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Abstract
Weyl semimetals, named after the physicist Hermann Weyl, were predicted theoretically about
ten years ago and were found experimentally only in 2015. The topological properties of Weyl
semimetals and their analogy to massless elementary particles make them a field of great interest
in condensed matter physics. The key feature of Weyl semimetals is the crossing of two linearly
dispersing bands, forming a Weyl cone.

Here we study the effects of breaking the rotational symmetry of the Weyl cone by a tilt,
which refers in this context to an additive linear term proportional to the unit matrix in the
Weyl equation, leaving the topological invariants unaffected. This thesis is built on a work
originally published in Physical Review B, which is one of the first works to discuss the generic
but previously overlooked tilt in Weyl semimetals and the very first to point out the tilt’s
relevance for the transport properties. Based on our theoretical results we can conclude which
properties are useful to demonstrate the tilt in Weyl semimetals experimentally. We distinguish
between type-I Weyl semimetals, which have moderate tilts and a point-like Fermi surface, and
type-II Weyl semimetals, characterized by large tilts leading to finite electron and hole pockets.

This thesis begins with a general introduction to transport properties, Weyl semimetals and the
methods we use. The following main content consists of two parts. The first part (chapters 2 and
3) addresses the electronic quantum transport properties of type-I Weyl semimetals, including the
conductivity and the Fano factor. We discuss the symmetry-breaking tilt in detail and consider
the influence of the tilt on the transport properties. We show that the Fano factor is a useful
indicator to detect the tilt of a Weyl semimetal, as it is independent of other parameters. Further,
we study the phase transition induced by disorder from a quasi-ballistic to a diffusive phase and
we determine how the critical disorder strength depends on the tilt. In doing so, we show that
the transition from type-I to type-II Weyl semimetals is always preceded by the disorder-induced
transition. To find these results, we apply a variety of methods, including scattering matrix
theory and the self-consistent Born approximation, and show exemplary lattice models.

The second part (chapters 4 and 5) considers type-II Weyl semimetals in a magnetic field
including electron-electron interactions. By developing a general mean field approach for type-
II Weyl semimetals, we show that the interaction induces a charge density wave (CDW). We
compute the critical temperature of the transition to the CDW phase and find a cascade of
successive transitions for different Landau levels. We determine the resistivity ρ using the quan-
tum mechanic linear response theory and confirm the semi-classical picture of a ρ ∝ B2 scaling.
The semi-classical picture is valid below the quantum limit reached at high magnetic fields. We
further quantify the transition to a different scaling above the quantum limit. While the semi-
classical picture only considers the non-interacting case, we are able to extend the analysis to
the interacting case and show in which regime the ρ ∝ B2 scaling is still present. Additionally,
we study the oscillations of ρ(B), finding that the CDW increases their amplitude and leads to
an unusual temperature dependence.

Altogether this thesis demonstrates the importance of the tilt in Weyl semimetals on the basis

of quantum mechanical transport properties.
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Zusammenfassung
Weyl Halbmetalle, benannt nach dem Physiker Hermann Weyl, wurden theoretisch vor etwa
zehn Jahren vorhergesagt und erst 2015 experimentell nachgewiesen. Die topologischen Eigen-
schaften der Weyl Halbmetalle und deren Analogie zu masselosen Elementarteilchen begründen
das große Interesse an diesem Forschungsgebiet der Festkörperphysik. Das Hauptmerkmal von
Weyl Halbmetallen ist die Kreuzung zweier linearer Bänder, die dabei einen Weyl-Kegel bilden.

Hier untersuchen wir die Effekte der Brechung der Rotationssymmetrie des Weyl-Kegels durch
die Neigung, die in diesem Zusammenhang stets den Effekt eines additiven linearen Terms in
der Weyl-Gleichung, der proportional zur Einheitsmatrix ist, meint. Dies Dissertation basiert
auf einem Artikel, der ursprünglich in Physical Review B erschienen ist. Dieser Artikel ist
eine der ersten Arbeiten, die die allgemein gegenwärtige aber im Vorfeld übersehene Neigung in
Weyl Halbmetallen diskutiert und die erste Arbeit, die die Relevanz der Neigung für die Trans-
porteigenschaften aufzeigt. Aus unseren theoretischen Ergebnissen können wir Rückschlüsse
ziehen, welche Eigenschaften sich als experimentelle Signaturen eignen würden, um die Neigung
in Weyl Halbmetallen nachzuweisen. Wir unterscheiden zwischen Typ-I Weyl Halbemtallen,
die eine moderate Neigung und punktartige Fermi-Flächen aufweisen, und Typ-II Weyl Halb-
metallen, die durch eine Starke Neigung gekennzeichnet sind, die zu endlichen Elektron- und
Loch-Taschen führt.

Diese Arbeit beginnt mit einer allgemeinen Einführung zu Transporteigenschaften, Weyl Halb-
metallen und den verwendeten Methoden. Der folgende Hauptteil der Arbeit gliedert sich in zwei
Abschnitte. Im ersten Abschnitt (Kapitel 2 und 3), berechnen wir die quantenmechanischen elek-
tronischen Transporteigenschaften von Typ-I Weyl Halbmetallen, unter anderem die Leitfähigkeit
und den Fano-Faktor. Dabei diskutieren wir die symmetriebrechenden Neigung detailliert und
erörtern den Einfluss der Neigung auf die Transporteigenschaften. Wir zeigen, dass der Fano-
Faktor ein guter Indikator ist um die Neigung eines Weyl Halbmetalls nachzuweisen, da er von
anderen Parametern unabhängig ist. Weiterhin untersuchen wir den unordnungsinduzierten
Phasenübergang von einer quasi-ballistischen in eine diffusive Phase und die Abhängigkeit der
kritischen Unordnungsstärke von der Neigung. Dabei zeigen wir, dass dem Übergang von Typ-
I zu Typ-II Weyl Halbmetallen stets der unordnungsinduzierten Phasenübergang vorausgeht.
Um diese Ergebnisse zu erzielen verwenden wir verschiedene Methoden, unter anderem die
Streumatrix-Theorie und die selbstkonsistente Born Annäherung und zeigen stets exemplarische
Gittermodelle.

Im zweiten Abschnitt (Kapitel 4 und 5) betrachten wir Typ-II Weyl Halbmetalle im magnetis-
chen Feld und mit Elektron-Elektron Wechselwirkungen. Mithilfe unserer Herleitung der allge-
meinen Durchschnittsfeld-Näherung für Typ-II Weyl Halbmetalle zeigen wir, dass sich durch die
Wechselwirkung eine Ladungsdichtewelle (CDW für “charge density wave”) ergibt. Wir berech-
nen die kritischen Temperaturen für den Übergang in die CDW-Phase und finden eine Kaskade
von aufeinanderfolgenden Übergängen für verschiedene Landau-Level. Daraufhin berechnen wir
den spezifischen Widerstand unter Verwendung der quantenmechanischen linearen Antwortthe-
orie und bestätigen das in der semiklassischen Herleitung erwartete ρ ∝ B2 Verhalten. Die
semiklassische Betrachtungsweise ist nur unterhalb des Quantenlimits gültig, das bei starken
Magnetfeldern erreicht wird. Weiterhin quantifizieren wir den Übergang zu einem anderen
Skalierungsverhalten oberhalb des Quantenlimits. Während die semiklassische Herleitung nur
den Fall ohne Wechselwirkung behandelt, sind wir in der Lage unsere Berechnungen auch für
den Fall mit Wechselwirkung anzuwenden und zu zeigen, in welchem Bereich das ρ ∝ B2 Ver-
halten weiterhin existiert. Zudem untersuchen wir die Oszillationen von ρ(B), wobei die CDW
die Amplitude vergrößert und zu einer ungewöhnlichen Temperaturabhängigkeit führt.

Insgesamt zeigt diese Arbeit die Bedeutung der Neigung in Weyl Halbmetallen anhand von

quantenmechanischen Transporteigenschaften.
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1. Introduction

In contemporary condensed matter physics two of the central directions of research are
topological phases and topological materials. While the concept of topological phases
was introduced already in the 1980s, it has become very popular during the last ten years
with the discovery of topological insulators[Kön+07] and topological semimetals[Xu+15;
Lu+15; Lv+15]. The pioneers of topological phases recently were awarded the Nobel
prize in 2016[THK]. The concept of topological phases presents a notable extension of the
hitherto general theory of phase transitions by local symmetry breaking. As topological
semimetals were only recently discovered, both theoretically and experimentally, current
research focuses on investigating their fundamental properties and their differences from
more conventional materials.

Hermann Weyl proposed the existence of fundamental particles that are massless,
have a linear dispersion and a chirality, based on his solution of the Dirac equation
he found in 1929[Wey29]. For a long time it was believed that neutrinos actually
were Weyl fermions, but eventually experiments showed that they have a very small
mass[Bil16]. Weyl semimetals are crystalline materials whose electronic excitations, de-
scribed as quasiparticles, behave like Weyl fermions. The concept of crystalline band
structures mimicking the Weyl dispersion goes back to the 1930s[Her37], but realis-
tic proposals of actual materials only emerged during the last 10 years[Mur07; BB11;
Wan+11]. Only after I started my work on this thesis, investigating the then hypothet-
ical Weyl semimetals, were several experimental discoveries reported[Xu+15; Lu+15;
Lv+15], in experiments on TaAs (Tantalum arsenide) and TaP (Tantalum phosphide)
crystals as well as in photonic crystal systems. Since then, the number of theoretical and
experimental works on Weyl semimetals has been rapidly growing. Since Weyl semimet-
als are a new class of materials, there is a big interest in investigating all their physical
properties, which could be useful for their experimental identification and for practictal
applications. See chapter 1.5 for more details.

The key feature of Weyl semimetals is the crossing of two linearly dispersing bands,
forming a Weyl cone. The visualization of this dispersion requires restriction of the
momenta to two dimensions. For two momentum dimensions, the contours of constant
energies are ellipsoids in general and a circle when the cone is not tilted. The actual
linear dispersion in all three momentum directions leads to surfaces of constant energy in
the form of ellipsoids in general, which become spheres in the symmetric case. All earlier
theoretical work focused on idealized, isotropic Weyl semimetals (depicted on the left of
Figure 1.1) as this description captures the topological aspect of Weyl cones, which is one
of the most interesting aspects of Weyl semimetals. Nonetheless, material realizations
always feature different types of anisotropies, therefore we study these anisotropies in
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Figure 1.1.: Dispersion of a Weyl cone (only two of three momentum dimensions are shown)
for different values of tilt a. From left to right, a takes the values 0, 0.4 and 1.3.
The gray plane indicates zero energy.

this thesis, and distinguish between anisotropic velocities and the tilt of a Weyl cone.
While the first part of this thesis studies electronic transport in Weyl semimetals with
moderate tilts (middle cone in Figure 1.1), the second part focuses on Weyl semimetals
so heavily tilted that one side of the cone actually lies below the zero energy plane (see
rightmost cone in Figure 1.1). Such Weyl cones are called “type-II” and consequently
the materials harbouring them are referred to as “type-II Weyl semimetals”[Ber+15;
Sol+15; XZZ15]. The common subject throughout this thesis is the symmetry breaking
tilt. The several specific consequences discussed here show the general importance of
the tilt. Although the tilt does not alter the topological index of the phase, it leads
to interesting quantitative and qualitative changes compared to symmetric Weyl cones.
This is in contrast to much of the work on topological materials, which often focusses
on the principles of symmetry.

This thesis addresses basic properties of a new, and until recently unknown, class of
materials. Therefore they belong to the realm of fundamental research where material
properties and physical effects are studied without a specific application in mind. The
goal is to gain a general understanding of how Weyl semimetals behave and how they are
different from known systems. However, it is important to note that we are not trying
to give material-specific results expecting a quantitative agreement with experiments.
Such predictions are made in conjunction with ab-initio methods like density functional
theory (DFT) calculations. This thesis focuses on model-based condensed matter theory
and aims at finding more general results and to understand the physical origin of the
discovered effects. We will use a number of different theoretical techniques to study
transport properties and interaction effects in these models. We always start with some
analytical derivation but most often we will eventually use numerical methods to solve
equations where analytical solutions are not feasible. The degree to which we rely on
numerics differs from technique to technique.
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Structure of this thesis

This introductory chapter recapitulates some basics of electronic transport and contin-
ues introducing several methods from quantum physics to study transport phenomena
in clean and disordered systems and to incorporate electronic interactions. The methods
used in quantum transport calculations include scattering matrices and the well-known
Kubo formula from linear response theory. For disordered systems a specific model of
disorder is introduced and the self-consistent Born approximation is derived in a diagram-
matic language. To deal with interactions, the mean field approximation is presented.
This part of the introduction recapitulates well established techniques that can be found
in most textbooks on condensed matter physics[BF04; AS10; NB09; AM07; Dat97]. For
consistency we chose to follow mostly the notation and presentation of [BF04] and will
refer to the corresponding chapters in this textbook at several points. The following part
of the introduction is about the concept of topology in the context of condensed mat-
ter physics. Subsequently we give a detailed description of Weyl semimetals and some
of their prominent features. The last part of the introduction discusses the numerical
methods used in this thesis. This introduction is followed by four chapters presenting the
results of this thesis as obtained in subsequent projects. These chapters are each based
on a publication of which I am the first author[Tre+15; Tre+17b; Tre+17a],[TBK18, in
preparation].

The first part (chapters 2 and 3) studies the consequences of a tilt for the electronic
transport properties of a tilted (but not over tilted) Weyl semimetal, namely conductance
and conductance fluctuations characterized by the Fano factor. Chapter 2 considers the
ballistic case. In chapter 3, the effect of disorder on these findings is discussed to see
whether the robustness of the isotropic Weyl cone against disorder carries over to the
tilted case.

In the second part (chapters 4 and 5) we investigate interaction effects between elec-
trons in type-II (i.e. over tilted) Weyl semimetals in a magnetic field. We find the
formation of a charge density wave due to the interactions, which are treated at a mean
field level. The term “Charge density wave” refers to a (wave-like) regular modulation
of electronic density in real space while in metallic systems the usual distribution of the
electron charge is homogeneous. Chapter 5 compares the magnetotransport properties
of type-II Weyl semimetals with and without interactions, applying the linear response
formalism to the results obtained in the previous chapter. Further we discuss the re-
sulting quantum oscillations. The concluding chapter 6 recapitulates the main findings
of this thesis and puts them into context with interesting open questions and possible
routes for further research.

Notation

Some common abbreviations will be used throughout the text, including BZ(Brillouin
zone), CDW(charge density wave) and SCBA(self consistent Born approximation). We

3



1. Introduction

use the following standard notation:

β =
1

kBT
(1.1)

σ =

σ1

σ2

σ3

 (1.2)

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 1

)
. (1.3)

Throughout this thesis we will encounter situations where we need to discuss multiple
particles, each having by a set of quantum numbers like position r or momentum k, a
band or spin index s, a Landau level index n etc. We will make use of the accordingly
defined shorthand notation

ζ1 = (r1, s1, n1) (1.4)∫
dζ1 =

∑
s1

∑
n1

∫
dr1 . (1.5)

1.1. Electronic transport and quantum mechanics

This part of the introduction covers the basic description of transport properties, the
general setup used to study transport in theory and several quantum mechanical methods
to assess transport properties. The general concept of transport applies to a vast number
of physical quantities, let it be particles, charge, spin, heat, entropy etc. This thesis
focuses exclusively on electronic transport, i.e. charge transport, and more specifically
on regimes where quantum effects are important. As we are only interested in charge
transport, we will mostly ignore the spin degree of freedom of the electrons, which
anyway is not relevant for Weyl semimetals.

When talking about transport properties we have to make a clear distinction between
material properties and sample properties. While experiments always study specific
samples as instances of a material, physics is most often interested in material properties,
being the more general quantity. Of course, material properties translate in some way or
the other to sample specific properties, and vice versa: by measuring (multiple) samples
we can infer material properties experimentally.

This thesis studies transport properties by theoretical means and while some of the de-
scribed methods directly access the bulk material properties, other methods are suitable
to calculate properties of samples of finite size. To extract general material properties
from sample specific computations, we first describe the geometry of these fictitious
samples used later on.
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1.1. Electronic transport and quantum mechanics

Figure 1.2.: A sample (blue) shaped as a rectangular cuboid of length L and width W with
two leads (grey) attached.

1.1.1. Sample geometry

Whenever we use a sample of finite size in our transport calculations we will think of a
device as depicted in Figure 1.2. The actual sample is the blue cuboid of length L in the
direction of transport and width W in both transversal directions. To enable transport
we need to attach leads to the sample that provide (or take away) electrons. These leads
are depicted in grey and they are considered as perfectly conducting. As detailed below
the material properties are derived by an appropriate scaling of this sample’s properties
with L and W . In the case of numerical computations we have to verify that these
scaled values are then independent of the sample’s specificities, i.e. its length and width,
and any parameters introduced for numerical purposes, i.e. the numerical resolution.
Usually this is achieved by ensuring convergence for longer (and/or wider) systems and
for the different numerical parameters.

1.1.2. Classical transport quantities

When studying electronic transport, we are interested in how materials conduct electrons
(or electronic charge) under different circumstances. We are mostly interested in the
electric current j occurring as a response to some external “perturbation”, as for example
a temperature gradient, an electric or a magnetic field. We distinguish the total current
I measured in units of Coulomb per second (C/s), the quantity typically measured
experimentally, from the local current density j(x) used in the microscopic description.

In the simplest case of electric conduction the current flows parallel to an electric
field E, usually created by a voltage difference V between different leads. Then the
conductance G is defined as

G =
I

V
=

1

R
(1.6)

and its inverse R is called resistance. This linear relation between current and voltage
is known as “Ohms law”[Ohm27]. While it holds true for many different length scales it
will necessarily break down at very high electric fields when either nonlinear effects come
into play or the material is structurally affected by the high voltages. From these sample
specific quantities we obtain the geometry-independent conductivity σ and resistivity ρ
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1. Introduction

which are defined as

σ =
1

ρ
=

L

W 2
G (1.7)

supposing a sample of length L and width W in both transversal directions. We further
introduce the less common cube conductance g [Sbi+14] which scales as

g =
L2

W 2
G (1.8)

and is of interest when σ vanishes in the thermodynamic limit of L,W →∞.

Microscopically, conductivity is the relation between electric field E and current den-
sity j

j = σE (1.9)

where we now generalize to a treatment where E and j are considered as vectors and σ
is then a conductivity tensor. Often σ is diagonal and hence the current flows parallel
to the applied electric field. The best known example of a non-diagonal σ is the Hall
effect[Hal79], see Figure 1.3. It arises when a magnetic field is applied perpendicular to

Figure 1.3.: Device to measure the Hall effect. Current is flowing from left (5) to right (6), the
magnetic field is perpendicular to the plane and the Hall voltage can be measured
between (2) and (4). The figure is taken from https://ocw.tudelft.nl/course-readings/the-

hall-effect/ (9.3.2018), available under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License.

the current direction, resulting in a current perpendicular to both the original current
and the magnetic field. While the classical Hall effect is proportional to the magnetic
field and was discovered already in the 19th century, a quantized version of the Hall
effect, the Quantum Hall effect, was found in 1980[KDP80].

Performing a measurement of an electric current I in a quantum regime (i.e. at low
temperatures and low current) does not yield a constant value all the time, but rather
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1.1. Electronic transport and quantum mechanics

results in a probability distribution of current values. The shot noise, the temporal
fluctuation of electric current, is due to the discrete nature of the electrons and is char-
acterized by the Fano factor F . For a general distribution, the Fano factor F is defined
as

F =
σ2

µ
(1.10)

where σ2 is the variance of the distribution (not to be confused with the conductivity)
and µ is the mean value. A classical analysis would suggest that transport is a Poisson
process where the mean current 〈I〉 is equal to the current fluctuations 〈(∆I)2〉 and hence
the Fano factor is 1. Due tue quantum correlations the process is not poissonian and the
Fano factor is always smaller than one. In usual metals where transport is diffusive it
takes the value 1/3. In chapter 1.1.5 a microscopic formula for the Fano factor is given.

1.1.3. Quantum mechanics and second quantization

A general introduction to the basics of quantum mechanics can be found in many text-
books[Sak94; AS10] and will not be presented here. Instead, we introduce the notation
that will be used in the subsequent chapters, following the notation used in [BF04, chap-
ter 1]. We will work in the so called “second quantization” description, using creation
(a†) and annihilation(a) operators. In this framework the field operator Ψ at position r
is given in terms of the single particle wave functions ψν as

Ψ†(r) =
∑
ν

〈r |ψν〉∗ a†ν Ψ(r) =
∑
ν

〈r |ψν〉 aν (1.11)

Ψ†(r) =
1√
V
∑
k

e−ik·ra†k Ψ(r) =
1√
V
∑
k

eik·rak (1.12)

where ψν is a complete basis. In (1.12) we write the operators in the momentum (k)
basis, where V is the Volume in which the fields are defined and serves as normalization
constant.

In quantum mechanics, observable quantities are given by the expectation values of
operators. To calculate the observable electric current we need to know the current
operator. In general the current operator has two terms: the paramagnetic term J∇ and
the diamagnetic part JA

Jσ(r) = J∇σ (r) + JAσ (r) (1.13)

J∇σ (r) =
~

2mi

[
Ψ†σ(r) (∇Ψσ(r))−

(
∇Ψ†σ(r)

)
Ψσ(r)

]
(1.14)

JAσ (r) = − q

m
A(r)Ψ†σ(r)Ψσ(r) (1.15)

where m is the mass of the particles, q the charge and A is the electromagnetic vector
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1. Introduction

potential. In momentum space the current operator becomes

J∇σ (r) =
~

2mV
∑
kq

(
(k +

1

2
q)eiq·ra†kσak+q,σ

)
(1.16)

JAσ (r) =
−q
mVA(r)

∑
kq

(
eiq·ra†kσak+q,σ

)
. (1.17)

1.1.4. Linear response theory and the Kubo formula

The general idea of linear response theory is the assumption that any response to a weak
external perturbation of a system previously in thermal equilibrium can be described by
a linear function of this external perturbation. Therefore we want to find the proportion-
ality factor between an external perturbation and a measurable response. The formula
to obtain this linear response in a quantum system is known as Kubo formula[Kub57].
While linear response theory is used in many contexts, here we are mostly interested
in electric properties like conductivity. The presentation and derivation of the Kubo
formula in this chapter follows [BF04, chapter 6] (see also [AM07, chapter A7.1]).

The expectation value of some operator A in a quantum system described by H0 in
equilibrium can be calculated as

〈A〉 =
1

Z0
Tr [ρ0A] , ρ0 = e−βH0 =

∑
n

(
|n〉 〈n| e−βEn

)
, Z0 = Tr[ρ0] (1.18)

where ρ0 is the density operator, Z0 the partition function and |n〉 a set of eigenstates.
We add an external perturbation H ′(t) to the Hamiltonian of the unperturbed system
H0. The external perturbation starts at some point in time t0 and we are interested in the
evolution of 〈A(t)〉 under the new Hamiltonian H(t) = H0 +H ′(t)θ(t− t0). In principle,
the exact time evolution of such an expectation values of a quantum mechanical operator
can be calculated. In practice, however, this time evolution is often impossible to solve
analytically and therefore we use the linear response approximation. We will denote the
average with respect to H0 with 〈〉0 and we introduce the retarded1 correlation function
CRAH′ as

〈A(t)〉 − 〈A〉0 =

∫ t

t0

dt′CRAH′(t, t
′) . (1.19)

In the interaction picture the time dependence of |n(t)〉 is given by

|n(t)〉 = e−iH0tÛ(t, t0) |n̂(t0)〉 (1.20)

1The superscript R denotes the “retarded” correlation function which intuitively corresponds to the
causal action “forward” in time, as opposed to the “advanced” correlation function that works backwards
in time.

8



1.1. Electronic transport and quantum mechanics

where |n̂(t0)〉 is defined as |n̂(t0〉 = eiH0t0 |n(t0)〉 = |n〉. Further, the unitary matrix
Û(t, t0) is, to linear order, given by

Û(t, t0) = 1 +
1

i

∫ t

t0

dt′Ĥ ′(t) . (1.21)

Inserting this into (1.18) we obtain the expectation value of A up to linear order in the
perturbation. The Kubo formula then takes the form

CRAH′ = −iθ(t− t′)
〈[
A(t), H ′(t′)

]〉
0
. (1.22)

Combining (1.19) and (1.22) we can compute 〈A(t)〉 to linear order in H ′ where we only
need to evaluate expectation values with respect to H0.

