ETV6/RUNX1 in den präzipitierten Promotorbereichen der Zielgene zu identifizieren.

117

ETV6/RUNX1 kann die regulatorischen Eigenschaften dieser Co-Faktoren möglicherweise so verändern, dass es je nach Bindungspartner zu einer Repression bzw. Aktivierung von ETV6/RUNX1 Zielgenen kommt und ETV6/RUNX1 indirekt die transkriptionelle Aktivität der Gene beeinflusst. Bisher sind nur wenige ETV6/RUNX1 Co-Faktoren und deren Einfluss auf die Genregulation bekannt. Durch die Zuordnung dieser Zielgene zu Signalwegen kann der Einfluss der Expression des Fusionsproteins auf die Signalkaskade, die letztendlich zur klinischen Manifestation der ALL führt, untersucht und interpretiert werden.

5.1 Zusammenfassung der Ergebnisse

ETV6/RUNX1 ist ein aberranter Transkriptionsfaktor, dessen Funktion bei der klinischen Manifestation einer ALL bisher weitestgehend ungeklärt ist. Aus diesem Grund wurde in der vorliegenden Arbeit die genomweite transkriptionelle Aktivität von ETV6/RUNX1 mittels ChIP-Sequenzierung untersucht. Die Analysen der *ETV6/RUNX1* positiven primären ALL-Blasten und der Zelllinien ergaben zusammenfassend folgende Ergebnisse:

- Es wurden 1221 potenzielle ETV6/RUNX1 Zielgene identifiziert (Kerngenset), von diesen codieren 935 Bereiche f
 ür annotierte proteincodierende Gene.
- Von diesen 935 Proteinen konnten 161 Proteine insgesamt 23 Signalwegen (zugeordnet werden. Der Signalweg *Transendotheliale Migration der Leukozyten* war mit 20 involvierten potenziellen ETV6/RUNX1 Zielgenen der am signifikantesten hervortretende Signalweg.
- Es wurden insgesamt 110 unterschiedliche DNA-Bindungsmotive (entspricht 28 IUPAC Motiven) identifiziert. Von diesen DNA-Bindungsmotiven entsprachen sechs Motive einem der bekannten RUNX1 DNA-Bindungsmotive: AAACCAC, AACCACA, AGCCACA, GTGGTTT, TGTGGCT, TGTGGTT und TGTGGTT bzw. fünf IUPAC-Motive: ASMCACA, DACCRCA, GYGGTTW, RACCRCA und TGTGGB.
- Diesen 110 DNA-Bindungsmotiven konnten 29 Transkriptionsfaktoren zugeordnet werden, von diesen wurden sieben Transkriptionsfaktoren (ERG, FEV, KLF5, MYOG, RUNX1, RUNX2 und SP1) in allen vier untersuchten Proben gefunden.
- Die Transduktion der TetR regulierten shRNA-Plasmide f
 ür den knockdown von ETV6/RUNX1 war in REH-Zellen zu 90% und in UoC-B6-Zellen zu 60 bis 70%. erfolgreich.

Der knockdown von ETV6/RUNX1 funktionierte in beiden Zelllinien nicht. Die Fehleranalyse zeigte in zwei der verwendeten shRNAs Mutationen.

Die kryptische Translokation t(12;21)(p13;q22) führt bereits pränatal zur Fusion der beiden Transkriptionsfaktoren ETV6 und RUNX1. Beide Faktoren sind für die embryonale Hämatopoese essenziell, Mutationen und Fehlregulationen können zu Missbildungen und/oder Tod führen. Für RUNX1 sind bereits zahlreiche Zielgene beschrieben worden⁷¹⁻⁷⁹, während bisher sehr wenige, durch ETV6 regulierte Gene identifiziert und untersucht worden sind³¹. Durch die Fusion der beiden Transkriptionsfaktoren fehlt die DNA-bindende Domäne des ETV6, so dass die DNA-Bindung des Fusionsonkogens wahrscheinlich ausschließlich über die DNA-Bindungsdomäne von RUNX1 erfolgt. Es gibt bereits Publikationen, die zeigen, dass über die SAM-Domäne des ETV6 weitere Transkriptionsfaktoren und Co-Faktoren gebunden werden, welche die Regulation der ETV6/RUNX1 Zielgene beeinflussen können (Aktivierung, Repression)^{19,26}.

Nach heutigem Kenntnisstand reicht die alleinige Expression von ETV6/RUNX1 jedoch nicht aus, um eine Leukämie auszulösen. Vielmehr ist dessen Expression als initiales Ereignis (*first hit*) anzusehen, welches zusammen mit weiteren, sekundären Ereignissen (z.B. die Deletion des zweiten ETV6 Allels) zur Transformation eines präleukämischen Klons und zur klinischen Manifestation der Leukämie führt. Bisher sind nur wenige über die durch ETV6/RUNX1 in ihrer transkriptionellen Regulation beeinträchtigten Gene veröffentlicht worden.

Es sind verschiedene Szenarien vorstellbar, wie ETV6/RUNX1 die Expression bzw. Regulation anderer Gene beeinflussen und somit die Leukämogenese in den prämalignen Zellen fördern kann:

- 1. ETV6/RUNX1 könnte als chimärer Transkriptionsfaktor die Expression individueller Zielgene regulieren.
- ETV6/RUNX1 und RUNX1 besitzen das identische DNA-Bindungsmotiv und können somit an die gleichen regulatorischen Elemente eines Gens binden. Somit besteht eine direkte Konkurrenz um die gleichen Bindungsstellen, das könnte in eine veränderte Expression von RUNX1-Zielgenen resultieren.
- Durch Wechselwirkungen von ETV6/RUNX1 mit anderen Transkriptionsfaktoren könnten deren Bindungseigenschaften und Fuktion verändert werden, so dass vormals aktivierende Transkriptionsfaktoren reprimierend wirken, oder umgekehrt.
- 4. Durch die ETV6/RUNX1 Fusion ändert sich die Gendosis der Wildtypallele

von RUNX1 und ETV6. Dieser Effekt könnte durch die Deletion des zweiten ETV6 Lokus in den REH- und UoC-B6 Zellen sowie bei der primären KM Probe ALL_#1 verstärkt werden.

Obwohl das Fusiononkoprotein ETV6/RUNX1 die häufigste chromosomale Translokation bei ALL im Kindesalter repräsentiert, sind bisher nur sehr wenige Daten über die von ETV6/RUNX1 (direkt und indirekt) beeinflusste Genexpression veröffentlicht. Zu diesen Veröffentlichungen zählt die von Fuka et al¹⁸⁴. Die Autoren haben in den *ETV6/RUNX1* positiven BVZ-ALL-Zelllinien REH und AT2 einen shRNA vermittelten *knockdown* durchgeführt und anschließend die daraus resultierenden Veränderungen der Genexpressionsmuster und ableitbaren regulatorischen Funktionen in den beiden Zelllinien untersucht. Von jedem Gen wurden fünf biologische Replikate (REH, n=3; AT2, n=2) analysiert. Das *probeset* umfasste 2126 Gene. Die gemeinsame Analyse der REH- und AT2-Zellen identifizierte 777 signifikant regulierte Gene (*p*-value < 0,05). Der Vergleich dieser Daten, mit den in der vorliegenden Arbeit identifizierten 1221 potenziellen, durch ETV6/RUNX1 in ihrer Expression beeinflussten Zielgene, zeigte eine Übereinstimmung von 100 Genen:

ABLIM1, ADCY7, AFF3, AGTRAP, AKAP12, ALOX5AP, AMPD3, ARHGAP24, AR-HGAP25, ARHGAP4, ATP2A3, BTF3L4, CD19, CD72, CD79A, CHST12, CORO1A, CRLS1, CSK, DENND2D, DENND3, DGKA, DYNLT1, EMP3, ENG, ERO1LB, ETFB, EXOSC4, FAM129C, FCHO1, FGFR1, FKBP5, FLJ10038, GNA15, GPAA1, GSK3B, GTF2A2, HELQ, HS3ST3B1, ICAM1, IGFBP7, ITGA4, ITGB2, JUND, LEF1, LPXN, LYL1, MDM2, MICAL1, NFKBID, NINJ1, NLRC3, NPY, P2RX1, PDE4B, PLP2, PPP1R16B, PSD4, RAB24, RAB37, RAB4B, RABEP2, RAC2, RAP1GAP2, RA-SAL3, RASGRP2, RASSF2, RBM38, RGS19, RMND5B, RPS6KA1, RRM2B, S100A4, SAMD4B, SFT2D1, SGSH, SH2B3, SIGLEC15, SIPA1, SLC39A8, SLC44A2, SMAD7, SPIB, SPP1, STK17B, SUCLG2, SYPL1, TMC6, TNFAIP8L2, TNFRSF10A, TNFRSF14, TRIB1, TRIM38, TSC22D3, USP15, VAV1, VOPP1, VPREB3, WIBG, ZNF561

Die Zuordnung dieser Gene zu Siganalwegen (mit dem Programm GeneCodis^{162,163,176}) zeigt für den B-Zell-Rezeptor Signalweg eine signifikante Anreicherung von durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine (*p-value*: $8,26 \times 10^{-6}$). Die in der obigen Auflistung gün und in Abbildung 5.1 rot unterlegten potenziellen ETV6/RUNX1 Zielgene konnten dem B-Zell-Rezeptor Signalweg zuge-ordnet werden.

120

Abbildung 5.1: Zuordnung der gemeinsamen Gene des Kerngensets und der "Fuka-Gene¹⁸⁴" zum B-Zell-Rezeptor Signalweg

B-Zellen sind ein wichtiger Bestandteil der adaptiven Immunität. Der B-Zellrezeptor (BCR) ist ein Transmembranprotein und Rezeptor auf B-Zellen. Die Aktivierung des BCR bewirkt zum einen das Auslösen der intrazellulären Signalkaskade, zum anderen spielen der B-Zellrezeptor und dessen unreife Form, der Vorläufer (Prä-BCR) eine wichtige Rolle bei der Kontrolle der B-Zellentwicklung¹⁸⁵. Eine kurze Beschreibung der in den Signalweg involvierten potenziellen ETV6/RUNX1 Zielgene folgt in Abschnitt 5.2.2.

In Tabelle 5.1 sind die zehn überrepräsentierten Signalwege des gemeinsamen Gesets der durch die Genexpressionsanalysen von Fuka et al.¹⁸⁴ bestimmten Gene und des in der vorliegenden Arbeit bestimmten Kerngensets aufgelistet.

	Signalweg	Gene_ Gruppe	Gene_ Referenz	p-value
1.	B-Zell-Rezeptor Signalweg	6	75	8,64E-08
2.	Migration der Leukozyten	6	113	9,92E-07
3.	Chemokin Signalweg	6	186	1.76E-05
4.	NK-Zell vermittelte Zytotoxität	5	125	3.27E-05

Tabelle 5.1: Überrepräsentierte Signalwege des gemeinsamen Gensets

	Signalweg	Gene_ Gruppe	Gene_ Referenz	p-value
5.	Regulierung des Aktin-Zytoskelets	6	209	3,38E-05
6.	Prostatakrebs	4	88	1,28E-04
7.	Fokale Adhäsion	5	197	2,78E-04
8.	Neutrophin Signalweg	4	124	4,75E-04
9.	Dickdarmkrebs	3	62	7,86E-04
10.	Virale Herzmuskelentzündung	3	63	8,23E-04

Gene_Gruppe: umfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine

Gene_Referenz: umfasst die Anzahl der in diesen Signalweg involvierten Proteine

Gene_Gesamt: umfasst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Die hohe Übereinstimmung zwischen den in der vorliegenden Arbeit bestimmten Genen des Kerngensets und den Genexpressionsdaten von Fuka et al.¹⁸⁴ untermauert, die korrekte Identifizierung der durch ChIP-Seq Analysen gefundenen 1221 potenziellen ETV6/RUNX1 Zielgene des Kerngensets.

5.2 Identifizierung potenzieller ETV6/RUNX1 Zielgene

Für das ETV6/RUNX1 Fusionsprotein stand zum Zeitpunkt der Arbeit kein geeigneter ETV6/RUNX1 Antikörper, der am Bruchpunkt zwischen ETV6 und RUNX1 bindet, zur Verfügung. Aus diesem Grund wurden die ChIP und anschließende ChIP-Seq Analysen für jede Probe in zwei parallelen Ansätzen durchgeführt. Im ersten Ansatz wurde die DNA mit dem gebundenen ETV6/RUNX1 Fusionsprotein mit einem an die SAM Domäne bindenden ETV6 Antikörper präzipitiert, im zweiten Ansatz mit einem C-terminal an RUNX1 bindenden RUNX1 Antikörper. Die nach ChIP-Seq Analyse identifizierten gemeinsamen ETV6 und RUNX1 Gene stellen die potenziellen, durch ETV6/RUNX1 regulierten Zielgene dar Diese Analyse wurde für die *ETV6/RUNX1* positiven Zelllinien UoC-B6 und REH sowie für die aus dem KM gewonnenen *ETV6/RUNX1* positiver ALL-Zellen von zwei Patienten durchgeführt.

5.2.1 Die ETV6/RUNX1 Zielgene des Kerngensets

Als Kerngenset wurden die gemeinsamen ETV6/RUNX1 Zielgene der vier analysierten Proben (UoC-B6-Zellen, REH-Zellen, ALL_#1 und ALL_#2) definiert. Für die Ermittlung dieses Kerngensets wurden die Gene verwendet, die in ihrem Promotorbereich (-10 kb bis 2,5 kb) nach ChIP-Seq sowohl RUNX1- als auch ETV6-Peaks zeigten. Das Kerngenset umfasst 1221 codierende DNA-Bereiche (Abbildung 4.19a). Von diesen codieren 935 für annotierte proteincodierende Gene. Der Rest (286 Gene) umfasst Gene mit unklarer Funktion bzw. hypothetische Gene. Eine Zusammenfassung der Anzahl aller identifizierten Gene ist in Tabelle 5.2 aufgeführt.

	UoC-B6	REH	ALL_#1	ALL_#2	Kerngenset
ETV6-ChIP gesamt	2484	4127	10881	4991	
ETV6-CHIP unique	801	508	452	495	
RUNX1-ChIP gesamt	3554	6836	13548	9372	
RUNX1-ChIP unique	1872	3238	3381	4796	
ETV6/RUNX1 Zielgene	1695	3627	10434	3951	1221

Tabelle 5.2: Zahl der identifizierten ETV6/RUNX1 Zielgene in allen untersuchten Proben

Weder REH- noch UoC-B6-Zellen exprimieren ETV6 aufgrund der Deletion des zweten, nicht in die Translokation t(12,21) involvierten *ETV6*-Allels. Trotzdem zeigten die Analysen nach ETV6-ChIP in beiden Zelllinien ETV6-Peaks (ETV6-ChIP *unique*), die nicht mit RUNX1-Peaks überlappten. Hierfür sind mehrere Erklärungsansätze möglich:

- Trotz vorheriger Evaluation des ETV6-Antikörpers, ist nicht auszuschließen, dass aufgrund von nicht kalkulierbaren Schwankungen der Versuchsbedingungen es zu unspezifischen Bindungen des ETV6-Antikörpers kommt.
- 2. Eine exemplarische Kontrolle ETV6-ChIP *unique* zeigte ein vermehrtes Auftreten falsch positiver Peaks v.a. in den Centromer- und Telomerregionen.

5.2.2 Zuordnung der Gene des Kerngensets zu Signalwegen

Von den 935 proteincodierenen potenziellen ETV6/RUNX1 Zielgenen konnten 161 Gene insgesamt 23 Signalwegen (*p-value* < 0,05) zugeordnet werden. Der Signalweg *Transendotheliale Migration der Leukozyten* (*p-value*: 6,15 x 10⁻⁹) war mit 20 involvierten potenziellen ETV6/RUNX1 Zielgenen der am signifikantesten hervortretende Signalweg. Der Signalweg Transendotheliale Migration der Leukozyten ist durch Interaktionen zwischen Epithelzellen und Blasten gekennzeichnet. Für die Entstehung einer *ETV6/RUNX1* positiven Leukämie sind vor allem die vorwiegend den Leukozyten lokalisierten, durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine interessant. Eine repräsentative Signalweganalyse mit den identifizierten Genen des Kerngensets nach Ausschluss der in den Epithelzellen lokalisierten Proteine ergab jedoch, dass im Gegensatz zu der im Abschnitt 4.3.4 beschriebenen Signalweganalyse, bei der der Signalweg *Transendotheliale Migration der Leukozyten* am signifikantesten überrepräsentiert ist, jetzt der *B-Zellrezeptor-Signalweg* mit einem *pvalue* von 3,27 x 10⁻⁴ signifikant überrepräsentiert ist (Tabelle 5.3).

Signalweg	Gene_Gruppe	Gene_Referenz	p-value
B-Zell-Rezeptor Signalweg	11	75	3,27E-04
Regulierung des Aktin-Zytoskelets	18	209	7,71E-04
Lysosomen	13	121	9,20E-04
Zytoxin-Zytokin Rezeptor Interaktion	19	259	2,35E-03
Endozytose	16	193	2,36E-03
MAPK Signalweg	19	262	2,40E-03
Zellzyklus	12	123	2,66E-03
Neurale Entwicklung	11	128	1,35E-02
Dickdarmkrebs	7	62	2,35E-02
Primäre Immunschwäche	5	33	2,81E-02
Cene Gruppe: umfasst die in diesen Signalweg	involvierten notenziell	on durch ETV6/PUNY1 ir	ibror Expres

Tabelle 5.3: Repräsentative Signalweganalyse (ohne Endothelzellproteine)

Gene_Gruppe: umfasst die in diesen Signalweg involvierten, potenziellen durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine

Gene_Referenz: umfasst die Anzahl der in diesen Signalweg involvierten Proteine

Gene Gesamt: umfasst die Gesamtzahl aller bekannten Gene (Feb. 2009 (GRCh37/hg19)

Im Folgenden werden der Signalweg *Transendotheliale Migration der Leukozyten* und der *B-Zellrezeptor-Signalweg* kurz erläutert.

Der Signalweg Transendotheliale Migration der Leukozyten

Die transendotheliale Migration der Leukozyten aus dem peripheren Blut in das Zellgewebe ist eine der Grundvoraussetzungen für die Erkennung und Bekämpfung von entzündlichen und infektiösen Prozessen. Während dieses Prozesses binden die Leukozyten an Zelladhäsionsmoleküle (*cell adhesion molecules*; CAM) und migrieren in das vasculäre Endothelium¹⁸⁶. Neben der durch unterschiedliche Integrine ermöglichten Mobilität der Leukozyten können diese sich auch unabhängig von der molekularen Zusammensetzung der Umgebung über das Aktin-Cytoskelett fortbewegen¹⁸⁷.

Im Folgenden ist eine kurze Beschreibung der in den Signalweg involvierten Proteine aufgeführt, deren Expression durch ETV6/RUNX1 beeinflusst sein könnte:

Symbol	Position	Beschreibung
ACTG1	chr17:79476996-79479892	Homo sapiens actin, gamma 1 (ACTG1), transcript variant 1
ACTN1	chr14:69340839-69446083	<i>Homo sapiens actinin, alpha 1 (ACTN1), transcript variant 1, 2 & 3</i>
CDH5	chr16:66400524-66438689	Homo sapiens cadherin 5, type 2 (vascular endothe- lium) (CDH5)
CLDN9	chr16:3062456-3064506	Homo sapiens claudin 9 (CLDN9)
GNAI2	chr3:50273588-50296786	Homo sapiens guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2 (GNAI2), transcript variant 1
ICAM1	chr19:10381516-10397291	Homo sapiens intercellular adhesion molecule 1 (I- CAM1)
ITGA4	chr2:182321618-182402468	Homo sapiens integrin, alpha 4 (antigen CD49D,

Symbol	Position	Beschreibung
		alpha 4 subunit of VLA-4 receptor) (ITGA4)
ITGAL	chr16:30483982-30534506	Homo sapiens integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide) (ITGAL), transcript variant 1 & 2
ITGB2	chr21:46305868-46348788	Homo sapiens integrin, beta 2 (complement compo- nent 3 receptor 3 and 4 subunit) (ITGB2), transcript variant 1 & 2
MMP9	chr20:44637546-44645200	Homo sapiens matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase) (MMP9)
MYL12A	chr18:3247527-3256235	Homo sapiens myosin, light chain 12A, regulatory, non-sarcomeric (MYL12A),
MYL12B	chr18:3262610-3278282	Homo sapiens myosin, light chain 12B, regulatory (MYL12B), transcript variant 1, 2 & 3
NCF4	chr22:37257029-37274059	Homo sapiens neutrophil cytosolic factor 4, 40kDa (NCF4), transcript variant 1
PLCG2	chr16:81812862-81996298	Homo sapiens phospholipase C, gamma 2 (phos- phatidylinositol-specific) (PLCG2)
PTK2	chr8:141668480-142011412	Homo sapiens protein tyrosine kinase 2 (PTK2), transcript variant 1, 2 & 3
RAC2	chr22:37621300-37640339	Homo sapiens ras-related C3 botulinum toxin sub- strate 2 (rho family, small GTP binding protein Rac2) (RAC2)
RHOA	chr3:49396578-49449526	Homo sapiens ras homolog family member A (RHO- A)
RHOH	chr4:40198526-40246384	Homo sapiens ras homolog family member H (RHOH), transcript variant 6,
SIPA1	chr11:65405577-65418391	Homo sapiens signal-induced proliferation- associated 1 (SIPA1), transcript variant 1 & 2
VAV1	chr19:6772678-6857377	Homo sapiens vav 1 guanine nucleotide exchange factor (VAV1), transcript variant 1, 2 & 3

Durch den Signalweg *Transendotheliale Migration der Leukozyten* wird unter anderen die Metastasierung, d.h. die Migration von Tumorzellen aus dem Blut in das Gewebe gesteuert. Dieser Prozess der Metastasierung erfordert dynamische Veränderungen der Interaktionen zwischen den einzelnen Tumorzellen, zwischen Tumorzellen und anderen Zellen bzw. der extrazellulären Matrix. Daher ist u.a. die Kenntnis über die Expression der an diesen Interaktionen beteiligten Rezeptoren (Selektine, Cadherine, IgCAMs, Integrine etc.) wichtig. Eine Übersicht über die Adhäsion und Emigration von neutrophilen Granulozyten nach Aktivierung der Leukozyten ist in Abbildung 5.2 dargestellt.

Abbildung 5.2: Interaktion zwischen Endothel und Neutrophilen

Gezeigt wird die Expression der Adhässionsmoleküle nach Aktivierung der Leukozyten-Adhäsions-Kaskade¹⁸⁸. Schlüsselmoleküle sind in den hellblauen Boxen dargestellt: ESAM, *endothelial cell-selective adhesion molecule*; ICAM1, intercellular adhesion molecule 1; JAM, junctional adhesion molecule; LFA1, *lymphocyte function-associated antigen 1*; MAC1, *macrophage antigen 1*; MADCAM1, *mucosal vascular addressin cell-adhesion molecule 1*; PSGL1, *P-selectin glycoprotein ligand 1*; PECAM1, *platelet/endothelial-cell adhesion molecule 1*; PI3K, *phosphoinositide 3-kinase*; VCAM1, *vascular cell-adhesion molecule 1*; VLA4, *very late antigen 4*. Die potenziellen durch ETV6/RUNX1 in ihrer Expression regulierten Proteine sind rot dargestellt.

Die in Abbildung 5.2 rot unterlegt dargestellten Proteine sind potenziell durch ETV6/RUNX1 in ihrer Expression reguliert.

VLA4 (Integrin alpha4beta1 (Very Late Antigen-4)) besteht aus den beiden Untereinheiten ITGA4 (CD49D) und ITGB1 (CD29). Die Ergebnisse der vorliegenden Arbeiten zeigen, dass die Expression beider Proteine durch ETV6/RUNX1 reguliert werden kann. VLA4 ist ein Oberflächenrezeptor, der von den meisten Leukozyten (Lymphozyten, Monozyten etc.) gebildet wird. Die normale Hämatopoese wird durch eine adhäsive Interaktion von hämatopoetischen Zellen mit dem microenvironment des Knochenmarks, welches sich aus Stromazellen und extrazellulären Matrixproteinen. wie Fibronektin, Kollagen und Laminin zusammensetzt, reguliert¹⁸⁹ Darüber hinaus können die auf Tumorzellen exprimierten Integrine, zu denen VLA4 zählt, die Adhäsion der Zellen an das vaskuläre Endothel vermitteln und so eine Metastasierung begünstigen^{190,191}. Weiterhin zeigen publizierte Daten, dass bei der rezidivierten BVZ-ALL im Kindesalter Patienten mit einer erhöhten VLA4 Expression in den leukämischen Zellen eine signifikant schlechtere ereignisfreie und Gesamtüberlebenswahrscheinlichkeit haben, als Patienten mit einer niedrigen VLA4 Expression¹⁹². In diese Studie sind u.a. Patienten mit ETV6/RUNX1 positiver ALL eingeschlossen (13% der untersuchten Proben), sie befasst sich jedoch auch mit anderen Tumorerkrankungen. Obwohl sich diese Studie nicht explizit mit Patienten mit ETV6/RUNX1 positiver ALL befasst, sind diese Daten zusammen mit den in der vorliegenden Arbeit erhobenen Ergebnissen ein guter Ansatz für weiterführende Untersuchungen von VLA4, insbesondere der Einfluss der ETV6/RUNX1 Expression auf die Regulation der VLA4-Untereinheiten ITGA4 und ITGB1.

Ein weiteres potenzielles durch ETV6/RUNX1 in seiner Expression reguliertes Protein ist ICAM-1 (ICAM1, CD54). ICAM-1 ist ein Adhäsionsmolekül, welches bei entzündlichen Prozessen (bei Zell-Zell-Wechselwirkungen bei der Antigenpräsentation) eine wichtige Rolle spielt¹⁹³. Die gegenwärtig verfügbaren Literaturdaten sind nicht konsistent in der Beantwortung der Fragestellung, ob sich die Hochregulierung oder die Inhibition der ICAM-1 Expression positiv oder auch negativ auf die Tumorprogression und Metastasierung auswirken. Eine wachsende Zahl an Daten legt jedoch nahe, dass ein erhöhtes ICAM-1 Niveau einen positiven Effekt auf die Tumorsuppression hat^{194,195}. Weiterhin konnte gezeigt werden, dass durch die Zugabe von Cannabidiol (CBD) es zu einer erhöhten Expression von ICAM-1 und zu einer Verringerung der Tumorzellinvasion und der Metastasierung kommt¹⁹⁶. Cannabidiol ist ein nicht-psychoaktives Cannabinoid, das die Fähigkeit der Adhäsion von Tumorzellen verstärkt. Umgekehrt belegen andere Daten, dass eine Herabregulierung von ICAM-1 durch TGFß1 zu einer Zunahme der Lymphozytenadhässion und der Zellzytotoxität führt¹⁹⁷. ICAM-1 spielt eine wichtige Rolle bei der Tumorgenese und Metastasierung. Die differenzierte Analyse der widersprüchlichen Literaturdaten zeigt, dass ICAM-1 je nach Interaktionspartner und Tumorart entweder einen positiven oder einen negativen Effekt auf das Fortschreiten des Tumorwachstums haben kann. Die Literaturrecherche über einen möglichen Zusammenhang zwischen der Expression von I-CAM-1 und der ETV6/RUNX1 positiven ALL brachte keine Ergebnisse. Die in der vorliegenden Arbeit gezeigten Ergebnisse weisen jedoch stark auf eine Rolle von ICAM-1 bei der klinischen Manifestation der ETV6/RUNX1 positiven ALL hin. Weiterführende Studien sind aus diesem Grund sinnvoll.

