
4. Mixed Integer Problems for Finding
Optimal Tree-Based Index
Structures

The best way to escape from a problem is to solve it. Alan Saporta

This chapter describes an approach for finding optimal index structures by map-
ping the problem into a Mixed Integer Problem (MIP) and then solving the MIP
using standard algorithms.

4.1. Introduction

If all data is known a priori, an approach for constructing a good index structure is
to create bottom-up structures from the leaves to the root [Finkel and Bentley, 1974].
Other examples for structures using this technique are the STR-
tree [Leutenegger et al., 1997], packed-R-tree [Roussopoulos and Leifker, 1985]
and the Hilbert R-tree [Kamel and Faloutsos, 1994]. Section 3.5.7 discusses these
techniques. These approaches apply heuristics to cluster the multidimensional
points according to some rule. These techniques use only the relations between
single points (local optimization) and they do not reach generally a global opti-
mum. An idea to find a global optimum with high probability is using simulated
annealing [Pagel, 1995].

In contrast to heuristic approaches, this chapter describes an approach that guar-
antees finding an optimal index structure.

4.2. Optimization problem parameters

The problem of finding a good clustering of points into clusters (rectangles) is
mapped to a MIP and then processed with a MIP-solver. Every tuple is a point in a d-
dimensional data space and every leaf node is mapped to a rectangle. Therefore, the
terms tuple and points respectively leaf nodes and rectangles have similar meanings
and are used interchangeable. If a tuple belongs to a certain node/cluster, its point is
in the rectangle of the leaf node it belongs to. Since overlaps between rectangles are

35

36
CHAPTER 4. MIXED INTEGER PROBLEMS FOR FINDING OPTIMAL

TREE-BASED INDEX STRUCTURES

allowed, a point lying in a rectangle does not necessarily imply that its tuple must
belong to the node of that rectangle. We define now all parameters needed for our
approach.

• Dimensionality of data d. Examples presented in this chapter assume the di-
mensionality d = 2. In general we assume d ∈ N .

• Set P of d-dimensional points, which are to be clustered. P =
{(p11, · · · , p1d), · · · , (pt1, · · · , ptd)}.

• The cardinality of P is represented by t, (|P | = t). In the examples small sets
with 4, 8, 12, and 16 points are used. We define T = {1, · · · , t}.

• The number of leaf nodes or clusters is denoted by n. The number n is given
as an input parameter. The set P of t tuples has to be clustered into n nodes. In
the example n ∈ {1, 2, 3, 4}, We define N = {1, · · · , n}.

• Bleaf is the maximal number of tuples per leaf node. This is the capacity of a
leaf node. (In the example: Bleaf = 5).

• bleaf is the minimum number of points per leaf node. (In the example: bleaf = 2,
minimum usage of nodes 40 %).

The values of Bleaf and bleaf are constraint. There cannot be more tuples than the
capacity of all leaf pages and there must be enough tuples to fill the leaf pages with
at least bleaf tuples (bleaf ∗ n ≤ t ≤ Bleaf ∗ n).

4.3. Mapping into a mixed integer problem

The task is to cluster t tuples into n leaf nodes. Each leaf node contains between
bleaf and Bleaf tuples. The affiliation of a tuple to a leaf node is modeled by binary
variables xij . Variable xij is set to 1 if and only if tuple j belongs to leaf node i.
If tuple j does not belong to leaf node i xij is set to 0. Leaf nodes are represented
by the minimum bounding boxes (rectangles) of all points belonging to the cluster.
lik is the lower limit of the bounding box of cluster i in dimension k, and uik is the
upper border of the bounding box of cluster i in dimension k. Figure 4.1 shows an
example. Based on the above parameters we define a corresponding MIP for the leaf
node level. In order to extend the model to other levels of the tree, all equations have
to be applied to all other levels, too. Due to its similarity of the other relations, we
do not present this here.

