
7. Techniques for Comparing Index
Structures

It is evident from the preceeding chapters that the various index structures acceler-
ate query processing differently. For some kinds of queries and data certain classes
of index structures perform fast, while for others other classes of index structures are
more efficient. Sarawagi makes qualitative propositions for a comparison of index
structures [Sarawagi, 1997]. The performance of query processing depends on vari-
ous parameters which influence the query execution time. We focus on a set of nine
parameters. Two approaches are presented to support the decision making process
which index structure should be applied. The first approach is based on classifica-
tion trees. The second approach uses an aggregation method. Both approaches are
applied to two classes with altogether four distinct index structures: a tree-based in-
dex structure without aggregated data, a tree-based index structure with aggregated
data and two bitmap index structures. This chapter closes with results of a detailed
performance study.

7.1. Introduction

Most performance investigations of index structures only consider one or two pa-
rameters at at time such as the blocksize b or the number of dimensions d. However,
the performance of index structures depends on more than one or two parameters
and there exist interactions between them. However, this chapter concentrates on
a set of nine different parameters to compare index structures for processing range
queries. The nine parameters are carefully chosen to describe data, queries, system
behavior, and disk technology. We think that the nine parameters describe the exper-
imental setup sufficiently precise. However, if more parameters should be needed,
the described approaches can be extended easily to consider additional parameters.

7.2. Experimental parameters

7.2.1. Data specific parameters

Data specific parameters are described below:
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90 CHAPTER 7. TECHNIQUES FOR COMPARING INDEX STRUCTURES

Dimensionality. Dimensionality d ∈ N of the data denotes the number of attributes.
For the task of indexing eight-dimensional data a different index structure may
be better suited than for indexing one or two-dimensional data.

Number of stored tuples. The number t ∈ N of tuples influences the performance
of different structures. The R∗

a-tree improves in comparison with the R∗-tree if
the number of indexed tuples increases [Jürgens and Lenz, 1998].

Cardinality of data space. The cardinality c of the range of an attribute is the num-
ber of different values an attribute may have. Gender has three possible val-
ues (male, female, NULL). Attributes like social security number or telephone
number may have millions of different values. For attributes like gender dif-
ferent index structures are better suited than for attributes like social security
number or telephone number. We assume that the attribute space is normal-
ized in the range [0, 1) and that the attribute cardinality is the same in all dimen-
sions. This assumption simplifies the model. It is relaxed later to make the ex-
periments more realistic. Then the cardinality is denoted by cj, (j ∈ {1, · · · , d}).

The distribution type of data may be another parameter (e. g. uniform versus not
uniform distribution). This Chapter does not consider this parameter. However, the
described techniques can easily be extended to take other distributions into account.
In this case the models for the tree structures are changed according to the PISA
model (cf. Chapter 6). This chapter assumes uniformly distributed data. Note, that
models for bitmaps are not affected by non-uniform distributions of data.

7.2.2. Query specific parameters

Query specific parameters hold information about the queries processed by the sys-
tem. In our approach we concentrate on range queries. Point queries are expressed
as range queries with query box size qs = 0. In order to have only scalar values as
parameters we assume that there are only range queries which can be described with
the two scalar values query box size qs and query box dimensions qd:

Query box size. The size of the query box qs ∈ R is a fraction of the data space and
is denoted by qs ∈ [0, 1]. A value of qs = 0.04 means that the query box fills
4 percent of the data space.

Query box dimensions. The query box dimension parameter qd ∈ N denotes the
number of attributes occurring in a given range query. Assume that a five-
dimensional index is built (d = 5) but that the query is restricted to two di-
mensions. In this case qd is set to 2. The size of the query box in the first qd

dimensions is set to qi = qs
1
qd for all 1 ≤ i ≤ qd . The size of the query box

in the remaining dimensions is set at qi = 1 for all qd < i ≤ d. This means
there are no restrictions or predicates in the remaining dimensions. Example:
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7.2. EXPERIMENTAL PARAMETERS 91

Assuming that the size of the query box is qs = 0.04 and the query box dimen-
sions parameter is qd = 2. Then the shape of the query box is calculated with
the above given rule as q = (0.2, 0.2, 1, 1, 1). This limits the model to certain
shapes of query boxes, but it allows the model to work with scalar values as
input parameters.

