
3. Data Storage and Index Structures

640 K ought to be enough for anybody. Bill Gates

One important property of DBMSs is their ability to handle large amounts of
data. In order to store and retrieve this data efficiently different techiques are ap-
plied. This chapter introduces basic methods that are relevant to save and search
large sets of data as they are typical in data warehouse systems.

3.1. Introduction

Data warehouses store huge sets of multidimensional data. The databases of such a
system can be as large as TB of data. Data of this size does not fit into main memory
and is therefore stored on secondary or even on tertiary memory. To process the data
and use it for computations within the CPU the data is transfered through different
components of a computer system. These components are reviewed in a memory
hierarchy. We describe the memory hierarchy that is typical for today’s computer
systems. Fast accesses to the data stored on secondary memory have to be provided
to retrieve the data. The mechanics of the disks influence the performance of the
index structures and is therefore investigated here.

We map the multidimensional tuples stored in the data warehouse into a multi-
dimensional data space. We define the data space and the typical queries processed
on the data. In order to process the specified queries efficiently different access struc-
tures have been designed in academic research. We present different kinds of struc-
tures and concentrate on tree-based based index structures and bitmap indexes.

3.2. Memory hierarchy

The major characteristic of such computer systems which the DBMSs run
on is the memory hierarchy consisting of five levels [Gray and Reuter, 1993],
[Härder and Rahm, 1999], [Garcia-Molina et al., 1999], [Saake and Heuer, 1999].

CPU registers are the fastest storage devices of a computer system and store the
operands of computations. The next level is the cache. For read operations each
value in a cache is a copy of some value in the main memory. There are often two
kinds of cache. One small cache is integrated on the processor chip. One other larger

15

16 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

second level cache is placed on a separate chip. The main memory is a volatile stor-
age and ranges from 128 MB to more than 10 GB for typical machines. Main memory
is accessed randomly and access time ranges between 10−8 and 10−7 seconds.

The secondary memory is a non-volatile storage. The random access to disk is
usually more than 105 times slower than the access to main memory. In database sys-
tems, transfering the data from the disk into main memory is the main performance
bottleneck. The cost models in this thesis are based on the accesses to disks.

Tertiary memory has larger capabilities than secondary memory, but slower ac-
cess times. Typical kinds of tertiary storage systems are: ad-hoc tape storages,
optical-disk juke boxes, and tape silos. Tertiary storage access is approximately 1,000
times slower than secondary memory access but can be 1,000 times more capacious.
In data warehouse environments it often archives and backups data.

3.3. Mechanics of disks

The complete database of a data warehouse does not usually fit into the main mem-
ory of a computer system. Therefore, the database is stored on the next level of
the memory hierarchy, the secondary memory. As previously mentioned, access to
secondary memory is more than 100,000 times slower than access to main memory.
Often, this access to secondary memory is the bottleneck of a DBMS.

However, not all accesses to secondary memory are equal. Reading blocks se-
quentially from hard disks is much faster than random access.

A disk consists of a number of platters rotating around a central spindle. Each
platter has two surfaces that are covered with magnetic material. Figure 3.1 sketches
a disk with three platters and six surfaces. The bits are stored sequentially in con-
centric circles on the surfaces that are called tracks. Each track consists of a fixed
number of sectors.

When data is requested from the disk complete sectors of data are read. Physical
sectors are mapped to logical blocks. Often the terms “pages” or “chunks” are used
in the same context. In this thesis we assume that one block is mapped to a fixed
number of sectors and we use the words block and sectors interchangeable. The size
of a block in KB is denoted by blocksize b.

As previously mentioned, the access to a block on secondary memory can
be performed in two different modes. The time ts for a sequential block access
(transfer time) is calculated by [Härder and Rahm, 1999]:

ts = transfer time =
b ∗ 1024

transfer rate
(3.1)

The time tr for a random block access is calculated by:

tr = seek time +
rotation time

2
+ transfer time (3.2)

16

3.3. MECHANICS OF DISKS 17

Spindle

Cylinder

Disk arm

Read/write head

Figure 3.1.: Disk with three platters and six surfaces

With today’s hard drives and block sizes of 4 KB the time tr for a random block
access is approximately 10 to 20 times larger than ts. This difference in access time
increases the performance of structures which access large contiguous portions of
data at the same time.

Experimental studies show that the seek time and the rotation time de-
crease by only 8 % per year, while the transfer rate increases by 40 % per year
[Patterson and Keeton, 1998], [Bitton and Gray, 1998]. Therefore, the ratio between
the time for a random block access tr and the time for a sequential block access ts in-
creases significantly. Sequential disk accesses are getting disproportionately cheaper.
This difference between the sequential and random access times implies two facts
that become even more important in the future:

1. If more than a certain fraction (approximately 5 to 10 %) of the data has to be
accessed, a full table scan is faster than the use of a tree-based index structure.
This fraction is decreasing every year.

