
2. State of the Art of Data Warehouse
Research

We are drowning in data, but starving for knowledge!
(anonymous)

Data warehouse systems are a new technology and differ much from traditional
transaction-oriented operational database systems. This chapter describes the major
differences between the two concepts and their implications.

2.1. Introduction

Companies have invested much effort during the last decades in the area of infor-
mation technology. Much of the work was performed to optimize the transaction-
oriented systems whose main goal it is to react on customers’ orders as fast and as
cost-efficiently as possible. Companies have realized that valuable information is
stored in their databases. The use of this information can help them to act more ef-
ficiently. Operational systems do not support the extraction of information out of
databases efficiently because they were not designed for that kind of queries. Even
today there is no technology available which supports both kinds of applications.
Therefore, new systems are designed and implemented which support the decision
making process. These systems are called data warehouses. The specific properties
of these systems are described in this chapter. The chapter discusses approaches on
how to process queries in a data warehouse efficiently.

2.2. Traditional transaction-oriented systems

Most of today’s application systems follow a three-layer architecture. The upper
level is the presentation layer. Typically Graphical User Interfaces (GUI) visualize
the data for the user. The application layer in the middle includes the program logic
that covers the application itself, but no data is stored on this level. The data is
stored in the third tier, the database layer. Applications change data by invoking
operations like insert, update, and delete on the database. A sequence of opera-
tions is performed together as a transaction. These transactions have four prop-

5

6 CHAPTER 2. STATE OF THE ART OF DATA WAREHOUSE RESEARCH

erties: Atomicity, Consistency, Isolation, and Durability. They are abbreviated as
ACID [Härder and Reuter, 1983] . Such applications are called On-Line Transaction
Processing (OLTP) applications. Figure 2.1 shows an architecture with two OLTP
applications accessing their databases. Graefe gives a general survey on query pro-
cessing for these kinds of systems [Graefe, 1993].

Once the transaction-oriented data is stored in a database, a Decision Support
System (DSS) is often built to create reports by grouping and summarizing data
stored in the operational databases. There are various names for these kinds of sys-
tems; for instance, reporting tools, Management Information Systems (MIS), or ex-
ecutive information systems [Hannig, 1996]. In contrast to OLTP applications which
read/write data from the operational databases, a DSS only reads data to get new
information from the data sources. Figure 2.1 shows a DSS at the right side.

GUI

OLTP
application

OLTP
application

GUI GUI

update

insert
delete read

Database layer:

Application layer:

Presentation layer:

system
Decision support

External source (file system, ftp, www)

Figure 2.1.: OLTP application and information system based on operational
database(s)

A benefit of this approach is that only the operational databases have to be cre-
ated and maintained. A common set of metadata is used for both the operational
system and the added-on DSS. The administration overhead for the DSS is rather
small. However, there are significant disadvantages when the DSS and the transac-
tion oriented application software share the same databases. The DSS can only use
the actual data that is stored in the operational database. Therefore, historic analy-
sis are usually not possible due to update or delete operations which changed the
historic data. The operational database is optimized for transaction processes in a
multi-user mode. This includes locking operations which do not support a scan of
large sets of tuples well. Analytical queries often scan large amounts of tuples. These
long transactions significantly decrease the performance of the operational database
system. The solution which is usually applied to avoid these problems is to physi-
cally separate the transaction-oriented database from the database for the DSS. This
information system is called a data warehouse.

6

2.3. DATA WAREHOUSES FOR DECISION SUPPORT 7

2.3. Data warehouses for decision support

Inmon defined the term data warehouse as a subject oriented, integrated, time vari-
ant, and non-volatile collection of data in support of management’s decision making pro-
cess [Inmon, 1996]. In detail a data warehouse is:

Subject oriented. The goal of the data in the data warehouse is to improve deci-
sion making, planing, and control of the major subjects of enterprises such as
customer relations, products, regions in contrast to OLTP applications that are
organized around the work-flows of the company.

Integrated. The data in the data warehouse is loaded from different sources that
store the data in different formats. The data has to be checked, cleansed and
transformed into a unified format to allow easy and fast access.

Time variant. In operational systems, data is valid as of the moment of access,
whereas in data warehouse systems the data is valid as of a defined moment of
time.

Non-volatile. After the data is inserted in the data warehouse it is neither changed
nor removed. The only exceptions are that false data is inserted or the capacity
of the data warehouse is exceeded and archiving becomes necessary.