This formula can be used to compute the bulk conductivity of a system. To this end
we introduce the current-current correlation function

ΠR
αβ(r, r′, t− t′) = CR

Jα0 (r)Jβ0 (r′)
(t− t′) (1.23)

of the current operator J where α and β denote spatial directions x, y, z. The relation
between the current operator and the conductivity tensor in linear response in frequency
space2 is given by

Jαe (r, ω) =

∫
dr′
∑
β

σαβ(r, r′, ω)Eβ(r′, ω) . (1.24)

Computing the expectation value of the current operator in response to an external elec-
tric field using the Kubo formula (1.22) we find, after some intermediate algebra[BF04,
chapter 6], that the conductivity tensor reads

σαβ(r, r′, ω) =
ie2

ω
ΠR
αβ(r, r′, ω) +

e2n(r)

iωm
δ(r− r′)δαβ (1.25)

for some frequency ω, the electron charge e, its mass m and n the electron density.
Assuming that σαβ is translationally invariant, this formula can be recast in the form

σαβ(ω) = i~
∑
ζ,ζ′

f(Eζ′)− f(Eζ)

Eζ − Eζ′

〈
ζ
∣∣∣ ĵα ∣∣∣ ζ ′〉〈ζ ′ ∣∣∣ ĵβ ∣∣∣ ζ〉

~ω + Eζ′ − Eζ + i~/(2τ)
(1.26)

for non interacting fermions[TC15; SY16], where f is the Fermi function, E the disper-
sion relation, τ the lifetime of the (quasi-)particles and ζ is a shorthand notation for any
quantum number pertinent to the system under consideration.

2As an equilibrium property σ can only depend on time differences t− t′ and hence it depends only on
a single frequency after a Fourier transformation.
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1. Introduction

1.1.5. Scattering matrix for mesoscopic systems

In contrast to the linear response theory introduced before, which describes bulk prop-
erties, the scattering matrix (S-matrix) formalism always describes a finite system. The
formalism described in this chapter is also known as Landauer-Büttiker formalism[Lan57;
Lan70; Büt88]. Here we follow the presentation and derivations of [BF04, chapter 7],
and [Dat97].

This formalism is usually used for mesoscopic samples, hence the sample convention-
ally is denoted M . This sample M is connected to two leads on the left and right L
and R (generalization to more leads is straightforward). For simplicity, we choose the
leads to be along the x−direction. These leads are considered perfect conductors with
N channels, where N is obtained from the transverse quantization condition of the wave
functions. Using leads of the same width as the sample allows the use of the same trans-
verse quantization everywhere. A further assumption is the coherent movement of the
electrons through the sample, restricting the sample’s size to be smaller than the mean
free path of an electron. The cleaner the sample, the longer the mean free path is and
thereby the allowed system size increases.

Figure 1.4.: Two-terminal mesoscopic sample.

The leads connect the sample to reservoirs, which are considered to be much larger
than the sample, so we can assume that any particle entering the lead will disappear
into the reservoir and that particles arriving from a reservoir are in equilibrium with
this reservoir. We introduce eigenstates in the leads as φ±αnE(x, r⊥) where α labels the
lead L or R and n is an integer labeling the states with energy E. These eigenstates are
normalized in an unusual fashion by fixing the absolute probability current in a given
cross section S, such that for particles of mass m

∫
S

dr⊥
(
φ±αnE(x, r)

)∗ px
m

(
φ±αnE(x, r)

)
= ± 1

m
. (1.27)

Since we consider a mesoscopic sample where the particles move coherently, we must
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1.1. Electronic transport and quantum mechanics

define a single wave function spanning over both leads and the sample

ψE(x, r⊥) =


∑

n a
+φ+

LnE(x, r⊥) +
∑

n a
−φ−LnE(x, r⊥) x ∈ L

φM,E(x, r⊥) x ∈M∑
n b

+φ+
RnE(x, r⊥) +

∑
n b
−φ−RnE(x, r⊥) x ∈ R

(1.28)

The unknown coefficients a±n , b
±
n can be found by solving a set of linear equations ob-

tained from the continuity condition on the wave function and its derivative. Writing
the set of n parameters a±n as vector a± and collecting the amplitudes of ingoing and
outgoing waves cin and cout (c.f. Figure 1.4) as

cin =

(
a+

b−

)
cout =

(
a−

b+

)
(1.29)

(1.30)

we can introduce the scattering matrix S

cout = Scin (1.31)

S =

(
r(E) t′(E)
t(E) r′(E)

)
, (1.32)

a 2N × 2N matrix consisting of four N ×N blocks. The blocks r and r′ are reflection
matrices and the blocks t and t′ are transmission matrices. Using the knowledge of all
these matrix elements tnn′ , rnn′ we can define the scattering states. These are states
where the incoming wave occupies a single channel in the lead and has amplitude 1.
Labeling the scattering states with the lead channel n, the lead α ∈ L,R where the
incoming wave is located and, as before, the energy E, we can write them as

ψLnE(x, r⊥) =


φ+
LnE(x, r⊥) +

∑
n′ rn′nφ

−
Ln′E(x, r⊥) x ∈ L

φM,E(x, r⊥) x ∈M∑
n′ tn′nφ

+
Rn′E(x, r⊥) x ∈ R

(1.33)

ψRnE(x, r⊥) =


∑

n′ t
′
n′nφ

−
Ln′E(x, r⊥) x ∈ L

φM,E(x, r⊥) x ∈M
φ−RnE(x, r⊥) +

∑
n′ r
′
n′nφ

+
Rn′E(x, r⊥) x ∈ R

(1.34)

The scattering matrix has some useful properties[BF04; Dat97]: it is unitary and time-

reversal symmetric at zero magnetic field, while at finite magnetic field S∗−B = S†B.

Combination of S-matrices

It is important to note that while the “Scattering Matrix” S is a unitary matrix, the
combination of two scattering matrices describing two successive systems is not given
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1. Introduction

by the usual matrix multiplication, as one might expect at first sight. For a system con-
sisting of two consecutive scattering regions M1 and M2 with given scattering matrices
S1 and S2

S1 =

(
r1(E) t′1(E)
t1(E) r′1(E)

)
S2 =

(
r2(E) t′2(E)
t2(E) r′2(E)

)
, (1.35)

the scattering matrix S for the full system has the elements[Dat97, p. 126]

r = r1 + t′1r2

[
1− r′1r2

]−1
t1 t′ = t′1

[
1− r2r

′
1

]−1
t′2 (1.36)

t = t2

[
1− r′1r2

]−1
t1 r′ = r′2 + t2

[
1− r′1r2

]−1
r′1t
′
2 . (1.37)

Conductance and Fano factor from S-matrix

We can compute the conductance of the sample under consideration by applying the
Landauer formula[Lan57; Lan70]. Making use of the transmission coefficients, it provides
the conductance G in dependence of the chemical potential µ

G(µ) =
2e2

h

∑
n

Tn(µ) =
2e2

h

∑
n

Tn(µ)

=
2e2

h
Tr
[
t(µ)†t(µ)

]
, (1.38)

introducing the eigenvalues Tn of the matrix t†t, the probabilities Tn = (t†t)nn and
including a factor 2 for spin degeneracy. One can understand this formula intuitively
as the total current being given as a sum of transmission probabilities for all possible
ways an incoming electron at the energy of the chemical potential can be transmitted
to the other lead. Derivations of (1.38) along the lines of this intuitive argument can
be found in the literature[BF04; Dat97]. We will derive it in the next section using the
linear response theory introduced in 1.1.4, again following the presentation in [BF04].

The Fano factor as introduced in chapter 1.1.2 is given by the fluctuations and mean
value of the current. Expressing the current operator in terms of the scattering matrix,
we can compute the Fano factor from the scattering matrix. The calculation leading to
the expression

F =

∑
n Tn(1− Tn)∑

n Tn
(1.39)

was first performed by Lesovik[Les89]. This formula is valid for a two-terminal system
and a generalization to multi-terminal systems can be found in [Büt90].

Derivation of the Landauer Formula using the linear response theory

Here we derive the Landauer formula (1.38) by using the linear response theory intro-
duced in 1.1.4, following the derivation in [BF04, chapter 7.2.2]. We write the conduc-
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1.1. Electronic transport and quantum mechanics

tance G in terms of the current-current correlation function

G(ω) = −2e2

ω
=
∫ ∞
−∞

dtei(ω+iη)t(−i)θ(t)〈[I(x, t), I(x, 0)]〉0 , (1.40)

where G is independent of x as a result of current conservation and = denotes taking
the imaginary part. Writing the current operator (1.15) in the basis of scattering states
(1.34) and using λ as shorthand notation for nηE (with η = ±1), we find

I(x) =
∑
λλ′

jλλ′(x)c†λcλ′ (1.41)

jλλ′(x) =
1

2mi

∫
S

dr⊥φ
∗
λ(x, r⊥)

(−→
∂x −

←−
∂x

)
φλ′(x, r⊥) . (1.42)

Plugging these expressions into (1.40) and using the relations 〈c†λcλ〉 = δλλ′n(Eλ) we
get3

G(ω) =
2e2

ω
=
∑
λλ′

( |jλλ′(x′)|2
~ω + iη + Eλ − Eλ′

(n(Eλ)− n(Eλ′))

)
(1.43)

which in the limit of ω → 0 becomes

G(0) = 2e2~π
∑
λλ′

(
|jλλ′(x′)|2

(
−∂n(Eλ)

∂Eλ

)
δ(Eλ − Eλ′)

)
. (1.44)

At zero temperature the derivative of the Fermi function becomes a delta function δ(E−
µ) and replacing

∑
λ with the appropriate

∑
nη

m
2π~2

∫
dE we get

G(0) = 2e2~π
( m

2π~2

)2 ∑
nn′,ηη′

|jnηµ,n′η′mu(x′)|2 . (1.45)

For a given energy µ we can easily evaluate the matrix elements of j as we know the
wave functions in the leads and we can evaluate j at an arbitrary value x′

jnηµ,n′η′mu(x′) =
~
m

j =
~
m

(
(t†t)nn′ (t†r′)nn′

−(t′†r)nn′ −(t′†t′)nn′

)
. (1.46)

Then the sum becomes ∑
nn′,ηη′

|jnηµ,n′η′mu(x′)|2 =
~2

m2
Tr
[
j†j
]

(1.47)

=
2~2

m2
Tr
[
t†t
]
, (1.48)

where we make use of the unitarity of the S matrix. Substituting this result into (1.45)
we now find the Landauer formula as stated in (1.38).

3The commutator of [I(t), I(0)] contributes ei(Eλ−Eλ′ )t/~ to the dt integration.
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1.1.6. Ballistic vs. diffusive transport

Electrons moving through a crystal can scatter at impurities in the material, lattice
dislocations, phonons (lattice vibrations) etc. The mean free path ξ gives the average
distance between two of such scattering events. For metals at room temperature, ξ
becomes very short. Therefore, in any sample of length L (as in Figure 1.2) longer than
ξ, especially any metal wire we encounter in our daily life, electrons scatter multiple
times until they have travelled through the sample. The transport is then said to be
“diffusive”. To be precise, we should distinguish the mean free path between elastic
scattering events ξ and the average distance between inelastic scattering events ξinelastic.
When studying disordered systems with the scattering matrix approach, as derived in
chapter 1.37 and detailed in chapter 1.6.2, we assume ξinelastic > ξ and we consider
samples of intermediate size L, where ξinelastic > L > ξ.

The transport is called “ballistic” when the electrons travel through the sample of
length L without scattering, i.e. in situations where L is smaller than ξ. The experi-
mental realization of ballistic transport is only possible at low temperatures and in very
clean samples. To decide whether transport is ballistic or diffusive for a given sample

Figure 1.5.: Measurement of Fano factor F in graphene for different values of the back-gate
Voltage Vbg. (Taken from [DiC+08])

one could measure the conductance fluctuations characterized by the Fano factor (1.10).
Diffusive transport in a small sample, which is much longer than the mean free path
but much shorter than an inelastic scattering length, leads to a Fano factor of 1

3 [BB92].
A prime example for ballistic transport is graphene. Incidentally the ballistic transport
in this two-dimensional system also leads to a Fano factor of 1

3 [Two+06; DiC+08].
In Weyl semimetals however, seen as the three-dimensional generalizations of graphene
(see chapter 1.5) ballistic transport leads to a larger Fano factor. This characteristic
transport property was known only for isotropic Weyl semimetals[Sbi+14]. The aim of
this thesis, notably the works presented in chapters 2 and 3, is to find the Fano factor
for a general Weyl semimetal and to answer the question whether this number changes
if disorder is present.

Often graphene is said to have a very high conductivity, but as conductivity for two-
dimensional systems is defined differently from three-dimensional ones, the comparison
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1.2. Disordered systems

of the numbers obtained for graphene to conductivities of conventional three-dimensional
metals is rather useless. On the other hand it is sensible to compare the Fano factor
which is defined independently of dimensionality.

1.2. Disordered systems

1.2.1. Disorder Hamiltonian

In most real materials we encounter some type of disorder. A common source of dis-
order are impurities, i.e. some atoms are of a different element than the surrounding
crystal. These can either locally change the potential energy of electrons in the crystal
— what we call “potential disorder” — or have magnetic properties leading to a rich
phenomenology[Kon64; AS10]. Here we concentrate on potential disorder, described by
an additional fixed potential to the otherwise free electrons described by an effective
low energy theory or a lattice model. Denoting any additional quantum numbers except
position with ζ as discussed in 1, the Hamiltonian of such a disordered system reads

H = H0 +Hdis (1.49)

with the free particles dispersion

H0 =

∫
dr

∫
dζψ†(r, ζ)H0(r, ζ)ψ(r, ζ) . (1.50)

For a translationally invariant crystal this Hamiltonian is diagonal in k-space and de-
noted with

H0(k, ζ) = εk,ζ . (1.51)

We model the disorder as a set of randomly placed scatterers locally changing the po-
tential energy, here with Gaussian potentials

Hdis =
∑
j

U(r− rj) (1.52)

U(r) =
±u0

(
√
πd0)2

exp

(
−r

2

d2
0

)
, (1.53)

which in momentum space is equivalent to

u(q) = ±u0 exp

(
−q

2

q2
0

)
(1.54)

with q0 = 2/d0. This type of static disorder cannot absorb any energy from the
scattered energy and hence leads to elastic scattering. Another common model of
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the disorder potential is called “white noise”, where the correlations are only local
(〈U(r)U(r′)〉 ∝ δ(r, r′)). This model can be numerically favorable but it is missing
the physically relevant lengthscale d0 of the Gaussian disorder potential. Then the
momentum cutoff becomes important and defines the missing lengthscale, while in the
Gaussian case the momentum cutoff can be taken to infinity4. Therefore we will only
use the Gaussian disorder potential.

1.2.2. Disorder self-average

When we consider small disordered samples, such that electrons could move and scatter
coherently through the whole sample, the resulting behaviour depends on the complex
diffraction patterns determined by the exact location of each impurity. If however the
system is much bigger than the coherence length we will encounter disorder self-average:
The system then can be seen as a collection of small (coherent) subsystems which are
phase-independent. On its way through the system a single electron moves through
a number of these independent subsystems and the overall behaviour will be given by
an incoherent average of the subsystems. Therefore the effective behaviour of these
electrons can be equally well described by averaging over impurity positions5. This
averaging procedure has the additional benefit of restoring translational invariance and
hence we can continue to perform calculations in momentum space.

1.2.3. Green’s function and Feynman diagrams

For the study of such disordered systems we will make use of the self-consistent Born
approximation (SCBA), also known as non-crossing approximation[AS10, p. 227] due to
the corresponding diagrammatic expansion. A more general introduction to the SCBA,
diagrammatic expansions and Green’s function can be found in [BF04, chapter 11.5],
[AS10, chapter 5.3] and [AM07, chapter 3]. Here, we follow the presentation of [BF04,
chapter 12] and [OK14; NKA10]. For consistency we introduce here

ξν = εν − µ (1.55)

the energy levels including the chemical potential, but as described below we almost
exclusively discuss the case of µ = 0. Using the collection of quantum numbers ζ (as
defined in chapter 1)— here including an imaginary time τ with corresponding integra-

tion
∫ β

0 dτ — we can write the formal solution to the full Green’s function of (1.49)
in a basis |ν〉 diagonalizing H0 as solutions of the following matrix equations using the

4The cutoff is formally infinite, in the numerical calculations it can be chosen big enough to have no
influence on the results.

5To be exact we should impose a fixed number of impurities and average over the distribution of impurity
positions sets {rj}, called disorder realizations.
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transformed potential Vνν′ =
∫

dr 〈ν|r〉V (r) 〈r|ν ′〉 and the Matsubara frequency6 ikn∑
ν′′

[(ikn − ξν)δνν′′ − Vνν′′ ]Gν′′ν′(ikn) = δνν′ . (1.56)

The Green’s function of the clean system (as described by H0 alone) is diagonal∑
ν′′

(ikn − ξν)δνν′′G
0
ν′′ν′(ikn) = δνν′ (1.57)

⇒ G0
νν′(ikn) =

1

ikn − ξν
δνν′ . (1.58)

From these equations the Dyson equation for the full Green’s function can be derived

Gνν′ = δνν′G
0
νν′(ikn) +

∑
ν′′

G0
νν(ikn)Vνν′′Gν′′ν′(ikn) (1.59)

Substituting this Dyson equation iteratively into itself yields an infinite perturbative
series in powers of V . We will use Feynman diagrams to represent terms in this series
and to perform “visual” computations.

In the following diagrams scattering is indicated by dashed lines, scatterers are shown
as stars, the bare Green’s function is a solid (thin) line and the full, disorder averaged
Green’s function 〈G〉imp is depicted as bold solid line. As discussed above we recover
momentum conservation once we perform the disorder average hence the momentum
change due to a single scatterer must sum to zero. As an exemplary diagram we show in
Figure 1.6 the simplest process giving an interesting contribution, where the momentum
of the propagator temporarily changes and uq is the scattering amplitude corresponding
to the momentum change q. At every vertex the sum of momenta must be conserved

kk′k

uk′−kuk−k′

Figure 1.6.: A simple Feynman diagram, called “wigwam” diagram.

as in the exemplary wigwam diagram shown in Figure 1.6. In following diagrams we

6The Matsubara frequencies are a set of imaginary frequencies, used to calculate Green’s functions
at finite temperature. The use of the Matsubara frequencies involves some computational “tricks”
to obtain physical result, like the extension of the Green’s functions to imaginary time and analytic
continuations back to the real axis. Here they are used to provide the formally correct equation of the
Green’s functions, while the derived results will be formulated in real time using the real energies as
parameters.

17
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will not show the momentum dependency for better readability, but the first (incoming)
and last (outgoing) line always must be of the same momentum k in the averaged case.
Expanding the series on powers of u amounts to grouping all possible diagrams by
their number of scattering lines. This leads to the diagrammatic representation of the
perturbative series for 〈G〉imp shown in Figure 1.7.

= + + +

+ + +

+ + + . . .

Figure 1.7.: Diagrammatic expansion of the impurity averaged Green’s function. Diagrams up
to third order are shown.

a) b) c)

d) e)

Figure 1.8.: Exemplary diagrams: a) single impurity line, b) the wigwam diagram, c) two
consecutive wigwams, d) two nested wigwams, e) two crossed wigwams

Knowing the different possible diagrams, as appearing in Figure 1.7 and Figure 1.8,
we can introduce the concept of 1-particle-irreducible (1-PI) diagrams. We call the
dashed lines “impurity lines” and the solid lines corresponding to the electron propaga-
tors “fermion lines”. Neglecting the two external fermion lines, a diagram is called 1-PI
if it cannot be cut into two distinct pieces by cutting a single fermion line. For example,
the diagrams b), d) and e) in Figure 1.8 are 1-PI, while diagram c) is not 1-PI, as it can
be cut into two independent wigwam diagrams by cutting a single fermion line.

The sum of all 1-PI diagrams is the self-energy, depicted as hatched circle in the
diagrams. The expansion of the impurity averaged Green’s function is then simplified
to a sum of self-energies connected by bare propagators, leading to the Dyson equation
shown in Figure 1.9. To solve this equation we have to choose some approximation for
the self-energy.
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1.2. Disordered systems

Σ+=

Figure 1.9.: Dyson Equation for the impurity averaged Green’s function (bold line) in terms
of the bare Green’s function (thin line) and the self-energy Σ.

Lowest order approximation

To the lowest order, we can approximate the self-energy Σ as being equal to diagram a)
in Figure 1.8, the single impurity line. In this approximation the self-energy simply shifts
all energy levels by the average disorder potential, i.e. it amounts to a global change
of the chemical potential. Therefore the consequences are not very interesting from a
theoretical point of view, as the chemical potential is just a simple parameter in our
theoretical models and is irrelevant when considering fixed stochiometry. Consequently,
we study disorder potentials with zero average to avoid an additional contribution to
the chemical potential.

First order Born approximation and full Born approximation

In the first order Born approximation the self-energy is given by diagram b) of Figure 1.8,
while the full Born approximation includes also wigwam type diagrams with more than
two impurity lines, i.e. multiple scattering events of the same impurity.

Self-consistent Born approximation

The self-consistent Born approximation (SCBA) is obtained by replacing the bare prop-
agator in the single wigwam diagram of the first order Born approximation with the full
propagator, effectively leading to a set of self-consistent equations, here given as function
of energy and not of imaginary time7.

〈Ĝ(k, ε)〉imp = 〈 1

ε−H 〉 =
1

ε− εk − Σ̂(k, ε)
(1.60)

Σ̂ (k, ε) =

∫
dk′

(2π)3
ni|ui(k− k′)|2〈Ĝ(k′, ε)〉imp (1.61)

while the bare Green’s function is given by

Ĝ0(k, ε) =
1

ε− εk + iη
(1.62)

Diagrammatically, this can be understood as follows: the SCBA includes all wigwam
and nested wigwam diagrams in the self-energy (Figure 1.8 b)-d)), but ignores crossed

7The proper derivation of this formula involves an analytic continuation from the imaginary time axis to
the real time axis. Furthermore, this form of the SCBA is derived specifically for the Gaussian disorder
model introduced above.
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wigwam diagrams (Figure 1.8 e)). Hence, it is also sometimes called “non-crossing” ap-
proximation. While in Figure 1.7 we also showed three-legged wigwam diagrams, they
turn out to give zero contribution in the case of Gaussian disorder as introduced in
1.2.1 as the third moment of a Gaussian distributed variable x is 0. The higher order
momenta can be expressed in terms of mean and variation of the Gaussian distribution,
and therefore we can also ignore wigwam diagrams with four or more legs[AM07, chap-
ter 3]. One can show that the SCBA is a good approximation when 1

kF l
� 1, with l

the scattering length and kF the Fermi wave vector. This condition is usually fulfilled
in metals. As for Weyl semimetals the Fermi vector kF = 0, this condition is not ful-
filled and the SCBA is not a formally well controlled approximation. Nonetheless, good
(qualitative) results for Weyl semimetals were obtained using the SCBA approximation
before[Sbi+14]. These were confirmed by other methods as well, albeit the quantitative
results are not expected to correspond to real experimental values.

1.3. Interactions and mean field approximation

Until now we discussed electrons moving in a crystalline solid that might be disordered,
but we neglected interaction effects between the electrons. Here we introduce the mean
field theory to take interactions into account, and we follow the presentation of [BF04,
chapter 4].

A quantum system described by a single number operator n̂a = a†a, i.e. a quadratic
Hamiltonian in creation/annihilation operators, can be described in a single particle
picture. Multiple particles in the same system are independent of one another and,
according to their quantum statistics, fill the available single particle states beginning
at the lowest energy. Once we include some interaction in the system, it can be written
generically8 as

H = H0 + Vint (1.63)

H0 =
∑

c∈{a,b},ξ

(
εξc
†
ξcξ

)
(1.64)

Vint = Vνµ,ν′µ′ÂB̂ (1.65)

Â = a†νa
′
ν (1.66)

B̂ = b†µb
′
µ (1.67)

for two different species of particles a and b, where H0 is the single-particle part of the
Hamiltonian and Vint is quartic in creation/annihilation operators. Interactions between
the same species of particles will be discussed below. To find the mathematically exact
solution of this Hamiltonian we would have to solve the full many-body problem. Solving

8This is the generic two-body interaction, on which we focus here. Interactions including three or more
particles are also possible, but less common and not discussed here.
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1.3. Interactions and mean field approximation

these many-body problems is very hard in general9, therefore one often resorts to the
use of approximations.

The idea of the mean field approximation is to decompose both operators Â and B̂
figuring in Vint into their mean and fluctuations around the mean as

Â = 〈A〉+ δ̂A (1.68)

B̂ = 〈B〉+ δ̂B . (1.69)

Substituting this into (1.65), where we assumed that Â and B̂ describe different particles,
results in

ÂB̂ = 〈A〉〈B〉+ 〈A〉δ̂B + δ̂A〈B〉+ δ̂Aδ̂B

= 〈A〉〈B〉+ 〈A〉(B̂ − 〈B〉) + (Â− 〈A〉)〈B〉+ δ̂Aδ̂B

= 〈A〉B̂ + Â〈B〉 − 〈A〉〈B〉+ δ̂Aδ̂B (1.70)

which is still exact. The mean field approximation consists of neglecting δ̂Aδ̂B, leading
to

ÂB̂ ≈ 〈A〉MFB̂ + Â〈B〉MF − 〈A〉MF〈B〉MF . (1.71)

The rationale behind this approximation is the following: Assuming that the fluctuations
of Â and B̂ around their mean value are small, we expand in orders of the fluctuations
and only keep the terms to first order in the fluctuations while neglecting the second or-
der terms. In neglecting the product of the fluctuations δ̂Aδ̂B we turned the many-body
problem into a single particle one, as 〈A〉 and 〈B〉 are just numbers and not operators.
The means 〈. . .〉MF in equation (1.71) have to be evaluated self-consistently with respect
to the Hamiltonian computed in the mean field approximation. This procedure of de-
termining 〈A〉 and 〈B〉 is equivalent to minimizing the free energy of the system[BF04,
page 67].