2. For a comparison of different access structures it is not sufficient to count only
the block I/Os . The number of random block accesses and sequential block
accesses have to be weighted differently.

In the next chapters we will consider these two facts and use them for the com-
parison of index structures.

17

18 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

3.4. Data space and queries

We assume the data of a fact table introduced in Section has to be indexed. The fact
table is the relation schema R(a1, a2, · · · , an, s), where aj are the key attributes and
the names of the dimensions. The fact attribute is denoted as s. Each dimension aj

has the domain Aj and s is a summary value.

3.4.1. Data space

Without loss of generality we assume that an index is built on the first d ∈ {1, · · · , n}
attributes. The index structure does not consider the other (n−d) attributes. Pointers
(tid) are stored in the leaf nodes of the index structure to point to the locations where
the complete tuples are stored [Härder and Rahm, 1999]. We assume that all indexed
attributes are discrete values. The cardinality of the different domains Aj is given by
cj = |Aj | for all j ∈ {1, · · · , d}. Each set Aj is coded to a set of non-negative integers
Oj = {0, · · · , cj − 1}.

Definition 3.1 The d-dimensional data space is defined as the set
O = O1 × · · · × Od.

For each tuple of relation R one index entry (p, tid) is created, where p ∈ O
and tid ∈ TID is a unique Tuple IDentifier and TID is the set of all correct Tuple
IDentifiers. The set of all index entries is A ⊂ O × TID where ∀(p1, tid1), (p2, tid2) ∈
A : tid1 = tid2 ⇒ p1 = p2.

For storing set A, this set is partitioned into subsets which store the elements of
each subset on one block. When partitioning A into subsets the tuples, that have
points which are close to each other, should be in the same block. Each block is
represented often by a minimum bounding box or minimum bounding rectangle that
all tuples include. These regions are represented as d-dimensional hyper-rectangles.
Definition 3.2 specifies these d-dimensional hyper-rectangles.

Definition 3.2 A d-dimensional hyper-rectangle I of the data space O is defined
as I = [l1, u1]×· · ·×[ld, ud] ⊂ O where lj ∈ {0, · · · , cj−1} is the lower limit in the
jth dimension and uj ∈ {0, · · · , cj − 1} is the upper limit in the jth dimension
(lj ≤ uj) ∀j ∈ {1, · · · , d}.

3.4.2. Queries

An index structure processes different kinds of queries. We define the most impor-
tant query types below.

Point queries. Point queries retrieve all elements of a specific point p.

18

3.5. TREE-BASED INDEXING 19

Definition 3.3 A point query PQ : O → 2A with PQ(p) = {(p, tid) ∈ A} is a
query that returns all elements having exactly the value of point p.

Range queries. Range queries retrieve all elements that are contained in a d-
dimensional hyper-rectangle I .

Definition 3.4 A range query RQ : 2I → 2A with RQ(I) = {(p, tid) ∈ A|p ∈ I}
is a query returning all elements where p is included in the range of the hyper-
rectangle I .

The size of a query box is given as q = (q1, · · · , qd) := (u1 − l1, · · · , ud − ld). A partial
range query is a query with a query box where some dimensions are not restricted.
Each partial range query can be simulated by a range query. For each dimension i,
for which the partial range query is not restricted, the hyper-rectangle of the range
query is set to lj = 0 and uj = cj − 1. Therefore, we shall only use the term range
queries in this thesis.

Nearest neighbor. Nearest neighbor queries are important for similarity search and
they retrieve the closest data items to some specified point p.

Definition 3.5 A nearest neighbor query is NNQ : O → 2A, where NNQ(p) =
{p′|∀p′′ : dist(p, p′) ≤ dist(p, p′′)}

The distance between two points is calculated by a function dist. Different metrics
can be used here, such as Euclidean metric, Manhattan metric, or maximum metric.

The previous definitions characterize the data that is indexed and the queries that
are executed. In the context of data warehouses range queries on aggregated data are
of main interest. Therefore, we investigate what kind of index structures efficiently
support these queries for a given set of data by using the hardware described in
Section 3.2 and Section 3.3.

3.5. Tree-based indexing

In the beginning there was the B-tree. The B-tree [Bayer and McCreight, 1972] is a
widely used one-dimensional tree-based index structure in DBMSs. It is proven that
there is no better one-dimensional index structure with the same generality and flex-
ibility than the B-tree. However, there is no general solution on how to apply the
B-tree for indexing multidimensional data.