GUI

OLTP
application

OLTP
application

GUI GUI

update

insert
delete read

load

load

application
OLAP

load

External source

Database layer:

Application layer:

Presentation layer:

Operational databases

database
target

data
warehouse

Figure 2.2.: Distinct databases for the transaction-oriented applications and the TDB
the for information system/OLAP application

Data warehouses are physically separated from the operational DBMS. Such
an architecture is shown in Figure 2.2. The data warehouse integrates data from
multiple heterogeneous sources to support the need for structured and/or ad-hoc

7

8 CHAPTER 2. STATE OF THE ART OF DATA WAREHOUSE RESEARCH

Table 2.1.: Twelve golden OLAP rules as defined by Codd
Transparency Multidimensional conceptual view
Accessibility Consistent reporting performance
Client-server architecture Dynamic sparse matrix handling
Generic dimensionality Unrestricted cross-dimensional operations
Multi-user support Intuitive data manipulation
Flexible reporting Unlimited dimensions and aggregation levels

queries, analytical reporting, and decision support. This kind of application is called
On Line Analytical Processing (OLAP) . OLAP allows the transformation of data into
strategic information. Codd defined twelve golden OLAP rules [Codd, 1994]. Table 2.1
presents the name of these rules. The size of a data warehouse can be in the range of
TB (1012 Bytes). According to the MetaGroup study 1999 Data Warehouse Marketing
Trends/Opportunities more than 30 % of all data warehouse installations store more
than 1 TB, and 14 % of all data warehouse installations have more than 1,000 users.

A data warehouse system DW can formally be defined as a tuple consisting of
one target database TDB, metadata, and a set OP of operations:

DW = (TDB, metadata, OP)

The TDB is the target database for the loaded and transformed data. On this
database analytical queries are performed. The set OP of operations is partitioned
into four different groups:

Extraction. Extraction operations filter data from different internal or external data
sources into temporary data bases. The sources are databases, flat files, web
sites etc.

Transformation. These operations transform extracted data into an uniform format.
Model-, schema-, and data- conflicts are resolved during the transformation
phase.

Load. The load operations load the transformed data into the target database TDB.

Aggregating and grouping. The target database of the data warehouse system
does not only store operational data, but also aggregated data. Aggregate and
group operations calculate summarized data from base data.

Metadata such as descriptions of data structures stored at different
sources, supports each of the above groups of operations. Metadata in
the data warehouse system is even more important than in operational sys-
tems [Anahory and Murray, 1997]. Metadata is used to check the consistency of data
and to ensure that only safe operations [Lenz and Shoshani, 1997] are performed.

8

2.4. OLAP VS. OLTP 9

Table 2.2.: Differences between OLTP and OLAP
aspect OLTP OLAP

level of data detailed aggregated

amount of data
per transaction

small large

views pre-defined user-defined

typical write operation update, insert, delete bulk insert

“age” of data current (60 - 90 days) historical, current, predicted,
5 - 10 years

tables flat tables multidimensional tables

number of users high low-med

data availability high low-med

database size med (109 B − 1012 B) high (1012 B − 1015 B)

query optimizing much experience new

The target database is usually implemented with a relational DBMS (RDBMS)
because this technology is well understood and able to handle large sets of data.
However, the index structures investigated in this thesis can be applied to other
kinds of DBMSs, too. OLAP applications that are based on RDBMS are also called
Relational ROLAP (ROLAP).

2.4. OLAP vs. OLTP

Once the data is stored in the data warehouse, it is used to create new information
for decision making processes. Typical OLAP operations are drill down, roll up, and
slice & dice [Inmon, 1996], [Inmon et al., 1997].

Table 2.2 summarizes the differences between classical OLTP applications and
OLAP applications. In OLTP operations the user changes the database via trans-
actions on detailed data. A typical transaction in a banking environment transfers
money from one account to another account. The four ACID properties are essential
for this kind of application, because otherwise money may get lost or get doubled.
In OLAP applications the typical user is an analyst who tries to select data needed
for decision making. He is primarily not interested in detailed data, but usually in
aggregated data over large sets of data. A typical OLAP query is to calculate the
average amount of money that customers between age of 20 and 30 withdraw from
ATMs in a certain region. For that kind of query the DBMS does not change any
data. Hence no locking is necessary. Since the result is calculated by summing up

9

10 CHAPTER 2. STATE OF THE ART OF DATA WAREHOUSE RESEARCH

values from many different tuples, fast access to the data has to be supported. The
user directs any query in an ad-hoc manner to the system. There exist approaches to
model the behavior of the user [Sapia, 1999]. Based on such models the next queries
of a user is predicted and pre-computed. This pre-computation decrease the waiting
time for the user significantly and the interaction of a user with a data warehouse
will become more efficiently.

OLAP and data warehouses are similar to statistical databases that have been
discussed for many years [Lenz, 1993], [Lamersdorf et al., 1996], [Shoshani, 1997].