Alle mittels ChIP-Seq identifizierten und dem Signalweg *Transendotheliale Migration der Leukozyten* zugeordneten, möglicherweise durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine beeinflussen die Entstehung von Tumoren, je nach Interaktionspartner und Krebsart entweder positiv oder negativ¹⁹⁴⁻¹⁹⁷. Die gezielte Untersuchung dieser Proteine auf allen Ebenen der Expression (DNA, RNA und Protein) im Vergleich mit unterschiedlichen Interaktionspartnern und Zelltypen ist daher sinnvoll und kann zu Resultaten führen, welche zur weitergehenden Aufklärung von Mechanismen der Tumorgenese führen können.

127

Der B-Zellrezeptor-Signalweg

Im Folgenden sind die durch die in dieser Arbeit identifizierten, potenziell durch *ETV6/RUNX1* regulierten Proteine, die am BCR-Signalweg involviert sind, kurz beschrieben:

Symbol	Position	Beschreibung
		B-lymphocyte antigen CD19 (Cluster of Differenti-
CD19	chr16:28943259-28950668	ation 19)
CD72	chr9:35609975-35618424	CD72 molecule
		CD79a molecule, immunoglobulin-associated al-
CD79A	chr19:42381189-42385439	pha
		FBJ murine osteosarcoma viral oncogene homo-
FOS	chr14:75745480-75748937	log
GSK3B	chr3:119540801-119813264	glycogen synthase kinase 3 beta
		mucosa associated lymphoid tissue lymphoma
MALT1	chr18:56338617-56417371	translocation gene 1
		nuclear factor of activated T-cells, cytoplasmic,
NFATC3	chr16:68119268-68263162	calcineurin-dependent 3
PIK3AP1	chr10:98353068-98480279	phosphoinositide-3-kinase adaptor protein 1
PTPN6	chr12:7055739-7070479	protein tyrosine phosphatase, non-receptor type 6
		ras-related C3 botulinum toxin substrate 2 (rho
RAC2	chr22:37621300-37640339	family, small GTP binding protein Rac2)
VAV1	chr19:6772678-6857377	vav 1 guanine nucleotide exchange factor

CD19 ist ein B-Zell spezifischer Co-Rezeptor, der in den frühen Stadien der B-Zellentwicklung exprimiert wird. CD19 ist in der Plasmamembran der B-Zellen lokalisiert und ist Teil eines Proteinkomplexes, bestehend aus CD21 (CR2), CD81 (TAPA-1) und Leu-13¹⁹⁹. Der CD19/CD21 Komplex spielt eine entscheidene Rolle bei der T-Zell-abhängigen B-Zellantwort²⁰⁰. Dieser Komplex funktioniert synergistisch mit dem B-Zell-Antigen-Rezeptor und bewirkt die Senkung der Schwelle für die B-Zell-Aktivierung²⁰¹. Diese Co-Ligation ermöglicht es, dass CD19 Signalmoleküle wie z.B. VAV, Phosphoinositid-3-Kinase (PI3K) und Lyn rekrutiert werden¹⁹⁹. Obwohl CD19 eine wichtige Rolle bei der Signalübertragung und Weiterleitung spielt, sind B-Lymphozyten mit fehlendem CD19 in der Lage Signale durch den *BCR*, nach Stimulierung mit löslichen Antigenen zu übertragen^{202,203}.

Abbildung 5.3: B-Zell-Rezeptor Signalweg Schematische Darstellung des B-Zell-Rezeptor-Signalweges. Die potenziellen durch ETV6/RUNX1 in ihrer Expression regulierten Proteine sind rot dargestellt. Modifiziert nach Mackay et al. (2010)¹⁹⁸

Ein weiteres in seiner Expression möglicherweise durch ETV6/RUNX1 beeinflusstes Gen ist *VAV*. Die VAV Familie besteht aus drei Mitgliedern: Vav1m Vav2 und Vav3. Trotz identischer funktioneller Domänen und ähnlichen Phosphorylierungsmechanismen, beträgt die Ähnlichkeit der Sequenzmotive zwischen diesen drei Isoformen nur ca. 65%²⁰⁴. Während die Expression von Vav1 nur auf hämatopoetischen Zellen beschränkt ist, werden Vav2 und Vav3 in unterschiedlichen Geweben z.T. sehr stark exprimiert²⁰⁵. Die Mitglieder der VAV-Familie kontrollieren eine Vielzahl von anderen, durch den BCR induzierten Signalwege regulierten Transkriptionsfaktoren. So ist z.B. Vav1 unverzichtbar für den BCR induzierten CA²⁺ Influx²⁰⁶.

Das potenzielle Zielgen CD79 ist ein Transmembranprotein, welches einen Komplex mit dem BCR bildet und nach Erkennung des Antigens durch den BCR ein Signal erzeugt. CD79 besteht aus zwei Untereinheiten: CD79A (Igα) und CD79B (Igß), diese bilden auf der Oberfläche des B-Lymphozyten ein durch eine Disulfidbindung stabilisiertes Heterodimer²⁰⁷. Der zytoplasmatische Teil von CD79 bewirkt, nach Erkennung des Antigens durch den BCR, eine erhöhte Protein-Tyrosin-Phosphorylierung an einer Vielzahl unterschiedlicher Substrate (Abbildung 5.3) und führt somit zu einer Aktivierung diverser biochemischer Stoffwechselwege²⁰⁸. Die zytoplasmatische Expression von CD79A und CD79B beginnt im Pro-B-Zellstadium, in dem die Ig-Gen-Umlagerung noch nicht abgeschlossen ist. Aus diesem Grund kann CD79 als Zellmarker für das Pro-B-Zellstadium verwendet werden^{209,210}.

Obwohl keine Literaturdaten gefunden wurden, die explizit einen Zusammenhang

zwischen der ETV6/RUNX1 Positivität und den in dieser Arbeit gefundenen durch ETV6/RUNX1 in ihrer Expression beeinflussten Proteine herstellen, kann davon ausgegangen werden, dass eine Veränderung des Expressionmusters der in den BCR-Signalweg involvierten Proteine weitreichende Auswirkungen auf die Entstehung von BVZ-ALL haben kann. Die gezielte Untersuchung der durch ETV6/RUNX1 in ihrer Expression beinflussten Proteine ist daher sinnvoll und kann zur Aufklärung von Mechanismen der leukämischen Transformation führen.

5.3 Motivanalysen

5.3.1 Identifizierung von Transkriptionsfaktoren

Unter dem Begriff Transkriptionsfaktoren werden zahlreiche an der Transkriptionskontrolle von Genen beteiligte regulatorische Proteine zusammengefasst. Man unterscheidet allgemeine und spezifische (regulatorische) Transkriptionsfaktoren. Zu den allgemeinen Transkriptionsfaktoren zählen die Proteine, die zusammen mit Coaktivatoren oder Coexpressoren und Regulatoren der Chromatinstruktur zur Bildung eines Initiationskomplexes werden. Die Interaktion (z.B. Aktivierung, Repression) mit spezifischen Genen wird durch regulatorische Transkriptionsfaktoren, die an bestimmte DNA-Sequenzen binden bewirkt^{211,212}. Die Identifizierung dieser regulatorischen Transkriptionsfaktoren kann somit einen großen Beitrag zum Verständnis von regulatorischen Prozessen leisten. In der Regel gibt es für jeden Transkriptionsfaktor mehrere DNA-Bindungssequenzen, die erkannt und gebunden werden können. Diese Sequenzen unterscheiden sich im Normalfall jedoch nur geringfügig durch den Austausch weniger Basen voneinander und können somit auf das sogenannte IUPAC Motiv zusammengefasst werden.

Über die Zuordnung der in dieser Arbeit in den ChIP-Seq Peaks gefundenen Sequenzen zu Transkriptionsfaktoren wurde die Spezifität der ChIP-Seq geprüft und andere in den identifizierten Peakbereichen evtl. ebenfalls bindende Transkriptionsfaktoren (Co-Faktoren) identifiziert. Für die Identifizierung von möglichen DNA-Bindungs-Motiven wurde das Programm DREME verwendet¹⁶¹. Für die Analyse wurde ein E-wert (*e-value*) von <0,05 festgelegt. Die Zuordnung der identifizierten Motive zu möglichen Transkriptionsfaktoren geschah durch das *MEME Tool* TOMTOM (*Motif comparison Tool*)¹⁷⁷. Mit der Software String 10¹⁷⁹ wurden mögliche Protein-Protein-Interaktion zwischen den identifizierten Transkriptionsfaktoren bestimmt.

Über die Motivanalyse wurden sieben Promotorregionen ermittelt, die in allen unter-

suchten Proben jeweils ETV6/RUNX1 Bindungsmotive aufweisen. Diese Transkriptionsfaktoren sind ERG, FEV, KLF5, MYOG, RUNX1, RUNX2 und SP1. Im Folgenden werden die einzelnen Transkriptionsfaktoren kurz erläutert:

Der Transkriptionsfaktor ERG (ETS related gene)

Das Gen ist auf Chromosom 21q22.3 lokalisiert und gehört zu der ETS-Transkriptionsfaktor-Gen-Familie, zu der auch FLI1 und ETS gehören^{213,214}. Alle Mitglieder dieser Familie sind wichtige Regulatoren der embryonalen Entwicklung, Zellproliferation, Differenzierung, Angiogenese, Entzündungen und Apoptose. Das durch dieses Gen codierte Protein wird vor allem im Zellkern exprimiert.

Das Gen kann in unterschiedliche chromosomale Translokationen involviert sein: TMPSSR2-ERG und NDRG1-ERG bei Prostatakrebs, *EWSR-ERG* beim Ewing-Sarkom und FUS-ERG bei der akuten myeloischen Leukämie.

Der Transkriptionsfaktor FEV (fifth Ewing variant)

Das Gen ist auf Chromosom 2q36 lokalisiert und gehört zu der ETS-Transkriptionsfaktor-Gen-Familie. Im Gegensatz zu den meisten Mitgliedern der ETS-Familie, die als Transkriptionsaktivatoren charakterisiert sind, zeigt FEV (wie auch ETV6) eine Repressor-Aktivität. FEV kann sowohl die basale als auch die ektopisch ETS-aktivierte Transkription unterdrücken²¹⁵. Im Ewing Sarkom wurde die Chromosomenaberration t(2;21;22) (q23;q22;q12), die das EWSR1-FEV Fusionsprotein bildet, welches eine potenzielle onkogene Aktivität besitzt gefunden²¹⁶.

Der Transkriptionsfaktor KLF5 (Krueppel-like factor 5)

Das Gen ist auf Chromosom 13q22.1 lokalisiert und gehört zu der Gruppe der Zinkfingerproteine. Das codierte Protein ist ein Transkriptionsaktivator. Die Bindung an die Promotoren von Zielgenen wird durch posttranslationelle Modifikationen reguliert. Die aberrante Expression dieses Gens kann in einer Vielzahl von verschiedenen Krebsarten (z.B. Darmkrebs) und in kardiovaskulären Erkrankungen resultieren²¹⁷.

Der Transkriptionsfaktor MYOG

Das für den Transkriptionsfaktor MYOG codierende Gen ist auf Chromosom 1q31q41 lokalisiert. MYOG wirkt als Transkriptionsaktivator, der die Transkription Muskelspezifische Zielgene fördert und spielt eine wesentliche Rolle bei der Muskeldifferenzierung. MYOG ist darüber hinaus an der Entwicklung funktioneller der embryonalen Skelettmuskelfaserdifferenzierung beteiligt. Die Rekrutierung der Transkriptionsfaktoren SMARCA4, BRG1, BAF190A und SWI/SNF führt zu Initiation der Transkription im sich entwickelnden Embryo^{218,219}.

Der Transkriptionsfaktor RUNX1 (Runt-related transcription factor 1)

Der Transkriptionsfaktor RUNX1 wurde bereits ausführlich im Abschnitt 1.2.2 beschrieben.

Der Transkriptionsfaktor RUNX2 (Runt-related transcription factor 2)

Das Gen ist auf Chromosom 6p21 lokalisiert. RUNX2 gehört zu der aus drei Mitgliedern bestehenden Familie der *runt-related* Transkriptionsfaktoren. Eine alternative Bezeichnung ist u.a. *Core-binding factor subunit alpha-1* (*CBF-alpha-1*). Das Protein ist an der Osteoblastendifferenzierung und Skelett Morphogenese beteiligt. Mutationen in dem Gen wurden mit Knochenentwicklungsstörungen (cleidocraniale Dysplasie (CCD)) in Verbindung gebracht. Desweitern ist RUNX1 in mehreren Entwicklungsstadien der Prostatakrebsentwicklung beteiligt^{220,221}.

Der Transkriptionsfaktor SP1 (specificity protein 1)

Das Gen ist auf Chromosom 12q13.1 lokalisiert. Das von diesem Gen codierte Protein gehört ebenso wie KLF5 zur Gruppe der Zinkfingerproteine. SP1 ist in vielen zellulären Prozessen (einschließlich der Zelldifferenzierung, Zellwachstum, Apoptose, Immunreaktionen, als Antwort auf DNA-Schädigung und Chromatin-Remodeling) beteiligt. Desweitern spielt SP1 eine bedeutende Rolle in der embryonalen und der frühen postnatalen Entwicklung. Post-translationale Modifikationen wie Phosphorylierung, Acetylierung, Glykosylierung und proteolytische Prozessierung haben einen signifikanten Einfluss auf die Aktivität von SP1, welches je nach Art der posttranslationellen Modifikation als Aktivator oder Repressor der Transkription wirken kann²²²⁻

Die String 10¹⁷⁹ Analyse zeigte für die Transkriptionsfaktoren SP1 und RUNX1 sowie für SP1 und MYOG eine direkte Interaktion (Bindung) (Abbildung 5.4a) ^{225,226}. Die Auswertung der ChIP-Seq Daten zeigte darüber hinaus für den Promotorbereich von *SP1* (-10 kb bis 2,5 kb um den TSS) in allen vier untersuchten Proben (REH- und UoC-B6 Zellen; ALL_#1 und ALL_#2 KM-Proben) mindestens einen RUNX1- und einen ETV6-Peak. Das weist darauf hin, dass RUNX1 bzw. ETV6/RUNX1, als Transkriptionsaktivator bzw. Repressor von *SP1* wirken könnten.

RUNX1 zeigt über den gesamten Promotor und Genbereich (sowohl in den Introns als auch in den Exons) multiple RUNX1 und ETV6/RUNX1 Peaks, was auf die besondere Rolle von RUNX1 und somit auch von ETV6/RUNX1 in der Genregulation hinweist. Eine Verdrängung von RUNX1 als Transkriptionsaktivator durch den Transkriptionsrepressor ETV6/RUNX1 kann zusammen mit weiteren genetischen Veränderungen, wie z.B. der Deletion des zweiten ETV6-Allels, starke Auswirkungen auf die Expression der direkt und indirekt durch RUNX1 regulierten Gene haben. Die indirekte Regulation der RUNX1 bzw. ETV6/RUNX1 Zielgene kann über diverse *Co*-Faktoren, wie z.B. HDAC1, HDAC2, SUV39H1²²⁷ etc. (Abbildung 5.4b) gesteuert werden.

Abbildung 5.4: Die String 10¹⁷⁹ Analyse zeigt die Interaktion zwischen: a) den durch die Motivanalyse identifizierten TF: ERG, FEV, KLF5, MYOG, RUNX1, RUNX2 und SP1 b) RUNX1 mit einigen seiner bekanntesten Interaktionspartner c) ETV6 mit einigen seiner bekanntesten Interaktionspartner

Obwohl in der vorliegenden Arbeit zahlreiche potenzielle ETV6/RUNX1 Zielgene identifiziert wurden, können anhand von bereits veröffentlichten Daten nur Hypothesen darüber erhoben werden, wie das Genexpressionsmuster dieser Gene und der in der Signalkaskade *downstream* gelegenen Gene aussieht.

5.4 ETV6/RUNX1 knockdown in REH und UoC-B6- Zellen

Die Translokation ETV6/RUNX1 besitzt eine besondere Relevanz bei der kindlichen ALL. Trotz großen Fortschritten in den letzten Jahren bei der Erforschung des Wirkungsmechanismus dieser Translokation, besteht weiterhin die Notwendigkeit die biologischen Folgen dieser Translokation sowie die physiologischen Funktionen der beiden involvierten Gene RUNX1 und ETV6 vollständig zu verstehen.

Zusammen mit den in der vorliegenden Arbeit ermittelten ChIP-Seq-Daten sollte der ETV6/RUNX1 *knockdown* in den REH und UoC-B6-Zellen zu einem besseren Verständnis über die Funktionsweise der Translokation und deren Auswirkungen auf die Entstehung von malignen Zellen beitragen. Dafür waren im Anschluss an den erfolgreichen *knockdown* u.a. Genexpressions- und Proteinexpressionsanalysen geplant.

Da für die Fragestellung eine stabiles System und eine große Anzahl von Zellen benötigt wurden, erschien der shRNA vermittelte *knockdown* von ETV6/RUNX1 sinnvoll. Die Bedingungen für eine optimale Transduktion sind stark von Zelltyp und verwendetem Virus abhängig. Aufgrund der niedrigen Verdopplungszeit der REH und UoC-B6-Zelllinien (50 bis 70 Stunden) wurden Lentiviren für die stabile Integration in das Wirtsgenom genutzt.

Das für den *knockdown* benutzten Tet-on Systems hat gegenüber anderen Systemen mehrere Vorteile:

- Der knockdown kann zeitlich durch Zugabe von Tetracyclin induziert werden, dadurch ist anhand von Genexpressionsanalysen eine Unterscheidung zwischen frühen und späten in ihrer Expression durch ETV6/RUNX1 regulierten Gene möglich.
- ETV6/RUNX1 konkurriert mit RUNX1 um dieselben DNA-Bindungsstellen und kann je nach Co-Faktor zu einer Transkriptionsaktivierung bzw. Repression der Zielgene führen. Bisher ist noch nicht bekannt ob der *knockdown* von ETV6/RUNX1 letal für die Zellen ist. Sollte dies so sein, würden die Zellen schon während der Transduktion sterben.

Trotz intensiver Vorversuche und trotz der hohen Transduktionseffizienz von über 90% in den REH-Zellen und der ca. 50% igen Transduktionseffizienz in den UoC-B6-Zellen war der induzierte ETV6/RUNX1 *knockdown* in beiden Zelllinien nicht erfolgreich. Eine wahrscheinliche Erklärung hierfür ist zeigt eine Sequenzierung der shRNA's. Die Sequenzierung der stabil in das Genom integrierten shRNA_1 und shRNA_2 sowohl in den REH-Zellen als auch in den UoC-B6-Zellen in den gleichen Sequenzabschnitten ähnliche Mutationen. Diese Mutationen könnten eine effiziente Bindung an die Zielsequenz unterbinden, so dass es zu keinem ETV6/RUNX1 *knockdown* kommt.

Obwohl unterschiedliche Versuchsbedingungen getestet worden sind, war der *knockdown* des ETV6/RUNX1 in den REH- und UoC-B6-Zellen nicht erfolgreich. Eine Alternative für den *knockdown* auf mRNA-Ebene ist der sogenannte CRISPR/Cas9 *knockout*, bei dem in der DNA durch das Enzym Cas9 an bestimmten Stellen ein Teil des Genoms herausgeschnitten wird, so dass das entsprechende Gen nicht exprimiert werden kann^{228,229}.

6 Ausblick

Obwohl der chimäre Transkriptionsfaktor und Fusionsonkoprotein ETV6/RUNX1 durch die häufigste chromosomale Translokationen (t(12;21)) bei ALL im Kindesalter gebildet wird, ist bis heute nur sehr wenig über durch ETV6/RUNX1 in ihrer Expression beeinflusste Gene bekannt und validiert. Die im Rahmen dieser Arbeit identifizierten ETV6/RUNX1 Zielgene tragen dazu bei, die komplexen genetischen Veränderungen, die die Entstehung dieser besonderen Korm der Leukämie besser zu verstehen. Dasselbe gilt auch für die durch RUNX1 in ihrer Expression regulierten Gene, über deren Funktion schon wesentlich mehr bekannt ist.

Die in dieser Arbeit durchgeführten ChIP-Seq Analysen identifizierten einige durch ETV6/RUNX1 in ihrer Expression beeinflusste Kandidatengene, deren Expression mit der Malignität und Tumorgenese in der ALL korreliert. Diese Daten tragen zu einem besseren Verständnis der Auswirkungen der Translokation t(12;21) und somit zur Pathogenese der ETV6/RUNX1 positiven ALL bei Kindern bei. Sie können längerfristig helfen neue prognostische Marker zu identifizieren um bessere Therapieansätze zu entwickeln. Darüber hinaus stellen diese Daten die Grundlage für wissenschaftliche Folgeprojekte dar. Zu diesen können im ersten Schritt der *knockdown* bzw. *knockout* der ETV6/RUNX1 Expression in verschiedenen Zellsystemen, gefolgt von Genexpressionsanalysen auf RNA- und Proteinebene zählen.

Es ist bekannt, dass neben der Bildung des *ETV6/RUNX1* Transkripts weitere genetische Veränderungen, wie z.B. die Deletion des zweiten *ETV6* Lokus notwendig sind, damit es zur Ausprägung einer klinisch manifesten Erkrankung kommt. Ein wichtige Methode für die Identifizierung bisher unbekannter genetischer Aberrationen, die zusätzlich (oder stattdessen) zur Deletion des nicht in die Translokation involvierten *ETV6* Allels auftreten können, könnte das *whole genome sequencing* sein.

7 Zusammenfassung

Die häufigste Leukämieform im Kindesalter, mit einem Anteil von ca. 80% ist die akute lymphoblastische Leukämie (ALL). Bei ca.75% der ALL im Kindes- und Jugendalter werden chromosomale Aberrationen numerischer oder struktureller Art, wie z.B. Translokationen, Inversionen oder Deletionen nachgewiesen. Die am häufigsten vorkommende Translokation t(12;21)(p13;q22) mit einem Anteil von ca. 25% resultiert in der Bildung des chimären Transkriptionsfaktors *ETV6/RUNX1*.

Die Transkriptionsfaktoren ETV6 und RUNX1 sind elementare Regulatoren der Hämatopoese. Deren Fusionsprodukt ETV6/RUNX1 interferiert entscheidend mit dieser Regulation und bewirkt eine veränderte Funktion der hämatopoetischen Transkriptionsfaktoren ETV6 und RUNX1, die in der Struktur des Fusionsproteins begründet ist. Zum jetzigen Zeitpunkt geht man davon aus, dass ETV6/RUNX1 mit dem endogenen RUNX1 um dieselben Promotorbereiche ihrer Zielgene konkurriert und dass das Nterminal im Fusionsprotein gelegene ETV6 Co-Repressoren wie z.B. N-CoR, mSin3A und Histondeacetylasen (HDAC) rekrutiert. Die Rekrutierung dieser Co-Repressoren führt zu einer Kondensation der Chromatinstruktur und somit zu einer Repression der Zielgene. Dies bedeutet, dass die Expression von ETV6/RUNX1 v.a. eine Inaktivierung von Genen bewirkt, die normalerweise durch RUNX1 aktiviert werden.

Verschiedene Studien im Mausmodell, mit eineiigen Zwillingen und retrospektive Studien mit Nabelschnurblut von Neugeborenen zeigten u.a. dass die Bildung des Fusionsgens *ETV6/RUNX1* den initialen Schritt in der Pathogenese *ETV6/RUNX1*positiver ALL dar (*first hit*) darstellt (*"Greaves-Hypothese"*). Für die Ausbildung einer klinisch manifesten Leukämie sind jedoch weitere genetische Veränderungen, sogenannte *second hits* notwendig. Ein solcher *second hit* kann z.B. die Deletion des zweiten endogenen *ETV6*-Allels sein, die besonders häufig in *ETV6/RUNX1* positiven ALL gefunden wird.

Ziel dieser Promotionsarbeit war es, zur Aufklärung dieser molekularen Mechanismen durch die genomweite Identifizierung von DNA-Bindungsstellen und damit von Zielgenen des chimären Transkriptionsfaktors ETV6/RUNX1 und deren Einordnung in die zellulären Prozesse beizutragen, die letztendlich zur Ausprägung der Leukämie führen. Um diese Fragestellung zu bearbeiten, wurden ChIP-Seq-Analysen von etablierten *ETV6/RUNX1* positiven humanen Prä-B Leukämie-Zelllinien REH und UoC-B6 sowie von primären ALL-Blasten aus Knochenmarkproben von Kindern (ALL_#1 und

136

ALL_#2) mit *ETV6/RUNX1* positiven ALL durchgeführt um potenzielle ETV6/RUNX1 Zielgene zu identifizieren. Die Chromatin-Immunpräzipitation ist eine sensitive und spezifische Methode zur Untersuchung der Interaktionen zwischen Proteinen und DNA. Gegenüber herkömmlichen Genexpressionsanalysen hat die ChIP den entscheidenden Vorteil, dass durch die Anwendung spezifischer Antikörper und anschließender Sequenzierung regulatorische Elemente der DNA, wie z.B. Promotoren, direkt untersucht und Zielregionen bzw. potenzielle Zielgene von Transkriptionsfaktoren identifiziert werden können.

Für das Gelingen der ChIP wurden die Versuchsbedingungen optimiert. Dazu gehörten die Bestimmung der optimalen Zellzahl pro Ansatz, der Art und Dauer der Fixierung sowie die Evaluation geeigneter ETV6 und RUNX1 Antikörper. Unter diesen für die ChIP-Seq optimierten Bedingungen wurden mit den ETV6/RUNX1 positiven humanen Prä-B Leukämie-Zelllinien REH und UoC-B6 sowie mit den ETV6/RUNX1 positiven ALL-Blasten aus dem KM von Kindern (ALL #1 und ALL #2) 935 potenzielle proteincodierende ETV6/RUNX1 Zielgene (Kerngenset), identifiziert. Durch die Zuordnung dieses Kerngensets zu biologischen Prozessen bzw. Signalwegen wurden 23 Signalwege identifiziert, die statistisch signifikant überrepräsentiert sind (pvalue<0,05) und möglicherweise durch ETV6/RUNX1 fehlreguliert werden. Neben dem Signalweg Transendotheliale Migration der Leukozyten waren u.a der Signalweg, der das Aktin-Zytoskeletts reguliert und der B-Zell-Rezeptor Signalweg die am signifikantesten hervortretenden Signalwege (Tabelle 4.8. und Tabelle 5.3). Ein Vergleich des Kerngensets mit differenziell regulierten Genen, die von Fuka et al.¹⁸⁴ durch Genexpressionsanlysen nach ETV6/RUNX1 knockdown in den Zelllinien REH und AT2 ermittelt wurden, ergab eine hohe Übereinstimmung an Genen (= 100 durch ETV6/RUNX1 in ihrer Expression beeinflusste Gene). Die Zuordnung dieser Gene zu Signalwegen zeigte ebenfalls den B-Zellrezeptor-Signalweg signifikant überrepräsentiert. Über die Identifizierung von DNA-Bindungsmotiven in den ETV6/RUNX1-Bindungsregionen (Peaks) des Kerngensets und der anschließenden Zuordnung dieser Motive zu Transkriptionsfaktoren wurden 110 DNA-Bindungsmotive, die 29 Transkriptionsfaktoren zugeordnet werden konnten, ermittelt. Von diesen wurden sieben Transkriptionsfaktoren (ERG, FEV, KLF5, MYOG, RUNX1, RUNX2 und SP1) sowohl in den ETV6/RUNX1 positiven Zelllinien REH und UoC-B6, als auch den den primären ALL-Blasten aus Knochenmarkproben von Kindern (ALL #1 und ALL #2) gefunden.