One method is to generate one B-tree for each attribute. If there is a range query
in more than one dimension, the B-trees for all selected dimensions are applied. If
d = 2, the result sets r1 and r2 of the indexes are calculated and intersected. The left
side of Figure 3.2 shows this approach. The result sets of predicate1 and predicate2 of
query q is calculated by selecting all tuples that are in both result sets.

19

20 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��������������
��������������
��������������
��������������

��
��
��
��

dimension1

dimension2

selection
predicate2

selection
predicate1

q

r1 r2

Two B-trees: Result sets r1 and r2

have to be intersected

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

dimension1

dimension2

selection
predicate1

q

r1

One B-tree: Result set r1 has to be
evaluated completely

Figure 3.2.: Use of B-tree for multidimensional data (d = 2)

Another possibility is the use of just one B-tree. For example, the B-tree in di-
mension 1 is used. Then each tuple that belongs to the result set r1 is loaded and
we evaluate if the tuple satisfies predicate2. This idea is sketched on the right side of
Figure 3.2. However, this approach has the main drawback that much more tuples
are loaded and evaluated than actually belong to the result set.

A third alternative to index multidimensional data with one-dimensional B-
trees uses compound indexes. For each permutation of a set of dimensions a one-
dimensional index is built. In our example the indexes a1, a2 and index a2, a1 are cre-
ated. The number of necessary indexes is the main disadvantage of this approach.
For d-dimensional data d! indexes must be created and must be maintained. This
approach is not feasible for high dimensional data.

A fourth option is the mapping of the multidimensional data space into a one-
dimensional data space with a space filling function. A space filling function de-
fines a one-dimensional ordering for a multidimensional space [Markl, 1999], see
Section 3.5.7.

The remainder of this chapter discusses some basic properties of multidi-
mensional index structures. We cannot give a complete survey; we rather sim-
ply sketch some ideas that help us to understand what index structures for sec-
ondary memory are used in the context of indexing data warehouse data efficiently.
For further details we refer to standard references [Samet, 1989], [Samet, 1990],
[Gaede and Günther, 1998].

.

3.5.1. Top-down, bottom-up, and bulk loading

For a given set of data there are two approaches in creating index structures. The
first approach is the top-down method; that is the data is added from the root to the

20

3.5. TREE-BASED INDEXING 21

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�
F

D E

B

C

A

G

G

E

B C

F

D

A

Figure 3.3.: Point quadtree: Data space and tree representation

leafs in the tree. The top-down approach should only be applied, if all of the data
is not known in advance and data has to be inserted and deleted frequently. The
second approach is the bottom-up method. Here, the leafs are created first. Then
the upper levels of the tree are built successively from the bottom to the top. The
bottom-up approach works best, if all data is known in advance and no changes are
made after the create phase. Hybrid techniques can be applied. In this case the index
is created efficiently with a bottom-up technique and changes are propagated with
the top-down method.

Inserting data in a multidimensional index structure incrementally is ex-
pensive. An approach to alleviate this problem is to attach a buffer to each
node [van den Bercken et al., 1997]. If the node exceeds its capacity tuples are loaded
into the buffer. This allows inserting many tuples at the same time and postponing
the expensive split operations. Related techniques are the small-tree-large-tree ap-
proach [Chen et al., 1998] and the buffer tree [Arge, 1995].

3.5.2. Point quadtrees

Point quadtrees [Finkel and Bentley, 1974] are multidimensional extensions of binary
trees. Two-dimensional point quadtrees (d = 2) divide the data space into non uni-
formly sized cells. Each cell stores up to a fixed number of data points. Once the
capacity is exceeded, the cell is split into the 2d = 4 sub-cells: NE, SE, SW, and NW
clockwise in this order. The left side of Figure 3.3 represents some cells in a plane
while the right side of the same figure shows the structure of the quadtree.

The main drawback of this structure is that each node that exceeds its capacity
is split into four sub-nodes in the two-dimensional case. Therefore, the minimal
number of entries per node can be as low as 1

4
of the maximum capacity. For the

three-dimensional case this structure is also called octree. If a split occurs in the
octree, each node is split into eight sub-nodes. In general, for a d-dimensional tree
each split creates 2d descendants. Therefore, the average space utilization might be
low for a high number of dimensions.

21

22 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

Figure 3.4.: kdb-tree with 1,000 locations in California

3.5.3. kd-tree

The kd-tree [Bentley, 1975] is in contrast to the point quadtree a binary tree. A node
split in a kd-tree is processed by splitting a node into two child nodes according
to one dimension. The dimension for that the split is chosen either randomly or
according to some rules. The kd-tree guarantees that each leaf nodes is filled by at
least 50 %. However, the top down approach of the kd-tree is an unbalanced index
structure.