This result has to be adapted when Â and B̂ act on the same kind of particles. Then
we can write the interaction as

Vint =
1

2

∑
νν′,µµ′

(
Vνµ,ν′µ′c

†
νc
†
µcµ′cν′

)
(1.72)

and for fermions the approximation becomes

c†νc
†
µcµ′cν′ ' c†νcν′〈c†µcµ′〉MF + 〈c†νcν′〉MFc

†
µcµ′

− c†νcµ′〈c†µcν′〉MF − 〈c†νcµ′〉MFc
†
µcν′

− 〈c†νcν′〉MF〈c†µcµ′〉MF + 〈c†νcµ′〉MF〈c†µcν′〉MF . (1.73)

9The dimensionality of the Hilbert space grows exponentially with the number of particles.
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For bosons, the equations have the same structure with plus signs only, but in this thesis
we will only consider fermions.

By using equation (1.71) or (1.73) we effectively reduced the many-body problem to
a single-particle problem, at the cost of finding a self consistent solution of the new
effective Hamiltonian that includes mean values taken with respect to this Hamiltonian
itself.

A subtlety in applying the mean-field approximation is the appropriate choice of the
means to consider. A choice is necessary, as there is a large number of possible means
to look at. Often, we can identify the relevant means based on the system’s symme-
tries. On the other hand, interactions can lead to spontaneously broken symmetries,
and depending on the means chosen, one might not be able to identify such phases.
Then again, we can assume some symmetry breaking and study the corresponding mean
field approximation. An example of such a symmetry broken phase is a periodic spatial
variation of charge densities as studied in chapter 4. Usually, one allows for some varia-
tional parameters in the mean field approximation to optimize the mean field solution in
this parameter space. Introducing a specific breaking of symmetries, of course, excludes
the possibility of finding different symmetry broken phases, but it allows us to decide
whether the symmetry breaking actually occurs (and results in a non-zero mean) or not
(resulting in a mean equal to zero).

1.4. Topology in condensed matter

1.4.1. Topological phases

Before the discovery of topological phases it was believed that Landau’s theory of spon-
taneous symmetry breaking was sufficient to classify all possible phases. In Landau’s
theory an ordered phase is identified by a local order parameter and phase transitions
manifest themself as changes of this order parameter from zero (in the phase respect-
ing the symmetry) to nonzero (in the symmetry broken phase). In this theory, phase
transitions are called nth order transition when the nth derivate of the free energy is dis-
continuous across the transition. But in the 1980’s it was realized that there are phases
that can only be distinguished by a global property[Tho+82; Hal88; BH13], while there
is no local order parameter telling the two phases apart. These phases are called “topo-
logical phases”, and in 2016 the Nobel Prize was awarded to D. J. Thouless, F. D. M.
Haldane and J. M. Kosterlitz “for theoretical discoveries of topological phase transi-
tions and topological phases of matter”[THK]. A property common to all topological
phases is their stability against local perturbations. Put differently, two topologically
different phases cannot be changed into each other by local perturbations10. Regarding

10This concept can be extended to “symmetry protected topological phases” (SPT), which are stable
against local perturbations as long as they obey some symmetries, that are then said to stabilize the
topological phase. These phases are important in condensed matter physics as crystalline materials
often have discrete translational or rotational symmetries that can lead to SPT phases.
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the key properties of topological phases, different communities in physics place different
emphases: In the many-body framework, the key characteristic of a topological phase
is a degenerate (many-body) ground state on top of which exist fractionalized excita-
tions and said degeneracy of the ground state acts as topological index. In the single
particle picture, the topological index is defined in terms of the (single-particle and
gapped) eigenstates. At the boundary of two phases with different topological index,
there are always gapless states, a general property known as “bulk-boundary correspon-
dence”. As the vacuum is topologically trivial, this notably includes any surface of a
topological material. For different classes of topological phases, there exist different
topological indices[Ryu+10], for example the Chern number[Tho+82] as introduced for-
mally in chapter 1.4.2. The Chern number can be understood as being analogous to
the genus of a closed surface. The genus of a closed manifold corresponds intuitively to
“the number of holes” in a shape. For example the genus of a sphere is 0, a donut has
genus 1 and a pretzel has genus 3, see Figure 1.10. Mathematically, the genus can be
determined using the Gauss-Bonnet theorem of differential geometry.

Figure 1.10.: Closed manifolds of different shapes, with genus 0, 1 and 3 from left to right.

In this thesis we consider the single particle picture and subsequently introduce the
Chern number together with the quantum Hall effect.

1.4.2. IQHE and the Chern number

A prime example of a topological phase is the (integer) quantum Hall effect, where a two-
dimensional electron gas subject to a perpendicular magnetic field develops a quantized
Hall conductance

σxy =
e2

h
ν (1.74)

where e2/h is the conductance quantum and ν is an integer called Chern number which
will be introduced in more detail below. The experimental setup to observe the Quan-
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tum Hall effect is schematically equivalent to the setup depicted in Figure 1.3. While
the Quantum Hall effect requires an external magnetic field, it turns out that there is
also the possibility of having a quantized Hall effect without the need for an external
magnetic field[Hal88], called quantum anomalous Hall effect[LZQ16], which again can
be understood in terms of Berry phase and Chern number. Further, a fractional quan-
tum Hall effect exists, leading to quantized conductance values of simple fractions (i.e
1/3, 2/5 etc.) of the conductance quantum. This effect can only be understood in a
many-body framework and will not be discussed in more detail here.

When the quantization of the integer quantum Hall effect was first derived by Thouless,
Kohmoto, Nightingale and den Nijs[Tho+82], it was named TKNN-invariant. It turns
out that this TKNN invariant is just the Chern number[Sim83]. In the following we
show how the Chern number is computed for systems with a given Hamiltonian H.

Berry Phase

In a seminal paper, M.V. Berry introduced in 1984[BS84] the “geometrical phase”, which
nowadays is called Berry phase. Here, we will follow the derivation and notation of
[XCN10]. The Berry phase arises during an adiabatic change of a quantum state and is
gauge invariant for cyclic changes. This adiabatic change takes place along a path C in
paramter space which is traversed in time t. The parameter in this space is called R.
We can write the Hamiltonian and its eigenstates as

H(R) |n(R)〉 = εn(R) |n(R)〉 , (1.75)

where εn is the nth eigenvalue of the Hamiltonian and these eigenvalues are ordered from
smallest to highest value. Solving formally the time dependant Schrödinger equation and
using the adiabatic theorem11 we get the time-dependent eigenstate

|Ψn(t)〉 = eiγnt exp

[
− i
~

∫ t

0
dt′εn(R(t′))

]
|n(R(t))〉 (1.76)

where the second exponential term appears in the usual solution of the time dependent
Schrödinger equation, whereas γn is the Berry phase

γn =

∫
C
dR · An(R) , (1.77)

where

An(R) = i 〈n(R)| ∂
∂R
|n(R)〉 (1.78)

11The adiabatic theorem states that under a “slow” (i.e. adiabatic) change of the Hamiltonian, a particle
starting out in the eigenstate n(0) remains in eigenstate n(t) throughout time and does not transition
into any other state.
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is the Berry connection. It might seem that both γn and A are unphysical as they
are gauge dependent, but for cyclic adiabatic changes, where γn is calculated along a
closed loop, any gauge transformation can change γn only by multiples of 2π. Hence for
closed paths γn mod 2π becomes a quantity of physical relevance. The value of γn only
depends on the geometry of the closed path and the actual time dependence of R is no
longer important.

Berry Curvature

We can further introduce the Berry curvature as a gauge field tensor[XCN10, p. 5]

Ωn
µν(R) =

∂

∂Rµ
Anν (R)− ∂

∂Rν
Anµ(R)

= i

[〈
∂n(R)

∂Rµ

∣∣∣∣ ∂n(R)

∂Rν

〉
− (ν ↔ µ)

]
(1.79)

which can also be written in vector form if the parameter space is three-dimensional:

Ωn(R) = ∇R ×An(R) . (1.80)

Using this notation it is easy to apply Stoke’s theorem and replace the line integral of
the Berry phase (1.77) by a surface integral

γn =

∫
S
dS · Ωn(R) , (1.81)

where S is a surface with border δS = C. It is noteworthy that while the Berry connection
is gauge dependent the Berry curvature is independent of the gauge and directly related
to physical observables.

Chern Number

When we integrate the Berry curvature over a closed manifold in parameter space the
result is an integer multiple of 2π, according to the Chern-Gauss-Bonnet theorem[Che45].
This integer is called Chern number and can be obtained using (1.81) where S is now a
closed manifold. While the Berry phase is only determined modulo 2π on a path C, for a
closed manifold S the border is vanishing and the integral is no longer gauge dependent.
For the band structures of lattice models the Chern number ν refers to the case where R
is chosen as the momentum k and the Berry curature is integrated over the full Brillouin
zone.

ν =

∫
BZ

d2k Ω12(k) , (1.82)

with Ω as defined in (1.79), R1 = kx and R2 = ky. The Chern number is computed for
a two-dimensional system in momentum space, hence can formally only be computed
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for an infinite system or one with periodic boundary conditions. Further the spectrum
needs to be gapped for the Chern number to be well defined. Once we consider a
finite sample of systems with non-zero Chern number, we will find states localized at the
edges and crossing the gap. This is a manifestation of the bulk-boundary correspondence
mentioned earlier.

Numerical Calculation

While an analytic solution of (1.79) might be feasible for small models with few bands,
it quickly becomes very difficult for larger and more complicated models. To actually
calculate the Berry curvature and Chern number using (1.79) we need to know the
eigenstate and its derivatives for the band we are interested in (denoted with n). If
the analytic solution to the eigenstates is not known, the derivative has to be taken
numerically. This is generally hard due to the gauge freedom of the eigenstates which
in usual numerical codes is determined randomly at each point in k-space.

Fortunately, there exists an alternative formulation of the Berry curvature using a
summation over all eigenstates of the systems[XCN10]

Ωn
µν(R) = i

∑
n′ 6=n

〈n| ∂H
∂Rµ

|n′〉 〈n′| ∂H
∂Rν

|n〉 − (ν ↔ µ)

(εn − εn′)2
. (1.83)

This equation only requires the derivatives of the Hamiltonian with respect to R and
we do not need to compute the derivative of the eigenstates. For these reasons, equa-
tion (1.83) is well suited for numerical calculations and will be used in all numerical
computations of the Chern number (1.82) in this thesis.

In the following chapter we introduce Weyl semimetals, where we will also explain
the connection of a gapless semimetall to the Chern number defined for gapped band
structures.

1.5. Weyl semimetals

In 1928, Paul Dirac proposed an equation describing massive spin-1/2 relativistic12 par-
ticles in quantum mechanics[Dir28]. This equation involves 4-component wave functions
and 4× 4 matrices. It can be seen as an adaptation of the Schrödinger equation to spe-
cial relativity. One year later, Hermann Weyl realized that in order to describe massless
spin-1/2 particles, a real-valued 2-component equation is sufficient, splitting the Dirac
equation into two parts of different chirality[Wey29]. Soon after, this equation was called
the Weyl equation. It might not be obvious at first sight, how an equation from the con-
text of high-energy and particle physics relates to current research in condensed matter

12The Dirac equation respects special relativity, the problem of unifying general relativity and quantum
mechanics is a central problem of modern theoretical physics.
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physics. While there are no elementary particles known to be Weyl fermions13, they can
be realized as quasiparticles in crystalline materials. The concept of quasiparticles is
common in condensed matter physics, when the real electrons interact with the crystal
or among one another. Their effective behaviour can be described in terms of ficti-
tious quasiparticles behaving as if they were weakly interacting particles in free space.
Hence in Weyl semimetals the behaviour of the electrons can effectively be described by
quasiparticles obeying the Weyl equation.

Although as early as in 1937 there was a proposal of realizing Weyl fermions as quasi-
particles in crystals[Her37], it was only seventy years later that this idea was again con-
sidered[Mur07], followed by many theoretical proposals on material realizations[Vol09;
Wan+11; BB11]. Very recently some of these materials were realized in experiments and
shown to be Weyl semimetals[Xu+15; Lv+15; Lu+15].

1.5.1. Weyl equation in condensed matter

In condensed matter systems, Weyl fermions arise due to a linear band crossing that can
effectively be described by

H = ~v (σ · k + a · k) (1.84)

resulting in the dispersion relation

E = ~v
(
a · k±

√
k2
x + k2

y + k2
z

)
, (1.85)

where v has dimensions of velocity, ~ is the reduced Planck constant, σ is the vector of
Pauli matrices in the basis of the two crossing bands and a is the dimensionless tilting
parameter that will play a prominent role in the following chapters of this thesis. In
actual materials these Weyl cones cannot appear around k = 0, so in equations (1.84)
and (1.85) k has to be understood relative to the position k0 of the Weyl cone in
momentum space. This effective Hamiltonian is exactly the one Hermann Weyl derived
for the massless relativistic (elementary) particles. Due to the conical dispersion (1.85),
as shown in Figure 1.1, one often talks of “Weyl cones” in the context of condensed
matter systems.

The most general description of a Weyl dispersion replaces vσ · k in (1.84) with an
anisotropic velocity tensor vijσikj , but as we will show in chapter 2 (see also [Tre+15])
most of the effects of this anisotropic velocities can be understood in terms of simple
coordinate rescalings. The term a ·k produces an overall tilt of the Weyl cone, as shown
in Figure 1.1. Such a tilt is generally to be expected in real Weyl semimetals, as it is
not prohibited by any symmetries. In the article [Ber+15] we discussed the possibility
of tilted Weyl cones and studied the case of interacting electrons in Wely bands that are
so strongly tilted that they become flat. The publication [Tre+15], which was prepared

13For a long time neutrinos were thought to be Weyl fermions, but in 1998 they were found to have a
tiny mass[Bil16].
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during the work on this thesis and whose results are presented in chapter 2, was the first
one to discuss the consequences of such a tilting term on the transport properties. It
was also the first work to specifically point out the previously ignored importance of the
tilt.

The stability of Weyl cones, which is due to their topological nature, can be intuitively
understood considering the two band Hamiltonian (1.84). Since in the Hamiltonian all
possible Pauli matrices are multiplied with a momentum component, it is not possible
to add a term that gaps out the Weyl cone: at most the location k0 of the Weyl cone
is altered. This is in contrast to the two-dimensional graphene, where the effective
Hamiltonian of the Dirac cone only contains two Pauli matrices and the addition of
a local term proportional to the third Pauli matrix gaps out the Dirac cone in two
dimensions.

1.5.2. Symmetries in topological phases and Weyl semimetals

For gapped topological phases (topological insulators), there exists a classification of
possible topological invariants based only on dimensionality and symmetries of the sys-
tem under consideration. This classification only uses the three symmetries of inversion,
time-reversal and charge conjugation and is also known as the 10-fold way[Ryu+10]. Fur-
ther, topological phases exist, which are protected by additional crystalline symmetries.
These phases are called “symmetry protected topological phases” (SPT)[Sen15].

Weyl semimetals are different from these gapped phases, as they explicitly require
the breaking of some symmetry[HQ13]: It is important for the topological stability
of the Weyl cones, that the linearly crossing bands are non-degenerate. According to
Kramers theorem[Kra30; Wig32], all states would be doubly degenerate when time-
reversal symmetry and inversion symmetry are present. Therefore, at least one of these
two symmetries must be broken in a Weyl semimetal, otherwise the Weyl points would
be degenerate and then combine to form less stable and not topologically protected Dirac
points. A second consequence of these considerations is that Weyl cones usually appear
away from high symmetry points of the Brillouin zone. This might be one of the reasons
why Weyl semimetals were not observed earlier.

The Weyl equation was originally proposed in the context of relativistic elementary
particles, and therefore was formulated to be Lorentz invariant. Requiring Lorentz
invariance rules out anisotropic velocities and also the tilt term a, as both these gen-
eralizations break rotational invariance. However, in the context of quasiparticles in a
condensed matter system the Lorentz invariance itself is not crucial. We are more inter-
ested in the topologically protected linear band crossing that possibly, and in material
realizations quite generally, includes anisotropic velocities and a tilt[Ber+15; Tre+15;
Sol+15]. This directly connects to the main objective of this thesis: We will study how
this tilt term affects (transport) properties of Weyl semimetals while it does not change
the basic topological index of Weyl cones.
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1.5. Weyl semimetals

1.5.3. Chirality and topological index

Since Weyl cones are gapless, a connection to the topological invariants discussed above
for gapped band structures might not be obvious at first sight, but there is a simple
correspondence: the surface of a sphere in (three-dimensional) momentum space gives a
two-dimensional “cut” of the band structure. When the gap closing of the Weyl cone is
inside the bulk of this sphere, the two bands of the Weyl cone are gapped on the sphere’s
surface and the Chern number is well defined as introduced above. This Chern number
corresponds directly to the chirality of the Weyl cone denoted with χ for an electronic
band (the one with positive energy in the case of zero chemical potential relative to
the Weyl node) respectively −χ for the hole band[HQ13]. In the case of multiple Weyl
cones this Chern number corresponds to the sum of the chirality of all Weyl cones
inside the sphere. This is an important property when searching (numerically) for Weyl
cones in complex three-dimensional band structures by moving a “probe” sphere through
momentum space: a result of Chern number zero can correspond to no Weyl cone at all
or to a pair of Weyl cones of opposite chirality. Therefore, one needs to apply some care
in using this property as a diagnostic tool to find Weyl cones. As Weyl cones have a
fixed chirality and at the same time the total chirality of a system must be zero, Weyl
cones have to come in pairs of opposite chirality that are separated in momentum space.
When two Weyl cones of opposite chirality “meet” in momentum space, they become
a Dirac cone, where both linear bands are doubly degenerate. Further, Weyl cones of
opposite chirality are related by symmetry, and therefore Weyl cones cannot appear at
k = 0.

1.5.4. Transport

When a new class of materials is discovered, their transport properties are of great in-
terest, both for experimental verification of material candidates and in the search for
applications. Weyl semimetals are special as they posses a topologically protected band
crossing, where the density of states vanishes. How this topological feature affects trans-
port properties was studied in many contexts: The conductance properties including
the influence of potential disorder were discussed in [Sbi+14; PML15; Che+15], while
[RS15a] considered charge impurities. Further, the critical exponents of the disorder
phase transition were calculated by [SRG15; SBB15], while others argued that rare re-
gion effects lead to an avoided quantum critical point at this phase transition[NHS14].
Adding a magnetic field to the picture leads to magnetoresistance[Bur15; KGM15],
magneto-thermal effects[SGT16] and curious “non-local” phenomena[Bau+15; RKL17;
Par+14].

While there were numerous articles available about the transport properties of Weyl
semimetals in 2014 when I began to work on this thesis, the articles listed above only
considered the idealized isotropic Weyl cone, with the only exception [RKN15] taking
into account anisotropies of the Weyl cones in the conductivity calculation. To the best
of our knowledge, the effects of a tilt were never discussed before our work [Tre+15;
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Tre+17b], corresponding to the results presented in chapters 2 and 3. These articles
consider the conductivity of a Weyl semimetal with the Fermi energy at the energy of
the nodal point. The “classical” intuition tells us that the conductivity must vanish, as
the density of states vanishes. While this turns out to be correct, there is a non-vanishing
cube conductance g as introduced in (1.8) and therefore the conductance is finite. Due
to the topological stability of the Weyl cone the addition of potential disorder does not
directly increase the conductivity to a non-zero value, but there is a critical disorder
strength at which a phase transition to a “disordered phase” occurs[Sbi+14]. Further,
for isotropic Weyl cones it was found that the Fano factor (see (1.10)) takes a unique
value of

F =
1 + 2 ln 2

6 ln 2
, (1.86)

in the “clean” phase, while it takes the well-known value 1/3 in the disorderd phase and
thus can serve as an indicator distinguishing the clean and the disordered phase. These
properties will be discussed in more detail in chapters 2 and 3, where we study if the
addition of anisotropy and a tilt changes the conductivity and the Fano factor.

Chiral anomaly

Another prominent transport property of Weyl semimetals is the chiral anomaly[HQ13].
For a single Weyl cone of chirality χ the current in a magnetic field is given by

∂µj
µ
χ = −χ e3

4π2~2
E ·B , (1.87)

where E is an electric and B a magnetic field and thus the current would not be con-
served when E and B have a parallel component. This obvious contradiction to current
conservation can be resolved by considering the complete system consisting of pairs of
Weyl cones of opposite chirality and hence, current conservation is restored in total. The
chiral anomaly still results in a measurable quantity, namely the anomalous Hall effect,
which for a system with two Weyl cones is

j =
e2

2π2~2
b×E +

e2

2π2~2
b0B , (1.88)

where b is the momentum space separation of the two Weyl cones and b0 is their
separation in energy. Several experiments confirmed this effect in transport measure-
ments[Hua+15; Zha+16]. Furthermore, a chiral magnetic effect[HQ13] exists.

1.5.5. Fermi arcs

A further interesting feature of Weyl semimetals are their surface states, called Fermi
arcs[HQ13; Fan+16; PKV14; Oja13]. In usual materials, the Fermi surface on a two-
dimensional surface is a closed circle, up to deformations. In Weyl semimetals the Fermi
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Figure 1.11.: Experimental observation of a Fermi arc state using Angle resolved photo emis-
sion spectroscopy (ARPES), taken from [Xu+15]. The darker tones correspond
to the Fermi arcs that do not form a closed circle but end abruptly at two ends.

surface is “fractionalized” and only half of the usual Fermi circle lives on one surface,
while the other half can be found on the opposed surface.14 This Fermi arc starts
and ends at surface projections of the Weyl cones. Figure 1.11 shows the experimental
observation of a Fermi arc.

The following picture provides an intuitive explanation for the existence of Fermi
arcs: If a two-dimensional momentum-space plane orthogonal to the vector connecting
the Weyl points is moved along this vector, its Chern number changes when it crosses
through a Weyl point, as each Weyl point radiates Chern flux15. We assume that this
plane starts as topologically trivial at the BZ’s boundary and moves along the direction
in which the Weyl cones are separated. When it encounters the first Weyl point, it
changes to be topologically nontrivial with Chern number ±1 and hence has gapless
edge states. Once it encounters a Weyl point of opposite chirality it switches back to
being topologically trivial. Combining all the edges of the two-dimensional sheets to
construct the surface of a three-dimensional sample, these gapless edge states result
in the Fermi arc and it is obvious that the Fermi arc connects the Weyl point surface
projections[HQ13].

In [KTB17] we constructed exact solutions for topological surface states, including
surface states in Weyl materials that lead to Fermi arcs. This construction is quite
general and only relies on the lattice structure and some weak assumptions (locality
and translation invariance) on the hopping elements of the tight-binding model. In
Figure 1.12 an exemplary lattice is shown together with the inverse localization length
ξ−1(k) = log |r1(k)| for the lowest energy surface state in the pyrochlore model for the
2-in-2-out spin configuration. The hopping parameters are tSOC/t = 0.1 as defined in

14In known materials, the Fermi circles split in two half-circles[Xu+15], but it is theoretically possible
to split it into even shorter pieces[KTB17].

15Due to the periodicity of the BZ this plane is equivalent to the sphere on which we defined the Chern
number of a Weyl point above.
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[KTB17]. In the areas colored red, the surface state is localized to the bottom surface,
while it is located to the top surface in the blue areas. The black line is the Fermi surface,
which switches surface two times (where it crosses from red to blue areas or vice versa).
The tight-binding model was obtained as projection to the 2-in-2-out spin configuration
of a spinful model given in [YI14], other cases are also discussed in [KTB17].

(a) (b)

−π
2

−π
4

0 π
4

π
2

kx

−π
2

−π
4

0

π
4

π
2

k
y

2-in 2-out

4

3

2

1

0

1

2

3

4

Figure 1.12.: (a) The pyrochlore model consists of layers of kagome lattices stacked alternating
with a triangular lattice (green). The kagome layers are shifted relative to each
other and repeat every third layer. (b) A single tetrahedron of the pyrochlore
lattice. The arrows indicate the preferred spin directions pointing towards (red)
or away from (green) the center of a tetrahedron.

1.6. Numerical methods and computer programs

In all projects of this thesis numerical calculations were performed. The numerical
applications range from integration of formulas obtained analytically for which an exact
integration was not possible, over self-consistent solutions of (nonlinear) equations for the
mean field calculations and the SCBA computations, to high-performance computations
for disorder averages in the S-Matrix approach. All computer codes for this thesis
were written in the Python programming language, using the packages numpy[WCV11]
and scipy[Oli07] for numerical work and pandas[McK10] for the analysis of the data
obtained during the computations. I developed a private python package to quickly
study (topological) lattice models, especially in conjunction with the project [KTB17].