Für ein zukünftig besseres Verständnis über die biologischen Folgen der chromoso-

137

malen Translokation (t12;21) sowie deren Auswirkungen auf die Entstehung von malignen Zellen sollten die von Fuka et al¹⁸⁴ veröffentlichten und in der vorliegenden Arbeit gezeigten Ergebnisse durch einen effektiven *ETV6/RUNX1 knockdown* in REH- und UoC-B6 Zellen validiert werden. Über die direkten Auswirkungen eines stabilen ETV6/RUNX1 *knockdown*s in leukämischen Zellen ist wenig bekannt, daher wurde für den shRNA vermittelten ETV6/RUNX1 *knockdown* ein durch Tetrazyklin induzierbares System gewählt (*Tet-on*). Die Effizienz der Transduktion wurde mittels FACS und fluoreszenzmikroskopisch bestimmt: In den REH-Zellen war die Transduktion des TetR und der shRNAs zu 90%, in den UoC-B6-Zellen zu 60% bis 70% erfolgreich. Auf Proteinebene konnte jedoch kein *knockdown* von ETV6/RUNX1 festgestellt werden. Für die Fehleranalyse wurde die genomische DNA aus den transduzierten Zellen zunächst isoliert und anschließend sequenziert. In allen shRNAs zeigten sich Mutationen. Die Ursache für die Entstehung dieser Mutationen ist nicht bekannt.

Nichtdestotrotz ist die Identifizierung von Zielgenen des chimären Transkriptionsfaktors ETV6/RUNX1 und die Zuordnung dieser Gene zu Signalwegen ein wichtiger Schritt für das Verständnis der biologischen Prozesse die die Entwicklung einer klinisch manifesten Leukämie begünstigen können. Basierend auf den in der vorliegenden Arbeit gewonnenen Ergebnisse können weitere Forschungen durchgeführt werden, die es ermöglichen könnten direkt in betroffene Signalwege einzugreifen bzw. die Expression bestimmter Gene so zu manipulieren (z.B. durch CRISPR/CAS9), dass die Manifestation der Leukämie abgeschwächt oder sogar unterbunden werden kann. The most common form of leukemia in childhood, accounting for about 80% of all forms, is acute lymphoblastic leukemia (ALL). Chromosomal aberrations of a numerical or structural type, e.g. translocations, inversions or deletions, are found in around 75% of cases of ALL in childhood and adolescence. The most common translocation t(12;21)(p13;q22), with a share of around 25%, results in the formation of the chimeric transcription factor ETV6/RUNX1.

The transcription factors ETV6 and RUNX1 are elementary regulators of hematopoiesis. Their fusion product ETV6/RUNX1 interferes decisively with this regulation and the structure of the fusion protein leads to a change in the function of the hematopoietic transcription factors ETV6 and RUNX1. It is currently assumed that ETV6/RUNX1 competes with the endogenous RUNX1 for the same promoter regions of their target genes and that the N-terminal recruits ETV6 co-repressors located in the fusion protein such as N-CoR, mSin3A, and histone deacetylases (HDAC). The recruitment of these co-repressors leads to condensation of the chromatin structure and thus to repression of the target genes. This means that ETV6/RUNX1 expression chiefly causes the inactivation of genes that are normally activated by RUNX.

Different studies of a mouse model, with monozygotic twins, and retrospective studies with umbilical cord blood of newborns show among other things that the formation of the fusion gene ETV6/RUNX1 is the initial step (first hit) in the pathogenesis of ETV6/RUNX1-positive ALL ("Greave's hypothesis"). However, additional genetic changes, known as second hits, are necessary for the development of clinically manifest leukemia. One of these second hits can be the deletion of the second endogenous ETV6 allele, for example, which is found particularly frequently in ETV6/RUNX1-positive ALL.

The objective of this doctoral thesis was to contribute to the explanation of these molecular mechanisms through the genome-wide identification of DNA binding sites and thus of target genes of the chimeric transcription factor ETV6/RUNX1 and its integration into cellular processes that ultimately lead to the manifestation of leukemia. To address this question, ChIP-Seq analyses of established ETV6/RUNX1-positive human pre-B leukemia cell lines REH and UoC-B6 and of primary ALL blasts from bone marrow samples from children (ALL_#1 and ALL_#2) with ETV6/RUNX1-positive ALL were conducted to identify potential ETV6/RUNX1 target genes. Chromatin immunoprecipitation is a sensitive and specific method for examining the inter-actions between proteins and DNA. Compared with conventional gene expression

analyses, ChIP has the decisive advantage that by using specific antibodies and subsequent sequencing, regulatory elements of DNA such as promoters are examined directly and target regions and potential target genes of transcription factors can be identified.

The test conditions were optimized to ensure the success of ChIP, including determination of the optimized cell count per batch, the type and duration of fixation, and the evaluation of suitable ETV6 and RUNX1 antibodies. Under these conditions optimized for ChIP-Seq, 935 potential protein-coding ETV6/RUNX1 target genes (core gene set) were identified with the ETV6/RUNX1 positive human pre-B leukemia cell lines REH and UoC-B6 and with the ETV6/RUNX1 positive ALL blasts from the bone marrow of children (ALL #1 and ALL #2). By allocating this core gene set to biological processes or signaling pathways, 23 signaling pathways were identified that are statistically significantly over-represented (p<0.05) and possibly dysregulated by ETV6/RUNX1. In addition to the leukocyte transendothelial migration signaling pathway, the signaling pathway that regulates the actin cytoskeleton and the B-cell receptor signaling pathway were the most significant signaling pathways occurring (Table 4.8 and Table 5.3). A comparison of the core gene set with differentially requlated genes detected by Fuka et al. 184 in gene expression analyses using ETV6/RUNX1 knockdown in the REH and AT2 cell lines showed a high correspondence of genes (= 100 genes whose expression was influenced by ETV6/RUNX1). The allocation of these genes to signaling pathways also showed that the B-cell receptor signaling pathway was significantly over-represented. By identifying DNAbinding motifs in the ETV6/RUNX1 binding regions (peaks) of the core gene set and subsequently allocating these motifs to transcription factors, 110 DNA-binding motifs were identified that could be assigned to 29 transcription factors. Of these, seven transcription factors (ERG, FEV, KLF5, MYOG, RUNX1, RUNX2 and SP1) were found both in the ETV6/RUNX1 positive cell lines REH and UoC-B6 and in the primary ALL blasts from bone marrow samples from children (ALL #1 and ALL #2).

In order to achieve a better understanding of the biological consequences of chromosomal translocation (t12;21) and the impact on the development of malignant cells in the future, the results published by Fuka et al.184 and presented in this study were to be validated by an effective ETV6/RUNX1 knockdown in REH and UoC-B6 cells. As little is known about the direct impact of a stable ETV6/RUNX1 knockdown in leukemia cells, a system that can be induced by tetracycline (Tet-on) was selected for

140

the shRNA-mediated ETV6/RUNX1 knockdown. The effectiveness of transduction was determined using FACS and fluorescence microscopy: In the REH cells, transduction of TetR and shRNAs was 90% successful and 60% to 70% successful in the UoC-B6 cells. However, no knockdown of ETV6/RUNX1 was found at the protein level. For the error analysis, genomic DNA from transduced cells was first isolated and then sequenced. Mutations were found in all shRNAs. The cause of these mutations is not known.

Nevertheless, the identification of target genes and the chimeric transcription factor ETV6/RUNX1 and the allocation of these genes to signaling pathways is an important step toward understanding the biological processes that can lead to the development of clinically manifest leukemia. Based on the results of this study, additional research can be conducted that could allow the direct intervention in affected signaling pathways or manipulation of the expression of certain genes (e.g. by CRISPR/CAS9) so that the manifestation of leukemia can be attenuated or even prevented.

8 Literaturverzeichnis

- 1. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23-8.
- 2. Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012;481:306-13.
- Nowak MA, Komarova NL, Sengupta A, et al. The role of chromosomal instability in tumor initiation. Proceedings of the National Academy of Sciences of the United States of America 2002;99:16226-31.
- 4. Hersh EM, Bodey GP, Nies BA, Freireich EJ. Causes of Death in Acute Leukemia: A Ten-Year Study of 414 Patients from 1954-1963. JAMA : the journal of the American Medical Association 1965;193:105-9.
- 5. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758-64.
- 6. Harrison TR, Dietel M. Harrisons Innere Medizin. Berlin u.a.: ABW.
- 7. Pui CH, Evans WE. Acute lymphoblastic leukemia. The New England journal of medicine 1998;339:605-15.
- 8. Pui CH. Childhood leukemias. The New England journal of medicine 1995;332:1618-30.
- 9. Ludwig WD, Teichmann JV, Sperling C, et al. [Incidence, clinical markers and prognostic significance of immunologic subtypes of acute lymphoblastic leukemia (ALL) in children: experiences of the ALL-BFM 83 and 86 studies]. Klinische Padiatrie 1990;202:243-52.
- 10. Mullighan CG. Genomic profiling of B-progenitor acute lymphoblastic leukemia. Best practice & research Clinical haematology 2011;24:489-503.
- 11. Sabattini E, Bacci F, Sagramoso C, Pileri SA. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica 2010;102:83-7.
- 12. Ritterbach J, Hiddemann W, Beck JD, et al. Detection of hyperdiploid karyotypes (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) using fluorescence in situ hybridization (FISH). Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1998;12:427-33.
- 13. Inthal A, Krapf G, Beck D, et al. Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 2008;14:7196-204.
- 14. Mullighan CG, Downing JR. Global genomic characterization of acute lymphoblastic leukemia. Seminars in hematology 2009;46:3-15.
- 15. Potter MN, Steward CG, Oakhill A. The significance of detection of minimal residual disease in childhood acute lymphoblastic leukaemia. British journal of haematology 1993;83:412-8.
- 16. Brisco MJ, Condon J, Hughes E, et al. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 1994;343:196-200.
- 17. Leprince D, Gegonne A, Coll J, et al. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 1983;306:395-7.
- 18. Nunn M, Weiher H, Bullock P, Duesberg P. Avian erythroblastosis virus E26: nucleotide sequence of the tripartite onc gene and of the LTR, and analysis of the cellular prototype of the viral ets sequence. Virology 1984;139:330-9.
- Lopez RG, Carron C, Oury C, Gardellin P, Bernard O, Ghysdael J. TEL is a sequence-specific transcriptional repressor. The Journal of biological chemistry 1999;274:30132-8.
- 20. Bartel FO, Higuchi T, Spyropoulos DD. Mouse models in the study of the Ets family of transcription factors. Oncogene 2000;19:6443-54.
- 21. Wang LC, Kuo F, Fujiwara Y, Gilliland DG, Golub TR, Orkin SH. Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. The EMBO journal 1997;16:4374-83.
- 22. Poirel H, Oury C, Carron C, et al. The TEL gene products: nuclear phosphoproteins with DNA binding properties. Oncogene 1997;14:349-57.
- 23. Chakrabarti SR, Nucifora G. The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochemical and biophysical research communications 1999;264:871-7.
- 24. Fenrick R, Amann JM, Lutterbach B, et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Molecular and cellular biology 1999;19:6566-74.
- 25. Guidez F, Petrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 2000;96:2557-61.
- 26. Kim CA, Phillips ML, Kim W, et al. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. The EMBO journal 2001;20:4173-82.
- 27. Kwiatkowski BA, Bastian LS, Bauer TR, Jr., Tsai S, Zielinska-Kwiatkowska AG, Hickstein DD. The ets family member Tel binds to the Fli-1 oncoprotein and inhibits its transcriptional activity. The Journal of biological chemistry 1998;273:17525-30.
- 28. Wang L, Hiebert SW. TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene 2001;20:3716-25.
- 29. Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends in biochemical sciences 1998;23:213-6.
- 30. Yang BS, Hauser CA, Henkel G, et al. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Molecular and cellular biology 1996;16:538-47.
- 31. Boily G, Larose J, Langlois S, Sinnett D. Identification of transcripts modulated by ETV6 expression. British journal of haematology 2007;136:48-62.
- 32. Lacronique V, Boureux A, Valle VD, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997;278:1309-12.
- 33. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77:307-16.
- 34. Golub TR, Barker GF, Stegmaier K, Gilliland DG. Involvement of the TEL gene in hematologic malignancy by diverse molecular genetic mechanisms. Current topics in microbiology and immunology 1996;211:279-88.
- 35. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America 1995;92:4917-21.
- 36. Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1995;9:1985-9.
- 37. Romana SP, Mauchauffe M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995;85:3662-70.
- Raynaud SD, Baens M, Grosgeorge J, et al. Fluorescence in situ hybridization analysis of t(3; 12)(q26; p13): a recurring chromosomal abnormality involving the TEL gene (ETV6) in myelodysplastic syndromes. Blood 1996;88:682-9.
- 39. Peter A, Heiden T, Taube T, Korner G, Seeger K. Interphase FISH on TEL/AML1 positive acute lymphoblastic leukemia relapses--analysis of clinical relevance of additional TEL and AML1 copy number changes. European journal of haematology 2009;83:420-32.
- 40. De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Basinko A, De Braekeleer M. ETV6 fusion genes in hematological malignancies: a review. Leukemia research 2012;36:945-61.
- 41. Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 1994;23:425-32.
- 42. Li Z, Chen MJ, Stacy T, Speck NA. Runx1 function in hematopoiesis is required in cells that express Tek. Blood 2006;107:106-10.
- 43. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996;84:321-30.
- 44. Sasaki K, Yagi H, Bronson RT, et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proceedings of the National Academy of Sciences of the United States of America 1996;93:12359-63.
- 45. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009;457:887-91.
- 46. Ichikawa M, Goyama S, Asai T, et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. Journal of immunology 2008;180:4402-8.
- 47. North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MF. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem cells 2004;22:158-68.
- 48. Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Experimental hematology 2010;38:403-16.
- 49. Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI. Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes & development 2005;19:2331-42.
- 50. Bravo J, Li Z, Speck NA, Warren AJ. The leukemia-associated AML1 (Runx1)--CBF beta complex functions as a DNA-induced molecular clamp. Nature structural biology 2001;8:371-8.
- 51. Fujita Y, Nishimura M, Taniwaki M, Abe T, Okuda T. Identification of an alternatively spliced

form of the mouse AML1/RUNX1 gene transcript AML1c and its expression in early hematopoietic development. Biochemical and biophysical research communications 2001:281:1248-55.

- 52. Ghozi MC, Bernstein Y, Negreanu V, Levanon D, Groner Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proceedings of the National Academy of Sciences of the United States of America 1996;93:1935-40.
- 53. Miyoshi H, Ohira M, Shimizu K, et al. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic acids research 1995;23:2762-9.
- 54. Šroczynska P, Lancrin C, Kouskoff V, Lacaud G. The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood 2009;114:5279-89.
- 55. Lutterbach B, Hiebert SW. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene 2000;245:223-35.
- 56. Nishimura M, Fukushima-Nakase Y, Fujita Y, et al. VWRPY motif-dependent and independent roles of AML1/Runx1 transcription factor in murine hematopoietic development. Blood 2004;103:562-70.
- 57. Zhao X, Jankovic V, Gural A, et al. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes & development 2008;22:640-53.
- 58. Tanaka T, Kurokawa M, Ueki K, et al. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Molecular and cellular biology 1996;16:3967-79.
- 59. Wang S, Zhang Y, Soosairajah J, Kraft AS. Regulation of RUNX1/AML1 during the G2/M transition. Leukemia research 2007;31:839-51.
- 60. Aho TL, Sandholm J, Peltola KJ, Ito Y, Koskinen PJ. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity. BMC cell biology 2006;7:21.
- 61. Brady G, Whiteman HJ, Spender LC, Farrell PJ. Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for Epstein-Barr virus-driven B-cell proliferation. Journal of virology 2009;83:6909-16.
- 62. Peterson LF, Boyapati A, Ranganathan V, et al. The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3. Molecular and cellular biology 2005;25:10205-19.
- 63. Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. The EMBO journal 2001;20:723-33.
- 64. Kania MA, Bonner AS, Duffy JB, Gergen JP. The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes & development 1990;4:1701-13.
- 65. Kagoshima H, Shigesada K, Satake M, et al. The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends in genetics : TIG 1993;9:338-41.
- 66. Blyth K, Cameron ER, Neil JC. The RUNX genes: gain or loss of function in cancer. Nature reviews Cancer 2005;5:376-87.
- 67. Libermann TA, Pan Z, Akbarali Y, et al. AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. The Journal of biological chemistry 1999;274:24671-6.
- 68. Strom DK, Nip J, Westendorf JJ, et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. The Journal of biological chemistry 2000;275:3438-45.
- 69. Michaud J, Scott HS, Escher R. AML1 interconnected pathways of leukemogenesis. Cancer investigation 2003;21:105-36.
- 70. Ito Y. Oncogenic potential of the RUNX gene family: 'overview'. Oncogene 2004;23:4198-208.
- 71. Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America 2006;103:15166-71.
- 72. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Molecular and cellular biology 1994;14:5558-68.
- 73. Okada H, Watanabe T, Niki M, et al. AML1(-/-) embryos do not express certain hematopoiesisrelated gene transcripts including those of the PU.1 gene. Oncogene 1998;17:2287-93.
- 74. Cockerill PN, Osborne CS, Bert AG, Grotto RJ. Regulation of GM-CSF gene transcription by core-binding factor. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 1996;7:917-22.
- 75. Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 1995;11:2667-74.
- 76. Meyers S, Lenny N, Hiebert SW. The t(8;21) fusion protein interferes with AML-1B-dependent

transcriptional activation. Molecular and cellular biology 1995;15:1974-82.

- 77. Hiebert SW, Sun W, Davis JN, et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Molecular and cellular biology 1996;16:1349-55.
- 78. Zhang DE, Hohaus S, Voso MT, et al. Function of PU.1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Current topics in microbiology and immunology 1996;211:137-47.
- 79. Iwatsuki K, Tanaka K, Kaneko T, et al. Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene 2005;24:1129-37.
- 80. Otto F, Lubbert M, Stock M. Upstream and downstream targets of RUNX proteins. Journal of cellular biochemistry 2003;89:9-18.
- 81. Jimenez G, Pinchin SM, Ish-Horowicz D. In vivo interactions of the Drosophila Hairy and Runt transcriptional repressors with target promoters. The EMBO journal 1996;15:7088-98.
- 82. Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP. Groucho-dependent and independent repression activities of Runt domain proteins. Molecular and cellular biology 1997;17:5581-7.
- 83. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America 1996;93:3444-9.
- 84. Friedman AD. Leukemogenesis by CBF oncoproteins. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1999;13:1932-42.
- 85. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences of the United States of America 1991;88:10431-4.
- 86. De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Ferec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future oncology 2011;7:77-91.
- 87. De Braekeleer E, Ferec C, De Braekeleer M. RUNX1 translocations in malignant hemopathies. Anticancer research 2009;29:1031-7.
- 88. Hoshino K, Asou N, Suzushima H, et al. TEL/AML1 fusion gene resulting from a cryptic t(12;21) is uncommon in adult patients with B-cell lineage ALL and CML lymphoblastic transformation. International journal of hematology 1997;66:213-8.
- 89. Liang DC, Chou TB, Chen JS, et al. High incidence of TEL/AML1 fusion resulting from a cryptic t(12;21) in childhood B-lineage acute lymphoblastic leukemia in Taiwan. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1996;10:991-3.
- 90. Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 2004;23:4275-83.
- 91. Golub TR GA, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996;16(8):4107-16.
- 92. Loh ML RJ. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002;2002 Jul;9(4):345-52.
- 93. Lorsbach RB DJ. The role of the AML1 transcription factor in leukemogenesis. Int J Hematol Int J Hematol.
- 94. Wang LC, Swat W, Fujiwara Y, et al. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. Genes & development 1998;12:2392-402.
- 95. Hock H, Meade E, Medeiros S, et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes & development 2004;18:2336-41.
- 96. Eguchi-Ishimae M, Eguchi M, Maki K, et al. Leukemia-related transcription factor TEL/ETV6 expands erythroid precursors and stimulates hemoglobin synthesis. Cancer science 2009;100:689-97.
- 97. Fischer M, Schwieger M, Horn S, et al. Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 2005;24:7579-91.
- 98. Morrow M, Horton S, Kioussis D, Brady HJ, Williams O. TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood 2004;103:3890-6.
- 99. Tsuzuki S, Seto M, Greaves M, Enver T. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proceedings of the National Academy of Sciences of the United States of America 2004;101:8443-8.
- 100. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nature reviews Cancer 2003;3:639-49.
- 101. Castor A, Nilsson L, Astrand-Grundstrom I, et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature medicine 2005;11:630-7.

- 102. Bateman CM, Colman SM, Chaplin T, et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 2010;115:3553-8.
- 103. Zuna J, Ford AM, Peham M, et al. TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 2004;10:5355-60.
- 104. Kobayashi H, Satake N, Maseki N, Sakashita A, Kaneko Y. The der(21)t(12;21) chromosome is always formed in a 12;21 translocation associated with childhood acute lymphoblastic leukaemia. British journal of haematology 1996;94:105-11.
- 105. Cave H, Cacheux V, Raynaud S, et al. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1997;11:1459-64.
- 106. Romana SP, Le Coniat M, Poirel H, Marynen P, Bernard O, Berger R. Deletion of the short arm of chromosome 12 is a secondary event in acute lymphoblastic leukemia with t(12;21). Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1996;10:167-70.
- 107. Mullighan CG, Phillips LA, Su X, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008;322:1377-80.
- 108. van Delft FW, Horsley S, Colman S, et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011;117:6247-54.
- 109. Bokemeyer A, Eckert C, Meyr F, et al. Copy number genome alterations are associated with treatment response and outcome in relapsed childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Haematologica 2014;99:706-14.
- 110. Lilljebjörn H RM, Lassen C, Heldrup J, Behrendtz M, Mitelman F, Johansson B, Fioretos T. Whole-exome sequencing of pediatric acute lymphoblastic leukemia. Leukemia 2011 Nov 18. doi: 10.1038/leu.2011.333.
- 111. van der Weyden L, Giotopoulos G, Rust AG, et al. Modeling the evolution of ETV6-RUNX1induced B-cell precursor acute lymphoblastic leukemia in mice. Blood 2011;118:1041-51.
- 112. Heibert SW, Lutterbach B, Durst K, et al. Mechanisms of transcriptional repression by the t(8;21)-, t(12;21)-, and inv(16)-encoded fusion proteins. Cancer Chemother Pharmacol 2001;48 Suppl 1:S31-4.
- 113. Fenrick R, Wang L, Nip J, et al. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Molecular and cellular biology 2000;20:5828-39.
- 114. Alonso CN, Gallego MS, Rossi JG, et al. RT-PCR diagnosis of recurrent rearrangements in pediatric acute lymphoblastic leukemia in Argentina. Leukemia research 2012;36:704-8.
- 115. Moorman AV, Enshaei A, Schwab C, et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood 2014;124:1434-44.
- 116. Seeger K, von Stackelberg A, Taube T, et al. Relapse of TEL-AML1-positive acute lymphoblastic leukemia in childhood: a matched-pair analysis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2001;19:3188-93.
- 117. Rubnitz JE, Wichlan D, Devidas M, et al. Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2008;26:2186-91.
- 118. Seeger K, Adams HP, Buchwald D, et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood 1998;91:1716-22.
- 119. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F. Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997;90:4933-7.
- 120. Poirel H, Lacronique V, Mauchauffe M, et al. Analysis of TEL proteins in human leukemias. Oncogene 1998;16:2895-903.
- 121. Ford AM, Palmi C, Bueno C, et al. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. The Journal of clinical investigation 2009;119:826-36.
- 122. Stein JM. The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells. Biochemical pharmacology 1975;24:1659-62.
- 123. Kirschner-Schwabe R, Lottaz C, Todling J, et al. Expression of late cell cycle genes and an increased proliferative capacity characterize very early relapse of childhood acute lymphoblastic leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 2006;12:4553-61.

- 124. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. The lancet oncology 2009;10:125-34.
- 125. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. The New England journal of medicine 2009;360:470-80.
- 126. Haferlach T, Kohlmann A, Wieczorek L, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010;28:2529-37.
- 127. Hong D, Gupta R, Ancliff P, et al. Initiating and cancer-propagating cells in TEL-AML1associated childhood leukemia. Science 2008;319:336-9.
- 128. Andersson A, Eden P, Olofsson T, Fioretos T. Gene expression signatures in childhood acute leukemias are largely unique and distinct from those of normal tissues and other malignancies. BMC medical genomics 2010;3:6.
- 129. Majeti R, Becker MW, Tian Q, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proceedings of the National Academy of Sciences of the United States of America 2009;106:3396-401.
- 130. Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC genomics 2007;8:385.
- 131. Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003;102:2951-9.
- 132. Fine BM, Stanulla M, Schrappe M, et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2004;103:1043-9.
- 133. Holleman A, den Boer ML, de Menezes RX, et al. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood 2006;107:769-76.
- 134. Moos PJ, Raetz EA, Carlson MA, et al. Identification of gene expression profiles that segregate patients with childhood leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 2002;8:3118-30.
- 135. Linka Y, Ginzel S, Kruger M, et al. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood cancer journal 2013;3:e151.
- 136. Diakos C, Zhong S, Xiao Y, et al. TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood 2010;116:4885-93.
- 137. van Delft FW, Bellotti T, Luo Z, et al. Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia. British journal of haematology 2005;130:26-35.
- 138. Torrano V, Procter J, Cardus P, Greaves M, Ford A. ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood.
- 139. Starkova J, Madzo J, Cario G, et al. The identification of (ETV6)/RUNX1-regulated genes in lymphopoiesis using histone deacetylase inhibitors in ETV6/RUNX1-positive lymphoid leukemic cells. Clinical cancer research : an official journal of the American Association for Cancer Research 2007;13:1726-35.
- 140. Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993;363:358-60.
- 141. Wiemels JL, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999;354:1499-503.
- 142. Venuat AM, Testu MJ, Rosenfeld C. Cytogenetic abnormalities in a human null cell leukemia line (REH). Cancer genetics and cytogenetics 1981;3:327-34.
- 143. Matsuo Y, Drexler HG. Establishment and characterization of human B cell precursorleukemia cell lines. Leukemia research 1998;22:567-79.
- 144. Rosenfeld C, Goutner A, Choquet C, et al. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature 1977;267:841-3.
- 145. Kim DH, Moldwin RL, Vignon C, et al. TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. Blood 1996;88:785-94.
- 146. Zhang LQ, Downie PA, Goodell WR, et al. Establishment of cell lines from B-cell precursor acute lymphoblastic leukemia. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 1993;7:1865-74.
- 147. Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 1974;33:1027-33.
- 148. Lobitz S. Posttranskriptionelle Expressionshemmung von ETV6/RUNX1 durch lentivirale Transduktion mit dem Ribozym buRz28. Berlin: Medizinische Fakultät Charité -

Universitätsmedizin Berlin; 2012.

- 149. Palacios R, Henson G, Steinmetz M, McKearn JP. Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature 1984;309:126-31.
- 150. Hasse K. Untersuchung des Beitrags von ETV6/RUNX1 zur Entstehung akuter lymphatischer Leukämie (ALL) im Kindesalter. Berlin: Freie Universität Berlin; 2013.
- 151. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry 1987;162:156-9.
- 152. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research 2001;29:e45.
- 153. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 1977;74:5463-7.
- 154. Hung T, Mak K, Fong K. A specificity enhancer for polymerase chain reaction. Nucleic acids research 1990;18:4953.
- 155. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods 2012;9:671-5.
- 156. Solovei I WJ, Cremer M, Habermann F, Schermelleh L, Cremer T. FISH on threedimensionally preserved nuclei. In: FISH: a practical approach. Oxford University press 2002.
- 157. Lee Tlea. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc;2006;1(2):729-48.
- 158. Quail MA, Swerdlow H, Turner DJ. Improved protocols for the illumina genome analyzer sequencing system. Current protocols in human genetics / editorial board, Jonathan L Haines [et al] 2009;Chapter 18:Unit 18 2.
- 159. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60.
- 160. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome biology 2008;9:R137.
- 161. Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 2011;27:1653-9.
- 162. Nogales-Cadenas R, Carmona-Saez P, Vazquez M, et al. GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic acids research 2009;37:W317-22.
- 163. Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome biology 2007;8:R3.
- 164. Diakos C, Krapf G, Gerner C, et al. RNAi-mediated silencing of TEL/AML1 reveals a heatshock protein- and survivin-dependent mechanism for survival. Blood 2007;109:2607-10.
- 165. Schelling K. Analysen des JAK-STAT Signalwegs in TEL/AML1 positiven Zellmodellen.
- 166. Sonnier JA, Buchanan GR, Howard-Peebles PN, Rutledge J, Smith RG. Chromosomal translocation involving the immunoglobulin kappa-chain and heavy-chain loci in a child with chronic lymphocytic leukemia. The New England journal of medicine 1983;309:590-4.
- 167. Kennedy MA, Morris CM, Hollings PE, Fitzgerald PH. Involvement of immunoglobulin heavyand light-chain (kappa) gene clusters in a human B-cell translocation, t(2;14). Cytogenetics and cell genetics 1989;52:50-6.
- 168. Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature 2014;509:582-7.
- 169. Tsuzuki S, Karnan S, Horibe K, et al. Genetic abnormalities involved in t(12;21) TEL-AML1 acute lymphoblastic leukemia: analysis by means of array-based comparative genomic hybridization. Cancer science 2007;98:698-706.
- 170. Gardini A CM, Luzi L, Okumura AJ, Biggs JR, Minardi SP, Venturini E, Zhang DE, Pelicci PG, Alcalay M. AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 2008 Nov;4(11):e1000275. Epub 2008 Nov 28.
- 171. Song H, Kim JH, Rho JK, Park SY, Kim CG, Choe SY. Functional characterization of TEL/AML1 fusion protein in the regulation of human CR1 gene promoter. Molecules and cells 1999;9:560-3.
- 172. Torrano V, Procter J, Cardus P, Greaves M, Ford AM. ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 2011;118:4910-8.
- 173. Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes & development 2001;15:2069-82.
- 174. Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annual review of biochemistry 1998;67:545-79.