3.5.4. kdb-tree

The kdb-tree [Robinson, 1981] combines the balanced structure of the B-tree and
the multidimensional features of the kd-tree. The path from the root to the leafs
has always the same length; some pages may be split without any overflow. This
effect is called cascade splitting and might generate some nodes without any entries.
Figure 3.4 shows a kdb-tree in which coordinates of cities in California are inserted.
In the lower left corner cascade splits generate empty pages.

3.5.5. R-tree

The R-tree [Guttman, 1984] is a multidimensional generalization of the B-tree. In
contrast to the B-tree which uses one-dimensional intervals as atomar elements, the
R-tree applies multidimensional rectangles to represent multidimensional intervals.
The R-tree consists of two different types of nodes. Leaf nodes and non-leaf nodes.
Leaf nodes contain entries of the form (tid, rectangle) with tids referring to records in

22

3.5. TREE-BASED INDEXING 23

the database. Non-leaf nodes contain entries of the form (cp, rectangle) with cp being

Figure 3.5.: R-tree with rectangles as atomar elements

a pointer to a child node of the R-tree and rectangle being the minimum bounding
rectangle of all rectangles which are entries of that child node (cf. Figure 3.5). Each
rectangle is represented as a hyper-rectangle respectively a hyper-interval I as de-
fined in Definition 3.2 on page 18. Non-leaf nodes are used to direct the path to the
leaf nodes. Therefore, they are also called directory nodes.

In contrast to the B-tree and the other index structures, the R-tree contains
overlaps of regions. This implies, that no worst case analysis is possible. For
a point query there can be ambiguous ways that have to be traversed. The R+-
tree [Sellis et al., 1985] is an approach to overcome this problem by using clipping to
prevent overlaps. There are several other extension of the R-tree, some of which are
briefly discussed in the next two sections.

3.5.6. R∗-tree

The R∗-tree [Beckmann et al., 1990] provides a better insertion algorithm than the R-
tree. It uses a forced reinsert mechanism to reorganize the structure. This mechanism
enables the structure to adapt to data distributions and not to suffer from rectangles
inserted previously. Experimental comparisons of the R-tree family show that the
R∗-tree performs faster than the other structures [Beckmann et al., 1990].

The maximum fanout B and the minimum fanout b of the nodes are important
parameters for trees. Let Bdir denote the maximum number of directory entries fit-
ting in one node and let bdir be the minimum number of entries in a directory node.
The parameter bdir satisfies the following condition: 2 ≤ bdir ≤ Bdir

2
. The param-

eters Bleaf and bleaf are defined in the same way. The ratio between bleaf and Bleaf

respective bdir and Bdir influences the performance of the R∗-tree. A high value of
bleaf yields to less leaf nodes, but to more overlaps between the regions of different
nodes on the same level. Beckmann et al. got the best tradeoff for bdir

Bdir
=

bleaf
Bleaf

= 0.4

23

24 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

Figure 3.6.: R∗-tree with 1,000 locations in California

[Beckmann et al., 1990]. In experiments later presented in this thesis this value is
used as well.

3.5.7. Other relatives of the R-tree family and other tree
structures

There are many different extensions besides the R+-tree and the R∗-tree to improve
the performance of the R-tree. This section discusses some approaches briefly.

The packed-R-tree [Roussopoulos and Leifker, 1985] is a bottom-up structure
and clusters data items together in a data node according to a nearest neighbor
function. The idea of the Hilbert R-tree [Kamel and Faloutsos, 1994] is to cluster the
data together in nodes of the same level according to a Hilbert curve (cf. left part
of Figure 3.7). The Hilbert curve is applied to calculate a one-dimensional Hilbert
value for multidimensional points/rectangles. The points are then clustered accord-
ing to their Hilbert values. The rectangles are clustered according to the Hilbert
value of their center. The HG-tree [Kuan and Lewis, 1999] is a multidimensional tree
structure designed for point data based on the Hilbert R-tree. The Simple Tile R-
tree (STR-tree) [Leutenegger et al., 1997] is a bottom-up structure like the packed
R-tree, but it applies the Sort-Tile-Recursive algorithm to cluster rectangles. The X-
tree [Berchtold et al., 1996] is an R∗-tree with variable size of nodes. The size of a
node can be enlarged to prevent node splitting that would yield to nodes with large
overlaps.