It is assumed that the locations of the query boxes are uniformly distributed over
the data space. If this assumption does not hold the model can be adapted as pre-
sented in the PISA model in Chapter 6.

7.2.3. System specific parameters

System specific parameters are parameters which are chosen by the database admin-
istrator (DBA) of a system. We assume that the DBMS has its own access to the disk
system and does not use the I/O functions of the operating system:

Blocksize. The blocksize b ∈ N is the number of KB that are read with one disk
access. Whenever data is requested from secondary memory at least one whole
block is read and is transfered. The size of this block is given by the blocksize b
in KB.

Scale factor. Due to the fact that the access time, and not the available disk space, is
the limiting factor, controlled redundancy of stored data is accepted in order to
be more time efficient. This is especially true in the context of data warehouse
systems where materialized views occupy a large portion of disk space. In
general, the more data is materialized the more queries are answered without
accessing base data and the faster the system responses become. Some index
structures have the same property in that they can trade space and time. For ex-
ample, the more space is occupied by bitmap indexes, the more time efficient
structures are generated. We use bitmap indexes that are time optimal under
given space constraints [Chan and Ioannidis, 1998]. Bitmap indexes are charac-
terized by a scale factor sf ∈ R times the space occupied by the tree structures.
E. g. a scale factor of sf = 2 means that the bitmap indexes can occupy twice
the space used by trees.

7.2.4. Disk specific parameters

Besides inner nodes of R∗-trees index structures are usually not stored in main mem-
ory but in secondary memory. If a query is processed with an index structure, that
structure (or part of it) has to be read from secondary memory and transfered into
main memory. Many approaches compare index structures by only counting the
number of external I/Os. Our approach does not neglect the fact that reading blocks
sequentially is much faster than reading blocks randomly.

The behavior of disks is modeled by two parameters:

91



92 CHAPTER 7. TECHNIQUES FOR COMPARING INDEX STRUCTURES

Bandwidth. The Bandwidth bw ∈ R
+ of a disk is the speed [MB/s] with which the

disk can read data and transfer it into main memory. Since data is stored more
and more densely on the disks over time, this speed increases by approximately
40 % per year [Bitton and Gray, 1998], [Patterson and Keeton, 1998]).

Latency time. The second parameter is the average time tl of positioning the
read/write heads and to start reading the needed data. This time is the
latency time tl ∈ R of a disk system. On page 16 we defined latency
time=SeekTime+RotationTime/2. This parameter depends mainly on the
rotation speed of the disk. The rotation speed does not increase at the
same rate as the bandwidth bw. It increases only by approximately 8 % per
year [Bitton and Gray, 1998], [Patterson and Keeton, 1998].

The time for a random disk access tr and the time for a sequential disk access
is calculated from the above parameters as shown in Section 3.3 on page 16. The
fact that the bandwidth bw increases much faster than the latency time tl, decreases,
widens the gap between a sequential and a random block access. With today’s (2000)
disk technology, using a reasonable large blocksize it is ten to twenty times faster to
read a sequential block than a random block. In five years, this factor will probably
be increased by 30 to 70. One can argue that by then index structures will only be of
limited use, because sequential scans will be faster for most queries than using index
structures. This is true if the amount of data is kept fixed. But the capacity of disks
(and the amount of stored data) increases even faster than the bandwidth. Therefore,
the time for scanning a whole disk increases, and it will still be necessary to index
data. However, the index structures will have to adapt according to the changed
parameters.

7.2.5. Configuration

For our experimental setups we group the above defined nine parameters
d, t, c, qs, qd , b, sf , bw, tl together to a vector of nine parameters

e = (d, t, c, qs, qd , b, sf , bw, tl) (7.1)

Let us call a specific vector e a configuration. There are two restrictions between the
parameters. The number of dimensions d of the data space must be larger than or
equal to the number qd of dimensions in which the query box is restricted. The
number of indexed tuples must be larger or equal than the cardinality c of attributes.
In the remaining part of this chapter only configurations in which the restrictions
qd ≤ d and c ≤ t are considered.