Objective: Minimize the sum of margins of all clusters:

min
∑
i∈N

∑
k∈{1,··· ,d}

(uik − lik) (4.1)

36

4.3. MAPPING INTO A MIXED INTEGER PROBLEM 37

l12

u12

l11 u11

p4

p3

p1

p2

dimension1

dimension2

Figure 4.1.: Upper and lower bounds for MIP

We mention that all uik, lik, and xij are variables of the MIP, but only the uik and
lik occur in the objective function. With margin we denote half of the perimeter. The
minimization of the sum of margins of all clusters is chosen as the objective function
because this yields rather quadratic rectangles. Other objectives like minimize over-
laps of all clusters or minimize the area of all clusters do not generate quadratic rectangles
and have the additional drawback that they cannot be expressed as linear functions.
The complexity of MIPS with non linear objectives is higher than the complexity of
MIPS with linear objectives.

To guarantee that the calculated solution satisfies all necessary conditions of a
tree-based index structure, the following constraints have to hold:

Constraints:
Each point pj belongs to exactly one cluster:∑

i∈N

xij = 1 ∀j ∈ T (4.2)

The number of tuples per leaf node is limited by the maximum fanout. Each
cluster stores at most Bleaf points:∑

j∈T

xij ≤ Bleaf ∀i ∈ N (4.3)

Each cluster contains at least bleaf points:∑
j∈T

xij ≥ bleaf ∀i ∈ N (4.4)

37

38
CHAPTER 4. MIXED INTEGER PROBLEMS FOR FINDING OPTIMAL

TREE-BASED INDEX STRUCTURES

All tuples of a leaf node are inside the bounding box of the leaf node. We check the
upper limits:

xijpjk ≤ uik ∀k ∈ {1, · · · , d} ∀j ∈ T ∀i ∈ N (4.5)

If xij = 1, the point j belongs to cluster i and the coordinates of point j are lower
or equal the upper bounds of cluster i. If xij = 0, point j does not belong to cluster
i and nothing is checked. In this case the left hand side equals 0 and the constraints
are true for all reasonable pjk and lik. We check the lower limits:

(1 − xij)Hk + pjk ≥ lik ∀k ∈ {1, · · · , d} ∀j ∈ T ∀i ∈ N (4.6)

where Hk ≥ maxj∈T pjk. If xij = 1, the point j belongs to cluster i and the coordinates
are checked. Then (1 − xij) becomes 0 and the above equation remains to pij ≥ lik.
If point j does not belong to cluster i, xij is set to 0 and a “large” constant value is
added to the left side of the equation and the equation is true for all pjk and ljk.

The fact that the lower bounds are always less than or equal to the upper bounds
can be followed from Equation 4.4, Equation 4.5 and Equation 4.6. The next four
equations define the domain of the used variables. All xij are binary variables:

xij ∈ {0, 1} ∀j ∈ T ∀i ∈ N (4.7)

All pjk are not negative reals:

pij ∈ R
+
0 ∀k ∈ {1, · · · , d} ∀j ∈ T (4.8)

All ljk are not negative reals:

lij ∈ R
+
0 ∀k ∈ {1, · · · , d} ∀j ∈ N (4.9)

All ujk are not negative reals:

uij ∈ R
+
0 ∀k ∈ {1, · · · , d} ∀j ∈ N (4.10)

Equation 4.2 through Equation 4.10 define the constraints and the variables of a
MIP. A solution defined by the these equations guarantees to be a valid solution.
If, in addition to the constraints, the objective function defined in Equation 4.1 is
minimized, an optimal solution is found.

4.4. Problem complexity

The number of variables and constraints depends on the number of tuples t, the
number of leaf nodes n, and the number of dimensions d. The time complexity of a
MIP depends mostly on the number of integer variables that are defined in the MIP.
This MIP contains only the binary variables xij . There are t ∗ n binary variables xij .
Scientific standard algorithms solve MIPs with a branch and bound algorithm where
one more integer variable increases the height of the branch and bound tree by one.
Therefore, the time complexity is O(2tn). This exponential growth implies that the
algorithm cannot be used for real sized problems but only for small examples.