A common and ubiquitous problem in numerical work is to make sure that the results
do not depend on numerical (i.e. unphysical) parameters. Such parameters include for
example a (numerical) cutoff or the resolution used in the discretization of continuous
variables. A general strategy to verify convergence is the following: starting with low
values of the numerical parameter, where the result still (erroneously) depends on the
parameter, one slowly increases the parameter until the result becomes independent of
the parameter. In general, we verified numerical convergence for all computations. Due
to the large number of numerical parameters and the repetitive nature of the convergence
verification procedure, the exact convergence behaviour is not always discussed in detail.
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1.6.1. Chern numbers

A numerical implementation of (1.83) for arbitrary Hamiltonians together with the ap-
proach of integration of the dispersion on the two-dimensional sphere’s surface in three-
dimensional momentum space as described in chapter 1.5, allowed us to quickly verify the
chirality and position of Weyl cones in lattice models[KTB17] and to connect exemplary
lattice models to low energy models[Tre+15; Tre+17b; Tre+17a].

1.6.2. S-Matrix numerics

In chapter 1.1.5 we introduced the concept of scattering matrices, which we will use
in chapters 2 and 3 to numerically compute the conductance and Fano factors of Weyl
semimetals. In a clean system where electrons are ballistic, the computation of a scatter-
ing matrix amounts to solving a system of linear equations. In this case the transversal
modes are independent and we can solve equations (1.34) using a plane wave ansatz for
each transverse mode.

To numerically compute the scattering matrix of a disordered system, we use a scheme
established in [Bar+07] which was adapted to isotropic Weyl cones in [Sbi+14]. In
[Tre+17b] (see chapter 3) this scheme was further adapted to general Weyl cones with
anisotropies and tilt as discussed in chapter 1.5. The general idea of this scheme is to
obtain the scattering matrix of the full system as the combined scattering matrix of
alternating short slices of length ∆z of ballistic (clean) transport and infinitesimal slices
of disorder, introducing some mixing of the modes. For this approximation to be valid,
the parameter ∆z has to be much smaller than the correlation length ξ of the disorder
given by

ξ =
2

q0
(1.89)

with q0 as defined in (1.52).

S-matrix for a disorder slice and the Born approximation

To capture the effect of a smooth disorder potential as given in (1.52), we approximate
it by using infinitely short slices of disorder placed along the transport direction (here
the z axis)[Sbi+14; Sbi16] as

V (x, y, z) =
∑
n

Vn(x, y)∆zδ(z − zn) (1.90)

with Vn being the average of the corresponding finite slice

Vn(x, y) =
1

∆z

∫ zn

zn−1

dzV (x, y, z) . (1.91)
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This approximation is valid when we choose ∆z � ξ. The scattering matrix then can
be computed in the Born approximation, where the reflection part turns out to be 0 due
to nonzero wave function overlap. The transmission part is

t ' 1 + iT with Tnm =
1

~
〈
φ−Rm

∣∣Vn(x, y)∆z
∣∣φ+

Ln

〉
. (1.92)

While the Born approximation is good as long as T � 1, which we can always achieve
by choosing an appropriate ∆z, it leads to non-unitary scattering matrices. As unitarity
is an important requirement for scattering matrices we need to restore it here. We do
so by replacing

t ' 1 + iT →
(

1 +
iT

2

)(
1− iT

2

−1)
(1.93)

which is equivalent up to first order, but unitary by construction. The equivalence to
first order is sufficient, as we use a first order approximation.

Convergence and details of the implementation

We checked for convergence upon changes of the parameters ∆z, the width of the sample
(see Figure 1.2) which corresponds to the resolution in momentum space and the momen-
tum cutoff (i.e. the number of modes taken into account) corresponding to the real space
resolution. We compared different boundary conditions, notably periodic boundary con-
dition (PBC) and antiperiodic boundary conditions (APBC). The choice of boundary
conditions changes the quantization condition, i.e. which transversal wavevectors are
allowed. Coinciding results for PBC and APBC are a clear signature of the results’
independence of the sample’s boundary and therefore a good check when we want to ac-
cess bulk properties. While it is common to use a square of discretised momenta, where
the cutoff is applied to each momentum component individually, we chose to apply the
cutoff to the absolute value, leaving us with a circular disc of momenta, a choice that is
both physically more sensible and numerically more efficient.

Additionally we developed a version using GPUs (graphics processing unit, known as
“graphics cards“) for the matrix computation. To this end we wrote a python wrapper
for the magma library[TDB10; TDB17].

Combining all the numerical procedures described in this chapter we are able to com-
pute the scattering matrices for disordered systems. An exemplary result of such a
calculation is shown in Figure 1.13, displaying the transmission probabilities for one of
the disorder realizations, which were used to obtain the results of chapter 2.

1.6.3. SCBA numerics

The SCBA as presented in chapter 1.2.3 leads to a self consistent (matrix) equation
that we want to solve numerically. We solve this equation iteratively by repeated and
alternating evaluations of the equations (1.60) and (1.61), always using the solution
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Figure 1.13.: Visualization of the transmission values Tnn of the scattering matrix of a disor-
dered system with the following parameters: tilt ay = 0.25, length L = 20, width
W = 120, number of transverse modes N = 11449, using the circular momentum
cutoff in kx, ky. The color scale corresponds to log Tnn, showing that the values
of Tnn at the momentum cutoff have values as low as 10−16.

of the previous step as input. It can be favorable to derive equivalent self-consistency
equations for two different quantities (as in [OK14]) to avoid the sharp peak of G that
is hard to treat numerically. We stop the iteration once the absolute change (integrated
over momentum space) of G falls below a cutoff value defined beforehand.

In the case of a tilted Weyl semimetal we can exploit the rotational symmetry around
the direction of the tilt and, working in spherical coordinates k, θ, φ, analytically inte-
grate over φ, leaving us with only a two-dimensional problem to solve numerically on a
k, θ grid. The k-grid runs from 0 to a cutoff kmax in steps of dk and the θ grid will be
Nθ equally spaced numbers in the range [0, π]. Further we have to use a small but finite
imaginary ε to avoid division by 0.

Once we obtained the final self-consistent G we can derive an effective clean theory
corresponding to the disorder system by matching a G0 with renormalized parameters
to the small k expansion of G. For the numerical results we use a least-squares fit
to a region of small k values adapting the relevant parameters in question, which for
chapter 3 are the tilt a and the Fermi velocity vF . Additionally we check that for small
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enough k the results do not depend on the precise cutoff used for the fitting procedure.
All integrations are numerically performed using the Simpson’s rule, that performs a
quadratic interpolation of the integrand given at evenly spaced points.

We compute the functions X,Y on a grid in k, θ.

1.6.4. Iterative solution of the mean field equations
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Figure 1.14.: Number of iterations (orange cross) until the mean-field calculation reached con-
vergence over a range of temperatures. The quantity maxkWk, which is itera-
tively computed in the mean field calculation, is shown as a blue line (arbitrary
units). It is directly related to the order parameter 〈b†a〉. The number of itera-
tions is highest at the phase transition.

Solving mean field equations is similar to solving the SCBA equations discussed above,
as they also represent a set of self-consistent equations. We use again an iterative
approach to solve them. The algorithm that computes the means with respect to some
Hamiltonian H and then a new effective Hamiltonian using these means according to
equations (1.71) or (1.73) is denoted with A(H). Then the iterative process is to compute
Hj = A(Hj−1), starting with H0 where some random values for the means are used16,
until Hj = Hj−1 (up to some defined numerical precision). Unfortunately, this approach
is prone to oscillations and therefore it can be helpful to introduce some mixing m and
define the Hamiltonian of step j as

Hj = (1−m)A(Hj−1) +mHj−1 . (1.94)

16We are looking for a stable solution of the self-consistent equations. Often they have an unstable
solution where the mean field is exactly equal to zero. Therefore we have to start with random values
for the mean field, since otherwise the iterative algorithm gets stuck at the unstable solution.
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We used two approaches relying on the gap equation (only for 2× 2 problems) and the
mean field equation which gave consistent results. Apart from using numerical methods
to solve the mean field equations we use the computer algebra system (CAS) SymPy
[Meu+17] to derive all the matrix elements of the mean-field expansion in the first place,
as this turns out to be a tedious task to do by hand.

Figure 1.14 shows data from the mean field calculation of chapter 4. We display
maxkWk, which is directly related to the order parameter, as Wk is the quantity we
evaluate numerically in solving the gap equation. It is defined as

Wk =
∑
k′

UP (k, k′)〈b†k′−Qak′〉 (1.95)

in terms of the interaction strength U , the matrix elements P and the operators a and
b. All quantities are defined in chapter 4 and appendix C.5 in more detail. The number
of iterations needed to reach convergence depends strongly on the distance to phase
transition, as shown in Figure 1.14. Away from the phase transition some ten iterations
are usually enough, close to the phase transition more and more iterations (up to several
thousand) are needed to achieve sufficient convergence.
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2. Quantum transport in Dirac materials:
signatures of tilted and anisotropic Dirac
and Weyl cones

In this chapter, which is based on the publication [Tre+15], we calculate conductance
and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic
Dirac or Weyl cones using the Landauer formula introduced in chapter 1.1.5. In [Tre+15]
the relevance of the tilt for the properties of Weyl semimetals was mentioned for the
first time, a contribution especially acknowledged in the commentary [Bee15]. We em-
phasize in this chapter, that tilted and anisotropic dispersions are generic in the absence
of certain discrete symmetries, such as particle-hole and lattice point group symmetries.
These symmetries are generally not present in Weyl semimetals, as discussed in chapter
1.5. We apply our general considerations to specific lattice models of strained graphene
and a pyrochlore Weyl semimetal. The conductance properties of type-II Weyl semimet-
als depend not only on the Weyl cone’s dispersion, as in type-I Weyl semimetals, but
also on details of the emering finite fermi surface. Therefore we ignore tilts larger than
the critical value and do not discuss type-II Weyl semimetals in this chapter. However,
it is interesting to note that the tight-binding model of pyrochlore, which serves as an
example for type-I Weyl semimetals here, can also be tuned to the type-II phase.

2.1. Introduction

The past decade has witnessed an explosive increase in the study of electronic systems
dispersing linearly around isolated band touching points[WBB14]. Notably, this includes
graphene[Nov+04; Nov+05], various two-dimensional organic compounds[Goe+08], and
the surface states of three-dimensional topological insulators[FKM07; MB07; Roy09;
Zha+10]. In three dimensions, a Dirac semimetal[Fan+03; Mur07], which has two
coinciding linear band touching points with opposite chirality, was observed exper-
imentally[Liu+14b; Liu+14a], and the first Weyl semimetal[Wan+11; HQ13], which
has non-degenerate band-touching points, was observed very recently[Xu+15; Lu+15;
Lv+15]. Subsequently the first transport measurements on Weyl semimetals were per-
formed[Hua+15; Zha+15]. A Weyl semimetal phase is also predicted to occur, e.g., in
multilayer structures[BB11] and pyrochlore iridates[Wan+11].

By virtue of stochiometry, the Fermi level lies exactly at the nodal point of the low-
energy “cones” in many of these materials, and their electronic behavior is neither that
of insulators — there is no gap — nor that of conventional metals — there is a vanishing
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density of states at the nodal point. Indeed it has been shown experimentally[Nov+05;
Zha+05] and theoretically[Two+06; Kat06; Bai+14] that the conductivity σ reaches a
minimal but finite value at a nodal point in two dimensions, whereas a nodal point in
three dimensions is characterized by a finite conductance G, its conductivity σ being
zero[Bai+14; Sbi+14]. The Fano factor F , defined as the ratio of shot noise power
and current, was found to be an excellent indicator of the quantum nature of elec-
tronic transport at the nodal point, taking the universal sub-Poissonian value F = 1/3
in graphene[Two+06]. In Weyl semimetals F was found to discriminate between a
pseudoballistic regime[Bai+14] at weak disorder and a diffusive regime at strong disor-
der[Sbi+14]. Unlike the conductance G, which retains a dependence on the ratio W/L
of sample width W and sample length L, the Fano factor F is independent of both W
and L.

Anisotropy and tilt of the cones are often neglected, essentially for two distinct rea-
sons: (i) they are forbidden by symmetry in important special cases, such as graphene,
and (ii) they do not alter the topology of the low-energy theory. Here, however, we
demonstrate that tilts and, to a lesser extent, anisotropies lead to clear signatures in
quantum transport, affecting both the conductance and the Fano factor in absence of
disorder. We find the tilt dependence of the Fano factor F remarkable, because in many
cases of interest F was found to be a number with a considerable degree of universal-
ity[BB92; JPB94; BM94; Two+06; Bai+14]. Our results apply — with various degrees
of numerical relevance — to a number of experimentally relevant systems for which
tilted and anisotropic conical dispersion either occur generically, as in the case of Weyl
semimetals, or for which the forbidding symmetries are easily broken, such as strained
graphene.

2.2. Tilted and anisotropic cones

In the vicinity of a nodal point, a generic Dirac or Weyl Hamiltonian can be written as

H =
∑
i,j

vijkiσj + (aiki − u)σ0, (2.1)

where the sum is over i, j = x, y or i, j = x, y, z for dimensionalities d = 2 and d = 3,
respectively. Further σx,y,z are the Pauli matrices and σ0 is the 2 × 2 unit matrix.
The dispersion is shown schematically in Fig. 2.1. The “tilt” term proportional to ai
is typically discarded, as it does not affect the eigenspinors and, hence, the topology
of the band structure. As we show below, inclusion of this term does affect transport
at the nodal point, however. Tilts can occur only if particle-hole symmetry is absent,
and tilt is additionally constrained by point group symmetries. With a suitable choice
of the pseudospin quantization axis, the anisotropy matrix vij can be brought to upper
diagonal form, vyx = vzx = vzy = 0. Anisotropies are generic if the cone is not located
at a high symmetry point in the Brillouin zone.

Considering graphene as an important example, we note that the trigonal “warping”
of Dirac cones respects the crystalline symmetries and leads to anisotropies, but only
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Figure 2.1.: A tilted Dirac cone in two dimensions. The momentum coordinates are labeled
kx and ky; the third dimension represents energy. Transparent planes indicate
zero-energy plane (violet) and tilt a = (−0.5, 0) (green plane), respectively.

at quadratic order in the momentum k. The anisotropies to linear order (2.1), which
amount to a “squeezing” of the cone along some direction, are, just as any tilt of the
cone, forbidden by the threefold point group symmetry of the honeycomb lattice, com-
bined with the location of the Dirac cones at high-symmetry points in the Brillouin
zone. However, as soon as the threefold rotation symmetry is relaxed anisotropies oc-
cur. If, in addition, second-nearest-neighbor hopping is also taken into account the
particle-hole symmetry is lost, and the cones acquire finite tilts. This scenario applies
to strained graphene and will be discussed in more detail below. For three-dimensional
Weyl semimetals, the band touching occur at lower symmetry points; hence anisotropies
and tilts are ubiquitous.

2.3. Transport: low-energy theory

We calculate the conductance G and the Fano factor F for a region of length L and
width W , taking the limit W � L in order to eliminate a spurious dependence on
the transverse boundary conditions[Two+06]. We choose the x axis in the transport
direction, so that the nodal semimetal corresponds to the region 0 < x < L, whereas
the source and drain leads have x < 0 and x > L, respectively. The potential u is set to
zero for 0 < x < L, to model transport at the nodal point. We take the limit u → ∞
for x < 0 and x > L to model strongly doped leads.

The transverse momentum k⊥ = ky (d = 2) or k⊥ = (ky, kz) (d = 3) is conserved, and
for each value of k⊥ we calculate the transmission coefficient T (k⊥) by matching wave
functions in the sample and the leads (see Appendix A for details). The conductance G
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per cone is then given by the Landauer formula

G =
e2

h

(
W

2π

)d−1 ∫
dd−1k⊥T (k⊥). (2.2)

The aspect-ratio dependence can be partially eliminated by changing to the dimension-
less conductance referred to a cube, defined by the relations

G =
e2

h

(
W

L

)d−1

g. (2.3)

In two dimensions g is identical to the conductivity σ. In three dimensions, a finite value
for g in the limit W , L→∞ implies a vanishing conductivity σ = GL/W 2 = (e2/h)g/L.
The Fano factor, the ratio of shot noise and current, is given by[Büt90]

F =

∫
dd−1k⊥T (k⊥)(1− T (k⊥))∫

dd−1k⊥T (k⊥)
. (2.4)
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Figure 2.2.: Dimensionless conductance g and Fano factor F for a tilted two-dimensional Dirac
cone, as a function of the angle ϕ between transport and tilt direction. The tilt
strength a is given in the legend.

2.3.1. No anisotropy, no tilt

For the isotropic cone without tilt (ai = 0, vij = v0δij) the conductance and Fano factor
are known from the literature[Two+06; Sbi+14; Bai+14],

g =
1

π
, F =

1

3
, (d = 2), (2.5)

g =
ln 2

2π
, F =

1 + 2 ln 2

6 ln 2
, (d = 3). (2.6)
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2.3.2. Anisotropy, no tilt

For the general anisotropic case but without tilt, ai = 0, i = 1, . . . , d, one finds

g =
1

π

v2
xx + v2

xy

vxxvyy
(d = 2), (2.7)

while the Fano factor is unaffected by the anisotropy; i.e., F is given by Eq. (2.5). For
the diagonal case (vxy = 0) this result can be understood as a simple scaling of the
y coordinate, which affects the conductance g, but not the Fano factor F . In three
dimensions the exact result in the diagonal case (vxy = vxz = vyz = 0) is given by the
corresponding rescaling

g =
ln 2

2π

v2
xx

vyyvzz
(d = 3), (2.8)

while there is no simple formula for the general case. Still, the Fano factor remains
unaffected by any anisotropy and is given by Eq. (2.6).

2.3.3. No anisotropy, tilted cones

Although a closed analytical solution for a tilted Dirac cone is possible in two dimensions,
the explicit expressions are too lengthy to be reproduced here. Instead, we will present
a numerical evaluation of the solution for representative values of the tilt parameters
ax, ay, and az for fixed values of vij = δij . Without anisotropy the dimensionless
conductance g and the Fano factor depend on the total magnitude a2 = a2

x + a2
y (d = 2)

or a2 = a2
x + a2

y + a2
z of the tilt and the angle ϕ = arccos(|ax|/a) between the tilt axis

and the transport direction only. The limit a = 1 corresponds to a maximally tilted
cone with a flat band along the tilt direction. Results are shown in Figs. 2.2 and 2.3 for
d = 2 and d = 3 and for representative values of the tilt strength a.

We note that the results are quantitatively different in two and three dimensions, but
qualitatively very similar. There is an important difference between a tilt parallel to
the transport direction, where g decreases upon increasing the tilt strength, and a tilt
perpendicular to the transport direction, where g increases with increasing tilt strength.
The Fano factor F is unaffected by a tilt in the transport direction, and increases with
increasing tilt if there is a finite angle between the tilt direction and the transport axis.
Interestingly, upon averaging over all orientations of the tilt axis, we find a systematic but
small decrease in conductance for both two and three dimensions. The main conclusion,
however, is that the Fano factor is no longer a universal number once the tilt of the
dispersion is taken into account, but depends on the magnitude and direction of the tilt.

The analytical solution for a two-dimensional Dirac cone takes a simple form if the
tilt axis and the transport direction are collinear (ϕ = 0). In that case one finds g =
(1/π)

√
1− a2, F = 1/3. Further, for small tilt strengths it is possible to expand the
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Figure 2.3.: Same as in Fig. 2.2, but for a three-dimensional Weyl cone.

analytical solution in two dimensions. We find

g =
1

π
+
a2

2π

(
4

3
sin2 ϕ− 1

)
+O(a4), (2.9)

F =
1

3
+

2a2

45
sin2 ϕ+O(a4), (2.10)

which deviates less than 1% from the exact value up to a = 0.5.

2.3.4. Anisotropy and tilted cones

In the presence of both anisotropy and tilt the dimensionless conductance and the Fano
factor are qualitatively similar as in the absence of anisotropy. However, for a tilt in
transport direction the Fano factor changes if the anisotropies are not orientated along
the axis of the reference frames, i.e., if one of vxy, vxz or vyz is nonzero.

2.4. Application to lattice models

In generic lattice models, the cones are both anisotropic and tilted, and moreover, con-
tributions from an even number of cones must be taken into account simultaneously.
Below, we provide explicit results for two specific tight-binding models.

2.4.1. Strained graphene

In “intrinsic,” unstrained graphene the Dirac cones are located at high symmetry points
in the Brillouin zone. The application of strain changes the positions of the Dirac
points and the cones are no longer protected by crystalline symmetries. Whereas the
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simplest tight-binding model with nearest-neighbor hopping only is particle-hole sym-
metric, which rules out a tilt of the Dirac cones, realistic tight-binding models have
longer-range hopping, which lifts the particle-hole symmetry[Cha+91]. As an example,
we now apply the above calculations to the model of quinoid-type strained graphene, as
described by Goerbig et al. in Ref. [Goe+08]. Transport properties of strained graphene
have been studied earlier[PAP11], but without the inclusion of a tilt of the Dirac cones.

A schematic of the tight-binding model for quinoid-type strained graphene is shown
in the inset of Fig. 2.4. It consists of a honeycomb lattice which is extended/compressed
in the direction perpendicular to the lattice vector s, such that each hexagon has four
“short” bonds of length a and two “long” bonds of length a′ for positive strain ε > 0.
Strain is measured in terms of a dimensionless strain parameter ε = a′/a− 1. The tight-
binding model of Ref. [Goe+08] contains nearest-neighbor hopping amplitudes as well as
next-nearest-neighbor hopping, and we take the magnitudes of the hopping amplitudes
from Ref. [Goe+08]. Figure 2.4 shows the conductance g for strains 0 < |ε| < 0.3 and
three representative angles ϕ. The strain is perpendicular to the s direction (as depicted
in Fig. 2.4). The angle ϕ is defined as the angle between the transport direction and
s. The tilt is of order a/v ∼ 0.06 (v being the velocity in tilt direction) for the (already
quite unrealistic) strain ε = 0.3 [Goe+08]. As a consequence of this numerically small
value of the tilt strength, the relative change in Fano factor remains small, . 0.1% for
ε < 0.3. While this variation is probably out of reach of experimental detection, it shows
that Fano factor F = 1/3 is not strictly “universal” in graphene but can be changed by
the breaking of symmetries.
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Figure 2.4.: Dimensionless conductance g of a strained graphene sheet as a function of the
strain ε for different orientations ϕ (the angle between transport direction and s)
and summed over both Dirac cones and spin. The inset shows a hexagon of the
graphene lattice for ε = 0.2.
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2.4.2. Weyl semimetal

As an example in three dimensions we consider a tight-binding model of a spin-orbit
coupled pyrochlore slab which hosts a Weyl semimetal phase with Weyl cones that
may be significantly tilted[TB12; Ber+15]. In this case the lattice structure is lay-
ered, see Fig. 2.5, so that it is intrinsically anisotropic and no external strain needs
to be applied in order to lift any symmetries forbidding a tilt of the Weyl cone. The
model consists of a tight-binding Hamiltonian that contains spin-orbit coupling, in-plane
and interplane nearest-neighbor hopping amplitudes, and in-plane next-nearest-neighbor
hopping amplitudes. It was found to have a Weyl-semimetal phase for a certain range of
parameter space, with a tilt of the Weyl cone that depends on the magnitude of the next-
nearest-neighbor hopping amplitude t2. There are six Weyl cones, located on the Γ–M
lines[Ber+15] in the projected two-dimensional Brillouin zone of the slab geometry. The
Weyl points are related to each other by the sixfold symmetry of the underlying lattice.
We have numerically determined the position as well as tilt and anisotropy parameters as
a function of the next-nearest-neighbor hopping t2, keeping the other model parameters,
defined in the lower right panel of Fig. 2.5, fixed (t1 = −1, t⊥ = 2, λ1 = 0.3, λ2 = 0.2),
and calculated the dimensionless conductance g and the Fano factor F . The results are
shown in Fig. 2.5 for an in-plane transport direction aligned with one of the crystal axes
as indicated in the inset. The dependence on the orientation of the pyrochlore slab is
very weak, less than 1% for both g and F , which can be understood as a consequence
of there being six different contributing cones: when rotating the sample, some cones
are rotated “away” from the transport direction, while others are rotated “towards” the
transport direction. The changes in transport properties in different cones then have
opposite signs (cf. Fig. 2.3), leading to a very weak angular dependence of g and F .
The magnitude of the dimensionless conductance g and the Fano factor F can however
differ substantially from the values calculated in the absence of a tilt.

2.5. Discussion

We have investigated the effect of anisotropies and tilts of Dirac and Weyl cones on
quantum transport properties at the nodal point. Neither anisotropies nor tilts change
the topology of the band structure and for this reason they are often neglected. We
showed that a tilt nevertheless affects the dimensionless conductance g and Fano factor
F . The latter observation is remarkable, since the Fano factor is often found to be a
universal number, that does not depend on system-specific details.