For each parameter in e a set of values is defined. E. g. for the blocksize b, let
B = {4, 8, 16}. For the other parameters, value sets are defined similarly and denoted
by capitalized letters. The set of all configurations is defined as:

E= {(d, t, c, qs, qd , b, sf , bw, tl) (7.2)
∈ D × Nt × C × Qs × Qd × B × SF × BW × Tl|(qd ≤ d) ∧ (c ≤ t)}
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In the following experiments the parameters bw and tl are kept constant for one set
of parameter values. The set BW and the set Tl contains one value each.

7.3. Index structures and time estimators

Our goal is to develop techniques for the comparison of index structures. This Sec-
tion describes four for index structure models which are used for the comparison. We
apply two tree-based index structures and the two bitmap index structures. We limit
ourself firstly to the size of the index structure if the number of tuples and the car-
dinality of data which has to be indexed is given. Then we calculate the time which
is needed to process range queries. For each index structure we define a function
to estimate the time used for processing a given range query in a given configura-
tion. This chapter applies (s = 4) index structures. Therefore s different functions
ti : E → R

+ , i ∈ {1, · · · , s} are defined to estimate the time for query processing:

ti(e)= time for processing range query in configuration e

with index structure i

Next we show how the functions ti are calculated for the four index structures
which we apply in this chapter.

7.3.1. Time Measures for tree-based index structures

First we apply a tree-based index structure without aggregated data in the inner
nodes. We calculate the space needed for storing a tree-based index structure. Since
there are much more leaf nodes than inner nodes (inner nodes occupy less than 2 %
of the disk space in our experiments) we consider only leaf nodes. The number of
leaf nodes is the same for structures that use aggregated data and for structures that
omit materialized aggregates in the inner nodes. The space sdata (in Byte) needed
by one entry of a leaf node depends on the cardinality of the attribute cj and the
dimensionality d of the data. In addition, a pointer (Tuple IDendtifier= 4 Bytes) to the
data itself is stored:

sdata =

∑d
j=1dlog2 cje

8
+ 4︸︷︷︸

tid

(7.3)

The maximum fanout of data pages or leaf pages depends on the chosen blocksize b
and on the size of the data entries sdata. The greater the blocksize, the more data
entries are stored on each block. This maximum number of entries Bleaf per block is
given by:

Bleaf =

⌊
b ∗ 1024

sdata

⌋
(7.4)
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We define the number of data nodes n (leaf nodes) necessary to store all data entries
as the quotient of the number of tuples t that are indexed and the number of data
entries Bleaf fitting into one block:

n =

⌈
t

Bleaf

⌉
(7.5)

Here we assume that all nodes are filled with the maximum fanout. This is achieved
if a bottom-up structure like the STR-tree [Leutenegger et al., 1997] or packed R-
tree [Roussopoulos and Leifker, 1985] is used. Therefore, for other structures like the
R∗-tree Bleaf has to be set to the average number of entries per leaf node. For the
R∗-tree this is approximately 70 % of the maximum fanout.

We assume that blocks are not stored on the disk in a specific ordering. Each
page access to disk requires one random access. The number of necessary disk ac-
cesses can be computed by measures presented in Chapter 6. The time estimation
t1 : E → R for the tree without aggregated data is the expected number of necessary
page accesses Inter(q) multiplied by the time needed for one random access tr. The
calculation of the form of a range query q depends on parameters qs and qd of con-
figuration e as presented on page 90. Given this vector q and the other parameters of
the tree-based index structure we define the time from the given configuration e as
the product of expected number of disk accesses times random access time:

t1(e) = Inter(q) ∗ tr (7.6)

Chapter 5 described the idea of aggregated data in the inner nodes of an index struc-
ture in detail. If aggregated data is used, there is no access necessary to rectangles
completely contained in the query box. Border(q) is the number of leaf nodes which
have to be accessed when aggregated data is used. Then the expected time t2(e) for
the tree-based structure with use of aggregated data is the product of the number of
accessed pages and the time for a random block access tr:

t2(e) = Border(q) ∗ tr (7.7)

We use the two measures t1 and t2 to estimate the time for a given configuration
to process a query with tree structures. There are approaches in which blocks are
stored in some ordering (e. g. Hilbert-curve or the Z-curve). For few dimensions (two
to three) this reduces the number of random block accesses because blocks are read
sequentially. However, this effect is only effective for few dimensions and for a high
number of dimensions this effect can be neglected.