- 175. Sanda T, Lawton LN, Barrasa MI, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer cell 2012;22:209-21.
- 176. Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic acids research 2012;40:W478-83.
- 177. Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching. Nucleic acids research 2009;37:W202-8.
- 178. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome biology 2007;8:R24.
- 179. Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic acids research 2000;28:3442-4.
- 180. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracyclineresponsive promoters. Proceedings of the National Academy of Sciences of the United States of America 1992;89:5547-51.
- 181. Chono H, Yoshioka H, Ueno M, Kato I. Removal of inhibitory substances with recombinant fibronectin-CH-296 plates enhances the retroviral transduction efficiency of CD34(+)CD38(-) bone marrow cells. Journal of biochemistry 2001;130:331-4.
- 182. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature 2009;457:396-404.
- 183. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115:199-208.
- 184. Fuka G, Kauer M, Kofler R, Haas OA, Panzer-Grumayer R. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression. PloS one 2011;6:e26348.
- 185. Janeway C. Immunobiology the immune system in health and disease. 6. ed. New York, NY u.a.: Garland Science; 2005.
- 186. Muller WA. Mechanisms of leukocyte transendothelial migration. Annual review of pathology 2011;6:323-44.
- 187. Lammermann T, Bader BL, Monkley SJ, et al. Rapid leukocyte migration by integrinindependent flowing and squeezing. Nature 2008;453:51-5.
- 188. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature reviews Immunology 2007;7:678-89.
- 189. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature reviews Immunology 2006;6:93-106.
- 190. Taichman DB, Cybulsky MI, Djaffar I, et al. Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1. Cell regulation 1991;2:347-55.
- 191. Martin-Padura I, Mortarini R, Lauri D, et al. Heterogeneity in human melanoma cell adhesion to cytokine activated endothelial cells correlates with VLA-4 expression. Cancer research 1991;51:2239-41.
- 192. Shalapour S, Hof J, Kirschner-Schwabe R, et al. High VLA-4 expression is associated with adverse outcome and distinct gene expression changes in childhood B-cell precursor acute lymphoblastic leukemia at first relapse. Haematologica 2011;96:1627-35.
- 193. Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free radical biology & medicine 2000;28:1379-86.
- 194. Melis M, Spatafora M, Melodia A, et al. ICAM-1 expression by lung cancer cell lines: effects of upregulation by cytokines on the interaction with LAK cells. The European respiratory journal 1996;9:1831-8.
- 195. Vanky F, Wang P, Patarroyo M, Klein E. Expression of the adhesion molecule ICAM-1 and major histocompatibility complex class I antigens on human tumor cells is required for their interaction with autologous lymphocytes in vitro. Cancer immunology, immunotherapy : CII 1990;31:19-27.
- 196. Ramer R, Bublitz K, Freimuth N, et al. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2012;26:1535-48.
- 197. Sawada T, Kimura K, Nishihara T, et al. TGF-beta1 down-regulates ICAM-1 expression and enhances liver metastasis of pancreatic cancer. Advances in medical sciences 2006;51:60-5.
- 198. Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunological reviews 2010;237:205-25.
- 199. Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annual review of immunology 2000;18:393-422.
- 200. Tedder TF, Inaoki M, Sato S. The CD19-CD21 complex regulates signal transduction

thresholds governing humoral immunity and autoimmunity. Immunity 1997;6:107-18.

- 201. Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 1992;256:105-7.
- 202. Sato S, Miller AS, Howard MC, Tedder TF. Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. Journal of immunology 1997;159:3278-87.
- 203. Fujimoto M, Bradney AP, Poe JC, Steeber DA, Tedder TF. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity 1999;11:191-200.
- 204. Bustelo XR. Regulation of Vav proteins by intramolecular events. Frontiers in bioscience : a journal and virtual library 2002;7:d24-30.
- 205. Movilla N, Bustelo XR. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Molecular and cellular biology 1999;19:7870-85.
- 206. Swat W, Fujikawa K. The Vav family: at the crossroads of signaling pathways. Immunologic research 2005;32:259-65.
- 207. Chu PG, Arber DA. CD79: a review. Applied immunohistochemistry & molecular morphology : AIMM / official publication of the Society for Applied Immunohistochemistry 2001;9:97-106.
- 208. Gold MR, Matsuuchi L, Kelly RB, DeFranco AL. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proceedings of the National Academy of Sciences of the United States of America 1991;88:3436-40.
- 209. Nakamura T, Kubagawa H, Cooper MD. Heterogeneity of immunoglobulin-associated molecules on human B cells identified by monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America 1992;89:8522-6.
- 210. Mason DY, Cordell JL, Tse AG, et al. The IgM-associated protein mb-1 as a marker of normal and neoplastic B cells. Journal of immunology 1991;147:2474-82.
- 211. Gossen M, Akira S. Transcription factors: [with 15 tables]. Berlin u.a.: Springer; 2004.
- 212. Doenecke D, Karlson P. Karlsons Biochemie und Pathobiochemie: mehr als 800 Abbildungen, Formeln und Schemata. 15., komplett überarb. und neugestaltete Aufl. ed. Stuttgart u.a.: Thieme; 2005.
- 213. Graves BJ, Petersen JM. Specificity within the ets family of transcription factors. Advances in cancer research 1998;75:1-55.
- 214. Sharrocks AD, Brown AL, Ling Y, Yates PR. The ETS-domain transcription factor family. The international journal of biochemistry & cell biology 1997;29:1371-87.
- 215. Maurer P, T'Sas F, Coutte L, et al. FEV acts as a transcriptional repressor through its DNAbinding ETS domain and alanine-rich domain. Oncogene 2003;22:3319-29.
- 216. Peter M, Couturier J, Pacquement H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997;14:1159-64.
- 217. Bateman NW, Tan D, Pestell RG, Black JD, Black AR. Intestinal tumor progression is associated with altered function of KLF5. The Journal of biological chemistry 2004;279:12093-101.
- 218. Chen L, Huang HW, Gu SH, Xu L, Gu YD, Xu JG. The study of myogenin expression in denervated human skeletal muscles. The Journal of international medical research 2011;39:378-87.
- 219. Braun T, Bober E, Buschhausen-Denker G, Kohtz S, Grzeschik KH, Arnold HH. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. The EMBO journal 1989;8:3617-25.
- 220. Pratap J, Lian JB, Stein GS. Metastatic bone disease: role of transcription factors and future targets. Bone 2011;48:30-6.
- 221. Akech J, Wixted JJ, Bedard K, et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 2010;29:811-21.
- 222. Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I. Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert opinion on therapeutic targets 2014;18:759-69.
- 223. Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. The FEBS journal 2015;282:224-58.
- 224. Biesiada E, Hamamori Y, Kedes L, Sartorelli V. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Molecular and cellular biology 1999;19:2577-84.
- 225. Wei H, Liu X, Xiong X, et al. AML1-ETO interacts with Sp1 and antagonizes Sp1 transactivity through RUNT domain. FEBS letters 2008;582:2167-72.
- 226. Marchwicka A, Cebrat M, Sampath P, Sniezewski L, Marcinkowska E. Perspectives of differentiation therapies of acute myeloid leukemia: the search for the molecular basis of

patients' variable responses to 1,25-dihydroxyvitamin d and vitamin d analogs. Frontiers in oncology 2014;4:125.

- 227. Reed-Inderbitzin E, Moreno-Miralles I, Vanden-Eynden SK, et al. RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription. Oncogene 2006;25:5777-86.
- 228. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature reviews Microbiology 2014;12:479-92.
- 229. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-78.

9 Anhang

9.1 IUPAC – DNA-Code

Im Rahmen der üblichen IUPAC-System werden Nucleobasen durch den ersten Buchstaben ihres chemischen Namen vertreten: [**G**]uanine, [**C**]ytosine, [**A**]denine und [**T**]hymine. Diese Kurzschrift enthält darüber hinaus elf Zeichen, welche für jede mögliche Kombination der vier DNA-Basen stehen. Diese Mehrdeutigkeit der Zeichen wurde entwickelt, um Variationen bei Familien verwandter Gene zu erfassen.

Symbol	Beschreibung
А	Adenine
С	Cytosine
G	Guanine
Т	Thymine
U	Uracil
R	Purine (A oder G)
Y	Pyrimidine (C, T, oder U)
Μ	C oder A
К	T, U, oder G
W	T, U, oder A
S	C oder G
В	C, T, U, oder G (nicht A)
D	A, T, U, oder G (nicht C)
Н	A, T, U, oder C (nicht G)
V	A, C, oder G (nicht T, nicht U)
Ν	jede Base (A, C, G, T, oder U)

Tabelle 9.1: Der IUPAC-Code

9.2 Das Kerngenset

Das Kerngenset umfasst 1221 codierende DNA-Bereiche (Abbildung 4.19a). Von diesen codieren 935 für annotierte proteincodierende Gene. Der Rest (286 Gene) umfasst Gene mit unklarer Funktion bzw. hypothetische Gene. In der folgenden Auflistung sind alle potenziellen ETV6/RUNX1 Zielgene aufgelistet, exklusive eventuell vorhandener Spleißvarianten:

Symbol	Position	Beschreibung
AAK1	chr2:69709671-69870406	Homo sapiens AP2 associated kinase 1 (AAK1), mRNA.
ABCA2	chr9:139901685-139922740	Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 2 (ABCA2), mRNA.
ABCA7	chr19:1040101-1042743	Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 7 (ABCA7), mRNA.
ABLIM1	chr10:116190868-116251637	Homo sapiens actin binding LIM protein 1 (AB-LIM1), mRNA.
ACAP1	chr17:7239847-7254793	Homo sapiens ArfGAP with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1), mRNA.
ACAP2	chr3:194995464-195163817	Homo sapiens ArfGAP with coiled-coil, ankyrin repeat and PH domains 2 (ACAP2), mRNA.
ACOT7	chr1:6324331-6419004	Homo sapiens acyl-CoA thioesterase 7 (A-COT7), mRNA.
ACTG1	chr17:79476996-79479892	Homo sapiens actin, gamma 1 (ACTG1), non-coding RNA.
ACTL9	chr19:8807750-8809172	Homo sapiens actin-like 9 (ACTL9), mRNA.
ACTN1	chr14:69345095-69352292	Homo sapiens actinin, alpha 1 (ACTN1), mRNA.
АСҮ3	chr11:67410025-67418130	Homo sapiens aspartoacylase (aminocyclase) 3 (ACY3), mRNA.
ADAMTS15	chr11:130318868-130346539	Homo sapiens ADAM metallopeptidase with thrombospondin type 1 motif, 15 (ADAMTS15), mRNA.
ADAP1	chr7:937536-1015235	Homo sapiens ArfGAP with dual PH domains 1 (ADAP1), mRNA.
ADAT3	chr19:1905370-1913446	Homo sapiens adenosine deaminase, tRNA- specific 3 (ADAT3), mRNA.
ADCY7	chr16:50300461-50338870	Homo sapiens adenylate cyclase 7 (ADCY7), mRNA.
ADD1	chr4:2845583-2901504	Homo sapiens adducin 1 (alpha) (ADD1), mRNA.
ADIPOR2	chr12:1800246-1897845	Homo sapiens adiponectin receptor 2 (ADI- POR2), mRNA.
ADORA2A	chr22:24813708-24838325	Homo sapiens adenosine A2a receptor (ADO-RA2A), mRNA.
AFF3	chr2:100199259-100721159	Homo sapiens AF4/FMR2 family, member 3 (AFF3), mRNA.
AGTRAP	chr1:11796141-11810828	Homo sapiens angiotensin II receptor-associated protein (AGTRAP), mRNA.
AHNAK	chr11:62201013-62314332	Homo sapiens AHNAK nucleoprotein (AHNAK), mRNA.

Symbol	Position	Beschreibung
AHRR	chr5:304291-438405	Homo sapiens aryl-hydrocarbon receptor repressor (AHRR), mRNA.
AK1	chr9:130628758-130640022	Homo sapiens adenylate kinase 1 (AK1), mRNA.
AKAP12	chr6:151561133-151679694	Homo sapiens A kinase (PRKA) anchor protein 12 (AKAP12), mRNA.
AKAP13	chr15:85923846-86080227	Homo sapiens A kinase (PRKA) anchor protein 13 (AKAP13), mRNA.
AKAP2	chr9:112810877-112934791	Homo sapiens A kinase (PRKA) anchor protein 2 (AKAP2), mRNA.
AKAP8L	chr19:15490858-15529833	Homo sapiens A kinase (PRKA) anchor protein 8-like (AKAP8L), mRNA.
AKR1A1	chr1:46016454-46035723	Homo sapiens aldo-keto reductase family 1, member A1 (aldehyde reductase) (AKR1A1), mRNA.
AKR7A2	chr1:19629201-19638640	Homo sapiens aldo-keto reductase family 7, member A2 (aflatoxin aldehyde reductase) (AKR7A2), mRNA.
ALDH2	chr12:112204690-112247789	Homo sapiens aldehyde dehydrogenase 2 family (mitochondrial) (ALDH2), nuclear gene encoding mitochondrial protein, mRNA.
ALOX5AP	chr13:31287614-31338565	Homo sapiens arachidonate 5-lipoxygenase- activating protein (ALOX5AP), mRNA.
AMPD3	chr11:10472246-10506586	Homo sapiens adenosine monophosphate de- aminase 3 (AMPD3), mRNA.
AMZ2P1	chr17:62962667-62971168	Homo sapiens archaelysin family metallopep- tidase 2 pseudogene 1 (AMZ2P1), non-coding RNA.
ANKLE2	chr12:133302253-133311275	Homo sapiens ankyrin repeat and LEM domain containing 2 (ANKLE2), mRNA.
ANKMY1	chr2:241418838-241497405	Homo sapiens ankyrin repeat and MYND domain containing 1 (ANKMY1), mRNA.
ANKRD13D	chr11:67056761-67069955	Homo sapiens ankyrin repeat domain 13 family, member D (ANKRD13D), non-coding RNA.
ANKRD29	chr18:21179977-21242849	Homo sapiens ankyrin repeat domain 29 (ANKRD29), mRNA.
AP1M2	chr19:10683346-10697991	Homo sapiens adaptor-related protein complex 1, mu 2 subunit (AP1M2), mRNA.
AP1S2	chrX:15843928-15870647	Homo sapiens adaptor-related protein complex 1, sigma 2 subunit (AP1S2), mRNA.
AP2B1	chr17:33914281-34053436	Homo sapiens adaptor-related protein complex 2, beta 1 subunit (AP2B1), mRNA.
AP4B1	chr1:114437681-114439764	Homo sapiens adaptor-related protein complex 4, beta 1 subunit (AP4B1), mRNA.
APBB1	chr11:6416354-6417804	Homo sapiens amyloid beta (A4) precursor pro- tein-binding, family B, member 1 (Fe65) (APBB1), mRNA.
APOBEC3A	chr22:39353526-39359188	Homo sapiens apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APO- BEC3A), mRNA.
APOBEC3A_B	chr22:39353526-39388784	Homo sapiens APOBEC3A and APOBEC3B deletion hybrid (APOBEC3A_B), mRNA.
APOBR	chr16:28505969-28510291	Homo sapiens apolipoprotein B receptor (APOBR), mRNA.
APOH	chr17:64208146-64225556	Homo sapiens apolipoprotein H (beta-2- glycoprotein I) (APOH), mRNA.

Symbol	Position	Beschreibung
ARFIP1	chr4:153701111-153833063	Homo sapiens ADP-ribosylation factor interac- ting protein 1 (ARFIP1), mRNA.
ARHGAP19	chr10:98981929-99030447	Homo sapiens Rho GTPase activating protein 19 (ARHGAP19), mRNA.
ARHGAP24	chr4:86396283-86643538	Homo sapiens Rho GTPase activating protein 24 (ARHGAP24), mRNA.
ARHGAP25	chr2:68906745-69043443	Homo sapiens Rho GTPase activating protein 25 (ARHGAP25), mRNA.
ARHGAP30	chr1:161016731-161039760	Homo sapiens Rho GTPase activating protein 30 (ARHGAP30), mRNA.
ARHGAP31	chr3:119013219-119138323	Homo sapiens Rho GTPase activating protein 31 (ARHGAP31), mRNA.
ARHGAP4	chrX:153172829-153187626	Homo sapiens Rho GTPase activating protein 4 (ARHGAP4), mRNA.
ARHGEF1	chr19:42387266-42400870	Homo sapiens Rho guanine nucleotide exchan- ge factor (GEF) 1 (ARHGEF1), mRNA.
ARHGEF2	chr1:155916629-155921063	Homo sapiens Rho/Rac guanine nucleotide exchange factor (GEF) 2 (ARHGEF2), mRNA.
ARHGEF7	chr13:111767623-111947542	Homo sapiens Rho guanine nucleotide exchan- ge factor (GEF) 7 (ARHGEF7), mRNA.
ARID5A	chr2:97202463-97218371	Homo sapiens AT rich interactive domain 5A (MRF1-like) (ARID5A), mRNA.
ARL5C	chr17:37313146-37322414	Homo sapiens ADP-ribosylation factor-like 5C (ARL5C), mRNA.
ARMC5	chr16:31470788-31478487	Homo sapiens armadillo repeat containing 5 (ARMC5), mRNA.
ARRDC2	chr19:18111943-18124911	Homo sapiens arrestin domain containing 2 (ARRDC2), mRNA.
ARRDC5	chr19:4890448-4902879	Homo sapiens arrestin domain containing 5 (ARRDC5), mRNA.
ARSG	chr17:66255322-66417000	Homo sapiens arylsulfatase G (ARSG), mRNA.
ASAP1	chr8:131064350-131193126	Homo sapiens ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1), mRNA.
ASB1	chr2:239335625-239360891	Homo sapiens ankyrin repeat and SOCS box containing 1 (ASB1), mRNA.
ASB10	chr7:150872784-150884478	Homo sapiens ankyrin repeat and SOCS box containing 10 (ASB10), mRNA.
ASB2	chr14:94400498-94406841	Homo sapiens ankyrin repeat and SOCS box containing 2 (ASB2), mRNA.
ATP13A1	chr19:19756009-19762606	Homo sapiens ATPase type 13A1 (ATP13A1), mRNA.
ATP13A2	chr1:17321981-17326807	Homo sapiens ATPase type 13A2 (ATP13A2), mRNA.
ATP1A4	chr1:160121351-160156767	Homo sapiens ATPase, Na+/K+ transporting, alpha 4 polypeptide (ATP1A4), mRNA.
ATP2A3	chr17:3827162-3833728	Homo sapiens ATPase, Ca++ transporting, ubiquitous (ATP2A3), mRNA.
ATP2B4	chr1:203651869-203702757	Homo sapiens ATPase, Ca++ transporting, plasma membrane 4 (ATP2B4), mRNA.
ATP6V0A1	chr17:40610861-40622984	Homo sapiens ATPase, H+ transporting, lyso- somal V0 subunit a1 (ATP6V0A1), mRNA.
ATXN7L1	chr7:105245220-105319609	Homo sapiens ataxin 7-like 1 (ATXN7L1), mRNA.
AURKAIP1	chr1:1309109-1310246	Homo sapiens aurora kinase A interacting pro- tein 1 (AURKAIP1), mRNA.

Symbol	Position	Beschreibung
AURKC	chr19:57742376-57746916	Homo sapiens aurora kinase C (AURKC), mRNA.
B4GALT3	chr1:161141100-161145018	Homo sapiens UDP-Gal:betaGlcNAc beta 1, 4- galactosyltransferase, polypeptide 3 (B4GALT3), mRNA.
B9D1	chr17:19240866-19281495	Homo sapiens B9 protein domain 1 (B9D1), mRNA.
BANK1	chr4:102341117-102995969	Homo sapiens B-cell scaffold protein with anky- rin repeats 1 (BANK1), mRNA.
BCAN	chr1:156611739-156623264	Homo sapiens brevican (BCAN), mRNA.
BCAS1	chr20:52560078-52612736	Homo sapiens breast carcinoma amplified se- quence 1 (BCAS1), mRNA.
BCL6	chr3:187439164-187452695	Homo sapiens B-cell CLL/lymphoma 6 (BCL6), mRNA.
BCOR	chrX:39910498-39922324	Homo sapiens BCL6 corepressor (BCOR), mRNA.
BHLHA15	chr7:97840777-97842271	Homo sapiens basic helix-loop-helix family, member a15 (BHLHA15), mRNA.
BHLHE23	chr20:61637330-61638387	Homo sapiens basic helix-loop-helix family, member e23 (BHLHE23), mRNA.
BIN2	chr12:51674821-51717938	Homo sapiens bridging integrator 2 (BIN2), mRNA.
BIRC2	chr11:102217912-102249401	Homo sapiens baculoviral IAP repeat containing 2 (BIRC2), mRNA.
BPI	chr20:36888576-36922294	SubName: Full=Bactericidal permeability- increasing protein; SubName: Full=Bactericidal/permeability-increasing pro- tein;, , ,
BRD8	chr5:137475458-137514358	Homo sapiens bromodomain containing 8 (BRD8), mRNA.
BRF1	chr14:105677458-105688251	Homo sapiens BRF1, RNA polymerase III transcription initiation factor 90 kDa subunit (BRF1), mRNA.
BRI3BP	chr12:125478193-125510349	Homo sapiens BRI3 binding protein (BRI3BP), mRNA.
BTF3L4	chr1:52521856-52556388	Homo sapiens basic transcription factor 3-like 4 (BTF3L4), mRNA.
BTRC	chr10:103113789-103239214	Homo sapiens beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC), mRNA.
BUB1	chr2:111395408-111435684	Homo sapiens BUB1 mitotic checkpoint seri- ne/threonine kinase (BUB1), mRNA.
BUB3	chr10:124913759-124921929	Homo sapiens BUB3 mitotic checkpoint protein (BUB3), mRNA.
BZRAP1	chr17:56378587-56383747	Homo sapiens benzodiazapine receptor (peri- pheral) associated protein 1 (BZRAP1), mRNA.
C10orf25	chr10:45493145-45496470	Homo sapiens chromosome 10 open reading frame 25 (C10orf25), mRNA.
C10orf55	chr10:75669726-75682535	Homo sapiens chromosome 10 open reading frame 55 (C10orf55), mRNA.
C11orf21	chr11:2317506-2323143	Homo sapiens chromosome 11 open reading frame 21 (C11orf21), mRNA.
C15orf27	chr15:76352298-76497304	Homo sapiens chromosome 15 open reading frame 27 (C15orf27), mRNA.
C15orf62	chr15:41062158-41064648	Homo sapiens chromosome 15 open reading frame 62 (C15orf62), mRNA.

Symbol	Position	Beschreibung
C16orf54	chr16:29753785-29757340	Homo sapiens chromosome 16 open reading frame 54 (C16orf54), mRNA.
C16orf70	chr16:67153997-67170211	Homo sapiens chromosome 16 open reading frame 70 (C16orf70), mRNA.
C17orf62	chr17:80400462-80403062	Homo sapiens chromosome 17 open reading frame 62 (C17orf62), non-coding RNA.
C19orf35	chr19:2274630-2282181	Homo sapiens chromosome 19 open reading frame 35 (C19orf35), mRNA.
C19orf70	chr19:5678432-5680911	Homo sapiens chromosome 19 open reading frame 70 (C19orf70), mRNA.
C1orf228	chr1:45140393-45191263	Homo sapiens chromosome 1 open reading frame 228 (C1orf228), mRNA.
C20orf195	chr20:62187016-62187973	Homo sapiens chromosome 20 open reading frame 195 (C20orf195), mRNA.
C2orf44	chr2:24252205-24270296	Homo sapiens chromosome 2 open reading frame 44 (C2orf44), mRNA.
C2orf48	chr2:10281980-10350942	Homo sapiens chromosome 2 open reading frame 48 (C2orf48), mRNA.
C3orf58	chr3:143690639-143711210	Homo sapiens chromosome 3 open reading frame 58 (C3orf58), mRNA.
C5AR1	chr19:47813103-47825327	Homo sapiens complement component 5a receptor 1 (C5AR1), mRNA.
C5orf28	chr5:43444353-43483992	Homo sapiens chromosome 5 open reading frame 28 (C5orf28), mRNA.
C5orf34	chr5:43486802-43515273	Homo sapiens chromosome 5 open reading frame 34 (C5orf34), mRNA.
C9orf139	chr9:139921915-139931234	Homo sapiens chromosome 9 open reading frame 139 (C9orf139), mRNA.
C9orf171	chr9:135285610-135448675	Homo sapiens chromosome 9 open reading frame 171 (C9orf171), mRNA.
C9orf50	chr9:132374503-132383055	Homo sapiens chromosome 9 open reading frame 50 (C9orf50), mRNA.
C9orf89	chr9:95858449-95875565	Homo sapiens chromosome 9 open reading frame 89 (C9orf89), mRNA.
CACNA2D4	chr12:1901122-2027870	Homo sapiens calcium channel, voltage- dependent, alpha 2/delta subunit 4 (CACNA2D4), mRNA.
CAMK1	chr3:9799028-9811668	Homo sapiens calcium/calmodulin-dependent protein kinase I (CAMK1), mRNA.
CAPG	chr2:85622434-85628806	Homo sapiens capping protein (actin filament), gelsolin-like (CAPG), mRNA.
CARHSP1	chr16:8946798-8955667	Homo sapiens calcium regulated heat stable protein 1, 24kDa (CARHSP1), mRNA.
CASC1	chr12:25261222-25348094	Homo sapiens cancer susceptibility candidate 1 (CASC1), mRNA.
CBFA2T3	chr16:88941262-88947565	Homo sapiens core-binding factor, runt domain, alpha subunit 2; translocated to, 3 (CBFA2T3), mRNA.
CBLL1	chr7:107384278-107402083	Homo sapiens Cbl proto-oncogene, E3 ubiquitin protein ligase-like 1 (CBLL1), non-coding RNA.
CBX3	chr7:26240830-26253227	Homo sapiens chromobox homolog 3 (CBX3), mRNA.
CCDC102A	chr16:57546089-57570477	Homo sapiens coiled-coil domain containing 102A (CCDC102A), mRNA.