Applying our results to the example of strained graphene, we found that the inclusion
of a tilt of the Dirac cone leads to a sizable directional dependence of the conductance
g. For realistic strains, the tilt effect on the Fano factor F is nonzero, though numeri-
cally very small — underlining the symmetry protected nature of “universal” quantum
transport in two-dimensional Dirac materials. The consequences of a tilted dispersion,
including a shift of the Fano factor F , may be more significant for other two-dimensional
materials possessing more strongly tilted Dirac cones, such as the organic compound α–
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Figure 2.5.: Dimensionless conductance g (solid line) and Fano factor F (dashed line) for a
pyrochlore slab as a function of the in-plane next-nearest-neighbor hopping ampli-
tude t2 (left panel). Transport direction is parallel to the crystal axis s (as shown
in the upper right panel). Hopping parameters are indicated in the lower right
panel.

(BEDT-TTF)2I3 [Goe+08; KKS06].

While the first observations of Weyl semimetals are a great experimental success, they
all observed time-reversal symmetric Weyl semimetals[Xu+15; Lu+15; Lv+15; Hua+15;
Zha+15]. These Weyl semimetals have additional states crossing the Fermi level opposed
to the still hypothetical time-reversal symmetry breaking Weyl semimetals, which are
predicted in the pyrochlore iridates[Wan+11], where the only states crossing the Fermi
level are Weyl nodes, as is the case in our example of a pyrochlore slab. Hence the
full transport properties could be obtained from the combined contribution of the Weyl
nodes, whereas in the experimentally observed materials one should account also for the
other states at the Fermi level.

In a recent work it was proposed that the Fano factor can be used as a universal quan-
tity to discriminate different transport regimes in a disordered Weyl semimetal[Sbi+14]:
In a calculation that did not include tilt or anisotropy, F was found to take the bal-
listic value (2.6) below a critical disorder strength, whereas F approaches the smaller
diffusive value F = 1/3 at larger disorder. Our present results indicate that there is no
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universal value for the Fano factor in the ballistic limit. However, we also find that a tilt
of the Weyl cone can only increase F , so that the Fano factor continues to be a powerful
indicator discriminating the pseudoballistic and diffusive regimes.

For tilted and anisotropic cones the conductance varies strongly with transport di-
rection and can be either higher or lower than the conductance of the symmetric cone.
In contrast the Fano factor is only sensitive to the tilt of the cone and, whereas it
still depends on the angle between tilt and transport direction, the Fano factor always
increases for tilted cones. These insights should be useful for the experimental identifica-
tion and characterization of a range of Weyl and Dirac materials by means of transport
measurements.
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3. Tilted disordered Weyl semimetals

In this chapter we investigate the combined effect of a tilted Weyl dispersion and the
presence of potential disorder, generalizing the results of the previous chapter to disor-
dered systems. In particular, we address the influence of a tilt on the disorder-induced
phase transition between a quasi-ballistic phase at weak disorder, in which the disorder
is an irrelevant perturbation, and a diffusive phase at strong disorder. This chapter is
based on the publication [Tre+17b] and makes use of a variety of methods, namely the
SCBA introduced in chapter 1.2.3 and transport numerics using the S-Matrix formal-
ism as detailed in the chapters 1.1.5 and 1.6.2. While the SCBA is known to be only
qualitatively correct in Weyl systems, as discussed in the introduction, the later work
[SF17] performed a full renormalization group analysis of the same phase transition and
confirmed all results we present in this chapter qualitatively and quantitatively found
results differing by a consistent factor of ∼ 2 from ours.

3.1. Introduction

The theory of Weyl semimetals was presented in depth in chapter 1.5. The conventional
understanding of a Weyl semimetal is a system that, in the vicinity of the band touching
points, is accurately described by the two-band Weyl Hamiltonian

H0 = ~vk · σ, (3.1)

whose elegant form is dictated by Lorentz invariance and the requirement of a linear
dispersion of the crossing bands. Here, momentum and energy are measured relative to
the momentum and energy of the band crossing point, and σ = (σ1, σ2, σ3) is the Pauli
matrix. However, as was only appreciated recently, symmetry breaking terms such as an
anisotropic velocity and a “tilt” of the Weyl dispersion (see Fig. 3.1) occur generically in
Weyl materials and may have profound consequences for thermodynamic and transport
properties[Ber+15; Tre+15; Sol+15; XCZ14; XZZ15; RKN15; Bee15; XD16; Den+16;
Xu+16; Hua+16; Wan+16; Bel+16b; Koe+16]. Explicitly, a generic linear band crossing
is described by

H0 =

3∑
i,j=1

~vijkiσj +

3∑
i=1

viiaikiσ0 , (3.2)

where the vij now describe an anisotropic velocity, the ai represent a uniform linear tilting
of both bands, and σ0 is the 2 × 2 unit matrix. While the tilt looks most innocent—
being proportional to the unit matrix σ0 it does not alter the eigenstates of the model—it
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turns out to be the more interesting symmetry-breaking term. Whereas tilting terms
have been considered early on in two-dimensional systems as consequences of perturba-
tions[Kob+07; Goe+08], the topological stability of Weyl points[Wan+11], or, viewed
alternatively, the generic nature of non-degenerate band crossings[Her37] in three di-
mensions allows for much stronger tilting. In fact, it was first shown in simple toy
models[Ber+15], and later in more realistic materials simulations[Sol+15] and in models
of superfluids[XZZ15], that the Weyl dispersion can easily be tilted over to the extent
that a finite Fermi surface is formed, with hole and electron pockets touching at the Weyl
point. These systems have been called “Type-II Weyl semimetals” and have, following
their prediction in WTe2, now been observed in a number of materials[Den+16; Xu+16;
Hua+16; Wan+16; Bel+16b; Koe+16].

The effect of smaller, sub-critical tilts, which preserve the point-like nature of the Fermi
surface, is more of a quantitative than of a qualitative nature, although even small tilts
influence transport properties of Weyl semimetals in a unique way. When the Fermi level
lies exactly at the nodal point, a Weyl semimetal of size L3 has a vanishing conductivity
σ, but a non-vanishing L-independent conductance g = σL[Bai+14; Sbi+14]. The finite
conductance is reminiscent of the universal minimal conductance g = e2/4πh predicted
and observed in graphene[Two+06; Kat06], with the important distinction that in two
dimensions a finite minimal conductance corresponds to a non-zero conductivity due to
its different scaling with system size (g = σLd−2 in d dimensions). As shown in chapter 2
and in [Tre+15], the value of the minimal conductance g in a Weyl semimetal depends on
the tilt. Moreover, tilt was also found to affect the value of the “Fano factor” F = P/2eI
at the Weyl point (the ratio of shot noise power P to current I [Tre+15]), which was
otherwise found to be a universal number F = (1 + 2 ln 2)/(6 ln 2)[Bai+14; Sbi+14],
independent of weak disorder, sample geometry, or anisotropy in the Weyl dispersion.

In this chapter we consider the combined effect of a (sub-critical) tilt of the Weyl
dispersion and the presence of potential disorder, which is the second important addition
to the Weyl Hamiltonian (3.1) required for the description of realistic condensed matter
realizations of a Weyl semimetal. For isotropic Weyl cones the remarkable properties
of the ideal system—in addition to the anomalous transport properties described above
these include the vanishing density of states at the Weyl point—are known to persist
up to a finite disorder strength, beyond which a diffusive phase with nonzero density
of states at the Weyl point and nonzero conductivity sets in[Fra86; Sbi+14; SDB16;
Kob+14; SRG15; SBB15; PGS15; LCF16; RJS16; SR17]. The Fano factor F takes a
different, but again universal value F = 1/3 in the diffusive phase.

Our main finding, which we support with a combination of analytical and numerical
arguments, is that the main effect of tilting the Weyl dispersion is to reduce the criti-
cal disorder strength Kc for the transition between the “pseudo-ballistic” weak-disorder
phase and the diffusive strong-disorder phase. Such a result can be expected intu-
itively, based on the consideration that in the weak-disorder phase there is a vanishing
density of states at the Weyl point, and disorder acts by virtual excitations to states
of higher energy, where the range of reachable energies is determined by the disorder
strength[SRG15; SR17]. Tilting the Weyl dispersion lowers the energy of some states
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Figure 3.1.: Illustration of a tilted Weyl dispersion, projected to two momentum dimensions.
The left panel shows the isotropic case (a = 0); the right panel shows a dispersion
tilted in the negative x direction with tilt parameter a = 0.4.

while raising the energy of others. The net effect, however, is that there are more states
available in a given energy range than in the isotropic cone, see Fig. 3.1. Explicitly, the
density of states ν(ε) depends on the tilt parameter a as

ν(ε) =
ν0(ε)

(1− a2)2 ≥ ν0(ε), (3.3)

where ν0(ε) is the density of states without tilt. This implies that the disorder of the
same strength K can be expected to have a stronger influence on a tilted Weyl dispersion,
and it is natural to expect a lower critical disorder strength Kc for cones with larger tilt.

Upon approaching the critical tilt a = 1 the critical disorder strength Kc goes to
zero—again, not a surprise given the diverging density of states for a→ 1. This implies,
however, that in the presence of disorder the tilt-driven transition between type-I and
type-II Weyl semimetals will be preceded (and, hence, masked) by the tilt-driven tran-
sition from the pseudo-ballistic weak-disorder phase into the diffusive strong-disorder
phase.

The remainder of this chapter is organized as follows: In Sec. 3.2 we introduce to the
specific model employed throughout this chapter, which contains a tilted dispersion as
well as a random potential. In Sec. 3.3 we employ the self-consistent Born approxima-
tion to show how a tilted dispersion affects the disorder-induced phase transition. We
then corroborate these results by two distinct numerical approaches: We use the kernel
polynomial method[Wei+06] to compute the density of states in a tight-binding model
using the same disorder type as in the SCBA, see Sec. 3.4, and we study transport prop-
erties in finite size systems using a scattering matrix approach, see Sec. 3.5. The use of
numerical methods to confirm our conclusions is necessary, since the self-consistent Born
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approximation is known to be an uncontrolled approximation for the disorder-induced
phase transition in Weyl semimetals[Sbi+14]. We conclude in Sec. 3.6.

3.2. Model

We consider a single disordered Weyl node described by the Hamiltonian

H = H0 + U, H0 = v(k · σ + akzσ0), (3.4)

where without loss of generality we have chosen the tilt to be in the z direction. Momen-
tum and energy are measured with respect to the Weyl node. We have chosen units such
that ~ = 1. The critical tilt is a = 1, and we will consider sub-critical tilts 0 ≤ a < 1
only.

The disorder potential U is taken to be a Gaussian random potential with zero average
and with two-point correlation function

〈U(q)U(q′)〉 =
Kξh2v2

L3
e−

q2ξ2

2 δq,q′ (3.5)

for a finite system of size L3. Here ξ is the correlation length of the disorder potential
and K is the dimensionless disorder strength. The restriction to a single Weyl node
requires that the correlation length ξ is much larger than the inverse distance between
the Weyl nodes.

We have chosen not to include anisotropy of the Weyl dispersion in to the Hamiltonian
(3.4) [compare with Eq. (3.2)]. Although anisotropies are as ubiquitous in real materials
as the tilts, they can largely be understood by simple means of rescaling of the coordi-
nate axes, rendering the Weyl dispersion isotropic but the disorder anisotropic[Tre+15;
RKN15]. Through such a rescaling procedure, anisotropies were found to affect the con-
ductance g (since g depends on sample geometry), but not the Fano factor F . Tilts, on
the other hand, cannot be removed by the rescaling procedure, and were found to affect
both g and F in the absence of disorder[Tre+15].

In the following three Sections we calculate the critical disorder strength Kc for the
disorder-induced transition to a diffusive phase using three different methods. Section
3.3 employs the self-consistent Born approximation and addresses the density of states,
using the model described above. Section 3.4 uses the kernel-polynomial method to
calculate the density of states for a tight-binding model for which the continuum model
(3.4) is the low-energy limit. Section 3.5 considers transport properties of the continuum
model (3.4), but for a system of size W 2 × L, where the sample width W (transverse
to the transport direction) is chosen much larger than its length L (in the transport
direction) to ensure that the transport properties do not depend on the choice of the
boundary conditions in the direction transverse to the current flow.

52



3.3. Density of states from SCBA

3.3. Density of states from SCBA

To study the density of states of the model (3.4) we employ the self-consistent Born
approximation (SCBA). We closely follow a similar calculation of Ominato and Koshino
for a Weyl dispersion without tilt[OK14].

Before we turn to a description of our calculations, we note that the SCBA relies
on a diagrammatic expansion that is known to neglect important contributions. For
a Weyl dispersion without tilt, the SCBA is known to yield critical disorder strengths
Kc, which are larger by a factor ∼ 2 than the ones obtained by more precise numerical
simulations[Sbi+14]. We nevertheless see the SCBA as a useful approximation for a
qualitative understanding of the way in which a tilted Weyl dispersion affects the critical
disorder strength. Furthermore, the SCBA allows us to access the disorder-induced
renormalizations of tilt and Fermi velocity.

The disorder-averaged density of states ν(ε) is expressed in terms of the (2×2 matrix)
Green function as

ν(ε) = − 1

πL3
Im
∑
k

Tr
〈
G(k, ε+ i0+)

〉
, (3.6)

where the brackets 〈. . .〉 indicate the disorder average. In the SCBA the disorder-
averaged Green function is expressed as

〈G(k, ε)〉 =
1

(ε− vakz)σ0 − vk · σ − Σ(k, ε)
, (3.7)

with the SCBA approximation for the self-energy

Σ(k, ε) =
∑
k′

G(k′, ε)〈|U(k− k′)|2〉, (3.8)

where the disorder average 〈|U(q)|2〉 is given by (3.5). The self-consistent integral equa-
tions (3.7) and (3.8) are solved numerically. Details on the numerical procedure are
given in appendix B. The critical disorder strength Kc is found as that disorder strength
for which the density of states ν(0) at the Weyl point becomes finite, whereas ν(0) = 0
for K < Kc. Our main results are summarized in Fig. 3.2.

The SCBA phase diagram of Fig. 3.2 confirms the intuitive picture of the introduction:
the critical disorder strength decreases with increasing tilt and approaches 0 when the
tilt strength a approaches the critical value a = 1. This is consistent, since as a finite
density of states develops when the cone tips over (a ≥ 1), we expect a diffusive phase
at arbitrarily small disorder strengths for super-critical tilt.

The SCBA not only allows us to find the tilt-dependence of the critical disorder
strength Kc, the expansion of the self-energy Σ(k, 0) for small momenta at zero energy
also allows us to find a disorder-renormalized Fermi velocity ṽ and tilt ã. Taking into
account rotation invariance around the z axis, the small-k expansion of the self-energy
reads

Σ(k, 0) = v(αk · σ + βakzσ0) +O(k2), (3.9)
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Figure 3.2.: Phase diagram for the tilted Weyl cone obtained from the SCBA. The numerical
uncertainty for Kc is shown as errorbars (see appendix for a discussion).

from which we obtain

ṽ = v(1 + α), ã = a
1 + β

1 + α
. (3.10)

Our result for the renormalized Fermi energy ṽ is consistent with that of Ref. [OK14]
and will not be discussed further here. The renormalized dimensionless tilt ã is shown
in Fig. 3.3, as a function of disorder strength K. Figure 3.3 suggests that there is not
only the single fixed point of the clean and isotropic Weyl cone (in the renormalization-
group sense), but rather a continuous family of fixed points at no disorder which are
distinguished by their tilt. Also note that while disorder K < Kc leads to an increased
dimensionless tilt, in the SCBA approximation sub-critical disorder cannot lead to an
“over-tilting” of the Weyl dispersion. In other words, the disorder-induced phase tran-
sition to a diffusive phase with a finite density of states at the Fermi level always takes
place before the tilt-induced transition to a type-II Weyl semimetal, which also has a
finite density of states at the nodal point. (This is consistent with the tilt-dependence
of the critical disorder strength shown in Fig. 3.2, which shows that the critical disorder
strength approaches zero in the limit a → 1.) This observation remains valid if the
disorder-induced renormalization of the tilt is included, see Fig. 3.3.
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Figure 3.3.: Effective SCBA tilt ã vs. dimensionless disorder strength K in the weak-disorder
phase K < Kc.

3.4. Density of states from KPM

To complement the SCBA analysis we now report a numerical calculation of the density
of states, using the kernel polynomial method (KPM)[Wei+06]. The KPM is a numeri-
cally efficient method to approximate the density of states of large lattice Hamiltonians
H represented as sparse matrices. As a first step, the Hamiltonian is rescaled so that the
spectrum fits in the interval [−1, 1]. The density of states is then expanded in Chebyshev
polynomials. The expansion coefficients (up to a certain order, usually a few thousand)
can be expressed as a trace over a polynomial of H which can be well approximated
numerically by using a few random states. Employing identities for Chebyshev polyno-
mials, the expansion coefficients can be efficiently calculated by iteration involving only
matrix-vector products. Finally, residual Gibbs oscillations in the density of states are
suppressed using an appropriate smoothing Kernel.

We consider the two-band lattice model[TV13]

H0 (k) =
v

b
[σx sin bkx + σy sin bky

−σz cos bkz − σ0a cos bkz] (3.11)

where b is the lattice constant. The model (3.11) features eight Weyl points at momenta
k(τx, τy, τz) = (kx(τx), ky(τy), kz(τz)) for τx,y,z = ±1 with kx(τx) = (π/2b)(1 − τx),
ky(τy) = (π/2b)(1 − τy), kz(τz) = τzπ/2b. We add a disorder potential as in Eq. (3.5),
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3. Tilted disordered Weyl semimetals

with correlation length ξ = 5b, which ensures that (i) the smooth disorder correlations
are well represented on the discrete lattice and (ii) the inter-node scattering rate is
suppressed as compared to the intra-node rate by a factor of order exp[−π2ξ2/2b2] <
10−19, such that the physics can be regarded as effectively single-node.

In Fig. 3.4, top panel, we show the KPM results for the density of states ν(ε) = 0
without tilt (left panel, solid curves) and with dimensionless tilt a = 0.5 (right). We also
show the predictions of the SCBA (dashed curves). For weak disorder and away from
zero energy, the KPM and SCBA results are in good agreement, but the comparison
with the numerical results also shows that the SCBA overestimates the critical disorder
strength Kc above which the zero-energy density of states becomes finite. The figure
suggests, however, that this overestimation happens equally for zero tilt and for finite
tilt, so that the trend predicted by the SCBA is indeed confirmed by the KPM.

The bottom panel of Fig. 3.4 shows the density of states ν(0) at the nodal point as
a function of the disorder strength for different values of the tilt parameter. Again,
these results confirm the trend predicted by the SCBA, that larger tilt corresponds to a
lower critical disorder strength. However, a precise determination of Kc is beyond the
capabilities of the KPM method[SBB15].

3.5. Quantum transport

The disorder-induced phase transition is not only characterized by its effect on the
density of states at the nodal point ν(ε), which is zero for K < Kc and finite for K > Kc,
the transition also strongly affects transport properties, such as the conductance or shot
noise power. In this Section we show that the characteristic transport properties at the
nodal point found for a Weyl dispersion without tilt persist for a tilted dispersion, and
we provide more evidence in support of the result of the previous Sections, that the
critical disorder strength is reduced in the presence of a tilted Weyl dispersion.

We calculate the transmission matrix t of a finite sample of length L in the transport
direction (which we take to be the x-direction) and width W in the transversal (y and
z) directions. The method is explained in detail in Ref. [Sbi+14]. With a width W the
two-point correlation function (3.5) of the disorder potential is replaced by

〈U(q)U(q′)〉 =
Kξh2v2

W 2L
e−

q2ξ2

2 δq,q′ . (3.12)

The conductance G per Weyl node and the Fano factor F are expressed in terms of t as

G =
e2

h
Tr tt†, (3.13)

F =1− Tr(tt†)2

Tr tt†
, (3.14)

where the trace is taken with respect to the transverse momenta. To approach bulk
results as closely as possible, we choose the sample width W � L and verify that
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Figure 3.4.: Top: Density of states ν(ε) as a function of energy ε without tilt (left, a = 0)
and with tilt (right, a = 0.5), as calculated by the kernel polynomial method for
disorder strengths K = 0, 2, 4, 6, 8 (bottom to top). The dashed lines denote the
SCBA results, Eq. (3.6). [For K = 0, the SCBA coincides with the zero-disorder
density of states of Eq. (3.3).] Bottom: Density of states ν(0) at the nodal point
versus disorder strength for different values of the tilt, a = 0, 0.25, 0.4, 0.5 (right
to left). The calculations were carried out for an average over 20 realizations of
the random potential, for a cubic lattice of size L/b = 200, with 30 random vectors
for calculating the trace in the KPM and an expansion order of roughly 1000. The
density of states is normalized to a single Weyl node.

57



3. Tilted disordered Weyl semimetals

Figure 3.5.: Dimensionless conductance g, rescaled for a system of size L3 and Fano factor F
for sub-critical disorder strength K = 1 and for tilt parameter a = 0, 0.25, and
0.5 (bottom to top). The data points show results from numerical calculations, as
described in the text. The solid and dashed line indicate the values expected with-
out disorder and for a clean system with disorder-renormalized tilt ã, respectively.
We have not shown data for L < 4, which are dominated by finite-size effects. The
numerical curves are based on an average over at least 10 disorder realizations.
The error bars show the residual statistical error.

the conductance is proportional to W 2 and is independent of the boundary conditions
chosen in the transverse direction. We present results for the dimensionless conductance
rescaled for a cubic sample of size L3, G = (e2/h)(W 2/L2)g. The conductivity σ is
calculated from the standard relation σ = (e2/h)g/L. The conductance g and Fano
factor F without disorder, but with a tilted dispersion, were calculated in chapter 2
which is based on Ref. [Tre+15].

Figure 3.5 shows the dimensionless conductance g and the Fano factor versus system
size L for disorder strength K = 1 and for the tilt parameter a = 0, 0.25, and 0.5. The
disorder strength K = 1 is sub-critical for all three values of a considered. The figure
also shows the conductance and Fano factor expected for a clean Weyl semimetal and
for a clean Weyl semimetal with SCBA-renormalized tilt ã. Especially the conductance
data still show a considerable size dependence, even for the largest system sizes we could
reach. Nevertheless, the data leave no doubt that the conductance remains bounded
as a function of L, indicating that the conductivity σ = (e2/h)g/L is zero in the ther-
modynamic limit, which implies that the transport characteristics of the quasi-ballistic
weak-disorder phase persist in the presence of a tilted Weyl dispersion. Moreover, the
finite-size data also show that the conductance increases with increasing tilt, consistent
with the analysis of the clean limit in Ref. [Tre+15] and with the expectation that tilt
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3.5. Quantum transport

drives the system closer to the disorder-induced phase transition. However, the finite-size
effects are too large to permit a more quantitative analysis. In particular, the finite-size
effects are too large to quantitatively confirm or disprove the SCBA expectation for the
conductance.

Figure 3.6.: Dimensionless conductance g as a function of system size L for disorder strength
K = 4 and tilt parameters a = 0, 0.25, 0.5, and 0.75 (bottom to top). The
data points show results from numerical calculations after averaging over at least
10 disorder realizations. The error bars show the residual statistical error. We
have not shown data for L < 4, which are dominated by finite-size effects. The
conductance is bounded for a = 0 and a = 0.25 (bottom two data sets), which is
characteristic of the quasi-ballistic weak-disorder phase. For a = 0.5 and a = 0.75
the conductance is proportional to the system size L for large L (top two data sets),
characteristic of the diffusive strong-disorder phase. The dashed lines indicate a
linear increase with L and are shown as a guide to the eye.

Figure 3.6 shows the dimensionless conductance g versus system size for disorder
strength K = 4, chosen such that the disorder is sub-critical without tilt, but above
critical with large tilt. The progression of the curves shown in the figure corresponds
to the horizontal arrow in Fig. 3.2 (although the value of the disorder strength K is
less than in Fig. 3.2, reflecting the overestimation of the critical disorder strength in
the SCBA). As in the previous figure, finite-size effects are considerable, nevertheless
the asymptotic dependences characteristic of the weak-disorder phase (g vs. L bounded)
and of the strong-disorder phase (g ∝ L for large L) are clearly visible for small and large
tilt, respectively. Figure 3.6 thus illustrates how variation of the tilt can be used to scan
through the disorder-induced phase transition between the quasi-ballistic weak-disorder
phase and the diffusive strong-disorder phase. The Fano factor F of the finite samples
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3. Tilted disordered Weyl semimetals

is subject to large fluctuations near the critical disorder strength and data is not shown.

Figure 3.7.: Dimensionless conductance g and Fano factor F as a function of system size L
for disorder strength K = 30 and tilt parameters a = 0, 0.25, and 0.5 (red, blue,
green, i.e. top to bottom in the left panel). The data points show results from
numerical calculations after averaging over at least 10 disorder realizations. The
error bars show the residual statistical error. Data for L < 4 are dominated by
finite-size effects and are not shown. The dashed black line in the right panel
indicates the Fano factor F = 1/3 expected in the diffusive regime.