2.5. Accelerating query speed

The previous paragraph demonstrates the importance for having fast access to the
data stored in the data warehouse. In the typical data warehouse environment, some
requirements are less important than in the OLTP applications, e. g. locking and nor-
malization. The overall goal of a data warehouse is to give the user a tool for interac-
tive decision support. This implies that the user needs fast access to large sets of data
integrated from different sources. In the remaining part of this chapter, five tech-
niques are discussed that decrease the response time of the system. The speed-up
of access to data is achieved if typical requirements of transaction-oriented systems
are relaxed. Also redundancy of data increases the storage and update cost, but can
reduce the query response time.

2.5.1. Denormalized schemas

The choice of a data model is essential for any database design. Most OLTP systems
are designed on the conceptual level with entity relationship models and then trans-
formed into relational models. The relation schemas are normalized to avoid insert-,
update-, or delete-anomalies and redundancy. In data warehouse applications it is
more important to have fast access to data than to avoid anomalies. Therefore, the re-
lation schemas are usually not normalized. This implies redundancy in the data and
makes manipulative operations more expensive than in databases with normalized
schemas.

In a data warehouse multidimensional data is stored. A dimension is defined
over a dimensional schema which is a set of functionally interrelated dimensional
attributes [Lehner et al., 1998]. Dimensional attributes describe categorical attributes
and properties like “brand”.

The most popular denormalized schema of a data warehouse is the star
schema [Chaudhuri and Dayal, 1997]. A star schema consists of one base or fact ta-
ble in the center surrounded by dimension tables . Figure 2.3 shows an example of
a star schema. The denormalization becomes evident in the following examples: the
same state belongs always to the same country (e. g. LA and SF belong both to CA
and therefore both to the USA). The dependency between CA and USA is stored sev-
eral times in the relation region . There are other dependencies in the relation time

10

2.5. ACCELERATING QUERY SPEED 11

region_id city

product _idtime_id

day

product_id product_name product_group product_class

time_id
0051 03/1999 1999

yearmonth

0052
0053

03/05/1999
03/06/1999
03/07/1999

03/1999
03/1999

1999
1999

0030 SF
LA0031

CA
CA

state country
USA
USA

0052 0030

region_id sales

$14,312.690141

0141

.

.
.
. .

.

.

. .
. .

. .
.

.

.

Dimension table: PRODUCT

Dimension table: TIME
Dimension table: REGION

Base table: SALES

Figure 2.3.: Instance of a star schema

between month and the year .
Other schemas used for data warehouses include galaxy schema and snowflake

schema [Anahory and Murray, 1997]. A set of base tables with some mutual dimen-
sion tables is called a galaxy schema. A star schema with normalized dimension
tables is called a snowflake schema.

2.5.2. Materialized views

One widely used strategy of accelerating the access to aggregated data is to pre-
compute materialized views [Gupta et al., 1997]. Base tables of a data warehouse may
contain several millions of tuples. Therefore, scanning these base relations can take
a significant amount of time. If there is some knowledge on what kind of queries the
analysts will ask, these queries are pre-computed and the results are stored in mate-
rialized views. The access to pre-computed data is much faster than computing data
on demand. However, the main technical problems are that the pre-computation
takes time, the pre-computed data needs space, and it is difficult to predict what
kind of data the user is interested in. There are additional semantical problems, e. g.
the integrity constraints have to be satisfied. The data for pre-computation has to
be selected along three criteria. First, an aggregation function (e. g. sum, max, min,
avg, median, mostFrequent) is selected. Second, the dimensions are chosen; the data
is aggregated with the group-by-statement. Third, in case of hierarchical attributes,
the aggregation level is fixed. Data that is stored on a daily base can be summarized
to data for weeks, months, or years. The size of the different views can be estimated
without calculating the views [Shukla et al., 1996].

Assume three-dimensional sales data exist with time dimension, product dimen-

11

12 CHAPTER 2. STATE OF THE ART OF DATA WAREHOUSE RESEARCH

sion, and region dimension RSALES(time , product , region , sales) . The
three attributes time , product , and region are the categorical attributes. They
define the three dimensions of the data. The attribute sales is the summary at-
tribute and holds the information about the sales in a certain time about a certain
product in a certain region. Figure 2.4 shows the base relation with all three dimen-
sions at the bottom. The base relation is denoted by (t, p, r). From this base relation
various marginal relations (subcubes) are computed by summarizing the data. For
example RSALESpr(product , region ,sales) is computed by the following
SQL statement:

CREATE VIEW RSALESpr AS
SELECT product,region,SUM(sales)
FROM RSALES
GROUP BY product,region

(p,r)

(p)(r)

(t,r)

(t)

(ALL)

(t,p,r)

(t,p)