Symbol	Position	Beschreibung
CCDC114	chr19:48799708-48807432	Homo sapiens coiled-coil domain containing 114 (CCDC114), mRNA.
CCDC12	chr3:46963219-47017991	Homo sapiens coiled-coil domain containing 12 (CCDC12), non-coding RNA.
CCDC97	chr19:41816093-41830788	Homo sapiens coiled-coil domain containing 97 (CCDC97), mRNA.
CCL1	chr17:32687398-32690252	Homo sapiens chemokine (C-C motif) ligand 1 (CCL1), mRNA.
CCL3	chr17:34415602-34417506	Homo sapiens chemokine (C-C motif) ligand 3 (CCL3), mRNA.
CCM2	chr7:45039344-45116069	Homo sapiens cerebral cavernous malformation 2 (CCM2), non-coding RNA.
CCND3	chr6:41902670-41909144	Homo sapiens cyclin D3 (CCND3), mRNA.
CCNT1	chr12:49082240-49110781	Homo sapiens cyclin T1 (CCNT1), mRNA.
CCR2	chr3:46395234-46400868	Homo sapiens chemokine (C-C motif) receptor 2 (CCR2), mRNA.
CCT8	chr21:30428647-30445672	Homo sapiens chaperonin containing TCP1, subunit 8 (theta) (CCT8), mRNA.
CD19	chr16:28943259-28950668	Homo sapiens CD19 molecule (CD19), mRNA.
CD1A	chr1:158223926-158228058	Homo sapiens CD1a molecule (CD1A), mRNA.
CD1C	chr1:158259562-158264564	Homo sapiens CD1c molecule (CD1C), mRNA.
CD28	chr2:204571197-204594495	Homo sapiens CD28 molecule (CD28), mRNA.
CD300A	chr17:72462521-72480937	Homo sapiens CD300a molecule (CD300A), mRNA.
CD38	chr4:15779930-15850706	Homo sapiens CD38 molecule (CD38), mRNA.
CD55	chr1:207497903-207511004	Homo sapiens CD55 molecule, decay accelera- ting factor for complement (Cromer blood group) (CD55), mRNA.
CD69	chr12:9905081-9913497	Homo sapiens CD69 molecule (CD69), mRNA.
CD72	chr9:35609975-35618410	Homo sapiens CD72 molecule (CD72), mRNA.
CD79A	chr19:42381189-42385439	Homo sapiens CD79a molecule, immunoglobu- lin-associated alpha (CD79A), mRNA.
CDC27	chr17:45195310-45266665	Homo sapiens cell division cycle 27 (CDC27), mRNA.
CDC42EP5	chr19:54976209-54984422	Homo sapiens CDC42 effector protein (Rho GTPase binding) 5 (CDC42EP5), mRNA.
CDH5	chr16:66413206-66426888	Homo sapiens cadherin 5, type 2 (vascular en- dothelium) (CDH5), mRNA.
CDHR2	chr5:175969511-176022769	Homo sapiens cadherin-related family member 2 (CDHR2), mRNA.
CDHR5	chr11:619415-624732	Homo sapiens cadherin-related family member 5 (CDHR5), mRNA.
CDK13	chr7:39989958-40136733	Homo sapiens cyclin-dependent kinase 13 (CDK13), mRNA.
CDK5RAP2	chr9:123151146-123210404	Homo sapiens CDK5 regulatory subunit associa- ted protein 2 (CDK5RAP2), mRNA.
CDKN1B	chr12:12870301-12875305	Homo sapiens cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), mRNA.
CELF2	chr10:11047258-11356752	Homo sapiens CUGBP, Elav-like family member 2 (CELF2), mRNA.
CEP19	chr3:196433147-196439123	Homo sapiens centrosomal protein 19kDa (CEP19), mRNA.
CEP57	chr11:95523624-95556379	Homo sapiens centrosomal protein 57kDa (CEP57), mRNA.

Symbol	Position	Beschreibung
CFLAR	chr2:201980876-202004600	Homo sapiens CASP8 and FADD-like apoptosis regulator (CFLAR), mRNA.
CHCHD3	chr7:132469622-132766828	Homo sapiens coiled-coil-helix-coiled-coil-helix domain containing 3 (CHCHD3), mRNA.
CHST12	chr7:2443194-2474216	Homo sapiens carbohydrate (chondroitin 4) sul- fotransferase 12 (CHST12), mRNA.
CHST13	chr3:126243130-126262134	Homo sapiens carbohydrate (chondroitin 4) sul- fotransferase 13 (CHST13), mRNA.
CIC	chr19:42788816-42799949	Homo sapiens capicua transcriptional repressor (CIC), mRNA.
CIDEB	chr14:24774392-24777188	Homo sapiens cell death-inducing DFFA-like effector b (CIDEB), mRNA.
CISD3	chr17:36886509-36891858	Homo sapiens CDGSH iron sulfur domain 3 (CISD3), mRNA.
CKAP2L	chr2:113495443-113522254	Homo sapiens cytoskeleton associated protein 2-like (CKAP2L), mRNA.
CLCC1	chr1:109472129-109493070	Homo sapiens chloride channel CLIC-like 1 (CLCC1), mRNA.
CLCN3	chr4:170541671-170644338	Homo sapiens chloride channel, voltage- sensitive 3 (CLCN3), mRNA.
CLDN12	chr7:90013034-90045268	Homo sapiens claudin 12 (CLDN12), mRNA.
CLDN9	chr16:3062456-3064506	Homo sapiens claudin 9 (CLDN9), mRNA.
CLDND2	chr19:51870351-51872257	Homo sapiens claudin domain containing 2 (CLDND2), mRNA.
CLN3	chr16:28488784-28500707	Homo sapiens ceroid-lipofuscinosis, neuronal 3 (CLN3), mRNA.
CMTM7	chr3:32433162-32496333	Homo sapiens CKLF-like MARVEL transmemb- rane domain containing 7 (CMTM7), mRNA.
CNIH2	chr11:66045671-66051685	Homo sapiens cornichon homolog 2 (Drosophila) (CNIH2), non-coding RNA.
CNR2	chr1:24201024-24202107	Homo sapiens cannabinoid receptor 2 (macro- phage) (CNR2), mRNA.
COA5	chr2:99215785-99224981	Homo sapiens cytochrome c oxidase assembly factor 5 (COA5), mRNA.
COL9A1	chr6:70925742-70990180	Homo sapiens collagen, type IX, alpha 1 (COL9A1), mRNA.
COMT	chr22:19929262-19957498	Homo sapiens catechol-O-methyltransferase (COMT), mRNA.
COPS4	chr4:83956238-83996971	Homo sapiens COP9 signalosome subunit 4 (COPS4), mRNA.
COPZ2	chr17:46103532-46115152	Homo sapiens coatomer protein complex, subu- nit zeta 2 (COPZ2), mRNA.
CORO1A	chr16:30194730-30198544	Homo sapiens coronin, actin binding protein, 1A (CORO1A), mRNA.
COX8C	chr14:93813536-93814700	Homo sapiens cytochrome c oxidase subunit VIIIC (COX8C), nuclear gene encoding mito- chondrial protein, mRNA.
CPT1A	chr11:68522087-68609399	Homo sapiens carnitine palmitoyltransferase 1A (liver) (CPT1A), nuclear gene encoding mito- chondrial protein, mRNA.
CREB1	chr2:208394615-208441649	Homo sapiens cAMP responsive element bin- ding protein 1 (CREB1), mRNA.
CRIM1	chr2:36583369-36778278	Homo sapiens cysteine rich transmembrane BMP regulator 1 (chordin-like) (CRIM1), mRNA.

Symbol	Position	Beschreibung
CRISPLD2	chr16:84853586-84873626	Homo sapiens cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2), mRNA.
CRK	chr17:1324646-1359561	Homo sapiens v-crk sarcoma virus CT10 on- cogene homolog (avian) (CRK), mRNA.
CRLS1	chr20:5986738-6020697	Homo sapiens cardiolipin synthase 1 (CRLS1), mRNA.
CRNDE	chr16:54952776-54962690	Homo sapiens colorectal neoplasia differentially expressed (non-protein coding) (CRNDE), non- coding RNA.
CRYBB3	chr22:25595816-25603326	Homo sapiens crystallin, beta B3 (CRYBB3), mRNA.
CSK	chr15:75074424-75091392	Homo sapiens c-src tyrosine kinase (CSK), mRNA.
CSNK1G2	chr19:1941160-1981336	Homo sapiens casein kinase 1, gamma 2 (CSNK1G2), mRNA.
CST7	chr20:24929865-24940564	Homo sapiens cystatin F (leukocystatin) (CST7), mRNA.
CSTF2T	chr10:53455245-53459355	Homo sapiens cleavage stimulation factor, 3' pre-RNA, subunit 2, 64kDa, tau variant (CSTF2T), mRNA.
CTDP1	chr18:77439800-77514510	Homo sapiens CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1 (CTDP1), mRNA.
CTPS2	chrX:16606121-16730340	Homo sapiens CTP synthase 2 (CTPS2), mRNA.
CTR9	chr11:10772810-10801290	Homo sapiens Ctr9, Paf1/RNA polymerase II complex component, homolog (S.cerevisiae) (CTR9), mRNA.
CTSW	chr11:65647283-65651212	Homo sapiens cathepsin W (CTSW), mRNA.
CTU2	chr16:88772890-88781786	Homo sapiens cytosolic thiouridylase subunit 2 homolog (S.pombe) (CTU2), mRNA.
CUEDC1	chr17:55938603-55980750	Homo sapiens CUE domain containing 1 (CUEDC1), non-coding RNA.
CUZD1	chr10:124591670-124597611	Homo sapiens CUB and zona pellucida-like do- mains 1 (CUZD1), non-coding RNA.
CX3CR1	chr3:39304984-39321527	Homo sapiens chemokine (C-X3-C motif) receptor 1 (CX3CR1), mRNA.
CXCR3	chrX:70835765-70838367	Homo sapiens chemokine (C-X-C motif) receptor 3 (CXCR3), mRNA.
CXorf40B	chrX:149097722-149103202	Homo sapiens chromosome X open reading frame 40B (CXorf40B), mRNA.
CYFIP2	chr5:156693090-156822606	Homo sapiens cytoplasmic FMR1 interacting protein 2 (CYFIP2), mRNA.
CYGB	chr17:74523429-74533987	Homo sapiens cytoglobin (CYGB), mRNA.
CYP2E1	chr10:135340866-135352620	Homo sapiens cytochrome P450, family 2, sub- family E, polypeptide 1 (CYP2E1), mRNA.
CYP51A1	chr7:91741462-91763840	Homo sapiens cytochrome P450, family 51, sub- family A, polypeptide 1 (CYP51A1), mRNA.
D2HGDH	chr2:242674029-242695429	Homo sapiens D-2-hydroxyglutarate dehydro- genase (D2HGDH), nuclear gene encoding mi- tochondrial protein, mRNA.
DAB2IP	chr9:124329398-124547809	Homo sapiens DAB2 interacting protein (DAB2IP), mRNA.
DAND5	chr19:13075972-13085567	Homo sapiens DAN domain family member 5, BMP antagonist (DAND5), mRNA.
DBN1	chr5:176883613-176889390	Homo sapiens drebrin 1 (DBN1), mRNA.

Symbol	Position	Beschreibung
DBNDD1	chr16:90071278-90076529	Homo sapiens dysbindin (dystrobrevin binding protein 1) domain containing 1 (DBNDD1), mRNA.
DCLRE1B	chr1:114447914-114456694	Homo sapiens DNA cross-link repair 1B (DCL- RE1B), mRNA.
DCLRE1C	chr10:14940227-14996094	Homo sapiens DNA cross-link repair 1C (DCL- RE1C), mRNA.
DCP1B	chr12:2050756-2113677	Homo sapiens decapping mRNA 1B (DCP1B), mRNA.
DCUN1D3	chr16:20869395-20911561	Homo sapiens DCN1, defective in cullin neddyla- tion 1, domain containing 3 (S.cerevisiae) (DCUN1D3), mRNA.
DDO	chr6:110713382-110736753	Homo sapiens D-aspartate oxidase (DDO), mRNA.
DDX3X	chrX:41192650-41197822	Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked (DDX3X), mRNA.
DEAF1	chr11:644224-695740	Homo sapiens DEAF1 transcription factor (DEAF1), mRNA.
DEF6	chr6:35265594-35289548	Homo sapiens differentially expressed in FDCP 6 homolog (mouse) (DEF6), mRNA.
DEFA6	chr8:6782215-6783598	Homo sapiens defensin, alpha 6, Paneth cell- specific (DEFA6), mRNA.
DENND2D	chr1:111728590-111743325	Homo sapiens DENN/MADD domain containing 2D (DENND2D), mRNA.
DENND3	chr8:142138719-142152610	Homo sapiens DENN/MADD domain containing 3 (DENND3), mRNA.
DERL3	chr22:24176689-24181199	Homo sapiens derlin 3 (DERL3), mRNA.
DGKA	chr12:56324945-56334682	Homo sapiens diacylglycerol kinase, alpha 80kDa (DGKA), mRNA.
DHRS3	chr1:12640550-12656106	Homo sapiens dehydrogenase/reductase (SDR family) member 3 (DHRS3), mRNA.
DHX37	chr12:125431369-125473667	Homo sapiens DEAH (Asp-Glu-Ala-His) box polypeptide 37 (DHX37), mRNA.
DIABLO	chr12:122692208-122712068	Homo sapiens diablo, IAP-binding mitochondrial protein (DIABLO), non-coding RNA.
DLX2	chr2:172964165-172967478	Homo sapiens distal-less homeobox 2 (DLX2), mRNA.
DMPK	chr19:46272975-46274923	Homo sapiens dystrophia myotonica-protein kinase (DMPK), mRNA.
DMWD	chr19:46286263-46290129	Homo sapiens dystrophia myotonica, WD repeat containing (DMWD), mRNA.
DNAJC1	chr10:22045476-22292650	Homo sapiens DnaJ (Hsp40) homolog, subfamily C, member 1 (DNAJC1), mRNA.
DNTT	chr10:98064084-98098321	Homo sapiens DNA nucleotidylexotransferase (DNTT), mRNA.
DOCK10	chr2:225629806-225670219	Homo sapiens dedicator of cytokinesis 10 (DOCK10), mRNA.
DPEP1	chr16:89679715-89704839	Homo sapiens dipeptidase 1 (renal) (DPEP1), mRNA.
DPF3	chr14:73128567-73190813	Homo sapiens D4, zinc and double PHD fingers, family 3 (DPF3), mRNA.
DRD4	chr11:637304-640705	Homo sapiens dopamine receptor D4 (DRD4), mRNA.
DUSP1	chr5:172195092-172197634	Homo sapiens dual specificity phosphatase 1 (DUSP1), mRNA.

Symbol	Position	Beschreibung
DUSP5	chr10:112257624-112271302	Homo sapiens dual specificity phosphatase 5 (DUSP5), mRNA.
DUSP6	chr12:89741836-89746296	Homo sapiens dual specificity phosphatase 6 (DUSP6), mRNA.
DYNLT1	chr6:159057506-159065804	Homo sapiens dynein, light chain, Tctex-type 1 (DYNLT1), mRNA.
DYRK1B	chr19:40315989-40324841	Homo sapiens dual-specificity tyrosine-(Y)- phosphorylation regulated kinase 1B (DYRK1B), mRNA.
E2F2	chr1:23832919-23857712	Homo sapiens E2F transcription factor 2 (E2F2), mRNA.
EEF1D	chr8:144661866-144672251	Homo sapiens eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein) (EEF1D), mRNA.
EFEMP2	chr11:65633911-65640405	Homo sapiens EGF containing fibulin-like extracellular matrix protein 2 (EFEMP2), non-coding RNA.
EFHD2	chr1:15736390-15756839	Homo sapiens EF-hand domain family, member D2 (EFHD2), mRNA.
EFNA4	chr1:155036212-155042029	Homo sapiens ephrin-A4 (EFNA4), mRNA.
EHBP1L1	chr11:65343508-65360116	Homo sapiens EH domain binding protein 1-like 1 (EHBP1L1), mRNA.
EHD4	chr15:42191638-42264755	Homo sapiens EH-domain containing 4 (EHD4), mRNA.
EIF2B2	chr14:75469611-75476294	Homo sapiens eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa (EIF2B2), mRNA.
EIF4G3	chr1:21132784-21299592	Homo sapiens eukaryotic translation initiation factor 4 gamma, 3 (EIF4G3), mRNA.
ELF2	chr4:139978870-139983374	Homo sapiens E74-like factor 2 (ets domain transcription factor) (ELF2), mRNA.
ELK3	chr12:96588206-96661606	Homo sapiens ELK3, ETS-domain protein (SRF accessory protein 2) (ELK3), mRNA.
ELL3	chr15:44064797-44068605	Homo sapiens elongation factor RNA polymera- se II-like 3 (ELL3), mRNA.
EMID1	chr22:29601900-29655586	Homo sapiens EMI domain containing 1 (EMID1), mRNA.
EMP3	chr19:48828628-48833810	Homo sapiens epithelial membrane protein 3 (EMP3), mRNA.
EMR2	chr19:14843508-14876382	Homo sapiens egf-like module containing, mu- cin-like, hormone receptor-like 2 (EMR2), mRNA.
ENG	chr9:130577290-130579336	Homo sapiens endoglin (ENG), mRNA.
ENTPD4	chr8:23243441-23315244	Homo sapiens ectonucleoside triphosphate diphosphohydrolase 4 (ENTPD4), mRNA.
ENTPD8	chr9:140328815-140335901	Homo sapiens ectonucleoside triphosphate diphosphohydrolase 8 (ENTPD8), mRNA.
EPHA2	chr1:16450831-16482582	Homo sapiens EPH receptor A2 (EPHA2), mRNA.
EPOR	chr19:11487880-11495018	Homo sapiens erythropoietin receptor (EPOR), non-coding RNA.
ERAP1	chr5:96096513-96143892	Homo sapiens endoplasmic reticulum aminopep- tidase 1 (ERAP1), mRNA.
ERG	chr21:39739182-40033704	Homo sapiens v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG), mRNA.

Symbol	Position	Beschreibung
ERMP1	chr9:5784571-5831028	Homo sapiens endoplasmic reticulum me- tallopeptidase 1 (ERMP1), mRNA.
ERO1LB	chr1:236378421-236445339	Homo sapiens ERO1-like beta (S.cerevisiae) (ERO1LB), mRNA.
ETFB	chr19:51848408-51858096	Homo sapiens electron-transfer-flavoprotein, beta polypeptide (ETFB), mRNA.
EVL	chr14:100485718-100606454	Homo sapiens Enah/Vasp-like (EVL), mRNA.
EVPLL	chr17:18281078-18292960	Homo sapiens envoplakin-like (EVPLL), mRNA.
EXOSC4	chr8:145133521-145135551	Homo sapiens exosome component 4 (EXOSC4), mRNA.
F2RL3	chr19:16999825-17002830	Homo sapiens coagulation factor II (thrombin) receptor-like 3 (F2RL3), mRNA.
FAF2	chr5:175875355-175937075	Homo sapiens Fas associated factor family member 2 (FAF2), mRNA.
FAM129C	chr19:17634109-17662835	Homo sapiens family with sequence similarity 129, member C (FAM129C), mRNA.
FAM151B	chr5:79783799-79838382	Homo sapiens family with sequence similarity 151, member B (FAM151B), mRNA.
FAM204A	chr10:120068571-120101839	Homo sapiens family with sequence similarity 204, member A (FAM204A), mRNA.
FAM24B-CUZD1	chr10:124591670-124605736	Homo sapiens FAM24B-CUZD1 readthrough (FAM24B-CUZD1), non-coding RNA.
FAM69B	chr9:139607023-139619170	Homo sapiens family with sequence similarity 69, member B (FAM69B), mRNA.
FAM76B	chr11:95502105-95522954	Homo sapiens family with sequence similarity 76, member B (FAM76B), mRNA.
FAM89B	chr11:65339819-65341669	Homo sapiens family with sequence similarity 89, member B (FAM89B), mRNA.
FAM8A1	chr6:17600517-17611950	Homo sapiens family with sequence similarity 8, member A1 (FAM8A1), mRNA.
FBXO24	chr7:100183955-100190640	Homo sapiens F-box protein 24 (FBXO24), mRNA.
FCGBP	chr19:40353962-40440533	Homo sapiens Fc fragment of IgG binding pro- tein (FCGBP), mRNA.
FCHO1	chr19:17858526-17899377	Homo sapiens FCH domain only 1 (FCHO1), mRNA.
FCHSD2	chr11:72553998-72851173	Homo sapiens FCH and double SH3 domains 2 (FCHSD2), mRNA.
FGFR1	chr8:38268655-38275891	Homo sapiens fibroblast growth factor receptor 1 (FGFR1), mRNA.
FGR	chr1:27938800-27942174	Homo sapiens Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR), mRNA.
FHAD1	chr1:15573767-15672019	Homo sapiens forkhead-associated (FHA) phos- phopeptide binding domain 1 (FHAD1), mRNA.
FKBP1B	chr2:24272583-24286550	Homo sapiens FK506 binding protein 1B, 12.6 kDa (FKBP1B), mRNA.
FKBP5	chr6:35541361-35656692	Homo sapiens FK506 binding protein 5 (FKBP5), mRNA.
FLT3	chr13:28577410-28674729	Homo sapiens fms-related tyrosine kinase 3 (FLT3), mRNA.
FLT3LG	chr19:49977465-49989488	Homo sapiens fms-related tyrosine kinase 3 ligand (FLT3LG), mRNA.
FOS	chr14:75745480-75748937	Homo sapiens FBJ murine osteosarcoma viral oncogene homolog (FOS), mRNA.

Symbol	Position	Beschreibung
FOXN1	chr17:26833277-26865175	Homo sapiens forkhead box N1 (FOXN1), mRNA.
FPGS	chr9:130556875-130566692	Homo sapiens folylpolyglutamate synthase (FPGS), nuclear gene encoding mitochondrial protein, mRNA.
FRMD1	chr6:168456463-168466658	Homo sapiens FERM domain containing 1 (FRMD1), mRNA.
FSCN1	chr7:5632435-5646287	Homo sapiens fascin homolog 1, actin-bundling protein (Strongylocentrotus purpuratus) (FSCN1), mRNA.
FTSJ2	chr7:2273925-2281833	Homo sapiens FtsJ RNA methyltransferase ho- molog 2 (E.coli) (FTSJ2), mRNA.
FUS	chr16:31191430-31194671	Homo sapiens fused in sarcoma (FUS), non-coding RNA.
FUT7	chr9:139924625-139927292	Homo sapiens fucosyltransferase 7 (alpha (1, 3) fucosyltransferase) (FUT7), mRNA.
FXN	chr9:71650478-71693993	Homo sapiens frataxin (FXN), nuclear gene en- coding mitochondrial protein, mRNA.
FZR1	chr19:3506294-3536755	Homo sapiens fizzy/cell division cycle 20 related 1 (Drosophila) (FZR1), mRNA.
G3BP1	chr5:151151475-151171311	Homo sapiens GTPase activating protein (SH3 domain) binding protein 1 (G3BP1), mRNA.
GAB2	chr11:77926335-78052926	Homo sapiens GRB2-associated binding protein 2 (GAB2), mRNA.
GABPB1	chr15:50569388-50647605	Homo sapiens GA binding protein transcription factor, beta subunit 1 (GABPB1), mRNA.
GADL1	chr3:30767691-30936153	Homo sapiens glutamate decarboxylase-like 1 (GADL1), mRNA.
GALNT14	chr2:31133330-31352506	Homo sapiens UDP-N-acetyl-alpha-D- galactosamine:polypeptide N- acetylgalactosaminyltransferase 14 (GalNAc- T14) (GALNT14), mRNA.
GALNT7	chr4:174089903-174245118	Homo sapiens UDP-N-acetyl-alpha-D- galactosamine:polypeptide N- acetylgalactosaminyltransferase 7 (GalNAc-T7) (GALNT7), mRNA.
GFI1	chr1:92940317-92949356	Homo sapiens growth factor independent 1 transcription repressor (GFI1), mRNA.
GGA1	chr22:38004480-38014127	Homo sapiens golgi-associated, gamma adaptin ear containing, ARF binding protein 1 (GGA1), mRNA.
GHRL	chr3:10327433-10331559	Homo sapiens ghrelin/obestatin prepropeptide (GHRL), mRNA.
GLB1L	chr2:220101502-220105007	Homo sapiens galactosidase, beta 1-like (GLB1L), mRNA.
GLRX5	chr14:96001322-96011055	Homo sapiens glutaredoxin 5 (GLRX5), nuclear gene encoding mitochondrial protein, mRNA.
GMEB2	chr20:62218954-62236256	Homo sapiens glucocorticoid modulatory ele- ment binding protein 2 (GMEB2), mRNA.
GMFG	chr19:39818998-39826726	Homo sapiens glia maturation factor, gamma (GMFG), mRNA.
GNA15	chr19:3136190-3150538	Homo sapiens guanine nucleotide binding pro- tein (G protein), alpha 15 (Gq class) (GNA15), mRNA.

Symbol	Position	Beschreibung
GNAI2	chr3:50263723-50296786	Homo sapiens guanine nucleotide binding pro- tein (G protein), alpha inhibiting activity polypep- tide 2 (GNAI2), mRNA.
GNB1	chr1:1716724-1822526	Homo sapiens guanine nucleotide binding pro- tein (G protein), beta polypeptide 1 (GNB1), mRNA.
GNG12	chr1:68167148-68299155	Homo sapiens guanine nucleotide binding pro- tein (G protein), gamma 12 (GNG12), mRNA.
GNG2	chr14:52327021-52434014	Homo sapiens guanine nucleotide binding pro- tein (G protein), gamma 2 (GNG2), mRNA.
GNG7	chr19:2511217-2702746	Homo sapiens guanine nucleotide binding pro- tein (G protein), gamma 7 (GNG7), mRNA.
GNPDA1	chr5:141380233-141392359	Homo sapiens glucosamine-6-phosphate de- aminase 1 (GNPDA1), mRNA.
GORASP1	chr3:39138090-39148827	Homo sapiens golgi reassembly stacking protein 1, 65kDa (GORASP1), mRNA.
GP1BA	chr17:4835591-4838325	Homo sapiens glycoprotein lb (platelet), alpha polypeptide (GP1BA), mRNA.
GPAA1	chr8:145137523-145139778	Homo sapiens glycosylphosphatidylinositol an- chor attachment 1 (GPAA1), mRNA.
GPR114	chr16:57576566-57611100	Homo sapiens G protein-coupled receptor 114 (GPR114), mRNA.
GPR132	chr14:105515736-105522503	Homo sapiens G protein-coupled receptor 132 (GPR132), mRNA.
GPR143	chrX:9693452-9734005	Homo sapiens G protein-coupled receptor 143 (GPR143), mRNA.
GPR17	chr2:128403438-128410213	Homo sapiens G protein-coupled receptor 17 (GPR17), mRNA.
GPR18	chr13:99906966-99910840	Homo sapiens G protein-coupled receptor 18 (GPR18), mRNA.
GPR68	chr14:91700296-91701394	Homo sapiens G protein-coupled receptor 68 (GPR68), mRNA.
GPT2	chr16:46918307-46965201	Homo sapiens glutamic pyruvate transaminase (alanine aminotransferase) 2 (GPT2), mRNA.
GRHL3	chr1:24645811-24681808	Homo sapiens grainyhead-like 3 (Drosophila) (GRHL3), mRNA.
GSK3A	chr19:42734337-42746045	Homo sapiens glycogen synthase kinase 3 alpha (GSK3A), mRNA.
GSK3B	chr3:119540801-119582452	Homo sapiens glycogen synthase kinase 3 beta (GSK3B), mRNA.
GTF2A2	chr15:59930260-59949737	Homo sapiens general transcription factor IIA, 2, 12kDa (GTF2A2), mRNA.
GTPBP2	chr6:43588217-43595090	Homo sapiens GTP binding protein 2 (GTPBP2), mRNA.
GTSE1	chr22:46692637-46726707	Homo sapiens G-2 and S-phase expressed 1 (GTSE1), mRNA.
H6PD	chr1:9294862-9331394	Homo sapiens hexose-6-phosphate dehydro- genase (glucose 1-dehydrogenase) (H6PD), mRNA.
HCRT	chr17:40336077-40337470	Homo sapiens hypocretin (orexin) neuropeptide precursor (HCRT), mRNA.
HECTD1	chr14:31569323-31592876	Homo sapiens HECT domain containing E3 ubiquitin protein ligase 1 (HECTD1), mRNA.
HELQ	chr4:84374304-84376944	Homo sapiens helicase, POLQ-like (HELQ), mRNA.