7.3.2. Time measures for bitmap indexing techniques

This section investigates bitmap indexing techniques. Bitmaps indexes perform dif-
ferently from tree-based indexing techniques. Details of bitmap indexing techniques
are presented in Section 3.6. This chapter uses multi-component equality encoded
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bitmap indexes and multi-component range based encoded bitmap indexes. For
simplicity, we use the terms equality encoded and range encoded here.

Here, we concentrate on time optimal bitmap indexes under a given space con-
straint [Chan and Ioannidis, 1998]. To compare bitmap index structures with tree
structures, we assume that the space constraint depends on the space the tree struc-
ture needs multiplied by scale factor sf . First the size of each bitmap vector (e. g. size
of B1 in Figure 3.10 on page 28) is determined. The number of blocks necessary for
storing one bitmap vector depends on the number of tuples t and on the blocksize b:

v =

⌈
t

8 ∗ 1024 ∗ b

⌉
(7.8)

This model assumes that the size of the space which is occupied by bitmap vectors
is proportional to the space needed by tree structures. Let m denote the number
of bitmap vectors that are stored by the system. This value of m depends on the
blocks allocated by the tree structure and a scale factor sf , which is one of our input
parameters:

m =

⌊
n ∗ sf

v

⌋
(7.9)

The space constraint m gives the maximum number of bitmap vectors for all di-
mensions together. We split the global m into separate mj for each dimension
j = 1, 2, · · · , d with

∑d
j=1 mj ≤ m weighted by the cardinality cj :

mj =

⌊
m

log cj∑d
j=1 log cj

⌋
(7.10)

The mj ’s are used to calculate the base of the encoded bitmap indexes in each dimen-
sion. For equality and range encoded bitmap indexing techniques we get different
structures. Therefore, we have to distinguish between the bases for the two distinct
bitmap indexing techniques. Having the mj and cj at hand, we calculate the bases of
the equality encoded bitmap index as shown in Figure 3.12 on page 30.

Estimator Bequal in Equation 3.9 on page 33 calculates the number of bitmap vec-
tors which are read when processing a range query with equality encoded bitmap
indexes. The first block access is a random block access while the other block ac-
cesses are read sequentially. The time for processing the range query is calculated
by:

t3(e) = (tr + (v − 1)ts) ∗ Bequal (7.11)

Figure 3.15 on page 32 shows the calculation of the base of the bitmap index with
given mj for range encoded bitmap indexes. Equation 3.17 on page 33 defines for a
given base the number of bitmap indexes which are read. Given the estimator for the
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Table 7.1.: Functions to estimate the processing time using various index structures

Function Index Structure

t1 R-tree without aggregated data
t2 R-tree with aggregated data
t3 Equality encoded bitmap index
t4 Range encoded bitmap index

range encoded bitmap vectors as Brange, we calculate the time needed for the range
encoded bitmap index as:

t4(e) = (tr + (v − 1)ts) ∗ Brange (7.12)

This section defined four functions t1, t2, t3, and t4 to calculate the time for pro-
cessing a configuration e with an index structure. In Table 7.1 the four functions are
summarized. The functions t1 and t2 provide functions of the expected time for pro-
cessing range queries using trees. The functions t3 and t4 define the expected time
for access the data with bitmap indexing techniques.

7.4. Classification trees

This section applies classification trees to get information about the most important
parameters which influence the performance of index structures. Classification trees
are important tools in detecting latent structures in data [Venables and Ripley, 1994].
Classification trees use a set of objects or tuples, a set of one or more classification
variables, and one response variable [Breimann et al., 1984]. A classification tree can
be reviewed as a hierarchical collection of rules: For example, for tuple a ∈ O the
rule set may look like:

if (x ≤ 3) and (y ≤ 5) then a belongs most likely to group A
if (x ≤ 3) and (y > 5) then a belongs most likely to group B
if (x > 3) then a belongs most likely to group C

A B

y ≤ 5 C

x ≤ 3

Figure 7.1.: Simple example of a classification tree
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In this example are x and y the classification variables, a is a tuple or data item
and the response variable can take values in O = {A, B, C}. Figure 7.1 displays
the rules in the form of a binary tree. When constructing a classification tree there
are two contradicting objectives. First, a classification tree should be rather small
in terms of terminal nodes. This objective yields to too general trees. The extreme
case is a generated tree consisting of only one terminal node. The second objective
is to classify as many data items correct as possible. This objective leads to rather
large trees. In the extreme case a tree has one different terminal node for each data
item. Such extreme classification trees are rather useless. The main goal is to find
an appropriate tradeoff between the size of the tree and its accuracy measured as a
misclassification rate.