Rectangles are not well suited for nearest neighbor queries. The SS-
tree [White and Jain, 1996] uses spheres instead of rectangles. Figure 3.8 shows an

24

3.5. TREE-BASED INDEXING 25

Hilbert curve Z-Ordering

Figure 3.7.: Space filling curves

Figure 3.8.: SS-tree width spheres as atomar elements

25

26 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

example to organize the data. A benefit of this structure is that a region is de-
fined by storing one d-dimensional point and the radius. Only (d + 1) numbers are
stored for each region, whereas the R-tree defines its regions with 2d coordinates.
The SR-tree [Karayama and Satoh, 1997] is a combination of the SS-tree and R-tree.
Weighted dimensions [Großer, 1997] apply a priority scheme to split an R∗-tree more
often in selected dimensions than in other dimensions. It is advantageous to split
in these dimensions more frequently in which the query boxes are restricted mostly.
Another way of improving the performance is achieved by executing R-trees in par-
allel [Schnitzer and Leutenegger, 1999].

A flexible tree structure for indexing spatial objects is the cell
tree [Günther, 1989]. Figure 3.9 shows an example of the cell tree. The cell tree

Figure 3.9.: Cell Tree with polygons as atomar elements

does not use hyper-rectangles as atomar data items, but more general polygons.
The idea of the UB-tree [Bayer, 1996], [Bayer and Markl, 1998], [Markl, 1999] is

to sort the multidimensional data according to the Z-ordering (cf. right part of Fig-
ure 3.7). For each multidimensional point the corresponding Z-value of the square
in which the point is contained is calculated. The corresponding Z-values are then
indexed using a B-tree.

3.5.8. Generic tree structures

During the last years many different index structures have been developed. Some
of them are presented in this chapter. New index structures differ often just in a few
details from existing ones. Therefore, some approaches are developed to provide
generic frameworks where the common part of the index structures is given by the
system and only the differences are specified and implemented by researcher and de-
veloper. One approach is the Generalized Search Tree (GiST) [Hellerstein et al., 1995],
[Kornacker et al., 1997], [Kornacker, 1999] where different index structures are im-
plemented by just defining the four functions consistent, union, penalty, and pick-

26

3.6. BITMAP INDEXING 27

split. The Access Method DeBuging tool (AMDB) [Kornacker et al., 1998] illustrates
for a given data and query set the performance of the structure. Gurret et al. fo-
cuses mainly on spatial benchmarks [Gurret and Rigaux, 1998] and implement dif-
ferent spatial index structures and join algorithms in one framework. The perfor-
mance therefore can be compared easily. Günther et al. discuss related techniques
for comparing spatial join algorithms [Günther et al., 1998].

3.6. Bitmap indexing

Bitmap indexing is rather different from the tree-based indexing considered pre-
viously. One of the main benefit of bitmap indexing techniques is that they are
easy to implement. In addition, the operations of the bitmap indexing tech-
niques are mostly reading large blocks of bits and Boolean operations on vectors
of bits (bitmap vectors). These operations are performed very efficiently. This
is one reason, why bitmap indexing techniques are implemented in commercial
database systems, e. g. Oracle [Christiansen et al., 1998], Sybase [Sybase, 1997], and
Informix [Informix, 1997]. Among the disadvantages of bitmap indexing techniques
are the facts that they can be very space consuming and that the insert / update
operations are more expensive than for tree-based structures.

O’Neil et al. compare different indexing techniques in a rather qualitative ap-
proach [O’Neil and Quass, 1997]. Equality encoded and range encoded indexing
techniques [Chan and Ioannidis, 1998] are promising structures for read-mostly envi-
ronments. Interval encoded bitmap indexing techniques [Chan and Ioannidis, 1999]
are optimal under certain conditions. In the presence of hierarchies of the
attributes special bitmap structures are used by some bitmap indexing tech-
niques [Wu and Buchmann, 1998].

3.6.1. Standard bitmap indexing

The idea of bitmap indexing is simple. First, we treat each dimension separately. For
each attribute aj a number of cj bitmap vectors are generated, with cj = |Aj|. Each
bitmap vector has a length of t bits, where t is the number of tuples it indexes. The
jth bit of the kth bitmap vector is set to 1, if the jth tuple corresponds to the kth value
and it is set to 0 otherwise. The left side of Figure 3.10 shows the first five rows of
the projection of a relation R on attribute a1. We assume A1 consists of 12 different
values which are mapped to integer numbers between 0 and 11. Figure 3.10 presents
the bitmap index for this data. Each column B11 to B0 represents one bitmap vector.
If all tuples have to be selected where a1 = 3 the bitmap vector B3 is read and all
tuples, with the bits set to 1, are chosen (PQ(3) ≈ B3). Such a set of bitmap vectors
is generated for all dimensions.