Figure 2.4.: Lattice of base table and subcubes/margins

In general, the base data is stored in a fact table R(a1, · · · , an, s). The variables
a1 to an denote the categorical attributes and s is the summary attribute. Figure 2.4
presents the whole lattice of relations. An arrow from (p, t, r) to (p, r) denotes the fact
that (p, r) is computable from (p, t, r). (p, t, r) can be seen as a three-dimensional data
cube and (p, r) as one of its two-dimensional subcubes. (ALL) denotes the aggregate
over all values. In general a n-dimensional data cube (without any hierarchical at-
tributes) has

(
n
k

)
k-dimensional subcubes. Therefore, a n-dimensional data cube has∑n

k=0

(
n
k

)
= 2n subcubes. If hierarchical attributes are considered, the number of

possible subcubes is even bigger. The (automatic) selection of views that should
be materialized is an actual research topic and known as the view selection prob-
lem [Gupta et al., 1997]. There are several different ways to choose the views for ma-
terialization such as Exhaustive search, Greedy algorithms [Gupta et al., 1997], A∗-
Algorithm [Labio et al., 1997], Integer programming [Yang et al., 1997], and Genetic
algorithms [Lee and Hammer, 1999].

None of the five approaches has proven to be dominant. Once the views are
selected and are materialized, another problem arises. Each time a base table is

12

2.5. ACCELERATING QUERY SPEED 13

changed, the materialized views and indexes built on it have to be updated (or at
least have to be checked whether some changes have to be propagated or not). The
views and the indexes can be updated incrementally or from the scratch. The prob-
lem of updating the views is known as the view maintenance problem [Huyn, 1997].

2.5.3. No locking

Since analysts only read data of a data warehouse and do not change tuples, a lock-
ing mechanism is not necessary. Data is changed only when it is inserted from exter-
nal data sources. This is scheduled for example at night when no analyst is allowed
to access the data. Overhead is decreased and query processing accelerated if no
locking mechanism is applied.

2.5.4. On-line aggregation

The execution of typical OLAP queries can take much time and the user waits for the
final answer until the query is processed completely. There are applications where
the user is more interested in having an approximate result after a short time than
getting a very precise answer after a long time period. One approach is the use of
on-line aggregation where the user is informed about the actual status of his query
during query processing [Hellerstein et al., 1997a], [Haas, 1999]. He can stop the ex-
ecution of the query at any time and gets the result that is computed so far. This
possibility of interactive query control significantly reduces the work load of the
database server. However, some techniques have to be applied to guarantee that the
data is processed in the system in random order.

2.5.5. Index structures

During the last three decades a great deal of research has been performed in the area
of index structures for DBMSs. Starting with the B-tree [Bayer and McCreight, 1972]
many new structures have been developed [Gaede and Günther, 1998]. The B-tree
is an optimal structure for dynamic indexing of one-dimensional data for many ap-
plications. Almost all DBMSs implement the B-tree. No tree structure has been
published that has the same properties for the multidimensional case as the B-tree
in one dimension.

Due to the large sets of multidimensional data that are stored in data warehouse
systems, table scans should be avoided whenever possible by the use of index struc-
tures. Because the kind of data and the typical queries that are processed in data
warehouse systems differ much from traditional transaction-oriented applications,
evaluation is important which index structures are suited best for these applications.

This thesis focuses on finding index structures that index typical data ware-
house data efficiently. Chapter 5 describes an extension to improve multidimen-

13

14 CHAPTER 2. STATE OF THE ART OF DATA WAREHOUSE RESEARCH

sional tree structures which perform significantly faster for range queries on aggre-
gated data. Performance models are developed to show how this extension influ-
ences the performance of tree structures. Chapter 6 investigates these performance
models in detail. DBMSs that are designed for data warehousing have implemented
bitmap indexing techniques besides the classic index structures. (e. g. [Sybase, 1997]).
The bitmap indexing techniques are promising techniques for indexing typical data
warehouse data and processing data warehouse queries efficiently. Chapter 7 de-
scribes and applies techniques for comparing different index structures. We present
results of the comparative study.

2.6. Summary

This chapter described the major research topics in data warehousing. We defined
the term data warehouse and investigated the differences between OLAP and OLTP
applications. The main task in data warehousing is to provide the analyst with a tool
for having fast access to aggregates over large sets of data that are integrated from
different sources. Usually, this data is stored in a relational DBMS. The facts are
stored in a fact table like R(time, product, region, sales). In general, the data is stored
in a fact table R(a1, · · · , an, s). One of the main goals of a data warehouse system is
to decrease the query response time as much as possible. Five different mechanisms
were described to speed up queries. The main part of the thesis focuses on what kind
of index structures are used to speed up queries in data warehouse systems and how
the behavior of such structures can be estimated and compared.

14