The case of very strong disorder is shown in Fig. 3.7, which shows conductance and
Fano factor for K = 30, which is well above the critical value regardless of the tilt a. For
all values of the tilt the conductance increases linearly with L, consistent with a finite
conductivity σ = (e2/h)g/L in the thermodynamic limit. Up to small deviations (which
we cannot explain, but which are ubiquitous in transport calculations) the Fano factor
is at the value F = 1/3 appropriate for the diffusive phase. In any case, our numerical
calculations show that both conductance and Fano factor can be used to distinguish the
weak-disorder and strong-disorder phases. In fact, in the presence of tilt the difference
between the Fano factor for the weak-disorder and strong-disorder phases is even larger
than without tilt, see Fig. 3.5.

3.6. Discussion

In this chapter we have studied how the combination of potential disorder and a tilted
Weyl dispersion affects the zero-energy density of states and transport properties of a
Weyl semimetal. Our main conclusions, supported via calculations of the density of
states using the self-consistent Born approximation (SCBA), calculations of the density
of states for a tight-binding model using the kernel polynomial method (KPM), and
calculations of the conductance and Fano factor using the scattering approach, are that
(1) the existence of a disorder-induced phase transition between a quasi-ballistic weak-
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disorder phase with zero density of states and finite conductance at the nodal point and a
diffusive strong-disorder phase characterized by a finite conductivity and a finite density
of states at the nodal point is unaffected by the presence of a tilt of the Weyl dispersion,
and (2) the critical disorder strength for the transition decreases upon increasing the
tilt. Importantly, the critical disorder strength approaches zero as the tilt approaches
the critical tilt, so that in the presence of disorder the tilt-induced phase transition
from a “type-I” Weyl semimetal (with a point-like Fermi surface) to a “type-II” Weyl
semimetal (with finite particle and hole pockets at the nodal point) is always preceded
by a disorder-induced transition to a diffusive phase with a finite density of states at the
nodal point.

Another conclusion of our findings is that there is a family of weak-disorder pseudobal-
listic fixed points, all of them being effectively disorder-free, but distinguished by their
effective tilt. The value of the tilt—i.e. which fixed point one is in—can be deduced
from the Fano factor, which is a nontrivial function of the tilt parameter a [Tre+15]. (In
principle, the dimensionless conductance g also depends on the tilt but, unlike the Fano
factor, g also depends on a possible anisotropy of the Weyl dispersion, which the Fano
factor F does not.)

In principle tilted spectra can also occur in two-dimensional systems with a Dirac dis-
persion, such as graphene. In that context one expects that tilt, too, will quantitatively
influence transport properties and the density of states. However, in two dimensions
there is no disorder-induced phase transition between a quasi-ballistic and a diffusive
regime, and the effect of tilt will be mainly quantitative, and not qualitative. Moreover,
in graphene, certainly the two-dimensional Dirac material studied the most, the Dirac
points are at high symmetry points in the Brillouin Zone, at which anisotropies and tilts
are prohibited by crystalline symmetries.

While our findings suggest that the tilt-induced transition between type-I and type-II
Weyl semimetals may be obscured by the presence of disorder, they also suggest that tilt
can be used as a parameter that drives the system through the disorder-induced transi-
tion between quasi-ballistic and diffusive phases. In general strain or pressure induces a
change of the lattice geometry, which in turn influences the tilt. While the magnitude
of the tilt is directly influenced by the hopping parameters of a lattice model[Tre+15],
the experimental feasibility depends on the specific material and the corresponding tilt’s
susceptibility to strain or pressure. Such limitations may make it necessary to start the
tilt-induced phase transition already at a close-to-critical disorder strength, so that only
a relatively minor change in the band structure is enough to drive the system through
the quasi-ballistic-to-diffusive phase transition. (We note that pressure or strain may
also result in a change of Fermi velocity, which would also influence Kc, and may be an
additional factor that helps/obstructs the observation of the phase transition.)
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4. Charge density wave instabilities of
type-II Weyl semimetals in a strong
magnetic field

The transport phenomena studied in the previous chapters were essentially single particle
phenomena. On single particle phenomena in Weyl semimetals exists a large body
of literature, but whether interesting many-body effects due to interactions arise in
Weyl systems remains much less explored. In this chapter, based on the publication
[Tre+17a], we investigate the effect of interactions in a microscopic model of a type-II
Weyl semimetal in a strong magnetic field, motivated by the observation of very large
and surprisingly robust magnetoresistance in several type-II Weyl semimetals. We will
identify a charge density wave (CDW) instability even for weak interactions stemming
from the emergent nesting properties of the type-II Weyl Landau level dispersion and
observe a cascade of CDW transitions in decreasing temperature. The implications of
these results on magnetotransport properties are discussed in chapter 5.

4.1. Introduction

The theory of Weyl fermions in condensed matter systems is presented in detail in chap-
ter 1.5. Much recent attention has focused on type-II Weyl semimetals[Sol+15] whose
linear dispersion is so strongly tilted[Ber+15; XZZ15; Goe+08; Tre+15] that it forms
electron and hole pockets. Several materials in this class, including WTe2 [Ali+14],
WP2 [Aut+16; Kum+17] and MoxW1−xTe2 [Bel+16a], have in parallel attracted ample
attention due to their remarkable magnetotransport properties. While a single particle
analysis reveals a novel twist on the chiral anomaly in type-II Weyl semimetals[UB16;
TCG17; YYY16], there is no commonly accepted explanation of the observed magne-
totransport properties nor an understanding of whether they are at all rooted in the
topological properties of these materials, highlighting the need for an understanding of
many-body effects.

Exotic interaction effects in Weyl semimetals[Men+16; Ber+15], some taking place
only in systems with tilted Weyl cones[Ber+15], have recently been explored. More con-
ventional phenomena such as density wave instabilities have so-far only been discussed
in type-I Weyl semimetals where, however, they require a significant critical interaction
strength at zero magnetic field[WCA12; WZ13; Lau+16; RGJ17], consider the chemical
potential away from the Weyl node[WY16] or only appear in a magnetic field as effec-
tive one-dimensional instabilities of the chiral mode[YLR11; RS15b; ZS17]. Further spin
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ordering in Weyl semimetals has been studied[SZW15]. A Weyl semimetal in a strong
magnetic field was experimentally studied in [Mol+16], where the connection of Fermi
arc surface states to chiral bulk modes was observed.

In this chapter we show that the electron- and hole-like pockets of the overtilted cones
in type-II Weyl semimetals generically render these systems much more susceptible to
interaction effects. In particular we show that in a magnetic field the Landau level
dispersion acquires nesting-like features between a large number of Landau level bands
which triggers a CDW transition for small interactions. As this emergent weak coupling
instability in a magnetic field neither requires perfect particle-hole compensation nor
nesting of the zero field band structure we argue that CDW phases are a common
property of the high field regime of type-II Weyl semimetals.

Our starting point is a simple microscopic Hamiltonian H = H0+Hint with a quadratic
lattice model H0 featuring Weyl nodes and a local density-density interaction Hint. We
show that in a field a weak coupling intra-cone CDW instability with a wavevector
related to the electron and hole pocket separation appears. Our qualitative discussion is
corroborated by a microscopic calculation for which we derive a continuum description.
Going beyond lowest order in the momenta is necessary to describe closed electron and
hole pockets. We note that this is in general crucial for a correct low energy description
in type-II Weyl systems.

This chapter is structured as follows: First we introduce a simple microscopic model
of a type-II Weyl semimetal. Calculating the dispersion of Landau levels in a magnetic
field both in the lattice and in the corresponding continuum description, we give an
intuitive argument for a CDW instability based on emergent nesting features. Second,
we develop the mean-field theory for generic interactions in a type-II Weyl cone in
a magnetic field. Third, we present self-consistent CDW solutions as a function of
temperature and magnetic field. Finally, we discuss implications for experiments.

4.2. The model

We first concentrate on the non-interacting bandstructure governed by

H0(k) = (M − cos kx − cos ky)σ
x + sin kyσ

y

+ sin kzσ
z + (t1 sin kz + t2 sin 2kz)σ

0 (4.1)

in which the tilt of the Weyl cones can be easily tuned to feature electron and hole
pockets, e.g. at M = 1, t1 + 2t2 > 1 this model has type-II Weyl nodes at kW =
(±π/2, 0, 0). Since we are interested in intra-cone instabilities we can expand around
one of the cones yielding a low energy continuum description

Heff
0 (k) =± kxσx + kyσ

y + (kz −
1

6
k3
z)σ

z

+

(
(t1 + 2t2)kz −

1

6
(t1 + 8t2)k3

z

)
σ0. (4.2)
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Figure 4.1.: Comparison of the dispersion of the lattice model and the continuum theory with-
out magnetic field (top panel). The dispersion of the lattice model in a magnetic
field is shown in the middle panel (with two Weyl cones at different kx superposed)
and the corresponding dispersion of the continuum theory (single cone) in the bot-
tom panel. The parameters of the lattice model are t1 = −0.8, t2 = −0.6, a0 = 7Å
and the parameters of the low energy theory are chosen to match the third order
expansion of the lattice model. The magnetic field strength for the bottom row is
B = 86T .

The momenta ki (i = x, y, z) are in the range −π < ki ≤ π and measured in 1/a0, where
a0 is the lattice spacing. We have omitted an overall prefactor ~v which sets the energy
scale in terms of Fermi velocity v. Importantly, we have expanded up to O(k2

x, k
2
y, k

5
z)
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and included the next to leading order term in kz. We are not aware that this has been
done before but it is crucial for a correct low energy description with closed electron and
hole pockets.

Throughout this manuscript we assume the realistic but exemplary values of ~v =
1eV Å and a0 = 7Å. The term proportional to t2 is included to get smoother electron
and hole pockets (see Figure 4.1) and to elucidate how longer range hopping terms
can be included in the low order expansion. Our effective model inherits the perfect
compensation between electron and hole pockets present in our tight binding model and
which is also a prominent feature of WTe2. However, as discussed below such perfect
compensation is not a crucial ingredient of our CDW mechanism.

It is worth mentioning that there are also type-I nodes at k = (±π/2, 0, π) in this
lattice model. However, these are unimportant for our considerations and could easily
be removed at the price of a having a more complex lattice model.

We concentrate on magnetic fields along the z tilt direction of the cones leading to
flat Landau levels in the kx, ky-plane dispersing only along the kz direction. Then we
can introduce the field via the usual vector potential A minimally coupled to the crystal
momentum Π = ~k − e

cA and work with the usual ladder operators in the Landau
level (LL) basis, see appendix C.2 for details of the mean field calculation, such that the
spectrum is given by the eigenvalues of

Ĥeff
0 =(−ηkz + γk3

z)σ0 + (kz + βk3
z)σz +

√
2n

lB
σx (4.3)

with the Landau level index n > 0 and the magnetic length lB =
√

~
eB . The parameters

η = −(t1 + 2t2), β = −1
6 , γ = −1

6(t1 + 8t2) are directly related to our lattice model, with
t1 = −0.8, t2 = −0.6 for concreteness throughout this paper.

Furthermore, we obtain the transformation relating our original sublattice creation
operators cA/B,n,p,kz , with p labeling the degenerate states within each LL, to new op-
erators a/bn,p,kz for to the electron and hole like bands(

an,p,kz
bn,p,kz

)
=

(
u(kz, n,B) v(kz, n,B)
−v(kz, n,B) u(kz, n,B)

)
︸ ︷︷ ︸

Û(kz ,n,B)

(
cA,n,p,kz
cB,n,p,kz

)
(4.4)

with u(kz, n,B)2 + v(kz, n,B)2 = 1. Their dispersions are given by

Ea/b(kz, n) = −ηkz + γk3
z ±

√
(kz + βk3

z)
2 +

2

l2B
|n| (4.5)

for n 6= 0, and for n = 0 the chiral level is given by

Ekz ,0 = (1− η)kz + (β + γ)k3
z . (4.6)
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The LL dispersions are shown in the bottom panel of Fig. 4.1 which can be directly
compared to the corresponding numerical tight-binding calculation in a field displayed
in the middle panel. Both make apparent one of the main findings of this chapter —
the size and shape of the two inverted pockets almost exactly match when shifted by
the arrow QCDW indicated in Fig. 4.1. These nesting features between entire electron
and hole pockets, Ea(kz) ≈ −Eb(kz +QCDW ), are for example well established in parent
compounds of iron-based superconductors, where they lead to density wave instabilities
even for small interactions[CEE08]. This is of course similar to the usual one-dimensional
Peierls instability, which is cut off here by the broken inversion symmetry, but arguably
more general.

A direct calculation of the corresponding LL- and pocket-resolved susceptibility, see
Fig. C.1 in appendix C.1, confirms the qualitative picture: i) A dominant peak at
QCDW appears in the inter-band component connecting electron and hole pockets; ii)
The peak is maximal for scattering between bands with the same LL index n; iii) Due
to a small asymmetry between the pockets, which also depends on the LL index, nesting
is not perfect which cuts off a true singularity of the susceptibility and introduces a
peculiar field dependence. Note that in the case of imperfect particle-hole compensation
the pockets would be shifted in energy with respect to each other leading to dominant
nesting between branches with different LL indices but the overall pictures remains valid.

4.3. Mean field ansatz

To study the formation of a CDW we add interactions to the single particle theory
presented above. Due to the multi-band nature even the simplest contact interaction
(strength U) is a sufficient approximation for a short range interaction, as we are inter-
ested in the coupling between two different bands. We project the contact interaction
to LLs

Hint =
U

2

∑
n1,n2,n3,n4,
p1,p2,kz ,k′z ,
qx,qy ,qz

eiqy(p1−p2−qx)Jn4,n1(q)Jn3,n2(−q)·

∑
α,β=A,B

c†α,n1,p1,kz
c†β,n2,p2,k′z

cβ,n3,p2+qx,k′z+qzcα,n4,p1−qx,kz−qz (4.7)

which introduces additional momentum dependence[Goe11], see appendix C.5 for details.

From the main peaks of bare susceptibility we know that the leading CDW insta-
bility arises between electron and hole bands with the very same LL index n. This
allows us to simplify the problem considerably by only considering interactions with
all n1,2,3,4 = n equal. Hence the different Landau levels decouple and we perform the
following computations for a fixed Landau level index and combine results for different
Landau levels later. Furthermore since the nesting connects the different branches (with
creation operators a and b), we are interested in a CDW in 〈a†b〉. We introduce the
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generic CDW wavevector Q = (Qx, Qy, Qz) to formulate the general mean field theory

using the ansatz: 〈a†p,kzbp−qx,kz−qz〉 = ∆(kz,Q)e−ipQyeiQyqx/2δ(qx −Qx)δ(qz −Qz).
Our focus are CDWs along the kz direction and therefore we concentrate on CDW

vectors Q =
(
0, 0, Q

)
. We decouple the interaction in the usual way which allows us to

write the Hamiltonian in the bilinear form for each LL

HMF,n (p, kz) =(
a†p,kz b†p,kz−Q

)(Ea(p, kz) P (kz)
P (kz)

∗ Eb(p, kz −Q)

)(
ap,kz
bp,kz−Q

)
. (4.8)

The details of the derivation of the off-diagonal elements P in terms of the projected
interaction matrix elements[GLS04] and the order parameter ∆ are given in appendix
C.5. There, we also show that our ansatz gives real electron densities[FPA79]. Knowing
P we obtain self-consistent solutions for ∆ numerically and thereby determine whether
the system supports a CDW or not.

As a check we have confirmed that the wave vector corresponding to the smallest
critical interaction for a mean-field CDW transition indeed coincides with the main
peak of the bare susceptibility at Q = QCDW .

4.4. Cascade of CDW transitions in temperature

While an independent determination of the CDW wave vector (QCDW ) for each Landau
level is possible we choose a common QCDW for all Landau levels to account for the
inevitable inter-Landau-level-coupling, which we neglected in our approximation. This
global QCDW is obtained by maximizing the number of gapped levels, hence represents
the energetically most favorable configuration.

In Fig. 4.2 we show the numerical results for the critical temperature of the CDW
transition at different magnetic fields and per Landau level n. It becomes clear that in
lowering the temperature more and more Landau levels undergo the phase transition,
hence we observe a cascade of successive CDW transitions. It is important to keep
in mind that the magnetic field also changes the spacing between Landau levels and
thereby the number of Landau levels crossing the Fermi energy (the degeneracy in each
level increases accordingly). To account for this we count the total number of gapped
levels at each temperature and magnetic field strength and compute the fraction of this
number compared to the number of Landau levels crossing the Fermi energy in the
corresponding non-interacting system. This fraction is shown in the bottom panel of
Fig. 4.2 and turns out to be roughly independent of field.

4.5. Experimental signatures

Our scenario implies thermodynamic signatures of a high field phase transition, e.g. in
specific heat or magnetization, see inset in Fig.4.3. The CDW real space modulation of
the electronic density ρ(r) ∝ cos(QCDW · rz) should be detectable via X-ray scattering.
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Figure 4.2.: Top panel: Highest critical temperature per Landau level for fixed interaction
strength U = 0.025 and fixed wave vector QCDW = 1.48 (see discussion in the
main text). Bottom panel: Fraction of levels crossing the Fermi energy (when no
interaction is considered) that are gapped by a CDW. When lowering the temper-
ature there is a cascade of consecutive CDW transitions leading to an increased
fraction of gapped levels. Parameters are the same as for the top panel.

In addition, the suppression of electronic states around the chemical potential entails
clear experimental signatures and should be observable for example via STM measure-
ments. In Fig. 4.3 we compare the energy resolved density of states (DOS) as a function
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Figure 4.3.: DOS as a function of of magnetic field strength and energy, summed over the 50
lowest Landau levels. When including interactions (bottom panel, numerical result
obtained at T = 4.6K) a gap opens compared to the case without interactions (top
panel). Inset: Temperature dependence of heat capacity CV /T (arbitrary units)
at fixed magnetic field of B = 20T . As expected CV /T is constant (blue line)
without the CDW, but taking the CDW into account (orange line) deviations are
clearly visible below the critical temperature indicated by the dashed green line.

of magnetic field between a non-interaction system (top panel) and the system with weak
interactions (bottom panel). We observe a striking difference at zero energy (near the
Weyl point) where the CDW clearly leads to a strong suppression of the DOS. As not
all Landau levels are gapped by the CDW for small interactions there is some residual
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DOS in this region, hence it is not a complete gap.
Note that the DOS oscillates due to the discreteness of Landau levels. We expect that

the corresponding quantum oscillations in thermodynamic observables survive even in
regimes in which the CDW opens a full gap[KC15].

Finally, if the magnetic field is not aligned in the direction of the tilt, as chosen in
our set-up, the electron- and hole-like pockets of the LLs disappear[UB16] leading to a
characteristic suppression of the CDW.

4.6. Discussion

We introduced an exemplary lattice model of a type-II Weyl semimetal and obtained a
low energy description that takes finite electron and hole pockets into account. From
this we identified emergent nesting properties that occur between electron- and hole-
like Landau level branches once the Weyl semimetal is placed in a magnetic field. We
developed a general mean-field theory of a Weyl semimetal in a field confirming the
intuitive picture of a nesting induced CDW instability. The self-consistent calculations
allowed us to trace its dependence on temperature and magnetic field.

Here we focused on the most relevant parts, i.e. intra Landau level couplings between
different branches. While we made plausible why these approximations should be valid a
more quantitative analysis of the inter Landau level couplings poses interesting questions
for future research, as well as a full lattice calculation. We have pointed out several clear
experimental signatures of the field induced CDW transition, e.g. in thermodynamics,
STM and X-rays.

The reduction of the DOS would also lead to an increased magnetoresistance, which
is a feature of great interest in many type-II Weyl systems, as discussed in the fol-
lowing chapter. A similar mechanism has been proposed to explain the magnetoresis-
tance properties of graphite[YF81; Fau+13; LeB+17] Considering the parallel align-
ment of the tilt and the magnetic field our scenario is only directly applicable to WP2

[Aut+16; Kum+17], while the geometry is different in the case of WTe2 [Ali+14] and
MoxW1−xTe2 [Bel+16a]. A more detailed study of transport properties is desirable and
left for future research. However, if our scenario is mutatis mutandis applicable to the
non-saturating magnetoresistance of these materials as well there are some immediate
consequences: most saliently it would be in contrast to the semiclassical picture sug-
gested in Ref. [Ali+14] which relies on on strict particle hole-symmetry. It is supported
by the fact that the magneto transport of WTe2 has an unusual temperature dependence
and that MoTe2 with similar properties is far from particle hole compensated[Thi+17].
Note, that the number of LLs crossing the Fermi level is determined by the magnetic
field component B⊥ projected along the tilt direction. Hence, a magnetoresistance from
LL formation of the form (B⊥)2 suggests a cos2 θ angular dependence similar to mea-
surements on WP2 [Kum+17].

Finally, we note that for larger interactions the LL spectrum is fully gapped which
should lead to a concomitant three-dimensional Hall plateau[Ber+07] similar to other
systems with density wave induced three-dimensional Hall effects[McK+95; BKW95].
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5. Quantum oscillations and
magnetoresistance in type-II Weyl
semimetals

In the previous chapter we studied interaction effects in type-II Weyl semimetals and
found the formation of a CDW. Here, we investigate how this CDW affects the magne-
toresistance properties, regarding the scaling behaviour and the temperature dependence
of the magnetoresistance’s oscillations. These findings may provide an additional route
to observe the CDW and its consequences in experiments. Recently, several experiments
on type-II Weyl semimetals reported a very large magnetoresistance[Ali+14; Zen+16;
Kum+17]. The observed B2 scaling of the magnetoresistance was hitherto explained by
a semi-classical derivation. In this chapter, which is based on the publication [TBK18,
in preparation], we provide a fully quantum mechanical computation of the magnetore-
sistance, using the Kubo formula introduced in chapter 1.1.4. Since there is currently
a widespread interest in type-II Weyl semimetals with large magnetoresistance, this
chapter is a timely contribution to the field.

5.1. Introduction

Immediately following the discovery of type-I Weyl semimetals, it was realized that
type-I Weyl fermions were associated with novel transport phenomena, such as the
chiral anomaly[NN83; LYQ13; SY12; Gru12; ZB12; GT13; Par+14; Hua+15; Zha+16;
KGM15; KGM17; BKS18]. In contrast, due to the concealed nature of type-II Weyl
fermions, it is a priori less obvious that they would lead to interesting measurable effects.
However, transport measurements on type-II Weyl semimetals have arguably proven
even more intriguing: most saliently, experiments on type-II Weyl semimetals found an
extremely large magnetoresistance, which did not saturate until the highest accessible
magnetic fields[Ali+14; Kum+17; Zen+16]. In all these experiments a scaling of the
magnetoresistance close to B2 was found. Furthermore, the magnetotransport in these
materials is strongly dependent on the direction of the applied magnetic field.

In addition, a number of experiments found an unusual temperature dependence of
transport properties[Tho+15; Wu+15; Fat+17; Ram+17]. On the one hand, these
could be related to the strong temperature dependence of the chemical potential, as
expected for a low density system when kBT and the effective Fermi energy are of
similar order of magnitude. On the other hand, it could be a direct signature of a
many-body instability, such as a field induced excitonic insulator[Khv01] or a density
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wave transition[Tre+17a]. The CDW scenario was put forward in a recent work of
us[Tre+17a] motivated by the observation that the Landau level structure of type-II
Weyl semimetals[UB16] shows emergent nesting properties as illustrated in Fig. 5.1.
At zero field, the electron and hole pockets have different shapes. However, a strong
magnetic field leads to nested, quasi-one-dimensional electron and hole pockets prone
to a CDW instability already for weak interactions. Such an intra-Weyl cone CDW
would have a small wave vector and the associated breaking of translational symmetry
should be observable in scattering experiments. Here, we show that a field induced
CDW leads to a very rich phenomenology of magnetoresistance properties in type-II
Weyl semimetals.

0
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Figure 5.1.: Dispersion of a type-II Weyl semimetal with a magnetic field (B = 7.5T ) induced
CDW as given in (5.9). Energy is given in units of eV , kz in reciprocal lattice
vectors. The main panel shows the folded dispersion in the presence of a CDW,
which gaps out part of the Landau levels, with the lower branch (b) shifted by
QCDW . The inset highlights the field induced nesting property between electron
and hole type pockets of the normal state with the CDW wave vector QCDW . It
further includes labels for the two branches a and b.

5.2. Theory

We consider a generic and minimal model of a type-II Weyl semimetal, which can be
theoretically derived as a low energy expansion of a lattice model[UB16] as given in
[Tre+17a]. A crucial observation is to include not only terms linear in momentum but
also the next non-zero terms (in this case k3

z), to account for electron and hole pockets,
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see Fig.5.1.
We use the general low energy theory of a type-II Weyl semimetal with additional

third-order terms in kz along the tilt direction and concentrate on one of the Weyl
cones:

Ĥeff
0 =(−ηkz + γk3

z)σ0 + (kz + βk3
z)σz + kxσ

x + kyσ
y. (5.1)

The parameters η = −(t1 + 2t2), β = −1
6 and γ = −1

6(t1 + 8t2) are directly related
to the lattice model’s hopping parameters, where we choose t1 = −0.8 and t2 = −0.6.
Throughout this work, for concreteness, we consider the exemplary values ~vF = 4 eVÅ
and the lattice constant of a0 = 28 Å. In this simple tight binding model, the electron and
hole pockets extend to a large fraction of the unit cell, whereas in typical materials they
only cover a much smaller part. Here, the size of the unit cell is not important, as the
size of the electron and hole pockets defines the relevant length scales. In consequence,
we choose a relatively large lattice constant for the exemplary model to obtain small
electron and hole pockets in momentum space, so that they are similar to the ones in
actual materials.