7.4.1. Applied methods

This section describes how classification trees are applied for comparing index struc-
tures. For each configuration e ∈ E, the expected times are computed for process-
ing the specified query for s tree structures. This is done by applying the functions
ti : E → R defined in Section 7.3. The best (fastest) index of all structures is selected
by a function smin : E → {1, · · · , s} which is defined as:

smin(e) = min{i ∈ {1, · · · , s}|ti(e) ≤ tj(e) ∀j ∈ {1, · · · , s}} (7.13)

For each configuration e ∈ E, function smin : E → {1, · · · , s} selects the fastest
index structure. The input set for the generation of the classification tree consists of
ten-dimensional vectors. The first nine values are the parameters defined by e. The
last value is the response variable and corresponds to the index of the fastest index
structure. Formally we define this set G for constructing the classification tree as:

G = {(d, t, c, qs, qd , b, sf , bw, tl︸ ︷︷ ︸
e

, smin(e))|e ∈ E}

Table 7.2 shows an example of the set G. This set G is the input for the statistical
software package S-Plus.

7.4.2. Value sets of Parameters

Table,7.3 shows the different experimental parameter sets. Altogether there are
42,336 cases considered for building a classification tree. This are fewer cases than
for the aggregation technique presented in Table 7.4 because the software package
S-Plus cannot handle such a large number of cases in a reasonable time.

We fix some parameters before running the software. The minimum number of
elements of a node of a classification tree before the node is split is set to minsize=10.
The minimum number of elements per node after a split is set to mincut=5.
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Table 7.2.: Set G for generation classification tree

d t c qs dq b sf bw tl smin(e)

1 106 3 10−7 1 4 1 60 6 0
1 106 3 10−7 1 4 2 60 6 0
1 106 3 10−7 1 4 3 60 6 0
1 106 3 10−7 1 8 1 60 6 0
1 106 3 10−7 1 8 2 60 6 0
1 106 3 10−7 1 8 3 60 6 0
...

...
...

...
...

...
...

...
...

...

Table 7.3.: Parameter sets for experiments

Name Variable Set Set of different values
name name

Dimensions d D {1, 2, 3, 4, 5, 6, 7}
Tuples t Nt {106, 107, 108, 109}
Cardinality c C {3, 10, 100, 103, 104, 105, 106}
Query box size qs Qs {10−7, 10−6, · · · , 10−2}
Query box
dimensions

qd Qd {1, 2, 3, 4, 5, 6, 7}
Block size [KB] b B {4, 8, 16}
Scale factor sf SF {1, 2, 3}
Bandwidth bw BW today (2000): 11 MB/sec, in 5 years: 60 MB/sec
Latency time tl Tl today (2000): 6 ms, in 5 years: 4 ms
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7.4.3. Results

The number of misclassified data items depends on the size of the tree. The more leaf
nodes the tree consists of, the more data items are classified correctly. The smaller
the tree is, the more data items are misclassified. Figure 7.2 shows the tradeoff be-
tween the number of misclassified data items and the size of the tree in number of
leaf nodes. The x-axis shows the number of leaf nodes and the y-axis the number
of misclassified data items. For 45 to 60 terminal nodes 6209 data items or 14.6 %
of all data items are misclassified. If the tree is pruned to 32 leaf nodes, the mis-
classification rate increases to 16 % and for a tree with only 20 terminal nodes the
misclassification rate is about 20.6 %.

Figure 7.2.: Size of tree vs. misclassification of cases

In Figure 7.3 the generated classification tree with 20 leaf nodes is plotted. The 19
inner nodes guide the path to the leaf nodes. From this type of tree we extract two
kinds of knowledge.