If preconditions like (a1 = 3) ∧ (a2 = 2) are evaluated, one bitmap vector for
attribute a1 and one bitmap vector for attribute a2 are read and a Boolean AND op-
eration is performed.

27

28 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

πa1(R)
5
3
0
3
11
...

B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...

Figure 3.10.: Original data and standard bitmap index

The size of the bitmap index depends on the number of tuples and on the cardi-
nality of the attributes. The size of one bitmap vector given in blocks is calculated
as v = d t

8192∗be, where b is the block size in KB and t is the number of tuples that are
indexed. For each element of the domain Aj one bitmap vector is created. The total
number of bitmap vectors is calculated by:

Space =

d∑
i=1

cj (3.3)

However, bitmap indexes in the form presented here, have some drawbacks. Firstly,
the cardinality of the domain of each attribute has to be known in advance. In read-
mostly environments which are in the focus of this thesis this is a reasonable assump-
tion. A second drawback is, if the cardinality of the domain is large, standard bitmap
indexes become very space consuming.

Finally, range queries are very typical for data warehouse systems. Standard
bitmaps are not very efficient for range queries. Consider the above example from
Figure 3.10 and a range query like 2 ≤ a1 ≤ 7. For this query six bitmap vectors B2

to B7 are read and distributively combined as:

RQ([2, 7]) ≈ (B7 ∨ B6 ∨ B5 ∨ B4 ∨ B3 ∨ B2) (3.4)

Alternatively, the bitmaps B0, B1 and B8 to B11 are read, distributively combined
and the compliment calculated: RQ([2, 7]) ≈ ¬(B11 ∨ B10 ∨ B9 ∨ B8 ∨ B1 ∨ B0). In
each case six bitmaps vectors are read.

The next sections describe extensions of bitmap indexing techniques to over-
come the above mentioned problems. One approach of multi-component equality
encoded bitmap indexes which increases the space efficiency of standard bitmaps is
presented. A further approach investigates range encoded bitmap indexes to sup-
port range queries more efficiently. A hybrid approach combines both approaches to
a space and time efficient index for processing range queries.

28

3.6. BITMAP INDEXING 29

πa1(R)
5
3
0
3
11
...
x

B2
1 B1

1 B0
1 B3

0 B2
0 B1

0 B0
0

0 1 0 0 0 1 0
0 0 1 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 0
1 0 0 1 0 0 0
...

...
...︸ ︷︷ ︸

y

...
...

...
...︸ ︷︷ ︸

z

Figure 3.11.: Base-<3,4> equality encoded bitmap index

3.6.2. Multi-component equality encoded bitmap index

The equality encoded bitmap index [Chan and Ioannidis, 1998], overcomes the prob-
lem of being very space consuming for attributes with large domains. It could be ar-
gued, that space is no longer an issue. However, the occupied space is proportional
to the time for creating such an index. Therefore, the space measures the creation
time and even in read-mostly environments this time cannot be neglected. The main
idea of compressing bitmap indexes presented here can be seen as an encoding of
the values of a1 into a different number system. For example, the values 0 to 11
from the above example are encoded into the <3,4> number system. Each value
x ∈ {0, · · · , 11} is encoded by x = (4 ∗ y + z) where y ∈ {0, 1, 2} and z ∈ {0, 1, 2, 3},
y := bx ÷ 4c, z := (x mod 4). The values of y and z are then stored like standard
bitmap indexes. Figure 3.11 shows the resulting structure. The main benefit of this
approach is the reduced space consumption in comparison with the standard bitmap
index. The standard bitmap index in Figure 3.10 needs 12 bitmap vectors. The <3,4>
encoded bitmap vector in Figure 3.11 stores seven bitmap vectors. However, the sav-
ings in space reduce the time efficiency of the structure. For a point query, two
bitmap vectors are read with the <3,4> equality encoded bitmap index. To compute
the result for the query a1 = 3 the term PQ[3] ≈ (B0

1 ∧ B3
0) is evaluated.