38

4.5. MODEL EVALUATION 39

Table 4.1.: Calculated margins of R∗-tree and MIP for different configurations,
R∗-tree on Sun Sparc 10 and MIP solver cplex 3.0 on Sun Sparc 4

Cluster Points fanout Margin CPU-time [sec]
n t Bleaf bleaf R∗ MIP R∗ MIP
1 4 5 2 118 118 0.00 0.01
2 8 5 2 119 118 0.01 0.34
3 12 5 2 149 147 0.02 38.64
4 16 5 2 176 173 0.02 14127.84

R∗ margin=119 MIP margin=118

Figure 4.2.: Clustering for t = 8, n = 2

4.5. Model evaluation

Although the time complexity is high, evaluation of the MIP is done for small data
sets. We run experiments in order to check how the solutions calculated by the above
described MIP differ from solutions found by heuristics. We apply the MIP and the
R∗-tree for different numbers of tuples and clusters. We use the R∗-tree as a reference
structure throughout this thesis. New techniques applied in this thesis are tested
against the widely used R∗-tree.

Table 4.1 shows the results of experiments with four sets of points which are clus-
tered into one to four leaf nodes. The results in column five and column six show that
the clusterings found by the R∗-tree have approximately the same quality in terms
of minimum margin as the MIP-clusterings. Therefore, heuristics as the R∗-tree are
quite good in clustering data for small problems.

The costs for computing the MIP-clustering grow exponentially with the number
of clusters and the number of points. Experiments show that this approach is not
feasible for practical problems. The MIP is solved with cplex 3.0 running on a Sun
Sparc Station-4. Better hardware and software could make the experiments faster,
but for real problems, it is still slow. The R∗-tree implementation runs on Sun Sparc
Station-10. The Sun Sparc Station-10 is about four times faster than the Sun Sparc
Station-4. This constant factor in speed does not change the meaning of the results.

39

40
CHAPTER 4. MIXED INTEGER PROBLEMS FOR FINDING OPTIMAL

TREE-BASED INDEX STRUCTURES

R∗ margin=149 MIP margin=147

Figure 4.3.: Clustering for t = 12, n = 3

R∗ margin=176 MIP margin=173

Figure 4.4.: Clustering for t = 16, n = 4

40

4.6. SUMMARY 41

The clusterings of the first experiments with n = 1 and t = 4 found by the MIP
and R∗-tree are the same and, therefore, are not graphically presented.

The left sides of Figure 4.2, Figure 4.3, and Figure 4.4 show the clusterings gen-
erated by the R∗-tree. The figures on the right side show the clusterings calculated
by the MIP approach. The R∗-tree [Beckmann et al., 1990] is an heuristic approach
which is applied to cluster points to the rectangles on the lowest level of the tree-
structure. It calculates solutions that are nearly as good as the optimal solutions cal-
culated by the the MIP approach.

More experiments with the optimizer MOPS [Suhl, 1998] show that the gap be-
tween the solution of the relaxed LP (linear problem without integer constraints) and
the solution with the integer constraints is high. Therefore, the branch and bound
tree becomes large and the execution time for solving the MIP increases. More ad-
vanced techniques like column generation, could be applied to speed up moderately
this technique.

4.6. Summary

This chapter investigates the creating of optimal tree-based index structures by map-
ping the problem of finding an optimal index structure into a MIP. The MIP is solved
and the solution represents an optimal index structure according to an objective
function. Experiments show that the solutions found by the MIP are only slightly
better than solutions found by the heuristic R∗-tree. The time complexity of the MIP
grows exponentially in the size of the input. Because of this time complexity this ap-
proach cannot be applied to real world databases. However, for small data sets this
technique evaluates how closely the heuristic approaches attain its optimum. In the
next chapters we will apply heuristic techniques to organize multidimensional data.
Heuristic approach scale much better with the problem size than the MIP approach.

41

42
CHAPTER 4. MIXED INTEGER PROBLEMS FOR FINDING OPTIMAL

TREE-BASED INDEX STRUCTURES

42