1. Rules: For this experimental setup we get 20 rules. We pick out the following
rule for example:

If sf > 1 and qs > 10−4 and d ≤ 1 ⇒ R∗
a-tree �

2. Importance of parameters: If a specific case e ∈ E satisfies the precondition
(sf > 1 and qs > 10−4 and d ≤ 1), the R∗

a-tree is the fastest structure.
However, the classification tree contains additional information. The occurrence

of the parameters in the inner nodes of the tree give a hint of to what degree the
parameters influence the behavior of the tree structure. One interesting result of the
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? ◦

qd ≤ 2 ?

qs ≤ 10−5 ×

d ≤ 6

◦ ×

d ≤ 3 ◦

qd ≤ 3 ×

qs ≤ 10−5

c ≤ 10

◦ ?

d ≤ 1

◦

? ◦

qd ≤ 2

d ≤ 3

qd ≤ 1 ?

d ≤ 4 ◦

qd ≤ 3

?

? �

qd ≤ 3

t ≤ 107

� ?

d ≤ 1

qs ≤ 10−4

qs ≤ 10−5

sf ≤ 1

Index structure Symbol

R-tree without aggregated data ◦
R-tree with aggregated data �
equality encoded bitmap index ×
range encoded bitmap index ?

Figure 7.3.: Classification tree for year 2000 data
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application of the classification tree is the fact that the blocksize is not used in any
nodes of the classification tree. The blocksize is assumed to be an important parame-
ter in DBMSs. However, in these experiments the blocksize is of limited importance.
The bitmaps are not very sensitive to changes of the blocksize. Therefore, a changed
blocksize yields to minor changes of the performance of bitmaps. For tree structures,
the blocksize is an important factor. However, if the trees are applied for very small
range queries (nearly point queries) a query is processed by accessing one or very
few leaf nodes. In this case the blocksize is not important. If the query box is large
and several blocks are read, the bitmaps are more efficient than the trees. Therefore,
we conclude that the blocksize does influence the behavior of the structures, but not
change the relative performance between the structures.

? ×

d ≤ 6

◦ ×

d ≤ 1 ◦

qd ≤ 1 ×

d ≤ 3 ◦

qd ≤ 2 ×

d ≤ 4 ◦

qd ≤ 3 ×

qs ≤ 10−5

c ≤ 10

◦

?

◦ ?

d ≤ 3

qd ≤ 1

d ≤ 1 ◦

qd ≤ 2 ?

d ≤ 4

◦

? ◦

qd ≤ 4

d ≤ 5

◦ �

qs ≤ 10−4

t ≤ 108

qd ≤ 3

� ?

d ≤ 1

qs ≤ 10−5

sf ≤ 1

Index structure Symbol

R-tree without aggregated data ◦
R-tree with aggregated data �
equality encoded bitmap index ×
range encoded bitmap index ?

Figure 7.4.: Classification tree for year 2005 data

Figure 7.4 shows a classification tree which is generated with data for disks as-
sumed to be available in five years. One interesting result of this tree is the fact that in
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7d 7d 7d7d

2d 2d 2d2d

bitmap
encoded

range

bitmap
encoded
equality

Ra-treeR-Tree

h1 h2 h3 h4

sum/median

t3 t4t2t1

fastest index structure (”winner”)2d smin

select arg min

Figure 7.5.: Sum aggregation technique

more than two-third of all inner nodes the variables for the number of dimensions d
or the variable for the query box dimensions qd occurs. In five years the variables d
and qd influence the relative performance of the structures more than other parame-
ters. Therefore, these parameters have to be carefully investigated.

Classification trees have one drawback. The input for the classification algorithm
is the information which index structure is the fastest for a certain configuration.
There is no information about the distance between the best solution and its com-
petitors.