Symbol	Position	Beschreibung
HENMT1	chr1:109190909-109203744	Homo sapiens HEN1 methyltransferase homolog 1 (Arabidopsis) (HENMT1), mRNA.
HHEX	chr10:94449680-94455408	Homo sapiens hematopoietically expressed homeobox (HHEX), mRNA.
HIF1AN	chr10:102295640-102313681	Homo sapiens hypoxia inducible factor 1, alpha subunit inhibitor (HIF1AN), mRNA.
HIVEP2	chr6:143072603-143266338	Homo sapiens human immunodeficiency virus type I enhancer binding protein 2 (HIVEP2), mRNA.
HMHA1	chr19:1065921-1086627	Homo sapiens histocompatibility (minor) HA-1 (HMHA1), mRNA.
HMHB1	chr5:143191725-143200284	Homo sapiens histocompatibility (minor) HB-1 (HMHB1), mRNA.
HNRNPA0	chr5:137087072-137090039	Homo sapiens heterogeneous nuclear ribonu- cleoprotein A0 (HNRNPA0), mRNA.
HNRNPA2B1	chr7:26229555-26240413	Homo sapiens heterogeneous nuclear ribonu- cleoprotein A2/B1 (HNRNPA2B1), mRNA.
HNRNPF	chr10:43881064-43892279	Homo sapiens heterogeneous nuclear ribonu- cleoprotein F (HNRNPF), mRNA.
HOXC12	chr12:54348713-54350350	Homo sapiens homeobox C12 (HOXC12), mRNA.
HPS4	chr22:26846848-26868384	Homo sapiens Hermansky-Pudlak syndrome 4 (HPS4), non-coding RNA.
HPSE	chr4:84213613-84255966	Homo sapiens heparanase (HPSE), mRNA.
HRH2	chr5:175085039-175113245	Homo sapiens histamine receptor H2 (HRH2), mRNA.
HS3ST3B1	chr17:14204505-14249492	Homo sapiens heparan sulfate (glucosamine) 3- O-sulfotransferase 3B1 (HS3ST3B1), mRNA.
HSD11B1L	chr19:5680775-5685596	Homo sapiens hydroxysteroid (11-beta) dehyd- rogenase 1-like (HSD11B1L), mRNA.
HSPA8	chr11:122928199-122931094	Homo sapiens heat shock 70kDa protein 8 (HSPA8), mRNA.
HYLS1	chr11:125769263-125770163	Homo sapiens hydrolethalus syndrome 1 (HYLS1), mRNA.
ICAM1	chr19:10381516-10397291	Homo sapiens intercellular adhesion molecule 1 (ICAM1), mRNA.
ICAM2	chr17:62079954-62084283	Homo sapiens intercellular adhesion molecule 2 (ICAM2), mRNA.
ICOSLG	chr21:45646721-45660834	Homo sapiens inducible T-cell co-stimulator lig- and (ICOSLG), mRNA.
IFITM3	chr11:319672-320914	Homo sapiens interferon induced transmembra- ne protein 3 (IFITM3), mRNA.
IGF2BP1	chr17:47074773-47133507	Homo sapiens insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1), mRNA.
IGF2BP3	chr7:23349827-23387353	Homo sapiens insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), mRNA.
IGFBP7	chr4:57897236-57976551	Homo sapiens insulin-like growth factor binding protein 7 (IGFBP7), mRNA.
IGLL1	chr22:23915312-23922495	Homo sapiens immunoglobulin lambda-like po- lypeptide 1 (IGLL1), mRNA.
IL17C	chr16:88705000-88706882	Homo sapiens interleukin 17C (IL17C), mRNA.
IL21R	chr16:27413482-27463363	Homo sapiens interleukin 21 receptor (IL21R), mRNA.
IL2RA	chr10:6052656-6104333	Homo sapiens interleukin 2 receptor, alpha (IL2RA), mRNA.

Symbol	Position	Beschreibung
IL6R	chr1:154377668-154410561	Homo sapiens interleukin 6 receptor (IL6R), mRNA.
IMP3	chr15:75931425-75932664	Homo sapiens IMP3, U3 small nucleolar ribonu- cleoprotein, homolog (yeast) (IMP3), mRNA.
INSC	chr11:15133969-15268756	Homo sapiens inscuteable homolog (Drosophila) (INSC), mRNA.
INTS1	chr7:1509912-1544018	Homo sapiens integrator complex subunit 1 (INTS1), mRNA.
IPO4	chr14:24649424-24653969	Homo sapiens importin 4 (IPO4), mRNA.
IQGAP2	chr5:75699148-76003957	Homo sapiens IQ motif containing GTPase activating protein 2 (IQGAP2), mRNA.
IRGM	chr5:150226084-150228231	Homo sapiens immunity-related GTPase family, <i>M</i> (IRGM), <i>m</i> RNA.
ITGA4	chr2:182321618-182351128	Homo sapiens integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) (ITGA4), mRNA.
ITGAL	chr16:30483982-30495584	Homo sapiens integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide) (ITGAL), mRNA.
ITGB2	chr21:46305867-46330741	Homo sapiens integrin, beta 2 (complement component 3 receptor 3 and 4 subunit) (ITGB2), mRNA.
ITPRIPL1	chr2:96991061-96994091	Homo sapiens inositol 1, 4, 5-trisphosphate re- ceptor interacting protein-like 1 (ITPRIPL1), mRNA.
IVD	chr15:40697685-40713512	Homo sapiens isovaleryl-CoA dehydrogenase (IVD), nuclear gene encoding mitochondrial pro- tein, mRNA.
IZUMO4	chr19:2096867-2099583	Homo sapiens IZUMO family member 4 (IZU- MO4), mRNA.
JAG2	chr14:105607317-105617740	Homo sapiens jagged 2 (JAG2), mRNA.
JMJD6	chr17:74708913-74722881	Homo sapiens jumonji domain containing 6 (JMJD6), mRNA.
JUND	chr19:18390562-18392432	Homo sapiens jun D proto-oncogene (JUND), mRNA.
KANK2	chr19:11274942-11305266	Homo sapiens KN motif and ankyrin repeat do- mains 2 (KANK2), mRNA.
KAT6B	chr10:76586170-76792380	Homo sapiens K(lysine) acetyltransferase 6B (KAT6B), mRNA.
KAT7	chr17:47865980-47906458	Homo sapiens K(lysine) acetyltransferase 7 (KAT7), mRNA.
KAZALD1	chr10:102820998-102825351	Homo sapiens Kazal-type serine peptidase inhi- bitor domain 1 (KAZALD1), mRNA.
KCNA2	chr1:111145904-111147404	Homo sapiens potassium voltage-gated channel, shaker-related subfamily, member 2 (KCNA2), mRNA.
KCNAB2	chr1:6086072-6158621	Homo sapiens potassium voltage-gated channel, shaker-related subfamily, beta member 2 (KCNAB2), mRNA.
KCNH2	chr7:150642043-150652917	Homo sapiens potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2), mRNA.
KCNH4	chr17:40308909-40333296	Homo sapiens potassium voltage-gated channel, subfamily H (eag-related), member 4 (KCNH4), mRNA.

Symbol	Position	Beschreibung
KCNK17	chr6:39266776-39282237	Homo sapiens potassium channel, subfamily K, member 17 (KCNK17), mRNA.
KCNN1	chr19:18062110-18109930	Homo sapiens potassium intermediate/small conductance calcium-activated channel, subfa- mily N, member 1 (KCNN1), mRNA.
KCTD2	chr17:73028694-73045423	Homo sapiens potassium channel tetramerisati- on domain containing 2 (KCTD2), mRNA.
КДМЗА	chr2:86668270-86719839	Homo sapiens lysine (K)-specific demethylase 3A (KDM3A), mRNA.
KHNYN	chr14:24898491-24910547	Homo sapiens KH and NYN domain containing (KHNYN), mRNA.
KIAA0226L	chr13:46916136-46925160	Homo sapiens KIAA0226-like (KIAA0226L), mRNA.
KIAA1257	chr3:128628708-128712919	Homo sapiens KIAA1257 (KIAA1257), mRNA.
KLC1	chr14:104095524-104151653	Homo sapiens kinesin light chain 1 (KLC1), mRNA.
KLF11	chr2:10183681-10194963	Homo sapiens Kruppel-like factor 11 (KLF11), mRNA.
KLF7	chr2:207938861-207998861	Homo sapiens Kruppel-like factor 7 (ubiquitous) (KLF7), mRNA.
KLHDC7A	chr1:18807423-18812480	Homo sapiens kelch domain containing 7A (KLHDC7A), mRNA.
KLHL23	chr2:170590355-170608396	Homo sapiens kelch-like family member 23 (KLHL23), mRNA.
KLRC4-KLRK1	chr12:10524951-10560388	Homo sapiens KLRC4-KLRK1 readthrough (KLRC4-KLRK1), mRNA.
KLRK1	chr12:10524951-10542653	Homo sapiens killer cell lectin-like receptor sub- family K, member 1 (KLRK1), mRNA.
KPTN	chr19:47978399-47987521	Homo sapiens kaptin (actin binding protein) (KPTN), mRNA.
KRI1	chr19:10663760-10671124	Homo sapiens KRI1 homolog (S.cerevisiae) (KRI1), mRNA.
KRTAP16-1	chr17:39463951-39465505	Homo sapiens keratin associated protein 16-1 (KRTAP16-1), mRNA.
KRTAP29-1	chr17:39458077-39459103	Homo sapiens keratin associated protein 29-1 (KRTAP29-1), mRNA.
KRTAP5-3	chr11:1628794-1629693	Homo sapiens keratin associated protein 5-3 (KRTAP5-3), mRNA.
KRTAP5-7	chr11:71238312-71239210	Homo sapiens keratin associated protein 5-7 (KRTAP5-7), mRNA.
KRTAP5-9	chr11:71259465-71260653	Homo sapiens keratin associated protein 5-9 (KRTAP5-9), mRNA.
LAIR1	chr19:54865234-54876721	Homo sapiens leukocyte-associated immunoglo- bulin-like receptor 1 (LAIR1), mRNA.
LAIR2	chr19:55009099-55019399	Homo sapiens leukocyte-associated immunoglo- bulin-like receptor 2 (LAIR2), mRNA.
LAPTM5	chr1:31205314-31230683	Homo sapiens lysosomal protein transmembrane 5 (LAPTM5), mRNA.
LARGE	chr22:33669061-33968248	Homo sapiens like-glycosyltransferase (LARGE), mRNA.
LAX1	chr1:203734283-203745480	Homo sapiens lymphocyte transmembrane adaptor 1 (LAX1), mRNA.
LCN10	chr9:139632618-139637414	Homo sapiens lipocalin 10 (LCN10), mRNA.
LCN15	chr9:139654085-139658965	Homo sapiens lipocalin 15 (LCN15), mRNA.
LCN6	chr9:139638468-139640474	Homo sapiens lipocalin 6 (LCN6), mRNA.

Symbol	Position	Beschreibung
LCN8	chr9:139648839-139650253	Homo sapiens lipocalin 8 (LCN8), mRNA.
LEF1	chr4:108991818-109000770	Homo sapiens lymphoid enhancer-binding factor 1 (LEF1), mRNA.
LENG9	chr19:54972978-54974894	Homo sapiens leukocyte receptor cluster (LRC) member 9 (LENG9), mRNA.
LEPROTL1	chr8:29952921-29965587	Homo sapiens leptin receptor overlapping transcript-like 1 (LEPROTL1), mRNA.
LFNG	chr7:2552162-2568063	Homo sapiens LFNG O-fucosylpeptide 3-beta-N- acetylglucosaminyltransferase (LFNG), mRNA.
LGALS13	chr19:40093168-40098114	Homo sapiens lectin, galactoside-binding, solub- le, 13 (LGALS13), mRNA.
LGALS2	chr22:37966252-37976024	Homo sapiens lectin, galactoside-binding, solub- le, 2 (LGALS2), mRNA.
LGR5	chr12:71833549-71980086	Homo sapiens leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), mRNA.
LHX6	chr9:124964855-124984019	Homo sapiens LIM homeobox 6 (LHX6), mRNA.
LILRA1	chr19:55105040-55113687	Homo sapiens leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 1 (LILRA1), mRNA.
LILRA2	chr19:55084481-55099027	Homo sapiens leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2 (LILRA2), mRNA.
LILRB2	chr19:54777674-54784399	Homo sapiens leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM do- mains), member 2 (LILRB2), mRNA.
LIMD2	chr17:61773248-61777519	Homo sapiens LIM domain containing 2 (LIMD2), mRNA.
LIME1	chr20:62367052-62370460	Homo sapiens Lck interacting transmembrane adaptor 1 (LIME1), mRNA.
LIPT1	chr2:99778420-99779542	Homo sapiens lipoyltransferase 1 (LIPT1), nu- clear gene encoding mitochondrial protein, mRNA.
LMAN2	chr5:176758562-176778885	Homo sapiens lectin, mannose-binding 2 (LMAN2), mRNA.
LMBR1	chr7:156473569-156589186	Homo sapiens limb region 1 homolog (mouse) (LMBR1), mRNA.
LMNA	chr1:156104903-156107058	Homo sapiens lamin A/C (LMNA), non-coding RNA.
LMO2	chr11:33880122-33886697	Homo sapiens LIM domain only 2 (rhombotin-like 1) (LMO2), mRNA.
LNPEP	chr5:96271345-96365115	Homo sapiens leucyl/cystinyl aminopeptidase (LNPEP), mRNA.
LOC653513	chr1:144676436-144995033	Homo sapiens phosphodiesterase 4D interacting protein pseudogene (LOC653513), non-coding RNA.
LPXN	chr11:58294343-58343390	Homo sapiens leupaxin (LPXN), mRNA.
LRCH4	chr7:100171633-100180082	Homo sapiens leucine-rich repeats and calponin homology (CH) domain containing 4 (LRCH4), mRNA.
LRP5L	chr22:25747384-25758524	Homo sapiens low density lipoprotein receptor- related protein 5-like (LRP5L), mRNA.
LRRC14	chr8:145743348-145750559	Homo sapiens leucine rich repeat containing 14 (LRRC14), mRNA.
LRRC29	chr16:67241041-67244988	Homo sapiens leucine rich repeat containing 29 (LRRC29), mRNA.

Symbol	Position	Beschreibung
LRRC32	chr11:76368567-76381044	Homo sapiens leucine rich repeat containing 32 (LRRC32), mRNA.
LSM3	chr3:14220227-14239869	Homo sapiens LSM3 homolog, U6 small nuclear RNA associated (S.cerevisiae) (LSM3), mRNA.
LSM7	chr19:2321519-2328614	Homo sapiens LSM7 homolog, U6 small nuclear RNA associated (S.cerevisiae) (LSM7), mRNA.
LSP1	chr11:1874199-1913493	Homo sapiens lymphocyte-specific protein 1 (LSP1), mRNA.
LTB4R	chr14:24784857-24785916	Homo sapiens leukotriene B4 receptor (LTB4R), mRNA.
LTBP2	chr14:74964885-75079034	Homo sapiens latent transforming growth factor beta binding protein 2 (LTBP2), mRNA.
LTC4S	chr5:179220985-179223513	Homo sapiens leukotriene C4 synthase (LTC4S), mRNA.
LTK	chr15:41795839-41806085	Homo sapiens leukocyte receptor tyrosine kina- se (LTK), mRNA.
LY9	chr1:160765863-160772536	Homo sapiens lymphocyte antigen 9 (LY9), mRNA.
LYL1	chr19:13209841-13213974	Homo sapiens lymphoblastic leukemia derived sequence 1 (LYL1), mRNA.
LYRM5	chr12:25348149-25357949	Homo sapiens LYR motif containing 5 (LYRM5), mRNA.
MAD2L1BP	chr6:43597278-43608688	Homo sapiens MAD2L1 binding protein (MAD2L1BP), mRNA.
MAFF	chr22:38597938-38612517	Homo sapiens v-maf musculoaponeurotic fibro- sarcoma oncogene homolog F (avian) (MAFF), mRNA.
MAGEF1	chr3:184428154-184429836	Homo sapiens melanoma antigen family F, 1 (MAGEF1), mRNA.
MALAT1	chr11:65265232-65273939	Homo sapiens metastasis associated lung a- denocarcinoma transcript 1 (non-protein coding) (MALAT1), non-coding RNA.
MALT1	chr18:56338617-56417370	Homo sapiens mucosa associated lymphoid tissue lymphoma translocation gene 1 (MALT1), mRNA.
MAML3	chr4:140637545-141075233	Homo sapiens mastermind-like 3 (Drosophila) (MAML3), mRNA.
MAP1LC3B2	chr12:116997185-117014425	Homo sapiens microtubule-associated protein 1 light chain 3 beta 2 (MAP1LC3B2), mRNA.
MAPK7	chr17:19281033-19286857	Homo sapiens mitogen-activated protein kinase 7 (MAPK7), mRNA.
MB21D1	chr6:74134855-74162043	Homo sapiens Mab-21 domain containing 1 (MB21D1), mRNA.
MBP	chr18:74690788-74699912	Homo sapiens myelin basic protein (MBP), mRNA.
MC1R	chr16:89984286-89987385	Homo sapiens melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) (MC1R), mRNA.
MCFD2	chr2:47129008-47143007	Homo sapiens multiple coagulation factor defi- ciency 2 (MCFD2), mRNA.
MCM8	chr20:5931297-5975831	Homo sapiens minichromosome maintenance complex component 8 (MCM8), mRNA.
MDM2	chr12:69201970-69239320	Homo sapiens MDM2 oncogene, E3 ubiquitin protein ligase (MDM2), mRNA.

Symbol	Position	Beschreibung
MDM4	chr1:204485506-204518786	Homo sapiens Mdm4 p53 binding protein homo- log (mouse) (MDM4), mRNA.
MEF2C	chr5:88014057-88119744	Homo sapiens myocyte enhancer factor 2C (MEF2C), mRNA.
MEF2D	chr1:156433512-156460391	Homo sapiens myocyte enhancer factor 2D (MEF2D), mRNA.
MEGF6	chr1:3404505-3448012	Homo sapiens multiple EGF-like-domains 6 (MEGF6), mRNA.
MEIG1	chr10:15001437-15014850	Homo sapiens meiosis expressed gene 1 homo- log (mouse) (MEIG1), mRNA.
MEN1	chr11:64570985-64578035	Homo sapiens multiple endocrine neoplasia I (MEN1), mRNA.
MFF	chr2:228189866-228222552	Homo sapiens mitochondrial fission factor (MFF), nuclear gene encoding mitochondrial protein, mRNA.
MFSD10	chr4:2932287-2935390	Homo sapiens major facilitator superfamily do- main containing 10 (MFSD10), mRNA.
MFSD3	chr8:145734551-145736589	Homo sapiens major facilitator superfamily do- main containing 3 (MFSD3), mRNA.
MGAT1	chr5:180217540-180230048	Homo sapiens mannosyl (alpha-1, 3-)- glycoprotein beta-1, 2-N- acetylglucosaminyltransferase (MGAT1), mRNA.
MGAT3	chr22:39853324-39888199	Homo sapiens mannosyl (beta-1, 4-)- glycoprotein beta-1, 4-N- acetylglucosaminyltransferase (MGAT3), mRNA.
MICAL1	chr6:109765265-109775653	Homo sapiens microtubule associated mo- nooxygenase, calponin and LIM domain contai- ning 1 (MICAL1), mRNA.
MIR1238	chr19:10662797-10662880	Homo sapiens microRNA 1238 (MIR1238), microRNA.
MIR1307	chr10:105154009-105154158	Homo sapiens microRNA 1307 (MIR1307), microRNA.
MIR142	chr17:56408592-56408679	Homo sapiens microRNA 142 (MIR142), microRNA.
MIR150	chr19:50004041-50004125	Homo sapiens microRNA 150 (MIR150), microRNA.
MIR155	chr21:26946291-26946356	Homo sapiens microRNA 155 (MIR155), microRNA.
MIR1976	chr1:26881032-26881084	Homo sapiens microRNA 1976 (MIR1976), microRNA.
MIR200C	chr12:7072861-7072929	Homo sapiens microRNA 200c (MIR200C), microRNA.
MIR22	chr17:1617196-1617281	Homo sapiens microRNA 22 (MIR22), microRNA.
MIR223	chrX:65238711-65238821	Homo sapiens microRNA 223 (MIR223), microRNA.
MIR320E	chr19:47212549-47212602	Homo sapiens microRNA 320e (MIR320E), microRNA.
MIR326	chr11:75046135-75046230	Homo sapiens microRNA 326 (MIR326), microRNA.
MIR550A1	chr7:30329409-30329506	Homo sapiens microRNA 550a-1 (MIR550A1), microRNA.
MIR589	chr7:5535449-5535548	Homo sapiens microRNA 589 (MIR589), microRNA.
MIR595	chr7:158325409-158325505	Homo sapiens microRNA 595 (MIR595), microRNA.
MIR634	chr17:64783189-64783286	Homo sapiens microRNA 634 (MIR634), microRNA.

Symbol	Position	Beschreibung
MIR661	chr8:145019358-145019447	Homo sapiens microRNA 661 (MIR661), microRNA.
MKKS	chr20:10385427-10412573	Homo sapiens McKusick-Kaufman syndrome (MKKS), mRNA.
MMP9	chr20:44637546-44645200	Homo sapiens matrix metallopeptidase 9 (gela- tinase B, 92kDa gelatinase, 92kDa type IV colla- genase) (MMP9), mRNA.
MPG	chr16:128168-133681	Homo sapiens N-methylpurine-DNA glycosylase (MPG), mRNA.
MRGPRD	chr11:68747489-68748455	Homo sapiens MAS-related GPR, member D (MRGPRD), mRNA.
MRGPRG	chr11:3239173-3240043	Homo sapiens MAS-related GPR, member G (MRGPRG), mRNA.
MRPS18C	chr4:84377117-84382929	Homo sapiens mitochondrial ribosomal protein S18C (MRPS18C), nuclear gene encoding mito- chondrial protein, mRNA.
MRPS23	chr17:55916286-55927433	Homo sapiens mitochondrial ribosomal protein S23 (MRPS23), nuclear gene encoding mito- chondrial protein, mRNA.
MSGN1	chr2:17997785-17998367	Homo sapiens mesogenin 1 (MSGN1), mRNA.
MSL2	chr3:135867759-135913310	Homo sapiens male-specific lethal 2 homolog (Drosophila) (MSL2), mRNA.
MTMR1	chrX:149861434-149933397	Homo sapiens myotubularin related protein 1 (MTMR1), mRNA.
MTMR12	chr5:32227110-32313114	Homo sapiens myotubularin related protein 12 (MTMR12), mRNA.
MTMR4	chr17:56566892-56595251	Homo sapiens myotubularin related protein 4 (MTMR4), mRNA.
MTO1	chr6:74171453-74211179	Homo sapiens mitochondrial tRNA translation optimization 1 (MTO1), nuclear gene encoding mitochondrial protein, mRNA.
MTTP	chr4:100495965-100505343	Homo sapiens microsomal triglyceride transfer protein (MTTP), mRNA.
MX1	chr21:42792519-42831141	Homo sapiens myxovirus (influenza virus) re- sistance 1, interferon-inducible protein p78 (mouse) (MX1), mRNA.
MX2	chr21:42733949-42739233	Homo sapiens myxovirus (influenza virus) re- sistance 2 (mouse) (MX2), mRNA.
MXD3	chr5:176732500-176735063	Homo sapiens MAX dimerization protein 3 (MXD3), mRNA.
MXRA8	chr1:1288070-1293915	Homo sapiens matrix-remodelling associated 8 (MXRA8), mRNA.
MYBPC2	chr19:50936159-50969583	Homo sapiens myosin binding protein C, fast type (MYBPC2), mRNA.
MYBPC3	chr11:47357128-47364696	Homo sapiens myosin binding protein C, cardiac (MYBPC3), mRNA.
MYCBP2	chr13:77618791-77667467	Homo sapiens MYC binding protein 2, E3 ubiquitin protein ligase (MYCBP2), mRNA.
MYL12A	chr18:3247527-3256234	Homo sapiens myosin, light chain 12A, regulato- ry, non-sarcomeric (MYL12A), mRNA.
MYL12B	chr18:3262110-3278282	Homo sapiens myosin, light chain 12B, regulato- ry (MYL12B), mRNA.
MYL4	chr17:45286427-45301045	Homo sapiens myosin, light chain 4, alkali; atrial, embryonic (MYL4), mRNA.
MYO18B	chr22:26138119-26427007	Homo sapiens myosin XVIIIB (MYO18B), mRNA.

Symbol	Position	Beschreibung
MZF1	chr19:59073283-59084942	Homo sapiens myeloid zinc finger 1 (MZF1), mRNA.
N4BP2	chr4:40058523-40159872	Homo sapiens NEDD4 binding protein 2 (N4BP2), mRNA.
NAPA	chr19:47990890-48018515	Homo sapiens N-ethylmaleimide-sensitive factor attachment protein, alpha (NAPA), non-coding RNA.
NAPSA	chr19:50861733-50868931	Homo sapiens napsin A aspartic peptidase (NAPSA), mRNA.
NARF	chr17:80416059-80446143	Homo sapiens nuclear prelamin A recognition factor (NARF), mRNA.
NAT9	chr17:72766685-72772470	Homo sapiens N-acetyltransferase 9 (GCN5- related, putative) (NAT9), mRNA.
NBPF15	chr1:148558187-148596267	Homo sapiens neuroblastoma breakpoint family, member 15 (NBPF15), mRNA.
NBR1	chr17:41322497-41363707	Homo sapiens neighbor of BRCA1 gene 1 (NBR1), mRNA.
NCAPD3	chr11:134022336-134094426	Homo sapiens non-SMC condensin II complex, subunit D3 (NCAPD3), mRNA.
NCAPG	chr4:17812435-17846487	Homo sapiens non-SMC condensin I complex, subunit G (NCAPG), mRNA.
NCF4	chr22:37257029-37274059	Homo sapiens neutrophil cytosolic factor 4, 40kDa (NCF4), mRNA.
NCKAP1	chr2:183789578-183903586	Homo sapiens NCK-associated protein 1 (NCK-AP1), mRNA.
NCOR2	chr12:124808956-124824750	Homo sapiens nuclear receptor corepressor 2 (NCOR2), mRNA.
NDUFB8	chr10:102283496-102289636	Homo sapiens NADH dehydrogenase (ubiquino- ne) 1 beta subcomplex, 8, 19kDa (NDUFB8), nuclear gene encoding mitochondrial protein, mRNA.
NEDD9	chr6:11183530-11232915	Homo sapiens neural precursor cell expressed, developmentally down-regulated 9 (NEDD9), mRNA.
NEIL1	chr15:75639330-75647592	Homo sapiens nei endonuclease VIII-like 1 (E.coli) (NEIL1), mRNA.
NEK1	chr4:170475193-170520348	Homo sapiens NIMA-related kinase 1 (NEK1), mRNA.
NEURL4	chr17:7215977-7222527	Homo sapiens neuralized homolog 4 (Drosophi- la) (NEURL4), mRNA.
NFATC3	chr16:68118653-68226115	Homo sapiens nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 (NFATC3), mRNA.
NFE2	chr12:54685890-54689542	Homo sapiens nuclear factor (erythroid-derived 2), 45kDa (NFE2), mRNA.
NFE2L1	chr17:46125685-46138907	Homo sapiens nuclear factor (erythroid-derived 2)-like 1 (NFE2L1), mRNA.
NFKBID	chr19:36379142-36387440	Homo sapiens nuclear factor of kappa light po- lypeptide gene enhancer in B-cells inhibitor, del- ta (NFKBID), mRNA.
NGFR	chr17:47572654-47592382	Homo sapiens nerve growth factor receptor (NGFR), mRNA.
NIF3L1	chr2:201754049-201768655	Homo sapiens NIF3 NGG1 interacting factor 3- like 1 (S.cerevisiae) (NIF3L1), mRNA.
NINJ1	chr9:95883770-95896570	Homo sapiens ninjurin 1 (NINJ1), mRNA.