For simplicity and transparency, we focus on situations with the magnetic field directed
along the tilt of the Weyl cone, i.e. B ‖ z when the tilt direction is along kz, and
only briefly comment on the generalization to generic directions in the discussion. The
field B = ∇ × A is then introduced by a minimal coupling of the vector potential,
which we consider to be A = (0, Bx, 0) in the Landau gauge, to the crystal momentum
Π = ~k− e

cA. We define the standard raising and lowering operators

a =
lB√
2~

(Πx − iΠy) and a† =
lB√
2~

(Πx + iΠy) (5.2)

with [a, a†] = 1, where we introduced the magnetic length

lB =

√
~
eB

. (5.3)

Consequently, we arrive at the following Hamiltonian describing the low energy theory

H0 =

∫
d3r

(
Ψ†A(r) Ψ†B(r)

)
~vF

(
(1− η)kz + (γ + β)k3z

√
2

lB
â†

√
2

lB
â −(1 + η)kz + (γ − β)k3z

)(
ΨA(r)
ΨB(r)

)
(5.4)

with the wave functions

Ψ†A(r) =
∑
n,p,kz

eikzzψn,p(x, y)ĉA,n,p,kz (5.5)

Ψ†B(r) =
∑
n,p,kz

eikzzψn−1,p(x, y)ĉB,n,p,kz (5.6)

and the normalized Harmonic Oscillator wave functions

ψn,p(x, y) =
1√
L
eipx

(
π22n(n!)2

)−1/4
e−

1
2

(y+p)2Hn(y + p) (5.7)
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including the Hermite polynomials Hn. Note, that there is an extra shift of the Landau
level index from n to n− 1 for the B sublattice part of the wave function.

In the braket notation we write the states as spinors in the A/B basis and perform a
rotation such that the Hamiltonian becomes diagonal(

|n, kz, p, a〉
|n− 1, kz, p, b〉

)
= U(n, kz, p)

(
|n, kz, p, A〉
|n− 1, kz, p, B〉

)
(5.8)

where U is a unitary transformation that is easily obtained from (5.4). The energies,
labeled by s ∈ a, b for |n, p, kz, s〉 are given by

En,a/b(kz) = ~vF

(
−ηkz + γk3

z ±
√

(kz + βk3
z)

2 +
2

l2B
|n|
)

(5.9)

for n 6= 0. For n = 0, the energy of the chiral level is

E0,kz = ~vF
(
(1− η)kz + (β + γ)k3

z

)
. (5.10)

The Landau level degeneracy becomes apparent as E does not depend on p. Note that
the chiral mode corresponds to the (1 0)T spinor already in the original basis. Therefore,
there is no basis transformation U(n = 0) for the chiral level.

Following our recent work [Tre+17a], we take into account the effect of an interaction
induced CDW. Due to the special Landau level dispersion, it is sufficient to restrict the
analysis of the weak coupling instability to the simplest form of a contact interaction.
This interaction, projected onto the Landau level bands, is given by

Hint =
U

2

∑
n1,n2,n3,n4,
p1,p2,kz ,k′z ,
qx,qy ,qz

eiqy(p1−p2−qx)Jn4,n1(q)Jn3,n2(−q)

·
∑

α,β=A,B

c†α,n1,p1,kz
c†β,n2,p2,k′z

cβ,n3,p2+qx,k′z+qzcα,n4,p1−qx,kz−qz .

(5.11)

Details of the matrix elements J(q) and useful analytic simplifications of them are given
in Appendix D for our choice of a uni-directional CDW with qx = qy = 0.

At strong magnetic fields, even weak interactions lead to CDW transitions because of
the nesting between the electron and hole pockets, En,a(kz) ≈ −En,b(kz + QCDW ) (see
Fig.5.1). In a mean-field framework, as presented in [Tre+17a], the quartic interactions
are decoupled, leading to an effective CDW Hamiltonian

HMF,n (kz) =
(
a†n,kz b†n,kz−Q

)(Ea(n, kz) P (kz)
P (kz)

∗ Eb(n, kz −Q)

)(
an,kz
bn,kz−Q

)
. (5.12)

The analytical form of the off-diagonal matrix elements P is derived from the contact
interaction projected to the Landau level band structure and given in [Tre+17a] and
appendix C.5.
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5.3. Results

5.2.1. Kubo formula of the conductivity

We concentrate on the transport properties perpendicular to the magnetic field, which
are obtained from the in-plane conductivity σαα with α = x, y. We apply the standard
Kubo formula for conductivity which is given by[TC15; SY16]:

σαβ(ω) =
i~

2πl2B

∑
ζ,ζ′

f(Eζ′)− f(Eζ)

Eζ − Eζ′

〈
ζ
∣∣∣ ĵα ∣∣∣ ζ ′〉〈ζ ′ ∣∣∣ ĵβ ∣∣∣ ζ〉

~ω + Eζ′ − Eζ + i~/(2τ)
(5.13)

using the short-hand notation ζ = {n, kz, a/b}, f(E) for the Fermi function, and τ as a
scattering-induced lifetime. The summation over p is already executed and accounts for
the Landau level degeneracy factor 1

2πlB
. We assume a constant time τ due to impurity

scattering. This simplifying assumption is motivated from the very weak frequency
dependence of the density of states of a type-II Weyl semimetal with finite electron and
hole pockets.

To evaluate the Kubo formula we calculate the current operators as

ĵα = ev̂α =
e

~
∂Ĥ

∂Πα
(5.14)

with the Hamiltonian matrix (5.4) in the form

H = ~vF
(

(1− η)kz + (γ + β)k3
z

1
~(Πx + iΠy)

1
~(Πx − iΠy) −(1 + η)kz + (γ − β)k3

z

)
, (5.15)

so

ĵx = evFσx (5.16)

ĵy = −evFσy . (5.17)

From this, we obtain the relevant matrix elements in the basis of (5.4)〈
n, kz

∣∣∣ ĵx ∣∣∣n′, k′z〉
A/B

=

〈
n, kz

∣∣∣∣ ( 0 δn,n′−1

δn−1,n′ 0

) ∣∣∣∣n′, k′z〉
A/B

. (5.18)

These current operators are then transformed with two subsequent unitary transforma-
tions, first with (5.8) and second with the one that diagonalizes the CDW Hamiltonian
(5.12) with the mean-field energies Eζ appearing in the Kubo formula.

5.3. Results

The magnetoresistance is usually given in % and defined as

MR(B) =
ρ(B)− ρ(0)

ρ(0)
. (5.19)
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Figure 5.2.: Transversal resistivity ρxx (arbitrary units) vs. magnetic field (in Tesla) for
different temperatures T . The top panel shows clearly the crossover around
BQ ' 31T and additionally pronounced quantum oscillations (at low tempera-
tures and B < BQ). The bottom panel displays the T = 1K data of the top panel
on a log-log scale. The dashed lines show least-squares fits for different regimes of
B. The corresponding exponents for the fitted power law behaviour are indicated.

There is no CDW at zero magnetic field, therefore ρ(0) is equal in the cases with and
without interactions. We are mainly interested in the qualitative behaviour of the mag-
netoresistance and not in exact quantitative values, which would require a detailed mi-
croscopic description of a specific material. Hence, we concentrate on the behavior of
the resistivity ρ(B), which is qualitatively equivalent to the magnetoresistance. We con-
sider the case with zero chemical potential, where the dispersion relation is particle-hole
symmetric.

A hypothetical imbalance between particle and hole pockets leads quickly to a sat-
uration of the magnetoresistance in the semiclassical picture. We verified that this
prediction holds also for the quantum mechanical computation in the non-interacting
case with a constant scattering time. An extension to the CDW case would require
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further adaptations to the mean-field calculations beyond the scope of the present work.

5.3.1. Magnetoresistance

In the compensated situation considered here, the Hall conductivity σxy vanishes and
σxx = σyy because of the rotational symmetry. Hence, the resistivity along the in-plane
x-direction can be directly calculated from the corresponding conductivity

ρxx =
σxx

σ2
xx + σ2

xy

=
1

σxx
. (5.20)

First, we discuss the case without interactions and hence without CDW. The full tem-
perature dependence as calculated from the Kubo formula (5.13) is shown in Fig. 5.2.
For small fields, our results agree well with a semiclassical model of two bands with
perfectly compensated particle and hole pockets[AM76] predicting a scaling of the resis-
tivity as ∼ B2. Note that the numerical fit of the data yields powers of B slightly smaller
than 2 because the oscillations at higher field are not symmetric around the expected
B2 background. Therefore, a numerical fit will weakly depend on the range of magnetic
fields considered. At the same time we note that several experiments[Kum+17; Ali+14;
Zen+16] experimentally found a scaling with powers between 1.8 and 2, similar to our
results.

The semiclassical prediction obviously neglects the quantum oscillations due to dis-
creteness of the Landau levels, which become more pronounced at higher magnetic fields
and lower temperature. We define the magnetic field strength BQ as the minimum field
at which the lowest Landau level reaches the Fermi energy. Beyond this quantum limit
B > BQ only the chiral mode contributes to the density of states at zero energy. In
addition to the semiclassical quadratic scaling for B � BQ we observe a crossover to a
different scaling ρ ∼ B0.75 above the quantum limit, see Fig. 5.2 (bottom panel).

The magnetic field strength associated with the crossover to the quantum limit is
BQ ' 31T for our exemplary tight binding model. This magnetic field strength BQ
depends strongly on the size of the electron and hole pockets. We denote the size of the
pocket with kP . The corresponding length scale is given by 1/kP . As the magnetic length
lBQ at the quantum limit is proportional to that length scale 1/kP , we find BQ ∝ k2

P .
Next, we include the effect of a low temperature CDW transition. We will use the

same exemplary parameters as in our previous work [Tre+17a]. There, we observed that
at low temperatures a constant fraction (' 0.5) of the Landau levels crossing the Fermi
energy is gapped out by the CDW, regardless of the magnetic field. This statement
is only valid in the regime B � BQ studied in [Tre+17a] where the fraction is nearly
a continuous number, due to the large number of Landau levels. For higher fields, we
expect this fraction to vary due to the discrete number of Landau levels. In the quantum
limit there is no Landau level left that could be gapped by a CDW, therefore the fraction
of Landau levels gapped by the CDW then drops to zero.

The resulting resistivity ρxx obtained from the mean-field results is shown in Fig. 5.3
for an intermediate regime of magnetic fields and compared to the case with no inter-
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Figure 5.3.: Transversal resistivity ρxx (arbitrary units) for a Weyl semimetal without interac-
tions and with an interaction induced CDW at a temperature of T = 0.5K.

actions. We observe an CDW-induced increase in resistivity by a factor of ∼ 2 − 4 in
the range of 1.25T < B < 3.75T for our choice of parameters. This relative increase is
robust to different parameter sets for the lattice model and mean-field parameters (e.g.
values of the interaction U), while the exact range of the magnetic field is still affected
by the size of the pockets due to the scaling properties discussed above. Note that, upon
approaching the quantum limit at BQ, this factor slowly decreases with increasing B.
We can intuitively understand this behaviour remembering that the fraction of gapped
levels is constant at low magnetic fields and must change at high magnetic fields.

5.3.2. Quantum oscillations

In the large magnetic field regime quantum oscillations from the discrete nature of the
Landau levels appear. In Fig. 5.4 we show quantum oscillations from low (T = 0.5K)
to high (T = 27.5K) temperatures, where “high” temperature has to be understood in
comparison to the critical temperature of the CDW.

The figure shows only the oscillatory part of ρ, where the power law behaviour was
subtracted, vs. the inverse magnetic field. The power law is obtained by a numerical
least-squares fit in log-log space. We conclude that the CDW formation significantly
increases the amplitudes of the quantum oscillations in resistivity. Experimental ob-
servations of quantum oscillations usually consider the conductivity (the Shubnikov-De
Haas effect), which, being the inverse resistivity, would be decreased by the CDW.

A main result of the present study concerns the impact of the CDW formation on
the temperature dependence of the quantum oscillation amplitudes. We determine the
amplitudes from the oscillatory part of ρ as shown in Fig. 5.4. We define the amplitude
as the difference of a consecutive local maximum and minimum below a fixed magnetic
field value, and we checked that the qualitative behaviour is independent of the magnetic
field at which the amplitude is determined. In Fig. 5.5 we compare the decay of the
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Figure 5.4.: Quantum oscillations compared with and without interactions. The power law
background is subtracted as discussed in the main text. In the top panel oscilla-
tions with and without interactions are compared at T = 0.5K. The middle panel
shows how oscillations without interactions evolve with different temperatures.
The bottom panel displays the temperature evolution when including interactions.
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Figure 5.5.: Amplitudes of the magnetoresistance oscillations vs. temperature. Amplitudes
are normalized to 1 at T = 0.5K (the smallest temperature value considered) for
the two cases independently. The numerical results are shown as crosses, the solid
lines are a guide to the eye.

amplitude for increasing temperature for a representative case with and without CDW.
While the case without CDW (blue cross) shows the usual monotonic decrease similar
to the Lifshitz-Kosevich temperature dependence[Sho84], the system with CDW clearly
deviates from this universal behavior. More importantly, we observe a clear plateau
and then an increase of the amplitude for increasing T at very low temperatures. This
result is in clear contrast to the monotonic decrease of the Lifshitz-Kosevich temperature
dependence. We expect both signatures to be clearly visible in experiments.

We stress that the oscillations in the CDW case are less regular both in temperature
and in magnetic field, as shown in the bottom panel of Fig. 5.4. This behaviour can be
understood considering the cascade of CDW transitions discussed in [Tre+17a]. In the
non-interacting case, there is only one way of gapping out Landau levels: by increasing
the magnetic field and thereby the Landau level spacing, pushing Landau levels above
the Fermi energy. In the interacting case, however, for each Landau level there is a
competition between two mechanisms: gapping the Landau level by a CDW transition
or by the simple increase of the Landau level spacing similar to the non-interacting case.
Which mechanism is responsible for gapping out a specific Landau level depends on the
magnetic field and on the temperature. This dependence is different for each Landau
level[Tre+17a]. Together, this leads to the complex behaviour of the oscillations in the
interacting case, as seen in Fig. 5.4 (bottom panel).

The highest critical CDW temperature for any Landau level is ' 25K in our exemplary
model. Below this temperature, the cascade of CDW transitions affects the oscillations,
and the oscillation amplitude is not as clearly defined as in the non-interacting case.
Following our fixed protocol of determining the oscillation amplitudes, we obtain the
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results shown in Fig. 5.5. These amplitudes correspond to the first set of consecutive
minima and maxima, i.e. at the highest magnetic field as shown in Fig. 5.4, where local
extrema are marked by crosses.

5.4. Discussion

We calculated the magnetoresistance of a type-II Weyl semimetal without and with a
magnetic field induced CDW. Earlier, the unsaturated and (nearly) quadratic magne-
toresistance of several compounds was attributed to the compensation of electron and
hole pockets, based on semiclassical computations. Here, we confirmed this result for
non-interacting type-II Weyl semimetals using a microscopic model and linear response
theory. Further, we showed that a critical field strength BQ exists, at which the quadratic
scaling breaks down even for perfect compensation. We discussed how this field strength,
which corresponds to the quantum limit, depends on the materials parameters.

We then focussed on the effects of interactions, which lead to a CDW transition as re-
ported in [Tre+17a]. In terms of magnetoresistance this CDW transition leads to numer-
ous effects: At low fields, the resistivity (and hence the magnetoresistance) is increased
and at high fields the resistivity approaches again the values of the non-interacting
case. Most importantly, the temperature dependence of the resistivity oscillations is
in contrast to the universal Lifshitz-Kosevich behaviour. Therefore, magnetoresistance
measurements are an appropriate tool to look for signatures of the conjectured CDW
phase in type-II Weyl semimetals.

We note that the number of Landau levels crossing the Fermi level is determined by
the magnetic field component B⊥ projected onto the tilt direction. Hence, a magne-
toresistance from Landau level formation of the form (B⊥)2 suggests a cos2 θ angular
dependence similar to measurements on WP2 [Kum+17].

At the time of this writing, it seems likely that all materials showing unsaturated
magnetoresistance may indeed have perfectly compensated electron and hole pockets.
This has been consensus for WTe2. Another material, WP2, likewise displaying an
extreme magnetoresistance but with a more controversial provenance, has recently been
argued to be particle-hole compensated as well[Raz+18]. For WTe2 it indeed appears,
that the extreme magnetoresistance is sensitively depending on fine-tuned particle hole
symmetry[Gon+17; Cap+18].

We also note that an extreme magnetoresistance has been identified in the topologi-
cally trivial material LaAs[Yan+17]. In our setup it is quite clear that the topology of
the Weyl node is not the root of this effect—nevertheless, the band structure of a type-II
Weyl node is perfectly primed to allow this effect. Via the emergent nesting in a strong
magnetic field, we argue that the appearance of a CDW is almost unavoidable.

Intriguing prospectives for future research include taking into account interactions
within the n = 0 chiral Landau level, to consider finite frequency optical conductiv-
ity and to investigate the effect of doping away from particle-hole compensation. The
latter generalization would include the relaxation of several approximations made and
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5. Quantum oscillations and magnetoresistance in type-II Weyl semimetals

justified in [Tre+17a], including the simple contact interaction and the restriction of the
interaction to Landau level branches with equal Landau level index.

Finally, beyond Weyl semimetals, it will be worthwhile to extend the general idea
that field-induced density wave transitions can strongly affect the amplitude scaling of
quantum oscillation measurements[Pez+17; Shi+18] and hence the interpretation of the
corresponding data.
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6. Conclusion

In this thesis we discussed the electric transport properties of tilted Weyl semimetals
with the Fermi level at the nodal point. Hence, our results apply to materials with
suitable stochiometry, which leads to the nodal point being at the Fermi level. Previously
research on transport properties of Weyl semimetals focussed on isotropic Weyl cones
exclusively. While in the context of high energy physics such an isotropy is dictated by
the Lorentz invariance, there is no reason to expect Weyl cones in condensed matter
realizations to be symmetric. We have discussed anisotropies and tilt, which both break
this symmetry, and we found the tilt to be most intriguing.

In general, the research of this thesis was driven by the interest in a specific physi-
cal system — tilted Weyl semimetals — and was not aimed at developing new meth-
ods. Therefore, we mostly applied well-established methods, e.g. mean-field theory,
linear response theory and the scattering matrix formalism. Nonetheless, each method
was adapted to the specific problem, most often by combining analytic and numerical
work. In general, we began by performing as many analytical simplifications and calcu-
lations as possible, until we reached a situation where the equations turned out to be
unsolvable analytically. From this point on we applied numerical methods, which we
implemented from scratch, relying only on programming libraries for basic mathemat-
ical operations[WCV11; Oli07]. The preparatory analytical work allowed us to study
much larger systems numerically than we could have accessed by “brute force” or ab
initio methods. Hence, the combination of analytics and numerics turned out to be a
powerful solution. A good example for this general strategy is the mean field calculation
in chapter 4, where the physical approximations and the analytical simplifications led
to numerics which were effectively one-dimensional in the tilt direction. Additionally,
the use of already established methods allowed us to quickly combine a variety of tech-
niques to find convincing answers. A prime example of this approach is chapter 3, where
we combined three methods (SCBA, S-Matrix and KPM) and an intuitive physical ar-
gument. Each method started from a different point of view and together the results
provided a coherent picture, underlining their credibility.

We distinguished between tilted (type-I, chapters 2 and 3) and over-tilted (type-II,
chapters 4 and 5) Weyl cones. For both classes, we found properties of the electronic
transport that can serve as experimental signatures of a tilt. These signatures present
a complementary way to experimentally access the tilting parameter in Weyl materials
compared to directly imaging the dispersion using spectroscopy.

Notably, the publication [Tre+15], on which chapter 2 is based, was the first publica-
tion to discuss the relevance of the tilt and to point out observable consequences thereof.
In chapter 2, we applied the scattering theory formulation to compute the dimensionless
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conductance g and the Fano factor F of tilted Weyl semimetals. We briefly discussed the
ubiquitous anisotropies of Weyl cones, showing that they can be understood by a simple
rescaling and do not lead to unexpected signatures. While the tilt does not alter the
topology of the band structure, it nevertheless affects the dimensionless conductance g
and Fano factor F . Especially the latter observation is remarkable, since the Fano factor
is often found to be a universal number, that does not depend on system-specific details.
We found that the influence of the tilt on the Fano factor is dependant on the relative
orientation between tilt and transport direction. Still, the Fano factor will only increase
with a tilt compared to the isotropic case and hence it could be a valuable experimental
signature to identify tilted cones by transport measurements.

We extended the discussion to the case of two-dimensional Dirac cones as well, where
tilts result in similar effects. It turns out, however, that due to the symmetry properties
in the most pertinent example graphene, the tilt will only show up under lattice defor-
mations and will typically be relatively small. For other two-dimensional materials, e.g.
α–(BEDT-TTF)2I3 [Goe+08], the tilt of the linear dispersion might be stronger, but we
note that the Dirac cone in two dimensions is not topologically protected and hence less
stable than the Weyl cones in three dimensions. Hence, the experimental signatures of
a tilt are presumably much harder to observe in two-dimensional materials.

In chapter 3 we studied again the dimensionless conductance and the Fano factor for
tilted Weyl cones, but included the effect of disorder. To this end we applied several
methods, whose combined results yielded a coherent picture. The methods included the
self-consistent Born approximation, a numerical scheme based on the concatenation of
scattering matrices and the kernel polynomial method.

The existence of a disorder-induced phase transition from a quasi-ballistic weak dis-
order phase to a diffusive strong disorder phase was already known for isotropic Weyl
cones[Sbi+14]. We found that this phase transition continues to exist in the presence
of a tilt, but the critical disorder strength is reduced with increasing tilt. As the tilt
approaches the critical value, where one band of the Weyl cone is completely flat in
the linear approximation, the critical disorder strength approaches zero. So in the pres-
ence of disorder, the tilt-induced phase transition from a type-I Weyl semimetal (with
a point-like Fermi surface) to a type-II Weyl semimetal (with finite particle and hole
pockets at the nodal point) is always preceded, at any finite disorder strength, by a
disorder-induced transition to a diffusive phase with a finite density of states at the
nodal point.

We further concluded that there is a family of weak-disorder fixed points distinguished
by their effective tilt. The value of this effective tilt in turn affects the Fano factor, as
discussed for the bare tilt in chapter 2. This again highlights how valuable the Fano
factor is as an experimental signature.

Lattice deformations, like strain or pressure, generally induce changes in the band
structure which also affect the tilt. As the critical disorder strength of the disorder
phase transition depends on the tilt, it might be possible to drive a system through
this phase transition by changing external parameters. This opens up a completely new
route for the observation of the disorder phase transition, as the disorder realization
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itself in condensed matter samples cannot be easily controlled after the sample creation.
It might be necessary, however, to start the tilt-induced phase transition already at a
close-to-critical disorder strength, so that only a relatively minor change in the band
structure is sufficient to drive the system through the quasi-ballistic-to-diffusive phase
transition.

When looking for the experimental signatures, which we proposed for type-I Weyl
semimetals, it is important to keep in mind the full band structure of the material under
consideration. The first experiments finding Weyl semimetals were all observing time-
reversal symmetric Weyl semimetals[Xu+15; Lu+15; Lv+15; Hua+15; Zha+15] with
additional states crossing the Fermi level. Later experiments also reported the observa-
tion of time-reversal symmetry breaking Weyl semimetals[Bor+15; Liu+17b; Chi+16;
Liu+17a]. In the reported materials additional states at the Fermi level are also present
and in some of them the Weyl cones are not exactly at the Fermi energy. Therefore, the
full transport properties in all Weyl semimetals known to date will be a combination
of contributions of the Weyl nodes and the other states at the Fermi level. There are
other, still hypothetical, time-reversal symmetry breaking Weyl semimetals, which are
predicted in the pyrochlore iridates[Wan+11; Ber+15; KTB17], where the only states
crossing the Fermi level are Weyl nodes. In these materials it would be easier to observe
the sole contribution of the Weyl nodes.

In the second part of this thesis we turned our attention to type-II Weyl semimetals,
where the tilt is so strong, that finite electron and hole pockets form around the nodal
point. In chapter 4 we studied a low energy theory of type-II Weyl semimetals, which
was based on an exemplary lattice model. We specified the importance of the higher
order terms in the low energy description to capture the effects of the pockets. When
placed in a magnetic field, the band structure is altered and forms Landau levels that are
flat in two dimensions. Including these higher order terms in the low energy description
allowed us to describe the nesting property, which occurs along the tilting direction
between electron- and hole-like Landau level branches. We developed a general mean-
field theory of a type-II Weyl semimetal in a magnetic field, so that we were able to take
interactions into account. The mean field calculation confirmed our intuitive picture of a
nesting-induced CDW instability. Further, we were able to trace the CDWs dependence
on temperature and magnetic field. Based on these results we proposed several clear
experimental signatures of the field-induced CDW transition. To keep the computations
tractable, we introduced and justified several approximations, including a simple contact
interaction and restricted inter Landau level couplings. The relaxation of each of these
approximations would lead to interesting new questions and research possibilities.