7.5. Statistics in two dimensions

This section describes an aggregation technique for comparing different index
structures by keeping two parameters fixed [Jürgens and Lenz, 1999b]. Having de-
fined the s functions from Section 7.3, the technique works in the following way:
The two parameters bw and tl are selected for one experiment. We create for each
structure a seven-dimensional cube using the above defined functions ti. Each cell
of the seven-dimensional data cube stores the expected time for processing a range
query for a given configuration. The seven-dimensional data is mapped to two-
dimensional data by using statistical aggregation functions. Aggregation functions
like sum, min, max, count, and median can be used as a measure of ’location’ or ’mean’
behaviour of an index structure. Next, we describe the sum, median, and count aggre-
gation in detail.
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7.5.1. Sum aggregation

Figure 7.5 sketches how the sum aggregation is implemented. From each of the s dif-
ferent seven-dimensional data cubes, we generate a two-dimensional data cube by
applying the aggregation function sum. Two dimensions are preselected into which
we aggregate the data. Assume that the number of dimensions d and blocksize b
are selected and that they are kept fixed. The aggregation is done by functions hi,
i ∈ {1, · · · , s} as follows:

hi(d
′, b′) =

∑
(e∈E)∧(d=d′)∧(b=b′)

ti(d, t, c, qs, qd , b, sf , bw, tl︸ ︷︷ ︸
e

)∀(d′, b′) ∈ D × B (7.14)

The sum function is proportional to the average case, because the number of cases
is constant for all index structures. From the s two-dimensional data cubes, a two-
dimensional cube is computed. Each cell of the resulting two-dimensional cube is
computed by applying the function smin : D × B → {1, · · · , s}. The function smin

selects the index of the structure with the smallest value (shortest processing time).
Function smin is defined as:

smin(d′, b′) = min{i ∈ {1, · · · , s}|hi(d
′, b′) ≤ hj(d

′, b′) ∀j ∈ {1, · · · , s}}∀(d′, b′) ∈ D × B
(7.15)

Functions like min or max can be used similarly as the sum function in Equa-
tion 7.14. An optimistic user may use the min function. A decision based on the min
function assumes always the best case. A pessimistic user applies the max function.

7.5.2. Median aggregation

The median aggregation method is similar to the sum aggregation method. The main
difference is the definition of function hi in Equation 7.14. Instead of calculating the
sum of all values the median as a less sensitive statistic (cf. [Huber, 1981]) is selected:

hi(d
′, b′) = Median{ti(d, t, c, qs, qd , b, sf , bw, tl︸ ︷︷ ︸

e

)|e ∈ E ∧ (d = d′) ∧ (b = b′)}

∀(d′, b′) ∈ D × B

The second part of the aggregation methods works similar to the sum aggregation.

7.5.3. Count aggregation

A third aggregation technique is the count aggregation. This technique is im-
plemented differently from the two previously described approaches. Figure 7.6
sketches the count aggregation technique. The count aggregation generates from
s seven-dimensional data cubes one seven-dimensional data cube by selecting the
index of the cube with the minimum value. Function smin implements this selection:

smin(e) = min{i|ti(e) ≤ tj(e) ∀j ∈ {1, · · · , s}} (7.16)
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Figure 7.6.: Count aggregation technique

From this seven dimensional cube one two-dimensional cube is generated by select-
ing the most frequent value for each subset.

hi(d
′, b′) = mostFrequent{smin(e)|e ∈ E ∧ e ∈ E ∧ d′ = d ∧ b′ = b} (7.17)

The count aggregation is less sensitive against extreme values, because all configu-
rations are weighted equally.
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Table 7.4.: Parameter sets for experiments

Name Variable Set Set of different values
name name

Dimensions d D {1, 2, 3, 4, 5, 6, 7, 8, 9}
Tuples t Nt {106, 3 ∗ 106, 107, · · · , 3 ∗ 1010}
Cardinality c C {3, 10, 100, 103, 104, 105, 106, 107}
Query box size qs Qs {10−8, 3 ∗ 10−8, 10−7, · · · , 10−3}
Query box
dimensions

qd Qd {1, 2, 3, 4, 5, 6, 7, 8, 9}
Blocksize [KB] b B {2, 4, 8, 16}
Scale factor sf SF {1, 2, 3, 4}
Bandwidth bw BW today (2000): 11 MB/sec, in 5 years: 60 MB/sec
Latency time tl Tl today (2000): 6 ms, in 5 years: 4 ms
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7.5.4. Results

This section presents results of experiments applying the aggregation technique. The
results of the median aggregation method and count aggregation method are similar
to the sum aggregation method. Therefore, we present only results of sum aggrega-
tion.
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Figure 7.7.: Results I: Sum aggregation technique (year 2000)
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Figure 7.8.: Results II: Sum aggregation technique (year 2000)