Symbol	Position	Beschreibung
NKD1	chr16:50582240-50674771	Homo sapiens naked cuticle homolog 1 (Droso- phila) (NKD1), mRNA.
NKX2-1	chr14:36985603-36988903	Homo sapiens NK2 homeobox 1 (NKX2-1), mRNA.
NLRC3	chr16:3598134-3606995	Homo sapiens NLR family, CARD domain con- taining 3 (NLRC3), non-coding RNA.
NLRP3	chr1:247581354-247589094	Homo sapiens NLR family, pyrin domain contai- ning 3 (NLRP3), mRNA.
NOTUM	chr17:79910382-79919057	Homo sapiens notum pectinacetylesterase ho- molog (Drosophila) (NOTUM), mRNA.
NPPC	chr2:232786804-232791038	Homo sapiens natriuretic peptide C (NPPC), mRNA.
NPY	chr7:24323806-24331484	Homo sapiens neuropeptide Y (NPY), mRNA.
NR4A2	chr2:157182686-157184526	Homo sapiens nuclear receptor subfamily 4, group A, member 2 (NR4A2), mRNA.
NR4A3	chr9:102584136-102596341	Homo sapiens nuclear receptor subfamily 4, group A, member 3 (NR4A3), mRNA.
NT5C	chr17:73126319-73127890	Homo sapiens 5', 3'-nucleotidase, cytosolic (NT5C), mRNA.
NUP153	chr6:17615265-17707065	Homo sapiens nucleoporin 153kDa (NUP153), mRNA.
Nup88	chr17:5264265-5289528	H.sapiens alternative 3' UTR of Nup88 mRNA.
OFD1	chrX:13752831-13787480	Homo sapiens oral-facial-digital syndrome 1 (OFD1), mRNA.
OGFRL1	chr6:71998476-72012230	Homo sapiens opioid growth factor receptor-like 1 (OGFRL1), mRNA.
OGG1	chr3:9791627-9799089	Homo sapiens 8-oxoguanine DNA glycosylase (OGG1), nuclear gene encoding mitochondrial protein, mRNA.
OPRL1	chr20:62711470-62731996	Homo sapiens opiate receptor-like 1 (OPRL1), mRNA.
OR2C1	chr16:3405888-3406924	Homo sapiens olfactory receptor, family 2, sub- family C, member 1 (OR2C1), mRNA.
OR4D1	chr17:56232514-56233447	Homo sapiens olfactory receptor, family 4, sub- family D, member 1 (OR4D1), mRNA.
OSBPL8	chr12:76745577-76953589	Homo sapiens oxysterol binding protein-like 8 (OSBPL8), mRNA.
OSBPL9	chr1:52042850-52254891	Homo sapiens oxysterol binding protein-like 9 (OSBPL9), mRNA.
OSCP1	chr1:36883506-36916086	Homo sapiens organic solute carrier partner 1 (OSCP1), mRNA.
OSM	chr22:30658818-30662829	Homo sapiens oncostatin M (OSM), mRNA.
P2RX1	chr17:3799884-3819960	Homo sapiens purinergic receptor P2X, ligand- gated ion channel, 1 (P2RX1), mRNA.
PACS2	chr14:105767169-105864484	Homo sapiens phosphofurin acidic cluster sort- ing protein 2 (PACS2), mRNA.
PADI1	chr1:17531620-17572501	Homo sapiens peptidyl arginine deiminase, type I (PADI1), mRNA.
PALM2-AKAP2	chr9:112542576-112900819	Homo sapiens PALM2-AKAP2 readthrough (PALM2-AKAP2), mRNA.
PARL	chr3:183547172-183602693	Homo sapiens presenilin associated, rhomboid- like (PARL), nuclear gene encoding mitochondri- al protein, mRNA.
PARVB	chr22:44395090-44565112	Homo sapiens parvin, beta (PARVB), mRNA.

Symbol	Position	Beschreibung
PATZ1	chr22:31721789-31742249	Homo sapiens POZ (BTB) and AT hook contai- ning zinc finger 1 (PATZ1), mRNA.
PBXIP1	chr1:154923707-154927803	Homo sapiens pre-B-cell leukemia homeobox interacting protein 1 (PBXIP1), mRNA.
PCSK4	chr19:1481426-1483940	Homo sapiens proprotein convertase subtili- sin/kexin type 4 (PCSK4), mRNA.
PDCD11	chr10:105156411-105206019	Homo sapiens programmed cell death 11 (PDCD11), mRNA.
PDE3B	chr11:14665268-14798209	Homo sapiens phosphodiesterase 3B, cGMP- inhibited (PDE3B), mRNA.
PDE4A	chr19:10527448-10580307	Homo sapiens phosphodiesterase 4A, cAMP-specific (PDE4A), mRNA.
PDE4B	chr1:66258192-66840262	Homo sapiens phosphodiesterase 4B, cAMP-specific (PDE4B), mRNA.
PDE4DIP	chr1:144862707-144868172	Homo sapiens phosphodiesterase 4D interacting protein (PDE4DIP), mRNA.
PDLIM1	chr10:96997324-97050905	Homo sapiens PDZ and LIM domain 1 (PDLIM1), mRNA.
РЕМТ	chr17:17408876-17480779	Homo sapiens phosphatidylethanolamine N- methyltransferase (PEMT), nuclear gene en- coding mitochondrial protein, mRNA.
PEX12	chr17:33901813-33905656	Homo sapiens peroxisomal biogenesis factor 12 (PEX12), mRNA.
PFKFB3	chr10:6186842-6277507	Homo sapiens 6-phosphofructo-2- kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), mRNA.
PFN3	chr5:176827107-176827637	Homo sapiens profilin 3 (PFN3), mRNA.
PHACTR3	chr20:58152563-58422766	Homo sapiens phosphatase and actin regulator 3 (PHACTR3), mRNA.
PHF19	chr9:123617930-123631159	Homo sapiens PHD finger protein 19 (PHF19), mRNA.
PHF20	chr20:34359922-34411399	Homo sapiens PHD finger protein 20 (PHF20), mRNA.
PHOSPHO2- KLHL23	chr2:170550963-170608396	Homo sapiens PHOSPHO2-KLHL23 readthrough (PHOSPHO2-KLHL23), mRNA.
PHTF2	chr7:77428108-77553500	Homo sapiens putative homeodomain transcrip- tion factor 2 (PHTF2), mRNA.
PI16	chr6:36916038-36932613	Homo sapiens peptidase inhibitor 16 (PI16), mRNA.
PIGX	chr3:196439244-196462876	Homo sapiens phosphatidylinositol glycan an- chor biosynthesis, class X (PIGX), mRNA.
PIK3AP1	chr10:98353068-98392998	Homo sapiens phosphoinositide-3-kinase adap- tor protein 1 (PIK3AP1), mRNA.
PIKFYVE	chr2:209130990-209170271	Homo sapiens phosphoinositide kinase, FYVE finger containing (PIKFYVE), mRNA.
PILRA	chr7:99971067-99972365	Homo sapiens paired immunoglobin-like type 2 receptor alpha (PILRA), mRNA.
PIP4K2A	chr10:22823765-22880710	Homo sapiens phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A), mRNA.
PISD	chr22:32014476-32026810	Homo sapiens phosphatidylserine decarboxylase (PISD), mRNA.
PJA2	chr5:108670409-108745675	Homo sapiens praja ring finger 2, E3 ubiquitin protein ligase (PJA2), mRNA.
PLAC8	chr4:84011210-84031012	Homo sapiens placenta-specific 8 (PLAC8), mRNA.

Symbol	Position	Beschreibung
PLCG2	chr16:81819350-81955215	Homo sapiens phospholipase C, gamma 2 (phosphatidylinositol-specific) (PLCG2), mRNA.
PLCXD2	chr3:111393522-111565294	Homo sapiens phosphatidylinositol-specific phospholipase C, X domain containing 2 (PLCXD2), mRNA.
PLEC	chr8:144989320-145013758	Homo sapiens plectin (PLEC), mRNA.
PLP2	chrX:49028183-49031468	Homo sapiens proteolipid protein 2 (colonic epithelium-enriched) (PLP2), mRNA.
PLXNC1	chr12:94542498-94701451	Homo sapiens plexin C1 (PLXNC1), mRNA.
PNMT	chr17:37824233-37826728	Homo sapiens phenylethanolamine N- methyltransferase (PNMT), non-coding RNA.
POFUT2	chr21:46683842-46697325	Homo sapiens protein O-fucosyltransferase 2 (POFUT2), non-coding RNA.
POLDIP3	chr22:42979726-42999166	Homo sapiens polymerase (DNA-directed), delta interacting protein 3 (POLDIP3), mRNA.
POLG	chr15:89859535-89878026	Homo sapiens polymerase (DNA directed), gamma (POLG), mRNA.
POLI	chr18:51795848-51824604	Homo sapiens polymerase (DNA directed) iota (POLI), mRNA.
POU2AF1	chr11:111222980-111250157	Homo sapiens POU class 2 associating factor 1 (POU2AF1), mRNA.
PPIL2	chr22:22020272-22050349	Homo sapiens peptidylprolyl isomerase (cyclo- philin)-like 2 (PPIL2), mRNA.
PPIL3	chr2:201735678-201752548	Homo sapiens peptidylprolyl isomerase (cyclo- philin)-like 3 (PPIL3), mRNA.
PPIP5K2	chr5:102455957-102494017	Homo sapiens diphosphoinositol pentakisphos- phate kinase 2 (PPIP5K2), mRNA.
PPP1CA	chr11:67165651-67169376	Homo sapiens protein phosphatase 1, catalytic subunit, alpha isozyme (PPP1CA), mRNA.
PPP1R16B	chr20:37434347-37459230	Homo sapiens protein phosphatase 1, regulatory subunit 16B (PPP1R16B), mRNA.
PPP5C	chr19:46850250-46894232	Homo sapiens protein phosphatase 5, catalytic subunit (PPP5C), mRNA.
PRCD	chr17:74523667-74541458	Homo sapiens progressive rod-cone degenerati- on (PRCD), non-coding RNA.
PRELID1	chr5:176730762-176733960	Homo sapiens PRELI domain containing 1 (PRELID1), nuclear gene encoding mitochondrial protein, mRNA.
PRG2	chr11:57154833-57158130	Homo sapiens proteoglycan 2, bone marrow (natural killer cell activator, eosinophil granule major basic protein) (PRG2), mRNA.
PRKAG1	chr12:49396054-49412531	Homo sapiens protein kinase, AMP-activated, gamma 1 non-catalytic subunit (PRKAG1), mRNA.
PRKD2	chr19:47177572-47193963	Homo sapiens protein kinase D2 (PRKD2), mRNA.
PRMT3	chr11:20409075-20530879	Homo sapiens protein arginine methyltransfera- se 3 (PRMT3), mRNA.
PRPF40B	chr12:50017196-50038452	Homo sapiens PRP40 pre-mRNA processing factor 40 homolog B (S.cerevisiae) (PRPF40B), mRNA.
PRPF4B	chr6:4021568-4065217	Homo sapiens PRP4 pre-mRNA processing factor 4 homolog B (yeast) (PRPF4B), mRNA.
PRR5	chr22:45064426-45133561	Homo sapiens proline rich 5 (renal) (PRR5), mRNA.

Symbol	Position	Beschreibung
PSD4	chr2:113931559-113960677	Homo sapiens pleckstrin and Sec7 domain con- taining 4 (PSD4), mRNA.
PSIP1	chr9:15464064-15511003	Homo sapiens PC4 and SFRS1 interacting pro- tein 1 (PSIP1), mRNA.
PSMA6	chr14:35761573-35786682	Homo sapiens proteasome (prosome, macropain) subunit, alpha type, 6 (PSMA6), mRNA.
PTAFR	chr1:28476503-28477532	Homo sapiens platelet-activating factor receptor (PTAFR), mRNA.
PTCRA	chr6:42883726-42891085	Homo sapiens pre T-cell antigen receptor alpha (PTCRA), mRNA.
PTENP1	chr9:33673501-33677418	Homo sapiens phosphatase and tensin homolog pseudogene 1 (PTENP1), non-coding RNA.
PTGER4	chr5:40680031-40693837	Homo sapiens prostaglandin E receptor 4 (sub- type EP4) (PTGER4), mRNA.
PTH2	chr19:49925670-49926698	Homo sapiens parathyroid hormone 2 (PTH2), mRNA.
PTK2	chr8:141668480-141728460	Homo sapiens protein tyrosine kinase 2 (PTK2), mRNA.
PTPN22	chr1:114356432-114414375	Homo sapiens protein tyrosine phosphatase, non-receptor type 22 (lymphoid) (PTPN22), mRNA.
PTPN3	chr9:112137973-112180063	Homo sapiens protein tyrosine phosphatase, non-receptor type 3 (PTPN3), non-coding RNA.
PTPN6	chr12:7055739-7070479	Homo sapiens protein tyrosine phosphatase, non-receptor type 6 (PTPN6), mRNA.
PTPN7	chr1:202118978-202127577	Homo sapiens protein tyrosine phosphatase, non-receptor type 7 (PTPN7), mRNA.
PTRH2	chr17:57774666-57784856	Homo sapiens peptidyl-tRNA hydrolase 2 (PTRH2), nuclear gene encoding mitochondrial protein, mRNA.
PTTG1	chr5:159848864-159855746	Homo sapiens pituitary tumor-transforming 1 (PTTG1), mRNA.
PTTG1IP	chr21:46269499-46293818	Homo sapiens pituitary tumor-transforming 1 interacting protein (PTTG1IP), mRNA.
PYGM	chr11:64513860-64528187	Homo sapiens phosphorylase, glycogen, muscle (PYGM), mRNA.
RAB22A	chr20:56884770-56942563	Homo sapiens RAB22A, member RAS oncogene family (RAB22A), mRNA.
RAB24	chr5:176728198-176730744	Homo sapiens RAB24, member RAS oncogene family (RAB24), mRNA.
RAB36	chr22:23487512-23506531	Homo sapiens RAB36, member RAS oncogene family (RAB36), mRNA.
RAB37	chr17:72667255-72742799	Homo sapiens RAB37, member RAS oncogene family (RAB37), mRNA.
RAB3GAP1	chr2:135809834-135928279	Homo sapiens RAB3 GTPase activating protein subunit 1 (catalytic) (RAB3GAP1), mRNA.
RAB43	chr3:128806411-128840647	Homo sapiens RAB43, member RAS oncogene family (RAB43), mRNA.
RAB4B	chr19:41284123-41302849	Homo sapiens RAB4B, member RAS oncogene family (RAB4B), mRNA.
RABEP2	chr16:28915741-28936532	Homo sapiens rabaptin, RAB GTPase binding effector protein 2 (RABEP2), mRNA.
RAC2	chr22:37621309-37640305	Homo sapiens ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding pro- tein Rac2) (RAC2), mRNA.

Symbol	Position	Beschreibung
RAD52	chr12:1021254-1042242	Homo sapiens RAD52 homolog (S.cerevisiae) (RAD52), mRNA.
RALGDS	chr9:135973106-135977304	Homo sapiens ral guanine nucleotide dissociati- on stimulator (RALGDS), mRNA.
RAP1GAP2	chr17:2699731-2941035	Homo sapiens RAP1 GTPase activating protein 2 (RAP1GAP2), mRNA.
RAPGEF6	chr5:130759613-130783094	Homo sapiens Rap guanine nucleotide exchan- ge factor (GEF) 6 (RAPGEF6), mRNA.
RAPH1	chr2:204298538-204400058	Homo sapiens Ras association (RalGDS/AF-6) and pleckstrin homology domains 1 (RAPH1), mRNA.
RASA1	chr5:86564069-86687743	Homo sapiens RAS p21 protein activator (GTPase activating protein) 1 (RASA1), mRNA.
RASA2	chr3:141205925-141331197	Homo sapiens RAS p21 protein activator 2 (RA-SA2), mRNA.
RASAL3	chr19:15562435-15565373	Homo sapiens RAS protein activator like 3 (RA-SAL3), mRNA.
RASGEF1A	chr10:43689983-43725187	Homo sapiens RasGEF domain family, member 1A (RASGEF1A), mRNA.
RASGRP2	chr11:64494382-64508355	Homo sapiens RAS guanyl releasing protein 2 (calcium and DAG-regulated) (RASGRP2), mRNA.
RASSF2	chr20:4760668-4776150	Homo sapiens Ras association (RalGDS/AF-6) domain family member 2 (RASSF2), mRNA.
RBM38	chr20:55966453-55984386	Homo sapiens RNA binding motif protein 38 (RBM38), mRNA.
RBM5	chr3:50126340-50139616	Homo sapiens RNA binding motif protein 5 (RBM5), mRNA.
RBM6	chr3:49977476-50095436	Homo sapiens RNA binding motif protein 6 (RBM6), mRNA.
RCAN1	chr21:35888783-35899261	Homo sapiens regulator of calcineurin 1 (RCAN1), mRNA.
REEP5	chr5:112212080-112257211	Homo sapiens receptor accessory protein 5 (REEP5), mRNA.
REEP6	chr19:1491164-1496180	Homo sapiens receptor accessory protein 6 (REEP6), mRNA.
REPIN1	chr7:150065360-150071133	Homo sapiens replication initiator 1 (REPIN1), mRNA.
RERE	chr1:8412463-8483747	Homo sapiens arginine-glutamic acid dipeptide (RE) repeats (RERE), mRNA.
REXO1	chr19:1815244-1822043	Homo sapiens REX1, RNA exonuclease 1 ho- molog (S.cerevisiae) (REXO1), mRNA.
RFC2	chr7:73645831-73668738	Homo sapiens replication factor C (activator 1) 2, 40kDa (RFC2), mRNA.
RFESD	chr5:94982480-94992849	Homo sapiens Rieske (Fe-S) domain containing (RFESD), mRNA.
RFTN1	chr3:16357351-16524372	Homo sapiens raftlin, lipid raft linker 1 (RFTN1), mRNA.
RGL3	chr19:11493772-11530018	Homo sapiens ral guanine nucleotide dissociati- on stimulator-like 3 (RGL3), mRNA.
RGS14	chr5:176784843-176799599	Homo sapiens regulator of G-protein signaling 14 (RGS14), mRNA.
RGS19	chr20:62704534-62710845	Homo sapiens regulator of G-protein signaling 19 (RGS19), mRNA.
Symbol	Position	Beschreibung
---------	--------------------------	---
RGS9	chr17:63133455-63206780	Homo sapiens regulator of G-protein signaling 9 (RGS9), mRNA.
RHBDF1	chr16:108057-122629	Homo sapiens rhomboid 5 homolog 1 (Drosophi- la) (RHBDF1), mRNA.
RHOA	chr3:49396578-49449428	Homo sapiens ras homolog family member A (RHOA), mRNA.
RHOH	chr4:40245006-40245582	Homo sapiens ras homolog family member H (RHOH), mRNA.
RIMS3	chr1:41086351-41131324	Homo sapiens regulating synaptic membrane exocytosis 3 (RIMS3), mRNA.
RIN1	chr11:66099541-66103162	Homo sapiens Ras and Rab interactor 1 (RIN1), mRNA.
RIOK2	chr5:96496570-96519005	Homo sapiens RIO kinase 2 (RIOK2), mRNA.
RMND5B	chr5:177558027-177575479	Homo sapiens required for meiotic nuclear divi- sion 5 homolog B (S.cerevisiae) (RMND5B), mRNA.
RNF125	chr18:29598444-29653154	Homo sapiens ring finger protein 125, E3 ubiquitin protein ligase (RNF125), mRNA.
RNF138	chr18:29671817-29711524	Homo sapiens ring finger protein 138, E3 ubiquitin protein ligase (RNF138), mRNA.
RNF166	chr16:88762902-88770025	Homo sapiens ring finger protein 166 (RNF166), mRNA.
RNF167	chr17:4843629-4848517	Homo sapiens ring finger protein 167 (RNF167), mRNA.
RNF44	chr5:175953699-175964421	Homo sapiens ring finger protein 44 (RNF44), mRNA.
RNMTL1	chr17:685512-695741	Homo sapiens RNA methyltransferase like 1 (RNMTL1), mRNA.
RNPEPL1	chr2:241508003-241518149	Homo sapiens arginyl aminopeptidase (amin- opeptidase B)-like 1 (RNPEPL1), mRNA.
RPAIN	chr17:5322960-5332985	Homo sapiens RPA interacting protein (RPAIN), mRNA.
RPL36	chr19:5690271-5691678	Homo sapiens ribosomal protein L36 (RPL36), mRNA.
RPS3A	chr4:152020724-152025357	Homo sapiens ribosomal protein S3A (RPS3A), mRNA.
RPS6KA1	chr1:26869652-26898724	Homo sapiens ribosomal protein S6 kinase, 90kDa, polypeptide 1 (RPS6KA1), mRNA.
RRM2B	chr8:103216728-103251059	Homo sapiens ribonucleotide reductase M2 B (TP53 inducible) (RRM2B), mRNA.
RSPH9	chr6:43612766-43638748	Homo sapiens radial spoke head 9 homolog (Chlamydomonas) (RSPH9), mRNA.
RUNX1	chr21:36160097-36260987	Homo sapiens runt-related transcription factor 1 (RUNX1), mRNA.
RXRA	chr9:137208943-137298240	Homo sapiens retinoid X receptor, alpha (RXRA), mRNA.
RYK	chr3:133875977-133969586	Homo sapiens receptor-like tyrosine kinase (RYK), mRNA.
S100A4	chr1:153516094-153518282	Homo sapiens S100 calcium binding protein A4 (S100A4), mRNA.
S100A5	chr1:153509622-153514241	Homo sapiens S100 calcium binding protein A5 (S100A5), mRNA.
S100A6	chr1:153507075-153508717	Homo sapiens S100 calcium binding protein A6 (S100A6), mRNA.

Symbol	Position	Beschreibung
S100B	chr21:48018530-48025035	Homo sapiens S100 calcium binding protein B (S100B), mRNA.
SAMD14	chr17:48188672-48201522	Homo sapiens sterile alpha motif domain contai- ning 14 (SAMD14), mRNA.
SAMD4B	chr19:39833107-39875488	Homo sapiens sterile alpha motif domain contai- ning 4B (SAMD4B), mRNA.
SAMHD1	chr20:35520226-35533906	Homo sapiens SAM domain and HD domain 1 (SAMHD1), mRNA.
SART3	chr12:108915990-108935773	Homo sapiens squamous cell carcinoma antigen recognized by T cells 3 (SART3), mRNA.
SASH3	chrX:128913891-128929176	Homo sapiens SAM and SH3 domain containing 3 (SASH3), mRNA.
SBNO2	chr19:1107632-1132273	Homo sapiens strawberry notch homolog 2 (Dro- sophila) (SBNO2), mRNA.
SCAMP4	chr19:1905370-1920327	Homo sapiens secretory carrier membrane pro- tein 4 (SCAMP4), mRNA.
SCARNA16	chr11:12926363-12926535	Rfam model RF00424 hit found at contig region AC013549.9/25583-25754, , ,
SCML4	chr6:108023363-108053599	Homo sapiens sex comb on midleg-like 4 (Dro- sophila) (SCML4), mRNA.
SCNM1	chr1:151138497-151140384	Homo sapiens sodium channel modifier 1 (SCNM1), non-coding RNA.
SCT	chr11:626312-627173	Homo sapiens secretin (SCT), mRNA.
SDK1	chr7:3341079-4308631	Homo sapiens sidekick cell adhesion molecule 1 (SDK1), mRNA.
SEC14L1	chr17:75084724-75202482	Homo sapiens SEC14-like 1 (S.cerevisiae) (SEC14L1), mRNA.
SELPLG	chr12:109015679-109025854	Homo sapiens selectin P ligand (SELPLG), mRNA.
SEMA3G	chr3:52467267-52479043	Homo sapiens sema domain, immunoglobulin domain (lg), short basic domain, secreted, (se- maphorin) 3G (SEMA3G), mRNA.
SEMA5B	chr3:122628039-122631114	Homo sapiens sema domain, seven thrombos- pondin repeats (type 1 and type 1-like), trans- membrane domain (TM) and short cytoplasmic domain, (semaphorin) 5B (SEMA5B), mRNA.
SEPT1	chr16:30389453-30394171	Homo sapiens septin 1 (SEPT1), mRNA.
SEPT9	chr17:75277491-75496678	Homo sapiens septin 9 (SEPT9), mRNA.
SERF2	chr15:44069293-44088287	Homo sapiens small EDRK-rich factor 2 (SERF2), mRNA.
SERPINE1	chr7:100770369-100782547	Homo sapiens serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1), mRNA.
SFT2D1	chr6:166733516-166755991	Homo sapiens SFT2 domain containing 1 (SFT2D1), mRNA.
SFXN1	chr5:174905513-174955621	Homo sapiens sideroflexin 1 (SFXN1), mRNA.
SGSH	chr17:78183078-78194199	Homo sapiens N-sulfoglucosamine sulfohydrola- se (SGSH), mRNA.
SH2B3	chr12:111843751-111889427	Homo sapiens SH2B adaptor protein 3 (SH2B3), mRNA.
SH2D3A	chr19:6752172-6767523	Homo sapiens SH2 domain containing 3A (SH2D3A), mRNA.
SH2D3C	chr9:130500595-130517561	Homo sapiens SH2 domain containing 3C (SH2D3C), mRNA.

Symbol	Position	Beschreibung
SH3BP1	chr22:38030660-38052049	Homo sapiens SH3-domain binding protein 1 (SH3BP1), mRNA.
SH3BP2	chr4:2794749-2826923	Homo sapiens SH3-domain binding protein 2 (SH3BP2), mRNA.
SH3TC1	chr4:8201059-8242830	Homo sapiens SH3 domain and tetratricopeptide repeats 1 (SH3TC1), mRNA.
SHISA5	chr3:48509196-48514742	Homo sapiens shisa homolog 5 (Xenopus laevis) (SHISA5), mRNA.
SHQ1	chr3:72798427-72897598	Homo sapiens SHQ1, H/ACA ribonucleoprotein assembly factor (SHQ1), mRNA.
SIGLEC15	chr18:43405544-43422521	Homo sapiens sialic acid binding Ig-like lectin 15 (SIGLEC15), mRNA.
SIK1	chr21:44834397-44847002	Homo sapiens salt-inducible kinase 1 (SIK1), mRNA.
SIPA1	chr11:65405577-65418391	Homo sapiens signal-induced proliferation- associated 1 (SIPA1), mRNA.
SLA	chr8:134048972-134072603	Homo sapiens Src-like-adaptor (SLA), mRNA.
SLBP	chr4:1694526-1714030	Homo sapiens stem-loop binding protein (SLBP), mRNA.
SLC16A6	chr17:66263166-66287405	Homo sapiens solute carrier family 16, member 6 (monocarboxylic acid transporter 7) (SLC16A6), mRNA.
SLC19A1	chr21:46918114-46964325	Homo sapiens solute carrier family 19 (folate transporter), member 1 (SLC19A1), mRNA.
SLC1A4	chr2:65215578-65251000	Homo sapiens solute carrier family 1 (glutama- te/neutral amino acid transporter), member 4 (SLC1A4), mRNA.
SLC22A18AS	chr11:2909326-2925175	Homo sapiens solute carrier family 22 (organic cation transporter), member 18 antisense (SLC22A18AS), mRNA.
SLC23A1	chr5:138702884-138719039	Homo sapiens solute carrier family 23 (nucle- obase transporters), member 1 (SLC23A1), mRNA.
SLC23A2	chr20:4833001-4982145	Homo sapiens solute carrier family 23 (nucle- obase transporters), member 2 (SLC23A2), mRNA.
SLC26A11	chr17:78194199-78227308	Homo sapiens solute carrier family 26, member 11 (SLC26A11), mRNA.
SLC27A5	chr19:58990878-59010630	Homo sapiens solute carrier family 27 (fatty acid transporter), member 5 (SLC27A5), mRNA.
SLC2A4RG	chr20:62371210-62375403	Homo sapiens SLC2A4 regulator (SLC2A4RG), mRNA.
SLC2A8	chr9:130159416-130170170	Homo sapiens solute carrier family 2 (facilitated glucose transporter), member 8 (SLC2A8), mRNA.
SLC32A1	chr20:37353104-37358015	Homo sapiens solute carrier family 32 (GABA vesicular transporter), member 1 (SLC32A1), mRNA.
SLC39A13	chr11:47377000-47438045	Homo sapiens solute carrier family 39 (zinc transporter), member 13 (SLC39A13), mRNA.
SLC39A8	chr4:103182820-103245469	Homo sapiens solute carrier family 39 (zinc transporter), member 8 (SLC39A8), mRNA.
SLC44A2	chr19:10713120-10755235	Homo sapiens solute carrier family 44, member 2 (SLC44A2), mRNA.