For larger attribute cardinality cj the differences in space and time are even more
significant. Consider an example, where c1 = 1, 000 different values are indexed. The
standard bitmap index can be seen as a <1000> encoded structure and 1,000 bitmap
vectors are created. For each of the values between 0 and 999 one bitmap vector is
stored. One way of compression is to decode each digit of the values separately. This
<10,10,10> multi-component equality encoded bitmap index stores only 30 bitmap
vectors. The number of bitmap vectors, read for a query like ai = 352 is increased
from one bitmap vector of term (B352) to three bitmap vectors in term PQ[352] ≈
(B3

2 ∧ B5
1 ∧ B2

0), while the number of necessary vectors is decreased.
This example shows the time-space tradeoff. There are four interesting points

of this tradeoff: time optimal, space optimal, “knee”, and time optimal under given
space constraint [Chan and Ioannidis, 1998]. In this example the time optimal in-
dex has the base of <1000>. This is the standard bitmap index. The space optimal

29

30 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

nj = 0
repeat

nj = nj + 1
bj = bmj/njc + 1
rj = (mj + nj)mod nj

until bj
rj (bj − 1)nj−rj ≥ cj

Figure 3.12.: Calculation of base for multi-component equality encoded bitmap in-
dexes for given mj and cj

index has the base of <2,2,2,2,2,2,2,2,2,2>. This is the binary representation of the
values. The more interesting tradeoffs are somewhere in between (e. g. <34,33> or
<10,10,10>). In the following chapters we construct index structure which are time
optimal under given space constraint.

The processing of range queries with a multi-component equality encoded
bitmap index is more complex. The query 2 ≤ a1 ≤ 7 is processed by evaluating
the expression:

RQ([2, 7]) ≈ (¬B0
1 ∨ (B0

1 ∧ (B2
0 ∨ B3

0)))︸ ︷︷ ︸
2≤a1

∧¬B2
1︸︷︷︸

a1≤7

(3.5)

Figure 3.12 sketches the algorithm to calculate the base for an equality encoded
bitmap index. This algorithm performs for each j ∈ {1, · · · , d} with the input pa-
rameters cardinality of the attribute cj and the maximum number of bitmap vectors
mj . The output are the number of components nj and the size of each component
(depends on bj and rj). An additional optimization step (not shown here), improves
the performance of the bitmap index structures [Chan and Ioannidis, 1998]. The base
in each dimension j is then given by:

< bj − 1, · · · , bj − 1︸ ︷︷ ︸
nj−rj

, bj , · · · , bj︸ ︷︷ ︸
rj

> (3.6)

In this thesis, the base in the jth dimension is denoted as:

< bj1, bj2, · · · , bjnj
>=< bj − 1, · · · , bj − 1︸ ︷︷ ︸

nj−rj

, bj , · · · , bj︸ ︷︷ ︸
rj

> (3.7)

For example: b23 denotes the base of the third component of the second attribute /
dimension. The number of bitmap vectors in all dimensions is:

Space =

d∑
j=1

mj =

d∑
j=1

rj∑
i=1

bji =

d∑
j=1

((nj − rj)(bj − 1) + rjbj) (3.8)

30

3.6. BITMAP INDEXING 31

The average number of bitmap vectors which have to be read for processing a
range query [Chan and Ioannidis, 1998] is:

Bequal =
d∑

j=1

nj∑
i=1

Erj ,i, where

Erj ,i =

{
1

bji

(⌊
bji

2

⌋2

+
(
bji − 1

)(⌈ bji

2

⌉
− bji

2

))
: bji > 2

1 : otherwise

(3.9)

3.6.3. Range-based encoding

As we argued before, standard bitmap indexes do not efficiently process range
queries. This section describes an approach that supports range queries more time
efficient than the previous described techniques. There are different definitions
of range-based encoding [Chan and Ioannidis, 1998], [Wu and Buchmann, 1998]. In
this thesis we use the definition by Chan and Ioannidis.

The main idea is to set the bit of the kth bitmap vector to 1 if the value is smaller
or equal the kth value. More formally, the range encoded bitmap index is calculated
from the equality encoded indexes by:

B
i
=

{
B

i−1 ∨ Bi : i ≥ 1
Bi : i = 0

(3.10)

where B indicates the use of the range encoded bitmap index.
In this approach range queries of arbitrary size are processed by just reading two

bitmap vectors. Figure 3.13 shows an example of a range-based index structure for
the same values as in Figure 3.10. The range query 2 ≤ a1 ≤ 7 from the previous
example is processed by evaluating the term:

RQ([2, 7]) ≈ B
2︸︷︷︸

2≤a1

∧¬B
8︸︷︷︸

a1≤7

(3.11)

Since bitmap vector B
11

equals 1 for all tuples, this vector is not stored. The space
(in bitmap vectors) for range-based encoding is:

Space =

d∑
j=1

(cj − 1) (3.12)

The average number of bitmap vectors that are read for a range query of arbitrary
size is:

T ime = 2
d∑

j=1

bj − 1

bj

(3.13)

31

32 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

πa1(R)
5
3
0
3
11
...

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

Figure 3.13.: Single component range-based encoded index

πa1(R)
5
3
0
3
11
...

B
1

1 B
0

1 B
2

0 B
1

0 B
0

0

1 0 1 1 0
1 1 0 0 0
1 1 1 1 1
1 1 0 0 0
0 0 0 0 0
...