In the experiments the bandwidth bw and the latency time tl are set to fixed
values. We vary the remaining seven parameters and all possible combinations
of the sets in Table 7.4 (under the constraint (qd ≤ d) ∧ (c ≤ t)). This yields in
617,760 different combinations for each index structure. For each of these com-
binations the four functions ti are evaluated. Then we apply the aggregation
as described previously. There are n(n−1)

2
= 21 different possibilities, on how

to aggregate the seven-dimensional data into two-dimensional data. All two-
dimensional results are presented here for today’s disk systems and for disk system
expected in five years. The parameters for the disk are the parameters of a Sea-
gate Cheetah 18. The latency time tl is set to 6 ms and the bandwidth bw is set to
11 MB/sec [Patterson and Keeton, 1998]. Some of the results are discussed next.

On the very left of the topmost line of pictures in Figure 7.7 the data is aggre-
gated according to the number of dimensions and the scale factor. This graph shows
that for more than three dimensions the bitmap indexes perform faster than the tree-
based index structures. For two or less dimensions the tree structures with aggre-
gated data are best.

The right most picture in the third row in Figure 7.7 compares the cardinality c
and the number of query box dimensions qd . This picture shows that for queries
which are restricted in more than four dimensions the tree-based index structures
with aggregated data are well suited. If queries are restricted in only two to three
dimensions, bitmap indexes are superior.

The very left picture in the fifth row in Figure 7.7 compares the number of di-
mensions d and the attribute cardinality c. It can be seen that for more than 2 to 3
dimensions the bitmaps are better than the tree structures.
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Figure 7.9.: Results III: Sum aggregation technique (year 2005)
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Figure 7.10.: Results IV: Sum aggregation technique (year 2005)

In Figure 7.8 the third row compares the query box size qs and the number of
query box dimensions qd . If only one or two attributes occur in the range query,
the bitmap indexes outperform the trees. If the query box is very small (nearly a
point query) aggregated data in inner nodes of the trees cannot be used and the tree
without aggregated data works most efficiently for qd > 2. If the query box size is
increased, the tree with aggregated data becomes superior. However, for very large
query boxes, the range encoded bitmap works best.

Figure 7.9 and Figure 7.10 show the results of the same experiments as shown in
Figure 7.7 and Figure 7.8, but the bandwidth bw and the latency time tl are changed.
In the area of new computer technology it is very difficult and risky to make any
predictions for the future. If we assume that the bandwidth bw increases by 40 %
each year and the latency time tl is decreasing by only 8 % per year (like bw and tl
did during the last years [Bitton and Gray, 1998], [Patterson and Keeton, 1998]), the
models we presented here can be used to predict the performance of index structures
with new disk technology. Here, we extrapolate this trend, present results for disk
systems expected to be available in five years and compare them with results of
today’s disk systems.

Figure 7.9 and Figure 7.10 show that the bitmaps gain advantages over the tree-
based indexing techniques with the use of future disk technology. In the next years,
in many more cases range encoded bitmap indexes are faster than its competitors
than today. This trend becomes evident if the number of dimensions is considered.
Comparing the first column of pictures in Figure 7.7 with the first column of pictures
in Figure 7.9 shows that with 2000s disk drives the bitmap are better than the trees
for at least three dimensions. With the expected disk technology of 2005 the bitmaps
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are in many cases better than tree-based index structures.
Bitmaps are gaining advantages in comparison to trees, because they read large

blocks of data. Trees access only small blocks and suffer from long latency times tl.

7.6. Summary

For data warehouses fast access to large sets of data is crucial. Index structures sup-
port query processing. Many parameters influence the performance of index struc-
tures. Here we concentrate on a set of nine parameters. We present two techniques
to compare different index structures for the use in a data warehouses. Classification
trees generate rules to evaluate which index structure is suited best for a specific ex-
perimental setup. Further results are information about what parameters influence
the performance of index structures most. One evidence is, that the chosen blocksize
for a database is only of limited influence, but the scale factor sf is very important, be-
cause it is first selected feature in the induced classification trees. Statistical function
and aggregation methods show in which cases specific index structures outperform
other index structures. In addition, we show that due to changes in disk technology,
bitmap indexing techniques will gain advantages over the traditional tree-based in-
dex structures in the future.
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