Symbol	Position	Beschreibung
SLC9A3R1	chr17:72744750-72765499	Homo sapiens solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), member 3 regulator 1 (SLC9A3R1), mRNA.
SLCO2B1	chr11:74811539-74875145	Homo sapiens solute carrier organic anion transporter family, member 2B1 (SLCO2B1), mRNA.
SLU7	chr5:159828647-159846168	Homo sapiens SLU7 splicing factor homolog (S.cerevisiae) (SLU7), mRNA.
SLX1A	chr16:29465821-29469545	Homo sapiens SLX1 structure-specific endonu- clease subunit homolog A (S.cerevisiae) (SLX1A), mRNA.
SMAD2	chr18:45359465-45456970	Homo sapiens SMAD family member 2 (SMAD2), mRNA.
SMAD7	chr18:46446222-46469177	Homo sapiens SMAD family member 7 (SMAD7), mRNA.
SMAP2	chr1:40839377-40882027	Homo sapiens small ArfGAP2 (SMAP2), mRNA.
SMCR5	chr17:17679999-17682843	Homo sapiens Smith-Magenis syndrome chro- mosome region, candidate 5 (non-protein coding) (SMCR5), non-coding RNA.
SMOC2	chr6:168841830-169068674	Homo sapiens SPARC related modular calcium binding 2 (SMOC2), mRNA.
SNAPC3	chr9:15422781-15453203	Homo sapiens small nuclear RNA activating complex, polypeptide 3, 50kDa (SNAPC3), mRNA.
SNHG1	chr11:62619459-62623217	Homo sapiens small nucleolar RNA host gene 1 (non-protein coding) (SNHG1), non-coding RNA.
SNHG10	chr14:95999248-96001209	Homo sapiens small nucleolar RNA host gene 10 (non-protein coding) (SNHG10), non-coding RNA.
SNORD17	chr20:17943352-17943589	Homo sapiens small nucleolar RNA, C/D box 17 (SNORD17), small nucleolar RNA.
SNORD22	chr11:62620381-62620507	Homo sapiens small nucleolar RNA, C/D box 22 (SNORD22), small nucleolar RNA.
SNORD23	chr19:48259109-48259219	Homo sapiens small nucleolar RNA, C/D box 23 (SNORD23), small nucleolar RNA.
SNORD25	chr11:62623036-62623103	Homo sapiens small nucleolar RNA, C/D box 25 (SNORD25), small nucleolar RNA.
SNORD26	chr11:62622763-62622838	Homo sapiens small nucleolar RNA, C/D box 26 (SNORD26), small nucleolar RNA.
SNORD27	chr9:8888135-8888207	Rfam model RF00086 hit found at contig region AL596451.4/34979-35050, , ,
SNORD28	chr11:62622092-62622167	Homo sapiens small nucleolar RNA, C/D box 28 (SNORD28), small nucleolar RNA.
SNORD29	chr11:62621375-62621440	Homo sapiens small nucleolar RNA, C/D box 29 (SNORD29), small nucleolar RNA.
SNORD30	chr11:62621134-62621204	Homo sapiens small nucleolar RNA, C/D box 30 (SNORD30), small nucleolar RNA.
SNORD31	chr11:62620797-62620865	Homo sapiens small nucleolar RNA, C/D box 31 (SNORD31), small nucleolar RNA.
SNORD73A	chr4:152024978-152025043	Homo sapiens small nucleolar RNA, C/D box 73A (SNORD73A), small nucleolar RNA.
SNTB2	chr16:69221049-69342955	Homo sapiens syntrophin, beta 2 (dystrophin- associated protein A1, 59kDa, basic component 2) (SNTB2), mRNA.
SNX20	chr16:50700210-50715264	Homo sapiens sorting nexin 20 (SNX20), mRNA.

Symbol	Position	Beschreibung
SNX33	chr15:75941347-75950968	Homo sapiens sorting nexin 33 (SNX33), mRNA.
SNX5	chr20:17922243-17942638	Homo sapiens sorting nexin 5 (SNX5), mRNA.
SNX9	chr6:158244293-158366109	Homo sapiens sorting nexin 9 (SNX9), mRNA.
SOX17	chr8:55370494-55373456	Homo sapiens SRY (sex determining region Y)- box 17 (SOX17), mRNA.
SP1	chr12:53773978-53810226	Homo sapiens Sp1 transcription factor (SP1), mRNA.
SP140L	chr2:231206784-231237441	Homo sapiens SP140 nuclear body protein-like (SP140L), mRNA.
SPAG4	chr20:34203808-34208965	Homo sapiens sperm associated antigen 4 (SPAG4), mRNA.
SPAG8	chr9:35807781-35812259	Homo sapiens sperm associated antigen 8 (SPAG8), mRNA.
SPIB	chr19:50922194-50934309	Homo sapiens Spi-B transcription factor (Spi- 1/PU.1 related) (SPIB), mRNA.
SPN	chr16:29675049-29676252	Homo sapiens sialophorin (SPN), mRNA.
SPP1	chr4:88896801-88904563	Homo sapiens secreted phosphoprotein 1 (SPP1), mRNA.
SPPL2A	chr15:50999736-51057910	Homo sapiens signal peptide peptidase like 2A (SPPL2A), mRNA.
SRMS	chr20:62172162-62178857	Homo sapiens src-related kinase lacking C- terminal regulatory tyrosine and N-terminal my- ristylation sites (SRMS), mRNA.
SRSF5	chr14:70232830-70236553	Homo sapiens serine/arginine-rich splicing factor 5 (SRSF5), mRNA.
SSR1	chr6:7281287-7313541	Homo sapiens signal sequence receptor, alpha (SSR1), mRNA.
ST3GAL1	chr8:134467090-134584183	Homo sapiens ST3 beta-galactoside alpha-2, 3- sialyltransferase 1 (ST3GAL1), mRNA.
ST8SIA4	chr5:100142638-100238987	Homo sapiens ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sialyltransferase 4 (ST8SIA4), mRNA.
STIL	chr1:47725960-47749745	Homo sapiens SCL/TAL1 interrupting locus (STIL), mRNA.
STK11IP	chr2:220462595-220466770	Homo sapiens serine/threonine kinase 11 inter- acting protein (STK11IP), mRNA.
STK16	chr2:220110200-220112548	Homo sapiens serine/threonine kinase 16 (STK16), non-coding RNA.
STK17B	chr2:196998306-197036336	Homo sapiens serine/threonine kinase 17b (STK17B), mRNA.
STK32B	chr4:5053526-5502725	Homo sapiens serine/threonine kinase 32B (STK32B), mRNA.
STX10	chr19:13254871-13261188	Homo sapiens syntaxin 10 (STX10), mRNA.
STX1A	chr7:73113534-73134017	Homo sapiens syntaxin 1A (brain) (STX1A), mRNA.
STYK1	chr12:10771537-10826891	Homo sapiens serine/threonine/tyrosine kinase 1 (STYK1), mRNA.
SUCLG2	chr3:67410883-67705038	Homo sapiens succinate-CoA ligase, GDP- forming, beta subunit (SUCLG2), nuclear gene encoding mitochondrial protein, mRNA.
SUN1	chr7:855193-883509	Homo sapiens Sad1 and UNC84 domain contai- ning 1 (SUN1), mRNA.
SVIP	chr11:22843597-22851382	Homo sapiens small VCP/p97-interacting protein (SVIP), mRNA.

Symbol	Position	Beschreibung
SYAP1	chrX:16737706-16780807	Homo sapiens synapse associated protein 1 (SYAP1), non-coding RNA.
SYCP3	chr12:102122425-102133250	Homo sapiens synaptonemal complex protein 3 (SYCP3), mRNA.
SYNGR1	chr22:39745953-39774394	Homo sapiens synaptogyrin 1 (SYNGR1), mRNA.
SYNPO2L	chr10:75404643-75410787	Homo sapiens synaptopodin 2-like (SYNPO2L), mRNA.
SYPL1	chr7:105730813-105752791	Homo sapiens synaptophysin-like 1 (SYPL1), mRNA.
SYT12	chr11:66790189-66818334	Homo sapiens synaptotagmin XII (SYT12), mRNA.
SYT5	chr19:55684468-55691469	Homo sapiens synaptotagmin V (SYT5), mRNA.
SYTL3	chr6:159071045-159185908	Homo sapiens synaptotagmin-like 3 (SYTL3), mRNA.
TAC4	chr17:47915670-47925379	Homo sapiens tachykinin 4 (hemokinin) (TAC4), mRNA.
TACC3	chr4:1723216-1740077	Homo sapiens transforming, acidic coiled-coil containing protein 3 (TACC3), mRNA.
TAF1B	chr2:9983570-10053714	Homo sapiens TATA box binding protein (TBP)- associated factor, RNA polymerase I, B, 63kDa (TAF1B), mRNA.
TAF8	chr6:42018250-42025516	Homo sapiens TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa (TAF8), mRNA.
TARSL2	chr15:102193954-102242588	Homo sapiens threonyl-tRNA synthetase-like 2 (TARSL2), mRNA.
TBKBP1	chr17:45772629-45789429	Homo sapiens TBK1 binding protein 1 (TBKBP1), mRNA.
TBX10	chr11:67398773-67407031	Homo sapiens T-box 10 (TBX10), mRNA.
TBXA2R	chr19:3594503-3606831	Homo sapiens thromboxane A2 receptor (TBXA2R), mRNA.
TC2N	chr14:92246266-92302849	Homo sapiens tandem C2 domains, nuclear (TC2N), mRNA.
TCAP	chr17:37821598-37822807	Homo sapiens titin-cap (TCAP), mRNA.
TES	chr7:115850546-115890086	Homo sapiens testis derived transcript (3 LIM domains) (TES), mRNA.
TEX19	chr17:80317122-80321652	Homo sapiens testis expressed 19 (TEX19), mRNA.
TFAM	chr10:60144902-60158990	Homo sapiens transcription factor A, mitochond- rial (TFAM), non-coding RNA.
TGFBR3	chr1:92145899-92327603	Homo sapiens transforming growth factor, beta receptor III (TGFBR3), mRNA.
TGM6	chr20:2361553-2413399	Homo sapiens transglutaminase 6 (TGM6), mRNA.
THUMPD3	chr3:9404716-9428475	Homo sapiens THUMP domain containing 3 (THUMPD3), mRNA.
TIGD4	chr4:153690617-153692156	Homo sapiens tigger transposable element derived 4 (TIGD4), mRNA.
TIGD7	chr16:3348964-3350614	Homo sapiens tigger transposable element derived 7 (TIGD7), mRNA.
TIMP1	chrX:47441689-47445482	Homo sapiens TIMP metallopeptidase inhibitor 1 (TIMP1), mRNA.
TIPARP	chr3:156392204-156424557	Homo sapiens TCDD-inducible poly(ADP-ribose) polymerase (TIPARP), mRNA.

Symbol	Position	Beschreibung
TM9SF3	chr10:98277866-98346809	Homo sapiens transmembrane 9 superfamily member 3 (TM9SF3), mRNA.
TMBIM4	chr12:66530716-66563807	Homo sapiens transmembrane BAX inhibitor motif containing 4 (TMBIM4), mRNA.
ТМС6	chr17:76108998-76118830	Homo sapiens transmembrane channel-like 6 (TMC6), mRNA.
TMC8	chr17:76126858-76128589	Homo sapiens transmembrane channel-like 8 (TMC8), mRNA.
TMED7	chr5:114948904-114961733	Homo sapiens transmembrane emp24 protein transport domain containing 7 (TMED7), mRNA.
TMED7-TICAM2	chr5:114914338-114961876	Homo sapiens TMED7-TICAM2 readthrough (TMED7-TICAM2), mRNA.
TMEM123	chr11:102267055-102323775	Homo sapiens transmembrane protein 123 (TMEM123), mRNA.
TMEM173	chr5:138855112-138862343	Homo sapiens transmembrane protein 173 (TMEM173), nuclear gene encoding mitochond- rial protein, mRNA.
TMEM183A	chr1:202976533-202985383	Homo sapiens transmembrane protein 183A (TMEM183A), mRNA.
TMEM208	chr16:67261015-67263182	Homo sapiens transmembrane protein 208 (TMEM208), mRNA.
TMEM53	chr1:45119908-45125967	Homo sapiens transmembrane protein 53 (TMEM53), mRNA.
TMEM60	chr7:77423044-77427747	Homo sapiens transmembrane protein 60 (TMEM60), mRNA.
TMX4	chr20:7961715-8000393	Homo sapiens thioredoxin-related transmembra- ne protein 4 (TMX4), mRNA.
TNFAIP8L2	chr1:151131173-151131728	Homo sapiens tumor necrosis factor, alpha- induced protein 8-like 2 (TNFAIP8L2), mRNA.
TNFAIP8L2-SCNM1	chr1:151129104-151142773	Homo sapiens TNFAIP8L2-SCNM1 readthrough (TNFAIP8L2-SCNM1), mRNA.
TNFRSF10A	chr8:23048969-23082680	Homo sapiens tumor necrosis factor receptor superfamily, member 10a (TNFRSF10A), mRNA.
TNFRSF13B	chr17:16832848-16875402	Homo sapiens tumor necrosis factor receptor superfamily, member 13B (TNFRSF13B), mRNA.
TNFRSF14	chr1:2487804-2490438	Homo sapiens tumor necrosis factor receptor superfamily, member 14 (TNFRSF14), mRNA.
TNFRSF18	chr1:1138887-1141060	Homo sapiens tumor necrosis factor receptor superfamily, member 18 (TNFRSF18), mRNA.
TNFRSF4	chr1:1146705-1149548	Homo sapiens tumor necrosis factor receptor superfamily, member 4 (TNFRSF4), mRNA.
TNFSF14	chr19:6663147-6670599	Homo sapiens tumor necrosis factor (ligand) superfamily, member 14 (TNFSF14), mRNA.
TNK2	chr3:195590235-195596561	Homo sapiens tyrosine kinase, non-receptor, 2 (TNK2), mRNA.
TNNI2	chr11:1860232-1862910	Homo sapiens troponin I type 2 (skeletal, fast) (TNNI2), mRNA.
TNRC18	chr7:5346422-5463177	Homo sapiens trinucleotide repeat containing 18 (TNRC18), mRNA.
TOB1	chr17:48939586-48943715	Homo sapiens transducer of ERBB2, 1 (TOB1), mRNA.
TOMM40L	chr1:161195832-161197779	Homo sapiens translocase of outer mitochondrial membrane 40 homolog (yeast)-like (TOMM40L), nuclear gene encoding mitochondrial protein,

Symbol	Position	Beschreibung
		mRNA.
TOP2B	chr3:25639395-25661553	Homo sapiens topoisomerase (DNA) II beta 180kDa (TOP2B), mRNA.
TPST2	chr22:26921713-26961370	Homo sapiens tyrosylprotein sulfotransferase 2 (TPST2), mRNA.
TRAF4	chr17:27071022-27076662	Homo sapiens TNF receptor-associated factor 4 (TRAF4), mRNA.
TRAPPC2	chrX:13730360-13752754	Homo sapiens trafficking protein particle complex 2 (TRAPPC2), mRNA.
TRAPPC3	chr1:36602169-36615115	Homo sapiens trafficking protein particle com- plex 3 (TRAPPC3), mRNA.
TRAPPC5	chr19:7745706-7747748	Homo sapiens trafficking protein particle com- plex 5 (TRAPPC5), mRNA.
TRIB1	chr8:126442562-126450644	Homo sapiens tribbles homolog 1 (Drosophila) (TRIB1), mRNA.
TRIM38	chr6:25962916-25987557	Homo sapiens tripartite motif containing 38 (TRIM38), mRNA.
TRIM41	chr5:180650262-180662803	Homo sapiens tripartite motif containing 41 (TRIM41), mRNA.
TRIM46	chr1:155147076-155148927	Homo sapiens tripartite motif containing 46 (TRIM46), mRNA.
TRIM8	chr10:104404251-104418076	Homo sapiens tripartite motif containing 8 (TRIM8), mRNA.
TRMT6	chr20:5918485-5931173	Homo sapiens tRNA methyltransferase 6 homo- log (S.cerevisiae) (TRMT6), mRNA.
TRPM2	chr21:45770045-45862964	Homo sapiens transient receptor potential cation channel, subfamily M, member 2 (TRPM2), mRNA.
TSC22D3	chrX:106956451-106959711	Homo sapiens TSC22 domain family, member 3 (TSC22D3), mRNA.
TSG101	chr11:18501857-18548503	Homo sapiens tumor susceptibility gene 101 (TSG101), mRNA.
TSGA10	chr2:99613723-99735242	Homo sapiens testis specific, 10 (TSGA10), mRNA.
TSNAX	chr1:231664398-231702269	Homo sapiens translin-associated factor X (TSNAX), mRNA.
TSPAN32	chr11:2323242-2336264	Homo sapiens tetraspanin 32 (TSPAN32), mRNA.
TSSC4	chr11:2423863-2424853	Homo sapiens tumor suppressing subtransferab- le candidate 4 (TSSC4), mRNA.
TTC16	chr9:130478357-130493879	Homo sapiens tetratricopeptide repeat domain 16 (TTC16), mRNA.
TTC21A	chr3:39149151-39161124	Homo sapiens tetratricopeptide repeat domain 21A (TTC21A), mRNA.
TTC39C	chr18:21572736-21715574	Homo sapiens tetratricopeptide repeat domain 39C (TTC39C), mRNA.
TTF1	chr9:135250936-135282238	Homo sapiens transcription termination factor, RNA polymerase I (TTF1), mRNA.
TUBB3	chr16:89989686-90000546	Homo sapiens tubulin, beta 3 class III (TUBB3), mRNA.
TXNDC12	chr1:52485803-52521843	Homo sapiens thioredoxin domain containing 12 (endoplasmic reticulum) (TXNDC12), mRNA.

Symbol	Position	Beschreibung
TXNRD2	chr22:19863039-19920076	Homo sapiens thioredoxin reductase 2 (TXNRD2), nuclear gene encoding mitochondrial protein, mRNA.
TYROBP	chr19:36395302-36399211	Homo sapiens TYRO protein tyrosine kinase binding protein (TYROBP), mRNA.
UBAP1	chr9:34179002-34251097	Homo sapiens ubiquitin associated protein 1 (UBAP1), mRNA.
UBE2L6	chr11:57319127-57335180	Homo sapiens ubiquitin-conjugating enzyme E2L 6 (UBE2L6), mRNA.
UBE2W	chr8:74692331-74791145	Homo sapiens ubiquitin-conjugating enzyme E2W (putative) (UBE2W), mRNA.
UBQLN1	chr9:86274877-86323168	Homo sapiens ubiquilin 1 (UBQLN1), mRNA.
UBXN4	chr2:136499188-136542633	Homo sapiens UBX domain protein 4 (UBXN4), mRNA.
UHRF1	chr19:4909509-4962165	Homo sapiens ubiquitin-like with PHD and ring finger domains 1 (UHRF1), mRNA.
UHRF2	chr9:6413150-6507051	Homo sapiens ubiquitin-like with PHD and ring finger domains 2, E3 ubiquitin protein ligase (UHRF2), non-coding RNA.
ULK4	chr3:41288089-41319625	Homo sapiens unc-51-like kinase 4 (C.elegans) (ULK4), mRNA.
UMODL1	chr21:43483067-43563105	Homo sapiens uromodulin-like 1 (UMODL1), mRNA.
UNC50	chr2:99225041-99234977	Homo sapiens unc-50 homolog (C.elegans) (UNC50), mRNA.
UPF3A	chr13:115047058-115049204	Homo sapiens UPF3 regulator of nonsense transcripts homolog A (yeast) (UPF3A), mRNA.
UROC1	chr3:126200007-126236616	Homo sapiens urocanate hydratase 1 (UROC1), mRNA.
USMG5	chr10:105148808-105156270	Homo sapiens up-regulated during skeletal muscle growth 5 homolog (mouse) (USMG5), mRNA.
USP15	chr12:62654120-62697367	Homo sapiens ubiquitin specific peptidase 15 (USP15), mRNA.
USP3	chr15:63796709-63866602	Homo sapiens ubiquitin specific peptidase 3 (USP3), mRNA.
VAV1	chr19:6772678-6857377	Homo sapiens vav 1 guanine nucleotide exchange factor (VAV1), mRNA.
VIM	chr10:17270257-17279592	Homo sapiens vimentin (VIM), mRNA.
VOPP1	chr7:55538305-55605387	Homo sapiens vesicular, overexpressed in cancer, prosurvival protein 1 (VOPP1), mRNA.
VPREB3	chr22:24094929-24096630	Homo sapiens pre-B lymphocyte 3 (VPREB3), mRNA.
VSX1	chr20:25051520-25063015	Homo sapiens visual system homeobox 1 (VSX1), non-coding RNA.
WBP2	chr17:73841779-73851501	Homo sapiens WW domain binding protein 2 (WBP2), mRNA.
WDR81	chr17:1619816-1641893	Homo sapiens WD repeat domain 81 (WDR81), mRNA.
WIBG	chr12:56295196-56321051	Homo sapiens within bgcn homolog (Drosophila) (WIBG), mRNA.
YES1	chr18:721591-812327	Homo sapiens v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES1), mRNA.

Symbol	Position	Beschreibung
YWHAZ	chr8:101930803-101962799	Homo sapiens tyrosine 3- monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ), mRNA.
ZBP1	chr20:56178901-56195632	Homo sapiens Z-DNA binding protein 1 (ZBP1), mRNA.
ZBTB45	chr19:59024896-59030921	Homo sapiens zinc finger and BTB domain con- taining 45 (ZBTB45), mRNA.
ZBTB7B	chr1:154975105-154991001	Homo sapiens zinc finger and BTB domain con- taining 7B (ZBTB7B), non-coding RNA.
ZCCHC24	chr10:81142082-81203928	Homo sapiens zinc finger, CCHC domain contai- ning 24 (ZCCHC24), mRNA.
ZDHHC19	chr3:195924322-195938300	Homo sapiens zinc finger, DHHC-type containing 19 (ZDHHC19), mRNA.
ZFP36L1	chr14:69254371-69260631	Homo sapiens ZFP36 ring finger protein-like 1 (ZFP36L1), mRNA.
ZFP91	chr11:58346586-58389023	Homo sapiens ZFP91 zinc finger protein (ZFP91), mRNA.
ZFYVE20	chr3:15111579-15140655	Homo sapiens zinc finger, FYVE domain contai- ning 20 (ZFYVE20), mRNA.
ZNF101	chr19:19779662-19791138	Homo sapiens zinc finger protein 101 (ZNF101), mRNA.
ZNF22	chr10:45496272-45500777	Homo sapiens zinc finger protein 22 (ZNF22), mRNA
ZNF276	chr16:89789544-89804654	Homo sapiens zinc finger protein 276 (ZNF276), mRNA.
ZNF302	chr19:35168566-35175076	Homo sapiens zinc finger protein 302 (ZNF302), mRNA.
ZNF384	chr12:6775642-6798541	Homo sapiens zinc finger protein 384 (ZNF384), mRNA.
ZNF397	chr18:32820993-32824064	Homo sapiens zinc finger protein 397 (ZNF397), mRNA.
ZNF446	chr19:58987794-58992597	Homo sapiens zinc finger protein 446 (ZNF446), mRNA.
ZNF484	chr9:95607312-95640320	Homo sapiens zinc finger protein 484 (ZNF484), mRNA.
ZNF490	chr19:12686919-12721623	Homo sapiens zinc finger protein 490 (ZNF490), mRNA.
ZNF512	chr2:27805835-27846082	Homo sapiens zinc finger protein 512 (ZNF512), mRNA.
ZNF561	chr19:9718001-9731916	Homo sapiens zinc finger protein 561 (ZNF561), mRNA.
ZNF595	chr4:53226-68380	Homo sapiens zinc finger protein 595 (ZNF595), mRNA.
ZNF627	chr19:11708234-11729974	Homo sapiens zinc finger protein 627 (ZNF627), mRNA.
ZNF652	chr17:47366567-47439476	Homo sapiens zinc finger protein 652 (ZNF652), mRNA.
ZNF670	chr1:247197939-247242115	Homo sapiens zinc finger protein 670 (ZNF670), mRNA.
ZNF692	chr1:249144202-249150234	Homo sapiens zinc finger protein 692 (ZNF692), mRNA.
ZNF70	chr22:24083771-24093279	Homo sapiens zinc finger protein 70 (ZNF70), mRNA.

Symbol	Position	Beschreibung
ZNF704	chr8:81540685-81787016	Homo sapiens zinc finger protein 704 (ZNF704), mRNA.
ZNF718	chr4:53226-156490	Homo sapiens zinc finger protein 718 (ZNF718), mRNA.
ZNF75A	chr16:3355432-3368576	Homo sapiens zinc finger protein 75a (ZNF75A), mRNA.
ZNF771	chr16:30418734-30425930	Homo sapiens zinc finger protein 771 (ZNF771), mRNA.
ZNF787	chr19:56598731-56632649	Homo sapiens zinc finger protein 787 (ZNF787), mRNA.
ZNF791	chr19:12721731-12740676	Homo sapiens zinc finger protein 791 (ZNF791), mRNA.
ZNF805	chr19:57752052-57774106	Homo sapiens zinc finger protein 805 (ZNF805), mRNA.
ZNF821	chr16:71893582-71914379	Homo sapiens zinc finger protein 821 (ZNF821), mRNA.
ZNRF2	chr7:30323922-30407308	Homo sapiens zinc and ring finger 2 (ZNRF2), mRNA.
ZSCAN10	chr16:3138894-3142861	Homo sapiens zinc finger and SCAN domain containing 10 (ZSCAN10), mRNA.
ZZZ3	chr1:78030189-78099090	Homo sapiens zinc finger, ZZ-type containing 3 (ZZZ3), mRNA.

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig und ohne unzulässige Hilfe Dritter angefertigt zu haben; alle Hilfsmittel und Inhalte aus anderen Quellen wurden als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Berlin, den

Katja Kaulfuß

Danksagung

Ich bedanke mich bei Prof. Dr. Karl-Heinz Seeger, dass ich meine Promotion in der Forschungsgruppe der Klinik für Pädiatrie m. S. Onkologie und Hämatologie absolvieren konnte. Ich danke ihm für die interessante Themenstellung.

Desweiteren möchte ich mich bei ihm und Dr. Thomas Heiden für die Freiheit, die sie mir während des gesamten Forschungsprojektes gewährten bedanken, was mir u.a. die Möglichkeit bot Herausforderunegn zu begegnen und mich fachlich und persönlich weiterzuentwickeln.

Mein Dank gilt weiterhin allen Kolleginnen und Kollegen der Forschungsgruppe für die nette Zusammenarbeit und Unterstützung.