...
...

...

Figure 3.14.: multi-component-<4,3> range encoded index

3.6.4. Multi-component range-based encoding

The two techniques described in the Section 3.6.2 and Section 3.6.3 improve stan-
dard bitmap indexes. The multi-component bitmap index reduces the problem of
low space efficiency of standard bitmap indexes for attributes with large domains.
The range encoded bitmap index supports range queries more efficiently. We com-
bine both techniques. The new structure is called a multi-component range-based
encoded bitmap index. Figure 3.14 shows an example. For processing the query

nj = 0
repeat

nj = nj + 1
bj = bmj/njc + 1
rj = (mj + nj)mod nj

until (bj + 1)rjbj
nj−rj ≥ cj

Figure 3.15.: Calculation of base for multi-component range encoded bitmap in-
dexes for given mj and cj

32

3.7. ARRAYS 33

2 ≤ a1 ≤ 7 the term

RQ([2, 7]) ≈ (¬B
1

1 ∨ (¬B
2

0 ∧ B
0

1))︸ ︷︷ ︸
2≤a1

∧ (¬B
1

1)︸ ︷︷ ︸
a1≤7

(3.14)

Figure 3.15 shows the algorithm for calculation of the base of the range encoded
bitmap index. This algorithm is executed for each j, j ∈ {1, · · · , d}. The result defines
the base in each dimension as:

< bj , · · · , bj︸ ︷︷ ︸
nj−rj

, bj + 1, · · · , bj + 1︸ ︷︷ ︸
rj

> (3.15)

The space (in bitmap vectors) allocated by this structure is:

Space =
d∑

j=1

mj =
d∑

j=1

rj∑
i=1

(bji − 1) =
d∑

j=1

((nj − rj)bj + rj(bj + 1)) (3.16)

With the given bases for the multi-component equality encoded bitmap indexes
it is possible to estimate the time needed to process queries by the structure. The
number of bitmaps that have to be scanned for a specific configuration according
to [Chan and Ioannidis, 1998] is:

Brange =

d∑
j=1

2

(
(nj − rj)(bj − 1)

bj
+

rjbj

bj + 1

)
(3.17)

3.6.5. Other compression techniques / combination of bitmaps
and trees

In cases where the attribute cardinality is high many bits in the bitmap vector
representation are 0. There are other than previous described techniques to com-
press a large number of zeros. Let us assume the space needed for storing one
tid is 4 Bytes respectively 32 Bits. If less than 1

32
of all values are 0 it is more

space efficient to store a list of Tuple IDentifiers instead of a complete bitmap vec-
tor [O’Neil and Quass, 1997]. To organize the bitmap vectors and/or the tid-lists, a
B-tree is used on top of the bitmap vectors/tid-lists. This technique can adapt to the
actual data. If there are only a few different values, there are a few bitmap vectors. If
the number of different values increases, the bitmap vectors are more sparse. Once
less than a certain fraction (e. g. 1

32
) of all values are 1 it might be worth to change

the index structure to a tid-list. However, the transformation from the tid-list to a
bitmap representation implies some additional computation overhead.

3.7. Arrays

Arrays are efficient storage structures for dense multidimensional data. Each cell of
the array holds one cell of the multidimensional data space. If the array is stored on

33

34 CHAPTER 3. DATA STORAGE AND INDEX STRUCTURES

secondary memory extensions and reorganizations of the arrays are expensive oper-
ations. Extendible arrays overcome this problem [Rotem and Zhao, 1996]. Complete
reorganizations of the arrays are avoided and new data is appended to the old data.
Small structures, that can be held in main memory, allow searching and retrieving of
elements in the extended structure.

The mapping of array cells to blocks on secondary memory is called tiling. This
tiling influences the performance of arrays stored on disks [Marques et al., 1998].
Partial sums are stored in arrays to support the calculation of range queries on ag-
gregated data [Ho et al., 1997]. In general, arrays are used only for small databases
(up to 50 GB). The approach of storing data in multidimensional structures is called
Multidimensional OLAP or MOLAP.

3.8. Summary

Data warehouses systems store large sets of data for the purpose of interactive deci-
sion support. Special techniques are applied to support fast access to the data. Due
to the fact that the data cannot be completely stored on main memory, but on the sec-
ondary memory, the memory hierarchy and the mechanics of the disks influence the
performance of such systems. Multidimensional index structures are developed to
access the data efficiently. In detail, we presented multidimensional structures like
the R-tree family and bitmap indexing techniques. For bitmap indexing techniques
we presented formulars for occupied space and query processing time.

34