Based on the results of chapter 4, we calculated the resistivity of a type-II Weyl
semimetal in a magnetic field in chapter 5. We compared the case without and with
interactions. In the case of a non-interacting type-II Weyl semimetal, we confirmed the
unsaturated and (nearly) quadratic magnetoresistance for compensated electron and hole
pockets, which was previously explained in a semi-classical picture, using a microscopic
model and linear response theory. Further, we showed that a critical field strength BQ
exists, at which the quadratic scaling breaks down even for perfect compensation. We
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discussed how this field strength depends on the material’s parameters.
Next, we focussed on the effects of interactions, which lead to a CDW transition as re-

ported in [Tre+17a]. In the case of interacting type-II Weyl semimetals, a CDW develops
as discussed in chapter 4, which leads to numerous effects in terms of magnetoresistance
properties: At low fields the resistivity (and hence the magnetoresistance) increases rela-
tive to the non-interacting case by a numerical factor, while at very high fields (above the
quantum limit) the resistivity approaches again the values of the non-interacting case.
More strikingly, the temperature dependence of the resistivity oscillations is no longer
monotonic, which is in contrast to the universal Lifshitz-Kosevich behaviour. Therefore
magnetoresistance measurements are an appropriate tool to look for signatures of the
CDW phase in type-II Weyl semimetals and it will be interesting to see to which degree
our predictions of a CDW can be confirmed experimentally. Although there are no ex-
perimental results published yet, we know of several experimental groups interested in
devising experiments to find CDWs in type-II Weyl semimetals.

Until now it seems that all type-II Weyl materials showing (nearly) unsaturated mag-
netoresistance, e.g. WTe2 and WP2, indeed have perfectly compensated electron and
hole pockets. The question how magnetoresistance evolves in the interacting but non-
compensated case remains interesting and is left for future research.
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A. Wave function matching

We calculate ballistic transport in a scattering region of length L and width W as
described in the main text. The Hamiltonian is given by

H =
∑
ij

vijkiσj + (aiki − u)σ0 . (A.1)

The aiki terms can be interpreted as a tilt of the cone and vij as a d×d matrix describing
the anisotropy of the dispersion, where it is sufficient to have nonzero entries on the upper
triangular to describe all possible anisotropies of a cone. The dispersion is given by

ε1,2(k) = −u+ axkx + ayky + azkz

±
√
k2x(v2xx + v2xy + v2xz) + 2kx(ky(vxyvyy + vxzvyz) + kzvxzvzz) + k2y(v2yy + v2yz) + 2kykzvyzvzz + k2zv

2
zz .

(A.2)

Whenever the above square-root expression occurs we will abbreviate it as
√· · ·. Then

the spinors are

χ1,2 =

− kxvxx − i (kxvxy + kyvyy)

kxvxz + kyvyz + kzvzz ∓
√· · ·

1

 (A.3)

and the velocities used to normalize incoming and outgoing plane waves are v(k) =
∂kε(k). We consider the limit of highly doped leads (u→∞) in u = 0 in the scattering
region. The transverse momentum k⊥ = ky (d = 2) and k⊥ = (ky, kz) (d = 3) is
quantized due to the finite width W ,

ky =
2πn

W
kz =

2πm

W
. (A.4)

For any mode of given momentum ky, kz we determine the x component of the wave
vectors kin, kr, kt of the incoming, reflected, and transmitted wave and the x component
in the scattering region k̃1,2 by solving Eq. (A.2) for ε(k) = 0. Then we calculate the
transmission and reflection amplitude by wave function matching at the beginning and
the end of the scattering region (x = 0, L):

1√
vin
χin +

r√
vr
χr = αχ1 + βχ2 , (A.5)

t√
vt
χt = αχ1 expik̃1L +βχ2 expik̃2L . (A.6)
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A. Wave function matching

The total transmission probability can be obtained by summing over all modes:

T =
∑
k⊥

|t(k⊥)|2 . (A.7)

In the limit L
W → 0 one may replace the sum by an integral which gives Eq. (2.2) of the

main text.
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B. Numerical procedure SCBA

In this appendix we provide further details on the calculation of the density of states
using the self-consistent Born approximation (SCBA), see Section 3.3. Since there is
rotational symmetry around the tilt direction (the z axis), the parameter dependence of
the self-energy Σ(k, ε) can be restricted, and Σ(k, ε) can be parameterized as

Σ(k, ε) =Σ0(k, θ, ε) + Σ3(k, θ, ε)σ3

+ Σ⊥(k, θ, ε)(σ1 cosϕ+ σ2 sinϕ), (B.1)

where θ is the angle between k and the z axis and ϕ is the azimuthal angle corresponding
to k. Using the short-hand notations (with dependence on k, θ, and ε left implicit)

X = ε− va cos(θ)k − Σ0(k, θ, ε),

X⊥ = vk sin θ + Σ⊥(k, θ, ε),

X3 = vk cos θ + Σz(k, θ, ε), (B.2)

we can write the self-consistency condition for the Green function and self-energy as

G =
1

X2 −X2
⊥ −X3

3

× [Xσ0 +X⊥(σ1 cosϕ+ σ2 sinϕ) +X3σ3] , (B.3)

Σµ =
1

(2π)3

∫ ∞
0

dk′
∫ π

0
dθ′

X ′µ sin θ′

X ′2 −X ′2⊥ −X ′23
Bµ(k− k′), (B.4)

with µ = 0, ⊥, 3 and

B0(k− k′) =K

∫ 2π

0
dϕ′e−|k−k

′|2ξ2/2

= 2πKe−(k2+k′2−2kk′ cos(θ) cos(θ′))ξ2/2

× I0(2kk′ξ2 sin θ sin θ′), (B.5)

B⊥(k− k′) =K

∫ 2π

0
dϕ′e−|k−k

′|2ξ2/2e−iϕ

= 2πKe−(k2+k′2−2kk′ cos(θ) cos(θ′))ξ2/2

× I1(2kk′ξ2 sin θ sin θ′), (B.6)

B3(k− k′) =B0(k− k′), (B.7)
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B. Numerical procedure SCBA

Figure B.1.: Linear fit to D in the region where D > Dthreshold to determine Kc.

where I0 and I1 are modified Bessel functions. Self-consistency equations for X0, X⊥,
and X3 then immediately follow from the definitions (B.2).

For the numerical computation we have to compute G at small but finite imaginary
values for the energy ε. Combined with the need to use a finite grid in momentum
energy space to perform the integrations this leads to a slight rounding of the onset
of a finite density of states upon entering the diffusive phase from the weak-disorder
regime. This obstructs a direct determination of the critical disorder strength from the
density-of-states calculations in the SCBA. We have estimated the precise location of
the critical disorder strength from a linear fit of density of states for disorder strengths
just above the critical disorder strength. An example of such a linear fit is shown in
Fig. B.1. The fitting procedure leaves a small residual error for the value of Kc, which
is shown by the error bars in Fig. 3.2.

92



C. Derivations for “Charge density wave
instabilities of type-II Weyl semimetals
in a strong magnetic field”

C.1. Susceptibility predictions for QCDW

We use the standard formula to compute the susceptibility[GLS04]

Πλλ′
nn′ (q, ω) = lim

δ→0

∑
q′

nF (Eλ(q′, n))− nF (Eλ′ (q
′ + q, n′))

Eλ(q′, n)− Eλ′(q′ + q, n′) + ω + iδ
(C.1)

using the Fermi function nF , which depends on temperature, Π is shown for some rep-
resentative parameters in Fig. C.1. In the right panel of this figure we show that q
corresponding to the highest peak in susceptibility is indeed the optimal QCDW (lowest
critical interaction strength) for the charge density wave.

C.2. Landau level spectrum and interaction

As discussed in the main text, the magnetic field B = ∇×A is introduced by a minimal
coupling of the vector potential, which we consider to be A = (0, Bx, 0) in the Landau
gauge, to the crystal momentum Π = ~k− e

cA. Then we obtain the standard raising and

lowering operators a = lB√
2~ (Πx − iΠy) and a† = lB√

2~ (Πx + iΠy) with [a, a†] = 1. And

consequently we arrive at the following Hamiltonian describing the low energy theory

H0 =

∫
d3r

(
Ψ†A(r) Ψ†B(r)

)((1− η)kz + (γ + β)k3z
√
2

lB
â†

√
2

lB
â −(1 + η)kz + (γ − β)k3z

)(
ΨA(r)
ΨB(r)

)
(C.2)

with

Ψ†A(r) =
∑
n,p,kz

eikzzψn,p(x, y)ĉA,n,p,kz (C.3)

ψn,p(x, y) =
1√
L
eipx

(
π22n(n!)2

)−1/4
e−

1
2

(y+p)2Hn(y + p) (C.4)

while for B there is a shift from n to n− 1

Ψ†B(r) =
∑
n,p,kz

eikzzψn−1,p(x, y)ĉB,n,p,kz (C.5)
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where ψ are properly normalized Harmonic oscillator wave functions including the Her-
mite polynomials Hn.

The generic interaction is given by

Hint =
1

2

∑
α,β=A,B

∫
d3r1

∫
d3r2Ψ†α(r1)Ψ†β(r2)U(r1 − r2)Ψβ(r2)Ψα(r1) (C.6)

where the contact interaction corresponds to the interaction potential U(r) = δ(r). Note,
in using the contact interaction we avoid introducing another scale, but we checked that
the qualitative findings presented in the following can be reproduced using longer ranged
interactions including Coulomb.

Projecting this contact interaction onto the Landau levels we obtain Eq. 7 in the main
text with

Hint =
1

2

∑
n1,n2,n3,n4,
p1,p2,kz ,k′z ,
qx,qy ,qz

eiqy(p1−p2−qx)Mn1,n2,n3,n4(q)

·
∑

α,β=A,B

c†α,n1,p1,kz
c†β,n2,p2,k′z

cβ,n3,p2+qx,k′z+qzcα,n4,p1−qx,kz−qz (C.7)

Mn1,n2,n3,n4(q) = U(q) Jn4,n1(qx, qy)Jn3,n2(−qx,−qy)︸ ︷︷ ︸
F (qx,qy)

(C.8)

with cα=B,n → cB,n+1, the Fourier transformed interaction potential U(q) and the factor
F due to the wave functions overlap. Here all in-plane momenta are measured in units
of lB. Using the wave functions from Eq. (C.5) we get for J [BR83]

Jm,n(qx, qy) =

√
n!

m!
e−|q|

2/4

(
qx + iqy√

2

)m−n
Lm−nn

(
|q|2

2

)
with |q|2 = q2x + q2y for m < n (C.9)

Jm,n (qx, qy) = J∗n,m (−qx,−qy) . (C.10)

The full Hamiltonian then reads

H = H0 +Hint . (C.11)

C.3. Density wave order parameter

The intra LL branch components

〈a†p,kzap−qx,kz−qz〉 = na(kz)e
−ipQyeiQyqx/2δ(qx −Qx)δ(qz) (C.12)

〈b†p,kzbp−qx,kz−qz〉 = nb(kz)e
−ipQyeiQyqx/2δ(qx −Qx)δ(qz) (C.13)
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C.3. Density wave order parameter

only shift the chemical potential which can be fixed independently. To motivate the
ansatz for our CDW order parameter, we show in the following explicitly that the re-
sulting electron density is real and modulated in the form cos(Qz · rz).

For now we look only at the density of the cA part and we fix n and B so we do not
write out dependencies on these variables:

ρA(r) =
∑
q

eiq·rρA(q) (C.14)

where

ρA(q) =
∑
p1,kz

eiqy(p1−qx/2)〈c†A,p1,kzcA,p1−qx,kz−qz〉 (C.15)

so that

ρA(r) =
∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)〈c†A,p1,kzcA,p1−qx,kz−qz〉 (C.16)

=
∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)

〈(u(kz)a
†
p1,kz

− v(kz)b
†
p1,kz

)(u(kz − qz)ap1−qx,kz−qz − v(kz − qz)bp1−qx,kz−qz)〉
(C.17)

=
∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)
(
u(kz)u(kz − qz)〈a†p1,kzap1−qx,kz−qz〉 (C.18)

+ v(kz)v(kz − qz)〈b†p1,kzbp1−qx,kz−qz〉 (C.19)

+ u(kz)v(kz − qz)〈a†p1,kzbp1−qx,kz−qz〉 (C.20)

+ v(kz)u(kz − qz)〈b†p1,kzap1−qx,kz−qz〉
)

(C.21)

where the first two summands, Eqs. (C.18) and (C.19), are just given by∑
kz

u(kz)
2nA(kz) + v(kz)

2nB(kz) . (C.22)

So we consider the second part in detail, Eqs. (C.20) and (C.21), using the ansatz from
above. We obtain the corresponding 〈b†a〉 terms by shifting variables:

∑
q

eiq·r
∑
p1,kz

eiqy(p1−qx/2)
(
u(kz)v(kz − qz)∆(kz,Q)e−ip1QyeiQyqx/2δ(qx −Qx)δ(qz −Qz)

+ v(kz)u(kz − qz)∆∗(kz + qz,Q)eip1Qye−iQyqx/2δ(qx +Qx)δ(qz +Qz)
)

(C.23)
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then
∑

p1
eip1(qy±Qy) gives a δ(qy ±Qy), such that

=
∑
q

eiq·r
∑
kz

e−iqyqx/2
(
u(kz)v(kz − qz)∆(kz,Q)eiQyqx/2δ(qx −Qx)δ(qy −Qy)δ(qz −Qz)

+ v(kz)u(kz − qz)∆∗(kz − qz,Q)e−iQyqx/2δ(qx +Qx)δ(qy +Qy)δ(qz +Qz)
)
, (C.24)

making use of all the delta functions and using Q = (Qx, Qy, Qz) we get

=
∑
kz

(
eiQ·ru(kz)v(kz −Qz)∆(kz,Q)

+ e−iQ·rv(kz)u(kz +Qz)∆
∗(kz +Qz,Q)

)
. (C.25)

Now we shift the kz of the second summand to kz → kz −Qz, as the summation over
kz goes from −∞ to +∞ and limkz→±∞ v(kz) = 0 this poses no problems. Finally we
get

ρA(r) =
∑
kz

u(kz)v(kz −Qz)
(
eiQ·r∆(kz,Q) + e−iQ·r∆∗(kz,Q)

)
(C.26)

which is manifestly real.

C.4. Fock term

In the mean field expansion we need to pay special attention to the Fock terms and
we use a trick from [GLS04]. Starting from an exemplary Fock term in the mean field
expansion ∑

q,p1,p2,kz ,k′z

eiqy(p1−p2−qx)M(q)〈c†p1,kzcp2+qx,k′z−qz〉c
†
p2,k′z

cp1−qx,kz−qz (C.27)

following the steps of [GLS04] we arrive at

=
∑

px,py,sz ,

1

NB

∑
qx,qy

ei(qypx−pyqx)M(q)
∑
y+,y−

eipy(y+−y−−px)〈c†y+,kzcy+−px,kz−sz 〉c
†
y−,k′z

cy−+px,k′z+sz

(C.28)

where we used the replacements px = p1 − p2 − qx, R = p1+p2
2 , y± = R ±

( qx+px
2

)
and inserting the clever 1, NB being the number of states in the Landau level:

The indices A,B of the c operators are not specified here, but the order of the operators
stays fixed.

Renaming variables as y+ → p1, y− → p2, sz → qz, px ↔ qx, py ↔ qy we get∑
q,p1,p2,kz ,k′z

eiqy(p1−p2−qx)M̃(q)〈c†p1,kzcp1−qx,kz−qz〉c
†
p2,k′z

cp2+qx,k′z+qz , (C.29)

where

M̃(q) =
1

NB

∑
px,py

ei(pyqx−pxqy)M(p) (C.30)

which is (up to a rotation) the Fourier transform of M(q) in the qx, qy plane.
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C.5. Projected mean-field matrix elements

C.5. Projected mean-field matrix elements

We start with the interaction matrix from above for the Hartree terms, and use (C.30) for
the Fock terms to get the matrix elements in the c-basis. First we write the Hamiltonian
(C.11) as a matrix:

H =
(
c†A,p1,kzc

†
A,p2,k′z

c†A,p1,kzc
†
B,p2,k′z

c†B,p1,kzc
†
A,p2,k′z

c†B,p1,kzc
†
B,p2,k′z

)
Hc

cA,p2+qx,k′z+qzcA,p1−qx,kz−qz
cA,p2+qx,k′z+qzcB,p1−qx,kz−qz
cB,p2+qx,k′z+qzcA,p1−qx,kz−qz
cB,p2+qx,k′z+qzcB,p1−qx,kz−qz

 (C.31)

=
(
a†p1,kza

†
p2,k′z

a†p1,kzb
†
p2,k′z

b†p1,kza
†
p2,k′z

b†p1,kzb
†
p2,k′z

)
Ha


ap2+qx,k′z+qzap1−qx,kz−qz
ap2+qx,k′z+qzbp1−qx,kz−qz
bp2+qx,k′z+qzap1−qx,kz−qz
bp2+qx,k′z+qzbp1−qx,kz−qz

 (C.32)

with

Ha = U4(kz, k
′
z)Hc U

T
4 (k′z + qz, kz − qz) (C.33)

where

U4(k1, k2) = U(k1, B)⊗ U(k2, B) (C.34)

To obtain the matrix elements P used in the mean-field Hamiltonian in the main text,
we write each of the 16 terms of this Hamiltonian in a mean field expansion and collect
the terms with the corresponding operators including necessary shifts of variables to
write it in the basis of akz .

C.6. CDW contribution to the heat capacity CV

The formation of the CDW leads to the usual thermodynamic signatures around Tc.
This is shown explicitly in the inset of Fig. 3 where we have calculated the heat capacity
for the model with and without the CDW via

CαV ∝ −
∂Uα
∂T

with Uα = NB

∑
i

Eαi nF (Eαi ) (C.35)

where Eαi with α =CDW (α = 0) are the energy levels with (without) the CDW forma-
tion and the multi-label i refers to the LL index, the momentum kz and the electron-
and hole-like band index.
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C. Derivations for “Charge density wave instabilities of type-II Weyl semimetals in a
strong magnetic field”

−1.3 −1.2 −1.1

0

10

20

30

40

50

60

70

qz

λ, λ′, n, n′

a, a, 1, 1

a, a, 1, 2

a, a, 1, 3

a, b, 1, 1

a, b, 1, 2

a, b, 1, 3

1.10 1.15 1.20 1.25 1.30 1.35 1.40

0.00

0.01

0.02

0.03

0.04

0.05

Q

U

Figure C.1.: Top panel: Susceptibility (arbitrary units) in the non-interacting case with pa-
rameters at B = 20T, T = 0.46K, ω = 0. The maximal susceptibility is reached
for λ = a, λ′ = b and n = n′. Bottom panel: Critical interaction strength in
dependence of CDW wavevector Q for a single Landau level (n = 1, B = 10). The
solid vertical line corresponds to the prediction from the susceptibility calculation.
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D. Mean-field matrix elements
simplifications

After the publication of [Tre+17a] we gained some more insight in the structure of the
interaction matrix elements, also generalizing to arbitrary combinations of Landau level
indices n1,2,3,4, as defined in chapter 4 and C.2. Recall the matrix elements formula

Mn1,n2,n3,n4(q) = U(q) Jn4,n1(qx, qy)Jn3,n2(−qx,−qy)︸ ︷︷ ︸
F (qx,qy)

(D.1)

Jm,n(qx, qy) =

√
n!

m!
e−|q|

2/4

(
qx + iqy√

2

)m−n
Lm−nn

( |q|2
2

)
with |q|2 = q2

x + q2
y for m < n

(D.2)

Jm,n (qx, qy) = J∗n,m (−qx,−qy) , (D.3)

that we want to evaluate at finite kz but qx = qy = 0. The following analytic results are
obtained in the basis of the cA, cB operators, therefore a basis transformation introducing
a dependence on n, kz and B needs still to be applied.

D.1. Hartree terms

In Jm,n there appears a factor of (qx ± iqy)m−n, as the matrix elements for the Hartree
terms are evaluated at qx = qy = 0, this factor cancels any contribution for m 6= n and
the only contribution is for m = n, giving a factor of 1, as L0

n(0) = 1. Due to the shift
of cα=B,n → cB,n+1, the factor J corresponding to cB,ni depends on ni − 1, leading to
the full interaction matrix:

δn1n4δn2n3 δn1,n4−1δn2n3 δn1n4δn2,n3−1 δn1,n4−1δn2,n3−1

δn1n4δn3,n2−1 δn1,n4−1δn3,n2−1 δn1n4δn2−1,n3−1 δn1,n4−1δn2−1,n3−1

δn2n3δn4,n1−1 δn2n3δn1−1,n4−1 δn2,n3−1δn4,n1−1 δn2,n3−1δn1−1,n4−1

δn3,n2−1δn4,n1−1 δn3,n2−1δn1−1,n4−1 δn4,n1−1δn2−1,n3−1 δn1−1,n4−1δn2−1,n3−1


(D.4)

D.2. Fock terms

To calculate the Fock terms of the mean-field expansion we can use the rewriting intro-
duced in chapter C.4. Therefore we are interested in M̃(q) at q = 0, which turns out to
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D. Mean-field matrix elements simplifications

be the integral over qx, qy of the M Introducing the complex variable z = qx + iqy this
integral is equivalent to the integral over the complex plane, and the argument of the
Laguerre polynomials becomes |z|2. For each factor of J in the matrix element we get zα

with α = m− n being the second index of the associated Laguerre polynomial. Further
we distinguish α = n4−n1 and α′ = n3−n2 and we use the polar notation z = reiϕ. Note
that negative α corresponds to exchanging the two indices of the Laguerre polynomial
and additionally introduces a complex conjugation. Now two cases can occur:

1. α = −α′: this leads to an integral of the form∫
C

dzzαz∗−αLαnL
α
n′e
−z2 =

∫
C

dz|z|2αLαnLαn′e−|z|
2

(D.5)

which is exactly the orthogonality relation of the associated Laguerre polynomials,
leading to δn,n′ , with n = maxn1, n4 and n′ = maxn2, n3 with the appropriate
±1 shift for the B operators.

2. α 6= −α′: We introduce β as α′ = −α−β and manifestly nonzero β The integrand
now includes a factor of |z|2αzβ (or z∗β). The part |z|2αLαnLαn′e−|z|

2
of the integrand

only depends on |z|, i.e. is independent of the complex phase, and consequently
the integral over the complex plane can be split into integrations over r and ϕ,
and the integration

∫
dϕzn is 0. As a negative value of α always is related to the

complex conjugate of J with positive α, this case rules out any contribution of
elements where the product of two Laguerre polynomials with different α indices
occurs.

Together this leads to the following matrix elements of M̃ (wrapping the 4× 4 matrix
to two lines):

δ−n1+n4,n2−n3δmax(n1,n4),max(n2,n3) δn2−n3,−n1+n4−1δmax(n1,n4−1),max(n2,n3)

δ−n1+n4,n2−n3−1δmax(n1,n4),max(n3,n2−1) δ−n1+n4−1,n2−n3−1δmax(n1,n4−1),max(n3,n2−1)

δn2−n3,−n1+n4+1δmax(n2,n3),max(n4,n1−1) δ−n1+n4,n2−n3δmax(n2,n3),max(n1−1,n4−1)

δ−n1+n4+1,n2−n3−1δmax(n3,n2−1),max(n4,n1−1) δ−n1+n4,n2−n3−1δmax(n3,n2−1),max(n1−1,n4−1)

δ−n1+n4,n2−n3+1δmax(n1,n4),max(n2,n3−1) δ−n1+n4−1,n2−n3+1δmax(n1,n4−1),max(n2,n3−1)

δ−n1+n4,n2−n3δmax(n1,n4),max(n2−1,n3−1) δn2−n3,−n1+n4−1δmax(n1,n4−1),max(n2−1,n3−1)

δ−n1+n4+1,n2−n3+1δmax(n2,n3−1),max(n4,n1−1) δ−n1+n4,n2−n3+1δmax(n2,n3−1),max(n1−1,n4−1)

δn2−n3,−n1+n4+1δmax(n4,n1−1),max(n2−1,n3−1) δ−n1+n4,n2−n3δmax(n1−1,n4−1),max(n2−1,n3−1)


(D.6)

In most of the cases n1 has to be equal (up to ±1) to n3, while it is independent of
n2, n4, which in turn are equal up to ±1 as well. This is comparable to the situation of
the Hartree results were n1, n4 were independent of n2, n3, but here with switched pairs.
One can easily verify this when n1, n3 are much larger (or smaller) than n2, n4, as the
terms δmax(n1,n4),max(n2,n3) then can be simplified, regardless of some ±1.
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